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Displacement Damage Calculations
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1.1. Introduction

PP
)

A simple model for computing the space radiation damage in GaAs solar cells

LA
)

’ ."'-
%ﬁ

was first introduced by Wilson [Reference 1] in 1982. Yaung [Reference 2]

-
l"\.
.

proposed some modifications of this model, But until very recently, there have
been no reports published on the studies of electron and proton radiation damage
in multijunction solar cells such as AlGaAs/GaAs/InGaAs and AlGaAs/GaAs/Ge
systems.

The objective of this research project was to develop a simple theoretical
model based on Wilson's model [Reference 1] to calculate the displacement
damages introduced by either proton or electron irradiation in AlGaAs, GaAs,
InGaAs and Ge. These calculations would then be applied to obtain an optimized
triple-junction solar cell structure using these materials with a specified end
of life conversion efficiency.

As presented in this report, empirical formulae and theoretical expressions
were derived for calculating the displacement cross section, penetration depth,
path length, total number of defects formed by an incident electron or proton,
and the fractional loss of elec¢tron-hole pairs due to recombination loss,
Additionally, formulae to calculate the degradation of short-circuit current
under different electron and proton fluences and energies in AlGaAs, Gals,
InGaAs and Ge single junction solar cells and the triple-junction cells formed

from these materials were developed. The results of our calculations indicate

that the degradation rate in each cell varies greatly and depends critically not

only on the energy, fluence and direction of the incident electrons and protons, T e m——

but also on the thickness of each cell in the triple-junction cells. The

B e —

calculations were carried out for both single and triple-junction cells using
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AlGaAs as the top cell, GaAs as the middle cell and InGaAs or Ge as the bottom

{l

cell for electron energies ranging from 200 KeV to 5 MeV and fluences from 101u

to 1017 e/cmz, and for proton energies from 200 KeV to 10 MeV and fluences from

lr- AN

‘i

1010 to 1012 p/cmz. In addition to the above criteria, c¢alculations for a

-

given space environment have been made for 3-year, T7T-year, and 10-year
durations,

Major difficulties encountered in performing the theoretical calculations
using the model developed in this report included many unknown parameters and
the lack of experimental data on electron and proton damages in the AlGaAs and
InGaAs solar cells for comparison with theoretical calculations, These

uncertainties can be removed once the actual cell structures for the proposed

triple-junction cells are fabricated and measurements of radiation damage are j{}
made in these cells. This may be realized when the actual cells are fabricated
for our study.
1.2. Design of A Triple Junction Solar Cell
'In order to design a triple-junction solar cell with AMO conversion
efficiency greater than or equal to 30 percent, the selection of materials for a
triple-junction solar cell is guided by the following criteria: [Reference 3-5]
(a) Favorable bandgap energies for the triple-junction solar cell,
(b) Lattice matching between each cell,
(¢) Direct optical transitions,
(d) Compatible metallurgical system,
(e) An available compatible substrate and
(f) Environmental stability.

1.2.1, Design Criteria:

- The most critical factor in desiging a multijunction solar cell is the
. bardgap energy of each cell, [Reference 5] Because of the series connection of
o

i the three cells, the optimum desigh requires the short-circuit currents of three
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cells to be equal. Therefore, a combination of three bandgaps such as 1,95 eV/
1.40 eV/1.0 eV could be used to achieve the optimum triple junction cell
structure, [Reference 6] Since the bandgap of GaAs (1.43 eV) falls within the
optimum bandgap between 1.4 and 1.6 eV and it also satisfies the above design
eriteria of (¢),(d) and (e), the middle cell must be GaAs [Reference 4, 9].

In addition to the bandgap energy, the lattice match is also an important
factor in designing a multijunction solar cell. According to References3 and 7,
AlGaAs is the best selection for the top cell due to its highest AMO efficiency
to date obtained with GaAs and its lattice match over the complete ternary alloy
range, As for the bottom cell, InGaAs can be chosen to have a direct bandgap,
however the lattice mismatch with GaAs requiring the grading for a monolithic
cell can negate any advantage due to the graded region which can result in a
considerable optical loss penalty. Thus, it requires a good tunnel junction in
GaAs.[Reference 4]

Based on the above analysis, it is obvious that the AlGaAs/GaAs/InGaAs
triple-junction solar cell shows the potential to offer the optimum triple-
Jjunetion structure., Since the Ge ¢ell is known to have good radiation
resistance, it is worthy to include the AlGaAs/GaAs/Ge triple-junction cell in
our calculations,

1.2.2. AMO Efficiency of Selected Design

(a) AlGaAs/GaAs/InGaAs [Reference U]

Bandgap AM0 Efficiency
Top cell 1.90eV 19.20%
Middle cell 1.43eV 12.70%
Bottom cell 1.03eV T.44%

Total = 39.34%
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(b) AlGaAs/GaAs/Ge [Reference 4]

Bandgap AMO Efficiency
Top cell 1.90eV 18.20%
Middle cell 1.43ev 12.20%
Bottom cell 0.70eV 3.00%

Total = 33.40%
1.3. A Simple Model for Calculating Displacement Damage in A Solar Cell

1.3.1. Atomic Displacements

A s0lid may be affected in two ways by energetic particle bombardment as
follows: [Reference 10]

(1) Lattice atoms are removed from their regular lattice sites, producing
displacement damage, and

(2)The irradiating particle causes change in the c¢hemical properties of
the solid via ion implantation or transmutation.

-In our model, it is assumed that the dominant defect produced by the
incident electrons or protons is due to lattice displacement, Under this
assumption, an atom will be invariably displaced from its lattice site during
collisions if its kinetic energy exceeds the threshold energy (Td) for the
atomic displacement to take place, and conversely will not be displaced if its
kinetic energy is less than T,. [Reference 11]

1.3.1.1. Defect Formation by Proton Bombardment

When energetic protons c¢ollide with atoms, the energy transferred to the
struck atoms is the most important consideration in evaluating irradiation
damage. [Reference 11] The number of defects formed by an energetic proton
coming to rest in a solar cell is related to the energy of the proton, the
transferred energy, and the threshold energy, Tq» of the solar cell, Given the

conservation of energy and momentum, it follows that the maximum energy which
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can be transferred to the struck atom in a primary headon collision with energy,

E, is given by
Ty = 4 My M, E/(M+M,)2 (1.3.1)

where E is the initial energy of the proton, M1 is the mass of the proton and M2
is the mass of the struck atom, This transferred energy may range from zero in a
glacing collision to a maximum TH in a head-on collision, As for a proton, the A

energy transfer in a collision can be calculated by ignoring the screening

.o
i PO PP

effect, Therefore, the scattering in proton collision obeys the Rutherford ;;;

differential cross section dGb given by

4
=)
5
e
"4

a6 = c(dT/T2) (1.3.2)

- 2 2 2(p 2
where Cz4x a, (M,/Mz) 2, 1, (E.“/E)
and where T is the transferred energy, M1 and M2 are the same as those in
equation 1.3.1, Z1. 22 are the atomic number of the proton and struck atom, E.

is the Rydberg constant and a, is the Bohr radius. Since the defects occur when

o

the energy transfer is greater than Td, the displacement cross section db is

given by

TM TM e
s, =J de =J C(AT/T?) = C(1/Ty4 = 1/Ty (1.3.3) T

Tq Tq L
The average energy transfer, T. in Rutherford collisions which displace atoms

can be calculated as follows:

T T

T :J " T 5; {J Md6;
Td Td

= [Td TH/(TM - Td)]ln(TM/Td) (1.3.4)
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If the transferred energy is sufficiently large (T>>TA), additional displacement
can be produced by the recoiling nucleus before it comes to rest at an
interstitial site. The average number of recoil displacements, v, produced by
one initiating proton collision event is given as a function of TM based on the
assumption that half of the recoil energy produces further displacement, and the
other half is dissipated in other processes, such as [References 1, 11]

7 (E) - 1.0 for Ty<Ty < 2Ty (1.3.5)

Since the mass of a proton is heavier than that of an electron, the
velocity of an energetic proton is slower than an electron with the same energy,
Thus,a protonhas the potential of multiple scattering before coming to rest,
Here we assume that the density of scattering centers in three cells are the
same (i.e., N = 4.42x10%2/cm3). Thus, the average number of defects per unit

length formed by an incident proton with energy E is

DYy =NG6_V

PP (1.3.6)

where db is the displacement cross section and Vp is given by equation 1.3.5.
The total number of defects formed by an incident proton is obtained by
integrating equation 1.3.6 along the path length traveled by a proton, which can

be expressed by

E
0 -
D(E,) = J N6, V, ap (1.3.7)
- 0
.
- where dp is the first derivative of path length traveled by a proton in
N coming to rest. The path length is a function of proton energy, and is obtained
i| by fitting the data of Janni.[Reference 12]
6
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1.3.1.2. Defect Formation by Electron Bombardment

Because of the small mass of an electron, the electron must travel
at a relativistic velocity in order to produce displacements. The maximum energy
which can be transferred in a collision by an electron with mass m and kinetic

energy E is
Ty = 2(E + 2 m C?) E / M, C2 (1.3.8)

where C is the velocity of light, M2 is the mass of struck atom and m <<M2C2.
Consequently, the nonrelativistic Rutherford scattering is inadequate for the
electron. Relativistic Coulomb scattering is treated by Mckinley-Feshbach as
follows: [Reference 13]
sr 2 2
uI(aOZ2 Er)(1-B)

a6z —— (1~ B2T/Ty + Z,BL(T/T) 1/ 2-1/Ty 17137 Tyd /T2 (1.3.9)
m“C’'B

where a. is the Bohr's radius, 22 is the struck atom's atomic number, E,. is

o
the Rydberg constant, B is the electron velocity ratio to the
velocity of light, C, and M is the electron mass. T is the energy transferred
to the struck atom during c¢ollision, This is given by equation 1,3.8.

Integrating equation 1.3.9 yields the displacement cross section for an incident

electron,
6.=[47 a,22,2E,2(1-B2)/m2C B 1 {(Tyy/Tg)-1-B2In(Ty/ Ty)+
27 aBLTy/Tq) /2-11- [ aBIn(Ty/Ty)) (1.3.10)

where a equals 22/137. T4 is the threshold energy of the struck atom and all

BASN  DhEARERERENENER: AR

other parameters are the same as in equation 1.3.9. The average energy transfer

during a collision is
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T, T

S M dSe/; " g6,
Ta Tq

Tyln(Tyy/ Tg)~B2(Ty=Ty)+2 X 8Bl Ty~(Ty-Tg) '/21-FaB(Ty,~T)

- y (1.3.11)
(Ty/Tg)-1-B21n(Tyy/T4)+2RaBl (Tyy/Tq) /2= 1= { aBIn(Ty/Ty)

Thus, if the energy transfer is large enough (i.e., T>> Td), additional
displacement can be produced by the initial recoiling nucleus before it comes to
rest at an interstitial or replacement site. The average number of recoil
displacements produced by one initial electron collision event is given as a
funection of T by the assumption that half the recoil energy produces further
displacement and the other half is dissipated in other processes., [References

1, 11]

0 T(E) < T4
V (E) = 1 Tg ¢ T ¢ 2Ty (1.3.12)
1 + T(E)/2T,4 2 Ty < T(E)

The average number of defects per unit penetration depth formed by an incident

electron with initial energy, E, is

B(E) = N 6, V, (1.3.13)
where N is the density of scattering centers in a solar cell, 6; is the _fi
displacement cross section and V; is given by equation 1.3.12. The total number ‘ Ei:

of defects integrated along the penetration depth is

() ={ °N &, T, ar (1.3.14)

where R is the penetration depth of an electron before coming to rest. Since the

electron mass is small, we can neglect the effects of multiple scattering. The
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empirical formula of penetration depth is given by fitting the data in
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{Reference 14].
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N

1.3.2. Short-circuit Current (I.,) Degradation

Rt

To derive an expression for the I, in an irradiated cell, the following
simplified assumptions were made : [References 1, 15-16]
(1) Radiation-induced defects do not greatly alter the internal cell
electric field
(2) Radiation defects alter the cell operation mainly through change in
minority carrier lifetimes in the bulk, and
(3) Radiation-induced displacements within the solar cell form recombination
centers for minority carriers of electron-hole pairs produced by photon
absorption,
According to Wilson's model, a minority carrier, once formed, undergoes
thermal diffusion until it is trapped and recombined or is separated at the
junction. The root mean square distance traveled in coming to a position a

distance L away from the source point is given by [Reference 17]
r=(6"2L (1.3.15)

The fractional loss of pairs due to recombination in reaching the junction along

a fixed direction is given by

x
1 - exp[ij G;Dv(x)(6)1/2dx/u] (x)xj)
x
flu) = J (1.3.16)

X
1 = exp[ij J 5;Dv(x)(6)1/2dx/u) (x<xj)

X

where u is the cosine of the direction to the junection, Dv(x) is the

displacement density, xj 1s the junction depth and o, is the recombination };ﬁ;,
-._"\\

cross section. Averaging f(u) over the entire direction towards the junction i;
e
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yields

1
F(x) -‘5 f(u) du
)

1 - E5[(6)1/26, $(Do(Ey)=Do(Ey )] (1.3.17)

where E, is the second order of exponential integral, E, is the energy reduced

after traveling a distance x, Ex; is the energy reduced after traveling to the

J

junetion depth X5 and D,(x) is the defect density after penetrating a depth x.

It also follows that
Dc(x) = [D(Eo) - D(E(x))] ﬁ(Eo) (1.3.18)

where g is the fluence of the incident electrons or protons and D(E,) is the
total number of defects produced by one incident electron or proton with initial

energy E,.

The density of the photoh absorption rate at a depth x within the solar

cell is given by -

p(x) = K r exp(-rx) (1.3.19) -

where K is the integrated flux in the absorption band and r is the photon
absorption coefficient averaged over the solar spectrum. Thus, the photo-current

collected under a short circuit condition is given by

t
Isco =5.°?cp(x)dx (1.3.20)

where ?c is the normal collection efficiency and t is the depth of active

region., The degraded short-circuit current after irradiation is given by

z

t -

Ige =j e [1 = F(X)] p(x)dx (1.3.21) K
o

ey
IR M)

.
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Thus, the fraction of remaining current is given as

t

t
Isc/Isco = 1 - [jo ?c(x)F(x)p(x)dx/ . qc(x)p(x)dx (1.3.22)

If we assume n, =1, then the normalized short-circuit current degradation is

given by

t t
Igo/Ig00 = 1 -jo p(x)F(x)dx / -50 p(x)dx (1.3.23)

1.4, Input Parameters and BEmpirical Formulae for Simulation

1.4.1. Input Parameters

The input parameters for this simulation program are given as follows:
Ty =— threshold energy of each cell
22 -~-- average charge number of each cell
M2 -— average mass of each cell
6, —-- electron-hole recombination cross section
N --- density of scattering centers of each cell
a =—--- absorption coefficient of each cell
?c -—— cell charge collection efficiency
X; === junction depth of each cell
TJ ~--—— depth of each region
p =-—- fluence of the proton or electron
-—— initial electron or proton energy
X, === thickness of coverglass
Plen(E,) --- function for calculating path length
Rlen(Eo) --- function for calculating penetration length
Eleft(x) —— function for calculating reduced energy

Dcx(Eo) -—- function for calculating total number of defects

11
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L 1.4.2. Empirical Formulae 7!
¢

o 1.4.2.1. Material Selection o

.l

)

The materials selected for this simulation include Al,Ga,_,As, GaAs
and In1_xGax As or germanium as the top, middle and the bottom junction solar
cells respectively for the triple junction solar cell structure, In order to
achieve a 30 percent AMO efficiency, the optimum bandgaps for the triple
junction solar cell formed by these three materials should be 1,90 eV for the
top cell, 1.43 eV for the middle cell and 0.75 eV for the bottom cell, Values of
x for the Al ,Ga,As and In1_xGaxAs were calculated by using the empirical

formulae given by [Reference 18]

1.90 = 1.424 + 1.266 x + 0.266x° eV (1.4.1)
for Alea1_xAs. wWith Eg = 1.90 eV, x = 0.35.
0.75 = 0.35 + 0.63 x+ 0.45%2 (1.4.2)

for In, ,Ga,As. With Eg = 0.75 eV, x = 0.47.

1.4,2.2. Threshold Energy

The threshold energies for GaAs and Ge are given respectively by 9.5 eV and
27.5 eV [Reference 19, 22], while those of InGaAs and AlGaAs are still

unknown., Since we know the threshold energies of Al (16 eV) [Reference 20], InAs

-

i (7.6 evV) [Reference 19] and GaAs (9.5 eV), the threshold energy for

f’ Alo 35630 65As is calculated from the known values of the threshold energy for

3; each element of this material, which is given by

-

g Tq = ( Al%0.35 + Ga®0.65 + As )/2.0 = 10.7 eV (1.4.3)

- For Ing 53Gap y7As, the value of Ty is calculated by

{

3 Ty = (InGa)0.53 + (GaAs)o.u7 = 8.49 eV (1.4.4)
12
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1.4.2.3. Path Length and Penetration Depth

In addition to the threshold energy, the path length or penetration depth
(range) for an electron or proton before coming to rest is unknown. Thus, we
adopt the path length and the penetration depth from the data given recently by
Janni. [Reference 12]. Since all the data for path length or penetration depth
are for elements, approximations were made in calculating the path length and
range for A1°.35680'65As. GaAS and In0.53Ga0‘u7As based on the following

assumptions: [Reference 21]

1/Py = X (Ny/P)) (1.4.5

1/R, = 3 (Wy/Ry) (1.4.6)
where P, and R, are the path length and range of the compound materials
respectively, Py and Ri are path length and range for each element and wi is
the weighting function of each element, The least square method was employed in
fitting the data to obtain the expressions for P, and R for these three cells,
(see Appendix A).

- 1.4.2,4, Reduced Energy

To calculate the reduced energy for a proton with initial energy E, after
travelinga distance x, we must consider the multiple scattering effect of a
proton. Therefore, the value for reduced energy is obtained by averaging the
reduced energy for traveling a distance x with and without multiple scattering.
As stated, the multiple scattering effect for electrons is negligible., The
empirical formulae of reduced energy for protons and electrons are presented in
Appendix B,

1.4.2.5, Total Number of Displacement Damage

Since the empirical formulae of path length and penetration 1length are
given in Sectiont.,4.2.3,we can apply equations 1.3.7and1.,3.14 to obtain the
empirical formulae of the total number of displacements for protons and

electrons., These are presented in Appendix C.

13
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1.5. Results of Computer Simulation For A Single Junction Cell
The following results for four single junction cells are obtained under the
input values given in Table 1.5.1.

1.5.1. Results of Proton Radiation Damage

The results of simulation for the displacement c¢ross section, average
energy transferred to recoil nucleus and total number of displacements due to
proton bombardment are shown in Figures 1.5.1 through 1.5.3 respectively. Figure
1.5.1 shows that the Ge solar cell creates much less displacement damage than
the other cells due to the high threshold energy of the Ge cell. This higher
threshold energy also explains why the average energy transferred for the Ge
cell is much higher than that in the other three cells shown in Figure 1.5.2,
Figure 1.,5.3 shows that the Ge cell again creates much less displacements than
the other cells, especially for high energy protons, For this reason, we
included the Ge cell in addition to the InGaAs cell for the bottom cell in this
simulation,

" Figures 1,5.4 through 1.,5.7 show the short-circuit current degradations
compared to different fluences and energies of protons., According to these
figures, we find that the maximum degradation occurred near 100 KeV. The reason
for these results is that high energy protons will penetrate through the cell
and not create much degradation, These figures also show that high fluences of
protons will degrade cells much more rapidly than cells irradiated by low
fluences of protons.

1.5.2. Results of Eleetron Radiation Damage

Figure 1.5.8 through 1.5.14 are the results of displacement cross section,

average energy transferred to recoil nucleus, total number of displacements and E
short-circuit current degradation due to electron bombardment. The explanations h;
of the different results obtained for each cell are similar to those of proton ffﬂ
damaged cells., The main difference is that the mass of an electron is much éi
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smaller than that of a proton, Therefore, the degradation of each cell after

electrons irradiation is more uniformly due to the absence of multiple
scattering. This also explains why the number of displacements for each cell is
much less than that of protons, Thus, it needs higher fluences of electrons than
those of protons to create short-circuit current degradation in electron
irradiated cells,
1.6. Results Of Computer Simulation For the Triple Junction Solar Cells

The structures of a triple-junction solar cell used in our simulation

consist of the top cell -- Alo 35630 65As with X: = 0.3 um, T. = 20 um, the

J J
middle cell -- GaAs with xj = 0.5 um , Tj = 300 um and the bottom cell --
In0'53cao.u7As with Xj =0.9 um, Tj = 15 um or Ge with XJ = 0.5 um , Tj = 15 um,

The cover glass has a thickness of 0.1 um.

According to the results of the simulation obtained in subsection 1.5, we
find that the I, degradation rate for each cell is related to the energy and
fluence of the incident electron and proton. The algorithm and results of

simulation for these triple-junction cells are given as follows:

1.6.1. Algorithmfor Calculating I,, degradation for a triple junction cell:
Step 1 : Calculate the penetration depth R1 of the top cell using the

initial energy E, of an incident electron or proton.

Step 2 : If R1 < 20 um .en go to step 11.
Step 3 : Calculate Ise degradation rate of the top cell,
Step 4 : Calculate the reduced energy E1 with initial energy E, after
traveling a distance of 20 um of the top cell.
Step 5 : Calculate the penetration depth R2 of the middle cell using
the energy E1 in step 4,
Step 6 : If R2 < 300 um then go to step 12.
Step 7 : Calculate the Isc degradation rate of the middle cell.
Step 8 : Calculate the reduced energy E2 with initial energy E1 after
15
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traveling a distance of 300 um of the middle cell.

Step 9 : Calculate the penetration depth R3 of the bottom cell using

the energy E2 in step 8.

ARAT - NN

Step 10 : Calculate the ISc degradation rate of the bottom cell and then

go to step 13.

oy

-

Step 11 : Set Isc degradation rates of the middle and bottom cells to be

1, go to step 13.

: Step 12 : Set Isc degradation rate of the bottom cell to be 1,
. Step 13 : If the Ige degradation rate of each cell is not optimum then
adjust the active region of each cell and go to step 1 else
Q: g0 to step 14.
Step 14 : Optimum structure is found, Stop.

1.6.2. Results of simulation for proton

Figures 1.6.1 through 1,6.5 show the results of the penetration depth,
total number of displacements and the short circuit-current degradation rate of
each cell in the triple-junction solar cell such as AlGaAs/GaAs/InGaAs or
AlGaAs/GaAs/Ge due to protons irradiation, To estimate the effect of the
proton irradiation on three cells we refer to Table 1.6.1. According to Figure
1.6.1, we find that the 0.5 MeV proton can only penetrate about 4.5 um into the
top cell ( AlGaAs ), therefore there is no damage to the middle cell and the

bottom cell., At the specified fluence of 1012 p/cm2 only 6% of the short circuit

current is lost in the top cell, For 10 MeV proton, the penetration depths are
about to 355 um and 353 um depending on the different bottom cells (Figures

1.,6.1 and 1,6.2 ) which are greater than the thickness of triple-junction cells

g studied here, Table 1.6.1 shows that under these c¢onditions, the damage caused
é by 10 MeV proton irradiation is relatively small, leading to a short-circuit
: current loss for the top cell of only 4% at 3x1011 p/cme. Qur calculations thus
f show that for the specified energies and fluences, the proton damage in the
16
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triple-junction cells is negligible when compared to 1 MeV electron,

Figures 1.6.3 and 1.6.4 show that the proton energy which is greater than
9.4 MeV will create displacements in the bottom cell., In both Figures, we
found again that the Ge cell creates less displacements than that of InGaAs
cell, However, the reduced energy after traveling through the top and middle
cells is so small that there is no obvious damage on the Ge or InGaAs cell
(Figure 1.6.5).

1.6.3. Results of Simulation for Electron

Figures 1.,6.6 through 1.6.11 show the penetration depth, total number
of displacements and the short-circuit current degradation rate of each cell in
a triple-junction cell due to electrons irradiation, Since the electron
produces uniform damage in the solar cell, thus the electron damage in the
triple~junction cell is higher than the proton damage, According to Figures
1.6.6 and 1.6.7, we found that the penetration depth of a 1 MeV electron is
i about 1000 um which is far beyond the thickness of the triple junction cells
probosed in this study. Thus, it is obvious that short-circuit current
degradations occurred in these triple junction cells, as shown in Table 1.6.2.
i 1.7. Simulation of Space Radiation Enviromment
The simulation of space radiation environment was performed by using the
data provided by Hughes Research Lab (see Table 1.7.1 ). In this simulation, we
limited the maximum proton energy to 10 MeV due to the precision of the
empirical formulae presented in Appendices A-C. The results are shown in Figures
1.7.1 through 1.7.4, Figure 1.7.1 shows the I, degradation vs 6 and E for 3, 7
and 10 years of protons exposure for the AlGaAs solar cell. Figure 1.7.2 shows
the Isc degradation vs & and E with 3, 7 and 10 years of protons exposure for
the GaAs solar cell. Figure 1.7.3 shows the Ige degradation vs &4 and E with 3,
7 and 10 years of protons exposure for the InGaAs or Ge solar cell. Figures

1.7.4 through 1.7.7 are for AlGaAs, GaAs, and InGaAs or Ge cells subjected to 3,
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7, 10 years of the electron exposure, respectively.

1.8. Summary and Conclusions
In this report a simple model for computing the displacement damage for a

single and triple-junction solar cell has been developed and applied to the

proton and electron irradiated AlGaAs/GaAs/InGaAs or Ge triple junction solar
cell under different fluences, energies and space environmental conditions. In
this study it is shown that in order to obtain an optimized triple junction
solar cell structure with specified end of life conversion efficiency, various
physical parameters for each cell should be determined. It is pointed out that
major difficulties encountered in carrying out the theoretical calculations
using the model developed in this work include many unknown input parameters and
the lack of experimental data to facilitate comparison with our calculations.

These uncertainties can be removed once the actual cell structures for the

proposed triple junction cells are fabricated and characterized, This may be

realized when the AlGaAs/GaAs/InGaAs or Ge triple junction solar cells are
fabricated for our study. Methods for improving our theoretical model and
calculations are summarized as follows:

1. Since the threshold energy Tq plays a major role in this displacement
damage model, it is important that an accurate value of Td is needed for
each material used in the triple junction cell, Except for GaAs and Ge,
values of T4 for other materials used in the present model are still not
wellknownand new data are needed in order to obtain a more accurate
calculation of the displacement damages in the A1GaAs/GaAs/InGaAs or Ge
triple junction cell,

2. The path length and penetration depth are based on Janni's data. Further
experimental data for AlGaAs and InGaAs are needed for further improvement
of our calculations,

3. The recombination cross sectinn used in the calculations of short circuit

18
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! current is assumed to be the same for AlGaAs, GaAs, InGaAs and Ge, which 3:3
E may not be valid and need further improvement. This can be achieved by iié
l using the DLTS technique to determine the recombination cross section in i;'
E: each cell. ;iﬂ
E 4, The use of an average optical absorption coefficient in our calculations of azﬁ
' the short-circuit current need to be revised; this is due to the fact that ;;%ﬂ
the absorption coefficient is a function of the wavelength, Therefore, 3;&
future calculation of short-circuit current due to the proton and electron ;5;
damage should be modified so that a more accurate model can be obtained. ;;i
5. In our calculation of displacement damage, we assumed that the probability o
of multiple scattering for protons is 50 percentand therefore, we averaged
the effect of the multiple scattering and non-multiple scattering. This may o
have to be modified in the calculation of multijunction cells, ﬁ%}
6. In order to calculate the damage constant, we need the knowledge of ;
diffusion length for each cell, This is not known at present for AlGaAs and :
InGaAs materials., Measurements of diffusion length for both of these §£ﬂ
materials before and after protons or electrons damage should be performed ;ﬁ?
in order to improve our calculations of the short-c¢ircuit current in the 5
. triple-junction cells., ﬁ
é 7. In our calculations of the short-circuit current degradation we did not i:
té consider the difference between the p-emitter and n-base region separately, ﬁ:i

f- and hence the electron and hole are treated equally. This should be

modified in our future calculations.

In short, the simple model presented in this report may be considered as a

3 first order approximation for calculating the displacement damage due to protons
?' or electrons bombardment, For further improvement in our model, factors cited
i above should be included in the present model so that more accurate results can
- be deduced from this model.

N 19

.

i

e e L. . . R
T e T e e e e e o e T o B N JE T T T S
S 2 A e B A A A [ PR P T RN Y . - .o o~ e et St e e e e

e TS e SO0 L
S o = o - . - - ¥ * y * N s » ~ T AR > > * ) .
o LY Aabadadalaine ot aNa2arbh aaa o' at 2 e vt ot a




Section 11

DLTS Analysis of Radiation Induced Defects in 200 KeV Proton Irradiated

Al,Ga,  As and Germanium P-N Junction Solar Cells

2.1. Introduction

Studies of native defects and radiation -induced defects in Al,Ga,_,As and
germanium have received considerable attention in recent years due to the
increasing interest in the development of high efficiency AlGaAs/GaAs/Ge (or
InGaAs) tripl-junction solar cells for space power generation, It is well
known that prolonged operation of solar cells in space environment will result
in degradation of solar ¢ell efficiency as a result of the radiation damage
produced in the semiconductor materials, However, recent advances in the III-V
compound semiconductor growth technology have greatly improved the quality of
epitaxial films with very low defect density. This is particularly attractive
for the fabrication of multijunction solar c¢ells using III-V compound
semiconductors prepared by MOCVD growth technique. 1In order to assess the
quality of the epitaxial films and the effects of radiation damage created by
electron and proton bombardment, it is important to conduct a systematic study
of the grown-in deep-level defects and the radiation induced defects in these
solar cell materials so that improvement of the conversion efficiency and
performance characteristics of the multijunction solar cells fabricated by the
MOCVD growth technique can be achieved.

In this report, we present the results of our DLTS analysis of the deep-
level defects induced by 200 keV proton irradiation (using H* implantation) in
Alea1_xAs p-n junction solar cells, and compare the results with the grown-in
defects observed in the unirradiated samples. DLTS analyses of grown-in defects
in germanium samples with differeni background dopant densities were also being

carried out in this study. Defect parameters such as defect energy level,
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defect density and capture cross section were determined from the C-V and DLTS

measurements, and the results are presented in this report,
2.2. Experimental

Sn-doped Al,Ga;_,As (x = 0.2 and 0.3) p-n junction cells fabricated at
Hughes Research Laboratories using the liquid-phase epitaxy (LPE) technique on

n-GaAs substrates were used in this study. 200 keV protons were irradiated on

the Alea1_xAs samples at room temperature by hydrogen implantation at proton
| fluences of 10'0 c¢m~2 anda 1017 cm‘z. I-Vv, C-V, and DLTS measurements were
i ; performed on these irradiated cells as well as on the controlled cells,

Four germanium p-n junction diodes with dopant densities of ND= 1.2 x
1015, 2.26 x 1076, 93 x 106, and 1.86 x 1017 e¢m=3 , supplied by General Diode
Corporation, were analyzed by our DLTS measurements. The results of this study

are also included in this report. Studies of proton radiation -~induced defects

R e

in germanium p-n junction cells have not been made due to the delay of shipment

by General diode Corp., of the specially ordered germanium wafers which are to
be used for our C-V and DLTS studies of proton and neutron- irradiation
induced- defects in these samples. This work has to be postponed until the next
phase of the contract is renewed,
2.3. Results and Discussion

Figure 2.3.1 shows the DLTS spectrum of the electron traps observed in the
unirradiated A10.3Gao_7As cell with a carrier concentration of 7.01 x 1016 em™3,
Two electron traps (i.e,, the so- called donor-vacancy complex or the DX-center)
were observed in this sample. The E,~ 0.18 eV level is attributed to the Sn-

related DX- center, and the E - 0.28 eV level is attributed to the Te-related

DX- center [Reference 1], The E.- 0.28 eV level was also observed in the

undoped A10.3Gao.7As sample [Reference 2]. The DLTS spectra of the electron

traps observed in the proton irradiated Alo 3Ga0 7As cell are shown in Figure

2.3.2 and Figure 2.3.3, which reveal two electron traps identical to those
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observed in the unirradiated samples,

C-V measurements showed that carrier densities in the proton—irradiated‘
Alo.3cao.7As cells decrease with increasing proton fluences, indicating some
carrier removable occured in these proton irradiated samples.. The background
dopant densities for both unirradiated and proton irradiated A10.3Gao.7As and
Alo.zcao.sAs p-n junction cells are shown in Figure 2,3.7 and Figure 2.3.8
respectively.

The trap densities of A10.3Gao.7As cells determined by the combined C-V and
DLTS measurements were found to closely be proportional to the background dopant
densities, The ratio Nt/ND is almost constant from cell to cell, Both the
unirradiated and the proton irradiated Alo.3Ga0.7As cells have nearly the same
doping densities and trap densities. Therefore, from the results of our C-V
and DLTS measurements on these proton- irradiated and unirradiated AlGaAs cells,
it is clearly shown that little or no damage was created by the low energy
bombardment in the Alo.3Gao.7As cell at fluences of 1010 em~3 and 101! em~3,
This result is consistent with our forward I-V measurements shown in Figure
2.3.9, in which all the I~V curves of the A10.3Ga0.7As cells nearly coincide for
both proton-irradiated and unirradiated cells. However, it is noted that in the
AlO.ZGaO.BAs p-n junction cells, the effect of proton damage is more prominent,
Both the defect density and dark current are found to increase with increasing
proton fluences, as evidenced by Figures 2.3.5, 2.3.6 and 2.3.10. This result
shows that increasing the aluminum concentration in the AlGaAs p-n junction
cells may be beneficial for reducing the radiation damage in these cells.

Figure 2.3.4, Figure 2.3.5 and Figure 2.3.6 show the DLTS spectra of
electron traps for both the unirradiated and the proton irradiated AlO.ZGaO.SAS
cells, respectively., 1In contrast to the A10.3Gao.7As cells, the trap densities
in these cells tend to increase with increasing proton fluence, with the

exception that the trap density for the E,- 0.20 eV level was found to decrease
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slightly at a fluence of 10'0 ¢n=2 and then increase again at higher fluence. \3
The C-V and DLTS measurements on the Al, ,Gap gAs cells indicate that s;
AlO.ZGaO.SAS cells are more heavily damaged by proton irradiation than that of é:d
A10.3Gao_7As cell., This can be explained by the fact that forward 1I-V curves :_5
show significantly higher recombination current component for the AlO.ZGaO.BAs _J:'i
cell at a proton fluence of 10'' c¢m~2 as shown in Figure 2.3.10. For f“

Al0 2Gao 8As with the fluence 1010 cm'z, the total defect concentration compared

to the unirradiated Alo 2Gao 8As cell was not increased, but the density of the

e e

deeper DX center, the Ec- 0.31 eV, did increase at a proton fluence of 1011 cm

2

T Lttt
'1'!‘ e
el Lt

. Since the deeper DX center is the more efficient recombination center and

the recombination current is proportional to its density, the forward I-V curves

>
) ’
.
¥" W VY W A PRGN Y

shown in Figure 2.3.10 are in agreement with the result of the DLTS measurement,

ij

The reverse I-V measurement of AlO.ZGaO.BAS cells also supports this conclusion,
which shows a significant increase in reverse dark current at a proton fluence
of 1011 cm'z. The defect parémeters of A10.2Gao.8A5 and A10.3Gao.7As cells are
summarized in Table 2,3.1. A comparison of the DLTS data in both AlO.ZGaO.BAS
with A10.3Ga0.7As cells, reveals that the former is more .susceptible than the
latter samples to proton irradiation., This result is in agreement with the
report by Polimdei et al.[Reference 3] They showed that an increase in Al
content increases the radiation hardness of Al ,Ga,_,As for both gamma and
neutron irradiation,

I-v, C-V, and DLTS measurements were made on four germanium diodes of
different background doping densities. The DLTS scans of the electron trap (Ec-

0.20 eV) and hole trap (Ev+ 0.15 eV) in the unirradiated germanium cells are

shown in Figure 2,3.11 and Figure 2.3.12, respectively. These levels c¢oincide
with the gold levels (Ey,+ 0.04 eV, E + 0.15 eV, E,- 0.20 eV, and E - 0.04 evV)(H) ;::::}
reported in the literature, The results of DLTS measurements on the

unirradiated germanium samples are summarized in Table 2.3.,2. In GE1 the
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densities of the E,- 0.20 eV and E,+ 0.15 eV are almost identical. It suggests
that both levels are due to the gold impurity. The reason why the Ey+ 0.15 eV
level could not be observed except for GEt1 is that it is hard to inject holes
into the highly doped n-type base in DLTS measurement by forward biasing. The
possibility that the E,- 0.20 eV level is due to oxygen impurity cannot be
refuted, Oxygen has the Ec' 0.04 eV and Ec' 0.20 eV level and is known as a
fast contaminant in germanium(4). Copper impurity, which is usually a
contaminated impurity in germanium, could not be observed. Probably germanium
cells underwent a special process to reduce copper impurity contamination into
germanium [Reference U4]. The forward I-V curves for the unirradiated germanium
cell are also shown in Figure 2.3.13, and the C-V data are shown in Figure
2.3.14 for these samples, The results of C-V and DLTS measurements are listed
in Table 2.3.2.
2.4, Summary and Conclusions

Detailed characterization of deep level defects in the unirradiated,
proton-irradiated LPE Alea1_xAs (x = 0.2 & 0.3) cells, and the unirradiated
germanium has been made using DLTS, C-V, and I~V measurements. 200 KeV proton
with fluences of 10'0 e¢m™2 and 10'? em=2 were used in this study. DLTS analyses
of the proton irradiated AlGaAs cells showed no extra deep levels are produced
by low energy proton irradiation in the Al,Ga,_,As (x = 0.2 & 0.3) cells.
However, results of DLTS measurements showed that Alo.3Gao.7As cells are less
damaged by radiation than the Alo.ZGao.aAs cells. Increasing Al contents in
AlGaAs cells appears beneficial for increasing radiation tolerance in these high
bandgap solar cells.

As for the unirradiated germanium cells, the E.- 0.20 eV and E,+ 0.15 eV

were observed. Both levels are ascribed to gold impurity related defects.
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Table 1.5.1 Input parameters for each cell

2 2
Cell P Ty Z, My a 6pp (0®) 6 (en?)
Top:
AlGaAs .3 um 20 pm 10.7 eV 28.85 6484 2.0 H4x10”' 6x10~14
Middle:
GaAs .5 um 300 pm 9.5 eV 32 72.5 1.4 axio~1¥ 6x10~ 1%
Bottom:
InGaAs .5 um 15 pm 8.49 eV 36.77 84.27 1.1 Uxio~ ' 6x10=™
Ge Sum 15 pm 27.5ev 32 72,59 0.3 sx10~ ¥ 6x10=1"
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Table 1.6.1 I
tri

and fluences,

Cell E = 0.5 MeV, 6=1070 p/em? E = 10 Mev 6 = 3x107! p/em?
(Isc/Isco)

TOD:

AlGaAs 0.939 0.969

Middle:

GaAs 1.0 0.961

Bottom: :

InGaAs 1.0 0.999

Ge 1.0 0.999

Table 1.6.2

I4./Ig00 fOr each cell in a AlGaAs/GaAs/InGaAs
or Ge triple junction solar cell irradiated
by 1 MeV electron with 107° e/cm®.

Top cell Middle cell Bottom cell
(AlGaAs) (GaAs) InGaAs Ge
0.924 0.886 0.904 0.999
28
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degradation for each cell of a AlGaAs/GaAs/InGaAs or Ge
ple=junction solar cell for two different proton energies
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Table 1.7.1 Flux Spectrum per Year of Space Radiation Environment

Particles Energy (MeV) Integral Flux / year
0.1 1.2 x 10" p/en?
0.2 6.2 x 1013 p/en?
0.4 2.0 x 1013 prem?
1.0 2.2 x 1012 p/em?

Proton 2.0 3.7 x 1013 p/cm2
3.0 1.1 x 1013 p/cm2
4.0 7.5 x 10'2 p/en?
6.0 6.7 x 101" p/cm2
10. 9.2 x 1010 p/cm2
0.1 T.4 x 101& e/cm?
0.5 6.4 x 10'3 e/cn?
1.0 1.8 x 1013 e/cm?

Electron 2.0 3.4 x 1012 e/en?
3.0 6.1 x 10'! e/en?
4,0 8.5 x 10'0 e/em?
5.0 8.5 x 109 e/em?

29
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Table 2.3.1

it

Dl it afih=mi sbar

Defect parameters in

(x = 0.2 & 0.3)

200 keV proton irradiated Alea1_xAs

_..;-jr_‘.r RS AR AR St s il ot AARE Il g S O e gl oSS o ap arh e e U T

Fluence (em™2) Np (em™3)  Eqp (eV) Np (em™3) 6 (en?)
Aly ,Gag gAs O 2.92 x 107 E - 0.20 3.10 x 10" 3,47 x 10~
1010 1.67 x 10" E, - 0.20 1.37 x 10" 3.7 x 1077}
E, - 0.31 1.55x 10 ® 8,22 x 10”!
10" 1.0 x 107 E, - 0.20  7.50 x 101% 3,47 x 10713
E, - 0.31  3.70 x 10'® 8,22 x 10°™
, 16 16 =15
. Aly jGag 7As O 7.01 x 10'® E, - 0.18  5.70 x 1010 6.89 x 107}
E, - 0.28  7.92 x 10 8.00 x 10
1010 5.81 x 10 E - 0.18  u4.24 x 10!%  6.89 x 10-15
E, - 0.28  5.81 x 10 §.00 x 10°1°
| 10" 4.3 x 10'® E, - 0.18  3.16 x 0% 6.89 x 10713
j E, - 0.28  4.15 x 10" 8,00 x 10”73
Table 2.3.2 Defect parameters of Ge as determined by DLTS measurements.
Diodes Ny (em™3)  Ep (eV) Np (eo™3) 6, (en?) 5, (cn?)
| GEU 1.20 x 10 E-0.20 5.09 x 101} 2.68 x 10717
' E, + 0.15  5.03 x 10] 2.36 x 10°17
GE3 2.22x 10'® E,-0.20 8.76 x 10'5 2.68 x 10°'7
GE2 9.30 x 10'®  E, - 0.20 2.37 x 10"®  2.68 x 10°7
GE1 1.86 x 10" E, - 0.20 2.68 x 10-17
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Figure1.1.1Schematic diagram of a AfGaAs/GaAs/InGaAs or Ge triple

junction solar cell.
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energy bandgap at room temperature
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Figure 1.5.4 Normalized short-circuit current vs. proton energy
for Alo 356a0 65As p-n junction cell with different

proton fluences.
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Figure 1.5.6 Normalized short circuit current vs. Proton Energy
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Apperdix A

Empirical Formula for Pathlength and Penetration length

(1) Ala'356aa‘65As solar cell

For proton:

= 0.10609+16.85865x%-143.7051x%+ 640.41%3x3, for x<@.1 MeV
P= 0.2414747.17523x 43.90794x°- 0.089934x°, for x<5 MeV
= 475.707 ~202.200X +33.7732x% - 1.46734x3, for x< 10 MeV

where P is the path length (um), x is the initial energy of incident proton
(MeV). Unless specify otherwise, the unit of length is in um and that of energy

is in MeV.
R = ﬂ.ﬂﬂ76+9.0882x—39.3116x2 +1%1.8816x3, for x<@.1 MeV
R 40,0086 + 6,7797x + 3.94880x% 0.0967725(3, for x¢5.0 Mev
= 4706.37% 200.227x+ 33.4635x“: 1.453082x°, for x<10 MeV

where R is the penetration depth. Since the small mass of electron, we only
consider the penetration depth for electrons.

For electron:

= ~0.9078 + 103.524x + 3670.307x% 5193.84)53, forx<#.20 MeV
R 550.198 + 729.989x + 825.593x22 s 354.221 x3, for x<1 MeV
==261.023 + 1453.507x = 40.717x% + 0.84842 x3, for x< 10 MeV

(ii) GaAs solar cell

For proton:

= 0.1068+ 17.0257x145.7343x%4645.3220x3, for x<0.1 MeV
P = @¢.2575 + 7.03261x + 3.74480x% - G386365x3, for x<5 MeV
= 457,39 +194.1454x+32,4329x“-1.4079x", for x<10 Mev
=0.00688+ 8.9414%-37.5326x2 +%71.2658x3, for x<@.1 MeV
R =-0.00382 + 6.6356x + 3.787 - 6.093355x3, for x§ 5 MeV
=451.244 - 192.1¢x + 32.1036x°- 1.3938x5, for x<10 MeV

For electron:

~0.8763 + 100.042x + 3528.8ax22- 4997.51x3 5 for x<0.20 MeV
#48.067 + 700.994x + 794.971x5 » 341.500x3, for xSl MeV
-250.77 + 1397.20x - 39.4954x% + 0.82267x>, for x<10 MeV

x
nwouon

(iii) Ina_53Gag_47As solar cell:

For proton:

= 0.11325 + 15.8962x - 113.797x% + 438.5001x°, for x<0.125 MeV
P = 0.2547 + 7.0324x + 3.9578x° = 0.11047x°>, for x< 5 MeV
= 456.68 =~ 193.731x + 32.4623x2 - 1.4114x3, for x < 10 MeV
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=ul. G1524 + 6. 5645x +3. 99692x2- 8. 1177Gx for x<5 MeV
= 450,24~ 191.362x+32,0498x“~ 1. 39383x3, for x< 1@ MeVv

For electron:

=0.8649+ 99,6798x + 3378.6836)( 2 4828, 6632){ , for x<0.20 MeV
+46,212+ 678.5045x+ 738.37x2 = 321.2 for x 1 MeV
#230.19+1321.85x = 41.826%x“+,9188x"~, for x< 10 MeV

(iv) Ge solar cell:

For proton:

0.1122 +17.8255x-151.6034x% + 673. 5%397x , for x<B.1 Mev
0.2708+7.4367x+ 4.1115x°+ $.08929x for x< 5 MeV
504.762-214.870%+35.8689x%~ 1.55732x3, for x< 10 MeV

0.08838+9.58130x 4 40.946@x2+188,20789%°>, for x<0.1 MeV
0.00348+ 7.0309x +4.15505x7 » 0.096763x>, for x<5.0 MeV
500.180-213.002x+35.5384x% = 1.543172x3, for x<10 MeV

For electron:
= +@.96021+109.62x+3864.62 5{ - 5481.25 x R for x<0.2 MeV
R =£52.739+ 769.09x+864.67x 372,6751 for x<£1.0 MeV

— 269,858 +1522.4%~ 43.453x2+0. 9246x%3, for x<10 MeV




Appendix B
Empirical Formula for Reduced Energy

(i) Alg.356a0.65As, with multiple scattering:

=1.320E-3-1.6095E-2x+1.888E-1x2-7.5089E-2x", , for E <0.1 MeV
Eye=-2.23E¢2 +1.2651E-1x 53.944E-33% +7.21135-5x,  for E<1.75 MeV
=6.32E~1+4.999E-2x~1,3749E-4x

+1.974E#7x", for E < 10 MeV

where E__ is the reduced energy in MeV; E
distance 1n um.

o is the initial energy, x is the

Without Multiple Scattering:

For Proton:

=.-2.91E--4+9.4a23,-2x+1.3234}:—1x§—9.3@6::1—2:(3‘3 for E <9.1 MeV
Epe= 1.187E-2 + 1.3B-1x-4.342E-35" +8.412E-5¢7, for E<1.75 MeV e
=6.596E<1+5,04TE-2x-1 . 406 E-4x°+2. 04 74E-Tx>, for Ec< 10 MeV 5%
For Electron: .,
A
Ere=1.061Ee-2+36.5@32x-5068.476x2+3238136}35x§, for Eg 0.1 MeV o
= 9.002E-2 +7.8972x-5.73967E-1x%+1. 4201x>, for E <10 MeV

(ii) GaAs with multiple scattering:

Ero =1.323E-.3—;-.1.5849E—;2x+1.8469E-1§2-7.2419E— x3, for E< 0.1 MeV
=-2,586E-3+1.299E-2x-4.136E-3x°+7 . 766E-5x", for ESL.75 MeV
=6.215E-1+5,196E-2x+1.483E-4x°+2,213E- x>, for E, < 10 MeV

Withcut multiple scattering:

Proton:
= -2,722E-4+9.692E-2x+1.2835 -.1x2=-8.972§:~2x3, for E <0.1 MeV

Epo=1.049E+2+1.3669E-1x=4.577E-3x“+9.}36E<5x>, . f£or Eg<l.75 MeV
= 6.508E-1+5,2471E-2x~1.518E-4x°+2.297E~7x>, for E.<10 MeV

Electron:

Epe = L.B61E-2 +37.9136x-5465.826x+3,78864x°, for E 0.1 MeV
=8.9865E-2+8.2195x-0.6236x%+1.626 x>, for E,$ 10 Mev

(111) In0.53Gag'47AS:

Proton:
= 1,219E-3-1.5049E-2+1.8258E~ x2-7.2149E3—2x3, for Eog g.1 MeV
Ere=e2.6@4E‘e2—1.2918E+—1x~'4.117E-3x +7.558E~5% ’3 for Eogl.75 MeV
= 6,0845E-2+5,112E-2x~1,435E-4x“+2,121E-7x", for Eoglﬂ MeV
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Without multiple scattering

Proton:

= -4.35B-4+1.0362E-1x+1.2076E-1x>-8.830E-2x>, for E$0.1 MeV
Epe=1.1675E-2+1.3386E-1x-4.638E-3x°+9,124E-5¢", _ for E,21.75 MeV

= 6.4040E-1+5.178E2%~1.4786E-4x%+2,222E-7x3, for E.< 10 MeV
Electron:

= 1.050E-2+39.1671x~5817.240x%+4,1789E5%°, for E$0.15 MeV
E, ,=8.761E#2+8.69064x~0.57944x°+2.21893x", for E,<10 MeV
(iv) Ge with multiple scattering:
Epe=L.294E-3-1.492E2x+1,6796E-15%-6.3664E-257, for E <0.1 MeV

=-2.387E-2+1.213E-1%-3.6352E=3x "$6.3742E-5% >y for E,<1.75MeV
Ey o=6.466E-1+4.729E-2x-1.2326E-4x°+1.6727E-7x°, for E <10 MeV

Without multiple scattering:

Proton:

=-3,255E-4+8,924E-2x+1.1751E:1x%~7.7981E=2x, for E <0.1MeV
E, ,=1.088E-2+1,245E-1x-3,9866E= 3x2+7,3885E-5x>, for E <1.75MeV

=6.737E-1+4.775E-2x-1.2611E-4x°+1,7543E~7x>, for E <10 MeV
Electron:

=1.059E-2+34.6163x-4556.171657+2.8841E45x°, for E,£0.15 MeV
E, =8.951E-2+7.52318x +4.7343E-1x%+1.23405x>, for E,<10 MeV

re
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Appendix C

'}.;"‘.b
Total Number of Displacement ni
(1) AIG.35GaASG.65AS cell: _::...

Proton:

%)

3 for x£0.90032MeV e
=¢+3,7668+1.5337E4x~3.284372E6x +3 16318]38){ ’ for x< 0.004 MeV N
D.y=31. 119+822.902x-6. 4357E3)§ +1.7539E4 for x £ 0.2 MeV :.".'_-:.j
=77.465+19.003x - 0.8047x%+3.033244x°, for x£ 10 MeV ._':-:.;:

where x is the initial energy in MeV.

Electron:

=g ) 3 for x<@.30 MeV :;‘(i:.“

N Doy 'G 33857~ 0.43231x+1,14292 &0.358ﬂ9x3, for x<1l.1 MeV LA
=-0.78798+0.7259x+0.44538x%-0.837336x°, for x<5 MeV 3
AN

(ii) GaAs solar cell: :_Z_
Proton: ,..,
= g for x<0.00032 MeV r-:
=¢4.7003+1,9340E4x-4.159460E6x 4 4. aassaga)s for x< 0.004 MeV i
Doy = 39.,116+1.030E3x~ B.0870E3x +2 34E4x for x< 0.2 MeV -.':-'.::
= 96,674 +22.294x-0, 9332x2+0 939118x"~, for x< 10 MeV :j:_'t._-
Electron: ﬁ
=0 for x< 0.38 MeV T
cx=ﬂ 0466-0.52535x+1, 3945x e 9. %3876)( ’ for x< 1l.1 MeV ;,-:::-
=-0.97400+8.9147x + 0.52926x“-0, G4475x for x$ 5 MeV S
(iii) Ing g:Gag 47As solar cell: b
Proton:
=0 for x£0.00032 MeV i
=-5,63716 +2.2414E4xr4.741112E gx +4, 535755:8:: , for xg 0.004MeV e
Dex= 45.234+1.313E3x~ 1.0286E4x“+2,7847E4x for x§ 0.2 MeV Y
=117.71+30.862x-1.4795x“+6.062118x", for x£ 16 MeV AR
Electron: RN
= 9 for x < 0.32 MeV .
Doy 0.670627 - 9.7830x + 1, 7493x2- a. 55649}(3, 3 for x < 1.1MeV —
= =1.1404 +1.0277x + 0.66216x2- 0.057361x33, for x<5 MeV _d
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(iv) Ge solar cell:

[N
Proton: o
r,:
Doy= © for x<0.00096 Mev 5o
=-1.3800 +1.8865E3x+7.399319E 3.169443E7x ,  for x< 08.804 Mev _
= 7.4836+3.020E2x-2.2730E3x%+5.5966 for x< 0.2MeV E
=25,334+10.060x-0.6903x°+0.032903x for xg 16 MeV j
Electron:
=0 for x < 0.60 MeV
Dgx=0-87911-0.2661x +2.2598x>- §.03838x, for x < 2.2 MeV

= 0 1524 - 0.4971x + 0.32364x“ + O 025145)(3, for x {5 MeV

* US. GOVERNMENT PRINTING OFFICE: 1986 — 848-047/40781
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