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The use of numerical stochastics in assessment is promising. However, because it is
extremely difficult mathematical problem, the numerical methods developed are not yet mature
enough for operational applications. Much more fundamental research needs to be done.

Fuzzy set modeling, on the other hand, lends itself readily to practical engineering appli-
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ing uncertainties (how well analytic models compare with the real world) are treated using
fuzzy descriptions of their gravity and effect on the computed response. All expressed
opinions on different features of the model are summarized in the form of fuzzy relations,
which then embody the modeling uncertainties. The second project demonstrates an approach
to solicit and aggregate expert opinions in assessing damage to structures. The implementa-
tion of these assessments and other available data (deterministic, random and others) in a
knowledge-based system is outlined.

The study shows that it is feasible and reasonable to incorporate both random and nonrandom
uncertainties encountered in survivability and vulnerability assessment. Fuzzy models can
be used to model uncertainties which, for the most part, have been ignored or dealt with
implicitly throughout judgment. This study suggests how fuzzy models may be used to augment
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I. INTRODUCTION

BACKGROUND

Survivability and vulnerability (S/V) assessment of protec-
tive structures involves many uncertainties. Most of the uncer-
tainties arise because of complexity in the weapons effects
phenomena and limited data base, Evaluation and analysis of S/V
are further complicated by inherent variability (e.g., material
behavior, threat scenario, explosive effects) and imprecision
(e.g., definition of damage, failure) in every component of the
assessment chain,

The importance of uncertainties has always been recognized
in S/V assessment., However, until very recently, the treatment
of uncertainties is limited to statistical techniques. Uncer-
tainties are modeled exclusively as random variables. A param-
eter is assumed random when it is uncertain, This approach is
used to treat uncertainty in the analysis modg#g as well.

/ i _ -
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RANDOM VS NONRANDOM UNCERTAINTIES

The study described in this report is based on the belief
that not all uncertainties encountered in S/V assessment are
random, and that the different kinds of uncertainties should be
modeled and analyzed by using different but appropriate pro-
cedures. To review briefly, random variables are based on the
concepts of probability (viz., a definite sample space, repeat-
able experiments under near-identical conditions, and meaningful
sample average and variance), On the other hand, there are many
uncertainties in S/V assessment which have quite different char-
acteristics, viz., the sample space is not well defined, there
are few samples, and the sample average and variance may not be
meaningful, In particular, linguistic data, subjective judgment,
imprecise information, and extreme complexity or details are
examples of uncertainties which should not be considered random,
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SCOPE OF STUDY

The study seeks to extend current statistical S/V assessment
capsbilities in two major directions: (1) Withim the confines
of random models of uncertainties, to explore how stochastic
methods can be better utilized; and (2) When the uncertainty is
nonrandom in nature, to explore ways toc model and amalyze the
uncertainty, and finally to incorporate it into the overall S/V
assessment,

The starting point of the study is a critical review of
current statistical assessment approach, and the ways by
which it can be expanded and improved. This is summarized in
Section II., It is argued in Section III that at least two types
of uncertainties should be recognized, although there may be
more. Uncertainties that can be modeled as random are distin-
guished from uncertainties which are not related to random occur-
rence. In this study, all nonrandom uncertainties are con-
sidered to belong to one broad category called fuzzy uncer-
tainties which can be modeled by fuzzy sets and fuzzy logic.
Suggestions for use of fuzzy uncertainties in S/V assessment and
how they can be integrated with random uncertainties are given.

Important extemsions to current assessment methods bagsed on
this view are summarized in Section IV, with details given in
Sections V and VI. Random variable and random process models of
uncertainties are the subject of Sectionm V. Types of random
equations and their solution techniques are described. Emphasis
of the study is on numerical methods, or numerical stochastics,
since it is well-known that analytic solutions to random equa-
tions are difficult to obtain, The study includes a study of
stochastic difference equations, and other discretization methods
for random equations,

Section VI summarizes two methodologies to solicit and
aggregate expert opinions, a vital element of the assessment
process which is viewed as nonrandom. Opinions on the perfor-
mance of an analytic model, expressed in terms of gravity and
effect, are used to construct fuzzy relations which then repre-
sent the uncertainties regarding the model. These opinions,
together with other available data (deterministic, random or
otherwise) in the assessment of structural damage, can be imple-
mented within the framework of a knowledge~based system.
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This report emphasizes engineering description of the prob-
lem, whether the discussion is on S/V assessment or the modeling
and analysis of uncertainties, Mathematics are kept to a mini-
mum, and only the necessary background on stochastic equations
and fuzzy sets is included. For details on the mathematical
theories and development of the examples described in this

report, the reader is referred to the publications and technical
papers cited,
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II. SURVIVABILITY AND VULNERABILITY ANALYSIS
OF PROTECTIVE SIRUCTURES

The current procedure used in S/V analysis of protective
structures is described, The uncertain information and data
vhich must be correctly incorporated into the sanalysis are delin-
eated, The current probabilistic approach in handling system and
other uncertainties and its inadequacies are discussed. The
inadequacies are caused mainly by the failure of current approach
to recognize that not all uncertainties can be adequately modeled
as random variables,

TYPICAL PROBLEM

The S/V analysis of protective structures is historically a
complex civil engineering problem which can be approached only by
assessing a number of components of the problem. Many of these
components involve uncertainties., For example, consider the sur-
vivability of a known buried-box structure under the influence of
an assumed extreme environment, specified in terms of the mechan-
ical effects of airblast and ground shock. The analysis is
approached by formulating the problem in the following components
(see Fig. 1):

(1) 1Identify the important failure modes and their
associated fragilities;

(2) 1Identify the explosive effects and loading
mechanisms responsible for these failure modes,
and the uncertainty in the environment descrip-
tion;

(3) Determine the response function (i.e., the
relationship between the loading and fragility
parameters) and its associated uncertainties; and

(4) Compute the system failure probability by compar-
ing the response and fragility for each failure
mode of each component, and by combining the com-
ponent survivability probabilities into the system
survivability probabilities,
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TYPICAL UNCERTAINTIES

For the buried-box example, a partial list of the informa-~
tion and data required in each step of the analysis can be sum- .
marized in Table 1., The information is further divided into
three categories: deterministic, probabilistic and others. Such
classification is not common practice, but is dome here for
reference in subsequent discussion. The three categories corres-
pond to decreasing precision in the informationm., Current method-
ologies acknowledge only the first two categories, i.e.,
deterministic and probabilistic, Very imprecise information, E
subjective judgment and linguistic data are treated as determin-
istic or probabilistic, or ignored altogether, For example,
cratering and its associated effects, nonideal surface effects,
the effects due to the choice of the soil-structure interaction 2
model, and the damage evaluation criterion, to name a few, are
treated as deterministic or vaguely as a source of probabilistic
uncertainty called systematic uncertainty.

L

LB T

Table 1 describes a fairly complex process where imprecision Y
exists, even in the identification and classification of the l?
sources of uncertainties in the protective structure analysis. %ﬁ
Furthermore, any tabulation of uncertainties, such as those shown S
in the table, is very subjective., Another person of similar e
background and experience will most likely arrive at a different
tabulation, This possibility serves to underscore the present
state~of-perception of the problem,

CURRENT TREATMENT OF UNCERTAINTIES

In an analytic treatment, it is assumed that the total
uncertainty, {{, consists of the uncertainty due to inherent
randomness, €, and the uncertainty associated with the error in
the prediction, 4, such that (e.3., see Ang and Tang, Ref, 1)

2 2 2
Q =g+ 4 (1)

Hence, for a cause-effect relationship such as

R=g (Xl,xz, ......,xn) (2) -
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where R is the dependent variable and X3, i = 1,2,.c.c0,0, are
the independent variables, the uncertainty in R can be evaluated
through first-order snslysis., The mean value of R is

Fmg Ry Byreeennens B) (3) -0

vhere ¥; denotes the mean value of xj and the variance of R is

.

2
OR = pij ci cj Oxi Oxj

vhere Fj; is the correlation coefficient betveen Xj and Xj, cj
= 3g/3Xj evaluated at Xj, and Oy =y T;, Alternatively, the
i i

(4)

random and systematic uncertainties are propagated separately to
give the random and systematic uncertainty in the dependent
variable R, as described in a survivability assessment procedure
by Rowan (Ref. 2).

Monte Carlo schemes also have been devised to treat more
complex survivability problems based on the same principle.
Collina (Ref. 3), for example, used the two-tiered sampling
approach illustrated in Fig. 2 to distinguish between random and
systematic uncertainties, A limited number of inner loop samples
is taken to estimate the average survival probability due to
random variations., Each outer loop sample results in an estimate
of the median value of the average survival probability. The
outer loop estimates can then be used to assess the range of
variation of the median probability and establish the confidence
levels.

Whether the analytic or Monte Carlo method is used, the
result of such an analysis can be illustrated in Fig., 3. The
median probability of failure curve gives the probability of
failure of the system for a particular loading, and is often
referred to as the fragility curve. The curve is a result of the
incorporation of random uncertainties only. The variability of
this curve when systematic uncertainties are taken into consid-
eration is also illustrated in the figure. The lefthand and
righthand bounds normally correspond to the 10 percent and 90
percent confidence levels that the probability of failure will be
between these bounds in spite of uncertainties in the analysis
model, imprecise data, and so forth. In some works, such as
those by Wong and Richardson (Ref. 4) and Rowan (Ref. 2), model-
ing errors are treated as a source of systematic uncertainties,

..................
...........
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INADEQUACY OF CURRENT PRACTICE 4

The analysis procedure described above is very appealing,
since it produces a precise summary of the different effects of g&
uncertainties on the system response--for example, in the form of ;'
Fig. 3. 8Such information can be fed into the hierarchy of -
decision-making in strategic and tactical survivability analyses. _&
In actuality, the separation of random and systematic uncertain- =3
ties is not & simple task, if possible at all. The unilateral n
treatment of all uncertainties by probabilities implies many ';}:
assumptions., For example, it assumes that the data base exists, N
that random and systematic uncertainties are independent, and .f_
that all types of systematic uncertainties (such as biases, Kk
judgment and modeling error) are similar and can be treated in o]
the same fashion, These assumptions are seldom justified due to e
very limited data, lack of knowledge, and incomplete understand- R
ing of the complex physical phenomena and structural behavior. ;g
=5
To illustrate, consider one particular step in the analysis N
procedure shown in Fig. &, which depicts the choice of a model
for the dynamic response of the roof of a buried box due to soil-
structure interaction loading. Many models can be considered, N
including a single-degree-of~freedom model commonly used in slab B"
analysis, a multiple-spring-mass model, or a finite element model -
of the complete soil-structure configuration, Subjective judg-
ment enters into such a choice, and the uncertainty associated
with the choice (i.e,, the computational error to be expected) is
assessed from past experience with similar computations and com- -
parative analyses. Furthermore, the evaluation of modeling v
uncertainties relies heavily on comparing model predictions with i§
results from controlled tests, which are seldom feasible.,

Ignoring these concerns for the time being (they are addres-
sed in Wong and Richardson, Ref. 4), suppose that the finite
element modeling approach is selected. One is then faced with v
more modeling decisions--for example, the choice of a soil model, =
a concrete model, the method to incorporate reinforcing steel,
the size of the finite element mesh, and so on. Another layer of
judgment and decision is encountered, To proceed, let us limit
the discussion to the modeling of the roof-slab of the box., One
can consider using a composite reinforced-concrete model where
the reinforcement is smeared over the volume of the finite ele-
ment, or an explicit reinforcing steel model, or a model com-

oy
prised of two or three elements across the thickness of the slab, o
R
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and so on. Details of modeling notwithstanding, the fact is that
much subjective judgment and recollection of past experience are

. used in the analysis, More important, these data cannot be
summarized readily by a probability demsity function.

As an illustration, the impacts on the response of the roof
slab due to the modeling options mentioned previously are summa-
rized in Fig, S. The figure shows the variation in the roof-slab
velocity and the loading exerted by the soil on the roof slab of
the buried box as a result of these modeling assumptions. This
variation will be referred to for the time being as the modeling
or systematic uncertainty associated with the slab model. It is
apparent that such uncertainty is not amenable to a probabilistic
description, Furthermore, experience shows that the explicit
rebar model gives fairly good results in the slightly plastic
range, that the same model is less accurate in the membrane
tension mode, and that the shear failure modes are absent from
such a model., These are important data which should be incorpor-
ated into a realistic analysis, Such inputs are ignored in the
current probabilistic formulation, since they cannot be readily
assimilated in the probabilistic description of uncertainties,

More examples of this typewill be given in the next sec~
tion., For a detailed description of the inadequacies of current
’ practice based on the all-probabilistic modeling approach, see
' Wong, Ross and Boissonnade (Ref. 5). To summarize, by acknowl-
edging random models as the only models of uncertainties,
current formulation of S/V assessment methods either ignores non-
random uncertainties altogether (since they camnot be assimilated
into the current framework) or forces them to be random as well.

---------------
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IIXI., UNCERTAINTIRES

To researchers in the S/V assessment community, there is
probably no need to espouse the importance of uncertainties,
However, the term uncertainty may have different meanings to
different people. Several examples of uncertainties were men-
tioned in the previous section, The discussion is continued here
and the variety of uncertainties encountered in S/V assessment is
further illustrated to support the simple classification scheme
that is proposed. Uncertainties are divided into two groups,
according to whether they can be modeled adequately as random
variables or not., The need to integrate random and non-random
models of uncertainties into an overall assessment framework is
also addressed.

SOURCES OF UNCERTAINTIES

The term uncertainty may be associated with ambiguity, fuz-
ziness, randomness, vagueness, imprecision, subjectivity, or
extreme complexity, For a more detailed description of these
terms, see Yao and Furuta (Ref. 6). In essence, uncertainty
arises because one is not sure about the outcome of a real=-world
event, and in an effort to understand this event, he postulates a
concept or model of the real world.

In the context of structural mechanics, the main sources of
uncertainties may be delineated by considering the analysis
chain, as shown in Fig. 6 (after Blockley, Ref. 7). The basis of
structural mechanics is Newtonian mechanics in the form of
conservation laws. These laws are used together with energy
methods, virtual work methods, and so on, to formulate the gov-
erning equations of motion., Material behavior is incorporated
through constitutive models. Structural behavior is obtained by
solving the equations, and by making more assumptions on the
boundary conditions, the loading and the solution procedure,
These assumptions are an integral part of the modeling process,
Finally, behavior of a prototype structure or future structure is
inferred from the analysis result after it has been assessed and
evaluated with reference to one's experience with similar struc-
tures and one's knowledge of structural behavior in general.
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Figure 6. Analysis chain in structural dynamics.
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Uncertainties of all descriptions may enter into every step
of the analysis procedure. Moreover, they also appear in various
degrees, Some are judged less important than others and, hence,
neglected, Jugdment is itself s source of uncertainty. For
example, Newtonian mechanics is, strictly speaking, imcorrect;
relativistic mechanics is known to be better. However, engineers
find that for most of their work the former is adequate. Here
lies the major difference between science and engineering: Mathe~
matical rigor or truth is not the only criterion in modeling, It
is what makes a good engineering model that counts. The applica-
tion of judgment is also evident in the choice of the solution
procedure, the material model and end-constraints. It allows the
engineers to simplify the complex problem, focus on the important
issues, and arrive at an engineering solution knowing full well
that such a solution may not be perfect and that some compromises
have been made along the way.,

UNCERTAINTIES AND MODELING

Hence, one approach to classify the uncertainties in S/V
assessment is to consider the assessment as a modeling problem.
The types of uncertainty are related to the selection and defini-
tion of the model. This is the approach used here.

In modeling, the amount of data supporting the model is an
important issue. With a large data base, the choice of the model
is more clear-cut; the model can be better justified. A deter-
ministic model is justified when variation about the nominal is
negligible or inconsequential., A random model is used when varia-
tion is not negligible, but can be determined to follow a certain
probability distribution. When the data base becomes smaller,
the choice is less clear, and the situation becomes more fuzzy.
Note that even in this simple view, the distinction between
deterministic and random, and between random and others, 1is
itself not well-defined, but relies heavily on judgment and
knowledge, Nevertheless, a rationale based on the size of the
data base seems reasonable and is readily accepted by most
engineers,

In current *ssessment methods, only the deterministic and

random categories are recognized, The category designated as | -
. . . . . Y

others is either ignored or included as the so-called systematic A
uncertainty or bias, and is considered to have random e
o)
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characteristics as well, Despite the fact that the same mathe-
matical model is used for both categories (random and system-
atic), the latter can be easily detected in current procedures.
Systematic uncertainties are operated upon sepsrately from random
uncertainties, and the probabilistic description of systematic
uncertainties is often determined in an ad hoc or arbitrary
manner,

However, there are uncertainties which are nonrandom in
nature, the size of the data base notwithstanding. Some examples
are fuzziness resulting from subjective knowledge, ambiguity
inherent in linguistic descriptions, and vagueness associated
with ill~defined figures and pictures. Although engineers encoun-
ter these uncertainties almost on a daily basis, and handle them
with ease using their experiemce and judgment, the fact remains
that these uncertainties have not been represented explicitly in
S/V analysis.

NONRANDOM UNCERTAINTIES

This discussion starts with random uncertainties, since they
are familiar to engineers, and then leads into nonrandom uncer-
tainties, Differentiation between random and nonrandom quantities
is made mainly by reference to examples taken from S/V assess-
ment, Formal classification is given in the next subsection.

Uncertainties in basic properties--A typical random uncer-
tainty is that associated with material properties, such as the

strength of concrete shown in Fig, 7. A large number of core
samples which are nominally the same are tested under near iden-
tical conditions. The result is represented by the histogram in
the figure which can be approximated by a (probability) demsity
distribution, While the fit between the theoretical distribution
and the experimental data may not be perfect, the random model
captures the variation in the strength well enough for engineer-
ing purposes. Hence, one says that the uncertainty in the con-
crete strength is mainly random, and can be modeled by a random
variable.

Note that implicit in this modeling process is the assump-
tion that the effect due to the choice of the distribution (mor-
mal, lognormal, etc,) is negligible compared to the variation in
the quantity of interest, viz,, the strength. The selection of

24

D

WY O Y SV Sy W WD A T W U

v s
a_e v

.

o

w1

ey
roa

> .fmru'l'u'_'-"" N ..'

a, -
D N

S




n = 143

M = 7.50 MPa
g = 0.53 MPa
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Crushing strength (MPa)

Figure 7. Frequency diagram of crushing
strengths of concrete cubes.
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one distribution over asnother is a nonrandom act, although in
this case the latter issue is unimportant since the effect on the
overall modeling is inconsequential.

Consider now Fig., 8, which shows the variation in concrete
strength under bisxial loading (Ref, 8)., Seven well-known insti-
tutions in the U.S. and Europe were asked to perform strength
tests on nominally identical concrete samples in order to esti-
mate the effects due to random variation, sample geometry and
test machines, Figure 8 is representative of the results ob-
tained, Differences in strength due to differences in sample
geometry and testing technique can be inferred from the differ-
ences in the 80lid 1lines in the lower half of the quadrant. For
a particular solid line, variations due to inherent randomness in
material properties are shown by the shaded areas in the upper
half of the quadrant,

The uncertainty represented by the shaded areas correspond
to those shown in Fig. 7, and can be represented by probability
distributions, This is not done to avoid adding more confusion
to the figure., On the other hand, appropriate treatment of the
uncertainty indicated in the lower half is less obvious. However,
based on the data given in the figure, it is difficult to justify
treating this variation as random. Furthermore, note that the
spread of the data in the lower half of the quadrant is much
larger than the spread within a particular shaded region in the
upper half of the quadrant, which corresponds to random uncer-
tainty, Hence, contrary to the situation in Fig., 7, random
uncertainty is small compared with the nonrandom uncertainty in
this case. If fact, all the shaded regions in Fig. 8 can be
ignored, and the variation in strength still can be represented
well by the data in the lower half of the quadrant,

What is shown here is that elusive uncertainty, currently
called systematic uncertainty or bias. The main question is
whether such uncertainties can be represented as random vari~
ables, 8Said another way, when data of this type is considered
random, what are the physical meanings of the sample expectation
(nean) and sample variance? These questions abound in §/V
assessment and sre not limited to structural properties., Figure 9
shows s similar set of data for soil, and Fig. 10 summarizes
typical variations in the blast pressure from a high explosive ’
experiment,
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Uncertainty in system response--Knowing the uncertainties in

the basic properties does not mean that uncertasinties in the

system response are known. In the previous discussions, uncer-
tainties introduced by testing instruments are mentioned. Mea-
surement transducers can and do introduce further uncertainties .

L}
L]

in the measured properties, such as those shown in previous DAY
figures, This is also true in & larger scale, such as in a field -::::
test, Typical variations in the measured soil stress, such as NN

LSAN

shown in Fig., 11, can be due to variations in the loading, soil
properties, and measurements, The task facing the engineers is
how to infer the physical phenomenon from these data, and its
associated uncertainty, The challenge has been met largely by
choosing the average, which, of course, is the same as consider-
ing all variations to be random.

Uncertainty in simulation models--In §/V simulations, a
model of the system (real-world) is postulated. Parameters of
the model are assigned based on available data, e.g., the
material properties described previously. The equations are
solved to give a solution., The solution is deterministic if all
parameters are deterministic. The solution is random if at least
one parameter is random. The latter is basically the current S/V
assessment procedure, Note the system model itself is always
deterministic, and the procedure can be considered in more gen~
eral terms as the propagation of statistical uncertainties (when
parameters are random), as shown in Fig. 12,

When another model which may involve a different set of
parameters is used, a different response which can also be random
may be obtained, An example in the context of soil-structure
interaction was given in the previous section. If one considers
several random responses obtained by using different models, what
use can one make of them? This challenge has not been met,
Taking the average is not the answer, as is obvious from the
soil-structure interaction example. This is because the uncer-
tainty associated with modeling is nonrandom in most cases,

Uncertainty in model evaluation--Uncertainty in a model is
connected with how closely the model represents the real-world,

This is the task of model evaluation. Typically in the
laboratory, models are evaluated by comparison with controlled
experiments, An example on the strength of columns subjected to
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Figure 12. Statistical approach based on parametric perturbations.
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, combined bending and axial load is shown in Fig., 13, The experi-
l mental data based on twenty samples are compared with the theo-

) retical model, which in this case is the ACI/NBC design equation
; for short columns. Presented with this fact, one can say that

' the column model is some 15 percent conservative compared with

; the experimental results. This conservatism can be corrected, by
| a scale factor for example. The uncertainty in the corrected

P model is then in the shape of the spread and the generality of

; the correction factor for other similar columns, Note this

uncertainty is not random. ;,]
Basically the same procedure is followed to evaluate models [ % i
' of field events., Figure 14 shows the standard approach to evaluate
: a nominal concrete or soil model. Since this is common and

familiar practice, there is no need to go into details and only
the main points will be elaborated upon, First, field tests and
field data are much more scarce than laboratory tests and data,
Second, the data now involve more uncertainties. Factors which
can be controlled in the laboratory may not be controlled in the
field. In situ measurements are more difficult and less reliable
than in the laboratory. Inference based on comparison of model
response with one or two field measurements is very different
from inference based on the data shown in Fig. 13. A repre-
sentative comparison which shows good correlation between test
and model responses is given in Fig., 15. Often, the agree-
ment is not as good, such as shown in Fig. 16, Even in the case
of good agreement, however, the meaning of good, and how such
goodness can be used to improve the model remain fuzzy.

. S
‘ale g s g

Judgment and other uncertainties--Other important elements
of S/V assessment which have not been discussed so far are judg-
ment and subjective opinions., These are uncertainties because one
person's judgment may be different from another. The source of
difference can be attributed to subjectivity, experience and
knowledge, but yet cannot be isolated. Linguistic terms often
used in engineering evaluation have generally accepted meanings,
but are equally vague, Finally, structural data on which the
assessment is to be based includes & vast amount of photographs,
dravings, and so on. These soft media carry a great deal of
information but it is difficult to translate the information,
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R L O A

R LA A
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.

Y

soil | samples [ dynamic & field soil
testing date model
—— _r—

(a) Determinination of baseline soil model

et b

Actual Source
source model
Real world Modified ave mechanics
=1 mechanics soil model > model - —
A
4 y
True Iterative Computed
response or other response
algorithms

\
Measured
response Diff.

(b) Iterative update by reference to measured test response

Figure l4. Current approach to define a nominal soil model.
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CLASSIFICATION OF UNCERTAINTIES

From the foregoing discussion, it is obvious that the sub-
ject of uncertainty in S/V assessment is both broad and elusive.
In this study, the following simple approach is used. Uncertain- -
ties are classified either as random or fuzzy, depending on
vhether they can be appropriately modeled by probabilistic models
or not. Hence, fuzzy uncertainties include those resulting from
incomplete and imprecise information, subjective judgment, ambi-
guity and vagueness, This classification is shown in Fig. 17,

The representation in Fig, 17 is intended to be symbolic.
There is no crisp demarkation separating the three categories:
deterministic, random and fuzzy. A quantity does not become
fuzzy, random or deterministic simply by moving a short distance
across a boundary. Although there are events which are random or
fuzzy, most of the regions overlap, For example, fuzzy uncer-
tainties may include uncertainties which are random in nature but
because of the limited data available cannot be adequately
characterized as such, When the data base is enlarged, these
uncertainties will leave the fuzzy domain to join the random
domain, The example on the simple column described earlier is a
case in point. On the other hand, some fuzzy uncertainties are
nonrandom, irrespective of the size of the data base. Linguis-
tic and expert opinion are two examples of this type. More will
be said on this in Section VI,

Hence, fuzzy uncertainty can be associated with one or more
of the following characteristics:

(1) Sample space is not defined;

(2) Few test specimens are available;

(3) Average of samples may not be meaningful;

(4) Linguistic or pictorial data are involved; and
(5) Judgment and subjectivity are involved,

A more rigorous discussion of random and fuzzy uncertainties
requires going into set theories, elements of which will be
summarized below. For details the reader is referred to Refs. 9
and 10,

Crisp sets and random uncertainties--Random uncertainties
are based on probability theory which is based on classical sets
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or crisp sets, For example, consider the set of all possible
outcomes of an experiment, called universe X. This is denoted by
X= { x| x €(o, )} where x is understood to be an element of
X. A set of some outcomes in the universe is called a subset of
X, and will be denoted by the letters A, B, ... and so on. For
example, the subset of concrete strengths between 6 and 9 MPa is
the subset A = { x | x ¢ (6,9)}. A strength x which belongs to
this subset is denoted by x € A, or in terms of the characteris-

tic function X,(x), 1 X € A

X (x) = (s5)
A
0 X %A

In other words, Eq. 5 says that either element x belongs to the
subset A, or it does not belong to the subset. In the former
case, the membership of x in A (or the belongingness of x in A)
is 1. In the latter, the membership is 0. Hence, crisp set is
asgociated with a yes~or-no proposition used to screenm its ele-
ment X, which is also known as binary or twvo-value logic. The
fact that A(X) can only be either 1 or 0 is sometimes denoted by

Xp,(x) € {o,1}.

When the outcome x of an experiment is randomly but uni-
formly distributed over the universe X, the probability that x
belongs to a subset A (called the probability of event A) is

1
P A= I X )+ (6)
xeX A X

and, in this case, is simply

p(a) = & (7)

When x is randomly distributed over X with a general distri-
bution f(x), the probability of event A is then

p(A) = I ¥ (x) £(x) (8)
xeX A
Fuzzy sets and fuzxy uncertainties--For events which are not f:l':a
well defined or involve fuzziness (e.g., "concrete strength is o
around 7 MPa," "structural damage is quite severe"), the concept . U

of crisp sets must be modified. Zadeh (Ref. 9) first proposed e
g8eneralizing crisp sets to fuzzy sets, In fuzzy sets, the
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transition from membership to non-membership of an element x in a
set is gradual, and not abrupt ss indicated by the characteristic
function in crisp sets. Hence, the natural extension of the
characteristic function is the membership function uAGQ , where
ué(x) represents the grade of membership of x in A where A is
now a fuzzy set or event. A membership of 1 corresponds to total
belongingness in the set, and 0 denotes the opposite. However,
UQ(X)il also sllowed to have any value in the inclusive range
(0,11, and this fact is denoted by ua(x) € [0,1]. This main
feature of the membership function, a8 generalization of the
characteristic function, provides the necessary flexibility in
fuzzy sets to model fuzzy, noncrisp information, The difference

between L%ﬁx) and X,(x) is illustrated in Fig. 18.

Subsequent sections will go into these concepts and theories
in greater depths, Suffice it to say here that the approach
being proposed is to model random uncertainties using random
models, and to model fuzzy uncertainties using fuzzy models.
Several major efforts of the study in these two directions will
be described in subsequent sections., It is pertiment to ask at
this point: Can the two kinds of models and analyses be inte-
grated into an overall assessment framework? Although much more
research needs to be performed, the answer is a tentative yes
based on some preliminary investigations described in Wong, Ross
and Boissonnade (Ref. 5). Some major results are summarized in
the following.

INTEGRATING RANDOM AND FUZZY UNCERTAINTIES

It is helpful to recall how random and systematic uncertain-
ties are combined in current methods. Consider the input-response
model

y = f(xl_,xz,......xN) (9)

where xj are random parameters, and f is a deterministic model.
Modeling or systematic uncertainties are allowed by introducing a

multiplicative factor, yo» 80 that
y = yo(xl,xz,......xN) (10)

vhere yo, i8 8 random variable designed to take care of inaccuracy
in modeling.
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There are now two ways to treat y,, First, Yo is considered
as sgnother parameter in the model, i.e., write Eq. 10 as

y= B(xl,xz,......xN 3 Yo ) (11)

This mixes up the random and model uncertainties, with the end
result that the system response has a larger variance than when
Yo is not included., The result is indicated in Fig. 19a in the
context of a fragility curve, i.,e., the probability that a com-
ponent will fail for a particular loading. The consequence in
system survivability is tremendous., Such influences were recog-
nized early and the practice is now discontinued.

The second interpretation of Yo is to consider this param-
eter, although random, to be of a different kind than the random
parameters X, X, ... etc. This leads to prevalent two-level or
two-loop methodologies, The consequence can be summarized in
Fig, 19b in terms of the fragility curve mentioned previously,
The lateral shift or bias of the curve corresponds to the system-
atic uncertainty y,, The result is that system survivability is
often dominated by yo (8ee Goering and Binniger, Ref. 11), since
the effect due to random variation tends to average out,

Wong, Ross and Boissonnade (Ref. 5) showed that fuzzy and
random uncertainties can be combined in the same manner but there
are other flexibilities. The fuzzy models can be established
based on available data, even though the data may be scarce or in
linguistic form. Figure 20 is an example of the use of fuzzy
models to represent fuzzy uncertainties, which in this case
concern the degree of damage. One is no longer constrained to
the fail/no-fail proposition, nor are implicit assumptions on
probabilistic basis of damage necessary. Several other ways to
integrate fuzzy descriptions into current probabilistic analysis
methods are also described.

.........................

....................................................................
-----------------
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IV, EXTENSIONS OF CURRENT CAPABILITIES

Current capabilities in probabilistic S/V analysis can be
represented, without loss of generality, by the flow diagram in
Fig. 2la. The methodology is basically one of propagation of
statistical uncertainties in the input and systems parameters
through the various components of the system model to obtain the
statistical uncertainties in the response. As shown in Fig, 21la,
the major components of the system model include the explosive
effects environment, the load transfer function, the structural
network and component fragilities (see Ref. 2). When reduced to
its essence, the procedure can be represented by the simple
diagram in Fig. 210,

Extension of this methodology is sought along two major
directions, corresponding to the two classes of uncertainties
identified in the previous section, viz., random and fuz:zy.
These extensions are illustrated schematically inm Figs. 22 and
23, respectively, and compared with the current approach.

In one research project, current statistical methodology is
extended to the realm of stochastic and random methods, Random
uvocertainties are not limited to modeling by statistical param-
eters. More realistic modeling by random and stochastic proces-
ses are sought. This work investigates the use of stochastic and
random differential (integral) equations in probabilistic S/V
analysis, and emphasizes numerical solution techniques such as
stochastic difference and finite element methods. Results are
summarized in Section V.

A second project investigates the application of fuzzy sets
to model fuzzy uncertainties in S/V assessment. 1In this work,
fuzzy sets representation of uncertainties, including judgment and
opinions, is examined, and the use of fuzzy logic to process fuzzy
uncertainties is considered. The work focuses on the quantifica-
tion of fuzzy information and the interaction between experts and
soft data. Results are summarized in Section VI,

Other related work not described herein include the follow-
ing:
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Figure 21. Principle of current statistical S/V analysis.
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Figure 23. Fuzzy sets approach to S/V analysis.

e .
PRI

= -"-_‘ LR X o .4‘ .-' - ..’. - e . - . -
VPSP AP IR SRS IR I oot it e st




< o Ry el : WRTLve - F L 4 ik g ol e o ugte Ees ama u
........ I ACIL R e S Nl M " Sacit afarad A AN A A R e a8 P NAPHL RN YA A S A AR A A AN

*

e et b Yy

(1) Ways to incorporate more realistic mechamics
models in statistical 8/V assessment--
Sophisticated system models exemplified by the
state-of-the-art dynamic finite element models

- used extensively in deterministic S/V smalysis

are incorporated into the statistical assessment

framework by the use of transfer fumctiom techni-

ques, Two main approaches to transfer fumction

- development are investigated: direct statistical

- approximation and engineering approximation. The

former makes use of the response surface methodology

and point estimate methods to develop a statistical
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(but simpler) equivalent of the sophisticated system g_
model, The latter relies on engineering experience -
to develop a mechanistic approximation which is then L
used in the statistical analysis., Details of this i;

.. work can be found in Wong and Richardsom (Ref., 4) and
) Refs,. 12 and 13,

(2) Stochastic finite element methods to model protective
structures--When the stochastic effect is separable, -
such as in the loading function and initial condition, E.

y discretization methods such as the finite element -
3 method can be applied directly on the comtinuum equa- ;;
! tions (beams, plates, etc.) without any major modifica- ﬁj
' tions., One result is a direct recursive relation s

governing the statistical moments of the responses at :
consecutive time steps., When the stochastic effect is e
non~separable, such as in the coefficient of the equa-
tions or in the form of distributed loading or initial
condition, a bona fide stochastic finite element tech-
nique must be used. One such method uses the Wiener

increment as a basis function in a series expansion. :
Details of these works are described in Refs. 14 and :Qf
15, <

&Y

., ‘;

(3) Comparing random and fuzzy treatments of uncertain-
ties in structoral models--The effect of parameter
uncertainty on structural respomse is described, first »
using the stochastic approach and then the fuzzy set : !”
approach, The stochastic model of parameter uncertainty ‘
leads to the paradox that the most probable response
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differs from the response of the most probable structure,
and this difference can be significant, Fuzzy set models

. of parameter uncertainty lead to fuzzy response, which is
judged more consistent with intuitiom, This work is
described in Ref, 16.
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(4) Development of a knovledge- and rule-based assessment
- system--A knowledge~based assessment system processes
;1 knowledge and not just numbers. The knowledge is usually
] expressed in the form of rules which can be manipulated

at the symbolic level., A different approach to the

. formulation of the rules is considered in this study,
The approach is based on fuzzy set representation of
8 knowledge and inferences, and rules are embodied in
‘ fuzzy relations. This approach allows a natural way
to combine rules which contain uncertainties and may
also be in conflict with one another, Details are
given in Ref. 17,
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V. RANDOM UNCERTAINTIES AND RANDOM EQUATIONRS

The organization of this section is as follows. The dif-
ferent types of random equations are first described. Emphasis
is on the type which involves random processes (including random
constants and random functions as special cases) in the coef-
ficients of the equation. Distinction is also made between
random and stochastic types--the latter involving the Wiener
process or its formal derivative, the white noise. Methods of
solution to random/stochastic differential equations through
their difference or algebraic counterparts are the focus of the
study and will be discussed in this section., It is assumed that
the reader has some knowledge of probability theory and ordinary
differential equations, A brief introduction to random equations
and stochastic integrals is included to make the following dis-
cussion relatively self-contained. More information is available
in the cited references,

TYPES OF RANDOM DIFFERENTIAL EQUATIONS

A random differential equation is an equation which satis- ;
fies at least ome of the following conditions: o

(1) The initial or boundary condition is random;
(2) The inhomogeneous term (forcing function) is random; and
(3) At least one of the coefficients is random.

Here, random means a random variable, a random function or a
random process, whenever applicable. A random function is
defined to be a random process which can be defined by a finite
number of random variables, The most common classification of
random equations is donme according to the order (1), (2) and (3),
which also corresponds to 8 hierarchy of increasing mathematical
difficulty.

Bomogeneous equations with random initial conditions--This

is the simplest type of random differential equations, and the : g,‘
solution can be readily obtained for both linear and nonlinear -
systems, The generic equation has the form

x“(e) = £(c) x(t) , x(tg) = x, (12)

.................
.........................................................

............
............................
...........
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in the linear case, and

’ x*(8) = £(x(t),t) , x(ty) = x, (13)

Ty

in the nonlinear case, wvhere x, is & random vector,

The solution x(t) obviously depends on x, in addition to t,
and owes its random character to x,. The simplicity comes from
the fact that the governing eq.ationm can be considered a trans-
formation between x(t,) and x(t) at any time t. Furthermore,
using deterministic theory, this transformation camn be obtained
by solving the governing equation for a deterministic x, (see
Soong, Ref. 18).

Bquations with random excitations--This type of random dif-

ferential equation represents the next level in difficulty, and a
majority of the research efforts in the past twenty years is
devoted to this group under the name of random vibration. The
generic form is

x7(e) = £(x(£),t) +y(t) , x(tj) = x, (14)

vhere y(t) is a random process and the initial conditiom x, can
be random or deterministic,

For the linear case where f(x,t) = £(t)x(t), the solution is

t
x(t) = @(t,to) Xg + J Mt,s)y(s)ds (15)
t
0
where is the principal matrix associated with f(t).. Many

results in random vibration theory are based on this solution
(see Elishakoff, Ref. 19).

Equations with random coefficients--This represents the most
complicated class of problems, and has the generic form

x“(t) + a(t)x(t) = y(t) , x(ry)) = x, (16)

in the linear case, where a(t) and y(t) are random processes, and
X, is random or deterministic. The study of systems and struc-
tures having imprecise parameter values or inherent imperfections
leads to differential equations of this type. For S/V
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applications, the governing equation can also be monlinear (in-
elastic), and the difficulty of the problem is further increased.

E Note that when the coefficients are not rasndom processes, ;h
~ but random constants or functions of random constants, a much ol
L simpler solution approach is available. An equatiorn of the type ﬂ;
) :b:J
. E ]

x“(t) = £(x(t), a,t) , =x(ty) = x4 (17) N
where the random vector a is constant in t can be rearranged to :ﬂ
become ®

- ‘

z7(t) = k(z(t),t), z(to) =z, (18) .
) where z(t) is the augmented state vector ]
X x(t) -4
¢ (19) 3|
z(t) = s
. a NS
(. In terms of z(t), Eq. 18 describes a vector differential equation ]
where randomness enters only through the initial condition, Fi
. Hence, methods described earlier for this class of equation are ol

N applicable to the augmented equations (see also Ref.18).

ANALYTICAL DIFFICULTIES

0f the three types of random equations, the third type is

the most difficult to solve but includes the problems of present
interest, i.e., transient, inelastic response of structures with .-
random properties and subjected to random loading, To appreciate h%
the difficulty associated with equations with random coeffi- )
cients, consider the simplest first-order linear differential '
equation of the form expressed in Eq. 16, With certain assump-
tions on the properties of a(t), the solution can be writtem by Eﬂ
direct quadrature formally as

t t t
x(t) = X, exP [- f a(s)ds] + J y(u) exp [— S a(s)ds] du (20)

to to u
'3
It is seen that the coefficient process a(t) enters into the :?
solution in a complex way. In particular, the dependence of x(t) :ﬂ
on a(t) is nonlinear, despite the fact that the governing ﬁj
. '_ \
B
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2o ¢4

equation is linear. This nonlinear relationship creates much of
the difficulty encountered in equations of this type., The
knowledge of the density functions of a(t) is in general neces-
sary for determining even the simplest moments of the solution
process. The joint probabilistic behavior of a(t), y(t), and x,
is also required to solve the general sample path, x(t).

Perhaps the largest group of problems of this type which has
been approached with some success is that involving the Wiener
process or its formal derivative, white noise. The governing
equations are referred to as equations of the Ito type, and a
number of approaches can be used, It is simple to establish the
Fokker-Planck equation or the moment equations for the Ito equa-
tion. However, the solutions of the Fokker-Planck equations are
difficult to obtain except for trivial cases. For engineering
problems, most success comes from using the associated moment
equations,

Two important points need to be made. First, the quadrature
solution given by Eq. 20 may not be valid when a(t) is not well-~-
behaved, This is the case when a(t) is a white noise process,
and the original equation must be approached using Ito calculus,
i.e,, as a stochastic equation, Hence, it is important to dis-
tinguish between the general random differential equations and
the special group called stochastic differential equations,
Second, stochastic differential equations have special properties
which, on the one hand, make analytic solutions possible, but on
the other hand create additional complications when numerical
solutions are sought. These points will be discussed further
presently.

The classification outlined above is summarized schemati-
cally in Fig. 24, More details are given in a literature survey
documented in Refs. 20 and 21,

NUMERICAL TECHNIQUES

There are several ways by which a general solution to a
random differential equation can be approached, The equation can
be solved in closed form, although this approach is very limited;
only a few classical examples are known to exist and they are
summarized in Ref., 21, The equation can also be reformulated
into a random integral equation, approximate solutions to which
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can be approached using series expansion or discrete quadrature. %ﬁ
The former results in a recursive algorithm and a comparative ;&
study of available techniques of this kind is described in Ref. -
22. The latter results in a set of simultaneous algebraic equa-
tions and this approach is championed mainly by Bharucha-Reid kﬁ
- (Ref. 23)., In either case, approximate numerical solutiom is :ﬁ
necessary. . gﬂ[
Emaphasis of this study is on numerical techniques applied :5
directly to the differential equations. It is argued that, if "]
the computer is to be used, it may as wvell be applied directly. ¥§
The numerical approach is deemed appropriate also because of the =)
difficulty in solving the equations otherwise, and equations !
which correspond to ~/V appliations of interest will be even more e
complicated., The end result of the numerical approach is invari- '{?
ably a random difference equation which is similar in form, and :{
yet may be quite different from the result of a finite element or ;¥
finite difference formulation in the deterministic counterpart. g

Distinction is made in the following discussion between 35
random difference equations and stochastic difference equations. L
In particular, we are interested in the relationship between the A
mean of the solution from the random and stochastic equations and :
the corresponding solution obtained from its deterministic coun-

terpart, i.e., when the loading and system parameters are set at EE
their mean values., Of interest also are the statistics of the N
solution, e.g., variance and correlation, and how they are re- o

lated to the statistics obtained from a conventional statistical
study based on the deterministic formulation, The latter is, of
course, the state of the art in S/V analysis. N

vs 2 Te e
)t e v

i 0.'

FINITE DIFFERENCE SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

..A'.‘,’\'..frx ot L.
.

-

:‘

This subsection describes the use of finite difference tech- -;
niques to solve stochastic differential equations, i.e., equa-~ )
tions with the formal form LEL
i

dx, = a(t,x.) dt + b(t,x.) dw, (21) 3

o

N

vhere vy is the Wiener process and dw, is its formal derivative, -
or the white noise process. 1In this approach, the derivative -
operator d(,) in Eq. 21 is formally replaced by an equivalent v
~o
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difference opera:or (.). Equation 21 then becomes a stochastic
difference equation

Ax, = a(t,x )At + b(t,xt)Awt (22)
However, because of the special properties of the Wiener process,
such implementation of the difference approximation is not
straightforvard., There are several differences between this
application and those, say, of deterministic differential equa-
tions. For example, the difference equivalent, wes» Of the white
noise process, dw,, is a difficult subject which bas occupied
many prominent mathematicians.

A mathematically more rigorous representation of the sto-
chastic equation is in the form of an integral equation

) )
x(tz) = x(tl) + f a(s,xs)ds + f b(s,xs)dws (23)
Y1 &

where the first integral is an ordinary integral and the second
integral is a stochastic integral, A difference approximation to
Eq. 23 is obtained by letting ty = t; + t, vhere t is the time
increment, This gives,

tl + At tl + At
x(t:l + At) = x(tl) + { a(s,xs)ds + tf b(s,xs;)dws (24)
1 1

Discretization techniques are then used to express both the
ordinary integral and the stochastic integral as finite sums,
usually with only one term. Notationmally, Eqs. 21 and 22 are
more expedient than Eqs. 23 and 24, and will be used in subse-
quent discussion, The true meaning of these equations should not
be forgotten, however.

Four important topics in assessing the feasibility of
using the difference techniques in stochastic applications are:

(1) The Wiener increment sequence Aw, that can be
generated to drive the difference equation, Eq. 22;

(2) The different A algorithms that cam be used and
their convergence characteristics;
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(3) The solutions to which thesec algorithms converge;
and

(4) The response statistics that can be computed from the
difference solutions.

Results of these studies are summarized below, and details can be
found in Ref, 24. Note that the usual error snalyses of differ-
. ence methods in connection with deterministic differential equa-
tions do not apply to stochsstic equations (such as Eq. 21). The
reason is that any sample of the wvhite noise process dwt is
required to be everywhere unbounded, discontinuous, and non-
differentiable.

Wiener increments--The Wiener increment Awt denotes the
difference between the values of the Wiener process at two
instances of time, i.e,,

bw, = w(t + At) - w(t) (25)
and is known to have the following properties:
2
<bw,> =0, <bw bw > = 0"At (26)

Similar properties can be written for a vector Wienmer increment
and the results described in the following can be extended
readily to a vector stochastic differential equation. The param-
eter O is called the inteusity of the Wiener increment process.
When 0 =1, the process is called a normal or standard Wiener
process, and this will be assumed in subsequent discussions,

The first task in numerical solution of stochastic differen-
tial equations is to generate a sequence of pseudorandom numbers
on the computer which can be used to approximate the Wiener
increment process. Franklin (Ref. 25) is apparently the first to
consider this problem. His analysis shows that if g,, r =
1, 2, ... denotes a sequence of pseudorandom Gaussian numbers
with zero mean and unit variance, i.e.,

g, = N(O,1) , r =1,2,... (27)

s et . - - L e R %
R TR PR BRI R T T T I T I R o) - L
- " AR B I N I S a . ’ . B I .. R
e a0 PRI SPBY WEA SRS o PP L{Ls“'.“-..- PG PR L!’L.! .:ﬂhA‘ L"L’l(ﬂ’.ﬂ .‘w";"‘. Y .;A.a ) ¥ i

........ e .




- PN O

(3

-
n
‘
)
‘
'}

in the usual notations, then the Wiener increments can be simu-
lated by .
bw_ =/2t 8 T =1,2,..... (28)

where At is the time step used in the difference approximation.

It is important to note that the Wiener increments given by
Eq. 28 depend on At and, hence, the power of the increment se-
quence depends on the time step size. In other words, when the
time step is decreased, as in a convergence study to be described
presently, the power of the excitatiom changes. This behavior is
undesirable, and what is needed is a scheme by which the power of
the Wiener increment sequence can be made to remain constant as
the time step is varied. McCallum (Ref. 26) provides such a
procedure, and details are given in Ref. 24,

Difference algorithms--Formally, all difference algorithms
in use with deterministic differential equations can be used with
stochastic differential equations., However, these algorithms all
lead to different solutions for the same stochastic differential
equation--a phenomenon unlike any other application of the dif-
ference method, The cause of such phenomenon can be traced to
the properties of the stochastic integral, i.e.,

b
af g(x,t)dwt (29)

where v is the Wiener process, and x is the response of the
stochastic equation, More will be said about this in subsequent
paragraphs, Briefly, the Euler algorithm will lead to the Ito
solution, the Runge-Kutta of order 2 or Heun algorithm will lead
to the Stratomovich solution, and the predictor algorithms will
lead to the McShane solution. The numerical solution using
predictor-corrector algorithms does not correspond to any known
stochastic solution,

Hence, from a practical point of view, only the Euler or
Heun are visble techniques, resulting in either the Ito or
Stratonovich solution. They have different convergence efficien-
cies, however, and careful planning is needed to obtain the most
economical difference procedure which leads to a known interpre-
tation of the stochastic solution.
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Convergence--Convergence in this study is defined in proba-
bilistic terms. The most common measure is convergence inm proba-~
bility of the order of t, or 0,( t ), vhich means that

0 (M) —2im At™™ x Prob (Jerror| >e) =0 (30)
P At>0
vhere Prob (|error | > €) denotes the probability that the differ-
ence between the actual and the approximate solutions is larger
than an arbitrary small positive quantity €.,

There have been many theoretical studies of the convergence
rate of stochastic difference algorithms, The study by Framklin
(Ref. 25) appears to be the first, and the most recent appears to
be Rumelin (Ref. 27). Because conventional convergence analysis
techniques cannot be used here due to the unboundedness and non-
differentiability of the white noise process, most of the conver-
gence proofs given in the literature are very complex, and invoke
knowledge of stochastic integrals, Details can be fouad in Ref.
27. The results can be summarized as follows: The Euler algo-
rithm is Op(Atllz), and the Heun algorithm is Op(At3/2). They
converge to different solutions, however,

Higher convergence algorithms can be realized by multiple
integration of the stochastic integrals (Eq. 29), in contrast to
the single integration used in the Euler and Heun algorithms.
This is shown by Rao et al, (Ref. 28) and Rumelin (Ref., 27), The
use of more multiple stochastic integrals gives more information
about the Wiener process component of the algorithms, However,
our simulation studies have shown that the higher convergence
rate claimed by some of these theoretical studies is not there,
For example, the study by Rao et al., was repeated, but the
improved convergence cited by the authors did not materialize in
our simulation results,

Accuracy--The stochastic integral of Eq. 29 has several
definitions, of which three are very well-known: Ito, Stratono-
vich and McShane, The definitions are based on defining the
integral as the limit of a finite sum which involves terms of the
integrand evaluated at discrete points within the interval of
integration and, of course, the Wiener increments. The difference
is in the points at which the integrands are evaluated and how
they are used,
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;
;S Suppose the interval [a,b] is divided into n time segments
N of At each, The Ito, Stratonovich and McShane definitionas of the
stochastic integral are:
- Ito
/ b n-1
S g(t) dw_ = 2im z g(e) [w(t_,,) -w(t.)] (31)
Py a t At »0 r=0 r T+l r
g Stratonovich
b n-1 1
af g(t)dwt = 2im I g[-i-(tr + tr+l)] [w(tr+1) -w(tr)] (32)
. At>0 n=0
- McShane
] b n-1
af g(t)dwt = Lim z g(ts) [w(tr+l) -w(tr)] (33)

- -0 r=

(tr+1 ts) 0
t ¢t
s='r

Hence, it is clear that the Ito definition uses the value of the
integrand at the beginning of each time step, the Stratomnovich
definition uses the mid-point of the time step, and the McShane
definition uses points prior to the time step of interest., This
is illustrated in Fig. 25.

Note the similarity between the forms displayed in Eqs. 31-
33 and the Euler and Heun difference approximations given below:

CRE NN NS

Buler
X =% F a(ti,xi) At + b(ti,xi)Awi (34)
Heun
X - x4+ 3 [a(t x,) + a(t x,..) | At
1+ = *7 2 1'% 1410 %4410 ]
1 -~
b S LOERELICHEE ) I €
Xi1 =% +a(ti,xi) At + b(ti’xi) Awi
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It is easy to note the correspondence between the Ito form and

the Euler algorithm since both make use of information at the Q;
beginning of the time step, Similarly, the correspondence between . ;i
the Stratonovich form and the Heun algorithm is also obvious-- -
both make use of information at the mid-point of the time step. ?

Finally, the McShane form and predictor methods use past informa-
tion of the current time step.

With this in mind, it is not surprising that when the Euler
algorithm is used to solve the stochastic differential equation
(Bq. 21), one obtains the Ito solution; when the Heun slgorithm :
is used, one obtains the Stratonovich solution, Predictor L:‘
schemes will give the McShane solution, Extending this corres- 3
pondence further, predictor-corrector algorithms will give a :
solution which will not be in the Ito-Stratonovich-McShane group. {[f
It will be something in between., It is also clear why different g
difference algorithma give different solutions to the same sto- o
chastic differential equation. These findings have also been
confirmed by a numerical example described in the following.

Humerical example--The simple equation

dx, = xtdwt (36) i

is chosen for consideration mainly because its exact solution
(Ito, Stratonovich, McShane) is known. 1In particular, the Ito
solution is

x, = exp (w -0.5t) (37)

Note the solution is not x, = exp(wt)aa ordinary calculus indi-
cates. This is, of course, a well-known feature of the Ito calcu-
lus,

The Euler approximation to the example equation is then

x(ep ) = x(e) [wle ) ()] +x(e)) (38) &

....................
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whereas the Heun approximation is

- x(cr+1) = %'[x(tr) + i(tr+l)] [w(tr+l) - w(tr)] * X(tr) (39)

g = x(t) [w(tr+1) —w(tr)] + x(t)

These approximations are computed for different time step sizes
and compared with analytical solutions of the Ito and Stratono~
vich definitions. The results are plotted in Fig. 26 where the
ordinate corresponds to the stochastic response at the end of

the unit time interval and the abscissa corresponds to the number
of time steps in the interval, Similar comparisons for responses
at other times and other samples of the Wiener sequence are
obtained but will not be shown,
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Figure 26 shows very clearly the better convergence proper-
ties of the Heun approximation compared with the Euler approxima-~
tion. It also shows that the Heun approximation converges to the
Stratonovich solution, viz., exp(w(l)), where w(l) is the value
of the reference Wiener sequence at t = 1, The Euler approxXima-
tion, on the other hand, converges to the Ito solution, viz.,
exp(w(1)-0.5).

Since the Heun algorithm has better convergence properties
than the Euler algorithm, it is the preferred approximation
technique. However, the Heun solution converges not to the Ito
solution, but to the Stratomovich solution., A dilemma exists:
The more efficient algorithm gives the wrong answer, assuming
that the Ito solution is sought, The Ito solution is desired
because it is a Markov process which has some very desirable
properties. The Stratomovich solutionm is not Markov., However,
to get the Ito solution using the Euler algorithm, convergence is
slow,

A resolution of this dilemma is found in a well~known result
in stochastic integrals. The Ito solution of the general sto-
chastic differential equation (Eq. 21) coincides with the Stra-
tonovich solution of the following equation (which is similar to
Eq. 21 and yet different [see Wong and Zakai, Ref. 291}),

1 Bb(t,xt)
dxt = [a(t,xt) -3 b(t,xt) -—_—TE;_—]'+ b(t’xt)dwt (40)
65
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Figure 26. Comparison of Euler and Heun approximations
and their convergence properties.
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. or the alternate equation (see McShane, Ref, 30), :;:
1 Ib(t,x,) . NS

. dxt = a(t,xt) dt - 3 b(t,xt) 3 (dwt ) + b(c,xt)dwt (41) E:
N

2%

v Hence, one can replace the Ito equation by its Stratonovich -3
) equivalent, in the sense of Wong~Zakai or McShane, and obtain an 4
approximation solution to the equivalent equation using the Heun 4

. algorithm. In this manner, a faster converging approximation is g{
?‘ obtained which also ¢converges to the Ito solution. Details are .jf
! described in Ref. 24, if;
It should be added that the somewhat nonuniform convergence !ﬁ

behavior observed in the results of Fig, 26 is due only partly to :ﬁf

the difference algorithme., Numerics of the random number genera- lﬁ?

tore is a major contributor., The pseudorandom number generator ﬁi

(IMSL routines) is far from perfect, with the result that the ?f

random numbers generated are not truly Gaussian, A detajled dis- :?

cussion on this point is given in Ref. 24, but note that this ;j

defect is present in all computer methods, Figure 27 shows the
mean and standard deviation of the N(0,1) samples (i.e., normal 1
process with mean zero and standard deviation of 1) as a function i

e
r

of the sample size 2N, The figure shows that a sample size of
1000, or 210 , i8 required to reproduce the desired statistics,

Response statistics--The finite difference solutions provide
sample responses to the stochastic differential equations. For T
engineering applications, statistics of the response such as mean :ﬂﬁ
and autocorrelation functions are of interest. In principle, it 32'
is not difficult to compute these statistical properties of the o
response process knowing the sample responses., A sufficiently
large collection of samples is generated on the computer using oL
the method described in the previous subsections, and the sample Qﬁ
statistics can then be computed. In practice, it is found that ;5}
the sample size required is quite large, and the computational .
resources are often stretched for problems of interest.

To illustrate this point, return to the example considered,
Five thousand sample responses are computed, The first sample .
moment (mean) and the second sample moment corresponding to this S
sample population are computed, as well as the moments for sub- j!
sets of the size 100, 500, 1000 and 2000, They are then compared ’ﬁ?
with the exact moments which can be computed readily for this el
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simple example (see Ref. 24). The error defined as the absolute
value of the difference between the approximate and exact moments
expressed as a percentage of the exact moment is plotted in

Fig. 28 for t = 0.5. Note a sample size of 2000 is necessary to
bring the error down to below 2 percent, which is consistent with
the effect of the pseudorandom number generator described
earlier.

The error percentage due to the use of the difference algo-
rithm (Heun in this case) only is also superimposed on the fig-
ure., This error is computed by comparing the sample statistics
of the response samples obtained using the difference method with
those of the exact response; i.e., x(t) = exp(w(t) - 0.5t), where
w(t) is a sample of the Wiener sequence generated. This error
represents the contribution to the total error due to differ-
encing, and is plotted as dashed lines, With referemce to Fig.
28, it is obvious that the error due to differencing is small
compared with that due to sample-to-sample variations. The lat-
ter is influenced greatly by the effectiveness of the pseudo-
random number generator, and more work needs to be done to quan-
tify this effect.

Higher—order equations--To show the generality of the dif-
ference approach to stochastic differential equations, several
standard second-order equations are examined, These include the
Langevin equation, which can be considered either as a second-
order system on the displacement or a first-order system on the
velocity. Cobnvergence, accuracy and sample statistical issues
are investigated. The results are similar to those just des-
cribed, and details can be found in Ref. 22,

FINITE DIFFERENCE SOLUTIONS OF RANDOM DIFFERENTIAL EQUATIORS
The response of stochastic systems, i.e., systems which are

governed by stochastic equations with Wiener or white noise
processes, is Markovian, This property leads to many mathematical
simplifications in analysis. For example, the transition prob-
ability density function satisfies the Fokker-Planck equation
associated with the stochastic differential equation. The
moments of the response are governed by certain deterministic
equations, which are also well-known. Although few exact
solutions to the Fokker-Planck equations have been found, and the
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moment equations can become unwieldy, these analysis tools have
led to better understanding of the behavior of stochastic systenms
(see Ref. 21). On the other hand, as we have shown in the
previous subsection, the applications of numerical techniques such
as finite difference to these stochastic differential equations

is complicated by the unique properties of the Wiener process and
the associated stochastic integral. The same properties which
permit simplification in closed-form analysis of the transition
probability and moments are causing difficulties in numerical
analysis,

A Wiener process or its formal derivative, the white noise
process, is an idealization. It represents one extreme of random
behavior, viz., completely erratic behavior. The sample at one
instant of time is not related to samples at any other times.

The other extreme of random behavior corresponds to complete
correlation, i.e., the process reduces to a random (constant)
variable., In the case of equations involving random comnstants,
some simplification in analysis is also possible, as described in
Ref. 21,

Physical processes generally have random coefficients which
fall somewhere between these two extremes, This gemeral system
type is governed by differential equations with random process
coefficients, or simply, random differentisl equations. These
equations prove to be very difficult to solve. No general solu-
tion exists except for very simple equations.

The use of finite difference techniques to solve random
differential equations is investigated as part of the study. The
investigation is initialy limited to first-order systems. Our
goal is to study the behavior of the response in terms of numer-
ically computed first and second moments. It is noted that in
this application, the difficulty presented by the numerical
approximation of the stochastic (Ito and Stratonovich) integral
is avoided. However, in its place is the difficulty presented by
the need to generate numerically random processes which conform
to certain prescribed characteristics, such as mean and correla-
tion functions, This and other important aspects of the work are
summarized in the following. Details are given in Ref. 24.
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Basic problem--To assess the feasibility of the finite dif-
ference technique in random differential equations, consider
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X N
» x, +a x = bt . xt(O) = x, (42) v9
' '
X vhere a; and b, are random processes and xo may be a random 5‘
- variable or deterministic. Under certain conditions om a,, the o
N solution can be written formally by direct quadrature as (see T
e Tikhonov, Ref. 31) : Y
t t t X
X, = X, exp - f ag ds] + [ b _exp[-/a dsldw (43) &

0 o v 0 8 .

g :
E which is valid for deterministic xp. Note the nonlinear depen- 2
dence of x, on a,, even though Eq. 42 is linear. This nomlinear =
relationship is characteristic of problems of this type and is F
: the cause of the difficulty encountered in the analysis.

When a, and b, are stationary, Gaussian processes with the
following characteristics,

2
< at> = o, <{ a, - ml] [at+t - m1]> = OlR]FT)

2 .

g;

<lag ~myl [byy o= mpl> = 0;0,R (D o

o

the mean response process can be obtained from Eq. 43 (after much R

algebra, which is given in Tikhonov) as follows:

tt
1 2

< xc> Xy exp [-ml (t-0) +-§ o1 é g Rl(uz- ul) dulduz] ‘;

. e . . (45) -
+f [m2 - 0,0, [ du; S duy [ Ry(uy= uy) Ry, (w-uy) du3] i.
0 0 0 v <
-
1 2 t t W
xexp |~-m (t-Vv)+5 o S SR, (u,-u;) du,du, |dv *
[ 1 2 1 4y g 1271 1 2] ¢~
:":.,'
)
The second moment <Xxyx,> can also be derived after even more ed

algebra. N
| &
Equation 42 is also considered by Elrod (Ref. 32). He gave =3
a solution under less stringent conditions on x; and by, viz., x; i}}

...................
................




can be random, and b, is arbitrary, except its first two moments
are given, Denoting the mean and correlation of s, and b, by

<g>, Ry (t, t') amd<b,>, Ry(t,t'), respectively, the first two mo-

ments are

t ~ .
< xt> = [ exp [Z(O,t,o,u)] < bu> du

0 -~
+<x> exp [z (o,c,o,0>] (46)
<xx ,>= [ [ exp Z(t,tﬁu,v)] R, (u,v) dudv
te 00 2
Yo (47)
+ <xy> I exp[Z(t.t‘,O,v)]< b > dv 4
0 v
+ ftexp E(t,£2u,0) <b > du + <x8> exp E(t,t “,0,0)
0 u
wvhere
~ t* t . 1t
Z(t,t",u,v) = - [ <a_>ds - s <a > ds + 3 ) Rl(o,B) dodB
v u vV
£ ¢ Lt (48)
+f f Rl(c,B) dodB +3 I s Rl(o,B) dodB
v u u u

The basic problem of Eq. 42 is selected for comsideration
mainly because the exact (moment) solutions are known, as shown.
The integrals in Eqs. 46-48 can be evaluated analytically or
numerically to any degree of accuracy desired., They will serve
a8 8 reference in evaluating the accuracy and convergence charac-
teristics of the approximate solutions by the difference techni-
ques, Note application of the difference techniques is not
limited to Eq. 42, which is a linear equation and corresponds to
highly idealized systems. Once the usefulness of the numerical
techniques is estabilished using Eq. 42, they can be applied to
very general random differential equations which do not have
known analytical solutions,

Difference algorithms--As before, the finite difference
approach involves replacing the differential operator d(.,) in
Eq. 42 with the difference operator A(.). Unlike the previous

. [
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application to stochastic differential equations, the implementa- S‘
tion here is straightforward since there are no stochastic inte- ) i'
grals to contend with, Consequently, all difference algorithms ?

used in deterministic studies can be used here. The numerical
studies to be described later are performed with a single-step,
Runge-Kutta method, commonly known as the 1/8th rule.
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Correlated random processes--To complete the difference
equation formulation, it is necessary to generate on the computer
nonstationary random processes which have certain given
statistics (mean and covariance). Specifically, let x(t,w)
represent the process to be simulated. The mean and covariance
are defined as

m(t) = <x(t,w)>
- (49)
cov_ (t, t7) = <[x(t,w) - m(t)] [x(t",w) - m(t")]

and these are prescribed. The objective is to generate
numerically a random process with these prescribed first- and
second~order statistics,

Computationally, the problem can be stated as follows., Let
ty be the initial time At the time step, and n denote the number
of times the process is to be observed. The time vector T can be
written as

Y
)
= t' - - E
Tn i T (1-1)At (50) | :;
t
n

Generated on the computer, the random process will have the form
of a matrix [X_] where

Xjg Xyg o0 v oo ximT
. . . (51)
[xn] = . . .
anl *a2 xnm_




Each column of the matrix is 2 realization or sample function of
x(t,wv), and each row is a random variable from the process where
entries are samplings from the random variable. Since there are
readily available methods to generate a set of n-independent
random variables, the problem reduces to transforming the n-
independent random variables into n-random variables which have
the mean vector
(
m(tl)
m(tz)

chn)

and the covariance matrix
- -
covx(cl,tl) « e o e covx(tl,tn)

covx(:z,tl) .« o e e covx(tz,tn)

covx(tn,tl) o« e e e <:ovx(t:n,tn)-J

b

The procedure used in our formulation is due to Adomian and Elrod
(Ref. 33). The method is based on the use of the conditional
probability distribution function for a multidimensional process,
but details will not be given here. They can be found in Ref, 33
or Ref. 24,

Humerical examples--To illustrate the convergence and accu-
racy of the finite difference approach, numerical solutions to
the basic problem are obtained for several special cases. These
are described below. It is of interest to compare the computed
statistical measures of the response process such as the mean and
covariance with the reference (exact) values.

The overall implementation strategy follows that in Ref. 32,
Realization of the random processes a; and b, are generated
according to the procedure described in Ref. 33, These processes
have the prescribed mean and covariance properties which will be
different for the cases studied, When the initial condition X
is also random, realizations of x; are also generated. For the
ith realization, one has
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a4 b1y
a3 by
. * 1. (54)
ani bni

wvhere n is the number of time steps in the interval of interest.
The difference algorithm is then used to obtain the corresponding
realization of the response process

14

x =1 ° (55)

This process is repeated for m realizations to yield three (n x m)
matrices

B T B 7 B T

all' o o e alm bll' « e . blm xll' s e X
a21. R b21. « . me Kype o o o Xom
. . , ) : ' " | (56)
] . Y
anl' coeean | Lbnl. .« . . bnm X1 0o X 0

The statistical measures of the response process can be estimated
from the matrix [X], which are then compared with the closed-form
solutions, In addition, the statistical measures of the two coef-
ficient processes, a, and b, can be estimated from the matrix [A]
and [B], respectively., They are compared with the prescribed
moments to check for fidelity in the computer-generated proces-
ses,

Depending on the complexity of the prescribed mean and
covsriance functions, closed-form expressions for the response
moments, Eqs. 46 and 47 may not be easy to obtain, In that
event, the integrals in Eqs. 46 and 47 (single and double inte-
grals) are evaluated using numerical quadratures. However, for
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the present purposes, these moments can still be considered
exact,

For this first example, the mean and covariance of a, and b,
are assumed to be

<a(t)> = 0.5, <b(t)> = 0.5 + sin(2mt)

- (57)
cov, (t,t7) = covb(t,t‘) = exp(-lt-t”1)

i.e., a, and b, are Ornstein-Uhlenbeck processes. The first two
moments of X; are

<xp> = 1. <x(2)> = 4/3 (58).

In computer implementation, xy is generated as a random constant,
uniformly distributed between 0. and 2,

The comparisons of mean and variance as functions of time
are shown in Fig., 29. Two sets of finite difference results are
shown, together with the exact (quadrature) solution. They cor-
respond to sample sizes of 1,000 and 10,000, respectively, and
are included to show the effect of sample size on convergente and
accuracy of the approximate method, Time is non~dimensionalized,
in terms of the correlation time constant which is unity. With
reference to Fig. 29, the error in approximation increases with
time. The error growth is faster for the variance, as expected,
) Whereas the error can be decreased by taking more samples, which
3 increases computational cost, it is noted that eventually the

error will become unacceptable. The error growth is accentuated
because the basic behavior of the solution is also expomential.

The mean response is compared with the response of the mean
equation, i.e., the same equation with deterministic coeffi-
cients, < a(t)> and <b(t)>, replacing the random process coef-

ficients a(t) and b(t), respectively. This is shown in Fig, 30, {}]
The mean response and the deterministic response are different, ié!
; and the difference between them increases with time., This R
phenomenon is of course a characteristic of equations with random jb’

coefficients. The effect of different correlation functions on

2 the response is also investigated. The results are similar to
those shown in Figs. 29 and 30 and, hence, will not be presented,
They can be found in Ref, 24,

'''''''''''
- -




Lttt S i date b et sttt et T e i w i S M AL AR I

125.

100.

Figure 29.

Time (ND)

Exact
WA SDES ( 1,000 Samples),
WA SDES (10,000 Samples):

Time (ND)

Mean and variance as functions of time, Case 1.

R

« oo

!

.7

OCOOL

2

PR

.
P

' v
I‘l‘i'; *

fu, 4

DS

L

-y

a

R R |
e

A
Pttt

.
Y

R

.
L

_'.‘,_
D A
.

o)
[



. e T B

! -E.

ruotjenba
,uedu, JO UOFINTOS pue UOTINTOS WOpPUERL JO UEdW JO uostaeduo)

*0f 2an3tg

‘0

(;49T+1)/ [(3ug)s00ou8- "

(3uZ)ursg +

oug} + 1 = 'x  -uba ueskH

- T~
- Ilm

¢/3-

-
—

*uba wopuey

79

<JX>

a4 g

e et cndh

aleafinafindhud SRR

e

Satia

e ada i tada Yatld

PR G IAL S S W

.




y

e
~

’ t“n' ‘7

The second example is used to illustrate the effect due to
the random coefficient a; only. The forcing function b is
assumed deterministic and equal to unity, and the initial value
xy is set to be 0. The statistical measures of a, are

N Yt N

R

sha

®

~
[y

v

<a(t)> = 0.5, cov (t,t”) =k exp (-|t-t”]) (59)

) SRR

The parameter k will be varied to change the magnitude of random-
ness in a,.

The mean of the response process is compared in Fig. 31 with
the exact mean, The curves denoted by k = 0 correspond to the
deterministic response, i.e., solution to the equation when the
mean value of the coefficients is used. With increasing k (ran-
domness), the mean response increases more rapidly with time,
and so does the error in the approximation. By comparing these
curves with the curves for k = 0, an estimate of the influence of
the random parameter on the mean response is obtained.

RANDOM VERSUS DETERMINISTIC

Consider Eq. 45 which gives the mean response of a first-
order system with the random process coefficient subjected to
random excitation. Randomness in the coefficient a,, which
changes the response characteristics of the system, is measured
here by the correlation function clzkl- Randomness in the
forcing fuunction, by, is measured by the correlation function

022R2. The cross-correlation J0j09Rj9 indicates the interplay s
bertween a, and b, and will be assumed zero to expedite the e
following discussion. k}

It is interesting to consider several special cases of the
solution given by Eq. 45. Suppose the randomness in the coef-
ficient is ignored. Then, with 0y = 0, Eq. 45 gives, 'ff

t
<xt> = xoexp[-ml(t—O)] +-d'm2exp[-m1(t-v)]dv (60)
Note that the mean solution does not depend on the :andomness in
the excitation, In other words, 022R2 does not appear in Eq. 60,
It affects the dispersion in the response, however. Note also
that Eq. 60 is identical to the deterministic mean solution;
i.e,, solution to the random equation when the random coefficient
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Figure 31. Comparison of exact and aPproximate means for
Severg} values of k.,
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is replaced by its mean value. In particular, it denotes the deter-
ministic mean solution by X,. Then

x, +mx =m, (61)

and

;t = xoexp[-ml(t—O)] + Ef)'t mzexp[-ml(t-v)]dv (62)

Furthermore, the mean response is a linear function of the ini-
tial condition x; and the forcing function my, which is of course
8 wvell-known result in linear system and random vibration theory.

Suppose randomness in a, is restored but the forcing func-
tion is deterministic, i.e. restore Ulzkl and set 022R2 =0,
The mean response is then, from Eq. 45,

tt
- -0) +Lg2 -
<xt> X, exp[-ml(t 0) +2 o] é’ (j)' Rl(u2 ul)dulduzl
(63)
t 1, tt )
+f u12ex1:o[-|n1 (t-v) +E°1 S I R, (uz-ul)dulduzldv
0 v v

Note Eq. 63 is not the same as the deterministic mean response
given in Eq. 62, They are not equal as long as there is random-
ness in the coefficient, i.e., o) X 0. This phenomenon is well-
known for random operator problems, and was illustrated in a
numerical example given previously,

Finally, let the coefficient be a random constant instead of
a random process, i.e., R} = 1. [Equation 45 becomes,

1
<xt:>=l X, exp[-m1 (t=0) +E cf(t—O)Z]

1 (64)
t~:dl'tm2exp[-m1 (t-v) + -Z-Of (t-v) 2]dv

wvhich is also different from the deterministic mean solution.
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REMARKS

The use of finite difference techniques to solve stochastic
and random differential equations has been described. Numerical
results indicate that, while the approach is feasible, accuracy
in the computation of the first and second moments requires a
fairly large sample size. Convergence is relatively uniform, but
details of the convergence behavior appears to depend heavily on
the noise generator, i.e., the numerics of the pseudorandom
number generator. Said another way, the error due to replacing
the differential operator with the difference approximation algo-
rithm is small compared with that due to sample-to~sample varia-
tion.

Hence, while the direct finite difference method is appli-
cable to stochastic and random differential equations, computa-
tional expenses for computing moments may be quite high, For
engineering applications, the response process itself (the sample
path) is probably not as important or meaningful as the knowledge
of the statistical measures,

Based on the results described in this section, there are
two directions to follow in future research, One direction is to
develop numerical algorithms which govern the propagation of
moments. For stochastic equations, there are explicit moment
equations based on the Markov property of the response process.
Limitations of this approach are summarized in Refs. 20 and 21,
For random equations, there are no known general moment equations
and much more research is needed. Another direction is to seek
improvement in current random number generators, and more
efficient sampling techmiques,

In principle, stochastic and random differential equations
can be expressed as integral equations and, for stochastic equa-
tions, this is the more rigorous formulation. Discretization
techniques have been applied to random integral equations (see
Ref, 25), but they also rely on numerically generated random
processes, Extension to highly nonlinear systems does not appear
to be easy.

As far as S/V assessments are concerned, the study has
established the feasibility of using numerical techniques to
snalyze problems involving stochastic and random loads (forcing
functions) and initial conditions, The discussion of this sec-
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tﬁ tion focuses on the finite difference method and discrete sys- fg
é tems, but similar results are obtained using finite element ff
' techniques on distributed systems, as described in Ref. 1l4. The ) E'
‘ advantage of discretization methods is that they apply to general K
s nonlinear equations, as well as simple linear equations, albeit t;
5 with more computational effort. A step-by-step approach con- ~
i siders the equations to be linear within each step.
2 The difficulties described in this section are associated E:.
‘3 with equations with random coefficients, or random operators. %1
Q The difficulties are economic difficulties, the resolution of :Q
» which awaits better and more efficient noise simulation techni- -
ques. Given the state-of-the-art, numerical techniques are !_
{: viable solution techniques for random operator problems but they E;
j: can be expensive solutions when multiple degree~of-freedom sys- Eg
X tems are considered. P
Agide from feasibility and economics, a third issue should ??
be addressed, This is the issue of physical interpretation of R
mathematical results, It is seen from Eqs. 60-64 that the mean ﬁﬂ
response of a system with random coefficients is different from ﬁ}
. the system response with the mean coefficients. If the random 35
. coefficients correspond to random variations in, say, the struc- E;
o tural properties, the above result implies that the average g
. behavior of a number of nearly identical structures differs from f?
- the behavior of the average structure. An example of this bi
paradox is given in Ref., 16, where it is shown that mathemati- 3;
5 cally the most probable response of a population of undamped o
.. simple oscillators is a heavily damped simple oscillator. The Cf
X question then arises as to how this damping can be interpreted in {}
: the real world of S/V assessment. A partial resolution of this EE
question is sought in the fuzzy set representatiom of uncertain- Y
ties, the subject of the next section, oD
2 F
Y v
B




VI. FUZ2Y UNCERTAINTIES AND EXPERT OPINIONS

Although fuzzy sets and fuzzy logic are used in this work to
represent nonrandom uncertainties, including expert judgment and
opinions, it should be remembered that there are other represen-
tations, A brief survey of these other modeling techniques is
included in the following for this purpose. Needless to say,
there is heated debate on the merits of the different modeling
approaches and the merits of subjective probability versus fuzzy
set theory in particular, It is not the intent here to add to
this debate. It suffices to say that compared with fuzzy sets,
all other theories are variants of Kolmogorov's probability
theory, and are designed to answer the question of what is
belief and how belief can be assessed.

The next subsection describes several elements of fuzzy set
theory in the event that the subject may not be as familiar to
the reader as probability theories and crisp sets., This intro-
duction is not meant to be complete, and relies on examples
rather than mathematics, Details can be found in the references
cited.

The main portion of the section describes two major studies

of fuzzy uncertainties with g/y¢ applicationms: the modeling and
analysis of uncertainties associated with analytical models, and
the assessment of damage to structures., The emphasis of the
discussion is on feasibility and methodology development, Actual
case studies are in progress.

SURVEY OF OTHER THEORIES

The difference between uncertainty as a frequency of occur-
rence and as a result of induction is long recognized, almost
from the beginning of modern probability theory. A central issue
is belief and partial belief. Ramsey (Ref. 34) defined belief as
the propensity to act, and developed a personal probability
theory which came tc be known as the Ramsey~DeFinetti-Savage
theory (Ref. 35). This theory, in turn, leads to ratio-scaled
probability which satisfies the Rolmogorov axioms, However, in

. actual case studies, the theory is found lacking when compared
with human behavior (see Hogarth, Ref., 36). Hence, it is some-
times referred to as the theory of the rational (or perfect) man.
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Recognizing that probability theory does not conform to the
way people think and behave and that the rationsl man must be
trained tobe a fallible human, leads to therelaxing of some of
the axioms of probability. This then becomes the theory of weak-
ratio probability, Some examples are the works by Dempster and
Shafer, and by Wolfensen and Fine (Refs, 37 and 38), They have
also become known collectively as the theory of subjective proba-
bility, but are not widely used in practice, The only exception
is Shafer's theory of evidence, which has receatly found its way
into & number of expert systems,

ELEMENTS OF FUZZY SEIS

Basic concepts—-In Section III, the concept of fuzzy sets is
introduced as a generalization of the crisp set., The character-
istic function which defines & crisp set based on the binary yes-
or-no proposition is gemneralized, A fuzzy set is represented by
a membership function which corresponds to the degree of belong-
ingness of an element x in the set A, i.e.,

B (x) = a, 0< a<l (65)

Since the membership function can have any value in the unit
interval [0,1], the degree of belongingness varies from 0 to 1,
or from completely does-not~belong to completely belongs. Of
course, partial belongingness is possible and thereby fuzziness
is represented.

Mathematically, fuzzy sets are defined as follows, given a
universe 8, which is the ensemble of all possibilities being
considered, a fuzzy (sub)set A of S is expressed by the membership
function ,(x), which maps a point x in S to a value in the
interval [0,1]; i.e., it gives the degree of belongingness that
the element x is considered to be in the set A, Hence, A is
written as N

A= 151 ~ or [/ — (66)
~ i s X
Note that in this traditional notation, the summation or integral .

sign should be interpreted as the union, and the horizontal bars
and slanted slashes are used to emphasize the correspondence
between the element x and its membership (x) in the set. They
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are not divisions, although such confusion often arises,

Some examples will make this notatiom clear. Suppose the
universe 8 is the set of all positive integers 1, 2, 3, &4, ....
The crisp set A = 3, or the statement, in a physical context,
that the concrete strength is 3 MPa, is

equals3-£l)—'-+92—'+%+%-+-g—'-+... (67)

The element 3 is given a membership 1 while all other elements
have membership 0. The fuzzy set A = approximately 3, on the
other hand, may have the representation

approximately equals 3 = 9.2,05 1. .05, 0.1, ' (g8)
1 2 3 4 5
E Elements such as 2 and 4 belong to the set "approximately 3” but

with a membership less than that of element 3., Equation 68 can
be used to represent the statement that the concrete strength is
approximately 3 MPa, for example.

Other examples can be readily given. A crisp stress-strain
relation is given in Fig, 32a, aund a fuzzy stress-strain relation
in Fig., 32b, A crisp fragility curve and a fuzzy fragility curve
are given in Fig. 33. When S/V assessment is based on degree of
damage rather than fragility, a fuzzy set representation of
damage states can be used, such as that given earlier in Fig. 20.
The corresponding representation in crisp sets is not as obvious.

It is clear that one of the most important, if not the most
important, element in the fuzzy set representation is the member-
ship function, It is the essence of the fuzzy model of uncer-
tainty which has been alluded to in Section III, The determina-
tion of the membership function is currently an active research
area, and there is not enough space here to go into details., It
is mentioned simply that the membership can be determined based
on any data base, objective or subjective, statistical or other-
wise. For instance, expert opinions can be used to define the
membership, as will be shown in the next section., The generali-
zation of the crisp set in the form of the membership function
allows a wider class of data bases to be accepted and represented
without causing undue mathematical incomsistency.
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(a) Crisp stress-strain law
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(b) Fuzzy stress-strain law

Crisp and fuzzy constitutive relationships.
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(a) Crisp fragility curve

(b) Fuzzy fragility curve

Figure 33. Crisp and fuzzy fragility curves.
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Mapping and transformation--Mapping and transformation of o
fuzzy sets are not very different from mapping and transformation i
of crisp sets. In fact, there is an established principle, N
.- called the extension principle, by which the former can be per- tg
- formed using operations of the latter, This is summarized below. - :
N In this discussion, mapping and transformation of fuzzy sets can Y
be considered as the propagation of fuzzy uncertainties in !91
5 dynamic system response, in much the same way that random uncer- t%
; tainties are propagated in random and stochastic equations, For b
K the time being, the system dynamics is considered crisp. The fﬁ_
5 response is fuzzy because the initial conditioms, forcing func- 23
tions, or coefficients of the equations are fuzzy. The case when E;
the system dynamics is also fuzzy is taken up in the next subsec- 3
tion when fuzzy relations are discussed,
Let a fuzzy set A be defined on the universe X. Further- v
more, let a point x in X be mapped into a point y in another t{
universe Y by the transformation y = f(x). The image of A is
then a fuzzy set § defined on Y, given by -
B =/ E‘i_m (69) B
. T Yy o
: where ﬁk
- fA*
. hg?) = (70) )
vy = £(x) W
This mapping is sometimes abbreviated as B = £(A), although its £
true meaning as defined in Eqs. 69 and 70 may be obscured or misin- f
terpreted, It should be remembered that B is not a function of A, R
but rather that y is a function of x and the membership of x is S“
transported to be the membership of y. An illustration of the '
mapping operation is given in Fig. 34. R
When the transformation y = f(x) is not a one-to-one mapping
but, say, a many-to-one, the membership of B is obtained by -
taking the maximum of all the memberships of the x's which are S
. mapped onto the particular value of y. Mathematically, this is el
. denoted by v e
s RN
N uB(Y) -x;? {UA(X)} = xeX o, (x) j:'.:'\
. ~ y=£(x) ~ y=f (x) { A } (71) ~
X wvhere sup denotes the supremum operation and is the same as the :5i
maximum operation (denoted by V) in this case. The operation is ;;i
R:
90 s
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mapping y = f(x)--mapping is one-to-one.

Transformation of fuzzy sets

Figure 34.
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illustrated in Fig. 35. This idea can be extended to a function
of many independent variables, and in fact to general functions
by Zadeh's extemsion principle. Details are in Ref. 9.

Fuzzy relations--To introduce the concept of fuzzy rela-
tions, consider the fuzzy stress-strain relation of Fig. 32 men-
tioned earlier. Suppose a crisp value of the strain is selected,
say, €; = 1 percent., With reference to the figure, three pos-
sible values of 0 correspond to €1 =1, viz.,1l,, 2,, and
3. MPa, Furthermore, g takes on the value 1., MPa with membership
0.7, the value 2. k8i with membership 0.9, and the value 3, MPa
with membership 0.7. Hence, the image of the crisp €1 is

X 0.7 . 0.9 . 0.7
' 9 *1. t27tT; (72)

What is the image of €, vhen Elil itself fuzzy? This is the
subject of fuzzy relations,

A relation relates at least two quantities, A and B, Call
this relation R, as illustrated in Fig., 36. When R is crisp,
e.g., mappings given in Fig, 34, a crisp A will map into a crisp
B. A fuzzy A will map into a fuzzy B, as described earlier.
Suppose R is now fuzzy: a crisp Awill still map into a fuzzy B,
as illustrated by the stress-strain example. When A is fuzzy and
R is fuzzy, B is also fuzzy, The computational operations are
described below in the context of the fuzzy stress-stain rela-
tion.

Given a fuzzy € and the fuzzy stress~strain relation R, the
corresponding fuzzy stress O is

g =€0R (73)
W where o is called the composition operation definmned by
< Hg(0) = \;[uE(E)AuR(c,E)] (74)

~
-~
-
y
I-.
~

and where V is the maximum operation and A is the minimum opera-
tion, respectively. As an aid only in remembering the rules of
the composition operation, ome can use the analogy in matrix
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multiplication where
r11 L] L] * L] rlM7

(el,ez,...,eN) x

(75

H e o o o
"

LNI....NM

-

- [(s1 X T, + €, X r21+...), (e1 X T, + €, X T, + tee)senee]

Multiplication is replaced by the minimum operation, and addition
is replaced by the maximum operation, In the stress-strain
example, if

0.5 , 0.4
ke S N (76)

then the corresponding O is

0.4 0.8 0.5 0.1 0. | (e=2)

9=10(0.5,0.8) 01451 6.5 0.9 0.7 0.2 (e=3)
=2 3 4 5 6)

(77)

- 1(0.500.4)v(0.400.1) ] + [(0.5M0.8)V(0.400.5)] +
2 3 cess

= 0.4 0.5 0.5, 0.4 0.2
2 3 4 5 6

A fuzzy relation is formed from a conditional relation such as:

if A1 then B), if A2 then B2, and so on where Aj and Bi are fuzzy
statements, The mathematics involved is quite simple. Denote
the relation corresponding to Aji and By by Ri. Then,

Ry =4y x By (78)

vhere the cross-product operation (x) is

g (ey) - gixg Hp) g 97 x,y) (79)
i

That is, Ry is a two~dimensional array and the membership of its
member rlm(x,y) is given by the minimum of the memberships for
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éi(‘g) and B;(yy,). The global relation R is obtained by the union
of B\, R,y see o B = I RBRy;=UA, x B,.
i - i

Fuzzy relations are useful tools for modeling uncertain
phenomena, mechanistic or othervise., In the following subsec-
tions, it will be used in two applications as illustration,
There are many other such tools provided by fuzzy set theory, but
it is not possible to include them in this discussion.

STUDY IN MODEL UNCERTAINTIES

Some model uncertainties sre nomrandom--In Sectiom II, the
uncertainties associated with an analytical model (in soil-struc-
ture interaction) was used as an example of nonrandom uncertain-
ties, It was mentioned that a pitfall of the all-probabilistic
approach to S/V assessment was to force such uncertainties to be
random, which led to undesirable consequences,

Perhaps it should also be noted here that there are random
model uncertainties. Empirical formulae based on regression
analysis are classic examples., Uncertainties associated with the
choice of the regression parameters are modeled as random vari-
ables in order to represent the scatter in the data. This is
common practice in statistical analysis but, unfortunately, is
also the source of much confusion; the statistical practice has
been extended somewhat indiscriminately to all matters concerning
models, Tell-tale signs of such possible misuse have been men-
tioned on several previous occasions and will not be repeated
here, However, it may be helpful to look at the subject from a
slightly different point of view.

Returning to the example on soil-structure interaction
models, let us focus on how uncertainties in these models can
possibly be assessed., Random experiments do not make sense here
because only a few (three to four) models are considered. They
do not differ from one another because of inherent heterogeneity.
Neither is the selection of one model over another a matter of
chance., Furthermore, the result of taking the average of all the
predictions from the models does not correspond to any physical
model, Certainly, the average obtained this way does not have
the same meaning as a statistical average or expectation.
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How models are evaluated--At present, model uncertainties
are evaluated by calibration. Controlled experiments are per~
formed to serve as the real-world reference. Models of this
phenomenon are postulated and used to simulate the experiments,
By comparing the model behavior with test data, the uncertainties
in the models are assessed, somehow. Details of this procedure
as applied to soil-structure interaction models is given in Ref.
&, A schematic diagram showing the procedure to evaluate material
models (s0il, concrete) is given in Fig. 14,

Note that although the procedure appears straightforward,
it is far from complete. Many more questions are raised but not
ansvered. For example, what are controlled experiments and how
are these experiments determined? How do they relate to the real-
world phenomenon to be studied? How can uncertainties in the
source model, the mechanism model and the material model be
separated? Above all, what does a comparison between test data
and model response really mean, and how can the results from such
a comparison be used to quantify the uncertainties in the model?

Role of engineering judgment--To delve deeper into the sub~-
ject of model uncertainty is to go beyond the scope of this
report, Suffice it to say that the questions posed are well-
acknowledged by the S/V community and the practice of calibration
is generally accepted despite these questions, The reason lies
in judgment; engineers find refuge from the unknowns by relying
on their judgment, which is based on related experience, general
knowledge, and subjectivity. It is used in all our evaluatiouns,
and especially to compensate for sparse data and when extrapola-
tion beyond the datsa range becomes necessary. In terms of
models, experts are aware of the usage and shortcomings of cer-
tain types of models, from having worked with them in previous
applications or by previous comparison with data and other refer-
ences., They know that a particular feature of a model is essen-
tial to represent a certain phenomenon and, in the same manner,
they also know that another feature of the same model, when left
unchecked, will lead to erroneous predictions,

Fuzzy set approsch--This study in fuzzy set attempts to
establish a framework by which subjective estimates of model
behavior based upon sparse data and considerable engineering e
judgment can be incorporated into S/V assessment. The approach j}?




consists of four major components:

(1) Identify major features of the models and their
gravities (G,) and importances (Ii)’
i=1, 2, ... N, vhere N is the total number
of features. The curly underlines used previ-
ously to denote fuzzy sets will be omitted from
here on to simplify the notation.

(2) Combine the gravities and importances into a

global fuzzy relation P= I Pj =0 Gi x Ii.
i i

(3) 1Identify the relation between importance of feature Ii

and its effect on the predicted response Cj.

Summarize the relation as R = Z R, = U I, x C,.
i i i i i

(4) Form the relation between the global character of the

model features and their impact on the predicted

response by F = P O R, i.e., the composition of the

tvo relations P, R,

The procedure is described in detail in Ref., 5, together with

numerical examples and illustrations,

A typical result is the relation shown in Table 2, relating

gravity of a model feature with the correction factor to be

applied to the model. In this table, y is the theoretical res-

.-
'b .I

CE MM NN

B

ponse of the system (e.g., deflection of slab) computed according
to the model., To show how this result can be used in practice,
suppose a particular feature of a particular model is judged to

have medium gravity where medium is defined as

+2
= (80)

The correction to be applied to the model response is then

K(y) = (G = medium)O F

_0.5.0.5 . 1. . 0.33, 0.2
y PTG YTy T Ty T Ty (81)
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TABLE 2.

FUZZY RELATION BETWEEN GLOBAL GRAVITY OF MODEL
FEATURE AND ITS IMPACT ON THE MODEL RESPONSE Y

G C (Model Correction Factor)
(Gravity) y l.1ly 1.2y 1.3y 1.4y
0.3 0.2 0.2 0.2 0.2 0.2
0.4 0.5 0.5 0.6 0.33 0.2
0.5 a.5 0.5 1.0 0.33 0.2
0.6 0.5 0.5 0.6 0.33 0.2
0.7 0.2 0.2 0.2 0.2 0.2
0.8 0.2 0.2 0.5 0.2 0.2
0.9 0.2 0.2 0.9 0.2 0.2
1.0 0.2 0.2 1.0 0.2 0.2
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That is, the response is approximately 20 percent higher than
that predicted by the model when the effects of modeling uncer-
tainty are taken into considerastion.

STUDY IN DAMACE ASSESSMENT

Damage states are not clear-cut--Another important source of
nonrandom uncertainties mentioned in Section III concerns the
assessment of damage. In many fields of engineering, damage and
its interpretation are not clear-cut., This is especially true
for protective structures because they are heavily reinforced and
yet are expected to be loaded into severe damage and even total
collapse. Only a limited number of tests can be performed, and
the tests are usually done on small-scale structures using simu-
lated loadings. A sample damaged specimen is shown in Fig. 37,
The evaluation of light, medium and severe damages differs from
one expert to another, The damage ranges are expected to over-
lap, i.e., damage does not change abruptly from light to medium,
and from medium to severe upon reaching certain crisp thresholds,
Other factors such as scarcity of data and the need to extrapo-
late the data to realistic loading, full-size prototypes and
imperfect structures add much more complexity to the assessment
of damage.

Scope of damage assessment--The foregoing describes only a
small portion of the overall scope of damage assessment, In
addition to the damaged specimens, many other measurements
(active as well as passive) are available and need to be included
in the evaluation, An overview of the scope of damage assessment
is shown in Fig. 38, although the present study focuses on the
soft data portion of the assessment, Soft data refer to photo-~
graphs and visual images of tested specimens, and they carry much
information which has not been explicitly quantified and identi-
fied before. The following discussion describes the approach
used to obtain experts' evaluations of the soft data, and to
aggregate these inputs into a form which can be readily incor-
porated into S/V assessment,
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8olicitation and sggregation of expert opimions-~The problem

of solicitation of expert opinions can be described as follows,
An expert or several experts are shown a piece of data wvhich can
be in the form of pictures, graphs, time-traces, etc. The
experts are then asked to give their assessments of the data. If
the data are denoted by A and the assessment from expert No, 1 is
By, the assessment from expert No. 2 is B;, and so omn, the result
can be expressed concisely as

Bl S R g N
.

L

h
-
)

If A, then By, B,, ... (82)

When there are more than one piece of data to be evaluated, the
result of solicitation is

If A7, A2, «.., then Bj1, B2, ... (83)

Here the same pieces of data (A7, A2, ...) are shown to different
experts who then provide the assessments B B ess; TEBDEC-
tively.

1 2

Similarly, the process can involve the following. Expert
No. 1 is shown data Al, and he gives the assessment Bl' Expert
No. 2 when shown data Ay gives the assessment By, and so on. The
result can be expressed as

If A then B and

1 1’

(84)

If A then B and

2' 2’

LK R )

Having obtained the expert opinions, the next step is to
combine them, This is the problem of aggregation, The assess-
ments B, By, ... are analyzed and synthesized in order to arrive
at some global or overall assessment, One usual outcome of
aggregation is a consensus assessment B, but it should be empha-
sized that consensus should not be the only goal of aggregation,
In fact, contradictory and ambiguous assessments should be right-
fully reflected in the aggregated product,

Solicitation and aggregation of expert opinions are widely
practiced in S/V assessment although they are not noted expli-

citly as such, For example, in every technical meeting, planning
session, workshop and test-related conference, erperts are called
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together so that their opinions can be solicited., Examples of
data A's are measured strains and deflection of structural ele-
ments, observed crack patterns, etc, Examples of assessment B's
are damage states, residual strength of structures, fidelity of
test, survivability, etc. It is common practice to let the
experts process their assessments mostly by voice votes. Without
exception, the end-result is a decision or consensus.

The solicitation and aggregation of expert opinions have
many important facets and this report will not be able to
include all of them. There are different ways to elicit opin-
ions, to weight the different ability and experiemce of the
experts, and to include one's personal bias. Ways to refine
opinions by feedback and iterative evaluation also have been
studied.,. The precision and form of the assessment is another
important factor, as is the largely unresolved question of how to
treat commonality of knowledge and data base which may have been
shared by the experts, The study performed here emphasizes two
facets of the problem: consensus and subjectivity. Specifically,
it is felt that most existing methods center around the need to
have a consensus opinion, and that this may not be correct.
There may be very good reasons why opinions vary, as is often
the case in S/V assessment. The process of aggregation should
include these diverse opinions and not alter them. Consensus
methods also rely on large sample populations, which is not the
case for most S/V applications. Expert opinions are seen as non-
random, especially when weights and bias factors are included.

Yuzszsy set approach--The fuzzy set approach comnsists of the
following four major steps (see also Fig. 39) :

(1) Groups experts into homogeneous subgroups;

(2) Solicits opinions from members of each subgroup;

(3) Aggregates the opinions of members of a subgroup,
including weights on the opinions; and

(4) Aggregates opinions of the subgroups,

The approach makes repeated use of two fuzzy techniques
called fuzzy classification and fuzzy identification. Fuzzy
classification is used to separate the experts into subgroups,
and the subgroups into sub-subgroups, if necessary. It is also
used to help define the weighting factors assigned to the sub-
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Panel of

Experts

Group experts into
subgroups at Level 1,
Level 2, etc.
Compute or assign
appropriate weights

Crisp or fuzzy
classification
techniques

i

Solicit opinion from
members of each
subgroup

y

Aggregate opinions

within each subgroup Crisp or

fuzzy identification

and aggregation
y techniques

Aggregate opinions
of different subgroups

Global
opinion

Figure 39, Major steps in classification and aggregation of expert opinions.

105

_ e e e i et oo PP S AP LAY SN VRO R PSP P TR




Y

B

) .
) groups. Fuzzy identification is used to synthesize the different =
inferences of members of a subgroup. Synthesis refers here to K.

. aggregating different assessments as mentioned previously, or to ﬁt
- constructing a global inference machine which is some sense best fﬁ
) summarizes the thinkings of the experts. o
: R
‘ -
The following discussion is limited to the aggregation part !_

of the study. A description of the classificatiom techniques used
and their applications is given in detail in Ref. 39. It is

noted that fuzzy classification is also useful for treating hard
data encountered in S/V assessment, such as those shown in Fig. 38, .
and for comparing sparsely populated waveforms and ill-defined ’.
measurements,

y Inference and identification--Consider the proposition R: if N
e A then B. Here, A is called the antecedent or cause, and B is ey
- called the consequence or effect. The process of arriving at an : ;I
3 ansver B given data A is an inference process. When referring to ﬁi
X the inferred opinions, the B's, aggregation means combining these ) -:?
s expert opinions into a joint opinion or inference. Note only the F

consequent B's are directly involved in this aggregation ap-
proach, When referring to the inference processes themselves,

. the R's, aggregation means combining these relations into a o

: global, representative relation. Both the antecedent A's and the -g3
consequent B's are used in this latter approach, which shall be
referred to as identification., The name comes from identifying
the inherent relation which provides the best representation of
all the constituent relations,

The first meaning of aggregation is more conventional, and
methods for combining expert opinions have been extensively
studied, They will be summarized in the following with more
details given in Ref. 39, Emphasis of the present discussion is
on identification, since it is more general and appropriate for .
S/V assessment applications. &

Combining expert opinions--The method of combining expert
opinions depends on whether the information is cardinal (numeri- e
csl) or ordinal (linguistic). When opinions are given in the
cardinal scale, there are many choices for combining them. For e
more details, see Zimmermann (Ref. 40), Zysno (Ref. 41), or Wong 2
(Ref., 39)., Some examples are max, min, algebraic mean and
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geometric mean. For example, if Uy, i=1,2,..,m are different
fuzzy opinions of m experts and their relative weights are dj,
with

LAATT

: ]
«

v

M
459 = o (85)
then the algebraic mean is

1 7
g = 1=1%1% (86)

wvhere the summation is understood to follow Zadeh's extension
principle (Eq. 70). The geometric mean is

1
. -< ;uidi> -y (87)
o i=]

For a homogeneous subgroup, the opinions of its members should be
very close to one another, and all these operators will yield
comparable results. When the opinions are diverse, as may occur
with different subgroups, the above operators may give very
different results,

Methods to combine opinions and weights when they are given
on a8 linguistic scale have been proposed by Buckley (Ref. 42) and
Schmucker (Ref. 43). The methods require some lengthy explana-
tion and are summarized in Ref, 39, Sample applications are also
given in said reference.

Identification--Suppose the data-opinion pairs are denoted
by Ai and Bi, i=1,2,...,N, and each pair corresponds to a rela-
tion R, given by

Ri = Ai X Bi (88)

according to Eq. 77, Given Rj and Ay, to recover Bj requires the
composition operation of Eq. 73, The problem of identification
is to find arelation R which can represent the fuzzy data pairs
(A, By), i=1,2,,.,§ in some optimal sense. In other words,

R is to represent a combination of the comstituent relations Rj,
i=1,2,..,8, in some optimal sense.




;;;;;;;;;;;

..... —— e T gy T e T T T TN TR YA TS < T

One common approach to do so is due to Mamdani (Ref. 44),
which is the union method mentioned earlier. In particular, the
answver is given by

R=0UR, = J f \' (st)/(XoY)
11 xy i 'R

(89)

Since the union R of several Rjcontains all the R{, one can
say that R is the aggregated relation. However, note that in
general,

AQCR = By , By X B, (90) °

Hence, union aggregation will not return all the original data-
opinion pairs (A, B ).

The approach used here is to try to minimize the difference
between B'; and By, i.e., the aggregated relation should return
the original data as best as possible, and in that sense is the
best summary of the comstituent relations, The objective func-
tion to be minimized depends on the measure of distance, i.e.,

N
- z 2 - -

vhere di is a dissimilarity measure between the fuzzy sets B; and
B';. Different variants of the identification algorithm corres-
pond to using different dissimilarity measures and schemes to
minimize the objective fumnction.

One method investigated uses the Euclidean distance for d;
and a3 minimization procedure based on a modified Newton iteration
scheme. Details are documented in Refs. 39, 45 and 46, The
result is a relatively simple recursive equation for the aggre-
gated relation

(ntl) _ o(m) _  3Q
R R % 5 @ (92)
i3
vhere R(®) gnd R(B*1) sre the (n)th and (n+l)th iteratioms of the - =
desired R, respectively. The gradient-anar(“)iJ is given in R

terms of the data-opinion pairs (Ay, B{), and the current value
of r,,. The length scale,c depends on the number of iteration

1]

n ’
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. of convergence and minimize local oscillations, ;:f
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Illustrative example--This example is based on the previous :;ié

discussion on modeling uncertainties (see also Ref. 5). The —3

effect of modeling on the analytical estimate of the deflection A

of the roof-slab of a buried box is considered, resulting in the 7;5

following conditional relation, fif

Rl: 1If E is large, then C is large, or else ii;

RZ: If E is medium, then C is medium, or else I

R3: If E is small, then C is small T

where E refers to the effect of modeling and C refers to the o
correction factor which must be applied to the analytical esti-

mate y to account for modeling uncertainties.

The linguistic value of large, medium and small for the
modeling effect are:

(94)

1. o.
0. ¥ 0.

0.5 0.
*0.2%0

9
1

and those for C are defined as:
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3
: TABLE 3. COMBINED RELATION BETWEEN MODELING EFFECT AND ITS :
2 CONSEQUENCE ON MODEL PREDICTION, USING MAMDANI'S ¥
METHOD OF UNION .
N o
N C o
N E y l.1ly 1.2y 1.3y 1.4y ;r::
0.0 1.00  0.78 0.55 0.33 0.10 E
0.1 0.90  0.78 0.55 0.33 0.10 -
0.2 0.50  0.50 0.50 0.33 0.10 -
0.3 0.20 0.20 0.20 0.20 0.10 .(
0.4 0.10  0.16 0.60 0.16 0.10 i
0.5 0.10 0.16 1.00 0.16 0.10
0.6 0.10  0.16 0.60 0.16 0.10 e
0.7 0.10  0.20 0.20 0.20 0.20
; 0.8 0.10  0.33 0.50 0.50 0.50 o
0.9 0.10  0.33 0.55 0.78 0.90 o
1.0 0.10  0.33 0.55 0.78 1.00
K
TABLE 4. FINAL RESULT FROM IDENTIFICATION ALGORITHM
o
E ¢ y l.1y 1.2y 1.3y 1.4y ‘
0.0 1.00  0.78 0.55 0.33 0.10 i
0.1 0.90  0.78 0.55 0.33 0.10 o
0.2 0.50  0.50 0.50 0.33 0.10 —-:«3
0.3 0.10  0.16 0.20 0.16 0.10 R
0.4 0.10  0.16 0.60 0.16 0.10 o
0.5 0.10  0.16 1.00 0.16 0.10 e
0.6 0.10  0.16 0.60 0.16 0.10
0.7 0.10  0.16 0.20 0.16 0.10
g 0.8 0.10  0.33 0.50 0.50 0.50
\ 0.9 0.10  0.33 0.55 0.78 0.90
1.0 0.10  0.33 0.55 0.78 1.00
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The resultant relation using the union operation of aggrega-
tion is given as Table 3. In this example, the three if-then
relations can be regarded as three alternatives from one expert,
or three opinions from three experts, The identification pro-
cedure is transparent to the interpretation of the information.
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When this matrix is used as the initial guess for R to start
the identification algorithm with equal weights on the three
experts, the result returnmed upon convergence is very close to
its initial guess (see Table 4). This means that the initial
guess is a good choice, and only a few iterations are necessary
to reduce the objective function Q to its minimal target value
which is 0,47E-8, In this case, the union aggregation and the
identification aggregation approaches give similar results, This
is not so for other data bases.

To put the algorithm to a more severe test, the calculation
is repeated with a zero matrix as the initial guess. The result
upon convergence is again the same as that obtained the first
time. Similar findings are obtained when the initial guess con-
sists of all 1's, These results show the effectiveness of the
identification algorithm and that the final answer is fairly
independent of the initial guess,

To show the accuracy of the algorithm, we take, in turmn, the
resultant relation R computed by the union and identification
methods, and see if using the original E's given by Eq. 94 will
lead to the original C's given by Eq. 95. When Table 3 is used,
the C's computed by E o R are

. _0.2 0.2 1. 0.2 0.2 A

2"y "Tyt T2y T Toay T Ty (96) 3

- 10 + 0078 0-55 0-33 0-1 L3

3%y Tyttt Tiay Tl v

-

=
Note that they are different from the original information in 5&?
. Eq. 95. Hence, the union method of aggregation does not preserve &
the original inferences, When Table & is used instead, the {;b
original set of C's is recovered, showing that the original infer- j{f
ences are preserved by the identification method of aggregation, :Q}
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i VII, CONCLUSIONS AND RECOMMENDATIONS Z
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N £
> TREATMENT OF UNCERTAINTIES ) ::
o €
Many types of uncertainties coming from many different P
. sources are encountered in S/V assessment. Current assessment =]
ﬁ methodologies consider all uncertainties to be random. This prac- ﬁ~
: tice is undesirable because it forces nonrandom uncertainties to j;
. be random, or ignores them altogether. Dire consequences may i
result in either case. 4
- It is our belief that improvement to S/V assessment can .
% be achieved simply by recognizing that there are at least two k
;: major groups of uncertainties: random and fuzzy. Random un~ R
; certainties are uncertainties which can be adequately modeled as 3
random parameters, functions or processes. Fuzzy uncertainties =~
include nonrandom uncertainties, as well as uncertainties re-~- . .:
sulting from incomplete and imprecise information, subjective -
judgment, ambiguity and vagueness, Much of the discussion in the A
previous sections of this report is included to clarify and
. support this belief. Examples of random and fuzzy uncertainties ﬁf
T are given, Their role and importance are delineated. Modeling Ei
< and analysis of the two groups of uncertainties and ways to t:j:'
* integrate them in an overall S/V assessment framework are $f'
. summarized. :S
: o]
MODELING AND ANALYSIS OF UNCERTAINTIES -
& Of the several extensions to current S/V assessment capa- O
g bilities studied using this approach, two are described in L
more detail in this report: the use of random and stochastic ;S
equations to model and analyze random uncertainties; and the use Bi
of fuzzy sets and fuzzy logic to model and analyze fuzzy :ﬁ
uncertainties. The random equation study emphasized numerical e
; solution techniques and, in particular, the difference methods. ii
- The fuzzy sets study emphasizes the treatment of expert experi- }ﬁ
. ence and opinion and how it can be quantified in an S/V assess- :::f-
ment procedure, Major conclusions from these two studies and . 3
\ recoumendations for future efforts are described in the following ?;
. paragraphs. R
b ~
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Random/stochastic methods--This study indicates that the }&3
direct finite difference method is applicable to stochastic and {
' random differential equations, and numerical techniques represent !EE
an attractive solution option to complement existing approximate fﬁ"

. and analytical methods. Immediate application to S/V assessment Qﬁt
is feasible, but computational cost may impose a limit on the

e

size of the problem which can be considered. é;;‘
Vo,

The limitation is due to the fact that a large sample size t:i'.‘_.:.‘
(thousands of samples) is needed to compute the sample statistics e
from the sample paths obtained by the difference methods. The 5%1
large sample size is mnecessary, mainly because of errors in the !iE.
simulation of the random processes, By comparison, the error due e

to the difference approximation itself is negligible. Hence,

although the computational cost restiction is undesirable, it is %¢j
not a limitation of the difference approach, but rather reflects A
the ineffectiveness of current computer algorithms for noise ’:ﬂ:

(pseudo-random number) generation.

Consequently, two research directions should be pursued to RN
further extend the random/stochastic equation approach in S/V
assessment, The first, which is to improve on random number
generation techniques, belongs to the discipline of computer
science. The second is to develop equations which govern the
propagation of moments and numerical solutions of the moment
equations,

For systems which can be modeled by stochastic (Ito) equa- T
tions, there is the well-known Fokker-Planck equation which gov- :ﬁg'
erns the transition probability denmsity function and can be used ';L_
to generate equations governing the moments of the response. ﬁ*“
However, no numerical works on these equaticns have been re~
ported. For systems which can be modeled by general random :
equations, no general moment equations analogous to the Fokker- liﬁ
Planck exist, Many approximate methods have been attempted, but ﬂ}?

they all have limitations of one kind or another (see Ref, 22 and o

the recent work by Bennett, Ref. 47). Random equations are an ;%ff

extremely difficult group of mathematical problems, and much more C}%

research needs to be done before they can become application Qﬁj

tools in S/V assessment. :*}f

aiwY

* .
Fuzzy models and methods~-The study on fuzzy uncertainties ‘:f

focuses on two aspects of S/V assessment--namely, uncertainties }35
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associated with analysis models and the assessment of damage to
structures, The selection is influenced largely by the author's
research interest and does not imply a limitatiom on the appli-
cability of the fuzzy set approach. The two pilot studies indi-
cate the feasibility of the approach, as well as its versatility
in modeling, in general, nonrandom uncertainties which have
remained elusive., If one doubts the prevalence of such uncer-
tainties, one needs only to select at random s page from any
report related to S/V assessment and count the number of times
linguistic terms such as "good," "severe," "satisfactory," etc.,
appear.

Perhaps several points need reiterating. Current practice
treats uncertainties as if both the random and nonrandom, and
the objective and subjective elements of the problem, have similar
properties., This is incorrect and the distinction should be
made., Fuzzy methods cam be used to incorporate fuzzy, linguistic
and judgmental data into the existing framework, and they com-
plement existing random methods in this manner. Fuzzy models are
not statistical ones in disguise, and they are not proposed to
supplant random models used to model random uncertainties.

Future work should include more detailed studies of the two
pilot studies initiated herein., A case study on damage assess-
ment is in progress and results will be described in a separate
report. The work described in this report centers on one basic
tool in fuzzy set theory--namely, the fuzzy relatiom. Many other
tools are available and should be explored. For applications in
S/V assessment, the most promising appears to be fuzzy classi~
fication. Fuzzy classification and clustering techniques can be
used to strengthen much of the work in evaluating and analyzing
test data, which are hampered by measurement uncertainties,
noise, scarcity of data, and subjective interpretationm. Fuzzy
reasoning procedures are useful tools to synthesize uncertainties
(subjective as well as objective) in the S/V data streams within
the framework of a knowledge~based assessment system.

CLOSING REMARKS

There are four issues which should always be raised in
any discussion on modeling and analysis, They are:
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(1) How to account for lack of understanding of fﬂ

some basic phenomenon; -~

- -3
Z (2) How to maximize use of sparse experimental e
: data, and available engineering experience Qi
: and expertise; s¢,
! (3) How to assess the validity of the sssumptions !

of the analysis; and

a0

; (4) How to assess the meaning of the results of
I the analysis,

’ e e
d f.."‘.",' L. e A
P I I

[}

For S/V assessment of protective structures, these issues are
especially relevant because of (1) the complexity of the phenom-
ena, (2) extremely sparse and indirect data, (3) inoperative

v

’ safety factors, and (4) dire consequences of miscalculation.
This study has provided a partial answer to these questions, but o
is only a8 preliminary step in that direction. ﬂ{
{a~
ek,
W

¢
o

The division of the uncertainties into only two main groups,
. random and fuzzy, may be simplistic since there are other groups
' of uncertainties. However, by acknowledging that there are
uncertainties other than the random variety and by seeking appro-
priate models for the two groups, the study constitutes a new :b
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»
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i direction in S/V assessment. More research is obviously still
needed to make significant improvement to current technology. -
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