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1. INTRODUCTION

IACIGOUND

Survivability and vulnerability (S/V) assessment of protec- Pk

tive structures involves many uncertainties. Most of the uncer-

tainties arise because of complexity in the weapons effects

phenomena and limited data base. Evaluation and analysis of S/V

are further complicated by inherent variability (e.g., material Nk
behavior, threat scenario, explosive effects) and imprecision

(e.g., definition of damage, failure) in every component of the

assessment chain.

The importance of uncertainties has always been recognized

in S/V assessment. However, until very recently, the treatment
of uncertainties is limited to statistical techniques. Uncer-

tainties are modeled exclusively as random variables. A param-

eter is assumed random when it is uncertain. This approach is

used to treat uncertainty in the analysis models as well.
/ -. >. ... .

) -

RANDOM VS NONRANDOM UNCERTAINTIRS

The study described in this report is based on the belief

that not all uncertainties encountered in S/V assessment are

random, and that the different kinds of uncertainties should be
modeled and analyzed by using different but appropriate pro-

cedures. To review briefly, random variables are based on the
concepts of probability (viz., a definite sample space, repeat-

able experiments under near-identical conditions, and meaningful

sample average and variance). On the other hand, there are many

uncertainties in S/V assessment which have quite different char-
acteristics, viz., the sample space is not well defined, there

are few samples, and the sample average and variance may not be

meaningful. In particular, linguistic data, subjective judgment,

imprecise information, and extreme complexity or details are
examples of uncertainties which should not be considered random.

7
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SCOPI OF STUDY

The study seeks to extend current statistical S/V assessment

* capabilities in two major directions: (1) Within the confines

of random models of uncertainties, to explore how stochastic

methods can be better utilized; and (2) When the uncertainty is

nonrandom in nature, to explore ways to model and analyze the

' uncertainty, and finally to incorporate it into the overall S/V

" assessment.

The starting point of the study is a critical review of

current statistical assessment approach, and the ways by

which it can be expanded and improved. This is summarized in

Section II. It is argued in Section III that at least two types

of uncertainties should be recognized, although there may be

. more. Uncertainties that can be modeled as random are distin-

guished from uncertainties which are not related to random occur-

rence. In this study, all nonrandom uncertainties are con-
sidered to belong to one broad category called fuzzy uncer-

tainties which can be modeled by fuzzy sets and fuzzy logic.

Suggestions for use of fuzzy uncertainties in S/V assessment and

how they can be integrated with random uncertainties are given.

Important extensions to current assessment methods based on

this view are summarized in Section IV, with details given in

Sections V and VI. Random variable and random process models of

uncertainties are the subject of Section V. Types of random

equations and their solution techniques are described. Emphasis

of the study is on numerical methods, or numerical stochastics,

since it is well-known that analytic solutions to random equa-

tions are difficult to obtain. The study includes a study of

stochastic difference equations, and other discretization methods

for random equations.

Section VI summarizes two methodologies to solicit and

aggregate expert opinions, a vital element of the assessment

process which is viewed as nonrandom. Opinions on the perfor-

mance of an analytic model, expressed in terms of gravity and

effect, are used to construct fuzzy relations which then repre-
sent the uncertainties regarding the model. These opinions,

together with other available data (deterministic, random or

otherwise) in the assessment of structural damage, can be imple-

mented within the framework of a knowledge-based system.

8
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This report emphasizes engineering description of the prob-

lem, whether the discussion is on S/V assessment or the modeling

and analysis of uncertainties. Mathematics are kept to a mini-

mum, and only the necessary background on stochastic equations

and fuzzy sets is included. For details on the mathematical

theories and development of the examples described in this -.

report, the reader is referred to the publications and technical

papers cited.

9-
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II SURVIVABILITY AND VULNEIABILITY ANALYSIS

OF PROTECTIVE STRUCTURES

The current procedure used in s/v analysis of protective

structures is described. The uncertain information and data

which must be correctly incorporated into the analysis are delin-

eated. The current probabilistic approach in handling system and

other uncertainties and its inadequacies are discussed. The

inadequacies are caused mainly by the failure of current approach

to recognize that not all uncertainties can be adequately modeled

as random variables.

TYPICAL PROBLEM

The S/V analysis of protective structures is historically a

complex civil engineering problem which can be approached only by

assessing a number of components of the problem. Many of these

components involve uncertainties. For example, consider the sur-

vivability of a known buried-box structure under the influence of
an assumed extreme environment, specified in terms of the mechan-

ical effects of airblast and ground shock. The analysis is

approached by formulating the problem in the following components

(see Fig. 1):

(1) Identify the important failure modes and their
associated fragilities;

(2) Identify the explosive effects and loading

mechanisms responsible for these failure modes,

and the uncertainty in the environment descrip-

tion;

(3) Determine the response function (i.e., the

relationship between the loading and fragility

parameters) and its associated uncertainties; and

(4) Compute the system failure probability by compar-
ing the response and fragility for each failure

mode of each component, and by combining the com-

ponent survivability probabilities into the system
survivability probabilities.

I0
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TYPICAL UNCERTAINTIES

For the buried-box example, a partial list of the informa-

tion and data required in each step of the analysis can be sum-

marized in Table 1. The information is further divided into

three categories: deterministic, probabilistic and others. Such

classification is not common practice, but is done here for

reference in subsequent discussion. The three categories corres-
pond to decreasing precision in the information. Current method-

ologies acknowledge only the first two categories, i.e.,
deterministic and probabilistic. Very imprecise information,

subjective judgment and linguistic data are treated as determin-

istic or probabilistic, or ignored altogether. For example,
cratering and its associated effects, nonideal surface effects,

the effects due to the choice of the soil-structure interaction
model, and the damage evaluation criterion, to name a few, are

treated as deterministic or vaguely as a source of probabilistic
uncertainty called systematic uncertainty.

Table 1 describes a fairly complex process where imprecision

exists, even in the identification and classification of the
sources of uncertainties in the protective structure analysis.

Furthermore, any tabulation of uncertainties, such as those shown

in the table, is very subjective. Another person of similar
background and experience will most likely arrive at a different

tabulation. This possibility serves to underscore the present
state-of-perception of the problem.

CURRENT TREATMNT OF UNCERTAINTIES

In an analytic treatment, it is assumed that the total

uncertainty, 2, consists of the uncertainty due to inherent

randomness, E, and the uncertainty associated with the error in

the prediction, A such that (e.g., see Ang and Tang, Ref. 1)

2 2 2

=i (I)

Hence, for a cause-effect relationship such as

R g (Xi, X,. ...... , Xn ) (2)

12
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where R is the dependent variable and X i t i 1,2,.....,n, are

the independent variables, the uncertainty in R can be evaluated

through first-order analysis. The mean value of I is -.

-g C , 2,. ...... ,i ) ( \.

where Yi denotes the mean value of xi and the variance of R is

2

aR j c ( .X.

where Pij is the correlation coefficient between Ii and Xj, ci

ag/aXi evaluated at i and -X LA Ei. Alternatively, the

random and systematic uncertainties are propagated separately to

give the random and systematic uncertainty in the dependent

variable R, as described in a survivability assessment procedure

by Rowan (Ref. 2).

Monte Carlo schemes also have been devised to treat more

complex survivability problems based on the same principle.

Collins (Ref. 3), for example, used the two-tiered sampling

approach illustrated in Fig. 2 to distinguish between random and

systematic uncertainties. A limited number of inner loop samples

is taken to estimate the average survival probability due to

random variations. Each outer loop sample results in an estimate

of the median value of the average survival probability. The

outer loop estimates can then be used to assess the range of

variation of the median probability and establish the confidence

levels.

Whether the analytic or Monte Carlo method is used, the

result of such an analysis can be illustrated in Fig. 3. The

median probability of failure curve gives the probability of

failure of the system for a particular loading, and is often

referred to as the fragility curve. The curve is a result of the

incorporation of random uncertainties only. The variability of

this curve when systematic uncertainties are taken into consid-

eration is also illustrated in the figure. The lefthand and

righthand bounds normally correspond to the 10 percent and 90

percent confidence levels that the probability of failure will be V
between these bounds in spite of uncertainties in the analysis

model, imprecise data, and so forth. In some works, such as
those by Wong and Richardson (Ref. 4) and Rowan (Ref. 2), model-

ing errors are treated as a source of systematic uncertainties.

14 ..
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INADEQUACY OF CURRENT PRACTICE

The analysis procedure described above is very appealing,

since it produces a precise summary of the different effects of

uncertainties on the system response--for example, in the form of

Fig. 3. Such information can be fed into the hierarchy of

decision-making in strategic and tactical survivability analyses.

In actuality, the separation of random and systematic uncertain-

ties is not a simple task, if possible at all. The unilateral

treatment of all uncertainties by probabilities implies many

*. assumptions. For example, it assumes that the data base exists,

that random and systematic uncertainties are independent, and

that all types of systematic uncertainties (such as biases,
judgment and modeling error) are similar and can be treated in

the same fashion. These assumptions are seldom justified due to

very limited data, lack of knowledge, and incomplete understand-

ing of the complex physical phenomena and structural behavior.

To illustrate, consider one particular step in the analysis

procedure shown in Fig. 4, which depicts the choice of a model

for the dynamic response of the roof of a buried box due to soil-

structure interaction loading. Many models can be considered,
including a single-degree-of-freedom model commonly used in slab

*. analysis, a multiple-spring-mass model, or a finite element model

of the complete soil-structure configuration. Subjective judg-

ment enters into such a choice, and the uncertainty associated

with the choice (i.e., the computational error to be expected) is

assessed from past experience with similar computations and com-
parative analyses. Furthermore, the evaluation of modeling
uncertainties relies heavily on comparing model predictions with

results from controlled tests, which are seldom feasible.

Ignoring these concerns for the time being (they are addres-

sed in Wong and Richardson, Ref. 4), suppose that the finite

element modeling approach is selected. One is then faced with

more modeling decisions--for example, the choice of a soil model,

a concrete model, the method to incorporate reinforcing steel,
the size of the finite element mesh, and so on. Another layer of
judgment and decision is encountered. To proceed, let us limit

the discussion to the modeling of the roof-slab of the box. One

can consider using a composite reinforced-concrete model where

the reinforcement is smeared over the volume of the finite ele-

ment, or an explicit reinforcing steel model, or a model com-

prised of two or three elements across the thickness of the slab,

17
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and so on. Details of modeling notwithstanding, the fact is that

much subjective judgment and recollection of past experience are

used in the analysis. More important, these data cannot be

summarized readily by a probability density function.

As an illustration, the impacts on the response of the roof

slab due to the modeling options mentioned previously are summa-

rized in Fig. 5. The figure shows the variation in the roof-slab

velocity and the loading exerted by the soil on the roof slab of

the buried box as a result of these modeling assumptions. This

variation will be referred to for the time being as the modeling

or systematic uncertainty associated with the slab model. It is

apparent that such uncertainty is not amenable to a probabilistic

description. Furthermore, experience shows that the explicit

rebar model gives fairly good results in the slightly plastic

range, that the same model is less accurate in the membrane

tension mode, and that the shear failure modes are absent from

such a model. These are important data which should be incorpor-

ated into a realistic analysis. Such inputs are ignored in the

current probabilistic formulation, since they cannot be readily

assimilated in the probabilistic description of uncertainties.

More examples of this type will be given in the next sec-

tion. For a detailed description of the inadequacies of current

practice based on the all-probabilistic modeling approach, see

Wong, Ross and Boissonnade (Ref. 5). To summarize, by ackuowl-
edging random models as the only models of uncertainties,
current formulation of S/V assessment methods either ignores non-

random uncertainties altogether (since they cannot be assimilated

into the current framework) or forces them to be random as well.
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Il1. UNCERTAINTIES

To researchers in the S/V assessment community, there is

probably no need to espouse the importance of uncertainties.

However, the term uncertainty may have different meanings to
different people. Several examples of uncertainties were men-

tioned in the previous section. The discussion is continued here

and the variety of uncertainties encountered in S/V assessment is

further illustrated to support the simple classification scheme

that is proposed. Uncertainties are divided into two groups,

according to whether they can be modeled adequately as random

variables or not. The need to integrate random and non-random lot
models of uncertainties into an overall assessment framework is

also addressed.

SOURCES OF UNCERTAINTIES

The term uncertainty may be associated with ambiguity, fuz-

ziness, randomness, vagueness, imprecision, subjectivity, or
extreme complexity. For a more detailed description of these

terms, see Yao and Furuta (Ref. 6). In essence, uncertainty

arises because one is not sure about the outcome of a real-world

event, and in an effort to understand this event, he postulates a
concept or model of the real world.

In the context of structural mechanics, the main sources of
uncertainties may be delineated by considering the analysis

chain, as shown in Fig. 6 (after Blockley, Ref. 7). The basis of

structural mechanics is Newtonian mechanics in the form of
conservation laws. These laws are used together with energy

methods, virtual work methods, and so on, to formulate the gov-

erning equations of motion. Material behavior is incorporated
through constitutive models. Structural behavior is obtained by
solving the equations, and by making more assumptions on the

boundary conditions, the loading and the solution procedure.
These assumptions are an integral part of the modeling process.

Finally, behavior of a prototype structure or future structure is

inferred from the analysis result after it has been assessed and
evaluated with reference to one's experience with similar struc-
tures and one's knowledge of structural behavior in general. 7-
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Uncertainties of all descriptions may enter into every step
of the analysis procedure. Moreover, they also appear in various

degrees. Some are judged less important than others and, hence,

neglected. Jugdment is itself a source of uncertainty. For

example, Newtonian mechanics is, strictly speaking, incorrect; .
relativistic mechanics is known to be better. However, engineers

find that for most of their work the former is adequate. Here

lies the major difference between science and engineering: Mathe-
matical rigor or truth is not the only criterion in modeling. It

is what makes a good engineering model that counts. The applica-

tion of judgment is also evident in the choice of the solution

procedure, the material model and end-constraints. It allows the - -

engineers to simplify the complex problem, focus on the important I
issues, and arrive at an engineering solution knowing full well

that such a solution may not be perfect and that some compromises

have been made along the way.

UNCERTAINTIES AND MODELING

Hence, one approach to classify the uncertainties in S/V

assessment is to consider the assessment as a modeling problem.

The types of uncertainty are related to the selection and defini-
tion of the model. This is the approach used here.

In modeling, the amount of data supporting the model is an

important issue. With a large data base, the choice of the model
is more clear-cut; the model can be better justified. A deter-

ministic model is justified when variation about the nominal is

negligible or inconsequential. A random model is used when varia-

tion is not negligible, but can be determined to follow a certain

probability distribution. When the data base becomes smaller,

the choice is less clear, and the situation becomes more fuzzy.

Note that even in this simple view, the distinction between
deterministic and random, and between random and others, is

itself not well-defined, but relies heavily on judgment and
knowledge. Nevertheless, a rationale based on the size of the

data base seems reasonable and is readily accepted by most

engineers.

In current ?ssessment methods, only the deterministic and

random categories are recognized. The category designated as
others is either ignored or included as the so-called systematic
uncertainty or bias, and is considered to have random
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characteristics as well. Despite the fact that the same mathe-

matical model is used for both categories (random and system-
atic), the latter can be easily detected in current procedures.

Systematic uncertainties are operated upon separately from random
uncertainties, and the probabilistic description of systematic
uncertainties is often determined in an ad hoe or arbitrary

manner.

Hovever, there are uncertainties which are nonrandom in
nature, the size of the data base notwithstanding. Some examples

are fuzziness resulting from subjective knowledge, ambiguity
inherent in linguistic descriptions, and vagueness associated
with ill-defined figures and pictures. Although engineers encoun-

ter these uncertainties almost on a daily basis, and handle them
with ease using their experience and judgment, the fact remains

that these uncertainties have not been represented explicitly in

S/V analysis.

NONRANDOM UNCERTAINTIES

This discussion starts with random uncertainties, since they

are familiar to engineers, and then leads into nonrandom uncer-
tainties. Differentiation between random and nonrandom quantities
is made mainly by reference to examples taken from S/V assess-

ment. Formal classification is given in the next subsection.

Uncertainties in basic properties--A typical random uncer-
tainty is that associated with material properties, such as the
strength of concrete shown in Fig. 7. A large number of core
samples which are nominally the same are tested under near iden-
tical conditions. The result is represented by the histogram in

the figure which can be approximated by a (probability) density
distribution. While the fit between the theoretical distribution

and the experimental data may not be perfect, the random model
captures the variation in the strength well enough for engineer-

ing purposes. Hence, one says that the uncertainty in the con-
crete strength is mainly random, and can be modeled by a random

variable.

Note that implicit in this modeling process is the assump-
tion that the effect due to the choice of the distribution (nor-

mal, lognormal, etc.) is negligible compared to the variation in
the quantity of interest, viz., the strength. The selection of
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one distribution over another is a nonrandom act, although in

this case the latter issue is unimportant since the effect on the

overall modeling is inconsequential.

Consider now Fig. 8, which shows the variation in concrete

strength under biaxial loading (Ref. 8). Seven well-known insti-

tutions in the U.S. and Europe were asked to perform strength

tests on nominally identical concrete samples in order to esti-

mate the effects due to random variation, sample geometry and

test machines. Figure 8 is representative of the results ob-

tained. Differences in strength due to differences in sample

geometry and testing technique can be inferred from the differ-

ences in the solid lines in the lover half of the quadrant. For

*" a particular solid line, variations due to inherent randomness in

material properties are shown by the shaded areas in the upper

half of the quadrant.

The uncertainty represented by the shaded areas correspond

to those shown in Fig. 7, and can be represented by probability

distributions. This is not done to avoid adding more confusion

to the figure. On the other hand, appropriate treatment of the

uncertainty indicated in the lower half is less obvious. However,

based on the data given in the figure, it is difficult to justify

treating this variation as random. Furthermore, note that the

spread of the data in the lower half of the quadrant is much

larger than the spread within a particular shaded region in the
upper half of the quadrant, which corresponds to random uncer-

tainty. Hence, contrary to the situation in Fig. 7, random

uncertainty is small compared with the nonrandom uncertainty in

this case. If fact, all the shaded regions in Fig. 8 can be

ignored, and the variation in strength still can be represented

well by the data in the lower half of the quadrant.

What is shown here is that elusive uncertainty, currently

called systematic uncertainty or bias. The main question is

whether such uncertainties can be represented as random vari-

ables. Said another way, when data of this type is considered

random, what are the physical meanings of the sample expectation

(mean) and sample variance? These questions abound in S/V

assessment and are not limited to structural properties. Figure 9

shows a similar set of data for soil, and Fig. 10 summarizes

typical variations in the blast pressure from a high explosive

experiment.
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Uncertainty in slates resuaonse--Knowing the uncertainties in Jo..
the basic properties does not mean that uncertainties in the

system response are known. In the previous discussions, uncer-

tainties introduced by testing instruments are mentioned. Mea-

surement transducers can and do introduce further uncertainties

in the measured properties, such as those shown in previous

figures. This is also true in a larger scale, such as in a field V. _

test. Typical variations in the measured soil stress, such as %

shown in Fig. 11, can be due to variations in the loading, soil

properties, and measurements. The task facing the engineers is

how to infer the physical phenomenon from these data, and its

associated uncertainty. The challenge has been met largely by

choosing the average, which, of course, is the same as consider-
ing all variations to be random.

Uncertainty in simulation models--In S/V simulations, a

model of the system (real-world) is postulated. Parameters of

the model are assigned based on available data, e.g., the

material properties described previously. The equations are

solved to give a solution. The solution is deterministic if all

parameters are deterministic. The solution is random if at least

one parameter is random. The latter is basically the current S/V
assessment procedure. Note the system model itself is always

deterministic, and the procedure can be considered in more gen-

eral terms as the propagation of statistical uncertainties (when

parameters are random), as shown in Fig. 12.

When another model which may involve a different set of 1"

parameters is used, a different response which can also be random

may be obtained. An example in the context of soil-structure

interaction was given in the previous section. If one considers
several random responses obtained by using different models, what
use can one make of them? This challenge has not been met.

Taking the average is not the answer, as is obvious from the

soil-structure interaction example. This is because the uncer-

tainty associated with modeling is nonrandom in most cases.

Uncertainty in model evaluation--Uncertainty in a model is

connected with how closely the model represents the real-world.

This is the task of model evaluation. Typically in the

laboratory, models are evaluated by comparison with controlled r
experiments. An example on the strength of columns subjected to
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combined bending and axial load is shown in Fig. 13. The experi-

mental data based on twenty samples are compared with the theo- p5

retical model, which in this case is the ACI/NBC design equation

for short columns. Presented with this fact, one can say that

the column model is some 15 percent conservative compared with

the experimental results. This conservatism can be corrected, by

a scale factor for example. The uncertainty in the corrected

model is then in the shape of the spread and the generality of

the correction factor for other similar columns. Note this

uncertainty is not random.

Basically the same procedure is followed to evaluate models

of field events. Figure 14 shows the standard approach to evaluate

a nominal concrete or soil model. Since this is common and
familiar practice, there is no need to go into details and only

the main points will be elaborated upon. First, field tests and

field data are much more scarce than laboratory tests and data.

Second, the data now involve more uncertainties. Factors which
can be controlled in the laboratory may not be controlled in the

field. In situ measurements are more difficult and less reliable

than in the laboratory. Inference based on comparison of model

e response with one or two field measurements is very different

from inference based on the data shown in Fig. 13. A repre-

sentative comparison which shows good correlation between test

and model responses is given in Fig. 15. Often, the agree-

ment is not as good, such as shown in Fig. 16. Even in the case

of good agreement, however, the meaning of good, and how such
goodness can be used to improve the model remain fuzzy.

Judgment and other uncertainties--Other important elements

of S/V assessment which have not been discussed so far are judg-

ment and subjective opinions. These are uncertainties because one

person's judgment may be different from another. The source of
difference can be attributed to subjectivity, experience and

knowledge, but yet cannot be isolated. Linguistic terms often

used in engineering evaluation have generally accepted meanings,

but are equally vague. Finally, structural data on which the

assessment is to be based includes a vast amount of photographs,
drawings, and so on. These soft media carry a great deal of

information but it is difficult to translate the information.
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*. CLASSIIICATION 01 UNCIKTAINTII$

From the foregoing discussion, it is obvious that the sub-
ject of uncertainty in S/V assessment is both broad and elusive.

In this study, the following simple approach is used. Uncertain-

ties are classified either as random or fuzzy, depending on

whether they can be appropriately modeled by probabilistic models

or not. Hence, fuzzy uncertainties include those resulting from

incomplete and imprecise information, subjective judgment, ambi-
guity and vagueness. This classification is shown in Fig. 17.

The representation in Fig. 17 is intended to be symbolic.

There is no crisp demarkation separating the three categories:
deterministic, random and fuzzy. A quantity does not become
fuzzy, random or deterministic simply by moving a short distance

across a boundary. Although there are events which are random or
fuzzy, most of the regions overlap. For example, fuzzy uncer-

tainties may include uncertainties which are random in nature but
because of the limited data available cannot be adequately

characterized as such. When the data base is enlarged, these

uncertainties will leave the fuzzy domain to join the random

domain. The example on the simple column described earlier is a

case in point. On the other hand, some fuzzy uncertainties are

nonrandom, irrespective of the size of the data base. Linguis-

tic and expert opinion are two examples of this type. More will

be said on this in Section VI.

Hence, fuzzy uncertainty can be associated with one or more
of the following characteristics:

(1) Sample space is not defined;
(2) Few test specimens are available;

(3) Average of samples may not be meaningful;

(4) Linguistic or pictorial data are involved; and
(5) Judgment and subjectivity are involved.

A more rigorous discussion of random and fuzzy uncertainties

requires going into set theories, elements of which will be
summarized below. For details the reader is referred to Refs. 9

and 10.

Crisp sets and random uncertainties--Random uncertainties

are based on probability theory which is based on classical sets

38

• .- - -'.- .? F '.. .. . -? .".: -? . , . . . . . , . ,.. --. . '-.. . . . .... ,., ,... . "- ..- . < .'."
". " -' T ,. .. """• '' - .'''.'''' ' ... . . . . . ... *' '. ' . ..". '.-.* ._.-L' '....% . '''-'' ' . _



V-x -- w TqW.

- - - - -- - - - - - -~0

rado norno

Figure 17. Classification of uncertainties.

39

.~ I - - I. . . . . . . . . . . . . .



%'w

or crisp sets. For example, consider the set of all possible

outcomes of an experiment, called universe X. This is denoted by

X = { x I x r (o, )} where x is understood to be an element of

X. A set of some outcomes in the universe is called a subset of

X, and will be denoted by the letters A, B, ... and so on. For

example, the subset of concrete strengths between 6 and 9 MPa is

the subset A { x x _ (6,9) A strength x which belongs to

this subset is denoted by x 6 A, or in terms of the characteris-

tic function XA(W),-XCA

X Wx (5)
0 XA

In other words, Eq. 5 says that either element x belongs to the

subset A, or it does not belong to the subset. In the former

case, the membership of x in A (or the belonginguess of x in A)

is 1. In the latter, the membership is 0. Hence, crisp set is

associated with a yes-or-no proposition used to screen its ele-

ment x, which is also known as binary or two-value logic. The

fact that A(X) can only be either 1 or 0 is sometimes denoted by

XA(x) £ {ol1.

When the outcome x of an experiment is randomly but uni-

formly distributed over the universe X, the probability that x

belongs to a subset A (called the probability of event A) is

p (A) = XA (x) T(6)
X X

and, in this case, is simply

A)p (A) (7)

When x is randomly distributed over X with a general distri-

bution f(x), the probability of event A is then %

p(A) = x (x) f(x) (8)
xSX A

Fuzzy sets and fuzzy uncertainties--For events which are not

well defined or involve fuzziness (e.g., "concrete strength is '

around 7 MPa," "structural damage is quite severe"), the concept 14
of crisp sets must be modified. Zadeh (Ref. 9) first proposed
generalizing crisp sets to fuzzy sets. In fuzzy sets, the
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transition from membership to non-membership of an element x in a
set is gradual, and not abrupt as indicated by the characteristic

function in crisp sets. Hence, the natural extension of the
characteristic function is the membership function u A(x) , where

u A(x) represents the grade of membership of x in A ihere A is

now a fuzzy set or event. A membership of 1 corresponds to total
belongingness in the set, and 0 denotes the opposite. However,

uA(x)is also allowed to have any value in the inclusive range
[0,1], and this fact is denoted by A( C [0,11. This main
feature of the membership function, a generalization of the

characteristic function, provides the necessary flexibility in

fuzzy sets to model fuzzy, noncrisp information. The difference

between p 4x) and XA(X) is illustrated in Fig. 18.

Subsequent sections will go into these concepts and theories

in greater depths. Suffice it to say here that the approach

being proposed is to model random uncertainties using random

models, and to model fuzzy uncertainties using fuzzy models.

Several major efforts of the study in these two directions will

be described in subsequent sections. It is pertinent to ask at

this point: Can the two kinds of models and analyses be inte-
grated into an overall assessment framework? Although much more

research needs to be performed, the answer is a tentative yes
based on some preliminary investigations described in Wong, Ross

and Boissonnade (Ref. 5). Some major results are summarized in

the following. ..

INTEGRATING RANDOM AND FUZZY UNCERTAINTIES

It is helpful to recall how random and systematic uncertain-

ties are combined in current methods. Consider the input-response

model

y = f(x.,x2, ...... xN) (9)
2~ .......

where x i are random parameters, and f is a deterministic model.
Modeling or systematic uncertainties are allowed by introducing a

multiplicative factor, yo, so that

y yo (X9X 2 . . . . . ..V (10)

where Yo is a random variable designed to take care of inaccuracy

in modeling.
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There are now two ways to treat yo. First, yo is considered

as another parameter in the model, i.e., write Eq. 10 as

Y " g(x1 x2 . . .... . . ; Yo ) (11)

This mixes up the random and model uncertainties, with the end

result that the system response has a larger variance than when

Yo is not included. The result is indicated in Fig. 19a in the

context of a fragility curve, i.e., the probability that a com-

ponent will fail for a particular loading. The consequence in

system survivability is tremendous. Such influences were recog-

nized early and the practice is now discontinued.

The second interpretation of yo is to consider this param-

eter, although random, to be of a different kind than the random

parameters xl, x2 ... etc. This leads to prevalent two-level or

two-loop methodologies. The consequence can be summarized in
Fig. 19b in terms of the fragility curve mentioned previously.

The lateral shift or bias of the curve corresponds to the system-

atic uncertainty Y.. The result is that system survivability is

often dominated by Yo (see Goering and Binniger, Ref. 11), since

the effect due to random variation tends to average out.

Wong, Ross and Boissonnade (Ref. 5) showed that fuzzy and

random uncertainties can be combined in the same manner but there
are other flexibilities. The fuzzy models can be established

based on available data, even though the data may be scarce or in

linguistic form. Figure 20 is an example of the use of fuzzy

models to represent fuzzy uncertainties, which in this case
concern the degree of damage. One is no longer constrained to

the fail/no-fail proposition, nor are implicit assumptions on

probabilistic basis of damage necessary. Several other ways to

integrate fuzzy descriptions into current probabilistic analysis

methods are also described.
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IV, IXTINSIONS OF CURRENT CAPABILITIZS

V
~Current capabilities in probabilistic S/V analysis can be

represented, without 1055 of generality, by the. flow diagram in
~Fig. 2ia. The methodology is basically one of propagation of

statistical uncertainties in the input and systems parameters
through the various components of the system model to obtain the
statistical uncertainties in the response. As shown in Fig. 21a,
the major components of the system model include the explosive

• effects environment, the load transfer function, the structural
*network and component fragilities (see Ref. 2). When reduced to

its essence, the procedure can be represented by the simple
diagram in Fig. 21b.

Extension of this methodology is sought along two major
directions, corresponding to the two classes of uncertainties

identified in the previous section, viz., random and fuzzy.
These extensions are illustrated schematically in Figs. 22 and
23, respectively, and compared with the current approach.

In one research project, current statistical methodology is

extended to the realm of stochastic and random methods. Random
uncertainties are not limited to modeling by statistical param-
eters. More realistic modeling by random and stochastic proces-

ses are sought. This work investigates the use of stochastic and

random differential (integral) equations in probabilistic S/V
analysis, and emphasizes numerical solution techniques such as
stochastic difference and finite element methods. Results are
summarized in Section V.

A second project investigates the application of fuzzy sets
to model fuzzy uncertainties in S/V assessment. In this work,
fuzzy sets representation of uncertainties, including judgment and
opinions, is examined, and the use of fuzzy logic to process fuzzy
uncertainties is considered. The work focuses on the quantifica-
tion of fuzzy information and the interaction between experts and
soft data. Results are summarized in Section VI.

Other related work not described herein include the follow-

ing:
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(l) ways to incorporate more realistic mecbanics
models in statistical S/V assessment--
Sophisticated system models exemplified by the
state-of-the-art dynamic finite element models

used extensively in deterministic S/V analysis

are incorporated into the statistical assessment

framework by the use of transfer function techni-

ques. Two main approaches to transfer function

development are investigated: direct statistical

approximation and engineering approximation. The

former makes use of the response surface methodology

and point estimate methods to develop a statistical
(but simpler) equivalent of the sophisticated system

model. The latter relies on engineering experience

to develop a mechanistic approximation which is then

used in the statistical analysis. Details of this

work can be found in Wong and Richardson (Ref. 4) and

Refs. 12 and 13.

(2) Stochastic finite element methods to model protective

structures--When the stochastic effect is separable,

such as in the loading function and initial condition,
discretization methods such as the finite element

method can be applied directly on the continuum equa-

tions (beams, plates, etc.) without any major modifica-

tions. One result is a direct recursive relation

governing the statistical moments of the responses at

consecutive time steps. When the stochastic effect is

non-separable, such as in the coefficient of the equa-

tions or in the form of distributed loading or initial

condition, a bona fide stochastic finite element tech-

nique must be used. One such method uses the Wiener

increment as a basis function in a series expansion.
Details of these works are described in Refs. 14 and

15.

(3) Comparing random and fuzzy treatments of uncertain-

ties in structural models--The effect of parameter
uncertainty on structural response is described, first

using the stochastic approach and then the fuzzy set

approach. The stochastic model of parameter uncertainty

leads to the paradox that the most probable response
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differs from the response of the most probable structure,

and this difference can be significant. Fuzzy set models

of parameter uncertainty lead to fuzzy response, which is

judged more consistent vith intuition. This work is

described in Ref. 16.

(4) Development of a knowledge- and rule-based assessment

system--A knowledge-based assessment system processes

knowledge and not just numbers. The knowledge is usually

expressed in the form of rules which can be manipulated

at the symbolic level. A different approach to the

formulation of the rules is considered in this study.

The approach is based on fuzzy set representation of
knowledge and inferences, and rules are embodied in

fuzzy relations. This approach allows a natural way

to combine rules which contain uncertainties and may

also be in conflict with one another. Details are

given in Ref. 17.
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V. RANDOM UICERTAINTIZS AND RANDOM EQUATIONS

The organization of this section is as follows. The dif-

ferent types of random equations are first described. Emphasis

is on the type which involves random processes (including random

constants and random functions as special cases) in the coef-

ficients of the equation. Distinction is also made between

random and stochastic types--the latter involving the Wiener

process or its formal derivative, the white noise. Methods of

solution to random/stochastic differential equations through

their difference or algebraic counterparts are the focus of the

study and will be discussed in this section. It is assumed that

the reader has some knowledge of probability theory and ordinary

differential equations. A brief introduction to random equations

and stochastic integrals is included to make the following dis-

cussion relatively self-contained. More information is available

in the cited references.

TYPES OF RANDOM DIFFERENTIAL EQUATIONS

A random differential equation is an equation which satis-

fies at least one of the following conditions:

(1) The initial or boundary condition is random;

(2) The inhomogeneous term (forcing function) is random; and

(3) At least one of the coefficients is random.

Here, random means a random variable, a random function or a

random process, whenever applicable. A random function is

defined to be a random process which can be defined by a finite

number of random variables. The most common classification of

random equations is done according to the order (1), (2) and (3),

which also corresponds to a hierarchy of increasing mathematical

difficulty.

Romozeneous equations with random initial conditions--This

is the simplest type of random differential equations, and the

solution can be readily obtained for both linear and nonlinear

systems. The generic equation has the form

x'(t) =f(t) x(t) , X(tO) =x 0  (12)
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in the linear case, and

x'(t) - f(x(t),t) , x(t O) 0 x0 (13)

in the nonlinear case, where z o is a random vector.

The solution x(t) obviously depends on x o in addition to t,

and owes its random character to xo. The simplicity comes from

the fact that the governing equation can be considered a trans-

formation between x(t o ) and x(t) at any time t. Furthermore, . - -

using deterministic theory, this transformation can be obtained

by solving the governing equation for a deterministic xo (see

Soong, Ref. 18).

Equations with random excitations--This type of random dif-

ferential equation represents the next level in difficulty, and a

majority of the research efforts in the past twenty years is

devoted to this group under the name of random vibration. The

generic form is

X(t) = f(x(t),t) + y(t) , (t O) = x 0  (14)

where y(t) is a random process and the initial condition x o can

be random or deterministic.

For the linear case where f(x,t) f(t)x(t), the solution is

t
X(t) (r,tO) 0 + f (ts)y(s)ds (15)

00t
0

where is the principal matrix associated with f(t). Many

results in random vibration theory are based on this solution

(see Elishakoff, Ref. 19).

Equations with random coefficients--This represents the most
complicated class of problems, and has the generic form

x'(t) + a(t)x(t) - y(t) , x(to) = x0 (16)

in the linear case, where a(t) and y(t) are random processes, and
xo is random or deterministic. The study of systems and struc-

tures having imprecise parameter values or inherent imperfections
leads to differential equations of this type. For S/V
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applications, the governing equation can also be nonlinear (in-

elastic), and the difficulty of the problem is further increased.

Note that when the coefficients are not random processes,

but random constants or functions of random constants, a much

simpler solution approach is available. An equation of the type

x'(t) = f(x(t), a,t) , x(to) = x0  (17) ,

where the random vector a is constant in t can be rearranged to

become

z -(t) k(z(t),t), z(t) " (18) 5

where z(t) is the augmented state vector

{x t)} (19)z(t) =..

In terms of z(t), Eq. 18 describes a vector differential equation

where randomness enters only through the initial condition.

Hence, methods described earlier for this class of equation are

applicable to the augmented equations (see also Ref.18).

ANALYTICAL DIFFICULTIES

Of the three types of random equations, the third type is

the most difficult to solve but includes the problems of present

interest, i.e., transient, inelastic response of structures with

random properties and subjected to random loading. To appreciate

the difficulty associated with equations with random coeffi-
cients, consider the simplest first-order linear differential

equation of the form expressed in Eq. 16. With certain assump-

tions on the properties of a(t), the solution can be written by

direct quadrature formally as

x(t) X exp [ fa(s)ds + f y(u) exp - f a(s)ds du (20)0t o  to  u

0 0i

It is seen that the coefficient process a(t) enters into the

solution in a complex way. In particular, the dependence of x(t)

on a(t) is nonlinear, despite the fact that the governing
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equation is linear. This nonlinear relationship creates much of

the difficulty encountered in equations of this type. The

knowledge of the density functions of a(t) is in general neces-

sary for determining even the simplest moments of the solution

process. The joint probabilistic behavior of a(t), y(t), and xo
is also required to solve the general sample path, x(t).

Perhaps the largest group of problems of this type which has

been approached with some success is that involving the Wiener

process or its formal derivative, white noise. The governing

equations are referred to as equations of the Ito type, and a

number of approaches can be used. It is simple to establish the

* Fokker-Planck equation or the moment equations for the Ito equa-

* tion. However, the solutions of the Fokker-Planck equations are

* difficult to obtain except for trivial cases. For engineering

problems, most success comes from using the associated moment

equations.

Two important points need to be made. First, the quadrature

solution given by Eq. 20 may not be valid when a(t) is not well-

behaved. This is the case when a(t) is a white noise process,

and the original equation must be approached using Ito calculus,

i.e., as a stochastic equation. Hence, it is important to dis-

tinguish between the general random differential equations and

the special group called stochastic differential equations.

Second, stochastic differential equations have special properties

which, on the one hand, make analytic solutions possible, but on

the other hand create additional complications when numerical

solutions are sought. These points will be discussed further

presently.

The classification outlined above is summarized schemati-

cally in Fig. 24. More details are given in a literature survey

documented in Refs. 20 and 21.

NUMERICAL TECHNIQUES

There are several ways by which a general solution to a

random differential equation can be approached. The equation can

be solved in closed form, although this approach is very limited;

only a few classical examples are known to exist and they are

summarized in Ref. 21. The equation can also be reformulated

into a random integral equation, approximate solutions to which
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can be approached using series expansion or discrete quadrature.

The former results in a recursive algorithm and a comparative

study of available techniques of this kind is described in Ref.
22. The latter results in a set of simultaneous algebraic equa-

tions and this approach is championed mainly by Bharucha-Reid

(Ref. 23). In either case, approximate numerical solution is

necessary.

Emphasis of this study is on numerical techniques applied
directly to the differential equations. It is argued that, if

the computer is to be used, it may as well be applied directly.

The numerical approach is deemed appropriate also because of the

difficulty in solving the equations otherwise, and equations
which correspond to -/V appliations of interest will be even more
complicated. The end result of the numerical approach is invari-

ably a random difference equation which is similar in form, and
yet may be quite different from the result of a finite element or

finite difference formulation in the deterministic counterpart.

Distinction is made in the following discussion between
random difference equations and stochastic difference equations.

In particular, we are interested in the relationship between the

mean of the solution from the random and stochastic equations and

the corresponding solution obtained from its deterministic coun-
terpart, i.e., when the loading and system parameters are set at ..-

their mean values. Of interest also are the statistics of the

solution, e.g., variance and correlation, and how they are re-
lated to the statistics obtained from a conventional statistical
study based on the deterministic formulation. The latter is, of
course, the state of the art in S/V analysis.

FINITE DIFFERENCE SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

This subsection describes the use of finite difference tech-
niques to solve stochastic differential equations, i.e., equa- '

tions with the formal form

dxt  a(t,xt) dt + b(t,xt) dwt (21)

where wt is the Wiener process and dwt is its formal derivative,
or the white noise process. In this approach, the derivative

operator d(.) in Eq. 21 is formally replaced by an equivalent
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difference operaor (.). Equation 21 then becomes a stochastic
difference equation

t = a(t'xt)At + b(t'xt)Avt (22)

Hovever, because of the special properties of the Wiener process,

such implementation of the difference approximation is not

straightforward. There are several differences between this

application and those, say, of deterministic differential equa-

tions. For example, the difference equivalent, wt, of the white

noise process, dvt, is a difficult subject which has occupied

*many prominent mathematicians.

A mathematically more rigorous representation of the sto-

" chastic equation is in the form of an integral equation

t 2  t 2

x(t 2 ) = X(tl) + f a(s,xs)ds + f b(s,xs)dws  (23)
t t

where the first integral is an ordinary integral and the second

integral is a stochastic integral. A difference approximation to

Eq. 23 is obtained by letting t2 = tI + t, where t is the time

increment. This gives,

t + At t + At

x(tI + At) = x(t I ) + f a(s,x s)ds + f b(s,x s)dw (24)

S tS

- Discretization techniques are then used to express both the

- ordinary integral and the stochastic integral as finite sums,

usually with only one term. Notationally, Eqs. 21 and 22 are

more expedient than Eqs. 23 and 24, and will be used in subse-

quent discussion. The true meaning of these equations should not

be forgotten, however.

Four important topics in assessing the feasibility of

using the difference techniques in stochastic applications are:

(1) The Wiener increment sequence Awt that can be

generated to drive the difference equation, Eq. 22;

(2) The different A algorithms that can be used and

their convergence characteristics;
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(3) The solutions to which these algorithms converge;

and

(4) The response statistics that can be computed from the

difference solutions.

Results of these studies are summarized below, and details can be

found in Ref. 24. Note that the usual error analyses of differ-

ence methods in connection with deterministic differential equa-

tions do not apply to stocha;)tic equations (such as Eq. 21). The

reason is that any sample of the white noise process dwt is

required to be everywhere unbounded, discontinuous, and non-

differentiable.

Wiener increments--The Wiener increment Awt denotes the

difference between the values of the Wiener process at two

instances of time, i.e.,

awt - w(t + At) - w(t) (25)

and is known to have the following properties:

<Aw> -0, <AwAw > =aAt (26)
t t t

Similar properties can be written for a vector Wiener increment

and the results described in the following can be extended

readily to a vector stochastic differential equation. The param-

eter a is called the intensity of the Wiener increment process.

When Y - 1, the process is called a normal'or standard Wiener

process, and this will be assumed in subsequent discussions.

The first task in numerical solution of stochastic differen-

tial equations is to generate a sequence of pseudorandom numbers

on the computer which can be used to approximate the Wiener

increment process. Franklin (Ref. 25) is apparently the first to

consider this problem. His analysis shows that if gr, r -

1, 2, ... denotes a sequence of pseudorandom Gaussian numbers

with zero mean and unit variance, i.e.,

8; r N(0,1) , r ; 1,2,... (27)
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% in the usual notations, then the Wiener increments can be simu-
lated by

AVr  _/- gr' r - 1,2 ....... (28)

where At is the time step used in the difference approximation.

It is important to note that the Wiener increments given by

Eq. 28 depend on At and, hence, the power of the increment se-

quence depends on the time step size. In other words, when the
time step is decreased, as in a convergence study to be described
presently, the power of the excitation changes. This behavior is
undesirable, and what is needed is a scheme by which the power of

the Wiener increment sequence can be made to remain constant as
the time step is varied. McCallum (Ref. 26) provides such a
procedure, and details are given in Ref. 24.

Difference alaorithms--Formally, all difference algorithms
in use with deterministic differential equations can be used with
stochastic differential equations. However, these algorithms all

lead to different solutions for the same stochastic differential
equation--a phenomenon unlike any other application of the dif-
ference method. The cause of such phenomenon can be traced to

the properties of the stochastic integral, i.e.,

b
g (x,t)dw (29)

a

where wt is the Wiener process, and x is the response of the
stochastic equation. More will be said about this in subsequent
paragraphs. Briefly, the Euler algorithm will lead to the Ito
solution, the Runge-Kutta of order 2 or Heun algorithm will lead
to the Stratonovich solution, and the predictor algorithms will
lead to the McShane solution. The numerical solution using
predictor-corrector algorithms does not correspond to any known
stochastic solution.

Hence, from a practical point of view, only the Euler or
Heun are viable techniques, resulting in either the Ito or

Stratonovich solution. They have different convergence efficien-
cies, however, and careful planning is needed to obtain the most

economical difference procedure which leads to a known interpre-
tation of the stochastic solution.
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Convergence--Convergence in this study is defined in proba-

bilistic terms. The most common measure is convergence in proba-

bility of the order of t , or Op( t ), which means that

0 (At)----im At-( x Prob (jerrori > e ) -0 (30)
p At)o

where Prob (terror I > C) denotes the probability that the differ-

ence between the actual and the approximate solutions is larger

than an arbitrary small positive quantity .

There have been many theoretical studies of the convergence

rate of stochastic difference algorithms. The study by Franklin

(Ref. 25) appears to be the first, and the most recent appears to k
be Rumelin (Ref. 27). Because conventional convergence analysis

techniques cannot be used here due to the unboundedness and non-

differentiability of the white noise process, most of the conver-

gence proofs given in the literature are very complex, and invoke

knowledge of stochastic integrals. Details can be found in Ref.

27. The results can be summarized as follows: The Euler algo-

rithm is Op(At 12), and the Heun algorithm is 0 p(t3/2). y

converge to different solutions, however.

Higher convergence algorithms can be realized by multiple

integration of the stochastic integrals (Eq. 29), in contrast to

the single integration used in the Euler and Heun algorithms.

This is shown by Rao et al. (Ref. 28) and Rumelin (Ref. 27). The

use of more multiple stochastic integrals gives more information

about the Wiener process component of the algorithms. However,

our simulation studies have shown that the higher convergence

rate claimed by some of these theoretical studies is not there.

For example, the study by Rao et al. was repeated, but the

improved convergence cited by the authors did not materialize in

our simulation results.

Accuracy--The stochastic integral of Eq. 29 has several

definitions, of which three are very well-known: Ito, Stratono-

vich and McShane. The definitions are based on defining the

integral as the limit of a finite sum which involves terms of the

integrand evaluated at discrete points within the interval of

integration and, of course, the Wiener increments. The difference

is in the points at which the integrands are evaluated and how

they are used.
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Suppose the interval [a,b] is divided into n time segments

of At each. The Ito, Stratonovich and McShane definitions of the

stochastic integral are:

Ito

b n-i
f g(t) dwt L Rim Z g(tr ) [w(tr+I) -w(tr)] (31)
a At )o r-O

Stratonovich

b n-I
af g(t)dwt = im E g1l(t r +-t r+1)] [W(tr+ I) -W(t r] (32)

At- o n-0

McShane

b n-i

f g(t)dw t  Lim E g(ts) [W(tr+i) -w(tr)] (33)
a (t+ 1 -t)-o r-O

t I-t
s- r

Hence, it is clear that the Ito definition uses the value of the
integrand at the beginning of each time step, the Stratonovich

definition uses the mid-point of the time step, and the McShane

definition uses points prior to the time step of interest. This

is illustrated in Fig. 25.

Note the similarity between the forms displayed in Eqs. 31-

33 and the Euler and Heun difference approximations given below:

Ruler

xi+ I  xi + a(ti,xi) At + b(ti,xi)Aw1  (34)

x a(tix + a(t Ati+1 x+ ai+, i+l

+ [b(tix ) + b(ti+I, Xi+ )] Awi (35)

xi x i +a(ti,x.) A t + b(tilxi ) Aw-

i 1-...
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It is easy to note the correspondence between the Ito form and
the Euler algorithm since both make use of information at the
beginning of the time step. Similarly, the correspondence between

the Stratonovich form and the leun algorithm is also obvious--
both make use of information at the mid-point of the time step.

Finally, the McShane form and predictor methods use past informa-
tion of the current time step.

With this in mind, it is not surprising that when the Euler
algorithm is used to solve the stochastic differential equation
(Eq. 21), one obtains the Ito solution; when the Heun algorithm
is used, one obtains the Stratonovich solution. Predictor
schemes will give the McShane solution. Extending this corres- -
pondence further, predictor-corrector algorithms will give a
solution which will not be in the Ito-Stratonovich-McShane group.
It will be something in between. It is also clear why different
difference algorithms give different solutions to the same sto-
chastic differential equation. These findings have also been
confirmed by a numerical example described in the following. -.

Numerical example--The simple equation

dx t - xtdwt (36)

is chosen for consideration mainly because its exact solution

(Ito, Stratonovich, McShane) is known. In particular, the Ito
solution is

x t  exp (w -O. 5 t) (37)

Note the solution is not xt - exp(wt) as ordinary calculus indi-
cates. This is, of course, a well-known feature of the Ito calcu-

lus.

The Euler approximation to the example equation is then

x(tr+1 ) x(t r ) [w(tr+l ) -w(tr)] + x(tr ) (38)
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whereas the Henun approximation is

X(tr 1 + =
Xr+i) P j[(t) + '(t+)JLv(t+) w(tr)] r X(39)

Xr+1 X(t) [w(t+) -w(tr)] + x(tr)

These approximations are computed for different time step sizes
and compared with analytical solutions of the Ito and Stratono-
vich definitions. The results are plotted in Fig. 26 where the

ordinate corresponds to the stochastic response at the end of

the unit time interval and the abscissa corresponds to the number

of time steps in the interval. Similar comparisons for responses

at other times and other samples of the Wiener sequence are

obtained but will not be shown.

Figure 26 shows very clearly the better convergence proper-

ties of the Neun approximation compared with the Euler approxima-
tion. It also shows that the Heun approximation converges to the

Stratonovich solution, viz., exp(w(l)), where w(l) is the value
of the reference Wiener sequence at t = 1. The Euler approxima-

tion, on the other hand, converges to the Ito solution, viz.,
• exp(w(1)-O.5).

Since the Heun algorithm has better convergence properties

than the Euler algorithm, it is the preferred approximation
technique. However, the Heun solution converges not to the Ito

solution, but to the Stratonovich solution. A dilemma exists:
The more efficient algorithm gives the wrong answer, assuming
that the Ito solution is sought. The Ito solution is desired
because it is a Markov process which has some very desirable

properties. The Stratonovich solution is not Markov. However,
to get the Ito solution using the Euler algorithm, convergence is
slow.

A resolution of this dilemma is found in a well-known result

in stochastic integrals. The Ito solution of the general sto-
chastic differential equation (Eq. 21) coincides with the Stra-

tonovich solution of the following equation (which is similar to
Eq. 21 and yet different [see Wong and Zakai, Ref. 29]),

1 ab(t'xt

dx L - .. b(tbxt) x t + b(t,x )dw (40)
2 axt t
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or the alternate equation (see McShane, Ref. 30),

1 ab(t'xt)dxt =a(t,x) dt- b(t,x) (dwt ) + b(tx )dw (41)
t 2 t ax t t

Hence, one can replace the Ito equation by its Stratonovich

equivalent, in the sense of Wong-Zakai or McShane, and obtain an

approximation solution to the equivalent equation using the Heun

algorithm. In this manner, a faster converging approximation is

obtained which also converges to the Ito solution. Details are

described in Ref. 24.

It should be added that the somewhat nonuniform convergence
behavior observed in the results of Fig. 26 is due only partly to

the difference algorithms. Numerics of the random number genera-

tors is a major contributor. The pseudorandom number generator

(IMSL routines) is far from perfect, with the result that the

random numbers generated are not truly Gaussian. A detailed dis-
cussion on this point is given in Ref. 24, but note that this

defect is present in all computer methods. Figure 27 shows the

mean and standard deviation of the N(0,1) samples (i.e., normal

process with mean zero and standard deviation of 1) as a function
of the sample size 2N . The figure shows that a sample size of

1000, or 210, is required to reproduce the desired statistics.

Response statistics--The finite difference solutions provide
sample responses to the stochastic differential equations. For

engineering applications, statistics of the response such as mean

and autocorrelation functions are of interest. In principle, it
is not difficult to compute these statistical properties of the

response process knowing the sample responses. A sufficiently

large collection of samples is generated on the computer using

the method described in the previous subsections, and the sample

statistics can then be computed. In practice, it is found that

the sample size required is quite large, and the computational

resources are often stretched for problems of interest.

To illustrate this point, return to the example considered.

Five thousand sample responses are computed. The first sample

moment (mean) and the second sample moment corresponding to this
sample population are computed, as well as the moments for sub-
sets of the size 100, 500, 1000 and 2000. They are then compared

with the exact moments which can be computed readily for this
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simple example (see Ref. 24). The error defined as the absolute

value of the difference between the approximate and exact moments

expressed as a percentage of the exact moment is plotted in

Fig. 28 for t - 0.5. Note a sample size of 2000 is necessary to

bring the error down to below 2 percent, which is consistent with

the effect of the pseudorandom number generator described

earlier.

The error percentage due to the use of the difference algo-

rithm (Reun in this case) only is also superimposed on the fig-
ure. This error is computed by comparing the sample statistics

of the response samples obtained using the difference method with

those of the exact response; i.e., x(t) - exp(w(t) - 0.5t), where

w(t) is a sample of the Wiener sequence generated. This error
represents the contribution to the total error due to differ-

encing, and is plotted as dashed lines. With reference to Fig.

28, it is obvious that the error due to differencing is small 

compared with that due to sample-to-sample variations. The lat-

ter is influenced greatly by the effectiveness of the pseudo-

random number generator, and more work needs to be done to quan-

tify this effect.

Higher-order equations--To show the generality of the dif-
ference approach to stochastic differential equations, several
standard second-order equations are examined. These include the

Langevin equation, which can be considered either as a second-
order system on the displacement or a first-order system on the

velocity. Convergence, accuracy and sample statistical issues
are investigated. The results are similar to those just des-

cribed, and details can be found in Ref. 22.

FINITE DIFFERENCE SOLUTIONS OF RANDOM DIFFERENTIAL EQUATIONS

The response of stochastic systems, i.e., systems which are
governed by stochastic equations with Wiener or white noise

processes, is Markovian. This property leads to many mathematical

" simplifications in analysis. For example, the transition prob-

*- ability density function satisfies the Fokker-Planck equation

associated with the stochastic differential equation. The

moments of the response are governed by certain deterministic

equations, which are also well-known. Although few exact

solutions to the Fokker-Planck equations have been found, and the
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moment equations can become unwieldy, these analysis tools have
led to better understanding of the behavior of stochastic systems

(see Ref. 21). On the other hand, as we have shown in the
previous subsection, the applications of numerical techniques such
as finite difference to these stochastic differential equations

is complicated by the unique properties of the Wiener process and

the associated stochastic integral. The same properties which

permit simplification in closed-form analysis of the transition

probability and moments are causing difficulties in numerical

analysis.

A Wiener process or its formal derivative, the white noise

process, is an idealization. It represents one extreme of random

behavior, viz., completely erratic behavior. The sample at one

instant of time is not related to samples at any other times.
The other extreme of random behavior corresponds to complete

correlation, i.e., the process reduces to a random (constant)

variable. In the case of equations involving random constants,
some simplification in analysis is also possible, as described in

Ref. 21.

Physical processes generally have random coefficients which

fall somewhere between these two extremes. This general system

type is governed by differential equations with random process

coefficients, or simply, random differential equations. These

equations prove to be very difficult to solve. No general solu-

tion exists except for very simple equations.

The use of finite difference techniques to solve random
differential equations is investigated as part of the study. The

investigation is initialy limited to first-order systems. Our

goal is to study the behavior of the response in terms of numer-
ically computed first and second moments. It is noted that in

this application, the difficulty presented by the numerical

approximation of the stochastic (Ito and Stratonovich) integral
is avoided. However, in its place is the difficulty presented by

the need to generate numerically random processes which conform
to certain prescribed characteristics, such as mean and correla-

tion functions. This and other important aspects of the work are

summarized in the following. Details are given in Ref. 24.

Basic problem--To assess the feasibility of the finite dif-

ference technique in random differential equations, consider

7"



x + a xt =bt x t(0)  x (42)

where at and bt are random processes and x0 say be & random
variable or deterministic. Under certain conditions on at, the

solution can be written formally by direct quadrature as (see
Tikhonov, Ref. 31)

t t t
xt inx0 exp[-f a ds] + f b exp[-fasds]dw (43)0 s 

"

which is valid for deterministic x0. Note the nonlinear depen-

dence of xt on at, even though Eq. 42 is linear. This nonlinear

relationship is characteristic of problems of this type and is

the cause of the difficulty encountered in the analysis.

When at and bt are stationary, Gaussian processes with the

following characteristics,

a mi - MIo] at+ T - RIn]> = 0 1

2
<ot>t= m2, < [be - M2] [bt+T M 2 ]> R2R2 (T) (44)

< - il] [bt+z- m 2 ]> a= o 2 RI2 (T)

the mean response process can be obtained from Eq. 43 (after much

algebra, which is given in Tikhonov) as follows:

2: i 2 t t
Sx x0 exp [-Mi (t-0) + I R(u2- ul) dudl2

: e. L(452) 12 --2*~ 0

t t t t (45

+ n -a CY fV dufd)fR( R (W-) d
2 1 2 d 1 fd 2  1~ R( 2- 1  1 2 u 3  U3 ]0 0 0 v

exp [-n (t -v) +.I. a ftt UU ud d

1 2 1 1 R 1 ( 2-u1) d 1 d 2 ]

The second moment <xtxt> can also be derived after even more
* algebra.

Equation 42 is also considered by Elrod (Ref. 32). He gave

a solution under less stringent conditions on xt and bt, viz., xt
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can be random, and bt is arbitrary, except its first two moments

are given. Denoting the mean and correlation of at and bt by

<at>, R, (t, t') and<b.t> , 1t2 (t,t%) respectively, the first two mo-

ments are

< ft>exp [<0t,) <b > du
0

+<x>exp [Z (0,t,0,0)] (46)

t~
> 0LZ(t,t~u,v)JR(v)dd

+ <x0  ex [ tR 2 (v)]<b>dv
00

t
+ f exp [^(tCA'uO)] <b U> du + <x 0> exp[Z(t' t 0,0)]

where

A tA t tA tA
z(t,t',u,v) -- f<a > ds - f <a > ds + ff R0,0) dad6

S S 1

t~ ~ 1 ~(48)
+ f f R de + -daf R (a,B) dada

V U U U

The basic problem of Eq. 42 is selected for consideration
* mainly because the exact (moment) solutions are known, as shown.
* The integrals in Eqs. 46-48 can be evaluated analytically or
*numerically to any degree of accuracy desired. They will serve

as a reference in evaluating the accuracy and convergence charac-
* teristics of the approximate solutions by the difference techni-

ques. Note application of the difference techniques is not
limited to Eq. 42, which is a linear equation and corresponds to
highly idealized systems. Once the usefulness of the numerical
techniques is estabilished using Eq. 42, they can be applied to
very general random differential equations which do not have
known analytical solutions.

Difference aliorithms--As before, the finite difference
* approach involves replacing the differential operator d(.) in
*Eq. 42 with the difference operator A(.). Unlike the previous
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application to stochastic differential equations, the implementa-

tion here is straightforward since there are no stochastic inte-

grals to contend with. Consequently, all difference algorithms
used in deterministic studies can be used here. The numerical V,

studies to be described later are performed with a single-step,

Runge-Kutta method, commonly known as the 1/8th rule.

Correlated random processes--To complete the difference

*i equation formulation, it is necessary to generate on the computer

* nonstationary random processes which have certain given

statistics (mean and covariance). Specifically, let x(t,v)

represent the process to be simulated. The mean and covariance

* "are defined as

m(t) =<x(tw)>
(49)

coy (t, t') -<x(tW) - m(t)] [x(t,w) - m(t)]
X

and these are prescribed. The objective is to generate

numerically a random process with these prescribed first- and

second-order statistics.

Computationally, the problem can be stated as follows. Let

t1 be the initial time At the time step, and n denote the number

of times the process is to be observed. The time vector T can be

written as
ti

t2

T-n ti ti  t1 + (i-1)At (50)

n

Generated on the computer, the random process will have the form
of a matrix [Xn] where

"11 12 . im

* . . (51)

ni n2 nm
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Rach column of the matrix is a realization or sample function of

x(t,w), and each row is a random variable from the process where

entries are samplings from the random variable. Since there are

readily available methods to generate a set of n-independent

random variables, the problem reduces to transforming the n-

independent random variables into n-random variables which have

the mean vector

m(tI) m 1

m(t2) m
A-n•

* (52)

m(t ) mn

and the covariance matrix

cov (t ,t1) . . . cov (t ,t)

(53)
[MI

coV~t, t )  ... Iy (.n tn

coy it nst ..) . coy (it n't)d

The procedure used in our formulation is due to Adomian and Elrod

(Ref. 33). The method is based on the use of the conditional

probability distribution function for a multidimensional process,
but details will not be given here. They can be found in Ref. 33

or Ref. 24.

lumerical examples--To illustrate the convergence and accu-

racy of the finite difference approach, numerical solutions to

the basic problem are obtained for several special cases. These

are described below, it is of interest to compare the computed

statistical measures of the response process such as the mean and

covariance with the reference (exact) values.

The overall implementation strategy follows that in Ref. 32.

Realization of the random processes at and bt are generated

according to the procedure described in Ref. 33. These processes

have the prescribed mean and covariance properties which will be
different for the cases studied. When the initial condition x0
is also random, realizations of x0 are also generated. For the

ith realization, one has
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-. " a1  b1i

•' . (54)

a bnani

where n is the number of time steps in the interval of interest. 7
The difference algorithm is then used to obtain the corresponding

realization of the response process

xli

x21

x - (55)

Xni

This process is repeated for m realizations to yield three (n x m)
matrices

11* m 11 1m 1 1. . .

a . . a m b21  .. . b x X
2* 2m X2m

(56)S .

The statistical measures of the response process can be estimated
from the matrix IX], which are then compared with the closed-form
solutions. In addition, the statistical measures of the two coef-

ficient processes, at and bt can be estimated from the matrix [A]

and [B], respectively. They are compared with the prescribed
moments to check for fidelity in the computer-generated proces-
sea. 

"

Depending on the complexity of the prescribed mean and

covariance functions, closed-form expressions for the response
moments, Eqs. 46 and 47 may not be easy to obtain. In that
event, the integrals in Eqs. 46 and 47 (single and double inte-
grals) are evaluated using numerical quadratures. However, for
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the present purposes, these moments can still be considered

exact.

For this first example, the mean and covariance of at and bt .

are assumed to be

a(t)> - 0.5 <b(t)> - 0.5 + sin(27rt)

(57)
cova(t,t') - cov (t,t') - exp(-lt-t'l) (7-

i.e., at and bt are Ornstein-Ublenbeck processes. The first two
moments of x0 are

<x 0 > . <x>4/3 (58).

In computer implementation, x0 is generated as a random constant,
uniformly distributed between 0. and 2.

The comparisons of mean and variance as functions of time

are shown in Fig. 29. Two sets of finite difference results are

shown, together with the exact (quadrature) solution. They cor-

respond to sample sizes of 1,000 and 10,000, respectively, and

are included to show the effect of sample size on convergence and

accuracy of the approximate method. Time is non-dimensionalized,
in terms of the correlation time constant which is unity. With

reference to Fig. 29, the error in approximation increases with

time. The error growth is faster for the variance, as expected.

Whereas the error can be decreased by taking more samples, which

increases computational cost, it is noted that eventually the

error will become unacceptable. The error growth is accentuated
because the basic behavior of the solution is also exponential.

The mean response is compared with the response of the mean

equation, i.e., the same equation with deterministic coeffi-
cients, < a(t) > and <b(t) > , replacing the random process coef-

ficients a(t) and b(t), respectively. This is shown in Fig. 30.
The mean response and the deterministic response are different,

and the difference between them increases with time. This

phenomenon is of course a characteristic of equations with random

coefficients. The effect of different correlation functions on

the response is also investigated. The results are similar to

those shown in Figs. 29 and 30 and, hence, will not be presented,

They can be found in Ref. 24.
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The second example is used to illustrate the effect due to

the random coefficient at only. The forcing function bt is

assumed deterministic and equal to unity, and the initial value

x0 is set to be 0. The statistical measures of at are

<a(t)> - 0.5, coV a(t,t) - k exp (-lt-t-I) (59) P"
aa

The parameter k will be varied to change the magnitude of random-

ness in at.

The sean of the response process is compared in Fig. 31 with

the exact mean. The curves denoted by k - 0 correspond to the

deterministic response, i.e., solution to the equation when the

- mean value of the coefficients is used. With increasing k (ran-

domness), the mean response increases more rapidly with time,

and so does the error in the approximation. By comparing these

curves with the curves for k - 0, an estimate of the influence of

the random parameter on the mean response is obtained.

RANDOM VURSUS DKTERMINISTIC

Consider Eq. 45 which gives the mean response of a first-

order system with the random process coefficient subjected to

random excitation. Randomness in the coefficient at, which

changes the response characteristics of the system, is measured

here by the correlation function 012R1. Randomness in the

forcing function, bt, is measured by the correlation function

a 2R The cross-correlation G1 2 R1 2 indicates the interplay
2 2'

between at and bt, and will be assumed zero to expedite the
following discussion.

It is interesting to consider several special cases of the

solution given by Eq. 45. Suppose the randomness in the coef-

ficient is ignored. Then, with 01 - 0, Eq. 45 gives,

t
<xt >- x0 exp[-m 1 (t-0)] + Jm 2exp[-m 1 (t-v)]dv (60)

0

Note that the mean solution does not depend on the 2.andomness in

the excitation. In other words, a2212 does not appear in Eq. 60.

It affects the dispersion in the response, however. Note also

that Eq. 60 is identical to the deterministic mean solution;

* i.e., solution to the random equation when the random coefficient
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is replaced by its mean value. In particular, it denotes the deter-

ministic mean solution by i t* Then

i+ m xt - 2 (61)

and

txt Xo exp[-mn1(t-0)] + f m2 exp[-m1 (t-v)]dv (62)
0

Furthermore, the mean response is a linear function of the i-
tial condition x0 and the forcing function m2 , which is of course

a veil-known result in linear system and random vibration theory.

Suppose randomness in at is restored but the forcing func-

tion is deterministic, i.e. restore al2RI and set (12
2R2 -- 0

The mean response is then, from Eq. 45,

t t
<x> x0 exp[-ml(t-0) +-La1 R.(u2-u.)duldu

(63)
t t -"

+ft mexp[-m (t-v)+-2I + a R (u2 -u )du du 2]dv
0 

vv

Note Eq. 63 is not the same as the deterministic mean response
given in Eq. 62. They are not equal as long as there is random- .
ness in the coefficient, i.e., al 0. This phenomenon is well-
known for random operator problems, and was illustrated in a

numerical example given previously.

Finally, let the coefficient be a random constant instead of

a random process, i.e., R1  1 1. Equation 45 becomes,

1<X >- X0 exp [-m 1 (t-O) +T ( [(t-O)1 7 .;,

! 2ep i l(64)

t f [- 2exp-m 1 (t-v) + i1 (t-v) dv (64)
~0

which is also different from the deterministic mean solution.
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The use of finite difference techniques to solve stochastic

and random differential equations has been described. Numerical

results indicate that, while the approach is feasible, accuracy

in the computation of the first and second moments requires a

fairly large sample size. Convergence is relatively uniform, but
details of the convergence behavior appears to depend heavily on

the noise generator, i.e., the numerics of the pseudorandom
number generator. Said another way, the error due to replacing

the differential operator with the difference approximation algo-

rithm is small compared with that due to sample-to-sample varia-

tion.

Hence, while the direct finite difference method is appli-
cable to stochastic and random differential equations, computa-

tional expenses for computing moments may be quite high. For

engineering applications, the response process itself (the sample
path) is probably not as important or meaningful as the knowledge - -

of the statistical measures.

Based on the results described in this section, there are -,

two directions to follow in future research. One direction is to
develop numerical algorithms which govern the propagation of

moments. For stochastic equations, there are explicit moment

equations based on the Markov property of the response process.

Limitations of this approach are summarized in Refs. 20 and 21.
For random equations, there are no known general moment equations

and much more research is needed. Another direction is to seek

improvement in current random number generators, and more

efficient sampling techniques.

In principle, stochastic and random differential equations
can be expressed as integral equations and, for stochastic equa-

* tions, this is the more rigorous formulation. Discretization
techniques have been applied to random integral equations (see
Ref. 25), but they also rely on numerically generated random

processes. Extension to highly nonlinear systems does not appear

to be easy.

As far as S/V assessments are concerned, the study has

established the feasibility of using numerical techniques to

analyze problems involving stochastic and random loads (forcing

functions) and initial conditions. The discussion of this see-
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tion focuses on the finite difference method and discrete sys-

teas, but similar results are obtained using finite element

techniques on distributed systems, as described in Ref. 14. The

advantage of discretization methods is that they apply to general

nonlinear equations, as veil as simple linear equations, albeit

with more computational effort. A step-by-step approach con-

siders the equations to be linear within each step.

The difficulties described in this section are associated

with equations with random coefficients, or random operators.
The difficulties are economic difficulties, the resolution of

which awaits better and more efficient noise simulation techni-

ques. Given the state-of-the-art, numerical techniques are

viable solution techniques for random operator problems but they

can be expensive solutions when multiple degree-of-freedom sys-

tems are considered.

Aside from feasibility and economics, a third issue should

be addressed. This is the issue of physical interpretation of

mathematical results. It is seen from Eqs. 60-64 that the mean

response of a system with random coefficients is different from

the system response with the mean coefficients. If the random

coefficients correspond to random variations in, say, the struc-

tural properties, the above result implies that the average

behavior of a number of nearly identical structures differs from

the behavior of the average structure. An example of this

paradox is given in Ref. 16, where it is shown that mathemati-

cally the most probable response of a population of undamped

simple oscillators is a heavily damped simple oscillator. The

question then arises as to how this damping can be interpreted in

the real world of S/V assessment. A partial resolution of this

question is sought in the fuzzy set representation of uncertain-

ties, the subject of the next section.
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VI. FUZZY UNCERTAINTIES AND EXPERT OPNONS

Although fuzzy sets and fuzzy logic are used in this work to

represent nonrandom uncertainties, including expert judgment and

opinions, it should be remembered that there are other represen-

tations. A brief survey of these other modeling techniques is

included in the following for this purpose. Needless to say,

there is heated debate on the merits of the different modeling

approaches and the merits of subjective probability versus fuzzy

set theory in particular. It is not the intent here to add to

this debate. It suffices to say that compared with fuzzy sets,

all other theories are variants of Kolmogorov's probability

theory, and are designed to answer the question of what is

belief and how belief can be assessed.

The next subsection describes several elements of fuzzy set

theory in the event that the subject may not be as familiar to

the reader as probability theories and crisp sets. This intro-

duction is not meant to be complete, and relies on examples

rather than mathematics. Details can be found in the references

cited.

The main portion of the section describes two major studies

of fuzzy uncertainties with S/V applications: the modeling and

analysis of uncertainties associated with analytical models, and

the assessment of damage to structures. The emphasis of the

discussion is on feasibility and methodology development. Actual

case studies are in progress.

SURVEY OF OTHER THEORIES

The difference between uncertainty as a frequency of occur-

rence and as a result of induction is long recognized, almost

from the beginning of modern probability theory. A central issue
is belief and partial belief. Ramsey (Ref. 34) defined belief as

the propensity to act, and developed a personal probability

theory which came to be known as the Ramsey-DeFinetti-Savage

theory (Ref. 35). This theory, in turn, leads to ratio-scaled

probability which satisfies the Kolmogorov axioms. However, in

actual case studies, the theory is found lacking when compared

with human behavior (see Hogarth, Ref. 36). Hence, it is some-
times referred to as the theory of the rational (or perfect) man.
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Recognizing that probability theory does not conform to the

way people think and behave and that the rational man must be

trained to be a fallible human, leads to the relaxing of some of

the axioms of probability. This then becomes the theory of weak-

ratio probability. Some examples are the works by Dempster and

Shafer, and by Wolfensen and Fine (Refs. 37 and 38). They have

also become known collectively as the theory of subjective proba-

bility, but are not widely used in practice. The only exception

is Shafer's theory of evidence, which has recently found its way

into a number of expert systems.

XLENINTS OF FUZZY SETS

Basic concepts--In Section III, the concept of fuzzy sets is

introduced as a generalization of the crisp set. The character-

istic function which defines a crisp set based on the binary yes-

. or-no proposition is generalized. A fuzzy set is represented by

S.a membership function which corresponds to the degree of belong-

ingness of an element x in the set A, i.e.,

"A(x) -0<< (65)

Since the membership function can have any value in the unit

interval [0,1], the degree of belongingness varies from 0 to 1,

or from completely does-not-belong to completely belongs. Of

course, partial belongingness is possible and thereby fuzziness

is represented.

Mathematically, fuzzy sets are defined as follows, given a

universe S, which is the ensemble of all possibilities being

considered, a fuzzy (sub)set A of S is expressed by the membership

function (x), which maps a point x in S to a value in the

interval f6,11; i.e., it gives the degree of belongingness that

the element x is considered to be in the set A. Hence, A is

written as

N VA(i) i PA(x)
A - ~ or f (66)

- i I S x

Note that in this traditional notation, the summation or integral

sign should be interpreted as the union, and the horizontal bars

and slanted slashes are used to emphasize the correspondence

between the element x and its membership (x) in the set. They
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are not divisions, although such confusion often arises.

Some examples will make this notation clear. Suppose the

f.t universe S is the set of all positive integers 1, 2, 3, 4, ....

[, The crisp set A - 3, or the statement, in a physical context,

that the concrete strength is 3 MPa, is

equals 3  ' +2--+-+ +2-+ ... (67)

The element 3 is given a membership 1 while all other elements

have membership 0. The fuzzy set A - approximately 3, on the

other hand, may have the representation

approximately equals 3 + 2- + L t+t ... (68)
2 3 4 5

Elements such as 2 and 4 belong to the set "approximately 3" but

with a membership less than that of element 3. Equation 68 can
be used to represent the statement that the concrete strength is f-

approximately 3 MPa, for example.

Other examples can be readily given. A crisp stress-strain

relation is given in Fig. 32a, and a fuzzy stress-strain relation

in Fig. 32b. A crisp fragility curve and a fuzzy fragility curve

are given in Fig. 33. When S/V assessment is based on degree of
damage rather than fragility, a fuzzy set representation of

damage states can be used, such as that given earlier in Fig. 20.

The corresponding representation in crisp sets is not as obvious.

It is clear that one of the most important, if not the most

important, element in the fuzzy set representation is the member-

ship function. It is the essence of the fuzzy model of uncer-

tainty which has been alluded to in Section III. The determina-

tion of the membership function is currently an active research

area, and there is not enough space here to go into details. It

is mentioned simply that the membership can be determined based

on any data base, objective or subjective, statistical or other-

vise. For instance, expert opinions can be used to define the

membership, as will be shown in the next section. The generali-

zation of the crisp set in the form of the membership function

allows a wider class of data bases to be accepted and represented

without causing undue mathematical inconsistency.
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(b) Fuzzy stress-strain law

Figure 32. Crisp and fuzzy constitutive relationships.
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(b) Fuzzy fragility curve

Figure 33. Crisp and fuzzy fragility curves.
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-* Mapping and transfornation--Napping and transformation of

fuzzy sets are not very different from mapping and transformation

* of crisp sets. In fact, there is an established principle, '

called the extension principle, by which the former can be per-

formed using operations of the latter. This is summarized below.
" In this discussion, mapping and transformation of fuzzy sets can

be considered as the propagation of fuzzy uncertainties in
dynamic system response, in much the same way that random uncer-

tainties are propagated in random and stochastic equations. For
. the time being, the system dynamics is considered crisp. The
*" response is fuzzy because the initial conditions, forcing func-

tions, or coefficients of the equations are fuzzy. The case when
the system dynamics is also fuzzy is taken up in the next subsec-

tion when fuzzy relations are discussed.

Let a fuzzy set A be defined on the universe X. Further-
*more, let a point x in X be mapped into a point y in another
" universe Y by the transformation y - f(x). The image of A is
*' then a fuzzy set B defined on Y, given by

B =f ~ (69)
~ yy

where
q(Y) P () (70)

y f(x)

This mapping is sometimes abbreviated as B f(A), although its

true meaning as defined in Eqs. 69 and 70 may be obscured or misin-
terpreted. It should be remembered that B is not a function of A,
but rather that y is a function of x and the membership of x is

transported to be the membership of y. An illustration of the
mapping operation is given in Fig. 34.

When the transformation y = f(x) is not a one-to-one mapping
but, say, a many-to-one, the membership of B is obtained by

taking the maximum of all the memberships of the x's which are
mapped onto the particular value of y. Mathematically, this is
denoted by

U(Y) Xv-p e
y-f (x) y-f (x)

where sup denotes the supremum operation and is the same as the
maximum operation (denoted by V) in this case. The operation is
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Figure 34. Transformation of fuzzy sets A to B underL
mapping y =f(x)--mapping is one-to-one.
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Figure 35. Transformation of fuzzy sets A to B under
mapping y f(x)--mapping is many-to-one.

92



illustrated in Fig. 35. This idea can be extended to a function

of many independent variables, and in fact to general functions
by Zadeh's extension principle. Details are in Ref. 9.

Fuzzy relations--To introduce the concept of fuzzy rela-
tions, consider the fuzzy stress-strain relation of Fig. 32 men-

tioned earlier. Suppose a crisp value of the strain is selected,

say, E - 1 percent. With reference to the figure, three pos-

sible values of a correspond to e1 - 1, viz., 1., 2., and
3. MPa. Furthermore, a takes on the value 1. MPa with membership

0.7, the value 2. ksi with membership 0.9, and the value 3. MPa O
with membership 0.7. Hence, the image of the crisp e1 is

0.7 0.9 0.7 (72)
1 1. 2. 3.

What is the image of E when e is itself fuzzy? This is theI
subject of fuzzy relations.

A relation relates at least two quantities, A and B. Call

this relation R, as illustrated in Fig. 36. When R is crisp,
e.g., mappings given in Fig. 34, a crisp A will map into a crisp

B. A fuzzy A will map into a fuzzy B, as described earlier.

Suppose R is now fuzzy: a crisp A will still map into a fuzzy B,
as illustrated by the stress-strain example. When A is fuzzy and
R is fuzzy, B is also fuzzy. The computational operations are

described below in the context of the fuzzy stress-stain rela-

tion.

Given a fuzzy E and the fuzzy stress-strain relation R, the

corresponding fuzzy stress a is

a = eoR (73)

where o is called the composition operation defined by

a (a) [ (e) AkJR (,~)l (74)

and where V is the maximum operation and A is the minimum opera-

tion, respectively. As an aid only in remembering the rules of
the composition operation, one can use the analogy in matrix
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Figure 36. Fuzzy relations and propagation of fuzziness.
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multiplication where

(r 1C .. '..

L l... . rM] j

(E x r11 + e2 x r 21+...), (e1 x r 2+ C£2 x r2+...

Multiplication is replaced by the minimum operation, and addition
is replaced by the maximum operation. In the stress-strain
example, if

0.5 0.4(76)
- 2 3

then the corresponding a is

0.4 0.8 0.5 0.1 0. (E 2)[ aI0o 05, 0.4) 0 0.1 0.5 0.9 0.7 0.2] (-3)
(2 3 4 5 6)Y

(77)
-[(0.5A0.4)V(0.4A0.1)] [(0.5A0.8)V(0.4A0.5)

2 3

-0.4 + 0.5 + 0.5 + 0.4 4 0.2
2 3 4 5 6

A fuzzy relation is formed from a conditional relation such as.

if A lthen Bl, if A2 then B2, and so on where Aj and Bi are fuzzy
statements. The mathematics involved is quite simple. Denote

* the relation corresponding to Aj. and Bj by Ri. Then,

R. - A. x B.(8
-2. -2(78)

* where the cross-product operation (x) is

That is, Rj is a two-dimensional array and the membership of its
*member r m(1,y) is given by the minimum of the memberships for
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Ai(x ) and Bi(ym), The global relation i is obtained by the union

of R oo or R. - R U A x io± . ±
Fuzzy relations are useful tools for modeling uncertain

phenomena, mechanistic or otherwise. In the following subsec-

tions, it will be used in two applications as illustration.

There are many other such tools provided by fuzzy set theory, but LV
it is not possible to include them in this discussion.

STUDY IN MODEL UNCIRTAINTIES

Some model uncertainties are nonrandom--In Section II, the

uncertainties associated with an analytical model (in soil-struc-

ture interaction) was used as an example of nonrandom uncertain-

ties. It was mentioned that a pitfall of the all-probabilistic

approach to S/V assessment was to force such uncertainties to be

random, which led to undesirable consequences.

Perhaps it should also be noted here that there are random

model uncertainties. Empirical formulae based on regression

analysis are classic examples. Uncertainties associated with the F_
choice of the regression parameters are modeled as random vari-

ables in order to represent the scatter in the data. This is
common practice in statistical analysis but, unfortunately, is

also the source of much confusion; the statistical practice has
been extended somewhat indiscriminately to all matters concerning

models. Tell-tale signs of such possible misuse have been men-

tioned on several previous occasions and will not be repeated

here. However, it may be helpful to look at the subject from a

slightly different point of view.

Returning to the example on soil-structure interaction

models, let us focus on how uncertainties in these models can

possibly be assessed. Random experiments do not make sense here

because only a few (three to four) models are considered. They
do not differ from one another because of inherent heterogeneity.

Neither is the selection of one model over another a matter of
chance. Furthermore, the result of taking the average of all the

predictions from the models does not correspond to any physical
model. Certainly, the average obtained this way does not have
the same meaning as a statistical average or expectation.
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Row models are evaluated--At present, model uncertainties

are evaluated by calibration. Controlled experiments are per-

formed to serve as the real-world reference. Models of this

phenomenon are postulated and used to simulate the experiments.

By comparing the model behavior with test data, the uncertainties

in the models are assessed, somehow. Details of this procedure

as applied to soil-structure interaction models is given in Ref.

4. A schematic diagram shoving the procedure to evaluate material

models (soil, concrete) is given in Fig. 14.

Note that although the procedure appears straightforward,

it is far from complete. Many more questions are raised but not W__

answered. For example, what are controlled experiments and how

are these experiments determined? How do they relate to the real-

world phenomenon to be studied? How can uncertainties in the

source model, the mechanism model and the material model be

separated? Above all, what does a comparison between test data

and model response really mean, and bow can the results from such

a comparison be used to quantify the uncertainties in the model?

lole of engineering judgment--To delve deeper into the sub-
ject of model uncertainty is to go beyond the scope of this

report. Suffice it to say that the questions posed are well-

acknowledged by the S/V community and the practice of calibration

is generally accepted despite these questions. The reason lies
in judgment; engineers find refuge from the unknowns by relying

on their judgment, which is based on related experience, general

knowledge, and subjectivity. It is used in all our evaluations,

and especially to compensate for sparse data and when extrapola-

tion beyond the data range becomes necessary. In terms of

models, experts are aware of the usage and shortcomings of cer-
tain types of models, from having worked with them in previous . -

applications or by previous comparison with data and other refer-
ences. They know that a particular feature of a model is essen-

tial to represent a certain phenomenon and, in the same manner,

they also know that another feature of the same model, when left

unchecked, will lead to erroneous predictions.

Fuzzy set approach--This study in fuzzy set attempts to

establish a framework by which subjective estimates of model

behavior based upon sparse data and considerable engineering

judgment can be incorporated into S/V assessment. The approach
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consists of four major components:

(1) Identify major features of the models and their

gravities (G i) and importances (Ii),

i - 1, 2, ... N, where N is the total number

of features. The curly underlines used previ-

ously to denote fuzzy sets viii be omitted from

here on to simplify the notation.

(2) Combine the gravities and importances into a

global fuzzy relation P - Z Pi - U G i  Ii•.
i i

(3) Identify the relation between importance of feature I.

and its effect on the predicted response Ci.

Summarize the relation as R - R i - U I x C"-
i i i

(4) Form the relation between the global character of the

model features and their impact on the predicted

response by F - P 0 R, i.e., the composition of the

two relations P, R.

The procedure is described in detail in Ref. 5, together with

numerical examples and illustrations.

A typical result is the relation shown in Table 2, relating

gravity of a model feature with the correction factor to be

applied to the model. In this table, y is the theoretical res-
ponse of the system (e.g., deflection of slab) computed according

to the model. To show how this result can be used in practice,

suppose a particular feature of a particular model is judged to

have medium gravity where medium is defined as

0.2 0.6 + _ 0.6 0.2 (80)
0.3 04 05 0 . .0.7

The correction to be applied to the model response is then

K(y) - (G - medium) 0 F

0.5 0.5 . +0.33 + 0.2
y +.1y 1.2y 1.3 y .y (81)
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N. -6.

TABLE 2. FUZZY RELATION BETWEEN GLOBAL GRAVITY OF MODEL
FEATURE AND ITS IMPACT ON THE MODEL RESPONSE Y

G C (Model Correction Factor)

(Gravity) y 1. ly 1.2y 1. 3y 1. 4y

0.3 0.2 0.2 0.2 0.2 0.2

0.4 0.5 0.5 0.6 0.33 0.2

0.5 0.5 0.5 1.0 0.33 0.2

0.6 0.5 0.5 0.6 0.33 0.2 -"

0.7 0.2 0.2 0.2 0.2 0.2

0.8 0.2 0.2 0.5 0.2 0.2

0.9 0.2 0.2 0.9 0.2 0.2

1.0 0.2 0.2 1.0 0.2 0.2
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That is, the response is approximately 20 percent higher than

that predicted by the model when the effects of modeling uncer-

tainty are taken into consideration.

STUDY IN DAMAGE ASSISSEINT

Damage states are not clear-cut--Another important source of

nonrandom uncertainties mentioned in Section III concerns the

assessment of damage. In many fields of engineering, damage and

its interpretation are not clear-cut. This is especially true

for protective structures because they are heavily reinforced and

yet are expected to be loaded into severe damage and even total
collapse. Only a limited number of tests can be performed, and

the tests are usually done on small-scale structures using simu-

lated loadings. A sample damaged specimen is shown in Fig. 37.

The evaluation of light, medium and severe damages differs from

one expert to another. The damage ranges are expected to over-

lap, i.e., damage does not change abruptly from light to medium,

and from medium to severe upon reaching certain crisp thresholds.

Other factors such as scarcity of data and the need to extrapo-

late the data to realistic loading, full-size prototypes and

imperfect structures add much more complexity to the assessment

of damage.

Scope of damage assessment--The foregoing describes only a

small portion of the overall scope of damage assessment. In

addition to the damaged specimens, many other measurements
(active as well as passive) are available and need to be included

in the evaluation. An overview of the scope of damage assessment

is shown in Fig. 38, although the present study focuses on the

soft data portion of the assessment. Soft data refer to photo-
graphs and visual images of tested specimens, and they carry much

information which has not been explicitly quantified and identi-
fied before. The following discussion describes the approach

used to obtain experts' evaluations of the soft data, and to

aggregate these inputs into a form which can be readily incor-
porated into S/V assessment.
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Solicitation and azrezation of *xpert ovinions--The problem
of solicitation of expert opinions can be described as follows.

An expert or several experts are shown a piece of data which can '-

be in the form of pictures, graphs, time-traces, etc. The

experts are then asked to give their assessments of the data. If

the data are denoted by A and the assessment from expert No. 1 is

31, the assessment from expert No. 2 is B2, and so on, the result

can be expressed concisely as

If A, then Bl, B2 , ... (82)

When there are more than one piece of data to be evaluated, the

result of solicitation is

If Al, A2, ... , then B1, B2, ... (83)

Here the same pieces of data (A1 , A2, ... ) are shown to different

experts who then provide the assessments B1, B2, ... , respec-

tively.

Similarly, the process can involve the following. Expert

No. 1 is shown data A1, and he gives the assessment B1. Expert

No. 2 when shown data A2 gives the assessment B2, and so on. The

result can be expressed as

If A1 , then B, and(

If A2, then B2, and

Having obtained the expert opinions, the next step is to

combine them. This is the problem of aggregation. The assess-

ments Bl, B2, ... are analyzed and synthesized in order to arrive
at some global or overall assessment. One usual outcome of

aggregation is a consensus assessment B, but it should be empha-

sized that consensus should not be the only goal of aggregation.

In fact, contradictory and ambiguous assessments should be right-

fully reflected in the aggregated product.

Solicitation and aggregation of expert opinions are widely

practiced in S/V assessment although they are not noted expli-

citly as such. For example, in every technical meeting, planning

session, workshop and test-related conference, e7perts are called
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* together so that their opinions can be solicited. Examples of
data A's are measured strains and deflection of structural ele-
meats, observed crack patterns, etc. Examples of assessment B's
are damage states, residual strength of structures, fidelity of
test, survivability, etc. It is common practice to let the
experts process their assessments mostly by voice votes. Without
exception, the end-result is a decision or consensus.

The solicitation and aggregation of expert opinions have
* many important facets and this report will not be able to

include all of them. There are different ways to elicit opin-

ions, to weight the different ability and experience of the
experts, and to include one's personal bias. Ways to refine
opinions by feedback and iterative evaluation also have been

* studied. The precision and form of the assessment is another
* important factor, as is the largely unresolved question of how to

treat commonality of knowledge and data base which may have been
shared by the experts. The study performed here emphasizes two
facets of the problem: consensus and subjectivity. Specifically,
it is felt that most existing methods center around the need to
have a consensus opinion, and that this may not be correct.
There may be very good reasons why opinions vary, as is of ten

*the case in s/v assessment. The process of aggregation should
* include these diverse opinions and not alter them. Consensus

methods also rely on large sample populations, which is not the
case for most S/V applications. Expert opinions are seen as non-
random, especially when weights and bias factors are included.

Fuzzy set approach--The fuzzy set approach consists of the
f oll1owing f our maj or s teps ( see al1so Fig. 39)

(1) Groups experts into homogeneous subgroups;
(2) Solicits opinions from members of each subgroup;
(3) Aggregates the opinions of members of a subgroup,

including weights on the opinions; and
(4) Aggregates opinions of the subgroups.

The approach makes repeated use of two fuzzy techniques
called fuzzy classification and fuzzy identification. Fuzzy
classification is used to separate the experts into subgroups,
and the subgroups into sub-subgroups, if necessary. It is also -

used to help define the weighting factors assigned to the sub-
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Panel of
Experts

Group experts into
subgroups at Level 1, Crisp or fuzzy

Level 2, etc. classification
Compute or assign techniques

appropriate weights

Solicit opinion from
members of each

subgroup

T - techniques

Aggregate opinions
f different subgroups

Global
opinion

Figure 39. Major steps in classification and aggregation of expert opinions.
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groups. Fuzzy identification is used to synthesize the different

inferences of members of a subgroup. Synthesis refers here to r
* aggregating different assessments as mentioned previously, or to
" constructing a global inference machine which in some sense best

summarizes the thinking. of the experts.

The following discussion is limited to the aggregation part

of the study. A description of the classification techniques used

and their applications is given in detail in Ref. 39. It is
noted that fuzzy classification is also useful for treating hard
data encountered in S/V assessment, such as those shown in Fig. 38,

and for comparing sparsely populated waveforms and ill-defined

measurements*

Inference and identification--Consider the proposition R: if

A then B. Here, A is called the antecedent or cause, and B is
called the consequence or effect. The process of arriving at an

answer B given data A is an inference process. When referring to

the inferred opinions, the B's, aggregation means combining these
expert opinions into a joint opinion or inference. Note only the
consequent B's are directly involved in this aggregation ap-

*proach. When referring to the inference processes themselves,
the R's, aggregation means combining these relations into a

" global, representative relation. Both the antecedent A's and the
consequent B's are used in this latter approach, which shall be
referred to as identification. The name comes from identifying

the inherent relation which provides the best representation of

all the constituent relations.

The first meaning of aggregation is more conventional, and

methods for combining expert opinions have been extensively

studied. They will be summarized in the following with more
details given in Ref. 39. Emphasis of the present discussion is

on identification, since it is more general and appropriate for
S/V assessment applications.

Combining expert opinions--The method of combining expert

opinions depends on whether the information is cardinal (numeri-
cal) or ordinal (linguistic). When opinions are given in the
cardinal scale, there are many choices for combining them. For
more details, see Zimmermann (Ref. 40), Zysno (Ref. 41), or Wong

(Ref. 39). Some examples are max, min, algebraic mean and
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geometric mean. For example, if ui , i-1,2,..,a are different
fuzzy opinions of m experts and their relative weights are di,
with

MEld m (85)

then the algebraic mean is

u
e i:Id u (86)

where the summation is understood to follow Zadeh's extension
principle (Eq. 70). The geometric mean is

mdi (87)
ue  H

For a homogeneous subgroup, the opinions of its members should be
very close to one another, and all these operators will yield
comparable results. When the opinions are diverse, as may occur
with different subgroups, the above operators may give very .
different results.

Methods to combine opinions and weights when they are given
on a linguistic scale have been proposed by Buckley (Ref. 42) and
Schmucker (Ref. 43). The methods require some lengthy explana-
tion and are summarized in Ref. 39. Sample applications are also
given in said reference.

Identification--Suppose the data-opinion pairs are denoted
by Ai and Bit nl=,2,...,N, and each pair corresponds to a rela-
tion R given by Ri -A i x Bi 88

i j (88)

according to Eq. 77. Given Ri and Ai, to recover Bi requires the
composition operation of Eq. 73. The problem of identification

is to find a relation R which can represent the fuzzy data pairs
(Ai , 31), i-l,2,...,N in some optimal sense. In other words,
R is to represent a combination of the constituent relations Ri,
i1l,2...,N, in some optimal sense.
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One common approach to do so is due to Hamdani (Ref. 44),

which is the union method mentioned earlier. In particular, the

answer is given by
.e

RUR " V UR (xy)/(xy)i xxyi 1 (89)

Since the union R of several Ri contains all the Ri, one can
say that R is the aggregated relation. However, note that in

general,

A OR - , Bi (90)

Hence, union aggregation will not return all the original data-

opinion pairs (Ai, Bi).

The approach used here is to try to minimize the difference

between B'i and Bi, i.e., the aggregated relation should return

the original data as best as possible, and in that sense is the

best summary of the constituent relations. The objective func-

tion to be minimized depends on the measure of distance, i.e.,

N
Q Z d di = di(Bii) (91)

where di is a dissimilarity measure between the fuzzy sets B i and
B'i. Different variants of the identification algorithm corres-

pond to using different dissimilarity measures and schemes to

minimize the objective function.

One method investigated uses the Euclidean distance for d

and a minimization procedure based on a modified Newton iteration

scheme. Details are documented in Refs. 39, 45 and 46. The

result is a relatively simple recursive equation for the aggre-
gated relation

R( +1)  .R(n)  8Q '."
R n (n) (92)rij,""'

where R(n) and R(n*l) are the (n)th and (n+l)th iterations of the

desired R, respectively. The gradient .Q/r(n) 1 is given in

terms of the data-opinion pairs (Ai, Bj), and the current value

of r ij. The length scale, an , depends on the number of iteration
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n, and a constant 0 0 chosen empirically to increase the rate
of convergence and minimize local oscillations.

1l1ustrative example--This example is based on the previous V %
discussion on modeling uncertainties (see also Ref. 5). The
effect of modeling on the analytical estimate of the deflection
of the roof-slab of a buried box is considered, resulting in the
following conditional relation,

RI: If E is large, then C is large, or else
R2: If E is medium, then C is medium, or else
R3: If E is small, then C is small

where I refers to the effect of modeling and C refers to the

correction factor which must be applied to the analytical esti-
mate y to account for modeling uncertainties.

_9

The linguistic value of large, medium and small for the
modeling effect are:

0.6 0.7 0.8 0.9 1.

0.2 + o +  .2
0.3 0.4 0.5 0.6 0.7 (94)

. 4

1. +0.9 +0.5 0.2 0.1

0. 0.1 0.2 0.3 0.4

and those for C are defined as:

0.1 0.33 0.55 0.78 1.
y l.1y 1.2y 1.3y 1.4y

0.1 0.16 1. 0.16 0.1
y 1.1y 1.2y 1.3y 1.4y (95)

1. +0.78 +0.55 +0.33 +0.1

y 1.1y 1.2y 1.3y 1.4y
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TABLE 3. COMBINED RELATION BETWEEN MODELING EFFECT AND ITS
CONSEQUENCE ON MODEL PREDICTION, USING MAMDANI'S
METHOD OF UNION

E y 1.ly 1.2y 1.3y 1.4y

0.0 1.00 0.78 0.55 0.33 0.10

0.1 0.90 0.78 0.55 0.33 0.10

0.2 0.50 0.50 0.50 0.33 0.10

0.3 0.20 0.20 0.20 0.20 0.10

0.4 0.10 0.16 0.60 0.16 0.10

0.5 0.10 0.16 1.00 0.16 0.10

0.6 0.10 0.16 0.60 0.16 0.10

0.7 0.10 0.20 0.20 0.20 0.20

0.8 0.10 0.33 0.50 0.50 0.50

0.9 0.10 0.33 0.55 0.78 0.90

1.0 0.10 0.33 0.55 0.78 1.00

TABLE 4. FINAL RESULT FROM IDENTIFICATION ALGORITHM

C
E y l.ly 1.2y 1.3y 1.4y

0.0 1.00 0.78 0.55 0.33 0.10

0.1 0.90 0.78 0.55 0.33 0.10

0.2 0.50 0.50 0.50 0.33 0.10

0.3 0.10 0.16 0.20 0.16 0.10

0.4 0.10 0.16 0.60 0.16 0.10

0.5 0.10 0.16 1.00 0.16 0.10

0.6 0.10 0.16 0,.60 0.16 0.10

0.7 0.10 0.16 0.20 0.16 0.10

0.8 0.10 0.33 0.50 0.50 0.50

0.9 0.10 0.33 0.55 0.78 0.90

1.0 0.10 0.33 0.55 0.78 1.00
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The resultant relation using the union operation of aggrega-

tion is given as Table 3. In this example, the three if-then

relations can be regarded as three alternatives from one expert,

or three opinions from three experts. The identification pro-

cedure is transparent to the interpretation of the information.

When this matrix is used as the initial guess for R to start

the identification algorithm with equal weights on the three

experts, the result returned upon convergence is very close to

its initial guess (see Table 4). This means that the initial

guess is a good choice, and only a few iterations are necessary

to reduce the objective function Q to its minimal target value

which is 0.47K-8. In this case, the union aggregation and the

identification aggregation approaches give similar results. This

is not so for other data bases. '

To put the algorithm to a more severe test, the calculation

is repeated with a zero matrix as the initial guess. The result

upon convergence is again the same as that obtained the first

time. Similar findings are obtained when the initial guess con-

sists of all l's. These results show the effectiveness of the

identification algorithm and that the final answer is fairly

independent of the initial guess.

To show the accuracy of the algorithm, we take, in turn, the

resultant relation R computed by the union and identification

methods, and see if using the original E's given by Eq. 94 will

lead to the original C's given by Eq. 95. When Table 3 is used,

the C's computed by E o R are

- 0.1 0.33 0.55 0.78 + 1.
C1  Y _ _l + _172-y 1.3y 1.4y

0. 00 2 . (96)

1. + 0.78 0.55 0.33+ 0.1
y . y 1.2y 1.3y 1. 4y

Note that they are different from the original information in

Eq. 95. Bence, the union method of aggregation does not preserve

the original inferences. When Table 4 is used instead, the

original set of C's is recovered, shoving that the original infer-

ences are preserved by the identification method of aggregation.
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VII. CONCLUSIONS AND RECONNKIDATIONS

TREATMENT OF UNCERTAINTIES

Many types of uncertainties comiog from many different

sources are encountered in S/V assessment. Current assessment

methodologies consider all uncertainties to be random. This prac-

tice is undesirable because it forces nonrandom uncertainties to

be random, or ignores them altogether. Dire consequences may

result in either case.

It is our belief that improvement to S/V assessment can

be achieved simply by recognizing that there are at least two

major groups of uncertainties: random and fuzzy. Random un-
certainties are uncertainties which can be adequately modeled as

random parameters, functions or processes. Fuzzy uncertainties

include nonrandom uncertainties, as well as uncertainties re-
sulting from incomplete and imprecise information, subjective

judgment, ambiguity and vagueness. Much of the discussion in the

previous sections of this report is included to clarify and

support this belief. Examples of random and fuzzy uncertainties

are given. Their role and importance are delineated. Modeling

and analysis of the two groups of uncertainties and ways to

integrate them in an overall S/V assessment framework are
summarized.

MODELING AND ANALYSIS OF UNCERTAINTIES

Of the several extensions to current S/V assessment capa-

bilities studied using this approach, two are described in

more detail in this report: the use of random and stochastic

equations to model and analyze random uncertainties; and the use

of fuzzy sets and fuzzy logic to model and analyze fuzzy

uncertainties. The random equation study emphasized numerical

solution techniques and, in particular, the difference methods.

The fuzzy sets study emphasizes the treatment of expert experi-

ence and opinion and how it can be quantified in an S/V assess-

sent procedure. Major conclusions from these two studies and

recommendations for future efforts are described in the following

paragraphs.
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Random/stochastic methods--This study indicates that the
direct finite difference method is applicable to stochastic and

random differential equations, and numerical techniques represent -

an attractive solution option to complement existing approximate

and analytical methods. Immediate application to S/V assessment
is feasible, but computational cost may impose a limit on the

size of the problem which can be considered.

The limitation is due to the fact that a large sample size

(thousands of samples) is needed to compute the sample statistics

from the sample paths obtained by the difference methods. The

large sample size is necessary, mainly because of errors in the
simulation of the random processes. By comparison, the error due

to the difference approximation itself is negligible. Rence,

although the computational cost restiction is undesirable, it is
not a limitation of the difference approach, but rather reflects

the ineffectiveness of current computer algorithms for noise

(pseudo-random number) generation.

Consequently, two research directions should be pursued to

further extend the random/stochastic equation approach in S/V

assessment. The first, which is to improve on random number
generation techniques, belongs to the discipline of computer
science. The second is to develop equations which govern the

propagation of moments and numerical solutions of the moment

equations.

For systems which can be modeled by stochastic (Ito) equa-

tions, there is the well-known Fokker-Planck equation which gov-

erns the transition probability density function and can be used
to generate equations governing the moments of the response.

However, no numerical works on these equations have been re-

ported. For systems which can be modeled by general random

equations, no general moment equations analogous to the Fokker-
Planck exist. Many approximate methods have been attempted, but

they all have limitations of one kind or another (see Ref. 22 and
the recent work by Bennett, Ref. 47). Random equations are an

extremely difficult group of mathematical problems, and much more

research needs to be done before they can become application

tools in S/V assessment.

Fuzzy models and methods--The study on fuzzy uncertainties
focuses on two aspects of S/V assessment--namely, uncertainties
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associated with analysis models and the assessment of damage to

structures. The selection is influenced largely by the author's

research interest and does not imply a limitation on the appli- p
cability of the fuzzy set approach. The two pilot studies indi-

cate the feasibility of the approach, as well as its versatility

in modeling, in general, nonrandom uncertainties which have
remained elusive. If one doubts the prevalence of such uncer-

tainties, one needs only to select at random a page from any

report related to S/V assessment and count the number of times

linguistic terms such as "good," "severe," "satisfactory," etc.,
appear.

Perhaps several points need reiterating. Current practice

treats uncertainties as if both the random and nonrandom, and

the objective and subjective elements of the problem, have similar

properties. This is incorrect and the distinction should be

made. Fuzzy methods can be used to incorporate fuzzy, linguistic

and judgmental data into the existing framework, and they com-

plement existing random methods in this manner. Fuzzy models are
not statistical ones in disguise, and they are not proposed to

supplant random models used to model random uncertainties.

Future work should include more detailed studies of the two

pilot studies initiated herein. A case study on damage assess-
ment is in progress and results will be described in a separate

report. The work described in this report centers on one basic

tool in fuzzy set theory--namely, the fuzzy relation. Many other
tools are available and should be explored. For applications in

S/V assessment, the most promising appears to be fuzzy classi-

fication. Fuzzy classification and clustering techniques can be
used to strengthen much of the work in evaluating and analyzing

test data, which are hampered by measurement uncertainties,

noise, scarcity of data, and subjective interpretation. Fuzzy

reasoning procedures are useful tools to synthesize uncertainties
(subjective as well as objective) in the S/V data streams within
the framework of a knowledge-based assessment system.

CLOSING RINARKS

There are four issues which should always be raised in ,

any discussion on modeling and analysis. They are:
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(1) now to account for lack of understanding of
some basic phenomenon;

(2) How to maximize use of sparse experimental

data, and available engineering experience

and expertise;

(3) How to assess the validity of the assumptions

of the analysis; and

(4) How to assess the meaning of the results of

the analysis. w
For S/V assessment of protective structures, these issues are

especially relevant because of (1) the complexity of the phenom-
ena, (2) extremely sparse and indirect data, (3) inoperative ""-

safety factors, and (4) dire consequences of miscalculation.

This study has provided a partial answer to these questions, but

is only a preliminary step in that direction.

The division of the uncertainties into only two main groups,
random and fuzzy, may be simplistic since there are other groups

of uncertainties. However, by acknowledging that there are
uncertainties other than the random variety and by seeking appro-

priate models for the two groups, the study constitutes a new
direction in S/V assessment. More research is obviously still

needed to make significant improvement to current technology.
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