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ABSTRACT

Smith, Bradley Warren. Ph.D., Purdue University, May 1085. ON THE
DESIGN AND MODELING OF SPECIAL PURPOSE PARALLEL
PROCESSING SYSTEMS. Major Professor: Howard Jay Siegel.

As the capabilities of computing machinery grow, so does the diverse

variety of their applications. The feasibility of many approaches to these

applications depends solely upon the existence of computing machinery capable

of performing these tasks within a given time constraint. Because the majority

of the available computing machinery is general purpose in nature, tasks that

do not require general purpose facilities, but that do require high throughput,

are condemned to execution on expensive general purpose hardware.

This research describes several tasks that require fast computing

machinery. These tasks do not require general purpose facilities in the sense

that the computing machinery used will only perform a fixed set of tasks.

Some of the tasks are simple in nature, but are required to execute on very

large data sets. Other tasks are computationally intensive in addition to *..2,

possibly involving large data sets. Both simple and complex algorithms are

considered. The discussion includes a description of the tasks.

All of the above tasks are useful; however, their value is determined in ...

part by the time required to perform them. This work discusses three

architectures for performing remote sensing tasks. These architectures can ..-..

4. "h-.,i
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execute the described tasks more quickly than conventionally available

hardware. -L

The discussion extends to the realm of designing macro-pipelined 4iVl

distributed computer systems for special purpose applications. Nine

parameters are introduced along with a proposal for an algorithmic approach to "

designing a computer system for a special application. The parameters are

then applied to an isolated word recognition system.

For may tasks (especially those involving feedback), it is undesirable to

use synchronous parallelism. A study, including a probabilistic model, of the

effects of using asynchronous stages in the macro-pipeline is presented.

Simulation is used to verify the results.

-d .-.
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CHAPTER 1

INTRODUCTION

1.1 Overview

For many applications, response time and throughput are of critical

importance. Such applications include: defense against incoming missiles,

missile guidance, air traffic control, weather analysis, speech recognition, and

tomography. The principal goal is to process the data in "relevant" time

within some cost criteria. Further, the feasibility of performing many tasks

depends on the capability to execute them in a certain amount of time without

excessive hardware expense.

General purpose hardware, while less expensive than special purpose

hardware, is typically slower than hardware designed for a specific task. The

design of special computing facilities can take large amounts of time and

manpower, increasing the design overhead of such a system over a general

purpose system. Since special purpose computer systems typically do not sell

in large quantities, the design cost must be distributed over a relatively small

number of units. Thus, the cost of special purpose computer systems can be

considerably greater than that of general purpose computer systems. The high

cost of special purpose hardware decreases the desirability of algorithms that

require special purpose computer systems. Thus, accurate and powerful

algorithms may not be used in lieu of less accurate algorithms or, even worse,

".'.-'.'.-'. '. :.-, :..',.':.-':.':.'':.".""€','".".-....-..........-...-"....'.....-".. ".....".L-.'....-.•......."...
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nothing at all. To help reduce the cost of special purpose systems, computer

aided tools can be used to minimize the human intervention needed in the

computer design process. These tools would reduce the design time. To

achieve this goal, tasks must be modeled as to the type of computational

resources they require. Further, presently available hardware, such as small

boards and chips, must be modeled according to their computational

capabilities. By extending the models to parallel schemes, combination of the

two models allows systems to be proposed or built to perform computationally

intensive tasks within some time, cost, or other constraint.

This research is divided into four chapters. Chapter 2 considers the

application of parallelism to contextual classifiers for image analysis which are

being developed to exploit the spatial/spectral content of a picture element

(pixel) to achieve higher classification accuracy. Contextual classification

requires large amounts of computation, so special hardware is of value.

Chapter 2 explores the CDC Flexible Processor (FP) system

([CDC77a],[C'DC77b]) and the proposed multimicroprocessor system PASM

[SiSSI], which are both parallel processing systems that can be applied to image

processing tasks. Timings for the FP system to perform contextual

classifications, based on a Purdue developed FP system simulator, are

presented. For comparison, the same algorithms have been run on a PDP-

11/70. The applicability of PASM for implementing the contextual classifier is

* demonstrated by algorithm complexity analysis. The reduction in execution

achieved through the use of these parallel systems is shown.

The research in Chapter 2 has suggested a specific architecture for the

application of parallel processing to remote sensing tasks. Chapter 3 proposes

such an architecture. It is a large-scale multimicroprocessor structure which
V .4.

Eh
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could consist of as many as 1024 processors. This type of architecture is ~

extremely well suited to the execution of window and pixel based operations.

A number of remote sensing data processing techniques for implementation on

a machine with this architecture are discussed. Algorithms considered are:

image smoothing, image correlation, and contextual and non-contextual

methods of image analysis. This includes both the design of parallel algorithms

and the exploitation of appropriate data structures. ,-

In addition to demonstrating how various algorithms can be perrormed on

the parallel architecture, Chapter 3 proposes extensions to the architecture to

increase its fault tolerance. Then, a specific implementation of the

architecture, called MuRSS, is contrasted to an already existing system called

MPP. NMuRSS and MPP are compared with respect to speed, processing

capabilities, and fault tolerance.

In Chapter 4, an approach to modeling distributed macro-pipelined

computer systems is examined. This chapter uses nine parameters to form a

model of the characteristics of parallel/distributed algorithms and the

environment in which they must execute. These parameters describe the I/0

environment, the algorithm, the memory requirements of the algorithm, and

the type and amount of arithmetic calculations required by the algorithm to

process a normal data set.

*In addition, Chapter 4 uses tuples to model the characteristics of computer

architectur es. These tuples describe the instruction set, the instruction

processing times, the size and speed of on-board cache, the data and address

widths, the replication of units, the number of stages in pipelined units, and

.. .* , . * ... o

. p. " .".
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by the parameters on the hardware modeled by the tuples can be estimated.

The combination of these two models could be used as a basis for computer

aided design tools used for special purpose parallel/distributed processors. This

chapter uses a layered method of architecture design, in which a task is broken

down into sub-tasks. Each sub-task is then assigned to a special purpose

processing unit. Such a unit may be either a traditional serial type design or a - -

parallel design.

Chapter 5 extends the work done in Chapter 4 by looking at the effects of

both synchronous and asynchronous stages in macro-pipelined machines. Two

synchronous schemes (double buffering and triple buffering) are compared to an

asynchronous system with respect to throughput and system response time.

Theoretical results are presented. A simulator to calculate the throughput and

system response time of each system has been developed to verify the theory.

The results of the simulation of over 200,000 data sets are presented.

1.2. A Survey of Parallel Architectures for Image Processing

The purpose of remainder of this chapter is to give background

information pertinent to the rest of this work. Two taxonomies or hardware

description schemes are discussed in Section 1.3. Sections 1.4 and 1.5 describe

a number of proposed and implemented parallel and/or distributed processing

systems that can be used for image processing. The systems discussed in this

chapter are: CLIP4 - the Cellular Logic Image Processor [Duf82, DuW73,

Fou81, Ger83]; Cytocomputer - a pipelined image processor [PrD79, Ste80];

DAP - the Distributed Array Processor [Ger83, Hun8l, Red79]; the FP array

CDC's Flexible Processor array [,A182, SIS80, SiS82c. SmS81, SwS80]; MPP -

•2. ..
. . .. . .. . . . - ° ... . . . - - .
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the Massively Parallel Processor [Bat8O, Bat82, Ger83, Pot82aj; PASM - the jj
PArtitionable SLMD/MLMD system [SiM81a, SiS81, SiS82c, Sie81]; PICAP -

the PICture Array Processor [KrD82, KrG82, Gud8l]; and STARAN "
p .Ja _

Goodyear Aerospace's associative processor system [Bat74, Bat76, Bat77b,

Bat82, FeF74, Ger83, Thu76, Pot82b].

1.3. Hardware Taxonomies

Currently, there are two classes of computer hardware taxonomies. There

are hardware taxonomies that classify (e.g., tiger) and those that describe (e.g..

four paws, 16 sharp claws, ravenous meat liking appetite, etc.). The

classification taxonomies provide only the most general information, omitting

details for ease of use. Several descriptive taxonomies have been developed to

accurately describe the architecture of computer hardware. These descriptive

taxonomies are often so cumbersome that they cannot be used verbally to

convey their thought.

One of the first taxonomies, proposed in [Fly66], is a classification

taxonomy. This taxonomy classifies a system based on the number of

concurrent instruction and data streams. A machine has either a single stream

or multiple streams in this taxonomy.

A machine that executes a Single Instruction stream on a Single Data

stream is called an SISD machine. Some examples of SISD machines are the

IBM 370/155, the DEC PDP-11/70, and the DEC VAX-11/780. Machines that

execute a Single Instruction stream on Multiple Data streams are called SIMD

machines. Some examples of S1MD machines are CLIP4, ILLIAC V [Bar68,

Bou72, Sto80, MIPP, PASM (in SJMD mode), PICAP I, and STARAN. In such ,-

*" . . . . . . . . . .•- - .- " . . . . . • , " " .. . . . . . .- - .- - " • - • .". ", , .
• ' ' "
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systems, a control unit broadcasts the same instruction to all procussors, and 2

all enabled processors execute the same instruction simultaneously,. each " .

processor on its own data stream. Nfachines that execute Multiple Instruction

streams on Multiple Data streams are called MIMD machines. Some

examples of MLMD machines include the CDC Flexible Processor Array, PASNI

(in MIMPf- mode), PICAP [H, and Cytocomputer [LoM8OI. A machine that

executes a Multiple Instruction on a Single Data stream is called an MISD

machine. Mfacro-pipelined machines fall into this category. The design of such

machines is the topic of discussion for Chapter 4.

The classes of machines in this taxonomy are very broad. For example,

MIPP, whose Processing Elements (PEs) operate on one bit of data at a time

falls into the same class (SIMD1) as ELLIAC IV, whose PEs operate on 64 bits of

,l- '-- ,

data simultaneously. In addition, this taxonomy gives no indication of the

relative size of a machine. For example, PASM (in IMID mode), which could -

consist of up to 1024 PEs, is in the same class as the CDC FP array, which can

consist of up to 16 PEs. Several taxonomies have been proposed to narrow the

classes, at the expense of simplicity. Flynn's taxonomy, however, still remains

the simplest and most widely used.

In contrast to Flynn's taxonomy, which categorizes computers accordinghW

to their instruction and data streams, the classification taxonomy in [Kuc78]

proposes to classify hardware according to the instruction stream(s), instruction

type, execution stream(s), and execution type. As in Flynn's taxonomy, the

instruction and execution streams can be either single or multiple. The

instruction and execution types can be either scalar or array.

The number of instruction streams is determined by the number of

concurrently executable programs. For a program to be executable, it requires

.MPP, wose Proessing lements(P~s) o etonnebtfdaatatie.-."
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a program location counter to point to the next instruction to be executed.

If the arguments to any machine language instruction (operands) are

arrays, the instruction type is array. If no machine language instruction can

accept an array (vector) as an argument, the instruction type is scalar. For

example, consider the instruction:

move a,m

If "a" is a single element and "m" is a memory location this instruction type is

scalar. Systems that have scalar type instructions include: the AMD 9511A

[Amd82J, the CDC FP array [CDC77a, A11821, the CDC 6600 [Che80], CLIP4

[Duf82, Fou81], ILLIAC IV [Bar68, Bou72], MPP fBat80], PASM ISiS81, Sie82],

and STARA.N [Bat76, Bat77b]. For the instruction:

move am,"1000

if "a" is the base address of an array, "m" is a memory location, and 1000 is

the number of bytes to be moved, then the instruction is implicitly performing

an array operation. For this latter case, the instruction type is array. For a

system to have array type instructions, it must include at least one array

instruction. Systems that have array type instructions are: OMEN [Thu76],

VAMP [Che80, Thu76], and the TI-ASC [Che80]. An example of a chip that

has an array type instruction is the Zilog-Z80 [SiS83].

The number of execution streams is determined by the variety of

operations that can be performed simultaneously by the system. Either a

system can perform a single operation or multiple operations at once. Multiple

copies of a single operation count as a single operation. Systems that fall into

*" the single execution stream category are all systems in the SISD and SLMD

-!C- . S •
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classes of Flynn's taxonomy that allow no overlapping of different instructions

(e.g., no overlap of control unit and PE operations). An example of a machine

that has a single instruction stream of scalars with a multiple execution stream

is the CDC 6600. The CDC 6600 has two multipliers, the execution of which

can be overlapped with the addition unit. From a single job stream, both an

addition and multiplication can be taking place at the same time, although

they cannot be initiated simultaneously, thus, there exists multiple execution

streams. Another example of a machine that has a single instruction stream of

scalars with a multiple execution stream is the VAX 11/780 with the floating

point accelerator. A VAX 11/780 can overlap slower floating point operations

with integer instructions, giving multiple executions simultaneously. Without

the floating point accelerator, the VAX cannot overlap operations in any way,

thus the system must wait for the result of any operation before continuing. MY

Thus, the VAX without the floating point processor is an example of a system

that has a single instruction and single execution stream.

The execution type is either scalar or array and is determined by the

number of operands to which a machine language instruction can be applied

simultaneously. A system where a single machine language instruction operates

on multiple operands, like the ILLIAC IV SIMD machine, which issues scalar

instructions that act upon 64 operands, is said to have an array execution type.

If no machine language instruction can act on multiple operands

simultaneously, the execution type is scalar.

The nomenclature is formed by describing the instruction stream and type
r with the execution stream and type. Systems such as the PDP-II/70, which

have a Single Instruction stream that performs Scalar instructions on a Single

Execution stream of Scalars are classified as: SISSES. 1LLLLC lV, which has

..
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scalar type instructions fetched by one control unit and broadcast to 64

execution units, is classified as: SISSEA (assuming no instructional overlap is

allowed). The CDC 6600 has a single instruction stream of scalar instructions

that control a multiple execution stream of scalars and is classified as

SISMES. The TI-ASC has a single instruction stream of array instructions

that controls a multiple execution stream of array operations is classified as

SIAMEA. Table 1.3.1 [SiS831 shows what machines fall into which classes.

Kuck's scheme is a more precise classification taxonomy; however, it is also

more cumbersome to use.

The descriptive taxonomy set forth in [HoJ81] describes the architecture of

a machine in an algebraic style suitable to printing and entry into a computer.

A SISD computer in this notation would be described as:

C =I[E-M]

This means that the computer (C) is composed of a single instruction unit

controlling an execution unit (E) and a memory unit (M). There are twenty

rules that govern symbols, their use, and how they are connected. A synopsis of

this notation appears in both [HoJ81] and [SiS83].

Other descriptive taxonomies are set forth in [Gil83] and [BeN71]. These - .

notations, while similar to the notation set forth in (HoJ81j, have one

important concep!ual difference. The notation in [HoJSi] is specifically two

dimensional. i.e., the architecture of the system can be described in a two

dimensional manner. The notations in [Gil83] and [BeN71] are three

dimensional in nature, making them very difficult to parse. A discussion of each

of the taxonomies appears in [:;iS83], along with several examples. In general,

Fiynn's hardwarp classification scheme will be used here. A special descriptive

F . .
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Table 1.3.1
Kuck's sixteen categories of computer architectures jSiS83].

SINGLE EXECUTION MULTIPLE EXECUTION

TYPE SCALAR ARR AY SCALAR ARRAY

ILLIAC [V

SCALAR PDP 11/4S STARAN CDC 6500 ONWrN-50

(PASM) CPU

SINGLE (TRAC)

INSTRUCTION

CRAY-1

ARRAY ZILOG Z80 CYBER NONE BSP

203/20S KNOWN CDC 7600

TIASC

BURR OUGHS FMP DENELCOR REP

SCALAR CDC 6600 NONE DATA FLOW PASM

PPU KNOWN (PASM) (TRAC)

MULTIPLE (TRAC)
INSTRUCTION

PElt

ARRAY UNDESIRABLE NONE NONE CDC NASF

DESIGN KNOWN KNOWN TRAC ..

PUMPS
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taxonomy is needed and is proposed in Chapter 4. There, computer hardware

needs to be described by its capacity and speed of execution in such a manner

that timing information can be simply obtained. '".-..-

For the application in Chapter 4 that Flynn's taxonomy does not provide

enough information about system architecture to be of use. The taxonomy in

[Gi1831 limits the level of description of a system in addition to not specifically

stating how a system's resources are to be connected. A more explicit

representation of the overall system architecture can be found in [BeN71];

however, this description is two dimensional. Thus it is inconvenient to store

in a computer, and quite difficult to analyze. Finally, it is undesirable to apply .,.,

the taxonomy set forth in [HoJ81] because the depth of the description is

arbitrary. Therefore, different people can differently describe the same machine.

Thus, while all of the above taxonomies are of importance, none is directly

applicable to the application in Chapter 4.

1.4. SIMD Systems

The SIMD systems discussed in this work fall into the following two

categories. Bit-serial systems are composed of PEs that can process only a

single bit at a time. Bit-parallel systems are composed of PEs that process

multiple bits at once. Such PEs are said to process words. CLIP4 [Duf821.

DAP [Red79], MPP [BatSO, Bat82], and STARAN [Bat74, Bat76, Bat77b,

Pot82] are all bit-serial systems. ILLIAC IV [Bar68, Bou72], MuRSS [SmS82],

and PASM ISiS81] are all bit-parallel or word organized system. m of the

systems, except PASM, are purely SIMD machines. PASM. however, can be

either SIMD or NMID as needed.
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Section 1.4.1 will discuss DAP, CLIP4, and STARAN. The strengths and

weaknesses of DAP, CLIP4, and STARAN are presented in Section 1.4.2.

ILLL4C IV and its applications have been extensively discussed in [Bar68,

Bou72, HoS82, Sto8O, Thu76]. PASM is described in Chapter 2. Both MuRSS

and MPP are presented detail in Chapter 3. For brevity, a discussion of

[LLIAC IV, PASM, MuRSS, and MPP is omitted here.

1.4.1. Three Bit-serial SIMD Systems

The Cellular Logic Image Processor (CLIP) series of processors was first

completed in 1971. Since that time, five variations on the original machine

have been built. Most recently, CLIP4, a 96-by-96 processor array, designed to

process video input from a TV camera, was completed. The organization of

the CLIP4 system is shown in Fig. 1.4.1.1 [Duf82]. Each PE has 32-bits of

memory ass,,ciated with it. The incoming video image is digitized into 6-bit

quantities which are then processed bit-serially (as six bit-planes) by the 96-

by-9 6 arrav, f PEs. To control the array, extract instructions, and. coordinate

the periph,,rals associated with the array, a controller is provided. A PDP-

11/10 acts as host for the system.

A .E in (LIPI can communicate with either its eight nearest neighbors or

its six nearest neighbors depending on which communication mode is selected.

These twvo modes are shown in Fig. 1.4.1.2 [DufS2J. The internal organization

of a PE is shown in Fig. 1.4.1.3 [Duf82]. The boolean processor can perform all

boolean operations on single-bit inputs. Addition (subtraction) can be done by

performing the logical operations to generate the sum (difference) and then

generating the carr (borrow). Carries (borrows) are then routed through the .".'.

,. :'-...-.

.. . . .. . . .. . . . .. '. - ..... ... . .. . .
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gating array for use in calculating the next bit.

In conclusion, CLIP4 can perform picture element (pixel) independent

operations, i.e., operations where each pixel is treated independently of its

surrounding pixels, as well as many nearest neighbor operations. CLIP4 is

capable of performing a variety of image processing tasks in real-time.

To process computationally intensive tasks, the Distributed Array

Processor (DAP) project was started at ICL in 1972. The result of this project

was a 64-by-64 array of PEs called the ICL DAP. Unlike CLIP4, DAP is 4-

connected. This corresponds to a subset of the eight nearest-neighbor

interconnection function presented in Fig. 1.4.1.2 consisting of connections 2, 4,

6, and 8. The architecture of the PE is shown in Fig. 1.4.1.4 [Red79]. The ALU

in a DAP PE is very simple. Many logical functions must be broken down into

sequences of A'D and NOT operations. MW

Instead of having 32-bits of memory associated with each PE, like CLIP4,

the DAP PEs have 4k-bits of RAM associated with each PE. All input and

output to DAP is done through the hosts memory, i.e., the DAP memories are

a portion of the hosts memory. This has the advantage that it eliminates idle

transfer time, but it requires the DAP to be used in conjunction with an ICL

2900 series mainframe, which is expensive ( cost: $ 1,000,000 and up) [Ger83].

A detailed comparison and contrast of DAP, CLLP4, and MPP appears in

[Ger83I.

STARA-N [Bat74, Bat76] is a bit-serial system that differs greatly from

CLLP4 and DAP. The original STARAN is composed of 256 PEs, a 256-by-256

bit Multi-Dimensional Access (MDA) memory, and an interconnection"2

network. The MIDA memory can be accessed by bit-slices, byte-slices, words,

or by other portions. In STARAN-E [Bat77b], the MDA memory is composed

.mo'T. ''-......"."........."...... ....- -.... d...
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of up to 256 256-by-256 bit planes of memory. STARAN-E is shown in Fig.

1.4.1.5 [Bat77b]. Instead of having the nearest-neighbor interconnections, like

CLIP4 and D.AP, STARAN is equipped with a multistage permutation network

called the flip network. This is a multistage cube type of network [Sie85]. Its

capabilities are discussed in [Bat76].

Fig. '.4.1.6 [Thu7G] shows the layout of the STARA.N memory array.

Two registers, (X and Y) represent 256 1-bit PEs. The logic associated with

the X- and Y- register can perform any of the sixteen Boolean functions of two

variables. Inputs for the two variable Boolean functions are the present state

of the register and the input from the permutation network, which can either

be memory or the output of another PE. In addition for PE i, either Xi or Y"

may be used as a mask for an operation on the other register, Fig. 1.4.1.6 e.g.,

Xi ,- f(Xi,networki) if Yi = 1 (i=0, 1, ..., 255). The status of Mi determines

which memory locations are modified for a masked write operation. Addition

on STARA.N is demonstrated in [Bat74].

STARAN was designed to be connected to a variety of host computers as

a special purpose peripheral. Three systems cited in [Bat74] are: a DEC-

PDP/ 11, a Honeywell HIS-645, and an XDS E 5. The application of STARAN

to fast Fourier transformation, sonar post-processing, and air traffic control are

all presented in [Bat74]. The application of STARAN to pattern processing is

discussed in [Pot82].
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1.4.2. STARAN, DAP, and CLIP4 -- Comparisons and Contrasts

The design of STARAN is vastly different from those of DAP and CLIP4. i

DAP and CLIP4 have simple nearest-neighbor inter-processor connections. .,4

STARAN's permutation network, is more costly. For simple operations on '

binary arrays, such as erosion and dilations, the DAP and CLIP4

interconnection patterns are simple to use. However, on operations such as '.-

FFTs, STARAN can use the permutation network for performing the butterfly

operations; this is not feasible using DAP and CLIP4.

CLIP4 processors can address a small amount of memory (32-bits each),

DAP processors can each address 4K-bits of memory, and STARAN processors

share one common memory store (some number of 256-by-256 bit planes).

Thus, DAP and CLIP4 spend no time fetching and storing operands and -

temporary results from a global memory, except for initial loading and final

unloading. Both STARAN and STARAN-E with bipolar memory have

circumvented the problem of a global memory becoming a system bottleneck

by using memory that is faster than the registers on either DAP or CLIP4 and

that is as fast as the PE registers on STARAN. In addition, memory is

accessed in such a way that there is no network contention [Bat77a]. Thus,

there is no penalty for having the remote memory. The advantage of the

scheme used for STARAN is that permuting data through the network data

does not involve PE operations. For example, to transmit data in PE i's

memory to PE i + l's memory requires a reconfiguration of the network. For

both CLIP4 and DAP, this same operation would require a read from memory,

a store in the network register, a read from the network register, and a store in

local memory. Clearly, the scheme used for STARAN is less cumbersome and ..,,:,.

less time consuming.

-. -a -a . a j ° • • . = ,. ° ° ,
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The bit-serial nature of the PEs allow a great deal of flexibility of

precision and representation of data. The PEs composing DAP are limited to

the Boolean AND and NOT operations, making operations such as addition

complex entities. The CLIP4 processor is capable of performing the Boolean

A ND, OR, and EXCLUSIVE OR operations; however, the architecture of the

PEs facilitates addition. STARAN PEs are capable of performing Boolean -

.A.ND, OR, NOT, TRUE, FALSE, and EXCLUSIVE OR. In addition,

STARAN PEs can perform these operations with up to three arguments, (the

X-register, the Y-register, and input from the MDA), making a wide variety of

operations possible.

CLIP4 PEs have a small amount of associated memory, increasing control

unit overhead for tasks that require more than 32-bits of associated memory for

parameters and constants. DA-P PEs have a larger available memory (4K-bits). ,g

STARA.N-E avoids this problem with the 256 256-by-256 bit planes of memory.

Because of the organization of all three arrays, the method of calculating a

function of a few variables and using the result to index into a table of entries

is extremely difficult, as the result of the calculation must be globally

transmitted by the Control Unit to each PE. According to [Ger83], this process

may be faster in a sequential machine. This is, however, a fault with bit-serial

processing, not these architectures.

In conclusion, three bit-serial SIMD architectures have been introduced

and discussed. The bit-serial architecture lends itself well to a wide variety of

processing tasks and data precisions. Bit-serial processing makes operations on

words (such as floating point addition) more difficult because the operands are

processed one bit at a time.

,.'-."'" -".- ." '-. -. -. -.""."-.' -' ." " • "."-. . "."": ." ," " : "' '" " . .'-." .'-.'-- -.'- '" "_.• ." " ." ." "_. L':"-£.:" -:2" - - ' -"
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1.5. MIMD Systems

SLID systems provide an environment where every PE performs the same

operations at the same time. Conditional operations, such as: if (condition)

then { A } else ( B } require all PEs not satisfying the condition to be idled

while the remaining PEs execute the block of code corresponding to "A." Upon

their completion, the active PEs are idled while the remaining PEs execute the

block of code corresponding to "B." The idling of PEs reduces the potential

gains in the throughput that the system can give. For some tasks, SUMD

systems may not give desirable performance. MIMD systems may, for these -

tasks, give an increased throughput over SIMD systems. The added flexibility -

of MIMD systems comes with an increased cost of overhead to perform

synchronization when it is necessary. There are certain problems tha are not

appropriate to the single instruction stream limitations of SIM machines,

justifying the extra cost of MIMD processing.

The architecture of a bit-serial MIIMD system, Cytocomputer will be

discussed in Section 1.5.1. A word-oriented system, PICAP H, will be discussed '.

in Section 1.5.2. Two more word-oriented systems are discussed later. The CDC

FP irray and the proposed system PASM are is presented in detail in Chapter

2.

1.5.1. Cytocomputer - A Bit-serial MIMD System

Cytocomputer was developed at the Environmental Institute of Michigan .-.

(ERLM) to perform window or cell based image processing operations. Its name

comes from the Greek word "cyto," meaning cell [Ste80, Lom80]. The concept

of a cell accurately describes the architecture of the Cytocomputer. With DAP
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and CLIP4, there is one PE per pixel. An interconnection network is required

for window based operations. Cytocomputer uses internal storage in the PEs

to achieve the nearest-neighbor connectivity. One PE performs a given

operation for the entirety of an image, greatly reducing the number of PEs

required. This significantly reduces the complexity, cost, and speed of --

Cytocomputer relative to CLIP4 and DAP.

The architecture of Cytocomputer is simple and is shown in Fig. 1.5.1.1

[Ste8O, LoM80]. Cytocomputer consists of K (presently 80) identical stages in a

pipeline. Each of the stages is a fully table-driven cellular logic machine

capable of performing operations involving either four, six, or eight nearest-

neighbors. In addition, each stage has a point-by-point logic function, which is

capable of performing non-neighborhood operations, such as thresholding.

The nearest neighbor connectivity is achieved by loading data from the PW

input stream (or previous stage) into a shift-register, as shown in Fig. 1.5.1.1.

Only nine elements, arranged in a three-by-three square, in the shift register

are accessible at one time. This defines the neighborhood function. To be

consistent with [Ste8O], let N be the number of elements in a row of an image.

Thus, to store the necessary amount of information to process a three-by-three

window. 2N+3 pixels must be stored by each stage or PE. Windows are h-.

achieved as shown in Fig. 1.5.1.2 [Ste80]. Results of calculations are passed on

to the next stage for further processing. After their last use, the input data to

each stage are discarded.

Each of the PEs is driven by a common clock and is capable of performing

independent cell (window) operations. For each of the 80 stages, the time for a

pixel operation is 640 ns. Further increases in throughput are possible byL adding additional stages to the pipeline. The present speed of Cytocomputer
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allows it to perform many applications at a real-time rate. Applications of

Cytocomputer to image processing tasks are discussed in [SteSO, PrD79,

LoM80].

1.5.2. PICAP 1 - A Word Oriented MIMD Machine

The PICture Array Processor (PICAP) was developed at Linkoping -.

University in 1972. It is an MIMD system with up to sixteen word oriented

processors connected to a shared picture memory through a time-shared high

speed bus. The "word-size" each processor operates on is a 64-by-64 window of

4-bit integers. The architecture of PICAP II is shown in Fig. 1.5.2.1 [KrD82].

PICAP's picture memory consists of 4 Mbytes of interleaved RAM, which is

sequentially addressable. With this architecture, PICAP is capable of

processing multiple images simultaneously with little overhead.

Tasks that are too large for a single PICAP processor can be subdivided

and placed on different processors. This offers a great deal of flexibility when

applying PICAP to large image processing tasks.

For PICAP II, the shared bus is capable of transmitting 4x107 pixels per

second, 40 times greater than that of its SLMID predecessor, PICAP I. The host

computer is a PDP-11 series computer that is also used to oversee the operation

of the system. PICAP has a real-time video input and monitor, which allows

interactive image processing of image data. Pictures are interactively processed

on PICAP through a structured high-level language called Picture Processing

Language (PPL) [KrD82I, which allows interactive processing, loading, and

display of images. A FORTRAN interface is also available.

, a... ,
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A discussion of both PICAP I and PICAP II can be found in [KrD82].

Applications of PICAP HI to image processing tasks can be found in [KrG82J.

1.6. Conclusions

Several SIMD and MIMD systems for image processing to were discussed.

Both word-oriented and bit-serial architectures were presented. General

descriptions and applications of a wide variety of processors for image

processing may be found in the following books: [Duf83], [DuL81], [FuI82], and

[PrU821.

-- ., -
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CHAPTER 2

PARALLEL PROCESSING IMPLEMENTATIONS L

OF A CONTEXTUAL CLASSIFIER

2.1 Introduction

Multispectral image data collected by remote sensing devices aboard -

aircraft and spacecraft are relatively complex data entities. Both the spatial

attributes and spectral attributes of these data are known to be information

bearing [SwD78], but to reduce the computation involved, most analysis efforts

have focused on one or the other. Characteristic spatial features include, for

example, shape, texture, and structural relationships. Useful research has been

accomplished in the direction of incorporating spatial information into the data

analysis process (e.g., [HaS73], [KeL761, [WeD761).

The "class" associated with a given pixel is not independent of the classes

of adjacent pixels. Stated in terms of a statistical classification framework,

there mav be a better chance of correctly classifying a given pixel, if in

addition to the spectral measurements associated with the pixel itself, the

measurements and/or classifications of its "neighbors" are considered as well.
The image can be considered to be a two-dimensional random process

incorporated into the classification strategy. This is the objective ofS"contextual classifiers" [WeS71I, in which a form of compound decision theory

is employed through the use of a statistical characterization of context. Recent
?:-..

. ..-- .
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investigations have demonstrated the effectiveness of a contextual classifier that

combines spatial and spectral information by exploiting the tendency of certain

ground-cover classes to occur more frequently in some spatial contexts than in

others [SwS80],[SwV81],[TiS81],[WeS71].

The practical utilization of this contextual classifier in remote sensing has

awaited the solution of two key problems: (1) lack of an effective method for

characterizing and extracting contextual information in multispectral remote

sensing imagery, and (2) the need to reduce the execution time of the very

computation-intensive contextual classification algorithm. The first of these

problems has been solved by development of an unbiased estimation procedure

which provides a good characterization of the contextual information without

requiring exorbitant amounts of classifier training data ("ground truth")

[TiS81. Although the resulting improvement in classification accuracy is

significant compared to conventional no-context statistical classification

methods, the practicality of the contextual classifier depends on the solution of

the second problem, the subject of this chapter.

A reduction in the execution time of classification algorithms such as the

contextual classifier (and even much simpler algorithms used for remote sensing

data analysis) can be achieved through the use of parallelism. There are several

types of parallel processing systems. An SIMD (Single Instruction stream --

Multiple Data stream) machine [Fly66] typically consists of a control unit, N

processors, N memory modules, and an interconnection network. The control

unit broadcasts instructions to all of the processors. and all active (enabled)

processors execute the same instruction at the same time. Each active processor

executes the instruction on data in its own associated memory module. The

interconnection network provides a communications facility for the processors

........ ........ . . .... '.". .'. ...... .-- ...... ....... .- -'-'
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and memory modules. An AIMD (Multiple Instruction stream -- Multiple

Data stream) machine [Fly66J typically consists of N processors and N memory

modules, where each processor can follow an independent instruction stream.

As with SIMID architecture, there is a multiple data stream and an

interconnection network. CDC Flexible Processor (FP) systems are MIMD

architectures that have been built [CDC77a], [CDC77b]. PASM is a proposed

partitionable SIMD/MIMD multimicroprocessor system for image processing

and pattern recognition [SiS81]. For this application, the use of PASM in the

SBID mode of operation will be considered. ..'-

Maximum likelihood classification [SwD78], often used in remote sensing,

classifies each pixel independently of all others. Using either the SIMID or

MIMD mode of parallelism, the image can be subdivided among the processors,

each processor classifying its own subimage. Thus, N processors would be able

to execute maximum likelihood classification approximately N times faster

than one processor of the same type. However, parallel implementations of /4
contextual classifiers are, in general, not so straightforward, due to the use of

neighborhood information. The way in which parallel machines such as the

CDC FP system and PASM perform contextual classifications is examined in

the following sections.

Section 2.2 briefly describes contextual classification and gives a

uniprocessor algorithm for performing it. The implementation of a contextual

classification algorithm on an FP system and a comparison of the timings

obtained on an FP system simulator to those obtained on a PDP-II/70 are

discussed in Section 2.3. In Section 2.4, the way in which PASM can be

applied to contextual classification is considered.

• -"W ..
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2.2. Contextual Classification

2.2.1. Definitions

The image data to be classified are assumed to be a two-dimensional I-by-

J array of multivariate pixels. Associated with the pixel at "row i" and

"column j" is the multivariate measurement n-vector Xii c R' and the true

class of the pixel eil c 0 = {wl,... , wc} The measurement vectors have

class-conditional densities f(X Wk), k = 1,2,...,C, and are assumed to be

class-conditionally independent. The objective is to classify the pixels in the

array.

In order to incorporate contextual information into the classification

process, when each pixel is to be classified, p-i of its neighbors are also

examined. This neighborhood, including the pixel to be classified, will be

referred to as the p-array. To classify each pixel, the contextual classifier

computes the probability of the given observed pixel being in class k by also

considering the measurement vectors (values) observed for the neighbor pixels

in the p-array. Specifically, for each pixel, for each class in Q , a discriminant

function g is calculated. The pixel is assigned to the class for which g is the

greatest. Each value of g is computed as a weighted sum of the product of

probabilities based on the pixels in the neighborhood. This is described below

mathematically for pixel (i,j) being in class Wk. (The description is followed by

an example to clarify the notation used. Further details may be found in

[SwS8O1,[SwV81].)

... ~....
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= n 1 jI~f(X,71 90JP~~) :

&.,C,. 1=1

where

c~ X is the measurement vector from the tpxeinhe-ary(o

pixel (i,j))

0Eeiis the class of the -Ith pixel in the p-array (for pixel (i,j))

2f(X.11 0. is the class-conditional density of X-, given that the -tth pixel is

from class 07~

GP(eij1 _ G(01,9 ...... eO) is the a priori probability of observing the p-array

Within the p-array, the pixel locations may be numbered in any

convenient, but fixed order. The joint probability distribution Gl' is referred to

as the context distribution. The class-conditional density of pixel

measurement vector X given that the pixel is from class k is:

r f(XIWO) e2

where the measurement vector for each pixel is of size four, ~I~is the inverse

of the covariance matrix for class k (four-by-four matrix), Mk is the mean

% .

2.*
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vector for class k (size four vector), "T" indicates the transpose, "log" is the

natural logarithm, and I Ekj is the determinant of the covariance matrix. This.. -.

is the same function as used for the maximum likelihood classification [SwD78].

Consider, as an example, the horizontally linear neighborhood shown in

Fig. 2.2.1.1(a), where pixel (ij) is the middle pixel, and assume there are two

possible classes: (I- {a,b}. Then the discriminant function for class b is

explicitly:

gb(x ) - f(X1 I a)f(X2j b)f(X31 a)G(a,b,a)

+f(XI air(X2f b)fMX 31 b)G(a,b,b)

+f(X 1 b)f(X1 b)f(X3 1 a)G(b,b,a)

+f(XI b)f(X 21 b)f(X 31 b)G(b,b,b)

After computing the discriminant functions of g. and gb for pixel (ij), pixel . .

(i.j) is assigned to the class which has the larger discriminant value. (Edge

pixels of the image not having the appropriate p-i neighbors are not

classified.)

Consider the case where there is a non-linear three-by-three context array

(neighborhood), as shown in Fig. 2.2.1.1(b). Here, for each g, with C classes,

there are C8 product terms with nine factors in each term. In general, for each

g, there are CP- 1 product terms, each term having p+1 factors. In the

LANDSAT data used in the testing described in [TiS81], the percentage of

non-zero Go's was about 1% (based on a size nine neighborhood and 14 classes),"'-

so to conserve space and to increase throughput, only non-zero GP's are stored.

This technique will be discussed in later sections. All of the calculations are

done using floating point data.

%,".. .. . -• 4'" ' € -.- "-".. . . . . . . . . . . . . ., . . . . . ..". "" "' """ ' . % " ° % " "'
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xI X,-

01)

(a) Linear one-by-three neighborhood (p =2)

X4  x5 xoG

(i1j- 1) 0i+Ij) (+,j1)

(b) Non-lincar thrcc-by-three neighborhood (1'=8)

Fig. 2.2.1. 1 Linear neighborhoods
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2.2.2. Uniprocessor Algorithm V

The algorithm shown in Fig. 2.2.2.1 is a uniprocessor implementation of

the size three contextual classifier. f(X[ 9.O) is independent of the position

within a window, and thus does not change when a window is moved. This

algorithm is consistent with the theory presented above; however, to minimize

execution time, an array (called "hold" is used to store "compf" values. Since

f(X[ R,) is required for all windows that contain pixel X, redundant

calculations may be eliminated by storing f(XI O) in a temporary array. The

stored f(Xj R) is discarded when pixel X will no longer appear in any windows.

For the uniprocessor implementation, the temporary array is called "hold."

Let "hold(m,k)" be a two-dimensional array of size three-by-C, i.e.,

O<m<2 and 1<k<C. "hold(cr,k)" (statement S5) is a vector of length C

containing the class-conditional density values ("compf" values, statement S3)

for the pixel (ij) ("cr" is an abbreviation for center). "hold(lt,k)" (statement

S4) and "hold(rt,k)" (statement S6) are the analogous vectors for the pixel

(ij-1) (the left neighbor) and pixel (i,j +1) (the right neighbor), respectively.

By using this array to save the class-conditional densities, each density (for a

given pixel and class) is calculated only once.

The algorithm calculates the class-conditional densities for the first three

columns each time a new row is to be classified and stores them in "hold."

(statement S3). Each time a new pixel in a given row is to be classified

(statement S7), the pointers to these values in "hold" are updated (statement

S17). In particular, the data in "It" is disposed of, "It" is updated to point to .. ,.,.

the data previously pointed to by "or", "cr" points to the data previously

pointed to by "rt", and "rt" points to the newly calculated data (statement

S17) for the incoming pixel.
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Main Loop%

for i 0to1-1do /*row index/

for k =1I to C do /* for each class *

for m = 0 to 2 do hold(m,k) =compf(i,m,k) /* cols.O-2 *
It =0 /* hold(lt,k,) is left neighbor *
cr =I /* hold(cr,k) is pixel being classified *

rt =2 /* hold(rt,k) is right neighbor *
for I to 1 J0-2 do /* column index *

value =-1; class = -1 /* max "g" and class *

for k =I to C do /* for each class *

current = g(lt,cr,rt,k)
if current > value 1* compare with max

then value = current; class =k

pitpixel(ij) is classified as "class"

if x J-2 then 1* update hold pointers *
tp = It; It = cr; cr =rt; rt = tp
for k I to C do /* compf's for next col *

hold(rt,k) =compf(i~j +2,k)

Discriminant Function Calculation
fuction g(lt,cr,rt,k) 1* for pixel cr, class k *
sum = 0 /* initialize sum, used to accumulate g*/I
for r = I to C do /* all classes for pixel (ij-1) *

for q = I to C do /* all classes for pixel (ij + 1)

if G(r,k~q) X 0 /* do not multiply If G 0 *
then sumi = hold(lt ,r) * hold(cr,k)

*hold(rt,q) * G(r,k,q) + sum

return (sum) /* sum contains value of g(lt,cr,rt,k) *

Class-Conditional Density Calculation
function compf(a~b.k) /* for pixel (a,b), class k*
x = A(a,b) /* x is the pixel (a,h) measuremet vector *
ex po = 19 -[loJ l + (x-mk)T kI(X-llk)]/2

return (e&XPO) /* return value of f(A(a,b)l j)

Fig. 2.2.2.1 Uniprocessor implementation of size
thiree contextual classifier algorithm (p=2)
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The complexity of the algorithm is proportional to I*J*C3 assignments,

multiplications, and additions, and I*J*C "compf" calculations. Typically,

10<C<60 for the analysis of LANDSAT data.

The algorithm can be extended for a non-linear contextual classifier with a

neighborhood of size nine (as shown in Fig. 2.2.1.1(b)). The complexity of the

algorithm would have growth proportional to I*J*C0  assignments,

multiplications, and additions. The number of "compf" calculations would still

be I*J*C. In this case, "hold" would be a (2*J+3)-by-C array (assuming the

neighborhood window moves along rows). Fig. 2.2.2.2 shows the pixels whose

"compf" values are stored in the "hold" array. The 2*J+3 pixels whose

"compf" values are stored in "hold" are chosen to make it unnecessary to

perform redundant "compf" calculations. In general, when classifying pixel (ij),

"hold" has the "compf" values for pixels j-1 to J-1 of row i-I, pixels 0 to J-1

(all) of row i, and pixels 0 to j+I of row i+1. After the classification of pixel

(ij), the values for (i+l,j+2) are added and the values for (i-1,j-l) are

removed. When the pixels on a new row are to be classified, call it i', then the

values for pixels (i'-2,J-3), (i'-2,J-2), and (i'-2,J-1) are removed and the

values for (i' +1,0), (i' +1,1), and (i' +1,2) are added. (This assumes row i' is

classified after i'-1.) Given this, the rest of transforming the algorithm for the

size nine square neighborhood case is straightforward.

In summary, the uniprocessor one-by-three algorithm was presented. The

extension to the three-by-three case was discussed. Extension to other size and

shape neighborhoods is similar. The next two sections discuss parallel

implementations using FPs and PASM respectively. ".. ,.

.wI.
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2.3. MIMD Implementation on the CDC Flexible Processor System
*1

2.3.1. Flexible Processor System ,'

The Control Data Corporation Flexible Processor (FP) system is a

multiprocessor system which has been recommended for use in remote sensing.

The basic components of an FP are shown in Fig. 2.3.1.1. There can be up to

16 FPs linked together, providing much parallelism at the processor level. The

FPs can communicate among themselves through a high-speed ring or shared

bulk memory. A possible FP system configuration is presented in Fig. 2.3.1.2.

The instruction cycle time of each FP is 125 nsecs. An FP is programmed

in micro-assembly language, allowing parallelism at the instruction level. For

example, it is possible to conditionally increment an index register, execute a

program jump, multiply two 8-bit integers, and add two 32-bit integers -- all .

simultaneously. This type of operational overlap, in conjunction with the

capability to use up to 16 FPs in parallel, greatly increases the speed of the FP

svstem.

The following list summarizes the important architectural features of an

FP:

User microprogrammable.

Dual 16-bit internal bus system.

Able to operate with either 16- or 32-bit words.

125 nsec. instruction cycle time.

125 nsec. time to add two 32-bit integers.

250 -nsec. time to multiply two 8-bit integers.

Register files of over 8000 16-bit words.

60 nsec. read/write time for register files.

.z Z!:i -
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Fig. 2.3.1.2 A potential FP system
configuration ([CDC77ajCDC77b])
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Up to 16 banks of 250 nsec. bulk memory (each bank holds 64K words).

In order to debug, verify and time FP algorithms, a simulator and an -

assembler were developed for a system of up to 16 FPs. The experience gained

through the use of the simulator has made evident the following advantages

and disadvantages of the FP system.

Advantages:

Multiple processors (up to 16)

User microprogrammable -- parallelism at the

instruction level

Connection ring for inter-FP communications

Shared bulk memory units

Separate arithmetic logic unit and hardware multiply

Disadvantages:

No floating point hardware

Micro-assembly language -- difficult to program

Program memory limited to 4K microinstructions

Both the simulator and the assembler are designed to operate under the

UNIX operating system. They are described in [SmS80]. More details about

the FP system can be found in [SmS801,[SwS801,[CDC77al,[CDC77b].

slum&"
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2.3.2. Linear Contextual Classifiers

Consider using an N ( _16) FP system to implement the contextual

classifier based on a horizontally linear neighborhood of size three (Fig.

2.2.1.1(a)). Divide the I-by-J image into subimages of I/N rows J pixels long,

as shown in Fig. 2.3.2.1. This method of dividing the image is called striping.

Assign each subimage to a different FP. The entire neighborhood of each pixel

is included in its subimage. No interaction between FPs is needed, i.e., each FP

can process its subimage independently. A perfect factor of N improvement

speedup over a single FP occurs if I is a multiple of N. The degradation in

performance that arises when I is not a multiple of N is less than 1% for large

images [SwS80].

An FP micro-assembly language version of the algorithm stated in Fig.

2.2.2.1 was written. Because each FP is microprogrammable, determining

program correctness and analyzing the execution time are done through the use

of the micro-assembler and simulator. All floating point operations are done in

software. Mantissa normalization of all floating point operands gives rise to a

variation in the overall execution time per pixel. This variation can be as much

as 10:1 [SmS80].

Each pixel measurement vector consisted of four 32-bit floating point

representations of 8-bit integers; the input data were converted to floating

point notation prior to the execution of the classifier. This conversion is not "

included in either the FP or comparative PDP-11 timings. Covariance matrices

consisted of ten 32-bit floating point numbers. Further, 32-bit floating point

numbers were used to represent the logarithms of the determinants of the .

covariance matrices and the a priori probabilities. The pixel measurement

vectors, covariance matrices, logarithms of the determinants of the covariance

.**. . . . . . . .. . .. . . . . . . . . ... ,
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Fig. 2.3.2.1 Striping method of dividing an

I-by-J image among N FPs
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matrices, a priori probabilities, and a temporary variable array are all stored in
the "large file" (see Fig. 2.3.1.1). Thus, in this case, each FP has all the

information it needs for performing the classification on its subimage stored in

its register file and no "bulk memory" accesses are required.

If the number of non-zero a priori probabilities is small (less than 50%),

and the contextual information (configuration of classes) associated with each

GP can be stored in the space of one floating point number (32 bits), then any

algorithm that stores all a priori probabilities will waste memory space. This is

the case in the LANDSAT data used for this experiment. Each Gp is stored as

two 32-bit quantities. The first 32-bit quantity contains information about the

class of each pixel within the p-array. For example, if G(3,3,2) is non-zero, the

word preceding it is a representation (catenation) of 3,3, and 2. This allows

132/pi bits per class, i.e., up to 2 132/pI classes. (Thus, for the size three

neighborhood being considered, C can be as large as 1024.) The second 32 bits

is the value of the GP itself. Only the non-zero GPs are stored, so only the non-

zero GPs affect the computation time.

For larger windows (larger p), it is possible that 2 will not be large

enough to include all possible classes. If this occurs, one or two additional 32-

bit words can be used to store the class information about the p-array. In such

cases, the non-zero GPs would have to be less than 30% or 25% respectively in

order for this scheme not to require additional space. As stated previously,

based on an analysis performed, the percentage of non-zero GPs is much smaller

than this.

When this memory arrangement is employed, the needed class information

is obtained by masking off the desired bits and shifting the result right

(producing a number between 0 and 2 L32k/pL, where k is a number between 1

................................. .
. .
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and 3 depending on the number of words used to store the class information.)

If the desired information does not cross a word boundary, this operation will

require 3p steps per non-zero G P (load, logical and, shift), otherwise it will

require 7p steps per non-zero G P (load, logical and, shift, load, logical and, add,

shift.) Consider, instead, using the straight forward approach of storing all GPs,

both zero and non-zero. For a window of size p, a p-element vector (containing

elements between 0 and C-i) is required in order to create the pC possible

window configurations. Incrementing an index value requires four operations

consisting of: storing the address of the index in the large file address register,

reading the index from the large file, incrementing the index, and the storing

the new value in the large file. This is done each time an index is incremented.

In addition, each time an index is incremented, it must be compared to the C.

If it equals C, it should be set to 0 and the next index incremented. 2p

operations are required (store address of index in large file address register and

store initial value of index) to initialize the indices. Thus, the time required to L1

handle the indices for this scheme is 2p+5 (C') steps per G P (zero or non-

zero.) Thus, the proposed algorithm will not only be more space efficient, but it

will run faster.

For the purposes of testing the FP implementation of the one-by-three

linear contextual classifier program, measurement vectors from 30 rows of 16

pixels were classified. The data set consisted of a four-class subset of the

LANDSAT data used in [SwV81]. To provide a basis for comparison, a similar

contextual classifier was run on a PDP-11/70 over the same test data. It was

found that lack of exponent range in the 11/70 floating point hardware

required extra handling. FP floating point algorithms are implemented in the

4.s .
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software, so a 14-bit exponent was used to overcome this problem. A

description of the floating point software is available in [SmS80]. The FP "e"

calculations are based on those in [Har68]. Twenty non-zero GPs were chosen

for the benchmark tests. Running under the above constraints, the single FP - -

classifier took .035 secs./pixel, while the PDP-11/70 required .050 secs./pixel, a

30% improvement.

Using .05 sees. per pixel as the PDP processing time and .035 sees. per ."-

pixel as the single FP processing time, a 16 FP configuration would perform

contextual classifications at a rate of 457 pixels per sec., as opposed to 20

pixels per see. for a single PDP-11/70. There are, of course, cost differences,.

between these two systems; however, the purpose here is to show the gains

made possible by a multiprocessor FP system. In general, different size.

horizontally linear (Fig. 2.3.2.2(a)), vertically linear (Fig. 2.3.2.2(b)), and

diagonally linear neighborhoods (Fig. 2.3.2.2(c)) of various sizes can be

processed in a manner similar to that for the horizontally linear neighborhood

of size three [SwSSO].

2.3.3. Non-linear Contextual Classifiers

Consider non-linear neighborhoods, that is, neighborhoods which do not fit

into one of the linear classes. For example, all of the neighborhoods in Fig.

2.3.3.1 are non-linear. It can be shown that there is no way to partition an

image into N (not necessarily equal) sections such that a contextual classifier

using a non-linear neighborhood can be performed without data transfers

among FPs [SwS80]. The specific non-linear case under consideration is the

three-by-three non-linear neighborhood, shown in Fig. 2.2.1.1(b). First, the

~~~~~~~~~~~.. . ..... . .. ........ . . -.........-•...................._.............. . ..-.-.... -.. -...-..-.......
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(a) Horizontally hnear neighborhoods

.(b) Vertically linear neighborhoods
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(c) Diagonally hinecar neighborhoods .-.-
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single FP timings are considered, then the timings for an system of N FPs are , .

considered.

The eight-nearest neighbor contextual classifier is similar to the previously

described linear case. Differences arise in the calculation of the discriminant

function (discussed in Section 2.2.1), the method of updating the "hold" data

for a given window (discussed in Section 2.2.2), and the method of data storage

(discussed below).

Timings run from LANDSAT data from [SwV81] show that, on the

average, the FP implementation of the four-class, size nine square

neighborhood contextual classifier with all data entries and a priori information

stored in the large file requires .137 secs./pixel. A PDP-11/70 implementation

of the same algorithm requires .154 secs./pixel. Thus, there is an 11%

improvement. The improvement is not as much for this case as in the size three

horizontally linear case because the FP performs floating point operations in

the software. The more terms in the product term, the more time the FP will

spend normalizing intermediate results. Tests for the 11/70 were run with 50

non-zero GPs and four spectral classes on 52 lines of 16 pixels. A 30-line-by-16-

pixel subset of the above image was used to derive the FP timings for a 52-line

image. Pixels on the top and bottom line of an image are not classified, and

thus do not appear in the number of classified pixels. As a result, for the first

and last rows of an image, the classifier must calculate the class conditional

probabilities for these pixels without ever classifying them. Therefore, the

results are slightly biased in favor of the 11/70 implementation. Once again, '-

only the non-zero GPs are stored, so only the non-zero GPs affect computation

time.

.. .. . . . . . . ..- 7--,."
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Using .154 secs. per pixel as the PDP processing time and .137 secs. per. .

pixel as the single FP processing time, a 16 FP system would perform

contextual classifications at a rate of approximately 116 pixels per see., as

opposed to the 6 pixels per see. rate of a single PDP-11/70. This assumes,

however, that all needed data are stored in the large file, a somewhat .

unrealistic-assumption. The use of the bulk memories for storing and sharing

data is discussed in the next three sections.

2.3.4. Processing of Images with Large Numbers of GPs

If the a priori probabilities are too large to fit in the register files, bulk

memory can be used to store the overflow GPs. The width of the bulk memory

is 16 bits. Each GP is composed of either two, three, or four 32-bit quantities.

One contains the GP itself, while the rest is the contextual information

associated with a given pixel (see 2.3.2). A 64-bit GP can be accessed with four

reads from bulk memory, while a 96-bit read can be accessed with six reads,

and a 128-bit GP can be accessed with eight reads. One of the special features

associated with an FP is that every time a read from bulk memory is

performed, the pointer to bulk memory is automatically incremented [CDC77a].

A read from bulk memory is accomplished in two steps [CDC77a], [CDC77b].

First the read must be initialized and second (after .250p--secs.) the data must

be read from the bulk memory [CDC77a],[CDC77b]. On the surface, it would -I

appear that a 16-bit read requires four clock cycles; however, this is not the

case. The read can be initialized in parallel with other operations; thus no time

is lost due to the initialization. An FP can wait for the data or it can execute

other instructions in the meantime. Thus, the total cost of a read from bulk
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memory is one instruction cycle per 16 bits. The cost, then, of accessing a GP

and its corresponding context configuration from the bulk memory is 2 + 2k ,,

instruction cycles, or 250p-sees + kx250p-secs, where k is the number of

words used to store the context information. To perform the corresponding

operation from the large file requires .250p-secs., or two instruction cycles.

As an example, use the benchmark eight-nearest neighbor non-linear

context array, where k=1. Allow all 50 of the GPs to be stored in bulk

memory. The total time spent accessing the GPs is:

.500p -secs # of non-zero GP(=50) 25 P-secs.

GP pixel pixel

Only half of this time, however, represents additional processing time over

fetching the GP and its corresponding context array from the large file. Thus,

the additional processing time required to process a GP stored in bulk memory

is 12.5p-secs per pixel. When this is compared to the 137,000 p-secs./pixel

required for classification, this time represents a negligible cost. In the cases

where there are more classes, this ratio will become more negligible.

2.3.5. Processing of Images in Bulk Memory

If an image is small, data vectors may be stored in the large file. This was

the method used to acquire the timings presented. For actual images, however,

the large file is too small to hold the image data. Pixel measurement vectors
can be stored in bulk memory. There is, however, an additional cost associated

with reading pixel measurement vectors from bulk memory. Pixel data is

represented as a one-by-four vector of 32-bit floating point numbers. It was

"-"-4".
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earlier stated that a 16-bit read from bulk memory requires the same amount

of time as a 32-bit read from the large file. Thus, reading a 32-bit number from ¢,-

bulk memory will require twice as much time as a corresponding read from the

large file. Reading a data vector from the large file will require four instruction

cycles, or .5p-secs./pixel. Reading the same data from bulk memory will

require an additional processing time of four instruction cycles, or

.5p-secs./pixel. This is minimal when compared with the 137,000u=-secs./pixel

processing time associated with the eight nearest-neighbor contextual classifier.

2.3.6. A 16 FP System

Consider the problem of using N ( _16) FPs together to do contextual

classification with a square size nine neighborhood. Assume the image data is.P-P

stored in the bulk memories. The approach taken is to divide the image among

the FPs using the "striping" method (Fig. 2.3.2.1). Each FP classifies the

pixels in its own subimage. Because the p-array is non-linear, FPs will have to

communicate to share subimage edge data [SwS80]. For example, to classify

the bottom row of FP 0's subimage, information about the pixels in the top

row of FP I's subimage is needed (i.e., the neighborhood window crosses

subimages boundaries). Thus, some way to achieve this sharing is necessary.

The speed at which the contextual classifier runs depends on the floating

point algorithms which are implemented in the software. This can cause a

bottleneck in the processing if one FP is required to wait for another.

Synchronization can require large amounts of time if the full 16 processor array

is used, since at each step, the slowest FP will determine the execution time.

Thus, asynchronous processing at the instriction level is necessary.

." ,- -
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An FP is capable of addressing up to three channels of 16-by-128K bytes

of bulk memory each [CDC77a],[CDC77b]. The sharing of bulk memory is a

scheme that can be used for transferring data among FPs. One possible

implementation is shown in Fig. 2.3.6.1. Bus 0 of FP i will be shared with

FP i-1, while bus 1 will be local to FP i, and bus 2 will be shared with'~
FP i+1. An FP will be allowed to address only half of its L memory banks at

one time. This is done to facilitate double buffering. The other L/2 memory

banks will be accessible by the host. This allows the FP to classify one image

while the host unloads and stores the results of the previous classification and

then loads the next image to be processed.

Assume each FP will classify the pixels in I/N rows (Fig. 2.3.2.1). If

border areas are stored in the shared memory banks, a processor will begin

processing in banks of bus 1. Processing will continue through half of the L/2

banks in bus 1 to bank 0 on bus 2. After all the data in the banks on data bus

2 have been processed, processing will continue to the banks on bus 3.

Allowing 25% of FP i's data to be stored in the shared banks on bus 1,

50% of the data to be stored in the local banks on bus 2, and 25% of the data

to be stored in the shared banks on bus 3, no contention will occur. Consider

that for processor i to "catch up" with processor i+ 1, processor i will have to

process more than 75% of its data in the time that it takes processor i + 1 to

process 25% of its data. Thus, contention is not a problem.

When an image is divided by the striping scheme, all non-linear windows

will require FPs to share data. In particular, for the case of an A-by-A window,

(A-i) rows of "compf"/pixel values must be commonly accessible by adjacent

FPs. This is shown in Fig. 2.3.6.2. Assuming that an FP classifies all pixels "

in its subimage, that the pixel to be classified is in the middle of the window,
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and that A is odd, FP i (i>O) will require the (A-1)/2 bottom rows of data

from the subimage of FP i-I to classify the top row of its subimage (in

addition to the (A-1)/2 rows of data from its own subimage). In addition, FP i

will require the (A-1)/2 top rows of data from the subimage of FP i+1 to

- classify the last row in its subimage. Once the "compf" values for a given

pixel are calculated, they do not change. Thus, if FP i calculates the "compf"

values for the (A-1)/2 bottom rows of pixels from the subimage that "belongs"

to FP i-i and stores those "compf" values and the "compf" values for the top

(A-I)/2 rows of its subimage in shared bulk memory, FP i-I will not need to

recalculate the "compf" values for those pixels. While FP i is calculating the

compf values for the bottom (A-1)/2 rows of data from the subimage of FP

i-1, FP i +I is calculating the "compf" values for the (A-1)/2 bottom rows of

data from the subimage of FP i. When FP i classifies the bottom (A-1)/2 rows

of its subimage, the needed "compf" values will have already been calculated

by FP i+1. Thus, to classify the bottom (A-1)/2 rows of data from a given -.--.

subimage, FPs will not need to calculate any "compf" values, as they are

already stored in either the hold array or in the shared bulk memory. There is

little possibility that one processor will require data before it is ready. For a

processor to require such data, it would have to process (I/N)-((A-I)/2) rows

of its data in the same time that another processor would have had to classify

less than (A-[)/2 rows of its data.

P- 7P.1



60
4n '...-

2.3.7. Processing of Large Images

Assume that an FP system is configured as previously described. If the

image to be processed will fit into bulk memory, the image can be processed

according to the "striping scheme" discussed earlier. There is, however, another

problem that can arise. An image may be too large to fit in the bulk memory.

Assume that there are L' bulk memory banks per FP for data, separate

from the bulk memory banks for the GPs, there are N FPs and that a three-

by-three neighborhood is being classified. If an image will not fit into the

N*L'/2 bulk memory banks, the host wiU transmit only the leftmost

unprocessed columns of the image that will fit into N*L'/2 bulk memory banks : -

at a time, L/2 banks per FP. While the FP is processing one subimage in one

half of its memory, the host can be loading the next subimage into the other

half of the bulk memory. This will overlap the FP operation with the host's

operation. If an image and its associated data can fit in N*L' memory banks,

it is still beneficial to use the striping scheme, as this will facilitate the

preloading of the next image to be processed. Fig. 2.3.7.1 is an example of how

an image is divided and processed. The FPs process subimages from left to

right. Each subimage will be processed as described in Section 2.3.6. The

stored class-conditional densities ("compf" values) for the rightmost two

columns of data must be saved, as they are needed to process the next

subimage. These columns of data will be stored in one of the L' memory

banks. This memory bank will not be accessed by the host, as it will contain

the "compf" values necessary for the FP to process the next subimage. The

exception to this rule is the last subimage. Since the FP will have no further

processing, it is not necessary to save these values. Neither the first nor the last

column an FP processes will be classified, as there is insufficient context

information.

J1.,
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Since the floating point operations require variable amounts of time, an

FP processing its portion of the image may finish before the rest of the

processors. With the FPs running asynchronously, it is theoretically possible

for a given FP eventually to get two subimages ahead of its neighboring FPs.

Subimage edge data would be destroyed for the neighboring FPs if the host

were to load new data into the shared memory banks before the neighboring -

two FPs had finished with the old data. To prevent this from happening, after

an FP processes two subimages, it must wait for the other FPs to finish. -.

When an FP finishes writing results into a bank of bulk memory, it signals

the host to read all necessary data from that memory bank, even though an

adjacent FP will need to read data corresponding to the subimage edge pixels

from that bulk memory bank to process the next subimage. Since a read is

non-destructive, the host reading from bulk memory will not hamper an FP

reading from the same bulk memory bank. All FPs accessing a given bulk

memory bank must set flags in bulk memory before the host can write to this

bank. This will prevent the host from overwriting data that is still in use. As.-

was stated in Section 2.3.2, with 20 non-zero GPs, a single FP classifier took

.035 sees. to classify a single pixel. Reading a pixel measurement vector from

bulk memory will require 4.0 p-secs.. Most of the execution time is spent in

mathematical calculations, not fetching data, so any possible contention will

have a negligible effect on pixel processing time. ' *-'

.. . % '
".- -%
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2.3.8. Summary

In summary, the organization of the FP system given above will allow

contention-free sharing of data. This means that N FPs will be able to operate

approximately N times faster than one FP. Furthermore, the double-buffering

of the bulk memories will allow the loading of images to be processed and

storage of results to be overlapped with the classification operation of the FPs.

2.4. SIMD Implementations on PASM

2.4.1. Introduction
- ...

PASM is a dynamically reconfigurable multimicrocomputer system whose

design will support as many as 1024 processors [SiS81I. SIMD implementations
K.-,.

of contextual classifiers based on PASM are discussed in the next section.

First, a brief overview of PASM is presented, limited to those aspects of PASM .

that are needed to understand the SIMD algorithms that follow.

2.4.2. Overview of PASM

Fig. 2.4.2.1 is a block diagram of PASM. The heart of the system is the

Parallel Computation Unit (PCU), which contains N processors, N memory ,,'-.

modules, and the interconnection network. The PCU processors are

microprocessors that perform the actual computations. The PCU memory

modules are used by the PCU processors for data storage in SIMD mode.

When a PCU processor is combined with a PCU memory unit, it is referred to

as a Processing Element (PE). The interconnection network provides a

'. . . . . 7
-. K... . . . . . .
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means of communication among the PCU processors and memory modules.

PASM uses data conditional and PE address masks to activate and deactivate --

PCU processors in SIMD mode.

The processors, memory modules, and interconnection network of the PCU

are organized as shown in Fig. 2.4.2.2. A pair of memory units is used for each

PCU memory module so that data can be moved between one memory unit

and the secondary storage, while the PCU processor operates on data in the

other memory unit. Each PCU memory unit may be as large as 64K 16-bit

words. Two choices being considered for the network are the Generalized Cube

[SiM81bl and Augmented Data Manipulator [SiM81al. Their relative merits are

currently under study [McS82].

The Micro Controllers (MCs) are a set of microprocessors which act as

the control unit for the PCU processors in SIMD mode. Control Storage

contains the programs for the MCs. Each MC memory module consists of a

pair of memory units. This allows programs and/or common data to be moved

between Control Storage and one MC memory unit, while the MC is using the

other memory unit.

The Memory Management System controls the loading and unloading

of the PCU memory modules. It employs a set of cooperating dedicated

microprocessors. The Memory Storage System is the secondary storage for

these files. Multiple devices are used to allow parallel data transfers. The

System Control Unit is a conventional machine, such as a PDP-11, and is

responsible for the overall coordination of the activities of the other

components of PASM.

..... . . ............ . °. . ..... .- *°... . . •. ... .... ~,,.,_. .
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The approach taken to contextual classification using PASM in SLMD

mode is different from that for the FP system, since the processors are

synchronized and there is no directly-wired shared memory. There are three

main differences between the FP and SIMD implementations. First, it is

technologically feasible to construct a multimicroprocessor SIDMD machine with

many more than 16 processors. Second, there are differences in computational

capabilities, i.e., 16 FPs may be faster than 32 microprocessors. Third, in SIMD

mode, the program is stored in the control unit (MCs), which broadcasts it to

the PCU microprocessors. The control unit also stores the GP array, decoding

and broadcasting each element as needed. In the FP system, each FP stores a

copy of the program and GP array.

2.4.3. Linear Contextual Clasification on PASM

Consider using PASM to implement the contextual classifier based on a .

horizontally linear neighborhood of size three. If the image to be classified is a . .

typical LANDSAT [NAS72] frame (I-3250,J=2340), 776 PEs will be assigned

7427 pixels and 248 PEs will be assigned 7426 pixels. Classification is

accomplished by having each of the PE's execute the serial algorithm of

Section 2.2.2 simultaneously. For example, all PEs first calculate the "compf"

values for their pixels. This is done simultaneously in all PEs, where the 248

PEs assigned 7426 pixels will be disabled for the last PE operations. All PEs

will then send their neighbor the "compf" values that need to be shared. By

extending the previously discussed striping scheme to include a non-integer

number of rows assigned to each PE, this task division is realizable. The ..

modified striping scheme, shown in Fig. 2.4.3.1, requires 2C additional network

. . . . . . . . . . ..,. . ..--.-'.. -. --. , --.. . , • ,,,, , , ., .- -, .....-.. . . . . .-.. . .-.. .. . -.... ...-. . .... . ,:

.. . . . .4..."" ' • " " "
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'VNtransfers over the original striping scheme for sharing "compf" values between

adjacent PEs. This cost is negligible when compared to the classification time

of 7426 pixels. Each of the interconnection networks under consideration for ,i.

PASM can perform each of the 2C required data transfers in one pass through

the network, where each transfer involves N PEs i.e., when PE i is transferring
data to PE i-1, PE i-I is transferring data to PE i-2, etc. On PASM, a PE

will get an instruction to send another PE the shared data. This differs from

the FP system, where an FP gets the data it needs on its own. The

asynchronous nature of the FP system makes this modification to the striping

algorithm less efficient on the CDC system.

An image may be so large that not all of the data will fit into the PCU

memory space allocated. The double-buffered memory modules can be used so

that as soon as the data in one memory unit are processed, the processor can

switch to the other unit and continue executing the same program. When the

processor is ready to switch memory units, it signals the Memory Management

System that it has finished using the data in the memory unit to which it is

currentlv connected. The processor switches memory units, assuming that the

data is present, and then checks a data identification tag to ensure that the

new data are available. 'ile Memory Management System can then unload the

"processed" memory unit and load it with the next subimage. For both the

one-by-three linear window and the three-by-three nonlinear window, this

scheme will require some mechanism to allow the "compf" values for the last

two columns of a subimage in a given memory bank to be available when the

associated processor switches to the next memory unit. .. -'

One method of doing this maintains a copy of local data in both memory

units associated with a given processor, so that switching memory units does

.7 7 . ..



-X 7 -W - -- 7v -Lw K..

MW

............

Fig. 2.4.3.1 Modified striping scheme

I 
it



70 .% ..

not alter the local variable storage associated with the processor [SiS81]. In

essence, this technique makes use of the conventional store through techniques, _-_-_--'

as described in [Hay78]. This scheme would be used only when multiple '

subimages are to be processed.

The time required to classify a LANDSAT frame is the same as the time

required for each PE to classify 7427 pixels. If each PE were to classify 7427

pixels, 7,605,248 pixels would be classified, representing a speedup of 1024. For

a 3250-by-2340 image, PASM will classify 7,605,000 pixels in the same time.

This is 99.997% of the theoretical improvement of 1024.

2.4.4. Non-Linear Contextual Classification on PASM

Consider implementing a three-by-three non-linear contextual classifier on

PASM. The I-by-J image is divided into N subimages. Each PE will be assigned

an (I/VAN)-bv-(J/vN) array as shown in Fig. 2.4.4.1. Tf I is non-divisible by

VN, some PEs will have to process (I/v/-N)+1 rows of data, while others will

have to process I/VN. Similarly. if J is non-divisible by vIN, some PEs will

have to process (J/v/'N)+l columns of data instead of J/v/N. In all cases, the

PEs processing the smaller amount of data will be disabled while the remaining

PEs continue processing. All of the PEs will execute the algorithm discussed in

Section 2.2. Each PE can cla,:sifv all the pixels in its subinmage which are not

on the ,ubimage edges. All PEs can do this sirnultaneously. To classify

subimage edge pixels, the PEs must share data by passing information through

the interconnection network. For example, in order for PE 0 to classify pixel

(O(J/Av)-l) it needs to get the "compf" values for pixel (0,,J/vN) from PE 1.

Both networks under consideration can perform each of the nearest neighbor

... . . . - . ~ * .*N.* . ..•,
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inter-PE transfer operations in one pass through the network.

One way to share "compf" values among PEs is to have each PE first

compute and store the "compf" values for its edge pixels in a vector called

EDGE. (Later, when a PE needs the "compf" values for these pixels in order

to classify pixels in its own subimage, they are read from EDGE, not

recomputed.) Each PE sends copies of these values to the appropriate

"adjacent" PE. A PE saves the value it receives in a vector OUTEREDGE.

Each PE accesses its own OUTEREDGE vector when it is ready to classify its

edge pixels. This method requires only ((2(I+J)/vN)+4)C parallel data

transfers. For each of the required transfers, the networks being considered for

PASM will allow all PEs to perform the transfer simultaneously. A

checkerboard division of the image was used since, in general, it requires fewer

inter-PE transfers than dividing the image by rows or columns. For arithmetic
operations and "compf" calculations, a perfect factor of N speedup is attained.

This is done at the "cost" of ((2(I+J)/vN)+4)C inter-PE transfers. These

data transfers are negligible when compared with the I*J*C/N "compf"

comput atiQns.

2.5. Conclusions

Based on simulated results, timings for contextual classification on an FP

system have been presented and discussed. A potential system configuration for

the FP system has been presented, and its use discussed. For comparison,

timings have been presented for contextual classification on a PDP-11/70. It

was found that a PDP 11/70 runs at a slightly slower speed than a single FP

on the contextual classification algorithms examined. Further, it was shown

........................................................
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that N FPs could execute contextual classification almost N times as fast as

one FP. Thus, the multiprocessor parallelism of an FP system can be

successfully exploited.

It was shown that N processors in the SIMD mode of operation could .

accomplish contextual classification almost N times faster than one processor of

the same type. In particular, an SIMD algorithm for PASM to perform the

computationally intensive task of contextual classification was presented.

The FP and PASM approaches could be combined [SmS82]. A

multimicroprocessor SIMD machine with shared memories (as in the FP

approach) and no interconnection network would be an efficient special-purpose .,. ".'L

system for performing contextual classification with various size and shape

neighborhoods.

Thus, through the use of parallel computer systems, such as PASM and

CDC FPs, the types of computations required for contextual classifiers and

other computationally demanding remote sensing processes can be implemented

efficiently. This will not only reduce the computation time required to do

contextual classification, but will also allow the investigation of techniques

which may otherwise be considered infeasible.

. .. . . . 4 . .
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CHAPTER 3

PARALLEL PROCESSING CONCEPTS FOR

REMOTE SENSING APPLICATIONS

3.1. Introduction

Multispectral image data collected by remote sensing devices aboard

aircraft and spacecraft are relatively complex data entities. Because of the

multispectral nature of remote sensing image data, vectors are used to

represent the data. The execution of even the simplest classification algorithms

may require large amounts of computation time. Thus, in order to allow

complex classification algorithms to become more feasible, special hardware

(such as the previously discussed parallel architectures) to increase the

execution speed is of interest.

For many remote sensing tasks, all pixels in a given image are treated in a

similar fashion. This implies that the same numerical operations are done on all . -

pixels. Thus, the same instructions are performed on multiple data sets. It

would appear that SLMD machines, such as those discussed in Chapter 1, are

particularly well-suited to these tasks. Further, since images as large as 3250-

by-2340 pixels [NAS72J are common, a system that has as many as 1024

processors would be well-suited for image processing tasks. Large scale . SL

integration makes just such parallel systems possible.

:.. :.:.:_..,,', -. _''...-..... ... -. ................ ............-....... . . ... .... '..............
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The applications of such a machine to image processing tasks is the topic

under consideration here. Section 3.2 introduces a potential machine !.-A.

architecture. Sections 3.3, 3.4, 3.5, and 3.6 discuss how such a system can be

applied to smoothing, maximum likelihood classification, contextual

classification, and image correlation, respectively. The fault tolerance of

MuRSS is discussed in Section 3.7. Enhancements to the MuRSS architecture

to increase fault tolerance are presented in Section 3.8, where the fault

tolerance of both the original and enhanced systems are compared. An

overview of MPP, the Massively Parallel Processor (an already existing

architecture) is presented in Section 3.9, along with a discussion comparing

MPP to the enhanced MuRSS system in the areas of performance, capabilities,

and fault tolerance.

3.2. Machine Architecture

The proposed SIMID architecture, Multimicroprocessor Remote Sensing

System (MuRSS), is shown in Fig. 3.2.1. The system consists of N+I

processing units (PUs) numbered from 0 to N and 2N+2 memory modules .-

numbered from 0 to 2N+I (Fig. 3.2.2). During normal operation, N PUs

(numbered 0 to N-i) and 2N memory modules (numbered 0 to 2N-1) will be

used (Fig. 3.2.3). PU number N, memory module number 2N, and the wrap-

around connection are for fault tolerance.

Each PU will be a commonly available microprocessor, such as a 68000

[Mot80] equipped with a floating point unit and will be connected to four

busses in addition to its own private bus. The private bus will be connected to

the PU's private memory which will contain such things as local variables and

* * * * . . . ... . . . . . . . . . .*. *.*. . . . .
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monitor routines. One of the remaining four busses will be used to

communicate with the control unit, while the other three busses, numbered 0,1,

and 2 (Fig. 3.2.4), will be connected to banks of memory. Two of these busses

will be connected to "shared" memory banks. Thus, these busses, and

consequently the associated memory banks, will also be connected to adjacent

processors. This will allow data to be shared among adjacent PUs for window • -

based operations, like the contextual classifier discussed in Section 2.2. (Note

that the 2 bus of PU N will share its memory with the 0 bus of PU 0 for

reasons discussed later). The third bus will be connected to a "local" memory

bank. Each of the three busses of a PU can address up to 28 64K-byte banks

of memory.

It would appear that direct PU-to-PU intercommunication could occur

through the shared busses. This is not possible because MuRSS is an SIMD

architecture with no special latching hardware on the shared busses. Since all

the PUs must either read or write simultaneously, data cannot be shipped from

PU-to-PU without some form of latch (like the shared memory). Thus, PU-to-

PU intercommunication must be done through the shared memory. (Such

latches could be added to the design, but for the applications investigated thus

far, the use of the shared memory for communication appears to be sufficient.)

Therefore, the memory banks that are "shared" can be used to store common

data for a PU and its linearly adjacent neighbor, eliminating the need for a

more complex interconnection structure when performing window-based

processing operations.

Memory contention is not a problem, as the only way contention can occur

is if two processors try to access the same shared memory banks. This cannot

happen with this SLMD system, since whenever processor I is using its 0 bus,

a1F
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processor I-1 must also be using its 0 bus (it cannot, for example, be using its 2

bus) (Fig. 3.2.4). For the purposes of this discussion, the memories (either

directly or indirectly) associated with busses 0 and 1 of PU I will be said to be

associated with PU I. In general, memory modules 21 and 21+1 will be

associated with PU I, shared memory module 21 with bus 0 and local memory

module 21 + 1 with bus 1.

It is possible that the shared memories may be needed to store local data,

e.g., when there is too much local data for the local memories to handle. In

this case, only the memory addressable by the busses associated with each

processor (i.e., bus 0 and bus 1) should be used to store local data. Thus, for

PU I, memory module 21 should store data to be shared with PU I-I and any

local data that will not fit into memory module 21+1. Memory module 21+1

should be used to store the majority of local data for PU I. Memory module

21+2 should not be used for data local to PU I.

This requirement is not a rigid requirement, i.e., when all 2N+1 memory

banks are working, PU I could use memory modules 21, 21+1, and 21+2 for

local data; however, if even one memory bank fails, algorithms not :3atisfying

this requirement cannot be executed by MuRSS.

The organization of the memory is shown in Fig. 3.2.5. This figure

assumes that there are L memory banks associated with each bus. The

memory associated with MuRSS will be dual ported, allowing a given memory

bank to be connected to two busses simultaneously. One bus will be connected

to a MuRSS PU, while the other bus will be connected to the host. This will

allow the host to address the memories separately from the processors, enabling

the host to load/unload data into/from half the banks, while the processor

operates on data from the other half, maximizing overlap. This type of overlap

U . ...- , .. . . . . . . .. . .

.. . . . .. . . . ...... ..... ..... . . •........... .. o
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is called double buffering and is similar to the approaches taken with the

CDC FP system in Section 2.3.6 and with the PASM system in Section 2.4.3

[SiS81]. Double buffering can be implemented in hardware, allowing the

memory to be addressed contiguously, simplifying the loading and unloading of

data. If the addresses associated with the memory banks (as viewed by the

host) are:

Use: Half PU number Bus Bank Address

Bit Positions: 35 34 - 25 24 23- 16 15 0

where the Half indicates which half of the double buffer is to be addressed, the

PU number is the number of the associated PU, and the Bus bit is the bus to

be addressed (O=left, 1=center). When a fault occurs, the CU can re-program

the PU numbers, so the remaining memory can b- treated as contiguous by the

host (this is discussed further below). If all memory banks are attached to a

bus that is accessible by the host, the host can view the memories as

contiguous. each PU is associated with 2g 6.1K-byte memory banks, many

processors will not be able to directly this much memory (> 232 mpmory

locations), so the host may need to use some form of memory cont-oller. Some

memory controllers may allow a special micro.-program to be installed to

facilitate handling the memory organization.
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Consider the procedures that the host must perform to address the pixel

(i,j) in an R row by C column image consisting of b-byte elements. Assume the

data is stored in column major format, i.e.,

(0,0) 0

(1,0)1

(2.0) 2

(R-1,0) R Memory

(0,1) R+1

(,) R+2

(2,1) R+3 .. \.

(R-1C.1) RC-1

If each PU has the same number of columns of data, then pixel (i~j) is in PU P:

V. .



P X 0O<j C-1

where there are N PUs in use. The host can calculate the bus B to be:

B=
1 else

where there are C' columns of data stored in each shared memory unit. Let B'

be the base address of the array within the given memory unit. The address .*

within the bus would be:

address B +{[ P C Cx B)JxR +i x b

N ~'

This looks very complex, but these calculations must be done only once per

column. Further, if many columns of data are to be loaded/unload into/from -

the memory units, the following algorithm can be applied:
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int P; ,* PU counter*-

int B'; /* Base address of array in shared memory-

int B'; /* Base address of array in local memory */

int C'; /* Columns of data stored in shared memory /

mt C'; /* Columns of data stored in local memory */

int N; /* PUs in use

for (P 0; P < N; P =P +1) /* for each processor *1

/* completely unload bus 0 of Processor P */

read (b*R bytes from address B' of bus 0 of PU P);

/* completely unload bus l of Processor P*/

read (b*R bytes from address B" of bus 1 of PU P);

i - ,

This type of scheme is particularly convenient if a memory controller is

used and the memory controller can perform Direct Memory Access (DMA) to

and from the host's memory. If DMA is used, the above algorithm for -

unloading data from an N=1024 MuRSS would require:

2048 block reads
1024 compares and '

1024 additions.

Further, if the entire "half 0" or "half 1" of the memory banks are to be

read/written, only one read/write (of size 235 bytes) would be needed. These

*, transfers could occur between MuRSS and the host's secondary memory or the
., ..:,
. .\%

-,- • - i l i • I i .. .. . .' " 
'

' * ' " .. . . ' x,-:
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host's primary memory if it is large enough.

Loading and unloading of data by rows is very complex because the image

data is stored in columns. The following algorithm demonstrates how the host
must unload row data from MuRSS when an image is stored in column major

format:

12~, --2. o-

• o. °
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int P; /* PU counter *1

ot B'; /* Base address of array in shared memory _

jot B"; /* Base address of array in local memory */

int C'; /* Columns stored in shared memory *1

int C"; /* Columns stored in local memory */

int bR; /* Bytes of data per column */

int N; /* PUs in use*/

int i; /* Row counter */

int j; /* Column counter *.

for ( i=0 i < R • i i+1) (/* each row

for (P=O; P < N ;P=P+I ){/* each processor*/

for (j=B' ;j < bRC' ; j=j+bR ) { /* shared columns*/

/* unload one data item from bus 0 of PUP /

read (b bytes from address j of bus 0 of PU P);

for (jB" j < bRC j=j +R ) ( /* local columns */

/* unload one data item from bus I of PU P */

read (b bytes from address j of bus 1 of PU P);
I- .' ;

This algorithm represents a significant number of calculations on the part

of the host. With the large number of individual reads, each which takes time

to create a system buffer, it is less cumbersome for the host to unload the

image in column format and transpose the image in its own memory.

,. . . ."

.. ''."4 .".".-.- .'i.- . - '."""'-.% 2 -''.. . .. . . . . . . . . . ."-.--.,... ..-... ...- -...... .-...... .--. ',.-. ..-.. ,.-.-. .- -. ... .- .-.-.-
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If the image is loaded in row major format, the algorithms are similar, but

rows and columns are reversed. Similarly, for such a scheme, it is simple for

the host to deal with row data and complex for the host to deal with column

data. Given that an image is treated consistently (i.e., not transposed during".

loading or unloading), MuRSS can handle data in either row major or column..

major format without excessive processing. For example, consider the image in

Fig. 2.3.2.1. Here, each PU would hold an entire stripe I/N-by-J pixels large,

effectively processing the image in row major format. The shared data in Fig.

2.3.6.2, as required for classification of non-linear windows, would be stored in

the shared memories.

Consider an image stored in column major format. Define the relative

index of the pixel (i,j) to be the row and column of the pixel relative to the

uppermost left pixel in the PU's address space. In an image stored in column

major format, the absolute pixel (i,j) would have relative address (i,j'), where j'

is the number of columns to the right of the leftmost column addressable by

the PU. Thus, if each PU could address ten columns of data, the relative

address (10) would correspond to the N pixels whose absolute addresses were

(1,10 x k) k=0,1,2,...,N-1 Typically, if C' columns of data were stored in

the shared memory associated with bus 0 of PU I, then C'/2 pixels would be

processed by PU 1-1 and C'/2 pixels would be processed by PU I, as was done

for the FP system discussed in Section 2.3.6. This means that PUs will

typically start their processing for the pixels with relative address (0,C'/2).

For pixels with relative address (i,j'), if there are C' columns of data associated

with busses 0 and 2 and C" columns of data associated with 1, the bus can be

determined as follows:

.7'~
.... :.:.:
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00

0 it < c1

bus 1 C' < j' < C' + C""

2 else

The address of the pixel (within the bus) is:

b x (j' x R + i) bus 0

address = b x ((j' -C') x R + i) bus I

bx((j' -C' -C") x R + i) bus 2

Addressing within a given column requires setting a pointer to the base address

of the column and incrementing or decrementing it by a fixed amount. If

(N > 28) and

The CU will be a special purpose processor. It will be equipped with

memory, in which it will store its program, global data, the program to be

broadcast to the PUs, and its local variables. The amount of memory is

variable and is a function of cost and the processor chosen for the CU.

The host will be assumed to be a computer such as an IBM-370 or a PDP-

11 series machine. All support operations, such as formatting input and

formatting output, will be performed by the host.

Each PU is based on the Motorola 68000 microprocessor. From [Mot8l], a

12.5 MHz 68000 can perform a 16-bit integer addition in 400 nsec. The 1024

88000's in MuRSS can perform 2560 million integer additions per second. In

addition, MuRSS equipped with Motorola's high speed floating point software

bao°
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can perform 73 million 32-bit floating point additions per second or 36 million

32-bit floating point multiplications per second. When the PUs are equipped

with the planned 16.666 MHz MC68881 floating point processor, MuRSS is

capable of 367 million 32-bit floating point additions, 330 million 32-bit floating

point multiplications, or 270 million 32-bit floating point divisions per second.

All floating point operations are in accordance with the IEEE floating-point
specification P754.

3.3. Smoothing on a Parallel SIMD Machine

Smoothing is a method of noise reduction for image data. The

measurement vector for each pixel is replaced by the average of the

measurement vector for that pixel and the measurement vectors of the eight 1

surrounding pixels. Consider the following example, as shown in Fig. 2.2.1.1(b).

xij, the measurement vector for pixel (ij) is replaced by:

(Xi-l~j-I +Xi,i- +Xi +!-I + X i- l , j + x i , +Xi+ l,j +g[-tlj i  +Xi~j + 1+ X i+ l,j + )

x9

Thus, for each pixel, eight vector additions and one division of a vector by a

constant is required. Consider the case where each measurement vector is 4-

dimensional and the image is I-bv-J pixels. Smoothing the image on a serial

machine will require 8*l*J vector additions and I*J divisions, translating to

32*1*J additions and 4*l*J divisions.

If I is sufficiently large (> 2N+1) and a multiple of N, the image can be

divided into N rows I/N pixels high as shown in Fig. 2.3.2.1. This scheme is

called striping and has been discussed in Section 2.3.2. Each processor will

. .a -.
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process one stripe. In order to process all pixels in a given stripe, a processor

will need to access one row of pixels from each bordering stripe. This means

that at least two rows of data will have to be stored in shared memory. For

example, with a 512-by-512 image and 32 processors, processor 0 will process

rows 0 to 15, while processor 1 will process rows 16 to 31, etc. Memory 0 will

store rows 0, memory 1 will store rows I through 14, memory 2 will store rows

15 and 16, etc. Note that memories 0 and 2 could contain more rows of data.

In general, up to two rows of data must be stored in each shared memory. The

rest of the image can be stored in the local memory banks. The total

processing time associated with an image is: 32*I*J/N additions and 4*I*J/N ,':

divisions. Thus, the theoretical maximum speedup by a factor of N is achieved.

If I is not a multiple of N, all processors will process [I/NI rows, then I

mod N processors will have to process one extra row of data. For simplicity,

assume that rows cannot be subdivided. Thus, some processors will have to

process a stripe I/NJ rows wide, while other processors will have to process a

stripe [I/Ni rows wide. If each row is J pixels wide, the total processing time

associated with a given image will be:

32*J*([I/Ni) addit;ons

4*J*(Ii/Ni) divisions

This represents an increase of at most 32*J additions and 4.I divisions over

the ideal case. The efficiency of the above implementation can be represented

by the ratio of the time required for an ideal speedup to the actual processing

time (SiS82bi. This translates to: -...

.. . • . C
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The worst case efficiency is achieved when one processor is running while the

remaining processors are idled. Mathematically, this is when the difference

between I/N and [I/Ni is a maximum. For example, with N=1024 and an "

image with 4097 rows, this represents an efficiency of 80%, while for I=65537,

this represents an efficiency of 98.4%. The larger the image, the closer the

efficiency is to 100%.

Note that the efficiency is a function of the number of rows. Processing .

columns instead of rows will make the efficiency a function of the number of

columns and may allow N processors to operate more efficiently. An

alternative to the above method is to use the "modified striping" scheme

discussed in Section 2.4.3.

The time required to smooth an image using modified striping is:

32* *J/N additions

4* [I* J/N1 divisions

For the ideal speedup of N, the ceiling function would be absent, thus the ratio

of the ideal speedup to the actual speedup becomes:

I*J/N"

For N=1024, and an image of size 1025-by-4097, the efficiency is 99.09+%.

iWO
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This method, thus, leads to a higher overall utilization of the processors.

Further, for images greater than 2N-by-2N, the utilization is independent of

the orientation of the image, i.e, whether the image is striped based on rows or

columns.

If edge data is to be handled differently than data internal to the image, Y.

when one or more processors reach an edge, all other processors must be

disabled. The remaining processors then process their edge data. This is not

required in the simple striping scheme, as all the processors reach an edge at

the same time. In a modified striping scheme (with horizontal stripes), the

probability that a given processor is processing an edge pixel is:

Pedge 14N
Pd--[I*J/N]" "-

In addition, each PE must decide (for each pixel it processes), whether that

pixel is an edge or non-edge pixel. The modified striping scheme requires

2*(rI*J/N) more comparisons and a maximum of Pedge*[I*J/NJ more edge

pixel computations than the simple striping scheme in the ideal case where I or

J divides N. Simple striping requires at most 2 more edge pixel computations

and 1-2 more internal pixel computations than simple striping in the ideal case. :

The striping scheme to be used should minimize the number of computations

above the ideal case.

Images smaller than 2N rows have not been considered, as they do not

have enough rows to utilize the full machine. Each processor will have to store

at least one row of data in each of its shared memory banks. This implies that

there are at least two rows of data per processor. Multiplication of the two

row minimum by the N processors yields 2N rows. If striping is done by

columns, then the argument is similar. To process small images (using rows),

.1 A _' .
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[1/21 processors would have to be enabled, while the rest of the processors were pPv
disabled for the entire task.

3.4. Maximum Likelihood Classification

Maximum likelihood classification (MLC) [SwD78] classifies each pixel

independently of all others. Assume that the input data can be described by a

Gaussian distribution function [SwD78]. Thus, the probability that pixel (ij) is

in a given class Wk 0 W 2, Wn} is:

2(1 -lXMk)7Ek_(Xij -M0

P(XiiI k) - e
V.'-:kI

where Xi, is the measurement vector for pixel (ij), M k is the mean vector for

class k, Ek is the covariance matrix for class k. A pixel is assigned to a given

class such that p(Xii[ Wk) is maximized. It is possible to use a discriminant

function [SwD78]:

d(Xil 11)k) = In Ek +(Xii-mk)Ti(Xi-Mk)]

Maximizing this last discriminant function for X1i over Q will vield the same

-

result as maximizing p(Xifl k) over the same Q. The discriminant function is

considerably less complex to calculate than the probability, so discussion is

based on the discriminant function.

k '-_7:



The calculation of -in E k and Skn is done once for each information class

and is negligible when compared to the calculation of the discriminant function

for each class for each pixel in a given image. Again assuming Xij is 4-

dimensional, Xij-mk can be done in four additions per class per pixel. By

utilizing the symmetry of E -1, (Xij-mk)Ek(Xij-mk) can be performed in 20

multiplies and 9 additions for the four spectral band case. Thus, the

calculation of the discriminant function will require 20 multiplies, 15 additions,

and one sign change per pixel per class. Finally, for C class data, C-I

compares per pixel will be needed in addition to the calculation of the

discriminant function. On an I-bv-J image, classification of all l*J pixels will

require 20*I*J*C multiplications, 15*I*J*C additions, and VJ,(C-1) compares

for a standard serial processor.

Consider implementing the MLC on MuRSS. The CU will broadcast class

dependent constants, such as E-1 and m k as part of the SIMD program. Each

pixel is classified independently, thus there is no need for any inter-processor

communication. Using the modified striping schemo to divide the I-b-J image.

N PUs will be able to perform an MLC

IJ/N ."'x N

times faster than a single PU. Further, since this operation requires no inter-

processor data transfers, images as small as N pixels can be processed without

disabling PUs for the entire operation.

.'-
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3.5. Contextual Classification

The "class" associated with a given pixel is not independent of the classes

of adjacent pixels. Stated in terms of a statistical classification framework,

there may be a better chance of correctly classifying a given pixel if, in

addition to the spectral measurements associated with the pixel itself, the

measurements and/or classifications of its "neighbors" are considered as well..:.Z.*

The image can be considered to be a two-dimensional random process

incorporated into the classification strategy. This is the objective of

"contextual classifiers" ([WeS71] and [SwV81]), in which a form of compound

decision theory is employed through the use of a statistical characterization of

context. Recent investigations have demonstrated the effectiveness of a

contextual classifier that combines spatial and spectral information by

exploiting the tendency of certain ground-cover classes to occur more

frequently in some spatial contexts than in others [SwS80], [WeS71], [SwVSL],

and [TiS81]. For a more complete description of contextual classifiers, please

refer to Section 2.2.1.

The application of MuRSS to contextual classification is a straightforward

extension of the method applied in Sections 2.3.2 and 2.3.3. For the three-by-

three window, data allocation and timing analysis is analogous to that for

smoothing. The main difference is that for smoothing, only the raw pixel data

is shared. For the contextual classifier, the "compf" values of the subimage

edge pixels are shared instead. The parallel processor version of the one-by-

three horizontally linear window is similar. Other sizes and shapes of windows

can be handled analogously.

,I7.
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"* 3.6. Image Correlation on a Parallel Machine

Image correlation, as described in [SiS82a], is used to measure the degree

of similarity between a match image and an equal sized area of an input image. " "

Typical images can be at least 4096-by-4096 pixels, with match areas on the

order of 64-by-64 pixels. For the purposes of this paper, images on the order of

65536-by-65536 pixels will be considered.

Let the symbols x and y denote single elements of arrays X and Y, where

X is the match image and Y is the area of the input image under consideration

(same dimensions as X). Let M be the total number of elements in the match

area X. Define:
SXX =(I/M)(Ex'-(x...

Sxy (I/M)(yExy-Ex EY) :.',

Syy = (1/M)(-y2-(-y) 2 )

=~ Sxy/V§Sysy ::

Sxy is the covariance of the match area with a portion of the input area. Large ".''

positive values for Sx-1 indicate similarity between the match image and the :::::

input image, while large negative values for SX-y indicate similarity between the.F'i]-,

negative of the match image and the input image. Values near zero indicate .'-'

little similarity between the two images. RXy is the linear correlation 'J;

", coefficient of the statistics. Simplistically Rxy is a normalized version of S)'y in ::.

which Rx y = I indicates an identical match, RX-y = -1 indicates 2n identical J":

match with the negative of the input area, and R),.y = 0 indicates no.

correlation between the mat,-h area and the input image. A correlation value -. :,

"*o ** -
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* °- '=

I. - .,

°=

°° % °. ° ° ".°' °° _ . • %oo - % -. • - o°° -. %°' % °.% ° , °. . . . .•, f . L•' , • %. ". , •° %• ' °•o . . °° . •

l.% %"-" . o .- o .- -. ° .-.- °•.-° °• is th c orianc .,e - of, the ," m ath re with a portio of the inpu aea.. Large ° . .","•, °-°

v ~x: ",-. .' _"'" " ";".positive"• .,"•" .'"•- values , -- .for "" - ."indicate-."-, si iart b t ee h m atc imag and"-. the"-" ". .'. --. 2



9

.1,

will be computed for each position in which the match image can fit into the R

row by C column input image.

The calculation of RXy is dominated by the time to compute V, xy, VZy,

and 'V2v .  Vx 2 do not change from input window to input window,

and can thus be pre-computed. For a match template with r rows and c ,%.-

columns, each -xy and Zy 2 requires r*c multiplications and rc-1 additions. 'a

VZy requires rc-1 additions. These operations have to be done for each

position of the match template in the input image. Special methods of

computing ,y 2 and 57y can decrease the time requirements of this algorithm.

Consider the following algorithm for computing the sum of the pixel values

(yny's) in each match template.

Assume that for input image Y the position of the match area is defined

by the coordinates of the upper left hand corner of the match area. Define a

vector "colsum" [SiS82a] of length C as:

k + r- 1
colsum(j) = E Y(ij)

i=k . ,-

where k is the row coordinate of the current portion of the match area and

0 < j<C. Let "SUM" be an R-r+1-by-C-c+I array, where SLUMj is the sum

of the pixels of the input image for the match area position

(ij), 0 < i < R-r+1, 0 < j < C-c+1.

Initially, colsum is calculated for all C columns of row 0. SUM(0,0) is

formed by summing colsum(j) (O<jc-1). This requires r*c multiplications ''

and (r*c)-I additions. SUM(0,1) is formed by subtracting colsum(0) from

SUM(0,0) and adding colsum(c) to the result. In general:

. . . . .. .. . . . .. -
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SUM(O,j) = SUM(O,j-1) - colsum(j-l) + colsum(j +c-)

After the processing of a given row is complete, colsum(j) is updated for the

*." next row by subtracting Y(ij) from the old colsum(j) and adding Y(i+r-1,j) to

the result. This changes the complexity for the calculation of the -y's to: 3c-1

additions/subtractions per template position for the column 0 entries of all

other rows, and 4 additions/subtractions per template position for all other

template positions.

For a typical 64-by-64 match image, straight forward computation of Ey

requires 4095 additions per match template position on the input image. This is

the same number of operations required per match template position in row 0

of the input image. For template positions in column 0 of the other rows, 191
.-, -. -

additions are required. Computation of -y 2 's is similar to the computation of

the ny's.

Consider the application of MuRSS to this task. Each PU will apply the

serial algorithm to its assigned pixels. Pixels will be assigned to PUs based on

the vertical striping scheme. If a column of pixels lies in memory associated

with bus 0 or bus I of PU I, then PU I is responsible for the computation of -

the colsum and the analogous y2 entries associated with that column. If the

pixel in the upper left hand corner of a window lies in memory associated with

bus 0 or bus I of PU I, then PU I is responsible for the computation of that

window. When PU I is performing computations on its rightmost c-I columns,

it uses the colsum values stored in its bus 2 memory by the previous -. -

computations of PU I + 1 (recall that PU I + l's bus 0 memory is PU I's bus 2

memory). Thus, at least c-I colsum values and the corresponding y values

~55*~~,~ . -- . - ". '
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must be stored in memory associated with each bus 0.

For an R-by-C image and N PUs, a simple vertical striping scheme will

assign each PU a subimage either R-by-[C/N or R-by-[C/N . Thus, the

total time required for the calculation of the yxy's is
(R-r++)*([C/N1-c+l)*((r*c)-1) additions, and (R-r+1)*([C/Ni-c+1)*r*c

multiplications. The total time associated with the calculation of the Zy's is

[(R-r)*((3*c)-l) 1 + [([C/Ni-c)*((r*c)-1)1 + [(R-r)*([C/N-c)*4 additions.

The time required to calculate the ,y2 's is similar to the time associated with

the calculation of the .y's. Extension to the modified striping scheme is

similar to the smoothing case.

If C < N*(c-l), then c-i columns of data cannot be associated with each

bus 0, thus the PUs cannot all be enabled. If R > N*(r-1), the stripes can be

horizontal instead of vertical. In this case, r and c are swapped, as well as R

and C.

3.7. The Fault Tolerance of MuRSS

The throughput of a MuRSS is limited to the largest number of adjacent

working (usable) PUs. Consider a simple example with an N=8 MuRSS system

(a PU fault is represented by BOLD print in a box).

Physical: 0 1 2 3 4 5 6 8

A single failure leaves eight usable PUs. (If there were no wrap-around

t." .o° a.
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connection, the number of usable PUs would be seven.) The CU can alter the
PU numbers and subsequently the numbers associated with the memory

modules. Thus, for the above fault the CU would renumber the PUs to (an *

indicates an unused PU):

Physical: 0 1 2 3 4 5 6 W 8

Locigal: 1 2 3 4 5 6 7 0

.1 2

Fault detection procedures are beyond the scope of this work. In both this

section and in Section 3.8., the concern is with fault recovery once the

existence and location of a fault is known.

When a MuRSS processor the renumbered MuRSS PUs start with logical

PU 0 to the right of the failed processor. The numbers continue incrementing,

through the wrap-around connection, ending up with the virtual PU N-i on the

left of the failed processor. When a local memory module fails, e.g., 21 + 1, it is

treated like a fault with PU 1. A fault in a shared memory, e.g., 21 is treated

the same way.

It is possible for the faulty processor or memory module to fail in such a

way that that adjacent PUs cannot access the busses shared with the faulty

unit. In such a case, not only the faulty PU but the PU associated with the

inaccessible shared memory module would be unusable because of the inability

to access shared memory. Thus, this would be handled as if two adjacent PUs

:.. .. . •..-.. .;. -.-.... - -.... --...-..... . . . ... . .... *... . ..... .*.......... ....-...... .......

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .



aJ103 v

I failed. This is a special case of the multiple failure situation discussed later.

A multiple failure, such as:

Physical: 0 1 2

reduces the number of usable PUs to five. (PUs 5 and & cannot share data

with adjacent PUs, and subsequently could not be used for any algorithm

requiring data to be shared among PUs.) If either PU 5 or PU 6 or both were

also faulty, the same number of usable PUs would exist, as demonstrated

below:

0 1 2 3 8

-and -

012 3 45 G7 8

In such an event, the PUs would be renumbered to:
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Physical: 0 1 2 3 4 7J(

Logical: 1 2 3 4 * * * * 0 .

Again, an * indicates an idled PU.

A fault in a shared memory, e.g., 21 is treated the same way. Multiple

memory faults associated with the same PU I, only idle PU I. Multiple

memory faults associated with different PUs idle their associated PUs and

subsequently are treated like multiple PU faults.

It was previously stated that if any local data for PU I is to be stored in a

shared memory module, that it should be in memory module 21. This is

required if an algorithm is to be run on a system with a single fault in one of

the shared memory modules. If this rule is not followed, a fault in a shared

memory bank would require the two PUs attached to a faulty shared memory

module to be disabled instead of one, decreasing the throughput of the system.

The minimum number of usable PUs in an N PU MuRSS with F PU

faults (or disabled PUs) can be expressed by the equation:

N F=0

Usable PUs (min)

1 <F<N+1
.i-F.-.

This minimum occurs when faulty PUs are evenly distributed throughout the

1"-
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system. A few faults can seriously cripple MuRSS, as is shown in Fig. 3.7.1. It

is worthy of note, that this is a worst case possibility. If the failures are close

together, the number of usable PUs will be greatly increased. For example, if

the faulty PUs are adjacent, the number of usable PUs is N-F + 1.

3.8. An Enhanced MuRSS

To minimize the degradation of MuRSS in a multiple fault environment,

consider the modifications shown in Fig. 3.8.1. The wrap-around connection

between PU N and PU 0 is the same as before (see Fig. 3.2.2). In this figure

describing the Enhanced MuRSS (EMuRSS), there is a bypass box

associated with each PU's shared busses. The operation of the bypass boxes is

controlled by the CU. pB

In addition to the bypass boxes, there is deselection circuitry, such as the

SN74S244 [Uni78], between each shared memory module and its corresponding

bus. This circuitry will be used isolate faults in the shared memory modules so ...

that the shared busses are still usable. It is assumed that there is some form of .::-

isolation hardware, such as the S.N74S244 [Uni78], between each of the memory

modules (both local and shared) and the host bus to prevent a memory module

from failing in such a way as to make the host to memory module bus

unusable. The desele,-tion and isolation hardware is controlled by the CU.

The effect of the bypass boxes is to allow the system to reconfigure

"around" a faulty unit. Consider, an N=8 EMuRSS system where PU 7 is

faulty.

... . . . . . . . . . . . . . . .
. . . . . . . . . . . ..... . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 3.7.1 Minimum number of usable PUs in a 1024
PU MuRSS versus Dumber of faulty PUs
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* ...

Local Shared Local Shared Local
Memory Memory Memory Mem~ory Memory
Module Module Module Module Mod~jl Ie

Host o-Bypass box (controlled by CU)
o -Deselection circuitry (controlled by CUJ)

Alternative data path

Fig. 3.8.1 Fault tolerant MuRSS system architecture
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Physical: 0 1 2 3 4 5 6 W 8

In the single fault case, with the use of bypass boxes there are still eight usable

PUs. When a double fault occurs, such as any of those shown in Fig. 3.8.2.,

the number of usable PUs is seven, because the use of bypass boxes allows the

connectivity to be maintained. In a normal MuRSS, the number of usable PUs

would be 6, 5, 4, 4, 5, 6, 7, and 7 respectively. Multiple (more than two) faults

are handled similarly.

The two modes and corresponding effects of bypass boxes are shown in

Fig. 3.8.3. These modes allow MuRSS to completely bypass a faulty PU. When

there is a failure in a PU I the PU is bypassed and its associated shared

memory is deselected. It is assumed that the bypass box/deselection circuitry

can isolate any faulty hardware from the shared busses, allowing normal

communications to take place between the two processors adjacent to the

faulty PU.

The CU can re-assign the PU numbers, allowing the PUs and their

associated memories to be treated like they were contiguous. As was used

before, the PUs have a physical number and a logical number. The logical PU

number will not only simplify the addressing by the host, but will, when

combined with the "wrap-around" connection, allow the system to handle one

complete shared bus or bypass box failure with no degradation.

If a single PU fails, the bypass boxes associated with its shared busses are

set to bypass mode. The shared memory associated with its bus 0 is

deselected. Disabling the faulty PU has the effect of disabling its local

4 - . ,-. -. ...-
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0 1 2 4 5 6 7 8
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-t- T-

0 1 2 3 4 5 6 7 8

Fig. 3.8.2. Double faults in EMuRSS leaving 7 usable PUs. Z"
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Fig. 3.8.3 Two modes of a bypass box
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memory, thus contention on the host bus is not a problem. The logical PU

number of all PUs whose physical PU numbers are greater than the faulty PU r. v..

is decremented by one, as is shown in the following example:

Physical: 0 1 3 4 5 6 7 8

Logical: 0 1 2 3 4 5 6 7

Physical PU N (previously disabled) becomes logical PU N-i. When a memory

module (either local or shared) fails, it is handled exactly like a fault with the

associated PU. The wrap-around connection is not used when there is a fault I

with a single PU or memory module. Multiple faulty PUs are handled

similarly, only in the multiple fault case, the performance is degraded as there

are no more working PUs to replace the faulty units. Multiple faulty shared .

and local memory modules are handled like multiple faulty PUs.

A single faulty bypass box is handled using the wrap-around connection.

If there is a fault with one of the bypass boxes associated with PU I, PU I is

disabled. PUs with physical numbers I + 1 to N are given logical numbers 0 to

N-I-i and PUs with physical numbers 0 to 1-1 are given logical numbers N-I

to N-I. Using the wrap-around connection places the faulty bypass box on the

logical end of the array, where it and its associated PU (PU I) are unused. If, in

addition to a single faulty bypass box, there are any faulty PUs or memory

modules, these additional faults can be handled as described in the last

paragraph.

i: .-, .- - -.-. -.- , :- - . .- . - - -.-.-. -: :--- - - --- . :- i- . : .::. :::: !;i

"" '- " - - . ....- ... . . .-.-..... .- -..-.. .'.-... .----.. , ,..."-". .,'. :'",". ' r°" ".-, ' ' "o,"".



*~~~ W. P - . .. 7 - -

112

i"..- ",_,

In general, multiple faulty bypass boxes break the connectivity of

EMuRSS. It is assumed that a bypass box failure does not pull down a shared

bus. If it does, it is treated the same as a shared bus failure. Multiple faulty

bypass boxes have the same result as multiple PU failures in MuRSS. Thus,

the number of usable PUs is less than N. The set of adjacent usable PUs may

or may not use the wrap around connection.

If the multiple faulty bypass boxes share the same bus, EMuRSS can

handle two faults with no degradation. This is shown in Fig. 3.8.4. This is the

same situation for a single faulty shared bus, i.e., the bus shared by PUs I-1

and I in Fig. 3.8.5. If the two faulty bypass boxes are connected to the same

PU, i.e., bus 0 and bus 2 of PU I, EMuRSS can handle two faults with no

degradation. This is shown in Fig. 3.8.6. If the faults are on contiguous -

busses, e.g., PU I's 0 bus, PU I's 2 bus, and PU I-I's 2 bus, up to three faults

can be tolerated with no degradation in performance. This is shown in Fig.

3.8.7.

Multiple faulty busses break the connectivity of EMuRSS. This situation

is the same as the case for multiple faulty bypass boxes previously discussed.

Since mechanical connections, such as those between a chip and a bus, are

significantly more prone to failure than those within a chip, the number of

mechanical connections can give a fair indication of the probability of failure of

a unit. In MuRSS, both shared and local memory busses are connected to 28

64-Kbyte chips and each chip has 28 pins, so (including the 64 pins on the

68000) there are a minimum of 14400 mechanical chip connections that can

cause a fault within each PU and its associated memories (only those busses

associated with a PU are considered). This figure is clearly conservative

.-..-.
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Logical PU N-i Disabled Logical PU 0

Local Shared Local Shared Local
Memrory Memory Memory Memory Memory
Module Module Module MOdJulIe Module

B ypass box (controlled by CU).

Fig. 3.8.4 ENuRSS reconfiguration around
two box faults on same shared bus
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Logical PU N-1 Disabled Logical PU 0

Local Shared Local Shared Local

Memory Memory Memory Memory Memory

C-Bypass box (controlled by CU)

Fig. 3.8.5 EMuRSS reconfiguration around faulty
shared memory bus

44

. . . . . . . . . .. . . . . . . . . . . .
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.

Logical Pu N-i Disabled Logical Pu 0 PW

... EL.

Local Shared L o cal1 Shared Loca'l
Memory Memory Memory Memory Memory
Module Module module Module Module

0-Bypass box (controlled by CU)

Fig. 3.8.6 ENuRSS reconfiguration around two
bypass box faults associated with PU I
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Logical PU N-i Disabled Logical Pu 0

Local Shared Local Shared Local
Metmory Memory Me ro r y Memory Memory
Module Module Module Module module

-Bypass box (controlled by CU)

Fig. 3.8.7 EMuRSS reconfiguration around three
adjacent bypass box faults
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because a failure in any support hardware (e.g., the CU) will also cause a fault.

For simplicity, only chip connections (pins), as opposed to chip connections and

bus connections (e.g., connections from busses to boards), will be used for this

discussion. MuRSS (N=1024) has 14,745,600 mechanical chip connections.

The fault bypass circuitry in EMuRSS consists of the bypass box, the bus

performing the bypass, and shared memory unit deselection hardware. Thus,

there are chip connections to the CU, PU, shared bus, shared memory,

bypass bus, and deselection circuitry that can fail. The connections in

bold print are to busses with 26 connections for address, 8 connections for data,

4 connections for signals, and 2 connections for power and ground. This

comprises 200 connections. The CU must have one line to control each bypass

box and one line to control the memory deselection circuitry. making 202

mechanical chip connections that can cause a fault. The processor/memory

hardware is 88 times more likely to fail due to a mechanical connection than

the bypass circuitry. EMuRSS has 14,952,488 mechanical connections. This

represents an increase in hardware complexity of 1.4 percent over the non-fault

tolerant MuRSS, which is a trivial change in the complexity of the system

when it is compared to the additional fault handling capability of the system.

The 1.4 percent figure does not accurately represent the fault tolerance of

the EMuRSS. A fault in any two of the 14,680,014 connections will vield up to

half the system unusable. Thus, these connections can be labeled as critical to

the system's operation. EMuRSS has 204,800 connections. This represents a

significant decrease in the number of critical connections.

To compare the performance of MuRSS to EMuRSS, consider the

following example. If UPWBB is the number of Usable P(7s in an N +I PU

MuRSS With Bypass Boxes, UPWBB = N - F + 1, where F is the number of

L2
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faults in the system (I<F<N+ 1). (If F=0, UPWBB=N.)

For F < N+I faults, the number of Usable PUs in a system with No

Bypass Boxes (UPNBB) would be no less than . The benefit of the

bypass units is demonstrated in Fig. 3.8.8, where UPWBB/UPNBB is graphed

with respect to F. The "sawtooth" nature of this graph stems from the floor

function in the definition of UPNBB. At no time is UPWBB less than UPNBB,

but for an N=1024 PU system, UPWBB can be up to 512 times greater than

UPNBB.

Thus for a small increase in hardware complexity, the degradation in the

system performance due to multiple faults can be significantly reduced (by up

to a factor of 512 on a 1024 processor system).

3.9. MPP A Massively Parallel Processor

For the basis of comparison, consider the Massively Parallel Processor

(MPP) as described in [Bat82l and [Bat80]. MPP is an SIMD machine which

was designed to work efficiently on a variety of image processing tasks, such as

correlation and multispectral classification. Fig. 3.9.1 is a block diagram of Z

MPP, which illustrates the four major sub-units. The ARray Unit (ARU) is

the unit that actually contains the Processing Elements (PEs), and is capable

of processing arrays of data at high speed. Each of the PEs in the ARU

performs instructions broadcast by the Array Control Unit (ACU) on data

that are stored in local memory.

Logically, the ARU consists of a 128-by-128 array of PEs. Physically, the

ARU contains an extra 128-by-4 array of PEs for fault tolerance. The size of

- . . .o 4
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the extra 128-by-4 array was determined by packaging constraints. The bit-

serial nature of the PEs allows NPP to perform efficiently on operands of all

lengths. The 16,384 PEs operate instructions on 16,384 bits at a time, which

allows for a very high processing speed.

Each PE in the 128-by-128 array communicates with its four nearest "T

neighbors in a fashion similar to ILLIAC IV ([Bar68] and [Bou72]). A topology

register in the ACU allows the user to software select what happens to edge

data in the ARU. Top-bottom connections in the ARU are handled

independently from the left-right connections, allowing the user greater

flexibility. There are four possible connections that a PE, call it PEI on the

right edge of the array can make in addition to connecting to PEiciminusi,

PExrimihijmn S, and PE1 12 8 . where E and ciminus are modulo 16384 addition

and subtraction respectively. They are: I

1) open (no connection)

2) connect to PE+1 (PE16 383 has no connection)

3) connect to left edge PE of same row

4) samc as 2), but connect PE16 38 3 to PE0

The connections for left edge PEs correspond to these connections. Top-bottom

connections are less complex thaz- i$'. left-right c=)nections, in that the top

and bottom PEs of a given column ma be either connected or left open.

Each PE in the ARU contains a full adder, a shift register, six 1-bit

registers, a programmable length shift register, 1K-bits of RAM, a data bus,

combinatorial logic, and a mask register. Fig. 3.9.2 shows the layout of the PE.

lOOns is the basic cycle time for the PE; however, routing operations are

. . . . . . . . . . . . . . . .. . ..
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masked independently of arithmetic operations, so masked routing operations

may be combined with unmasked arithmetic operations. PEs perform the

instruction generated by the ACU on the data stored in their local array. Fig.

3.9.3 is a block diagram of the ACU. The three units comprising the ACU are

the I/O control unit (which manages the flow of data), the PE control unit

(which performs array arithmetic for the applications program), and the main

control unit (which performs scalar arithmetic for the applications program).

Operations of each of the units are overlapped to minimize execution time.

The Program and Data Management Unit (PDMU) controls the overall

flow of programs and data in the system (Fig. 3.9.1), and is comprised of a

DEC PDP-11. The staging memory are used for format conversion between the

incoming data and the data to be processed. Once the data has been processed,

it is returned to the staging memory, where additional formatting can be

performed.

Through its massive parallelism, high clock rate, and its functional

overlap, MPP is capable of performing 400 million 32-bit floating point

additions per second, 200 million 32-bit floating point multiplications per

second, or 3277 million 16-bit integer additions per sec,)nd.

It is difficult to compare the cost of EMuRSS and MIPP, since NIPP is

constructed of specially designed VLSI chips and EMuRSS would not be. The

complexity of this comparison is compounded by tne fact that hardware costs

change so rapidly. Therefore, the comparison will be limited to the area of

processing speeds, fault tolerance, and capabilities of MiPP and a 1021

processor EMuRSS. both of which process 16,384 bits at a time. The purpose

of this comparison is to highlight the differonces in the two architectural

approaches.
6."
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Fig. 3.g.3 Block diagram of the ACU ([Bat8O],[Bat821) 55.*
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EMuRSS can perform 3072 million 16"-bit integer additions per second and

MPP can perform 3277 million 16-bit integer additions per second. MPP is 6

percent faster than EMuRSS. EMuRSS can perform 307.2 million 16-bit

integer multiplications (yielding a 32-bit result) per second. MPP can perform

1861 million 8-bit integer multiplications (yielding a 16-bit result) per second

and 902 million 12-bit multiplications per second (yielding a 24-bit result). 32-

bit data was not available.

In terms of floating point operations per second, MPP outperforms the

EMuRSS without the floating point processor (both MuRSS and EMuRSS have

the same processing speeds). The cycle time for NMPP is 100 usec, while the

cycle time for EMuRSS is less than 80 nsec. (see Section 3.2), so it would be

intuitively pleasing if EMuRSS outperformed MPP. Both processors operate

on 16,384 bits of information at a time; however, in all cases NfPP will require PUN.

the minimum number of cycles for a given operation for a given number of bits

because of its bit serial nature. For example, a typical 32-bit floating point

format consists of:

a sign bit for the mantissa,

an 8-bit 2's complement exponent, and

a 23-bit mantissa.

A 68000 can perform operations on 16-bits of information at, a time, so

operati,)ns on the 23-bit mantissa rcquire the same wime as operations on a 32-

bit mantissa. Operations on the 8-bit exponent require the same time as

operations on a 16-bit exponent. Further, the EMuRSS processors have to

strip out unwanted data at the end of each operation, whereas the MPP

processors have little or no unwanted data. W

,.. " . .

... . . . . .. . . . . . .. . . . . .. . .,. .
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The specialized floating point hardware eliminates much of the overhead

involved with the handling of unwanted data. This is why EMuRSS, when

equipped with the floating point processor, becomes very similar in performance

to MPP. For a 32-bit floating point addition, EMuRSS is 9 percent slower than

MPP, but for a 32-bit floating point multiplication, EMuRSS is over 56 percent

faster than MPP. Further, the EMuRSS specialized floating point processor has

hardware implementations for sine, cosine, and tangent, all of which must have

custom programs written for their calculations on MPP. Further, each floating

point processor is independent from the other floating point processors in

EMuRSS, i.e., they are not synchronized. Thus, no processor must be idled for

any point in time during these calculations to wait for another processor to
,:..:...

finish a calculation whose execution is data dependent, e.g., to perform a cosine

no synchronization is required during the intermediate computations. This

makes EMuRSS even more competitive with MPP because using the algorithms

in [Har68], there are conditional instructions that are required for the

calculation of the trigonometric functions.

To be. able to tolerate a single fault with no degradation in response time,

MPP uses an additional 4-by-128 array of PEs. A one PU EMuRSS equipped

with the bypass boxes discussed earlier requires one additional PU to be

capable of withstanding the fault of a single PU without loss of processing

speed. Both MPP and EMuRSS require some form of bypass hardware to

bypass a fault.

MPP and EMuRSS are tolerant to a single fault. MPP is not tolerant to

multiple faults, unless they are all in the same 4-by-128 array of PEs that is

bypassed. The number of usable PUs in EMuRSS is one more than N minus ___-_

the number of failed PUs (since an N-PU EMuRSS has one spare PU). Thus,

il ~I6W:j-'
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in general, in the event of a multiple fault, EMuRSS can continue to be used

with a minimal degradation in performance. For MPP, there is no provision -"

for operation in a degraded mode when multiple faults occur. -

Any of the inter-processor nearest neighbor communication operations that

MPP can perform can also be handled by EMuRSS. MPP can process images

by assigning one pixel to each PE, or by dividing the image to be processed

into square neighborhoods that are processed by the PEs. For an M-by-M

image, each PE would hold subimages that are M/128 pixels on a side. An .i-

image to be processed by EMuRSS must be divided into stripes extending from

the top of the scene to the bottom. Any inter-row communications in MPP are

internal to a PU in EMuRSS. Any inter-column communications in MPP are.-.*.....

either internal in a PU in EMURSS or are between adjacent PUs using the -"

shared memory. Adjacent processors will process adjacent stripes.

Both EMuRSS and MPP have a memory organization that will allow an

external processor to store information in one order and the processors to read "''

the information in another, without significant processing. MPP uses the

staging memory to perform image transformations and formatting for input

and output. Because of the way the EMuRSS host accesses the memory, either

row or column format data can be loaded. _

Architecturally, EMuRSS and MPP differ in the processor-to-processor

connections. EMuRSS does not have a true interconnection network. Instead,

EMuRSS implements a network with shared memory banks. This technique

allows memory to be used for both storage and communication, meaning that

no special communication protocol is necessary. Data transfer is treated like a

memory write.

.............................. ...-.-."..-. ...... .... - . - ---- " - - - ' " . :..-. --:) ;
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In conclusion, MPP is faster than EMuRSS (with the floating point

hardware) on fixed point operations and some floating point operations.

EMuRSS compares reasonably with MPP on floating point multiplication and

division. EMuRSS has a hardware unit capable of performing floating point

trigonometric and inverse-trigonometric functions. Because the floating point

units are not run in lock-step, for any floating point operation, e.g., steps

during the calculation of cosine, EMuRSS effectively becomes an MIMD

machine, whereas MPP must perform these operations in lock-step.

Any processor-to-processor communication that is required for an MPP

implementation of an algorithm can be handled by EMuRSS. Both MPP and

EMuRSS can handle a single fault with no degradation in performance;

however, only the fault-tolerant EMuRSS can handle multiple faults (with

some degradation).

3.10. Conclusions

MuRSS, an SMD architecture with as many as 1024 processors, was

presented. It was shown that N processors in the SIMD mode of operation

could perform various context independent (e.g., maximum likelihood

classification) and window based (e.g., smoothing, contextual classification, and

image correlation) image processing tasks almost N times faster than one

processor of the same type. The application of MuRSS to these tasks was

discussed.

Through the use of the EMuRSS SIMD architecture, computationally

demanding remote sensing processes can be implemented efficiently. This will

not only reduce the computation time required to perform remote sensing

=: ibat:-



12g

tasks, but will also allow the investigation of techniques which may otherwise

be considered infeasible. 
.--

Because of the architecture of MuRSS, multiple faults seriously degraded

its performance. The architecture of MuRSS was altered to increase MuRSS'

tolerance to faults, creating EMuRSS. EMuRSS was then compared to MPP in

the areas of performance, fault tolerance and capabilities.

I 
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CHAPTER 4

MODELS FOR USE IN THE DESIGN OF

SPECIAL PURPOSE MACRO-PIPELINED

PARALLEL PROCESSORS

4.1. Introduction

For certain applications, such as speech processing, time is an important

factor. In such applications, there is a need to process many data sets in the

same way e.g., performing an FFT for every frame of input data. Previous

analysis, such as that performed in [Dem83, TuA83, YoS82, Vic78gj, shows that

* for many types of tasks, a general purpose processor is not sufficient. In this

4 . ," .''

* chapter, an approach is proposed for modeling off the shelf hardware and for

modeling parallel algorithms, along with a design methodology to use the

information provided by these models, to design a class of macro-pipelined

special purpose parallel architectures. The goal is to use models such as the

ones proposed here to develop computer aided design tools.

Special purpose processing systems (such as those used for dedicated real-

time analysis) are typically sold in small quantities. As a result, the cost of the

design can make the resulting system prohibitively expensive. Computer aided

design tools for this process would reduce the cost involved and are therefore

desirable.

., ...7 .

PARALLEL PROCESSORS .. ..... ..- "
?5** . .. .,..
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This chapter uses nine parameters to correlate the hardware to be

designed to the applications software to be executed and the I/O environment .M

in which the machine is to operate, i.e., what data rates the machine must

handle, the format of the incoming data, the format of the outgoing data, etc.

A macro-pipelined layered approach to task decomposition is demonstrated.

Each portion of the decomposed task in a scenario is then assigned to a

specifically designed special purpose processing unit. This implies that each

processing unit may either be a traditional serial type design or a parallel

design. Once this initial decomposition is established, techniques such as those

used to adjust the execution time and throughput of a pipeline in [HwB84] can

be applied.

In this approach to reaching the goal of automated computer design, a

functional descriptions (models) of the hardware components that may be used

in the design must be combined into a database. Included in such a database -

is information about the cost, size, power consumption, and heat dissipation of

the device, an enumeration of all the operations that it can execute, the

pathwidth and execution times for those operations, the number and size of the

registers, and a simulation routine for the device. More complex taxonomies,

such as those found in [Han77], [Han8l], [HoJ81], and [Gil83] are not needed for

the database because they specify architectural information. Here, only

information that affects the processing speed of the unit are considered. While

the architectural information provided by more complex taxonomies can yield

similar information, handling of the additional data is cumbersome.

The information in the database will be used to select the "best" hardware

to execute a given algorithm. As suggested in [Gon78], it is desirable to 7.

establish and order according to importance, the criteria used to rank designs. ... ,..

I~," r . . , . . . - ''- .- ... ' .... '-..-''-.'" .'" . .''.-.''. ' ".': -.. .. ."- °'.. .. . ,','..,-" , ' '''' ''' .' .' , ' t' 'S W. ,L,, "
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The criteria used here will be (in order of importance): speed and cost. Speed

refers to both response time and throughput. The response time is the time __""

between receiving the input and transmission of the corresponding result. The

throughput is the number of data sets processed per unit time. Other criteria

might include: space, power requirements, and cooling requirements.

Using information about each sub-task in a scenario, a specific hardware

organization can be arranged to execute the required algorithm when possible.

Consider a task that is composed of several sub-tasks. An example of such a

task might be isolated word recognition [YoS82]. For isolated word recognition,

a typical processing scenario might be: digital filtering, autocorrelation analysis,

linear predictive coding (LPC) analysis, linear time warping, and dynamic time

warping. Each of these processes (sub-tasks) represents a portion of the

scenario. An example of the scenario is in Fig. 4.1.1. Each of the sub-tasks

will be called a layer. Using information about each sub-task, a special- UP

purpose architecture can be developed to execute the sub-task within some

time and cost constraints. The special-purpose hardware that is assigned to

each layer will be called a level.

For the present, only a simple scenario (one in which there is no feedback)

is considered. Initially, the sub-tasks will be chosen according to conceptual

differences, i.e., digital filtering is different from autocorrelation analysis, so

each should be a different laver. It is assumed that in general, conceptually

different portions of the task, i.e., the sub-tasks, require different hardware

resources. A more complete discussion of the application of such a design to an

isolated word recognition system may be found in Section 4.6.

It is the goal of this scheme to achieve a higher throughput by

decomposing a scenario into layers. Because each layer requires fewer

_.-._.'- .__.-.._-___' -' " - ." . " " -" - -" - " . .' -- -- -'. -. -" "~ . ". . -'- . .- - . . . -. " - - ' - . - .- - -. 1
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Level I Layer 1
Specialized Hardware Unit I Preemphasis I

[Level 2 Layer 2

Specialized I ardware U'nit 2 Autocorrelahion Analysis

Level 3 jjLayer 3
Specialized 113rdware Unit 3 LPC Analysis

Level 4 Layer4
Specialized Hardware U.nit 4 Linear Time Warping

Level 5Layer 5
Specialized Hlardware U'nit 5 Dynamic Time Warping

/Decis.ion Rule

Fig. 4.1.1 Layering of isolated word recognition system

61M OWt
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computations than the entire scenario, connecting the levels in a macro-pipeline

and pipelining the data sets through the machine should increase the %

throughput of the resulting system. This type of parallelism is referred to as

vertical parallelism. Since each layer is executing on specially designed

hardware, which may consist of multiple computational units, the response ___

time of the resulting system is decreased. The parallelism occurring within a

given level, where multiple units are performing operations on different portions

of the data set simultaneously, is referred to as horizontal parallelism.

Vertical and horizontal parallelism are similar to the techniques of subdivision

and replication discussed for pipelines in [HwB84] or the "purely pipelined" and

the "purely parallel" architectures discussed in [WoC84]. Throughput

constraints may require that a layer be further divided into smaller processes.

These will not represent new layers, but sub-layers, which will correspond to

sub-levels of hardware, consistent with the previous nomenclature.

It is possible to sub-divide the layers to the point where each sub-level

performs exactly one instruction. The result would be a special purpose,

dedicated, instruction-level, data flow machine, capable of performing only a

single task. A minor alteration in the program would require an alteration in

the hardware. For all but the least complex scenarios, the hardware cost

would be overwhelming. Analogously, layers can be combined to the point

where one level performs an entire task. This is the case with a traditional

serial machine. Presumably, the throughput of such a machine would be too

small.

By developing a method to transform a task description into a potential

macro-pipelined architecture, a machine can be built with the necessary

characteristics to execute the task quickly and without excessive amounts of

. ,-'°
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hardware. A basis for such a method is examined in Section 4.5. A similar goal

can be found in [WoC84], where the goal is that of an automated tool for

planning and integrating signal processing systems in a distributed computing

environment. [WoC84] examines the performance of a system to satisfy

requirements for throughput and robustness with respect to hardware

allocation strategies, i.e., how can processors be added or deleted from a system

to optimize performance. A valuable result from the work in [WoC84] is the

detailed analysis of the resulting system. These techniques can also be applied

to load balancing between processors. The type of systems that are considered

in [WoC84] are either purely parallel (SLMD or MIMD) [Fly66], or purely

pipelined. A purely parallel system corresponds to the parallelism within a level

(horizontal parallelism), while a purely pipelined system corresponds to the

level to level and sub-level to sub-level relationships (vertical parallelism).

Thus, this research is a useful tool in the analysis of both the macro (level to . -

level) and the micro (within a level) characteristics of the system. Here, the

major concern is the underlying concepts behind a model relating specific

algorithms to the requirements they place on hardware. The research here

expands on the work in [WoC84 by allowing both forms of parallelism at any

level.

The analysis categories in [WoC84 can be applied to any given level that.

contains one or more combinations of these parallel types. This will allow each

levsl to be designed for a specific sub-task, having a special hardware

complement to more quickly execute that sub-task, resulting in a machine that

can complete a processing scenario within some time constraint. For the case -

to be discussed in Sections 4.6 and 4.7, the time constraint will be that the

proposed system must understand isolated words in real-time.

"-: ' : "-: - '-T- - " :: :, -' - " . : . - .'T : - - - - . - ' - ' ' : ' I '
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It is the goal of this chapter to introduce methods of modeling hardware

and algorithms so that an accurate estimation of the execution time of an

algorithm is possible. The proposed hardware database is discussed in Section

4.2. Response time and its relation to the system hardware is considered in

Section 4.3. Section 4.4 will discuss the two types of parallelism and their _.__

affect on the overall performance of the system. Section 4.5 will present nine

parameters and discuss their relationship to the hardware of the corresponding

level. In addition, the parameters are related to the application software of the

corresponding layer. By applying both of these relationships, the software can

be related to the hardware. This is done in Sections 4.6, 4.7, and 4.8, where

the concepts discussed in Sections 4.2 through 4.5 are applied to an isolated

word recognition system.

4.2. The Hardware Database

A processor description in the database consists of an 9-tuple, a 6-tuple,

and a set of three N-tuples and three N+ 1-tuples, where N is the number of

assembly language instructions (the "+1" includes the instruction fetch unit,

which can, on some systems, overlap execution with certain instructions). The

9-tuple consists of the processor name, cost, package size, thermal dissipation

requirements, power requirements, clock speed, data pathwidth, address

pathwidth, and virtual address space. The package size, thermal dissipation.

and power requirements, are included for applications, such as those aboard a

satellite, where information about all three categories may be crucial. For

some processors, such as the PDP-11/70, the virtual address space and the re:.l

address space differ, so both are required for specification of the proessor.

.... . .. . ...
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The 6-tuple consists of the size and speed of on-board cache, the size and

speed of on-board memory, and the number and size of the registers. The N-

and N+I- tuples must provide information about: the type of machine

instructions, the execution time for a single operation for each instruction, the

number of stages in any pipelines, the replication of units, and the overlap of ..-..

operations. The tuples corresponding to the last three information categories

are N+1-tuples to account for any pipelining, functional overlap, and

parallelism that can occur within the instruction fetch unit. By combining the

information contained in the various tuples, it is possible to derive a precise

estimation of the execution time of all operations whose times are constant,

(e.g., floating point operations on units like the AMD9511A, require variable

amounts of time to execute the same operation on different arguments, thus

only an estimation or expected processing time may be derivable). By

combining information in different tuples, much information can be gained.

For a simple example, by combining the number of stages in a pipelined unit

with the single operation execution time of the unit, it is possible to determine

the throughput of the unit.

Because different processors have different instruction sets, it is logical that

N not be the same for all processors. Consider the case of a simple processor

with an instruction set consisting of an 8-bit add, a 16-bit add, a return on

zero, a move memory to register (8-bit), and a move register to memory (8-bit).
The 9-ttiple would look like:

(BRAND/MODEI.$5.00,1.5cm-by-3.Ocm, 1.5-BTU/hr,

0.15-\V, 1.3-mu-sec,8-bits. 16-bits. 16-bits)

Each element of the above tuple corresponds to the above enumeration of the

elements of the 9-tuple. For a simple processor, like the 8085, the 6-tuple

-.5::!.
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would be:.- ". .-

(0,0,0,0,(1 8-bit, 3 16-bit(8-bit)))

The four "O's" show that there is no on-board cache or memory, while the

parenthesized quantity associated with the 16-bit register width shows that the

three 16-bit registers can be addressed in 8-bit units. For a processor that is

capable of performing the above instructions (which are a small subset of the

instruction set of the 8085), the 5-tuple describing the capabilities would look

like:

(8-bit add register to register,
18-bit add register to register,

return if zero,
8-bit move memory to register,
8-bit move register to memory)

Both the source and destination of each operation must be enumerated. This

allows for processors (like the 8085) in which the results of a given operation

must go to a specific place (the accumulator). The information in the ith,

element in each of the following tuples corresponds to the ith element of the

tuple enumerating the instruction set of the processors. There should be some

closed form of notation for this section, for example: iadd.X.- could be used to

represent an integer addition that is X)" bits wide. Such a notation would allow

the same assembly code to be used on various machines supporting similar

operations, this would replace the requirement of knowing the assembly

language for each unit in the data base, with knowing one generic assembly

language.

°-'--a
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The 5-tuple describing single operation execution time of the operations is '4

as follows (all times are in processor cycles):

(5,10,(5/11),7,7)

This 5-tuple describes the information about the time to execute each of the

above operations. By describing all the operations of the processor in basic

clock cycles, the description of improved versions of a processor can be easily

added to the database. For this example, the "return if zero" (third element

above) command is associated with two times. This corresponds to the

execution time of the conditional if it is false/true. The information in this

tuple, combined with the number of times each specific assembly language

instruction is executed, provides a worst case timing analysis for a given

processor.

The next 5-tuple contains the number of fetches required to execute each

operation. This is needed to help describe systems where the instruction fetch

can be overlapped with the actual execution of an instruction. For this

particular processor, this tuple would look like:

To account for a unit with internal pipelining, the third tuple will contain

the number of stages in the pipeline for each operation the processor can

perform. When a specific command is not pipelined, the number of stages in

the pipeline is 1. (The following tuples must also take the unit performing the

instruction fetch into consideration.) Thus, if the 8- and 16-bit addition units

were 5-stage pipelines and the rest of the unit was not pipelined, the 6-tuple

describing the pipelining would look like: ."-

(5,5, 1, 1,1)

-.;......-..
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It is possible for a processor to have two processing units that execute the

same operations simultaneously, like a micro-processor equipped with two -

adders. If for the previous example, there were four adders, two for 8-bit -
. ".4 .

operations and two for 16-bit operations, the next 6-tuple would look like:

Finally, functional overlap between operations, must be considered. This is

done in the final tuple that would look like: -. "

{ memory-register/16-bit add/fetch,
memory-register/8-bit add/fetch,

S-bit add/16-bit add,
8-bit add/16-bit add,
8-bit add/16-bit add }

This 6-tuple shows that the 8-bit add can be overlapped with both memory-

register operations and the 16-bit add. The 16-bit add can be overlapped with ""

the memory-register operations and the 8-bit add. For this example, the return .

if zero command cannot be overlapped with any operations, the memory

register operations can be overlapped with both addition instructions, and the

instruction fetch can be overlapped with the arithmetic operations. ": --

These last four tuples are used to obtain tighter limits on the execution V.

time a given processor will require to execute a given algorithm. For example,

if the instruction fetch cannot be overlapped with the execution of any

instruction, the previously discussed maximum execution time discussed is a

good approximation of the actual execution time. By not allowing the fetch to

overlap with any instruction, each instruction must reach completion before

fetching the next instruction. This eliminates any possible functional overlap.

....................................... ,
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If the instruction fetch can be overlapped with the execution of given

operations then whenever the execution time for those operations exceeds the V

time for the fetch of the next operation, the fetch time for the sub.sequent

operation can be deducted from the maximum execution time yielding Tr.

Consider the following example (the bold wire represents execution time, the

narrow represents fetch time)

Since the execution time of the first operation is overlapped with the fetch time

of the second, the second operation can begin at the termination of the first

operation, effectively eliminating the fetch time.

Whenever the execution time of a given operation exceeds the fetch and

execution time of following overlappable operations, the execution time of the

subsequent operations may be deducted from T,. to yield Toe'.

-flU 2

The fetch overlap was taken into account in the calculation of TF.

If a unit is not busy, i.e., can accept input, and its execution can be

overlapped with any currently executing instructions, it is possible to overlap

the instruction with the presently executing instructions. An overlappable

operation is any operation that can be overlapped with the execution of any

pending operations and that does not use, any operand that is not complete

when its instruction execution begins. It should be noted that multiple units,

such as adders and boolean logic units, will not decrease the execution time of

.. . . .- .
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an operation. Replication of hardware units will mean that there is a larger

pool of units available, i.e., the likelihood of a busy unit is decreased, so the

likelihood that there is a unit available for a given operation is increased. A ' 1

similar effect is noted for pipelined units, where if Tso is the time that the

pipeline requires for a single operation and there are S stages in the pipeline,

the pipeline is available to accept an input in time-. Greater depth in theS *
analysis of the timing of parallel and pipelined processing units, can be found

in [Che8ol.

If the execution time of an operation is exceeded by the fetch and

execution time of the subsequent overlappable operation, the execution time for

the first operation can be deducted minus the fetch time for the subsequent

operation is subtracted from Toe' to yield Toe. This is demonstrated as follows

(again the thin line represents the instruction fetch and the bold line represents

the instruction execution time).

--!11111111 2 "'--

........ ,.

The above list of parameters used to describe processing hardware is by no

means conclusive, but it does serve as an example about the type of

information that must be stored about processing hardware in the hardware

database. It may, for example, be necessary to add an N-tuple describing two

or more units that share a common pipeline.

p::::
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The first two 5-tuples can be related to the notation in [HoJ81], by: "

B {B(2 + 5, 2 ,+ '° load' , store8 )/B(compare and jump )5/.

where E is an execution unit and B is a boolean unit. For example, the

notation 2+ 5 shows that there are two 8-bit addition units that take 5 cycles

to produce a single result. The third tuple shows the relative construction of

the units and would be specified in [HoJ81I notation as follows:
..

{ -S5 =-+1' - +21 - +31- +41 - +51.

+ 10 +12- +2 2 - +32 +42 +5
16 18 +2-+18 -+18 +18}

,.-2.7

The +1 +2 +3 +4 +5 represent the various stages of the pipeline, while

the superscripts and subscripts are used to describe the execution time and

pathwidth of the units. Finally, the -'s show that the units are connected in

series, showing that there are five stages in the pipelined adders, each stage

taking one cycle. A representation of the other functions is not necessary

because the third tuple shows that these units are not pipelined. By including

the tuples in the database, it is possible to completely re-create the desired

timing information stored in the architecture description notation set forth in

[HoJ811]

'S
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In addition to the functional description, each device may be classified

according to its use. The categories useful for this database (as stated in

[ArB821) are: processor, memory, input/output units, vector processors, and

array processors. Application of this classification scheme will allow different

sets of parameters to be used to classify devices in different categories. In

addition, these categories give some idea of the processing different units can

perform, although some units may be capable of performing various tasks. For

example, to input and store data, unless preprocessing is needed, an input unit

can perform the same function as a processor, i.e., the input unit can be used

to access a sensor and store the sampled data in memory without interrupting

the processor. The hardware can be grouped by category in the database, '

decreasing the required search time.

For the purposes of this paper, the units considered for the database are

either single chips or small boards. The underlying assumption for this scheme

is that there is no shared or reconfigurable pipeline units on board. When this

assumption becomes false, two N + 1-tuples will be required to represent shared

pipelines and their reconfiguration times.

A functional description such as that found in [ArB82], can be used to

accurately categorize each unit according to its functional capabilities. To this

point, only processing hardware has been considered. The hardware database

can be divided into the functional units of processor, memory, input/output,

" vector, and array processors. This is consistent with [ArB82I. Each of these

functional categories will have a set of tuples used to describe its performance.

The tuples will be used with the characteristics of the application algorithm to

choose specific hardware for each level of the system.

. . . . . . . .
.-
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Included with the hardware descriptions of the processors in the database

would be a routine that can simulate the performance of the processor. By

combining the simulation procedures with the architectural information of

other components in the database, e.g., memories, it is possible to create a

simulator for the proposed macro-pipelined architecture. Such a database with

simulation routines for each relevant component would be a useful tool for the

research community interested in the design of macro-pipelined special purpose

systems.

4.3. Response Time -- Its Meanings and Interpretations

The desired response time can be interpreted in various ways depending on

the application. For certain applications, the response time may be a function

of input. This is discussed in detail in Section 4.5. In such cases, the desired .

response time can be considered to be an average response time Tra or as an

absolute maximum acceptable response time Trm.. Let Trdes be the desired

the response time and TR be the actual response time. If Trdes = Trnj then it

is required that TR < Trdes. This results in a system that will always respond :.

as fast as or faster than the desired response time and is useful where response

time is crucial. Such a system may respond faster than is needed, thus the

hardware will not be fully utilized when TR < Trdes.'

Trdes can be interpreted to mean Trav . Let D be the number of input data

sets to be processed and let TR, be the actual system response time for the it h

data set. If Trdes = Trav, then ,

. . ......- °. .......
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The average response time is Trdes, but it is possible for TR > Trdes on multiple

consecutive occasions. If the processing times of various data sets are unrelated

(independent), the probability that TR > Trdes on M consecutive occasions is:

0. 5M. In a real-time environment, if the system falls behind the incoming data,

there are two cases that can arise. Either there will not be enough buffering

and data will be lost, or there will be enough buffering and results will be

delayed. In certain real-time applications, such as air traffic control, neither of

these alternatives is desirable, so Trmax should be used instead of Trav.

In addition, it may be necessary to specify both Trav and Trmax. This
... ::

corresponds to the case where an average response time is desired and where an .'" :

absolute ceiling on the response time is needed. For the purposes of this paper.

it will be assumed that Trdes - Trav

4.4. Parallelism, Task Division, and Design Scenario

It is reasonable to ask: "if given a description of a task, can a computer be

designed to execute it?' Since various algorithms that perform a given task

require varying types of calculations, memory space, interconnection networks.

and execution times. For a simple example of some of the above variations.

consider an in-place sort (bubble) [HoS82b], a sort that requires extra memory

(bin) [AhH76I, and a parallel sorting algorithm ([Pre77]). Assume the sorts are

performed on a list containing N, elements, with the largest element L digits

long. The bubble sort will require O(N2) time with no extra memory. The bin

.!
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sort will require O(NeL) time in 2 Ne memory. The fast parallel sorting

algorithm proposed in [Pre771 will require O(log 2Ne) time using

Nelog 2(Ne+1) /2 processors. Since the time, memory space, and optimal

arrangement of hardware are functions of the algorithm, not the task, it is best

to extract the needed features from the algorithm and design an architecture to

fit a specific set of algorithms. Thus, to design a system for a given task, it

may be necessary to evaluate and compare the use of several different

algorithms and their associated hardware requirements.

After the initial layering is performed, an exact statement of the

application algorithm to be performed at each level will be used with the

hardware description N-tuples to evaluate the performance of each processor in

the hardware database. Then information about the desired throughput and

average response time (Trdes) of the system must be gathered. These will be

the evaluation criteria, i.e., can a proposed system process the data with the

desired throughput and response time.

It is possible that, for each level, the exact algorithm may be available

only as a selection of various algorithms, e.g., there may be more thaIn one

choice for an algorithm for a level to process. The speed at which a given level

operates is a function of the algorithm, so the speed of the corresponding level

will be a function of the final algorithm chosen for that level. Since the

algorithms determine the layering of a task, not only the architecture of a

single level, but the entire system architecture depends on the selection. It is

also possible that one selection may require another, e.g., a frequency domain

process may require that the data be converted from time domain to frequency

domain. Thus, the entire system may be a list of possible alternatives. Since

. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
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this requires a precise computational model for each level, each possible

alternative architecture for the system must be explored.

The first step in the modeling process is to choose all levels to process -"-

their incoming data as fast as possible without using vertical or horizontal

parallelism within any given level. The resulting design is a macro-pipelined

system.

Architectures that are designed along these lines "pipeline" data through

the levels, producing a continuous flow of data. The time to process a single

data set (the time for data to go from the first level to the last level, i.e., the

response time) in such a vertical architecture is not decreased by the

parallelism of the multiple levels of hardware. The throughput for multiple

data sets is greatly increased because new results are completed at a rate equal

to the processing time of the slowest level or sub-level. This is a considerable

improvement over a traditional serial design. If the time to go from the first

level to the last level is too slow, horizontal parallelism, such as that found in

SIMD or M1MD machines, must be applied. The design resulting from the

application of the techniques outlined in this scenario, will be neither purely

parallel nor purely pipelined, but will be a hybrid combination of both forms of

parallelism.

If the processing time for all levels and sub-levels of an architecture were

halved, the time to go from the first level to the last level would also be halved.

Thus, vertical parallelism can be applied to increase throughput, while

horizontal parallelism can be applied to increase throughput and decrease

response time.

N .
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Horizontal parallelism, however, is not the cure for all slow tasks. The

limitation on horizontal parallelism is the inherent parallelism of the subtask to

be performed. Further, horizontal parallelism is affected by precedence

constraints of the subtask. Vertical parallelism is not affected by precedence

constraints because they are still enforced; however, vertical parallelism will not

reduce the response time. Thus, there are both associated costs and limitations

with both vertical and horizontal parallelism.

The design of a machine suited to a special task can be considered to be a

two step process.

1) Create sub-tasks based on conceptual differences (vertical) .

2) Break down sub-tasks based on time requirements
(horizontal and vertical) '. •.

Step 1 creates the initial levels of the hardware. Since the execution time may

vary extensively from level to level, and the levels are pipelined, the execution

time of each level should be balanced to allow maximum utilization of all

hardware present. That is, the overall processing speed of the macro-pipeline

will depend on the speed of the slowest level. Step 2 would be employed to

increase the throughput and/or reduce the response time of slower levels to

help balance the execution times.

The next portion of the design will require an interface between the sub-

task and the hardware. Included in this interface is the description of the sub-

task in terms that relate it to the requirements that it places on the hardware.

This description is used to design candidate architectures, whose performance is

evaluated by some measure [SIS821. It is this portion of the design that is the

topic of discussion in the next two sections.

":'-'-'-' .. ... .... .. ....".....: :: --,- . .:' '. -. " . -. -:--......- .. - . .- .. .. .. . . . . . . ..... •.. . ,.....%*'.......:: •.- •. .. ,,,-,
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The task division here is similar to those used for Piecewise Data Flow

Architectures (PDF) [ReM83] in that a task is divided into basic blocks called

sub-tasks. However, instead of scheduling the sub-tasks for execution on a.

unit, a special unit is designed for each sub-task. The resulting design is more

limited in scope than the PDF, but will be better suited for a specific task. By
m- *..:'

designing each unit with commercially available parts, the overall architecture

can be implemented with current technology, like the PDF; however, by

designing a special purpose unit, hardware unneeded for the specific task under

consideration can be eliminated from the design, reducing the cost of the end

result.

In addition, the design resulting from the PDF is composed of several

small units. operating in a data flow environment, combined into a larger more

powerful "single" unit. A given functional unit in a PDF may be used several -

times, by various processes in the scenario, while the proposed levels will

execute layers on each data set once. Further, the PDF is composed of simple :-

atomic units, while a level in the proposed design is a combination of

traditional serial, SIMD, MJMD, and pipelined designs. This allows the level

associated with each sub-task to be designed to achieve the desired

combination of throughput and response time.

The research in both [ReM831 and [WoC84] relate to work done in [Vic79],

in which a distributed computing system is analyzed with respect to

implementation of switching, bussing, and interconnection; partitioning criteria; 1 AP

and testing methodology. In fVic79j, a dynamically reconfigurable system

similar to a PDF is considered. There, graph theory is used to go from the

algorithm to the actual hardware. The pertinence of the research to the work

under consideration here is that the analysis of what amounts to a distributed

....-...-............ ...-.-.. ......................•.. .-- .......
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machine has been considered with respect to robustness and throughput.

There are two limitations on the type and amount of parallelism applied

at each level. The first is that there must be an upper bound on the cost. An

additional limitation is placed on the type and amount of parallelism by

requiring that all parts be "off the shelf." This second limitation forces the

architecture to be buildable with present day technology. These limitations

assume that an algorithm can be structured for parallel execution. If an

algorithm is unsuitable for parallel execution then vertical parallelism is

required.

The minimum horizontal parallelism at any level is a single unit, while the

maximum horizontal parallelism is limited by the inherent parallelism of the

sub-task and cost of the units. Typically, each additional processor used for

horizontal parallelism may not increase the execution speed by exactly the MOW

same amount, i.e., the speedup may not be NP using Np processors for any NP.

This is discussed in [Sto73]. As mentioned earlier, the minimum vertical

parallelism is one processor and the maximum vertical parallelism is one

processor per instruction.

To propose and evaluate candidate architectures for levels, a mapping is

required between a layer and its corresponding level. Included in this mapping

is the description of the layer in terms that relate it to the computational

requirements that it places on the hardware. It is this mapping that is the topic

of discussion in the next section. Using information from the hardware

database discussed in Section 4.2, the performance of the system can be

approximated. Simulation is required to insure that the system will perform as

desired.
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4.5. Evaluation Categories -- The Relationship Between the Layer and /-'

the Level

If hardware is to be designed for a specific algorithm, characteristics of the

algorithm must be "mapped" onto the hardware. To build hardware for a

given level, a user must supply each of the following evaluation categories

about each layer in the system.

(1) Type, rate, and amount of inputs
(2) Type and number of operations per input datum
(3) Range and accuracy of arithmetic data to be used
(4) Algorithm to be used
(5) Type, frequency, and message length of processor-to-

processor communications -

(6) Amount of memory required "

(7) Type, amount, and benefit of parallelism
(8) Type, rate, and amount of output
(9) Evaluation criteria .. "

It is the goal of this section to use these parameters to form a model of the

algorithms in the task. By using the information supplied by this model with

the hardware model of Section 4.2 and the design scenario of Section 4.4 it is

also the goal of this section to develop a macro-pipelined architecture well

suited for performing the task.

The four factors that can influence the architecture of a specific level are

the data, algorithm, performance evaluation criteria, and the input/output

environment. (1), (6), and (8) are data related; (2), (3), (4), (5), (6), and (7) are

algorithm related; (9) is the evaluation criteria; and (1) and (8) are

input/output environment related. Since at any layer or sub-layer, the exact

algorithm may be one of a set of candidates, the resulting arnhitecture for a

given level and all following levels may also be a list of candidates, with one

4,.
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system architecture per candidate algorithm. For the purposes of discussion, 'PS

the evaluation criterion will be speed and cost, i.e., the faster an algorithm can

be executed, the "better" the hardware design; however, the price of the design

should not be excessively expensive. Several other evaluation criteria are

considered in [SiS821 and (Gon781.

Initially, information about the desired throughput and response time of

the system will have to be known. The first step in the design process will

choose all levels to process their incoming data as fast as possible without using

vertical or horizontal parallelism within any given level. Since this type of

design is a macro-pipeline, the slowest level will limit the throughput of the

entire pipeline.

To fully utilize the hardware in the system, it is desirable to match the

speed of all the levels. There are two design philosophies that can be employed

to balance the throughput of the levels. After the initial design (all levels

designed to execute their layer as fast as possible with no vertical or horizontal

parallelism), the data processing rate of all the levels will be known. If the

designed machine meets or exceeds the throughput and response time

qualifications of the scenario, faster levels can be combined or built with slower

less expensive hardware. This will still maintain the throughput of the system,

while increasing the response time. Such a process can be repeated as long as

the throughput/response time requirements are met. This will lower the cost

of the overall system.

If the resulting macro-pipelined architecture (i.e., one with no parallelism

within a given layer) machine fails to meet the throughput qualification for all

processors in the database, the execution speed of all levels not meeting the
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time constraint must be increased. This can be done with either vertical or

horizontal parallelism. 
P 4 ,

If the machine fails to meet the response time constraints, horizontal

parallelism can be employed (vertical parallelism will not improve response

time). Let TL, be the mean response time for level i to perform its

corresponding layer, Trdes be the desired average response time for the system,

and NL be the number of levels. One way to meet the response time constraint

is to attempt to force:

Trdes (1)
TL- NL "-

Alternatively, the response time criteria may be met even if the equality

outlined in (1) is not true for all levels; however, the sum of the TL's for all

levels must be less than or equal to Trdes. That is, the requirement is:

NL

" TL. - Trdes (2)
, i= 1

In general, it is possible for equation (2) to be true without equation (1) being

true, and still satisfy the throughput requirements (although the execution

times for all levels of the macro-pipelined system will not be balanced and the

slowest level will determine the throughput). This implies that the required

throughput is less than one job every (Trdes/NL) time units; i.e., the required

throughput is less than (NL/Trdes) jobs per time unit. For this initial study.

however, equation (1) will be used as a guideline for the system design. Thus.

for all levels where:

. .. . -. -'.-... . . . . . . . . . . .. . . . . . . . . . . . ......
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TL. > NL

horizontal parallelism must be introduced to attempt to reduce TL.

For simplicity, some form of coordination can be used between the levels.

Chapter 5 will explore the effects of lifting this restriction. For this chapter,

however, the coordination can be in the form of either (a) a master system

clock that tells each level when it can proceed to the next data set or (b) a unit

that keeps track of each level and, when all levels are done, signals each to

proceed to the next data set. The differences between these two

implementations are that (a) will use less hardware than (b), and that (b) will

execute at least as quickly as (a). If TL, is the time required for level i to

complete its subtask, then (a) must be set for the maximum possible value of

TL, over all levels for all data sets. The implementation suggested in (b) will

require an execution time T, of:

Te =ma(TL,,TL,,TL ' ,TL )

While in the extreme case, this will be equal to the implementation suggested

in (a), normally, TL, will be less than the TL for the slowest possible level. The

following is an analysis of how each of the categories is derived, and how it . -.

affects the architecture of a given level.

Category (1) relates the input characteristics of the system to the I/0

environment in which it will execute. It places restrictions on the input

buffering, input data rate, and the internal data format of a level. The type of

data specifies the format and word width required to process the incoming
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data. Combined with the rate, the type of data specifies the speed of the input

unit. Consider a situation in which 250 32-bit floating point numbers and 1000

8-bit integer numbers must be processed in one second. The types of input

data are specified. By combining the type with the rate, 2000 bytes of data per

second must be either processed or stored if the unit is to operate without

losing data. The input rate is required for the first level only, since all other

levels are transferring data by a common clock.

The proposed architecture will overlap data transfer between levels (and

sub-levels) with the computation in those units. Consider the example shown in

Fig. 4.5.1 (a), where each level is connected to the next level through a buffer.

Shown next to each level is its triple or swinging buffer memory: one unit for

data currently being operated upon, one unit for storing data previously

generated by that level (and currently being sent to the next level), and one

unit to receive data currently being sent by the previous level. This scheme was

proposed in [Dem831 and is quite useful towards this application because it

allows the overlap of data transmission with the actual data processing, so each

level is effectively sending a data set, processing a data set, and receiving a

data set simultaneously. It is assumed that the data sets are actually

transmitted via some DMA device.

For example, consider the data sets in the figure using level i's swinging

buffers. Data set E is being sent by level i-I (which previously generated it) to

level i(which will process it after it finishes processing data set D). Data set D is

currently being processed by level i. Data set C is being sent from level i to

level i+1 (which will process it after it finishes processing data set B). The

transmission of data sets A, C, E, and G, and the processing of data sets F. D,

and B, are all occurring simultaneously. The time to perform these

_____ p .*-° -. -.- -
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Level 2

Dauble buffering

Fig. 4.5.1 Buffering implementations
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simultaneous transmissions and computations is called an interval. In the

next interval, data sets B, D, and F will be transmitted and data sets A, C, E,

and G will be processed. Similarly, in the interval prior to the one shown in the

figure, data sets A, C, and E were processed and data sets B, D, and F were

transmitted. In summary, an interval is the time required for a level to

simultaneously receive a data set, transmit a data set, and process a data set,

such as level i does with data sets E, C, and D, respectively in Fig. 4.5.1 (a)).

Since temporary results are stored in memory that is local to the

processors accessing the buffer, calculation of the size of the buffer between

level i and level i+1 is straightforward. If iss i is the input set size for level i

and oss i is the output set size for level i, the buffer memory required for level i

is:

memory buffer = 3 X max(issj.oss) ..

Under different conditions, such as those discussed in Chapter 5, it is possible

that double buffering, as shown in Fig. 4.5.1 (b), can be employed instead of

triple buffering. In this scheme, each level processes the data in the "A"

portion of its input buffer while writing the results of the calculations in the

"B" portion of its output buffer. Then, the levels process the information in

the "B" portions of their input buffers and write the results in the "a" portions

of their output buffers. For this scheme, the buffer memory becomes:

memory buffer --2 x max(issi,oss i)

•5* .5.

The type and amount of operations (2) indicate what must be performed

to process incoming data. There are two classes of algorithms that are of

-. . . . . . . ..... -...
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concern for this category. There are those that perform the same operations on

each data element (data independent) and those that treat each data element w..r

differently (data dependent). For data independent algorithms, the number and

type of each operation performed is countable from the algorithm. Some

examples of algorithms that are data independent are smoothing [SiS83] and

maximum likelihood classification [SiS80].

A reasonable indication of the data dependence of an algorithm can be

defined by the folloNving test equation:

Data Dependency = Data Dependent Operations
Total Operations

The smoothing and maximum likelihood classification have Data Dependency

Examples of data dependent algorithms include contour tracing [TuA83],

calculation of Fourier descriptors [SiS83], and calculation of center of mass

[SiS83]. For a data dependent algorithm, the Data Dependency may not be

obtainable from the algorithm alone, as the Data Dependency may, itself, be

data dependent. In such cases, the Data Dependency must be determined

through simulation on a sample data set. Typically, data dependent algorithms

require varying resources and processing times.

The Data Dependency is a valuable measure, as it gives a figure of merit

to the number and type of operations performed to process data. In cases where -

the Data Dependency must be determined by simulation, the average number

and type of operations per datum must also be determined. The Data

Dependency can be used as an indication of the appropriateness of SWID or

MIMD parallelism.

............- .
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The class of operations can be divided into five groups: (A) arithmetic. (B)

addressing, (C) index calculation, (D) conditional, and (E) data transfer. These

classes were chosen to yield information about which unit can process an

operation. For example, on some SI)MD systems operations in class C can be

done in the control unit, overlapped with the parallel execution. The rest of

the operations are done by the processing elements. Information about class

(E) indicates how much the network will be used. On a system where all

processing is done by the same unit, the distinction between the types of

operations is diminished; however, for analysis they should prove useful.

Information about the various categories will have to be further sub-

divided to provide information necessary to choose suitable processing

hardware. For example, category (A) should be divided into: floating point

additions, subtractions, multiplications, divisions, comparisons, and special

functions; and fixed point additions, subtractions, multiplications, divisions,

comparisons, and special functions. The usefulness of this list is that it

indicates the relative importance of the speed of each operation.

For each floating point or fixed point special function, the number of times

each operation is expected to be performed is specified along with an

equivalence relation, giving the number of "standard" operations needed to

implement the specified function in software. If a unit cannot perform a

specified function in hardware, the time required to synthesize that function

(specified by the equivalence relation) must be calculated. By using an

equivalence such as this, various units can be ranked by their execution speed

for a given algorithm.

Consider an algorithm that requires only 1000 eX operations. If a

particular unit has the "built in" capability to calculate one eX, then (using

'S. .'
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[Har68]), calculating eX is worth nine multiplies, nine additions/subtractions,

one floor, one square root, and one division. By using this equivalence, if the

hardware unit requires 10 msec to calculate each eX, then any unit not having

this special purpose hardware must perform the listed operations 1000 times in ____

ten seconds if they are to be "as fast" as the hardware unit.

The usefulness of this list is that it indicates the relative importance of the

speed of each operation. For example, if there is only one floating point divide

to be performed on the entirety of a given layer, a hardware floating point

divide is likely to have little consequence. It may be necessary, as shown in

Section 8, to subdivide the fixed point operations into two categories

discriminating between indexing oper.ations and integer calculations. This is

required in the event of SIMD parallelism, where the control unit has a

different data pathwidth than the processing unit.

Evaluation category (2) helps place a value on TL, in terms of the actual

operations that must be performed. From one data set to another the required

processing may vary, so an exact statement of what operations must be

performed may be unavailable; however, a reasonable estimate may be

calculated for the average case through simulation techniques, as was done with

Sobel edge detection in [SiS83]. In this edge detection algorithm, if a pixel is

not an edge pixel for an object, it is essentially unused; however, if a pixel is an

edge pixel, it is used in the calculation of a chain code that describes the edges

of a closed object. This chain code is then used for further processing (in this

case, the chain code would be passed on to another level).

Estimates on the calculations to be performed can be used to determine

processing speed and special hardware requirements for a given level. Simply,

if an algorithm requires large numbers of a given type of operation, the

' " -• - - ." -" • -' "- -" % ' '- ,' " -,' " ' ', - '. • , - " ,' ., -" ', .' . ' " ," ", -' ' '. -.• . '- " "- ". " ' . " .,- " , ° .
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corresponding level should have hardware to perform that operation quickly.

The numerical range and accuracy of a sub-task (3) is a function of

algorithm and data. For an algorithm, it is necessary to determine the

maximum and minimum values of the range of the calculations. The range of

the calculations should be divided according to the range of index values, range

of integer arithmetic, and the range of floating point arithmetic. This specifies,

in the SIMD case, the word size of the control unit, and the word size of the

integer and floating point units. In other cases (SISD/MIMD) (Fly66], the word

size of the integer unit is set according to the maximum range required for

integer and indexing arithmetic. It is assumed that the floating point and

integer hardware can have different widths. An example of this is the PDP-

11/70, where a single precision integer is 16-bits and a single precision floating

point number is 32-bits.

Category (3) places various limitations on the hardware. Typically, more -

accurate hardware (larger words) will be slower and more costly. Floating

point operations are typically slower than the corresponding integer operations.

In certain cases, if the numerical range required for various calculations is

small, but out of the range of specific hardware, e.g., underflow, normalization

of data can eliminate the need for special hardware at the cost of some

processing time. The arithmetic range associated with a set of operations

greatly affects the hardware required [SmS81]. If only 8-bit precision is needed,

a 32-bit processor, which is typically more expensive, memory intensive, and

41. slower than a corresponding 8-bit processor, will offer no benefits in exchange

for the extra word length. Certain processors, such as the Am9511A [Amd821,
• .'vri p€ ~~have varying precision and can be employed in cases where arithmetic ranges,.-.-
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vary from loop to loop. Other approaches to dynamic word size machines are

presented in [KaK78] and [LiT771.

Determination of the type and amount of processor-to-processor -

communication (4) for a highly data independent task is straightforward. In

the case of non-uniform tasks, the required transfers may vary randomly in size

and connection, dependent solely on the data set being processed. In this

situation, simulation may be required to achieve accurate estimates for the

average case. To minimize the need for simulation, analysis of the data set can

yield information about the required connections. For example, if a process is

edge tracing small objects relative to the size of the image being processed,

global connections are not required, only local (nearest neighbor) connections

are needed. If the objects are large, then global connections may be needed.

In addition, with knowledge about the algorithm a level is to process (4),

special parallel analysis techniques, such as those discussed in [Ber66], [RaG69],

and [KuM72j can be employed to utilize "extra" parallelism. This can be

accomplished by breaking the algorithm down into multiple streams, using

MIMD parallelism. Applicable loops are those containing variables that can be

calculated independently of other variables within the loop. The "breakdown"

occurs when a variable can be extracted from a loop and calculated in a

separate environment (either a different processor or processors). Other

techniques for parallel processing such as the use of "recursive doubling" for

calculating sums or maximums [Sto80] can be applied.

The algorithm is required to obtain timing information from the previously

discussed tuples. By deriving boundaries on execution time as described in

[HuL82I, levels requiring large amounts of time can be analyzed. The algorithm

must be scanned to determine what operations can be pipelined and/or :""-:". -

."i '. . . . . .ii..-. . . . . ..... . " .- . • .- -.. .- " ....... "....
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overlapped. This must be done for each processor in the database. After the .

amount of time saved by parallelism and pipelines is determined, this time is

then subtracted from the execution time for the processor. For systems with

reconfigurable pipelines, the reconfiguration times must be multiplied by the

number of reconfigurations required by the algorithm. This will give indication

as to where each level is spending its execution time.

If consistent variable names are used from layer to layer, similar task

decomposition to the above can be applied across levels to allow the

combination and/or sub-division of levels as needed. Consider the scenario in

Fig. 4.5.2. The three boxes represent levels one, two, and three. If level three

calculates a, b, and c independently of the output of level two, and the

throughput of level three is too low, the portion of the algorithm calculating

a,b, and c can be moved to level 2. If this makes the throughput of level two

too low, a separate unit can be employed for the calculations. The result is

shown on the right of the figure.

The type, frequency, and message length of the processor-to-processor

communications within a layer (5) will dictate the topology of a level and the

design of the interconnection network. There -re two types of interconnection

networks. A global interconnection networks allows a processor to communicate

directly with any other processor within a given horizontally parallel structure

(e.g., SIMD or NfMD portion of the machine). Typically. a multistage

arrangement is used for such a network [Sie85]. The second type of

interconnection network is a local interconnection network, which allows a

processor to communicate with a specific number of its neighbors (e.g.. 4- or 8- "

nearest neighbors) [SmS81]. In this case, the processors can be viewed as either

a one, two, or three dimensional array when determining the connections to be
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made by the network. A network must be capable of making the desired

connections efficiently and with a minimal number of collisions, to avoid w
significant delays during transfers. It would be desirable to have a database of

known global connection networks and the permutations that they can

perform, so an appropriate connection network can be chosen. __

From the type of communications required by a layer, information can be

gained about the type of processing that should take place on a given level, i.e.,

the more random the communications, the more likely that a horizontally

parallel level should use MIMD (or asynchronous) parallelism, as opposed to

SIMD (synchronous) parallelism. Knowing the size of the transfers will aid the

design of the network. For instance, the longer the transfers, the more suitable

a circuit switched network becomes. For small transfers, a packet switched

network is desirable. Knowing the number of network transfers in conjunction

with the size of the average transfer will provide information about the loading

of a network with a given transfer speed. Consider an environment where most

of a processor's data is stored in memories associated with other processors. In

an MIMD environment, a slow network will have collisions within the network

in addition to the collisions at the memories. (An ideal network with zero

transfer time will only have collisions at the memories.)
x

The amount of memory (6) is an important factor in the design of a

system and is a function of the proposed data set size, data type, and

algorithm. Memory usage falls into three classes: program memory. stack

memory, and data memory. Program memory (size of the binary) is not

determinable from the algorithm. It is a function of the machine and thw

compiler. The stack memory contains arguments to subroutines. return

addresses, and temporary information. Its size is a function of the nesting of

7
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subroutines, along with the amount of information that is passed to those

subroutines. For data dependent algorithms that use some form of recursion,

simulation may be required to determine the appropriate amount of stack

memory needed. An alternative to simulation is to place a maximum depth (in

terms of calls to specific functions) on the stack. If each specific function is

called with a given number of arguments (each with a given size), calculation of

the stack size is straightforward.

The data memory size is the sum of the index memory size and the

process data size, where the index memory is the memory required to store

index variables and loop counters and the data memory is the memory used to

store the actual data set and intermediate results. In general, data set size can

be calculated from an algorithm.

The particular divisions of memory stem from where the data must be

accessed. In an SIMD environment, the stack, index memory, and program

memory must be associated with the control unit, while the process data must

be accessible by the processing elements. In other environments, this memory is . -

associated with the processor, so the divisions do not matter so much as their

total.

The memory size is an important factor in the design of a system. The

data set size, number of processors in a level, and algorithm chosen have a very

important bearing on how much memory is associated with a processor in a

given level. The previously discussed level-level buffering is not considered

with this value.

The type of parallelism (7) can be determined by employing a special

algorithm for a specific type of machine, or by determining whether an

algorithm is best suited for a specific environment. One factor that influences
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this decision is the Data Dependency, as discussed above. For a general

parallel algorithm, the lower the Data Dependency, the more likely an

algorithm is suited to SIMD type processing. In SIMD mode, some processors

may be disabled while other processors execute portions of an algorithm.

MIMD mode does not have this drawback. Instead, NNiMD hardware does not

typically overlap control unit instructions with processing element instructions. -

On an MIJID system, it may be necessary to synchronize the processors to

insure that certain processing has been done before execution continues.

The amount of parallelism can be determined by several criteria.

Typically, the larger the number of processors, the less processing each must

perform and the more significant transfer and wait times become. As transfer

and wait times become more significant, the processors will spend a larger

portion of time idled, so the utilization of a processor will decrease. The

question to be answered here is: "At what point is the utilization of a processor

more important than raw speed?" If different instructions require 4.
approximately the same amounts of time, a reasonable estimate for this figure

can be obtained as a ratio of instructions to instructions plus waits. Thus, the

utilization can be obtained as a ratio of time spent processing data to the time

spent on the entire task (processing and waiting). The Utilization can be

defined as:

total processing time
Utilization

total job time

A variety of performance measures are discussed in (SiS821. These can be

used to determine the relative benefit of each additional processor, allowing one

to decide on the number of processors associated with a given level.

*.~ . .,. . _
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Analyzing the algorithm for inherent parallelism with techniques such as A

those in lBer66], [RaG691, and [KuM72] provides insight into how additional

SIMD or MIIMD (horizontal) parallelism can be utilized to increase execution

speed. Consider the case of two non-concentric loops which do not require

information from each other. If they are processed on two independent

machines, as opposed to one machine, the results will be the same, but the

execution time will decrease.

The type and amount of parallelism will specify the nature and maximum

number of processors associated with a given level. The benefit due to

parallelism is specified in two areas: the speedup due to Np processors and the

maximum value of Np. If speed is the only criterion, then the number of

processors associated with a given level could become quite large. Consider

smoothing, in which the value for a pixel (picture element) is replaced by the

average of itself and the values of its eight nearest neighbors. In a case where

transfer time is negligible, the fastest parallel algorithm can smooth a pixel in

eight additions and one division. This is the case where each processor is

associated with one pixel. For small images this is feasible; however, for larger

images the cost due to the large number of processors becomes prohibitive. The

cost limitation on a given stage limits the amount of parallelism. This has the

side effect of limiting the significance of the network transmission rate

(typically, as the number of processors increases, the effect of the network

transfer/collision rate becomes more significant).

Knowledge of the type, rate, and amount of output (8) will be required for

any formatting that must be done to interface the data to the device gathering

the results. In addition, it places constraints on the output data rate.

...... .:... ... -...... : .... ..... : .............. ;:. :..:.. - .. .... .,
............. <,.,.~~~~~~~~~ ~ ~~~~~. ....... . ..... '° . . . . .. . . • ."'. -. -::: ",":: : _ _Z: : ': '-
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Finally, the evaluation criteria (9) defined how the merit of a system is to

be calculated. By incorporating this into the design procedure, proposed designs

not meeting the evaluation criteria can be avoided. In addition, this provides a

way to rank various designs.

4.6. An Isolated Word Recognition System -- Task Description

Consider the application of the above theory to an isolated word

recognition system. From [Yod82], isolated words are those that are surrounded

by distinct pauses. Fig. 4.6.1 [Yod82I is a diagram showing the proposed

scenario. The computational portion of this task will be everything past the

digitization. To be useful, the resulting design should process the data in real-

time. To work with telephone quality speech, the system will have to process -

6,670 16-bit words per second. This is the minimum speed limitation on the

hardware. In addition, there is a minimum response time. For example, one

would not wish to have the delay between an utterance and its recognition of

more than a few seconds. Such a system has been discussed in [RaL79].

Conceptually, the task may layered as shown in Fig. 4.6.2. Layer I must

pre-emphasize the input signal with the following Z-transform:

H(z) = 1 - 0.95z - 1

According to [RaL791, this serves to reduce the variance in later calculations

(linear predictive coding). From [Oga7O], H(z) translates into:

"(M) = 5(M)-0.95S(M-1)

r,..-_..... . . . . . ,. .... ........... .. ,- ............... . .... . -. ..- --- 2.'. -
.... , .. ,..-.........-:. : ..-. - ::.-:-.. ...- .,.- i : :-:,.:-- .- . -: .. :: .... % -:. 2...,..'..'.° .. ... , ,. .. • 2. . .. : ,* -
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Fig. 4.6.2 Layering of proposed scenario
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where S(M) is the Mth sample of the incoming signal S.

There has been discussion about what type of arithmetic is required for

this process [MaG74]. In [MaG74], it has been shown that the desirable number

of total bits in the word is: [ sampling rate in kHz + 8 1 Thus, for a 6.67kHz

sampling rate, a wordwidth of 15 bits is acceptable. Since the incoming data is

16 bits wide, this represents more accuracy than is needed. To maintain

accuracy through the various levels, a word width of at least 24 bits will be

considered. This represents an additional 8 bits to minimize error. It should be

noted that this is 9 bits larger than the minimum word size suggested in

[MaG74] and is included only to minimize any rounding error. Floating point

calculations can be avoided by using the following (non-integer) fixed point

format:

_L mantissa L fraction _L
23 87 0

Thus, S may be obtained with one integer fetch, one fixed point multiplication,

one fixed point subtraction, one fixed point addition, one fixed point store, and

two fixed point register-to-register transfers. In order to keep up with incoming

data, the level performing this calculation must perform

A%

- , .. -. .- .
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'

6670 16-bit integer fetches

6670 16-bit integer-to-floating point conversions

6670 fixed point multiplications

6670 fixed point subtractions

6670 fixed point stores

13340 fixed point register-to-register moves

every second. The fixed point operations are distinguished from the integer

operations only by the 24-bit word width.

This particular scenario performs its analysis by using the autocorrelation

method of finding the linear predictive coding (LPC) analysis. The underlying

assumption of the autocorrelation method is that S(0) and S(M-1) are both 0

for a window containing M samples. To make this condition true, a Hamming

window is applied to S. The resultant equation is:

m) -- S(m) x W(m) O<M.M

where W(m) [Yod82] is defined by:

W(m) = 0.54 - 0.46cos [-"-'"-

and M is the number of samples per frame. The frame length is fixed and

contains from 100 to 400 samples. Note that now calculations are in terms of

frames as a basic unit, as opposed to one data element. A typical method uses

300 sample frames that begin every 100 samples. For the purposes or

calculation, W(m) only needs to be calculated once and loaded with the

. . . . . . . . . . . . . . .. . . . . . . . .. ...
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program as a set of constants. Thus, for each 300 sample frame, this portion of

the task will require 300 fixed point fetches, multiplications, and stores. In

addition, windowing will require one integer load and 299 integer additions.

These operations must be performed every 14.9 msec because the frames begin

every 100 samples.

After the windowing has been performed, the autocorrelation coefficients

are calculated using the following equation:

M-i-1
R(i) = s(m)s(m+i) O<i<p

m=0 e'.

Normally p is between 6 and 25. For the purposes of this paper, p is 8. Since

there are 300 multiplications and 299 additions that must be performed for

every frame, the incoming data must be converted into 32-bit fixed point

representation. This can be accomplished by either zero filling or sign extension

of the product terms. Thus, this layer will require 2764 fixed point additions

and 2773 fixed point multiplications every 14.9 milliseconds. From this point,

the data is passed onto the next layer, where LPC analysis is performed.

The goal of LPC analysis is to reduce the number of parameters that are

required to represent the speech frame. LPC analysis assumes that each

sample is a linear combination of the p previous samples and an excitation. By

assuming that the speech is 0 outside the present frame, i.e.,

s(m)=0 for m<0 and m>M, the LPC analysis can be broken down to the

following equation [RaS78]:

ik i-k ) - R(i) l<i<p
.k.

'. -. - . . --- --- -. . . - - - .- .. -- " -. --- "-...... ..-. .". -- :.....- -.. . ..-.-- .--...... -.... "...-...-i
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Since p=8, the above equation translates to:
R) = a I)R(0 + a(2)R + a(R(2 +... + a(7)R(6)+ a18R7 d
R2) = a 1)R(1 + a(2)R + ... + a(7)R(5 +a8R6
R 3) = a I)R(2 + a.2)RI) aR( + ... + a(7 R(4)+ a(8R5
R4)-a)R(3 + a(2 R 2+ a13)R I + + a7 R3 +8R4...1R7LR S +a8))(4RS)5 =a I)R(4 + a(2)R 3+ a 3 R(2 + + a(7)R(2 + a(8)R(3
R 6) = a IRi5 + a 21R 4)+ a 3)R 3 + + a(7)R1 + a(8)R(2)
R 7) = a IR(6 + a(2)R(5) +a3)R4 +... + a7)R0) + a(8)R1)

aR7 + a(2)6+ a13)a(51 + + +a(8)R(0) 

This is equivalent to: R = R. where R is an 8-by-8 Toeplitz matrix (symmetric

with only one unique value along the diagonal) and -9 and R are 8-by-1 vectors.

Having R and R, the goal is to solve the above equation for I. which can be

done by calculating R - . There are algorithms that can utilize the special

properties of B. to calculate R -1 in fewer than the O(p 3) ( < kip3) operations

normally required. One such method is Durbin's Algorithm, shown in Fig.

4.6.3, which calculates the a's, as opposed to R -. The computational

requirements of Durbin's Algorithm for the calculation of the LPC coefficients

for an 8-pole autocorrelation method analysis are:

18 integer initializations,
376 integer/index additions/subtracts.

72 integer comparisons,
8 floating point initializations,

89 fixed point assignments,
28 fixed point additions,

44 fixed point subtractions,
72 fixed point multiplications,

8 fixed point divisions,
225 fixed point fetches,

64 fixed point fetches *
64 fixed point stores * ,

128 integer/index operations

every 14.9 msec. (Items marked with an asterisk are required for formatting

R.) After this point, only the a's and R(O) are passed on to the next layer.
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=N I

VI) =R(o);

FOR i- ITOpDO

/* compute k(i) */

k(i) 0;

FORj- I TO i-I DO

161 k(i) - k(i) + -  R(i-j);

k(i) '-- [R(i) - k(i)l / E-');

• "EtJ, (1.k(i) ) 0-);-

/* compute afs fur stage i*/

"o?. .i~i}  ,- k(i); '' - '

FOR TO i-1 DO

FOR j.- TO p DO a1  aj(P);

Fig. 4.6.3 Durbin's algorithm to compute LPC coefficients
ai from autocorrelation coefficients [Yod82]

,. - -t-.*
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At this point, the beginning and ending points of the word must be found.

N This will be used to "warp" incoming words, making them the same length

(linear time warping). In [RaS78], there is a simple method for determination of

the end points in an utterance. This method makes use of the energy ( = R(O))

of each frame and the number of times the normalized signal changes sign in

one frame (zero crossing). It has been shown, however, that the number of zero

crossings in telephone quality speech is not effective in detecting word

boundaries [LaR81].

Since each word is surrounded by silence, there must be some perturbation

to indicate that a word is present. There are only two types of speech, voiced

and unvoiced. From [SaR751, a voiced sound will result in a large energy,

while other sounds will result in only moderate energy. Thus, setting a lower

and an upper bound on the energy will allow one to determine the starting and

ending points of a word. The two energies allow the determination of the

existence of a word without losing valuable information contained between the

lower energy and upper energy thresholds.

Consider Fig. 4.6.4. From frame two to frame six, the energy exceeds the

lower energy bound, indicating that the sound is voiced. AftEr the sixth frame,

the energy is below the minimum threshold values, indicating that no speech is

present. For the purposes of analysis, two constants are defined. They are the

upper and lower energy (UE, and LE respectively) and are defined as follows:

LE = MIN(O.03 x (PEAK-SILENT) + SILENT, 4 x SILENT) -

UE=5xLE

PEAK and SILENT are the largest energy over all frames and largest energy

.. .. . .. . . . ..
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over the ten silent frames respectively. LE and UE can be predetermined to #"

reduce the calculational load. The endpoint detection algorithm is as follows

(the value of the frame pointer after the application of this algorithm to Fig.

4.6.4 is shown in braces):

(1) Measure energy for every frame (=R(0)).
(2) Set a pointer to the first frame that exceeds the upper

energy threshold {4}.
(3) Back the pointer up until it points to a frame that does not

exceed the minimum energy threshold {1}.
(4) Advance the pointer one frame {2}.

The endpoint is located by applying the same procedure in reverse. This

process requires 300 fixed point comparisons and a variable number of integer

operations depending on word length. In addition, there is a variable number

of floating point operations required for each frame as the frame pointer is

backed up.

After the beginning and ending points of the word are known, a procedure

called linear time warping is applied to make all words the same length. In this

procedure, a speech segment containing N1 frames of data is compressed or

expanded to contain F frames of data. This is done by applying the following

equation:

T(f) = (1-k)xR(m) + kxR(m+1) f,.F

where R(m) l<m<M are the M frames of the input template, T(f) I<f<F are

the F frames of the output template, and:

•..-

.............................................................................................................................................. '-.-..."..--"......"-
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-(F-1

k -(f-l) + (1-m)

k is calculated F times and requires one fixed point multiplication, one fixed

point division, one fixed point addition, and four fixed point subtractions. M is

calculated once per word and requires one fixed point floor, three fixed point

subtractions, one fixed point multiplication, one fixed point division, and one

fixed point addition. T(f) is calculated F times and requires two fixed point

multiplications, one fixed point addition, one fixed point subtraction, and three

integer additions for address calculations. In this paper, the value used for F

will be 40 (frames/word). This represents 598 msec. of speech.

From here, the data is passed to the next stage, where a process called

dynamic time warping (DTW) is applied to each utterance. For speech

recognition systems, reference patterns (or templates) for each word the system

is to understand are stored in memory. DTW attempts to normalize time in

order to make an unknown utterance match each of the template utterances,

thus finding the minimum time-normalized distance between the unknown

template and the reference templates. Fig. 4.6.5 [Yod82] shows the results of

dynamic time warping. In this case, each template is represented by a sequence

of feature vectors. Each feature vector contains the LPC coefficients. Since

linear time warping has been applied to the two utterances, they are the same '.*..

length. This reduces the complexity of DTW. The following algorithm [YoS82],

considers two patterns A and B, where A and B are sequences of feature

vectors ai and bi for l<i<I and 1<j<J. The ai and bi are vectors containing
. .. . oJ ..- .

........................................-................... ............................... ... .... ........... ...-.................... .:
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SLPC coefficients. Since linear time warping has been performed at the previous

level, I and J, the number of frames describing the incoming utterance and the

known word template, are equal. The minimum time-normalized distance is

found as shown in Fig. 4.6.6. This is accomplished by finding a path

connecting (1,1) to (I,J) such that the cumulative distance is a weighted sum of ,,

the local distances d(ij) between the vectors ai and b1. d(ij) is defined to be:

d(ij) a I 2 - 21

One method to find the cumulative distance, g(ij), restricts the possible path

leading to a given point to those shown in the inset in Fig. 4.6.6. Using a

recursive definition, g(ij) can be defined as follows [YoS82]:

g(i-1,j-2) +2d(i,j-1)

g(i,j) = d(ij) + M1IN g(i-1,j-1) +d(ij)

g(i-2,j- 1) + 2d (i- ,j) .
.'

g11) =2d( 1, 1) -'.

The result of the algorithm is the time normalized distance, g(L,J)/(I+J). Fig.-

1.5.7 4io\s a serial DT\V algorithm. For the purposes of this paper. let -r.

the anmount the algorithm is allowed to "warp" the utterance, be 3 and J. the

number of templates of known words, be 10000. This will give the system a .,,-

vocabulary of 1000 words (since speaker independent word recognition requires

ten templates for each word in the vocabulary [Ral7.O]), at a cost of over 108

index operations. By choosing the word corresponding to the minimal distance.
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hold = ; template =0;/* initialization 0/ -F "J

for k = i to 10000 I /I for each template /
for j = -1 to 1 /* initialization */

for i = ito I . ;
d~i]{j]=-; "

I/ * end i 'I
/*endj I "

for j = I to 80 j /* for each frame in a and bLk] */
for i = j--r to j--r / each frame within window 0/

if(i_<O) i = / force i to be valid I/

else
d[i][j]=O;
for h = 1 to 9

/* compute 'distance' between
frames a[ij and bik]j] ""dilrj]= dri][j]+l-"'

(ari]lFh]--b'k]Fj jrhj)"*2;
/ * end h "/

/* end i,
/*endj "/

Da, b:k) = g80 ].80],
ifD(a b-k]) < hold) /* store minimum value 0/

hold = D(a,blkl); ,
template = k; .-.

/* end if 0/
/* end k */

a - Unknown word (IVW)
a[ ] - frame i of L.W
ali][h] - element h of vector describinc frame i of UW
b'kj - reference word k RIK)
bikJ: ] - frame i of RWK
b[k]L]yh] - element h of vector describing frame i of RWK
D(a,b'kl) - distance between UW and RWK
g(i,j) - cumulative distance between a and b-k]
hold - distance number of best ,ltting reference word
templat.e - nimhcr of bczt flttina referrnre word

, ;1.'.J

Fig. 4.6.7 Sample DTW algorithm

. . . . . .. . °*777,*
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this system will have speaker independent accuracies up to 98% [RaL79].

4.7. Application of Theory to Scenario

The application of the evaluation categories to the Z-transform gives the

following information:

1) Input: 16-bit integer/sample,
6670 samples/second

2) Calculations: I 16-bit fetch,
1 24-bit fixed point multiplication,
1 24-bit fixed point subtraction,
1 24-bit fixed point store,
2 24-bit fixed point register-register transfers

3) Range/Accuracy: +65535 to -63000/1
4) Communicatious: None

5) Memory: Program + Data + Stack < 2 Kbytes

6) Parallelism: M MD
7) Algorithm: Stated above

8) Output: 6670 32-bit floating point numbers per second

After the Z-transform is performed by the first level, the data is passed

onto the next level where the windowing is performed. The computational

requirements of this level are as follows:

1) Input: 6670 24-bit fixed point numbers/second

2) Calculations: 3 24-bit fixed point multiplication per number,
6 24-bit fixed point fetches/stores per number

3) Range/Accuracy: -+65535/.008
4) Communications: Nearest Neighbor 200

24-bit fixed point numbers

5) Memory: Program + Data + Stack < 5 Kbytes

6) Parallelism: SWID/MIMD

7) Algorithm: Stated above

1::,,

------------------------------------------------------------------------------------
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8) Output: 300 16-bit fixed point numbers/14.9 msee.

r
Note that this level performs the operation of dividing the data into 300 "

sample frames that are transmitted every 100 samples (14.9 msec). Every 14.9

msec, the 300 sample frames are transmitted to the next level, where

autocorrelation analysis is performed.

The calculational requirements of the autocorrelation analysis are as

follows:

1) Input: 300 24-bit fixed point numbers/
14.9 milliseconds,
300 32-bit fixed point numbers=l frame

2) Calculations: 2773 32-bit fixed point multiplication/frame,
2764 32-bit fixed point additions/frame,
2782 32-bit fixed point fetches(stores)/frame,
2782 integer additions/ frame (indexing)

3) Range/Accuracy: ±224/1

4) Communications: None

5) Memory: Program + Data + Stack < 7 Kbytes

6) Parallelism: MID- '

7) Algorithm: Stated above
8) Output: 9 32-bit fixed point numbers/14.9 msec.

The results of the autocorrelation analysis are used for the LPC analysis, where

the amount of data is reduced from 300 16-bit fixed point numbers

representing a frame to 9 32-bit fixed point numbers. The requirements of the .

LPC analysis are:

1) Input: 9 32-bit fixed point numbers per frame
2) Calculations: 18 integer initializations,

504 integer/index additions/subtractions,
72 integer comparisons.
8 32-bit fixed point initializations,
89 32-bit fixed point assignments/stores,

"' " "'' -" -' " " " "" " * " "' ' " " "" ' " " " '' " """ " " "' " "' ".-,.- '." ..... -*'-'...- . . .- " " -
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28 32-bit fixed point additions,
44 32-bit fixed point subtractions,
72 32-bit fixed point multiplications,
8 32-bit fixed point divisions,
553 32-bit fixed point fetches

3) Range/Accuracy: ±224/ 0.008 ..

4) Communications: None
5) Memory: Program + Data + Stack < 7 Kbytes
6) Parallelism: MIIMD

7) Algorithm: Stated above
8) Output: 8 32-bit fixed point numbers/14.9 msec.

After the LPC analysis is performed, the a(i)'s are then passed onto the

next level where endpoint detection is performed. Endpoint detection takes

place over several frames. The time required for the endpoint detection

algorithm is a function of the number of frames in a word. On a per word basis

(assuming 80 frames per word (1=80 and J=80), there the calculational

requirements of the endpoint detection algorithm are: A-

1) Input: 720 32-bit fixed point numbers/1.2sec.

2) Calculations: 1520 32-bit fixed point comparisons/word,
324 integer increments(decrements)/word,
4 integer stores,
1280 32-bit fixed point fetches(stores)

3) Range/Accuracy: ±224/.008
4) Communications: none
5) Memory: Program + Data + Stack < 10 Kbytes
6) Parallelism: SIMD/M1MD

7) Algorithm: Stated above
8) Output: 640 32-bit fixed point integers/word.

These figures represent maximums because it is quite possible to go for

many frames without receiving any input. In such a case, it is possible to just

require the comparisons with only a memory update to accommodate the

incoming frames.

'C...
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From here the words are passed on to the level that performs the linear

time warping. Assuming 80-frame words (which are very long), the calculationsrequired for linear time warping are as follows:

1) Input: 720 32-bit fixed point numbers/1.2 sec.
2) Calculations: 1480 32-bit fixed point fetches(stores)/1.2 see.

480 32-bit fixed point additions/1.2 see.
162 32-bit fixed point subtractions/1.2 see.
800 32-bit fixed point multiplications/l.2 see.
40 32-bit fixed point divisions/1.2 see.
40 32-bit fixed point floor operations/1.2 sec.

3) Range/Accuracy: ±2241.008
4) Communications: Global
5) Memory: Program + Data + Stack < 5 Kbytes
6) Parallelism: SLMD/MIMD
7) Algorithm: Stated above
8) Output: 720 32-bit fixed point integers per word.

After the linear time warping is performed, the data is passed on to the next

stage, where dynamic time warping is performed (once for each utterance in the

vocabulary).

1) Input: 720 32-bit fixed point numbers/1.2 sec.
2) Calculations: 6.8M index variable assignments/1.0 seconds

0.1M index variable additions
66.1M index variable additions (+ 1)
67.3M index variable conditional branches
132.7M address calculations
105.5M fixed point additions
5.8M fixed point assignments
11.3\1 fixed point conditional branches
60.7M fixed point multiplications
60.7M fixed point subtractions

3) Range/Accuracy: ±224 / +-
4) Communicat ions: Global: capable of recursive doubling [Sto79]
•5) Memory: Program +Stack < 10 Kbytes

Data (14.5/N)+0.01 Mbytes per processor for reference
(template) and incoming utterance storage.
Note: One copy of the program is required per

,°m
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processor for an MIMID machine; one copy is required
for the control unit in an SIID machine. .,

6) Parallelism: MIMD"

Speedup = T

N 1 og2N) (IC + 2xNO)

where a single processor takes time T, IC is the time
for an integer comparison, and NO is the time for a 
network operation. .

7) Algorithm: Stated above.
8) Output: I 45-character word

Consider the derivation of the last set of nine evaluation categories. These

nine evaluation categories represent an analysis of the algorithm. Evaluation

category 2 is directly determinable from the algorithm. The range and

accuracy is determinable from the application. [RaL79g states that 15 bits is a

reasonable wordwidth when the sampling rate is 6.67 KHz, as it is for this task.

To apply a parallel machine to this algorithm, each PE would need to execute

this algorithm on its own portion of the tamplate database computing a local

D(A,B). Recursive doubling [Stolg] would then be used to combine the results;

i.e., the word associated with the smallest D(A,B) is the chosen word. This

requires 2 log 2N transfers for the D(A,B)'s and the identifiers for their

associated words.

The amount of memory is expressed as a function of N, the number of
processors. A "C" language program was coded and compiled to estimate the

program size. The DD is small, so either SIMDJ) or ,MI.D parallelism can be

applied to the program; however, the maximum parallelism is 10,000

processors, assuming each PE executes the algorithm for one or more

templates. Application of N processors will yield the speedup shown in (6).

The output of this system is one word. It is imperative that the system keep

up with the input; however, it is desirable to do such with a minimal cost.
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Tihe number of each calculation can be multiplied by the single-operand : '"'

.,J ~~execution times of the tuples for each processor in the database. The sum of ,,....:':
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the products yields an approximate worst-case execution time for a single copy

of each processor in the database to perform this algorithm. Actual execution

time could be better due to clever software or special hardware functions. For

example, software that is written to ignore redundant calculations. Also, by

applying pipeline analysis techniques to this algorithm and using structural

information about each processor, such as functional overlap, stages in

processing pipelines, and the multiplicity of units, a more precise . -

approximation of the single processor execution times can be obtained.

Based on the desired response time, additional processors of the same type

are repetitively added until a level composed of such processors could meet the

time requirements. The number of processors is then multiplied by the cost of

the associated hardware. To this amount, the price of other devices, such as

memory and inter-processor communications links, is added to approximate the"A
cost of the processing hardware involved. The processor chosen used for the

design will be chosen based on the least expensive hardware.

Consider the application of a Motorola 68000 to the above task. The

tuples enumerating the operations and their respective times contains over 1000

instructions: a partial list is included for brevity:

jadd r.#:ald rl.r2:idd (a)+.r:cond. branch-. mov r,#:mov r.(a):mov #.(a):mul L-C.
rl.r2: mul (a) +r: sui r.#:sub rl.r2:sub (a)+,r}_

where r stands for register, # stands for immediate, (a) stands for memory

location stored in register 'a', (a)+ stands for memory location stored in

register "a" followed by incrementing "a".

%. ... . ..
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The tuple describing the timings (in cycles) is:

{8,4,8,10(true)/8(false),8,12,12,70,74,8,4,8}

The 68000 has a no functional overlap or pipelining other than a five stage

instruction decoder. These tuples will be omitted. A 68000 has no special

address calculation hardware, so an address calculation required loading a -..

register, multiplying by a memory location, and the addition of two memory

locations. Assuming that the index variables are stored in registers and that

fixed point numbers are stored in memory, a 12.5 MHz 68000 would take 1579

seconds to perform dynamic time warping on a single word. Using a multistage

cube network that takes 1.0 msec for two transfers, 1600 processors in NfMD

mode would take .998 seconds to perform dynamic time warping. (A thorough
analysis should consider the overlap of CU and PE operations in SIMD mode:

e.g., address calculations). Dynamic time warping is normally done with fewer

than 100 reference templates because of its great computational complexity.

Such an analysis would be requires for each processor in the database.

Then, an actual implementation of the above approach would consider

simulating the algorithm on the various processors to obtain a more accurate

timing estimation. Finally, if no processor in the database could be used to

implement this algorithm, the layer would need to be broken down into sub

layers, each of which would be analyzed with the proposed techniques.

* . .. . .
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4.8. Conclusions

Using the above nine categories, an algorithm can be analyzed according

to the requirements it places on a system. By building hardware to efficiently

handle these needs, it will be able to effectively process the algorithm. If many

hardware components are analyzed and categorized according to their abilities

and processing times, a database containing information about each processor

can be built. By mapping the organization of each level in a multi-level design,

computers can be used to design systems for specific needs of algorithms. Thus

automated design of special purpose processors can be achieved.

In summary, this was a preliminary study of how to partially automate

and model the design of special purpose systems. Categories of hardware

analysis were presented. Their relationship to the hardware and their

dependence on the software was discussed. An application of the theory to a

software scenario performing speaker independent isolated word recognition

was presented. Finally, the computational requirements of the scenario were

presented. By bridging the gap between hardware and software, automated

special purpose machine design comes closer to being a reality.

:... ..,
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Now

CHAPTER 5

ASYNCHRONOUS AND SYNCHRONOUS

SYSTEMS ADVANTAGES AND

DISADVANTAGES

5.1. Introduction

Chapter 4 introduced a scheme for modeling the hardware requirements of

a layer. It also proposed a concise scheme for modeling the capabilities of a

computational device. Finally, it showed a method of going from the hardware

requirements of a task to the computational device. This was all done with a

real-time system in mind. The type of system considered in Chapter 4 was a

synchronous macro-pipelined system with potential parallelism at each level.

This chapter looks at the performance of an asynchronous macro-pipelined

system, a synchronous macro-pipelined system with triple-buffers between

levels, and a synchronous macro-pipelined system with double-buffers between

levels. It is the goal of this chapter to show the strong and weak points of each

of these schemes, along with showing in which situations each of these schemes

is most applicable.

Before considering the use of asynchronous stages in the proposed macro-

pipelined architectures, analysis techniques to determine inter-level buffer size,

expected process wait time, and the likelihood of buffer overflow, are required.

If analysis techniques cannot be developed, the use of asynchronous stages will

...........- ...-....-....--...*... .. . , . .. .. . . .. .. .. . . .... . . .. .. . . - : . . . . .- ... .- . .. ..'...... .. .-. / -. -
. .2.,' .,''. " .. ""€ '. " "5"" . ", : "z ". "- .' : .' "'..'' % ",, "";"- % " ,.; ,,", .. ", ..* ,.". °, ,.", " . . ....-.. ,. ,. . :
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be complicated bec tuse no analysis techniques short of simulation will provideII

meaningful results. It is the goal of this chapter to determine whether it is % %

possible to derive the following parameters about a (possibly parallel) level:

I Probability ( f receiving v jobs by some time t

(Pv(t))

H The expected average input queue length (Q) for a given layer

P,(t) is useful in determining the most likely time at which v jobs will

arrive at a given level, which is receiving input (which may include feedback

from later levels) from r sources. Integrating tPv(t) with respect to time will

yield the expected time at which v arrivals will occur. Within some tolerance

(e.g., + a standard deviation), this is required to determine the required

throughput of a given level. Q is required to determine the time that a job

spends "waiting" to get processed. This time must be added to the total

computation time for a job to determine the total time required to complete a

job.

In the previous discussion, each level was allowed to process only one data

set at a time. This was a restriction imposed by the synchronous nature of the .. - -"

system. When the levels of a system are asynchronous, this restriction could be

rernoved. For exami)le. a level could contain multiple processors, each working

on a difforent data set. For the purposes of this study. however, this restriction

will still be imposed. As shown in Fig. 5.1.1 (a). it will be assumed that all ______
processors in a given level work together to process a single data set. There is

a single input queue for each level. This form of replication corresponds to

either the SI"ID or MIMI) parallelism discussed in the previous se(tion. Only a

single result is completed at a time by a level. Outgoing jobs are queued (if
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necessary) in the input queue for the next level.

There are other types of parallelism, such as the multiprocessors with

multiple data sets mentioned above, which will not be considered here. N-

Instead, their analysis will be left as future work.

Fig. 5.1.1 (b) ihows two asynchronous systems with feedback. For the

purposes of this research, feedback is defined to be any data set in the input

queue for a level i that did not come from level i-I . By this definition,

feedforward (from levels other than i-1) is also treated as feedback. (from

levels other than i-I) is treated as feedback. Here, it is assumed that feedback

data sets can arrive asynchronously and are normal data sets as far as size and

processing requirements are concerned. Feedback may be required when a data

set needs further reprocessing, e.g., processing with different parameters

because it is later round that some criterion is not met. Feedforward may be

used when a particular data set does not need to be processed by a specific .%

level or levels. Syn,.hronous systems, by their nature, cannot have feedback.

Initially, four assumptions will be made. They are:

(1) Two input data sets cannot arrive at a given level simultaneously i.e..
feedback is not allowed. (If there is no level-to-level feedback. it is

impossible for multiple data sets to arrive at a given level

simultaneously.) This restriction will be removed later.

(2) At a given level, the arrival of a particular data set is independent of the

arrival of any other data set. Thus, the arrival of data sets to be

processed by a level can be treated like events in a Poisson random

process.
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(3) At a given level, the average arrival rate of data sets to be processed is
X ar.

(4) The probability of an arrival at a given level during a given time %

interval is a function of the interval duration, not the beginning time of

the interval. For a very small time interval At, the probability of an

arrival is XArt.

Section 5.2 discusses the determination of Pv(t) for a single input stream.

single processing stream system; i.e., no feedback. The information presented

in Section 5.2 represents a derivation of the results presented in [Ful75]. It is

the purpose of this section to provide necessary background information to

clarify the discussion of topics appearing elsewhere in this chapter. Section 5.2

also states the results of the theory for a multiple input stream case; i.e.

feedback is allowed. Section 5.3 continues the derivation started in Section 5.2 "

to determine the expected size of a level-level queue.

Based on the previous sections, Section 5.4 compares the performance of

an asynchronous system with the performances of the both double- and triple-

buffered synchronous systems. In Section 5.4.3 the performance of both

double- and triple-buffered synchronous systems are analyzed for two level

systems where the response time of the first level is fixed and the response time

of the second level is either a uniform random variable or a Gaussian random

variable. Section 5.4.4 applies the techniques presented in Section 5.3 to derive

the expected throughput and response time of an asynchronous system.

Section 5.4.5 contrasts the performance of the two synchronous systems and

the asynchronous system when the response times of the two levels are random

variables. Q for an asynchronous system is discussed in Section 5.4.6. Section

5.4.7 contains a discussion of the applications of double- and triple-buffering

- - - - - - - -



systems. The advantages and disadvantages of synchronous systems and J'

asynchronous systems are summarized in Section 5.4.8.

Sections .5.2, 5.3, and 5.4 all deal with the theoretical expectations of the

system throughput. To verify the results presented in these sections, Section

5.5 presents results obtained from simulation.

5.2. Determination of Pv(t) For a Single Input/Processing Stream

The following derivation is similar to that in fFul75]. Setting At as the

time interval under consideration, the probability of a data set arriving is:

P>1 (At) = Xw, x At + P> 2(At)

where P> 2(At) is the probability of at least two data sets arriving. P,(At) for

v>l is zero if the previous layer produces at most one result at a time, if there

is no feedback. and if At is short (i.e., At x Xar << 1).

The case for v > 0 arrivals during a time interval t+At is:

P'(t +At) = P,_(t) x P1 (At) + P'(t) X P0(At)

During one time epoch (At), at most one arrival can occur. Thus, either zero

jobs or one job can arrive during the interval At. P,(t) can be obtained

through the fundamental definition of differentiation:

.N(t) = lim P,(t+At)-Pv(t) ,
At-0 At

.i -.- . ...... . . . . . . . . .... ... . ..-- - " "-..-" ".. ... . ..
?-~.. .'.',"t..... '..

.
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Since P1 (At) =XarAt. P0 (At) I - PI(At) =I - X3,.At. Thus,21

P,() Pv..I(t)Xar -Pv(t)X\ar (v>O)-

N4

Taking the Laplace transform of this equation (assuming that

lrn PVO0 (zAt) =0), yields:

Ps)bpr -.(s+X =1 (s+Xar)
P~(s) = ar) od-

Taking the inverse Laplace transform yields:

PV(t V! e

The application of the above equation is limited to a system with a sing-le

input stream capable of sending one job at a given time and a single processing

stream producing a single result. This type of analysis makes it possible to

determine the probability of a level receiving a given number of arrivals by a

certain time t.

By applying the results in [Cin75], P,. for r independent Markovian

streams is:

P (kt - v (At) ALt

r
where AL is: NjX 1 and Xi is the arrival rate for stream i.

%(1
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5.3. The Expected Queue Size of an Asynchronous System

The above results can be used to calculate the Expected Interarrival

Time (EIT) as follhws:
( ~. *%

I~ javerage interarrival time<tJ 1-P0 (t)

I taking the derivative yields:

P average interarrival tm = -P 0(t

where, p,(t) =P,(t)

Ipo(t) =e x 1  -J

Thus,

EIT V Xj) f e' t dt
i=1 t=O

r + LO

Xi.. 
t=
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Service of the arriving jobs is less complex bec.ause it is a valid assumption

that only one job may be removed from the queue at a time. Because data sets

may be related, the servicing of the data sets is not necessarily Markovian. By -,

defining AL to be for jobs arriving at level L, PL to be the averageEIT

throughput of level L, and C to be standard deviation of service time the
expected service time .

Pollaczek-Khinchine formula [Ful751 along with work from [CoM67], can be - -

applied to determine the expected queue length as:

2 AL(IL - AL) + AL2(C2 + 1)
2 PL(PL-AL)

This is the expected queue length of an M/G/I queuing structure

(Markovian arrival process, General distribution service structure, 1 processor

serving queue).

5.4. A Comparison of Synchronous and Asynchronous Systems

5.4.1. Introduction

Since P,(t) and Q can be calculated, the throughput and response time of

a system with asynchronous levels can be compared with a system whose levels

are running in synchrony. Several metrics must be considered to perform this

comparison. While such metrics as expected queue size, wait time (in the

queue), and expected run time all have a meaning for an asynchronous system,

their use for a synchronous system is limited. Worst case speed in an

asynchronous system reflects itselh in the expected size of the buffer between

two asynchronous levels, but does not bear the same significance in a -..-

synchronous system, where it is used to calculate the run time of a system.
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5.4.2. Initial System Models -- Three Potential Architectural Schemes "
WII

Consider the proposed systems shown in Fig. 5.4.2.1. Each of the

proposed systems contains two levels. This model can be extended to systems

of multiple (>2) levels, by repetitively analyzing the system in terms of two

level pieces. This is an iterative process. For example: for an L level system,

all levels 2i and 2i+1 (i < y) would be analyzed as two level systems. Then,2

the statistics for these systems (consisting of two levels) would be combined in

groups of two. The resulting analysis would then parameterize the performance

of the four level "systems." This process can be repeated until there is one set

of parameters to describe the throughput of an entire system. Because of the

simplicity of analysis and applicability of the analysis, only two level systems

are considered here.

The first system in Fig. 5.4.2.1 is a synchronous double-buffered system,

the second a synchronous triple-buffered system (as discussed in Section 4.5),

and the third an asynchronous system. It will be assumed that the both of the

synchronous systems are of the type where both levels report to an arbitrator

when they have completed processing (the first level to report waits until the

last level reports). It is the goal of this discussion to relate the response time,

throughput, and memory requirements of the three types of architectures. To

this end, the discussion will assume that the first level can perform its

calculations in a fixed amount of time (this restriction will be removed later).

It will be assumed that the exact execution time for the second level is

unknown, but that it can be described probabilistically. This is similar to the

earlier discussion about the isolated speech recognition system, in which the

.............. ,....................... ... .............. .... , .. i
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Level I

Triple Buffered System

Level 2

Level i

Double Buffered System -

Level 2

Level I

Gueue Asynchronous System

Level 2

Fig. 5.4.2.1 Three architectures under consideration

7
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fourth level required a fixed computational time and the fifth level required a

variable time.

5.4.3. Analysis of Synchronous Models with Two Probabilistic Models

If ti is the actual time that level i requires to process a given data set and

pri(t) is probability that level i will process any data set in time t, the expected

processing time (EPT) of each level for the synchronous systems can be

defined as follows:

t=tl t =0

EPT = f tj pr 2(t)dt + f t pr2(t)dt
t=O t=tI

Since the system is running in synchrony, the faster level must wait for the ."

slower level to respond before its processing can continue. The addend (first

term in the sum) represents the time that the system will spend when the

of-ond level responds more quicklv than the first. Here, the response time of .'

the system is t1 . The probability that the response time of the system is t, is

equal to the sum of the probabilities of all cases where t, is less than tj, hence

the integral.

r[he augend (,,c()nd term in the sum) results from the second level

reqponding miore slwlv than the first. In this case. the response time of the

'Cto )nld level dictates the response time of the entire system, thus the t times"

pr 2 (t) is the expected response time of the system when the second level of the

system responds more slowly than the first level.

. . . .-
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In a synchronous environment, the minimum time that a data set can

spend at a given level is t1 . The processing time for data set D is:

max tt(for D),t 2(for D-1) + max t1(for Dt+ilt2(for D)J

For the double-buffered system, the expected system response time (SRT)

is: 2 x EPT. In general, this is NL x EPT, where NL is the number of levels in

the system. The throughput of this system is I/EPT. In contrast, the triple-

buffered system requires time EPT to transfer the data set from one level to

the next, thus SRT of the triple buffered system is: 2 x EPT (one time unit is

required to load data into a level and one time unit is required to process the

data). For the two level case considered here, this is: 4 NL x F-T. The

throughput of the triple-buffered system is the same as the double-buffered

system.

Analysis of the cases where the levels are running in synchrony (i.e.. all

levels must complete their present data set before any can go onto the next

data set) can be obtained by applying this (previously mentioned) equation:

t-tt-

EPT = f t~pr(t)dt + f tpr2(t)dt
t=- .::

The addend of EPT is evaluated as follows (where level two is Gaussian with

mean response time and standard deviation of t, and 0o = Ct, respectively):

t=tl

f tipr2(t)dt
t=o "::.'-.*-
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t 1 f exp d
t=O v~C 2  2(Ct 2)2  d

jt1t2J..

= ti

4) is the Gaussian probability function with mean 0 and standard deviation 1

[Pap6-3I. o,, wvas set to Ct2 So that the results could be expressed in terms of ti. '

For this last equation to hold, the quantity. 1 ,1- must be zero. For

values of C larger than 0.4, a Gaussian distribution function would require

some modifications (e.g., a 6 function for pr2(0)) to be valid. When t" btl,

this equation simplifies to:

C b1

The augend of EPT is evaluated as follows:

f tpr2,(t)dt

t t..
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______ 00

= f Vr(t) 1x Jt- dt
tt -- 2(Ct,2

by defining u =t -t 2 (du dt), this simplifies to: M

=00 CT) 2Ct2 )
t 2exp d

Splitting th~e integral into two portions and simplifying the augend yields:lE

U 00 [_ _
f .. X j-!7 Ct'-Jdu + t2 1 t 2

= 2  1p~ 2(Ct2 )'

Substituting z = 2 yields:

2~ 00

- Z0 (Ct 2 ) -e-'dz + to ___t -
ft -T ) 

2  
2 r 

t

Performing the integration over the limits yields:

_2 -(t - T2 )2

- expr 2(Ct 2)2  [ct2 i
Allowing t2 =bt 1 yields:
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Cbt -(I - b)2 + btI 1 - b
- exp 2(Cb)2 Cb

The resultant equation for EPT (for a Gaussian time distribution) is as follows:

EPT = tj(1 -b) + exp (b)2
C Ii 2(Cb)2  b

Here,
S.:. .'_-4d

SRT(double buffered) = 2xEPT

SRT(triple buffered) = 4xEPT

and the expected system throughput (ST)

ST EPT

Table 5.4.3.1 shows the effect of b and C on SRT and the system 4....

throughput ST when the processing time of level two can be represented by a

Gaussian distribution function. In addition, Table 5.4.3.1 shows that the

greater the probability that t, is greater than t1 , the lower the throughput. In

addition, a triple-buffered system will have the same throughput as a double-

buffered system, but the triple-buffered system will require one extra delay for

each level in the system.

Consider the case where the response time of level two can be described by

a uniform distribution function. (For this discussion, it is assumed that it is

possible for t, to be larger that t1 . If this is not the case, EPT = t1 .) Again, let

2= bt1 and o = Ct.. If t2(max) and t2(min) are the largest and smallest

response times respectively, then pr2.(t) = t a ( From [Pap651, it

:...:..... ... ;....-... ... :.. ...... .... ... . . 4 :.. .. 4 .-..::::.:. 4 4 :
"*. . . . . ."'l .. *. .... 4 .0- l'' 1 ' - " - 1 I- /



210

Table 5.4.3. 1.

Double buffered system (DB) and triple buffered system (TB): SRT and ST __

when tj is fixed and t, Gaussian random variable.

C t b SRT (DB) SRT (TB) ST

1.00 0.50t, 0.50 2.08t, 4.16t, 0.96/t,
1.00 0.75t, 0.75 2.38t, 4.76t, 0.84/t1
0.75 0.50t, 0.50 2.03t, 4.06t, 0.98/ti
0.75 0.75t, 0.75 2.24t, 4.48t1  0.89/t,
0.50 0.50t, 0.50 2.00t, 4.00t, 0.90/ti
0.50 0.75t, 0.75 2.11t, 4.22t, 0.95/ti
0.25 0.50t, 0.50 2-00t, 4.00t, 1.00/ti
0.25 0.55t, 0.55 2.00t1  4.00t, 1.00/ti
0.25 0.60t, 0.00 2.00t, 4.00t, 1.00/ti
0.25 0.65t, 0.65 2.00t, 4.00t1  1.00/ti
0.25 0.70t, 0.7-0 2.00t, 4.00t, 1.00/ti
0.25 0.75t,. 0.75 2.01t, 4.01t, o.99/t I
0.25 0.80t, 0.80 2.01t, 4.02t, 0.O9/t1
0.25 0.85t1  0.85 2.01t, 4.02t, 0.09/t,
0.25 0.90t, 0.90 2-03t, 4.06t, 0.98/ti
0.25 0.95t, 0.95 2.09t, 4.18t1I 0.g6/t 1
0.10 0.50t, 0.50 2.00t, 4.00t, 1.00/t,
0.10 0.55t, 0.55 2.00t, 4.00t I 1.00/t,
0.10 0.60t, 0.60 2.00t, 4.00t, LOON/t
0.10 0.65t, 0.65 2.00t, 4.00t, 1.00/t,
0.10 0.70t1  0.70 2.00t, 4.00t, 1.00/t,
0.10 0.75t, 0.75 2.00t, 4.00t, 1.00/t1
0.10 0.80t, 0.80 2.00t, 4.00t, 1.00/ti
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can be shown that:

to(max)-t,(min) ,..

v12 Ct

Given the the above, the equalities:

to(max - t2(min )  -- '.:t2(maX) = t' + 2

""a ) = - t (m ax) - t 2(min)

t 2(min) = tm2 - 2 (

and t,, bt, it can be shown that:

t2(lmax) = t I (b + v'3Cb)

t2(min) = t1 (b - v'r3Cb)

Since only non-negative values of time are allowed, C <--. The EPT can be
V3

determined through the following derivation.

tj t = t4maX)
--EPT f tj pr 2(t)dt + f t pr 2(t)dt

- .. -

% 00-_

'.,:,'.. ,,..-.', '., -;-. ..... ,. ,,_.._,,_... . ............-, .. ...... ,.......... ,€.........,. • .......-. . .
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tjt t(b + v"3Cb) . 0%

- f tj pr2(t)dt + f t pr2(t)dteo

t Wb - viw) t

t-t2 ,(min)
Completing the integration and using the fact that PR2 (t) =

v/12Cbt1

(PR 2 (t) is the probability that the response time of level two is less than or

equal to t) yields:

t1 (1 - b + -..f3Cb) (b2 + -vil-Cb 2 + 3C2b 2 
- )tl

V12Cb +2\(i2Cb

This simplifies to

=(1 - 2b + 2V3-Cb + b2 + 2vriCb 2 + 3C2b)t

4V3-Cb -

Table 5.4.3.2 shows the expected response times and throughput of systems

whose response times can modeled by uniformly distributed random variable.

5.4.4. Analysis of an Asynchronous System -- Two Probabilistic

Models

Now, consider the case where the levels operate asynchronously. tj is

assumed to be constant, as in the synchronous case. If t,, can never exceed t1 ,

EPTi is tj. For all such cases, a queue of length 1 is sufficient. In general. if X

a' 
C *~A 

*
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Table 5.4.3.2.

SRT(DB), SRT(TB), and ST for t, fixed and t,, uniform random variable.

C b SRT (DB) SRT (TB) 9ST

0.577 .50t, 0.50 2-00t, 4.00t1  1.001ti ,
0.577 .55t, 0.55 2.00t, 4.00t, 1.00/ti
0.577 .60t, 0.60 2.03t I 4-06t I 0-08/t,
0.577 .65t, 0.650 2.07t, 4.14t, 0.97/t,
0.577 .70t, 0.70 2.11t, 4.22t I 0.05/ti
0.577 .75t, 0.75 2.17t, 4.34t, 0.92/ti
0.577 .80t, 0.80 2.23t I 4.46t, 0.89/t,
0.577 .85t, 0.85 2.29t, 4.58t, 0.87/t,
0.577 .90t, 0.90 2.36t1 4.72t1 .8/t 1
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is the arrival rate of jobs from the previous level and p is the rate at

which the present level processes data sets - 1 then the expected
f tp2(t)dt

queue size for an M/G/1 system can be determined by the following equation

[Che8O]:

Clearly, as p approaches X, the expected queue size gets arbitrarily large. If t" %

exists over a finite range, then t2(max) may be substituted for the 0C. This

equation simplifies to:

t 2 -i- t 2_-

The expected waiting time in the queue can be determined by the equation

jFul75]: W = txQ. Table 5.4.4.1 shows the expected queuelength (Q), the

expected waiting time in the queue (W), the expected system response time

(SRT). and the expected system throughput (ST) as a function of t2 when the

response time of level 1 is a constant ti. For the calculation of this table. it

was assumed that the data arrived at level 1 no faster than one job per time t1 .

i.e., the system could keep up with the incoming data. This is the same

assumption made for the synchronous case.

%
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Table 5.4.4. 1.

The expected queue sizeJ.) expected time spent in a queue (),the xpected
system response time (SRT), and the expected system throughlput (ST) for an
asynchronous system with t, fixed and t,, an arbitrary random variable.

t. b = W RL. TL
0.50 t1  0.50 1.00 0.50 t1  2.00t, 1.00/ti
0.55 t, 0.55 1.0 0.66 tj 2.21t, 1.00/ti

0.65 t 1 0.65 1.86 1.21 t1I 2.85t, 1.00/t,
0.70 t1  0.70 2.33 1.63 t, 3.33t, 1.00/t I
0.7-5 ti 0.75 3.00 2.23 ti 4.00t, 1.00/t,
0.80 ti 0.80 4.00 3.20 t I 5.00th 1.00/ti
0.8.5 tj 0.85 5.67 4.82 t1  6.67t I 1.00/t,
0.00 t1  0.90 9.00 8.10 t1  10.00t, 1.00/t,
0.95 t, 0.9.5 19.00 18.05 t, 20.00t, 1.00/ti

Iw
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SRT for the asynchronous system is be calculated as follows:

SRT =tj + t'2 + WN

,.' ..

When results of this analysis are compared with the previous results, the

asynchronous system will yield up to a 18% greater throughput. Using

asynchronous hardware will provide greater utilization of the hardware.

Further, the asynchronous system will not need hardware to transfer data from

one swinging-buffer to another, unlike the triple-buffering scheme.

For the applications discussed earlier, it would seem that the asvnchronous-

systems are "the way to go." While, in general. they are feasible, there are

specific cases where it may not be advantageous to use an asynchronous -

system; e.g., when response time is critical. While an asynchronous system has-

a higher average throughput, for specific data sets there may be a significant

delay caused by time spent in a queue. The worst-case response time of an
-. ''.

asynchronous system could be greater than some threshold. In such an event.

an asynchronous system would not be desirable. On the average, however,

asynchronous systems offer higher throughput than their synchronous.-.

.............

4*~*** *.*. ~ *4.-.
4 4 4 4--.4 4--
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5.4.5. Analysis of Systems Composed of Two Levels Whose Response.-

Times Are Random Variables

The previous discussion held tj to be a fixed entity. Now, consider the case

where tj can vary. It will be assumed; however, that t1 is Markovian. For

synchronous systems, the analysis must be divided into three parts because of

the three distinct ways that the times for the levels can be related. These

three cases are shown in Fig. 5.4.5.1. (The dashed line represents the range of

processing times for t 2 and the solid line represents the range of processing

times for tj.) For the first case, EPT is t. This the least complex and least

useful situation. Clearly, if there is no overlap between the processing times of

the levels, one of the levels is processing more quickly than is needed;

consequently, the stages of the pipeline are not balanced. Thus, the faster level

could be built with slower and presumably less expensive hardware.

Now, consider the case where the time span for tI overlaps with t,.

Assume that the maximum and minimum possible values for ti are ti(max) and

timin). EPT is (recall pri(t) is the probability that level i will have response .

time t and that PRi(t) is the probability that level i will respond faster than

time t):

t1(min) t2 m&x)

EPT = f t' pr 2 (t)dt + f t pr9 (t) PR1 (t I < t)dt
t =t 2(min) t =t1(min)

+ f t pr 1(t) PR,(t., < t)dt + f t pr(t)dt
t=t,,mnin) t=tjMmax} :

This can be transformed into the following equation:

-7 -

. ~***,**..*a,.**
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------ ------ ------

NOn-verlapping times -

One time wholly contained in the other

Fig. 5.4.5.1. Three orientations of t,, relaive to t,
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t1(min) t2(max) t

EPT = f t1 pr.2 (t)dt + f t pr 2(t) f prl(x) dx dt

t2 (max) t t1 (max)

+ f t pri(t) f pr2(X) dx dt + f t pr,(t)dt
'.tt(min) x=t1 (znin) tt&&mX)

Because of the complexity of this integral, its value must be calculated

numerically if the distribution of prI(t) or pr2(t) is Gaussian. For the following

discussion, assume that p1 (t) and P2(t) are both uniform distributions. Recall *'-

that: pri(t) =that ti(max) is t1(1 + vr3-C) and that ti(min) is
ti(max) - t1(min)

ti(1 - V'-C). If the standard deviation and mean of level 1 are o' and t

respectively and the standard deviation and mean of level 2 are o02 and t,,

respectively. the following equation is the evaluation of the above integral. *

ai
is defined to be =n- and b is -'-. Again, Cq can be no greater than .577 if only

positive values of tj are to be allowed.

2b v'"3C2

[2b I + 'V/3C 2) + ( Fv"i) 3-3b( + \/3C2)(i0C J
+

36CC,,b
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I + (1+ V/'3C) 2-(b + bC2V )2J

Table 5.4.5.1 applies this equation to derive the expected response time and

system throughput of a double- and triple-buffered synchronous system as a

function of b, C1, and C2.

The final case, where one interval is contained in the other, is similar to

the previous case. EPT can be defined as follows (when the possible response

times of level 2 are a subset of those for level 1):

ta(min) tzmax) t

EPT= f T2 pr1(t)dt + f t pr 2(t) f pr1 (x) dx dt
tt1 (min) t=t(min) x=t(rmin)

t2(max) t1(max)

+ f t pri(t) f pr 2(x) dx dt + f t prl(t)dt
t=t(min) x =t(min) t=t(max)

The analysis for this case is similar to the previous analysis and it is omitted

here for brevity.

Now consider an asynchronous system with the same two levels. For this

analysis, level 1 is assumed to be Markovian. Any probability function that

can describe the response time of level 2 will be allowed. If level I runs

continuously then application of the Pollaczek-Khinchine formula predicts the

expected queue length to be [Fu175I:

... . . .. . . . . . . . . . . 4. - . ,

.. .. *. ,. .

".':...-...-, ~~~~~~~~~~~~~~~..-,.. .. :_................... ...... -........ •....... ...-........-... ......... .. -.-. i
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Table 5.4.5. 1.

Statistics for a synchronous system with both t, and t2 uniform random vari-
ables.

b IC 1  C2  SRT(DB) SRT(TB) ST

0.9 0.500 0.577 2.49t, 4.98t1  0.81/t,
0.8 0.500 0.577 2.42t, 4.84t1  0.83/t,
0.7 0.500 0.577 2.35t, 4.20ti 0.85/t,
0.9 0.400 0.577 2.40t, 4.80t1  0.83/t,
0.8 0.400 0.577 2.36t, 4.72t1  0.85/t,
0.7 10.400 10.577 112.35t, 4.72t, 0.85/t,

NO
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! -r
2 JL (C2 + 1)

tI t2 (tj q

Here, C - .t a2 is the standard deviation of the processing time for level 2.

Multiplying 9by T2 yields the expected wait time in the queue. Thus, for an

asynchronous system the expected SRT is:

2 (C2 + -1)
TITTI t-+

The expected throughput of the asynchronous system is:

max(t 1 , t2)

The memory requirements of the double-buffered system are 2 NL data sets

(NL is the number of levels in the system), while the memory requirements of .7

the triple-buffered system is 3 NL data sets. Finally, allowing a double input

buffer for the first level of the asynchronous system, its memory requirement.-

are 2 + (NL - 1)q data sets.

To relate the response time and throughput of the various systems. there

are three cases that can arise. i, can be less than, equal to, or greater than tI.

Applying the last case to the asynchronous system; it is assumed that a new

data set is arriving every T, seconds, thus the queue for level 2 would be

required to grow without bound -- clearly not feasible. Synchronous systems

. -,.,°.

-. . .. *..*.* d~ * * *. . . . .* .".* . *
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would lose data sets in this event. A similar situation arises for the cases where

=1 tR I

The following analysis will show how the three architectures behave when 'i..-.

t' < t1 . The distributions used to describe t 2 will be the normal distribution

(Gaussian) and the exponential distribution. Mean values of t2 considered will . -

be .5t, and .75tI.

Figs. 5.4.5.2, 5.4.5.3, and 5.4.5.4 show the effects of t2 and C on the

expected queue length for the second level of the asynchronous system. Fig.

5.4.5.5 shows the effects of C on the expected queue length of an asynchronous

system. C and T2 affect the time that a job spends waiting in a queue. For

systems in which the ratio of the standard deviation to the mean (C) is small,

the expected response time of level two does not have to be as fast as would be

required by larger values of C. Note: values of C larger than one are

meaningless because such a condition implies that negative processing times are

possible for level two. Table 5.4.5.2 shows the response time and throughput of

an asynchronous system where each data set is processed only once, i.e., where

data sets are not fed back for more processing ( W is the expected wait time in

the queue, and ST is the expected system throughput):

This table is true when the service distribution of the for the second level

is a general distribution. For an exponential distribution, C is defined to be

one. The results printed in this table merit discussion because they are not

intuitive. Consider the following diagram:

-- -- ~ .j*... ~ .~. -. .

-W o
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30.939-

31.1311

0.00000 . 1275 .24=50 .37i=0 .'49600 .619*750 .74=50 .EO.9590000

Fig. 5.4.5.3 Queuelengtb as f(t2) c=0.5

.~~~~~~ ~ ~ ~ ~ . ..
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Fig. 5.4.5.4 Queuelength as fit2) c=1'.,0.... ,,.+,

a... isi
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3 2:

o 0.5 1-

.;.'-. .

Fig. 5.4.5.5 Q as f(C) [b=0.751

. . .
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Table 5.4.5.2.,. . .

Asynchronous system statistics (Gaussian).

C t2' SRT ST

1.00 0.50 tI  1.00 0.50 tj 2.00 t1  1/ti
1.00 0.75 ti 3.00 2.25 tj 4.00 t, 1/ti
0.75 0.50 t, 0.89 0.45 t, 1.95 t1  1/t
0.75 0.75 tI  2.51 1.88 t, 3.63 tj 1/ti
0.58 0.50 t1  0.85 0.42 ti  1.92 tj 1/ti --
0.58 0.55 t, 0.80 0.50 tI  2.11 tj 1/ti
0.58 0.60 t 1  1.20 0.72 t 1  2.32 tI  1/ti
0.58 0.65 t1  1.80 0.95 ti 2.60 t, 1/ti
0.58 0.70 tj 2.20 1.25 tj 2.95 tj 1/ti
0.58 0.75 tj 2.25 1.69 tj 3.44 tI 1/ti
0.58 0.80 t1  2.93 2.35 ti  4.15 tj 1/ti
0.58 0.90 tj 6.03 5.67 ti 7.57 t, 1/ti
0.50 0.50 t1  0.80 0.40 tj 1.90 t1  1/ti
0.50 0.75 t, 2.20 1.65 tI  3.40 t, 1/ti
0.25 0.55 t1  0.91 0.50 tj 2.05 t, 1/tI
0.25 0.60 tj 1.07 0.64 tj 2.24 t, 1/t
0.25 0.65 t1  1.29 0.84 t1  2.49 t, 1/ti
0.25 0.70 tj 1.57 1.10 tj 2.79 t 1/ti-
0.25 0.75 t1  1.95 1.46 t, 3.21 tj 1/ti
0.25 0.80 tj 2.50 2.00 tj 3.80 tI  1/ti
0.10 0.50 tI  0.75 0.38 tj 1.87 tj 1/ti
0.10 0.55 t1  0.88 0.48 t, 2.03 t1  1/ti
0.10 0.60 tj 1.05 0.63 tI  2.23 tj 1/ti
0.10 0.65 t1  1.25 0.82 tj 2.46 tj l/t
0.10 0.70 t, 1.52 1.06 t1  2.76 tj 1/ti
0.10 0.75 tt  1.89 1.42 t1  3.17 tt 1/t.
0.10 0.80 t, 2.42 1.94 t, 3.74 t, Il

p...

d- 

- .. 
..

-
'.
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Level 1 Average response time .. ...

=t

Level 2 Average response time

t2 .75 x t,

It would seem to be reasonable no queue were needed between these two levels,

since on the average the second level completes its processing faster than the

first level: however, consider the case where level two requires 1.2 5xt to "." . f

complete two adjacent data sets and the normal .95xt to complete the next,

four data sets, and .65xt- to complete the final two data sets. The average

queuelength is approximately 1. With a wide variation of response times and

many data sets. this can cause the expected queuelength to grow.

If the first. level completes processing on several consecutive data sets

faster than t' then the data sets need to be queued for the second level. As t-

approaches t-I, the likelihood of the first level producing large numbers of jobs

faster than the second level can handle them increases.

l'p V

.. . . - -. .. -- . .... . . , -•. .....-. . -. .. .. -... .. . ... .-..-. . -d .- . . .... "'.=:
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5.4.6. Analysis of Q

When considering the expected queue size, the expected wait time in the

queue, and the system response time of an asynchronous system, the previous

discussion assumed that there would be enough buffer memory to hold all the
data sets. The expected queu,-, size is the probabilistic term for the average "::'

queue size. Thus, if a buffer memory size equal to the average queue size is

used, the probability of overflow is 0.5. At this point, no data sets can be

taken. Such an event at level I will cause processing to stop at level I-1 when

level I-1 attempts to send its results to level I. Rapidly, this will cause the

input queue for level 1-I to fill, halting level I-1. Thus, all levels in the system

will process data sets at the rate of level I, which is the slowest level in the

system. This effectively slows the asynchronous systems processing rate down

to the rate of a synchronous system.

It should be remembered that where an asynchronous system will halt. the

synchronous system will issue a signal that it is not ready. Thus, an

asynchronous system will be less likely to attempt to stop the stream of input

data. Because the asynchronous system queues its jobs, the response time for a

particular job can become large; however, this is not taken into account with

the synchronous system. Response time only refers to jobs that are in the

system, thus, statistically the SRT is biased in favor of the synchronous

system.

The probability of halting levels because of queue overflow in subsequent

levels can be greatly reduced by allowing an appropriate queue size for the

level-level queues. The next question becomes: "What is an appropriate queue

size for a level-level queue?" This question can be addressed probabilistically.

- .. .., .

- - - - - - - - - - - - - - - - - - .* " . . . . .

-_ . ..... , . -. ,. . . , -. . . . . . .- , .- ., 'o .. € . ..- . , ,S- , .-.*. ., . . ..*.. - - ., ..*' ' .'.'
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From the definition of Q, P(queuelength > Q) = 0.5, this can be expanded to:

P(queuelength > k Q) = 0 .5 k. Depending on the margin of safety desired, the

buffer size can be chosen appropriately. Table 5.4.6.1 shows the probability of

the queue overflowing versus the size of the queue. This table shows the

expected probability of overflow for a queue that is a multiple of Q. It does

not take account of the processing requirements of the data sets, i.e., how likely

is it that level I will complete its processing slower than the rest of the system

on this many data sets. Here, the underlying assumption is that level I is as

likely to be slow after one job as after 100. Such being the case, this table

represents a ceiling on the probability of overflow.

When the memory required for Q is large, the cost of overflow protection

can be significant, so a tighter limit may be required. If the queue for level I

overflows then the throughput of the system will drop to that of a synchronous

system. Further, it will have the response time of an asynchronous system with -

its buffers full for levels I - I-1. for a system with I levels, the response time

can be calculated as fo,lows:

SRT(overflow) = ZEPTi + NZ'QiEPTI + V QiEPTi
i=1 1 =1 1 =1 +1n:...

This can represent a significant amount in the case where a large amount of

buffering is allocated (again it should be noted that a synchronous system

would halt its input stream). When only k of the previous input buffers fill,

the SRT can be shown to be:

SRT(k levels full) = 'EP i + N' QiEPT + QjEPT'
i=1 i=I-k i=1+1

The previous tables of asynchronous system values, thus need to be weighted

according to the probability of overflow. This is done as follows:

. . ....................-..
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* Table 5.4.6.1.

Probability of overflow versus Q

P(overflow) 9x

0.50000 1.0

0.25000 2.0

0.12500 3.0

0.06250 4.0

0.03125 .5.0

0.15625 6.0

0.00781 7.0

0.00390 8.0

0.00195 9.0

0.00098 10.0
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SRT(w/overflow) = (1- "i Pi(overflow))SRTi'=1 '-"-"-

."I i . .-:,

+ V VPi(overflow affects j levels)x(number of jobs queued)xti(max)
i i=i j=1

The case where the overflow causes level 1 to stop the unit loading the data, .--

lost data sets cannot be counted and cannot be accounted. For calculation,

this can be avoided by assuming the level 1 has an arbitrary queue size, thus

no jobs are lost, only queued.

The system throughput (ST) can be calculated by a weighted summation

of the synchronous and asynchronous cases. Define ovf to be the total

probability that an overflow will occur. Then 1-ovf will be the probability that

an asynchronous system will run asynchronously. For the asynchronous cases

presented, this becomes:

ovf = ovf1 + ovfo

(ovfi) is probability that level i will overflow its input buffer. Using the

definition of ovf, the weighted system throughput becomes:

ST(with overflow) = (1 - ovf)ST(asynchronous) + (ovf)ST(synchronous)

Thus, for a system where the response time for the first level is a constant t, ""

and the response time for the second level is a Gaussian distribution function,

if ('=0.75 and b=0.75, and the total probability of overflow is 0.75, ST is:

T = .75x .0 + .2.5× 0.89 = 0.97
t. tI t .+ .2-5x

I--.."
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The overflow of a buffer does not have a significant effect on an

asynchronous system's throughput. It affects the SRT. A synchronous system

(built with similar hardware) would use some form of flow control to inform the

device supplying the inbound data to halt. An asynchronous system would

have to do the same only when all the internal buffers were filled. For real-

time systems, this is clearly not desirable because data would be lost. An

asynchronous system would be less likely to stop the incoming flow of data..:.

than a synchronous system because of the internal queuing.

5.4.7. Double-buffering Versus Triple-buffering -- An Analysis

In general, a synchronous system that is double-buffered will have a faster

SRT than a system that is triple-buffered. Both systems will have the same

ST. Thus, it is reasonable to question the need for a triple-buffered system.

The following discussion will consider this question.

Assume that each level of the proposed system is physically remote from

the other levels. The time for a level to write data into the double-buffer would

be btxdss, where dss is the size of the data set size. Here, the processor would

wait for dss responses from the buffer memory. This would adversely affect the

processing speed of the system because the data transfer time is a portion of

the processing time. If a triple-buffered system were to be used here, the total

data transfer time would have to exceed the maximum processing time of the

levels involved before it could have a affect ST. Where levels are not

geographically remote, bt is small and has little effect. Thus, triple-buffering is

not needed. +.",

....... ..... ... ..... ... .
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A combination of the two buffering strategies is possible where some levels

are close and others remote. An example of this can be seen where some levels **

share a given rack, while others are in another rack. Between.levels in a given

rack, data transfers are quick, so double-buffering can be applied. Between

racks, data transfers may be slow, so triple-buffering may be applied. This

technique offers the advantages of a tr;ple-buffered system without unnecessary

delays where data does not need to travel a great distance. Further, the

throughput of the system is not degraded when the data must travel to a

remote location.

Thus, where transmission time between levels is significant, triple-buffering

is a useful tool because it overlaps the data transmission time with the data

processing times. When transmission time is not a significant problem, the

triple-buffered scheme will use extra memory and hardware. Further, use of a

triple-buffered system will increase the system response time by the response

times of all levels using triple-input-buffers. This can represent a significant

increase in system response time over the double-buffered approach.

5.4.8. Synchronous Systems Versus Asynchronous Systems

Where there is no ceiling on the response time of a system, such as in a

non-real-time environment, asynchronous systems offer potentially greater '-'"

throughput than synchronous systems with the same processing hardware.

Considering that in a synchronous system, levels that complete their processing

sooner than other levels must wait for the slower levels to "catch up." In a

real-time environment, synchronous and asynchronous systems built with

similar hardware will yield interesting results. If the hardware is built so that-

.k. . . . . . . . . . . . . . . . . . .
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the synchronous system can keep up with the incoming data, the asynchronous

system will be idle. The response time on the asynchronous system will be

slightly faster than on its synchronous counterpart, because the entire

synchronous system waits on its slowest level. The entire asynchronous system

will not wait on the slowest level (unless the pipeline is full), so the effect of the

slowest level is more limited in the asynchronous case.

If two independently designed systems, one synchronous, the other

asynchronous, are built to process the same task, There will be little difference

in the price. The synchronous system will require more expensive processing

hardware, while the asynchronous system will potentially require extra

memory. The key issue is that if, from a given database, a synchronous system

cannot be built to execute a given task within some time constrains, an

asynchronous could be used to up the ST and decrease the SRT by a

significant amount. For non-real-time systems, asynchronous systems can be

built for less money than the synchronous systems because large amounts of

buffer memory are not needed -- thus the asynchronous system would be the

better choice. For real-time systems, the asynchronous system has a variable

response time, depending on the loading of the pipeline, thus if a variable

response time is undesirable, a synchronous system should be used.

SA.

" 'l'-
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5.5. System Simulation -- Results

To either prove or disprove the theoretical results presented in the

previous sections, a simulator (shown in Appendix 1, was developed. This

section will present and analyze the results of the simulation.

The numbers presented in Table 5.5.1 represent the simulated performance

of a two level system, where the response time of the first level is fixed and the

response time of the second level is a uniform random variable. Both !Tt

synchronous and asynchronous statistics are shown. When the synchronous

statistics are compared with the statistics shown in Table 5.4.3.2, the theory

predicts the the actual results with a maximum error of 0.03. "b (actual)" is

the actual ratio of t 2 to tj. Due to some inconsistencies in the random number

generation, the expected ratio, as defined in the second line of the results, is

not the actual ratio. Results for the case when level 2 is a Gaussian random

variable are shown in Table 5.5.2. When compared with the results shown in

Table 5.4.3.1 (C for this table is approximately 0.25), the simulated results

differ from the theoretical results by no more than 1 percent. Thus, for the

simulated data sets, the theory presented is an accurate representation or the

actual results.

When comparing the results for the asynchronous system in Table 5.5.2 to

the proposed results shown in Table 5.4.4.1, it is again necessary to take "b
-2'-

(actual)" into account. For uniform data there are some interesting results

that arise from this comparison. Taking the ratios (based on the actual value

of b) of Qm and Q to the Q predicted in Table 5.4.4.1, the first ratio falls in

the range 1.45±0.155. The second ratio falls in the range: 0.14±0.05.

Comparison of these results shows that the maximum queue size is

approximately ten times the average queue size (based on 200000 test runs).
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Table 5.5.1

Uniform system response times (200000 samples).

Parameters Synchronous Asynchronous

System System

t2 b (act) SRT(DB) SRT(TB) ST(Xtl) Q
ti ti

1.00 1.06 2.56 5.12 .78 11.506 5764 6113

0.95 1.02 2.48 4.96' .81 2230 976 988

0.90 0.96 2.41 4.82 .83 39 3.49 5.04

0.85 0.90 2.34 4.68 .86 16 1.42 2.99

0.80 0.84 2.26 4.52 .88 7 0.73 2.33

0.75 0.80 2.20 4.40 .91 6 0.54 2.08

0.70 0.74 2.14 4.28 .93 4 0.29 1.89

0.65 0.70 2.08 4.16 .96 2 0.17 1.76
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del'

Table 5.5.2.

Gaussian system response times.

Parameters Synchronous Asynchronous

System System

Samples iL2_ SRT(DB) SRT(TB) ST(Xtl) Qm, -R

200000 1.00 2.10 4.20 0.95 520 353.73 255.71

200000 0.95 2.08 4.18 0.98 201 38.45 38.03

200000 0.90 2.03 4.08 0.99 1 0.15 1.92
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Further, that with 89% accuracy, 1.45 times the predicted queue size yields the
maximum queue size. Thus, for response times that can be modeled as a

uniform distribution, 1.45 times the queue size predicted by the application of

the Pollaczek-Khinchine is an accurate model of the maximum queue needed

for the inter-level buffer of a system where a level with a fixed execution time

is feeding data to a level with an execution time that can be modeled by a

uniform random variable.

dIf the execution time of the second level in a system can be modeled by a

Gaussian random variable, the Pollaczek-Khinchine rule does not accurately
.-P.. -

predict the expected queue size of the system when the average response time

of the second level is more than .95 times the response time of the first level.

This is shown by comparing the results in Table 5.5.2 with those in Table

5.4.4.1.

The statistics presented Table 5.4.5.1 for a synchronous system are 30 : s
percent lower than results achieved through simulation shown in Table 5.5.3.

For the simulation, C1 = 0.570 and C, = 0.577. The results of the simulation

show that a synchronous system behave slightly worse than the theory predicts.

Finally, the simulation results presented in Table 5.5.4 (C=0.58) show that the

expected theoretical queue sizes presented in Table 5.4.5.2 are 30 percent

greater than the actual average queue size.

The results of the simulation show that synchronous systems behave worse

than the theory predicts and that asynchronous systems behave better than the

theory predict. To achieve the same throughput, synchronous systems require

hardware that is twice as fast as asynchronous systems performing the same

task. Further, for a two level system, when the expected response time of the

second level is 75 percent of the first level, the asynchronous system will

*- .. . ° -

- % . . .
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Table 5.5.3

Synchronous system response times when the response times of both level I and
level 2 can be modeled by a uniform random variable.

Samples -L2 SRT(DB) SRT(TB) ST(/tl)
ti - .

1E+06 1.00 2.7 5.42 0.74
IE+06 .05 264 5.8 0.7

IE+06 0.95 2.64 5.28 0.76

1E+06 0.85 2.53 5.06 0.79

IE +06 0.80 2.46 4.92 0.81

IE+06 0.75 2.42 4.84 0.83

IE+06 0.70 2.37 5.74 0.85

IE+06 0.6.5 2.32 5.64 0.86



2t2

* Table 5.5.4

Performance statistics for an asynchronous sy.stem whose levels can be modeled
by uniform random variables.

Samples t2 QMa&c

*2E +05 1.00 177 62.8 1.00

2E +05 0.0.5 30 6.01 1.00

2E + 05 0.00 29 2.97 1.00

2E+05 0.8.5 20 1.76 1.00

2E+05 0.80 13 1.22 1.00* -

,2+0.5 0.735 12 0.88 1.00 -

2E+05 0.70 10 .67 1.00

Fir*~4
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generate results more quickly. This is the worst case and occurs when the

distribution of the second level can be modeled by a uniform distribution.

When the second level can be modeled by a Gaussian distribution, the results

are more pronounced (the cross-over point occurs when the average response

time of the second level is 85 percent of the first level).
, .. .o"

5.8. Conclusions

Theory and background information was presented to relate the

performance of both asynchronous and synchronous systems. The theory

predicted that synchronous systems would have 84 percent of the throughput

of asynchronous systems. Through simulation, this figure was shown to be up

to 16% high. Application of the theory to asynchronous systems showed that

for certain hardware configurations, asynchronous systems had both greater

throughput and lower response time. The key disadvantage to asynchronous

systems is clearly that the response time can vary by a large amount. For

real-time systems, this fact is significant enough that asynchronous systems

may not be feasible.

• ..
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SIMULATOR LISTINGS -i

System Simulator Level 1 Response Time Fixed and
Level 2 Response Time Uniform Random Variable

#inclIude<stdi a.h

/This simulator was written for a Gould Powernode 9080 runn ing UNIX '
/* 4.2 BSD. It simulates the execution of both a synchronous and &a
/o asynchronous wolvl ysekeeping track of the l evelI-to-lIevel0
/ * buffersizes and the response times of the second level. For this o
/s simulator, it is assumed that the distribution describing the res- 0

ftime of the second level is the uniform distribution function, and *
/that the first level has a constant response time. It is run on a 0

o0 ttal of 200,000 data sets per simulation statistic, requiring!
/more than I.0Nb storage and more than 2 hours t o complete 0

#define EVEN'TS 2.00000 /.Events per simulation 0

4*define FEVE"JTS 2100000.0 /ofloating point representation 0

FILE ofi / file pointers ~
int densityll6l; /ofor density function 0

/oGould Firebreather 9080 Compiler o
/* needs the NOXBASE because 0

/0it needs to use a different
/* addressing mode to handle large '

/* NO BASE of/* arrays .
gloat timelist f1004EVENTSI; /* list of event times
mnt pqueueqize,mqueuesize; /* present and maximum queuesizes 0

at rqueuesize; /* total jobs stored in queues
float i dlIe time;, /* idletime for second level .
float rlsptime; /* response time for first level 0

float resptime; /. response time for second level
float rrspt ime; / cumulative time for second level *
float sysresptime, /0system response time
float synchresptime, It synchronous system response time *

float pcntHJ ( 1 00, /* r at io of I
0.95, 0 90, /0response time of level -2
0.85, 0 80, -- -- -- -- -- -- -- --
0.75, 0 70, /oresponse time of level I *
0.65, 0 60,
0 65, 0 s0o
0 00 }

main( ) .

float kttime; /* time keeper
float rtime; /* response time keeper o
mnt eventtime, /* event duration
int il,/ event counter 0

int- , /oevent counter

flfopen('simulatio.results",'wr'), ,* open files

srandom(get idfl). /0 nitialize random number generator!

e xitU
Ifor j=0 , pcntI>0 .0: j-+)

pqueuesise=; / initialize all statistical keepers 4
mqueues iseO;1
rqueues i e=O
dletime= 0.0;

I%
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.0 rlsptime= 0.0
resptime= 0.0;
rrsptime= 0.0;

sys resptise= 0.0;

denu ity [ I 0;

ktime=3.0/16.0;

for( i=; i<100+EVE'JS, i++) /* generate random events 0
time list Ii] kt ime;
kt iie--0. 5;

ri spt imkt ime;

% synchrespt ime0. 0;
% ~ktime=0 0;

r rspt ime=0.0; &l

eventtime =017 & random( ); /* random number *
,'* 0 and 15 *

density! eventtimel;
eventt ime+=1
rtime pcntjjj/16.0*(fioat) eventtime;
rrspt ime+-rtime;
i f( rt ime<(8+0/16 0))

synchresptime+=8.0/16.0,

ele synchresptime+-rtime; P.

statqueue(i+1,ktime.rtime), /. qucuesize *

f(kt ime<t ine list!il

kt amet imeIi st i 1+rt ime;

else
kt iie+=rtime,

respt ime-+=ktime-time! st~i

I sysresptmme+=
rtime+timelist[ i'-timel ist i-i I;

f pr nat f ft:f\n"n1 System s imulation~nn')Or
fprinitf f I 'ample set size: -o6d'\n'

fpinfVlPrcss) ; time o f level 2 (times lee 1)62f'n'.
f pr inat f( fl.Avrarocessing tm( level 1) q66,~n

frnf(t Average process ing time (level 1) C46 2 f' a'
rrspt ime/ la FE'T)I 0E r)),

(pr rtf TI,"Average size of level- level queue %6 2f a",
(float) rqueuesize'FEVENTS).

fprintf( fil"Maximum size of level- level queue %Y6d'a',
nq u eues ize),

fprintf( fl 'Average response time (level 2). 2f' n
re spt imeiFEVEW'S)

fpr int f (ft, Average iystem responsie time (time! l) 0;6 2 Fn",
(rl sptime/'(FEVETS-100 0 ))(respt imejFEV&%7S)

fprintf( f . App roximate FWecent Idle time (level 2) o6 2f\n"'
100 0'idletime/time! stIEVE\'TSI)

fpi tfI 'a, Synchronous system stat istics\n' ),
fpriI t! fI.'Synchronous' SRT(DB) (x ti)- %6.2f\n",

24synchresptimeFEVEWTS)l
* ( rIsptimel (float)) O1EVN~.TS) )

*fpritf~ fi 'Synchronous SRT(TB) (x ti ) %6 2f\n',
3 3s y ac hr e p t ime,FE*%'&NTS)'
r1spt me,'(float)!j00EV&?TS))%.fn

fprintf( I,'Synichronous ST(/ ti)%0 2fn

1 0/((synch reipt ine FEVEZ'rS
( rispt ime/'(float) (I004EV',T7S )))

0)' .* .~V
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fpriatf(fI.*\n\n Distribution oflevel 2 epne"ie:a)
for( i0O; i f-repneL.ws\

f pr in t f l,"%l0d -%6 %d u 6\n"

fflush~fl) +1,densi ty [ii, i+9,dens tyL i+8 );

statqueue(po3 prest ime,proct ioe)
i t pos ;I

* fBoat prestime. proctime;
{ mt

-. pqueuesize=0;

fo r ( jpos ( (j<(1O O+EVE'TS) k&( t i mel Ist sitj<( p te st ime+p r oct ime); +)

pqueUe i ze++;

if (pqueue i ze~inqueues ise)
inqueues i epqueues ize

rqueues ze+-pqueue ize;

%
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System Simulator
Level 1 Fixed and Level 2 Gaussian Random Variable

#include<stdio h> __

'This simulator was written for a Gould Powernode 9080 running UNIX 5

/4 2 BSD It simulates the execution of both a synchronous and an
/' asynchronous two level system, keeping track of the level-to-level *
is buffersizes and the response times of the second level. For this .
/6s simulator, it is assumed that the distribution describing the res-

,time of the second level is the uniform distribution function, and 6

Ie that the first level has a constant response time. I t i s run on a a/
/* total of 200,000 data sets per simulation statistic, requi ring 5

more than 1. 0Mb s to rage and more than 2 hours to complete .

*define EVEW~'S 200000 /.Events per simulation .
=define FEVENTS 200000.0 ,sfloating point representation 5

F ILE # f Is file pointers 5

mnt densi t yf16~ 6 for density function 6

*s Gould Firebreather 9080 Compiler .
/s needs the NOBASE because

41 /s it needs to use a different 5

is ddressing mode to handle l arge
/* NOBASE 5]/* arrays. '
float timelistj 10 0+E VE.T S 1; list of event times '
mut pqueuesize,mqueuesize; / present and maximum queuesizes 6

mnt rqueuesize; /' total jobs stored in queues 5

float idletime;/ idletime for second level 5

float rxsptime; /sresponse time for first level /
float resptime; / response time for second level 5

float rrsptime; /s cumulative time for second level *
floa t sys resptime; /ssystem response time / ,,.

float synchresptine; /* synchronous system response time 6 J

float pc t ~ I 2. 00 Ls ra t io of:-- -- -- -- -- -- -- -- -- -- -- ---
0 95 , 0 .90, /.response time of level_2 s

%0 85 , 0 .80, /------- -- -- -- -- -- -- -- -- -- -- --- /

%. 0.-75 , 0 .70 , /5 response time of level 1.
0.65 , 0 .60,
0.-55,. 0 50,
0.00 ;'

float ktime ,/ time keeper*
float rtime, /* response time keeper
m t eventtime; I's event durat ion 5

I t I ; I* event counter 5

Imt I; /* event counter 5

flfopen("simulation .r es3uIt s gauss,w'); open files 4

srandor(getpido); /sinitialize random number generators
if ( ft I=NULL)

ex it
for(j0O,pcnt .j >0 0 ,J--)

pqueuegize=0; /6initialize all statistical keepers'
mqueues ize=O

d et time= 0 0:
rI p t ime= 0 0*
resptime= 0 0,
rr s pt ime =0 .0 ,
sysresptime= 00,
for(i0O,i<16 ; i-++.)

dens ityl i 1=0;

kt ime=8.0/16 .0;

f or( i=0 I i<1 00+EVE'-TrS i /* generate random events 6

(timelist!y k kt imeA
kt ame-0.5,

ri spt imekt ime,

........................................................... ~.. .
. . -:
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synchrespt ,me0. 0;
kt ame-0 .0,
r rapt ime=0 .0;
for(i=0; i <EVENTS ; i ++)

eventtime = gauss( ), /. random number '
I.0 and 15 *

density ievent time .

event time+1 -

rtime pcntjl/I6 0'(float) eveflttime,
rrspt ime+-rt ime;
if ( rt ime<(8S.0/,16.0))

3ynchresptime+-8 0/16 0;
elseW

synchresptime+=rtime;

statqueue( i+1 ,kt ine rtime), /* queue i ze -

,f I kt ime<t jute I i :ti

kt ime=t 'meliat [ ij+itiue;

else
kt ime-+=rtime,

reptime-fktime-t imel i t i)if 1> >1)
- ( ~sys respt ime+=rt ime+t ime list i * ti meiist[i-il,

fprintf fi ,'\f\n\n\n System s imulat ion' n\n")
fp EntfflrSml e iz:;d,"

EVEnNTI1,S);l stsi
fpriatf(flProccssing time of level 2 (times level I):%6.2f'n',

fprintf( H " verage process ing time (level 1). ~ 6.fn
rI apt ime/(float )( 100+EVEN'TS) )

fpriatf(fl."Average processing time (level 2): .2n,
rrspt ime/FEVEN'S);

fprintf (fi,\n Asynchronous system statistics\n');
fprintf( fiAverage size of level-level queue: 't6 2f\n-,

(flot ) rqueuesize/EVE'TS),
fprinktf(fI,'aximum size of level-level queue: %6d\n",

mqu enes i ze)
fpriatf(fl,*Average response time (level 2): %6.2f\n',

respt ime/FEVE'.TS);
fprintf (f1."Average system response time (times ti): %6 2f\n',

(r I ,pt ime/ (FEVENTS+100 Ofl+( resptime/FE~vEN'TS))/
(rlsptime/( 8 oat)( 100+E VE'TS))) -A

fprintf(fl, 'Approximate Percent Idle time (level 2) %6.2f\n',
100.0e-idletime/timelist!EVENJTSI); isn)fprintf (l'*\n Synchronous system statistc3 n)

fpr intf ( 1,"Synchronous SRT(DB) (x ti): %6.2f\n*
(2.* synachb r e spt i me /FEVE7JTS
(rIsptime/(float)( 1004EVU',TS)))

fprintf(fSycrnu SRT(TB) (x ti): %6.2f\n',
(.ynh reapt ime/FEVENTS)

(rIsptime/(fioat)(IO+EVEN~TS))); --

fprintf( 1,*Synchronous ST(/ ti): %6.2f\n*.
1.0/ ((synch resr' e FV1fl)

fprintf(fl,'\n\n Distribution of level 2 response times:\n');%
for(i=0; i <8; i-f-

fprintf( fI *'%0d - 'c6d lo2 d -
0
o6d\n'

+1 density ii, -'-9 dens ity i-t8j)
Mfush(f1);

statqueue(pos ,prestime, proct ime)
mnt pos;
Bloat prestime, proctime; -

pqueues ise=O;

for(jpo ; ((j<( 100+EVEN'flS))&&(t imel i t [j 1<(prest ime+proctime))) ;j)
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pqueues ize1-+;

if (pqueues se- Mqueues ize) L
mqueuesiazepqueues iz

rqueues i ze-pqueues ize

~auss () /o generate gaussian rv using central limit theorin o/

for(i0u; <20; i-H)
j- 017 & random( )

ret urn( j/20),

7Li7
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Results of Asynchronous System Simulation
Uniform Distribution (Both Levels)

System simulation
Sample set size: 200000
Processing time of level 2 (times level 1): 1.00
Average processing time level 1 0.50
Average processing time level 2 0.53 %

Asynchronous system statistics '"
Average sise of level-level queue: 5764.08
Maximum size of level-level queue: 11596
Average response time (level 2): 3056.16
Average system response time (times ti): 6113.30
Approximate Percent Idle time (level2 0.00

Synchronous system statistics
Synchronous ST 1 i: t7 2.56
Synchronous SRT(B) x ti 3.84Synchronous ST ti): 0.78(xti' 38

Distribution of level 2 response times MS

- 12479 9 - 12581
2 -12480 10 -12640

3 12608 11 - 12221
4 - 12409 12 - 12600
5 - 12570 13 - 12332
6 - 12506 14 - 12474
7 - 12502 15 - 12562 -.-s
8 - 12453 16 - 12394

System simulation
Sample set size: 200000
Processing time of level 2 (times level 1): 0 95
Average processing time (level 1): 0.50
Average processing time (level 2): 0.51

Asynchronous system statistics
Average size of level-level queue: 976. 24
Maximum size of level-level queue: 2230
Average response time (level 2): .03.88
Average system response time (times tl): 088.76
Approximate Percent Idle time (level 0.00

Synchronous system statistics
Synchronous SRT(DB)(x ti: 2.48
Synchronous SRT(TB) (x tI): 3.72
Synchronous ST(1 ti): 0.81

Distribution of level 2 reponse times'
12623 9 - 12424

2 - 12496 10 - 12437
3 - 12568 11 12467,
4 - 12538 12 - 12302
5 - 12392 13- 12479
6 - 1,.15 14 - 12504
7 .12578 15 -12579

8 - 12478 16 12620

%
• °
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System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.90
Average processing time level 1• 0.50
Average processing time leve 0.48

Asynchronous system statistics
Average site of level-level queue: 3.49
Maximum size of level-level queue: 30 "
Average response time (level 2): 2.02
Average system response time (times tl): 5.04
Approximate Percent Idle time (level 2) 4.13

Synchronous system statistics
Synchronous SRT( DB x tl): 2.41
Synchronous SRT TB) tl 3.62
Synchronous ST(/ ti): 0.83

Distribution of level 2 response times:
1 - 12606 9 - 12614
2 - 12606 10 - 12404
3 - 12365 11 12362
4 - 12298 12 - 12441 i.--'

5 - 12633 13 - 12349
6 . 12568 14 - 12501
7 - 12601 15 - 12307
8 - 12774 16 - 12571

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.85
Average processing time (level 1): 0.50
Average processing time (level 2) 0.45

Asynchronous system statistics
Average size of level-level queue: 1.42
Maximum size of level-level queue: 16
Average response time (level 2): 0.99
Average system response time (times tl: 2.99
Approximate Percent Idle time (level 2) 9.26

Synchronous system statistics
Synchronous SRT(DB) ( x ti: 2.34
Synchronous SRTTB) x t) 3.51
Synchronous ST(/ ti): 0.86

Distribution of level 2 response times:
1 - 12458 9 12590
2 - 12573 10 12617 .-"
3 12504 11 12567
4 -12363 12 12.488
5 - 12369 13 12444
6 - 12643 14 12608
7 12475 15 12464
8 - 12385 16 12452

%I
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System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.80
Average processing time level 1): 0.50
Average processing time level 2): 0.42

Asynchronous system statistics
Average size of level-level queue: 0.73
Maximum size of level-level queue: 7
Average response time (level 2): 0.67
Average system response time (times ti): 2.33 II
Approximate Percent Idle time (level2 15.11

Synchronous system statistics
Synchronous SRT(DB) (x ti): 2.26
Synchronous SRT(TB) (x tL): 3.39
Synchronous ST(/ ti). 0.88

Distribution of level 2 response times:
1 - 12715 9 - 12579
2 - 12334 10 - 12442
3 - 12676 11 - 12404
4 - 12388 12 - 12504
5 - 12591 13 - 12413
6 - 12486 14 - 12402
7 . 12701 15 - 12367
8 - 12470 16 - 12528

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.75
Average processing time (level 1): 0 50
Average processing time (level 2): 0.40

Asynchronous system statistics
Average size of level-level queue: 0.47
Maximum size of level-level queue: 6
Average response time (level 2): 0.54
Average system response time (times ti 2.08
Approximate Percent Idle time (level 2) 19.79

Synchronous system statistics
Synchronous SRT( DB) (x ti): 2.20-aa-:."
Synchronous SRT(TB) (x t1): 3.30 -.

Synchronous ST(/ ti): 0.91

Distribution of level 2 response times:
1a 12528 9 - 12299 .-a'- a
2 - 12488 11) - 12402
3 - 12461 11 . 12442
4 - 12530 12 - 12627
5 - 12657 13 - 12592"
6 - 12552 14 - 12639
7 - 12518 15 - 12303
8 - 12424 16 12538

aaa...........
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System simulat ion

Sample set size: 200000
Processing time of level 2 (times level 1): 0.70
Average processing time ,eve, 0.50
Average processing time level 0.37

Asynchronous system statisticsAverage si ,e of leve81-letvel qauee: ic30.20. J. # .,-
Aaximum size of level-level queue: 4
Average response time (level 2)- 0.45

Average system response time (times ti : 1.89
Approximate Percent Idle time (level 2 25.40

Synchronous system statistics
Synchronous SRT DB (x t 1) 2.14
Synchronous SRT(TB) x t 3.21
Synchronous ST(/ t ): 0.93

4.'-_.

Distribution of level 2 response times:
1 12427 9 - 12345
2 12610 10 - 12499
3 - 12508 11 - 12433
4 12517 12 12447
6 - 12551 13 - 12642 " "
6 - 12484 14 - 12478
7 - 12485 15 - 12499
8 - 12448 16 12627 %

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.65
Average processing time (level 1): 0.50
Average processing time (evel 2): 0.34

Asynchronous system statistics
Average size of level-level queue: 0.17 -.

Maximum size of level-level queue: 2
Average response time (level 2): 0.38
Average system response time (times tl): 1.76
Approximate Percent Idle time (level 2 30.85

Synchronous system statistics
Synchronous SRT( DB) (x til: 2.08
Synchronous SRT (TB) x t: 3.13
Synchronous ST(/ ti): 0.96

D1stribution of level 2 response times:
- 12503 9 - 12439

2 - 12736 10 - 12485
3 - 12482 11 - 12472
4 - 12569 12 - 12590
5 - 12294 13 - 12490
6 - 12422 14 - 12479
7 - 12698 15 - 12327
8 - 12458 16 - 12556

*." --
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System simulation . ..

Sample set size: 200000
Processing time of level 2 (times level 1): 0.60 *. -

Average processing time level I): 0.50
Average processing time level 2): 0.32 -

Asynchronous system statistics
Average size of level-level queue: 0.09 *.J..
Maximum size of level-level queue: I
Average response time (level 2): 0.34
Average system response time (times t) : 1.67
Approximate Percent Idle time (level 2 36.08

Synchronous system statistics
Synchronous SRT( DB)I x ti): 2.05
Synchronous SRT(TB) x 1 3.07
Synchronous ST(i/ ti): 0.8.

Distribution of level 2 response times:
1 12414 9 - 12525
2 12558 10 - 12522
3 -12514 11 - 12353
4 12525 12 - 12470
5 12521 13 - 12583
6 12388 14 - 12300
7 - 12469 15 - 12738
8 12530 16 - 12590

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.55
Average processing time (level 1): 0.50
Average processing time level 2): 0.29

Asynchronous system statistics
Average size of level-level queue: 0.03
Maximum size of level-Jevel queue: I
Average response time (level 2): 0.30
Average system response time (times ti 1.60
Approximate Percent Idle time (level 2) 41.29 -

Synchronous system statistics
Synchronous SRT(DB) x ti) 2 02
Synchronous SRTTB) x tl 3.02
Synchronous ST( / ti). 0 99

Distribution of level 2 response times:
1 - 12715 9 12467 . -

2 - 12387 10 - 12420
3 - 12443 11 - 12800- .
4 - 12518 12 - 12424
5 - 12543 13 - 12510 --
6 - 12420 14 - 12515
7 - 12615 15 - 12493
8 - 12421 16 - 12309

C-....•
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.5 System simulation '

Sample set size: 2.00000
Processing time of level 2 (times level 1): 0.50
Average processing time (lve I 0 s0
Average processing time (level 2) 0.27

Asynchronous system statist ics
Average size of level-level queue: 0.00
Maximum size of level-level queue: 0
Average response time (lever 2). 0.27
Average system response time (times ti ) 1.54
Approximate Percent Idle time lvl2 45.85

Synchronous system s t at isat ics
Synchronous SRT D ( tI: 1.00 .o

NSynchronous SRT TB (xtli: 2.00
Synchronous ST( tB): 3.00

Dis9t r ibu tion of level 2 response t imes:
1 12431 9 -12626

2 12573 10 -12516 .

3 -12501 11 -12449 .

4 12542 12 12599
5 12570 13 -12414

6 -12438 14 12152
7 12574 15 -12523 .

8 -12638 16 -12554

r.

V.'

Z e%.
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Results of Simulation
Gaussian Distribution .,

System simulation
* Sample set size: 200000

Processing time of level 2 (times level 1): 1.00
Average processing time (level 1): 0.50
Average processing time (level 2): 0.50

Asynchronous system statistics
Average size of level-level queue: 253.73
Iaximum site of level-level queue: 520
Average response time (level 2): 127.36
Average system response time (times tl): 255.71
Approximate Percent Idle time (level 2) 0.00

Synchronous system statistics '.4-X .
Synichronous SRT DB (x tl) 2.10,.,'.,,
Synchronous SRTTB (x tl): 3.15 ',.*

Synchronous ST( ti): 0.95

Distribution of level 2 response times
1 - 0 9 - 49018
2 - 0 10 - 13789
3- 0 11- 1476
4 - 34 12 - 56
5 - 1307 13 - 2
6 - 12841 14 - 0
7 - 47401 15 - 0
8 - 74076 16 - 0

System simulation
Sample set size: 200000
Processing time of level 2 (times level 1): 0.95
Average processing time level 1): 0.50
Average processing time level 2 0.48

Asynchronous system statistics
Average size of level-level queue: 36.45
Maximum size of level-level queue: 201 %
Average response time (level 2) 18.52
Average system response time (times tI). 38,03
Approximate Percent Idle time (level 2) 3.03

Synchronous system statistics
Synchronous SRT(DB) (x t1): 2.08
Synchronous SRT(TB) (x ti) 3.12
Synchronous ST(/ ti) 0 96

Distribution of level 2 response times
1 0 9- 49526
2 0 10 - 13784
3 0 11 - 1.521
4 - 45 12 - 63 t.
5 - 1302 13 - 0 ''
6 - 12442 14 - 0
7 . 47324 is 0

i 8 73993 16 - 0

- *. - -, * -.**o4 - .4.... %

J- i:

.,i..:"
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System simulation 4
Sample set size: 200
Processing time of level 2 (t2slvl1:0000
Average processing time (level 1): 0.80
Average procesing time (level 2) 0.45

Asynhronus ystem statistics
Average sieof leve-level queue: 0.15
1%4&xi mumn size of level-level queue: 1
Average response time (level 2): 0.46
Average system response time (times ti ): 1.92
Approximate Percent Idle time (level 2) 10.49

Synchronous system statistics
Synchronous SRT(D) xt):20
Synchronous SRT(TB (X ti) 3.04 -
Synchronous ST( I ti). 0.99

Distribution of level 2 response times:
1 - 0 9 - 49272
2 0 10 -13872
3 - 1 11 - 1494
4 - 56 12 - 59
5 - 1322 13 - 0
6 - 12323 14 - 0
7 - 47329 1s - 0
8 -74272 18 - 0

System simulation

Sample set size: 200000
Processing time of level 2(times level 1): 0.85
Average processing time (level 1) 0 .50
Average processing time (level 2): 0.-43

Asynchronous system statistics
Average size of level-level queue. 0.05
Maximum size of level-level queue:I
Average response time (level 2): 0.44
Average system response time (times ti) : 1 87

Approximate Percent Idle time (level 2) 13.87 %~..

Synchronous system statistics
Synchronous SRT( DB) (x ti) 2.01
Synchronous SRT(TB) (x tI): 3.02
Synchronous ST( / t). 0.9 .

Distribution of level 2 respoos, t imes:
1 - 0 9 -49852

2 - 0 10 -13797 -
3 - 0 11 - 1471
4 - 51 12 so5
5 - 12.57 13 2
6 -12544 14 - 0
7 -47199 15s 0
8 -73777 16 - 0

0 %

'L4.



267

System simulation

Sample set size: , 200000
Processing time of level 2 (times level 1): 0.80
Average processing time (level 1): 0.50
Average processing time (level 2): 0.40 _

Asynchronous system statistics
Average size of level-level queue: 0.00
haximum size of level-level queue: 1
Average response time (level 2): 0.40
Average system response time (times ti): 1.80
Approximate Percent Idle time (level 2) 20.18

Synchronous system statistics
Synchronous SRT( DB) x tl: 2.00
Synchronous SRT(TB) x ti 3.00
Synchronous ST(/ ti): 1.00

Distribution of level 2 response times:
1 0 9 49437
2 0 10 - 13690
3 1 11 - 1501
4 - 39 12 - 59
5 - 1249 13 - 0
6 - 12583 14 - 0
7 - 47684 15 0
8 - 73757 16 - 0

System simulation

Sample set size: 200000 --.--;
Processing time of level 2 (times level 1): 0.75
Average processing time (level 11: 0.50
Average processing time level 2), 0.38

Asynchronous system statistics
Average site of level-level queue: 0 00
M ximum size of level-level queue: I
Average response time (level 2): 0.38
Average system response time (times ti): 1.76
Approximate Percent Idle time (level 2) 24.48

Synchronous system statistics
Synchronous SRT( DB) x t) 2 00
Synchronous SRT(TB) (x 1 3.00
Synchronous ST(/ til: 1.00

Distribution of level 2 response times:
1 0 9 - 49183
2 0 10 - 13767
3 1 11 - 1545
4- 48 12- 39
5 1338 13 - 0
6 - 12661 14 - 0
7 - 47178 15 - 0
8 - 74240 16 - 0

-'a .-

L .' - . r ,%
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System simulation
L
o

Sample set size: 200000
Processing time of level 2 (times level 1): 0.70
Average processing time evel 1: 0.50
Average processing time level 2 0.35

Asynchronous system statistics
Average size of Ievel-level queue: 0 00
MaxImum size of level-level queue. IAverage response time (level 2)1 0.35

Average system response time (times ti) : 1.71
Approximate Percent Idle time (level 2) 29.39

Synchronous system statistics
Synchronous SRT DB) (x ti): 2.00
Synchronous SRT(TB) x t) 3.00
Synchronous ST( ti): 1.00

Distribution of level 2 response times:
1 - 0 9 48985
2 - 0 10 13707
3 - 0 11- 1447 -.

4 49 12 - 5
5 - 1231 13 0
6 - 12670 14 0
7 - 47641 15 - 0 -- "
8 - 74220 16 - 0

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.65
Average processing time (level 1): 0.50
Average processing time (level 2): 0.33

Asynchronous system statistics
Average size of level-level queue: 0.00
vaximum size of level-level queue: 0.00
Average response time (level 2): 0.33
Average system response time (times til: 1.66
Approximate Percent Idle time (level 2) 34.31

Synchronous system statistics
Synchronous SRT( DB) (x ti 2.00
Synchronous SRT(TB) x tI 3.00
Synchronous ST(/ ti): 1.00

Distribution of level 2 response times:
1- 0 9 - 49488 --
2 - 0 10 - 13743
3 - 0 11- 1526 a

4 44 12 - 61
5 - 1323 13 0
6 12660 14 - 0
7 47239 15 0
8 73916 16 0

~%a

. . . . . . . . . .... . .,. . .. . I.... ... .. ....-

. -- S % a %%%--'_
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System simulation

Sample set sise: 200000
Processing time of level 2 (times level 1). 0.60
Average processing time (level 11) 0.50
Average processing time (level 2 0.30

Asynchronous system statistics
Average size of level-level queue: 0.00
Maximum size of level-level queue: 0
Average response time (level 2): 0.30
Average system response time (times tl 1.80
Approximate Percent Idle time level ) 40.02

Synchronous system statistics
Synchronous SRT(DB) (x ti): 2.00
Synchronous SRT(TB) x ti 3.00
Synchronous ST( ti) 1.00

Distribution of level 2 response times:
1 - 0 9 49150
2 - 0 10 - 13856
3 - 1 - 1537
4 - 46 12 - 54
5 - 1281 13 - 0
6 12724 14 07 -47220 15 - 0 :"'"

8 74131 16 - 0

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.55
Average processing time 'level I): 0.50
Average processing time (level 2): 0.28

Asynchronous system statistics
Average site of level-level queue: 0.00
Maximum size of level-level queue: 0
Average response time (level 2): 0.27
Average system response time (times ti): 1 55
Approximate Percent Idle time (level 2) 45.23"

Synchronous system statistics
Synchronous SRT( DB) x tI): 2.00
Synchronous SRT TB) x t 3.00
Synchronous ST( t). 1.00

Distribution of level 2 response times
1- 0 9 - 49458
2 - 0 10 - 13845
3 - 0 11 - 1499
4 - 45 12 - 50
5 - 1244 13 - 0
6 - 12714 14 - 0
7 - 47474 15 - 0
8 - 73662 16 - 0

- .~- o

I-.

- " ' " "'''''''* ', °' ,'' '' - " -, "•" " ' .. " .'.. - ". P'. '. - -• • . -". .. ' - . - . " .- ,%f;,/ ;:,.,: ,, :_ ; ' =,, ,::,- p , , - P. ... , .,..-, .- ,... . ,,....; ... ,,: -
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System s imulIat ion

Sample set site: 200000
Processing time of level 2 (times level 1): 0.60
Average processing time lve.* 00
Average processin time (evel1 2) 0.25

Asynchronous system statist icsa
Average site of level-level queue: 0.00
Maximum size of level-level queue: 0
Average response time (level 2): 0.26
Average system response time (times ti ) 1.61
Approximate Percent Idle time lvl2 48.77

S Synchronous system statistics
Synchrono0us SRT( DB) ( X ti): 2.00

* Synchronous SRT(TB) (x ti) 3.00 ~
Synchronou ST/ ti): 1.00

Distribution of level 2 response times:
- 0 9 -49421

2 - 0 10 13776
3 - 0 11 - 1568 '

4 - 40 12 - 47
5 - 1322 13 - 2
6 -12726 14 - 0
7 - 46966 15s 0
8 - 74132 16 - 0
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SIMULATOR LISTINGS

Asynchronous System Simulator -

Both Levels Uniform Random Variables

#incl ude<stdio h>

/* This simulator was written for a Gould Powernode 9080 running UNIX .
/4 4 4.2 BSD. It s imulIate,3 the execution o f an
/* asynchronous two level system, keeping track of the level-to- lev el";/
/. buffersizes and the response times of the second level. For this *

/s simulator, i t ,is as2sumed that the distribution describing the res-' .-
Itime of the both levels is the uniform distribution function, and .
/It is run on a total of 200,000 data sets per simulation statistic .
/.requiring more than I .0ON% storage and more than 2 hours t o

'complete,

*define EVENTS 200000 /* Events per simulation *
#define MEN'TS 200000.0 /* floating point representation
FILE efi; /* file pointers '
mot dens itylfi(7' for densityfnto

/* Gould Fire reautherc0080 Compiler *
/* needs the INJBASE because 6
/ * it needs to use a different *
/* addressing mode to handle l a r g e

I'NOBASE '7/* arrays. 0

float timel ist 100"'E*v1lTS1 / list of event times '
lot pqueuesize,mqueuesize; I.present and maximum queuesizes 7-
mnt rqueuesize; /. total jobs stored in queues
float idletime; /* idletime for second level 0

float rlsptime; ,'0 response time for first level
float resptime; 7. response time for second level '
float rrsptime; /* cumulative time for second level .
float sys respt ine;/ system response time .

float pcnt [1 (1.00,090 / ratio of---------------------------I
0.05, 0 go response time of level_2 0

0 85, 0.80, /.-------------------------- --
0.75 , 0 .70, 7 response time of level 1I'
0.65 , 0 .60,
0.55, 0.50,
0.00 )

main( )
float ktiine; I.time keeper *
float rtime. . response time keeper
nt event time; 7.event durat ion .

lot i . /0event counter
m t , 7' event counter '
i nt sum; g. ga u sian only 8

flfopen('simulation results','*" ), /* open files

srandom(getpido); 7' initialize random number generator .
if (f 1 =NULL)

exit()
for(j~O.pcnt!J >O.OJ4-i

pqueuesmze=O, /* initialize all statistical keepers .
mqu cuesixze =0
rqueuesixe0O

R idletime= 0 0
rlsptime= 0.0.
reiptime= 0 0 ,
rrsptime= 0 0 ,
sysrespt ime= 0 0,
for (i0o,t<16, -

A dens ityl i1=0.

ktime=8 0/16 0.

time lisat J0 = float) (1-+01 7&randon( )) / 16 0,
1f0 ( i,<l00+EVENTS, 1-) /6 genewae random events
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/.N 1-1

taeit ji timelas /* -1
t ime00 Ii preser i time
((float) 1 (017&rando )) /16.0;

ri apt ame=timliI st LEVE'1rS-11
rrs time=0.0,
foi01 i<EVEN'TS; i+)

eventtime = 017&random(); /o random number .

densityleventtimel++;
eveatt ame --l
rtime =pcutlj]/16.0*(float) eventtime;
rrspt ime+=rt am.
statqueue(i+1,ktime,rtime); /* quenesise *
if(ktime<timelist~ij) /* update present time/

( idletime- -timel ist[i j-ktime;-
kt imetime Ii t Ii ]-rt lie;

else
kt ime+=rtime:

respt ime+-kt ime- time listl[ik

I Ipr i nt f f1,, System simulationo),
fprintf i1,"Sampie set size: %6do,

EVENTS);
fprintf(fI,*Processing time of level 2 (times level 1):%6.2f0,

pcntjj 1);
fprintf(t1,'Average processini time (level 1): %6.2f0,

rlspFt ime / (FEVFNTS- 1.0 0);
fpriatf(fl, Average processing time (level 2): %6 210,

rrspt ime/FEVENTJS);
fpriatf(fl,'Avcrage size of level-level queue: %6.2f0,

(foat) rqueuesite/FEVENTS),
fprintf( Ti'MaUximumn size of level-level queue: %6d0, U

inquenes ace);
fprinktf(fl,"Average system response time (times ti)- %6.2f0,

1 .0+( rrspt mme/FEVTS ) /(rlspt ime/FEVE4TS)
((rqueues3aze /FEVENTS).
Srrspt ime/FEVENTS)/( riapt ime/(FEVENTS-1 .0))));

fprintf(i1,*Approximate Percent Idle time ( level 2) %8 .2f0,
100. 0.id letime/t ime list 1EVENTSI]);

fprIatf(fl. Distribution of level 2 response times:0); N
for( i0; i<8 i-'-4-

fprintf( fi,"%iod -%6d %2d - %66d0,
a+l dens ityli i+0 dens ityl i+S );

fflu 3 h ( f)I

Istatqueue(pos~prestime,proctime)Iat pos ;
float prestime, proctime;

ant 3,

pqueuesii e=O,

for(jpos ,( (j<( lO--EV'T7S))&&(tianeI:st j l<(pre-c ame-~pr,)ctme))) :j-1-+)
pqueueiie a -

at (pqueuesi ze._'nqueues ize)
mqueues a epqueuesale,

rqueuese zepqueues is e;-
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Asynchronous System Simulator-
Both Levels Gaussian Random Variables

#iucl ude<s tdi a.h

/s This simulator was written for a Gould Powernode 9080 running UNIX *
/a 4.2 BSD. It simulates the execution of both a synchronous3 and an .
/s asynchronous two level system, keeping track of the level-to-level 0

7' buffersizes and the response times of the second level. Fo r this 3/
Jsimulator, it is assumed that the distribution describing the res- /J
/0time of the both levels is the uniform distribution function, and *
/It is run on a total of 100,000 data sets per simulation statistic *

/ * requiring more than 1 0&b storage and more than ;2 hours to .
/s complete. s/

#define EVENTS 100000 /0Events per simulation 0

#define FEVENTS 100000.0 0 floating point representation 0

FILE *fl; /ofile pointers 0

mnt density[161; /.for densitt function 0

/* Gould Fire reat her 9080 Compi ler *
/oneeds the N13~ASE because 0

/it needs to use a different
/0Addressing mode to handle large *

is NOBASE .1/* arrays. 0

float timel ist[I00+EVErS!; /I list of event times 0

mnt pqueuesize,mqueuesize; Jopresent and maximum quenesizes 0

mnt rqueues ize; /s total jobs stored in queues o
float idletime; /0 idletime for second level 0

float r1sptime; Joresponse time for first level s/
float resptime; /.response time for second level s/
float rrsptime;/ cumulative time for second level 0

float sysreuptime; Josystem response time 0

float pcotl I (1.00, / ratio of---------------------------/
0.95, 0.90, /0response time of level 2 6/
0.85, 0v 80, ------------------------... 0

0.75, 0 70, / response time of level I
0.65, 0.60,
0 .55, 0.50,

float ktime; I time keeper o
float rtime; /oresponse time keeper 0

mnt eventtime; J event duration o
int i.,/ event counter 0

iut j./* event counter 0

lot sum, /0 gaussian only f.

flfopen("simulat ion results gauss' ,'w"), .'o open files -

srandom(getpid( ) , /* initialize random number generator
i f ( f i ==NVILL )

for(j0O,pcnt j'>>00, j-t
pqueuesize=0, /0initialize all statistical keepers *
mqueues ize=O
r queues i z e0
idletime= 0 0,
rlspt ime= 0.0;
resptime= 0 0;
rrsptime= 0 0.
sysresptime= 0.0.;K
for( i0, i'16; i++)

dlensity i!=0;

ktime=g 0,1 6 0.

time list 0' (float) (II-017&random(' 16 0
f r(i= .1 00 E-V L--,TSi-- generate, random eventi

( ,.0-15

tieit tmls -
((floa egus()16
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r Ispt imet imel I at :EVE'JS- II
ktime=0.0; /0 present time 0/

rrs ptime=0.0;
forf(iO; i <EVEN"TS;i -t+)

eveattime = gAU3s(). /6 random number of
/4 0 and 15 0

densityievettime+$; 1
eventt ime+1-l
rtime = pcntjjj/16.0*(fIoat) eveattime; ~
rrsptime+=rt ine;
statqueue(i-t1I,kt ime,rtime); I.quenese 0

if(ktime<timelist[iJ) /* update present time .
( idletime+-timelist[il-ktime;

else
kt ime+=rt ime;

respt ime--ktime-t imelist'Il;

fprintfWf,' System simulationo);

EVEN 1S);
fprintf(fl,*Processing time of level 2 (times level 1):%6.210, %

fpr enffi il);ag prssn tie(%e ) 620

fprintf(fl,*Average processing time (level 1). %6 210,

rrspt ime/FEVE~flS);~
fpri tf(fl,'Average size of level-level queue. %6.2f0,

(la t) rqueuesize/FEVENJTS).
fprintf(f1,'Maximuxnmsize of level-level queue. %6d0,

mque ues ise);fpriutf(fl,'Average system response time (times ti) %6.2f0,
1.0+(rrsptime/FEVE'JTS /(rlsptime/FEV'JTS)

(rrsptime/FEVEJrS)/( rispt ime/(FEV~TS-1.0) )));
I p r i at I( lApproximate Percent Idle time (level 2) %6.2f0,

fpriatf(f17' Distribution of level 2response times:0);
for( =0; <8, i -+)

*fpr; atfI I f, 'c-cd - %6d %b2 d - %6 d0 ,
+1 denis ity[ ii, i+ O,densityf i+gB)

statqueue(pos.prestime~proctime)
Ifat p05.

'r, Holt pre~time, proctime,

pqueue~ize=O:

for( jpo, ( j,-( 1OQ-EVETS) )kk(t imel i st j <(prest ime+proct ime) ).+~
pqueues Ie-

'1 (pqueuesize-equeues ize)
mnqueueiizepqueuestze

rqueues i ze-=pqueue. ize.

~0 register int i~j ,

retur) j~017 & random( ).

re u u j;20),

b1V



W. L-, 1- A. a. -A - n.n4 Ttrp f. W 2 7

275

Synchronous System Simulator-
Both Levels Uniform Random Variables

#incl nde<std io.b
#define EV&'.TS 1000000
#define FEVEN'TS 1000000.0
FILE efi; /* file pointers
int dens ityl 16 I' for density function level 1

flBoat sysrestm; /a system response timeoflvs

Bot censty2 .00, , rati fof den an vauncso levels
0.05, 0.go,
0.85, 0.80,
0.75, 0.70,
0.65. 0.60, J
0.5s, 0.50,
.1)

main()
float litime; t time keeper level I '
float l2time; .time keeper level 120
Bloat titime; /*time keeper level I
float t2time; /.time keeper level 2
mnt eveuttimel;/ event duration level 1
int eventtime2; /* event duration level 2
int I; /* event counter
m t j; /* pointer to statistical into
float xbar; /*for simplicity -. avg resp time of *

/'level I

fifopen('dblbuf*,*a*);1 open files

c i ( f) -%

lit ime=0.0;
I 2t ime=0.0,
t itime=0.0,
t2t ime=0.0;
iysresptime 0KG;

srandozn(getpid( ), / initiali se random number generator.,
for(j0O,pcnt ljl~

{ ltime = 0 0; . timne keeper level I
l2time = 0.0; t time kef-e per Ie Vel1 2
t It ime = 0 .0; time keeper level I *

t2time = 0.0; /* t ime keeper level 2 4

sysresptime =0.0.
for( i=0. i<16, i-)

dens ityl ijlden i ty2j ij0.
for( i0, i<EV ETS . i-H-)

eventtimei = 017&random( , I random numsber
eventtime2 =0l7&random( .. random number ,

0 to 15
dens ityl 1 eventtimel "-+; *density fun
den$ity,-,eventtime2 I density f un

litime = (Bloat) eventtimel 16 0
12time = pcntij' * (float ) eventtime2 16 0

titime-lit me, * avg resp t ime*
t~tmel~ ma avg re~p time*

if(Ilitime<l 2 time)
sys resptime I 2time

sysresptime - lie

xbar t It ime TFEVF2.S,

fintfl(H 2 svyochronou.4 ?Yster0),
f printf fi 'Sample let sie c76d o

fp r in t f ( f I Process i g time of l evelI 2 (times l evel 1)1'ti. f io
pCn t J,)

fpriatf( fi 'verage proce~iing time (level 11 i'(o i
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xbar)
fprintf(fl,'Average processing time (level 2): %6,2f0,

t2t ime/FEVENrS);
fpriatf(fl.'Average DB system response time (0 ti): %6 2f0,

2.0.Oeysresptime/FEVa'JTS)/xbar)
fpret~k'AergeTBsystem response time (e t1): %6 2f0,

(3 0*ysresptime/FE.'~TS)/xbar)

fprintf(fl.* Distribution of level 1 response times:O);
for(i0, i<8; i+i+)

fa fr i at f( f I,%10d - %6d %6d - %6dO
dens ityl [ij.i*B~gdensityl [i+s-Sj

fprintf(fl,* Distribution of level 2 response times:0);
for( iO; i<g; i++)

fprintf fl,'%10.2f - %6d %68.2f - %6do,
PCnt ji :i~oatii.dcnsity2[al,

)P pct fli t (ot(ia+8 deuaityi!i+8J);

%. .

%'d %
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Synchronous System Simulator-
Both Levels Gaussian Random Variables

#include<stdio.h
#define EVEN~TS 100000
#define FEVENTS 100000.0 fl ones0
FILE~ el ilepitr
int den~tlii , /* for density function level 1I'
int denUsity2 1 6 .for density function level 2 a
Bloat sysrespcime,/ system response time
float p cnt =(1.00, /eratio of mean values of levels */ .. A

0.03, 0.90,
0.-83, 0.80,
0.73, 0.70,
0.65, 0.60,
0.33, 0.50,

main(
float I It ime; /t time keeper l eve I I/
float l2time; . time keeper l evel1 2 0

float tltime; /'time keeper level 1
float t2t ime ; t time keeper level 2
i at eveattimel; Is event durat ion l evel I
i at eveattime2; /4 event durat ion l evel2
I at 1. Is event counter *

I nt ./0pointer to st at is t icalI i nfo *
Bloat xbar; ~ *for simplici ty -- avg resp t ime of*

So t k, / o level a 1 o of a gaussian fun
/0 using the central limit theorm

flfopen('dblbuf gauss','afl / open filIe s

lit im i0

I I t imeO .0
t2 t imeO .0;

t2time=0 0;
sysresptime 0 0;

3rindom(getpido), /* inai t ialIize random number generator.
for(j=0;pcntj>0 .4--)

litime0O. t* time keeper level! 1
12 t Ime 0 0, t' time keeper level 2
t It ime =0 0, I's t ime keeper level I
t2time 0 0. /0time keeper level 2
f o r( i=0 . i<15 i-'+

d e a i tyl Ii!dens i t y-2 =
sysrespt ime =0 0,

{ eventtime=0,
for( k0 ~k'20:k,+

eventt imel += 017&random( , israndom number *
eveutt ime2=0
fo r( k0O, k'<20 . k-)

eventt ime. -1- Ot7&random( ). random nutmber
0 to 15

eventtimel / 20; 0 no rmal i at ion
eveuttime2 20. normalization
densityl eveuttimell~~ density fun
density2ieventt ime- ' d eni jty funa

lit ine = (floatI) eVentt Ime I 16 0
lt I me = PCnat [ j *(float) eventt ime2 . 16 0

tltime--lltime, 0avg resp time $'I
t2t ime+-l 2t tie; *Avg resp time *

if (lit ime<l 2 time)
syareapt ire +- 12time,

sysresptime +-- Iltime;

77:1
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xbar = titime/FEVE'JTS; 4

IprIntf (fl,0O;
fprinittf (fl" synchronous systemO);
fprintf fl,*Sample set size: %6d0.

EVEW'1S);
fprintl(fl,'Proesssng time of level 2 (times level 1) 6 2f0,

pent Ii)(lve
fprintf(fl'Average processing time (leel .) %6.^I10

xbar );
fprintf(fl*Average processing time (level 2). '%6,210,

t2t ime/FEVENTrS),
fpriatf(f1,Average DBsystem reponase time (s ) %6 210,

(2.Oesysresptime/FEVENTS)/xbar);
fprintf(kf,"Average TB system response time (.ti) ?,;6 210.

(3.0*sysresptime/FEVENTS)/xbar),

f p r iat f(fl.' Distribution of level I response times 0),
for(i=0, i<81 +t

fprintf fi "%iod -%6d '%6d - 6dO,

fpriintf(fI Dist ibuon of level 2 response timesO0),
Ior(i0, i<8: i++)

fpr Intf(f17*%10.2f - %Od %8.2f - %6d0,

~pc atjj(Boa)i+8)denJiy21i+S ),
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Results of Simulation
Uniform Distribution

Asynchronous System Simulation -- Results (uniform)
Sample set size: 200000
Processing time of level 2 (times level I) 1.00
Average processing time (level 1) 0 53
Average processing time (level 2) 0.53 . .p.
Average size of level-level queue. 62 81
Maximum size of level-level queue: 177
Average system response time (times tl)' 64.62
Approximate Percent Idle time (level 2) 0.30

Distribution of level 2 response times
1 - 12656 9 - 12426 -
2 - 12499 10 - 12245
3 - 12356 11 - 12446
4 - 12700 12 - 12438
5 - 12523 13 - 1'2664
6 - 12513 14 - 12548
7 - 12596 15 - 12557
8 - 12448 16 - 12385

Asynchronous System Simulation -- Re!,ults (uniform)

Sample set size: 200000
Processing time of level 2 (times level 1) 0.95
Average processing time (eve ) 0 53
Average processing time (level 2) 0 51
Average size of level-level queue: 6 01
Maximum size of level-level queue: 39
Average system response time (times t , ) :8769
Approximate Percent Idle time (level 2). 4 58

Distribution of level 2 response times.
1 12396 9 -12541

2 - 12475 10 - 12281
3 - 12571 11 - 12637
4 - 12447 12 - 12542
5 - 12378 13 - 12560
6 - 12510 14 - 12606
7 - 12395 15 - 12489
8 - 12474 16 - 12698

.%, N

,-'... -

S-#

.-. , .,

. . . . .. . . . . . . .
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Asynchronous System Simulation-- Results (uniform)

Sample set size: 200000
Processing time of level 2 (times level 1): 0 g0
Average processing time level I) 0 53
Average processing time level 0 48
Average size of level-level queue 2 07
Maximum site of level-level queue 24 -
Average system response time (times tIj 4 59
Approximate Percent Idle time (level 2) 0 57

Distribution of level 2 response times:
I- 12628 9 - 12550
2 - 12766 10 - 12376
3 - 12350 11- 12691
4 - 12295 12 12562
5 - 12450 13 - 12502
6 12438 14 - 12383
7 - 12380 15 - 12606
8 - 12666 16 - 12357

Asynchronous System Simulation -- Results (uniform)

Sample set size 200000
Processing time of level 2 (times level 1): 0 85
Average processing time (level 1) 053
Average processing time (level 2 0 45
Average size of level-level queue 1 76

Maximum size of level-level queue 30
Average system response time (times tl). 3.34
Approximate Percent Idle time (level 2 14 88

Distribution of level 2 response times: o
1 12623 9 12649
2 - 12349 10 - 12420
3 12544 11 - 12562
4 - 12540 12 - 12613
5 12274 13 - 12665
6 12527 14 - 12443
7 12507 15 12379

8 12696 16 - 12209

..

%.-
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Asynchronous System Simulation-- Results (uniform)

Sample set size: 200000 .

Processing time of level 2 (times level 1) 0.80
Average processing time eve 1) 0 53
Average processing time 1level 2 043
Average size of level-level queue: 1 22
Maximum size of level-level queue 13
Average system response time (Limes ti 2 78
Approximate Percent Idle time (level 2 19 63

Distribution of level 2 response times,
1 - 12590 9 - 12536
2 - 12320 10 - 12548
3 - 12349 11 - 12517..._.
4- 12514 12 - 12639
5- 12452 13- 12622..''
6 - 12427 14 - 12323
7 - 12540 15 - 12636
8 - 12371 16 - 12616

Asynchronous System Simulation -- Results (uniform)

Sample set size: 200000
Processing time of level 2 (times level 1) 0 75
Average processing time Ilevel 1): 0 53
Average processing time (level 2 0 .40
Average size of level-level queue: 0.88
Maximum size of level-level queue: 12
Average system response time (times ti : 41
Approximate Percent Idle time (level 2 24.66

Distribution of level 2 response times:
1 - 12579 0 - 12610
2 - 12537 10 - 12394
3 - 12579 11 - 12335
4 - 12721 12 - 12450
5 - 12571 13 - 12209 - -

6 - 12365 14 - 12529
7 - 12434 15 - 12611
8 - 12605 16 - 12453

N-o..

7-
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282

Asynchronous System Simulation.. Results (uniform)

Sample set size 200000
Processing time of level 2 (times level 1). 0 70
Average processing time level 1)' 0 53
Average processing time (eve 2 0 37
Average sie of level-level queue 0 67
Maximum size of level-level queue 10
Average system response time (times tl 2.17
Approximate Percent Idle time (level 2 29 63

Distribution of level 2 response times:
1 - 12265 9 - 12373 %
2 - 12506 10 - 12328
3 - 12435 11 - 12543
4 - 12437 12 - 12528
5 - 12560 13 12696
6 12626 14 - 12677
7 - 12504 15 - 12512
8 - 12468 16 - 12542

Asynchronous System Simulation -- Results (uniform)

Sample set sise: 200000
Processing time of level 2 (times level 1): 0.65
Average processing time (level 1): 0. 53
Average processing time (leve 2 0.35
Average size of level-level queue: 0 51
Maximum size of level-level queue 9
Average system response time (times tl): 1 98
Approximate Percent Idle time (level 2 34.64

Distribution of level 2 response times:
1 - 12330 9 12635
2 - 12409 10 123183 - 12493 11 123909- :-."4 12467 12 2665
5 12456 13 1 '12631

6 - 12596 14 12433
- 12619 15 12743

8 - 12347 16 - 12450

6

.. 1|

...-%.:.. .... -.. -..... ."1.. .. .. . .. '..":..... .... . - . , - -.
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Asynchronous System Simulation-- Results (uniform)

Sample set size: 200000
Processing time of level 2 (times level 1): 0 60
Average processing time (leve! 1): 053
Average processing time leve 2): 0.32
Average size of level-level queue: 0 38 -a -

Maximum size of level-level queue, 8
Average system response time (times tI) 1 83I
Approximate Percent Idle time (level 2) 39.78

Distribution of level 2 response times. -
1 12506 9 - 12391
2- 12429 10 - 12380
3 - 12453 11 12482
4 12642 12 - 12350
5 12535 13 12655
6 - 12729 14 - 12476
7 - 12487 15 - 12473
8 - 12504 16 - 12499

Asynchronous System Simulation-- Results (uniform)

Sample set size, 200000
Processing time of level 2 (times level 1) 0 55
Average processing time (level 1) 0 53
Average processing time eve 2 0 29
Average size of level-level queue 0 28
Maximum size of level-level queue 7
Average system response time (times tI 1. 71
Approximate Percent Idle time (level 2 44 67

Distribution of level 2 response times:
I - 12512 9 - 12606
2 - 12568 10 12391
3 - 12451 11 12582
4 - 12568 12 12374
5 - 12453 13 1,2295
6 12348 14 12304
7 - 12692 15 12663
8 - 12556 16 12637 r

-.'..5
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Asynchronous System Simulation -- Results (uniform)

Sample set site 200000 -"

Processing time of level 2 (times level 1): 0.50
Average processing time level 1 053 ..o .
Average processing time (evel 2 0.27 .
Average size of level-level queue 0 22
Maximum size of level-level queue 8
Average system response time (times t1 ) . 1.1
Approximate Percent Idle time (level 2 48.80

Distribution of level 2 response times:
1 - 12477 9 12426
2 - 12700 10 12431
3 - 12353 11 12400
4 12307 12 12585
5 12569 13 - 12624
6 - 12480 14 - 12546
7 12374 15 - 12581
8 12416 16 - 12731

.. .

S....
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Results of Synchronous Simulation
Uniform Distribution (both levels)

Synchronous System -- Simulation Results
Sample set size: 1000000
Processing time of level 2 (times level 1): 1.00
Average processing time (level 1 0.47
Average processing time (level 2 0.47
Average DB system response time * tI 2.71
Average TB system response time * ti : 4 06 "-.

Distribution of level 1 response times:-.'
0 - 62611 8 62431
1 - 61913 9 62431
2 - 63096 10 626313 -62507 11 62 470 .
4 - 62055 12 62663

5 - 62443 13 62532
6 - 62348 14 62681 -.
7 - 62763 15 62425

Distribution of level 2 response times:
0.00 - 62649 8.00 62404
1.00 62391 9.00 - 62432
2.00 - 62940 10.00 - 62296
3.00 - 62249 11.00 - 62418
4.00 - 62664 12 00 - 62761
5.00 - 62227 13 00 - 62460
6 O0 - 62898 14.00 - 62451
7 00 - 62640 15.00 62120

Synchronous System-. Simulation Results

Sample set sise: 1000000
Processing time of level 2 (times level 1)- 0 95
Average processing time level I 047
Average processing time (level 0.45
Average DB system response time (* t) 2 64
Average TB system response time(s tI) 3 96

Distribution of level I response times
0 62729 8 - 62399
1- 61969 9 - 62502
2 62659 10 - 62460
3 62611 11 - 62471
4 - 62624 12 - 62204
5 - 62544 13 - 62323
6 - 62803 14 - 62397
7 62507 15 - 62798

Distribution of level 2 response times
0 00 - 62583 7 60 - 6.943
0 95 - 62580 8 55 - 62715
1 90 62783 9 50 - 62573
2 85 62311 10 45 - 62474
3 80 62338 11 40 6252.1
4 75 62128 12 35 - 62309
5 70 62499 13 30 62339
6 65 62"05 14 25 62699

* - - . •



286

Synchronous System -- Simulation Results %

Sample set size: 1000000 Pe-I

Processing time of level 2 (times level 1): 0.90
Average processing time (level 1): 0.47
Average processing time (level 2): 0.43
Average DB system response time ti : 2.60
Average TB system response time (t 3.90

Distribution of level I response times * a
0 - 62482 8 - 62883
I - 62514 0 - 62571
2 - 62397 10 - 62278
3 - 62336 11 - 62241 *%.'v
4 - 62323 12 - 62517
5 - 62845 13 - 62665
6 - 62754 14 - 62402
7 - 62367 15 - 62435

Distribution of level 2 response times:
0 00. 62667 7.20 62417
0.90 62225 810- 62387
1 80 62505 9.00 62754
2 .70 62616 9.90 62483
3 .60 62609 10.80 62309
4.50 62199 11.70 62213
5 .40 - 62466 12.60 - 62600
6 .30 62864 13.50 - 62686

Synchronous System- Simulation Results

Sample set size 1000000
Processing time of level 2 (times level 1): 0.85
Average processing time (level 1) 0.47
Average processing time (eve 2 0,40
Average DB system response time (*ti ) 2 53
Average TB system response time (t 3 79tI) 37

• '. ,. - ,

Distribution of level I response times
0 - 62428 8 - 62482
1 62506 9 62590
2 62764 10 62259
3 - 62376 11 - 62471
4 62475 12 - 62529
5 62311 13 62364
6 62407 14 62766 ...
7 62716 15 62556

Distribut ion of level 2 response timei
o o . 6200 62 6 80 6,21185
0 85 - 62777 7 65 62818
1 70 62992 8 ,50 62654
2 55 - 6225 5 9 35 62668
3 40 - 62105 10 20 62882
4 2.5 62415 II 05 62146
5 10 62301 11 90 62 3 9 9
5 9 5 62656 12 75 62186

7%.. . . . .
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Synchronous System -- Simulation Results

SAaple et sise: 1000000
Processing time of level 2 (times level 1): 0 80
Averge prcsin8 time (evel 0.47
Average processing time (level 2): 0.37 __
Average DB system response time tl): 2.46
Average TB system response time tI 3.69

Distribution of level 1 response times: .
0 - 62454 8 62272
1 - 62655 9 - 62635
2 62566 10 - 62962
3 - 62384 11 - 62366
4 - 62621 12 - 62582
5 62335 13 - 62383
6 - 62344 14 - 62251
7 - 62599 15 - 62591

Distribution of level 2 response times
0 00 - 62720 6 40 62582
0.80 - 62034 7 20 - 62221
1.60 - 62451 8.00 62485
2.40 - 62340 8 80 - 62636
3 20 - 62784 9.60 62649
4 00 - 62567 10 40 - 62375
4.80 - 62931 11.20 - 62231
5 60 - 62688 12 00 - 62306

Synchronous System-- Simulation Results

Sample set size 1000000
Processing time of level 2 (times level 1) 0 75.
Average processing time (level 1), 047
Average processing time (leve 2 0 36
Average DB system response time • tl) 2 42
Average TB system response time * ti) 3 63 "

Distribution of level 1 response times
0 - 62331 8 62582
1 62942 0 - 62260
2 - 62886 10 - 62372
3 - 62392 11 - 62994
4 - 62057 12 - 6122,23
5- 62419 13- 62382
6 - 62594 14 62471
7 - 62848 15 - 62238

Distribution of level 2 response times :7.
0 00 - 62128 6 00 62473
0.75 - 62267 6 .75 - 62158
1.50 - 62201 7 50 - 63099
2.25 - 62393 8.25 - 62702
3 00 6279S 9.00 - 62648
3.75 61868 0.75 62474
4 .50 - 62857 10 S0 - 62456
5 .25 -62884 11 .25 -62597

4%

--.4.!:
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Synchronous System-- Simulation Results

Sample set size: 1000000
Processing time of level 2 (times level 1): 0.70
Average processing time (level W 0.47
Average processing time (level 2 0.33
Average DB system response time (etl ) 2 37
Average TB system response time ti 3.55

Distribution of level I response times:
0 - 62515 8 - 62226
1 - 62257 9 - 62664
2 - 62571 10 - 62478
3 - 62362 11 62714
4 - 61982 12 - 62357
5 - 62765 13 - 62692
6 62725 14 62722
7 62880 15 62081

Distribution of level 2 response times:
0.00 - 62576 5.60 - 62441-.
0.70 623 4 6 30 62721
1 40 - 62677 7 00 - 62600
2 10 - 62308 7.70 62026
2 80 - 62822 8 40 62664
3.50 62174 0.10 - 62390
4.20 62251 9 80 62684
4.90 - 62605 10 50 - 62427

Synchronous System-- Simulation Results

Sample set size. 1000000
Processing time of level 2 (times level 1) 0 65
Average processing time (level 1) 0 47
Average processing time level 2: 0.31
Average DB system response time (, tl) 2 32
Average TB system response time (* ti 3 48

Distribution of level I response times
0 - 62564 8 - 62357
1 - 62201 9 - 62561 - _
2 - 62354 10 - 62669 -C
3 - 62774 11 62677
4 - 61001 12 - 62567
5 - 62713 13 - 62744
6 - 62601 14 - 62409
7 - 62490 15 62418

Distribution of level 2 response times.
0 00 . 62406 5 20 - 62277
0.65 - 62778 5.85 - 62153
1 30 - 62732 6.50 - 62602
1 95 - 62464 7 15 62435
2.60 - 62456 7.80 - 62618

3 25 - 62163 8 45 - 62660
3.90 - 62800 9 10 - 62509
4.55 - 62666 9 75 - 62191

* -.5-

:,P
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Synchronous System -- Simulation Results //%
Sample set size. 1000000 , ..
Processing time of level 2 (times level 1): 0 60
Average processing time (level 1 0 47 %
Average processing time level 2. 0 28
Average DB system response time ( i) 2 27,
Average TB system response time t) 3 41

Distribution of level I response times
0 63046 8 62723
1 62426 9 62312
2 62174 10 - 62531
3 62471 11 - 62439
4 62266 12 - 62410
5 62583 13: 62851
6 62791 14 62163
7 62584 15 - 62230

Distribution of level 2 response times.
0.00 62734 4.80 62556
0.60 - 62192 5.40 - 62259
1 .20 62133 6.00 - 62521
1.80 - 62455 6 60 - 62235
2.40 - 62515 7 20 - 63334
3.00 - 62996 7 80- 62668
3.60 - 62689 8.40 - 61043
4.20 62349 0.00 - 62411

Synchronous System-- Simulation Results

Sample set size: 1000000
Processing time of level 2 (times level 1). 0 55

Average processing time (level 1). 0.47
Average processing time (level 2 0 26

Average DB system response time (, ti: 2 24
Average TB system response time (. tl): 3 35

Distribution of level I response times:
0 62725 8- 62429

1 62429 0 - 62470 N. _
2 - 63000 10 - 62348
3 62635 11 - 62509 .6r

4 - 62747 12 - 62617
5 62252 13 - 62215
6- 62702 14 - 62425
7 - 62414 15 - 62083

Distribution of level 2 response times
0 00 62570 4.40 62951
0.55 62149 4 95 - 62277
1 .10 62603 550- 62386
1 .65 -62217 6.05 -62541

2.20 62276 6.60 62312
2.75 62464 7.15 62526
3 .30 62866 7 70 . 63072
3 85 62456 8.25 62334

% N. -

- . I
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Synchronous System-- Simulation Results

Sample set size' 1000000
Processing time of level 2 (times level 1) 0 50

Average processing time level 1 0 47
Average processing time level 2 0.25
Average DB system response time *ti; 2 21
Average TB system respons time t 3 32 r

Distribution of level I response times:
0 - 62562 8 - 62326
1 62529 9 - 62013
2 62673 10 - 62100
3 -62353 11 -62485 - 5

4 - 63036 12 - 62492
S - 62981 13 - 62256
6 - 62613 14 - 62439
7- 62465 15 - 62667

Distribution of level 2 response times.
0 00 62453 4.00 - 62375
0.50 - 62586 4.50 - 62258
1.00 - 62399 5.00 - 62501
I 50 - 63013 5 50 - 62157
2.00 - 62285 6 00 62615
2 50 - 62390 6 50 - 62515
3.00 - 62418 7 00 - 62643
3 50 - 62794 7.50 62598

%'.

. -'..
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Results of Asynchronous System Simulation
Gaussian Distribution (Both Levels)

Asynchronous System Simulation Results (Gaussian)

Sample set size: 100000
Processing time of level 2 (times level 1): 1.00
Average processing time (level 1) 0.44 P
Average processing time (level 2): 0,50
Average size of level-level queue: 6279.71
Maximum size of level-level queue: 12493
Average system response time (times ti): 7178.86
Approximate Percent Idle time (level 0.00

Distribution of level 2 response times:
I - 0 9 - 24743
2 - 0 10 - 6875
3 - 0 11- 758
4 - 23 12 - 25
5 - 620 13 - a6 - 6287 14 - 0 WO
7 - 23522 15 0
8 - 3747 14 - 0

Asynchronous System Simulation Results (Gaussian)

Sample set sie: 100000
Processing time of level 2 (times level 1). 0 95
Average processing time (level 1): 0.44
Average processing time (level 2): 0 48
Average size of level-level queue: 3988 28
Maximum size of level-level queue: 7903
Average system response time (tames ti): 4332.44
Approximate Percent Idle time (level 2) 0.00 .

Distribution of level 2 response times.
1 - 0 9 - 24703
2 - 0 10 - 6857
3 - 0 11 - 757
4 - 32 12 - 25
5 - 669 13- 0 .
6 - 6245 14 - 0 -
7 - 23753 15 - 0
8 - 36959 16 - 0

4. .p .-

% °
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Asynchronous System Simulation Results (Gaussian) %

Sample set size: 100000
Processing time of level 2 (times level 1): 0.90
Average processing time (level 1): 0.44
Average processing time (level 2): 0.45 %

Average size of level-level queue: 1432.57
Maximum sise of level-level queue: 2301 e.
Average system response time (times t) : 1475.46
Approximate Percent Idle time (level 2 0.00

Distribution of level 2 response times:
1 - 0 9 - 24510
2 - 0 10 - 7010 "
3 - 0 11 - 772.-' .. '.--
4 - 23 12 - 27 , 

'

5 630 13 - I
6 - 6371 14 - 0
7 23830 15 - 0
8 - 36812 16 - 0

Asynchronous System Simulation Results (Gaussian)

Sample set size: 100000 ,..
Processing time of level 2 (times level 1): 0.85
Average processing time (level 1): 0.44
Average processing time (level 2): 0.43
Average size of level-level queue: 1.00
Maximum size of level-level queue: 7
Average system response time (times tl)" 2.95
Approximate Percent Idle time (level 2) 2.92

Distribution of level 2 response times:
1 - 0 9 - 24832
2 - 0 10 - 6991
3 - 0 11 - 732
4 - 20 12 - 29
5 - 652 13 - 1I'
6 - 6272 14 - 0
7 - 23746 15 - 0 *-,-. ..
8 36716 16- 0

..:. -

-. 4 ~:. ..... .
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Asynchronous System Simulation Results (Gaussian)

Sample set size: 100000
Processing time of level 2 (times level 1). 0.30 '.
Average processing time (level 1) 0.44
Average processin time (level 2): 0.40
Average size of level-level queue: 0.41
Maximum Bile of level-level queue: 3
Average system response time (times ti 2.28 .,

Approximate Percen t I time (level 2) 8.69

ADistribution of level 2 response times:

1 - 0 9 24700
2 - 0 10o 6847
3 - 0 11- 792
4 - 10 12. 24

5- 650 13- 0
6 - 6257 14 - 0
7 - 23787 15s 0
8 - 36924 16 0 ~

Asynchronous System Simulation Results (Gaussian)

Sample set size: 100000
Processing time of level 2 (times level 1): 0.75
Average processing time (level 1): 0.44 .-

Average processing time (evel 2) 0.33
Average s!ie of level-level queue: 0.18
Maximum si .e of 1evel-level queue: 2
Average system response time (times tI): 2 01
Approximate Percent Idle time lvl2 14.30

Distribution of level 2 response times:
I- 0 9 -24621

2 - 0 10 - 7038
43 - 0 11 - 712

4 - 25 12 - 21
5 - 636 13 - 0
6 - 6242 14 - 0
7 - 23769 15s 0
3 - 36936 16 - 0

% .

A'7
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Asynchronous System Simulation Result: (Gaussian)

Average processing time I ev:l 1[. 0 44
Average processing time 1ev 12-0.35
Average six* of level-level queue: 0.07
Maximum size of level-level queue 1
Average system response time (times tli 16
Approximate Percent Idle time (leve 2 2.0.00

Distribution of level 2 response times:

(t2e lee 0) 10 6577

(tme 3 7) 1.76s

(level 2)t 25.751000

Proessng imeof eve 2 tresonsel ime: 0
Averge pocesing ime leve 24622.4
Averge pocesing ime leve 2):073
Averge sze o levl-leel qeue7750
&xium sze o levl-leel qeue 3

6 0 68 14 4620

4 - 313 16 330

.
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Asynchronous System Simulation Results (Gaussian)

Sample set size: 100000
Processing time of level 2 (times level 1): 0.60
Average processing time (level 1): 0.44
Average processing time (level 2): 0.30 __

Average size of level-level queue: 0.01
Maximum size of level-level queue: 1
Average system response time (times ti ) 1.69
Approximate Percent Idle time lvl2 31.47

Distribution of level 2 response times;:~
1 0 - 24573
2: 0 10 - 6950

5 6 32 13 - 0
6 6423 14 - 0
7 -23535 is - 0
8 -37039 16 - 0

Asynchronous System Simulation Results (Gaussian)

Sample set sise 100000
Processing time of level 2 (times level 1): 0 55
Average processing time (level 1): 0,44 -

Average process13ing time (level 2): 0 02
Average size of level-level queue: 0.00
Maximum gise of level-level queue: I
Average system response time (times ti 1 6.3
Approximate Percent Idle time (level 2 ~ 316

Dis3t r ibu tion of level 2 response t imes
1 0 9 24798

2 - 0 10 - 6967
3 * 0 11 - 777
4 - 23 12 33
5- 631 13- 0
6 - 6226 14 - 0
7 -23377 15 - 0
8 37168 16 - 0

IL
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Asynchronous System Simulation Results (Gaussian)

*Sample set size: 100000
Processing time of level 2 (times level 1): 0.50

Avrg rcsigtm lvl1): 0.4
Average process ing time (level ) 0.2S
Average size Of level-level queue: 0.00
Maximum size of level-level queue. I

NAverage system response time (times ti ): 1 57%
Approximate Percent Idle t ime (level 2) 42.88

Distribution of level 2 response times:
1 0 9 -24834

2 - 0 10 - 6753
3 - 0 11 - 726
4 * 23 12 - 29
5 - 634 13 0
6 - 6126 14 0
7 - 23789 15s 0
8 - 37086 16 * 0

%
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Results of Synchronous System Simulation
Gaussian Distribution (both levels)

Synchronous Gaussian System -- Simulation Results
Sample set size: 100000
Processing time of level 2 (times level 1) 1 00
Average processing time (level 1) 044
Average processing time (level 2). 0 44
Average DB system response time (. ti) 2 17
Average TB system response time ( tI) 3 25

Distribution of level I response times
0 - 0 8 '2474 9
1 0 9 6850
2- 0 10- 786
3 - 20 11 32 %
4 673 12 - 0
5 - 6335 13 0

6 -23588 14 - 0
7 36967 15 0

Distribution of level 2 response times
0.00 - 0 8 00 - 24531
1.00 - 0 9.00 - 6043
2.00 0 10.00 - 695
3 00 21 11.00 - 27
4 00 - 651 12.00 0
5.00 6251 13 00 - 0
6.00 - 23641 14 00 - 0
7 00 37240 15 00 - 0

Synchronous Gaussian System -- Simulation Results

Sample set size 100000
Processing time of level 2 (times level 1). 0 95
Average processing time evel 1: 0 44 .. '

Average processing time (evel 2): 0.42 - %.

Averag9e DB system response time (.tI): 2 13
Average TB system response time .t 3 1 

Distribution of level 1 response times:
0 0 8 - 24966
1 0 9- 6866
2 0 10- 682

t 3 20 11- 20
4 635 12 0 0
5 6442 13 - 0
6 23574 14 0
7 36795 15 - 0

Distribution of level 2 response times
0 00 0 7 .60 - 24461
0 95 - 0 8 55 - 7009
1 .90 0 9.5 so 774
2 85 - 28 10 45 24
3 80 - 621 11. 40 - 0
4.75 - 6246 12 35 0
5.70 - 23636 13 30 - 0
6 65 . 37201 14 25 0

.- 4.-.,
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Synchronous Gaussian System-- Simulation Results

Sample set size 100000
Processing time of level 2 (times level 1) 0 go i
Average processing time (level 1 0 44
Average processing time level 2)0 40
Average DB system response time 2 * tl) 208 -:-"
Average TB system response time * tI 3.13

Distribution of level 1 response times:
0 - 0 8 24470
1 - 0 9- 6030
2 - 0 10 - 761 . ..
3 - 18 11- 37
4- 695 12- 0
5 - 6283 13 0
6 - 23527 14 0
7. 37279 is 0

Distribution of level 2 response times: Now*
0 00 - 0 7.20 - 24830
0.90 - 0 8. 0 - 6899
1 .80 - 0 9.00 - 754
2.70 - 28 9 .90 - 31
3.60 - 667 10.80 - I
4 .50 - 6305 11 70 - 0 -. ,
5 40 - 23770 12.60 - 0 .
6.30 - 36715 13.50 - 0

Synchronous Gaussian System -- Simulation Results

Sample set sise 100000
Processing time of level 2 (times level 1) 0.85
Average processing time (level 1): 0.44
Average processing time (level 2); 0.37
Average DB system response time t i: 2.05
Average TB system response time * tI) 3.08

D ist r ibu tion of level 1 response times:
0 0 8 24784

1 0 9 - 6885
2 1 10 - 713
3 - 21 11 - 32

4 - 686 12 - 0
5 - 6295 13 0
6 - 23724 14 - 0
7 36859 15 - 0

Distribution of level 2 response times:
0 00 - 0 6.80 24793
0.85 - 0 7.65 - 6972
1.70 - 0 8.50 - 730
2 55 20 9 .35 26
3 40 660 10.20 - 0
4.25 - 6233 12 05 - 0
5.10 -23732 11 90 - 0
5.95 - 36834 12 75 - 0

. • . ..



Synchronous Gaussian System. Simulation Results

Sample set sise: 100000
Processing time of level 2 (times level 1): 0.80
Average processin time (evel 1) 044
Average processing9 ime (level 2) 0.35_ _
Average DB system response time (.ti ): 2.03
Average TB system respons tie% iJ 30

Distribution of level I response times:
0 - 0 8 - 24558
1 - 0 0 6327
2 - 0 10 701
3 - 22 11- 23.M
4 - 687 12 0
6 6305 13 0
6 -23484 14 0
7 - 37208 15 - 0

Distribution of level 2 response times.
0.00 - 0 6.40 - 24872
0.80 - 0 7.20 - 6304
1.60 - 0 3.00 762
2 .40 - 16 8.80 . 24
3.20 - 41 0.60 - 0
4.00 6249 10.40 - 0
4 .80 -23388 11.20 0
5.60 -37244 12.00 0

Synchronous Gaussian System -- Simulation Results

Sample set s i e: 100000
Processing time of level 2 (times level 1): 0.75
Average processing time (lvl1) 0. 44
Average processing time (level 2 : 0.33
Average DB system response time ( tI) 2.02
Average TB system response time (et)30

Distribution of level 1 response times: -

0 - 0 8 -24654

1 0 0 6876
2 1 10 - 728
3 - 4 11 - 26
4 - 623 12 - 1
5 . 6283 13 - 0
6 -23691 14 - 0
7 -37093 15 0

D is9tr ibu tion of level 2 response times.
0,00 - 0 6.00 - 24758
0 .75 - 0 6.75 - 6873
1.50 - 0 7 .50 . 764
2.25 35 8.25 - 30
3.00 684 0.00 1
3.75 6205 0.75 - 0
4 .50 -23733 10.50 - 0
5.25 -36818 11.25 - 0

v-'S



300

Synchronous Gaussian System .- Simulation Results

Sample set size: 100000
Processing time of level 2 (times level 1): 0.70
Average processing time (1evel 1): 0.44
Average processing time (level 2): 0.31
Average DB system response time " ti: 2.01
Average TB system response time is til: 3.01

Distribution of level 1 response times:
0 0 8 - 24656
1 '0 9 - 6976
2 - 0 10 - 754
3. 21 11 - 18
4 - 673 12 - 0
5 - 6296 13 - 0
6 - 23666 14 - 0
7 - 36940 15 - 0

Distribution of level 2 response times:
0.00 - 0 5.60 - 24668
0.70 - 0 6.30 - 6824
1.40 - 0 7.00 - 752
2.10 22 7.70 - 31
2.80 - 662 8. 40 - 0
3.50 - 6213 9.10 - 0
4 .20 - 23628 9.80 - 0
4.90 - 37200 10.50 - 0

Synchronous Gaussian System -- Simulation Results

Sample set size: 100000

Processing time of level 2 (times level 1): 0.65
Average processing time level 12: 0.44 t..,

Average processing tim e evel 2: 0.20t.)"2.0
Average DB system response time * tI): 2.00Average TB system response time (. tI) 3.01m..r

Distribution of level I response times:
0 - 0 8 - 24689
1- 0 9. 7066
2 - 1 10 743
3- 2o 11 23
4 - 649 12 - 0
5 - 6360 13 - 0
6 - 23658 14 - 0
7 36791 1s 0

Distribution of level 2 response times:
0.00 - 0 5.20 - 24566
0.65 - 0 5.85 - 6014
1 .30 0 0 6.50 - 728
1.95 22 7.15 - 28
2.60 667 7 .80 0
3 .25 - 6335 8 45 - 0
3.90 - 23650 9.10 0
4.55 - 37090 9. 75 0 o

,•A. =

r * .%°I
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Synchronous Gaussias System-- Simulation Results

Sample set sise: 100000
Processing time of level 2 (times level 1): 0.60
Average processing time (level 1): 0.44
Average processing time (level 2) 0.26
Average DB system response time (. ti) 2.00
Average TB system response time (at: 3.00

. '. -1

Distribution of level I response times: V-.,'\
0 - 0 8 - 24796, ,qt.

I- 0 9 - 6838,j
2 - 1 10 - 734
3 - 23 11- 27
4 - 688 12 - 0
5 - 6431 13 - 0
6 - 23463 14 - 0
7 - 36999 15 - 0

Distribution of level 2 response times:
0.00 - 0 4.80 - 24517
0.60 - 0 5.40 - 6912
1.20 - 0 6.00 - 756
1.10 - 22 6.60 - 33
2.40 - 679 7.20 - 0
3.00 - 6285 7.80 - 0
3.60 - 23608 3.40 - 0
4.20 - 37008 9.00 - 0

Synchronous Gaussian System -- Simulation Results

Sample set sie: 100000
Processing time of level 2 (times level 1): 0.55
Average processing time (level 1): 0.44
Average processing time (level 2: 0.24
Average DB system response time * tI): 2.00
Average TB system response time ( tl): 3.00

Distribution of level 1 response times:
0 - 0 8 -24602

1 - 0 9 6782
10 -748,-i

3 - 25 11 - 344 - 719 12 - 1 '-.

5 - 6350 13 0
6 - 23693 14 - 0

7 - 37046 15 - 0

Distribution of level 2 response times:
0.00 - 0 4.40 - 24589
0.55 - 0 4.95 - 6904
1.10 - 0 5.50 - 765
1.65 - 20 6.05 - 28
2.20 - 632 6.60 - 0
2.75 - 6270 7.15 - 0
3.30 - 23596 7.70 - 0 .
3.85 - 37196 8.25 - 0

%. %-
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Syncronos Gussin Sstem Simuatin Reult

Sample set size: 100

Processing time of level,2 (times level 1): 0.50
Average processing time (level 1) 0.44
Average procesing time level 2 0.22
Average DB system response time 0 ti J 2.00
Average TB system response time (0 tI) 3.00

Distribution of level I response times:
0 - 0 8 - 24718
1 - 0 9 . 5874
2 - 1 10 - 745
3 - 23 11 - 33 r
4 - 632 12 - 0
5 - 6308 13 - 0
6 - 23844 14 - 0
7 - 36822 15 - 0

Distribution of level 2 response times:
0.00 - 0 4.00 -24577
0.50 - 0 4.50 - 7069
1.00 - 0 5.00 - 777
1.50 - 17 5.50 - 20
2.00 - 662 6.00 - 0
2.50 - 6372 6.50 - 0
3.00 - 23504 7.00 - 0
3.50 -36993 7.50 . 0

.. 0*.00~

.1 N-.-

*~ ~ % %*~

'p ''%



'V

F-

,~ $*~* -
,~.. a,

'-a..,'

'.5-.
5'~

2-

VITA

'p

9.

"a a.

5'

d - a.

as.

:'
.5

,, a.

* *****~**~*** ~
___________________ .. ~.-:-.-:~.~---> . *. ~ -:
____________________ * *,A *.~



303

4N

VITA ".

..-*c.

Bradley Warren Smith was born in Euclid, Ohio on November 27, 1958. -'-

He was granted a high school diploma from Hawken school in 1976. He received

the B.S. degree in 1978, the M.S. degree in 1980, and the Ph.D. degree in 108.5,

all from Purdue University in West Lafayette, Indiana. As a graduate student,

he was a -teaching assistant for Purdue's School of Electrical Engineering,

developing hardware laboratories and instructing a junior level programming

course. He has also been a programmer for the Engineering Computer

Network, developing applications software. As a graduate research assistant,

his studies included parallel/distributed processing system architecture,

architectures for image and speech processing, and models for use in the design

of macro-pipelined parallel processors. He is a member of Tau Beta Pi, Phi .

Kappa Phi, Eta Kappa Nu, and Sigma Xi honoraries and the IEEE Computer

Society.

*, . 0 4
b.4-

...... ...... ......-.- S.

7 , .e , r
.',... ,, -,b J1... -."...".. . ,e ;% % .%.- . . .; ; -: -... . . . . ,'. .'.'. .'.',',



- . ~ZT7~7~

U
)

-I.

.4.

.4.


