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ABSTRACT

Smith, Bradley Warren. Ph.D., Purdue University, May 1985. ON THE
3 DESIGN AND MODELING OF SPECIAL PURPOSE PARALLEL
PROCESSING SYSTEMS. Major Professor: Howard Jay Siegel.

S
As the capabilities of computing machinery grow, so does the diverse

§ variety of their applications. The feasibility of many approaches to these
applications depends solely upon the existence of computing machinery capable
of performing these tasks within a given time constraint. Because the majority

of the available computing machinery is general purpose in nature, tasks that

do not require general purpose facilities, but that do require high throughput,

are condemned to execution on expensive general purpose hardware.

This research describes several tasks that require fast computing
machinery. These tasks do not require general purpose facilities in the sense
that the computing machinery used will only perform a fixed set of tasks.
Some of the tasks are simple in nature, but are required to execute on very
large data sets. Other tasks are computationally intensive in addition to
possibly involving large data sets. Both simple and complex algorithms are

considered. The discussion includes a description of the tasks.

All of the above tasks are useful; however, their value is determined in
part by the time required to perform them. This work discusses three

architectures for performing remote sensing tasks. These architectures can
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execute the described tasks more quickly than conventionally available

hardware. <. .

\\
The discussion extends to the realm of designing macro-pipelined

distributed computer systems for special purpose applications. Nine
parameters are introduced along with a proposal for an algorithmic approach to
designing a computer system for a special application. The parameters are

then applied to an isolated word recognition system.

For may tasks (especially those involving feedback), it is undesirable to
use synchronous parallelism. A study, including a probabilistic model, of the
effects of using asynchronous stages in the macro-pipeline is presented.

Simulation is used to verify the results.
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CHAPTER 1
INTRODUCTION

1.1 Overview

For many applications, response time and throughput are of critical
importance. Such applications include: defense against incoming missiles,
missile guidance, air traffic control, weather analysis, speech recognition, and
tomography. The principal goal is to process the data in ‘‘relevant” time
within some cost criteria. Further, the feasibility of performing many tasks
depends on the capability to execute them in a certain amount of time without

excessive hardware expense.

General purpose hardware, while less expensive than special purpose
hardware, is typically slower than hardware designed for a specific task. The
design of special computing facilities can take large amounts of time and
manpower, increasing the design overhead of such a system over a general
purpose system. Since special purpose computer systems typically do not sell
in large quantities, the design cost must be distributed over a relatively small
number of units. Thus, the cost of special purpose computer systems can be
considerably greater than that of general purpose computer systems. The high
cost of special purpose hardware decreases the desirability of algorithms that
require special purpose computer systems. Thus, accurate and powerful

algorithms may not be used in lieu of less accurate algorithms or, even worse,
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_.:' nothing at all. To help reduce the cost of special purpose systems, computer
X aided tools can be used to minimize the human intervention needed in the
}‘ computer design process. These tools would reduce the design time. To
> achieve this goal, tasks must be modeled as to the type of computational 2
2 resources they require. Further, presently available hardware, such as small ':
boards and chips, must be modeled according to their computational
capabilities. By extending the models to parallel schemes, combination of the i«‘
two models allows systems to be proposed or built to perform computationally “
. intensive tasks within some time, cost, or other constraint. 1
; This research is divided into four chapters. Chapter 2 considers the
application of parallelism to contextual classifiers for image analysis which are
being developed to exploit the spatial/spectral content of a picture element
= (pixel) to achieve higher classification accuracy. Contextual classification
requires large amounts of computation, so special hardware is of value.
Chapter 2 explores the CDC Flexible Processor (FP) system
; ({CDC77a],[CDC77b]) and the proposed multimicroprocessor system PASM
& [SiS&1], which are both parallel processing systems that can be applied to image
processing tasks. Timings for the FP system to perform contextual

classifications, based on a Purdue developed FP system simulator, are

presented. For comparison, the same algorithms have been run on a PDP-

11/70. The applicability of PASM for implementing the contextual classifier is

’
5.

demonstrated by algorithm complexity analysis. The reduction in execution

R RO AR AR AR
P S A a AR JO
. A .
P s . e Vi L Y.
. . ' ’
S ' e S LA
: ‘e "e i hd

' et :1
- achieved through the use of these parallel systems is shown. -;:*-:'.-‘:
- NSRS
- AR
! The research in Chapter 2 has suggested a specific architecture for the _’i
- ,

application of parallel processing to remote sensing tasks. Chapter 3 proposes

2.

ay

- such an architecture. It is a large-scale multimicroprocessor structure which
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could conmsist of as many as 1024 processors. This type of architecture is PaTads

extremely well suited to the execution of window and pixel based operations.

.

-
. . . . . A
A number of remote sensing data processing techniques for implementation on AR
o~
DR
. . . : . . . ot
a machine with this architecture are discussed. Algorithms considered are: ol
o,
h)

image smoothing, image correlation, and contextual and non-contextual
methods of image analysis. This includes both the design of parallel algorithms

and the exploitation of appropriate data structures.

In addition to demonstrating how various algorithms can be performed on
the parallel architecture, Chapter 3 proposes extensions to the architecture to
increase its fault tolerance. Then, a specific implementation of the
architecture. called MuRSS, is contrasted to an already existing system called
MPP. MuRSS and MPP are compared with respect to speed, processing

capabilities, and fault tolerance.

In Chapter 4, an approach to modeling distributed macro-pipelined oo

e
AU I A

computer systems is examined. This chapter uses nine parameters to form a

NI I

y 1

model of the characteristics of parallel/distributed algorithms and the o

- v

environment in which they must execute. These parameters describe the 1/O
environment. the algorithm, the memory requirements of the algorithm, and }.-:"

the type and amount of arithmetic calculations required by the algorithm to

::Z process a normal data set.
\ In addition, Chapter 4 uses tuples to model the characteristies of computer :‘?_i:_-:-'
architectures. These tuples describe the instruction set. the instruction

processing times, the size and speed of on-board cache, the data and address

widths, the replication of units, the number of stages in pipelined units, and

the functional overlap for each unit in the architecture. By combining the

tuples with the nine parameters, the execution time of the algorithm modeled
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by the parameters on the hardware modeled by the tuples can be estimated.
The combination of these two models could be used as a basis for computer
aided design tools used for special purpose parallel/distributed processors. This
chapter uses a layered method of architecture design, in which a task is broken
down into sub-tasks. Each sub-task is then assigned to a special purpose
processing unit. Such a unit may be either a traditional serial type design or a

parallel design.

Chapter 5 extends the work done in Chapter 4 by looking at the effects of
both synchronous and asynchronous stages in macro-pipelined machines. Two
synchronous schemes (double buffering and triple buffering) are compared to an
asynchronous system with respect to throughput and system response time.
Theoretical results are presented. A simulator to calculate the throughput and
system response time of each system has been developed to verify the theory.

The results of the simulation of over 200,000 data sets are presented.

1.2. A Survey of Parallel Architectures for Image Processing

The purpose of remainder of this chapter is to give background
information pertinent to the rest of this work. Two taxonomies or hardware
description schemes are discussed in Section 1.3. Sections 1.4 and 1.5 describe
a number of proposed and implemented parallel and/or distributed processing
systems that can be used for image processing. The systems discussed in this
chapter are: CLIP4 - the Cellular Logic Image Processor [Duf82, DuW73,
Fou81l, Ger83|; Cytocomputer - a pipelined image processor [PrD79, Ste80;
DAP - the Distributed Array Processor [Ger83, Hun81, Red79]; the FP array
- CDC’s Flexible Processor array [All82, SiSR0, SiS82c. SmS&1, SwS80]; MPP -
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the Massively Parallel Processor [Bat80, Bat82, Ger83, Pot82a]; PASM - the
PArtitionable SIMD/MIMD system [SiM81a, SiS81, SiS82¢, Siesl|; PICAP -
the PICture Array Processor [KrD82, KrG82, Gud8l]; and STARAN -
Goodyear Aerospace’s associative processor system (Bat74, Bat76, Bat77h,

Bat82, FeF74, Ger83, Thu76, Pot82b].

1.3. Hardware Taxonomies

Currently, there are two classes of computer hardware taxonomies. There
are hardware taxonomies that classify (e.g., tiger) and those that describe (e.g..
four paws, 16 sharp claws, ravenous meat liking appetite, etc.). The
classiﬁcati(;n taxonomies provide only the most general information, omitting
details for ease of use. Several descriptive taxonomies have been developed to
accurately describe the architecture of computer hardware. These descriptive
taxonomies are often so cumbersome that they cannot be used verbally to

convey their thought.

One of the first taxonomies, proposed in [Fly66], is a classification
taxonomy. This taxonomy classifies a system based on the number of
concurrent instruction and data streams. A machine has either a single stream

or multiple streams in this taxonomy.

A machine that executes a Single Instruction stream on a Single Data
stream is called an SISD machine. Some examples of SISD machines are the
IBM 370/155, the DEC PDP-11/70, and the DEC VAX-11/780. Machines that
execute a Single Instruction stream on Multiple Data streams are called SIMD
machines. Some examples of SIMD machines are CLIP4, ILLIAC IV [Bar68,
Bou72, Sto&0], MPP, PASM (in SIMD mode), PICAP I, and STARAN. In such

............
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systems, a control unit broadcasts the same instruction to all processors, and
all enabled processors execute the same instruction simultaneously, each
processor on its own data stream. Machines that execute Multiple Instruction
streams on Muitiple Data streams are called MIMD machines. Some
examples of MIMD machines include the CDC Flexible Processor Array, PASM
(in MIMD- mode), PICAP M, and Cytocomputer [LoM80]. A machine that
executes a Multiple Instruction on a Single Data stream is called an MISD
machine. Macro-pipelined machines fall into this category. The design of such

machines is the topic of discussion for Chapter 4.

The classes of machines in this taxonomy are very broad. For example,
MPP, whose Processing Elements (PEs) operate on one bit of data at a time
falls into the same class (SIMD) as [ILLIAC IV, whose PEs operate on 64 bits of
data simultaneously. In addition, this taxonomy gives no indication of the
relative size of a machine. For example, PASM (in MIMD mode), which could
consist of up to 1024 PEs, is in the same class as the CDC FP array, which can
consist of up to 16 PEs. Several taxonomies have been proposed to narrow the
classes. at the expense of simplicity. Flynn's taxonomy, however, still remains

the simplest and most widely used.

In contrast to Flynn's taxonomy, which categorizes computers according
to their instruction and data streams, the classification taxonomy in [Kuc7g]
proposes to classify hardware according to the instruction stream(s), instruction
type. execution stream(s), and execution type. As in Flynn's taxonomy, the
instruction and execution streams can be either single or multiple. The

instruction and execution types can be either scalar or array.

The number of instruction streams is determined by the number of

concurrently executable programs. For a program to be executable, it requires




a program location counter to point to the next instruction to be executed.

If the arguments to any machine language instruction (operands) are
arrays, the instruction type is array. If no machine language instruction can
accept an array (vector) as an argument, the instruction type is scalar. For
example, consider the instruction:

move a,m

If “a" is a single element and ““m’ is a memory location this instruction type is
scalar. Systems that have scalar type instructions include: the AMD 9511A
(Amd82], the CDC FP array [CDC77a, All82], the CDC 6600 [Che80], CLIP4
[Duf82, Fou8l], ILLIAC IV [Bar68, Bou72], MPP [Bat80], PASM [SiS81, Sie82],
and STARAN [Bat76, Bat77b]. For the instruction:

move a,m,1000

"

if ““a” is the base address of an array, “m’’ is a memory location, and 1000 is
the number of bytes to be moved, then the instruction is implicitly performing
an array operation. For this latter case, the instruction type is array. For a
system to have array type instructions, it must include at least one array
instruction. Systems that have array type instructions are: OMEN [Thu76],

VAMP [Che80, Thu76), and the TI-ASC [Che80]. An example of a chip that

has an array type instruction is the Zilog-Z80 [SiS83).

The number of execution streams is determined by the variety of
operations that can be performed simultaneously by the system. Either a
system can perform a single operation or multiple operations at once. Multiple
copies of a single operation count as a single operation. Systems that fall into

the single execution stream category are all systems in the SISD and SIMD
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classes of Flynn's taxonomy that allow no overlapping of different instructions
(e.g., no overlap of control unit and PE operations). An example of a machine
that has a single instruction stream of scalars with a multiple execution stream v

is the CDC 6600. The CDC 6600 has two multipliers, the execution of which :

SV Y Y SR ..
o

can be overlapped with the addition unit. From a single job stream, both an Jis
addition and multiplication can be taking place at the same time, although
they cannot be initiated simultaneously, thus, there exists multiple execution

streams. Another example of a machine that has a single instruction stream of

scalars with a multiple execution stream is the VAX 11/780 with the floating
point accelerator. A VAX 11/780 can overlap slower floating point operations '
i with integer instructions, giving multiple executions simultaneously. Without

the floating point accelerator, the VAX cannot overlap operations in any way, -

thus the system must wait for the result of any operation before continuing.

T AEEEAAR T

Thus, the VAX without the floating point processor is an example of a system

that has a single instruction and single execution stream.

The execution type is either scalar or array and is determined by the

number of operands to which a machine language instruction can be applied

- v r MR N
CRRFRORAR  CRC A
’

v’

x simultaneously. A system where a single machine language instruction operates

on multiple operands, like the ILLIAC IV SIMD machine, which issues scalar

instructions that act upon 64 operands, is said to have an array execution type.

If no machine language instruction can act on multiple operands

:é simultaneously, the execution type is scalar. oG
'gr,: The nomenclature is formed by describing the instruction stream and type ’\
.F with the execution stream and type. Systems such as the PDP-11/70, which ,‘::\:
have a Single Instruction stream that performs Scalar instructions on a Single "'r—
Execution stream of Scalars are classified as: SISSES. ILLIAC IV, which has

)
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scalar type instructions fetched by one control unit and broadcast to 64
execution units, is classified as: SISSEA (assuming no instructional overlap is
allowed). The CDC 6600 has a single instruction stream of scalar instructions
that control a multiple execution stream of scalars and is classified as
SISMES. The TI-ASC has a single instruction stream of array instructions
that controls a multiple execution stream of array operations is classified as
SIAMEA. Table 1.3.1 [SiS83] shows what machines fall into which classes.
Kuck's scheme is a more precise classification taxonomy; however, it is also

more cumbersome to use.

The descriptive taxonomy set forth in [HoJ81] describes the architecture of
a machine in an algebraic style suitable to printing and entry into a computer.

A SISD computer in this notation would be described as:

C=I[E-M]|

This means that the computer (C) is composed of a single instruction unit
controlling an execution unit (E) and a memory unit (M). There are twenty
rules that govern symbols, their use, and how they are connected. A synopsis of

this notation appears in both [HoJ81] and [SiS83].

Other descriptive taxonomies are set forth in {Gil83] and [BeN71]. These
notations, while similar to the notation set forth in [HoJ&1], have one
important conceptual difference. The notation in [HolJ®1] is specifically two
dimensional. i.e., the architecture of the system can be described in a two
dimensional manner. The notations in [Gil83] and [BeN71] are three
dimensional in nature, making them very difficult to parse. A discussion of each
of the taxonomies appears in [3iS&3], along with several examples. In general,

Flyon's hardware classification scheme will be used here. A special descriptive

.................
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Kuck'’s sixteen categorics of computer architectures [SiS83].

10

Table 1.3.1

SINGLE EXECUTION

MULTIPLE EXECUTION

DESIGN

TYPE SCALAR ARRAY SCALAR ARRAY
ILLIAC IV
SCALAR | PDP 11/45 | STARAN CDC 8600 OMTN.60
(PASM) CPU
SINGLE {TRAC)
INSTRUCTION
CRAY-1
ARRAY | 2L0G 280 | CYBER NONE BSP
203/205 KNOWN CDC 7600
TIASC
BURROUGHS FMP | DENELCOR HEP
SCALAR | CDC 8800 NONE DATA FLOW PASM
PPU KNOWN (PASM) (TRAC)
MULTIPLE (TRAC)
INSTRUCTION
PEPE
ARRAY | UNDESIRABLE | NONE NONE CDC NASF
KNOWN KNOWN TRAC

PUMPS
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taxonomy is needed and is proposed in Chapter 4. There, computer hardware
needs to be described by its capacity and speed of execution in such a manner

that timing information can be simply obtained.

For the application in Chapter 4 that Flynn’'s taxonomy does not provide
enough information about system architecture to be of use. The taxonomy in
[Gil83] limits the level of description of a system in addition to not specifically
stating how a system’s resources are to be connected. A more explicit
representation of the overall system architecture can be found in [BeN71];
however, this description is two dimensional. Thus it is inconvenient to store

in a computer, and quite difficult to analyze. Finally, it is undesirable to apply

the taxonomy set forth in [HoJ81] because the depth of the description is

- arbitrary. Therefore, different people can differently describe the same machine.
Thus, while all of the above taxonomies are of importance. none is directly
_ applicable to the application in Chapter 4.

1.4. SIMD Systems

The SIMD systems discussed in this work fall into the following two
categories. Bit-serial systems are composed of PEs that can process only a
single bit at a time. Bit-parallel systems are composed of PEs that process
multiple bits at once. Such PEs are said to process words. CLIP4 [Duf&2].
DAP [Red79], MPP [Bat30, Bat82], and STARAN [Bat74, Bat76, Bat77b,
Pot82} are all bit-serial systems. ILLIAC IV [Bar68, Bou72], MuRSS [SmS8&2],

and PASM ([SiS81] are all bit-parallel or word organized system. All of the
systems, except PASM, are purely SIMD machines. PASM, however, can be *"._-Ed!
either SIMD or MIMD as needed.
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Section 1.4.1 will discuss DAP, CLIP4, and STARAN. The strengths and &
weaknesses of DAP, CLIP4, and STARAN are presented in Section 1.4.2. ‘
ILLIAC IV and its applications have been extensively discussed in [Bar68, :
Bou72, HoS82, Sto80, Thu76]. PASM is described in Chapter 2. Both MuRSS '?:
and MPP are presented detail in Chapter 3. For brevity, a discussion of
ILLIAC IV, PASM, MuRSS, and MPP is omitted here. L
1.4.1. Three Bit-serial SIMD Systems

The Cellular Logic Image Processor (CLIP) series of processors was first -
completed in 1971. Since that time, five variations on the original machine \ K
have been built. Most recently, CLIP4, a 96-by-96 processor array, designed to
process video input from a TV camera, was completed. The organization of g'
the CLIP{ system is shown in Fig. 1.4.1.1 [Duf&2]. Each PE has 32-bits of ‘
memory associated with it. The incoming video image is digitized into 6-bit ‘;‘_
quantities which are then processed bit-serially (as six bit-planes) by the 96- ‘i
byv-96 array of PEs. To control the array, extract instructions, and. coordinate
the peripherals associated with the array. a controller i1s provided. A PDP-

11/10 acts as host for the system. b‘—‘:—

A PE in CLIP4 can communicate with either its eight nearest neighbors or
its six nearest neighbors depending on which communication mode is selected.
These two modes are shown in Fig. 1.4.1.2 [Duf®2]. The internal organization !
of a PE is shown in Fig. 1.4.1.3 [Duf&2]. The boolean processor can perform all "
boolean operations on single-bit inputs. Addition (subtraction) can be done by _,__
performing the logical operations to generate the sum (difference) and then j.%
generating the carry (borrow). Carries (borrows) are then routed through the \

.
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Fig. 1.4.1.2 Interconnection in CLIP arrays [Duf82]
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gating array for use in calculating the next bit.

In conclusion, CLIP4 can perform picture element (pixel) independent
operations, l.e., operations where each pixel is treated independently of its
surrounding pixels, as well as many nearest neighbor operations. CLIP4 is

capable of performing a variety of image processing tasks in real-time.

To process computationally intensive tasks, the Distributed Array
Processor (DAP) project was started at ICL in 1972. The result of this project
was a 64-by-64 array of PEs called the ICL DAP. Unlike CLIP4, DAP is 4-
connected. This corresponds to a subset of the eight nearest-neighbor
interconnection function presented in Fig. 1.4.1.2 consisting of connections 2, 4,
6, and 8. The architecture of the PE is shown in Fig. 1.4.1.4 [Red79]. The ALU
in a DAP PE is very simple. Many logical functions must be broken down into

sequences of AND and NOT operations.

Instead of having 32-bits of memory associated with each PE, like CLIP4,
the DAP PEs have 4k-bits of RAM associated with each PE. All input and
output to DAP is done through the hosts memory, i.e., the DAP memories are
a portion of the hosts memory. This has the advantage that it eliminates idle
transfer time, but it requires the DAP to be used in conjunction with an ICL
2000 series mainframe, which is expensive ( cost: $ 1,000,000 and up) [Ger83].

A detailed comparison and contrast of DAP, CLIP4, and MPP appears in
[Ger83].

STARAN [Bat74, Bat76] is a bit-serial system that differs greatly from
CLIP4 and DAP. The original STARAN is composed of 256 PEs, a 256-by-256
bit Multi-Dimensional Access (MDA) memory, and an interconnection
network. The MDA memory can be accessed by bit-slices, byte-slices, words,

or by other portions. In STARAN-E [Bat77b], the MDA memory is composed

........
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of up to 256 256-by-256 bit planes of memory. STARAN-E is shown in Fig.
1.4.1.5 [Bat77b]. Instead of having the nearest-neighbor interconnections, like
CLIP4 and DAP, STARAN is equipped with a multistage permutation network
called the flip network. This is a multistage cube type of network [Sie85]. Its

capabilities are discussed in [Bat76).

Fig. '.4.1.6 [Thu76} shows the layout of the STARAN memory array.
Two registers, (X and Y) represent 256 1-bit PEs. The logic associated with
the X- and Y- register can perform any of the sixteen Boolean functions of two
variables. Inputs for the two variable Boolean functions are the present state
of the register and the input from the permutation network, which can either
be memory or the output of another PE. In addition for PE i, either X or Y,
may be used as a mask for an operation on the other register, Fig. 1.4.1.6 e.g.,
X; — f(X;network;) if Y; =1 (i=0, 1, ..., 255). The status of M; determines
which memory locations are modified for a masked write operation. Addition

on STARAN is demonstrated in [Bat74].

STARAN was designed to be connected to a variety of host computers as
a special purpose peripheral. Three systems cited in [Bat74] are: a DEC-
PDP/11. a Honeywell HIS-645, and an XDS ¥ 5. The application of STARAN
to fast Fourier transformation, sonar post-processing, and air traffic control are
all presented in [Bat74]. The application of STARAN to pattern processing is
discussed in [Pot82].
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1.4.2. STARAN, DAP, and CLIP4 -- Comparisons and Contrasts ENOR
The design of STARAN is vastly different from those of DAP and CLIP4. ﬁ‘
el
DAP and CLIP4 have simple nearest-neighbor inter-processor connections. ::H.:\.tj:
: St
. STARAN's permutation network, is more costly. For simple operations on < 'E
i binary arrays, such as erosion and dilations, the DAP and CLIP4 '
3 . s,
interconnection patterns are simple to use. However, on operations such as :}-?_}t:
FFTs, STARAN can use the permutation network for performing the butterfly
operations; this is not feasible using DAP and CLIP4. 2
CLIP4 processors can address a small amount of memory (32-bits each), '
DAP processors can each address 4K-bits of memory, and STARAN processors
L-.l\-'.\.
share one common memory store (some number of 256-by-256 bit planes). __
Thus, DAP and CLIP4 spend no time fetching and storing operands and

temporary results from a global memory, except for initial loading and final R
unloading. Both STARAN and STARAN-E with bipolar memory have

circumvented the problem of a global memory becoming a system bottleneck

by using memory that is faster than the registers on either DAP or CLIP4 and
that is as fast as the PE registers on STARAN. In addition, memory is
accessed in such a way that there is no network contention [Bat77a]. Thus,

there is no penalty for having the remote memory. The advantage of the

scheme used for STARAN is that permuting data through the network data

does not involve PE operations. For example, to transmit data in PE i's

memory to PE i+1's memory requires a reconfiguration of the network. For
both CLIP4 and DAP, this same operation would require a read from memory,
a store in the network register, a read from the network register, and a store in t
local memory. Clearly, the scheme used for STARAN is less cumbersome and EE:f;'_::;:
less time consuming. _~';:~?
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The bit-serial nature of the PEs allow a great deal of flexibility of
precision and representation of data. The PEs composing DAP are limited to
the Boolean AND and NOT operations, making operations such as addition
complex entities. The CLIP4 processor is capable of performing the Boolean
AND, OR, and EXCLUSIVE OR operations; however, the architecture of the
PEs facilitates addition. STARAN PEs are capable of performing Boolean
AND, OR, NOT, TRUE, FALSE, and EXCLUSIVE OR. In addition,
STARAN PEs can perform these operations with up to three arguments, (the
X-register, the Y-register, and input from the MDA), making a wide variety of

operations possible.

CLIP4 PEs have a small amount of associated memory, increasing control
unit overhead for tasks that require more than 32-bits of associated memory for
i parameters and constants. DAP PEs have a larger available memory (4K-bits).

STARAN-E avoids this problem with the 256 256-by-256 bit planes of memory.

Because of the organization of all three arrays, the method of calculating a
. function of a few variables and using the result to index into a table of entries
is extremely difficult, as the result of the calculation must be globally

transmitted by the Control Unit to each PE. According to [Ger83], this process

TER .. LT

: may be faster in a sequential machine. This is, however, a fault with bit-serial
:'-. processing, not these architectures.

In conclusion, three bit-serial SIMD architectures have been introduced
' and discussed. The bit-serial architecture lends itself well to a wide variety of
\. processing tasks and data precisions. Bit-serial processing makes operations on
} words (such as floating point addition) more difficult because the operands are
' processed one bit at a time.
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1.6. MIMD Systems

SIMD systems provide an environment where every PE performs the same
operations at the same time. Conditional operations, such as: if (condition)
then { A } else { B } require all PEs not satisfying the condition to be idled
while the remaining PEs execute the block of code corresponding to “A.” Upon
their completion, the active PEs are idled while the remaining PEs execute the
block of code corresponding to “B.” The idling of PEs reduces the potential
gains in the throughput that the system can give. For some tasks, SIMD
systems may not give desirable performance. MIMD systems may, for these
tasks, give an increased throughput over SIMD systems. The added flexibility
of MIMD systems comes with an increased cost of overhead to perform
synchronization when it is necessary. There are certain problems tha are not
appropriate to the single instruction stream limitations of SIMD machines,

justifying the extra cost of MIMD processing.

The architecture of a bit-serial MIMD system, Cytocomputer will be
discussed in Section 1.5.1. A word-oriented system, PICAP II, will be discussed
in Section 1.5.2. Two more word-oriented systems are discussed later. The CDC
FP 1irray and the proposed system PASM are is presented in detail in Chapter
2.

1.5.1. Cytocomputer -- A Bit-serial MIMD System

Cytocomputer was developed at the Environmental Institute of Michigan
(ERIM) to perform window or cell based image processing operations. Its name
comes from the Greek word “‘cyto,” meaning cell [Ste80, Lom80]. The concept

of a cell accurately describes the architecture of the Cytocomputer. With DAP
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- and CLIP4, there is one PE per pixel. An interconnection network is required
,' for window based operations. Cytocomputer uses internal storage in the PEs

to achieve the nearest-neighbor connectivity. One PE performs a given
N operation for the entirety of an image, greatly reducing the number of PEs
required. This significantly reduces the complexity, cost, and speed of

Cytocomputer relative to CLIP4 and DAP.

i The architecture of Cytocomputer is simple and is shown in Fig. 1.5.1.1
[Ste80, LoM80]. Cytocomputer consists of K (presently 80) identical stages in a
pipeline. Each of the stages is a fully table-driven cellular logic machine

i capable of performing operations involving either four, six, or eight nearest-

< neighbors. In addition, each stage has a point-by-point logic function, which is

capable of performing non-neighborhood operations, such as thresholding.

The nearest neighbor connectivity is achieved by loading data from the

SN

input stream (or previous stage) into a shift-register, as shown in Fig. 1.5.1.1.
g Only nine elements, arranged in a three-by-three square, in the shift register
are accessible at one time. This defines the neighborhood function. To be

consistent with [Ste80], let N be the number of elements in a row of an image.

TN N TTY AN L
S [ v .

Thus, to store the necessary amount of information to process a three-by-three
window, 2N +3 pixels must be stored by each stage or PE. Windows are
achieved as shown in Fig. 1.5.1.2 [Ste80]. Results of calculations are passed on
to the next stage for further processing. After their last use, the input data to

each stage are discarded.

i

Each of the PEs is driven by a common clock and is capable of performing
independent cell (window) operations. For each of the 80 stages, the time for a
pixel operation is 640 ns. Further increases in throughput are possible by

adding additional stages to the pipeline. The present speed of Cytocomputer

.............
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allows it to perform many applications at a real-time rate. Applications of
Cytocomputer to image processing tasks are discussed in [Ste80, PrD79,

LoM8o].

1.5.2. PICAP II -- A Word Oriented MIMD Machine

The PICture Array Processor (PICAP) was developed at Linkoping
University in 1972. It is an MIMD system with up to sixteen word oriented
processors connected to a shared picture memory through a time-shared high
speed bus. The ‘‘word-size” each processor operates on is a 64-by-64 window of
4-bit integers. The architecture of PICAP 1I is shown in Fig. 1.5.2.1 [KrD82).
PICAP’s picture memory consists of 4 Mbytes of interleaved RAM, which is
sequentially addressable. With this architecture, PICAP is capable of

processing multiple images simultaneously with littie overhead.

Tasks that are too large for a single PICAP processor can be subdivided
and placed on different processors. This offers a great deal of flexibility when

applying PICAP to large image processing tasks.

For PICAP II, the shared bus is capable of transmitting 4x107 pixels per

second, 40 times greater than that of its SIMD predecessor, PICAP 1. The host

computer is a PDP-11 series computer that is also used to oversee the operation

of the system. PICAP has a real-time video input and monitor, which allows _'._-_1_':
interactive image processing of image data. Pictures are interactively processed ‘-\
on PICAP through a structured high-level language called Picture Processing T
Language (PPL) [KrD82], which allows interactive processing, foading, and \\
display of images. A FORTRAN interface is also available. ::\:

.........
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Fig. 1.5.2.1 PICAP II system architecture [Krd82]
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:
A discussion of both PICAP I and PICAP II can be found in [KrD82]. e
.y

Applications of PICAP II to image processing tasks can be found in [KrG82].

1.8, Conclusions

Several SIMD and MIMD systems for image processing to were discussed.
Both word-oriented and bit-serial architectures were presented. General
descriptions and applications of a wide variety of processors for image
processing may be found in the following books: [Duf83], [DuL81), [Ful82], and
[PrUs2].
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CHAPTER 2
PARALLEL PROCESSING IMPLEMENTATIONS
OF A CONTEXTUAL CLASSIFIER

2.1 Introduction

‘Multispectral image data collected by remote sensing devices aboard
aircraft and spacecraft are relatively complex data entities. Both the spatial
attributes and spectral attributes of these data are known to be information
bearing {SwD78|, but to reduce the computation involved, most analysis efforts
have focused on one or the other. Characteristic spatial features include, for
example, shape, texture, and structural relationships. Useful research has been
accomplished in the direction of incorporating spatial information into the data

analysis process {e.g., [HaS73], [KeL76], [WeD76)).

The *‘class” associated with a given pixel is not independent of the classes

of adjacent pixels. Stated in terms of a statistical classification framework,

therc may be a better chance of correctly classifying a given pixel, if in
addition to the spectral measurements associated with the pixel itself, the
measurements and/or classifications of its ‘‘neighbors™ are considered as well.
The image can be considered to be a two-dimensional random process
incorporated into the classification strategy. This is the objective of

“‘contextual classifiers” {WeS71], in which a form of compound decision theory

is employed through the use of a statistical characterization of context. Recent ..{‘..:'lf
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investigations have demonstrated the effectiveness of a contextual classifier that
combines spatial and spectral information by exploiting the tendency of certain
ground-cover classes to occur more frequently in some spatial contexts than in

others [SwS80],{SwV81],[TiS81],[WeS71).

The practical utilization of this contextual classifier in remote sensing has
awaited the solution of two key problems: (1) lack of an effective method for
characterizing and extracting contextual information in multispectral remote
sensing imagery, and (2) the need to reduce the execution time of the very
computation-intensive contextual classification algorithm. The first of these
problems has been solved by development of an unbiased estimation procedure
which provides a good characterization of the contextual information without
requiring exorbitant amounts of classifier training data (‘‘ground truth”)
[TiS81]. Although the resulting improvement in classification accuracy is g:
significant compared to conventional no-context statistical classification i

methods, the practicality of the contextual classifier depends on the solution of

the second problem, the subject of this chapter.

A reduction in the execution time of classification algorithms such as the
contextual classifier (and even much simpler algorithms used for remote sensing
data analysis) can be achieved through the use of parallelism. There are several
types of parallel processing systems. An SIMD (Single Instruction stream --

Multiple Data stream) machine [Fly66] typically consists of a control unit, N

processors, N memory modules, and an interconnection network. The control
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unit broadcasts instructions to all of the processors. and all active (enabled) :.:_{*
Yy

processors execute the same instruction at the same time. Each active processor hart
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executes the instruction on data in its own associated memory module. The

interconnection network provides a communications facility for the processors
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and memory modules. An MIMD (Multiple Instruction stream -- Multiple :
Data stream) machine [Fly66] typically consists of N processors and N memory =3
modules, where each processor can follow an independent instruction stream. gt
As with SIMD architecture, there is a multiple data stream and an
interconnection network. CDC Flexible Processor (FP) systems are MIMD F
architectures that have been built [CDC77a}, [CDC77b]. PASM is a proposed Ao
partitionable SIMD/MIMD multimicroprocessor system for image processing R
and pattern recognition [SiS81]. For this application, the use of PASM in the ‘!p
SIMD mode of operation will be considered. o

Maximum likelihood classification [SwD78], often used in remote sensing,
classifies each pixel independently of all others. Using either the SIMD or

MIMD mode of parallelism, the image can be subdivided among the processors,

each processor classifying its own subimage. Thus, N processors would be able

to execute maximum likelihood classification approximately N times faster A
than one processor of the same type. However, parallel implementations of -.""{

_*.:,\"
contextual classifiers are, in general, not so straightforward, due to the use of :-\.;IE:

neighborhood information. The way in which parallel machines such as the
CDC FP system and PASM perform contextual classifications is examined in
the following sections. RN

Section 2.2 briefly describes contextual -classification and gives a

uniprocessor algorithm for performing it. The implementation of a contextual AN
classification algorithm on an FP system and a comparison of the timings :-::::
obtained on an FP system simulator to those obtained on a PDP-11/70 are
discussed in Section 2.3. In Section 2.4, the way in which PASM can be ;ﬁﬁf{-'f
applied to contextual classification is considered. '.‘3::;;




2.2. Contextual Classification

2.2.1. Definitions

The image data to be classified are assumed to be a two-dimensional I-by-
J array of multivariate pixels. Associated with the pixel at “row i and
“column )" is the multivariate measurement n-vector Xj; ¢ R" and the true
class of the pixel ©; ¢ = {w,...,wc} The measurement vectors have
class-conditional densities f(XIwk), k =12,..,C, and are assumed to be
class-conditionally independent. The objective is to classify the pixels in the

array.

In order to incorporate contextual information into the classification
process, when each pixel is to be classified, p—1 of its neighbors are also
examined. This neighborhood, including the pixel to be classified, will be
referred to as the p-array. To classify each pixel, the contextual classifier
computes the probability of the given observed pixel being in class k by also
considering the measurement vectors (values) observed for the neighbor pixels
in the p-array. Specifically, for each pixel, for each class in 2, a discriminant
function g is calculated. The pixel is assigned to the class for which g is the
greatest. Each value of g is computed as a weighted sum of the product of
probabilities based on the pixels in the neighborhood. This is described below
mathematically for pixel (i,j) being in class wy. (The description is followed by
an example to clarify the notation used. Further details may be found in

[SwS80],[SwV81].)
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where

X, € Xj; is the measurement vector from the ~*P pixel in the p-array (for

pixel (i.j))

©, € O, is the class of the 7th pixel in the p-array (for pixel (1,j))

f(X.,‘ ©.) is the class-conditional density of X, given that the 4th pixel is N ::f_:;
[N
gfﬁ

from class 6, E {?

A

GP(8;;) = G(©,,8,,...,8,) is the a priori probability of observing the p-array
6,6, ...,6, ;J_.:{.'

Within the p-array, the pixel locations may be numbered in any
convenient, but fixed order. The joint probability distribution GP is referred to

as the context distribution. The class-conditional density of pixel

measurement vector X given that the pixel is from class k is:

—[log] Tx| +(X-my) T H(X-my)]
f(X|w) = e 2 -

.
LN

.
PR
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vector for class k (size four vector), “T" indicates the transpose, ‘‘log” is the
natural logarithm, and | ;| is the determinant of the covariance matrix. This

is the same function as used for the maximum likelihood classification [SwD78§].

Consider, as an example, the horizontally linear neighborhood shown in
Fig. 2.2.1.1(a), where pixel (i,j) is the middle pixel, and assume there are two
possible classes: 0 = {a,b}. Then the discriminant function for class b is

explicitly:

&(X;) = (X, ] a)(Xy| b)I(X;] 2)G(a,b,a)
+1(X; | a)f(X,] b}(X3] b)G(a,b,b)
+1(X, | b)I(X,| b)(X;| 2)G(b,b,a)

+1(X, | b)f(X2[ b)f(X3| b)G(b,b,b)

After computing the discriminant functions of g, and g, for pixel (i,j), pixel
(i.j) is assigned to the class which has the larger discriminant value. (Edge

pixels of the image not having the appropriate p—1 neighbors are not

classified.)

Consider the case where there is a non-linear three-by-three context array
(neighborhood), as shown in Fig. 2.2.1.1(b). Here, for each g, with C classes,
there are C® product terms with nine factors in each term. In general, for each
g, there are CP7! product terms, each term having p+1 factors. In the
LANDSAT data used in the testing described in [TiS81], the percentage of
non-zero G%'s was about 19 (based on a size nine neighborhood and 14 classes),
so to conserve space and to increase throughput, only non-zero GP's are stored.

This technique will be discussed in later sections. All of the calculations are

done using floating point data.
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2.2.2. Uniprocessor Algorithm

The algorithm shown in Fig. 2.2.2.1 is a uniprocessor implementation of
the size three contextual classifier. f(X|67) is independent of the position
within a window, and thus does not change when a window is moved. This
algorithm is consistent with the theory presented above; however, to minimize
execution time, an array (called “‘hold” is used to store ‘“‘compf’’ values. Since
f(XI ©,) is required for all windows that contain pixel X, redundant
calculations may be eliminated by storing f(XI ©.) in a temporary array. The
stored f(X| ©.) is discarded when pixel X will no longer appear in any windows.

For the uniprocessor implementation, the temporary array is called “‘hold.”

Let ‘“hold(m,k)” be a two-dimensional array of size three-by-C, i.e.,
0<m<2 and 1<k<C. “hold(er,k)” (statement S5) is a vector of length C
containing the class-conditional density values (‘“‘compf’’ values, statement S3)
for the pixel (i,j) (‘‘cr” is an abbreviation for center). ‘‘hold(lt,k)” (statement
S4) and ‘“hold(rt,k)” (statement S6) are the analogous vectors for the pixel
(i.j—1) (the left neighbor) and pixel (i,j +1) (the right neighbor), respectively.
By using this array to save the class-conditional densities, each density (for a

given pixel and class) is calculated only once.

The algorithm calculates the class-conditional densities for the first three
columns each time a new row is to be classified and stores them in ‘‘hold.”
(statement S3). Each time a new pixel in a given row is to be classified
(statement S7), the pointers to these values in ‘‘hold” are updated (statement
S17). In particular, the data in “It” is disposed of, “It” is updated to point to
the data previously pointed to by ‘‘cr’”, “cr” points to the data previously

e

pointed to by ‘“‘rt’’, and ‘‘rt” points to the newly calculated data (statement

S17) for the incoming pixel.
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.
Main Loop .::;‘_:-
fori = 0tol-1do /* row index */ LA
for k =1 to C do /* for each class */ "_’::!‘_-_.:,,
for m = 0 to 2 do hold(m k) = compf(i,m,k) /* cols.0-2 */ e
It =0 /» hold(lt,k,) is left neighbor */ S0
er =1 /+ hold(cr,k) is pixel being classified */ X
rt = 2 /* hold(rt k) is right neighbor */ 8

for j =1 to J-2 do /# column index */
value = -1; class = -1 /* max ‘‘g" and class */
for k =1 to C do /* for each class */ RNy
current = g(lt,cr,rt k)
if current > value /+ compare with max */
then value = current; class = k

print pixel(i,j) is classified as "class” ‘.-
if j # J-2 then /* update hold pointers */ :.:;:’.;:;}
tp =1t It =crier =0t 1t = tp vy
fork =1toCdo /* compf's for next col */ :',-j;""_":',

hold(rt,k) = compf(i,j +2k)

Discriminant Function Calculation ;‘T-‘.':
fuction g(lt,cr,rt k) /* for pixel cr, class k */ ! __ :
sum = 0 /= initialize sum, used to accumulate g */ \;-:‘
for r = 1 to C do /= all classes for pixel (i.j-1} */ ::::-\.::
for ¢ = 1 to C do /* all classes for pixel (i.j+1) x/ :-:::':,
if G(r.k.q) # 0 /* do not multiply if G = 0 =/ =
then sum = hold(lt,r} = hold(cr k) R
* hold(rt,q) * G(r,k,q) + sum f':":'\-jf'
return (sum) /* sum contains value of g(lt,cr,rt k) =/ g :;f'.
Class-Conditional Density Calculation Y
function compf(a.b.k) /* for pixel (a,b), class k *
x = A(a,b) /* x is the pixel (a,b) measurement vector */
expo = ~[log| £,| + (x—m)TE, T (x—my)}/2
return (e**P°) /* return value of f(A(a,b)Ij) x/
‘
Fig. 2.2.2.1 Uniprocessor implementation of size e
three contextual classifier algorithm (p=2) 1122.-:::::
..
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The complexity of the algorithm is proportional to I¥J*C?® assignments,
multiplications, and additions, and I*J*C ‘“compf” -calculations. Typically,

10<C<60 for the analysis of LANDSAT data.

The algorithm can be extended for a non-linear contextual classifier with a
neighborhood of size nine (as shown in Fig. 2.2.1.1(b)). The complexity of the
algorithm would have growth proportional to I*J*C® assignments,
multiplications, and additions. The number of “compf” calculations would still
be I+J*C. In this case, ‘“hold” would be a (2«J+3)-by-C array (assuming the
neighborhood window moves along rows). Fig. 2.2.2.2 shows the pixels whose
“compf”’ values are stored in the ‘‘hold” array. The 2+J+3 pixels whose
“compf” values are stored in ‘‘hold” are chosen to make it unnecessary to
perform redundant “‘compf’ calculations. In general, when classifying pixel (i,j),
‘“hold"” has the ‘‘compf’ values for pixels j—1 to J-1 of row i—1, pixels 0 to J—1
(all) of row i, and pixels 0 to j+1 of row i+1. After the classification of pixel
(i.j), the values for (i+1,j+2) are added and the values for (i-1,j—1) are
removed. When the pixels on a new row are to be classified, call it i’, then the
values for pixels (i' -2,J-3), (i’ ~2,J-2), and (i’ —=2,J-1) are removed and the
values for (i’ +1,0), (i’ +1,1), and (i’ +1,2) are added. (This assumes row i’ is
classified after i’ —1.) Given this, the rest of transforming the algorithm for the

size nine square neighborhood case is straightforward.

In summary, the uniprocessor one-by-three algorithm was presented. The
extension to the three-by-three case was discussed. Extension to other size and
shape neighborhoods is similar. The next two sections discuss parallel

implementations using FPs and PASM respectively.
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2.3. MIMD Implementation on the CDC Flexible Processor System

2.3.1. Flexible Processor System

The Control Data Corporation Flexible Processor (FP) system is a
multiprocessor system which has been recommended for use in remote sensing.
The basic components of an FP are shown in Fig. 2.3.1.1. There can be up to
16 FPs linked together, providing much parallelism at the processor level. The
FPs can communicate among themselves through a high-speed ring or shared

bulk memory. A possible FP system configuration is presented in Fig. 2.3.1.2.

The instruction cycle time of each FP is 125 nsecs. An FP is programmed
in micro-assembly language, allowing parallelism at the instruction level. For
example, it is possible to conditionally increment an index register, execute a
program jump, multiply two 8-bit integers, and add two 32-bit integers -- all
simultaneously. This type of operational overlap, in conjunction with the
capability to use up to 16 FPs in parallel, greatly increases the speed of the FP

system.

The following list summarizes the important architectural features of an

FP:

User microprogrammable.

Dual 16-bit internal bus system.

Able to operate with either 16- or 32-bit words.

125 nsec. instruction cycle time.

125 nsec. time to add two 32-bit integers.

250 -nsec. time to mulitiply two 8-bit integers.

Register files of over 8000 16-bit words.

60 nsec. read/write time for register files.
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Fig. 2.3.1.1 Components of an FP ([CDC772],[CDC77b])
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Up to 16 banks of 250 nsec. bulk memory {each bank holds 64Kk words).

In order to debug, verify and time FP algorithms, a simulator and an
assembler were developed for a system of up to 16 FPs. The experience gained
through the use of the simulator has made evident the following advantages
and disadvantages of the F'P system.

Advantages:
Multiple processors (up to 16)
User microprogrammable -- parallelism at the
instruction level
Connection ring for inter-FP communications
Shared bulk memory units

Separate arithmetic logic unit and hardware multiply

Disadvantages:
No floating point hardware
Micro-assembly language -- difficult to program

Program memory limited to 4K microinstructions

Both the simulator and the assembler are designed to operate under the
UNIX operating system. They are described in [SmS80|. More details about
the FP system can be found in {SmS80],[SwS80],[CDC77a],[CDC77b).
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2.3.2. Linear Contextual Classifiers e

Consider using an N (<16) FP system to implement the contextual 2%
classifier based on a horizontally linear neighborhood of size three (Fig. 3
2.2.1.1(a)). Divide the I-by-J image into subimages of I/N rows J pixels long,
as shown in Fig. 2.3.2.1. This method of dividing the image is called striping.
Assign each subimage to a different FP. The entire neighborhood of each pixel
is included in its subimage. No interaction between FPs is needed, i.e., each FP
can process its subimage independently. A perfect factor of N improvement

speedup over a single FP occurs if I is a multiple of N. The degradation in

performance that arises when I is not a multiple of N is less than 1% for large
images [SwSg0).
An FP micro-assembly language version of the algorithm stated in Fig.

2.2.2.1 was written. Because each FP is microprogrammable, determining

\
program correctness and analyzing the execution time are done through the use :;',:S
of the micro-assembler and simulator. All floating point operations are done in :“:E:-
software. Mantissa normalization of all floating point operands gives rise to a y -_‘

* variation in the overall execution time per pixel. This variation can be as much ,;'::..

| as 10:1 [SmSg0]. ’E\}'

! Each pixel measurement vector consisted of four 32-bit floating point —:

:Z representations of 8-bit integers; the input data were converted to floating

. point notation prior to the execution of the classifier. This conversion is not - .ﬁ
inciuded in either the FP or comparative PDP-11 timings. Covariance matrices
consisted of ten 32-bit floating point numbers. Further, 32-bit floating point
numbers were used to represent the logarithms of the determinants of the . (
covariance matrices and the a priori probabilities. The pixel measurement *

vectors, covariance matrices, logarithms of the determinants of the covariance
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matrices, a priori probabilities, and a temporary variable array are all stored in
the ‘“large file" (see Fig. 2.3.1.1). Thus, in this case, each FP has all the
information it needs for performing the classification on its subimage stored in

its register file and no ‘“‘bulk memory’’ accesses are required.

If the number of non-zero a priori probabilities is small (less than 50%),
and the contextual information (configuration of classes} associated with each
GP can be stored in the space of one floating point number (32 bits), then any
algorithm that stores all a priori probabilities will waste memory space. This is
the case in the LANDSAT data used for this experiment. Each GP is stored as
two 32-bit quantities. The first 32-bit quantity contains information about the
class of each pixel within the p-array. For example, if G(3,3,2) is non-zero, the

word preceding it is a representation (catenation) of 3,3, and 2. This allows

[32/p] bits per class, ie., up to 2132/p] classes. (Thus, for the size three

neighborhood being considered, C can be as large as 1024.) The second 32 bits
is the value of the GP itself. Only the non-zero GPs are stored, so only the non-

zero GPs affect the computation time.

For larger windows (larger p), it is possible that 2132/p) will not be large
enough to include all possible classes. If this occurs, one or two additional 32-
bit words can be used to store the class information about the p-array. In such
cases, the non-zero GPs would have to be less than 30%% or 25% respectively in
order for this scheme not to require additional space. As stated previously,
based on an analysis performed, the percentage of non-zero GPs is much smaller

than this.

When this memory arrangement is employed, the needed class information
is obtained by masking off the desired bits and shifting the result right

(producing a number between 0 and 2l32k/pl—l, where k is a number between 1

© R I B
a4y &y Wala ol i,
AR B AR
[SRNRY ;- A

AL b WA

RS
P
)
5,

PP s

Py
Yy 4




NENANENA SIS QARALL bt Che® Laie gt

and 3 depending on the number of words used to store the class information.)
If the desired information does not cross a word boundary, this operation will
require 3p steps per non-zero GP (load, logical and, shift), otherwise it will
require 7p steps per non-zero GP (load, logical and, shift, load, logical and, add,
shift.) Consider, instead, using the straight forward approach of storing all GPs,
both zero and non-zero. For a window of size p, a p-element vector (containing
elements between 0 and C-1) is required in order to create the pC possible
window configurations. Incrementing an index value requires four operations
consisting of: storing the address of the index in the large file address register,
reading the index from the large file, incrementing the index, and the storing
the new value in the large file. This is done each time an index is incremented.
In addition, each time an index is incremented, it must be compared to the C.
If it equals C, it should be set to 0 and the next index incremented. 2p
operations are required (store address of index in large file address register and

store initial value of index) to initialize the indices. Thus, the time required to

handle the indices for this scheme is 2p+5f3(Ci) steps per GP (zero or non-

1=1
zero.) Thus, the proposed algorithm will not only be more space efficient, but it T

will run faster.

For the purposes of testing the FP implementation of the one-by-three i
R
linear contextual classifier program, measurement vectors from 30 rows of 16 %;_{-j_-l

pixels were classified. The data set consisted of a four-class subset of the

LANDSAT data used in [SwV81]. To provide a basis for comparison, a similar R
contextual classifier was run on a PDP-11/70 over the same test data. It was
found that lack of exponent range in the 11/70 floating point hardware :.".’
required extra handling. FP floating point algorithms are implemented in the ‘-
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software, so a 14-bit exponent was used to overcome this problem. A
description of the floating point software is available in [SmS80]. The FP ‘‘e”
calculations are based on those in [Har68]. Twenty non-zero GPs were chosen
for the benchmark tests. Running under the above constraints, the single FP

classifier took .035 secs./pixel, while the PDP-11/70 required .050 secs./pixel, a

30% improvement.

Using .05 secs. per pixel as the PDP processing time and .035 secs. per
pixel as the single FP processing time, a 16 FP configuration would perform
contextual classifications at a rate of 457 pixels per sec., as opposed to 20
pixels per sec. for a single PDP-11/70. There are, of course, cost differences
between these two systems; however, the purpose here is to show the gains
made possible by a multiprocessor FP system. In general, different size
horizontally linear (Fig. 2.3.2.2(a)), vertically linear (Fig. 2.3.2.2(b)), and
diagonally linear neighborhoods (Fig. 2.3.2.2(c)) of various sizes can be

processed in a manner similar to that for the horizontally linear neighborhood

of size three [SwS80].

2.3.3. Non-linear Contextual Classifiers

Consider non-linear neighborhoods, that is, neighborhoods which do not fit
into one of the linear classes. For example, all of the neighborhoods in Fig.
2.3.3.1 are non-linear. It can be shown that there is no way to partition an
image into N (not necessarily equal) sections such that a contextual classifier
using a non-linear neighborhood can be performed without data transfers
among FPs [SwS80|. The specific non-linear case under consideration is the

three-by-three non-linear neighborhood, shown in Fig. 2.2.1.1{b). First, the
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Fig. 2.33.1 Mon-linear neighborhoods
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single FP timings are considered, then the timings for an system of N FPs are

considered.

The eight-nearest neighbor contextual classifier is similar to the previously
described linear case. Differences arise in the calculation of the discriminant
function (discussed in Section 2.2.1), the method of updating the “hold” data
for a given window (discussed in Section 2.2.2), and the method of data storage

(discussed below).

Timings run from LANDSAT data from [SwV81] show that, on the
average, the FP implementation of the four-class, size nine square
neighborhood contextual classifier with all data entries and a priori information
stored in the large file requires .137 secs./pixel. A PDP-11/70 implementation
of the same algorithm requires .154 secs./pixel. Thus, there is an 11%
improvement. The improvement is not as much for this case as in the size three
horizontally linear case because the FP performs floating point operations in
the software. The more terms in the product term, the more time the FP will
spend normalizing intermediate results. Tests for the 11/70 were run with 50
non-zero GPs and four spectral classes on 52 lines of 16 pixels. A 30-line-by-16-
pixel subset of the above image was used to derive the FP timings for a 52-line
image. Pixels on the top and bottom line of an image are not classified, and
thus do not appear in the number of classified pixels. As a result, for the first
and last rows of an image, the classifier must calculate the class conditional
probabilities for these pixels without ever classifying them. Therefore, the
results are slightly biased in favor of the 11/70 implementation. Once again,
only the non-zero GPs are stored, so only the non-zero GPs affect computation

time.
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Using .154 secs. per pixel as the PDP processing time and .137 secs. pet
pixel as the single FP processing time, a 16 FP system would perform
contextual classifications at a rate of approximately 116 pixels per sec., as
opposed to the 6 pixels per sec. rate of a single PDP-11/70. This assumes,
however, that all needed data are stored in the large file, a somewhat
unrealistic .assumption. The use of the bulk memories for storing and sharing

data is discussed in the next three sections.

2.3.4. Processing of Images with Large Numbers of GPs

If the a priori probabilities are too large to fit in the register files, bulk
memory can be used to store the overflow GPs. The width of the bulk memory
is 16 bits. Each GP is composed of either two, three, or four 32-bit quantities.
One contains the GP itself, while the rest is the contextual information
associated with a given pixel (see 2.3.2). A 64-bit GP can be accessed with four
reads from bulk memory, while a 96-bit read can be accessed with six reads,
and a 128-bit GP can be accessed with eight reads. One of the special features
associated with an FP is that every time a read from bulk memory is
performed, the pointer to bulk memory is automatically incremented [CDC77a).
A read from bulk memory is accomplished in two steps [CDC77a], [CDC77b].
First the read must be initialized and second {after .250u—secs.) the data must
be read from the bulk memory [CDC77a).[CDC77b]. On the surface, it would
appear that a 16-bit read requires four clock cycles; however, this is not the
case. The read can be initialized in p;uallel with other operations; thus no time
is lost due to the initialization. An FP can wait for the data or it can execute

other instructions in the meantime. Thus, the total cost of a read from bulk
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memory is one instruction cycle per 16 bits. The cost, then, of accessing a GP
and its corresponding context configuration from the bulk memory is 2 + 2k
instruction cycles, or 250u—secs + kx250u—secs, where k is the number of
words used to store the context information. To perform the corresponding
operation from the large file requires .250u—secs., or two instruction cycles.

As an example, use the benchmark eight-nearest neighbor non-linear
context array, where k=1. Allow all 50 of the GPs to be stored in bulk

memory. The total time spent accessing the GPs is:

p—secs # of non—zero GP(=50) __ . p—secs.
0 X - = 25—
pixel pixel

.50

Only half of this time, however, represents additional processing time over
fetching the GP and its corresponding context array from the large file. Thus,
the additional processing time required to process a GP stored in bulk memory
is 12.5u—secs per pixel. When this is compared to the 137,000 u—secs./pixel
required for classification, this time represents a negligible cost. In the cases

where there are more classes, this ratio will become more negligible.

2.3.5. Processing of Images in Bulk Memory

If an image is small, data vectors may be stored in the large file. This was
the method used to acquire the timings presented. For actual images, however,
the large file is too small to hold the image data. Pixel measurement vectors
can be stored in bulk memory. There is, however, an additional cost associated
with reading pixel measurement vectors from bulk memory. Pixel data is

represented as a one-by-four vector of 32-bit floating point numbers. It was
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earlier stated that a 16-bit read from bulk memory requires the same amount
of time as a 32-bit read from the large file. Thus, reading a 32-bit number from
bulk memory will require twice as much time as a corresponding read from the
large file. Reading a data vector from the large file will require four instruction
cycles, or .5u—secs./pixel. Reading the same data from bulk memory will
require an additional processing time of four instruction cycles, or
.5p—secs./pixel. This is minimal when compared with the 137,000u—secs./pixel

processing time associated with the eight nearest-neighbor contextual classifier.

2.3.6. A 16 FP System

Consider the problem of using N (<16) FPs together to do contextual
classification with a square size nine neighborhood. Assume the image data is
stored in the bulk memories. The approach taken is to divide the image among
the FPs using the ‘‘striping’” method (Fig. 2.3.2.1). Each FP classifies the
pixels in its own subimage. Because the p-array is non-linear, FPs will have to
communicate to share subimage edge data [SwS80]. For example, to classify
the bottom row of FP 0's subimage, information about the pixels in the top
row of FP 1's subimage is needed (i.e., the neighborhood window crosses

subimages boundaries). Thus, some way to achieve this sharing is necessary.

The speed at which the contextual classifier runs depends on the floating
point algorithms which are implemented in the software. This can cause a
bottleneck in the processing if one FP is required to wait for another.
Synchronization can require large amounts of time if the full 16 processor array
1s used, since at each step, the slowest FP will determine the execution time.

Thus, asynchronous processing at the instruction level is necessary.
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An FP is capable of addressing up to three channels of 16-by-128K bytes
of bulk memory each [CDC77a|,[CDC77b]. The sharing of bulk memory is a
scheme that can be used for transferring data among FPs. One possible
implementation is shown in Fig. 2.3.6.1. Bus 0 of FP i will be shared with
FP i~1, while bus 1 will be local to FP i, and bus 2 will be shared with
FP i+1. An FP will be allowed to address only half of its L memory banks at
one time. This is done to facilitate double buffering. The other L/2 memory
banks will be accessible by the host. This allows the FP to classify one image
while the host unloads and stores the results of the previous classification and
then loads the next image to be processed.

Assume each FP will classify the pixels in I/N rows (Fig. 2.3.2.1). If
border areas are stored in the shared memory banks, a processor will begin

processing in banks of bus 1. Processing will continue through half of the L/2

banks in bus 1 to bank 0 on bus 2. After all the data in the banks on data bus

2 have been processed, processing will continue to the banks on bus 3.

Allowing 25% of FP i's data to be stored in the shared banks on bus 1,
5096 of the data to be stored in the local banks on bus 2, and 25% of the data
to be stored in the shared banks on bus 3, no contention will occur. Consider
that for processor i to ‘‘catch up’ with processor i+1, processor i will have to .
process more than 755 of its data in the time that it takes processor i+1 to
process 25%% of its data. Thus, contention is not a problem.

When an image is divided by the striping scheme, all non-linear windows -
will require FPs to share data. In particular, for the case of an A-by-A window,
(A-1) rows of ‘‘compf’/pixel values must be commonly accessible by adjacent
FPs. This is shown in Fig. 2.3.6.2. Assuming that an FP classifies all pixels '

in its subimage, that the pixel to be classified is in the middle of the window,
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and that A is odd, FP i (i>0) will require the (A—1)/2 bottom rows of data
from the subimage of FP i~1 to classify the top row of its subimage (in
addition to the (A—1)/2 rows of data from its own subimage). In addition, FP i
will require the (A—1)/2 top rows of data from the subimage of FP i+1 to
classify the last row in its subimage. Once the ‘“‘compf” values for a given
pixel are calculated, they do not change. Thus, if FP i calculates the ‘“‘compf”
values for the (A—1)/2 bottom rows of pixels from the subimage that “belongs”
to FP i—1 and stores those ‘‘compf” values and the ‘‘compf’ values for the top
(A~1)/2 rows of its subimage in shared bulk memory, FP i—1 will not need to
recalculate the ‘“‘compf” values for those pixels. While FP i is calculating the
compf values for the bottom (A-1)/2 rows of data from the subimage of FP
i-1, FP i+1 is calculating the “compf” values for the (A—1)/2 bottom rows of
data from the subimage of FP i. When FP i classifies the bottom (A—1)/2 rows
of its subimage, the needed ‘‘compf’ values will have already been calculated
by FP i+1. Thus, to classify the bottom (A—1}/2 rows of data from a given
subimage, FPs will not need to calculate any ‘“‘compf’” values, as they are
already stored in either the hold array or in the shared bulk memory. There is
little possibility that one processor will require data before it is ready. For a
processor to require such data, it would have to process (I/N)—((A~-1)/2) rows
of its data in the same time that another processor would have had to classify

less than (A—1)/2 rows of its data.




2.3.7. Processing of Large Images

Assume that an FP system is configured as previously described. If the
image to be processed will fit into bulk memory, the image can be processed
according to the “striping scheme’’ discussed earlier. There is, however, another

problem that can arise. An image may be too large to fit in the bulk memory.

Assume that there are L' bulk memory banks per FP for data, separate
from the bulk memory banks for the GPs, there are N FPs and that a three-
by-three neighborhood is being classified. If an image will not fit into the
N=*L'/2 bulk memory banks, the host will transmit only the leftmost
unprocessed columns of the image that will fit into NxL' /2 bulk memory banks
at a time, L' /2 banks per FP. While the FP is processing one subimage in one
half of its memory, the host can be loading the next subimage into the other
half of the bulk memory. This will overlap the FP operation with the host’s
operation. If an image and its associated data can fit in N*L’ memory banks,
it is still beneficial to use the striping scheme, as this will facilitate the
preloading of the next image to be processed. Fig. 2.3.7.1 is an example of how
an image is divided and processed. The FPs process subimages from left to
right. Each subimage will be processed as described in Section 2.3.6. The
stored class-conditional densities (‘“‘compf” values) for the rightmost two
columns of data must be saved, as they are needed to process the next
subimage. These columns of data will be stored in one of the L' memory
banks. This memory bank will not be accessed by the host, as it will contain
the “compf’’ values necessary for the FP to process the next subimage. The
exception to this rule is the last subimage. Since the FP will have no further
processing, it is not necessary to save these values. Neither the first nor the last

column an FP processes will be classified, as there is insufficient context

information.
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Since the floating point operations require variable amounts of time, an
FP processing its portion of the image may finish before the rest of the
processors. With the FPs running asynchronously, it is theoretically possible
for a given FP eventually to get two subimages ahead of its neighboring FPs.
Subimage edge data would be destroyed for the neighboring FPs if the host
were to load new data into the shared memory banks before the neighboring
two FPs had finished with the old data. To prevent this from happening, after

an FP processes two subimages, it must wait for the other FPs to finish.

When an FP finishes writing results into a bank of bulk memory, it signals
the host to read all necessary data from that memory bank, even though an
adjacent FP will need to read data corresponding to the subimage edge pixels
from that bulk memory bank to process the next subimage. Since a read is
non-destructive, the host reading from bulk memory will not hamper an FP
reading from the same bulk memory bank. All FPs accessing a given bulk
memory bank must set flags in bulk memory before the host can write to this
bank. This will prevent the host from overwriting data that is still in use. As
was stated in Section 2.3.2, with 20 non-zero GPs, a single FP classifier took
.035 secs. to classify a single pixel. Reading a pixel measurement vector from
bulk memory will require 4.0 p—secs.. Most of the execution time is spent in

mathematical calculations, not fetching data, so any possible contention will

have a negligible effect on pixel processing time.
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N
‘ 2.3.8. Summary
. In summary, the organization of the FP system given above will allow
contention-free sharing of data. This means that N FPs will be abie to operate
approxima—tely N times faster than one FP. Furthermore, the double-buffering
of the bulk memories will allow the loading of images to be processed and

!
LR R

storage of results to be overlapped with the classification operation of the FPs.

L AN

- 2.4. SIMD Implementations on PASM

2.4.1. Introduction

PASM is a dynamically reconfigurable multimicrocomputer system whose
design will support as many as 1024 processors [SiS81]. SIMD implementations
of contextual classifiers based on PASM are discussed in the next section.
First, a brief overview of PASM is presented, limited to those aspects of PASM

that are needed to understand the SIMD algorithms that follow.

2.4.2. Overview of PASM

Fig. 2.4.2.1 is a block diagram of PASM. The heart of the system is the
Parallel Computation Unit (PCU), which contains N processors, N memory
modules, and the interconnection network. The PCU processors are
microprocessors that perform the actual computations. The PCU memory
modules are used by the PCU processors for data storage in SIMD mode.

When a PCU processor is combined with a PCU memory unit, it is referred to

as a Processing Element (PE). The interconnection network provides a
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means of communication among the PCU processors and memory modules.

PASM uses data conditional and PE address masks to activate and deactivate

PCU processors in SIMD mode.

The processors, memory modules, and interconnection network of the PCU
are organized as shown in Fig. 2.4.2.2. A pair of memory units is used for each
PCU memory module so that data can be moved between one memory unit
and the secondary storage, while the PCU processor operates on data in the
other memory unit. Each PCU memory unit may be as large as 64K 16-bit
words. Two choices being considered for the network are the Generalized Cube
[SiM81b] and Augmented Data Manipulator [SiM81a]. Their relative merits are
currently under study [McS82|.

The Micro Controllers (MCs) are a set of microprocessors which act as
the control unit for the PCU processors in SIMD mode. Control Storage
contains the programs for the MCs. Each MC memory module consists of a
pair of memory units. This allows programs and/or common data to be moved
between Control Storage and one MC memory unit, while the MC is using the

other memory unit.

The Memory Management System controls the loading and unloading
of the PCU memory modules. It employs a set of cooperating dedicated
microprocessors. The Memory Storage System is the secondary storage for
these files. Multiple devices are used to allow parallel data transfers. The
System Control Unit is a conventional machine, such as a PDP-11, and is
responsible for the overall coordination of the activities of the other

components of PASM.
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The approach taken to contextual classification using PASM in SIMD
mode is different from that for the FP system, since the processors are
synchronized and there is no directly-wired shared memory. There are three
main differences between the FP and SIMD implementations. First, it is
technologically feasible to construct a multimicroprocessor SIMD machine with
many more than 16 processors. Second, there are differences in computational
capabilities, i.e., 16 FPs may be faster than 32 microprocessors. Third, in SIMD
mode, the program is stored in the control unit (MCs), which broadcasts it to
the PCU microprocessors. The control unit also stores the GP array, decoding
and broadcasting each element as needed. In the FP system, each FP stores a

copy of the program and GP array.

2.4.3. Linear Contextual Classification on PASM

Consider using PASM to implement the contextual classifier based on a
horizontally linear neighborhood of size three. If the image to be classified is a
typical LANDSAT [NAS72| frame (I1=3250,J=2340), 776 PEs will be assigned
7427 pixels and 248 PEs will be assigned 7426 pixels. Classification is
accomplished by having each of the PE's execute the serial algorithm of
Section 2.2.2 simultancously. For example, all PEs first calculate the ‘“‘compf™
values for their pixels. This is done simultaneously in all PEs, where the 248
PEs assigned 7426 pixels will be disabled for the last PE operations. All PEs
will then send their neighbor the “‘compf’ values that need to be shared. By
extending the previously discussed striping scheme to include a non-integer
number of rows assigned to each PE, this task division is realizable. The

modified striping scheme, shown in Fig. 2.4.3.1, requires 2C additional network
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transfers over the original striping scheme for sharing ‘‘compf” values between
adjacent PEs. This cost is negligible when compared to the classification time
of 7426 pixels. Each of the interconnection networks under consideration for
PASM can perform each of the 2C required data transfers in one pass through
the network, where each transfer involves N PEs i.e., when PE i is transferring
data to PE i—1, PE i—1 is transferring data to PE i—2, etc. On PASM, a PE
will get an instruction to send another PE the shared data. This differs from
the FP system, where an FP gets the data it needs on its own. The
asynchronous nature of the FP system makes this modification to the striping

algorithm less efficient on the CDC system.

An image may be so large that not all of the data will fit into the PCU
memory space allocated. The double-buffered memory modules can be used so
that as soon as the data in one memory unit are processed, the processor can
switch to the other unit and continue executing the same program. When the
processor is ready to switch memory units, it signals the Memory Management
System that it has finished using the data in the memory unit to which it is
currently connected. The processor switches memory units, assuming that the
data is present, and then checks a data identification tag to ensure that the
new data are available. 'ine Memory Management System can then unload the
‘“‘processed” memory unit and load it with the next subimage. For both the
one-by-three linear window and the three-by-three nonlinear window, this
scheme will require some mechanism to allow the “compf’ values for the last
two columns of a subimage in a given memory bank to be available when the

associated processor switches to the next memory unit.

One method of doing this maintains a copy of local data in both memory

units associated with a given processor, so that switching memory units does
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: not alter the local variable storage associated with the processor [SiS81]. In e

.I essence, this technique makes use of the conventional store through techniques,

as described in [Hay78]. This scheme would be used only when multiple

subimages are to be processed.

The time required to classify a LANDSAT frame is the same as the time
required for each PE to classify 7427 pixels. If each PE were to classify 7427
g pixels, 7,605,248 pixels would be classified, representing a speedup of 1024. For
a 3250-by-2340 image, PASM will classify 7,605,000 pixels in the same time.

This is 99.9979% of the theoretical improvement of 1024.

R

2.4.4. Non-Linear Contextual Classification on PASM

Consider implementing a three-by-three non-linear contextual classifier on

PASM. The I-by-J image is divided into N subimages. Each PE will be assigned

PILLHTE N A .

an (I/VN)-by-(J/VN) array as shown in Fig. 2.4.4.1. ¥ I is non-divisible by
VN, some PEs will have to process (I/\/N)-*-l rows of data, while others will
have to process I/ﬂ Similarly. if J is non-divisible by VN, some PEs will

[N SR

have to process (J/VN)+1 columas of data instead of J/VN. In all cases, the

T - v
Al

PEs processing the smaller amount of data will be disabled while the remaining

™

PEs continue processing. All of the PEs will execute the algorithm discussed in

Section 2.2. Each PE can classify all the pixels in its subimage which are not

on the subimage edges. All PEs can do this simultaneously. To classify

subimage edge pixels, the PEs must share data by passing information through
the interconnection network. For example, in order for PE 0 to classify pixel
(0.(J/VN)-1) it needs to get the “compf"* values for pixel (0,J/VN) from PE 1.

Both networks under consideration can perform each of the nearest neighbor
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0 i VN -1
vN VN + 1 2VN-1
I pixels
vN PEs
N-vN N-1
% J pixels
E vN PEs

Fig. 2.4.4.1. Dividing an image using a ‘‘checkerboard” pattern.
Each square represents one PE with a
(1/VN)-by—{J/VN) subimage.

The PE number is in the square.




inter-PE transfer operations in one pass through the network.

One way to share “‘compf” values among PEs is to have each PE first
compute and store the ‘“‘compf” values for its edge pixels in a vector called
EDGE. (Later, when a PE needs the “compf” values for these pixels in order
to classify pixels in its own subimage, they are read from EDGE, not
recomputed.) Each PE sends copies of these values to the appropriate
‘““adjacent’’ PE. A PE saves the value it receives in a vector OUTEREDGE.
Each PE accesses its own OUTEREDGE vector when it is ready to classify its
edge pixels. This method requires only ((2(I+J)/VN)+4)C parallel data
transfers. For each of the required transfers, the networks being considered for
PASM will allow all PEs to perform the transfer simultaneously. A
checkerboard division of the image was used since, in general, it requires fewer
inter-PE transfers than dividing the image by rows or columns. For arithmetic
operations and ‘“‘compf” calculations, a perfect factor of N speedup is attained. . :Z_:':
‘ This is done at the “cost”” of ((2(I+1J)/VN)+4)C inter-PE transfers. These E
data transfers are negligible when compared with the I«J*C/N “compf” i

computations.

2.5. Conclusions

Based on simulated results, timings for contextual classification on an FP

system have been presented and discussed. A potential system configuration for
the FP system has been presented, and its use discussed. For comparison,
timings have been presented for contextual classification on a PDP-11/70. It
was found that a PDP 11/70 runs at a slightly slower speed than a single FP

on the contextual classification algorithms examined. Further, it was shown
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that N FPs could execute contextual classification almost N times as fast as
one FP. Thus, the multiprocessor parallelism of an FP system can be

successfully exploited.

It was shown that N processors in the SIMD mode of operation could
accomplish contextual classification almost N times faster than one processor of
the same type. In particular, an SIMD algorithm for PASM to perform the

computationally intensive task of contextual classification was presented.

The FP and PASM approaches could be combined [SmS82]. A
multimicroprocessor SIMD machine with shared memories (as in the FP
approach) and no interconnection network would be an efficient special-purpose
system for performing contextual classification with various size and shape

neighborhoods.

Thus, through the use of parallel computer systems, such as PASM and
CDC FPs, the types of computations required for contextual classifiers and
other computationally demanding remote sensing processes can be implemented
efficiently. This will not only reduce the computation time required to do
contextual classification, but will also allow the investigation of techniques

which may otherwise be considered infeasible.
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CHAPTER 3
PARALLEL PROCESSING CONCEPTS FOR
REMOTE SENSING APPLICATIONS

3.1. Introduction

Multispectral image data collected by remote sensing devices aboard
aircraft and spacecraft are relatively complex data entities. Because of the
multispectral nature of remote sensing image data, vectors are used to
represent the data. The execution of even the simplest classification algorithms
may require large amounts of computation time. Thus, in order to allow
complex classification algorithms to become more feasible, special hardware
(such as the previously discussed parallel architectures) to increase the

execution speed is of interest.

For many remote sensing tasks, all pixels in a given image are treated in a
similar fashion. This implies that the same numerical operations are done on all
pixels. Thus, the same instructions are performed on multiple data sets. It
would appear that SIMD machines, such as those discussed in Chapter 1, are
particularly well-suited to these tasks. Further, since images as large as 3250-
by-2340 pixels [NAS72] are common, a system that has as many as 1024
processors would be well-suited for image processing tasks. Large scale

integration makes just such parallel systems possible.

e e ) et o . « et R T T
A N T s S S I L S T e .
L . .

o, B I AP A S S . P . T T Tt e et et s
........

AR . W, S L
Pl I NS N PO S e ata e e PRI, - . O S AL MU B WA IDIL RE AT



| AT R e et b et SaC b g A i e gt gL SR U S vl A g o A AL S S A N ST SR A A S A Coa At b ot ATl e S te (A, AP Sl vy

Yl
"4
4

- Ml
PR
A ]
PR RN
W oee F
‘ [

oty N NS

o

75

r
>

.‘:‘;
g
x
'

(AL
Pan

o
2

3

The applications of such a machine to image processing tasks is the topic

i

under consideration here. Section 3.2 introduces a potential machine
architecture. Sections 3.3, 3.4, 3.5, and 3.6 discuss how such a system can be
applied to smoothing, maximum likelihood classification, contextual
classification, and image correlation, respectively. The fault tolerance of
MuRSS is discussed in Section 3.7. Enhancements to the MuRSS architecture
to increase fault tolerance are presented in Section 3.8, where the fault
tolerance of both the original and enhanced systems are compared. An
overview of MPP, the Massively Parallel Processor (an already existing
architecture) is presented in Section 3.9, along with a discussion comparing
MPP to the enhanced MuRSS system in the areas of performance, capabilities,

and fault tolerance.

3.2. Machine Architecture

The proposed SIMD architecture, Multimicroprocessor Remote Sensing
System (MuRSS), is shown in Fig. 3.2.1. The system consists of N+1
processing units (PUs) numbered from 0 to N and 2N +2 memory modules
numbered from 0 to 2N+1 (Fig. 3.2.2). During normal operation, N PUs
(numbered 0 to N-1) and 2N memory modules (numbered 0 to 2N-1) will be
used (Fig. 3.2.3). PU number N, memory module number 2N, and the wrap-

around connection are for fault tolerance.

Each PU will be a commonly available microprocessor, such as a 68000

[Mot80] equipped with a floating point unit and will be connected to four

busses in addition to its own private bus. The private bus will be connected to

the PU’s private memory which will contain such things as local variables and
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HOST
Note: <A> denotes wrap-around connection
Fig. 3.2.2 N+1 PU MuRSS system overview
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monitor routines. One of the remaining four busses will be used to
communicate with the control unit, while the other three busses, numbered 0,1,
and 2 (Fig. 3.2.4), will be connected to banks of memory. Two of these busses
will be connected to ‘‘shared” memory banks. Thus, these busses, and
consequently the associated memory banks, will also be connected to adjacent
processors. This will allow data to be shared among adjacent PUs for window
based operations, like the contextual classifier discussed in Section 2.2. (Note
that the 2 bus of PU N will share its memory with the 0 bus of PU 0 for
reasons discussed later). The third bus will be connected to a ‘‘local” memory
bank. Each of the three busses of a PU can address up to 28 64K-byte banks

of memory.

It would appear that direct PU-to-PU intercommunication could occur
through the shared busses. This is not possible because MuRSS is an SIMD
architecture with no special latching hardware on the shared busses. Since all
the PUs must either read or write simultaneously, data cannot be shipped from
PU-to-PU without some form of latch (like the shared memory). Thus, PU-to-
PU intercommunication must be done through the shared memory. (Such
latches could be added to the design, but for the applications investigated thus
far, the use of the shared memory for communication appears to be sufficient.)
Therefore, the memory banks that are ‘‘shared” can be used to store common
data for a PU and its linearly adjacent neighbor, eliminating the need for a
more complex interconnection structure when performing window-based

processing operations.

Memory contention is not a problem, as the only way contention can occur
is if two processors try to access the same shared memory banks. This cannot

happen with this SIMD system, since whenever processor I is using its 0 bus,
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processor I-1 must also be using its 0 bus (it cannot, for example, be using its 2
bus) (Fig. 3.2.4). For the purposes of this discussion, the memories (either
directly or indirectly) associated with busses 0 and 1 of PU I will be said to be
associated with PU I. In general, memory modules 21 and 2I+1 will be
associated with PU I, shared memory module 2I with bus 0 and local memory

module 21 +1 with bus 1.

It is possible that the shared memories may be needed to store local data,
e.g., when there is too much local data for the local memories to handle. In
this case, only the memory addressable by the busses associated with each
processor (i.e., bus 0 and bus 1) should be used to store local data. Thus, for
PU I, memory module 2I should store data to be shared with PU I-1 and any
local data that will not fit into memory module 21 +1. Memory module 2I+1
should be used to store the majority of local data for PU I. Memory module

21 +2 should not be used for data local to PU 1.

This requirement is not a rigid requirement, i.e., when all 2N +1 memory
banks are working, PU I could use memory modules 2I, 2I+1, and 2I+2 for
local data; however, if even one memory bank fails, algorithms not satisfying

this requirement cannot be executed by MuRSS.

The organization of the memory is shown in Fig. 3.2.5. This figure
assumes that there are L memory banks associated with each bus. The
memory associated with MuRSS will be dual ported, allowing a given memory
bank to be connected to two busses simultaneously. One bus will be connected
to a MuRSS PU, while the other bus will be connected to the host. This will
allow the host to address the memories separately from the processors, enabling
the host to load/unload data into/from half the banks, while the processor

operates on data from the other half, maximizing overlap. This type of overlap
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Fig. 3.2.5  Organization of MuRSS memory
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is called double buffering and is similar to the approaches taken with the
CDC FP system in Section 2.3.6 and with the PASM system in Section 2.4.3
[SiS81]. Double buffering can be implemented in hardware, allowing the
memory to be addressed contiguously, simplifying the loading and unloading of
data. If the addresses associated with the memory banks (as viewed by the

host) are:

Use: Half | PU number | Bus Bank Address

Bit Positions: 35 34 - 25 214 23- 16 15 - 0

where the Half indicates which half of the double buffer is to be addressed, the
PU number is the number of the associated PU, and the Bus bit is the bus to
be addressed (0=left, 1=center). When a fault occurs, the CU can re-program
the PU numbers, so the remaining memory can b~ treated as contiguous by the
host (this is discussed further below). If all memory banks are attached to a
bus that is accessible by the host, the host can view the memories as
contiguous. each PU is associated with 29 §4K-byte memory banks, many
processors will not be able to directly this much memory (> 232 memory
locations), so the host may need to use some form of memory cont-oller. Some

memory controllers may allow a special micro-program to be installed to

facilitate handling the memory organization.
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Consider the procedures that the host must perform to address the pixel
(1,j) in an R row by C column image consisting of b-byte elements. Assume the

data is stored in column major format, i.e.,

o) | o K
r:' :.:
N (1,0) 1 -
E: (2,0 2
(R-1,0) R Memory
(0,1) R+1
(1,1) R+2
(2.1) R+3
(R-1,C-1) | RC-1

If each PU has the same number of columns of data, then pixel (i.j) is in PU P:
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where there are N PUs in use. The host can calculate the bus B to be:

. _PxC .
{0 iTTN <C
B =
1 else

where there are C’ columns of data stored in each shared memory unit. Let B’

be the base address of the array within the given memory unit. The address

within the bus would be:

address = B' + j—P—X—C*-(C'xB) xR +ifx b

N
This looks very complex, but these calculations must be done only once per RO
RGN
column. Further, if many columns of data are to be loaded/unload into/from T

the memory units, the following algorithm can be applied:
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int P;

int B";
int B”;
int C’;
int C”;

int N;

86

/* PU counter */

/* Base address of array in shared memory */
[+ Base address of array in local memory */
/* Columns of data stored in shared memory */
/#* Columns of data stored in local memory */

/* PUs in use */

for(P=0;P < N;P =P +1){/*foreach processor */

}

/+ completely unload bus 0 of Processor P /

read (b*R bytes from address B’ of bus 0 of PU P);

/* completely unload bus 1 of Processor P */

read (b*R bytes from address B” of bus 1 of PU P},

This type of scheme is particularly convenient if a memory controller is

used and the memory controller can perform Direct Memory Access (DMA) to

and from the host’s memory. If DMA is used, the above algorithm for

unloading data from an N=1024 MuRSS would require:

2048 block reads
1024 compares and
1024 additions.

Further, if the entire ‘‘half 0" or “half 1" of the memory banks are to be

read/written,

only one read/write (of size 23° bytes) would be needed. These

transfers could occur between MuRSS and the host’s secondary memory or the
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host’s primary memory if it is large enough.

Loading and unloading of data by rows is very complex because the image
data is stored in columns. The following algorithm demonstrates how the host .
must unload row data from MuRSS when an image is stored in column major

format:
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: int P; /* PU counter */
int B; /* Base address of array in shared memory ¢/ =
! . " . ’ !}-".}
X int B”; [+ Base address of array in local memory */ )
: R
M int C'; /% Columns stored in shared memory */ ‘ :':'_:

int C*;  [# Columns stored in local memory */

int bR; [+ Bytes of data per column */

) int I\}; /* PUs in use s/
int i; /* Row counter */
. int j; /* Column counter */

for (i=0;i < R;i=i+1) { /* each row */
for (P=0;P < N;P=P+1){ /* each processor */
for ( j=B'; j < bRC’; j=j+bR ) { /+ shared columns */
/* unload one data item from bus 0 of PU P */

> [ 4

read (b bytes from address j of bus 0 of PU P);
}

for (j=B” ; j < bRC; j=j+R"™ ) { /# local columns */

.‘ .l.' .'_‘- .‘l "l

/* unload one data item from bus 1 of PUP s/

read (b bytes from address j of bus 1 of PU P); T

This algorithm represents a significant number of calculations on the part

of the host. With the large number of individual reads, each which takes time

PSS

to create a system buffer, it is less cumbersome for the host to unload the

B
PR

image in column format and transpose the image in its own memory.
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If the image is loaded in row major format, the algorithms are similar, but

rows and columns are reversed. Similarly, for such a scheme, it is simple for
the host to deal with row data and complex for the host to deal with column
data. Given that an image is treated consistently (i.e., not transposed during
loading or unloading), MuRSS can handle data in either row major or column
major format without excessive processing. For example, consider the image in
Fig. 2.3.2.1. Here, each PU would bold an entire stripe I/N-by-J pixels large,
effectively processing the image in row major format. The shared data in Fig.
2.3.6.2, as required for classification of non-linear windows, would be stored in

the shared memories.

Consider an image stored in column major format. Define the relative
index of the pixel (i,j) to be the row and column of the pixel relative to the
uppermost left pixel in the PU’s address space. In an image stored in column
major format, the absolute pixel (i,j) would have relative address (i,j'), where j’
is the number of columns to the right of the leftmost column addressable by
the PU. Thus, if each PU could address ten columns of data, the relative

address {1.0) would correspond to the N pixels whose absolute addresses were
{(1,10 x k) ' k=0,l,2,...,N-l]. Typically, if C' columns of data were stored in

the shared memory associated with bus 0 of PU I, then C'/2 pixels would be
processed by PU I-1 and C’/2 pixels would be processed by PU I, as was done
for the FP system discussed in Section 2.3.6. This means that PUs will
typically start their processing for the pixels with relative address (0,C'/2).
For pixels with relative address (i,j’), if there are C' columns of data associated
with busses 0 and 2 and C” columns of data associated with 1, the bus can be

determined as follows:
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i s
5 0 jl < CI
: bus=71 C <j <C +C
| 2 else
The address of the pixel (within the bus) is:
N [ bx (! xR + i) bus 0
2
I':j address ={ bx ((j —C') x R + i) bus 1 :l'_‘."".:l
. L bx (' ~C' -C'")x R +i) bus 2 i
N =
T
Addressing within a given column requires setting a pointer to the base address R
of the column and incrementing or decrementing it by a fixed amount. If "‘
(N > 28) and BN
‘--\:s:‘:-'
The CU will be a special purpose processor. It will be equipped with :}’
-'\J‘\
) memory, in which it will store its program, global data, the program to be S
5 broadcast to the PUs, and its local variables. The amount of memory is )
I
- variable and is a function of cost and the processor chosen for the CU. ]

The host will be assumed to be a computer such as an IBM-370 or a PDP-

11 series machine. All support operations, such as formatting input and
formatting output, will be performed by the host.

Each PU is based on the Motorola 68000 microprocessor. From {Mot81], a
12.5 MHz 68000 can perform a 16-bit integer addition in 400 nsec. The 1024

68000's in MuRSS can perform 2560 million integer additions per second. In
addition, MuRSS equipped with Motorola's high speed floating point software

....................................

........................................
..............................................................................................
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...........................................
------------------------------
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. can perform 73 million 32-bit floating point additions per second or 36 million
l 32-bit floating point multiplications per second. When the PUs are equipped
with the planned 16.666 MHz MC68881 floating point processor, MuRSS is
v
¢

capable of 367 million 32-bit floating point additions, 330 million 32-bit floating

point multiplications, or 270 million 32-bit floating point divisions per second.

u,‘i’

PR

All floating point operations are in accordance with the IEEE floating-point

specification P754.

3.3. Smoothing on a Parallel SIMD Machine

Smoothing is a method of noise reduction for image data. The
measurement vector for each pixel is replaced by the average of the
measurement vector for that pixel and the measurement vectors of the eight
surrounding pixels. Consider the following example, as shown in Fig. 2.2.1.1(b).

X;;» the measurement vector for pixel (i,j) is replaced by:

o = (Xi-pj-1 X1 F X F X HXG X P X e X e F X 4)

1} g

Thus, for each pixel, eight vector additions and one division of a vector by a

constant is required. Consider the case where each measurement vector is 4-

dimensional and the image is I-by-J pixels. Smoothing the image on a serial

machine will require 8«[*J vector additions and I+J divisions, translating to

32xI+] additions and 4*I*J divisions.

If 1 is sufficiently large (> 2N+1) and a multiple of N. the image can be
divided into N rows I/N pixels high as shown in Fig. 2.3.2.1. This scheme is

called striping and has been discussed in Section 2.3.2. Each processor will




process one stripe. In order to process all pixels in a given stripe, a processor
will need to access one row of pixels from each bordering stripe. This means
that at least two rows of data will have to be stored in shared memory. For
example, with a 512-by-512 image and 32 processors, processor 0 will process

rows 0 to 15, while processor 1 will process rows 16 to 31, etc. Memory 0 will

TLT L TN W W W w, e W  wem——— .~

store rows 0, memory 1 will store rows 1 through 14, memory 2 will store rows
15 and 16, etc. Note that memories 0 and 2 could contain more rows of data.
. In general, up to two rows of data must be stored in each shared memory. The

rest of the image can be stored in the local memory banks. The total
, processing time associated with an image is: 32«I+J/N additions and 4x[*J/N

'_ divisions. Thus, the theoretical maximum speedup by a factor of N is achieved.

If I is not a multiple of N, all processors will process I,I/N] rows, then I
mod N processors will have to process one extra row of data. For simplicity,
assume that rows cannot be subdivided. Thus, some processors will have to
process a stripe [I/N] rows wide, while other processors will have to process a
stripe [I/N] rows wide. If each row is J pixels wide, the total processing time

associated with a given image will be:

32xJ([I/N])  additions

| 4xJx([I/N))  divisions
I This represents an increase of at most 32+J additions and 4+] divisions over

the ideal case. The efficiency of the above implementation can be represented

by the ratio of the time required for an ideal speedup to the actual processing

i time [SiS&2b|. This translates to:
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The worst case efficiency is achieved when one processor is running while the

remaining processors are idled. Mathematically, this is when the difference

between I/N and [I/N] is a2 maximum. For example, with N=1024 and an
image with 4097 rows, this represents an efficiency of 80%, while for [=65537, _‘_,_, 3

this represents an efficiency of 98.4%. The larger the image, the closer the

efficiency is to 100%.

Note that the efficiency is a function of the number of rows. Processing ‘.'.'”“'
columns instead of rows will make the efficiency a function of the number of
columns and may allow N processors to operate more efficiently. An
alternative to the above method is to use the ‘“modified striping” scheme

discussed in Section 2.4.3.

The time required to smooth an image using modified striping is:

32+ [1xJ/N] additions

4x[1xJ/N] divisions

For the ideal speedup of N, the ceiling function would be absent, thus the ratio

of the ideal speedup to the actual speedup becomes: ‘_

I+J/N
[1<3/N]

For N=1024, and an image of size 1025-by-4097. the efficiency is 99.99 + .
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This method, thus, leads to a higher overall utilization of the processors.
Further, for images greater than 2N-by-2N, the utilization is independent of
the orientation of the image, i.e, whether the image is striped based on rows or

columns.

If edge data is to be handled differently than data internal to the image,
when one or more processors reach an edge, all other processors must be
disabled. The remaining processors then process their edge data. This is not
required in the simple striping scheme, as all the processors reach an edge at
the same time. In a modified striping scheme (with horizontal stripes), the

probability that a given processor is processing an edge pixel is:

_2+[yn]
pedse I*J/N

In addition, each PE must decide (for each pixel it processes), whether that

pixel is an edge or non-edge pixel. The modified striping scheme requires
2#( [I*.I/N]) more comparisons and a maximum of pedge*[I*J/N] more edge
pixel computations than the simple striping scheme in the ideal case where I or
J divides N. Simple striping requires at most 2 more edge pixel computations
and [-2 more internal pixel computations than simple striping in the ideal case.
The striping scheme to be used should minimize the number of computations

above the ideal case.

Images smaller than 2N rows have not been considered, as they do not
have enough rows to utilize the full machine. Each processor will have to store
at least one row of data in each of its shared memory banks. This implies that

there are at least two rows of data per processor. Multiplication of the two

.
o
p
.
"
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row minimum by the N processors yields 2N rows. If striping is done by

K

columns, then the argument is similar. To process small images (using rows),

T e e e e : S L L
NN NI AR AN IR P PCPETEIRY -, S PR T T




Rikc atvic aii unlh sl g h i Jvh gl sl a0 LA SRS Al A

95

[1/2] processors would have to be enabled, while the rest of the processors were

disabled for the entire task.

3.4. Maximum Likelihood Classification

Maximum likelihood classification (MLC) [SwD78] classifies each pixel
independently of all others. Assume that the input data can be described by a
Gaussian distribution function {SwD78]. Thus, the probability that pixel (i) is

in a given class wy € Q = {w),wy, - - - wy} is:

I (X MOTE( M)

p(Xul wk) - ———e
NN

where X;; is the measurement vector for pixel (1.j), M is the mean vector for
class k, &, is the covariance matrix for class k. A pixel is assigned to a given
class such that p(Xijluk) is maximized. It is possible to use a discriminant

function [SwD78]:

Sk +(Xij—mk)TS{l(.\'ij-mk)

d(XUI w‘k) = _[]n

Maximizing this last discriminant function for X; over 7 will yield the same

j
result as maximizing p(f\';jl w)) over the same ). The discriminant function is
considerably less complex to calculate than the probability, so discussion is

based on the discriminant function.




96

The calculation of ~In and T;! is done once for each information class

y

and is negligible when compared to the calculation of the discriminant function
for each class for each pixel in a given image. Again assuming Xj; is 4-
dimensional, X;~m; can be done in four additions per class per pixel. By
utilizing the symmetry of I, !, (Xij—mk)Ek"(Xij—mk) can be performed in 20
multiplies and 9 additions for the four spectral band case. Thus, the
calculation of the discriminant function will require 20 multiplies, 15 additions,
and one sign change per pixel per class. Finally, for C class data, C-1
compares per pixel will be needed in addition to the calculation of the
discriminant function. On an I-by-J image. classification of all I«J pixels will
require 20*x[+J*C multiplications, 15*IxJ*xC additions, and IxJ=(C-1) compares
for a standard serial processor.

Consider implementing the MLC on MuRSS. The CU will broadcast class
dependent constants, such as ! and m; as part of the SIMD program. Each

pixel is classified independently, thus there is no need for any inter-processor

communication. Using the modified striping scheme to divide the I-by-J image.

N PUs will be able to perform an MLC RS
1«J/N '
Teg/NT %

times faster than a single PU. Further, since this operation requires no inter-
processor data transfers, images as small as N pixels can be processed without

disabling PUs for the entire operation.
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3.5. Contextual Classification

The *‘class™ associated with a given pixel is not independent of the classes
of adjacent pixels. Stated in terms of a statistical classification framework,
there may be a better chance of correctly classifying a given pixel if, in
addition to the spectral measurements associated with the pixel itself, the
measurements and/or classifications of its ‘‘neighbors” are considered as well.
The image can be considered to be a two-dimensional random process
incorporated into the classification strategy. This is the objective of
“contextual classifiers” ([WeS71] and [SwV81]), in which a form of compound
decision theory is employed through the use of a statistical characterization of
context. Recent investigations have demonstrated the effectiveness of a
contextual classifier that combines spatial and spectral information by
exploiting the tendency of certain ground-cover classes to occur more
frequently in some spatial contexts than in others [SwS80], [WeS71], [SwV8l],
and [TiS81]. For a more complete description of contextual classifiers, please

refer to Section 2.2.1.

The application of MuRSS to contextual classification is a straightforward
extension of the method applied in Sections 2.3.2 and 2.3.3. For the three-by-
three window, data allocation and timing analysis is analogous to that for
smoothing. The main difference is that for smoothing, only the raw pixel data
is shared. For the contextual classifier, the ‘‘compf” values of the subimage
edge pixels are shared instead. The parallel processor version of the one-by-
three horizontally linear window is similar. Other sizes and shapes of windows

can be handled analogously.
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3.6. Image Correlation on a Parallel Machine

Image correlation, as described in [SiS82a], is used to measure the degree
of similarity between a match image and an equal sized area of an input image.
Typical images can be at least 4096-by-4096 pixels, with match areas on the
order of 64-by-64 pixels. For the purposes of this paper, images on the order of
65536-by-65536 pixels will be considered.

Let the symbols x and y denote single elements of arrays X and Y, where
X is the match image and Y is the area of the input image under consideration
(same dimensions as X). Let M be the total number of elements in the match

area X. Define:

Sxx = (/M) Tx*~(Tx)?)
Sxy = (I/M)(Yxy=Yx¥y)
Syy = (/MY -y

Rxy = Sxy/vSxxSyy

Sxy is the covariance of the match area with a portion of the input area. Large
positive values for Syy indicate similarity between the match image and the
input image, while large negative values for Syy indicate similarity between the
negative of the match image and the input image. Values near zero indicate
little similarity between the two images. Ryy is the linear correlation
coefficient of the statistics. Simplistically Ryy is a normalized version of Sy in
which Ryy =1 indicates an identical match, Ryy = -1 indicates 2n identical

match with the negative of the input area, and Ryy = 0 indicates no

correlation between the match area and the input image. A correlation value
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will be computed for each position in which the match image can fit into the R

row by C column input image.

The calculation of Ryy is dominated by the time to compute Sxy, Sy,
and ,Syz. Y°x and Ex"" do not change from input window to input window,
and can thus be pre-computed. For a match template with r rows and ¢
columns, each Y xy and Y y® requires r+c multiplications and rc—1 additions.
Vy requires rc—1 additions. These operations have to be done for each
position of the match template in the input image. Special methods of
computing Ey2 and Yy can decrease the time requirements of this algorithm.
Consider the following algorithm for computing the sum of the pixel values

(Vy’s) in each match template.

Assume that for input image Y the position of the match area is defined
by the coordinates of the upper left hand corner of the match area. Define a
vector “‘colsum” [SiS82a] of length C as:
k+r-1

colsum(j) = ¥ Y(i,j)
i=k

where k is the row coordinate of the current portion of the match area and
0 <€ j<C. Let “SUM" be an R-r+1-by-C—c+1 array, where SUM;; is the sum
of the pixels of the input image for the match area position
(i), 0 <i <R-1+1,0 < j < C—c+1.

Initially, colsum is calculated for all C columns of row 0. SUM(0,0) is
formed by summing colsum(j) (0<j<e¢—1). This requires r*c multiplications
and (r*c)-1 additions. SUM(0,1) is formed by subtracting colsum(0) from
SUM(0,0) and adding colsum(c) to the result. In general:
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SUM(0,j) = SUM(O,j—1) — colsum(j—1) + colsum(j +c-1)

After the processing of a given row is complete, colsum(j) is updated for the
next row by subtracting Y(i,j) from the old colsum(j) and adding Y(i+r—1,j) to
the result. This changes the complexity for the calculation of the } y’s to: 3c—1
additions/subtractions per template position for the column 0 entries of all
other rows, and 4 additions/subtractions per template position for all other
template positions.

For a typical 64-by-64 match image, straight forward computation of ¥y
requires 4095 additions per match template position on the input image. This is
the same number of operations required per match template position in row 0
of the input image. For template positions in column 0 of the other rows, 191

additions are required. Computation of Eyz‘s is similar to the computation of

the Yy's.

Consider the application of MuRSS to this task. Each PU will apply the
serial algorithm to its assigned pixels. Pixels will be assigned to PUs based on
the vertical striping scheme. If a column of pixels lies in memory associated
with bus O or bus 1 of PU I, then PU I is responsible for the computafion of
the colsum and the analogous y* entries associated with that column. If the
pixel in the upper left hand corner of a window lies in memory associated with
bus 0 or bus 1 of PU I, then PU I is responsible for the computation of that
window. When PU I is performing computations on its rightmost ¢-1 columns,
it uses the colsum values stored in its bus 2 memory by the previous
computations of PU I+1 (recall that PU I+1's bus 0 memory is PU I's bus 2

memory). Thus, at least c-1 colsum values and the corresponding y values
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must be stored in memory associated with each bus 0.

For an R-by-C image and N PUs, a simple vertical striping scheme will
assign each PU a subimage either R—by-[C/Nl or R-by—[C/Nl . Thus, the
total time required for the calculation of the Y xy's is
(R-r+l)*([C/N]-c+l)*((r*c)—l) additions, and (R—r+l)*([C/N]-c+l)*r*c

multiplications. The total time associated with the calculation of the Y} y's is

(R-r)x((3%c)-1)] + [([c/NFe)s((rxe)-1)] + [(R-r)*([C/Nlc)*4] additions.

The time required to calculate the 2y2's is similar to the time associated with
the calculation of the Y y's. Extension to the modified striping scheme is
similar to the smoothing case.

If C < Nx(c—1), then c—1 columns of data cannot be associated with each
bus 0, thus the PUs cannot all be enabled. If R > Nx(r—1), the stripes can be

horizontal instead of vertical. In this case, r and ¢ are swapped, as well as R

and C.

3.7. The Fault Tolerance of MuRSS

The throughput of a MuRSS is limited to the largest number of adjacent
working (usable) PUs. Consider a simple example with an N=8 MuRSS system
(a PU fault is represented by BOLD print in a box).

Physicak 0 1 2 3 4 5 6 7[8

A single failure leaves eight usable PUs. (If there were no wrap-around
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iy connection, the number of usable PUs would be seven.) The CU can alter the
PU numbers and subsequently the numbers associated with the memory
modules. Thus, for the above fault the CU would renumber the PUs to (an *

indicates an unused PU):

Physical: 0 1 2 3 4 5 6 (7|8

Locigal: 1 2 3 4 5 6 T |+ |0

NN A

Fault detection procedures are beyond the scope of this work. In both this

e’ e A A

section and in Section 3.8., the concern is with fault recovery once the

existence and location of a fault is known.

When a2 MuRSS processor the renumbered MuRSS PUs start with logical
PU 0 to the right of the failed processor. The numbers continue incrementing,
through the wrap-around connection, ending up with the virtual PU N-1 on the
left of the failed processor. When a local memory module fails, e.g., 2[+1, it is
treated like a fault with PU I. A fault in a shared memory, e.g., 2I is treated

the same way.

It is possible for the faulty processor or memory module to fail in such a
way that that adjacent PUs cannot access the busses shared with the faulty
unit. In such a case, not only the faulty PU but the PU associated with the

inaccessible shared memory module would be unusable because of the inability

to access shared memory. Thus, this would be handled as if two adjacent PUs
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failed. This is a special case of the multiple failure situation discussed later.

A multiple failure, such as:

Physical: 0 1 2 3|45 6|7]S8

reduces the number of usable PUs to five. (PUs 5 and 6 cannot share data
with adjacent PUs, and subsequently could not be used for any algorithm
requiring data to be shared among PUs.) If either PU 5 or PU 6 or both were

also faulty, the same number of usable PUs would exist, as demonstrated

below:

In such an event, the PUs would be renumbered to:
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Physical?

Logical: 1 2 3 4 (e | s |« (0

Again, an * indicates an idled PU.

- A fault in a shared memory, e.g., 2I is treated the same way. Multiple
memory faults associated with the same PU I, only idle PU 1. Multiple
? memory faults associated with different PUs idle their associated PUs and

subsequently are treated like multiple PU faults.

It was previously stated that if any local data for PU I is to be stored in a
shared memory module, that it should be in memory module 2I. This is
required if an algorithm is to be run on a system with a single fault in one of
the shared memory modules. If this rule is not followed, a fault in a shared
memory bank would require the two PUs attached to a faulty shared memory

module to be disabled instead of one, decreasing the throughput of the system.

The minimum number of usable PUs in an N PU MuRSS with F PU

faults (or disabled PUs) can be expressed by the equation:

f
N F=0 :
Usable PUs (min) = ! -
Bl 1 <F N+ i
N
oA
X

This minimum occurs when faulty PUs are evenly distributed throughout the



:
s
! 105

system. A few faults can seriously cripple MuRSS, as is shown in Fig. 3.7.1. It
is worthy of note, that this is a worst case possibility. If the failures are close

.
i together, the number of usable PUs will be greatly increased. For example, if
:i the faulty PUs are adjacent, the number of usable PUs is N-F +1.

3.8. An Enhanced MuRSS

To minimize the degradation of MuRSS in a multiple fault environment,
- consider the modifications shown in Fig. 3.8.1. The wrap-around connection
i between PU N and PU 0 is the same as before (see Fig. 3.2.2). In this figure
k describing the Enhanced MuRSS (EMuRSS), there is a bypass box
associated with each PU’s shared busses. The operation of the bypass boxes is

i controlled by the CU.

Ijj: In addition to the bypass boxes, there is deselection circuitry, such as the
SN74S244 [Uni78], between each shared memory module and its corresponding
bus. This circuitry will be used isolate faults in the shared memory modules so
that the shared busses are still usable. It is assumed that there is some form of
isolation hardware, such as the SN745244 [Uni78§|, between each of the memory
modules (b_oth local and shared) and the host bus to prevent a memory module
from failing in such a way as to make the host to memory module bus

unusable. The desele-tion and isolation hardware is controlled by the CU.

The effect of the bypass boxes is to allow the system to reconfigure

“‘around” a faulty unit. Consider, an N=8 EMuRSS system where PU 7 is

faulty.
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Fig. 3.8.1 Fault tolerant MuRSS system architecture

{controlled by CU)
(controlled by Cu)

.

2, "
0

.
(D%

R I‘.I o

. 4

- ISR R
et T e e e e T -
Lot atnaloss R;AA.—'A.,IJL:



108

Physical: 0 1 2 3 4 5 6 7|8

In the single fault case, with the use of bypass boxes there are still eight usable

PUs. When a double fault occurs, such as any of those shown in Fig. 3.8.2.,
the number of usable PUs is seven, because the use of bypass boxes allows the
connectivity to be maintained. In a normal MuRSS, the number of usable PUs
would be 6, 5, 4, 4, 5, 6, 7, and 7 respectively. Multiple (more than two) faults

are handled similarly.

The two modes and corresponding effects of bypass boxes are shown in
Fig. 3.8.3. These modes allow MuRSS to completely bypass a faulty PU. When
there is a failure in a PU I the PU is bypassed and its associated shared
memory is deselected. It is assumed that the bypass box/deselection circuitry
can isolate any faulty hardware from the shared busses, allowing normal

communications to take place between the two processors adjacent to the

faulty PU.

The CU can re-assign the PU numbers, allowing the PUs and their
associated memories to be treated like they were contiguous. As was used

before, the PUs have a physical number and a logical number. The logical PU

number will not only simplify the addressing by the host, but will, when

combined with the ‘‘wrap-around” connection, allow the system to handle one

complete shared bus or bypass box failure with no degradation.

If a single PU fails, the bypass boxes associated with its shared busses are
set to bypass mode. The shared memory associated with its bus 0 is

deselected. Disabling the faulty PU has the effect of disabling its local

........................................
..................................
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memory, thus contention on the host bus is not a problem. The logical PU
number of all PUs whose physical PU numbers are greater than the faulty PU

is decremented by one, as is shown in the following example:

Physical: 0 1]2]/3 4 5 6 7 8

Logical: 01*|234567

Physical PU N (previously disabled) becomes logical PU N-1. When a memory

module (either local or shared) fails, it is handled exactly like a fault with the
associated PU. The wrap-around connection is not used when there is a fault
with a single PU or memory module. Multiple faulty PUs are handled
similarly, only in the multiple fault case, the performance is degraded as there
are no more working PUs to replace the faulty units. Multiple faulty shared

and local memory modules are handled like multiple faulty PUs.

A single faulty bypass box is handled using the wrap-around connection.
If there is a fault with one of the bypass boxes associated with PU I, PU I is
disabled. PUs with physical numbers I+1 to N are given logical numbers 0 to
N-I-1 and PUs with physical numbers 0 to I-1 are given logical numbers N-I
to N—1. Using the wrap-around connection places the faulty bypass box on the
logical end of the array, where it and its associated PU (PU I) are unused. If, in

addition to a single faulty bypass box, there are any faulty PUs or memory

modules, these additional faults can be handled as described in the last

paragraph. :E::l::‘ij




In general, multiple faulty bypass boxes break the connectivity of
EMuRSS. It is assumed that a bypass box failure does not pull down a shared
bus. If it does, it is treated the same as a shared bus failure. Multiple faulty
bypass boxes have the same result as multiple PU failures in MuRSS. Thus,
the number of usable PUs is less than N. The set of adjacent usable PUs may

or may not use the wrap around connection.

If the multiple faulty bypass boxes share the same bus, EMuRSS can
handle two faults with no degradation. This is shown in Fig. 3.8.4. This is the
same situation for a single faulty shared bus, i.e., the bus shared by PUs I-1
and I in Fig. 3.8.5. If the two faulty bypass boxes are connected to the same
PU, i.e., bus 0 and bus 2 of PU I, EMuRSS can handle two faults with no
degradation. This is shown in Fig. 3.8.6. If the faults are on contiguous
busses, e.g., PU I's 0 bus, PU I's 2 bus, and PU I-1's 2 bus, up to three faults
can be tolerated with no degradation in performance. This is shown in Fig.

3.8.7.

Multiple faulty busses break the connectivity of EMuRSS. This situation

is the same as the case for multiple faulty bypass boxes previously discussed.

Since mechanical connections, such as those between a chip and a bus, are
significantly more prone to failure than those within a chip, the number of
mechanical connections can give a fair indication of the probability of failure of
a unit. In MuRSS, both shared and local memory busses are connected to 28
64-Kbyte chips and each chip has 28 pins, so (including the 64 pins on the
68000) there are a minimum of 14400 mechanical chip connections that can
cause a fault within each PU and its associated memories (only those busses

associated with a PU are considered). This figure is clearly conservative
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Fig. 3.8.4 EMuRSS reconfiguration around
N two box faults on same shared bus

> s a a2 W




Logical PU N-1 Disabled Logicsl PU O

o PU PU PU

3 I-1 I I+1

‘ o A0 2l
Local Shared Local Shared Local
Memory Memory Memory Memory Memory
Module Module Module Module Module

[0 - Bypass box (controlled by CU)
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Logical PU N-141 Disabled Logical PU O
PU PU PU
I-4 I I+1
Local Shared lLocal Shared Local
Memory Memory Memory Memory Memory
Module Module Mogule Module Module

1 0 s 8 2 &

Ta

{0 - Bypass box

Fig. 3.8.6 EMuRSS reconfiguration around two

bypass box faults associated with PU I

(controlled by CU)
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Logical PU N-1 Disabled Logical PU ©
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Local Shared Local Shared Local
Memory vemcory Memory Mermory Memory
Module Moddle Module Module Module

O - Bypass box

Fig. 3.8.7 EMuRSS reconfiguration around three
adjacent bypass box faults

(controlled by CU)
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because a failure in any support hardware (e.g., the CU) will also cause a fault.
For simplicity, only chip connections (pins), as opposed to chip connections and
bus connections (e.g., connections from busses to boards), will be used for this

discussion. MuRSS (N=1024) has 14,745,600 mechanical chip connections.

The fault bypass circuitry in EMuRSS consists of the bypass box, the bus
L performing the bypass, and shared memory unit deselection hardware. Thus,
there are chip connections to the CU, PU, shared bus, shared memory,
bypass bus, and deselection circuitry that can fail. The connections in

bold print are to busses with 26 connections for address, 8 connections for data,

4 connections for signals, and 2 connections for power and ground. This
comprises 200 connections. The CU must have one line to control each bypass
box and one line to control the memory deselection circuitry. making 202
mechanical chip connections that can cause a fault. The processor/memory
hardware is 88 times more likely to fail due to a mechanical connection than
the bypass circuitry. EMuRSS has 14,952,488 mechanical connections. This
represents an increase in hardware complexity of 1.4 percent over the non-fault
tolerant MuRSS, which is a trivial change in the complexity of the system

when it is compared to the additional fault handling capability of the system.

The 1.4 percent figure does not accurately represent the fault tolerance of

the EMuRSS. A fault in any two of the 14,680,014 connections will yield up to 4

half the system unusable. Thus, these connections can be labeled as critical to ::‘;?:‘jff‘

the system’s operation. EMuRSS has 204,800 connections. This represents a

significant decrease in the number of critical connections.

To compare the performance of MuRSS to EMuRSS. consider the
following example. If UPWBB is the number of Usable PUs in an N+1 PU
MuRSS With Bypass Boxes, UPWBB = N - F + 1, where F is the number of

---------
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-
faults in the system (1<F<N+1). (If F=0, UPWBB=N,)
For F < N+1 faults, the number of Usable PUs in a system with No
- Bypass Boxes (UPNBB) would be no less than Tl The benefit of the
bypass units is demonstrated in Fig. 3.8.8, where UPWBB/UPNBB is graphed f“::?_
with respect to F. The ‘‘sawtooth’ nature of this graph stems from the floor “ﬁ:
function in the definition of UPNBB. At uo time is UPWBB less than UPNBB, 33‘;3}523_}5
but for an N=1024 PU system, UPWBB can be up to 512 times greater than i
UPNBB. ‘
Thus for a small increase in hardware complexity, the degradation in the . :
3 system performance due to multiple faults can be significantly reduced (by up ";
to a factor of 512 on a 1024 processor system). \\
3.9. MPP -- A Massively Parallel Processor :S_
For the basis of comparison, consider the Massively Parallel Processor \;
(MPP) as described in [Bat82] and [Bat80]. MPP is an SIMD machine which -
was designed to work efficiently on a variety of image processing tasks, such as 1
correlation and multispectral classification. Fig. 3.9.1 is a block diagram of :
MPP, which illustrates the four major sub-units. The ARray Unit (ARU) is
the unit that actually contains the Processing Elements (PEs), and is capable
of processing arrays of data at high speed. Each of the PEs in the ARU
T performs instructions broadeast by the Array Control Unit (ACU) on data
that are stored in local memory.
t Logically, the ARU consists of a 128-by-128 array of PEs. Physically, the

ARU contains an extra 128-by-4 array of PEs for fault tolerance. The size of

- Tt
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; the extra 128-by-4 array was determined by packaging constraints. The bit-

o . ——

serial nature of the PEs allows MPP to perform efficiently on operands of all e

lengths. The 16,384 PEs operate instructions on 16,384 bits at a time, which

allows for a very high processing speed. N

PR N L

Each PE in the 128-by-128 array communicates with its four nearest
neighbors in a fashion similar to ILLIAC IV ([Bar68] and [Bou72]). A topology
i register in the ACU allows the user to software select what happens to edge

data in the ARU. Top-bottom connections in the ARU are handled
independently from the left-right connections, allowing the user greater
i flexibility. There are four possible connections that a PE, call it PE; on the

right edge of the array can make in addition to connecting to PEjiminust,

PE| iminustosr and PEjg e, where @ and ciminus are modulo 16384 addition

.' and subtraction respectively. They are:

,. 1) open (no connection)

2) connect to PE[4(PE 333 has no connection)

l 3) connect to left edge PE of same row R
1) same as 2), but connect PE 441 to PE,

The connections for left edge PEs correspond to these connections. Top-bottom

connections are less complex thar iae left-right connections, in that the top

-

'! and bottom PEs of a given columu may be either conaected or left open. “~

'j Each PE in the ARU contains a full adder, a shift register, six 1-bit
registers, a programmable length shift register, 1K-bits of RAM, a data bus, .

i combinatorial logic, and a mask register. Fig. 3.9.2 shows the layout of the PE. O

100ns is the basic cyele time for the PE; however. routing operations are :_"_'.:jf:fj'.
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masked independently of arithmetic operations, so masked routing operations
may be combined with unmasked arithmetic operations. PEs perform the
instruction generated by the ACU on the data stored in their local array. Fig.
3.9.3 is a block diagram of the ACU. The three units comprising the ACU are
the I/O control unit (which manages the flow of data), the PE control unit
(which performs array arithmetic for the applications program), and the main
control unit (which performs scalar arithmetic for the applications program).

Operations of each of the units are overlapped to minimize execution time.

The Program and Data Management Unit (PDMU) controls the overall
flow of programs and data in the system (Fig. 3.9.1), and is comprised of a
DEC PDP-11. The staging memory are used for format conversion between the
incoming data and the data to be processed. Once the data has been processed,
it is returned to the staging memory, where additional formatting can be

performed.

Through its massive parallelism, high clock rate, and its functional
overlap, MPP is capable of performing 400 million 32-bit floating point
additions per second, 200 million 32-bit floating point multiplications per

second, or 3277 mullion 16-bit integer additions per second.

It is difficult to compare the cost of EMuRSS and MPP, since MPP is
constructed of specially designed VLSI chips and EMuRSS would not be. The
complexity of this comparison is compounded by tine fact that hardware costs
change so rapidly. Therefore, the comparison wiil be limited to the area of
processing speeds, fault tolerance, and capabilities of MPP and a 1021
processor EMuRSS. both of which process 16,384 bits at a time. The purpose

of this comparison is to highlight the differences in the two architectural

approaches.
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EMuRSS can perform 3072 million 16-bit integer additions per second and
MPP can perform 3277 million 16-bit integer additions per second. MPP is 6

DD

»
LN

percent faster than EMuRSS. EMuRSS can perform 307.2 million 16-bit
integer multiplications (yielding a 32-bit result) per second. MPP can perform
1861 million 8-bit integer multiplications (yielding a 16-bit result) per second
and 902 million 12-bit multiplications per second (yielding a 24-bit result). 32-

bit data was not available.

In terms of floating point operations per second, MPP outperforms the
EMuRSS without the floating point processor (both MuRSS and EMuRSS have
the same processing speeds). The cycle time for MPP is 100 nsec, while the
cycle time for EMuRSS is less than 80 nsec. (see Section 3.2), so it would be
intuitively pleasing if EMuRSS outperformed MPP. Both processors operate
N on 16.384 bits of information at a time; however, in all cases MPP will require
s the minimum number of cycles for a given operation for a given number of bits
- because of its bit serial nature. For example, a typical 32-bit floating point
i format consists of:

a sign bit for the mantissa,
an 8-bit 2's complement exponent, and
a 23-bit mantissa.
A 68000 can perform operations on 16-bits of information at a time, so
operations on the 23-bit mantissa rcquire the same uime as operations on a 32-
- bit mantissa. Operations on the 8-bit exponent require the same time as
operations on a 16-bit exponent. Further, the EMuRSS processors have to
strip out unwanted data at the end of each operation, whereas the MPP

processors have little or no unwanted data.
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The specialized floating point hardware eliminates much of the overhead
involved with the handling of unwanted data. This is why EMuRSS, when
equipped with the floating point processor, becomes very similar in performance
to MPP. For a 32-bit floating point addition, EMuRSS is 9 percent slower than
MPP, but for a 32-bit floating point multiplication, EMuRSS is over 56 percent
faster than MPP. Further, the EMuRSS specialized floating point processor has
hardware implementations for sine, cosine, and tangent, all of which must have
custom programs written for their calculations on MPP. Further, each floating
point processor is independent from the other floating point processors in

EMuRSS, i.e., they are not synchronized. Thus, no processor must be idled for

any point in time during these calculations to wait for another processor to
finish a calculation whose execution is data dependent, e.g., to perform a cosine
no synchronization is required during the intermediate computations. This
makes EMuRSS even more competitive with MPP because using the algorithms
in [Har68], there are conditional instructions that are required for the

calculation of the trigonometric functions.

To be_able to tolerate a single fault with no degradation in response time,
MPP uses an additional 4-by-128 array of PEs. A one PU EMuRSS equipped
with the bypass boxes discussed earlier requires one additional PU to be
capable of withstanding the fault of a single PU without loss of processing
speed. Both MPP and EMuRSS require some form of bypass hardware to
bypass a fault.

MPP and EMuRSS are tolerant to a single fault. MPP is not tolerant to
multiple faults, unless they are all in the same 4-by-128 array of PEs that is
bypassed. The number of usable PUs in EMuRSS is one more than N minus
the number of failed PUs (since an N-PU EMuRSS has one spare PU). Thus,
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in general, in the event of a multiple fault, EMuRSS can continue to be used
with a minimal degradation in performance. For MPP, there is no provision

for operation in a degraded mode when multiple faults occur.

Any of the inter-processor nearest neighbor communication operations that
MPP can perform can also be handled by EMuRSS. MPP can process images
by assigning one pixel to each PE, or by dividing the image to be processed

into square neighborhoods that are processed by the PEs. For an M-by-M

image, each PE would hold subimages that are M/128 pixels on a side. An

image to be processed by EMuRSS must be divided into stripes extending from

the top of the scene to the bottom. Any inter-row communications in MPP are
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Both EMuRSS and MPP have a memory organization that will allow an
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staging memory to perform image transformations and formatting for input T
e
and output. Because of the way the EMuRSS host accesses the memory, either T

row or column format data can be loaded.

Architecturally, EMuRSS and MPP differ in the processor-to-processor

connections. EMuRSS does not have a true interconnection network. Instead,

EMuRSS implements a network with shared memory banks. This technique %
et
allows memory to be used for both storage and communication, meaning that -_'_;'.3',;._-_::
NN
no special communication protocol is necessary. Data transfer is treated like a oo n

memory write.




In conclusion, MPP is faster than EMuRSS (with the floating point
hardware) on fixed point operations and some floating point operations.
EMuRSS compares reasonably with MPP on floating point multiplication and
division. EMuRSS has a hardware unit capable of performing floating point
trigonometric and inverse-trigonometric functions. Because the floating point
units are not run in lock-step, for any floating point operation, e.g., steps
during the calculation of cosine, EMuRSS effectively becomes an MIMD

machine, whereas MPP must perform these operations in lock-step.

Any processor-to-processor communication that is required for an MPP
implementation of an algorithm can be handled by EMuRSS. Both MPP and
EMuRSS can handle a single fault with no degradation in performance;
however, only the fault-tolerant EMuRSS can handle multiple faults (with

some degradation).

3.10. Conclusions

MuRSS, an SIMD architecture with as many as 1024 processors, was
presented. It was shown that N processors in the SIMD mode of operation
could perform various context independent (e.g., maximum likelihood
classification) and window based (e.g., smoothing, contextual classification, and
image correlation) image processing tasks almost N times faster than one
processor of the same type. The application of MuRSS to these tasks was

discussed.

Through the use of the EMuRSS SIMD architecture, computationally
demanding remote sensing processes can be implemented efficiently. This will

not only reduce the computation time required to perform remote sensing
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tasks, but will also allow the investigation of techniques which may otherwise
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be considered infeasible.
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Because of the architecture of MuRSS, multiple faults seriously degraded

its performance. The architecture of MuRSS was altered to increase MuRSS’
tolerance to faults, creating EMuRSS. EMuRSS was then compared to MPP in

the areas of performance, fault tolerance and capabilities.
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CHAPTER 4
MODELS FOR USE IN THE DESIGN OF
SPECIAL PURPOSE MACRO-PIPELINED
PARALLEL PROCESSORS

4.1. Introduction

For certain applications, such as speech processing, time is an important
factor. In such applications, there is a need to process many data sets in the
same way e.g., performing an FFT for every frame of input data. Previous
analysis, such as that performed in [Dem8&3, TuA83, YoS82, Vic79], shows that
for many types of tasks, a general purpose processor is not sufficient. In this
chapter, an approach is proposed for modeling off the shelf hardware and for
modeling parallel algorithms, along with a design methodology to use the
information provided by these models, to design a class of macro-pipelined
special purpose parallel architectures. The goal is to use models such as the

ones proposed here to develop computer aided design tools.

Special purpose processing systems (such as those used for dedicated real-
time analysis) are typically sold in small quantities. As a result, the cost of the
design can make the resulting system prohibitively expensive. Computer aided
design tools for this process would reduce the cost involved and are therefore

desirable.
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This chapter uses nine parameters to correlate the hardware to be
designed to the applications software to be executed and the I/O environment
in which the machine is to operate, i.e., what data rates the machine must
handle, the format of the incoming data, the format of the outgoing data, etc.
A macro-[;ipelined layered approach to task decomposition is demonstrated.
Each portion of the decomposed task in a scenario is then assigned to a
specifically designed special purpose processing unit. This implies that each
processing unit may either be a traditional serial type design or a parallel
design. Once this initial decomposition is established, techniques such as those
used to adjust the execution time and throughput of a pipeline in [HwB84] can

be applied.

In this approach to reaching the goal of automated computer design, a
functional descriptions (models) of the hardware components that may be used
in the design must be combined into a database. Included in such a database
is information about the cost, size, power consumption, and heat dissipation of
the device, an enumeration of all the operations that it can execute, the
pathwidth and execution times for those operations, the number and size of the
registers, and a simulation routine for the device. More complex taxonomies,
such as those found in [Han77], [Han81], [HoJ81], and [Gil83] are not needed for
the database because they specify architectural information. Here, only
information that affects the processing speed of the unit are considered. While
the architectural information provided by more complex taxonomies can yield

similar information, handling of the additional data is cumbersome.

The information in the database will be used to select the “best' hardware
to execute a given algorithm. As suggested in [Gon78|, it is desirable to

establish and order according to importance, the criteria used to rank designs.
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The criteria used here will be (in order of importance): speed and cost. Speed
refers to both response time and throughput. The response time is the time
between receiving the input and transmission of the corresponding result. The
throughput is the number of data sets processed per unit time. Other criteria

might include: space, power requirements, and cooling requirements.

Using information about each sub-task in a scenario, a specific hardware
organization can be arranged to execute the required algorithm when possible.
Consider a task that is composed of several sub-tasks. An example of such a
task might be isolated word recognition [YoS82]. For isolated word recognition,
a typical processing scenario might be: digital filtering, autocorrelation analysis,
linear predictive coding (LPC) analysis, linear time warping, and dynamic time
warping. Each of these processes (sub-tasks) represents a portion of the
scenario. An example of the scenario is in Fig. 4.1.1. Each of the sub-tasks
will be called a layer. Using information about each sub-task, a special-
purpose architecture can be developed to execute the sub-task within some
time and cost constraints. The special-purpose hardware that is assigned to

each layer will be called a level.

For the present, only a simple scenario (one in which there is no feedback)
is considered. Initially, the sub-tasks will be chosen according to conceptual
differences, i.e., digital filtering is different from autocorrelation analysis, so
each should be a different layer. It is assumed that in general, conceptually
different portions of the task, i.e., the sub-tasks, require different hardware
resources. A more complete discussion of the application of such a design to an

isolated word recognition system may be found in Section 4.6.

It is the goal of this scheme to achieve a higher throughput by

decomposing a scenario into layers. Because each layer requires fewer
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Layering of isolated word recognition system




computations than the entire scenario, connecting the levels in a macro-pipeline
and pipelining the data sets through the machine should increase the
throughput of the resulting system. This type of parallelism is referred to as
vertical parallelism. Since each layer is executing on specially designed

hardware, which may consist of multiple computational units, the response

VRS 2 T S G, LY e,
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time of the resulting system is decreased. The parallelism occurring within a

c w »

given level, where multiple units are performing operations on different portions
i of the data set simultaneously, is referred to as horizontal parallelism.

Vertical and horizontal parallelism are similar to the techniques of subdivision
: and replication discussed for pipelines in [HwB84] or the ‘‘purely pipelined” and
the ‘“‘purely parallel” architectures discussed in [WoC84]. Throughput
constraints may require that a layer be further divided into smaller processes.
These will not represent new layers, but sub-layers, which will correspond to

i sub-levels of hardware, consistent with the previous nomenclature.

It is possible to sub-divide the layers to the point where each sub-level
performs exactly one instruction. The result would be a special purpose,
! dedicated, instruction-level, data flow machine, capable of performing only a
single task. A minor alteration in the program would require an alteration in

the hardware. For all but the least complex scenarios, the hardware cost

would be overwhelming. Analogously, layers can be combined to the point
- where one level performs an entire task. This is the case with a traditional
. serial machine. Presumably, the throughput of such a machine would be too
i
3 small. !
b By developing a method to transform a task description into a potential e
i macro-pipelined architecture, a machine can be built with the necessary A
characteristics to execute the task quickly and without excessive amounts of DBERG
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hardware. A basis for such a method is examined in Section 4.5. A similar goal
can be found in [WoC84|, where the goal is that of an automated tool for
planning and integrating signal processing systems in a distributed computing
environment. [WoC84] examines the performance of a system to satisfy
requirements for throughput and robustness with respect to hardware
allocation strategies, i.e., how can processors be added or deleted from a system
to optimize performance. A valuable result from the work in [WoC84] is the
detailed analysis of the resulting system. These techniques can also be applied
to load balancing between processors. The type of systems that are considered
in [WoC84] are either purely parallel (SIMD or MIMD) [Fly66], or purely
pipelined. A purely parallel system corresponds to the parallelism within a level
(horizontal parallelism), while a purely pipelined system corresponds to the
level to level and sub-level to sub-level relationships (vertical parallelism).
Thus, this research is a useful tool in the analysis of both the macro (level to
level) and the micro (within a level) characteristics of the system. Here, the
major concern is the underlying concepts behind a model relating specific
algorithms to the requirements they place on hardware. The research here
expands on the work in [WoC84] by allowing both forms of parallelism at any

level.

The analysis categories in [WoC84] can be applied to any given level that
contains one or more combinations of these parallel types. This will allow each
level to be designed for a specific sub-task, having a special hardware
complement to more quickly execute that sub-task, resulting in a machine that
can complete a processing scenario within some time constraint. For the case
to be discussed in Sections 4.6 and 4.7, the time constraint will be that the

proposed system must understand isolated words in real-time.
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It is the goal of this chapter to introduce methods of modeling hardware
and algorithms so that an accurate estimation of the execution time of an
algorithm is possible. The proposed hardware database is discussed in Section
4.2. Response time and its relation to the system hardware is considered in
Section 4.3. Section 4.4 will discuss the two types of parallelism and their
affect on the overall performance of the system. Section 4.5 will present nine
parameters and discuss their relationship to the hardware of the corresponding
level. In addition, the parameters are related to the application software of the
corresponding layer. By applying both of these relationships, the software can
be related to the hardware. This is done in Sections 4.6, 4.7, and 4.8, where
the concepts discussed in Sections 4.2 through 4.5 are applied to an isolated

word recognition system.

4.2. The Hardware Database

A processor description in the database consists of an 9-tuple, a 6-tuple,
and a set of three N-tuples and three N+ 1-tuples, where N is the number of
assembly language instructions (the ‘“+1" includes the instruction fetch unit,
which can, on some systems, overlap execution with certain instructions). The
9-tuple consists of the processor name, cost, package size, thermal dissipation
requirements, power requirements. clock speed, data pathwidth, address
pathwidth, and virtual address space. The package size. thermal dissipation.
and power requirements, are included for applications, such as those aboard a
satellite, where information about all three categories may be crucial. For
some processors, such as the PDP-11/70, the virtual address space and the real

address space differ, so both are required for specification of the processor.
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The 6-tuple consists of the size and speed of on-board cache, the size and
speed of on-board memory, and the number and size of the registers. The N-
and N+1- tuples must provide information about: the type of machine
instructions, the execution time for a single operation for each instruction, the
number of stages in any pipelines, the replication of units, and the overlap of
operations. The tuples corresponding to the last three information categories
are N+1-tuples to account for any pipelining, functional overlap, and
parallelism that can occur within the instruction fetch unit. By combining the
information contained in the various tuples, it is possible to derive a precise
estimation of the execution time of all operations whose times are constant,
(e.g., floating point operations on units like the AMD9511A, require variable
amounts of time to execute the same operation on different arguments, thus
only an estimation or expected processing time may be derivable). By
combining information in different tuples, much information can be gained.
For a simple example, by combining the number of stages in a pipelined unit
with the single operation execution time of the unit, it is possible to determine

the throughput of the unit.

Because different processors have different instruction sets, it is logical that
N not be the same for all processors. Consider the case of a simple processor
with an instruction set consisting of an &-bit add, a 16-bit add, a return on
zero, 2 move memory to register (&bit), and a move register to memory (8-bit).
The 9-tuple would look like:

(BRAND/MODEL .$5.00,1.5¢m-by-3.0cm,1.5-BTU /hr,
0.15-W . 1.3-mu—sec,8-bits. 16-bits.16-bits)

Each element of the above tuple corresponds to the above enumeration of the

elements of the 9-tuple. For a simple processor, like the 8085, the 6-tuple

................................
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would be:

(0,0,0,0,(1 &bit, 3 16-bit(8-bit)))

The four “0’s” show that there is no on-board cache or memory, while the
parenthesized quantity associated with the 16-bit register width shows that the
three 16-bit registers can be addressed in &-bit units. For a processor that is
capable of performing the above instructions (which are a small subset of the
instruction set of the 8085), the 5-tuple describing the capabilities would look
like:

(8-bit add register to register,

16-bit add register to register,

return if zero,

8-bit move memory to register,
8-bit move register to memory)

Both the source and destination of each operation must be enumerated. This
allows for processors (like the 8085) in which the results of a given operation
must go to a specific place (the accumulator). The information in the i'h
element in each of the following tuples corresponds to the i'® element of the
tuple enumerating the instruction set of the processors. There should be some
closed form of notation for this section, for example: 1addXX could be used to
represent an integer addition that is XX bits wide. Such a notation would allow
the same assembly code to be used on various machines supporting similar
operations,’ this would replace the requirement of knowing the assembly

language for each unit in the data base, with knowing one generic assembly

language.
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The 5-tuple describing single operation execution time of the operations is R
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as follows (all times are in processor cycles):

(5,10,(5/11),7,7)
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This 5-tuple describes the information about the time to execute each of the

above operations. By describing all the operations of the processor in basic
clock cycles, the description of improved versions of a processor can be easily
added to the database. For this example, the “return if zero’ (third element
above) command is associated with two times. This corresponds to the
execution time of the conditional if it is false/true. The information in this
tuple, combined with the number of times each specific assembly language
instruction is executed, provides a worst case timing analysis for a given

processor.

The next 5-tuple contains the number of fetches required to execute each
operation. This is needed to help describe systems where the instruction fetch
can be overlapped with the actual execution of an instruction. For this
particular processor, this tuple would look like:

(1,1,1,1,1)

To account for a unit with internal pipelining, the third tuple will contain
the number of stages in the pipeline for each operation the processor can
perform. When a specific command is not pipelined, the number of stages in
the pipeline is 1. (The following tuples must also take the unit performing the
instruction fetch into consideration.) Thus, if the 8 and 16-bit addition units
were 5-stage pipelines and the rest of the unit was not pipelined, the 6-tuple
describing the pipelining would look like:

(5,5,1,1,1)




It is possible for a processor to have two processing units that execute the

same operations simultaneously, like a micro-processor equipped with two

adders. If for the previous example, there were four adders, two for 8-bit

operations and two for 16-bit operations, the next 6-tuple would look like:

(2,2,1,1,1,1)

Finally, functional overlap between operations, must be considered. This is

done in the final tuple that would look like:

{ memory-register/16-bit add/fetch,
memory-register /8-bit add/fetch,

8-bit add/16-bit add,
8 bit add/16-bit add,
i 8-bit add/16-bit add }

This 6-tuple shows that the 8-bit add can be overlapped with both memory-

register operations and the 16-bit add. The 16-bit add can be overlapped with

the memory-register operations and the 8-bit add. For this example, the return

if zero command cannot be overlapped with any operations, the memory

register operations can be overlapped with both addition instructions, and the

instruction fetch can be overlapped with the arithmetic operations.

These last four tuples are used to obtain tighter limits on the execution

time a given processor will require to execute a given algorithm. For example,

if the instruction fetch cannot be overlapped with the execution of any
instruction, the previously discussed maximum execution time discussed is a
good approximation of the actual execution time. By not allowing the fetch to -
overlap with any instruction, each instruction must reach completion before o

fetching the next instruction. This eliminates any possible functional overlap.
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If the instruction fetch can be overlapped with the execution of given
operations then whenever the execution time for those operations exceeds the
time for the fetch of the next operation, the fetch time for the subsequent
operation can be deducted from the maximum execution time yielding T,.
Consider the following example (the bold wire represents execution time, the

narrow represents fetch time)

——HSBEANAN 1
—_— .2

Since the execution time of the first operation is overlapped with the fetch time
of the second, the second operation can begin at the termination of the first

operation, effectively eliminating the fetch time.

Whenever the execution time of a given operation exceeds the fetch and
execution time of following overlappable operations, the execution time of the

subsequent operations may be deducted from T, to yield T,,'.

——iSEENEN |
—us 2

The fetch overlap was taken into account in the calculation of Tp.

If a unit is not busy, i.e., can accept input, and its execution can be
overlapped with any currently executing instructions, it is possible to overlap
the instruction with the presently executing instructions. An overlappable
operation is any operation that can be overlapped with the execution of any
pending operations and that does not use, any operand that is not complete

when its instruction execution begins. It should be noted that multiple units,

such as adders and boolean logic units, will not decrease the execution time of
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an operation. Replication of hardware units will mean that there is a larger <

pool of units available, i.e., the likelihood of a busy unit is decreased, so the ’Q', i
likelihood that there is a unit available for a given operation is increased. A ;{:'.'_i?j
' similar effect is noted for pipelined units, where if T, is the time that the :::-::-iij
s o

pipeline requires for a single operation and there are S stages in the pipeline,
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the pipeline is available to accept an input in time —§s°— Greater depth in the

analysis of the timing of parallel and pipelined processing units, can be found

- in [Che80].

N If the execution time of an operation is exceeded by the fetch and
execution time of the subsequent overlappable operation, the execution time for
the first operation can be deducted minus the fetch time for the subsequent
operation is subtracted from T, to yield T,,. This is demonstrated as follows
(again the thin line represents the instruction fetch and the bold line represents

the instruction execution time).

——aunaasn 1
—SnEnEREs 2

The above list of parameters used to describe processing hardware is by no
means conclusive, but it does serve as an example about the type of
information that must be stored about processing hardware in the hardware
database. It may, for example, be necessary to add an N-tuple describing two

or more units that share a common pipeline.
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The first two 5-tuples can be related to the notation in [HoJ81), by:

E= {8(2 +8,2+ 9 oad{ , stored)/B(compare and jump )5/!!

where E is an execution unit and B is a boolean unit. For example, the
notation 2+ shows that there are two 8-bit addition units that take 5 cycles
to produce a single result. The third tuple shows the relative construction of

the units and would be specified in [HoJ81] notation as follows:

+1

—
QOQ

2 2
- +2f - +3% - +4f - +5fs]

— N—
+
&3
]

The +1 +2 +3 +4 +5 represent the various stages of the pipeline, while

the superscripts and subscripts are used to describe the execution time and

pathwidth of the units. Finally, the ~'s show that the units are connected in :ﬁ_‘
series, showing that there are five stages in the pipelined adders, each stage
taking one cycle. A representation of the other functions is not necessary
because the third tuple shows that these units are not pipelined. By including ‘»__'_-

the tuples in the database, it is possible to completely re-create the desired
timing information stored in the architecture description notation set forth in

[(HolJg1].
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In addition to the functional description, each device may be classified

according to its use. The categories useful for this database (as stated in

‘.
)

[ArB82]) are: processor, memory, input/output units, vector processors, and

array processors. Application of this classification scheme will allow different
sets of parameters to be used to classify devices in different categories. In
addition, these categories give some idea of the processing different units can
perform, although some units may be capable of performing various tasks. For
example, to input and store data, unless preprocessing is needed, an input unit
can perform the same function as a processor, i.e., the input unit can be used
to access a sensor and store the sampled data in memory without interrupting
the processor. The hardware can be grouped by category in the database,

decreasing the required search time.

For the purposes of this paper, the units considered for the database are
either single chips or small boards. The underlying assumption for this scheme
is that there is no shared or reconfigurable pipeline units on board. When this
assumption becomes false, two N+ 1-tuples will be required to represent shared

pipelines and their reconfiguration times.

A functional description such as that found in [ArB8&2|, can be used to
accurately categorize each unit according to its functional capabilities. To this

point, only processing hardware has been considered. The hardware database

can be divided into the functional units of processor, memory, input/output,

vector, and array processors. This is consistent with [ArB82]. Each of these

functional categories will have a set of tuples used to describe its performance.

The tuples will be used with the characteristics of the application algorithm to

choose specific hardware for each level of the system.
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Included with the hardware descriptions of the processors in the database
would be a routine that can simulate the performance of the processor. By
combining the simulation procedures with the architectural information of
other components in the database, e.g., memories, it is possible to create a
simulator for the proposed macro-pipelined architecture. Such a database with
simulation routines for each relevant component would be a useful tool for the
research community interested in the design of macro-pipelined special purpose

systems.

4.3. Response Time -- Its Meanings and Interpretations

The desired response time can be interpreted in various ways depending on
the application. For certain applications, the response time may be a function
of input. This is discussed in detail in Section 4.5. In such cases, the desired
response time can be considered to be an average response time T,,, or as an
absolute maximum acceptable response time T, ,,. Let T,4, be the desired
the response time and Ty be the actual response time. If T, 4., = T, then it
is required that Tp < T,4,,. This results in a system that will always respond
as fast as or faster than the desired response time and is useful where response
time is crucial. Such a system may respond faster than is needed, thus the

hardware will not be fully utilized when T < T

rdes-
T,4es can be interpreted to mean T,,,. Let D be the number of input data

sets to be processed and let Ty be the actual system response time for the ith

data set. If T 4., = T,,,. then




The average response time is T 4, but it is possible for Tg > T,4.; on multiple
consecutive occasions. If the processing times of various data sets are unrelated
(independent), the probability that Tg. > T4, on M consecutive occasions is:

0.5M. In a real-time environment, if the system falls behind the incoming data,

there are two cases that can arise. Either there will not be enough buffering
':: and data will be lost, or there will be enough buffering and results will be
delayed. In certain real-time applications, such as air traffic control, neither of

these alternatives is desirable, so T, ,, should be used instead of T,,,.

In addition, it may be necessary to specify both T, and T .,,. This
corresponds to the case where an average response time is desired and where an
absolute ceiling on the response time is needed. For the purposes of this paper,

it will be assumed that T 4., = T,,,.

4.4. Parallelism, Task Division, and Design Scenario

[t is reasonable to ask: “if given a description of a task, can a computer be
designed to execute it Since various algorithms that perform a given task
require varying types of calculations, memory space, interconnection networks,
and execution times. For a simple example of some of the above variations.
consider an in-place sort (bubble) [HoS82b], a sort that requires extra memory
(bin) [AhH76], and a parallel sorting algorithm ([Pre77]). Assume the sorts are
performed on a list containing N, elements, with the largest element L digits

long. The bubble sort will require O(N?) time with no extra memory. The bin
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sort will require O(N,L) time in 2N, memory. The fast parallel sorting
algorithm proposed in [Pre77] will require O(log,N,) time using
N.logo(N,+1) |[/2 processors. Since the time, memory space, and optimal

arrangement of hardware are functions of the algorithm, not the task, it is best
to extract the needed features from the algorithm and design an architecture to

fit a specific set of algorithms. Thus, to design a system for a given task, it

may be necessary to evaluate and compare the use of several different

algorithms and their associated hardware requirements.

After the initial layering is performed, an exact statement of the
application algorithm to be performed at each level will be used with the
hardware description N-tuples to evaluate the performance of each processor in
the hardware database. Then information about the desired throughput and
average response time (T, 4.) of the system must be gathered. These will be

the evaluation criteria, i.e., can a proposed system process the data with the

desired throughput and response time.

It is possible that, for each level, the exact algorithm may be available
only as a selection of various algorithms, e.g.. there may be more than one
choice for an algorithm for a level to process. The speed at which a given level
operates is a function of the algorithm, so the speed of the corresponding level

will be a function of the final algorithm chosen for that level. Since the

algorithms determine the layering of a task, not only the architecture of a

single level, but the entire system architecture depends on the selection. It is
also possible that one selection may require another, e.g., a frequency domain
process may require that the data be converted from time domain to frequency

domain. Thus, the entire system may be a list of possible alternatives. Since
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this requires a precise computational model for each level, each possible

alternative architecture for the system must be explored. e
ol

The first step in the modeling process is to choose all levels to process :}_".:_‘:_'fj
Rttt

their incoming data as fast as possible without using vertical or horizontal Y

ril'd

parallelism within any given level. The resulting design is a macro-pipelined

system.

Architectures that are designed along these lines ‘‘pipeline” data through
the levels, producing a continuous flow of data. The time to process a single
data set (the time for data to go from the first level to the last level, i.e., the
response time) in such a vertical architecture is not decreased by the
parallelism of the multiple levels of hardware. The throughput for multiple
data sets is greatly increased because new results are completed at a rate equal
to the processing time of the slowest level or sub-level. This is a considerable
improvement over a traditional serial design. If the time to go from the first
level to the last level is too slow, horizontal parallelism, such as that found in
SIMD or MIMD machines, must be applied. The design resulting from the
application of the techniques outlined in this scenario, will be neither purely
parallel nor purely pipelined, but will be a hybrid combination of both forms of

parallelism.

If the processing time for all levels and sub-levels of an architecture were
halved, the time to go from the first level to the last level would also be halved.
Thus, vertical parallelism can be applied to increase throughput, while
horizontal parallelism can be applied to increase throughput and decrease

response time.
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Horizontal parallelism, however, is not the cure for all slow tasks. The
limitation on horizontal parallelism is the inherent parallelism of the subtask to
be performed. Further, horizontal parallelism is affected by precedence
constraints of the subtask. Vertical parallelism is not affected by precedence
constraints because they are still enforced; however, vertical parallelism will not
reduce the response time. Thus, there are both associated costs and limitations

with both vertical and horizontal parallelism.

- The design of a machine suited to a special task can be considered to be a

- two step process.

b 1) Create sub-tasks based on conceptual differences (vertical)

B 2) Break down sub-tasks based on time requirements
(horizontal and vertical)

Step 1 creates the initial levels of the hardware. Since the execution time may
vary extensively from level to level, and the levels are pipelined, the execution
time of each level should be balanced to allow maximum utilization of all
hardware present. That is, the overall processing speed of the macro-pipeline
will depend on the speed of the slowest level. Step 2 would be employed to
increase the throughput and/or reduce the response time of slower levels to

help balance the execution times.

The next portion of the design will require an interface between the sub-
task and the hardware. Included in this interface is the description of the sub-
task in terms that relate it to the requirements that it places on the hardware.

This description is used to design candidate architectures, whose performance is

evaluated by some measure [SiS82]. It is this portion of the design that is the
topic of discussion in the next two sections. e
e
:.‘:_. 1
i@k |
ot ‘s..‘ '.‘ ‘
._-;\-:.;“
..... e . S AT T T N T e e s __\‘_'.‘_\‘1
. el T T R N QO
......... R S W R N S VS SO I T S SR ST S BN P R T LIS TV R IR TS IR IRTYWY




SR A A Dt R -2k i a2 b o/ N
M

Eadar A iat b ateihb it e dase Y ey
LS A N T T T T S U O sy
.

150

The task division here is similar to those used for Piecewise Data Flow
Architectures (PDF) [ReM83] in that a task is divided into basic blocks called
sub-tasks. However, instead of scheduling the sub-tasks for execution on a
unit, a special unit is designed for each sub-task. The resulting design is more
limited in scope than the PDF, but will be better suited for a specific task. By
designing each unit with commercially available parts, the overall architecture
can be implemented with current technology, like the PDF; however, by
designing a special purpose unit, hardware unneeded for the specific task under
consideration can be eliminated from the design, reducing the cost of the end

result.

In addition, the design resulting from the PDF is composed of several
small units, operating in a data flow environment, combined into a larger more
powerful ‘‘single’” unit. A given functional unit in a PDF may be used several
times, by various processes in the scenario, while the proposed levels will
execute layers on each data set once. Further, the PDF is composed of simple
atomic units, while a level in the proposed design is a combination of
traditional serial, SIMD, MIMD, and pipelined designs. This allows the level
associated with each sub-task to be designed to achieve the desired

combination of throughput and response time.

The research in both [ReM83] and [WoC84] relate to work done in [Vic79],

in which a distributed computing system is analyzed with respect to

implementation of switching, bussing, and interconnection; partitioning criteria; TN

and testing methodology. In [Vic79], a dynamically reconfigurable system R

I‘."-.\

similar to a PDF is considered. There, graph theory is used to go from the RSN
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algorithm to the actual hardware. The pertinence of the research to the work Lo >

under consideration here is that the analysis of what amounts to a distributed PN

-_:-\'.Fl

-‘:\:_

pi

N T L e e e e e T e L T T
et e NN S S M P P O A A T VA S AT St RN R S O SN REORN




machine has been considered with respect to robustness and throughput.

There are two limitations on the type and amount of parallelism applied
at each level. The first is that there must be an upper bound on the cost. An
additional limitation is placed on the type and amount of parallelism by
requiring that all parts be “‘off the shelf.” This second limitation forces the
architecture to be buildable with present day technology. These limitations
assume that an algorithm can be structured for parallel execution. If an
algorithm is unsuitable for parallel execution then vertical parallelism is

required.

The minimum horizontal parallelism at any level is a single unit, while the
maximum horizontal parallelism is limited by the inherent parallelism of the
sub-task and cost of the units. Typically, each additional processor used for
horizontal parallelism may not increase the execution speed by exactly the
same amount, i.e., the speedup may not be N, using N, processors for any Np.
This is discussed in [Sto73]. As mentioned earlier, the minimum vertical
parallelism is one processor and the maximum vertical parallelism is one

processor per instruction.

To propose and evaluate candidate architectures for levels, a mapping is
required between a layer and its corresponding level. Included in this mapping
is the description of the layer in terms that relate it to the computational
requirements that it places on the hardware. It is this mapping that is the topic
of discussion in the next section. Using information from the hardware
database discussed in Section 4.2, the performance of the system can be
approximated. Simulation is required to insure that the system will perform as

desired.

...................................

»




4.5. Evaluation Categories -- The Relationship Between the Layer and
the Level

If hardware is to be designed for a specific algorithm, characteristics of the
algorithm must be ‘‘mapped” onto the hardware. To build hardware for a
given level, a user must supply each of the following evaluation categories

about each layer in the system.

(1) Type, rate, and amount of inputs

(2) Type and number of operations per input datum
(3) Range and accuracy of arithmetic data to be used
(4) Algorithm to be used

(5) Type, frequency, and message length of processor-to-
processor communications

(6) Amount of memory required

(7) Type, amount, and benefit of parallelism
(8) Type, rate, and amount of output

(9) Evaluation criteria

It is the goal of this section to use these parameters to form a model of the
algorithms in the task. By using the information supplied by this model with
the hardware model of Section 4.2 and the design scenario of Section 4.4 it is
also the goal of this section to develop a macro-pipelined architecture well

suited for performing the task.

The four factors that can influence the architecture of a specific level are

the data, algorithm, performance evaluation criteria, and the input/output

environment. (1), (6), and (8) are data related; (2), (3), (4), (5), (6), and (7) are
algorithm related; (9) is the evaluation criteria;, and (1) and (8) are
input /output environment related. Since at any layer or sub-layer, the exact
algorithm may be one of a set of candidates, the resulting architecture for a

given level and all following levels may also be a list of candidates, with one
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system architecture per candidate algorithm. For the purposes of discussion,

the evaluation criterion will be speed and cost, i.e., the faster an algorithm can

be executed, the “better’’ the hardware design; however, the price of the design

should not be excessively expensive. Several other evaluation criteria are

considered in [SiS82] and [Gon78].

Initially, information about the desired throughput and response time of

the system will have to be known. The first step in the design process will

choose all levels to process their incoming data as fast as possible without using

vertical or horizontal parallelism within any given level. Since this type of

design is a macro-pipeline, the slowest level will limit the throughput of the

entire pipeline.

To fully utilize the hardware in the system, it is desirable to match the

speed of all the levels. There are two design philosophies that can be employed

to balance the throughput of the levels. After the initial design (all levels

designed to execute their layer as fast as possible with no vertical or horizontal

parallelism), the data processing rate of all the levels will be known. If the

designed machine meets or exceeds the throughput and response time

qualifications of the scenario, faster levels can be combined or built with slower

less expensive hardware. This will still maintain the throughput of the system,

while increasing the response time. Such a process can be repeated as long as

the throughput/response time requirements are met. This will lower the cost

of the overall system.

If the resulting macro-pipelined architecture (i.e., one with no parallelism

within a given layer) machine fails to meet the throughput qualification for all

processors in the database, the execution speed of all levels not meeting the
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time constraint must be increased. This can be done with either vertical or

horizontal parallelism.

If the machine fails to meet the response time constraints, horizontal
parallelism can be employed (vertical parallelism will not improve response

time). Let TLi be the mean response time for level i to perform its
corresponding layer, 'T‘,des be the desired average response time for the system,
and N be the number of levels. One way to meet the response time constraint

is to attempt to force:

Ty, = —— (1)

Alternatively, the response time criteria may be met even if the equality

outlined in (1) is not true for all levels; however, the sum of the ’T‘Li’s for all

levels must be less than or equal to T,q,,. That is, the requirement is:

No_ _
ETLi < Trdes (2)

i=1

In general, it is possible for equation (2) to be true without equation (1) being
true, and still satisfy the throughput requirements (although the execution
times for all levels of the macro-pipelined system will not be balanced and the
slowest level will determine the throughput). This implies that the required
throughput is less than one job every (T,;./NL) time units; i.e., the required
throughput is less than (NL/T‘,des) jobs per time unit. For this initial study,
however, equation (1) will be used as a guideline for the system design. Thus,

for all levels where:
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horizontal parallelism must be introduced to attempt to reduce TL;
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For simplicity, some form of coordination can be used between the levels.
Chapter 5 will explore the effects of lifting this restriction. For this chapter,
however, the coordination can be in the form of either (a) a master system
clock that tells each level when it can proceed to the next data set or (b) a unit
that keeps track of each level and, when all levels are done, signals each to
proceed to the next data set. The differences between these two
implementations are that (a) will use less hardware than (b), and that (b) will
execute at least as quickly as (a). If Ty, is the time required for level i to
complete its subtask, then (é) must be set for the maximum possible value of

Ty, over all levels for all data sets. The implementation suggested in (b) will

require an execution time T, of:

Tc = max(TLl,TLz,TL& R ’TLNL)

While in the extreme case, this will be equal to the implementation suggested
in (a), normally, Ty will be less than the T, for the slowest possible level. The
following is an analysis of how each of the categories is derived, and how it

affects the architecture of a given level.

Category (1) relates the input characteristics of the system to the I/O
environment in which it will execute. It places restrictions on the input
buffering, input data rate, and the internal data format of a level. The type of

data specifies the format and word width required to process the incoming
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data. Combined with the rate, the type of data specifies the speed of the input
unit. Consider a situation in which 250 32-bit floating point numbers and 1000
8-bit integer numbers must be processed in one second. The types of input
data are specified. By combining the type with the rate, 2000 bytes of data per
second must be either processed or stored if the unit is to operate without
losing data. The input rate is required for the first level only, since all other

levels are transferring data by a common clock.

The proposed architecture will overlap data transfer between levels (and
sub-levels) with the computation in those units. Consider the example shown in

Fig. 4.5.1 (a), where each level is connected to the next level through a buffer.

Shown next to each level is its triple or swinging buffer memory: one unit for

data currently being operated upon, one unit for storing data previously
generated by that level (and currently being sent to the next level), and one
unit to receive data currently being sent by the previous level. This scheme was
proposed in [Dem83] and is quite useful towards this application because it
allows the overlap of data transmission with the actual data processing, so each
level is effectively sending a data set, processing a data set, and receiving a
data set simultaneously. It is assumed that the data sets are actually

transmitted via some DMA device.

For example, consider the data sets in the figure using level i's swinging
buffers. Data set E is being sent by level i-1 (which previously generated it) to
level i{which will process it after it finishes processing data set D). Data set D is
currently being processed by level i. Data set C is being sent from level i to
level i+1 (which will process it after it finishes processing data set B). The
transmission of data sets A, C, E, and G, and the processing of data sets F. D,

and B, are all occurring simultaneously. The time to perform these
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simultaneous transmissions and computations is called an interval. In the
next interval, data sets B, D, and F will be transmitted and data sets A, C, E,
and G will be processed. Similarly, in the interval prior to the one shown in the
figure, data sets A, C, and E were processed and data sets B, D, and F were
transmitted. In summary, an interval is the time required for a level to
simultaneously receive a data set, transmit a data set, and process a data set,

such as level i does with data sets E, C, and D, respectively in Fig. 4.5.1 (a)).

Since temporary results are stored in memory that is local to the
processors accessing the buffer, calculation of the size of the buffer between
level i and level i+1 is straightforward. If iss; is the input set size for level i
and oss; is the output set size for level i, the buffer memory required for level i
is:

Memory p.mer = 3 X Mmax(iss;,oss;)

Under different conditions, such as those discussed in Chapter 5, it is possible
that double buffering, as shown in Fig. 4.5.1 (b), can be employed instead of
triple buffering. In this scheme, each level processes the data in the “A”
portion of its input buffer while writing the results of the calculations in the
“B"” portion of its output buffer. Then, the levels process the information in
the “B” portions of their input buffers and write the results in the *‘a” portions

of their output buffers. For this scheme, the buffer memory becomes:

Memory puqer = 2 X Max(iss;,0ss;)

The type and amount of operations (2) indicate what must be performed

to process incoming data. There are two classes of algorithms that are of
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concern for this category. There are those that perform the same operations on
each data element (data independent) and those that treat each data element
differently (data dependent). For data independent algorithms, the number and
type of each operation performed is countable from the algorithm. Some
examples of algorithms that are data independent are smoothing [SiS83] and

maximum likelihood classification [SiS80).

A reasonable indication of the data dependence of an algorithm can be ‘
defined by ’tbe following test equation: «

Data Dependent Operations
Total Operations

Data Dependency =

The smoothing and maximum likelihood classification have Data Dependency

0.

Examples of data dependent algorithms include contour tracing [TuA83],
calculation of Fourier descriptors [SiS83], and calculation of center of mass
[SiS83]). For a data dependent algorithm, the Data Dependency may not be
obtainable from the algorithm alone, as the Data Dependency may, itself, be
data dependent. In such cases, the Data Dependency must be determined

through simulation on a sample data set. Typically, data dependent algorithms

require varying resources and processing times.

The Data Dependency is a valuable measure, as it gives a figure of merit
to the number and type of operations performed to process data. In cases where
the Data Dependency must be determined by simulation, the average number
and type of operations per datum must also be determined. The Data

Dependency can be used as an indication of the appropriateness of SIMD or

MIMD parallelism.

.......................................................................................
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The class of operations can be divided into five groups: (A) arithmetic, (B)
addressing, (C) index calculation, (D) conditional, and (E) data transfer. These
classes wete chosen to yield information about which unit can process an
operation. For example, on some SIMD systems operations in class C can be
done in the control unit, overlapped with the parallel execution. The rest of
the operations are done by the processing elements. Information about class
(E) indicates how much the network will be used. On a system where all
processing is done by the same unit, the distinction between the types of

operations is diminished; however, for analysis they should prove useful.

Information about the various categories will have to be further sub-
divided to provide information necessary to choose suitable processing
hardware. For example, category (A) should be divided into: floating point
additions, subtractions, multiplications, divisions, comparisons, and special
functions; and fixed point additions, subtractions, multiplications, divisions,
comparisons, and special functions. The usefulness of this list is that it

indicates the relative importance of the speed of each operation.

For each floating point or fixed point special function, the number of times
each operation is expected to be performed is specified along with an
equivalence relation, giving the number of ‘‘standard” operations needed to
implement the specified function in software. If a unit cannot perform a
specified function in hardware, the time required to synthesize that function
(specified by the equivalence relation) must be calculated. By using an
equivalence such as this, various units can be ranked by their execution speed

for a given algorithm.

Consider an algorithm that requires only 1000 e* operations. If a

particular unit has the “built in"” capability to calculate one e*, then (using

...........................

..........
..............................................

......................................................................
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[Har68]), calculating e* is worth nine multiplies, nine additions/subtractions,
one floor, one square root, and one division. By using this equivalence, if the
hardware unit requires 10 msec to calculate each e*, then any unit not having
this special purpose hardware must perform the listed operations 1000 times in

ten seconds if they are to be “‘as fast’’ as the hardware unit.

The usefulness of this list is that it indicates the relative importance of the
speed of each operation. For example, if there is only one floating point divide “_
to be performed on the entirety of a given layer, a hardware floating point :
divide is likely to have little consequence. It may be necessary, as shown in
Section 8, to subdivide the fixed point operations into two categories
discriminating between indexing operations and integer calculations. This is
required in the event of SIMD parallelism, where the control unit has a

different data pathwidth than the processing unit.
Evaluation category (2) helps place a value on Ty, in terms of the actual
operations that must be performed. From one data set to another the required

processing may vary, so an exact statement of what operations must be

performed may be unavailable; however, a reasonable estimate may be

calculated for the average case through simulation techniques, as was done with

Sobel edge detection in [SiS83]. In this edge detection algorithm, if a pixel is

not an edge pixel for an object, it is essentially unused; however, if a pixel is an ~
edge pixel, it is used in the calculation of a chain code that describes the edges ‘:S:l}-'
of a closed object. This chain code is then used for further processing (in this ;
case, the chain code would be passed on to another level). :f

Estimates on the calculations to be performed can be used to determine i:"'

processing speed and special hardware requirements for a given level. Simply,

if an algorithm requires large numbers of a given type of operation, the
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corresponding level should have hardware to perform that operation quickly.

The numerical range and accuracy of a sub-task (3) is a function of
algorithm and data. For an algorithm, it is necessary to determine the
maximum and minimum values of the range of the calculations. The range of
the calculations should be divided according to the range of index values, range
of integer arithmetic, and the range of floating point arithmetic. This specifies,
in the SIMD case, the word size of the control unit, and the word size of the
integer and floating point units. In other cases (SISD/MIMD) (Fly66], the word
size of the integer unit is set according to the maximum range required for
integer and indexing arithmetic. It is assumed that the floating point and
integer hardware can have different widths. An example of this is the PDP-
11/70, where a single precision integer is 16-bits and a single precision floating

point number is 32-bits.

Category (3) places various limitations on the hardware. Typically, more
accurate hardware (larger words) will be slower and more costly. Floating
point operations are typically slower than the corresponding integer operations.
In certain cases, if the numerical range required for various calculations is
small, but out of the range of specific hardware, e.g., underflow, normalization

of data can eliminate the need for special hardware at the cost of some

processing time. The arithmetic range associated with a set of operations

greatly affects the hardware required [SmS81]. If only 8-bit precision is needed,

a 32-bit processor, which is typically more expensive, memory intensive, and T
slower than a corresponding 8-bit processor, will offer no benefits in exchange
CowT,
for the extra word length. Certain processors, such as the Am9511A [Amd82], :.":‘ELZ;E
ST
have varying precision and can be employed in cases where arithmetic ranges C'I-‘,'.
e
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vary from loop to loop. Other approaches to dynamic word size machines are

presented in [KaK78| and [LiT77].

Determination of the type and amount of processor-to-processor
communication (4) for a highly data independent task is straightforward. In
the case of non-uniform tasks, the required transfers may vary randomly in size
and connection, dependent solely on the data set being processed. In this
situation, simulation may be required to achieve accurate estimates for the
average case. To minimize the need for simulation, analysis of the data set can
yield information about the required connections. For example, if a process is
edge tracing small objects relative to the size of the image being processed,
global connections are not required, only local (nearest neighbor) connections

are needed. If the objects are large, then global connections may be needed.

In addition, with knowledge about the algorithm a level is to process (4),
special parallel analysis techniques, such as those discussed in [Ber66], [RaG69],
and [KuM72] can be employed to utilize ‘‘extra” parallelism. This can be
accomplished by breaking the algorithm down into multiple streams, using
MIMD parallelism. Applicable loops are those containing variables that can be
calculated independently of other variables within the loop. The ‘‘breakdown”
occurs when a variable can be extracted from a loop and calculated in a
separate environment (either a different processor or processors). Other
techniques for parallel processing such as the use of ‘‘recursive doubling” for

calculating sums or maximums {Sto80] can be applied.

The algorithm is required to obtain timing information from the previously
discussed tuples. By deriving boundaries on execution time as described in
[HuL82), levels requiring large amounts of time can be analyzed. The algorithm

must be scanned to determine what operations can be pipelined and/or
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overlapped. This must be done for each processor in the database. After the
amount of time saved by parallelism and pipelines is determined, this time is
then subtracted from the execution time for the processor. For systems with
reconfigurable pipelines, the reconfiguration times must be multiplied by the
number of reconfigurations required by the algorithm. This will give indication

as to where each level is spending its execution time.

If consistent variable names are used from layer to layer, similar task
decomposition to the above can be applied across levels to allow the
combination and/or sub-division of levels as needed. Consider the scenario in
Fig. 4.5.2. The three boxes represent levels one, two, and three. If level three
calculates a, b, and c¢ independently of the output of level two, and the
throughput of level three is too low, the portion of the algorithm calculating
a,b, and ¢ can be moved to level 2. If this makes the throughput of level two
too low, a separate unit can be employed for the calculations. The result is

shown on the right of the figure.

The type, frequency, and message length of the processor-to-processor
communications within a layer (5) will dictate the topology of a level and the
design of the interconnection network. There zre two types of interconnection
networks. A global interconnection networks allows a processor to communicate
directly with any other processor within a given horizontally parallel structure
(e.g.. SIMD or MIMD portion of the machine). Typically. a multistage
arrangement is used for such a network [Sie85]. The second type of
interconnection network is a local interconnection network, which allows a
processor to communicate with a specific number of its neighbors (e.g.. 4- or &
nearest neighbors) [SmS81]. In this case, the processors can be viewed as either

a one, two, or three dimensional array when determining the connections to be
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made by the network. A network must be capable of making the desired
connections efficiently and with a minimal number of collisions, to avoid
significant delays during transfers. It would be desirable to have a database of
known global connection networks and the permutations that they can

perform, so an appropriate connection network can be chosen.

From the type ¢f communications required by a layer, information can be
gained about the type of processing that should take place on a given level, i.e.,
the more random the communications, the more likely that a horizontally
parallel level should use MIMD (or asynchronous) parallelism, as opposed to
SIMD (synchronous) parallelism. Knowing the size of the transfers will aid the
design of the network. For instance, the longer the transfers, the more suitable
a circuit switched network becomes. For small transfers, a packet switched
network is desirable. Knowing the number of network transfers in conjunction
with the size of the average transfer will provide information about the loading
of a network with a given transfer speed. Consider an environment where most
of a processor’s data is stored in memories associated with other processors. In
an MIMD environment, a slow network will have collisions within the network
in addition to the collisions at the memories. (An ideal network with zero

transfer time will only have collisions at the memories.)

The amount of memory (6) is an important factor in the design of a
system and is a function of the proposed data set size, data tvpe, and
algorithm. Memory usage falls into three classes: program memory. stack
memory, and data memory. Program memory (size of the binary) is uot
determinable from the algorithm. It is a function of the machine and the
compiler. The stack memory contains arguments to subroutines. return

addresses, and temporary information. Its size is a function of the nesting of

.....................
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subroutines, along with the amount of information that is passed to those
subroutines. For data dependent algorithms that use some form of recursion,
simulation may be required to determine the appropriate amount of stack
memory needed. An alternative to simulation is to place a maximum depth (in
terms of calls to specific functions) on the stack. If each specific function is
called with a given number of arguments (each with a given size), calculation of

the stack size is straightforward.

The data memory size is the sum of the index memory size and the
process data size, where the index memory is the memory required to store
index variables and loop counters and the data memory is the memory used to
store the actual data set and intermediate results. In general, data set size can

be calculated from an algorithm.

The particular divisions of memory stem from where the data must be
accessed. In an SIMD environment, the stack, index memory, and program

memory must be associated with the control unit, while the process data must

be accessible by the processing elements. In other environments, this memory is
associated with the processor, so the divisions do not matter so much as their

total.

The memory size is an important factor in the design of a system. The
data set size, number of processors in a level, and algorithm chosen have a very
important bearing on how much memory is associated with a processor in a
given level. The previously discussed level-level buffering is not considered
with this value.

The type of parallelism (7) can be determined by employing a special
algorithm for a specific type of machine, or by determining whether an

algorithm is best suited for a specific environment. One factor that influences




this decision is the Data Dependency, as discussed above. For a general

parallel algorithm, the lower the Data Dependency, the more likely an

algorithm is suited to SIMD type processing. In SIMD mode, some processors

may be disabled while other processors execute portions of an algorithm.

MIMD mode does not have this drawback. Instead, MIMD hardware does not

typically overlap control unit instructions with processing element instructions.

On an MIMD system, it may be necessary to synchronize the processors to

insure that certain processing has been done before execution continues.

The amount of parallelism can be determined by several criteria.

Typically, the larger the number of processors, the less processing each must

perform and the more significant transfer and wait times become. As transfer

and wait times become more significant, the processors will spend a larger

portion of time idled, so the utilization of a processor will decrease. The

[

question to be answered here is: ‘*At what point is the utilization of a processor

more important than raw speed?’ If different instructions require o
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approximately the same amounts of time, a reasonable estimate for this figure

can be obtained as a ratio of instructions to instructions plus waits. Thus, the

utilization can be obtained as a ratio of time spent processing data to the time

spent on the entire task (processing and waiting). The Utilization can be

defined as:

total processing time
total job time

Utilization =

A variety of performance measures are discussed in (SiS82]. These can be

used to determine the relative benefit of each additional processor, allowing one

to decide on the number of processors associated with a given level.
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Analyzing the algorithm for inherent parallelism with techniques such as
those in [Ber66], [RaG69], and [KuM72| provides insight into how additional
SIMD or MIMD (horizontal) parallelism can be utilized to increase execution
speed. Consider the case of two non-concentric loops which do not require
information from each other. If they are processed on two independent
machines, as opposed to one machine, the results will be the same, but the

execution time will decrease.

The type and amount of parallelism will specify the nature and maximum
number of processors associated with a given level. The benefit due to
parallelism is specified in two areas: the speedup due to N, processors and the
maximum value of Np. If speed is the only criterion, then the number of
processors associated with a given level could become quite large. Consider
smoothing, in which the value for a pixel (picture element) is replaced by the
average of itself and the values of its eight nearest neighbors. In a case where
transfer time is negligible, the fastest parallel algorithm can smooth a pixel in
eight additions and one division. This is the case where each processor is
associated with one pixel. For small images this is feasible; however, for larger
images the cost due to the large number of processors becomes prohibitive. The
cost limitation on a given stage limits the amount of parallelism. This has the
side effect of limiting the significance of the network transmission rate
(tvpically, as the number of processors increases, the effect of the network

transfer/collision rate becomes more significant).

Knowledge of the type, rate, and amount of output (8) will be required for
any formatting that must be done to interface the data to the device gathering

the results. In addition, it places constraints on the output data rate.

...............
..............




Finally, the evaluation criteria (9) defined how the merit of a system is to r-,r.-:

be calculated. By incorporating this into the design procedure, proposed designs

not meeting the evaluation criteria can be avoided. In addition, this provides a - -§.<

way to rank various designs.

4.8. An Isolated Word Recognition System -- Task Description

Consider the application of the above theory to an isolated word
recognition system. From [Yod82], isolated words are those that are surrounded
by distinct pauses. Fig. 4.6.1 [Yod82] is a diagram showing the proposed
scenario. The computational portion of this task will be everything past the
digitization. To be useful, the resulting design should process the data in real-
time. To work with telephone quality speech, the system will have to process

6,670 16-bit words per second. This is the minimum speed limitation on the

hardware. In addition, there is a minimum response time. For example, one

would not wish to have the delay between an utterance and its recognition of

more than a few seconds. Such a system has been discussed in [RaL79).
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Conceptually, the task may layered as shown in Fig. 4.6.2. Layer 1 must ;\:

v

pre-emphasize the input signal with the following Z-transform: ‘

; H(z) = 1 - 0.9577 R

- R

E According to [RaL79], this serves to reduce the variance in later calculations

- (linear predictive coding). From [Oga70|, H(z) translates into: .

3
.

: S(M) = S(M)-0.955(M-1)
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where S(M) is the M*® sample of the incoming signal S.

There has been discussion about what type of arithmetic is required for
this process [MaG74]. In [MaG74], it has been shown that the desirable number
of total bits in the word is: [sampling rate in kHz + 8 | Thus, for a 6.67kHz
sampling rate, a wordwidth of 15 bits is acceptable. Since the incoming data is
16 bits wide, this represents more accuracy than is needed. To maintain
accuracy through the various levels, a word width of at least 24 bits will be
considered. This represents an additional 8 bits to minimize error. It should be
noted that this is 9 bits larger than the minimum word size suggested in
[MaG74] and is included only to minimize any rounding error. Floating point
calculations can be avoided by using the following (non-integer) fixed point

format:

| mantissa | fraction |
23 87 0

Thus, S may be obtained with one integer fetch, one fixed point multiplication,
one fixed point subtraction, one fixed point addition, one fixed point store, and
two fixed point register-to-register transfers. In order to keep up with incoming

data, the level performing this calculation must perform
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6670 16-bit integer fetches
6670 16-bit integer-to-floating point conversions
6670 fixed point multiplications

6670 fixed point subtractions

Y
6670 fixed point stores
N 13340 fixed point register-to-register moves
\ every second. The fixed point operations are distinguished from the integer
‘ operations only by the 24-bit word width.
- This particular scenario performs its analysis by using the autocorrelation
- method of finding the linear predictive coding (LPC) analysis. The underlying
: assumption of the autocorrelation method is that S(0) and S(M-1) are both 0
for a window containing M samples. To make this condition true, a Hamming
window is applied to S. The resultant equation is:
} s(m) =8(m) x W(m) 0<m<M
where W(m) [Yod82] is defined by:
I: 2mm s
W =0.54-0.46 ool
(m) cos[M_l ]

and M is the number of samples per frame. The frame length is fixed and
contains from 100 to 400 samples. Note that now calculations are in terms of
frames as a basic unit, as opposed to one data element. A typical method uses
300 sample frames that begin every 100 samples. For the purposes of

calculation, W(m) only needs to be calculated once and loaded with the
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program as a set of constants. Thus, for each 300 sample frame, this portion of
the task will require 300 fixed point fetches, multiplications, and stores. In
addition, windowing will require one integer load and 299 integer additions.
These operations must be performed every 14.9 msec because the frames begin

every 100 samples.

After the windowing has been performed, the autocorrelation coefficients
are calculated using the following equation:
M-i-1

R(i) = Y s(m)s(m+i) 0<i<p

m=0

Normally p is between 6 and 25. For the purposes of this paper, p is 8. Since
there are 300 multiplications and 299 additions that must be performed for
every frame, the incoming data must be converted into 32-bit fixed point
representation. This can be accomplished by either zero filling or sign extension
of the product terms. Thus, this layer will require 2764 fixed point additions
and 2773 fixed point multiplications every 14.9 milliseconds. From this point,

the data is passed onto the next layer, where LPC analysis is performed.

The goal of LPC analysis is to reduce the number of parameters that are
required to represent the speech frame. LPC analysis assumes that each
sample is a linear combination of the p previous samples and an excitation. By
assuming that the speech is 0 outside the present frame, i.e.,
s{im}=0 for m<0 and m>M, the LPC analysis can be broken down to the
following equation [RaS78]:

TakR(|i-k|) =R()  1<i<p
k=1
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Since p=8, the above equation translates to:

R(1) = a(1)R(0 R(1) + a(3)R(2) + ... + a(7)R(6) + a(8)R(7
R(2) = a(1)R(1 2R0 + a(3)R(1) + ... + a(T)R(5 +a8$R6
R(3) = a(1)R(2 +a“’)Rl + a(3)R(0) + ... + a(7)R(4) + a(8)R(5
R(4) = a(L)R(3) + a(2)R(2) + a(3]R(1) + ... + a(7)R(3) + a(8)R(4
R5;=alR4 + a(2)R(3) + a(3)R(2) + ... + a(7T)R(2) + a(8)R(3
R(6) = a(1)R(5) + a(2)R(4) + a(3)R(3) + ... + a(7)R(1) + a(8)R(2)
R7§=al;R6 +a2;R5;+a3R£4 + ... + a(7)R(0 +a(8Rl;
R(8) = a(1)R(7) + a(2)R(6) + a(3)R(5 +...+a7R}l + a(8)R(0

This is equivalent to: R = R® where R is an 8-by-8 Toeplitz matrix (symmetric
with only one unique value along the diagonal) and T and R are 8-by-1 vectors.
Having R and R, the goal is to solve the above equation for @, which can be
done by calculating R™'. There are algorithms that can utilize the special
properties of R to calculate R™! in fewer than the O(p?) ( < klp3) operations
normally required. One such method is Durbin’s Algorithm, shown in Fig.
4.6.3, which calculates the a’s, as opposed to R™!. The computational
requirements of Durbin’s Algorithm for the calculation of the LPC coefficients

for an 8-pole autocorrelation method analysis are:

18 integer initializations,
376 integer/index additions/subtracts.
72 integer comparisons,
8 floating point initializations,
89 fixed point assignments,
i 28 fixed point additions,
44 fixed point subtractions, g
72 fixed point multiplications,
8 fixed point divisions, I
225 fixed point fetches, e
64 fixed point fetches * ,
64 fixed point stores * ,
128 integer/index operations

every 14.9 msec. (Items marked with an asterisk are required for formatting

R.) After this point, only the a’s and R(0) are passed on to the next layer.

. e
-------------
------------------
o “

*‘:1;‘{;!.;’5\—“;.\-\‘)-\ 's-un'-{') X ‘n-‘.‘n &-n-l'..';::-i'.i‘_m__. L% &_.L RO




177

X

p

3 E®) = R(0);

; FOR i — 1 TO p DO |

' | [+ compute k(i) +/
: k() -

: . FOR j ~ 1 TOi-1 DO

V' e} | k(i) ~ k(i) + afiV « R(i-j);

k(i) ~ [R() - k()] / E©Y;
Efle (1-k(i)? ) » EOY,;
|+ compute a‘-'s for stage i/
o — k(i)
FOR j ~ 1 TO i-1 DO
[11] af) o afi0-k(i) » oY,
FOR j ~ 1 TO p DO a; ~— aP);

Fig. 4.6.3 Durbin’s algorithm to compute LPC coefficients
a; from autocorrelation coefficients [Yod82]
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At this point, the beginning and ending points of the word must be found. f::_.
This will be used to ‘“‘warp” incoming words, making them the same length ‘#
(linear time warping). In [RaS78], there is a simple method for determination of “t?f
the end points in an utterance. This method makes use of the energy { = R(0)) _' \.}
of each frame and the number of times the normalized signal changes sign in t
one frame (zero crossing). It has been shown, however, that the number of zero ’:

crossings in telephone quality speech is not effective in detecting word

boundaries [LaR81].

Since each word is surrounded by silence, there must be some perturbation
to indicate that a word is present. There are only two types of speech, voiced _.:
and unvoiced. From [SaR75], a voiced sound will result in a large energy, &J

; while other sounds will result in only moderate energy. Thus, setting a lower
*'.: and an upper bound on the energy will allow one to determine the starting and _
t ending points of a word. The two energies allow the determination of the *
existence of a word without losing valuable information contained between the \S
lower energy and upper energy thresholds. .';-E:

Consider Fig. 4.6.4. From frame two to frame six, the energy exceeds the

lower energy bound, indicating that the sound is voiced. After the sixth frame,

the energy is belew the minimum threshold values, indicating that no speech is '_-‘:f:.
present. For the purposes of analysis, two constants are defined. They are the R
upper and lower energy (UE and LE respectively) and are defined as follows:
LE = MIN(0.03 x (PEAK-SILENT) + SILENT , 4 x SILENT) -

UE =5 x LE S

PEAK and SILENT are the largest energy over all frames and largest energy
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over the ten silent frames respectively. LE and UE can be predetermined to
reduce the calculational load. The endpoint detection algorithm is as follows
(the value of the frame pointer after the application of this algorithm to Fig.

4.6.4 is shown in braces):

(1) Measure energy for every frame (=R(0)).

(2) Set a pointer to the first frame that exceeds the upper
energy threshold {4}.

(3) Back the pointer up until it points to a frame that does not
exceed the minimum energy threshold {1}.

(4) Advance the pointer one frame {2}.

The endpoint is located by applying the same procedure in reverse. This
process requires 300 fixed point comparisons and a variable number of integer
operations depending on word length. In addition, there is a variable number
of floating point operations required for each frame as the frame pointer is

backed up.

After the beginning and ending points of the word are known, a procedure
called linear time warping is applied to make all words the same length. In this
procedure, a speech segment containing M frames of data is compressed or
expanded to contain F frames of data. This is done by applying the following

equation:

T(f) = (1-k)xR(m) + kxR(m+1)  f=1..F

where R(m) 1<m<M are the M frames of the input template, T(f) 1<f<F are

’l

the F frames of the output template, and:

AR
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M-1)
I(fl)Fl) +1

k = (- 1)L—)- + (1-m)

k is calculated F times and requires one fixed point multiplication, one fixed
point division, one fixed point addition, and four fixed point subtractions. M is
calculated once per word and requires one fixed point floor, three fixed point
subtractions, one fixed point multiplication, one fixed point division, and one
fixed point addition. T(f) is calculated F times and requires two fixed point
multiplications, one fixed point addition, one fixed point subtraction, and three
integer additions for address calculations. In this paper, the value used for F

will be 40 (frames/word). This represents 596 msec. of speech.

From here, the data is passed to the next stage, where a process called
dynamic time warping (DTW) is applied to each utterance. For speech
recognition systems, reference patterns (or templates) for each word the system
is to understand are stored in memory. DTW attempts to normalize time in
order to make an unknown utterance match each of the template utterances,
thus finding the minimum time-normalized distance between the unknown
template and the reference templates. Fig. 4.6.5 [Yod82] shows the results of
dynamic time warping. In this case, each template is represented by a sequence
of feature vectors. Each feature vector contains the LPC coefficients. Since
linear time warping has been applied to the two utterances, they are the same
length. This reduces the complexity of DTW. The following algorithm [Y0S82],
considers two patterns A and B, where A and B are sequences of feature

vectors a; and b; for 1<i<I and 1<j<J. The a; and b; are vectors containing
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LPC coefficients. Since linear time warping has been performed at the previous

level, I and J, the number of frames describing the incoming utterance and the
known word template, are equal. The minimum time-normalized distance is
found as shown in Fig. 4.6.6. This is accomplished by finding a path
connecting (1,1) to (I,J) such that the cumulative distance is a weighted sum of

the local distances d(i,j) between the vectors a; and b;. d(i,j) is defined to be:

d(ij) = | a? - bf|

One method to find the cumulative distance, g(i,j), restricts the possible path
leading to a given point to those shown in the inset in Fig. 4.6.6. Using a

recursive definition, g(1,)) can be defined as follows [Y0S82]:
gi-1,j-2) +2d(ij-1)

glij) =d(i,j) + MIN| g(i~1,j-1) +4d(i,j)

g(i=2,j—1) +2d(i-1,)]

g(1.1)=2d(1,1)

The result of the algorithm is the time normalized distance, g(I.J)/(I1+1J). Fig.
1.6.7 shows a serial DTW algorithm. For the purposes of this paper. let ¢
the amount the algorithm is allowed to “warp™ the utterance, be 3 and J. the
number of templates of known words, be 10000. This will give the system a
vocabulary of 1000 words (since speaker independent word recognition requires

ten templates for each word in the vocabulary [Ral79]), at a cost of over 10?

index operations. By choosing the word corresponding to the minimal distance,
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Fig. 46.6 Adjustment window of width r [Yod82]
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hold = = ; template =0;/* initialization */

fork = 1to 10000} /*for each template */ l__-.j, o
for j = -1 to 1§ /* inilialization */ v
fori=-1tol{ o
gli][j]==:
d[1]{j]==:
} 7*endi*/ BN
{ /*endj*/ R A,
for j = i Lo B0 { /* for each frame in a and b[k] */ ]
fori = j--rto j+r{ /* each frame within window */ RN
if(i<0) i = i; /*force i to be valid */
(i >B0) | = j--r=1;
else §
di]{;}=0:
forh=1to 9
/* compute 'distance’ between
frames a[ ] and b k]j] */
COMEr Ry
(ali]] h]--b; k)jlih)) =2
} /7*end h */ RS
gliJlyj=min(g i--1] - ]~2d 1] ]]. e
g1t Ji-2]~2d ] j-1]~d 1)), RS
gii—21")~1]+2d i~ i~} ]
| /7*endi */
{/*endj*/ o
] D{a,bk]) = :80] 80}, A
if(D(a.b k]) < hold) { /* store minimum value */ f‘;:
hold = D(a.b k1); YO
template = k; A0
| /*end if */ 3
| /*endk */
A - unknown word (W)
ali] - frame 1 of LW
al'n]fh] - clement h of vector describing frame 1 of UW
b k] - reference word k {RWK)

bik]i] -frameiof RWK
b{k]1]'h] - element h of vector describing frame i of RWK
D{a,b’k]) - distance between UW and RWK

gli.j) - cumulative distance between a and b k]
hold - distance number of best fitting reference word
template - number of best fitting reference word y
. - . '__-‘.';:.'_,-_.
Fig. 46.7 Sample DTW algorithm RO
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this system will have speaker independent accuracies up to 98 [RaL79].

4.7. Application of Theory to Scenario

The application of the evaluation categories to the Z-transform gives the

following information:

1) Input: 16-bit integer/sample,
6670 samples/second
2) Calculations: 1 16-bit fetch,

1 24-bit fixed point multiplication,

1 24-bit fixed point subtraction,

1 24-bit fixed point store,

2 24-bit fixed point register-register transfers

3) Range/Accuracy: +65535 to —63000/1

4) Communicatious: None

5) Memory: Program + Data + Stack < 2 Kbytes

6) Parallelism: MIMD

7) Algorithm: Stated above

8) Output: 6670 32-bit floating point numbers per second

After the Z-transform is performed by the first level, the data is passed
onto the next level where the windowing is performed. The computational

requirements of this level are as follows:

1) Input: 6670 24-bit fixed point numbers/second

2) Calculations: 3 24-bit fixed point multiplication per number,
6 24-bit fixed point fetches/stores per number

3) Range/Accuracy: +65535/.008

4) Communications: Nearest Neighbor 200

24-bit fixed point numbers
5) Memory: Program + Data + Stack < 5 Kbytes
6) Parallelism: SIMD/MIMD

7) Algorithm: Stated above
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: 8) Output: 300 16-bit fixed point numbers/14.9 msec. LI
I ' Y
; R
;: Note that this level performs the operation of dividing the data into 300 :'.(::-l:f,;
" ENNE
i sample frames that are transmitted every 100 samples (14.9 msec). Every 14.9 ‘a .
:- msec, the 300 sample frames are transmitted to the next level, where :C_«;f:j?.
N autocorrelation analysis is performed. ﬁ':_'.'- -
i The calculational requirements of the autocorrelation analysis are as -
- follows:
: 1) Input: 300 24-bit fixed point numbers/
' 14.9 milliseconds,
r 300 32-bit fixed point numbers=1 frame

2) Calculations: 2773 32-bit fixed point multiplication/frame,

2764 32-bit fixed point additions/frame,
2782 32-bit fixed point fetches(stores)/frame,
2782 integer additions/ frame (indexing)

3) Range/Accuracy: +2%4/1

4) Communications: None :Z;:l;::‘
5) Memory: Program + Data + Stack < 7 Kbytes :j:E:jI?-:
6) Parallelism: MIMD Ny
7) Algorithm: Stated above ‘

8) Output: 9 32-bit fixed point numbers/14.9 msec. e
The results of the autocorrelation analysis are used for the LPC analysis, where -':

the amount of data is reduced from 300 16-bit fixed point numbers
representing a frame to 9 32-bit fixed point numbers. The requirements of the

LPC analysis are:

1) Input: 9 32-bit fixed point numbers per frame e
2) Calculations: 18 integer initializations, N
504 integer/index additions/subtractions, i
72 integer comparisons, NP
8 32-bit fixed point initializations, e
89 32-bit fixed point assignments/stores, AN J
LN
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S
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28 32-bit fixed point additions,

44 32-bit fixed point subtractions,
72 32-bit fixed point multiplications,
8 32-bit fixed point divisions,

553 32-bit fixed point fetches

3) Range/Accuracy: +224/ 0.008

e O MRS W W % e - e - - ———— < =

4) Communications: None

5) Memory: Program + Data + Stack < 7 Kbytes
6) Parallelism: MIMD

7) Algorithm: Stated above

8) Output: 8 32-bit fixed point numbers/14.9 msec.

After the LPC analysis is performed, the a{i)’s are then passed onto the
next level where endpoint detection is performed. Endpoint detection takes
place over several frames. The time required for the endpoint detection
algorithm is a function of the number of frames in 2 word. On a per word basis
(assuming &0 frames per word (I=80 and J=80), there the calculational

requirements of the endpoint detection algorithm are:

> s YNV *. -

1) Input: 720 32-bit fixed point numbers/1.2sec.
2) Calculations: 1520 32-bit fixed point comparisons/word,
324 integer increments(decrements)/word,
| 4 integer stores,

1280 32-bit fixed point fetches(stores)
3) Range/Accuracy: +224/.008

4) Communications: none
; 5) Memory: Program + Data + Stack < 10 Kbytes
! 6) Parallelism: SIMD/MIMD
: 7) Algorithm: Stated above

&) Qutput: 640 32-bit fixed point integers/word.

These figures represent maximums because it is quite possible to go for
many frames without receiving any input. In such a case, it is possible to just
require the comparisons with only a memory update to accommodate the

incoming frames.
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From here the words are passed on to the level that performs the linear

time warping. Assuming 80-frame words (which are very long), the calculations

required for linear time warping are as follows:

1) Input:
2) Calculations:

3) Range/Accuracy:
4) Communications:

3) Memory:
6) Parallelism:
7) Algorithm:
8) Output:

720 32-bit fixed point numbers/1.2 sec.

1480 32-bit fixed point fetches(stores)/1.2 sec.
480 32-bit fixed point additions/1.2 sec.

162 32-bit fixed point subtractions/1.2 sec.
800 32-bit fixed point multiplications/1.2 sec.
40 32-bit fixed point divisions/1.2 sec.

40 32-bit fixed point floor operations/1.2 sec.

+224/.008

Global

Program + Data + Stack < 5 Kbytes
SIMD/MIMD

Stated above

720 32-bit fixed point integers per word.

After the linear time warping is performed, the data is passed on to the pext

stage, where dynamic time warping is performed (once for each utterance in the

vocabulary).

1) Input:
2) Calculations:

3) Range/Accuracy:
4) Communications:
5) Memory:

720 32-bit fixed point numbers/1.2 sec.

6.8M index variable assignments/1.0 seconds
0.1M index variable additions

66.1M index variable additions (+1)

67.3M index variable conditional branches
132.7M address calculations

105.5M fixed point additions

5.8M fixed point assignments

11.3M fixed point conditional branches
60.7M fixed point multiplications

60.7M fixed point subtractions

+2% / 41

Global: capable of recursive doubling [Sto79)

Program +Stack < 10 Kbytes

Data (14.5/N)+0.01 Mbytes per processor for reference

(template) and incoming utterance storage.
Note: One copy of the program is required per

Ll S St S-S i A e M S A Sl S S S
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processor for an MIMD machine; one copy is required
for the control unit in an SIMD machine.

6) Parallelism: MIMD
T
N + l(log2N)|(IC + 2xNO)

where a single processor takes time T, IC is the time
for an integer comparison, and NO is the time for a
network operation.

7) Algorithm: Stated above.
8) Output: 1 45-character word

Speedup =

Consider the derivation of the last set of nine evaluation categories. These
nine evaluation categories represent an analysis of the algorithm. Evaluation
category 2 is directly determinable from the algorithm. The range and
accuracy is determinable from the application. [RaL79] states that 15 bits is a
reasonable wordwidth when the sampling rate is 6.67 KHz, as it is for this task.
To apply a parallel machine to this algorithm, each PE would need to execute
this algorithm on its own portion of the tamplate database computing a local
D(A,B). Recursive doubling [Sto79] would then be used to combine the results;
i.e., the word associated with the smallest D(A,B) is the chosen word. This
requires 2 logoN transfers for the D(AB)'s and the identifiers for their
associated words. ‘.’_ﬁj'."_“,-::'js

The amount of memory is expressed as a function of N, the number of Q‘q
processors. A “C" language program was coded and compiled to estimate the

program size. The DD is small, so either SIMD or MIMD parallelism can be I

applied to the program; however, the maximum parallelism is 10,000
processors, assuming each PE executes the algorithm for one or more

templates. Application of N processors will yield the speedup shown in (6).

The output of this system is one word. It is imperative that the system keep

up with the input; however, it is desirable to do such with a minimal cost.
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e Y,

The number of each calculation can be multiplied by the single-operand
execution times of the tuples for each processor in the database. The sum of
the products yields an approximate worst-case execution time for a single copy
of each processor in the database to perform this algorithm. Actual execution
time could be better due to clever software or special hardware functions. For
: example, software that is written to ignore redundant calculations. Also, by
" applying pipeline analysis techniques to this algorithm and using structural
- information about each processor, such as functional overlap, stages in

processing pipelines, and the multiplicity of units, a more precise

B e Tt

approximation of the single processor execution times can be obtained.

Based on the desired response time, additional processors of the same type
are repetitively added until a level composed of such processors could meet the
time requirements. The number of processors is then multiplied by the cost of
- the associated hardware. To this amount, the price of other devices, such as
. memory and inter-processor communications links, is added to approximate the

cost of the processing hardware involved. The processor chosen used for the

design will be chosen based on the least expensive hardware.

Consider the application of a Motorola 68000 to the above task. The

tuples enumerating the operations and their respective times contains over 1000

\, instructions: a partial list is included for brevity:

{add ri#:add rir2idd (a)+.ricond. branch: mov r.#:mov r{a):mov #.(a):mul

rl.r2: mul (a)+.r: suo r.#:sub rl.r2:sub (a) +.r}

where r stands for register, # stands for immediate, (a) stands for memory
location stored in register “'a’”’, (a)+ stands for memory location stored in

register a’" followed by incrementing “a”




r . ."‘. - 4.".-_ .

LY B T
LA IR PCPL P AN g

TR L WLUELR LA PLN et W - T Ve Wy ThECEWCNTRDY

192

The tuple describing the timings (in cycles) is:
{8,4,8,10(true)/8(false),8,12,12,70,74,8,4,8}
The 68000 has a no functional overlap or pipelining other than a five stage
instruction decoder. These tuples will be omitted. A 68000 has no special
address calculation hardware, so an address calculation required loading a
register, multiplying by a memory location, and the addition of two memory
locations. Assuming that the index variables are stored in registers and that
fixed point numbers are stored in memory, a 12.5 MHz 68000 would take 1579
seconds to perform dynamic time warping on 2 single word. Using a multistage
cube network that takes 1.0 msec for two transfers, 1600 processors in MIMD
mode would take .998 seconds to perform dynamic time warping. (A thorough
analysis should consider the overlap of CU and PE operations in SIMD mode:
e.g., address calculations). Dynamic time warping is normally done with fewer

than 100 reference templates because of its great computational complexity.

Such an analysis would be requires for each processor in the database.
Then, an actual implementation of the above approach would consider
simulating the algorithm on the various processors to obtain a more accurate
timing estimation. Finally, if no processor in the database could be used to
implement this algorithm, the laver would need to be broken down into sub

layers, each of which would be analyzed with the proposed techniques.
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4.8. Conclusions

Using the above nine categorics, an algorithm can be analyzed according
to the requirements it places on a system. By building hardware to efficiently
handle these needs, it will be able to effectively process the algorithm. If many

hardware components are analyzed and categorized according to their abilities

e R AT

and processing times, a database containing information about each processor
can be built. By mapping the organization of each level in a multi-level design,
computers can be used to design systems for specific needs of algorithms. Thus

automated design of special purpose processors can be achieved.

In summary, this was a preliminary study of how to partially automate
and model the design of special purpose systems. Categories of hardware
analysis were presented. Their relationship to the hardware and their
dependence on the software was discussed. An application of the theory to a
software scenario performing speaker independent isolated word recognition
was presented. Finally, the computational requirements of the scenario were
presented. By bridging the gap between hardware and software, automated

special purpose machine design comes closer to being a reality.
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CHAPTER 5§
ASYNCHRONOUS AND SYNCHRONOUS
SYSTEMS ADVANTAGES AND
DISADVANTAGES

5.1. Introduction

Chapter 4 introduced a scheme for modeling the hardware requirements of
a layer. It also proposed a concise scheme for modeling the capabilities of a
computational device. Finally, it showed a method of going from the hardware
requirements of a task to the computational device. This was all done with a
real-time system in mind. The type of system considered in Chapter 4 was a
synchronous macro-pipelined system with potential parallelism at each level.
This chapter looks at the performance of an asynchronous macro-pipelined
system, a synchronous macro-pipelined system with triple-buffers between
levels, and a synchronous macro-pipelined system with double-buffers between
levels. It is the goal of this chapter to show the strong and weak points of each
of these schemes, along with showing in which situations each of these schemes

is most applicable.

Before considering the use of asynchronous stages in the proposed macro-
pipelined architectures, analysis techniques to determine inter-level buffer size,
expected process wait time, and the likelihood of buffer overflow, are required.

If analysis techniques cannot be developed, the use of asynchronous stages will
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be complicated beciuse no analysis techniques short of simulation will provide
meaningful results. It is the goal of this chapter to determine whether it is

possible to derive the following parameters about a (possibly parallel) level:

I Probability cf receiving v jobs by some time t
(P.(t)
I The expected average input queue length (Q) for a given layer

P,(t) is useful in determining the most likely time at which v jobs will
arrive at a given level, which is receiving input (which may include feedback
from later levels) from r sources. Integrating tP (t) with respect to time will
vield the expected time at which v arrivals will occur. Within some tolerance
(e.g., * a standard deviation), this is required to determine the required
throughput of a given level. Q is required to determine the time that a job
spends “‘waiting” to get processed. This time must be added to the total
computation time for a job to determine the total time required to complete a
job.

In the previous discussion, each level was allowed to process only one data
set at a time. This was a restriction imposed by the synchronous nature of the
system. When the levels of a system are asynchronous, this restriction could be
removed. For example. a level could contain multiple processors, each working

on a different data sct. For the purposes of this study. however, this restriction

will still be imposed. As shown in Fig. 5.1.1 (a). it will be assumed that all
processors in a given level work together to process a single data set. There is
a single input queue for each level. This form of replication corresponds to
either the SIMD or MIMD parallelism discussed in the previous section. Only a

single result is completed at a time by a level. Outgoing jobs are queued (if
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Fig. 5.1.1 Allowable architectures and feedback paths
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5
"
; necessary) in the input queue for the next level.
< There are other types of parallelism, such as the multiprocessors with
3 multiple data sets mentioned above, which will not be considered here.
Instead, their analysis will be left as future work.
:-.‘ Fig. 5.1.1 (b) shows two asynchronous systems with feedback. For the
purposes of this research, feedback is defined to be any data set in the input
. queue for a level i that did not come from level i-1 . By this definition,
2 feedforward (from levels other than i~1) is also treated as feedback. (from
levels other than i—1) is treated as feedback. Here, it is assumed that feedback
. data sets can arrive asynchronously and are normal data sets as far as size and
processing requirements are concerned. Feedback may be required when a data
set needs further reprocessing, e.g., processing with different parameters
. because it is later found that some criterion is not met. Feedforward may be
., used when a particular data set does not need to be processed by a specific
‘ level or levels. Synchronous systems, by their nature, cannot have feedback.
v Initially, four assumptions will be made. They are: 5K
s
- (1) Two input data sets cannot arrive at a given level simultaneously 1.e.. :'_i
i feedback is not allowed. (If there is no level-to-level feedback. it is X
impossible for multiple data sets to arrive at a given level
simultaneously.) This restriction will be removed later.
: (2) At a given level, the arrival of a particular data set is independent of the ‘-;';f
f. arrival of any other data set. Thus, the arrival of data sets to be .
\ processed by a level can be treated like events in a Poisson random
[~

process.
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(3) At a given level, the average arrival rate of data sets to be processed is
A,
(4)  The probability of an arrival at a given level during a given time
- interval is a function of the interval duration, not the beginning time of
the interval. For a very small time interval At, the probability of an
k. arrival is A, At.

Section 5.2 discusses the determination of P (t) for a single input stream.
single processing stream system; i.e., no feedback. The information presented
in Section 5.2 represents a derivation of the results presented in [Ful75]. It is
t the purpose of this section to provide necessary background information to
N clarify the discussion of topics appearing elsewhere in this chapter. Section 5.2
- also states the results of the theory for a multiple input stream case; i.e.
A feedback is allowed. Section 5.3 continues the derivation started in Section 5.2

& to determine the expected size of a level-level queue.

:;{ Based_on the previous sections, Section 5.4 compares the performance of
b

i an asynchronous system with the performances of the both double- and triple-

buffered synchronous systems. In Section 5.4.3 the performance of both

double- and triple-buffered synchronous systems are analyzed for two level

systems where the response time of the first level is fixed and the response time

of the second level is either a uniform random variable or a Gaussian random

variable. Section 5.4.4 applies the techniques presented in Section 5.3 to derive

the expected throughput and response time of an asynchronous system.

Section 5.4.5 contrasts the performance of the two synchronous systems and

the asynchronous system when the response times of the two levels are random

variables. Q for an asynchronous system is discussed in Section 5.4.6. Section

5.4.7 contains a discussion of the applications of double- and triple-buffering




systems. The advantages and disadvantages of synchronous systems and

asynchronous systems are summarized in Section 5.4.8.

Sections 5.2, 5.3, and 5.4 all deal with the theoretical expectations of the
system throughput. To verify the results presented in these sections, Section

5.5 presents results obtained from simulation.

5.2. Determination of P (t) For a Single Input/Processing Stream

The following derivation is similar to that in [Ful75]. Setting At as the
time interval under consideration, the probability of a data set arriving is:

where P.o(At) is the probability of at least two data sets arriving. P (At) for
v>1 is zero if the previous layer produces at most one result at a time, if there

is no feedback. and if At is short {i.e., At x X,, << 1).
The case for v > 0 arrivals during a time interval t + At is:
P,(t+at) = P,,(t) x Py(At) + P(t) x Py(At)

During one time epoch (At), at most one arrival can occur. Thus, either zero
jobs or one job can arrive during the interval At. Pv(t) can be obtained

through the fundamental definition of differentiation:

. . P t+At) = P(t)
=]
Pult) AtTo At




Since Py(At) = M, At. Po(At) = 1 - Pi(At) = 1 - M\, At. Thus,

P,(t) = P,_j(t)\,, — P,(t),, (v>0)

Taking the

Laplace transform of this equation (assuming
lim P, _o(At) = 0), yields:
At~—0 -

P ( ) 1 b v d X:xl’
§) = ~———— bprod——
L S W £ R PES W
Taking the inverse Laplace transform yields:

Aart)Y
Pv(t) = ( al") e At
v

The application of the above equation is limited to a system with a single

input stream capable of sending one job at a given time and a single processing

stream producing a single result. This type of analysis makes it possible to

determine the probability of a level receiving a given number of arrivals by a
certain time t.

By applying the results in [Cin75], P, for r independent Markovian
streams is:

— {ALt)" -ALt
P,(t) = ——v! e L
r

where Ay is: Y and ); is the arrival rate for stream i.

that
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5.3. The Expected Queue Size of an Asynchronous System

The above results can be used to calculate the Expected Interarrival

Time (EIT) as follows:

’{average interarrival time<t{ = 1-Py(t)

taking the derivative yields:

plaverage interarrival time=t{ = — p,(t)

where, p,(t) = Pv(t)

‘EEN‘ r
Polt) = e ™ x |Y -\
1=1

Thus,

r t=20 —S’:x,c
EIT =(-% ) f e '™ tdt
i=1 t=0

;
X
.
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Service of the arriving jobs is less complex bec:use it is a valid assumption
that only one job may be removed from the queue at a time. Because data sets

may be related, the servicing of the data sets is not necessarily Markovian. By

1
EIT

defining Ay to be for jobs arriving at level L, p; to be the average

throughput of level L, and C to be standard deviation of service time . the

expected service time

Pollaczek-Khinchine formula [Ful75] along with work from [CoM867), can be

applied to determine the expected queue length as:

g = 2AL (g, — Ap) + ALA(CE + 1)
2p (py—AL)

This is the expected queue length of an M/G/1 queuing structure
(Markovian arrival process, General distribution service structure, 1 processor

serving queue).

‘ 5.4. A Comparison of Synchronous and Asynchronous Systems

5.4.1. Introduction

Since P,(t) and Q can be calculated, the throughput and response time of

a system with asynchronous levels can be compared with a system whose levels

are running in synchrony. Several metrics must be considered to perform this

comparison. While such metrics as expected queue size, wait time (in the

queue), and expected run time all have a meaning for an asynchronous system,

their use for a synchronous system is limited. Worst case speed in an
asynchronous system reflects itseli in the expected size of the buffer between
two asynchronous levels, but does not bear the same significance in a

synchronous system, where it is used to calculate the run time of a system.
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5.4.2. Initial System Models -- Three Potential Architectural Schemes

Consider the proposed systems shown in Fig. 5.4.2.1. Each of the
proposed systems contains two levels. This model can be extended to systems
of multiple {>2) levels, by repetitively analyzing the system in terms of two

level pieces. This is an iterative process. For example: for an L level system,
all levels 21 and 21+1 (1 < %) would be analyzed as two level systems. Then,

the statistics for these systems (consisting of two levels) would be combined in
groups of two. The resulting analysis would then parameterize the performance
of the four level “‘systems.” This process can be repeated until there is one set
of parameters to describe the throughput of an entire system. Because of the
simplicity of analysis and applicability of the analysis, only two level systems

are considered here.

The first system in Fig. 5.4.2.1 is a synchronous double-buffered system,
the second a synchronous triple-buffered system (as discussed in Section 4.5),
and the third an asynchronous system. It will be assumed that the both of the
synchronous systems are of the type where both levels report to an arbitrator
when they have completed processing (the first level to report waits until the
last level reports). It is the goal of this discussion to relate the response time,
throughput, and memory requirements of the three types of architectures. To
this end. the discussion will assume that the first level can perform its
calculations in a fixed amount of time (this restriction will be removed later).
It will be assumed that the exact execution time for the second level is
unknown, but that it can be described probabilistically. This is similar to the

earlier discussion about the isolated speech recognition system, in which the
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Level 1

Triple Buffered System

Level 2

N

L4
)

Level 1

Double Buffered System
Level 2

Level 1

Queue Asynchronous System

Level 2

Fig. 5.4.2.1 Three architectures under consideration
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fourth level required a fixed computational time and the fifth level required a

variable time.

5.4.3. Analysis of Synchronous Models with Two Probabilistic Models

If t; is the actual time that level i requires to process a given data set and
pri(t) is probability that level i will process any data set in time t, the expected
processing time (EPT) of each level for the synchronous systems can be

defined as follows:

t=t, t=00
EPT = [ t; pro(t)dt + [ t proft)dt
t=0 t=t,

Since the system is running in synchrony, the faster level must wait for the
slower level to respond before its processing can continue. The addend (first
term in the sum) represents the time that the system will spend when the
second level responds more quickly than the first. Here, the response time of
the system is t;. The probability that the response time of the system is t| is
equal to the sum of the probabilities of all cases where t4 is less than t;. hence

the integral.

The angend (second term in the sum) results from the second level

responding more slowly than the first. In this case. the response time of the
second level dictates the response time of the entire system. thus the t times
pra(t) is the expected response time of the system when the second level of the

system responds more slowly than the first level.
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In a synchronous environment, the minimum time that a data set can

spend at a given level is t;. The processing time for data set D is:

max [t,(for D),ty(for D-l)] + max [tl(for D +1),ty(for D)]

For the double-buffered system, the expected system response time (SRT)
is: 2 x EPT. In general, this is N, x EPT, where N, is the number of levels in
the system. The throughput of this system is 1/EPT. In contrast, the triple-
buffered system requires time EPT to transfer the data set from one level to
the next, thus SRT of the triple buffered system is: 2 x EPT (one time unit is
required to load data into a level and one time unit is required to process the
data). For the two level case considered here, this is: 4N; x EXT. The
throughput of the triple-buffered system is the same as the double-buffered

system.

Analysis of the cases where the levels are running in synchrony (i.e.. all

levels must complete their present data set before any can go onto the next

data set) can be obtained by applying this (previously mentioned) equation:

t=ty t=co
EPT = [ tjpro(t)dt + [ tpro(t)dt
t=0 t=t,

The addend of EPT is evaluated as follows (where level two is Gaussian with

mean response time and standard deviation of t, and o, = Ct, respectively):

t=t,
[ typra(t)dt X
t=0 .
¥
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.- ® is the Gaussian probability function with mean 0 and standard deviation 1 RN
- _ . NS
‘ [Pap63]. o, was set to Cty so that the results could be expressed in terms of t,. Ny
. . . 1 i

For this last equation to hold, the quantity: 1 — ¢ < must be zero. For :.:"’.:"?

; o
values of C larger than 0.4, a Gaussian distribution function would require N

b

some modifications (e.g., a § function for pry(0)) to be valid. When .t_z = bt,,

this equation simplifies to:

The augend of EPT is evaluated as follows:

t = 0
t=t,
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- [t - (-t_z)r at

t =00 ¢
= - eXx —
L ) | ey

by defining u =t — t, (du = dt), this simplifies to:

ut b = [u?].
= - d
= V271(Cty) eXP[2(Ct2)‘-’} !

H
- N

Splitting the integral into two portions and simplifying the augend yields:

_ u =00 u
T J_- Var(Ct,) P [2(0?2)2 c

t2

— 12 - t,—t.
— ]du+t2 1~ ‘;”
2

Substituting z = =

]
& !
&
et
ﬁ \

N
[ d
~N

Performing the integration over the limits yields:

C?z —(tl - Ez)‘.! - t,—fo
= exp |————| + t, [1-®|—
Var P T g(CL? 2 Ct,

Allowing t, = bt, yields:
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Cbt, —(1 - b)? 1-b
= ex + bt |1 - ¢|—
Var P Tgcpp ! Cb

The resultant equation for EPT (for a Gaussian time distribution) is as follows:

1-b Cbt, —(1 - b)?
EPT =t,(1 - b)| ®|——1( | + ex + bt
(1 =) [ Cb var P | o(chy ‘
Here,
SRT(double buffered) = 2xEPT
SRT(triple buffered) = 4xEPT
and the expected system throughput (ST)
ST = 1 o
o EPT s
NN
Table 5.4.3.1 shows the effect of b and C on SRT and the system ::"':
throughput ST when the processing time of level two can be represented by a "::-_:f:

Gaussian distribution function. In addition, Table 5.4.3.1 shows that the
greater the probability that t, is greater than t;, the lower the throughput. In
addition, a triple-buffered system will have the same throughput as a double-
buffered system, but the triple-buffered system will require one extra delay for

each level in the system.

Consider the case where the response time of level two can be described by
a uniform distribution function. (For this discussion, it is assumed that it is
possible for t, to be larger that t;. If this is not the case, EPT = t;.) Again, let

t, = bt; and ¢ = Ct,. If ty(max) and ty(min) are the largest and smallest

1
to(max J—to(min)

response times respectively, then prao(t) = From [Pap65], it




b RN
: 210 =%
- Table 5.4.3.1.
Double buffered system (DB) and triple buffered system (TB): SRT and ST
when t, is fixed and t, Gaussian random variable.
C to b SRT (DB) | SRT (TB) ST
1.00 | 0.50t, | 0.50 || 2.08t, 4.16t, | 0.96/¢,
1.00 | 0.75t, | 0.75 || 2.38t, 476t, | 0.84/t,
075 | 0.50t, | 0.50 || 2.03t, 406t, | 0.98/t,
0.75 | 0.75t, | 0.75 || 2.24t, 4.48t, | 0.89/t, S
0.50 | 0.50t; | 0.50 2.00t, 4.00t, 0.99/t,
050 | 0.75t, | 0.75 || 2.11t, 422t, | 0.95/t, o
0.25 | 0.50t, | 0.50 || 2.00t, 4.00t, 1.00/t, AR
0.25 | 0.55t, | 0.55 || 2.00t, 4.00t, 1.00/t,
- 0.25 | 0.60t, | 0.60 || 2.00t, 4.00t, 1.00/t,
A 0.25 | 0.65t, | 0.65 2.00t, 4.00t, 1.00/t, L
3 0.25 | 0.70t, | 0.70 2.00t, 4.00t, 1.00/t, S
025 | 0.75t, | 0.75 || 2.01t, 401t, | 0.99/t, ~ g
: 0.25 | 0.80t, | 0.80 || 2.01t, 402t, | 0.99/t,
- 0.25 | 0.85t, | 0.85 || 2.01t, 4.02t, | 0.99/t,
: 0.25 | 0.90t, | 0.90 || 2.03t, 4.06t, | 0.98/t,
0.25 | 0.95t, | 0.95 2.09t, 4.18t, 0.96/t, T
0.10 | 0.55t, | 0.55 || 2.00t, 4.00t, 1.00/t,
- 0.10 | 0.60t, | 0.60 || 2.00t, 4.00t, 1.00/t,
0.10 | 0.75t, | 0.75 || 2.00t, 4.00t, 1.00/t,
0.10 | 0.80t, | 0.80 2.00t, 4.00t, 1.00/t,
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can be shown that:

_ to(max)—ts{min) _ _

= Ct
vi2 2

‘I Given the the above, the equalities:
: - to(max) — t,(min)
ty(max) =ty + = 2
2
- to(max) — ty(min)

2 to(min) =ty — 2

<
- and t—'z = bt,, it can be shown that:
to(max) = t; (b + V3Cb)
to(min) = t, (b — V3Cb)
_, Since only non-negative values of time are allowed, C < -\—/1_5 The EPT can be
. determined through the following derivation.
:: ty t = to{max)
- EPT = [  tprot)ddt  + [ tpro(t)dt

t = t{min) t =1,
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ty t = tyb + V3Cb)
= f t; pry(t)dt + f t pro(t)dt
t = ty(b - v3Cb) t=1t

t"to(mln)
Completing the integration and using the fact that PRy(t) = ————
v12Cbt,

(PRy(t) is the probability that the response time of level two is less than or

equal to t) yields:

_ t; (1= b + V3Cb) N (b2 + VI2Cb? + 3C?b2 - 1)t,
- V12Cb 2v12Cb

This simplifies to

____ (1-2b + 2V3Cb + b? + 2v/3Cb® + 3C??),
EPT =
4V/3Cb

Table 5.4.3.2 shows the expected response times and throughput of systems

whose response times can modeled by uniformly distributed random variable.

5.4.4. Analysis of an Asynchronous System -- Two Probabilistic
Models

Now, consider the case where the levels operate asynchronously. t; is
assumed to be constant, as in the synchronous case. If t, can never exceed t;,

EPT is t;. For all such cases, a queue of length 1 is sufficient. In general. if X



Table 5.4.3.2.

SRT(DB), SRT(TB), and ST for t, fixed and t, uniform random variable.

C ty b || SRT(DB) | SRT(TB) | ST
0.577 | .50t, | 0.50 || 2.00t, 4.00t, | 1.00/t,
0.577 | .55t, | 0.55 || 2.00t, 4.00t, 1.00/t,
0.577 | .60t; | 0.60 || 2.03t, 4.06t, | 0.98/t,
0.577 | .65t, | 0.65 || 2.07t, 4.14t, | 0.97/t,
0.577 | .70t, | 0.70 || 2.11t, 4.22t, | 0.95/t,
0.577 | .75t, | 0.75 || 2.17t, 4.34t, | 0.92/t,
0.577 | .80t, | 0.80 || 2.23t, 4.46t; | 0.89/t,
0.577 | .85t, | 0.85 || 2.20t, 4.58t, | 0.87/t,

0.577

0.90

2.36t,

4.72t,

0.84/t,
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is the arrival rate of jobs from the previous level [ = -tl—] and p is the rate at
1

which the present level processes data sets | = j;—-l—-—— then the expected

 tpa(t)dt
t=0

queue size for an M/G/1 system can be determined by the following equation

[Che80]:

Clearly, as pu approaches A, the expected queue size gets arbitrarily large. If t,
exists over a finite range, then t,(max) may be substituted for the oc. This

equation simplifies to:

The expected waiting time in the queue can be determined by the equation
{Ful75]: W = t,xQ. Table 5.4.4.1 shows the expected queuelength (Q). the

expected waiting time in the queue (W), the expected system response time

(SRT). and the expected system throughput (ST) as a function of ?,_, when the
response time of level 1 is a constant t,. For the calculation of this table. it
was assumed that the data arrived at level 1 no faster than one job per time t.
1.e., the system could keep up with the incoming data. This is the same

assumption made for the synchronous case.
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Table 5.4.4.1.

The expected queue size {Q), expected time spent in a queue (W), the expected
system response time (SRT), and the expected system throughput (ST) for an
asynchronous system with t, fixed and t, an arbitrary random variable.

b Q W SRT ST
0.50 .50 1.00 0.50 t, 2.00t, 1.00/t,
0.55 35 1.20 0.66 t, 2.21t, 1.00/t,
0.60t, | 0.60 1.50 0.90 t, 2.50t, 1.00/t,
0.65

0.70

0.75

t, | 0.65 || 1.86 | 1.21t, | 2.85t, | 1.00/t,
t, | 070 || 233 | 1.63t, | 3.33t, | 1.00/t,
75t | 075 || 300 | 225t | 4.00t, | 1.00/t,
0.80¢t, | 0.80 || 4.00 | 3.20t, | 5.00t; | 1.00/t,
085t | 0.85 || 567 | 4.82t, | 6.67t; | 1.00/t,
0.90t, {090 || 9.00 | 810¢t, | 10.00t, | 1.00/t,
0.95t, | 095 || 19.00 | 18.05t, | 20.00t, | 1.00/t,
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SRT for the asynchronous system is be calculated as follows:

SRT =t +t, +W

When results of this analysis are compared with the previous results, the
asynchronous system will yield up to a 1870 greater throughput. Using
asynchronous hardware will provide greater utilization of the hardware.
Further, the asynchronous system will not need hardware to transfer data from

one swinging-buffer to another, unlike the triple-buffering scheme.

For the applications discussed earlier, it would seem that the asynchronous
systems are ‘“‘the way to go.” While, in general. they are feasible, there are
specific cases where it may not be advantageous to use an asynchronous
system: e.g., when response time is critical. While an asynchronous system has
a higher average throughput, for specific data sets there may be a significant
delay caused by time spent in a queue. The worst-case response time of an
asynchronous system could be greater than some threshold. In such an event,

an asynchronous system would not be desirable. On the average, however,

asynchronous systems offer higher throughput than their synchronous.
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5.4.5. Analysis of Systems Composed of Two Levels Whose Response

o Times Are Random Variables

The previous discussion held t, to be a fixed entity. Now, consider the case
where t, can vary. It will be assumed; however, that t; is Markovian. For
synchronous systems, the analysis must be divided into three parts because of
the three distinct ways that the times for the levels can be related. These
g three cases are shown in Fig. 5.4.5.1. {The dashed line represents the range of

processing times for t, and the solid line represents the range of processing
times for t,.) For the first case, EPT is t,. This the least complex and least

useful situation. Clearly, if there is no overlap between the processing times of

.

the levels, one of the levels is processing more quickly than is needed;

consequently, the stages of the pipeline are not balanced. Thus, the faster level

5% a
Ll_l.l./.'.

could be built with slower and presumably less expensive hardware.

Now, consider the case where the time span for t, overlaps with t,.

Assume that the maximum and minimum possible values for t; are t(max) and

t(min). EPT is (recall pri(t) is the probability that level i will have response
time t and that PR;(t) is the probability that level i will respond faster than
N time t): }‘

t,(min) ta{max)

EPT = [ typro(t)dt + [t pro(t) PRy(t; < t)dt

t =t;(min) t=t,(min)

t{max) ti(max)

+ [ tpr(t) PRyta < t)dt + [ tpry(t)dt

t=t,(min) t=tymax)

This can be transformed into the following equation: RO




Non-overlapping times
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Overlapping times
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Fig. 5.4.5.1. Three orientations of t, relazive to t,
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t,(min) to{max) t
EPT = f t; pro(t)dt + f t pro(t) f pri(x) dx dt
t=ty(min) t=t,(min}) x=t(min)
tz{max) t ty{max)
+ [ tpn(t) [ prfx)dxdt + [ tpr(t)dt
t=t){min) x=ty(min) t=ty(max)

Because of the complexity of this integral, its value must be calculated
numerically if the distribution of pr(t) or pry(t) is Gaussian. For the following

discussion, assume that p,(t) and py(t) are both uniform distributions. Recall

1
ti(max) — t;(min)

that: pri(t) = that t(max) is t;(1 + v3C) and that t,(min) is

t(1 — vV3C). If the standard deviation and mean of level 1 are o, and t,

respectively and the standard deviation and mean of level 2 are o, and t.

™

respectively, the following equation is the evaluation of the above integral. C;

-

0- ]
is defined to be — and b is =

: f_ Again, C; can be no greater than .577 if only
i 1

positive values of t; are to be allowed.

t, (1—\/§Cl)—(b-b\/§Cg)]
2bV/3C,

EPT =

t1[2b%(1 +V3C,)3 +(1-v3C,)*-3b2(1 + V3C,)¥( 1—\/50,)]
= 36C,C,b ’
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|(1+V3C))%-(b +bC2\/§)2]
4v3C,

Table 5.4.5.1 applies this equation to derive the expected response time and
system throughput of a double- and triple-buffered synchronous system as a

function of b, C,, and C,.

The final case, where one interval is contained in the other, is similar to
the previous case. EPT can be defined as follows (when the possible response

times of level 2 are a subset of those for level 1):

tz{min) t2{max) t
EPT = f -t.z pl'l(t)dt + f t p]'z(t) f pl‘l(x) dx dt
t=t,(min) t=ty(min) x=ty{min)
t{max} t ty(max)
+ [ tpr(t) [ oprox)dxdt + [ tpr(t)dt
t=tz{min) x =ty(min) t=ty{max)

The analysis for this case is similar to the previous analysis and it is omitted

here for brevity.

Now consider an asynchronous system with the same two levels. For this
analysis, level 1 is assumed to be Markovian. Any probability function that
can describe the response time of level 2 will be allowed. If level 1 runs
continuously then application of the Pollaczek-Khinchine formula predicts the

expected queue length to be [Ful75]:




Statistics for a synchronous system with both t, and t, uniform random vari-

ables.
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Table 5.4.5.1.

b | C C, || SRT(DB) | SRT(TB) | ST
0.9 | 0.500 | 0.577 || 2.49t, 498t, | 0.81/¢,
0.8 | 0.500 | 0.577 || 2.42t, 484t, | 0.83/t,
0.7 | 0.500 | 0.577 || 2.35t, 420t, | 0.85/t,
0.9 | 0.400 | 0577 || 2.40t, 4.80t, | 0.83/t,
0.8 | 0.400 | 0.577 || 2.36t, 472t, | 0.85/t,
0.7 | 0.400 | 0577 || 2.35t, 4.72t, | 0.85/t,
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1 _ 1], (©E+1
tl ti"

o
Here, C = =2, 0, is the standard deviation of the processing time for level 2.

—

to
Multiplying Q by t, yields the expected wait time in the queue. Thus, for an

asynchronous system the expected SRT is:
2 |L_1
bt b

2 1 _ 1]
2% U

The expected throughput of the asynchronous system is:

L

+ (C? + 1)

—n

b

w
-3
H

<
+

5!
+

Lo

1

ST = —————
max(tl‘ tg)

The memory requirements of the double-buffered system are 2N data sets

(Ny, is the number of levels in the system), while the memory requirements of

the triple-buffered system is 3N data sets. Finally, allowing a double input
buffer for the first level of the asynchronous system, its memory requirements

are 2 + (N — 1)Q data sets.

To relate the response time and throughput of the various systems. there
are three cases that can arise. t, can be less than, equal to, or greater than t,.
Applying the last case to the asynchronous system; it is assumed that a new
data set is arriving every t, seconds, thus the queue for level 2 would be

required to grow without bound -- clearly not feasible. Synchronous systems

...........................................
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would lose data sets in this event. A similar situation arises for the cases where

to =t

The following analysis will show how the three architectures behave when
to < t;. The distributions used to describe t, will be the normal distribution
(Gaussian) and the exponential distribution. Mean values of t, considered will

be .5t, and .75t,.

Figs. 5.4.5.2, 5.4.5.3, and 5.4.5.4 show the effects of E—2 and C on the
expected queue length for the second level of the asynchronous system. Fig.
5.4.5.5 shows the effects of C on the expected queue length of an asynchronous
system. C and fQ affect the time that a job spends waiting in a queue. For
systems in which the ratio of the standard deviation to the mean (C) is small,
the expected response time of level two does not have to be as fast as would be
required by larger values of C. Note: values of C larger than one are
meaningless because such a condition implies that negative processing times are
possible for level two. Table 5.4.5.2 shows the response time and throughput of
an asvnchronous system where each data set is processed only once, i.e., where
data sets are not fed back for more processing { W is the expected wait time in

the queue, and ST is the expected system throughput):

This table is true when the service distribution of the for the second level
is a general distribution. For an exponential distribution, C is defined to be
one. The results printed in this table merit discussion because they are not

intuitive. Consider the following diagram:
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Fig. 5.4.5.5 Q as f(C) [b=0.75]
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y Table 5.4.5.2.
Asynchronous system statistics (Gaussian).
:
- C to Q w SRT | ST
1.00 | 050¢t, || 1.00 | 0.50t; | 2.00¢t, | 1/t,
o 1.00 | 0.75¢t, || 3.00 | 225, | 400¢t, | 1/t,
- 0.75 | 050¢t, {{ 0.89 [ 0.45t, | 1.95¢, | 1/t
2 075 | 0.75¢t, || 2.51 | 1.88¢, | 3.63¢t; | 1/t,
o 0.58 | 050¢t, || 0.85 | 0.42¢t, | 1.92¢; | 1/t

0.58 | 0.60t, |[ 1.20 | 0.72¢t, | 2.32¢t; | 1/t;
058 | 0.65¢t, || 1.80 | 0.95¢t; | 2.60¢t; | 1/t,
058 | 0.70¢t, {| 2.20 | 1.25¢; | 2.95¢, | 1/t,
0.58 | 0.75¢t, || 2.25 | 1.69¢t; | 3.44t; | 1/t,
0.58 | 0.80t, |[ 293 | 2.35¢t;, | 4.15¢t; | 1/t;
0.58 [ 0.90t, || 6.03 | 5.67t, | 7.57¢t, | 1/t,
0.50 | 0.50t, || 0.80 | 0.40¢t, | 1.90¢t, | 1/t
& 0.50 | 0.75¢t, 11 2.20 | 1.65¢t, | 3.40¢t, | 1/t
- 0.25 | 0.55¢t, |[0.91 | 0.50¢t, [ 2.05¢;, | 1/t;
: 025 | 0.60¢t, || 1.07 | 0.64¢, | 2.24¢; | 1/t,
0.25 | 0.65t, || 1.29 | 0.84¢, | 2.49¢t, | 1/t;
' 025 | 0.70¢t; || 1.57 | L.10t; | 2.79¢; [ 1/t
= 025 | 0.75¢t, || 1.95 | 1.46t, | 3.21¢t, | 1/t,
0.25 | 0.80¢t, {| 250 | 2.00t, | 3.80t, | 1/t
0.10 | 0.50¢, || 0.75 | 0.38¢t;, | 1.87¢t, | 1/t;
N 0.10 | 0.55¢, || 0.88 | 0.48¢t; | 2.03¢; | 1/t,
> 0.10 | 0.60¢t, || 1.05 | 0.63¢, | 2.23¢, | 1/t,
0.10 | 0.65¢t, || 1.25 | 0.82¢t, | 2.46t, | 1/t
: 0.10 | 0.70¢t, || 1.52 | 1.06¢t, | 2.76¢t, | 1/t,
- 0.10 | 0.75¢t, || 1.80 | 1.42¢, | 3.17¢t, | 1/t;
5 0.10 | 0.80¢t, |[2.42 | 1.94¢t, | 3.74¢; | 1/t

b 0.58 | 0.55¢t, || 0.80 | 0.50t, | 2.11t, | 1/t,
.
-
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Level 1 Average response time
=t,
Level 2 Average response time
ty = .75 x ¢

It would seem to be reasonable no queue were needed between these two levels,
since on the average the second level completes its processing faster than the
first level: however. consider the case where level two requires l.25xf, to
complete two adjacent data sets and the normal .85xt; to complete the next
four data sets. and .65xt, to complete the final two data sets. The average N
queuelength is approximately 1. With a wide variation of response times and

many data sets. this can cause the expected queuelength to grow.

If the first level completes processing on several consecutive data sets

faster than t; then the data sets need to be queued for the second level. As ts
approaches t-,. the likelihood of the first level producing large numbers of jobs

faster than the second level can handle them increases.
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5.4.6. Analysis of Q

When considering the expected queue size, the expected wait time in the
queue, and the system response time of an asynchronous system, the previous
discussion assumed that there would be enough buffer memory to hold all the
data sets. The expected queu: size is the probabilistic term for the average
queue size. Thus, if a buffer memory size equal to the average queue size is
used, the probability of overflow is 0.5. At this point, no data sets can be
taken. Such an event at level I will cause processing to stop at level I-1 when
level I-1 attempts to send its results to level I. Rapidly, this will cause the
input queue for level I-1 to fill, halting level I-1. Thus, all levels in the system
will process data sets at the rate of level I, which is the slowest level in the
system. This effectively slows the asynchronous systems processing rate down

to the rate of a synchronous system.

It should be remembered that where an asynchronous system will halt. the
synchronous system will issue a signal that it is not ready. Thus, an
asynchronous system will be less likely to attempt to stop the stream of input
data. Because the asynchronous system queues its jobs, the response time for a
particular }ob can become large; however, this is not taken into account with
the synchronous system. Response time only refers to jobs that are in the
system, thus, statistically the SRT is biased in favor of the synchronous

system.

The probability of halting levels because of queue overflow in subsequent
levels can be greatly reduced by allowing an appropriate queue size for the
level-level queues. The next question becomes: “What is an appropriate qucue

size for a level-level queue?” This question can be addressed probabilistically.
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From the definition of Q, P(queuelength > Q) = 0.5, this can be expanded to: Lot

P(queuelength > k Q) = 0.5%. Depending on the margin of safety desired. the
buffer size can be chosen appropriately. Table 5.4.6.1 shows the probability of

the queue overflowing versus the size of the queue. This table shows the

expected probability of overflow for a queue that is a multiple of Q. It does
not take account of the processing requirements of the data sets, i.e., how likely .-‘:__:'_'.ff_'
is it that level I will complete its processing slower than the rest of the system

on this many data sets. Here, the underlying assumption is that level I is as

likely to be slow after one job as after 100. Such being the case, this table ::f::.:‘_:i:

represents a ceiling on the probability of overflow.

When the memory required for Q is large, the cost of overflow protection
can be significant, so a tighter limit may be required. If the queue for level |
overflows then the throughput of the system will drop to that of a synchronous
system. Further, it will have the response time of an asynchronous system with
its buffers full for levels 1 - I-1. for a system with 1 levels, the response time
can be calculated as fo.lows:

| [ 1
SRT(overflow) = SEPTI + SQ.EPT[ + S QlEPTl
i=1 i=1 i=l+1

+

This can represent a significant amount in the case where a large amount of

buffering is allocated (again it should be noted that a synchronous system

would halt its input stream). When only k of the previous input buffers fill,
the SRT can be shown to be:
1 I 1
SRT(k levels full) = VEP; + ¥V QEPT; + Y QEPT;
i=1 i=1-k i=l+1
The previous tables of asynchronous system values, thus need to be weighted

according to the probability of overflow. This is done as follows:
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X
: Table 5.4.6.1.
Probability of overflow versus Q
j P{overflow) || Q x
. 0.50000 1.0
. 0.25000 2.0
3: 0.12500 3.0
3 0.06250 4.0
0.03125 5.0
0.15625 6.0
: 0.00781 7.0
X 0.00390 8.0
. 0.00195 9.0
0.00098 10.0

At
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]
SRT(w/overflow) = (1= 7i" Pfoverflow))SRT
1=1

+ P,

1

11—
(1~

(overflow affects j levels)x(number of jobs queued)xt;(max)

1

1

The case where the overflow causes level 1 to stop the unit loading the data,
lost data sets cannot be counted and cannot be accounted. For calculation,
this can be avoided by assuming the level 1 has an arbitrary queue size, thus

no jobs are lost, only queued.

The system throughput (ST) can be calculated by a weighted summation

i T Y ‘-

NS

of the synchronous and asynchronous cases. Define ovf to be the total

Iy

probability that an overflow will occur. Then 1-ovf will be the probability that

LN

an asynchronous system will run asynchronously. For the asynchronous cases

presented, this becomes:
ovf = ovf; + ovf,

(ovf;) is probability that level i will overflow its input buffer. Using the

definition of ovf, the weighted system throughput becomes:

ST(with overflow) = (1 — ovf)ST(asynchronous) + (ovf)ST(synchronous)

Thus. for a system where the response time for the first level is a constant t,
and the response time for the second level is a Gaussian distribution function,

if C=0.75 and b=0.75, and the total probability of overflow is 0.75, ST is:

ST = 75x 0 + 25x 22 = 01

1 ty ty
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The overflow of a buffer does not have a significant effect on an
asynchronous system'’s throughput. It affects the SRT. A synchronous system
(built with similar hardware) would use some form of flow control to inform the
device supplying the inbound data to halt. An asynchronous system would
have to do the same only when all the internal buffers were filled. For real-
time systems, this is clearly not desirable because data would be lost. An
asynchronous system would be less likely to stop the incoming flow of data

than a synchronous system because of the internal queuing.

5.4.7. Double-buffering Versus Triple-buffering -- An Analysis

In general, a synchronous system that is double-buffered will have a faster
SRT than a system that is triple-buffered. Both systems will have the same
ST. Thus, it is reasonable to question the need for a triple-buffered system.

The following discussion will consider this question.

Assume that each level of the proposed system is physically remote from
the other levels. The time for a level to write data into the double-buffer would
be 6txdss, where dss is the size of the data set size. Here, the processor would
wait for dss responses from the buffer memory. This would adversely affect the
processing speed of the system because the data transfer time is a portion of
the processing time. If a triple-buffered system were to be used here, the total
data transfer time would have to exceed the maximum processing time of the
levels involved before it could have a affect ST. Where levels are not
geographically remote, 6t is small and has little effect. Thus, triple-buffering is

pot needed.
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A combination of the two buffering strategies is possible where some levels
are close and others remote. An example of this can be seen where some levels
share a given rack, while others are in another rack. Between.levels in a given

h rack, data transfers are quick, so double-buffering can be applied. Between

oy

racks, data transfers may be slow, so triple-buflering may be applied. This

technique offers the advantages of a triple-buffered system without unnecessary

PR A AN

delays where data does not need to travel a great distance. Further, the
throughput of the system is not degraded when the data must travel to a

: remote location.

Thus, where transmission time between levels is significant, triple-buffering
is a useful tool because it overlaps the data transmission time with the data
N processing times. When transmission time is not a significant problem, the
triple-buffered scheme will use extra memory and hardware. Further, use of a
triple-buffered system will increase the system response time by the response
- times of all levels using triple-input-buffers. This can represent a significant

increase in system response time over the double-buffered approach.

5.4.8. Synchronous Systems Versus Asynchronous Systems

Where there is no ceiling on the response time of a system, such as in a
non-real-time environment, asynchronous systems offer potentially greater
throughput than synchronous systems with the same processing hardware.

Considering that in a synchronous system, levels that complete their processing

sooner than other levels must wait for the slower levels to ‘‘catch up.” In a
real-time environment, synchronous and asynchronous systems built with

similar hardware will yield interesting results. If the hardware is built so that

...........
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the synchronous system can keep up with the incoming data, the asynchronous
system will be idle. The response time on the asynchronous system will be
slightly faster than on its synchronous counterpart, because the entire
synchronous system waits on its slowest level. The entire asynchronous system
will not wait on the slowest level (unless the pipeline is full), so the effect of the

slowest level is more limited in the asynchronous case.

If two independently designed systems, one synchronous, the other
asynchronous, are built to process the same task, There will be little difference
in the price. The synchronous system will require more expensive processing
hardware, while the asynchronous system will potentially require extra
memory. The key issue is that if, from a given database, a synchronous system
cannot be built to execute a given task within some time constrains, an
asynchronous could be used to up the ST and decrease the SRT by a
significant amount. For non-real-time systems, asynchronous systems can be
built for less money than the synchronous systems because large amounts of
buffer memory are not needed -- thus the asynchronous system would be the
better choice. For real-time systems, the asynchronous system has a variable
response time, depending on the loading of the pipeline, thus if a variable

response time is undesirable, a synchronous system should be used.
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5.5. System Simulation -- Results

To either prove or disprove the theoretical results presented in the

o N b A I

previous sections, a simulator (shown in Appendix 1, was developed. This

section will present and analyze the results of the simulation.

The numbers presented in Table 5.5.1 represent the simulated performance
of a two level system, where the response time of the first level is fixed and the
response time of the second level is a uniform random variable. Both
synchronous and asynchronous statistics are shown. When the synchronous
statistics are compared with the statistics shown in Table 5.4.3.2, the theory
predicts the the actual results with a maximum error of 0.03. “b (actual)” is
the actual ratio of t, to t;. Due to some inconsistencies in the random number

generation, the expected ratio, as defined in the second line of the results, is

e’
ARV

not the actual ratio. Results for the case when level 2 is a Gaussian random
variable are shown in Table 5.5.2. When compared with the results shown in
Table 5.4.3.1 (C for this table is approximately 0.25), the simulated results
differ from the theoretical results by no more than 1 percent. Thus, for the
simulated data sets, the theory presented is an accurate representation or the

actual results.

When comparing the results for the asynchronous system in Table 5.5.2 to
the proposed results shown in Table 5.4.4.1, it is again necessary to take ‘b
(actual)” into account. For uniform data there are some interesting results
that arise {rom this comparison. Taking the ratios (based on the actual value

of b) of Q.. and Q to the Q predicted in Table 5.4.4.1, the first ratio falls in

X the range 1.45£0.155. The second ratio falls in the range: 0.1440.05.
Comparison of these results shows that the maximum queue size is

approximately ten times the average queue size (based on 200000 test runs).
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Table 5.5.1

Uniform system response times (200000 samples).

Parameters Synchronous Asynchronous
System System
t—f— b (act) || SRT(DB) SRT(TB) ST(Xtl) || Qmax Q —S-%—
1.00 1.06 2.56 5.12 78 |l 11596 5764 6113
0.95 1.02 2.48 4.96 .81 2230 976 988
0.90 0.96 241 4.82 .83 39 349 5.04
0.85 0.90 2.34 4.68 .86 16 1.42 2.99
0.80 0.84 2.26 4.52 .88 7 073 2.33
0.75 0.80 2.20 4.40 91 6 0.54 2.08
0.70 0.74 2.14 4.28 .93 4 0.29 1.89
0.65 0.70 2.08 4.16 .96 2 0.17 1.76
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Table 5.5.2.
!
: .
‘! Gaussian system response times.
8
.
Parameters Synchronous Asynchronous
System ’ System
. t2 = SR
Samples ey SRT(DB) SRT(TB) ST(Xtl) || Qmax Q T
200000 1.00 2.10 4.20 0.95 520 353.73  255.71
200000 0.95 2.08 4.16 0.96 201 36.45 38.03
200000 0.90 2.03 4.06 0.99 1 0.15 1.92
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Further, that with 89% accuracy, 1.45 times the predicted queue size yields the
maximum queue size. Thus, for response times that can be modeled as a
uniform distribution, 1.45 times the queue size predicted by the application of
the Pollaczek-Khinchine is an accurate model of the maximum queue needed
for the inter-level buffer of a system where a level with a fixed execution time
is feeding data to a level with an execution time that can be modeled by a

uniform random variable.

If the execution time of the second level in a system can be modeled by a
Gaussian random variable, the Pollaczek-Khinchine rule does not accurately
predict the expected queue size of the system when the average response time
of the second level is more than .95 times the response time of the first level.
This is shown by comparing the results in Table 5.5.2 with those in Table

5.4.4.1.

The statistics presented Table 5.4.5.1 for a synchronous system are 30
percent lower than results achieved through simulation shown in Table 5.5.3.
For the simulation, C; = 0.570 and C, = 0.577. The results of the simulation
show that a synchronous system behave slightly worse than the theory predicts.
Finally, the simulation results presented in Table 5.5.4 (C=0.58) show that the
expected theoretical queue sizes presented in Table 5.4.5.2 are 30 percent

greater than the actual average queue size.

The results of the simulation show that synchronous systems behave worse
than the theory predicts and that asynchronous systems behave better than the
theory predict. To achieve the same throughput, synchronous systems require
hardware that is twice as fast as asynchronous systems performing the same
task. Further, for a two level system, when the expected response time of the

second level is 75 percent of the first level, the asynchronous system will
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Table 5.5.3 —

Synchronous system response times when the response times of both level 1 and '::-h
level 2 can be modeled by a uniform random variable. SR
»
. (N
o et
. 105

Samples % || SRT(DB) SRT(TB) ST{(/t1)

» »
Lo
.
« %O
LI O
. TR
d

tl T
- ‘.’.&l >,
K ‘v“sw—«’
N .,‘}..‘—
' 1IE+06 1.00 2.71 5.42 0.74 el
S
1IE+06 095 2.64 5.28 0.76 s

IE+06  0.90 2.60 5.20 0.77
: | 1IE+06 0585 2.53 5.06 79
| LE+06  0.80 2.16 1.92 0.81
IE+06 075 2.42 1.84 0.83
IE+06  0.70 2.37 5.74 0.85

IE+06  0.65 2.32 5.64 0.86 I
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Table 5.5.4 Kezr

Performance statistics for an asynchronous syvstem whose levels can be modeled S
by uniform random variables. -

Samples — Qna Q

2E+05 1.00 || 177 62.8 1.00
2E+05 0.95 39 6.01 1.00
2E+05 0.90 29 297 1.00
2E+05 0.8 20 1.56  1.00
2E+05 0.80 13 122 1.00
2E+05 0.75 12 0.88 1.00
2E+05 0.70 10 .67 1.00
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generate results more quickly. This is the worst case and occurs when the
distribution of the second level can be modeled by a uniform distribution.
| When the second level can be modeled by a Gaussian distribution, the results
are more pronounced (the cross-over point occurs when the average response

time of the second level is 85 percent of the first level).

5.8. Conclusions

5 Theory and background information was presented to relate the
performance of both asynchronous and synchronous systems. The theory
predicted that synchronous systems would have 84 percent of the throughput

. of asynchronous systems. Through simulation, this figure was shown to be up

to 16 high. Application of the theory to asynchronous systems showed that

‘-.l
for certain hardware configurations, asynchronous systems had both greater e,

et & i,
.
A

throughput and lower response time. The key disadvantage to asynchronous >

systems is clearly that the response time can vary by a large amount. For

real-time systems, this fact is significant enough that asynchronous systems

may not be feasible.
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SIMULATOR LISTINGS

System Simulator Level 1 Response Time Fixed and
Level 2 Response Time Uniform Random Variable

#include<stdio.bh>

/.....‘...Q‘..‘..“.....‘0..‘..‘.‘.“......‘...‘..........C‘..‘.‘..".:/

/* This simulator was written for a Gould Powernode 9080 rupning UNIX o/

/¢ 4.2 BSD. [t simulates

the execution of both a synchromous and

an o/

/* asynchronous two level system, keeping track of the level-to-level ¢/

/¢ buffersizes and the response times of the second level. For
it is assumed that the distribution describing the res- ¢/
and ¢/
It is rup on a o/

/¢ simulator, it
/¢ time of the second
/% that the first

[evel

tevel has a constant response time.

the uniform distribution function,

this ¢/

/+ total of 200,000 data sets per simulatioo statistic, Tequiring o/
/% more than 1.0Mb storage and more than 2 hours to complete ¢/
ie

s/

/....‘....O.‘O..‘.........‘.“.“..‘.‘.‘..‘......‘..‘...‘.....‘..‘.‘.“/

#define EVENTS 200000
#define FEVENTS 2000600.0
FILE ¢f1;

int density([16];

|+ NOBASE e/
float timelist [100+EVENTS];
int pqueuesize mqueuesize,

/¢ Events per simulation

/e,

/o

floating point
file pointers
for density functtion

representation

Goufd Firebreather 9080 Compiler

needs the NOBASE because
it needs to use a different
addressing mode to handle
arrays.
li1st of event times

large

/¢ present and maximum queuesizes

-
[ N 3
~

-
——

Tl S BT @ e e &
T

1at rqueuesize; /¢ total jobs stored in queues
float 1dletime; /¢ idietime for second level .
float rlsptime; /* response time for first level e/
float resptime; /o response time for second level ./
float rrsptime; /¢ cumulative time for second (evel ./
float sysresptime; /¢ system response time L
float synchresptime; /¢ syochronous system response time L
float pent|] = {1 00, /e ratio of: .’
0.95, 0 90, Je response time of Jevel 2 o
0.85, 0 80, [ e ———————— e L
0.75, 0 70, /o response time of jevel 1 o,
0.65, 0 60,
0 55, 0. .50,
0.00 };

main()

float ktime; /¢ time keeper o/
float rtime; /* response time keeper o/
int eventtime, /¢ event duration LI
iat 1, /¢ event counter L3
iot- 5, /* event counter ./
fi=fopen("simulation.results” "w"), ¢ open files ./

srapdom(get
Vf{ f1==NULL

exit
{or(1=0.pcnt

i1d{)):
).

/* initialize random number generator o/

;1>0.0;j++)
pQueueyize=0;

/e initialize atl

statistical keepers o/

mqueuesi1ge=0;
rquevesige=0;
tdietime= ¢.0;
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rlsptime=

0.0;
resptime= 0.0;
rrsptime= 0.0,
sysresptime= 0
for(i=0:i<16;i

deasity(

ktime=8 .0/16.0;

for(i=0,;,i<100+EVENTS,i++) /¢ generate random events o/
{ timelist{i] = ktime;
ktime+=0.5;

rlsptime=ktime;

synchrespt ime=0.0;

ktime=0 0,

rrsptime=0.0;

for{1=0,; i<EVENTS;i++)

{ eventtime = 017 & random{); /¢ random number o/
/* 0 and 15 .

density|eventtime]++;

eventtime+=i;

rtime = pcot{j]/16.0¢(float) eventtime;

rrsptime*=rtime;

if(rtime<(8.0/16 0)})
synchresptime+=8.0/16.0;

else
synchresptime+=rtime;
statquene( i+l ktime, rtime); /* queuesize o/
if{ktime<timelist|i}) ‘
{ idletimet=t imelist{i]-ktime,
ktime=timelist[il+rtime;
else
kt ime+=rtime,
resptime+=ktime-timelist i},
1f(1>1)
{ sysresptimet+=
} rtime+timelist{ii-timelist{i-1];
fprlntf}f "\ f\nin'n System simulationin'n"),;
fprintf(f1, "Sample set size: %6d\n",
EVTS)
fprintf(f1, 'Pro;ess|ng time of level 2 (times level 1) %6 2f'n” .
cntj)
fprnntf(fl Averzge processing time (level 1) %6 2f'.n".
risptime/(float)(100+EVENTS)),
fpraiotf(f1. Average processing time (Ievel 2) %6 21 n” .
rrsptime FEVENTS),
fpr|nt!}fl.'\n Asynchronous system statistics'n”),
fpriat{{f1,"Average size of level-level queue 2f o”

%6
sﬂoat) rqueuesize FEVENTS) .
fpriotf(11,"Maximum size of level-level queue %6
mqueuesize)
fpriatf{ ({1 "Average response time {level 2): %6 2f'n”,
_ resPtlme/FE\’B\TS).
fprintf{ Average system response time (tlme~ t1) °s6
rlsptime/{FEVENTS+100 0))+(resptime, FEVENTS))/
sptlme/(ﬂoat) 100+EVENTS ) ) ) ;
fprint{{ "Approximate Percent Idle time {level 2) %6 2f\n",
0 Ooudletxme’tlmelnst EVENTS! ) ;
,"he Svnchronous system 3tatxst|cs\n ).

1.

(t

ri

1.

0

fprintfé 1
1,"Synchronous SRT(DB) (x t1): %%.QI\n'

”

T

1

3

r

1

fprintf ,
Osyncbrespllme’FEVBVTS)
lsptume/(ﬂoat)(lOO*E\EbﬂV));;
"Synchronous SRT({TB) (x

synchrupt ime ; FEVENTS ) /

fprintf( %6 . 2f\n",
[

) tsptime, (float) 100+EVENTS ) } ).

fpriotf(f1, "Synchronous ST(/ t1) %6 .2f\n"

0/((synchrespt|me/FEVEBWq;<

1 ))

o~ s e, oy Sy Pt o e Sy
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fprintf(f1,"\n\n Distribution of level 2 response times:\n");
for(z=0;i<8;i++z
fprintf{f1,"%10d - %6d %2d - %6d\n",
i+1,density[i],i+0,density[i+8]);

Bush(f1);

)
statqueue(pos,prestime,proctime)
int pos;
float prestime, proctime,

int );

pqueuesize=0;

for(j=pos;:((j<(100+EVENTS))&&(timel1st[j|<(prestime+proctime)));j++)
pgueuesize+t,

if(pqueuesize>mqueunesize)
mqueuesize=pqueuesize;

rquegesite+=pqueunesize,;

riAEdAE! B

L dE S




System Simulator
Level 1 Fixed and Level 2 Gaussian Random Variable

#include<stdio h>

l"..'......""....‘......'....“.“.‘0‘.".......‘.....‘..'.....‘.‘../
A o/
‘s This simulator was written for a Gould Powernode 9080 running UNIX e/
‘s 4.2 B3D It simulates the execution of both a synchronous and an o/
¢ asynchronous two level system, keeping track of the level-to-level o/
s buffersizes and the response times of the second level. For this ¢/
¢ simulator, it is assumed that the distribution describing the res- o/
* time of the second level is the uniform distribution function, and e/
[ ]
.
]
L]
]

j

that the frst level bas a constant response time. It is run on a ¢/
total of 200,000 data sets per simulation statistic, requiring ¢/
more than 1. OMb storage and more than 2 bours to <complete o/

o/

.‘.O‘t.t.‘l...‘.‘..0‘0...‘..‘..OO.‘.Q.‘..‘.‘OO‘O..O...‘..‘O‘O“‘.0‘0./

#define EVENTS 200000 /e Events per simulation ¢/
=define FEVENTS 200000.0 /e floating point representation ./
FILE ¢f1; file pointers .
int deasity{16;; for density function
Gould Firebreather 9080 Compiler
needs the NOBASE because
it needs to use a different
addressinog mode to bandle large
/% NOBASE /e arrays.
float timelist {100+EVENTS |, /o list of event times
1Dt pqueuesize mqueuesize,; /% present and maximum queuesizes
int rqueuesize; /® total jobs stored in queues
float 1dietime; ¢ idletime for second level
float risptime; response time for first level
float resptime; response time for second level
float rrsptime; cumulative time for second level
float sysresptime, system respoase time
float synchresptime; synchronous system response time

Boat peat{| = {1.00, /¢ ratio of:
85, 0. response time of level
85, .
.75, 0. response time of level
.65,
.55, .
.00 };

float ktime,; /* time keeper

float rtime, /% response time keeper
int eventtime; /* event duration

it i /® event counter

1ot ), /e event counter

fi1=fopen("simulation results gauss” "w" ). /¢ open files

srapdom(getpid()}); /e initialise random number generator
1f(f1==NULL)
exit(),
for{y=0.pcnt, )} >0 0,j++)
{ pqueuesize=0; /o imitialize all statistical keepers
mqueuesize=0,
rqueunesize=0,
idletime= 0 0:
rleptime= 0 O
resptime= 0 0,
rrsptime= 0.0,
sysresptime= 0 0,
for(1=0,1<16;1++)
density[1]=0;

ktime=8 .0/16.0,

for(i=0;i<100+EVENTS 1++) /¢ generate random events ¢/
timelsist ] = ktime,
\ ktime+=0.5,;

risptime=ktime,
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synchresptime=0.0;
2 ktime=0.0,
rrsptlme-o 0,
for(i=0;i<EVENTS; i+t}
{ eventtime = gauss(); /¢ rapdom number o/

/¢ 0 and 15 e/

density[eventtime|++;
eveptt ime+=],
rtime = pcnt!j}/16 0e(Boat) eventtime,
rrsptlme+‘rt|me
if(rtime<(8. 0/16 0))
synchresptime+=8 0/16 0;

AR

else )
synchresptime+=rtime;
N statqueue( i+l ktime, rtime), /% queuesize o/
= if(ktime<timelist(il)
b { idletime+=t imelist I ktime:
a ktime=timelist|i]|+rtime;
else .
ktime*+=rtime;
:{ resptimet=ktime-timelist{i];
-, 1f(i1>1)
", - { sysresptime+=rtime+timelist{i|-timeiist{i-1],
S H
s
. fprintf(f1,”\f\o\n\a System simulation'nin");
fprintf(f1 ”Sample set size: msd‘ "
EVBVT

fprintf(fl Procesa|ng time of level 2 (times level 1)%6 .2 'n",
cnt j
fprlntf(fl verage processing time (level 1).
rlsptlme/%ﬂoat)(100+EVEbﬂS))
fprintf(f1,"Average processing time (Ievel 2): 96 .2f\n",
rrsptlme/FEVBVTS)
fprintf(f1, '\n Asynchronous system statistics\n")
fprintf fl "Average size of level-level queune:
foat) rquenesize/FEVENTS],
fprintf(f1,"Maximum sisze of level-level queue:
mquenesnxe)
fprintf(f1,”Average response t{ime (level 2):
resptime/FEVEVTb)
fprintf(f1, "Average system response time (times tl1):
(rlsptlme/gFEVENTS+100 0))+Srespt|me/FEVBVTS))
rlsptlme/( 0at)(100+EVENTS)))
,"Approximate Percent Idle time (level 2)
0.0eidletime/timelist!EVENTS]);
,"\n Synchronous system statlstlcs\n ),
,"Synchronous SRT(DB) Sx t1):
esynchresptime/FEVENTS)/
lsptime/(ﬂoat)(lOO*EVEVTS));:
,"Synchronous SRT(TB x t1
esyanchresptime/FEV S)/
1
0
1

[+

—

-]
Pl

g?..
0
-

fprintf .2f\n"

fprintf
fpriotf

——
[N

.2f\a”,

.2f\n",

R ‘ss\;sssnz

sptlme/(ﬁoat)(100+E\Tbﬂ3)))
"Synchronous ST{/ t1
/({synchres;? me/FE

.2f\n",
sptime/(float ;(xooﬂ:vmrs;)))

1
10
f1
f1
§2

r
fprintf(f1

3
§r
fprintf(f1

1.

(r
fprintf(f1,”\n\n Distribution of level 2 response times:\n");
for(i=0; i<8; 1++)

fpnnr(n "%od - t6d %2d - "'osd\n
i+1 ,densityli],i+9 density!i+8]);

Rash(f1);
}
statqueue(pos,prestime,proctime)
int pos;
float prestime, proctime;
1ot };
pqueuesige=0;
for{j=pos;((j<(100+EVENTS))&Z(timelist[j|<(prestime+proctime}));j++)
f.' . -.- et
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pqueuesizet+t,

Uil 3
. a e

if(pqueuesisemqueuesize)
mqueuesizeSpqueuestze,

rqueuesizet=pqueuesisye;

ol ta e

auss() /¢ generate gaussian rv using central limit theorm ¢/
7 register int 1,),

g

1=0,
for(i=0,i<20;i++)

j+= 017 & random(};
T, return(j/20);

s
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Results of Asynchronous System Simulation
Uniform Distribution (Both Levels)

e Imm.ﬁ

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 1.00
Average processing time {(level 1}: 0.50
Average processing time (level 2): 0.53
Asynchronous system statistics
Average sise of level-level queue: 5764.08
Maximum sise of level-level queune: 11596
Average response time (Vevel 2): 3056.16

Average system response time (times t1): 6113 30
Approximate Percent [dle time (level 2 0.00

Synchronous system statistics
Synchronous SRT(DB X tlgz 2 56
Synchronous SRT(TB x tl): 3. 84
Synchronous ST(/ t1): 0.78

Distribution of leve! 2 response times

- 1 - 12479 9 - 12581
. 2 - 12480 10 - 12640
o 3 . 12608 11 - 12221
o 4 - 12409 12 - 12600
o 5 - 12579 13 - 12332
. 6 - 12506 14 - 12474

7 - 12502 15 - 12562

8 - 12453 16 - 12394

System simaulation

Sample set size: 200000

Processiog time of level 2 (times level 1): 0 95

Average processing time (level 1): 0.50

Average processing time (level 2j: 0.51
Asynchronous system statistics

Average size of level-level queue: 976.24

Maximum size of level-level queue: 2230

Average response time (level 2): 193.88

Average system response time (times t1): 988 .76

Approximate Perceat Idle time (level 2 0.00

Synchronous system statistics

Synchronous SRT(DB x t1): 2.48

Synchronous SRT(TB x t1): 3.72

Synchronous ST(/ t1): 0.81

Distribution of level 2 response times:

1 - 12623 9 - 12424
- 2 - 12496 10 - 12437
3 . 12568 11 - 124867
! 4 - 125638 12 - 12302
k= 5 -« 12392 13 - 12479
B 6 - 12715 14 - 12504
i“ 7 - 12578 15 - 12579
o 8 - 12478 16 - 12620
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. System simulation
0y .
) Sample set size: 200000
Processing time of level 2 {times level 1): 0.90
Average processing time (level l{' .50
n Average processing time (level 2 0.48
4
Asynchronous system statistics
Average sisze of level-level queue: 3.49
Maximum size of level-level queue: 30
Average response {ime {Yevel 2) 2.02
Average system response time (times t1): 5.04
Approximate Percent 1dle time (level 2 4.13
Synochronous system statistics
Synchronous SRT DB% x t1): 2.41
Synchronous SRT{TB x tl): 3.62
R Synchronous ST(/ t1): 0.83
Distribution of level 2 response times:
1 - 12606 g - 12614
2 - 126086 10 - 12404
3 - 12365 11 - 12362
4 - 12298 12 - 12441
5 - 12633 13 - 12349
6 - 12568 14 - 12501
7 - 12601 15 - 12307
8 - 12774 16 - 2571
System simulation
Sample set size: ) 200000
Processiog time of level 2 (times level 1): 0.85
Average processing time (level 1): 0.50
Average processing time (level 2): 0.45
Asypchronous system statistics
Average size of level-level quene: 1.42
Maximum size of level-level queune: 16
. Average response time (level 2): 0.99
- Average system response time (times t1): 2.99
- Approximate Percent Idie time (level 2 9.26
y Synchronous system statistics
-, Synchronous SRT(DB) (x tl;: 2.34
Synchronous SRT TB% %x t1): 3.51
Synchronous ST(/ t1): 0.86

;
tf Distribution of level 2 response times:
o 1 - 12458 9 - 12590
o 2 - 12573 10 - 12617
- 3 . 12504 11 - 12567
3 4 - 12363 12 - 12488
5 - 12369 13 - 12444
6 - 12643 14 - 12608
T 7 - 12475 15 - 12464
8 - 12385 186 - 12452




System simulation

A Sample set sige: 200000
' Processing time of level 2 (times level 1): 0.80
Average processing time (level 1): 0.50
Average processing time {level 2 0.42

\ Asynchronous system statistics
\ Average size of level-level quene: 0.73
~ Maximum sise of level-level queune: 7
~ Average response time (level 2): 0.67
Average system respomse time (times t1): 2.33
5 Approximate Percent Idle time {level 2 15.11

Synchronous system statistics

2 Synchronous SRT(DB} (x t1): 2.26
3 Synchronous SRT(TB) (x t1): 3.39
X Synchronous ST(/ t1): 0.88

Distribution of level 2 response times:

1 - 12715 9 - 12579

2 - 12334 10 - 12442

. 3 - 12676 11 - 12404
‘L 4 - 12338 12 - 12504
" 5 - 12501 13 - 12413
K 6 - 12486 14 - 12402

" 7 - 12701 15 - 12367

A 8 - 12470 16 - 12528

System simulation

Sample set sise: 200000

- Processing time of level 2 (times level 1): 0.75
N Average processing time (level 1): 0 50
o Average processing time (level 2}): 0.40

Asynchronous system statistics

< Average sise of level-level queune: 0.47
Maximum size of level-level queue: 6
Average response time (level 2): 0.54
Average system response time (times t1): 2.08
Approximate Percent !dle time (level 2 19.79 ,

PR

Synchronous system statistics -y

1 a4 a2

N Synchronous SRT DB{ Ex tl;: 2.2 LRy
N Synchronous SRT(TB) (x t1): 3.30 S
Synchromous ST(/ t1): 0.91 Tty
. Distribution of level 2 response times:
- 1 - 12528 9 - 12299
- 2 12488 10 - 12402
-, 3 - 12461 1) - 12442
-, 4 - 12530 1¢ - 12627
- 5 - 12657 13 - 12582
6 - 12552 14 - 12639
- 7 - 12518 15 - 12303 b
! 8 - 12424 16 - 12538 v

I X A
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System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.70
Average processing time (level 1): 0.50
Average processing time (level 2): 0.37

Asynchronous system statistics

Average size of level-level queue: 0.29
Maximum sise of level-level queue: 4
Average response time (level 2): 0.45
Average system response time (times tl1): 1.89
Approximate Percent Idle time (level 2 25.40
Synchronous system statistics
Synchronous SRT(DB Ex t1): 2.14
Synchronous SRT(TB x t1): 3.21
Synchronous ST(/ t1): 0.93
Distribution of level 2 response times:
1 - 12427 9 - 12345
2 - 12610 10 - 12499
3 - 12508 11 - 12433
4 - 12517 12 - 12447
5 - 12551 13 - 12642
6 - 12484 14 - 12478
7 - 12485 15 - 12499
8 - 12448 16 - 12627
System simulation
Sample set sise: 200000
Processing time of level 2 (times level 1): 0.65
Average processing time (level 1): 0.50
Average processing time (level 2): 0.34
Asynchronous system statistics
Average size of level-level queue: 0.17
Maximum size of level-level queue: 2
Average response time (level 2): 0.38
Average system response time (times t1): 1.76
Approximate Percent Idle time (level 2 30.85
Synchronous system statistics
Synchronous SRT(DB x t1): 2.08
Synchronous SRT(TB x t1): 3.13
Synchronous ST(/ t1): 0.96

Distribution of level 2 response times:

1 - 12503 9 - 12439
2 - 12736 10 - 12485
3 . 12482 11 - 12472
4 - 12569 12 - 12590
5 - 12204 13 - 12490
6 - 12422 14 - 12479
7 - 12698 15 - 12327
8 - 12458 16 - 125656
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: System simulation
N Sample set sige: 200000
A Processing time of level 2 (times level 1): 0.60
Average processiug time (level 1): 0.50
Average processing time (level 2): 0.32
, Asynchronous system statistics
! Average sise of level-level queue: 0.09
! Maximum sise of level-level queue: ]
Average response time (level 2): 0.34
Average system response time {times t1): 1.67
¥ Approximate Percent Idle time (level 2 36.08
Synchronous system statistics
- Synchronous SRT(DB) (x t1): 2.05
\ Synchronous SRT(TB) (x t1}: 3.07
X Synchronous ST(/ t1): 0.98
“ Distribution of level 2 response times:
b 1 - 12414 9 - 12525
2 - 12558 10 - 12522
3 - 12514 11 - 12383
? 4 - 12525 12 - 12470
N 5 - 12521 13 - 12583
N 6 - 12388 14 - 12300
R 7 - 12469 15 - 12738
a 8 - 125390 16 - 12590
System simulation
- Sample set sige: 200000
N Processing time of level 2 (times level 1): 0.55
~ Average processing time (level 1): 0.50
- Average processing time (level 2): 0.29
s Asypchronous system statistics
Average sixe of level-level queune: 0.03
Maximum sise of level-level quene: 1
- Average response time (level 2): 0.30
S~ Average system response time (times tl): 1.60 o
- Approximate Percent Idle time {level 2 41.29 -J:
5 -
% Synchronous system statistics .i:
N Synchronous SRT(DB %x t1 2.02 N
3 Svochronous SRT(TB) (x t1 3.02 N
Synochronous ST(/ t1): 0. 99 =,

Distribution of level 2 response times:

\ 1 - 12745 9 - 12467
5 2 - 12387 10 - 12420
& 3 - 12443 11 - 12800
. 4 - 12518 12 - 12424
f 5 - 12543 13 - 12510
6 - 12420 14 - 12515
7 - 12615 15 - 12493
8 - 12421 16 - 12309
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System simulation )
¢ . p A
Sample set sisge: ) 200000 o A
Processing time of level 2 (times level 1): 0.50
Average processing time (level I; 0.50 =
o Average processing time (level 2): 0.27 Y
» ]

e Asynchronous system statistics 3¢ ‘}

P Average sise of level-level queune: 0.00 P .'

y Maximum site of level-level quene: 0 ."\’I}

o Average response time (level 2): 0.27 ‘_L'v‘h(a‘

Il Average system response time (times t1): 1.54 BN

Approximate Percent Idle time (level 2 45.85 ®
| \J

3 Synchronous system statistics ":-(,{
. Synchronous SRT(DB }x t1): 2.00 Ly
-~ Synchronous SRT(TB) (x t1): 3.00 h_-'q, d
< Synchromous ST({/ t1): 1.00 ('._‘} Ly

AN

:: LN

” Distribution of level 2 response times:

1 - 12431 9 - 12626
0 2 - 12573 10 - 12516

" 3 - 12501 11 - 12449
. 4 - 12542 12 - 12599
. 5 « 12570 13 - 12414
. 6 - 12438 14 - 12152
. 7 - 12574 15 - 12523

8 - 12538 16 - 12554
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*
Results of Simulation
. o
Gaussian Distribution
System simulation
Sample set size:
Processing time of level 2 (times level 1)
Average processing time {level 1):
Average processing time (level 2
Asynchronous system statistics
Average site of level-level queune:
Maximum size of level.level queue:
Average response time (level 2):
Average system response time (tlmes t1
Approximate Percent Idle time (level 2
Syochronous system statistics
Synchronous SRT DB; x t1
Synchronous SRT(TB x tl
Synchronous ST(/ t1):
Distribation of level 2 response times:
1 - 0 9 - 49018
2 - 0 10 - 13789
3 - 0 11 - 1476
4 - 34 12 - 56
5 - 1307 13 - 2
6 - 12841 14 - 0
7 - 47401 15 - 0
8 - 74076 16 - 0
System simulation
Sample set size:
Processing time of level 2 (times level 1):
Average processing time slevel 1):
Average processing time {level
Asynchronous system statistics
Average si1ze of level-level queue:
Maximum size of level-level quecue:
Average response time (level 2)
Average system response time {times t1}
Approximate Percent Idle time (level 2)
Synchropous system statistics
Svochronous SRT(DB} (x t1}):
Synchronous SRT(TB} (x t1)
Synchronous ST(/ t1)
Distribution of level 2 response times
- 0 9 - 49526
- 0 10 - 13784
3 . 0 11 - 1521
4 - 45 12 - 63
5 - 1302 13 - 0
6 - 12442 14 - 0
7 - 47324 15 - 0
8 - 73993 16 - 0
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200000

.00
50
.50

253.78
520
127.
258
0.

36
71
00

.10
15
95

200000
0.
0.
0.

95
50
48
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.03

.08
.12
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System simulation

Sample set sige: 200000
Processing time of level 2 (times level 1): 0.90
Average processing time (level 1): 0.50
Average processing time (level 2): 0.45

Asynchropous system statistics
Average si1ze of level-level queue: 0.15
Max imum size of level-level queune: 1
Average response time (level 2): 0.46
Average system response time (times t1): 1.02
Approximate Percent Idle time (level 2 10.49

Synchronous system statistics
Synchronous SRT(DB x t1): .03
Synchronous SRT{(TB) (x t1}: .04
Synchronous ST(/ t1): 0.99

Distribution of level 2 response times:
- 49272
13872
1494
59

WD BN
bbb Pt bt b s Pt
RO LW~ OO

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.85
Average processing time (level 1): 0.50
Average processing time (level 2): 0.43

Asynchronous system statistics
Average size of level-level queune: .05
Maximum size of level-level queue: 1
Average response time {level 2): 44
Average system response time (times t1): .87
Approximate Percent I[dle time (level 2) 3.87

Synchronous system statistics
Synchronous SRT(DB X tl;:
Synchronous SRT(TB x tl}:
Syachronous ST(/ t1)

Distribution of level 2
1 -
2

response times:
9 - 40852
0 13797
1 1471
2 50
3 2
4
5
6

0
0
0
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System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0. 80

Average processing time (level 1): 0.50
Average processing time {level 2): 0.40
Asynchronous system statistics
Average sise of level-level queue: 0.00
Maximum sige of level-level queue: 1
Average response time (level 2): 0.40
Average system response time (times tl}: 1.80
Approximate Percent [die time (level 2 20.18
Syochronous system statistics
Synchronous SRT(DB §x tl;: 2.00
Synchronous SRT(TB) (x t1): 3.00
Syanchronous ST(/ t1): 1.00
Distribution of level 2 response times:
1 - 0 9 - 49437
2 - 0 10 - 13690
3 - 1 ) B 1501
4 - 39 12 - 59
5 - 1249 13 - 0
6 - 12583 14 - 0
7 - 47684 15 - 0
8 - 73757 16 - 0
System simulation
Sample set size: 2006000
Processing time of level 2 (times level 1): 0.75
Average processing time }Ievel 1%: 0.50
Average processing time [level 2): 0.38
Asynchronous system statistics
- Average size of level-level queue: 0.00
Maximum sise of level-level queue: 1
Average response time (level 2): 0.38
Average system response time {times v1): 1.76
Approximate Percent Idle time (level 2) 04.48
Synchronous system statistics
Syachronous SRT DB{ x t1): 2.00
Synchrosous SRT(TB) (x t1): 3.00
Syachroaous ST{/ t1): 1.00
Distribution of level 2 response times: S
1 - 0 9 - 49183 T
2 - 0 10 - 13767 .
3 - 1 | S 1545 e
4 - 48 12 - 39
5 - 1338 13 - (]
6 - 10661 14 - 0
7 - 47178 15 - 0
8 - 74240 16 - 0
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System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.70
Average processing time (level 1): 0.50
Average processing time (level 2}: 0.35

Asynchronous system statistics
Average size of level-level queue: 0.00
Maximum size of level-level queue. 1
Average response time (level 2}: 0.35
Average system response time (times t1): 1.71
Approximate Percent Idle time {(level 2 9.39

Synchronous system statistics

Syachronous SRT(DB }x t1): 2.00
Synchronous SRT(TB x t1): 3.00
Synchronous ST(/ ti): 1.00
Distribution of level 2 response times:

1 - 0 - 48985

2 - 0 10 - 13707

3 - 0 11 - 1447

4 - 49 12 - 50

5 - 1231 13 - 0

6 - 12670 14 - 0

7 - 47641 15 - 0

8 - 74220 16 - 0

System simulation

Sample set sise: 200000
Processing time of level 2 (times level 1): 0.65
Average processing time (level 1): 0.50
Average processing time (level 2): 0.33

Asynchronous system statistics
Average stze of level-level queue: 0.00
Maximum sise of level-level quene: 0
Average response time (level 2): 0.33
Average system response time (times t1): 1.66
Approximate Percent Idle time (level 2 34.31

Synchronous system statistics

Synchronous SRT(DB }x t1): 2.00
Synchronous SRT(TB x t1): 3.00
Synchronous ST(/ t1): 1.00

Distribution of level 2 response times:
1 - 0 9 - 49488
2 - 0 10 - 13743
3 - 0 11 - 1526
4 - 44 12 - 61
5 - 1323 13 - 0
6 - 12660 14 - 0
7 « 47239 15 - 0
8 - 73916 16 - 0
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System simulation D f'“{
D) -
Sample set sige: 200000 oot
Processing time of level 2 (times level 1). 0.60 &,
Average processing time =eVe= 1): 0.50 = A
- Average processing time evel 2 0.30 !
&
Asyochronous system statistics :K}&}'
Average si13¢ of level-level gqueye: 00 ,Hi*i
Maximum sise of [evel-level queue: 0 gyt

0
Average response time (level 2): 0.30 o
Average system response time (times t1): 1
Approximate Percent ldie time (level 2 0

Syochronous system statistics

Syachronous SRT(DB x tl): 2.00
Synchronous SRT(TB x t1): 3.00
Syschronous ST(/ ti1): 1.00

Distribution of level 2 response times:

1 - 0 9 - 49150
2 - 0 10 - 13856
3 - 1 11 - 15637
4 - 46 12 - 54
5 - 1281 13 - 0
6 - 12724 14 - 0
7 - 47220 1§ - 0
8 - 74131 16 - 0

System simulation

Sample set size: 200000
Processing time of level 2 (times level 1): 0.55
Average processing time {level 1): 0.50
Average processing time }level 2): 0.28
Asypchronous system statistics
Average sige of level-level queune: 0.00 T
Maximum sise of level-level queue: 0 B s
Average response time (level 2): 0.27 .
Average system response time {times t1): 1.55 QUL
Approximate Percent Idle time (level 2 45.23 AR
Synchronous system statistics '}*;\.
Syachronous SRT DB; ix tlg: 2.00 e,
Syachronous SRT{TB x t1): 3.00 eyt
Synchronous ST(/ t1): 1.00 el

Distribution of leve! 2 response times

1 - 0 9 - 409458
2 - 0 10 - 13845
3 - 0 1 - 1489
4 - 45 12 - 59
5 - 1244 13 - 0
6 - 12714 14 - 0
7 - 47474 15 - 0
8 - 73662 16 0
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" System simulation ;?,_:; f
h Sample set sise: A 200000 LY
Processing time of level 2 (times level 1): 0.50 g
] Average processing time (level 1): 0.50 P
v Average processing time (level 2}): 0.25 s
-, L9
r‘( Asynchronous system statistics v .
48 Average size of level-level queue: 0.00 %
Y Maximum sige of level-level quene: 0 ]
" Average response time (level 2): 0.26
: Average system response time (times t1}): 1.51
Approximate Percent Idle time (level 2 48.77
) Synchronous system statistics
" Synchronous SRT(DB x tl1): 2.00
. Synchronous SRT(TB) (x t1): 3.00
i Synchronous ST(/ t1): 1.00
Distribution of level 2 response times:
1 - 0 9 - 49421
2 - 0 10 - 13776
3 - 0 11 - 1568
4 - 40 12 - 47
5 - 1322 13 - 2
6 - 12726 14 - 0
7 - 46966 15 - 0
8 - 74132 16 - 0
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SIMULATOR LISTINGS

Asynchronous System Simulator --
Both Levels Uniform Random Variables

ST
#include<stdio.h> X
/...l“..“‘.‘...“.“....‘..“‘....‘.‘..“......‘....“...‘.“.“..‘.‘/ :

/e ‘/

/% This simulator was written for a Gould Powernode 9080 rupning UNIX '/

/o 4.2 BSD. It simufates the execution of an

/* asynchronous two level system, keeping track of the level-to-leve! 0/

/* buffersizes and the response times of the second level. For this o/

/e simulator, it is assumed that the distribution describing the res- o/
/e time of the both levels is the uniform distribution function, and ./
/* It is rup on a total of 200,000 data sets per simulation statistic ¢/
/* requiring more than 1.0Mb storage and more than 2 hours to ¢/

/% complete. o/
/e .
/......‘.“‘..‘...‘...“..‘.....‘.“‘....“..‘."‘.“....‘.....‘...‘..‘/
#define EVENTS 200000 /¢ Events per simulation o/
#defne FEVENTS 200000.0 /e floating point representation o/
FILE of1; /e file pointers s/
int density[16]; /e for densiti function o/
/* Gould Firebreather 9080 Compiler ¢/
/* needs the NOBASE because o/
/¢ it needs to use a different ./
/% addressing mode to handle large s/
/¢ NOBASE ¢/ /% arrays. o/
float timelist{100+EVENTS]; /¢ list of event times ./
10t pqueuesize mqueuesize; /¢ present and maximum queuesizes o/
1nt rqueuesize; /* total jobs stored in queues o/
float 1dletime; /o idletime for second level o/
float risptime; /o response time for first level ./
float resptime; /% response time for second level ./
float rrsptime; /% cumulative time for second level o/
float sysresptime; /¢ system response time s/
float pent[] = {1.00, /o ratio of i ____ o/
0.95, 0 90, /e response time of level 2 o/ -
0 85, 0.80, L L S L P o/ g
0.75, 0.70, /e response time of level 1 ¢/ K
0.65, 0.60, N
0.55, 0.50, .
6.00 }; .
main() »
float ktime; /¢ time keeper e/
float rtime, /% response time keeper o/
int eventtime; /¢ event duration o/
int 1 /® event counter s/
ot g, /* event counter o/
tnt sum, /e gaussian only s/
f1=fopen("simulation results” "w"); /¢ open files ./
s;??dom(get id()); /* initialize random number generator ¢/
1 1
exit(),
for(j=0.pcnt;1f>0.0,1++)
{ pqueuesize=0, /e tortialize all statistical keepers s/

mqueuesize=0,
rqueuestze=0;
idletime= 0.0
rlsptime= 0.0,
resptime= 0 0,
traptime= 0 0,
sysresptime= 0 O,
for{1=0,1<16, 1++)
depsity|11=0.

ktime=8 0,16 0,

timelist[0] = (float)((1+017&random()))/16 0,
for(t1=1,1<100+EVENTS,1++) /¢ generate random events o/

Fd et Q'. I" .‘-' Y "o '_..'—- - . -.".-.' . ’_. t e, ~ - et . . .‘ ‘,"‘-.“ .“" . . RS .
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: t t il = timelist|i-1] +
Dy ) (1 (017&random )))/16.0;
: risptime=timelist [EVENTS-1];
o) ktime=0.0, /* presect time o/
X rrsptime=0.0,
X forf =0 ; i<EVENTS; i ++)
X eventtime = 0l17&random(); /¢ random number o/
] /¢ 0 and 15 o/
[ %
density[eventtime|++;
y eventtimet=1:
Fo rtime = pcnt[j]/ls O0¢(float) eventtime;
& rraptime+=rtime;
) - statqueune(i+l, ktnme,rtlme); /* queunesige o/
. if(ktime<timelist[i]) /¢ update present time ¢/
» dletlme+‘t|melns t{it]-ktime;
M \ ktlme“tnmellstln] rtime;
. else
> ktime+=rtime;
X resptimet=ktime-timelist|i];
: )
< fprintf(f1, System simulation0);
: fpriptf(f1, Sample set size: %640,
EVEVP
\ fprintf(f1, Trocesa:ng time of level 2 (times leve! 1):%6.2f10,
3 peat(}])
o fprintf(f1, "Average processing time (level 1): %6 .2f0,
- rls tlme/?FEVENTS 1. 0?)
- fprintf(f1, Average processing t ime (level 2): %6 210,
g rrsptnme/FEVEVT )
- fprintf(f1,"Average sise of level-level queue: %6 .210,
ﬂoat) rqueuesise/FEVENTS)
fprintf( "Maximum sige of level-level queue: %6do,
mqueneslxe)
fprintf(f1,”Average system response time (times t1): %6 .210,
1. 0+(rrsptame’FEVBVTS /(rlsptlme/FEVEhWS)
+({(rqueuesize/FEVENTS
srrsptlme/FEV TS)/(rlspzlme/(FEVENTS 1.0)})));
fprintf( Approximate Percent Idle time (level 2 %6 .210,
100.0¢idletime/timelist |EVENTS]),;
fprintf(f1,” Distribution of level 2 response times:0);
for(i=0,i<8, a
fprlntf f1,"%10d - %6d %24 - %640,
i+1,density] i].i+9 density|i+8]);
- Bush(f1);
: \ }
statqueue(pos prestime, proctime)
1ot pos,
float prestime, proctime;
. 1at
: paueuesize=0,
for{1=pos {()<(100-EVENTS))&&(timel:st|ji<<{prestime+proctime))):j++)
- pqueues ze++,
vf(pqueuesize>mqueuesize)
- mqueuesize=pqueueste;

rqueuesiget=pqueuesisge;

- Ty
—-—

-
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Asynchronous System Simulator --
Both Levels Gaussian Random Variables

#include<stdio.bh>

/‘...0.0....."."‘O...‘......“..‘.....‘."....‘.‘..................../
/e o/
/o This simulator was written for a Gould Powernode 9080 running UNIX e/
/o 4.2 BSD. It simulates the execution of both a synchronous and an s/
/o asynchronous two level system, keeping track of the level-to-level o/
/e buffersizes and the response times of the second level. For this e/

/o simufator, it is assumed that the distribution describing the res- s/
/% time of the both levels is the uniform distributieon function, and o/
/¢ It is run on a total of 100,000 data sets per simulation statistic o/

/¢ requiring more than 1 .0Md storage and more thaa 2 bhours to e/ AR
/¢ complete. o/ NN
/e o/ te el
a ,’:.....‘.."......‘.I"...“.‘..‘.‘O..‘.‘0......“...........O‘.‘.“.‘../ .:"_:).:
L‘ #define EVENTS 100000 /¢ Events per simulation o/ ol
N #define FEVENTS 100000.0 /e floating point representation o/ e
FILE of1; * file pointers ./
int deasity|16]; /e for density function e/
. /¢ Gould Fireireather 9080 Compiler o/
S /® needs the NOBASE because o/
s [/ it needs to use a different o/
/¢ addressing mode to handle large o/
/% NOBASE ¢/ /¢ arrays. o/
float timelist [100+EVENTS!, /® list of event times o/
int pqueuesize mqueuesize, /o present and maximum queuesizes s/
iat rqueuesize; /* total jobs stored in quenes o/
float i1dletime; /o idletime for second level ./
float rlsptime; /% response time for first level o/ .*.ﬂ¢
float resptime; /% response time for second level o/ s
float rrsptime; /¢ cumulative time for second level ./ S
float sysresptime; /e system response time o/ RS
float pent{] = {1.00, /* ratio of - —— s/ et
0.95, 0.90, /e respoanse time of level 2 o/ e tat)
0 85, 0.80, /PN o -
0.75, 0.70, /e response time of level 1 o/ o

. 0.65, 0.60, RO
y 0.55. 0.50, N
: 0.00 }: Ny
- main() '\.-:.‘,'
° float ktime; /e time keeper o/ ':“x*:
2 fcat rtime; /* response time keeper ¢/ NG X

int eventtime; /e event duration o/ AN N
int i, /e event counter o/

J int j. /¢ event counter o/ e
~ tat sum, /* gaussian only o/ ::;{\.
N fi=fopen{ "simulation results gauss” "w*), /o open files o’ AL
N srandom({getpid()). /* 1mitialize rapdom number generator o :*:{;
, v f (f1==NULL) e

ex:t(); i
for()=0,pcnt ) ,>0.0, )++) B

; { pqueuestze=0; /¢ 1nttialize all statistical keepers ¢/ e
. mqueuessize=0, e
- rqueuest ze=0, .
- tdletime= 0 0;

" risptime= 0.0,
= resptime= 0 0;
- rraptime= 0 0,
< sysresptime= 0.0,

for(1=0,1<16,i++)

density!11=0;

- ktime=8 0,16 0,
) timelist 0 = (foat){(1+017&random()') 16 0
. for(1=1 1<100+EVENTS 1 ++) o generate rapdem events o
: ¢ 0-15 .

& . . 1 !
timelist 1! = timeliat’ -1, =+

{(float)gauss({)) /16 0
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}
risptime=timelist EVENTS-1];
ktime=0.0; /* present time 'y
rrsptime=0.0,;
forfi=0;i<EVB\TS;i++)

eventtime = gauss(); /¢ random number ¢/

/* 0 and 15 o/

depsity{eventtime|++;

eventt ime+=1;

rtime = pcnt[j]/ls.ot(ﬂo;t) eventtime;
rraptime+=rtime;

statqueune( i+l ktime,rtime); /% queuesise L ¥

update present time ¢/
[1]-ktime;
rtime;

if(ktime<timelist[1]}) /e
{ idletimet+=t imelist
ktime=timelist|i|+
else
kt ime+=rtime;

resptime+=ktime-timelist]i];

fprintf(f1,” System simulation0);

fpriotf(f1,"Sample set size: %640,
EVENTS ) ;

fprintf(fl.'lfljc}n):easing time of level 2 (times level 1):%68 2f0,
pent[j]);

fprintf(f1,"Average processing time (level 1): %6 210,
risptime/(FEVENTS-1.0)),

fprintf(f1,"Average processing time (level 2). %6 210,
rraptime/FEVENTS)

fprintf{(f1,"Average sise of level-level queune. %6 .210,
sﬂoat) rquenesize/FEVENTS)

fpriotf(f1,"Maximum size of level-level queune. %640,
mqueueyize);

fpriotf(f1,”Average system response time (times t1): %6 210,

1.0+(rrsptime/FEVENTS)/(rl1sptime/FEVENTS)
+{{(rqueuesize/FEVENTS]e
rrsptime/FEVENTS)/(rlsptime/(FEVENTS-1.0))));
fprintf(f1 "Approximate Percent [die time (level 2 %6 . 210,
100.0¢idlet ime/timelist [EVENTS]);

fpriotf(f1,” Distribution of level 2 response times:0);
for(|=0;i<8,i*+2
fprintf(f1, "S210d - %64 %2d - %6do0,
1+1,density[1],i+9 density|i+8]),
flush(f1),

statqueue{pos prestime,proctime)

1ot pos,

float prestime,
ot

?auss()

proctime;

pqueuesze=0,

for(j=pos . {(J~<(100-EVENTS))&&(timelist jl<(prestime+proctime))).j+*)

pqueues)ze~~,

1{{pqueuesize mqueuesize)

mqueues | ze=pqueuesize.

rqueuesize~=pqueuesize.

register int 1.

J=0,
for(1=0,1<20,

1 ~—+)
+= 017 & random( ).

return(),20),




Synchronous System Simulator --
Both Levels Uniform Random Variables

#include<stdio.bh>
#define EVENTS 1000000

L] #define FEVENTS 1000000.0

¢ FILE of1; /o file pointers o/
L int densltylllsl. /% for density function level 1 o/
. int density2{16; /¢ for density function level 2 e/
\ float sysresptime; /* system response time o/
§ float pent [T ={1. 00, /* ratio of mean values of levels o/
] .90,

= main()
- { float [1time; {* time keeper level 1 o/
- float 2time; j* time keeper level 2 o/
float tiltime; /* time keeper level 1 o/
g float t2time; /* time keeper level 2 o/
- ot eventtimel; /e event duration level 1 o/
" int eventtime?2; /% event duration level 2 e/
int 1 /® evemt counter Ly
int j, /% potnter to statistical info ./
- float xbar; /¢ for simplicity -- avg resp time of o/
‘. /¢ tevel 1 »/
f1=fopen("dblbuf”,"a™); /o open files o/

i f(f1==NULL)
exit();

1t 1me=0.0; -
12t ime=0.0, [
t1t 1ime=0.0, L
t2t1me=0.0;

sysresptime = 0.0

4 0 % ST N g

- srandom(getpld ) ), /o initialise random number generator o/
- for(j=0,pcant!j|>0,j++) .
% { I1time = 0 0, /* time keeper level 1 s/ .
¥ 12time = 0.0; /¢ time keeper level 2 . ‘.
. titime = 0.0; /* time keeper level 1 o/ .
- t2time = 0.0, /¢ time keeper level 2 ¢/ .
sysresptime = 0.0, 2
for(i=0,i<16,i++)
by densityl|i|=density2[1]=0.
ot for{i=0, 1<EVENTS i1++)
* { eventtlmel = 017&random§). /s random number e/
, eventtime2 = 017&random() ‘e random number o/
< 'e 0 to 15 .
4 densityljeventtimel |+, ¢ densaity fun .
. density2 eventtimel -+, o density fun o

fttime = (float} eveottimel ' 16 0 .
I2time = pcnt ) o {float) eventtime2 ~ 16 O

titime+=t1t1me. ¢ avg resp time ¢
t2time+=]2t ime, ¢ avg resp time ¢

tf(l1time<!2time)
sysresptime “= [2time;

else

sysresptime += |1t ime,

'FEVENTS

synchropous svstem0) .
Rample set size cedo .

A

fprintf(f1, Processnng time of level 2 {times level 1) 76 210,
cnt ),
fprlntf(fl Average processing fime (level 1) a6 2fa
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xbar);
fprintf(f1,"Average processing time (level 2): %6 .210,
t2time /FEVENTS);
fprint{(f1,"Average DB system response time (¢ t1): %6 210,
2. 0¢sysresptime/FEVENTS)/xbar);
fprintf(f1,"Average TB system response time (¢ tl1): %6 200,
(3.0esysresptime/FEVENTS)/xbar);
fprintf(f1,” Distribution of level 1 response times:0);
for(1=0,i<8;1++)
fprintf(f1,"%10d - %6d %6d - %6do
i,densltyl[l].|+8,densityl[i+8]§;
fpriatf(f1,"” Distribution of level 2 response times:0);
for(i=0;i<8,;i++
fprintf(f1,"%0.2f - %6d %8 .2t - %840,
pcntlj o lo;t;;.densitye[i],

pcat [j|e(Boat)(i+8) density2[i+8]);
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Synchronous System Simulator --
Both Levels Gaussian Random Variables

#include<stdio bh>
#define EVENTS 100000
#define FEVENTS 100000.0

FILE of1; /e file pointers .o/
iot densityl[16]; /¢ for density function level 1 ¢/
int density2:16]; /e for density function level 2 o/
float sysresptime; /® system response time o/
float pecat [ = { 1.00, /* ratio of mean values of levels o/
0.05, 0.90,
0.85, 0.80,
0.75, 0.70,
0.65, 0.60,
0.55, 0.50,
-1}
main()
float !1time; /e time keeper level 1 ./
float 12time; /e time keeper tevel 2 o/
float tltime; /¢ time keeper level 1 o/
float t2¢time; /o time keeper level 2 o/
igt eventtimel]; /e event duratijon level 1 ./
int eventtime?, /¢ event duration level 2 o/
it ¢, /% event counter ./
1ot j. /¢ pointer to statistical info .
float xbar; /¢ for simplictty -- avg resp time of o
/¢ level 1 .
1ot k. /% for generation of a gaussian fun .
‘e using the central limit theorm .
f1=fopen( "dbibuf gauss” "a”); /e open files o
if(f1==NULL)
exit();

l1time=0.0;
12¢1me=0.0;
titime=0.0,;
t2time=0 Q;
sysresptime = 0.0;

srandom(getptd(}), /¢ itnitialize random pumber generator o
for{)=0.pcat):>0.)++)
t lltime = 0.0, /¢ time keeper level 1 .
12t ime = 0 0, /* time keeper leve] 2 .
titime = 0 0, /% time keeper level 1 .
t2time = 0 0, /* time keeper level 2 .
for(1=0,i<16 t++)
densitylii|=density2]1'=0,
sysresptime = 0 0,
for{i=0. 1<EVENTS 1++)
{ eventtimel=0;
for{ k=0, k<20 k++)
eventtimel += 017&random(); /¢ random pumber o/
eventtime2=0;
for{k=0 k<20 k++)
eventtime2 += 017&random(). ¢ random number o/
s 0 to 15 .
eventtimel /= 20; ‘e pormalization ¢
eveattime2 ;= 20 ¢ pormalization o
densityl eventtimel !+ o density fun .
deasity2ieventtme2 ¢ density fun .
lttime = (float) eventt imel ~ 16 0
12¢time = pcat )] ¢ (foat) eveottime2 , 16 0
titime+=11¢1me, ‘e avg resp time o/
t2time+=12¢t ime; ‘% avg Tesp time ¢

tf(11time<iQtime)
sysresptime += |2t me;
else
sysresptime += |1t ime;
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xbar = t1time/FEVENTS,

fpriotf(f1.%0,

fpriatf(f1,"” synchronous systemo);

fprintf(f1,"Sample set size: %6d0 ,
EVMS)

fpriontf(f1, Trﬁesung time of level 2 (times level 1):%6 210,
peat|]

fpnnt.f(fl ?venge processipg time (level 1): %6 .210,
xbar

fprnntf(f[ "Average processing time (level 2). %8210,
”tlme/FEVENI’ ).

fprintf(f1, "Average DB system response time (¢ t1) %6 .210,
}” 0°aysresptime/F‘EVB\'I'S)/ber);

fpriotf( "Average TB system response time (¢ t1) %6 210,

(3 Oesysresptime/FEVENTS)/xbar),

rintf(f1,” Distribution of level 1 response times 0),
r(1=0.i<8;i+t+)
lpnntf&!l %10d - %6d %6d - T6d0,
i.densit 1{t!,1+8 densityl|i+8,);
fpriotf(f1,” Distribution of level 2 response times 0});
for(1=0;i<8;i+t)
I'prlntl’(fl "%10.2f - %6d %8 .2f - %640,
pent | |-( oat), denslty2[ |,
1]1‘ ﬂou)(|+8) denslty2[|+8])
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Results of Simulation
Uniform Distribution

Asynchronous System Simulation -- Results (uniform)
" Sample set sise: 200000
~ Processing time of level 2 (times level 1) 1.00
n Average processing time E(evel 1;’ 0.53
» Average processing time {level 2 0.53
LY Average size of level-level queue: 62.81
» Max:mum size of level-level queue: 177
L} Average system response time (times tl): 64.62
Approximate Percent Idle time (level 2 0.30
v Distribution of level 2 response times
1 - 12656 9 - 12426
2 - 12499 10 - 12245
3 - 12356 11 - 12446
” 4 - 12700 12 - 12438
5 - 12523 13 - 12664
6 - 12513 14 - 12548
7 - 12596 15 - 125857
8 - 12448 16 - 12385
", Asynchronous System Simulation -- Results (uniform)
) Sample set size: 200000
) Processing time of level 2 (times level 1) 0.95
A Average processing time (level 1 0.53
Average processing time (level 2): 0. 51
Average size of level-level queue: 6 01
3 Maximum sise of level-level quene: 39
. Average system response time (times tl}: 7 69
: Approximate Percent [die time (level 2 4.58

Distribution of level 2 response times.

- I - 12396 9 - 12541
2 - 12475 10 - 12281
3 - 12571 11 - 12637
4 - 12447 12 - 12542
5 - 12378 13 - 12560
6 - 12510 14 - 12606
7 - 12395 15 - 12489
8 - 12474 16 - 12698
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] Asynchrooous System Simulation -- Results (uniform) ,'.-."\
-..'h v
E Sample set sige: 200000 b.'\ A
Processing time of level 2 (times level 1): 0 90 3
Average processipg time flcvel l{ 0 53 o ]
Average processing time |(level 2 0 48 S
Average sise of level-level queue 2907 .‘.-_.":'
Maximum sige of level-level queue 24 ;:-'.:»’;
Average system responde time (times tl; 4.59 N
Approximate Percent [dle time {level 2 9.57 e
/ AN
D b { level —
1stribation o evel 2 response times: z
1 - 12628 9 - 12550 g
N 2 - 12766 10 - 12376 . 4
3 3 - 12350 11 - 12691
- 4 - 12205 12 - 12562
- 5 - 12450 13 - 12502 e
~ 6 - 12438 14 - 12383
. . 7 - 12380 15 - 12606
'-' 8 - 12666 16 - 12357 e
- Asynchronoas System Simulation -- Results (uniform)
- Sample set sisge- 200000
- Processing time of tevel 2 (times level 1): 0 85
- Average processing time (level l;: 0.53
3 Average processing time (level 2): 0.45
y Average si1ze of level-[evel queue: 1.76
Maximum size of level-level queue: 30
Average system respomnse time {times tl). 3.34
X Approximate Perceat Idle time (level 2 14 88
-,
b Distribution of level 2 response times:
o 1 - 12623 9 - 12649
. 2 - 12349 10 - 12420
L 3 . 12544 11 - 12562
4 - 12540 12 - 12613
. S - 12274 13 - 12665
: 6 - 12527 14 - 12443
7 - 12507 15 - 12379
8 - 12606 16 - 12209
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Asynchronous System Simulation -- Results (uniform)
Sample set sise: 200000
Processing time of level 2 (times level 1)- 0. 80
Average processing time flevel lg. 0 53
Average processing time {level 2 0. 43
Average sige of level-level queue: 122
Maximum sise of level-level queue 13
Average system response time (times t1): 27
Approximate Percent ldle time (level 2 19 63

Distribution of level 2 response times:

1 - 12590 9 - 12536
2 - 12320 10 - 12548
3 - 12349 11 - 12517
4 - 12514 12 - 12639
5 - 12452 13 - 128622
6 - 12427 14 - 12323
7 - 12540 1§ - 12636
8 - 12371 16 - 12616

Asynchronous System Simufation -- Results (uniformj

Sample set sise: 200000
Processing time of level 2 (times level 1) 075
Average processing time (level 1;: 0 53
Average processing time (level 2): 0.40
Average size of level-level queue: 0.88
Maximum sige of level-level queue: 12
Average system response time (times tl{: 2. 41
Approximate Percent Idle time (level 2 24 .66

Distribution of level 2 response times:
1 - 12579 9 - 12619
2 - 12537 10 - 12394
3 - 12579 11 - 12335
4 - 12721 12 - 12459
5 - 12571 13 - 12200
86 - 12365 14 - 12529
7 - 12434 15 - 12611
8 - 12605 16 - 12453
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Asyochronous System Simalation -- Resalts {(uniform)

Sample set

Processing time of level 2 (times level 070
Average processing time (level l{' 0.53
Average processing time (level 2): 0. 37
Average size of level-level queue 0.67
Maximum s:ze of level-level queue 10
Average system response time (times t! 2.17
Approximate Percent Idle time (level 2 9.63
Distribution of esponse times:

1 - 12265 - 12373

2 - 12506 - 12328

3 - 12435 - 12543

4 - 12437 - 12528

5 - 12560 - 12696

6 - 12626 - 12677

7 - 12504 - 12512

8 - 12468 - 12542
Asynchronous System Simulation -- Resalts (uniform)
Sample set sise: 200000
Processinog time of (times level .65
Average processing time evel : 0.53
Average processing time (level .35
Average size of level-level quene: .51
Maximum size of level-level quene: )
Average system response time (times tl 98
Approximate Percent Idle time (level 2 .64

sige:

Distribution of

W =3 DN DD

12339
12409
12493
12467
12456
12596
12619
12347

—— e gt b e e

esponse times:

12635
12318
12309
12665
12631
12433
12743
12450

200000
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‘: Asynchronous System Simulation -- Results (uniform)
. Sample set sige: 200000
o0 Processing time of level 2 (times level 1}): 0.60
- Average processing time }level 13: 0.53
Average processing time {level 2): 0.32
Average sige of level-level queue: 0 38
~ Maximum sisze of level-level queue: 8
” Average system response time (times zl;: 1 83
N Approximate Percent Idle time (leve! 2 390.78
{ Distribution of level 2 response times:
- 1 - 12506 g - 12391
2 - 12429 10 - 12380
- 3 - 12453 11 - 12482
" 4 - 12642 12 - 12359
- 5 - 12535 13 - 12655
B 6 - 12729 14 - 12476
: 7 - 12487 15 - 12473
8 - 12504 16 - 124909

Asynchronous System Simulation -- Results (uniform)

Sampie set site: 200600
Processing time of level 2 {(times level 1) 0.55
Average processing time §Ievel l;' 0.53
Average processing time (fevel 2): 0 29
Average sigze of level-level queue 0.28
Maximum size of level-level queue 7
Average system response time (times tl{' 1.71
Approximate Percent Idle time (levei 2 44 67

Distribution of level 2 response times:

1 - 12512 9 - 12606
2 - 12568 10 - 12391
3 - 12451 It - 12582
4 - 12568 12 - 12374
5 - 124563 13 - 12295
6 - 12348 14 - 12304
T - 12692 15 - 12663
8 - 12556 16 - 12637
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b, Asynchronous System Simulation -- Results (uniform)
Sample set size 200000
i Processing time of level 2 (times level 1): 0.50
Average processing time (level 1): 0.53
. Average processing time (level 2 0.27
. Average sige of level-level queue 0 22
. Maximum sise of level-level queue []
" Average system response time (times tl;: 1.681
‘ Approximate Percent idle time (level 2 48 .80
"

Distribution of level 2 response times:

" 1 - 12477 9 - 12426
,_ 2 - 12700 10 - 12431
) 3 - 12353 11 - 12400
4 - 12307 12 - 12585
5 - 12569 13 - 12624
6 - 12480 14 - 125486
7 - 12374 15 - 12581
¢ 8 - 12416 16 - 12731
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) Results of Synchronous Simulation
- Uniform Distribution (both levels)

Synchronous System -- Simulation Results

Sample set sige: 1000000

[ - Processing time of level 2 (times level 1) 1.00
& Average processing time (level 1 0.47
. Average processing time (level 2 0.47
> Average DB system response time (e tl{: 2.71
N Average TB system response time (o tl): 4.06

. Distribution of level 1 response times

0 - 62611 8 - 62431

1 - 61913 9 - 62431

2 - 63096 10 - 62631

3 - 62507 11 - 82470

4 - 62055 12 - 62663

5 - 62443 13 - 62532

6 - 62348 14 - 62681

7 - 62763 15 - 62425

Distribution of level 2 response times:

0. - 62649 8.00 - 62404

1.00 - 62391 9.00 - 62432

2.00 - 62940 10.00 - 62296

3.00 - 62249 11.00 - 62418

4.00 - 62664 12 .00 - 62761

5.00 - 62227 13 00 - 62460

6.00 - 62898 14.00 - 62451

7.00 - 62640 15.00 - 62120

Synchronous System -- Simulation Results

Sample set sige: 1000000

Processing time of level 2 (times level 1) 0 95
Average processing time (level lg: 0.47
Average processing time (level 2} 0.45
Average DB system response time }0 t1 2 64
Average TB system response time (¢ tl 3 96

Distribution of level 1 response times

0 - 68272 8 - 62399
1 - 61969 g - 62502
2 - 62659 10 - 62460
3 - 62611 11 - 62471
4 - 62624 12 - 62204
5 - 62544 13 - 62323
6 - 62803 14 - 62397
7 - 62507 15 - 62798

Distribution of level 2 response times
0 - 62583 7 60 - 62943
0 95 - 862580 8. .55 - 62715
1 90 - 62783 9 50 - 62573
2 85 - 62311 10 45 - 62474
3 80 - 62338 I1 40 - 62521
4 75 - 62128 12 35 - 62309
5 70 - 62499 13 30 - 62339
6 65 - 62205 14 25 - 62699
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Synchronous System -- Simulation Results

Sample set size: 1000000
Processing time of level 2 (times level 1): 0.900
Average processing time (level 1| 0.47
Average processing time {level 2): 0.43
Average DB system response time }0 t1 2.60
Average TB system response time (¢ tl 3.90
Distribution of level 1 response times:
0 - 62482 8 62883
1 - 62514 9 - 62571
2 - 62397 10 - 62278
3 - 62336 11 - 62241
4 - 62323 12 - 62517
5 « 62845 13 - 62885
6 - 62754 14 - 62402
7 - 62367 1§ - 62435
Distribution of level 2 response times:
0.00 - 62687 7.20 - 62417
0.90 - 62225 8.10 - 62387
1.80 - 62505 9.00 - 862754
2.70 - 62616 9.90 . 62483
3.60 - 62609 10.80 - 62309
4.50 - 62199 11.70 - 62213
5.40 - 62466 12.60 - 62600
6.30 - 62864 13.50 - 62686
Synchronous System -- Simufation Results
Sample set sige- 1000000
Processing time of level 2 (times level 1): 0.85
Average processing time Ievel 1{ 0.47
Average processing time (level 2 0.40
Average DB system response time (o ; 253
Average TB system response time (¢ 3.79

Distributiocn of

e I IS T R )

PR R

Distribut

VSNt - OO

0o
85
70
55
40
25
10
95

P R R R Y

62428
62506
62764
62376
62475
62311
62407
62716

[=c=cll= W R - -
LR PR PN N VN PN )

QDN W ode = O
CO—=DNnO-
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level

level

1

respomse times

—— et s s
N W)= OO

response

PO R T T T

62482
62590
62259
62471
62529
62364
62766
62556

[ el - -
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- Distribution of level 2 r

287

0 - 62331 8

1 - 62042 9

2 - 62886 10

3 - 62392 11

4 - 62057 12

5 - 682419 13

6 - 62594 14

7 - 62848 15
espo

0 00 - 62128 6 00
.75 - 62267 6.75
.50 - 62201 7.50
.25 - 62393 8.25
.00 - 62798 9.00
.75 - 61868 9.75
.50 - 62857 10.50
.25 - 62884 11.25

v

>

Distribution of level 1| response times

62582
62269
62372
62994
62223
62382
62471
62238

times:
62473
62158
63099
62702
62648
62474
62456
62597

Synchronous System -- Simulation Results

Sample set sige: 1000000

Processing time of level 2 {(times level 1): 0 80
Average processing time (level 1): 0.47
Average processing time (level 2): 0.37
Average DB system response time (¢ t1): 2. 46
Average TB system response time (¢ t}): 3.69

Distribution of level 1 response times:

0 - 62454 8 - 62272

1 - 62855 9 - 62835

2 - 62568 10 - 62962

3 - 62384 11 - 623686

4 - 62621 12 - 62582

5 - 62335 13 - 62383

8 - 62344 14 - 62251

7 - 62599 15 - 62591

Distribution of level 2 response times

0.00 - 62720 6.40 - 62582

0.80 - 62034 7.20 - 62221

1.60 - 62451 8.00 - 62485

2.40 - 62340 8 80 - 62636

3. .20 - 62784 9.60 - 62649

4. .00 - 62567 10 40 - 62375

4.80 - 62931 11.20 - 62231

5 60 - 62688 12 00 - 62306

Synchronous System -- Simulation Results

Sample set sige: 1000000
Processing time of Jevel 2 (times level 1) 075
Average processing time (level 1 0 47
Average processing time (level 2 0 36
Average DB system response time (o ti}- 2 42
Average TB system response time (* t1) 3 63

PR

> e
ST
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N Synchronous System -- Simulation Results AN
; !’A.‘“
e Sample set size: 1000000 e
‘ Processing time of tevel 2 (times level 1): 0.70 3
- Average processing time (level 1): 0.47 s
Average processing time (level 2 0.33 A
- Average DB system response time }‘ t1): 2 37 e
- Average TB system response time (* t1)- 3.55 ‘-_;.:-
N
- Distribution of level 1 response times: t'
3 0 - 62515 8 - 62226 SO
1 - 62257 9 - 62664 §
2 - 62571 10 - 62478
3 3 - 62362 11 - 62714
4 - 61982 12 - 62357
5 - 62765 13 - 62692
6 - 62725 14 - 62722
7 - 62889 1§ - 62081
Distribution of level 2 response times:
0.00 - 62576 5.60 - 62441
0.70 - 62834 6.30 - 62721
1 40 - 62677 7 00 - 62600
210 - 62308 7.70 - 62026
2 80 - 62822 8 40 - 62664
3.50 - 62174 9.10 - 62390
4.20 - 62251 9 80 - 62684
4.90 - 62605 10.50 - 62427
‘ Synchronous System -- Simulation Results
Sample set sisze: 1000000
R Processing time of level 2 (times level 1) 0 65
- . Average processiog time (level 1) 0 47
- Average processing time (level 2 0.31
Average DB system response time (o tl{: 2 32
Average TB system response time (¢ t1}: 3 48
e Distribution of level 1 response times
- 0 - 62564 8 - 62357
. 1 - 62201 9 - 62561
. 2 - 62354 10 - 62669
* 3 - 62774 11 - 62677
4 - 61001 12 - 62567
. 5 - 62713 13 - 62744
- 6 - 62601 14 - 62409
-~ 7 - 62490 15 - 62418
e Distribution of level 2 response times.
‘o 0.00 - 62496 5 20 - 62277
0.65 - 62778 5.85 - 62153
1 30 - 62732 6.50 - 62602 &
1.95 - 62464 715 - 62435 _—J ~
i 2.60 - 62456 7.80 - 62618 L
iy 3.25 - 62163 8 45 - 62660 T
g 3.90 - 62800 9 10 - 62509 RN
3 4.55 - 62666 9 75 - 621901 B R
\-!-‘i
o
K .:-:.
“ ‘.:.
: R
. Ay
» ‘-‘c‘!
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Synchronous System -- Simulation Results

Sample set size. 1000000
Processing time of level 2 (times level 1): 0 60
Average processing time }Ievel 1;, 0 47
Average processing time (level 2}): 0.28
Average DB system response time }- tl}: 2.27
Average TB system response time (¢ t1): 3 41
Distribution of leve! 1 response times
0 - 63046 8 - 627238
1 - 62426 9 - 62312
2 - 62174 10 - 62531
3 - 62471 11 - 62439
4 - 62266 12 - 62410
5§ - 62583 13 - 62851
6 - 62791 i4 - 62163
7 - 62584 15 - 62230
Distribution of level 2 response times.
0.00 - 62734 4.80 - 62556
0.60 - 62192 5.40 - 62259
1.20 - 62138 6.00 - 62521
1.80 - 62455 6 60 - 62235
2.40 - 62515 7.20 - 63334
3.00 - 62996 7.80 - 62668
3.60 - 62689 8.40 - 61048
4.20 - 62349 9.00 - 62411
Synchronous System -- Simulation Results
Sample set sige: 1000000
Processing time of level 2 (times level 1): 0 55
Average processing time (level 1 0.47
Average processing time (level 2 0 26
Average BB system response time (o tl;: 2 24
Average TB system response time (¢ t1}: 3.35

Distribution of leve! 1 response times:

0 - 62725 8 - 62420
1 - 62429 9 - 62470
2 - 63000 10 - 62348
3 - 62635 11 - 62509
4 - 62747 12 - 626817
5 - 62252 13 - 62215
6 - 62702 14 - 62425
7 - 62414 15 - 62083

Distribution of level 2 respoase times
4

0.00 - 62570 0 - 62951
0.85 - 62149 4.95 - 62277
1.10 - 62603 5.50 - 62386
1.65 - 62217 6.05 - 62541
2.20 - 62276 6.60 - 62312
2.75 - 62464 7.15 - 625286
3.30 - 62866 7.70 - 83072
3.85 - 62458 8.25 - 62334
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Synchronous System -- Simulation Results

Sample set sise:
Processing time of

Average processing time (level 1

Average processing time {level 2
Average DB system response time
Average TB system response time

Distribution of

0 - 62562 8

1 - 62529 9

2 - 62673 10

3 - 62358 11

4 - 863038 12

5 - 62081 13

6 - 62613 14

7 - 62485 15

Distribution of tevel 2 respons

0. 00 - 62453 4.00

0.50 - 62586 4.50

1.00 - 62399 5.00

1 50 - 63013 5 50

2.00 - 62285 6.00

2.50 - 62390 8. 50

3.00 - 62418 7.00

3.50 - 62704 7.50

level 2 (times

level 1 response times:

}

level

B

e

62326
62018
62100
62485
62492
82256
62430
62667

times:

62375
82258
62501
62157
62615
62515
62643
62598

1)

0

0
0.
2
3

1000000

50
47
25
21

32
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Results of Asynchronous System Simulation
Gaussian Distribution (Both Levels)

.l
‘a
N

.
a3
J&

SR

Asynchropous System Simulation Resalts (Gaussian)

Sample set sixe: 100000
Processing time of level 2 (times level 1): 1.00
Average processing time (level 1): 0.44
Average processing time (level 2): 0.50
Average size of level-level queune: 6279.71
Maximum sige of level-level queue: 12493
Average system response time (times t1): 7178 .88
Approximate Percent [dle time (leve! 2 0.00

Distribation of level 2 response times:

1 - 0 9 - 24743
2 - 0 10 - 8875
3 - 0 11 - 758
4 - 23 12 - 25
5 - 620 13 - 0
6 - 8287 14 - 0
7 - 23522 15 - 0
8 - 37147 186 - [

Asynchronous System Simulation Results (Gaussian)

Sample set sige: 100000
Processing time of level 2 (times level 1). 0.95
Average processing time (level lg: 0.44 ’
Average processing time (level 2): 0 48
Average sigze of level-level quene: 3088 28
Maximum sise of level-level quene: 7903
Average system response time (times t1): 4332 44
Approximate Percent Idle time (leve! 2 0.00

Distribution of level 2 response times:

- 0 9 - 24703
2 - 0 10 - 6857
3 - 0 11 - 787
4 - 32 12 - 25
5 - 669 13 - 0
6 - 6245 14 - 0
7 - 23753 15 - 0
8 - 36959 16 - 0

*
-
.

-
-
.

Py

’ (AL
H (]
¥ ﬁ .'Jﬂ’l"

N




-~

.

Asynchronous System Simulation Results (Gaussian)

Sample set sisze: 100000
Processing time of level 2 (times level 1): 0.900
Average processing time (level 1}: 0.44
Average processing time (level 2): 0.45
, Average sisze of level-level queue: 1432.57
; Maximum site of level-level queue: 2801
1 Average system respopse time (times tl;: 1475.46
, Approximate Perceant Idle time (level 2 0.00
Distribation of level 2 response times:
1 - 0 9 - 24510 b
2 - 0 10 - 7019 W
3 - 0 11 - 772 Ry
. 4 - 28 12 - 27 o
. 5 - 630 13 - 1 .‘:
A 6 - 6371 14 - 0
7 - 23830 15 - 0 [
8 - 36812 16 - 0

: .'
2.

g
X Asynchronous System Simulation Results (Gaussian) T
X Sample set sise: 100000 ol
A Processing time of level 2 (times level 1}): 0.85 NI
. Average processing time (level 1): 0.44 LT
. Average processing time (level 2 0.43
Average size of level-level queue: 1.00
Maximum sigte of level-level queue: 7
. Average system response time (times t1}): 2.95
. . Approximate Percent [dle time (level 2 2.902
Distribution of level 2 response times:
1 - 0 9 - 24832
> 2 - 0 10 - 6991
3 - 0 11 - 732
4 - 29 12 - 29
- 5 - 852 13 - 1
. 6 - 6272 14 - 0
7 - 23746 15 - 0
8 - 36716 16 - 0
REAC A
. PRGN
8 A
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Asynchronous System Simulatior Results {Gaussian)

Sample set sige:

Processing time of level 2 (times
processing time
processing time
sige of

Average
Average
Average
Max imum
Average

é

lev
lev

level-level

sigse of level-level

system response time (times t1):

el
el

level
l{
2}):

queue:
quene:

Approximate Percent Idle time (level 2

Distribution of

00 ~3 O Ol (DD

Asynchronous

Qoo

19
650
6257
23787
36024

9
10
11
12

bt s e e
[- N2

System Simulation

Sample set sige: )
Processing time of level 2 (times level

Average processing time
Average processing time

lev
lev

el
el

24700
6847
792
24

COoOO0OQ

1).

2 response times:

1000
0.
0.44
0.40
0.
2
8

00
80

41
3

.28
.69

Results (Gaussian)

1
2

Average sigse of level-level queue:

Maximum sige of

Averagg system response time
Approximate Percent Idle time (level 2

Distribution of

WA RN DD -

o

&

level-level gueue:
(times t1):

1):

esponse times:

2462)

100000

0.
.44
.38
.18

75

2
01

.30

P
[}
o

“I

2
~
s

AKX
[
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‘ -
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Il: Asynchronous System Simulation Results {(Gaussian) :-.:-.}
"~ NS
: Sample set sise: 100000 I ’.
Processing time of level 2 (times level 1): 0.70
Average processing time (level 1): 0. 44 g
Average processing time (level 2 0.35 .i; .
Average sise of level-level queue: 0.07 o *5.
Maximum sige of level-level queue: 1 .ﬁbﬂ\.
N Average system response time (times tl;: 1.88 - *\:
N Approximate Percent Idle time (level 2 20.00 {}; g
> 0 5:«'.
“ N
Distribution of level 2 response times:
1 - 0 9 - 24799 =
2 - 0 10 - 6774 i
3 - 0 11 - 7590 N
1 - 24 12 - 34 T
5 - 640 13 - 1
6 - 6340 14 - 0 ALY
7 - 23750 15 - 0 S
8 - 36870 16 - 0 I A
. Asynchronous System Simulation Results (Gaussian) AR
N Sample set sisze: 100000 o
- Processing time of level 2 (times level 1): 0.65 S
. Average processing time (level 1): 0.44 X
- Average processing time (level 2): 0.33 W e
.. Average sige of level-level queune: 0.03
Maximum sise of level-level quene: 1
Average system response time (times tl1): 1.76
Approximate Percent Idle time (level 2 25.75

Distribation of level 2 respoanse times:

1 - 0 9 - 24622
2 - 0 10 - 6779
3 . 0 11 - 775
4 - 28 12 - 33
5 - 660 13 - g
6 - 6287 14 - 0
7 - 23682 15 - 0
8 - 37134 16 - 0
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Asypchronous System Simulation Results (Gaussian) R
. .'_-_‘.q.‘
' Sample set sise: 100000 .;n}‘f
‘ Processing time of level 2 (times level 1): 0.60 Mt
Average processing time (level 1}: 0.44 vy
Average processing time {level 2): 0.30 3
, Average sige of level-level quene: 0.01 TN
. Max imum sige of level-level queue: 1 RN
‘ Average system response time (times t1): 1.69 BASAS
, Approximate Percent Idle time (level 2 31.47 uf\;u
. L}xfx'
. - \
’ Distribution of level 2 response times:
1 - 0 9 - 24573
2 - 0 10 - 6050
3 - 0 11 - 756
4 - 17 12 - 25
: 5 - 632 13 - 0
6 - 6423 14 - 0
7 - 23585 15 - 0
. 8 - 37039 16 - 0
l Asynchronous System Simulation Results (Gaussian)
. Sample set size 100000
) Processing time of level 2 (times level 1): 0.55
. Average processing time $Ievel 1 0.44
. Average processing time [(level 2 0 28
. Average sise of level-level queue: 0.00
Maximum sise of level-level queue: 1
i Average system response time (times t1): 1.63
Approximate Percent Idle time (level 2 37 .16

Distribution of level 2 response times

1 - 0 9 - 247908
2 - 0 10 - 6967
3. 0 1 - 777
4. 23 12 - 33
| 5 - 631 13 . 0
6 - 6226 14 - 0
7 - 23317 15 - 0
8 . 3T188 16 - 0
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Asynchromous System Simulation Results (Gaussian)

Sample set sige: 100000
Processing time of level 2 (times level 1): 0.50
Average processiag time slevel 1;: 0.44
Average processing time (level 2): 0.25
Average sise of level-level queue: 0.00
Maximum sige of level-level queue: 1
Average system response time (times t1): 1.587
Approximate Percent Idle time (level 2 42 .88

Distribution of level 2 response times:

1 - 0 9 - 24834
2 - 0 10 - 6753
3 - 0 11 - 726
4 - 23 12 - 29
5 - 634 13 - 0
6 - 6126 14 - 0
7 - 23789 15 - 0
8 - 37086 16 - 0
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Results of Synchronous System Simulation
Gaussian Distribution (both levels)

Synschronous Gaussian System -- Simulation Results
Sample set sige: 100000
Processing time of level 2 (times level 1) 00
Average processing time Eleve\ 1): 44
Average processing time {level 2): 44
Average DB system response time (¢ t1): 17
Average TB system response time (¢ t1 25
Distribution of level 1 response times
0 - 0 8 - 24749
- 0 9 6850
- 0 786
- 20 32
- 673 0
- 6335
< 23588
- 36967 15 - 0
Distribution of level 2 response times.
.00 - [ 8.00 -
.00 9.
.00 10.
00 11.
00 12.
.00 13.
.00 14.
00 15.

Synchronous Gaussian System -- Simulation Results

Sample set sige: 100000
Processinog time of level 2 (times level 1). 95
Average processing time (leve! l;: 44
Average processiog time (level 2): .42
Average DB system response time (o t1): 13
Average TB system response time }- l;: 19

Distribution of level 1 response times:

P W= O

sponse
.60

55
.50
45
.40

35
.30

25

Distribution of level 2 r
0 00

95
.90
85
80
)
.70
65

L T N )
B OO m-In

— e e e

Cata € e
AR T I , -




Synchropous Gaussian System -- Simulation Results

Sample set size 100000
Processing time of level 2 (times level 1): 90
Average processing time (level lg 44
Average processing time (level 2 40
Average DB system response time }‘ tl;. .08
Average TB system response time (¢ t1): .13

Distribution of level 1 response times:

et et s ps
N N~ O O X

Distribution of level 2 respomse times:
.00 7.20 - 24830
.90 8.10 - 68909
.80 9.00 - 754
.70 28 .90 31
.60 667 .80 1
.50 6305 70 0
40 23770 .60 0
.30 36715 .50 0

D WID e OO

Synchronous Gaussian System -- Simulation Results

Sample set sige 100000
Processing time of level 2 (times level 1): 0.85
Average processing time (level 1): 0.44
Average processing time (level 2): .37
Average DB system response time (¢ t1): .05
Average TB system response time (¢ t1): .08

Distribution of level 1 response times:
0 - 24784
0 6885
1 713

21 32

686
6295
23724
36859

Distribution of level 2 response
00 6.80 -
.85 .65
.70 .50

55 .35

40 .20
.25 05
.10 90
.95 .15

SRR I = OO
8D e e O © 00~

—— e
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Synchronous Gaussian System -- Simulation Resaglts

Sample set size: 100000
Processing time of level 2 (times level 1): 0. 80
Average processing time (level 1} 0.44
Average processiag time {(levei 2 0.35
Average DB system response time }0 t1): 2.03
Average TB system response time (¢ t1): 3.05

Distribution of level 1 response times:

0 - 0 8 - 24558
1 - 0 9 - 6827
2 - 0 10 - 791
3 - 22 11 - 28
4 - 638 12 - 0
S - 63905 13 - 0
8 - 23484 14 - 0
7 - 37208 15 - 0

Distribation of level 2 response times:

0.00 - 0 6.40 - 24872
0.80 - 0 7.20 - 6804
1.60 - 0 8.00 - 762
2.40 - 16 8.80 - 24
3.20 - 641 9.60 - 0
4.00 - 6249 10.40 - 0
4.80 - 23388 11.20 - 0
5.60 - 37244 12.00 - 0

Synchronous Gaussian System -- Simulation Results

Sample set sige: 100000
Processing time of level 2 (times level 1): 0.75
Average processing time (level 1): 0.
Average Brocessing time (level 2}): 0.33
: 2
3

Average DB system response time (¢ t1
Average TB system response time (¢ tli

Distribution of level 1 response times:

- 0 8 - 24654
{1 - 0 9 - 68786
2 - 1 10 - 728
3 - 24 11 - 26
4 - 623 12 - 1
S - 6283 13 - 0
6 - 236901 14 - 0
7 - 37093 15 - 0

Distribution of level 2 response times:

0.00 - 0 6.00 - 24758
0.75 - 0 6.75 - 6873
1.50 - 0 7.50 - 764
2.25 - 35 8.25 - 39
3.00 - 684 9.00 - 1
3.75 - 6295 9.75 - 0
4.50 - 23733 10.50 - 0
5.25 - 36818 11.25 - 0




l-;;:;.;
Vi
a 300 "
- 2]
f e
» S
o do >
2 Syocbhronous Gaussian System -- Simulation Results Ic:"_,.'-"
- Lt
. Sample set sisge: 100000
’ Processing time of level 2 (times level 1): 0.70
Average processing time (level 1): 0.44 g
. Average processing time (level 2 0.31 -'-h:'
"~ Average DB system response time (o t1): 2.01 h_t A
- Average TB system response time (¢ t1): 3.01 k _;
] . L]
‘: Distribution of level 1 response times: : kt‘g‘.“z
K. 0 - 0 8 - 24656 —
! ) S ‘0 9 - 6976
2 - 0 10 - 754
= 3 . 21 1 - 18
o) 4 - 673 12 - 0
D 5 - 6296 13 - 0
. 6 - 23666 14 - 0
:_' 7 - 36940 15 - 0
- Distribution of level 2 response times:
0.00 - 0 5.60 - 24668
e 0.70 - 0 6.30 - 6824
% 1.40 - 0 7.00 - 752
O 2.10 - 22 7.70 - 31
. 2.80 - 662 8.40 - 0
., 3.50 - 6213 9.10 - 0
-, 4.20 - 23628 9.80 - 0
- 4.90 - 37200 10.50 - 0
] Synchronous Gaussian System -- Simulation Results
J.
s Sample set sise: . 100000
- Processing time of level 2 (times level 1}: 0.65
- Average processing time (level 1): 0.44
3 Average processing time (level 2 0.20
< Average DB system response time (o t1 2.00
Average TB system response time (¢ t1 3.01
- Distribution of level 1 response times:
- 0 - 0 8 - 24689
< 1 - 0 9 - 7066
- 2 - 1 10 - 743
o 3 . 20 1 - 23
- 4 - 649 12 - 0
5. 6360 13 - 0 e
o 6 - 23658 14 - 0 '»_.“-'_.'
X 7 - 36791 15 - 0 T
' Distribution of level 2 response times: .‘-'_:’-:.'
5 0.00 - 0 5.20 - 24568 -"_-:_-
y 0.65 - 0 5.85 - 6014 v
1.30 - 0 6.50 - 728 e
1.95 - 22 7.15 - 28 AT
= 2.60 - 667 7.80 - 0 L
y 3.25 - 6335 8 .45 - 0 T
. 3.90 - 23650 9.10 - 0 RN
- 4.55 - 37090 9.75 - 0 Ve
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Synchronows Gaussian System -- Simulation Results

Sample set sise: 100000
Processing time of level 2 (times level 1)}: 0.60
Average processing time (level 1): 0.44
Average processing time (Jevel 2 0.28
Average DB system response time (¢ tlgz 2.00
Average TB system response time (¢ t1): 3.00

Distribution of level 1 response times:

0 - 0 8 - 24798

1 - 0 9 - 6838

2 - 1 10 - 734

3 - 23 11 - 27

4 - [1:1] 12 - 0

5 - 6431 13 - 0

8 - 23463 14 - 0

7 - 36000 15 - 0

Distribution of level 2 response times:

0.00 - 0 4.80 - 24517

0.60 - 0 5.40 - 6912

1.20 - 0 6.00 - 756

1.80 - 22 6.60 - 33

2.40 - 679 7.20 - 0

3.00 - 6285 7.80 - 0

3.60 - 23608 8.40 - 0

4.20 - 37098 9.00 - 0
Synchronous Gaussian System -- Simulation Results
Sample set sise: 100000
Processing time of level 2 (times level 1): 0.55
Average processing time (level 1): 0.44
Average Brocessing time (level 2 0.24
Average DB system response time (o tl{: 2.00
Average TB system response time (¢ t1): 3.00

Distribation of level 1 response times:

0 - 0 8 - 24602
1 - 0 9 - 6782
2 - 0 10 - 748
3 - 25 11 - 34
4 - 719 12 - 1
5 - 6350 13 - 0
6 - 23693 14 - 0
7 - 37046 15 - 0

Distribution of level 2 response times:

0.00 - 0 4.40 - 24589
0.55 - 0 4.95 - 6904
1.10 - 0 §.50 - 765
1.65 - 20 6.05 - 23
2.20 - 632 6.60 - 0
2.75 - 6270 7.158 - 0
3.30 - 23598 7.70 - 0
3.85 - 37196 8.25 - 0
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Syachronous Gaussian System -- Simulation Results

P aarthar Bt R ary

Sample set sise: 100000
Processing time of level 2 (times level 1): 0.50
- Average processing time (level 1): 0.44
Average processing time {level 2): 0.22
Average DB system response time (o tl;: 2.00
Average TB system response time (¢ tl}): 3.00

Distribution of level | response times:

0 - 0 8 - 24718

1 - 0 9 - 6874

2 - 1 10 - 745

3 - 23 11 - 33

4 - 632 12 - 0

5 - 6308 13 - 0

6 - 23844 14 - 0

7 - 36822 15 - 0

Distribation of level 2 response times:

0.00 - 1] 4.00 - 24577

0.50 - 0 4.50 - 7069

1.00 - 0 5.00 - 717

1.50 - 17 5.50 - 29

2.00 - 662 6.00 - 0

2.50 - 6372 6.50 - 0

3.00 - 23504 7.00 - 0

3.50 - 36993 7.50 - 0
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