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1. INTRODUCTION Gﬁ;'

r

Uty

Antiprotons colliding with a heavy nucleus annihilate with a proton or SJS;

kJ4q

neutron in the nucleus. The numbers and energies of the particles emitted s§§%
Y

from the nucleus following annihilation are significant to the use of jwy

antiproton annihilation as a source of energy for spacecraft propulsion. An i

important quantity to consider is the fraction of the annihilation energy that

goes into the kinetic energy of heavy charged particles emitted from the

nucleus, such as protons and deuterons. A large value of this energy fraction o

facilitates transferral of the annihilation energy to a working fluid or

plasma that forms the rocket exhaust. It has been the purpose of the work ,Zf
reported here to determine the energy fraction from relevant literature and to _ixl
assess the significance of its value to annihilation propulsion. This purpose J;:
.

is important to the question of what form of matter should be employed in g
annihilation with antiprotons to achieve maximum efficiency in converting n;
annihilation energy into propulsion energy. ;
[y

1.1 Choice of Annihilating Materials k"
Consideration of matter-antimatter annihilation as an energy source for :';f

L7

space propulsion has been taking place over the last several years. For tl*}
details of the research, the reader is referred to the journal articles and _
reports by Forward, Morgan, Vulpetti, and Massier listed in the i:i
bibliography. Comprehensive research results are found in Air Force Rocket i}i
-

Propulsion Laboratory document, AFRPL-TR-85-034 (Forward) and in Volume 35 O
{(1982) of the Journal of the British Interplanetary Society. Bk
o

Matter-antimatter annihilation produces the greatest amount of energy per tf“)

unit mass of propellant of any known possible means of propulsion. The form :{f}
of antimatter most often considered for annihilation consists of antiprotons, _;s
which are the antiparticles to ordinary protons. The antiprotons might be ;jt:
contained in solid antihydrogen, each atom (or antiatom) of which is composed ijﬁf
of an antiproton and a positron (an antielectron). Antiprotons are the g‘“
preferred form of antimatter because each antiproton annihilation produces e
R

about 2000 times as much energy per particle as positron annihilation with NN

electrons, and antiprotons are much easier to produce than antinuclei ;ﬂ}j
N

s

|
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:: (composed of antiprotons and antineutrons). Antimatter of any other form

< involves antiparticles that are not stable; they would decay in storage before
! heing used. 1In contrast, the form of matter to employ for annihilation with
h the antiprotons is less certain., Antiprotons annihilate with the protons and
ﬁ neutrons in the nuclei of matter atoms, but whether the nucleus should be a

o proton (nucleus of ordinary hydrogen), a heavy nucleus (e.g. of uranium), or
AN something in between is not clear. The choice depends on how the annihilation

-j energy manifests itself and on how it can be used to provide propulsion.

When protons or other light nuclei are employed, energetic pions (mesons
with a mass of about 1/7 of the proton mass) are the principal product
produced by the annihilation. Most of the pions are charged, and they can be
directed by a magnetic field to produce thrust. However, their exhaust
velocity is about 90% of the speed of light. Thus, for nearly all envisioned
missions (not including interstellar flight) where the space craft velocity is
much less than the speed of light, only a small fraction of the annihilation
energy is transferred to the spacecraft; nearly all remains in the exhaust.
To achieve a higher efficiency, it is therefore necessary to transfer the
annihilation energy to a working fluid, of much higher mass than the
antimatter, that has a much lower exhaust velocity but much greater thrust
than the pions. The efficiency of energy transferral is affected by the form

of matter chosen as the annihilation medium.

If the annihilation medium consists of an element of high atomic number,
some of the pions produced by annihilation (of antiprotons with the protons
and neutrons of the heavy nuclei of that element) will transfer their energy
to the nucleus, and nuclear fragments (protons, neutrons, deutercns, and other
l1ight nuclei) will be emitted. The masses of the fragments are much greater
than the pion mass, so it is much easier to transfer the energy of the charged
fragments to a working fluid than to transfer the energy of the charged
pions. (Transfer of energy of neutral particles of either kind is still more
1ifficuit.) Ease of transfer means less distance that a particle or fragment
must travel through the working fluid to transfer its energy. Large transfer
distances might require rocket motors (where the transferral would occur) that

are mucn larger than those used for chemical propellants.
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If the fraction of annihilation energy going into the kinetic energy of
charged nuclear fragments for heavy nuclei is about the same or greater than
the fraction of energy going into the kinetic energy of charged pions for
light nuclei, then chosing a heavy element for the matter will be advantageous
as opposed to hydrogen or another light element where essentially no fragments
are produced. Therefore, it is important to determine the fraction of
antiproton annihilation energy that goes into the kinetic energy of charged
naclear fragments when antiprotons annihilate in heavy nuclei. To that end, a

literature survey was conducted to locate information from which the energy
fraction could be determined.

2. THE LITERATURE SEARCH

The literature search was conducted to obtain information on the
anninilation of antiprotons in nuclei with a mass equal to, or greater than,
carbon. Occasionally the search area was broadened to include lighter
nuclei. Of greatest interest was the annihilation of antiprotons in
uranium-238 nuclei, the most massive nuclei of any naturally occurring
isotope. It appeared likely that this annihilation would have the largest
fraction of pion energy transferred to charged nuclear fragments, because the
large size of the nucleus leads to a large distance of travel for the pions
within the nucleus. Carbon was chosen as the "lower limit" on heavy nuclei
for two reasons. First, on a logarithmic scale the carbon nuclear radius is
about midway between the nucleir radii of uranium and a proton. Second,
carbon is a fairly common target in antiproton experiments, so it appeared
likely that some relevant experimental information would exist. Information
was sought on annihilation in the hydrogen and helium isotopes bhecause it is

relevant to the basic antiproton-proton and antiproion-nedtron annihilations.
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2.1 Procedures and Results

The search was conducted by consulting reference documents, by using
computer data bases, and by communicating with individuals in the field of
high energy physics. The Physics Briefs, INSPEC, American Institute of
Physics, NTIS, and DTIC data bases were searched for publications over the
last five to eight years. This yielded about two hundred citations for
examination. Approximately fifty of the cited publications were obtained,
because they were relevant to determining the energy fraction. Many of these
had references to relevant publications of twenty to thirty years azc which
were also obtained. The relevant publications are included in the

Bivbliography.

The personal contacts produced much useful information, including the
resalits of a calzulation of antiproton -~ uranium-238 annihilation,(1) and
expurimental resuylts for antiproton annihilation in uranium-238 and
silicon.(?) These results, when combined with earlier work, allow
determination of both theoretical and experimental values for the energy

fraction.
2.2 Antiproteon - Heavy Nucleus Research

Experimental research on antiproton - heavy nucleus annihilation is
concentrated in two time periods. The first period began shortly after the
discovery of the antiproton in 1955(3) and continued into the early 1960's.
The second period began about four years ago and includes the present. That
period foliowed a time of heightened theoretical interest in the consequences
of the large energy deposited in nuclear matter by annihilation.(u) This
energy can lead to interesting physical circumstances (described in terms of
quarks and glaons) that ~an improve the understanding of strong forces. The
initial experimental work involved the study of charged particle tracks in
pnotographino emulsions(S) and bubble chambers(b) exposed to antiproton beams
at Lawrence Berkeley Hational Laboratory and subsequently at Brookhaven
National Laboratory. At the present time most experimental work is being
canducted at the LEAR (Low Energy Antiproton Ring) facility in the Antiprotor

r~

“omplex at IERN {lentre Earopienne pour la Recherche Nucleaire, now named
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European Organization for Nuclear Research) near Geneva, Switzerland (e.g.,

Ref. 2).

Some values for the energy fraction were determined during the first

(5,6) However, these values are based on

period of experimental work
observation of a small number of annihilations (compared to modern
capabilities) and either do not apply to specific nuclei or do not include
heavy charged particles and fragments of all significant energies and types.
The literature search yielded no pablished values of the energy fraction from
the second period of experimental work, but many of the results from recent
experiments at LEAR on antiproton annihilation in heavy nuclei are not fully
published.(7) Hence the possibility of modern published values of energy
fractions in the near future. The various pieces of experimental and
theoretical information that currently exist, however, may be used to
calculate the fraction of anninilation energy transferred to the kinetic
energy of heavy, charged particles (or nuclear fragments) in antiproton

annihilation with uraniums-238 and silicon nuclei.

3. ANNIHILATION PHYSICS

When an antiproton (p, single negative charge) annihilates with a proton
(p, single positive charge) or neutron (n, neutral) in a heavy nucleus, a
number of lignter particles are produced. The number and types of particles
vary from annihilation to annihilation. In nearly all annihilations, however,

the particles are types of mesons, with pi-mesons (pions) being most likely.

Most of the other mesons are "resonances," so called because they are short- ‘ f;
lived excited states of more stable meso>ns, which decay into other particles ; ﬂ$
(pions, to a large degree, in roughly 107" to 107" §) by way of strong e
forces. A small number of K-mesons (kaons) are produced directly or by decays
of the short-lived mesons. The pions and kaons decay via weak and

16 .8
electromagnetic forces so they have much longer lifetimes (about 10 to 10

sec). The kaons constitute only about 2% of the decay products.

The three above "forces™ plus gravity are the four fundamental forces of

nature, In decreasing order of strength: strong forces are the nuclear o
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forees that Sind protons and nedtrons in nuclei and give rise to fissicn and
fasion envrgy; eolectromagnetic forces hind electrons to nuclei and are
~esroonnitle foromost phvsieal, ehemical, and binlogical phenomena; weak forces
Saase U oo tiontive dbeeay of naelel and the decay of some fandamental
particles; and gravitatioral forces are responsible for weight and the motion

of celestial bodies.

For many parposas including antiproton-annihilation propulsion, the
et ooeaton annino lation products may be taken to he entirely pions, including
vonged nlons fn'oand w7) and nedtral pions (w2). Characteristics of the
cions Trom othe anniailation of an antiproton at rest with a proton fi.e., when
thereointive veliaoity 15 nearly zero) are given in Tablz 1, The energy

cpectram of the charged pions LUs shown in Fig. 1.

s oeventatlly decay. The 7t and n7 decay via weak forees into
“uS et eutrinos (the muons then decay into electrons, positrons, and

st owhilo the n°%'s decay via electromagnetic forces into photons

The eroce secticon for the annihilation of an antiproton with a proton is
ivout 1.3 Simes thie eroas section for annihilation with a neutron for equal,
VoM inei dent energies. s Tnis ratio was determined from observing
an~inilitions of protons and neatrons in nuclei, but it also applies to free

protonL ant negtronz. In o annihilation with a neatron, the numher of negatlve

(e ahuts dadts gl e at 4t A Bioah S ah al il Vol ot Teb LR L R IRL UL T T LI L N A S ek

Tl Traracterintiocs of pions from p + p anninilation a* rost
“inforaation derived from Ref. 12 and other sourczos ta the

wrarnvY. Toral annihilation energy = mass enerygy of

~ov D iRTRLEY MeV. About 4% of the annihilation energy egocs

Lnt s o obtaer narticles (mainly kaons).
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pions produced is always one more than the number of positive pions since
charge must be conserved. The mean relative proportion of charged pions i3
somewhat greater than for annihilation with a proton, but the mean energies of

the pions are about the same.

3.1 In Heavy Nuclei

When an antiproton with an energy of a few hundred MeV or less strikes a
heavy nucleus, the probability for annihilation with either a proton or
neutron is so high that annihilation occurs on the surface of the nucleus.

The annihilation pions are emitted isotropically in the center of mass system
of the annihilating particles, so about one-half of the pions will enter large
nuclei. The cross section (or probability) for interaction of these pions
with the nucleons (neutrons and protons) is sufficiently large that they will
interact with one or more nucleons before exiting the nucleus, if they indeed
get out. A pion may scatter from a nucleon or may be absorbed by a nucleon.

When absorbtion occurs, the excited nucleon will usually re-emit a pion. In

both cases, some of the kinetic energy of the pion is transferred to the
nucleon. The energy transferred is usually well above the 5 - 10 MeV mean
binding energy with which each nucleon is bound within the nucleus. Thus, a
number of nuclear fragments, which are individual nucleons or combinations of
nucleons, will be emitted from the nucleus. 1In addition, the nucleus will be
left in an excited state. If the residual nucleus is sufficiently heavy to be
unstable to fission, then it is likely that fission will follow the cascade of
the pions through the nucleus.(g) The fission energy transferred to the
kinetic energy of the two roughly equal nuclei that result is about 175

Mey. (10)

3.2 Nuclear Fragment Energies

1
Most of the fragments emitted will be individual protons and .

neutrons.s'o A few will be deuterons (designated d, one p and one n), tritons ' !;
(designated t, one p and two n's), helium-3 nuclei (designated 3He, two p's ﬁﬁ
and one n), and alphas (designated a, two p's and two n's). The total kinetic ii
-\-b‘
energy transferred to these fragments depends on the dynamics of the pion- iﬁ
nucleon interactions and on the size of the nucleus. Some possible energies o
that might be available to the fragments are given in the first two columns of ﬁk
;3
&
Lo
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Table 2. The first column considers the kinetic energy of one-half of the
pions, and in the second column the mass energy of these pions is also
included. The last row of both columns additionally includes the kinetic
energy of the fission fragments that may be present from fission of the
residual nucleus. Table 2 also gives the kinetic energy of the charged pions
produced by annihilation with a proton (about the same as for annihilation in

other light nuclei consisting of only a few nucleons).

It is apparent from the figures in Table 2 that if a high fraction of the

available energy is transferred to charged nuclear fragments when annihilation

occurs in a heavy nucleus, then the kinetic energy of these fragments is

et %
'w‘c' doa
.
i 1
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‘
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comparable to the kinetic energy of the charged pions from annihilation with a

f
e
»

.

L

proton {hydrogen nucleus). It is this possible fact that makes heavy elements

‘,:_. A
X

potentially attractive as an annihilation medium and working fluid for
antiproton annihilation (and led to this study), since transferral of energy
to the working fluid with the relatively heavy charged nuclear fragments is
easier to accomplish than with the relatively lighter pions.(11) It will be
seen in the following two sections, however, that only a fairly small fraction
of the available energy goes into the kinetic energy of charged fragments.
Much goes into reemitted pions and a significant amount into the kinetic

energy of neutrons.

Table 2. Possible energies that may be available to nuclear fragments
following annihilation of an antiproton at rest in a heavy nucleus
compared to the kinetic energy of charged pions produced by proton-
antiproton annihilation. Small contribution from kaons not

included.
Annihilation in heavy nucleus Annihilation with a proton
Half of pion Same with Kinetic energy of
kinetic energy mass energy charged pions
Energy [MeV] 556 900 705
Fraction of 0.30 0.48 0.38
annihilation -
energy 5':1;
Fraction with 0.39 6.7  meee—- o
kinetic energy e
of fission frag- e
ments included S
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4, THEQORETICAL RESULTS FOR URANIUM

Michael R. Clover of Los Alamos National Laboratory provided the output
of a computer run that gives the details in the Intra-nuclear Cascade Model
of D scattering by a dranium-238 nucleus.(j) These results are similar to,
but more detailed than, those reported by Clover et al. for the same

problem.(’2)

The code performed a monte carlo simulation of encounters between a 175

238

MeV {(lab energy) antiproton and a U nucleus {(at rest in the Lab frame).

The number of encounters was 7029 of which 4950 were inelastic (the p changes
form or loses energy in the center-of-mass frame). The p did not pass close
enough to the nucleus for inelastic processes to occur in the other
encounters. Nearly all of the inelastic encounters involved P annihilation,
however in 244 inelastic cases the p remained intact but lost energy to
individual nuclenns, and in 17 cases charge exchange occurred. In these
latter cases the antiproton struck a proton and an anti-neutron plus a neutron
were produced, with the anti-neutron then leaving the nucleus without
annihilating. In charge exchange, the antiproton gives its negative charge to
a proton and becomes an antineutron (n), while the negative charge neutralizes

the pesitive charge of the proton making it a neutron.

[
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The code output contains the number and energy spectra of the nuclear

.
A RN
PR
v
a2 s
.

fragments, pions, kaons, and other particles produced in the inelastic

e

collisions. From the spectra, the mean energy for each particle or fragment

S

may be calculated. The numbers and mean energies are give in Table 3. A
correction was applied to these quantities to obtain similar quantities for
the case of interest here in which only annihilations occur. Table 3 also
contains those results, along with the mean total kinetic energy given to each
particle or fragment type for a single annihilation. The particle and
fragment numbers allow calculation of the mass energy of the created particles
{pinns and xaons) and the nuclear binding energy lost (potential energy
gained) when the nucleons and fragments leave the nucleus. These are also in
Tahle 3. The code gives information on the distribution of nuclear states

following annihilation from which the mean excitation energy of the residual f}}

nicleus was determined. That value is shown in Table 3 where it is added with o
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Table 3. Theoretical characteristics of nuclear fragments, particles, and the
re31dua§ gucleus resulting from the encounter of a 175-MeV antiproton

with a U nucleus based on Ref. 1. Statistical errors are not
shown.
Inelastic Scattering Annihilations only
mean kinetic mean kinetic total kilnetic
energy per energy per energy for
particle mean particle each type per
particle or mean number or fragment number per or fragment annihilation
fragment per event [MeV] annihilation [MeV] [MeV]
p 1.419 101.2 1.498 101.7 152.4
n 3.608 72.4 3.809 72.8 277.4
m+ 0.758 212, 0. 801 213. 170.6
e 1.137 197, 1.201 198, 238.
n- 1.206 193, 1.273 194, 247,
K+ 0.030 84, 0.032 85. 2.7
Ke 0.068 65. 0.071 66. b7
K- 0.039 99. 0.041 99. 4.1
_ o) 0.049 146. - - -
a 0.003 134, - - -
* d 0.347 77.9 0.366 78.4 28.7
t 0.266 62.3 0.280 62.6 17.6 .
3He 0.163 65.6 0.172 66.0 1.4 T
a 0.044 54.3 0.047 54.6 2.6 L
Total kinetic energy to particles/fragments 1156, MeV .i'
Total mass energy of w's & K's 523. T
Nuclear recoil kinetic energy 1. RN
Nuclear binding energy lost (approx.) 59. A
Mean excitation energy of residual nucleus (approx.) 296. T
Total Discrepency 17. B
p + P mass energy + P kinetic energy 2052, MeV 'IE!

the other energies in an attempt to reproduce the total input energy, the sum

" B
’u

of the annihilation energy and the incident kinetic energy of the

e
SRS 0

antiproton. This sum falls 17 MeV short of the input energy. One possible

explanation involves the assumption employed that the mean dinding energy per

nucleon is the same in the possible residual nuclei as in 238U, whereas it is
likely somewhat less. Another possible explanation is a small systematic U
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error in the numerical integration of the energy spectra to obtain the mean
energies of the particles and fragments. In any case, the discrepency is less

than one percent of the total energy, and hence negligible for our purposes.

i e
e N

5, (ALK

The residual nucleus, after annihilation, is in a highly excited state

from which more fragments (mainly nucleons) will be emitted by evaporation,

WA 4G T LA NS TRy Y™

along with the emission of gamma rays. The contribution of evaporation to the

.
.

)
5
o
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total energy in emitted fragments may be estimated by considering Fig. 4 of
Ref. 13, Here it is shown that the energy deposited by evaporated protons
following antiproton annihilation in a 1 mm thick slab of silicon is about the
same as the energy deposited by the protons emitted during the initial intra-
nuclear cascade. Using this fact and a formula for the rate of energy

deposition for charged particles in matter(1u), it can be determined that the

v
.
v
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total kinetic energy in the evaporated protons is less than one-tenth that of

the initial cascade protons when the initial energy of the evaporated protons

o

is 25 MeV, If that initial energy is 10 MeV, then the ratio of the energies
is one-hundredth. The reason for the nearly equal deposition of energy is
that the lower-energy, evaporated protons deposit their energy much more
rapidly than the faster cascade protons. Since the mean energy of each
eviporated proton is probably around 10 MeV and certainly less than 2%
%ev,(15) the contribution of evaporated protons is insignificant. The same is
very likely true for other fragments, so evaporated fragments may be

negzlected.

4,1 Fraction of Energy to Charged Fragments

The results of Table 3 give 213 MeV for the total kinetic energy of heavy il;
charged fragments (p,d,t,3He,a) following annihilation of a 175 MeV antiproton ;;ﬁ
in a 238U nucleus. 1In an antiproton annihilation rocket engine, the iié
antiprotons will most likely be at much lower energy. They may be stored at !;
temperatures near absolute zero<11) (‘IO_5 to 10—“ eV, perhaps) and extracted Eﬁ
and transported to the rocket engire at energies well under 1 MeV. As far as k;
the intra-nuclear dynamics is conce-~ned, the annihilation of such an SE
antiproton amounts to annihilation "at rest". More energy is transferred from !E
the pions to the fragments for a P energy of 175 MeV than a P energy of nearly }i
zero. This is because center-of-mass motion at 175 MeV tilts the pion it
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distribation forward resulting in more pions entering the nucleus and because
the nions share the additional 175 MeV of energy.(s'ﬁ) Available experimental
information allows determination of the ratio of kinetic energy tranferred to
charged fragments for annihilation at rest to the same quantity for

annihilation at 175 MeV.

From Ref. & the value of the above ratio, when comparing annihilations at
25 MeV and 120 MeV is 0.84 + 0.08, Assuming an inverse linear dependence on
energy, this gives 0.73 + .12 for the ratio from O MeV to 175 MeV. From Ref.
5 the ratio is 0.57 + 0.06 for zero to 166 MeV. When similarly extrapolated
to the case of 0 MeV to 175 MeV, this latter ratio becomes 0.56 + 0.06.
Combining the two ratios for 0 MeV to 175 MeV with somewhat more weight for
the latter, the value of 0.62 x 0.10 is obtained as a single value for the
ratio, where the large error reflects the discrepancy in the two ratios.
Application of this single ratio yields 130 + 20 MeV as the theoretical value
for the kinetic energy of the heavy charged fragments (p,d,t,3He,a) resulting
from antiproton annihilation at rest in a 238U nucleus. That value, along
with related quantities is given in Table 4. It may be seen from Table 4 that
annihilation of antiprotons in heavy nuclei is less attractive than indicated

5.1 & similar

by earlier estimates of an energy fraction of about O.
conclusion occurs when experimental information on p-heavy nucleus
annihilation is considered in the following section. These results apply
whether or not the 238U nucleus or proton are free or in uranium and hydrogen
atoms {or molecules) since they pertain to events per annihilation. The

annihilation rate for antiprotons at energies around a few eV or less is much

higher when the annihilating medium consists of atoms or molecules than free

(bare) nuclei(11) (see also entries in Bibliography by Morgan and Hughes).
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Table 4. Theoretical kinetic energy of heavy, charged fragments (protons
and heavier) resulting from annihilation of an antiproton in a
Jranium-238 nucleus (based on Ref. 1) compared to the kinetic
energy of charged pions in p + D annihilation at rest.
Quantities for annihilation at rest are obtained by applying a
factor to those at 175 MeV, The factor is obtained from
experimentally based information in Refs. 5 and 6.

SRS ASY P TN AL LAY,

annihilating nucleus 238U 238U p
- p energy [MeV] 175 0 0
- (at rest) (at rest)
energy to charged 210 130 + 20 705
fragments/pions {MeV] (to fragments) (to fragments) (to pions)
§ fraction of annihilation 0.10 0.07 + .01 0.38
' (plus any incident)
energy
fraction with kinetic 0.19 0.16 + ,01 = ===w-

energy of fission
fragments included

5. EXPERIMENTAL RESULTS FOR URANIUM AND SILICON

Among the results of LEAR experiment PS187 reported in Ref. 2 are
momentum-differential cross sections for proton production in 180 MeV
antiproton annihilation with Si and 238U nuclei (see Fig., 3 in Ref. 2,
reproduced here as Fig. 2). By reading values from the graph, the cross
sections may be integrated to obtain the total cross section for proton
produztion as well as the mean energies of the protons. That was done under
the assumption that there is no significant contribution to the total kinetic
energy of the protons for momenta below 250 MeV/c (kinetic energy = 33 MeV)
which is the low momentum cutoff on the graph. For 238U, the cross section is

5800 mb (millibarn = 10727 cm2) and the mean kinetic energy is 100 MeV. For

3i the cross section is 1350 mb and the mean kinetic energy is 110 MeV. To

. v v
r
»
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obtain the kinetic energy of the protons for each annihilation requires

knoWwing the number of protons emitted per annihilation. That number is equal

Eifﬂ

to the proton production cross section divided by the annihilation cross
section, but the annihilation cross sections are not given in Ref. 2 (nor in

Ref. 13 on the same experiment). They can, however, be obtained from other
experimental information,

-
L]

s .
AN
..‘
-.\
ﬂ.
-'_‘
.t .‘
L]

AT

Y

L
- d
\

o et e e et Tt e e e e
A N e e




(mb/MeV/c)

do/dp

0

T — T T E T . T T 3
F sipp) 1 f e ]
- ' ]
F 3 10 3
g 1t :
ER: 'ﬂ
: ] ¢k

4 1 1 i 10" 1 1 1 1

200 400 600 800 0 200 ¥00 00 g00 {000
p (MeV/c) p (MeV/c)

Momentum-differential cross sections for proton production in the
annihilation of 180 MeV antiprotons in silicon and uranium-238. Note,
the symbol p is used both to designate a proton and for the momentum
of a particle (here, a proton). Taken from Fig. 3 of Ref. 2.
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5.1 Annihilation Cross Sections

(16)

Nakamura et Aal. give measured values of p anninhilation cross sections

* 2 S .Y Ta RS P I

in carbon, aluminum, and copper for antiproton energies between 100 MeV and

F P L

350 MeV. At such energies, the cross sections are the same for free nuclei
and ones in atoms. They call the cross sections "absorption cross sections",
but it is evident that they are essentially equal to annihilation cross
sections because the only other inelastic process included was charge
exchange, which accounts for only about 0.3% of the absorption cross

section. Besides their own values, Nakamura et al. also give annihilation

cross gections in their Fig., 2 from other measurements for higher energies.

NS SR

That figure is reproduced here as Fig. 3. Because of the fairly simple

dependence of annihilation cross section on atomic number of the nucleus and

At

on the momentum or energy of the antiproton, the measurements of Nakamura et
al., 3long with the other measurements in Fig. 3 can be used to determine the

antiproton anrihilation cross sections for silicon and uranium-238.

AN, 4

¢
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For antiproton energies high enough that the DeBroglie wave length

-, ?

of the antiproton is small compared to the nuclear radius (true for the

[}

momenta in Fig. 3), the annihilation cross section is approximately

s
v el

rrrr¢

proportional tc the geometric cross section of the nucleus. 1In fact, this
proportionality is a near-equality for antiproton energies of a few hundred

MeV (momenta of several hundred MeV/c) since the proton has a near-unity

VT .
vLoa et e ‘s

probability of annihilating once it encounters the nucleus. At higher

v
.

energies, the nucleus begins to become transparent to the antiproton. At much

—_y
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lower energies, the wavelength of the antiproton becomes large and the

N
’

quantum-mechanical spreading of the antiproton destroys the simple geometric

picture.

In this simple but fairly accurate view, the annihilation cross section

TR F

has the form
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Fig. 3. Experimental antiproton absorption cross sections as functions of the 1;!
antiproton momentum, from Fig. 2 of Ref. 16. The absorption cross jj;s
section is essertially equal to the annihilation cross section. The E

solid curves are the fit described in the text. See Ref. 16 for full
reference information on the experimental work.
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where A is the atomic number of the nucleus (the area of the nucleus is
2/3
proportional to A / ), p 18 the momentum of the antiproton (same symbol as

1324 to designate a proton), and C and B are constants., The factor p—8

can
woeouant, at least to a degree, for both the transparency of the nucleus as

p * = and the spreading of the antiproton as p » 0. A more accurate form for
0, may be obtained by allowing B to depend somewhat on A, as appears must be
the case from Fig., 3, and by replacing C Az/3 with (C’/zAl/3 + d)z. The
constant d accounts for the fact that annihilation may still take place out to
somne Tix2d distance beyond the mean radius of the nucleus. When such an
altered form is used to fit the data of Fig. 3 for momenta less tharn 10 GeV/c,

the resalts is

~-0.4
YA 2 p =0.5A =26 2
o = n(1.3% A + 0.83) (600 MeV/c) X 10 cm . (2)

Tquation 2 gives the solid lines shown in Fig. 3 and gives a value of 2650 mb
for 238U with an antiproton energy of 175 MeV. This value is within 5% of the
theoretical value of 2500 mb.(1) Equation 2 should not be employed for nuaclei

I

lighter than carbon. (For D + p it gives about twice the known value.)
5.2 Fraction of Energy to Charged Fragments

Fauation 2 may now be employed to obtain the annihilatisn crosyn o otions
Tora 180 MeV antiproton (momentum = 608 MeV/c) on Si and RB%U {4c .n LFAR
experiment PS187) and thence the rumbers and energies of the protons produced
by the annihilations. For 238U, oy = 2650 mb so the number of protons per
annihilation is 2.19 and their xinetic energy per annihilation is 213 MeV. To
this must be added the energy of the other heavy charged particles wnich are
not considered in Ref. 12 or 13. However, using the ratio, 0.39, of the
comhined kinetic energy of d,t,3He, and a to the kinetic energy of the protons
from the theoretical calculation of the previous section (since no
experimental valde is known), the total kinetic energy of the heavy charged
fragments i3 found to be 305 MeV. If the procedure in the previnus senction i.

Jsed tn extrapolate the energy to annihilations at rest, the factor to be
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employed is 0.61 + 0.10, and the result for the kinetic energy of the charged
fragments per annihilation is 190 + 30 MeV. For silicon, 0, = 760 mb, the
mean number of protons {s 1.75, their kinetic energy per annihilation is 195
MeV, and the kinetic energy of the charged fragments is 270 MeV (for

a p energy of 180 MeV). When extrapolated to annihilation at rest, the
kinetic energy of charged fragments is 165 * 25 MeV per annihilation. These

results are summarized in Table 5.

Tl AN A2 A 8 F & NS « & T T T

The experimental values for fraction of annihilation energy in 238U going
i into heavy charged fragments shown in Table 5 are somewhat higher than the

theoretical results of Table 4, but the results are, nevertheless, in fair

.

: Table 5. Experimental results for the kinetic energy of heavy charged

g fragments (p,d,t,”He,a) from the annihilation of an antiproton
i in silicon and uranium-238 nuclei compared to the kinetic energy
- of the charged pions from p + p annihilation (energies in

N MeV). The relative contribution for charged fragments other

- than protons is based on the theoretical results of Ref. 1.

P incident energy

nucleus 180 MeV at rest ,l:
w/0 fission energy | w/o fission energy w/fission energy ]

RN

)

Si kinetic energy 270 165 + 25  =mees NS
of charged d
fragments o

fraction of anni- 0.13 0.09 & 0.015  ===== S
hilation (plus any S

incident) energy -

kinetic energy 305 190 + 30 365 + 30
of charged
fragments

fraction of anni- 0.15 0.10 + 0.015 0.19 + 0.015
hilation (plus any
incident) energy

P kinetic energy = ==--- 705 eeeee
of charged pions

fraction of anni- | ===-- 0.38  meee-
hilation energy
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agreement., The higher values are still not as high as previously supposed in
Ref. 11. Thus, annihilation of an antiproton in a heavy nucleus is not as

attractive 13 supzested in that report.

The values in Table 5 show only a small relative difference between the
kinetic energies of charged fragments from silicon and uranium-238.
Therefore, if it were desireable to employ antiproton-heavy nucleus
anninilation, medium-weight nuclei would work about as well as the heaviest

naclei when fission energy is not considered.

5. DISTUSSION AND CONCLUSIONS

Prevous studies have indicated a possible difficulty in coupling the
artiproton annihilation energy to a working fluid that forms the rocket
exhaust in antiproton annihilation propulsion.(11) This difficulty is due to
th2 large distance that the relatively light charged pions from antiproton-
proton annihilation must travel to transfer their energy, compared to possible
distances that can be travelled by the pions (or decay muons) while confined
in a magnetically contained plasma of a few meters size. If annihilation
Wwere to occur in a heavy nucleus of a working fluid of high atomic number
rather than in hydrogen, part of the annihilation energy would go into the
kinetic energy of charged, heavy nuclear fragments emitted from the nucleus
3uch as protons, deuterons, etc., whose energy could be more readily
transferred to the working fluid. The purpose of this study was to determine
the fraction of annihilation energy that goes into the kinetic energy of the

charged, heavy nuclear fragments.

A literature survey ylelded sufficient theoretical and experimental
information from which the energy fraction could be determined. Its value i3
about 10% for nuclei as massive a3 silicon or greater. It is the same or less
for lighter nuclei., If fission energy 1s included for very heavy nuclei, the
valuae of the energy .raction is about 20%. Both of these figures are less
than an earlier estimate of about 50%,(11) and they are significantly less
than the fraction of the annihilation energy, 38%, that goes into the kinetic

energy of charged pions in antiproton-proton annihilation. If the kinetic
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energy of the charged pions i3 included, the corresponding energy fractions
are about 30% for nuclei as heavy as silicon or greater and 40% for very heavy

nuclei when fission is considered. These figures are still less than, or not

¥ & TFEES v s . ===

significantly greater than, 38%. Their low values are mainly a consequence of
the fact that a significant amount of the annihilation energy goes into the
kinetic energy of emitted neutrons. I assume that the amount of energy that

can transfer from neutral particles to the working fluid is insignificant.

a"a K EEEBY ..

Thus, for plasma combustion chambers of a few meters size, annihilation
i of antiprotons in heavy nuclei does not offer an advantage over annihilation

with protons if an effective means can be found to couple the kinetic energy
of the charged pions from annihilation with protons to a working fluid. If
S such a means cannot be found, then annihilation in heavy nuclei will allow

transferral of up to 10-20% of the annihilation energy to the working fluid.

Since annihilation with protons has the potential for giving two to four
times as much energy to the working fluid as annihilation in heavy nuclei, it
Is important to investigate the transferral of energy from charged pions to a
working fluid in more detail. One must determine the mechanisms that would
allow efficient transferral of energy in a combustion chamber with dimensions
of a few meters, inside a magnetic field (to contain the charged pions), and
at attainable plasma densities. 1In the work for Ref. 11, estimates of energy

transferral from the charged pions to nuclei and bound electrons were

employed. These estimates must be replaced by accurate calculations, and jfﬁ
transferral of energy to free electrons in the plasma (electron drag) must be

added. 1In addition, it is important to determine the mean distance traveled

by charged pions (or their decay muons) before they exit the chamber, as a

function of the plasma density and the strength and configuration of the

'a‘.»k
»°

magnetic field.
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