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ABSTRACT

5'

This thesis evaluates several bias minimizing and

variance minimizing experimental designs in terms of

their effectiveness and efficiency in constructing

response equations for a deterministic, nuclear exchnage

problem. The criteria which is used to evaluate these

designs includes: 1) number of required design points; 2)

number of terms in the response equation; 3) accuracy of

fit of the response equation; 4) orthogonality of the

design; and 5) rotatability of the design.

In addition, the response surface equations are

evaluated in terms of their predictive power and their

explanatory power. The predictive power addresses the

equation's ability to adequately estimate the true

surface and to accurately predict a future response for a

given set of inputs. The explanatory power addresses the

equation's ability to present a response equation which

is simple to interpret so that the true surface can be

easily evaluated and the results can be easily explained.



I. OVERVIEW

BACKGROUND

Response Surface Methodology (RSM) is a method for

fitting mathematical models to surfaces generated by

experiment. RSM is concerned with the functional

relationship

V = h(UI, U 2 ,..., UN) (1)

between the response variable, V, and the n independent

variables U1, U 2 ,..., UN . The response relationship is

usually expressed as a low order polynomial or some other

non-linear function which approximates the true surface.

Graphically, the response relationship is represented as a

surface in a space whose coordinates are the n+l variables,

U,9 U 2 ,..., UN and V. For example, the response surface

can be expressed as a series of contours, similar to the

rise and fall of land masses on a topographic map.

In applying RSM, the analyst selects an experimental

design (i.e., a theory which requires the least number of

points to accurately fit the model) such that the functional

relationship

y = f (X 1 , X2 , . . , x N ) (2)

* fitted by the method of least squares closely approximates

the true function

y" = g(x 1, x 2 ... I xp) (3)
4 2

over a specified region. When f inadequately represents

VV 1 - 1



g, there are two errors associated with this problem:

1) variance error - which is error due to sampling;

and 2) bias error - which is error due to the lack of

fit of f to g

Initially, criteria for evaluating the adequacy of

designs have focused primarily on minimizing the variance

error while the question of bias error has been given

somewhat secondary considerations. However, a bias

minimizing design takes on added significance when RSM is

applied to a deterministic model because there is no

sampling error associated with this model. In this context,

a deterministic model is a model in which the response

variables are free from stochastic variation.

For example, non-deterministic models, such as

computer simulations, yield different results (due to random

sampling of distributions) each time the test is conducted.

However, deterministic models, such as linear programming

problems, yield the same results each time they are applied

because sampling is not involved for the fixed output level.

Therefore, any error associated with the deterministic model

is solely attributable to bias error (lack of fit) and none

of it to variance error (sampling).

In addressing the concept of experimental designs for

response surfaces, most of the RSM literature has focused on

those designs which minimize variance. These designs have

received a large share of attention because RSM has been

1 -2
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almost exclusively applied to non-deterministic models.

Examples of variance minimizing designs are provided in Box

and Behnken's work (1:455) on three level factorial designs.

Thus far, only a limited amount of literature has been

published on bias minimizing designs. Only the basic theory

of bias minimizing designs exists in the literature with the

applications of the theory still to be fully documented. In

general, the applications of RSM have focused on generating

response surface equations for two purposes: to predict

future responses and to determine the input values of the

optimum response. In determining the optimum operating

conditions, the experimenter employs various search

techniques, such as gradient search methods, to solve the

problem. However, in examining the response surface of a

deterministic model, the experimenter may not be interested

in determining the optimum operating conditions. Rather, as

in this thesis, the experimenter may be interested in

adequately representing the true surface with his predicted

surface so that he can explore the relationships between the

input variables and accurately predict the response values.

As a result, the experimenter is interested in selecting a

design which allows him to employ simple analytical

techniques to the response equation to examine these

relationships.

The basic theory of bias minimizing designs proposes

that a design can be constructed which requires fewer number

of design points and which achieves a better fit of the

J' A,



function to the response surface than a variance minimizing

design because a bias minimizing design does not consider

any variance in its formulation. Manacapilli (17:6.1) has

stated that for experiments with four or more variables, a

bias minimizing design provides a function with a better fit

to a surface than a variance minimizing design. However,

the bias minimizing design requires more design points to

achieve the fit. Thus, these results indicate that not all

bias minimizing designs achieve a better fit with fewer

design points.

PROBLEM STATEMENT

In developing experimental designs for response

surfaces, researchers have focused on variance minimizing

designs as the basic criterion in order to capture the

response surface. However, deterministic models possess

characteristics whereby a bias minimizing design may be a

more appropriate choice. Thus, the problem is to find a

bias minimizing design which best fits the response surface

of a deterministic model and to compare the efficiency and

effectiveness of this design to a variance minimizing

design.

RESEARCH QUESTION

What experimental designs produce effective and

efficient response surfaces of deterministic models?

SUBSIDIARY QUESTIONS

RSM when applied to a deterministic model is

1 -4



investigated to find bias minimizing experimental designs.

The results of this design are evaluated over various factor

levels and its effectiveness is compared to the results of

variance minimizing designs. The primary measures of

effectiveness (MOE) are: orthogonality of the design,

accuracy of fit to the true response surface, and number of

required design points.

Some of the questions to be answered from these MOEs

are:

1) What are the tradeoffs of using a bias minimizing design

instead of a variance minimizing design to fit the response

surface of a deterministic model?

2) When is this design more efficient or more effective

than a variance minimizing design?

3) Is the analysis of response surfaces made easier with a

bias minimizing design?

4) Is the bias minimizing design a practical method (in

terms of the required number of design points) to fit a

response surface of a deterministic model?

5) Do these designs produce equivalent results?

6) Can an orthogonal bias minimizing design be constructed

to facilitate the analysis of the surface?

LITERATURE REVIEW

The concepts of Response Surface Methodology were first

developed by Box and Wilson in the early 1950's (5:1). This

methodology is designed to be a practical and efficient

manner in dealing with the problem of determining the

V - . \Z.Z'K-~-~'~ -1 -



optimum operating conditions for a specific process. For

example, RSM is ideally suited for agricultural and chemical

experiments in which the experimenter seeks to maximize the

yield or purity of the product. An extensive list of the

applications of RSM in chemical, agricultural, and other

related fields can be found in Hill and Hunter's article

i (11:591).

More recent applications of RSM have been in the area

of animal husbandry. Articles by Toyomizu, Akiba,

*. Horiguchi, and Matsumoto, (24:886) and by Roush, Petersen,

and Arscott, (21:1504) have identified the uses of RSM in

determining the optimum operating conditions for raising

chickens.

With regards to military applications, Smith and

Mellichamp (22) used RSM to perform multidimensional

parametric analysis to study mathematical programming

models. In addition, several recent Air Force Institute of

Technology (AFIT) thesis efforts have applied Smith and

Mellichamp's approach and techniques to various military

related problems. For example, Manacapilli (17) applied RSM

along with economic production functions to a nuclear

exchange linear programming model. Manacapilli showed that

economic production functions could be fitted to the

response surface of a deterministic model so that basic

economic theory could be used to analyze the surface.

Another application of RSM to a nuclear exchange model

is the work by Graney (19). In his thesis, Graney combined

1 -6
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two different response surfaces (representing two different

objectives) as a means of evaluating a multiple objective

problem.

Further use of Smith and Mellichamp's paper in this

research effort is defined in Chapter II under the proposed

methodology section.

GENERAL METHODOLOGY

In general, the basic approach in answering the

research question is to apply various experimental designs

to a response surface of a deterministic model and to

evaluate the differences in the results.

Specifically, the first step is to identify bias

minimizing designs, such as the Box-Draper designs and the

Koshal designs.

The second step is to identify variance minimizing

designs. Several variance minimizing designs are considered

in this study. These designs include, but are not limited

to, second order rotatable designs and central composite

rotatable designs. These types of designs are selected

because of their frequent use in RSM.

Next, both the bias minimizing and variance minimizing

designs are applied to a deterministic model. The

*deterministic model to be used in this research effort is a

nuclear exchange model. The nuclear exchange model is a

simple linear programming model designed to optimally

allocate the number of strategic weapons per weapon type

1 -7
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(input variables) to targets so that maximum damage occurs

(response variable). This model was selected because of its

basic simplicity and because past AFIT thesis efforts, by

Graney (19:51) and by Manacapilli (17:6.1) have used a

similar model with favorable results.

Finally, the functions obtained from the two types of

experimental designs are evaluated in terms of their

effectiveness and efficiency.

In terms of effectiveness, the fit of the postulated

surfaces to the actual surface is measured. To measure

the fit of a postulated surface, a random set of data points

from the actual surface is collected and is applied to the

function which is used to generate the postulated surface.

The differences between the expected response and the actual

response are then computed. The sum of the deviations

squared (SDS) is then obtained and a comparison is made

between each of the functions estimated by different designs

based on their SDS value. The designs which generate models

which most closely represent the true surface are the

model which minimizes SDS.

In terms of efficiency, the minimum number of design

points required to generate the surface are evaluated. As

stated earlier, Manacapilli showed that a bias minimizing

design required more design points than a variance

minimizing design while gaining only a small improvement in

the fit of the postulated surface. If this result holds for

the generalized bias minimizing design, then the

Pij
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effectiveness and efficiency trade-offs between bias and

variance minimizing designs are evaluated.

One of the measures of this trade-off is an

effectiveness-efficiency factor. This factor is given by

E=(error in fit of design)*(number of design points) (4)

where the error in the fit of the design is the mean of the

differences between the predicted and the actual responses

divided by the actual responses.

This factor simultaneously takes into consideration

the precision with which the design estimates the true

surface and the number of required experimental design

points (18:135).

The next chapter expands the methodology and discusses

the specific concepts involved in applying RSM to a

deterministic model.

-p



II. METHODOLOGY

INTRODUCTION

This chapter details the methodology used in applying

Response Surface Methodology (RSM) to a deterministic model.

It builds on the general methodology described in Chapter I

by explaining the various experimental designs which are

used in this study, by detailing the nuclear exchange

linear programming (LP) models and by outlining the

application of experimental designs in generating the

response surfaces.

SECOND ORDER EXPERIMENTAL DESIGNS FOR RESPONSE SURFACES

A major goal of Response Surface Methodology is to

answer the question of what happens to the response

variable when input variables are allowed to vary over a

specified range. Instead of utilizing a one variable at a

time procedure (which changes the level of one factor while

fixing all other input variables at a specified level), the

theory of experimental design is utilized. By applying the

appropriate experimental designs, a response function is

generated to estimate the response value for any given

combination of input variables. Two books which are

excellent references on the theory of experimental design

have been written by Davies (8) and by Hicks (10). An

extensive list of applications of experimental design in RSM

can be found in Steinberg and Hunter's article (23:71).

Furthermore, a significant portion of RSM literature

a 4 I



has focused on second order experimental designs. That is,

"- designs specifically constructed for fitting a second order

.polynomial equation to the data. This type of design

produces a second order polynomial equation of the form :

y = b0 +"b x i + " bii xf + E bi xixj (5)

This equation includes the first few terms of a Taylor

series expansion. Therefore, a second order design usually

produces an adequate response equation in estimating

A the actual surface because the response equation depicting

the actual surface can usually be represented by a Taylor

series expansion. The difference between the actual and

predicted surfaces is due to the higher order terms of the

Taylor series expansion which are not included in the

equation for the predicted surface, but are included in the

equation for the actual surface.

ORTHOGONALITY. One of the characteristics of the

experimental design which is sought by the experimenter is

the mutual orthogonality of coefficients. Orthogonality is

that property of an experiment which ensures that the

different classes of effects shall be capable of direct and

seperate estimation without any entanglement. The sum of

squares of all the effects are then independent and additive

@1 (8:587).

Orthogonality permits surer assessment of those areas on

which process design and control efforts should be

concentrated. It also provides means for unambiguous

simplification and improvement of response models along with

S. .. , . ..- . ., . .- . ..- .-. ,..°. .- . .. . .... .. . ., . . . .



the potential for uncovering basic mechanisms (20:419).

That is, those terms which are most important in predicting

the surface can be easily identified.

ROTATABILITY. A second desirable characteristic of an

Aexperimental design is that the design be rotatable. An

experimental design is said to be rotataLle if the variance

of the estimated response 9, at some point (x, , x 2,..., XK),

depends on the distance from the point to the design center

and not on direction. In other words, as far as the design

is concerned, points in the factor space which are the same

distance from the origin are treated as being equally

important (18: 165).

Box and Draper (3:339) indicate that a rotatable design

will minimize bias provided that certain conditions are met.

These conditions are: the region of interest is spherical

and the fitted model is an mth order polynomial and the true

model is an nth order polynomial, such that if m+n=2r, then

the appropriate design is an rth order rotatable design; if

m+n=2r+l, then the appropriate design is a rth order

rotatable dLsign with moments of order 2r+1 all zero. Thus,

in fitting a second order polynomial to a true surface of

order three, the fifth moments of the design must all be

zero for the design to be rotatable.

NUMBER OF DESIGN POINTS. A third desirable

characteristic of an experimental design is that the fewest

possible number of design points be used to estimate the

response surface. The fewest number of design points is a
,.'

-'.
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-function of the number of factors and the type of design

being used.

The minimum possible number of design points that can

be used to estimate any surface is defined by the expression

(k+1)*(k+2)/2, where k defines the number of factors in the

experiment. This quantity is in stark contrast to the

number of data runs which are required if the experimenter

chose to utilize a one variable at a time procedure to

estimate the surface. For example, in a simple two variable

problem in which the first variable is allowed to vary

between 0 and 450 and the second variable is allowed to

vary between 0 and 750, Manacapilli calculated that 338,701

(451 * 751) runs are required to produce the exact surface

of a two factor experiment if the variables are varied one

at a time (17:3.8). On the otherhand, certain experimental

designs are able to estimate this surface with only six data

runs. The savings in time and cost are readily apparent.

BIAS MINIMIZING DESIGNS

Since the only error associated with deterministic

models is bias error, bias minimizing designs are very

S.A' effective in fitting response surfaces to these models. The

bias minimizing designs which are utilized in this project

*are: Box-Draper designs and Koshal designs.

BOX-DRAPER BIAS MINIMIZING DESIGNS. The Box-Draper

bias minimizing design is constructed in a similar manner as

a central composite design. That is, the design is composed

of a fractional factorial portion, an axial point portion

2-4
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and center points. Like the central composite design, the

bias minimizing design is nearly orthogonal and nearly

rotatable.

For the case of three independent variables the design

matrix is given by

X1 X2 X3

*+q 0 0

D =-0 +q 0

0 o +q
* I (6)

0 0 0

The specific values of p and q are dependent on the

second and fourth moments of the design matrix. The

specific values which minimize bias and a detailed

derivation of the design matrix can be found in Box and

Draper's article (2:622) and Myers' book (18:196).

KOSHAL DESIGNS. The Koshal design is a simple design used

by Koshal in fitting frequency distributions by the method

of maximum likelihood (12:577). The Koshal design requires

the minimum number of design points to fit a quadratic

response surface, and the major advantage of using this

design is its simplicity and economy.

For the case of three independent variables the design

matrix is given by

V5



Xl X2 X3

• "-.5 -. 5 -. 5

.5 -. 5 -. 5

-. 5 .5 -. 5

-. 5 -. 5 .5

1.5 -. 5 -. 5

D -. 5 1.5 -. 5

,.-.5 -. 5 1.5

.5 -. 5 .5 (7)

-. 5 .5 .5

. 5 .5 -. 5

A detailed derivation of the design matrix can be found in

Kanemasu's article (12:578).

I VARIANCE MINIMIZING DESIGNS

As stated earlier, there are two errors associated with

the problem of fitting the predicted surface to the actual
surface: variance error and bias error. As their names

imply, variance minimizing designs are constructed to

~minimize variance error and bias minimizing designs are

constructed to minimize bias error.

Although deterministic models do not generate any

variance error, variance minimizing designs have been shown

to produce adequate results in fitting response surfaces to

~these models. In fact, Box and Draper hypothesized that

designs which minimize variance do a very good job at

Sminimizing bisalso (2:622). Tevariance minimizing

bia Th



designs which are utilized in this project are: Central

Composite Rotatable Designs, Box-Behnken Designs, Hybrid

Designs, and Minimum Point Designs.

CENTRAL COMPOSITE ROTATABLE DESIGNS. The central

composite rotatable design was first developed by Box and

Wilson as a practical alternative to the 3 Kfactorial

Vdesign for estimating a second order response equation.

This design is probably the most widely known and

recommended design for estimating quadratic response

surfaces (16:412).

The central composite design is the 2 K factorial or

fractional factorial, augmented by axial points and center

points. For the case of three independent variables the

design matrix is given by

X1 X2 X3

+1 +1 +1

-q 0 0

D = 0 ±q 0

0 0 ±q

S0 0 _a

With the proper selection of q, the central composite design

is orthogonal and rotatable. A detailed derivation of the

q-values can be found in Box and Hunter's article (4:195).

BOX-BEHNKEN DESIGNS. In 1960, Box and Behnken

developed a new class of three level factorial designs which

were useful for estimating the coefficients in a second

Idegree graduating polynomial (1:455). These designs are

2)..
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nearly rotatable and nearly orthogonal (i.e., a small

correlation exists between the constant term and the squared

terms and between the squared terms themselves). A

practical advantage of the Box-Behnken design over the full

central composite design is that when evaluating problems

with large number of factors (i.e., greater than five), the

Box-Behnken design requires fewer design points to estimate

the surface.

The designs are formed by combining factorial designs

with incomplete block designs (1:457). For the case of

three independent variables, the design matrix is given by

Xl X2 X3

:±1 jl
4 +1 01 ±

D=

0 +1 +1
(9)

A detailed derivation of the design matrix can be found in

Box and Behnken's article (1:455).

HYBRID DESIGNS. Hybrid designs were created to achieve

the same degree of orthogonality as central composite

designs or regular polyhedral designs, to be nearly minimum

point, to be nearly rotatable, and to possess some ease in

coding (20:419).

The hybrid designs are constructed in a similar manner

as central composite designs. That is, the design is

composed of a fractional factorial portion, an axial point

portion, and center points. The major difference between

V TW '-
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the hybrid and central composite designs is that hybrid

designs are augmented with an extra variable column which

resembles a cross polytope design. For the case of three

independent variables the design matrix is given by

Xl X2 X3

+1 +1 .6386

+1.1736 0 -. 9273

0 +1.1736 -. 9273
. DI=

0 0 1.2906

0 0 -. 1360 (10)

A detailed derivation of the design matrix can be found in

Roquemore's article (20:419).

MINIMUM POINT SECOND ORDER DESIGNS. The purpose of

second order designs with minimum number of points is to

provide a low cost, practical design to estimate a quadratic

response surface. For a k-factor design, the minimum number

of points is (k+1)*(k+2)/2. The design should give rise to

least squares estimates with minimum generalized variance

(6:613).

For the case of three independent variables, the design

matrix is given by



X1 X2 X3

-1 -1 -1

1 -1 -1
S-1 1 -1

-1 -1 1

T s p p -1:

Drpe' aril 663.

D = p -1 p

-1p p

Seea arilshv enpbihdwihhv fee

anatraeapoc omnmzn bas ro nrsos

q 1 1

(11)
1 q 1

(1:2) n )CtMno n Hae 763,hv

: 1 1 q

The specific values of p and q, along with a detailed

mderivation of the design matrix can be found in Box and

Draper's article (6:613).

SM I SCELLANEOUS

Several articles have been published which have offered

an alternate approach to minimizing bias error in response

surfaces. The articles by: 1) Karson, Manson, and

Hader(14:461), 2) Karson (13:1565), 3) Karson and Spruill

e (15:329), and 4) Cote, Manson and Hader (7:633), have

- _ applied similar techniques to address the problem of

' minimizing bias. That is, their methods consist of

* developing an estimator for a given design which minimizes

bi as.

Although these works will not be used in this proJect,

their availability is noted here for any future work on this

a topic.

2 10



NUCLEAR EXCHANGE MODEL

The deterministic model used to generate the response

values for this study is a nuclear exchange linear

programming model. In this rather simplistic model of a

nuclear force structure, the single objective of the model

is to maximize the damage expectancy of the force structure.

The damage expectancy is maximized given the effectiveness

of each weapon type against each target type.

For example, consider the hypothetical strategic force

of three weapon systems (ICBM, Bomber, SLBM) and two target

types. Table 1 shows the amount of damage expected (DI, D2,

D3,..., D6) given a particular weapon type and target type.

TABLE 1

SINGLE SHOT DAMAGE EXPECTANCY TABLE

V WEAPON TYPE (FACTORS)

ICBM (M1) BOMBER (Bi) SLBM (Si)

TGT TYPE

TARGET 1 D1 D2 D3

TARGET 2 D4 D5 D6

The damage expectancy values in Table 1 represent single

*shot damage expectancy, that is, the damage expectancy from

a single warhead of a particular weapon against a single

target. In this model, an additional warhead could be

launched at the same target. Therefore, it is possible to

increase the damage expectancy against a single target by

2-11



launching two warheads (of the same or different weapon

type) at the target. In those cases where two warheads are

launched at the same target, the new damage expectancy value

for that target can be computed in the following manner

DENEw= 1 - [(1-DE1 )*(1-DE2 )3 (12)

Thus, there are six additional combinations of damage

expectancy which must be considered for each target type

(e.g., M1*M1, M1*B1, M1*S1, B1*B1, B1*S1, S1*S1). After

considering all possible combinations, the LP model now

maximizes the total damage expectancy subject to the

limitations on the number of weapons, number of targets, and

other targeting constraints. Further details of the

specific model used to generate the data along with the LP

formulation are available in Appendix A.

APPLICATION OF THE EXPERIMENTAL DESIGN

As mentioned earlier, there is a practical advantage in

employing the theory of experimental design in estimating a

response surface. For example, in the simple three factor

problem used in this study, if each +actor were allowed to

vary one at a time, the total number of runs required to

generate the surface is 14,601,339,651 (1351*1801*6001). By

constructing the appropriate experimental design, the

surface could be estimated with as few as ten runs.

The experimental designs which are used in this study

are second order designs. The purpose of a second order

design is to fit a second order response equation to the



data. The second order response equation for the three

factor case is of the form

DE = b0 + b i (M1) + b 2 (BI) + b3 (Si)

+ bi1 (MI*M1) + b22 (BI*B1) + b33 ($1*1)

+ b 12 (MI*BI) + bl (MI*SI) + b23 (BI*S1) (13)

where, M1 = number of ICBM warheads, B1 = number of bomber
warheads, and S1 = number of SLBM warheads.

One of the requirements to produce a second order design

is that at least three levels of each factor must be
I.

selected so that the coefficients of the response equation

can be estimated. The three levels which are usually

selected are the values at the upper end (having a coded

4, value of +1) and lower end (having a coded value of -1) of

the range for each input parameter plus the mid-point

(having a coded value of 0) between the extreme points.

These points are selected and coded in this manner so that

the coefficients of the response equation are not highly

correlated.

Table 2 indicates the uncoded and coded values of the

three factor problem used in this project.

..- - 1



TABLE 2

FACTOR LEVELS

WEAPON TYPES (FACTORS) LEVELS (CODED VALUES)

M1 1650(-1) 2325(0) 3000(+1)

BI 1200(-1) 2100(0) 3000(+1)

$1 6000(-1) 9000(0) 12000(+1)

In many of the central composite designs which are used

in this study, the coded values are greater than +1 and less

than -1. The appearance of these values can best be

explained by examining the central composite design for the

three factor case. In this situation, the central composite

design selects its initial design points (factorial portion)

at the corners of a cube centered at the origin. Because

the region of interest is taken to be spherical, the design

positions additional points along the axes so that

representative points can be sampled over the entire region.

These axial design points lie near the boundary of the

sphere and along one of the axes. Therefore, the axial

points have values greater than +1 and less than -1 due to

the radius of the sphere.

There is a possibility of significant error in the

estimated response values because the axial points are

positioned outside the original feasible region. That is,

if the true surface is radically different outside the

feasible region than it is within the feasible region, a

significant error occurs due to the positioning of the

- 14



axial points. In that case, a different means of coding or

a different design (which does not utilize points outside

this region) should be employed. However, if the true

surface is not radically different outside the feasible

region than it is within the feasible region, then the axial

design points do not contribute a significant error in

estimating the predicted surface.

Furthermore, many of the designs which have been

selected in this study have been originally constructed with

multiple center points. Often times, multiple center points

are used to minimize variance, to achieve rotatability or to

achieve orthogonality. However, the replication of the

center points is not required while analyzing deterministic

models because there is no sampling error associated with

this type of model. Although pure rotatability and

orthogonality may be sacrificed in these cases, the designs

still maintain a high degree of rotatability and

orthogonality. Therefore, only one center point is included

in any design which has been originally constructed with

multiple center points.

The designs which are used in this study for the three

factor case have already been outlined. The designs which

are used in the three, four, five, and six factor problems

are provided in Appendix B.

After selecting the appropriate experimental design and

after defining the LP, the next step in the methodology is

to execute the appropriate number of force allocation runs

2-15
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using the LP model. One run is accomplished for each of the

identified combinations in order to obtain the optimum

damage expectancy for each set of input factor values.

The final steps in obtaining a response equation is to

use the results of a particular design as input to a

multiple linear regression program. The coded levels of

each of the factors are input to the program as the

independent variables, and the damage expectancy is input as

the dependent variable. Using multiple stepwise linear

regression, the coefficients of the response equation are

determined. The coded values are then uncoded in order to

produce a relationship in which the actual number of

warheads of the weapon systems can be used. The response

equation for uncoded values portrays the relationship of

each factor to the response variable. A sample of the input

and the output for the stepwise linear regression is found

in Appendix C.

The next chapter portrays the results and details the

analysis of the effectiveness and efficiency of the various

designs used in this study.
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* III. RESULTS AND ANALYSIS

INTRODUCTION

This chapter presents the analysis of the response

equations for the various designs which are used in this

study. The purpose of this analysis is not to evaluate the

LP but rather, to evaluate the designs and the response

equations.

The analysis is divided into two parts: the predictive

power of the response equations and the explanatory power of

the response equations. The predictive power of the

"p.. response equation addresses the equation's ability to

adequately estimate the true surface and to accurately

predict a response for a given set of inputs. The

explanatory power addresses the equation's ability to

present a response equation which is simple to interpret so

that the true surface is easily evaluated and the results

are easily explained.

PREDICTIVE POWER OF RESPONSE SURFACE EQUATIONS

p.-, As stated in Chapter I, the basis for evaluating the

C?%-- predictive capabilites of an equation of a response surface

design is eq(4), the effectiveness - efficiency factor.

E=(error in fit of design)*(number of design points) (4)

This factor generates a value so that various designs are

compared in terms of their precision in estimating the

,1
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true surface and the number of required experimental design

points.

In order to obtain the error in fit of the design, a

random set of points is used as inputs into the response

surface equation and the differences between the actual and

predicted responses are recorded. In comparing these

response equations, the random data set is not used to

estimate any response equation, but rather to compare the

predicted values of the estimated equations against each

other. The benefit of the random data set is that all

equations are compared against a common data set so that

prediction bias is avoided. Prediction bias arises when the

choice of a regression equation is uniquely related to the

observations from which it was created.

The response equations which are used to evaluate the

error in fit of the design are modified versions of the full

regression equations. That is, selected terms from the full

regression equations have been omitted from the modified

regression equaitons because these terms account for less

than two percent of the total sum of squares.
44

The primary reason for excluding these terms is to

obtain a relatively simple equation (i.e., an equation with

as few terms as possible) which is easy to interpret, but

* still produces a good fit. If the full regression equation

is used instead of the modified equation to estimate the

true surface, the ability of the response equation to

predict future response values is improved; however, the

ability to interpret the equation is significantly
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degraded. That is, the interpretation of the equation is

very difficult due to the complexity of the equation. Thus,

by selecting two percent of the total sum of squares as the

criteria for determining what terms to include in the

response equation, a reasonably good fit is obtained while

'p still preserving the interpretative value of the response

*. equation.

The response surface equations along with the random

data sets which are used in the analysis of the predictive

power can be found in Appendix D.

Tables 3 through 6 depict the results of the predictive

power of the various designs which are used in this study.

TABLE 3.

PREDICTIVE POWER OF THREE FACTOR DESIGNS

PERCENT ERROR IN FIT NUMBER OF
DESIGN TO RANDOM DATA SET DESIGN POINTS E - VALUE

VARIANCE DESIGNS

BOX-BEHNKEN * 1.08 13 14.04

HYBRID 310+CP * 1.28 11 14.08

HYBRID 311A * 1.63 11 17.93

CENTRAL COMP * 1.56 15 23.40

MIN POINT 6.12 10 61.20

BIAS DESIGNS

BOX-DRAPER * 1.38 15 20.70

KOSHAL 2.74 10 27.40

* indicates nearly rotatable design

PS
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TABLE 4.

PREDICTIVE POWER OF FOUR FACTOR DESIGNS

PERCENT ERROR IN FIT NUMBER OF
DESIGN TO RANDOM DATA SET DESIGN POINTS E - VALUE

VARIANCE DESIGNS
I.i.

HYBRID 416A+CP * 1.06 17 18.02

HYBRID 416C * 1.80 16 28.80

BOX-BEHNKEN * 1.18 25 29.50

CENTRAL COMP * 1.31 25 32.75

MIN POINT 4.37 15 65.55

BIAS DESIGNS

BOX-DRAPER * 0.96 25 24.00

KOSHAL 1.80 15 27.00

* indicates nearly rotatable design
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TABLE 5.

PREDICTIVE POWER OF FIVE FACTOR DESIGNS

PERCENT ERROR IN FIT NUMBER OF
DESIGN TO RANDOM DATA SET DESIGN POINTS E - VALUE

VARIANCE DESIGNS

CENTRAL COMP * 1.73 27 46.71
(HALF REPLICATE)

BOX-BEHNKEN * 1.41 41 57.81

MIN POINT 5.88 21 123.48

BIAS DESIGNS

KOSHAL 1.15 21 24.15

BOX-DRAPER * 1.37 27 36.99
(HALF-REPLICATE)

BOX-DRAPER * 1.31 43 56.33
(FULL)

* indicates nearly rotatable design
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TABLE 6.

PREDICTIVE POWER OF SIX FACTOR DESIGNS

PERCENT ERROR IN FIT NUMBER OF
DESIGN TO RANDOM DATA SET DESIGN POINTS E - VALUE

VARIANCE DESIGNS

HYBRID 628A * 1.33 28 37.24

HYBRID 628B * 1.35 28 37.80

MIN POINT 1.76 28 49.28

BOX-BEHNKEN * 1.15 49 56.35

CENTRAL COMP * 1.33 45 59.85
(HALF-REPLICATE)

BIAS DESIGNS

KOSHAL 1.72 28 4B.16

BOX-DRAPER * 1.39 45 62.55
(HALF-REPLICATE)

* indicates nearly rotatable design

ACCURACY. Tables 3 through 7 indicate that the

accuracy of a response surface equation is dependent on the

number of design points and on the degree of rotatability of

the design. That is, the accuracy of a response surface

equation is highly correlated to the number of design

points, but this relationship is not a perfect correlation

and their differences in fit may be explained by the degree

of the rotatability of the designs.

For example, it may be hypothesized that the design
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with the most points produces the most accurate fit. That

is, each design selects its design points under the

assumption that the design points are representative of

their surrounding area. In theory, by selecting more design

points, the area for which each point is an estimate is

decreased.. Thus, the total error in the estimate of the

true surface is reduced. But as Tables 3 through 7

indicate, more design points does not guarantee a more

accurate fit. This result is rather surprising, but it does

indicate that other contributing factors influence the

degree of accuracy of the response equation other than the

number of design points.

A major contributing factor which influences the

accuracy of an equation of a response surface design may be

the degree of rotatability of the design. In general, the

variance and bias minimizing designs are able to generate

similar degrees of fit in estimating a response surface

equation to the true surface, provided that the variance

'p minimizing designs are nearly rotatable. Rotatability is an

important characteristic for variance minimizing designs

when estimating deterministic models because the selection

of the design points is not strictly based on minimizing

bias. But, as stated in Chapter I, if the region of

interest is spherical, rotatable designs minimize bias. The

importance of rotatability in minimizing bias is highlighted

by the fact that the only variance minimizing design which

fails to consistently produce a relatively accurate fit is
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the minimum point design, which is a non-rotatable design.

However, none of the designs mentioned thus far is

perfectly rotatable; thus, bias is not totally minimized for

these designs. In fact, all of the designs, except the

minimum point and the Koshal designs, are nearly rotatable.

That is, these nearly rotatable designs have varying degrees

of rotatability and thus, have varying degrees of

effectiveness in minimzing bias. Therefore, it might be

hypothesized that the differences in accuracy between the

designs which are not accounted for by the number of design

points, are accounted for by the degrees of rotatability of

the designs.

For example, the response surface equation of the

hybrid design (416A+CP) achieves a more accurate fit to the

true surface than the response equation of the Box-Behnken

design for the four factor problem. In this example, the

hybrid design requires eight fewer points than the Box-

Behnken design, but is able to achieve a higher degree of

accuracy. By the hypothesis, this indicates that the hybrid

design (416A+CP) has a higher degree of rotatability than

the Box-Behnken design for four factors. This hypothesis is

confirmed by the fact that the Box-Behnken design is not

highly rotatable for four factors, while the hybrid design

maintains a high degree of rotatability.

A similar argument can be made to explain why no

single design is able to achieve the most accurate fit for

all factors. That is, for the different number of factors,
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these designs have different number of design points and

different degrees of rotatability. Thus, the degrees of

accuracy for the response equations are affected.

EFFECTIVENESS-EFFICIENCY FACTOR. Since the accuracy

of fit of the design is highly correlated to the number of

design points, the results which are obtained concerning the

effectivenss-efficiency factor are not surprising. That is,

a design which provides the most accurate fit with the

fewest number of design points does not exist. Even a

perfectly rotatable design does not provide the most

accurate fit, if a sufficient number of design points are

not specified.

Thus, in attempting to minimize the effectiveness-

efficiency factor, it remains for the experimenter to

evaluate the problem to determine what degree of accuracy is

required and how many design points are available. In

evaluating the trade-off between accuracy and the number of

design points, one major consideration is the cost of

performing additional data runs. In those problems in which

cost of executing additional data runs is minimal, the

experimenter may concentrate on achieving a higher degree of

accuracy. On the other hand, in those cases in which set-up

costs and run time are prohibitive, the experimenter may

select the most economical design (in terms of the fewest

design points) which achieves an adequate level of accuracy.

The trade-offs between accuracy (level of fit) and cost

(number of design points) are further complicated when the

9
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experimenter desires a response equation which has superior

explanatory powers.

EXPLANATORY POWER OF RESPONSE SURFACE EQUATION

The basis for evaluating the explanatory capabilities

of an equation of a response surface design is the

interpretation of the coefficients of the response equation.

The coefficients provide answers to such questions as:

"What is the overall effect to the dependent variable,

if one independent variable is increased by an amount X

and all other independent variables are held constant?"

By applying the analysis techniques of multiple regression,

similar "what...if..." questions can be answered quickly and

accurately. The answers to these questions are quick and

easy because the basic interpretation of the coefficients in

multiple regression analysis is that the coefficients of the

main effect terms represent the marginal effects of change

of the dependent variable when the values of the independent

variables are altered.

EFFECT OF MULTICOLLINEARITY ON REGRESSION

COEFFICIENTS. As stated earlier, Box and Hunter have

identified a small correlation that exists between the

constant term and the squared term and between the squared

terms themselves (4:201). This correlation is commonly

referred to as multicollinearity in statistical literature.

Since Box and Hunter concentrated on the predictive power

of the response equation, multicollinearity did not affect

- 10
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their results because of the fact that when some or all

independent variables are correlated among themselves, the

ability to obtain a good fit is not generally inhibited nor

does it tend to affect prediction of new observations

(19:384). That is, the predictive power of the response

equation is not generally affected when multicollinearity

exists.

However, the common interpretation of regression

coefficients as measuring the change in the expected value

of the dependent variable when the corresponding independent

variable is increased by one unit while all independent

variables are held constant is not fully applicable when a

high degree of multicollinearity exists. While it may be

conceptually possible to vary one independent variable and

hold the others constant, it may not be possible in practice

to do so for independent variables that are highly

correlated (19:385). Because a high degree of correlation

among the independent variables exists in non-orthogonal

*1" designs, these designs do not possess a high degree of

explanatory power by the fact that the regression

coefficients of the response equations do not accurately

measure the marginal effects of change of the dependent

variable when the values of the independent variables are

altered. Thus, only those designs which have a high degree

of orthogonality will be considered in the explanatory power

section of this study. The designs which are to be

evaluated are: the Central Composite Rotatable designs, the
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Box-Behnken designs, the Hybrid designs, and the Box-Draper

Bias Minimizing designs.

THREE FACTOR RESULTS. Equation (14) is the basic

response equation for the three factor problem.
4?:

DE = b 0 + b I (MI) + b 2 (B1) + b 3 (Sl)

- b 3 3 (S1*S1) - b23 (BI*S1) (14)

The terms which have been omitted from the equation

account for less than two percent of the total sum of

squares, and therefore are dropped from the final equation.

'Table 7 lists the coefficients of the response equation

for the various designs for the three factor problem.

TABLE 7.

COEFFICIENTS OF THE RESPONSE EQUATION

FOR THREE FACTOR DESIGNS

DESIGN COEFFICIENTS

b 0  b, b 2  b 3  b3 3  b 2 3

(1) Central 124.9285 .4848 1.153 1.004 .0000276 .000062
Comp

(2) Box- -648.3319 .4965 1.225 1.180 .0000375 .0000665
Behnken

(3) Hybrid 68.4118 .5243 1.195 .961 .0000251 .0000602
(311A)

(4) Hybrid -626.1627 .5002 1.327 1.163 .0000352 .0000774
(310+CP)

(5) Box- -285.6179 .4798 1.223 1.085 .0000318 .0000667
Draper
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FOUR FACTOR RESULTS. Equation (15) is the basic

response equation for the four factor problem.

DE b0 + bi(M1) + b 2 (M2) + b 3 (B1) + b 4 (S1)

- b4 4 (S1*S1) - b 24 (M2*S1) - b 34 (B1*61) (15)

The terms which have been omitted from the equation

account for less than two percent of the total sum of

squares, and therefore are dropped from the final equation.

Table 8 lists the coefficients of the response equation

for the various designs for the four factor problem.

TABLE 8.

COEFFICIENTS OF THE RESPONSE EQUATION
FOR FOUR FACTOR DESIGNS

DESIGN COEFFICIENTS

bi b 2  b 3  b 4  b4 4  b24  b34

(1) Central 939.3 .416 .961 1.02 .907 .000023 .000054 .000051
Comp

' (2) Box- 1320.0 .383 .946 .987 .877 .000023 .000054 .000051
Behnken

(3) Hybrid 1129.1 .434 1.12 1.08 .793 .000015 .000068 .0000645
(416C)

(4) Hybrid 1060.1 .439 1.09 1.11 .823 .000017 .000064 .0000601
(416A+CP)

(5) Box- 11332.3 .395 .944 .988 .887 .000024 .000053 .0000503
Draper - -



FIVE FACTOR RESULTS. Equation (16) is the basic

response equation for the five factor problem.

DE = b 0 + b 1 (M1) + b 2 (M2) + b 3 (B1)

+ b 4 (B2) + b 5 (S1) - b 5 5 (Sl*S1) (16)

The terms which have been omitted from the equation

account for less than two percent of the total sum of

squares, and therefore are dropped from the final equation.

Table 9 lists the coefficients of the response

equation for the various designs for the five factor

problem.

TABLE 9.

COEFFICIENTS OF THE RESPONSE EQUATION
FOR FIVE FACTOR DESIGNS

DESIGN COEFFICIENTS

b 0 b_ b 2  b 3  b4  bs  bs55

(1) Central 1615.7 .501 .630 .712 .755 .951 .0000261
Comp

(2) Box- 844.0 .603 .680 .729 .769 1.04 .0000295
Behnken

(3) Box- 536.6 .604 .683 .739 .785 1.09 .0000329
Draper (H)

(4) Box- 388.0 .629 .678 .756 .798 1.09 .0000329
Draper (F)
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SIX FACTOR RESULTS. Equation (17) is the basic

*. response equation for the six factor problem.

4 DE = b 0 + b 1 (M1) + b 2 (M2) + b 3 (M3)

+ b 4 (B1) + b 5 (B2) + b6 (S1)

- b66(S1*S1) - b56 (B2*S1) (17)

The terms which have been omitted from the equation

account for less than two percent of the total sum of

squares, and therefore are dropped from the final

equation.

Table 10 lists the coefficients of the response

equation for the various designs for the six factor

problem.

TABLE 10.

COEFFICIENTS OF THE RESPONSE EQUATION
FOR SIX FACTOR DESIGNS

DESIGN COEFFICIENTS

b 0  bi b 2  b 3  b 4  b5  b 6  bee b 5

(1) Central l 620.1 .562 .606 .673 .685 1.24 1.05 .0000235 .000057
Composite

(2) Box- -642.1 .536 .628 .654 .692 1.39 1.28 .0000331 .000073
Behnken

(3) Hybrid 715.9 .563 .598 .626 .684 1.23 1.04 .0000228 .000057
(628A)

(4) Hybrid 695.9 .554 .606 .614 .683 1.23 1.04 .0000232 .000057
(628B)

(5) Box- -101.0 .568 .645 .678 .695 1.22 1.21 .0000328 .000054
Draper
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INTERPRETATION OF COEFFICIENTS. The parameter b0 is

the y-intercept of the regression surface. This term does

not have any particular meaning as a separate term in any of

the regression models because the range of the variables in

the model does not include the point where M1=0,...,S1=0.

If this point had been in the relevant range of the

variables, the b 0 term would indicate the response level

when all of the independent variables are set to zero.

When the regression model does not include cross

product or squared terms (i.e., a first order equation),

the parameters bK (kO) indicate the change in the mean

response per unit increase in x~when all other variables

included in the model are held constant. That is, b,

indicates the change in the expected value of the

response with a unit increase in x, when all other

variables in the model are held constant. Since the

experimental designs which are being considered in this

section are nearly orthogonal, the independent variables

are almost uncorrelated and the variables have an

additive effect.

When the regression model includes cross product or

squared terms, such as Eq (14) of the three factor model,

the coefficients of the main effect terms no longer indicate

the change in the mean response per unit increase in x K for

any given level of the remaining variables, if that variable

is also included in the cross product or squared terms. For

example, in Eq(14), b2 no longer indicates the change in the
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-'V. mean response for a unit increase in B1 because of the

interaction of BI and SI. Similarly, b 3 no longer indicates

the change in the mean response for a unit increase in S1

because of the interaction of S1 and B1 and because of the

interaction of S1 with itself. Because of the complexity of

a regression model which includes several cross product and

squared terms, the most desirable regression equation which

explains the response surface is one in which the main

effects dominate and the cross product and squared terms

terms take minor, secondary roles. In this manner, the

parameters bK would indicate the change in the mean response

per unit increase in xK when all other variables included in

the model are held constant.

Differences between Coefficients. Tables 7

through 10 indicate that no two equations have the same

coefficients to estimate the same surface. That is, each

design produces a unique response equation to estimate the

true surface. These results are not unexpected and does not

disqualify the use of multiple regression analysis

techniques as an analytical tool when evaluating response

surfaces of deterministic models.

-. For example, small differences between the coefficients

are to be expected because the predicted surface is not a

perfect representation of the actual surface. The errors in

the predicted surface are due to two factors: first, each

design selects different quantities of sample points to

estimate the true surface and each design selects its design
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points at different locations in the region of interest; and

second, a small amount of multicollinearity is still present

between some of the variables in these equations.

The selection of the number of design points and the

placement of the design points have a tremendous impact on

the fitted regression function because the response equation

is influenced by whatever design points are selected.

Because each of the designs selects points from different

areas of the true surface, the response equation must

necessarily be different for each design. Any change in the

selection of the design points influences the coefficients

of the response equation to accomodate this change.

For example, the response equation of the hybrid

design (311A) is

.-4 y = .5243 (Ml) + 1.195 (B1) + .961 (S)

- .000251 ($1*1) - .0000602 (B1*S1) + 68.4118 (18)

If the design is altered so that the first and third

variables in the design are switched, then the new design

matrix is coded as follows: the S1 variable is coded as

variable 1; the B1 variable is still coded as variable 2;

and the M1 variable is coded as variable 3. As a result,

different response values are obtained from the same design

matrix because different uncoded values have been used in

the MPOS input files. The resulting response equation for

- 18



the altered hybrid design is:

y = .4678 (M1) + 1.11095 (B1) + .98925 (S)

- .0000275 ($1*1) - .0000512 (BI*S1) + 209.2299 (19)

The predictive power for both the original and the altered

designs are equivalent. That is, the degrees of accuracy

for both equations are the same. Howe'er, a totally

different set of coefficients has been generated from the

altered design to estimate the true surface.

A second reason to account for the small differences

between the coefficients is the small amount of

multicollinearity which exists between the intercept term

and the squared terms and between the squared terms

themselves. Variables which possess even a small amount of

multicollinearity, produce regression coefficients which

tend to vary from one design to the next.

For example, a regression equation is developed from a

representative sample of points (design 1) from a large

population. If multicollinearity exists between some or all

of the variables, a second sampling (design 2) from the

population will necessarily produce a different regression

equation because of the multicollinearity between the

variables. The degree of variability between the

coefficients of the two equations may be directly related to

the degree of multicollinearity between the variables.

Multicollinearity can be eliminated between the

variables of an experimental design, if the design is made
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perfectly orthogonal. A full factorial design is perfectly

orthogonal, if the required transformations are performed on

the squared terms of the design. (The required

transformation is: X - .) The full factorial design is

not commonly used in RSM because it requires a large number

of design points. However, this design serves as an

excellent standard to which other designs can be compared.

By performing the necessary transformations, the full

factorial three factor design for the determinstic model

produces the following response equation:

y = .4979 (Ml) + 1.216 (B1) + 1.1978 (Si)

- .00003865 (S1*S1) - .0000649 (BI*S1)

- 964.8424 (20)

The response equation of the full factorial design achieves

the same degree of accuracy as the other nearly orthogonal

designs in estimating the true surface. Thus, the primary

difference between the full factorial design and the other

nearly orthogonal designs is that multicollinearity does not

exists between the variables in the full factorial design so

that all of the variables are uncorrelated.

In that case, the full factorial design provides the

most representative estimate of the true surface. That is,

the regression equation which is developed from the full

factorial design is strictly determined by the number and

placement of its design points. Whereas, the response

equations of the other designs are also determined by the
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number and placement of the design points, but, the effects

of multicollinearity also influence the coefficients of some

of the variables of the response equations.

Thus, the degree of variability which exists between the

Ncoefficients of the full factorial response equation and the

coefficients of the other response equations may be a

'measure of the degree of multicollinearity which exists in

those designs. For example, the coefficients of the

response equation for the Box-Behnken design compare more

favorably to the full factorial design than some of the

other three factor designs. This may indicate that the

influence of multicollinearity for three factor designs, is

not as significant on the variables of the Box-Behnken

design as on the variables of the other designs. However,

this statement is just a hypothesis because there is no

measure of the degree of orthogonality for the various

designs.

In short, the effects of multicollinearity on response

surface equations is of primary importance when evaluating

deterministic models because the analyst is attempting to

draw direct inferences from the coefficients of the response

equation. If the degree of multicollinearity is too great

between the variables in the equation, any information

obtained from the coefficients may be misleading.

As stated earlier, a small amount of multicollinearity

exists in all of the equations (except the full factorial),

therefore, no two designs produce the same set of



coefficients when estimating a surface. Although the

differences between the coefficients are small, their

effects may be quite significant.

To further address the subject matter of the effects of

the differences between the coefficients, the designs and

the response equations of the five factor model are

evaluated. The five factor model is selected because of the

simplicity of the response equations. These equations

include five main effect terms and one squared term in its

modified form, eq(ib). In this manner, the coefficients of

the M1, M2, B1 and B2, terms should represent the marginal

effects of change of the dependent variable when the

independent variables are altered. The coefficient of the

S1 term is excluded from the list because the effects of

change caused by S1 are influenced by the Sl-squared term.

Therefore, the marginal effects of S1 vary for different

levels of S1. Tables 11 through 14 compare the predicted

change to the actual change of the dependent variable when

one independent variable is altered while all other

independent variables are held constant.
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TABLE 11.

ACTUAL AND PREDICTED CHANGES
WHEN M1 IS DECREASED BY 100

CHANGE IN RESPONSE

DESIGN ACTUAL PREDICTED PERCENT ERROR

(1) Central -57.0 -50.1 12.1
Composite

(2) Box- -57.0 -60.3 5.8
Behnken

(3) Box- -57.0 -60.4 6.0
Draper (H)

(4) Box- -57.0 -62.9 10.4
Draper (F)

TABLE 12.

ACTUAL AND PREDICTED CHANGES
WHEN M2 IS INCREASED BY 400

CHANGE IN RESPONSE

DESIGN ACTUAL PREDICTED PERCENT ERROR

(1) Central 260.0 251.9 3.1
Composite

(2) Box- 260.0 271.8 4.5
Behnken

(3) Box- 260.0 273.0 5.0
Draper (H)

(4) Box- 260.0 271.0 4.2
Draper (F)
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TABLE 13.

ACTUAL AND PREDICTED CHANGES
WHEN BI IS INCREASED BY 200

* .*. -"

* CHANGE IN RESPONSE

DESIGN ACTUAL PREDICTED PERCENT ERROR

(1) Central 140.0 142.5 1.8
Composite

(2) Box- 140.0 145.9 4.2
Behnken

(3) Box- 140.0 147.9 5.6
Draper (H)

(4) Box- 140.0 151.1 7.9

Draper (F)

TABLE 14.

ACTUAL AND PREDICTED CHANGES
WHEN B2 IS DECREASED BY 500

CHANGE IN RESPONSE

DESIGN ACTUAL PREDICTED PERCENT ERROR

(1) Central -370.0 -377.25 2.0
Composite

(2) Box- -370.0 -384.5 3.9
Behnken

* (3) Box- -370.0 -392.3 6.0
Draper (H)

0 A (4) Box- -370.0 -398.8 7.8
Draper (F)
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There are two primary reasons to explain the

discrepancies between the actual and the predicted changes

of the various response surface equations.

The first reason for these discrepancies is due to

multicollinearity. As was stated earlier, the effects of

multicollinearity influence the coefficients of the

correlated variables, and thereby influence their ability

to accurately measure the marginal effects of change.

The second reason for these discrepancies is due to the

fact that several terms have been omitted from the full

regression model. In this five factor example, ten

interaction terms and four squared terms have been removed.

If these variables are inserted into eq(16), the differences

between the predicted change and the actual change of the

dependent variable is reduced. The full regression equation

for the five factor model is

y = b + b (M1) + b 2 (M2) + b 3 (B1) + b 4 (B2) + bs(Sl)

+ b1 2 (MI*M2) + b1 3 (MI*B1) + b 1 4 (MI*B2) + b 1 (M1*S2)

+ b23 (M2*
B1) + b 24 (M2*B 2) + b25 (M2*S1) + b34 (B1*B2)

+ b35 (BI*S1) + b45 (B2*S1) + bil (MI*M1) + b2 2 (M2*M2)

4- b33 (B1*B1) + b 4 (B2*B2) + b5 5 (SI*S1) (21)

Tables 15 through 18 contain the same information as

Tables 11 through 14, except for the fact that the full

regression model (5 main effects, 10 interaction terms, 5

squared terms, and 1 intercept term) is used to determine
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the predicted change of the response values in Tables 15

through 18.

TABLE 15.

ACTUAL AND PREDICTED CHANGES WHEN M1
IS DECREASED BY 100 (FULL MODEL)

CHANGE IN RESPONSE

DESIGN ACTUAL PREDICTED PERCENT ERROR

(1) Central -57.0 -57.5 0.9
Composite

(2) Box- -57.0 -59.9 5.1
Behnken

(3) Box- -57.0 -60.2 5.6
Draper (H)

(4) Box- -57.0 -60.3 5.8
Draper (F)

TABLE 16.

ACTUAL AND PREDICTED CHANGES WHEN M2
IS INCREASED BY 400 (FULL MODEL)

CHANGE IN RESPONSE

DESIGN ACTUAL PREDICTED PERCENT ERROR

(1) Central 260.0 247.6 4.8

Composite

(2) Box- 260.0 267.5 2.9
Behnken

(3) Box- 260.0 272.5 4.8
Draper (H)

(4) Box- 260.0 269.8 3.8
Draper (F)
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TABLE 17.

ACTUAL AND PREDICTED CHANGES WHEN BI
IS INCREASED BY 200 (FULL MODEL)

CHANGE IN RESPONSE

DESIGN ACTUAL PREDICTED PERCENT ERROR

(1) Central 140.0 140.1 0.1
* Composite

(2) Box- 140.0 145.1 3.6
Behnken

(3) Box- 140.0 146.9 4.9
Draper (H)

(4) Box- 140.0 148.2 5.8
Draper (F)

TABLE 18.

ACTUAL AND PREDICTED CHANGES WHEN B2
IS DECREASED BY 500 (FULL MODEL)

CHANGE IN RESPONSE

DESIGN ACTUAL PREDICTED PERCENT ERROR

(1) Central -370.0 -364.1 1.6
Composite

(2) Box- -370.0 -377.9 2.1
Behnken

(3) Box- -370.0 -387.1 4.6
Draper (H)

(4) Box- -370.0 -389.5 5.3
Draper (F)

From the full regression models, the analyst is able to

obtain very effective measures of the marginal effects of
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the independent variables. The procedure to obtain this

measure consists of calculating the response value from the

response equation twice. During the first calculation, all

variables are set to a base level; during the second

calculation, all variables remain fixed, except for the

variable whose marginal effect is to be measured.

Subsequently, the difference in the response values of the

two calculations represents the marginal effect of that

variable.

If the full regression model is used to measure the

marginal effects of an independent variable, then the

requirement for low multicollinearity between the variables

is eliminated. The analyst does not obtain the marginal

effects information from the coefficients, but from the

difference between the estimated response values. Since

multicollinearity does not affect a design's ability to

produce a response equation that predicts effectively, the

response equation of a non-orthogonal design is able to

measure the marginal effects of an independent variable as

well as the equation of an orthogonal design.

The drawback to using the full regression model is the

complexity of eq(21). The ability to measure the marginal

effects is no longer a simple proposal and the marginal

effects of an independent variable is dependent on the level

at which it is evaluated. Essentially, the analyst performs

4a one variable at a time procedure to obtain his

information. Therefore, the method involving the modified
'p.
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regression model may be a more attractive alternative

because of its simplicity, provided that the decision maker

is able to accept some limitations in the magnitudes of the

estimates of the predicted marginal effects.

Analytical Value of the Modified Response

Eguations. The question of whether or not any error level

is too great is dependent on the degree of accuracy which

the decision maker requires. An important point which the

decision maker must consider, is that the information

pertaining to the marginal effects of the independent

variables is readily available from the simplified response

equation, but not easily obtainable from other sources.

In examiming the predicted marginal effects of the

modified equations, Tables 11 through 14 indicate that there

are discrepancies between the predicted and the actual

changes in the response values. The range of the error

between the predicted and actual change is 1.8% to 12.1%.

In general, an error of less than 2% is likely to be

accepted in just about any circumstance. However, an error

of 12% may not be acceptable in certain situations.

A simple test to check the magnitude of the error of

the predicted change for the coefficients of the modified

response equation, is to compare the predicted change of the

modified response equation to the predicted change of the

full regression equation. If the level of error is

acceptable to the decision maker, the modified response

equation is used and is a very useful analytical tool.
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However, if the level of error is not acceptable, the

analyst may choose to use the full regression equation to

measure the marginal effects of change for the independent

variables. But as was noted earlier, this procedure may be

rather lengthy, in that the marginal effects of change of

any variable is not constant throughout the entire surface.

Therefore, the variables must be evaluated at several

different levels in order to determine the marginal effect.

An alternative to using the full regression model when

the level of error of the modified equation is unacceptable,

is to evaluate the ratios of the coefficients of the

modified equations. In regression analysis, the ratio of

the coefficients indicates the contribution of one factor as

compared to another factor. Therefore, although the exact

magnitude of their impact on the response value can not be

determined, the relative importance of the various

independent variables can be assessed by rank ordering the

ratios of the coefficients.

For example, the modified response equation for the

five factor Box-Behnken design is

y = .6029 (Ml) + .6795 (M2) + .7294 (B1)

+ .7689 (B2) + 1.0363 ($1)

- .0000295 (S1*S1) + 843.9903 (22)

The mean contribution of B2 to the response value, y, is

estimated to be 1.27 times as great as the mean contribution
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of M1 to the response value. This amount is obtained by

calculating the ratio of the coefficients for the two

independent variables (.7689/.6029).

In a similar manner, eq(23) is the response equation
N.

K for the five factor Central Composite Rotatable design.

According to this response equation, the mean contribution

of B2 is 1.5 times as great as the mean contribution of M1

to the response value (.7545/.5011).

y" = .5011 (Ml) + .6289 (M2) + .7123 (B1)

+ .7545 (B2) + .9511 (Si)

- .0000261 ($1*1) + 1615.6741 (23)

Since the various designs which are used in this study

produce different coefficients for each design, the

ratios of coefficients are different. Hence, the exact

magnitude of the contribution of each factor as compared to

other factors can not be determined with certainty.

Nevertheless, the relative contribution of the factors can

still be obtained and these contributions can be rank

ordered.

Therefore, an accurate, but less definitive statement

about the relative contribution of the two independent

variables, is that the mean contribution of B2 is greater

than the mean contribution of M1 to the response value.

This conclusion is permissible because the relative

magnitudes of the coefficients are maintained for the

various designs even though the values of the coefficients
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themselves change from one design to another. That is, no

matter what orthogonal design is 5elected, the regression

coefficient for B2 always exceeds the coefficient for M1.

In this manner, the following conclusion is drawn for the

five factor problem: the independent variable which causes

the greatest change is S1, provided the values for S1 remain

within the relevant range. This variable is followed in

order of importance by: B2, B1, M2, and M1. Although this

conclusion does not provide an exact measure of the

difference between the factors, the relative ranking of the

factors is still an important piece of information which the

decision maker needs in order to evaluate his alternatives.

'U
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IV. CONCLUSION

OVERVIEW

This research identifies several experimental designs

which are effective and efficient in estimating response

surface equations for deterministic models. The specific

deterministic model which is used in this study is a nuclear

exchange linear programming model, but the results which are

obtained in this study apply to any deterministic model.

The purpose of Response Surface Methodlogy in its

application to any type of model is to obtain a response

surface equation which closely approximates the true

surface. A second order polynomial has been shown to be an

excellent choice for estimating response surfaces of

determininstic, nuclear exchange models. Ideally, the

experimental design should use as few points as possible to

obtain an accurate fit and the response equation should

contain as few terms as possible. That is, the equation

should contain as few cross product and squared terms as

possible so that direct inferences can be drawn from the

coefficients of the main effects.

SPECIFIC RESULTS

In keeping with the idea of simplifying the response

equation, the response surface equations which are used to

evaluate error in fit of the design are modified versions of

the full regression equations. That is, selected terms from

4 - I



the full regression equations have been omitted from the

modified regression equations because these terms account

for less than two percent of the total sum of squares.

In evaluating the response equations of these designs

for their effectiveness, the results indicate that the

accuracy of a modified response equation is dependent on the

number of design points and on the degree of rotatability of

the design. The accuracy of a response surface equation is

highly correlated to the number of design points, but this

relationship is not a perfect correlation, and their

differences can be explained by the degree of rotatability

of the designs.

In short, more design points improves accuracy,

provided the points are spread throughout the entire

surface. Similarly, if the region of interest is spherical,

a rotatable design improves the accuracy of the response

equation.

In evaluating these designs for their efficiency as

well as effectiveness, the results indicate that a design

which provides the most accurate fit with the fewest number

of design points for all factors does not exist. In fact,

minimizing the number of design points and maximizing

accuracy are dichotomous goals. This trade-off between

accuracy and required number of design points is dependent

on the problem at hand and needs to be defined seperately

for each situation. Therefore, it remains for the decision

maker to evaluate the problem to determine which is more
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important: a more accurate fit or fewer design points.

In evaluating the explanatory power of the response

equations, the coefficients of the modified response

equation represent marginal effects of change of the

dependent variable when the independent variables are

altered provided specific conditions are met. These

conditions are: a high degree of multicollinearity does not

exist between the independent variables; the main effect

terms of the response equation dominate the squared and the

interaction terms; and the modified response surface is able

to accurately represent the true surface.

The results of this project indicate that there are

limitations in the ability of the coefficients of the

modified response equation to predict the marginal effects

of change. The accuracy of these models to predict the

marginal change can be evaluated by comparing the predicted

changes of the coefficients of the modified response

equations to the coefficients of the full regression

equations. If this difference is unacceptable, then the

full regression equation can be used to measure the marginal

effects or the ratios of the coefficients of the modified

equation can be used to determine the relative importance of

the independent variables.

RECOMMENDATIONS

This study originally intended to examine the

differences between bias minimizing and variance
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minimizing designs. As this study evolved, it became

clear that there were no significant differences between

the two types of experimental designs, provided that the

designs maintained certain characteristics, such as,

rotatability and orthogonality.

However, very few designs possess pure rotatability

or orthogonality. Most of the designs are classified in

a gray area called, nearly rotatable and nearly

orthogonal. As such, further research is required in

specifying nearly rotatable and nearly orthogonal. This

research may find what levels of rotatability are

necessary to achieve a desired level of predictive power.

Also, this research may find what levels of orthogonality

are necessary to achieve a desired level of explanatory

power.
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822gldix. A: MPOS Inut Files

This appendix describes the specific problems which were

analyzed for the three, four, five, and six factor cases. In

* addition, this appendix lists a sample of the Multi-Purpose

Optimization System (MPOS) input files which were used to

obtain the response value.

THREE FACTOR PROBLEM

There are three weapon types and five target classes.

The three weapon types are:

WEAPON TYPE LOW VALUE HIGH VALUg

M1 1650 3000

B1 1200 3000

S1 6000 12000

Assumption: Each system's reliability, probability of launch

survivability, probability of arrival, and warhead

reliability are all 1.0. The single shot probability of kill

(which is damage expectancy on a target because of the

previous assumptions of reliability, etc.) for each warhead

type is provided in the following table:

%A
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TABLE A.1

SINGLE SHOT PROBABILITY OF KILL
FOR THREE FACTOR PROBLEM

TARGET TYPE WEAPON TYPE

M1 B1 S1

TGT CLASS 1 .84 .96 .73

TGT CLASS 2 .75 .88 .64

TGT CLASS 3 .55 .70 .32

TGT CLASS 4 .88 .98 .78

TGT CLASS 5 .25 .48 .15

Target class 4 represents time urgent targets and only

ICBMs (M1) and SLBMs (S) are allowed to hit them. In

addition, the maximum allowable damage on target class 2

targets is .95 of the total target value and at least .60 of

the total target value of target class 5 targets must be

destroyed. Furthermore, a maximum of two warheads can

targeted at any individual target.

The number of targets in each class is 6000, 4000,

2000, 1000, and 200, respectively. The measure of

*effectiveness for this problem is the total damage

expectancy, i.e., the sum of the product of the damage

expectancy on a target times the number of targets.
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FOUR FACTOR PROBLEM

There are four weapon types and five target classes.

The four weapon types are:

WEAPON TYPE LOW VALUE HIGH VALUE

MI 1650 3000

M2 500 2009

B1 1200 3000

S1 600 12000

Assumption: Each system's reliability, probability of launch

survivability, probability of arrival, and warhead

reliability are all 1.0. The single shot probability of kill

(which is damage expectancy on a target because of the

previous assumptions of reliability, etc.) for each warhead

type is provided in the following table:
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TABLE A.2

4 _ SINGLE SHOT FROBABILITY OF KILL

FOR FOUR FACTOR PROBLEM

TARGET TYPE WEAPON TYPE

M1 M2 BI S1

TGT CLASS 1 .84 .90 .96 .73

TGT CLASS 2 .75 .83 .88 .64

TGT CLASS 3 .55 .62 .70 .32

TGT CLASS 4 .88 .94 .98 .78

TGT CLASS 5 .25 .36 .48 .15

Target class 4 represents time urgent targets and only

ICBMs (M1, M2) and SLBMs (SI) are allowed to hit them. In

addition, the maximum allowable damage oi target class 2

% targets is .95 of the total target value and at least .60 of

the total target value of target class 5 targets must be

destroyed. Furthermore, a maximum of two warheads can

targeted at any individual target.

The number of targets in each class is 6000, 4000,

2000, 1000, and 200, respectively. The measure of

effectiveness for this problem is the total damage

expectancy, i.e., the sum of the product of the damage

expectancy on a target times the number of targets.
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FIVE FACTOR PROBLEM

There are five weapon types and five target classes.

The five weapon types are:

WEAPON TYPE LOW VALUE HIGH VALUE

M1 1650 3000

M2 500 2000

BI 1200 3000

B2 2000 4000

S1 6000 12000

Assumption: Each system's reliability, probability of launch

survivability, probability of arrival, and warhead

reliability are all 1.0. The single shot probability of kill

(which is damage expectancy on a target because of the

previous assumptions of reliability, etc.) for each warhead

type is provided in the following table:

A - 5
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TABLE A.3

SINGLE SHOT PROBABILITY OF KILL

-FOR FIVE FACTOR PROBLEM

TARGET TYPE WEAPON TYPE

Ml M2 BI B2 S1

TGT CLASS 1 .84 .90 .96 .98 .73

TGT CLASS 2 .75 .83 .88 .92 .64

TGT CLASS 3 .55 .62 .70 .74 .32

TGT CLASS 4 .88 .94 .98 .99 .78

TGT CLASS 5 .25 .36 .48 .55 .15

Target class 4 represents time urgent targets and only

ICBMs (M1, M2) and SLBMs (S) are allowed to hit them. In

addition, the maximum allowable damage on target class 2

targets is .95 of the total target value and at least .60 of

the total target value of target class 5 targets must be

destroyed. Furthermore, a maximum of two warheads can

targeted at any individual target.

The number of targets in each class is 9000, 6000, 3000,

1500, and 300, respectively. The measure of effectiveness

for this problem is the total damage expectancy, i.e., the

sum of the product of the damage expectancy on a target

times the number of targets.
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SIX FACTOR PROBLEM

There are six weapon types and five target classes. The

six weapon types are:

WEAPON TYPE LOW VALUE HIGH VALUE

M1 1650 3000

M2 500 2000

M3 400 1000

BI 1200 3000

B2 2000 4000

S1 6000 12000

Assumption: Each system's reliability, probability of launch

survivability, probability of arrival, and warhead

reliability are all 1.0. the single shot probability of kill

(which is damage expectancy on a target because of the

previous assumptions of reliability, etc.) for each warhead

type is:
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.4.



TABLE A.4

SINGLE SHOT PROBABILITY OF KILL
FOR SIX FACTOR PROBLEM

TARGET TYPE WEAPON TYPE

M1 M2 M3 B1 B2 S1

TGT CLASS 1 .84 .90 .92 .96 .98 .73

TGT CLASS 2 .75 .83 .87 .88 .92 .64

TGT CLASS 3 .55 .62 .65 .70 .74 .32

TGT CLASS 4 .88 .94 .95 .98 .99 .78

TGT CLASS 5 .25 .36 .45 .48 .55 .15

Target class 4 represents time urgent targets and only

ICBMs (M1, M2, M3) and SLBMs ($1) are allowed to hit them.

In addition, the maximum allowable damage on target class 2

targets is .95 of the total target value and at least .60 of

the total target value of target class 5 targets must be

destroyed. Furthermore, a maximum of two warheads can

targeted at any individual target.

The number of targets in each class is 9000, 6000, 3000,

1500, and 300, respectively. The measure of effectiveness

for this problem is the total damage expectancy, i.e., the

sum of the product of the damage expectancy on a target

times the number of targets.
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************ MPOS INPUT FILE ***********
3 FACTORS

REGULAR
TITLE
RESPONSE SURFACE FOR ARSENAL EXCHANGE MODEL

VARIABLES ** WEAPON **
** SYSTEM **

Xll TO X15 ** M1 **

X21 TO X25 ** BI **
X31 TO X35 ** Si **

X41 TO X45 **M1 + M1**

X51 TO X55 *B1 + B1**
X61 TO X65 **S + S1**

X71 TO X75 **M1 + B1**
X81 TO XB5 **M1 + s**
X91 TO X95 **B1 + 1**

MAXIMIZE ** DE TABLE **

.8400 Xll + .7500 X12 + .5500 X13 + .8800 X14 + .2500 X15 +

.9600 X21 + .8800 X22 + .7000 X23 + .0000 X24 + .4800 X25 +

.7300 X31 + .6400 X32 + .3200. X33 + .7800 X34 + .1500 X35 +

.9744 X41 + .9375 X42 + .7975 X43 + .9856 X44 + .4375 X45 +

.9984 X51 + .9856 X52 + .9100 X53 + .0000 X54 + .7296 X55 +

.9271 X61 + .8704 X62 + .5376 X63 + .9516 X64 + .2775 X65 +

.9936 X71 + .9700 X72 + .8650 X73 + .0000 X74 + .6100 X75 +

.9568 X81 + .9100 X82 + .6940 X83 + .9736 X84 + .3625 X85 +

.9892 X91 + .9568 X92 + .7960 X93 + .0000 X94 + .5580 X95

CONSTRAINTS
** (1) 95 % DE CRITERIA **
.7500 X12 + .8800 X22 + .6400 X32 + .9375 X42 + .9856 X52 +
.8704 X62 + .9700 X72 + .9100 X82 + .9568 X92 .LE. 3800

** (2) 60 % DE CRITERIA **

.2500 X15 + .4800 X25 + .1500 X35 + .4375 X45 + .7296 X55 +

.2775 X65 + .6100 X75 + .3625 X85 + .5580 X95 .LE. 120

** (3) TARGET 1 CONSTRAINT **
Xll + X21 + X31 + X41 + X51 + X61 + X71 +
X81 + X91 .LE. 6000

** (4) TARGET 2 CONSTRAINT **
X12 + X22 + X32 + X42 + X52 + X62 + X72 +
X82 + X92 .LE. 4000
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** (5) TARGET 3 CONSTRAINT **
X13 + X23 + X33 + X43 + X53 + X63 + X73 +
X83 + X93 LE. 2000

** (6) TARGET 4 CONSTRAINT **
X14 + X24 + X34 + X44 + X54 + X64 + X74 +
X84 + X94 .LE. 1000

** (7) TARGET 5 CONSTRAINTS **
X15 + X25 + X35 + X45 + X55 + X65 + X75 +
X85 + X95 .LE. 200

** (8) WEAPON SYSTEM I (M1) CONSTRAINT **
Xll + X12 + X13 + X14 + X15 +
2 X41 + 2 X42 + 2 X43 + 2 X44 + 2 X45 +
X71 + X72 + X73 + X74 + X75 +
X81 + X82 + X83 + X84 + X85 .LE. 3000

** (9) WEAPON SYSTEM 2 (B1) CONSTRAINT
X21 + X22 + X23 + X24 + X25 +
2 X51 + 2 X52 + 2 X53 + 2 X54 + 2 X55 +
X71 + X72 + X73 + X74 + X75 +
X91 + X92 + X93 + X94 + X95 .LE. 3000

** (10) WEAPON SYSTEM 3 (Si) CONSTRAINT **
X31 + X32 + X33 + X34 + X35 +
2 X61 + 2 X62 + 2 X63 + 2 X64 + 2 X65 +
X81 + X82 + X83 + X84 + XB5 +
X91 + X92 + X93 + X94 + X95 .LE. 9000

PRINT
OPTIMIZE
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********** MPOS INPUT FILE *
*4*4*1**** 4 FACTOR
*11***********1****4*****4**********14*****4***

REGULAR
TITLE
RESPONSE SURFACE FOR ARSENAL EXCHANGE MODEL

VARIABLES ** WEAPON **
** SYSTEM **

Xll TO X15 ** Ml **
X21 TO X25 ** B1 **
X31 TO X35 ** Si **

X41 TO X45 ** M1 +-M1 **

X51 TO X55 I*1 + BI **
X61 TO X65 **1 + $14*
X71 TO X75 *M1 + Bl1
X81 TO X85 **M1 + S**
X91 TO X95 **B + Sl**
X101 TO X105 ** M2 **

X11 TO Xl1 ** M2 + M2 **
X121 TO X125 ** Mi + M2 **

X131 TO X135 ** M2 + BI1*
X141 TO X145 **M2 + Sl**

MAXIMIZE ** DE TABLE *

.8400 Xll + .7500 X12 + .5500 X13 + .8800 X14 + .2500 X15 +

.9600 X21 + .8800 X22 + .7000 X23 + .0000 X24 + .4800 X25 +

.7300 X31 + .6400 X32 + .3200 X33 + .7800 X34 + .1500 X35 +

.9744 X41 + .9375 X42 + .7975 X43 + .9856 X44 + .4375 X45 +

.9984 X51 + .9856 X52 + .9100 X53 + .0000 X54 + .7296 X55 +

.9271 X61 + .8704 X62 + .5376 X63 + .9516 X64 + .2775 X65 +

.9936 X71 + .9700 X72 + .8650 X73 + .0000 X74 + .6100 X75 +

.9568 X81 + .9100 X82 + .6940 X83 + .9736 X84 + .3625 X85 +

.9892 X91 + .9568 X92 + .7960 X93 + .0000 X94 + .5580 X95 +

.9000 X101 + .8300 X102 + .6200 X103 + .9400 X104 + .3600 X105 +

.9900 Xlll + .9711 Xl12 + .8556 X113 + .9964 X114 + .5904 X1l15 +

.9840 X121 + .9575 X122 + .8290 X123 + .9928 X124 + .5200 X125 +

.9960 X131 + .9796 X132 + .8860 X133 + .0000 X134 + .6672 X135 +

.9730 X141 + .9388 X142 + .7416 X143 + .9868 X144 + .4560 X145

CONSTRAINTS
**4(1) 95 % DE CRITERIA *
.7500 X12 + .8800 X22 + .6400 X32 + .9375 X42 + .9856 X52 +
.8704 X62 + .9700 X72 + .9100 X82 + .9568 X92 + .8300 X102 +
.9711 X112 + .9575 X122 + .9796 X132 + .9388 X142 .LE. 3800

A - 11
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** (2) 60 % DE CRITERIA **

.2500 X15 + .4800 X25 + .1500 X35 + .4375 X45 + .7296 X55 +.2775 X65 + .6100 X75 + .3625 X85 + .5580 X95 + .3600 X105 +

.5904 X115 + .5200 X125 + .6672 X135 + .4560 X145 .GE. 120

** (3) TARGET 1 CONSTRAINT **
Xll + X21 + X31 + X41 + X51 + X61 + X71 + X81 +
X91 + X181 + Xlll + X121 + X131 + X141 .LE. 6000

** (4) TARGET 2 CONSTRAINT **
X12 + X22 + X32 + X42 + X52 + X62 + X72 + X82 +
X92 + X102 + Xl12 + X122 + X132 + X142 .LE. 4000

** (5) TARGET 3 CONSTRAINT **
X13 + X23 + X33 + X43 + X53 + X63 + X73 + X83 +

U' X93 + X193 + X113 + X123 + X133 + X143 .LE. 2000

** (6) TARGET 4 CONSTRAINT **

X14 + X24 + X34 + X44 + X54 + X64 + X74 + X84 +

X94 + X104 + X114 + X124 + X134 + X144 .LE. 1000

** (7) TARGET 5 CONSTRAINTS **

X15 + X25 + X35 + X45 + X55 + X65 + X75 + X85 +

X95 + X105 + X115 + X125 + X135 + X145 .LE. 200

** (8) WEAPON SYSTEM 1 (Mi) CONSTRAINT **

X11 + X12 + X13 + X14 + X15 +
2 X41 + 2 X42 + 2 X43 + 2 X44 + 2 X45 +
X71 + X72 + X73 + X74 + X75 +
X81 + X82 + X83 + X84 + X85 +
X121 + X122 + X123 + X124 + X125 .LE. 3000

** (9) WEAPON SYSTEM 2 (M2) CONSTRAINT **

X101 + X102 + X103 + X104 + X105 +
2 Xlll + 2 Xl12 + 2 X13 + 2 Xl14 + 2 X115 +
X121 + X122 + X123 + X124 + X125 +
X131 + X132 + X133 + X134 + X135 +
X141 + X142 + X143 + X144 + X145 .LE. 2000

** (10) WEAPON SYSTEM 3 (B1) CONSTRAINT
X21 + X22 + X23 + X24 + X25 +
2 X51 + 2 X52 + 2 X53 + 2 X54 + 2 X55 +
X71 + X72 + X73 + X74 + X75 +
X91 + X92 + X93 + X94 + X95 +
X131 + X132 + X133 + X134 + X135 .LE. 3000
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** (11) WEAPON SYSTEM 4 (S) CONSTRAINT **

X31 + X32 + X33 + X34 + X35 +
2 X61 + 2 X62 + 2 X63 + 2 X64 + 2 X65 +
X81 + X82 + X83 + X84 + X85 +
X91 + X92 + X93 + X94 + X95 +
X141 + X142 + X143 + X144 + X145 .LE. 900

PRINT
OPTIMIZE
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************ MPOS INPUT FILE **************
5 FACTORS****** ********* * FATOR ** ** **** *** ***

REGULAR
TITLE
RESPONSE SURFACE FOR ARSENAL EXCHANGE MODEL

VARIABLES ** WEAPON **
** SYSTEM **

Xll TO X15 ** Ml **
X21 TO X25 ** B1 **
X31 TO X35 ** Si **
X41 TO X45 **M1 + M1**
X51 TO X55 **B1 + B1**
X61 TO X65 **1 + $1**
X71 TO X75 ** M1 + B1**
X81 TO X85 **M1 + S1**
X91 TO X95 **B1 + S1**
X101 TO X105 ** M2 **
Xii1 TO X115 ** M2 + M2 **
X121 TO X125 ** Ml + M2 **
X131 TO X135 ** M2 + BI **
X141 TO X145 ** M2 + Si **
X151 TO X155 ** B2 **
X161 TO X165 ** B2 + B2 **
X171 TO X175 ** Ml + B2 **
X181 TO X185 ** M2 + 82 **
X191 TO X195 ** Bi + B2 **
X201 TO X205 ** B2 + Si **

MAXIMIZE ** DE TABLE **

.8400 Xll + .7500 X12 + .5500 X13 + .8800 X14 + .2500 X15 +

.9600 X21 + .8800 X22 + .7000 X23 + .0000 X24 + .4800 X25 +

.7300 X31 + .6400 X32 + .3200 X33 + .7800 X34 + .1500 X35 +

.9744 X41 + .9375 X42 + .7975 X43 + .9856 X44 + .4375 X45 +

.9984 X51 + .9856 X52 + .9100 X53 + .0000 X54 + .7296 X55 +

.9271 X61 + .8704 X62 + .5376 X63 + .9516 X64 + .2775 X65 +

.9936 X71 + .9700 X72 + .8650 X73 + .0000 X74 + .6100 X75 +

.9566 X81 + .9100 X82 + .6940 X83 + .9736 X84 + .3625 X85 +

.9892 X91 + .9568 X92 + .7960 X93 + .0000 X94 + .5580 X95 +

.9000 X101 + .8300 X102 + .6200 X103 + .9400 X104 + .3600 X105 +

.9900 Xlll + .9711 Xl12 + .8556 X113 + .9964 Xi14 + .5904 X115 +

.9840 X121 + .9575 X122 + .8290 X123 + .9928 X124 + .5200 X125 +

.9960 X131 + .9796 X132 + .8860 X133 + .0000 X134 + .6672 X135 +

.9730 X141 + .9388 X142 + .7416 X143 + .9868 X144 + .4560 X145 +

.9800 X151 + .9200 X152 + .7400 X153 + .0000 X154 + .5500 X155 +

.9996 X161 + .9936 X162 + .9324 X163 + .0000 X164 + .7975 X165 +

.9968 X171 + .9936 X172 + .8830 X173 + .0000 X174 + .6625 X175 +

.9980 X181 + .9864 X182 + .9012 X183 + .0000 X184 + .7120 X185 +

.9992 X191 + .9904 X192 + .9220 X193 + .0000 X194 + .7660 X195 +

.9946 X201 + .9712 X202 + .8232 X203 + .0000 X204 + .6175 X205
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CONSTRAINTS
** (1) 95 % DE CRITERIA **
.7500 X12 + .8800 X22 + .6400 X32 + .9375 X42 +
.9856 X52 + .8704 X62 + .9700 X72 + .9100 X82 +
.9568 X92 + .8300 X102 + .9711 X112 + .9575 X122 +
.9796 X132 + .9388 X142 + .9200 X152 + .9936 X162 +
.9936 X172 + .9864 X182 + .9904 X192 + .9712 X202 .LE. 5700

** (2) 60 % DE CRITERIA **
.2500 X15 + .4800 X25 + .1500 X35 + .4375 X45 +
.7296 X55 + .2775 X65 + .6100 X75 + .3625 X85 +
.5580 X95 + .3600 X105 + .5904 X115 + .5200 X125 +
.6672 X135 + .4560 X145 + .5500 X155 + .7975 X165 +
.6625 X175 + .7120 X185 + .7660 X195 + .6175 X205 .GE. 180

** (3) TARGET 1 CONSTRAINT **
Xll + X21 + X31 + X41 + X51 + X61 + X71 + X81 + X91 +
X101 + Xlli + X121 + X131 + X141 + X151 + X161 + X171 + X181 +
X191 + X201 .LE. 9000

** (4) TARGET 2 CONSTRAINT **
X12 + X22 + X32 + X42 + X52 + X62 + X72 + X82 + X92 +
X102 + Xl12 + X122 + X132 + X142 + X152 + X162 + X172 + X182 +
X192 + X202 .LE. 6000

** (5) TARGET 3 CONSTRAINT **

X13 + X23 + X33 + X43 + X53 + X63 + X73 + X83 + X93 +
X103 + Xl13 + X123 + X133 + X143 + X153 + X163 + X173 + X183 +
X193 + X203 .LE. 3000

** (6) TARGET 4 CONSTRAINT **
X14 + X24 + X34 + X44 + X54 + X64 + X74 + X84 + X94 +
X104 + X114 + X124 + X134 + X144 + X154 + X164 + X174 + X184 +

X194 + X204 .LE. 1500

** (7) TARGET 5 CONSTRAINTS **
X15 + X25 + X35 + X45 + X55 + X65 + X75 + X85 + X95 +
X105 + X115 + X125 + X135 + X145 + X155 + X165 + X175 + X185 +
X195 + X205 .LE. 300

** (8) WEAPON SYSTEM 1 (Ml) CONSTRAINT **
Xll + X12 + X13 + X14 + X15 +
2 X41 + 2 X42 + 2 X43 + 2 X44 + 2 X45 +
X71 + X72 + X73 + X74 + X75 +
X81 + X82 + X83 + X84 + X85 +
X121 + X122 + X123 + X124 + X125 +
X171 + X172 + X173 + X174 + X175 .LE. 2325
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** (9) WEAPON SYSTEM 2 (M2) CONSTRAINT **
X101 + X102 + X103 + X104 + X105 +
2 Xlll + 2 X112 + 2 X113 + 2 X114 + 2 Xl15 +
X121 + X122 + X123 + X124 + X125 +
X131 + X132 + X133 + X134 + X135 +
X141 + X142 + X143 + X144 + X145 +
X181 + X182 + X183 + X184 + X185 . LE. 1250

** (10) WEAPON SYSTEM 3 (B1) CONSTRAINT
X21 + X22 + X23 + X24 + X25 +
2 X51 + 2 X52 + 2 X53 + 2 X54 + 2 X55 +
X71 + X72 + X73 + X74 + X75 +
X91 + X92 + X93 + X94 + X95 +
X131 + X132 + X133 + X134 + X135 +
X191 + X192 + X193 + X194 + X195 .LE. 2100

** (11) WEAPON SYSTEM 4 (B2) CONSTRAINT **
X151 + X152 + X153 + X154 + X155 +
2 X161 + 2 X162 + 2 X163 + 2 X164 + 2 X165 +
X171 + X172 + X173 + X174 + X175 +
X181 + X182 + X183 + X184 + X185 +
X191 + X192 + X193 + X194 + X195 +
X201 + X202 + X203 + X204 + X205 .LE. 3000

** (12) WEAPON SYSTEM 5 (Si) CONSTRAINT **
X31 + X32 + X33 + X34 + X35 +
2 X61 + 2 X62 + 2 X63 + 2 X64 + 2 X65 +
X81 + X82 + X83 + X84 + X85 +
X91 + X92 + X93 + X94 + X95 +
X141 + X142 + X143 + X144 + X145 +
X201 + X202 + X203 + X204 + X205 .LE. 9000

PRINT
OPTIMIZE
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************ MPOS INPUT FILE *************
*4******* 6 FACTORS

REGULAR
TITLE
RESPONSE SURFACE FOR ARSENAL EXCHANGE MODEL

VARIABLES ** WEAPON **
** SYSTEM **

X11 TO X15 ** Mi **
X21 TO X25 **B1 **
X31 TO X35 ** Si **

X41 TO X45 **M1 +-Mi **

X51 TO X55 *1 + B1**
X61 TO X65 **S1 + **
X71 TO X75 **M1 +B1 *
X81 TO X85 **M1 + $S *+ *

X91 TO X95 **Bi +-Si *+ *
X101 TO X105 ** M2 **
X111 TO X115 **M2 + M2**
X121 TO X125 ** M1 + M2 **
X131 TO X135 ** M2 + B1 **

X141 TO X145 ** M2 + $1 **
X151 TO X155 *B 92 **

X161 TO X165 ** B2 + B2 *
X171 TO X175 ** Mi + B2 *
X181 TO X185 ** M2 + B2 *
X191 TO X195 *B 91 o B2 *+
X201 TO X205 *B 92 + 51 4*
X211 TO X215 ** M3 **

X221 TO X225 ** M3 + M3 **
X231 TO X235 **Mi + M3*
X241 TO X245 ** M2 + M3 **
X251 TO X255 I* 1 + M3 *
X261 TO X265 **1B2 + M3 **
X271 TO X275 **M3 + S**
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MAXIMIZE ** DE TABLE *4

.8400 Xll + .7500 X12 + .5500 X13 + .8800 X14 + .2500 X15 +

.9600 X21 + .8800 X22 + .7000 X23 + .0000 X24 + .480 X25 +

.7300 X31 + .6400 X32 + .3200 X33 + .7800 X34 + .1500 X35 +

.9744 X41 + .9375 X42 + .7975 X43 + .9856 X44 + .4375 X45 +

.9984 X51 + .9856 X52 + .9100 X53 + .0000 X54 + .7296 X55 +

.9271 X61 + .8704 X62 + .5376 X63 + .9516 X64 + .2775 X65 +

.9936 X71 + .9700 X72 + .8650 X73 + .0000 X74 + .6100 X75 +

.9568 X81 + .9100 X82 + .6940 X83 + .9736 X84 + .3625 X85 +

.9892 X91 + .9568 X92 + .7960 X93 + .0000 X94 + .5580 X95 +

.9000 X101 + .8300 X102 + .6200 X103 + .9400 X104 + .3600 X105 +

.9900 Xlll + .9711 X112 + .8556 X113 + .9964 X114 + .5904 X115 +

.9840 X121 + .9575 X122 + .8290 X123 + .9928 X124 + .5200 X125 +

.9960 X131 + .9796 X132 + .8860 X133 + .0000 X134 + .6672 X135 +

.9730 X141 + .9388 X142 + .7416 X143 + .9868 X144 + .4560 X145 +

.9800 X151 + .9200 X152 + .7400 X153 + .0000 X154 + .5500 X155 +

.9996 X161 + .9936 X162 + .9324 X163 + .0000 X164 + .7975 X165 +

.9968 X171 + .9936 X172 + .8830 X173 + .0000 X174 + .6625 X175 +

.9980 X181 + .9864 X182 + .9012 X183 + .0000 X184 + .7120 X185 +

.9992 X191 + .9904 X192 + .9220 X193 + .0000 X194 + .7660 X195 +

.9946 X201 + .9712 X202 + .8232 X203 + .0000 X204 + .6175 X205 +

.9200 X211 + .8700 X212 + .6500 X213 + .9500 X214 + .4500 X215 +

.9936 X221 + .9831 X222 + .8775 X223 + .9975 X224 + .6975 X225 +

.9872 X231 + .9675 X232 + .8425 X233 + .9940 X234 + .5875 X235 +

.9920 X241 + .9779 X242 + .8670 X243 + .9970 X244 + .6480 X245 +

.9968 X251 + .9844 X252 + .8950 X253 + .0000 X254 + .7140 X255 +

.9984 X261 + .9896 X262 + .9090 X263 + .0000 X264 + .7525 X265 +

.9784 X271 + .9532 X272 + .7620 X273 + .9890 X274 + .5325 X275

CONSTRAINTS
** (1) 95 % DE CRITERIA **
.7500 X12 + .8800 X22 + .6400 X32 + .9375 X42 + .9856 X52 +
.8704 X62 + .9700 X72 + .9100 X82 + .9568 X92 + .8300 X102 +
.9711 X112 + .9575 X122 + .9796 X132 + .9388 X142 + .9200 X152 +
.9936 X162 + .9936 X172 + .9864 X182 + .9904 X192 + .9712 X202 +
.8700 X212 + .9831 X222 + .9675 X232 + .9779 X242 + .9844 X252 +
.9896 X262 + .9532 X272 .LE. 5700

** (2) 60 % DE CRITERIA **
.2500 X15 + .4800 X25 + .1500 X35 + .4375 X45 + .7296 X55 +
.2775 X65 + .6100 X75 + .3625 X85 + .5580 X95 + .3600 X105 +
.5904 X115 + .5200 X125 + .6672 X135 + .4560 X145 + .5500 X155 +
.7975 X165 + .6625 X175 + .7120 X185 + .7660 X195 + .6175 X205 +
.4500 X215 + .6975 X225 + .5875 X235 + .6480 X245 + .7140 X255 +
.7525 X265 + .5325 X275 .GE. 180
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(** 3) TARGET 1 CONSTRAINT **

Xll + X21 + X31 + X41 + X51 + X61 + X71 + X81 +
X91 + X101 + Xlii + X121 + X131 + X141 + X151 + Xl6 +
X171 + X181 + X191 + X201 + X211 + X221 + X231 + X241 +
X251 + X261 + X271 ,LE. 9000

** (4) TARGET 2 CONSTRAINT **
X12 + X22 + X32 + X42 + X52 + X62 + X72 + X82 +
X92 + X102 + X112 + X122 + X132 + X142 + X152 + X162 +
X172 + X182 + X192 + X202 + X212 + X222 + X232 + X242 +
X252 + X262 + X272 .LE. 6000

. ** (5) TARGET 3 CONSTRAINT **
X13 + X23 + X33 + X43 + X53 + X63 + X73 + X83 +
X93 + X103 + X13 + X123 + X133 + X143 + X153 + X163 +
X173 + X183 + X193 + X203 + X213 + X223 + X233 + X243 +
X253 + X263 + X273 .LE. 3000

** (6) TARGET 4 CONSTRAINT **
X14 + X24 + X34 + X44 + X54 + X64 + X74 + X84 +
X94 + X104 + Xl14 + X124 + X134 + X144 + X154 + X164 +
X174 + X184 + X194 + X204 + X214 + X224 + X234 + X244 +
X254 + X264 + X274 .LE. 1500

** (7) TARGET 5 CONSTRAINTS **
X15 + X25 + X35 + X45 + X55 + X65 + X75 + X85 +
X95 + X105 + X115 + X125 + X135 + X145 + X155 + X165 +
X175 + X185 + X195 + X205 + X215 + X225 + X235 + X245 +
X255 + X265 + X275 .LE. 300

** (8) WEAPON SYSTEM 1 (Ml) CONSTRAINT **
Xll + X12 + X13 + X14 + X15 +
2 X41 + 2 X42 + 2 X43 + 2 X44 + 2 X45 +
X71 + X72 + X73 + X74 + X75 +
X81 + X82 + X83 + X84 + X85 +
X121 + X122 + X123 + X124 + X125 +
X171 + X172 + X173 + X174 + X175 +
X231 + X232 + X233 + X234 + X235 .LE. 2325

** (9) WEAPON SYSTEM 2 (M2) CONSTRAINT **
X101 + X102 + X183 + X104 + X105 +
2 Xlll + 2 Xl12 + 2 X113 + 2 X14 + 2 Xl15 +

* X121 + X122 + X123 + X124 + X125 +
X131 + X132 + X133 + X134 + X135 +
X141 + X142 + X143 + X144 + X145 +
X181 + X182 + X183 + X184 + X185 +
X241 + X242 + X243 + X244 + X245 .LE. 1250
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** (10) WEAPON SYSTEM 3 (M3) CONSTRAINT **
X211 + X212 + X213 + X214 + X215 +
2 X221 + 2 X222 + 2 X223 + 2 X224 + 2 X225 +
X231 + X232 + X233 + X234 + X235 +
X241 + X242 + X243 + X244 + X245 +
X251 + X252 + X253 + X254 + X255 +
X261 + X262 + X263 + X264 + X265 +
X271 + X272 + X273 + X274 + X275 .LE. 700

** (11) WEAPON SYSTEM 4 (Bl) CONSTRAINT
X21 + X22 + X23 + X24 + X25 +
2 X51 + 2 X52 + 2 X53 + 2 X54 + 2 X55 +
X71 + X72 + X73 + X74 + X75 +
X91 + X92 + X93 + X94 + X95 +
X131 + X132 + X133 + X134 + X135 +
X191 + X192 + X193 + X194 + X195 +
X251 + X252 + X253 + X254 + X255 .LE. 2100

** (12) WEAPON SYSTEM 5 (B2) CONSTRAINT **
X151 + X152 + X153 + X154 + X155 +
2 X161 + 2 X162 + 2 X163 + 2 X164 + 2 X165 +
X171 + X172 + X173 + X174 + X175 +
X181 + X182 + X183 + X184 + X185 +
X191 + X192 + X193 + X194 + X195 +
X201 + X202 + X203 + X204 + X205 +
X261 + X262 + X263 + X264 + X265 .LE. 3000

** (13) WEAPON SYSTEM 6 ($1) CONSTRAINT **
X31 + X32 + X33 + X34 + X35 +
2 X61 + 2 X62 + 2 X63 + 2 X64 + 2 X65 +
X81 + X82 + X83 + X84 + X85 +
X91 + X92 + X93 + X94 + X95 +
X141 + X142 + X143 + X144 + X145 +
X201 + X202 + X203 + X204 + X205 +
X271 + X272 + X273 + X274 + X275 .LE. 9000

PRINT
OPTIMIZE
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A2pendix B: Experimental Designs

TABLE B.1

BOX-BEHNKEN EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN* M1 B1 $1 M1 BI $1 RESPONSE

1 3000 3000 9000 1 1 0 10131.4892

2 3000 1200 9000 1 -1 0 9242.6923

3 1650 3000 9000 -1 1 0 9671.9492

4 1650 1200 9000 -1 -1 0 8493.1923

5 3000 2100 12000 1 0 1 10395.4062

6 3000 2100 6000 1 0 -1 8477.3846

7 1650 2100 12000 -1 0 1 9935.8662

8 1650 2100 6000 -1 0 -1 7464.8846

9 2325 3000 12000 0 1 1 10584.9202

10 2325 3000 6000 0 1 -1 8757.9423

11 2325 1200 12000 0 -1 1 9724.2762

12 2325 1200 6000 0 -1 -1 7179.1346

13 2325 2100 9000 0 0 0 9474.4362

B -



TABLE B.2

BOX-DRAPER EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN* M1 BI Si M1 B1 Si RESPONSE

1 2914 2886 11619 0.873 0.873 0.873 10642.0176

2 2914 2886 6381 0.873 0.873 -0.873 9189.1323

3 2914 1314 11619 0.873 -0.873 0.873 9892.8949

4 2914 1314 6381 0.873 -0.873 -0.873 7965.0446

5 1736 2886 11619 -0.873 0.873 0.873 10251.0156

6 1736 2886 6381 -0.873 0.873 -0.873 8464.9046

7 1736 1314 11619 -0.873 -0.873 0.873 9491.9837

8 1736 1314 6381 -0.873 -0.873 -0.873 7081.5446

9 1334 2100 9000 -1.468 0 0 8943.0723

10 3316 2100 9000 1.468 0 0 9811.7725

11 2325 779 9000 0 -1.468 0 8576.7423

12 2325 3421 9000 0 1.468 0 10099.7576

13 2325 2100 4596 0 0 -1.468 7071.7846

14 2325 2100 13404 0 0 1.468 10471.3739

15 2325 2100 9000 0 0 0 9474.4362

NB



,3 TABLE B.3,'

MINIMUM POINT EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN* MI B1 Si M1 BI Si RESPONSE

1 1650 1200 6000 -1 -1 -1 6672.8846

2 3000 1200 6000 1 -1 -1 7685.3846

3 1650 3000 6000 -1 1 -1 8256.8846

4 1650 1200 12000 -1 -1 1 9494.5061

5 2457 2260 6000 0.1925 0.1925 -1 8228.5346

6 2457 1200 9600 0.1925 -1 0.1925 9208.0423

7 1650 2280 9600 -1 0.1925 0.1925 9471.1782

8 2127 3000 12000 -0.2912 1 1 10520.1731

9 3000 1836 12000 1 -0.2912 1 10265.9406

10 3000 3000 8100 1 1 -0.2912 9924.1292
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TABLE B.4

KOSHAL EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN* Ml Bl 51 Ml Bi 51 RESPONSE

1 1988 1650 7500 -0.5 -0.5 -0.5 8282.3846

2 2662 1650 7500 0.5 -0.5 -0.5 8695.0323

3 1988 2550 7500 -0.5 0.5 -0.5 '8940.8523

4 1988 1650 10500 -0.5 -0.5 0.5 9484.6413

-C5 3337 1650 7500 1.5 -0.5 -0.5 9079.7823

6 198B 3450 7500 -0.5 1.5 -0.5 9570.8523

7 1988 1650 13500 -0.5 -0.5 1.5 10175.8413

8 2662 2550 7500 0.5 0.5 -0.5 9325.0323

9 2662 1650 10500 0.5 -0.5 0.5 9714.0709

10 1988 2550 10500 -0.5 0.5 0.5 9928.9244
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TABLE B.5

CENTRAL COMPOSITE EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN# M1 BI Si M1 B1 $1 RESPONSE

1 3000 3008 12000 1 1 1 10792.2127

2 3000 3000 6000 1 1 -1 9142.6923

3 3000 1200 12000 1 -1 1 9954.0461

4 3000 1200 6000 1 -1 -1 7685.3846

5 1650 3000 12000 -1 1 1 10362.5723

6 1650 3000 6000 -1 1 -1 8256.8846

7 1650 1200 12000 -1 -1 1 9494.5061

8 1650 1200 6000 -1 -1 -1 6672.8846

9 3460 2100 9000 1.682 0 0 9860.7901

10 1190 2100 9000 -1.682 ( 0 8860.9923

11 2325 3614 9000 0 1.682 .0 9978.8648

12 2325 586 9000 0 -1.682 0 8441.6423

13 2325 2100 14046 0 0 1.682 10597.9122

14 2325 2100 3954 0 0 -1.682 6654.4846

15 2325 2100 9000 0 a 0 9474.4362

B -5
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TABLE B.6

HYBRID (311A) EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN* MI Bi 51 Ml B1 Si RESPONSE

1 2325 2100 15000 0 0 2 10785. 9456

2 2325 2100 3000 a 0 -2 6034.3B46

3 1370 827 12000 -1.414 -1.414 1 9204.3765

4 3280 827 12000 1.414 -1.414 1 9866.4389

V5 1370 3373 12000 -1.414 1.414 1 10438.0595

6 3280 3373 12000 1.414 1.414 1 11037.5089

7 3675 2100 6000 2 0 -1 8897.4423

a 975 2100 6000 -2 0 -1 6958. 3846

9 2325 3900 6000 0 2 -1 9387.9423

10 2325 300 6000 0 -2 -1 6367.1346

11 2325 2100 9000 0 0 0 9474.4362

-7
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TABLE B.7

HYBRID (310+CP) EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN* M1 BI $1 M1 BI $1 RESPONSE

1 2325 2100 12872 0 0 1.2906 10366.516B

2 2325 2100 8592 0 a -0.136 9320.2623

3 1650 1200 10916 -1 -1 0.6386 9244.7525

4 3000 1200 10916 1 -1 0.6386 9704.2925

5 1650 3000 10916 -1 1 0.6386 10113.3956

6 3000 3000 10916 1 1 0.6386 10569.6987

7 3117 2100 6218 1.1736 0 -0.9273 8679.6623

8 1533 2100 6218 -1.1736 0 -0.9273 7516.6546

9 2325 3156 6218 0 1.1736 -0.9273 8967.4223

10 2325 1044 6218 0 -1.1736 -0.9273 7181.3746

11 2325 2100 9000 0 0 0 9474.4361
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TABLE B.8

FULL FACTORIAL EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN* Ml Bl Si M1 B1 Si RESPONSE

1 3000 3000 12000 1 1 1 10792.2129

2 3000 3000 9000 1 1 0 10131.4893

3 3000 3000 6000 1 1 -1 9142.6924

4 3000 2100 12000 1 0 1 10395.4063

5 3000 2100 9000 1 0 0 9704.2061

6 3000 2100 6000 1 0 -1 8477.3848

7 3000 1200 12000 1 -1 1 9954.0459

8 3000 1200 9000 1 -1 0 9242.6924

9 3000 1200 6000 1 -1 -1 7685.3848

10 2325 3000 12000 0 1 1 10534.9199

11 2325 3000 9000 0 1 0 9901.7188

12 2325 3000 6000 0 1 -1 8757.9424

13 2325 2100 12000 0 0 1 10165.6357

14 2325 2100 9000 0 0 0 9474.4365

15 2325 2100 6000 0 0 -1 7971.1348

16 2325 1200 12000 0 -1 1 9724.2764

17 2325 1200 9000 0 -1 0 6871.4424

18 2325 1200 6000 0 -1 -1 7179.1348

B -
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TABLE B.8 (continued)

FULL FACTORIAL EXPERIMENTAL DESIGN FOR THREE FACTORS

NON-CODED CODED

RUN# M1 BI Si Ml Bi Si RESPONSE

19 1650 3000 12000 -1 1 1 10362.5723

20 1650 3000 9000 -1 1 0 9671.9492

21 1650 3000 6000 -1 1 -1 8256.8848

22 1650 2100 12000 -1 0 1 9935.8662

23 1650 2100 9000 -1 0 0 9123.1924

24 1650 2100 6000 -1 0 -1 7464.8848

25 1650 1200 12000 -1 -1 1 9494.5059

26 1650 1200 9000 -1 -1 0 8493.1924

27 1650 1200 6000 -1 -1 -1 6672.8848

B - 9
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TABLE B.9

BOX-BEHNKEN EXPERIMENTAL DESIGN FOR FOUR FACTORS

\K' NON-CODED CODED

RUN* Ml M2 Bl Si M1 M2 B1 $1 RESPONSE

1 3000 2000 2100 9000 1 1 0 0 10530.8908
2 3000 500 2100 9000 1 -1 0 0 9914.4062
3 1650 2000 2100 9000 -1 1 0 0 10085.4662
4 1650 500 2100 9000 -1 -1 0 0 9445.1923

5 2325 1250 3000 12000 0 0 1 1 11043.7952

6 2325 1250 3000 6000 0 0 1 -1 9570.4423
7 2325 1250 1200 12000 0 0 -1 1 10242.4877
8 2325 1250 1200 6000 0 0 -1 -1 8216.6346

9 3000 1250 2100 12000 1 0 0 1 10862.7746
10 3000 1250 2100 6000 1 0 0 -1 9325.1923
11 1650 1250 2100 12000 -1 0 0 1 10444.2508
12 1650 1250 2100 6000 -1 0 0 -1 8502.3846

13 2325 2000 3000 9000 0 1 1 0 10714.9038
14 2325 2000 1200 9000 0 1 -1 0 9873.8762
15 2325 500 3000 9000 0 -1 1 0 10111.9192
16 2325 500 1200 9000 0 -1 -1 0 9186.4423

17 3000 1250 3000 9000 1 0 1 0 10645.8738

18 3000 1250 1200 9000 1 0 -1 0 9788.3462
19 1650 1250 3000 9000 -1 0 1 0 10197.4492
20 1650 1250 1200 9000 -1 0 -1 0 9287.6923

21 2325 2000 2100 12000 0 1 0 1 10930.8071
22 2325 2000 2100 6000 0 1 0 -1 9427.9423
23 2325 500 2100 12000 0 -1 0 1 10374.5477
24 2325 500 2100 6000 0 -1 0 -1 8386.1346

25 2325 1250 2100 9000 0 0 0 0 9999.9361

V.
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TABLE B.10

BOX-DRAPER EXPERIMENTAL DESIGN FOR FOUR FACTORS

NON-CODED CODED

RUN# M1 M2 B1 Si M1 M2 Bi Si RESPONSE

1 2781 1756 2707 11025 .675 .675 .675 .675 11052.2726
2 2781 1756 2707 6975 .675 .675 .675 -. 675 10190.7768
3 2781 1756 1493 11025 .675 .675 -. 675 .675 10514.5027
4 2781 1756 1493 6975 .675 .675 -. 675 -. 675 9542.6223
5 2781 744 2707 11025 .675 -. 675 .675 .675 10680.2466
6 2781 744 2707 6975 .675 -. 675 .675 -. 675 9744.8623
7 2781 744 1493 11025 .675 -. 675 -. 675 .675 10111.3233
8 2781 744 1493 6975 .675 -. 675 -. 675 -. 675 8895.0623
9 1869 1756 2707 11025 -. 675 .675 .675 .675 10772.1974
10 1869 1756 2707 6975 -. 675 .675 .675 -. 675 9880.3320
11 1869 1756 1493 11025 -. 675 .675 -. 675 .675 10220.2949
12 1869 1756 1493 6975 -. 675 .675 -. 675 -. 675 9033.0223
13 1869 744 2707 11025 -. 675 -. 675 .675 .675 10385.9703
14 1869 744 2707 6975 -. 675 -. 675 .675 -. 675 9225.0223
15 1869 744 1493 11025 -.675 -.675 -.675 .675 9800.8786
16 1869 744 1493 6975 -. 675 -. 675 -. 675 -. 675 8336.4946

17 1414 1250 2100 9000 -1.349 0 0 0 9689.8318
18 3236 1250 2100 9000 1.349 0 0 0 10310.0405
19 2325 238 2100 9000 0 -1.349 0 0 9574.4913
20 2325 2262 2100 9000 0 1.349 0 0 10414.2856
21 2325 1250 886 9000 0 0 -1.349 0 9404.5905
22 2325 1250 3314 9000 0 0 1.349 0 10566.3179
23 2325 1250 2100 4953 0 0 0-1.349 8338.5546
24 2325 1250 2100 13047 0 0 0 1.349 10861.8458
25 2325 1250 2100 9000 0 0 0 0 9999.9361
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TABLE B.11

MINIMUM POINT EXPERIMENTAL DESIGN FOR FOUR FACTORS

NON-CODED CODED

RUN* M1 M2 BI Si M1 M2 B1 Si RESPONSE

"4

1 1650 500 1200 6000 -1 -1 -1 -1 7087.8846

2 3000 500 1200 6000 1 -1 -1 -1 8100.3846

3 1650 2000 1200 6000 -1 1 -1 -1 8332.8846

4 1650 500 3000 6000 -1 -1 1 -1 8671.8846

5 1650 500 1200 12000 -1 -1 -1 1 9704.7061

6 2604 1560 1200 6000 .4114 .4114 -1 -1 8690.9723

7 2604 500 2472 6000 .4114 -1 .4114 -1 8872.3723

8 2604 500 1200 10500 .4114 -1 -1 .4114 9683.8477

9 1650 1560 2472 6000 -1 .4114 .4114 -1 9017.5923

10 1650 1560 1200 10500 -1 .4114 -1 .4114 9804.7301

11 1650 500 2472 10500 -1 -1 .4114 .4114 9979.3780

12 1886 2000 3000 12000 -. 6502 1 1 1 11181.9322

13 3000 760 3000 12000 1 -. 6502 1 1 11071.2087

14 3000 2000 1512 12000 1 1 -. 6502 1 10875.2048

15 3000 2000 3000 6900 1 1 1 -. 6502 10485.3723

I 
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TABLE B.12

KOSHAL EXPERIMENTAL DESIGN FOR FOUR FACTORS

NON-CODED CODED

RUN* Ml M2 B1 $1 M1 M2 Bi $1 RESPONSE

1 2055 950 1740 7800 -. 4 -. 4 -. 4 -. 4 9167.5423

2 2730 950 1740 7800 .6 -. 4 -. 4 -. 4 9542.6923

3 2055 1700 1740 7800 -. 4 .6 -. 4 -. 4 9643.9423

4 2055 950 2640 7800 -. 4 -. 4 .6 -. 4 9763.3672

5 2055 950 1740 10800 -. 4 -. 4 -. 4 .6 10020.0841

6 3405 950 1740 7800 1.6 -. 4 -. 4 -. 4 9788.4241

7 2055 2450 1740 7800 -. 4 1.6 -. 4 -. 4 9959.4841

8 2055 950 3540 7800 -. 4 -. 4 1.6 -. 4 10186.7272

9 2055 950 1740 13800 -. 4 -. 4 -. 4 1.6 10656.2591

10 2730 1700 1740 7800 .6 .6 -. 4 -. 4 9873.9541

11 2730 950 2640 7800 .6 -. 4 .6 -. 4 9993.1372

12 2730 950 1740 10800 .6 -. 4 -. 4 .6 10249.8541

13 2055 1700 2640 7800 -. 4 .6 .6 -. 4 10078.6672

14 2055 1700 1740 10800 -. 4 .6 -. 4 .6 10326.9688

15 2055 950 2640 10800 -. 4 -. 4 .6 .6 10449.1518

II17.
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TABLE B.13

CENTRAL COMPOSITE EXPERIMENTAL DESIGN FOR FOUR FACTORS

NON-CODED CODED

RUN* M1 M2 Bi Si M1 M2 B1 61 RESPONSE

1 3000 2000 3000 12000 1 1 1 1 11453.3481
2 3000 2000 3000 6000 1 1 1 -1 10281.0892
3 3000 2000 1200 12000 1 1 -1 1 10735.7096
4 3000 2000 1200 6000 1 1 -1 -1 9182.6923
5 3000 500 3000 12000 1 -1 1 1 10975.7627
6 3000 500 3000 6000 1 -1 1 -1 9467.6923
7 3000 500 1200 12000 1 -1 -1 1 10164.2461
8 3000 500 1200 6000 1 -1 -1 -1 8100.3846
9 1650 2000 3000 12000 -1 1 1 1 11111.8277
10 1650 2000 3000 6000 -1 1 1 -1 9673.1923
11 1650 2000 1200 12000 -1 1 -1 1 10315.1908
12 1650 2000 1200 6000 -1 1 -1 -1 8332.8846
13 1650 500 3000 12000 -1 -1 1 1 10559.2338
14 1650 500 3000 6000 -1 -1 1 -1 8671.8846
15 1650 500 1200 12000 -1 -1 -1 1 9704.7061
16 1650 500 1200 6000 -1 -1 -1 -1 7087.8846

17 975 1250 2100 9000 -2 0 0 0 9540.3961
18 3675 1250 2100 9000 2 0 0 0 10459.4762
19 2325 0 2100 9000 0 -2 0 0 9474.4362
20 2325 2750 2100 9000 0 2 0 0 10599.9208
21 2325 1250 300 9000 0 0 -2 0 9028.9423
22 2325 1250 3900 9000 0 0 2 0 10825.9638
23 2325 1250 2100 3000 0 0 0 -2 7071.8846
24 2325 1250 2100 15000 0 0 0 2 11239.2052
25 2325 1250 2100 9000 0 0 0 0 9999.9361
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TABLE B.14

HYBRID (416A+CP) EXPERIMENTAL DESIGN FOR FOUR FACTORS

NON-CODED CODED

RUN# Ml M2 B1 $1 M1 M2 B1 Si RESPONSE

1 2325 1250 2100 14353 0 0 0 1.7844 11118.1515

2 2325 1250 2100 4517 0 0 0 -1.4945 8057.9946

3 1650 500 1200 10932 -1 -1 -1 .644 9458.6389

4 3000 500 1200 10932 1 -1 -1 .644 9918.1789

5 1650 2000 1200 10932 -1 1 -1 .644 10084.3805

2 6 3000 2000 1200 10932 1 1 -1 .644 10523.0236

4 7 1650 500 3000 10932 -1 -1 1 .644 10327.2820

8 3000 500 3000 10932 1 -1 1 .644 10765.2599

9 1650 2000 3000 10932 -1 1 .644 10901.3249

10 3000 2000 3000 10932 1 1 1 .644 11290.6917

11 3463 1250 2100 6278 1.6853 0 0 -. 9075 9716.9823

12 1187 1250 2100 6278 -1.6853 0 0 -. 9075 8333.0546

13 2325 2514 2100 6278 0 1.6853 0 -. 9075 9887.5823

14 2325 0 2100 6278 0 -1.6853 0 -. 9075 8149.0546

15 2325 1250 3617 6278 0 0 1.6853 -. 9075 10090.3072

16 2325 1250 583 6278 0 0-1.6853 -. 9075 7851.5946

17 2325 1250 2100 9000 0 0 0 0 9999.9361

-15



TABLE B.15

HYBRID (416C) EXPERIMENTAL DESIGN FOR FOUR FACTORS

NON-CODED CODED

RUN* M1 M2 B1 Si M1 M2 B1 $1 RESPONSE

1 2325 1250 2100 14296 0 0 0 1.7654 11107.4868

2 2325 1250 2100 9000 0 0 0 0 9999.9361

3 1650 500 1200 10702 -1 -1 -1 .5675 9405.6469

4 3000 500 1200 10702 1 -1 -1 .5675 9865.1869

5 1650 2000 1200 10702 -1 1 -1 .5675 10033.6885

6 3000 2000 1200 10702 1 1 -1 .5675 10474.6316

7 1650 500 3000 10702 -1 -1 1 .5675 10274.2900

8 3000 500 3000 10702 1 -1 1 .5675 10718.6746

9 1650 2000 3000 10702 -1 1 1 .5675 10855.9919

10 3000 2000 3000 10702 1 1 1 .5675 11255.6627

11 3317 1250 2100 5847 1.4697 0 0 -1.0509 9435.5023

12 1383 1250 2100 5847 -1.4697 0 0 -1.0509 8166.7146

13 2325 2352 2100 5847 0 1.4697 0 -1.0509 9586.3623

14 2325 148 2100 5847 0 -1.4697 0 -1.0509 7996.0546

15 2325 1250 3423 5847 0 0 1.4697 -1.0509 9796.1623

16 2325 1250 777 5847 0 0 -1.4697 -1.0509 7746.4746

B - 16
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TABLE 8.16

.OX-BEHNKEN EXPERIMENTAL DESIGN FOR FIVE FACTORS

NON-CODED CODED

RIM I MI M2 81 82 Sl Ml M2 1 32 St RESPONSE

I:. 1 33, 233 210 3 9, 1 1 0 3 3 14743.1514

2 3663 5M3 2103 3=I1 9333 1 -1 1 1 3 13769.1514

3 1651 2333 2133 3363 9363 -1 1 1 1 3 13973.6514

4 1653 5W3 2163 3333 9333 -1 -1 1 1 3 12989.7422

5 2325 1253 3M33 4133 9313 a I 1 1 3 15243.9314

6 2325 1253 3MI 2333 913 3 0 1 -1 00 13763.9814

7 2325 1251 1213 403 9333 I 1 -1 1 3 13981.9114

8 2325 1253 12N3 2333 93 3 1 -1 -1 3 12335.4922

9 2325 2633 211 3333 12333 3 1 3 1 15379.2168

13 2325 2333 2133 36N 6333 I 1 3 3 -1 12697.4922

11 2325 511 2133 313 1213 I -1 1 1 1 14748.6172

12 2325 5N3 2133 3333 6333 3 -1 1 3 -1 11452.4922

13 306 1253 3133 3333 9633 1 I 1 3 I 14885.6514

14 3333 1253 1233 338N 9333 1 1 -1 1 3 13625.6514
..

15 1653 1253 3133 3811 9333 -1 1 1 3 3 14116.1514

16 1653 1253 1263 3111 901 -1 1 -1 1 I 12719.2422

a- 17 2325 1253 210 4333 12103 3 3 0 1 1 15574.3164
,."

is 2325 1256 211 4333 6333 3 I 3 1 -1 12994.9922

8 1
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TABLE B.16 (continued)

NON-CODED CODED

RUN # "I M2 B1 92 S1 MI H2 B1 92 St RESPONSE

19 2325 1251 2113 21H 12111 1 I I -1 1 14511.9114

21 2325 12531 211 211 6MI 1 I -1 -1 11154.9922

21 2325 211 3113 3101 9111 3 1 1 3 1 1498.4114

22 2325 21 121 311 9911 1 1 -1 3 3 13729.4114

23 2325 511 3111 31 9111 3 -1 1 1 I 14113.4114

24 2325 5H1 1211 311 91I I -1 -I 1 12612.9922

25 313 1251 2133 41 9113 1 3 3 1 1 14995.6514

* 26 3111 1251 2111 211 913 1 I 1 -1 1 13515.6514

27 1653 1251 2111 41 9113 -1 1 1 1 a 14226.1514

28 1651 1253 213 2318 911 -1 1 1 -1 1 12591.2422

29 2325 1251 311 31W 12M I I I 1 1 15487.2764

31 2325 1253 3111 31 611 1 I 1 a -1 12867.7422

31 2325 1251 120 3333 1213 3 I -I 1 1 14621.9314

32 2325 1251 121 333 6311 1 1 -1 I -1 11273.922

33 318 1251 2111 3113 1213 1 I 3 1 1 15293.6865

' 34 331 12531 211 3333 600 1 1 a 1 -1 12588.7422

35 1651 1251 2133 313 12333 -! 1 1 1 14934.1465

36 1651 1253 211 313 6111 -1 3 a 3 -1 11555.2422

37 2325 211 211 4113 991 3 1 1 1 1 15399.4314

38 2325 211 211 211 9113 3 1 1 -1 1 13619.4314

39 2325 511 2133 411 9113 3 -1 1 1 D 14123.4114

41 2325 533 2111 211 9113 1 -1 1 -1 1 12474.9922

41 2325 1256 2111 311 9911 1 1 1 1 3 13071.9314

9 - 18
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TAKE B.17

BOX-DRAPER EXPERIHENTAL DESIGN FOR FIVE FACTORS

NON-CODED CODED

RUN I HI H2 31 B2 Sl HI H2 BI 32 S1 RESPONSE

1 2606 1564 2477 3419 11257 .419 .419 .419 .419 .419 15281.8667

2 26H 1564 2477 3419 7743 .419 .419 .419 .419 -.419 14231.5615

3 2618 1564 2477 2581 11257 .419 .419 .419 -.419 .419 14769.3715

4 2618 1564 2477 2581 7743 .419 .419 .419 -.419 -.419 13611.4415

5 2618 1564 1723 3419 11257 .419 .419 -.419 .419 .419 14961.6915

6 2638 1564 1723 3419 7743 .419 .419 -.419 .419 -.419 13712.7615

7 2639 1564 1723 2581 11257 .419 .419 -.419 -.419 .419 14248.5715

9 2666 1564 1723 2591 7743 .419 .419 -.419 -.419 -.419 12967.1524

9 2608 936 2477 3419 13257 .419 -.419 .419 .419 .419 14993.2915

if 2689 936 2477 3419 7743 .419 -.419 .419 .419 -.419 13822.3615

11 2618 936 2477 2591 18257 .419 -.419 .419 -.419 .419 14361.1715

12 260 936 2477 2591 7743 .419 -.419 .419 -.419 -.419 13189.4324

13 2618 936 1723 3419 11257 .419 -.419 -.419 .419 .419 14452.4915

14 2619 936 1723 3419 7743 .419 -.419 -.419 .419 -.419 13216.8724

15 268 936 1723 2581 11257 ..9 -,419 -.419 -.419 .419 13832.3715

16 2639 936 1723 2591 7743 .419 -.419 -.419 -.419 -.419 12445.9124

17 2342 1564 2477 3419 11257 -.419 .419 .419 .419 .419 15865.8715

l9 2342 1564 2477 3419 7743 -.419 .419 .419 .419 -.419 13912.2915

1?- * 19 2142 1564 2477 2591 13257 -.419 .419 .419 -.419 .419 14445.7515

23 2342 1564 2477 2591 7743 -.419 .419 .419 -.419 -.419 13211.5124

B 19



TABLE B.17 (continued)

NON-CODED CODED

RUN N N2 BI B2 Sl "I N2 91 B2 Si RESPONSE

21 2142 1564 1723 3419 11257 -.419 .419 -.419 .419 .419 14538.1715

22 2342 1564 1723 3419 7743 -.419 .419 -.419 .419 -.419 13337.9524

23 2342 1564 1723 2591 13257 -.419 .419 -.419 -.419 .419 13917.9515

24 2642 1564 1723 2581 7743 -.419 .419 -.419 -.419 -.419 12356.9924

25 2342 936 2477 3419 11257 -.419 -.419 .419 .419 .419 14657.6715

26 2142 936 2477 3419 7743 -.419 -.419 .419 .419 -.419 13451.2324

27 2142 936 2477 2581 11257 -.419 -.419 .419 -.419 .419 14137.5515

29 2342 936 2477 2581 7743 -.419 -.419 .419 -.419 -.419 12679.2724

29 2142 936 1723 3419 11257 -.419 -.419 -.419 .419 .419 14129.8715

33 2142 936 1723 3419 7743 -.419 -.419 -.419 .419 -.419 12786.7124

31 2342 936 1723 2581 11257 -.419 -.419 -.419 -.419 .419 135M9.7515

32 2342 936 1723 2581 7743 -.419 -.419 -.419 -.419 -.419 12115.7524

33 2998 1253 2111 38K 9111 .997 3 3 I 3 14254.5115

34 1652 1253 2133 3111 9E -997 3 I 1 3 13487.2915

35 2325 1998 2133 3333 9M 3 .997 1 1 1 14357.1115

36 2325 532 2130 3333 9133 3 -.997 S 3 3 13394.7315

37 2325 1251 2997 3311 9111 1 1 .997 3 a 14499.9815

38 2325 1253 1213 33K 9080 1 3 -.997 3 3 13229.1324

39 2325 1251 2100 3997 9K1 I 3 I .997 1 14616.6915

41 2325 1253 2130 2313 99K I 1 1 -.997 1 1311K.2524

41 2325 1251 2133 3011 11991 1 1 1 1 .997 15161.8431

42 2325 1253 21K 3111 6339 3 3 3 3 -. 997 12183.9324

43 2325 1253 211 39K 9 3 I I 1 3 13871.915

9 - 23
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TABLE 8.18

BOX-DRAPER (HALF-REPLICATE) EXPERINENTAL DESIGN FOR FIVE FACTORS

NON-CODED CODED

RUN # NI N2 B B2 SI NI N2 BI 32 Sl RESPONSE
I M9 955 1745 2606 7818 -.394 -.3" -.394 -.394 -.394 12135.5524

2 2591 1545 1745 2616 7818 .394 .394 -.394 -.394 -.394 1329.5724

2 2591 155 145 2616 7919 .394 -.394 .394 -.394 -.394 13329.5724

3 2591 955 2455 2666 7918 .394 -.394 .394 -.394 -.394 13164.6724

4 2159 1545 2455 2616 7819 -.394 .394 .394 -.394 -.394 13253.1524

5 2591 955 1745 3394 7819 .394 -.394 -.394 .394 -.394 13264.8324

* 6 2359 1545 1745 3394 7818 -.394 .394 -.394 .394 -.394 13351.2124

7 2159 955 2455 3394 7818 -.394 -.394 .394 .394 -.394 13485.3124

9 2591 1545 2455 3394 7919 .394 .394 .394 .394 -.394 14219.7115

9 2591 955 1745 266 13192 .394 -.394 -.394 -.394 .394 13834.4315

13 2359 1545 1745 2616 13182 -.394 .394 -.394 -.394 .394 13914.6915

11 2359 955 2455 2636 13182 -.394 -.394 .394 -.394 .394 14128.1915

12 2591 1545 2455 2636 11192 .394 .394 .394 -.394 .394 14714.9315

13 2359 955 1745 3394 11182 -.394 -.394 -.394 .394 .394 14114.3115

14 2591 1545 1745 3394 13182 .394 .394 -.394 .394 .394 14811.3515

15 2591 955 2455 3394 13192 .394 -.394 .394 .394 .394 14914.5515

16 2359 1545 2455 3394 13182 -.394 .394 .394 .394 .394 14994.8115

8
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TADLE B.18 (continued)

NON-CODED CODED

RUN I I M2 Bi B2 Si HNi M2 B1 B2 Sl RESPONSE

17 2957 1253 2111 3111 93I .937 0 1 1 0 14231.1415

19 1693 1251 2111 31K 9N1 -.937 I I I 1 13513.6615

19 2325 1953 2111 3UK 9NM I .937, 1 1 14327.9515

21 2325 547 2111 33M 961 1 -.937 1 3 3 13413.9515

21 2325 1253 2943 310 93M 1 3 .937 1 3 14461.1115",
22 2325 1251 1257 31 93M3 1 1 -.937 3 0 13275.6524

23 2325 1253 2111 3937 9N1 0 3 .937 i 14564.2915

24 2325 1251 2111 2163 933 3 0 1 -.937 1 13155.4524

25 2325 1253 2133 3N 11911 I I 1 I .937 15121.3711

26 2325 1251 2133 33K 6199 I I 3 3 -.937 1219.5924

27 2325 1251 21K 31K 9M I I I 1 I 13871.9315

B - 22
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TABLE 3.19

MINIMUM POINT EXPERIMENTAL DESIGN FOR FIVE FACTORS

NON-CODED CODED

RUN # NI M2 91 B2 SI MI N2 91 32 SI RESPONSE

1 1651 51 1231 2111 6133 -1 -1 -1 -1 -1 921.2424

2 311 511 1231 201 631 1 -1 -1 -1 -1 16251.2424

3 1651 21H 1211 231 6111 -1 1 -1 -1 -1 11456.7424

4 1653 511 331 281 6313 -1 -1 1 -1 -1 1112.2424

5 1651 510 1233 431 6333 -1 -1 -1 1 -1 11641.2424

6 1653 51 1216 211 12313 -1 -1 -1 -1 1 13336.6515

7 1778 642 1231 201 631 -.811 -.9139 -1 -1 -1 9419.3624

8 1779 511 1371 231 6311 -. 011 -1 -.9139 -1 -1 9453.824

9 178 51 1231 2189 6111 -.8168 -1 -1 -. B1N -1 9473.9624

13 1779 533 1233 21M 6569 -.8138 -I -1 -1 -.8160 968.6424

11 1651 642 1373 2333 6111 -1 -.816 -.918 -1 -1 9472.5224

12 1653 642 121 2189 601 -1 -.8119 -1 -.818 -1 9493.4124

13 1651 642 1261 2311 6568 -1 -.9138 -1 -1 -.8138 971.3824

14 1653 513 1371 2189 611 -1 -1 -.8139 -.8139 -1 9527.1224

15 1653 511 1373 21H 6569 -1 -1 -.8118 -1 -.8118 9733.824

16 1651 51 121 2199 6568 -1 -1 -1 -. 8139 -.811 9754.6924

17 2696 218 3333 4361 121 .5355 1 1 1 1 16396.5653

19 303 1652 313 41M 12M 1 .5355 1 1 1 16364.7917

19 331 201 2582 431 1231 1 1 .5355 1 1 16313.3937

21 311 2111 3111 3535 12316 1 1 1 .5355 1 16276.9228

21 3111 21H 311 414 11666 1 1 1 1 .5355 16197.7212

9 -23



TABLE 3.23

KOSHAL EXPERINENTAL DESIGN FOR FIVE FACTORS

NON-CODED CODED

RUN I HI H2 31 32 Si MI N2 B1 82 S1 RESPONSE

1 21K 133l 193 2667 Bill -.33 -.33 -. 33 -. 33 -.33 12426.8824

2 2775 IBM 1K 2667 9il3 .67 -.33 -.33 -.33 -.33 12937.1324

3 21K 1753 18K 2667 BKl -.33 .67 -.33 -.33 -.33 13149.3824

4 2111 IlK 27K 2667 il -.33 -.33 .67 -.33 -.33 13218.8824

5 2111 11l 1816 3667 O -.33 -.33 -.33 .67 -.33 13346.8924

6 2133 1I 1811 2667 111K -.33 -.33 -.33 -.33 .67 14143.7315

7 3451 103 19N 2667 SUN 1.67 -.33 -.33 -.33 -.33 13433.2315

8 21H 253 193 2667 9333 -.33 1.67 -.33 -.33 -.33 13634.7315

9 2111 1i3 3611 2667 933 -.33 -.33 1.67 -.33 -.33 13919.7315

J0 211 1 3 ION 4667 9333 -.33 -.33 -.33 1.67 -.33 14139.7315

11 2133 1i3 1811 2667 141K -.33 -.33 -.33 -.33 1.67 15331.9435

12 2775 1750 19N 2667 BN .67 .67 -.33 -.33 -.33 13535.915

13 2775 11ll 271 2667 933 .67 -.33 .67 -.33 -.33 13679.4915

14 2775 111 1811 3667 Bill .67 -.33 -.33 .67 -.33 13788.4815

15 2775 IlK 1ON 2667 11601 .67 -.33 -.33 -.33 .67 14428.4815

16 2111 1751 270 2667 B333 -.33 .67 .67 -.33 -.33 13777.2315

17 21H 1753 183 3667 SN -.33 .67 -.33 .67 -.33 1387.2315

O 2111 1751 19O 2667 11311 -.33 .67 -.33 -.33 .67 14531.2315

19 211 1i3 2718 3667 B363 -.33 -.33 .67 .67 -.33 14129.7315

23 2111 ill 2711 2667 11113 -.33 -.33 .67 -.33 .67 14673.7315

21 213 1333 133 3667 11113 -.33 -.33 -.33 .67 .67 14783.7315

B 24
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TABLE 8.21

CENTRAL COMPOSITE ROTATABLE (HALF-REPLICATE) EXPERIMENTAL DESIGN FOR FIVE FACTORS

NON-CODED CODED

RUN I HI M2 BI 32 Si Ml K2 Dl 32 SI RESPONSE

1 1653 50 1263 2ND 6f6i -1 -1 -1 -1 -1 9211.2424

2 3133 211 12K 21K 6663 1 1 -1 -1 -1 11496.2424

3 36 50 3111 2111 6631 1 -1 1 -1 -1 11839.2424

4 1653 233 3IR 261 610 -1 1 1 -1 -1 12357.2424

5 3311 533 1200 4113 6811 1 -1 -1 1 -1 12191.2424

6 1651 216 1213 463 6633 -1 1 -1 1 -1 12296.7424

7 1653 511 3116 400 631 -1 -1 1 1 -1 12652.2424

8 36i 2W63 36i 401 6MK 1 1 1 1 -1 14719.1515

9 3I 510 1263 2111 123K 1 -1 -1 -1 1 13779.1515

13 1651 216 1211 2111 12MK -1 1 -1 -1 1 13983.6515

11 1651 511 311 2311 123H -1 -1 1 -1 1 14268.6515

12 33H 2363 311 2310 121N 1 1 1 -1 1 15521.9467

13 1653 51 121 41 12633 -1 -1 -1 1 1 14488.6515

,,-. 14 3333 236 121 4633 120 1 1 -1 1 1 15694.2389

15 3103 531 3111 430 12063 1 -1 1 1 1 15914.3588

16 1653 2363 3313 41 1263 -1 1 1 1 1 16359.9198

.2
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TABLE B.21 (continued)

NON-CODED CODED

RUN # "I N2 B1 B2 Si "I M2 D1 32 51 RESPONSE

17 3675 1251 211K 3111 9111 2 1 I I I 14641.4115

1e 975 1253 2111 3111 9111 -2 a I 1 1 12999.7424

19 2325 2753 2111 3100 9E1 1 2 I I 1 14845.-,jl5

21 2325 1 2111 3iK 9110 1 -2 I I I 12979.9924

21 2325 1251 3911 31K 9111 I I 2 I I 15131.9115

22 2325 1251 311 3111 98IN I -2 I I 12433.4924

23 2325 1251 2181 511 9111 I 1 I 2 I 15351.9I15

24 2325 1251 21K IN 9111 3 3 I -2 I 12177.4924

25 2325 1258 21K 3101 15M0 I I 1 I 2 15747.1789

26 2325 1251 21K 3111 3110 1 I 1 1 -2 11176.7424

27 2325 1253 2111 3313 9333 I I 1 1 1 13B78.9115

.
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TABLE D.22

BOX-DEHNKEN EXPERIMENTAL DESIGN FOR SIX FACTORS

NON-CODED CODED

RUN I MI M2 M3 BI 32 SI "I M2 83 Dl 82 SI RESPONSE

1 2325 211K 711 2111 4333 12M0K 1 a 1 1 16271.111
2 2325 211 711 2111 4001 600 I 1 I 1 -1 14213.5682
3 2325 2111 71 21K 21H 1233 3 1 I I -1 1 15246.5511
4 2325 2011 711 21K 2111 6101 1 1 1 1 -1 -1 12417.1591
5 2325 511 711 2111 41M 12111 I -1 1 3 1 1 15644.751
6 2325 511 711 2111 411 630 3 -1 1 3 1 -1 11172.1591
7 2325 533 711 2113 2333 1231 I -1 1 a -1 1 14531.1682
9 2325 511 71 2111 231 6333 1 -1 1 3 -1 -1 13812.1591

9 3113 1251 11B 2111 3111 1233 1 I I I 3 1 15817.5481
Is 31K 1251 11B 2101 3111 6111 1 I 1 I I -1 13489.4191
11 3111 1251 411 2111 3111 12111 1 I -1 1 1 1 15541.3191
12 313 1251 433 211 313f 6113 1 3 -1 1 1 -1 12967.4891
13 1653 1251 ION 2111 3113 12M3 -1 1 1 3 1 1 15358.10
14 1651 1251 ION 2133 311 611 -1 3 1 1 3 -1 12455.9091
15 1651 1251 41 2133 3811 12H11 -1 I -1 I I 1 11933.9391
16 1651 1251 411 21K 3101 6111 -1 1 -1 1 1 -1 15058.01

17 313 2113 411 3131 3111 91 1 1 I 1 3 3 15715.10
1s 3311 2333 401 1211 3333 911 1 1 3 -1 I 1 14621.8182
19 311 501 481 3111 30H 9311 1 -1 1 1 14935.8182
23 303 501 431 1211 331 911 1 -1 I -I 1 3 13645.8182
21 1651 2111 40 3111 31H 9111 -1 I I I I 15111.3182
22 1651 2111 430 1231 3118 9B11 -1 1 I -1 I 1 13851.3182
23 1653 533 411 3111 333 9113 -1 -1 I 1 3 I 14136.3182
24 1653 511 411 1213 3311 9113 -1 -1 -1 I 12736.4191

25 2325 2D11 IN 2111 4111 913 I 1 1 3 1 I 15699.519
26 2325 2311 IM 2111 2333 9333 I 1 1 3 -1 I 14333.3682
27 2325 213 40 2133 411 9311 I 1 -1 3 1 I 15399.1682
28 2325 2113 40 2111 2311 9331 I 1 - 3 -1 U 13919.1682
29 2325 513 1111 211 40 9111 3 -1 1 3 1 I 148368662
31 2325 511 1333 2113 211 9111 I -1 1 -1 I 13358.3682
31 2325 511 401 211 4111 911 -1 -1 I 1 I 14424.8682
32 2325 513 401 211 210 9331 I -1 -1 I -1 I 12853.6591

B 27



Wi TABLE 9.22 (continued)

NON-CODED CODED

RUN # MI M2 M3 81 B2 Si "I M2 M3 B1 92 51 RESPONSE

33 2325 1253 till 310 3111 12118 1 1 1 1 1 1 16811.131
34 2325 1251 ION 3110 311 6111 I I 1 1 1 -1 13768.4191
35 2325 1258 I3M 1218 3111 12111 I I 1 -1 a 1 15154.90K
36 2325 1253 IN 1213 3111 6101 I 3 1 -1 1 -1 12174.6591
37 2325 1251 411 3111 311 12111 I I -1 1 a 1 15734.991
38 2325 1251 4K 311 311 6311 I I -1 1 1 -1 13246.4191
39 2325 1251 431 121 31K 123K 3 1 -1 -1 1 1 14855.51K
46 2325 1253 4K1 1211 311 6K1B I -1 -1 1 -1 11652.6591

41 3111 1253 711 311 48 9N 1 I 1 1 1 I 15928.8881
42 3113 1251 7K 31K 28K 9811 1 a I 1 -1 I 14653.3182
43 3113 1253 711 1211 4011 9318 1 I I -1 1 a 14873.3192
44 311 1253 711 1211 2111 911 1 I I -1 -1 a 13393.3182
45 1653 1251 731 308 401 911 -1 a I I 1 3 15363.8182
46 1653 1253 711 3111 281 9333 -1 1 1 1 -1 I 13993.8182
47 1653 1253 733 121 4111 91 -1 a 1 -1 1 I 14133.8182
49 1653 1251 781 1231 211 9333 -1 1 1 -1 -1 9 12438.9191

49 2325 1253 7K 211 313 933 a I I I I I 14379.5692

8- 28
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TABLE B.23

BOX-DRAPER (HALF-REPLICATE) EXPERIMENTAL DESI6N FOR SIX FACTORS

NON-CODED CODED

RUN # " I 12 M3 B! 92 S1 1 M2 M3 D D2 SI RESPONSE

1 2342 936 574 1723 2581 13257 -.419 -.419 -.419 -.419 -.419 .419 13933.5553
2 2142 936 574 1723 3419 7743 -.419 -.419 -.419 -.419 .419 -.419 13316.8614
3 2942 936 574 2477 2581 7743 -.419 -.419 -.419 .419 -.419 -.419 13219.5974
4 2149 936 574 2477 3419 11257 -.419 -.419 -.419 .419 .419 .419 1587B.6153
5 2142 936 826 1723 2581 7743 -.419 -.419 .419 -.419 -.419 -.419 12764.6194
6 2142 936 826 1723 3419 11257 -.419 -.419 .419 -.419 .419 .419 14724.1413
7 2942 936 826 2477 2581 19257 -.419 -.419 .419 .419 -.419 .419 14631.9613
8 2142 936 826 2477 3419 7743 -.419 -.419 .419 .419 .419 -.419 1488.4931
9 2342 1564 574 1723 2581 7743 -.419 .419 -.419 -.419 -.419 -.419 13867.5564

1@ 2142 1564 574 1723 3419 11257 -.419 .419 -.419 -.419 .419 .419 14959.2883
11 2342 1564 574 2477 2591 11257 -.419 .419 -.419 .419 -.419 .419 14867.1213
12 2342 1564 574 2477 3419 7743 -.419 .419 -.419 .419 .419 -.419 14323.5521
13 2342 1564 926 1723 2591 11257 -.419 .419 .419 -.419 -.419 .419 14512.5463
14 2042 1564 926 1723 3419 7743 -.419 .419 .419 -.419 .419 -.419 13969.6781
15 2342 1564 826 2477 2581 7743 -.419 .419 .419 .419 -.419 -.419 13876.8981
16 2142 1564 826 2477 3419 11257 -.419 .419 .419 .419 .419 .419 15516.5944

17 2618 936 574 1723 2581 7743 .419 -.419 -.419 -.419 -.419 -.419 12975.7954
18 2638 936 574 1723 3419 13257 .419 -.419 -.419 -.419 .419 .419 14873.8959
19 2618 936 574 2477 2591 13257 .419 -.419 -.419 .419 -.419 .419 14781.9158
23 2638 936 574 2477 3419 7743 .419 -.419 -.419 .419 .419 -.419 14243.1141
21 2638 936 826 1723 2581 13257 .419 -.419 .419 -.419 -.419 .419 14426.4418
22 2638 936 826 1723 3419 7743 .419 -.419 .419 -.419 .419 -.419 13888.6311
23 2638 936 826 2477 2581 7743 .419 -.419 .419 .419 -.419 -.419 13796.4511
24 2638 936 826 2477 3419 13257 .419 -.419 .419 .419 .419 .419 15442.4314
25 2689 1564 574 1723 2591 13257 .419 .419 -.419 -.419 -.419 .419 14661.588
26 2638 1564 574 1723 3419 7743 .419 .419 -.419 -.419 .419 -.419 14123.6891
27 2638 1564 574 2477 2581 7743 .419 .419 -.419 .419 -.419 -.419 14931.5891
28 2618 1564 574 2477 3419 13257 .419 .419 -.419 .419 .419 .419 15615.8414
29 2638 1564 826 1723 2581 7743 .419 .419 .419 -.419 -.419 -.419 13677.8351
33 2639 1564 826 1723 3419 13257 .419 .419 .419 -.419 .419 .419 15346.8994
31 2608 1564 926 2477 2591 13257 .419 .419 .419 .419 -.419 .419 15278.6414
32 268 1564 826 2477 3419 7743 .419 .419 .419 .419 .419 -.419 14825.8951

B 29I
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TABLE D.23 (continued)

NON-CODED CODED

RUN # MI 2 M3 81 B2 Si MI M2 M3 Bl D2 Si RESPONSE

33 299 1251 733 2113 31K 9333 .997 8 1 1 a 1 14762.1668
34 1652 1253 70 2133 3111 9M -.997 3 3 3 3 3 13994.9753
35 2325 1999 711 2111 33K 9K1 1 .997 3 3 3 3 14964.6357
36 2325 512 70 211 31K 9KM -.997 3 3 a 13B92.5337
37 2325 1251 999 211 333 9KM 3 3 .997 1 3 3 145B4.9472
3B 2325 1251 431 21K1 31K 9K1 -.997 1 14172.1892

.. 39 2325 1251 711 2"97 3M0 9080 , 997 1 a 15816.67B2

43 2325 1253 70 1233 33K 9183 3 3 3 -.997 3 3 13751.45B2
41 2325 1253 733 2133 3997 9333 3 3 3 3 .997 3 15116.3492
42 2325 1253 733 2131 2113 9M3 3 I 3 1 -.997 3 13643.7992
43 2325 1253 713 210 383 11991 a a I 1 1 .997 15447.5764
44 2325 1251 733 2133 3333 6319 3 1 1 1 1 -.997 12723.5991
45 2325 1253 713 2133 38 9333 3 1 3 a I I 14378.5682
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TABLE 8.24

HYBRID (628A) EXPERIMENTAL DESI6N FOR SIX FACTORS

NON-CODED CODED

RUN # "I M2 M3 81 B2 51 NI M2 M3 BI 12 St RESPONSE

1 2325 1253 7K 2111 381K 16113 I I 1 I I 2.3677 16381.4422

2 2325 1251 733 2111 30 3567 1 I I I 1 -1.9110 11396.2991

, 3 1653 531 4K 121 2111 11829 -1 -1 -1 -1 -1 .696 12725.9411

4 3111 2111 40 12K 2111 11829 1 1 -1 -1 -1 .6196 14515.6662

5 3811 511 1111 121 21K 13929 1 -1 1 -1 -1 .6696 13954.8662

6 1653 218 1363 1201 2111 1829 -1 1 1 -1 -1 .6196 14159.5662

7 3111 511 411 31 2811 11929 1 -1 -1 1 -1 .6396 148K.3662

8 1651 2111 4M 361 2111 11829 -1 1 -1 1 -1 .6696 14995.7761

9 1651 1253 ION 301 21K 11829 -1 -1 1 1 -1 .6396 14444.5662

1@ 3811 2101 1111 3113 2111 13829 1 1 1 1 -1 .6696 15775.9555

11 3111 511 40 1211 411 11929 1 -1 -1 -1 1 .6196 1530.7761

12 1651 211 41 1201 481 119829 -1 1 -1 -1 1 .6396 15177.7761

13 1653 513 1333 121 400 11929 -1 -1 1 -1 1 .6196 14664.5662

14 381 201 181 1261 4011 18929 1 1 1 -1 1 .6196 15953.3355

15 1653 511 411 3333 4011 1829 -1 -1 -1 1 1 .6196 15415.7761

16 3611 211 411 311 4336 11929 1 1 -1 1 1 .6196 16519.2275

17 3111 511 1131 3111 4111 1829 1 -1 1 1 1 .6196 16166.1555

18 1651 2333 116 3611 4011 13929 -1 1 1 1 1 .6196 16327.4275

%lp
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TALE 8.24 (continued)

NON-CODED CODED

RUNI MI H2 M3 B1 92 Si t11 112 N3 81 B2 SI RESPONSE

19 3793 1251 7H 2131 3111 5937 2.1749 I a i i -1.831 13771.6947

21 957 1253 711 21K 31K 5937 -2.1749 1 I a 1 -1.331 11519.1122

21 2325 2881 7K 21K 3K3 5917 1 2.1749 I 1 1 -1.331 13991.6952

22 2325 1 733 2111 3K1 5917 1 -2.1749 3 I 1 -1.131 11614.3991

23 2325 1253 1352 2111 3M1 5937 3 I 2.1749 1 1 -1.031 13223.928

24 2325 1251 49 2133 3133 5937 I 1 -2.1749 1 I -1.331 12085.63B2

25 2325 1253 711 4157 311 5917 a 1 8 2.1749 1 -1.331 1433.2952

26 2325 1251 711 143 3111 5917 I I 1 -2.1749 I -1.131 11912.4381

27 2325 1251 7H 2181 5175 5917 I 3 3 1 2.1749 -1.331 14543.8542

28 2325 1251 7H 2111 825 5917 I I I 1 -2.1749 -1.331 13652.3711

.4
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TABLE B.25

HYBRID (628B) EXPERINENTAL DESIGN FOR SIX FACTORS

NON-CODED CODED

RUN # NI 82 N3 91 32 S1 NI 112 N3 91 12 S1 RESPONSE

1 1 2325 1253 700 2111 33K 15929 I 3 I 3 1 2.3394 16343.6433

2 2325 1253 711 2111 311 9K10 I I a I 1 3 14376.5682

3 1653 511 411 121 2111 13732 -1 -1 -1 -1 -1 .5773 12663.8251

4 3333 2111 411 121 2111 13732 1 1 -1 -1 -1 .5773 14471.4922

5 331 533 1333 1233 23K 11732 1 -1 1 -1 -1 .5773 13919.4922

6 1653 21K I1 12O 23K 11732 -1 1 1 -1 -1 .5773 14114.9922

7 318 51 41 311 2333 13732 1 -1 -1 1 -1 .573 14755.4922

9 1653 2103 411 3111 23K 13732 -1 1 -1 1 -1 .5773 14963.9922

9 1653 1253 163 311 2333 13732 -1 -1 1 1 -1 .5773 14399.9"22

13 3333 2338 1113 3111 2333 13732 1 1 1 1 -1 .5773 15753.6298

11 3111 511 411 1233 411 13732 1 -1 -1 -1 1 5773 14974.6131

12 1653 2113 413 1211 4333 13732 -1 1 -1 -1 1 .5773 15151.6131

13 1653 513 1333 1233 431 13732 -I -1 1 -1 1 .5773 14619.9922

14 3111 2813 1181 1233 4333 13732 1 1 1 -1 1 .5773 15927.7398

15 1653 51 413 3333 433 13732 -1 -1 -1 1 1 .5773 15379.6133

16 311 2333 433 3111 4111 13732 1 1 -1 1 1 .5773 16467.97B8

17 3113 533 ilK 3113 4333 13732 1 -1 1 1 1 .5773 16143.8299

L1 1651 2333 IOK 3113 41 11732 -1 1 1 1 1 .5773 16316.1716
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TABLE 3.25 (continued)

NON-CODED CODED

RUN # MI N2 M3 81 32 SI mI N2 N3 BI 32 Si RESPONSE

19 3675 1253 7K 2111 313 5536 2.8 3 3 1 1 -1.1547 13439.7441

21 975 1253 73 2133 311 5536 -2.3 , , , 1 -1.1547 11362.4621

21 2325 2751 731 21K 3101 5536 1 2.3 3 3 1 -1.1547 13653.3531

22 2325 1 701 2133 3301 5536 1 -2.1 3 3 1 -1.1547 11361.5391

" 23 2325 1253 13K 2133 311 5536 3 1 2.3 3 1 -1.1547 12931.3531

24 2325 1253 131 2111 3101 5536 3 3 -2.3 3 1 -1.1547 11886.3531

25 2325 1251 71 3931 31 5536 3 3 3 2.3 1 -1.1547 13997.7441

26 2325 1253 71 313 3313 5536 3 3 1 -2.3 1 -1.1547 11795.4621

27 2325 1253 71 21K 5331 5536 3 3 3 1 2.3 -1.1547 14233.3332

28 2325 1251 711 21K 1ON 5536 3 3 3 1 -2.3 -1.1547 13566.3531

.- 3
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TABLE B.26

MINIMUM POINT EXPERIMENTAL DESIGN FOR SIX FACTORS

NON-CODED CODED

RUNI 1I 12 M13 11 32 SI MI N2 13 31 12 SI RESPONSE

I 2742 1714 411 1233 211 6333 .6183 .6183 -1 -1 -1 -1 11438.9145

2 2742 511 995 1201 201 6163 .6193 -1 .6183 -1 -1 -1 11953.3194

3 2742 511 411 2656 230 6111 .6183 -1 -1 .6193 -1 -1 11718.7887

4 2742 510 433 123 3616 6i33 .6183 -1 -1 -1 .6193 -1 11919.7791

5 2742 533 411 1211 21 1355 .6193 -1 -1 -1 -1 .6193 13415.2117

6 1653 1714 85 1211 2313 6113 -1 .6193 .6183 -1 -I -1 11121.1813

7 1656 1714 411 2656 2333 633 -1 .6183 -1 .6193 -I -1 11694.6633

8 1651 1714 40 1236 3618 631 -1 .6193 -1 -1 .6183 -1 12186.6411

9 1651 1714 410 1233 2113 13855 -1 .6193 -1 -1 -1 .6183 13571.4967

11 1651 511 885 2656 2331 6113 -1 -1 .6183 .6193 -1 -1 11339.3437

11 1656 531 895 1211 3618 603 -1 -1 .6183 -1 .6183 -1 11493.1214

12 1651 531 85 1211 2311 1185 -1 -1 .6183 -1 -1 .6193 13117.5663

13 1651 513 410 2656 3618 6166 -1 -1 -1 .6193 .6163 -1 12375.5334

14 1651 51 41 2656 21 1885 -1 -1 -1 .6183 -1 .6183 13812.1812

15 1656 50 41 1233 3618 1185 -1 -1 -1 -1 .6193 .6193 1398.1142

16 1727 230 16N 3116 4311 1233 -. 954 1 1 1 1 1 16611.1197

17 3111 586 163 3336 4610 1233 1 -.8954 1 1 1 1 16465.4144

18 311 261 434 3113 411 1233 1 1 -.8854 1 1 1 16782.5839

19 366 210 163 1313 411 12336 I 1 1 -.8854 1 1 16267.3343

23 3333 211 1633 3113 2115 1263 1 1 1 1 -. 9854 1 16114.2918
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TALE 8.26 (continued)

NON-CODED CODED

RU NI 2 H3 BI B2 Sl "I M2 M3 D 82 SI RESPONSE

21 31H 21N INS 3M ON 6344 1 1 1 1 1 -.8854 15594.4642

22 3113 511 4 1261 238 6M 1 -1 -1 -1 -1 -1 1329.961

23 1651 2311 411 1211 21K 6110 -1 1 -1 -1 -1 -1 11835.4191

24 1651 5K I3 1231 211 6M -1 -1 1 -1 -1 -1 IIH.9191

25 1651 531 411 311 23K 6011 -1 -1 -1 1 -1 -1 11191.9391

26 1651 511 411 1211 4311 61 -1 -1 -1 -1 1 -1 11418.9191

27 1651 511 411 121 23K 1260 -1 -1 -I -1 -1 1 13339.3182

28 1656 506 4 12H1 21M 61 -1 -1 -1 -1 -1 -1 9578.9391

2.
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TABLE B.27

KOSHAL EXPERIMENTAL DESIGN FOR SIX FACTORS

NON-CODED CODED

RUN # "I M2 M3 Dl 82 Sl HI N2 N3 Bl 32 Sl RESPONSE

I 2817 1786 614 1943 2714 9143 .7143 .7143 -.2357 -.2957 -.2857 -.2957 14156.833

2 2917 1336 914 1943 2714 9143 .7143 -.2857 .7143 -.2857 -.2057 -.2957 13876.3133

3 2807 1136 614 2743 2714 8143 .7143 -.257 -.2857 .7143 -.2957 -.2957 14299.333

4 2817 1136 614 1843 3714 9143 .7143 -.2957 -.2957 -.2857 .7143 -.2957 144i9.333

5 2917 1136 614 1843 2714 11143 .7143 -.2957 -.2957 -.2857 -.2957 .7143 14966.6695

6 2132 1786 914 -1943 2714 8143 -.2857 .7143 .7143 -.2957 -.2857 -.2957 13976.913

7 2132 1786 614 2743 2714 9143 -.2857 .7143 -.257 .7143 -.257 -.2857 14399.8138

9 2132 1786 614 1843 3714 8143 -.2957 .7143 -.2957 -.2957 .7143 -.2957 1459.8913

9 2132 1796 614 1843 2714 11143 -.2957 .7143 -.257 -.2857 -.2857 .7143 15675.1395

I 2132 1336 914 2743 2714 9143 -.2857 -.2857 .7143 .7143 -.2857 -.2857 14119.3338

11 2132 1336 914 1843 3714 8143 -.2857 -.2857 .7143 -.2857 .7143 -.2957 14229.3139

12 2132 1836 914 1843 2714 11143 -.2857 -.2857 .7143 -.2857 -.2857 .7143 14871.5533

13 2132 1136 614 2743 3714 8143 -.2957 -.2957 -.2957 .7143 .7143 -.2957 14652.3338

14 2132 1136 614 2743 2714 11143 -.2957 -.2857 -.2957 .7143 -.2957 .7143 15199.1895

15 2132 1136 614 2743 3714 11143 -.2857 -.2957 -.2957 -.2857 .7143 .7143 15291.1895

16 3482 1136 614 1943 2714 9143 1.7143 -.2957 -.2957 -.2657 -.2957 -.2957 14154.3533

17 2132 2536 614 1843 2714 8143 -.2857 1.7143 -.2957 -.2857 -.2857 -.2957 14257.33

18 2132 1336 1214 1843 2714 8143 -.2857 -.2657 1.7143 -.2957 -.2857 -.2957 13696.383

19 2132 1336 614 3643 2714 9143 -.2957 -.2957 -.2957 1.7143 -.2957 -.2957 14542.33

21 2132 1336 614 1943 4714 9143 -.2857 -.257 -.2857 -.2857 1.7143 -.29857 14762.3138
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TABLE B.27 (continued)

NON-CODED CODED

RUN # NI M2 M3 Dl 82 Si Ni M2 M3 i1 32 Sl RESPONSE

21 2132 1136 614 1943 2714 14143 -.2857 -.2057 -.2957 -.2957 -.2857 1.7143 15491.4128

22 2817 1136 614 1943 2714 8143 .7143 -.2957 -.2957 -.2857 -.2957 -.2857 13669.3133

23 2132 1786 614 1943 2714 8143 -.2957 .7143 -.2957 -.2957 -.2957 -.2857 13769.81

24 2132 1136 914 1843 2714 9143 -.2857 -.2857 .7143 -.2957 -.2957 -.2857 13481.1979

25 2132 1136 614 2743 2714 9143 -.2857 -.2857 -.2957 .7143 -.2957 -.2957 13912.313B

26 2132 1136 614 1843 3714 8143 -.2057 -.2957 -.2957 -.2857 .7143 -.2857 14122.3838

27 2132 1136 614 1943 2714 11143 -.2857 -.2957 -.2957 -.2957 -.2857 .7143 14664.5533

29 2132 1136 614 1843 2714 8143 -.2957 -.2857 -.2B57 -.2957 -.2957 -.2857 13221.1979

,
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TABLE 3.28

CENTRAL COMPOSITE ROTATADLE (HALF-REPLICATE) EXPERIMENTAL DESIGN FOR SIX FACTORS

NON-CODED CODED

RUN I "I K2 M3 91 32 $1 MI M2 M3 Bl 32 S1 RESPONSE

1 1653 511 430 1233 2313 12133 -1 -1 -1 -1 -1 1 13319.3102
2 1653 53 411 120 4333 6133 -1 -1 -1 -1 1 -1 11418.9191
3 1653 513 43 333M 2333 6131 -1 -1 -1 1 -1 -1 1119.9391
4 1651 58 411 308 4338 12333 -1 -1 -1 1 1 1 15731.228
5 1651 513 1333 120 2333 61 -1 -1 1 -1 -1 -1 1I133,939I
6 1653 533 1IN 1233 4811 12333 -1 -1 1 -1 1 1 15134.1,8
7 1651 533 1333 3333 2333 1233 -1 -1 1 1 -1 1 14922.6113
8 1650 513 1133 3113 4333 630 -1 -1 1 1 1 -1 13552.9391
9 1650 2113 433 1213 2333 6333 -1 1 -1 -1 -1 -1 16835.4191

13 1653 2113 481 1233 4333 12333 -1 1 -1 -1 1 1 15484.13O
11 1653 2113 411 3333 2333 12H -1 1 -1 1 -1 1 15311.3233
12 1653 2N3 411 3083 403 61N3 -1 1 -1 1 1 -1 14235.8182
13 1651 2333 1333 1233 290 123H -1 1 1 -1 -I 1 14691.1111
14 1653 21N3 1ON 1233 413 6333 -1 1 1 -1 1 -1 13197.4191
15 1651 213 1333 31N 2333 6113 -1 1 1 1 -1 -1 12957.9191
16 1653 2813 133 31K3 431M 12333 -1 1 1 1 1 1 16585.5633

17 3310 533 43 1233 233M 6333 1 -1 -1 -1 -1 -1 13629.9391
19 3333 513 411 1213 430 12333 1 -1 -1 -1 1 1 15313.3411
19 3131 533 411 3113 2333 12333 1 -1 -1 1 -1 1 15135.3333
23 3333 531 411 333 4333 6333 1 -1 -1 1 1 -1 14143.8182
21 3333 53 13N 1233 2333 12133 1 -1 1 -1 -1 1 14492.8192
22 3333 500 1ON 1233 4311 638 1 -1 1 -1 1 -1 12991.9191
23 3333 513 13O 3130 2333 6013 1 -1 1 1 -1 -1 12738.9391
24 331 533 1333 3013 403 12811 1 -1 1 1 1 1 16431.83
25 333 203 433 1231 2313 12333 1 1 -1 -1 -1 1 14899.1333
26 3338 203 416 1210 4133 611 1 1 -1 -1 1 -1 13714.9191
27 331 2333 411 31N 2333 6333 1 1 -1 1 -1 -1 13461.9891
28 3383 2113 40 3113 4133 12333 1 1 -1 1 1 1 16767.3691
29 338M 203 1333 1233 2331 6333 1 1 1 -1 -1 -1 12396.9891
33 3318 20 133 1233 4333 12333 1 1 1 -1 1 1 16219.8811
31 3133 28 1333 3333 2333 12H 1 1 1 1 -1 1 16345.8333
32 3333 213 1333 3333 4331 6333 1 1 1 1 1 -1 15432.8182

0
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TAKE 3.28 (continued)

NON-CODED CODED

RUN # "I M2 M3 BI 32 S1 "I M2 M3 BL 32 Si RESPONSE

33 3931 1253 7K 21K Sill 963M 2.379 0 3 I 3 I 15264.4571
34 723 1253 7K1 21K 3111 90 -2.378 I I 1 I 13445.4951
35 2325 3134 70 21K 3K 9M 1 2.378 I 3 1 I 15474.91K1
36 2325 0 710 21O Sill 9M3 1 -2.379 I 1 1 13566.6682
37 2325 1256 1413 2111 Sill 9111 1 2.378 3 3 I 14878.&142
38 2325 1251 1 2111 310 91S I 3 -2.378 3 3 U 13895.5682

... 39 2325 1250 733 4243 3330 91 I 1 1 2.378 1 I 15746.6320
41 2325 1253 713 3 311 9111 I 3 1 -2.379 1 I 12989.1591

,. 41 2325 1251 711 2131 5378 911 1 1 0 2.370 1 15962.4333
42 2325 1253 711 2111 622 963 a 3 1 -2.378 3 12469.3991
43 2325 1253 711 2111 3111 16134 I 3 1 1 1 2.378 16386.9436
44 2325 1250 711 2111 3113 1866 I 1 1 1 1 -2.378 9953.7664
45 2325 1253 711 2101 3i3 9113 1 a a I 3 a 14378.5682

.- 4
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Aaendix C: Linear ReCrgession Results

This section contains the results of the stepwise linear

regression run of a sample input for the three factor

problem. The experimental design which was used to complete

this sample run is the Box-Draper bias minimizing design for

three factors.

4

,.

C -1

;"" " , ' ' , " " -' " ' , , .,



BDP2R -STEPWISE REGRESSION
BNDP STATISTICAL SOFTWARE, INC.
1964 WESTWOOD BLVD. SUITE 232
LOS ANGELES, CA, USA 91125
(213) 475-5701
PROGRAM REVISED OCTOBER 1993
MANUAL REVISED - 1993
COPYRIGHT (C) 1983 REGENTS OF UNIVERSITY OF CALIFORNIA

-PROGRAM CONTROL INFORMATION

'2 /problem title is 'sample for three factor problem'.

/input variables are 4.
format is free.
file is bd3a.

/variable names are MI,BI,S1,DE,
MlsqdDlsqd,Slsqd,
"IB'IDI S],I .

-' add : 6.

/transform Mlsqd = MI # MI.
Blsqd = Bl # Bl.

Slsqd = Sl S1.
... MIDI = Ml * 1.

MISI : MI # S1.
BISI z BI # Si.

/reqress depend is DE.
independent are MI,BI,SI,

Ilsqd,BlsqdSlsqd
". MIBIMIS1,DISI.

tol : .131.

print covariance.

correlation.
rreq.

/end.

C - 2



PROBLEM TITLE IS
sample input for 3 factor problem

NUMBER OF VARIABLES TO READ IN ...... . .. 4
NUMBER OF VARIABLES ADDED BY TRANSFORMATIONS.. 6
TOTAL NUMBER OF VARIABLES ... ........... 1
NUMBER OF CASES TO READ IN ............ TO END
CASE LABELING VARIABLES. . ..........
MISSING VALUES CHECKED BEFORE OR AFTER TRANS. NEITHER
BLANKS ARE ............. .. . . .. MISSING
INPUT FILE ... ........ .. UNIT 7 ...... .bd3a

REWIND INPUT UNIT PRIOR TO READING. . DATA. . YES
NUMBER OF WORDS OF DYNAMIC STORAGE ....... .. 25599

VARIABLES TO BE USED
*I i 2 BI 3 Sl 4 DE 5 Mlsqd

6 Blsqd 7 Slsqd G MII 9 SISi I@ B1SI

INPUT FORMAT IS
FREE

MAXIMUM LENGTH DATA RECORD IS 8 CHARACTERS.

REGRESSION INTERCEPT ............. .NON ZERO
WEI6HT VARIABLE .... .............
PRINT COVARIANCE MATRIX .......... YES
PRINT CORRELATION MATRIX. ...... YES
PRINT ANOVA AT EACH STEP ............ ... YES
PRINT STEP OUTPUT ..... ......... ... YES

, PRINT REGRESSION COEFFICIENT SUMMARY TABLE. . YES
PRINT PARTIAL CORRELATION SUMMARY TABLE . ... NO
PRINT F-RATIO SUMMARY TABLE .... ......... NO
PRINT SUMMARY TABLE ..... ............. YES
PRINT RESIDUALS AND DATA ..... ........... NO
PRINT CORRELATION OF REGRESSION COEFFICIENTS, YES
PRINT NORMAL PROBABILITY PLOT .... ........ NO
PRINT DETRENDED NORMAL PROBABILITY PLOT . . NO
PRINT DIAGNOSTIC PLOTS ..... ............ NO
PRINT PLOTS FOR XVAR AND YVAR ... ......... NO
PRINT PLOTS AT EACH STEP ................ NO
PRINT PLOTS AND DATA ..... .............. NO
PRINT PLOTS WITH STATISTICS .... .......... No

NUMBER OF CASES READ ..... .............. 15
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COVARIANCE MATRIX

"I BI S1 lsqd Dlsqd Slsqd MIDI miSt BISI
1 2 3 5 6 7 8 9 if

"1 1 .7434
... 81 2 .4257e-U .7434

si 3 ,NeHhK .8lNfet+ .7434
Mlsqd 5 -.3692e-1 .Ile+N .8515e-N .4796

. BIsqd 6 -. 3362e-1 . lhe+l . UU -. 193B .4796
Slsqd 7 -. 3362e-IS -.4257e-08 .KUi eN -.1939 -. 1938 .4796
MIDI B .9515e-IS .2554e-17 .NHe+N .2919e-19 .2919e-19 .2919-9 .3319
mist 9 .4257e-IS .IKhell .1277e-17 .Hli+l .l INe10 .WN0e+U -. 1277e-17 .3319
Dis1I I .4257e-0S .8515e-S .1277e-17 .IlkU44 .N e1N .i11k+U .1277e-17 .lNk+N .3319

CORRELATION MATRIX

"I Dl Si MIsqd Blsqd Slsqd MIDI Ist 3is1
1 2 3 5 6 7 8 9 10

M1 1 1.111
BI 2 .1111 1.I

Mlsqd 5 .1113 ,HU .1111 IlI, I
Blsqd 6 .1 .3333 .363 -. 333 ID11
Slsqd 7 .111 .11 .lI -.3B33 -.3B33 1.1311
MIDI 8 .1011 .111 ,Bin .811 .1111 .111 1. Ig
miSt 9 .s3K .IHU .11 .1111 .111 .1111 ."a3 1.INI
161 Is .8181 .13 .1,11 .11 .111 .1111 .1131 .8I" INK
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STEPPING A L60RT RNI. . . .. .. . . . . ...F
MAXIMUM NUMBER OF STEPS. .. .. .. .. . . 21
DEPENDENT VARIA. .. ... ... .. .... 4DBE
MINIMUM ACCEPTABLE F TO ENTER .. .. .. .. .. 4.111, 4.11
MAXIMUM ACCEPTABLE F TO REMOVE .. . . . . . . 3.911, 3.911

*MINIMUM ACCEPTABLE TOLERANCE .. . . . . . . . .11118
SUBSCRIPTS OF THE INDEPENDENT VARIABLES . . .. 1 2 3 5 6

7 9 9 If

STEP NO. I

STD. ERROR OF EST. 1139.3125

ANALYSIS OF VARIANCE
SUM OF SQUARES OF MEAN SQUARE

RESIDUAL 18141256. 14 1295733.

VARIABLES IN EQUATION FOR DE

STD. ERROR STD REG F
VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 9161.92715

* VARIABLES NOT IN EQUATION

VARIABLE CRIA TOLERANCE TO ENTER LEVEL

*Ml 1 .24528 1.1MINI .83 1
8 1 2 .42422 1.f81ll 2.95 1
* 5 3 .84465 1. IIINI 32.37 1
*Mlsqd 5 .16236 1.11111 .15 1
.Blsqd 6 .14717 JUNOM .31
*Slsqd 7 -.17424 1 .11HM .41 1
.MIDI 9 -.11415 1. HIM .10 1
HM ~ 9 -.16771 1.11311 .16 1
D IsM 11 -.19125 1. MIN .11 1
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STEP NO. I

VARIABLE ENTERED 3 SI

MULTIPLE R .8447
MULTIPLE R-SQUARE .7134
ADJUSTED R-SQUARE .6914
STO. ERROR OF EST. 632.3545

ANALYSIS OF VARIANCE
SUn OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 12941919. 1 .1294192e+|8 32.37
RESIDUAL 5198338.5 13 399972.2

VARIABLES IN EQUATION FOR DE

STD. ERROR SID RES F
VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 9161.82715 )
SI 3 1115.15435 196.111 .845 1. NMI 32.37 1

VARIABLES NOT IN EQlUATION

PARTIAL F
VARIABLE CORR. TOLERANCE TO ENTER LEVEL

1 1 .45921 1. MS 3.19 1
Bl 2 .79247 1.366K 23.26 1
Mlsqd 5 .11651 1.1011 .17
Blsqd 6 .11792 1.1161K .19 1
Slsqd 7 -.32548 1.36601 1.42 1
MIBI 8 -.32625 1.36333 .1 1
MISI 9 -.12649 1.001 .21 1
BiS1 11 -.17145 1.6011 .36 1

.. C-b
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STEP NO. 2

VARIABLE ENTERED 2 B

MULTIPLE R .9452
MULTIPLE R-SQUARE .B934
ADIUSTED R-SQUARE .8756
STD. ERROR OF EST. 411.4315

ANALYSIS OF VARIANCE
SUN OF SQUARES OF MEAN SQUARE F RATIO

REGRESSION 1626489. 2 9113245. 51.28
RESIDUAL 1933766.9 12 161147.2

VARIABLES IN EQUATION FOR DE

STO. ERROR STD REG F
VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 9161.82715

"D 2 561.7813 124.4363 .424 1. 66 21.26 1
51 3 1115.15465 124.4363 .845 1. H633 91.31 1

'.

VARIABLES NOT IN EQUATION

PARTIAL F
VARIABLE CORR. TOLERANCE TO ENTER LEVEL

"1 1 .75126 1.1111 14.25 1
Mlsqd 5 .19131 1.8111 .42 1
51sqd 6 .14416 1.8111 .23 1
Slsqd 7 -.53365 1.811#1 4.38 1

"II 8 -.14313 1.111 .12 1
MIsi 9 -. 21743 1.11101 .49 1
9191 11 -.27947 1.1111 .93 1

C-7
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STEP NO. 3

VARIABLE ENTERED I NI

ULTIPLE R .9765
MULTIPLE R-SQUARE .9536
ADJUSTED R-SQUARE .949
STD. ERROR OF EST. 276.7283

, ANALYSIS OF VARIANCE
SUN OF SQUARES DF MEA SQUARE F RATIO

REGRESSION 17297892. 3 5765964. 75.29
RESIDUAL 842364.66 11 76578.55

VARIABLES IN EQUATION FOR DE

STD. ERROR STD RES F
VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 9161.82715 )
"1 1 323.83821 85.796 .245 1. 6l 14.25 1
Dl 2 560.17913 65.796 .424 1. K 42.63 1
s1 3 1115.15415 65.76 .845 1. MINI 169.1N I

VARIABLES NOT IN EQUATION

PARTIAL F
VARIABLE CORR. TOLERANCE TO ENTER LEVEL

Mlsqd 5 .29941 1.1NM$ .91 1
Blsqd 6 .21841 1.MII .53 1
Slsqd 7 -.81155 1.1100 19.89 1
HIBI 9 -.86521 1.11111 .14 1
HIS 9 -.31423 1.|NMI 1.13 1
BISI 11 -.42344 1.1111 2.18 1
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STEP NO. 4

VARIABLE ENTERED 7 Slsqd

NLTIPLE R .9919
MULTIPLE R-SUARE .9639
ADJUSTED R-SQUARE .9775
STD. ERROR OF EST. 171.7814

ANALYSIS OF VARIANCE
SUN OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 17846594. 4 4462149. 152.99
RESIDUAL 291663.11 11 29166.31

.* VARIABLES IN EQUATION FOR DE

STD. ERROR STD RES
VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 9"61.52344 )
RM 1 323.83821 52.9391 .245 1.1 6 37.42 1
l 2 561.17813 52.9391 .424 1. H111 111.93 1

SI 3 1115.15415 52.9391 .845 1. II3 443.73 1
Slsqd 7 -286.39565 65.9374 -.174 1.16133 18.88 1

VARIABLES NOT IN EQUATION

PARTIAL F
VARIABLE CORR. TOLERANCE TO ENTER LEVEL

Mlsqd 5 -.13776 .85317 .31 1
elsqd 6 -.16839 .85317 .26 1
Nle a -.11381 1. 8m .11 1
HISI 9 -.53413 1. 111 3.59 1
BIS1 11 -.71961 1.1111 9.67 1
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STEP NO. 5

VARIABLE ENTERED 11 BlSI

00MULTIPLE R .9961
MULTIPLE R-SQUARE .9922
ADJ1USTED R-SQUARE . 9879
STh. ERROR OF EST. 125.1123

ANALYSIS OF VARIANCE
5119 OF SQUARES OF MEAN SQUARE F RATIO

REGRESSION 17999626. 5 3599925. 231.39
RESIDUAL 146629.45 9 15625.51

VARIABLES IN EQUATION FOR DE

SID. ERROR 9Th RES F
VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

CY-INTERCEPT 9361.52344)
Hi 1 323.83821 38.7483 .245 1.3K 1111 9.951
11 2 563.17813 39.7493 .424 1.10110 236.93
SI 3 1115.15435 38.7483 .945 1.10111 829.261
Slsqd 7 -296.38565 48.2433 -.174 1.106111 35.241
1191 IN -183.28653 57.9997 -. 391 1.36133 9.671

VARIABLES NOT IN EQUATION

PARTIAL F
VARIADLE CORR. TOLERANCE TO ENTER LEVEL

Nhsqd 5 -435438 .85317 .12 1
Dlsqd 6 -.24251 .85317 .53 1
N IBI 9 -.15959 1.11133 .21 1

*mist 9 -.76917 1.811N 11.59 1
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STEP NO. 6

VARIABLE ENTERED 9 MISI

-. NULTIPLE R .9964
% .NMULTIPLE R-SQUARE .9968
-, ADJUSTED R-SUARE 9945
• STD. ERROR OF EST. 94.7437

ANALYSIS OF VARIANCE

SUH OF SQUARES DF NEAN SUARE F RATIO

REGRESSION 19612814. 6 3313911. 419.66
RESIDUAL 57451.914 9 7181.489

VARIABLES IN EQUATION FOR DE

STD. ERROR STO RES
VARIADLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REOVE LEVEL

(Y-INTERCEPT 9363.52344 )
"1 1 323.93921 26.2696 .245 1.66116 151.97 1
B1 2 561.17813 26.269 .424 1.663M 454.59 1
S1 3 1115.15465 26.269 .845 I.66H6 1962.12 1
Slsqd 7 -286.38565 32.7140 -.174 1.6I633 76.69 1
NISi 9 -133.79191 39.3128 -.68 1.OM6 11.58 1
DISi 11 -191.28651 39.3129 -.191 1. IOO 21.13 1

VARIABLES NOT IN EQUATION

PARTIAL F
VARIABLE CORR. TOLERANCE TO ENTER LEVEL

htsqd 5 -.9519 .85317 .i5 1
Dlsqd 6 -.37941 .85317 1.19 1

.NIBI 8 -.24967 1.INN .47 1

##f.. F LEVELS( 4.1i|, 3.911) OR TOLERANCE INSUFFICIENT FOR FURTHER STEPPING

C - 11
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CORRELATION HATRIX OF REGRESSION COEFFICIENTS

"I 9! SI Slsqd "ISi DIS1
1 2 3 7 9 IN

flI 1 t.i111

D 2 .ine 111
SI 3 .iN1 .m 1.=ll6
Slsqd 7 .IoN .ME ,lie 1I.o
HISI 9 .IN1 .MOne .IN .ME l.OM1
DISI II .IN .Mi .1111 .Dil .ilI 1.3311

. -1.0-
.4.

4..
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eangdixD: Resaonse Eguation s and Random Check Points

TABLE D..1

RESPONSE SURFACE EQUATIONS FOR THREE FACTORS

DESIGN EQUATION

1) BOX - BEHNKEN Y = 0.4965(M1) +- 1.2245(B1) I-1.1802(SI)

- .0000375(S1*61) - .0000665(B1*Sl)

- 648.3319

2) BOX - DRAPER Y = 0.4798(M1) + 1.2232(B1) + 1.0847(S1)

- .0000318(61*61) - .0000667(B1*61)

- 285.6179

3) HYBRID Y = 0.5243(M1) + 1.1947(B1) + 0.9613(S1)
(311A)

-.0000251(61*61) - .0000602(B1*61)

+ 68.4118

4) HYBRID Y = 0.5002(M1) + 1.327(81) + 1.163(61)
(310+CP)

- .0000352(61*61) - .0000774(B1*Sl)

- 626.1627

5) MIN POINT Y - 0.4681(M1) + 1.423(81) + 0.969(61)

-.000025(61*61) -. 000088(B1*S1)

+ 210.5637

D-



TABLE D.1 (continued)

RESPONSE SURFACE EQUATIONS FOR THREE FACTORS

DESIGN EQUATION

,i 6) CENTRAL COMP Y = 0.4848(M1) + 1.153(B1) + 1..04(S1)
ROTATABLE

- .0090276($1*1) - .0000618(BI*S1)

+ 124.9285

7) KOSHAL Y = 0.5453(M1) + 0.6747(B1) + 0.6047(1S)

.0000142(S1*S1) + 2396.592

.D
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TABLE D.2

V RESPONSE SURFACE EQUATIONS FOR FOUR FACTORS

DESIGN EQUATION

1) BOX - BEHNKEN Y = 0.3833(M1) + O.9461(M2) + 0.9871(B1)

+ 0.8775(S1) - .0000229(S1*S1)

- .0000539(M2*Sl) - .0000512(B1*S1)

+ 1319.9931

2) BOX - DRAPER Y = 0.3950(M1) + 0.9441(M2) +- 0.9879(B1)

+ 0.8868(61) -. 000024(61*61)

4- - .0000527(M2*S1) - .0000503(B1*51)

+ 1332.3008

3) HYBRID Y 0.434(M1) + 1.1172(M2) + 1.0793(81)
(416C)

+ 0.7926(61) - .0000149(S1*S1)

- .0000677(M2*Sl) - .0000645(B1*S1)

+ 1129.0738

4) HYBRID Y 0.4394(M1) + 1.0915(M2) + l.1122(B1)
.7 (416A.CP)

+ 0.823(61) - .0000174(61*61)

-.0000643(M2*S1) - .0000601(B1*61)

+ 1060.9086

5) MIN POINT Y 0.4088(M1) + 1.0122(M2) + 1.055(81)

-~ + 0.9707(S1) - .0000265(S1*S1)

-.0000582(M2*S1) -. 000055(B1*S1)

+ 810.7629

D-.
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TABLE D.2 (continued)

RESPONSE SURFACE EQUATIONS FOR FOUR FACTORS

DESIGN EQUATION

6) CENTRAL COMP Y = 0.416(MI) + 0.9609(M2) + 1.0236(B1)
ROTATABLE

+ 0.907(S1) - .0000233(S1*S1)

- .0000536(M2*S1) - ..0000512(B1*S1)

+ 939.3

7) KOSHAL Y = 0.4087(M1) + 0.4833(M2) + 0.5322(B1)

+ 0.2406($1) +5142.2911

D -4
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TABLE D.3

RESPONSE SURFACE EQUATIONS FOR FIVE FACTORS

DESIGN EQUATION

4. 1) BOX - BEHNKEN Y = 0.6029(M1) + 0.6795(M2) 0.7294(B1)

+ 0.7689(B2) + 1.0363(S1)

- .0000295(61*1) + 843.9903

2) BOX - DRAPER Y = 0.6289(M1) + 0.6776(M2) + 0.7556(B1)
(FULL)

+ 0.7976(B2) + 1.0942(61)

- .0000329(61*1) + 387.9629

3) BOX - DRAPER Y = 0.6037(M1) + 0.6825(M2) + 0.7393(B1)

(HALF-REPLICATE)
+ 0.7846(B2) + 1.0926(S1)

- .0000329(S1*S1) + 536.6394

4) MIN POINT Y = 1.2691(M1) + 2.3605(M2) + 0.9176(B1)

+ 0.938(B2) + 0.6281(S1)

- .001015 (M1*M2) - 640.3131

5) CENTRAL COMP Y = 0.5011(M1) + 0.6289(M2) + 0.7123(B1)
ROTATABLE

+ 0.7545(B2) + 0.9511(61)

- .0000261(S1*S1) + 1615.6741

6) KOSHAL Y = .7010(M1) + 0.7668(M2) + 0.8011(B1)

+ 0.8332(B2) + 0.9541(Si)

.000024(S1*S1) + 465.7382

~D - 5
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TABLE D.4

RESPONSE SURFACE EQUATIONS FOR SIX FACTORS

DESIGN EQUATION

1) BOX - BEHNKEN Y = 0.5358(M1) + 0.6281(M2) + 0.6543(M3)

+ 0.6921(B1) + 1.3939(B2) + 1.2779(S1)

- .0000331(S1*1) - .0000726(B2*1)

- 642.153

2) BOX - DRAPER Y = 0.5678(M1) + 0.6446(M2) + 0.6260(M3)
(HALF-REPLICATE)

+ 0.6954(B1) + 1.2237(B2) + 1.2081(S1)

a - .00003276(S1*S1) - .00005422(B2*S1)

- 101.0283

3) HYBRID Y = 0.5625(M1) + 0.5981(M2) + 0.6260(M3)
(628A)

+ 0.6840(B1) + 1.2294(B2) + 1.0361(S1)

- .0000228(S1*S1) - .0000568(B2*S1)

+ 715.9275

4) HYBRID Y = 0.5544(M1) + 0.6061(M2) + 0.6138(M3)
(628B)

+ 0.6833(B1) + 1.2290(B2) + 1.0444(S1)

- .0000232(S1*S1) - .0000565(B2*S1)

+ 695.8883

5) MIN POINT Y = 0.5825(M1) + 0.6558(M2) + 0.5929(M3)

+ 0.7219(B1) + 1.2001(B2) + 2.3404(S1)

- .0000961($1*1) - .0000558(B2*S1)

- 4816.2332

D -6
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TABLE D.4 (continued)

RESPONSE SURFACE EQUATIONS FOR SIX FACTORS

DES IGN EQUATION

6) CENTRAL COMP Y = 0.5622(MI) + 0.6062(M2) + 0.6728(M3)
ROTATABLE

+ 0.6852(B1) + 1.2372(B2) + 1.0462($1)

- .0000235($1*1) - .0000569(B2*S1)

+ 620.122

7) KOSHAL Y = 0.5837(M1) + 0.6582(M2) + 0.7368(M3)

+ 0.7033(B1) + 0.9630(B2) + 1.0337(S1)

- .0000262($1*1) - .0000262(B2*S1)

+ 956.1621
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TABLE D.5

RANDOMLY SELECTED CHECK POINTS FOR THREE FACTORS

Ml Bi Si

1 1691 1747 6014

2 1660 1332 10359

3 2031 2624 9151

4 2527 1435 7752

5 2888 2594 8166

6 1831 1787 6474

7 1985 2011 7846

8 2955 1415 7076

9 2411 1959 6152

10 1757 2614 8822

11 2724 2224 9792

12 2326 2643 11871

13 2980 1743 11841

14 1750 2523 9492

15 1729 2243 9347

16 2768 2812 8627

17 2666 1462 8818

18 2157 2223 8082

19 2292 2201 9033

20 1771 2802 7756

*** 21 1650 1200 6000

*** 22 3000 3000 12000
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TABLE D.6

RANDOMLY SELECTED CHECK POINTS FOR FOUR FACTORS

Ml Mj2 51 s

1 2257 643 1739 6585

2 1665 1443 1400 7407

3 2063 1087 1242 8236

4 2645 1954 2986 9142

5 1881 540 2441 11017

6 2521 1306 1352 8755

7 2496 973 1283 7598

8 2247 1943 1613 7274

9 2779 553 2957 11808

10 2550 1120 1741 11147

11 1739 1056 2371 11175

12 2242 770 1539 11044

13 2608 759 2499 8595

14 2515 628 1278 10883

15 2134 1876 1921 8122

16 2401 1174 1837 11724

17 1800 1819 1373 11811

18 2996 1972 1949 6088

19 1707 1972 1958 8375

20 1712 1870 2027 11200

** 21 1650 500 1200 6000

** 22 3000 2000 3000 12000

D - 9



TABLE D.7

RANDOMLY SELECTED CHECK POINTS FOR FIVE FACTORS

Ml M2 Bi B2 Si

1 1691 645 1747 3911 6014

2 1660 535 1332 2462 10359

3 2031 1832 2624 2970 9151

4 2527 562 1435 2822 7752

5 2888 1824. 2594 2866 8166

6 1831 1133 1787 2050 6474

7 1985 1670 2011 2832 7846

8 2955 557 1415 2750 7076

9 2411 1656 1959 2652 6152

10 1757 875 2614 2936 8822

11 2295 1252 2235 3613 9208

12 2568 705 1973 2700 6598

13 2073 1977 1368 2588 11543

14 2868 1753 2326 3932 6215

15 1802 1031 1402 2705 6648

16 2108 598 1572 3301 6262

17 1835 1147 1840 2236 8226

18 1873 1281 2344 3994 6801

19 2216 976 2997 2275 8600

20 2138 704 1972 2694 6550

** 21 1650 500 1200 2000 6000

** 22 3000 2000 3000 4000 12000

D - 10



TABLE D.8

RANDOMLY SELECTED CHECK POINTS FOR SIX FACTORS

ml M2 M3 Bi B2 Si

1 2295 1249 561 2371 2244 11147

2 1782 1833 674 2733 2698 11940

3 2316 768 845 2553 2149 11165

4 2944 1912 443 1428 2237 8188

5 1830 1019 912 2320 2333 7243

6 2171 1034 608 1272 2532 8582

7 1691 1720 692 2082 2292 6907

8 1698 953 765 2708 3442 7633

9 1812 1700 514 1234 2135 9257

10 1691 1857 958 2399 2551 11751

11 1660 963 416 2626 3353 6585

12 2031 1323 765 2213 2724 7407

13 2527 517 621 2925 2798 8236

14 288 1128 704 1359 3910 9142

15 1831 819 548 1415 2253 11017

16 1985 645 554 2201 3079 8755

17 2955 669 943 2907 3265 7598

18 2411 1066 798 2125 2122 7274

19 1757 1944 613 2888 3076 11808

20 2568 1360 863 1539 2291 9235

** 21 1650 500 400 1200 2000 6000

** 22 3000 2000 1000 3000 4000 12000

D 1

- D - 11



BIBLIOGRAPHY

1. Box, G.E.P. and D.W. Behnken. "Some New Three Level
Designs for the Study of Quantitative Variables."
Technometrics, Vol. 2: 455 (1960).

2. Box, G.E.P. and N.R. Draper. "A Basis for the Selection

of a Response Surface Design." Journal of American
Statistical Association, Vol. 54: 622 (1959).

3. Box, G.E.P. and N.R. Draper. "The Choice of a Second
Order Rotatable Design." Biometrika . Vol. 50: 335 (1963).

4. Box, G.E.P. and J.S. Hunter. "Multifactor Experimental
Designs for Exploring Response Surfaces." Annals of
Mathematical Statistics, Vol. 28: 195 (1957).

5. Box, G.E.P. and K.B. Wilson. "On the Experimental
Attainment of Optimum Conditions." Journal of Royal
Statistical Society± Series B& Vol. 13: 1 (1951).

6. Box, M.J. and N.R. Draper. "On Minimum Point Second
Order Designs." TVchnometrics . Vol. 16: 613 (1974).

7. Cote, R., A.R. Manson, and R.J. Hader. "Minimum Bias

Approximation of a General Regression Model." Journal of
American Statistical AssociationL Vol. 68: 633 (1973).

8. Davies, O.L. Desgn and Analysis of Industrial
ERgiments (2nd Edition). New York: Hafner Publishing Co.,

Inc. (1956).

9. Graney, R. "An Optimization Methodology for
Multicriteria Comparison Using Response Surface Methods and
Mathematical Programming." Unpublished MS Thesis. AFIT
(AU), WPAFB, OH, Mar 1984.

10. Hicks, C.R. Fundamental ConceRts in the Design of

E2eRCiments (2nd Edition). New York: Holt, Rinehart and
Winston (1973).

11. Hill, W.J. and W.G. Hunter. "A Review of Response
Surface Methodology: A Literature Survey." Technometri cs
Vol. 8: 571 (1966).

BIB - 1



12. Kanemasu, H. "A Statistical Approach to Efficient Use
and Analysis of Simulation Models," Proceedings of the 42nd
Session of the International Statistical Institute, 1979,
Manila, Phillipines, 573-601.

13. Karson, M.J. "Design Criterion for Minimum Bias
Estimation and Experimental Design for Response Surface."
Journal of American Statistical Association.L Vol. 65: 1565
(1970).

14. Karson, M.J., A.R. Manson and R.J. Hader. "Minimum Bias
Estimation and Experimental Design for Response Surfaces."
Technometrics, Vol. 11: 461 (1969).

15. Karson, M.J. and M.L. Spruill. "Design Criteria and
Minimum Bias Estimation." Communications in Statistics.
Vol. 4: 339 (1975).

16. Lucas J.M. "Which Response Surface Design is Best."Technometrics 9 Vol. 18: 411 (1976).

17. Manacapilli, T. "A Methodology for Identifying Cost
Effective Strategic Force Mixes." Unpublished MS Thesis.
AFIT (AU), WPAFB, OH, Dec 1984.

18. Myers, R.H. Respo surf ace Methodolgqgy Ann Arbor:
Edwards Brothers (1971).

19. Neter, J., W. Wasserman, and M.H. Kutner. A jed Linear
Statistical Models (Second Edition). Homewood, Illinois:
Richard D. Irwin, Inc. (1985).

20. Roquemore, K.G. "Hybrid Designs for Quadratic Response
Surfaces." Technometrics, Vol. 18: 419 (1976).

21. Roush, W.B., R.G. Petersen, and G.H. Arscott. "An
Application of Response Surface Methodology to Research in
Poultry Nutrition." Poultry Sgience, Vol. 58: 1504 (1979).

22. Smith, P.W. and J.M. Mellichamp. "Multidimensional
Parametric Analysis Using Response Surface Methodology and
Mathematical Programming as Applied to Military Problems,"
Proceedings of the Pacific Conference on Operations
Research, April 23-28, 1979, Seoul, Korea, Vol. I, 592-615.

23. Steinberg, D.M. and W.G. Hunter. "Experimental Design:
Review and Comment." Technometrics Vol. 26: 71 (1984).

24. Toyomizu, M., Y. Akiba, M. Horiguchi and T. Matsumoto.
"Multiple Regression and Response Surface Analysis of the
Effects of Dietary Protein, Fat, and Carbohydrate on the
Body Protein and Fat in Growing Chicks." Journal of
Ntt , Vol. 112: 886 (8I-2).

BI1B -ILI



VITA

Captain Bryan K. Ishihara was born on 19 November 1959 in

Honolulu, Hawaii. He graduated from Damien Memorial High

School in Honolulu, in 1977. He attended the University

of Washington, in Seattle, Washington, from 1977 through

1981. He received a Bachelor of Arts in Mathematics and

a Bachelor of Arts in Business Administration in June

1981. Upon graduation, he received a commission in the

USAF through the ROTC program. His first assignment was

as an operations research analyst for the 57th Fighter

Weapons Wing, Nellis AFB, Nevada. He worked in the

Operations Analysis directorate under the Deputy

Commander for Tactics and Test. While at Nellis AFB, he

received a Masters Degree in Business Administration from

Golden Gate University in August 1983. He served at

Nellis AFB until entering the School of Engineering, Air

Force Institute of Technology in May 1984.

Permanent Address: 1176 Ala Napunani St

Honolulu, HI 96818

V -1

L am*~~W 'V



------------------------------------ ~~--~- ~ -. - - -

~ b

U
U
S
N


