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ABSTRACT

This thesis evaluates several bias minimizing and
variance minimizing experimental designs in terms of
their effectiveness and efficiency in constructing
response equations for a deterministic, nuclear exchnage
problem. The criteria which is used to evaluate these
designs includes: 1) number of required design points; 2)
number of terms in the response equation; 3) accuracy of
fit of the response equation; 4) orthogonality of the
design; and 5) rotatability of the design.

In addition, the response surface equations are
evaluated in terms of their predictive power and their
explanatory power. The predictive power addresses the
equation’'s ability to adequately estimate the true
surface and to accurately predict a future response for a
given set of inputs. The explanatory power addresses the
equation’'s ability to present a response equation which

is simple to interpret so that the true surface can be

easily evaluated and the results can be easily explained.
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1.0VERVIEW

BACKGRAUND

Response Surface Methodology (RSM) is a method for
fitting mathematical models to surfaces generated by
experiment. RSM is concerned with the functional

relationship

V = h(Uyy, Ugyaee, Uy (1)

between the response variable, V, and the n independent
variables Uy, Uz 4e¢.y Uy . The response relationship is
usually expressed as a low order polynomial or some other
non-linear function which approximates the true surface.
Graphically, the response relationship is represented as a
surface in a space whose coordinates are the n+! variables,
Uyy U2 y.euy Uy and V. For example, the response surface
can be expressed as a series of contours, similar to the
rise and fall of land masses on a topographic map.

In applying RSM, the analyst selects an experimental
design (i.e., a theory which requires the least number of
points to accurately fit the model) such that the functional
relationship

Yy = £, Mggeany %y) (2)
fitted by the method of least squares closely approximates
the true function
Y' = glX,y Xgeeeny Xp) (3

over a specified region. When { inadequately represents

-

rd J‘!J"J




AN
%{ g9, there are two errors associated with this problem:

i
f, 1) variance error - which is error due to sampling;
’\? and 2) bias error —  which is error due to the lack of
',E fit of f to g

ff Initially, criteria for evaluating the adequacy of

fi designs have focused primarily on minimizing the variance
13 error while the question of bias error has been given

ﬂﬁ somewhat secondary considerations. However, a bias

&5 minimizing design takes on added significance when RSM is
$_ applied to a deterministic model because there is no

{; sampling error associated with this model. In this context,
;%% a deterministic model is a model in which the response

LE variables are free from stochastic variation.

3;* For example, non-deterministic models, such as

;ﬂ. computer simulations, yield different results (due to random
Ej sampling of distributions) each time the test is conducted.
;j However, deterministic models, such as linear programming
ﬂE problems, yield the same results each time they are applied
i%; because sampling is not involved for the fixed output level.
l;f Therefore, any error associated with the deterministic model

is solely attributable to bias error (lack of fit) and none

» of it to variance error (sampling).

. In addressing the concept of experimental designs for
iﬁ: response surfaces, most of the RSM literature has focused on
»Qi those designs which minimize variance. These designs have
fi received a large share of attention because RSM has been

N

&y 1 -2
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£
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% almost exclusively applied to non-deterministic models.

E% Examples of variance minimizing designs are provided in Box

‘; and Behnken’'s work (1:455) on three level factorial designs.
EE Thus far, only a limited amount of literature has been

sé published on bias minimizing designs. 0Only the basic theory
g of bias minimizing designs exists in the literature with the
'{ applications of the theory still to be fully documented. In
E\ general, the applications of RSM have focused on generating

n response surface equations for two purposes: to predict

» future responses and to determine the input values of the

Eg optimum response. In determining the optimum operating

< conditions, the experimenter employs various search

ﬁ techniques, such as gradient search methods, to solve the

~

1; problem. However, in examining the response surface of a

deterministic model, the experimenter may not be interested

in determining the optimum operating conditions. Rather, as

Pt

¢ in this thesis, the experimenter may be interested in

a adequately representing the true surface with his predicted

13 surface so that he can explore the relationships between the
'& input variables and accurately predict the response values.

%_ As a result, the experimenter is interested in selecting a

E design which allows him to employ simple analytical

,& techniques to the response equation to examine these

f' relationships.

:A The basic theory of bias minimizing designs proposes

i that a design can be constructed which requires fewer number
W of design points and which achieves a better fit of the

LTI N W I U IR YR T TG T N S LN T SR
~-\chnfyﬁf\ﬁmi¢hvﬂ’#¢;Ja¢fw“33\r
L) () o F "
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function to the response surface than a variance minimizing
design because a bias minimizing design does not consider
any variance in its formulation. Manacapilli (17:6.1) has
stated that for experiments with four or more variables, a
bias minimizing design provides a function with a better fit
to a surface than a variance minimizing design. However,
the bias minimizing design requires more design points to
achieve the fit. Thus, these results indicate that not all
bias minimizing designs achieve a better fit with fewer

design points.

In developing experimental designs for response
surfaces, researchers have focused on variance minimizing
designs as the basic criterion in order to capture the
response surface. However, deterministic models possess
characteristics whereby a bias minimizing design may be a
more appropriate choice. Thus, the problem is to find a
bias minimizing design which best fits the response surface
of a deterministic model and to compare the efficiency and
effectiveness of this design to a variance minimizing

design.

RESEARCH RUESTION

What experimental designs produce effective and
efficient response surfaces of deterministic models?
SUEBSIDIARY BUESTIONS

REM when applied to a deterministic model is

P O N VI T, S W S v SR Y ; T T U N TN TR JO U
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a

]

|é investigated to find bias minimizing experimental designs.

i¥ The results of this design are evaluated over various factor

; levels and its effectiveness is compared to the results of

b

?J variance minimizing designs. The primary measures of

EB effectiveness (MOE) are: orthogonality of the design,

;' accuracy of fit to the true response surface, and number of

L; required design points.

:; Some of the questions to be answered from these MOEs

" are:

xé 1) What are the tradeoffs of using a bias minimizing design

;3 instead of a variance minimizing design to fit the response

F’ surface of a deterministic model?

;. 2) When is this design more efficient or more effective

‘o than a variance minimizing design?

e 3) Is the analysis of response surfaces made easier with a

o

S} bias minimizing design?

:1t 4) Is the bias minimizing design a practical method (in
terms of the required number of design points) to fit a

;3 response surface of a deterministic model?

1; 5) Do these designs produce equivalent results?

%_ 6) Can an orthogonal bias minimizing design be constructed

;é to facilitate the analysis of the surface?

k)

LITERATURE REVIEW

'E The concepts of Response Surface Methodology were first

R developed by Box and Wilson in the early 195@0°'s (S:1). This

A methodology is designed to be a practical and efficient

i: manner in dealing with the problem of determining the

): 1 - S
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5: optimum operating conditions for a specific process. For
jé example, RSM is ideally suited for agricultural and chemical
:' experiments in which the experimenter seeks to maximize the
ﬁ; vield or purity of the product. An extensive list of the
‘E applications of RSM in chemical, agricultural, and other
;} related fields can be found in Hill and Hunter 's article
s (11:591).
<
-i More recent applications of RSM have been in the area
o of animal husbandry. Articles by Toyomizu, Akiba,
tg Horiguchi, and Matsumoto, (24:886) and by Roush, Petersen,
 ; and Arscott, (21:1504) have identified the uses of RSM in
S, determining the optimum operating conditions for raising

chickens.

With regards to military applications, Smith and

Mellichamp (22) used RSM to perform multidimensional
%: parametric analysis to study mathematical programming
3 models. In addition, several recent Air Force Institute of
1 Technology (AFIT) thesis efforts have applied Smith and
’3 Mellichamp ‘s approach and techniques to various military
:j related problems. For example, Manacapilli (17) applied RSM
?: along with economic production functions to a nuclear
;E exchange linear programming model. Manacapilli showed that
‘: economic production functions could be fitted to the
;s response surface of a deterministic model so that basic
;E economic theory could be used to analyze the surface.
; Another application of RSM to a nuclear exchange model
X

is the work by Graney (19). In his thesis, Graney combined

A
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two different response surfaces (representing two different
objectives) as a means of evaluating a multiple objective
problem.

Further use of Smith and Mellichamp'’'s paper in this
research effort is defined in Chapter 11 under the proposed

methodology section.

GENERAL METHODOLOGY

In general, the basic approach in answering the
research question is to apply various experimental designs
to a response surface of a deterministic model and to
evaluate the differences in the results.

Specifically, the first step is to identify bias
minimizing designs, such as the Box—-Draper designs and the
Koshal designs.

The second step is to identify variance minimizing
designs. Several variance minimizing designs are considered
in this study. These designs include, but are not limited
to, second order rotatable designs and central composite
rotatable designs. These types of designs are selected
because of their frequent use in RSM.

Next, both the bias minimizing and variance minimizing
designs are applied to a deterministic model. The
deterministic model to be used in this research effort is a
nuclear exchange model. The nuclear exchange model is a
simple linear programming model designed to optimally

allocate the number of strategic weapons per weapon type
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 § {input variables) to targets so that maximum damage occurs
i’ (response variable). This model was selected because of its
:\ basic simplicity énd because past AFIT thesis efforts, by
g Graney (19:51) and by Manacapilli (17:6.1) have used a

3\ similar model with favorable results.
f; Finmally, the functions obtained from the two types of
;% experimental designs are evaluated in terms of their

o

.ﬁ effectiveness and efficiency.

oy In terms of effectiveness, the fit of the postulated
§¢ surfaces to the actual surface is measured. To measure

the fit of a postulated surface, a random set of data points
from the actual surface is collected and is applied to the
~£ function which is used to generate the postulated surface.
r& The differences between the expected response and the actual
response are then computed. The sum of the deviations
. squared (SDS) is then obtained and a comparison is made
between each of the functions estimated by different designs
[, based on their SDS value. The designs which generate models
which most closely represent the true surface are the
model which minimizes SDS.

In terms of efficiency, the minimum number of design
points required to generate the surface are evaluated. As
stated earlier, Manacapilli showed that a bias minimizing

design required more design points than a variance

minimizing design while gaining only a small improvement in
the fit of the postulated surface. If this result holds for

the generalized bias minimizing design, then the

N AR g s el
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effectiveness and efficiency trade—-offs between bias and

variance minimizing designs are evaluated.

At

One of the measures of this trade—-off is an

e
-

effectiveness—efficiency factor. This factor is given by

E=(error in fit of design)*(number of design points) (4)
m where the error in the fit of the design is the mean of the
’ .
u differences between the predicted and the actual responses

divided by the actual responses.
J This factor simultaneously takes into consideration
"
' the precision with which the design estimates the true
‘_
surface and the number of required experimental design

: points (18:13%)
-",t
" The next chapter expands the methodology and discusses
, the specific concepts involved in applying RSM to a
'j deterministic model.
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= 11. METHODOLOBY

3

o INTRODUCTION

'.: This chapter details the methodology used in applying
$‘

»

‘& Response Surface Methodology (RSM) to a deterministic model.
o

" It builds on the general methodology described in Chapter 1
f by explaining the various experimental designs which are

_‘.:

'j used in this study, by detailing the nuclear exchange

' linear programming (LP) models and by outlining the

'? application of experimental designs in generating the

i

;Q. response surfaces.

i

A SECOND ORDER EXPERIMENTAL DESIGNS FOR RESFONSE SURFACES

)

N A major goal of Response Surface Methodology is to

>

M*: answer the qgquestion of what happens to the response

f. variable when input variables are allowed to vary over a

ﬁ; specified range. Instead of utilizing a one variable at a
3

3} time procedure (which changes the level of one factor while
- fizing all other input variables at a specified level), the
f L]

:ﬁ theory of experimental design is utilized. By applying the
\

B appropriate experimental designs, a response function is

77 generated to estimate the response value for any given

.\

fﬁ combination of input variables. Two books which are

; excellent references on the theory of experimental design
\¢ have been written by Davies (8) and by Hicks (10). An

3 .

Qii extensive list of applications of experimental design in RSM
¢

K sl can be found in Steinberg and Hunter's article (23:71).

"E Furthermore, a significant portion of RSM literature
'b
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has focused on second order experimental designs. That is,

designs specifically constructed for fitting a second order

.polynomial equation to the data. This type of design

produces a second order polynomial equation of the form :

y =bg +2 b x; + b xf + by xix; (D

This equation includes the first few terms of a Taylor
series expansion. Therefore, a second order design usually
produces an adequate response equation in estimating

the actual surface because the response equation depicting
the actual surface can usually be represented by a Taylor
series expansion. The difference between the actual and
predicted surfaces'is due to the higher order terms of the
Taylor series expansion which are not included in the
equation fof the predicted surface, but are included in the

equation for the actual surface.

ORTHOGONALITY. One of the characteristics of the
experimen¥al design which is sought by the experimenter is
the mutual orthogonality of coefficients. Orthogonality is
that property of an experiment which ensures that the
different classes of effects shall be capable of direct and
seperate estimation without any entanglement. The sum of
squares of all the effects are then independent and additive
(8:587).

Orthogonality permits surer assessment of those areas on
which process design and control efforts should be
concentrated. It also provides means for unambiguous

simplification and improvement of response models along with

)
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the potential for uncovering basic mechanisms (20:419).

That is, those terms which are most important in predicting
the surface can be easily identified.

ROTATABILITY. A second desirable characteristic of an

experimental design is that the design be rotatable. An
experimental design is said to be rotatakle if the variance
of the estimated response ¢, at some point (t,, X,4y.004 XK),
depends on the distance from the point to the design center
and not on direction. In other words, as far as the design
is concerned, points in the factor space which are the same
distance from the origin are treated as being equally
important (18:163).

Box and Draper (3:339) indicate that a rotatable design
will minimize bias provided that certain conditions are met.
These conditions are: the region of interest is spherical
and the fitted model is an mth order polynomial and the true
model is an nth order polynomial,; such that if m+n=2r, then
the appropriate design is an rth order rotatable design; if
m+n=2r +1, then the appropriate design is a rth order
rotatable design with moments of order 2r+l1 all zero. Thus,
in fitting a second order polynomial to a true surface of
order three, the fifth moments of the design must all be
zero for the design to be rotatable.

NUMBER OF DESIGN POINTS. A third desirable
characteristic of an experimental design is that the fewest

possible number of design points be used to estimate the

response surface. The fewest number of design points is a




Qﬁ function of the number of factors and the type of design
'h\.
*iz being used.
W
L]
J The minimum possible number of design points that can
v be used to estimate any surface is defined by the expression

- (k+1)#(k+2) /2, where k defines the number of factors in the

experiment. This quantity is in stark contrast to the

%. number of data runs which are required if the experimenter

h chose to utilize a one variable at a time procedure to
estimate the surface. For example, in a simple two variable

§” problem in which the first variable is allowed to vary

'y between @ and 450 and the second variable is allowed to

vary between @ and 750, Manacapilli calculated that 338,701

(451 % 751) runs are required to produce the exact surface

x

o

:} of a two factor experiment if the variables are varied one

4 at a time (17:3.8). On the otherhand, certain experimental
:§ designs are able to estimate this surface with only six data
EZ runs. The savings in time and cost are readily apparent.

2 BIAS MINIMIZING DESIGNS

ég Since the only error associated with deterministic
:ﬁ{ models is bias error, bias minimizing designs are very

Tﬁ effective in fitting response surfaces to these models. The
E% bias minimizing designs which are utilized in this project
Eé are: Box-Draper designs and Koshal designs.
‘t: BOX-DRAPER BIAS MINIMIZING DESIGNS. The EBox-Draper

bias minimizing design is constructed in a similar manner as
a central composite design. That is, the design is composed

of a fractional factorial portion, an axial point portion

o,
\
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'{ and center points. Like the central composite design, the
> bias minimizing design is nearly orthogonal and nearly
rotatable.

For the case of three independent variables the design

matrix is given by

2 X1 X2 X3
L ¥p +p +p !
K-~ ' !
' t+q ) 2
o D = ! @ +q @
- ! 0 o +q !
~ : ! (6)
1 @ ) @ !

The specific values of p and q are dependent on the
second and fourth moments of the design matrix. The
‘3 specific values which minimize bias and a detailed
derivation of the design matrix can be found in Box and
Draper ‘s article (2:622) and Myers’' book (18:196).

KOSHAL DESIGNS. The Koshal design is a simple design used

e by Koshal in fitting frequency distributions by the method

vy of maximum likelihood (12:377). The Koshal design requires

¢

the minimum number of design points to fit a quadratic

Py
[

L

response surface, and the major advantage of using this

s s W@
s e e
[T 3

design is its simplicity and economy.

.

E‘ For the case of three independent variables the design
% matrix is given by

oW

]

D
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o

.Y

L X1 X2 X3

N —_

- P -5 -.5 -.5 !
- ! :

o : .5 --5 _15 :

\!‘: i H
v i —-.S .5 -.5
R : :
o ! -.5 -.5 .5

G : :
. ! 1.5 -.5 ~-.5 i

) : '

o D = ! -.S 1.5 ~-.5 !

;j i :

W R -.5 1.5 |
4% : !

. ' «S -5 S (7)

- [ '
b .- ' 1

- V' —-.5 5 I

- PS5 .5 -5 1

C—— P

[
7 . . . .
SN A detailed derivation of the design matrix can be found in
S
A

e Kanemasu‘'s article (12:578).
VARIANCE MINIMIZING DESIGNS
L%‘ . As stated earlier, there are two errors associated with
'J':

ﬁ- the problem of fitting the predicted surface to the actual
*i surface: variance error and bias error. As their names
‘\-_),'

* »

iﬁ imply, variance minimizing designs are constructed to
L
. E minimize variance error and bias minimizing designs are
); constructed to minimize bias error.
:jj Although deterministic models do not generate any
w.:""

}: variance error, variance minimizing designs have been shown
@

e to produce adequate results in fitting response surfaces to

R,

these models. In fact, Box and Draper hypothesized that

" &
=

designs which minimize variance do a very good job at

>

minimizing bias also (2:4622). The variance minimizing
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designs which are utilized in this project are: Central
Composite Rotatable Designs, Box—-Behnken Designs, Hybrid

Designs, and Minimum Point Designs.

CENTRAL COMPOSITE ROTATABLE DESIGNS. The central

composite rotatable design was first developed by Box and
Wilson as a practical alternative to the 3 X factorial
design for estihating a second order response equation.
This design is probably the most widely known and
recommended design for estimating quadratic response
surfaces (16:412).

The central composite design is the 2 K factorial or
fractional factorial, augmented by axial points and center
points. For the case of three independent variables the

design matrix is given by

X1 X2 X3
bo+1 +1  #1
i +q @ g |
D = : ©° +q 2
' 2 Q +q
: : (8)
i o 2 o_

With the proper selection of q, the central composite design
is orthogonal and rotatable. A detailed derivation of the
g-values can be found in Box and Hunter’'s article (4:195).

BOX-BEHNKEN DESIGNS. In 196@, Box and Behnken

developed a new class of three level factorial designs which
were useful for estimating the coefficients in a second

degree graduating polynomial (1:455). These designs are
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1i nearly rotatable and nearly orthogonal (i.e., a small

z; correlation exists between the constant term and the squared
:: terms and between the squared terms themselves). A

? practical advantage of the Box-Behnken design over the full
Q central composite design is that when evaluating problems

with large number of factors (i.e., greater than five), the
Box-Behnken design requires fewer design points to estimate

the surface.

g
X Ay

The designs are formed by combining factorial designs

- with incomplete block designs (1:457). For the case of

% three independent variables, the design matrix is given by
; X1 X2 X3

[ — —_—

. 1 +1 +1 e |

b ' - !

i+l @ +1

- D= !

' . +1 +1 |

- : i ()

- HE ) 2 |

. -. —l

s

1

- A detailed derivation of the design matrix can be found in

Box and Behnken’'s article (1:4535).

HYBRID DESIGNS. Hybrid designs were created to achieve

-

the same degree of orthogonality as central composite

oA *F e

designs or regular polyhedral designs, to be nearly minimum

bt point, to be nearly rotatable, and to possess some ease in

coding (20:419).

4

w The hybrid designs are constructed in a similar manner
f: as central composite designs. That is, the design is

.

N composed of a fractional factorial portion, an axial point
; portion, and center points. The major difference between

N
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i3
b
.; the hybrid and central composite designs is that hybrid
-
%b designs are augmented with an extra variable column which
3N
! L]
" resembles a cross polytope design. For the case of three
‘ij independent variables the design matrix is given by
- X1 X2 X3
o b+l +1 . 6386 :
-\ : H
"‘» P +1.1736 o -.9273 :
e, 1 ]
' ] +1.1736 -. 9273 '
- D = : :
e : 7, e 1.2986 '
4 : :
! ' 2 -.1360 ! (10)
o, [ 4 el [
o : @ 2 2 H
N [ R
'\‘::
,ﬁ A detailed derivation of the design matrix can be found in
Roquemore’'s article (20:419).
31 MINIMUM FPOINT SECOND ORDER DESIGNS. The purpose of
>
Ll
2& second order designs with minimum number of points is to
Dy
:) provide a low cost, practical design to estimate a quadratic
g response surface. For a k—factor design, the minimum number
\ of points is (k+1)*(k+2)/2. The design should give rise to
Y
w . least squares estimates with minimum generalized variance
°
N (6:613).
'F:
;- For the case of three independent variables, the design
[ 3 matrix is given by
W
"
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X1 X2 X3
— —
HEES | -1 -1 i
I § -1 -1
H H
P -1 1 -1 i
HEESS | -1 1
'p o] -1

D = Pop -1 p I
i | p p
Voq 1
t : (11)
: 1 q 1 i
. | 1 q

[
L

The specific values of p and q, along with a detailed
derivation of the design matrix can be found in Box and

Draper ‘s article (6:613)."

MISCELLANEQUS

Several articles have been published which have offered
an alternate approach toc minimizing bias error in response
surfaces. The articles by: 1) Karson, Manson, and
Hader (14:461), 2) Karson (13:1363), 3) Karson and Spruill
(15:329), and 4) Cote, Manson and Hader (7:633), have
applied similar techniques to address the problem of
minimizing bias. That is, their methods consist of
developing an estimator for a given design which minimizes
bias.

Although these works will not be used in this project,

their availability is noted here for any future work on this

topic.
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:E NUCLEAR EXCHANGE MODEL

7% The deterministic model used to generate the response
qw values for this study is a nuclear exchange linear

ﬁﬁ programming model. In this rather simplistic model of a

nuclear force structure, the single objective of the model

is to maximize the damage expectancy of the force structure.

-
-

.

': The damage expectancy is maximized given the effectiveness

’ of each weapon type against each target type.

g For example, consider the hypothetical strategic force

}.

i: of three weapon systems (ICEM, Bomber, SLBM) and two target

'-r“-

7] types. Table 1 shows the amount of damage expected (D1, D2,
D34...4 D6) given a particular weapon type and target type.

< TABLE 1

N SINGLE SHOT DAMAGE EXPECTANCY TABLE

o

o

~

{ \_.

o WEAPON TYPE (FACTORS)

R ICBM (M1) BOMBER (B1) SLEM (S1)

A2 TGT TYPE

Sl

4\. TARGET 1 D1 D2 D3

TARGET 2 D4 DS D6

% »

A ::':

::,

O The damage expectancy values in Table 1 represent single

L,

J -

_Q; shot damage expectancv, that is, the damage expectancy from

W

ﬁﬁ a single warhead of a particular weapon against a single

;ji target. In this model, an additional warhead could be

[J

4. launched at the same target. Therefore, it is possible to

AN

increase the damage expectancy against a single target by

X

’h
r)
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ié launching two warheads {(of the same or different weapon

é type) at the target. In those cases where two warheads are
;. launched at the same target, the new damage expectancy value
gE for that target can be computed in the following manner

;.

t DEyew= 1 — CL(1-DE, )*(1-DE, )1 (12)

A

;§ Thus, there are six additional combinations of damage

expectancy which must be considered for each target type

. (e.g., Mi*M1, M1%B1, M1%S1, B1#B1l, Bi#S1i, S51%51). After
'é considering all possible combinations, the LP model now

S maximizes the total damage expectancy subject to the

gﬂ limitations on the number of weapons, number of targets, and
g other targeting constraints. Further details of the

- specific model used to generate the data along with the LP
g formulation are available in Appendix A.

g

" AFFLICATION QF THE EXPERIMENTAL DESIGN

:_ As mentioned earlier, there is a practical advantage in
§ employing the theory of experimental design in estimating a
‘E: response surface. For example, in the simple three factor
g? problem used in this study, if each factor were allowed to
:E vary one at a time, the total number of runs required to

.E generate the surface is 14,6081,339,651 (1351*18081%6081). By
.é constructing the appropriate experimental design, the
:E surface could be estimated with as few as ten runs.

E; The experimental designs which are used in this study

: are second order designs. The purpose of a second order
:: design is to fit a second order response equation to the
g
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data. The second order response equation for the three

factor case is of the form

DE = b, + b, (M) + b, (B1) + by (51)

+ by, (M1%M1) + b,, (B1¥Bl) + by; (S1%81)

+ by, (M1%B1) + by, (M1#S1) + b,, (B1%S1) (13

where, M1 = npumber of ICBM warheads, Bl = number of bomber
warheads, and S1 = number of SLBM warheads.

One of the requirements to produce a second order design
is that at least three levels of each factor must be
selected so that the coefficients of the response equation
can be estimated. The three levels which are usually
selected are the values at the upper end (having a coded
value of +1) and lower end (having a coded value of -1) of
the range for each input parameter plus the mid-point
(having a coded value of @) between the extreme points.
These points are selected and coded in this manner so that
the coefficients of the response equation are not highly
correl ated.

Table 2 indicates the uncoded and coded values of the

three factor problem used in this project.

------
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TABLE 2

FACTOR LEVELS

WEAFON TYFES (FACTORS) LEVELS (CODED VALUES)
M1 1650(-1) 2325(Q) 3I00B(+1)
B1 1208(-1) 2108(0) 3IV0B(+1)
51 6000 (-1) 9000(0) 12008 (+1)

In many of the central composite designs which are used
in this study, the coded values are greater than +1 and less
than -1. The appearance of these values can best be
explained by examining the central composite design for the
three factor case. In this situation, the central composite
design selects its initial design points (factorial portion)
at the corners of a cube centered at the origin. Because
the region of interest is taken to be spherical, the design
positions additional points along the axes so that
representative points can be sampled over the entire region.
These axial design points lie near the boundary of the
sphere and along‘one of the axes. Therefore, the axial
points have values greater than +1 and less than -1 due to
the radius of the sphere.

There is a possibility of significant error in the
estimated response values because the axial points are
positioned outside the original feasible region. That is,
if the true surface is radically different outside the
feasible region than it is within the feasible region, a

significant error occurs due to the positioning of the

z o~ 14




axial points. In that case, a different means of coding or
ﬁ- a different design (which does not utilize points outside

this region) should be employed. However, if the true

% .
r.

surface is not radically different outside the feasible

N A

region than it is within the feasible reqgion, then the axial

-

design points do not contribute a significant error in

estimating the predicted surface.

o

Furthermore, many of the designs which have been
selected in this study have been originally constructed with
multiple center points. Often times, multiple center points

are used to minimize variance, to achieve rotatability or to

S LS A AN

achieve orthogonality. However, the replication of the
center points is not required while analyzing deterministic

models because there is no sampling error associated with

PRSI AR AL |

this type of model. Althouqh pure rotatability and

2.

orthogonality may be sacrificed in these cases, the designs

Ll ]
a e & 8

" still maintain a high degree of rotatability and

orthogonality. Therefore, only one center point is included

in any design which has been originally constructed with

Az r 3 B

multiple center points.

2 Ky

The designs which are used in this study for the three
factor case have already been outlined. The designs which

are used in the three, four, five, and six factor problems

are provided in Appendix B.

After selecting the appropriate experimental design and

P
QI R v e

after defining the LP, the next step in the methodology is

to execute the appropriate number of force allocation runs
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Ay using the LP model. One run is accomplished for each of the
: identified combinations in order to obtain the optimum
3 damage expectancy for each set of input factor values.

The final steps in obtaining a response equation is to
use the results of a particular design as input to a
multiple linear regression program. The coded levels of
each of the factors are input to the program as the

independent variables, and the damage expectancy is input as

Paled

the dependent variable. Using multiple stepwise linear

regression, the coefficients of the response equation are

.

determined. The coded values are then uncoded in order to
K produce a relationship in which the actual number of
warheads of the weapon systems can be used. The response
equation for uncoded values portrays the relationship of
each factor to the response variable. A sample of the input
) and the output for the stepwise linear regression is found
E in Appendix C. '

) The next chapter portrays the results and details the

. analysis of the effectiveness and efficiency of the various

; designs used in this study.

a
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This chapter presents the analysis of the response
equations for the various designs which are used in this
study. The purpose of this analysis is not to evaluate the
LP but rather, to evaluate the designs and the response
equations.

The analysis is divided into two parts: the predictive
power of the response equations and the explanatory power of
the response equations. The predictive power of the
response equation addresses the equation’'s ability to
adequately estimate the true surface and to accurately
predict a response for a given set of inputs. The
explanatory power addresses the equation’s ability to
present a response equation which is simple to interpret so
that the true surface is easily evaluated and the results

are easily explained.

PREDICTIVE POWER QF RESPONSE SURFACE EQUATIONS
As stated in Chapter I, the basis for evaluating the
predictive capabilites of an equation of a response surface

design is eq(4), the effectiveness - efficiency factor.

E=(error in fit of design)*(number of design points) 4)

This factor generates a value so that various designs are

compared in terms of their precision in estimating the
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true surface and the number of required experimental design
points.

In order to obtain the error in fit of the design, a

random set of points is used as inputs into the response
surface equation and the differences between the actual and
predicted responses are recorded. In comparing these
response equations, the random data set is not used to
estimate any response equation, but rather to compare the
predicted values of the estimated equations against each
other. The benefit of the random data set is that all
equations are compared against a common data set so that
prediction bias is avoided. Prediction bias arises when the
choice of a regression equation is uniquely related to the
observations from which it was created.

The response equations which are used to evaluate the
error in fit of the design are modified versions of the full
regression equations. That is, selected terms from the full
regression equations have been omitted from the modified
regression equaitons because these terms account for less
than two percent of the total sum of squares.

The primary reason for excluding these terms is to
obtain a relatively simple equation (i.e., an equation with
as few terms as possible) which is easy to interpret, but
still produces a good fit. If *he full regression equation
is used instead of the modified equation to estimate the
true surface, the ability of the response equation to
predict future response values is improved; however, the

ability to interpret the equation is significantly
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iz degraded. That is, the interpretation of the equation is
;i~ very difficult due to the complexity of the equation. Thus,
f: by selecting two percent of the total sum of squares as the
Qf criteria for determining what terms to include in the

8 response equation, a reasonably good fit is obtained while

i: still preserving the interpretative value of the response
.
o>,
o equation.
Ly The response surface equations along with the random
ﬁ: data sets which are used in the analysis of the predictive
Eﬁ power can be found in Appendix D.
o
A
¢ Tables 2 through 6 depict the results of the predictive
*% power of the various designs which are used in this study.
S
=
TABLE 3.
Jﬁ PREDICTIVE FPOWER OF THREE FACTOR DESIGNS
&
:j PERCENT ERROR IN FIT NUMBER OF
N DESIGN  TO RANDOM DATA SET DESIGN FQINTS E - VALUE
J
e VARIANCE DESIGNS
o
o BOX-BEHNKEN %  1.08 13 14.04
o HYBRID 310+CP *  1.28 11 14.08
4
o HYBRID 311A * 1.63 11 17.93
- CENTRAL COMP *  1.56 15 23.40
S
o MIN POINT 6.12 10 61.20
®
L BIAS DESIGNS
.ff BOX~-DRAPER * 1.38 15 20.70
b KOSHAL 2.74 10 27.40
"
’\
L # indicates nearly rotatable design
)
2
15 3 o - 3
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Y TABLE 4.

PREDICTIVE FOWER OF FOUR FACTOR DESIGNS

PERCENT ERROR IN FIT . NUMBER OF
DESIGN TO RANDOM DATA SET DESIGN POINIS E = VALUE

N
0 VARIANCE DESIGNS
i,

o~ HYBRID 416A+CP % 1.86 17 18.082

HYBRID 416C * 1.80

-
o

28.80

- BOX~-BEHNKEN * 1.18

rJ
w

29.50

1y CENTRAL COMP %  1.31

k)
a

32.75
MIN POINT 4,37 15 65.55
. BIAS DESIGNS

e BOX~-DRAPER * B.96 25 24,00

KDOSHAL 1.80 15 27.008

R # indicates nearly rotatable design
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TABLE 5.

PREDICTIVE POWER OF FIVE FACTOR DESIGNS

PERCENT ERROR IN FIT NUMBER OF
DESIGN TO RANDOM DATA SET DESIGN POINTS E — VALUE

—— T o —— e e e n S am o —— o Tt s i e e

VARIANCE DESIGNS

CENTRAL. COMP * 1.73 27 46.71

(HALF REPLICATE)
BOX-BEHNKEN * 1.41 41 57.81
MIN POINT 5.88 21 123.48

BIAS DESIGNS

KOSHAL 1.15 21 24.15

BOX-DRAPER * 1.37 27 36.99
(HALF—-REPLICATE)

BOX-DRAPER * 1.31 43 56.33
(FULL)

# indicates nearly rotatable design
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TABLE 6.

PREDICTIVE POWER OF SIX FACTOR DESIGNS

PERCENT ERROR IN FIT NUMBER OF
DESIGN TO RANDOM DATA SET DESIGN POINTS E - VALUE

VARIANCE DESIGNS

HYBRID 628A * 1.33 28 37.24
HYBRID 628B * 1.35 28 37.80
MIN POINT 1.76 28 49.28
BOX—BEHNKEN * 1.15 49 56.35
CENTRAL COMP * 1.33 45 99.85

(HALF-REPLICATE)
BIAS DESIGNS
KOSHAL 1.72 28 48.16

BOX-DRAPER * 1.39 45 62.55
(HALF-REPLICATE)

# indicates nearly rotatable design

ACCURACY. Tables 3 through 7 indicate that the

accuracy of a response surface equation is dependent on the
number of design points and on the degree of rotatability of
the design. That is, the accuracy of a response surface
equation is highly correlated to the number of design
points, but this relationship is not a perfect correlation
and their differences in fit may be explained by the degree

of the rotatability of the designs.

For example, it may be hypothesized that the design
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$‘§ with the most points produces the most accurate fit. That
;jﬁ is, each design selects its design points under the
i o assumption that the design points are representative of

.t
g%ﬁ their surrounding area. In theory, by selecting more design
%Eﬁ points, the area for which each point is an estimate is

;ji decreased., Thus, the total error in the estimate of the

é:%g true surface is reduced. But as Tables 3 through 7

1%3: indicate, more design points does not guarantee a more

Kﬁ accurate fit. This result is rather surprising, but it dges
‘;% indicate that other contributing factors influence the

Fﬁ% degree of accuracy of the response equation other than the
w?ﬁ_ number of design points.

:;& A major contributing factor which influences the

o

!TF accuracy of an equation of a response surface design may be
e the degree of rotatability of the design. In general, the
'§§ variance and bias minimizing designs are able to generate
?:? similar degrees of fit in estimating a response surface

ri? equation to the true surface, provided that the variance
35? minimizing designs are nearly rotatable. Rotatability is an
ﬁ*ﬁ important characteristic for variance minimizing designs
%;’ when estimating deterministic models because the selection

D

E"\% of the design points is not strictly based on minimizing
k.j bias. But, as stated in Chapter I, if the region of
:Ség interest is spherical, rotatable designs minimize bias. The
%;3; importance of rotatability in minimizing bias is highlighted
'iﬁ' by the fact that the only variance minimizing design which
{ﬁg fails to consistently produce a relatively accurate fit is
YA
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the minimum point design, which is a non-rotatable design.

However, none of the designs mentioned thus far is
perfectly rotatable; thus, bias is not totally minimized for
these designs. In fact, all of the designs, except the
minimum point and the Koshal designs, are nearly rotatable.
That is, these nearly rotatable designs have varying degrees
of rotatability and thus, have varying degrees of
effectiveness in minimzing bias. Therefore, it might be
ﬁypothesized that the differences in accuracy between the
designs which are not accounted for by the number of design
points, are accounted for by the degrees of rotatability of
the designs.

For example, the response surface equation of the
hybrid design (416A+CP) achieves a more accurate fit to the
true surface than the response equation of the Box-Behnken
design for the four factor problem. In this example, the
hybrid design requires eight fewer points than the Box-
Behnken design, but is able to achieve a higher degree of
accuracy. By the hypothesis, this indicates that the hybrid
design (416A+CP) has a higher degree of rotatability than
the Box-Behnken design for four factors. This hypothesis is
confirmed by the fact that the Box-Behnken design is not
highiy rotatable for four factors, while the hybrid design
maintains a high degree of rotatability.

A similar argument can be made to explain why no
single design is able to achieve the most accurate fit for

all factors. That is, for the different number of factors,
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these designs have different number of design points and

;f‘ different degrees of rotatability. Thus, the degrees of
A accuracy for the response equations are affected.
;’..~ EFFECTIVENESS-EFFICIENCY FACTOR. Since the accuracy
i; of fit of the design is highly correlated to the number of
ﬁ\ design points, the results which are obtained concerning the
;ég effectivenss—-efficiency factor are not surprising. That is,
lll a design which provides the most accurate fit with the

‘ fewest number of design points does not exist. Even a

Cn
:5% perfectly rotatable design does not provide the most
;Ez accurate fit, if a sufficient number of design points are
!: not specified.
"§ Thus, in attempting to minimize the effectiveness-

b

;; efficiency factor, it remains for the experimenter to
‘l_ evaluate the problem to determine what degree of accuracy is
:% required and how many design points are available. In
¥$ evaluating the trade-off between accuracy and the number of
F# design points, one major consideration is the cost of

j‘: performing additional data runs. In those problems in which
.?: cost of executing additional data runs is minimal, the
lif experimenter may concentrate on achieving a higher degree of
;E; accuracy. On the other hand, in those cases in which set-up
;i: caosts and run time are prohibitive, the experimenter may
,:: select the most economical design (in terms of the fewest
et
123 design points) which achieves an adequate level of accuracy.
L? The trade-offs between accuracy (level of fit) and cost
;yi (number of design points) are further complicated when the
o
by 3 -9
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 § experimenter desires a response equation which has superior
7& explanatory powers.

_} EXPLANATORY POWER OF RESPONGE SURFACE ECUATION

?§ The basis for evaluating the explanatory capabilities
?4 of an equation of a response surface design is the

ii interpretation of the coefficients of the response equation.
‘§ The coefficients provide answers to such questions as:

{;' "What is the overall effect to the dependent variable,
fg if one independent variable is increased by an amount X
;E and all other independent variables are held constant?"
i? By applying the analysis techniques of multiple regression,
} similar "what...if..."” questions can be answered quickly and
,j accurately. The answers to these questions are quick and

y easy because the basic interpretation of the coefficients in
fi multiple regression analysis is that the coefficients of the
'% main effect terms represent the marginal effects of change
o of the dependent variable when the values of the independent
" variables are altered.

; EFFECT OF MULTICOLLINEARITY ON REGRESSION

;& COEFFICIENTS. As stated earlier, Hox and Hunter have

LE identified a small correlation that exists between the

E constant term and the squared term and between the squared
5 terms themselves (4:201). This correlation is commonly

‘é referred to as multicollinearity in statistical literature.
" Since Box and Hunter concentrated on the predictive power

f of the response equation, multicollinearity did not affect
Y
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their results because of the fact that when some or all

independent variables are correlated among themselves, the
ability to obtain a good fit is not generally inhibited nor
does it tend to affect prediction of new observations
{19:384). That is, the predictive power of the response
equation is not generally affected when multicollinearity
exists.

‘However, the common interpretation of regression
coefficients as measuring the change in the expected value
of the dependent variable when the corresponding independent
variable is increased by one unit while all independent
variables are held constant is not fully applicable when a
high degree of multicollinearity exists. While it may be
conceptually possible to vary one independent variable and
hold the others constant, it may not be possible in practice
to do so for independent variables that are highly
correlated (19:385). Because a high degree of correlation
among the independent variables exists in non—orthogonal
designs, these designs do not possess a high degree of
explanatory power by the fact that the regression
coefficients of the response equations do not accurately
measure the marginal effects of change of the dependent
variable when the values of the independent variables are
altered. Thus, only those designs which have a high degree
of orthogonality will be considered in the explanatory power
section of this study. The designs which are to be

evaluated are: the Central Composite Rotatable designs, the

el
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Box-Behnken designs, the Hybrid designs, and the Box-Draper
Bias Minimizing designs.

THREE FACTOR RESULTS. (14) is the basic

Equation

response equation for the three factor problem.

DE = by, + b, (M1) + b,(B1) + by (S1)

- by (S1#51) — b,y (B1#S1) (14)

The terms which have been omitted from the equation

account for less than two percent of the total sum of

squares, and therefore are dropped from the final equation.
Table 7 lists the coefficients of the response equation

for the various designs for the three factor problem.

TABLE 7.

COEFFICIENTS OF THE RESPONSE ERUATION
FOR THREE FACTOR DESIGNS

DESIGN COEFFICIENTS

be b, b b, b a3 b,

(1) Central 124.9285 |. 4848 1.004 |. 0000276 | . 30AA6L2

Comp

(2) Box-— ~-648.3319 |. 4965 1.180 |. 0QBO37S | . 60BD66S

Behnken

Hybrid 68.4118 <961 |.0000251 |. 0000502

(311A)

Hybrid —626.1627 |.5002 | 1.327 |1.163 |. 0000352 |. 0000774

(310+CP)

Box -~ ~285.6179 1.285 |. 0000318 |. 00BV6L7

Draper
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2:-:. FOUR FACTOR RESULTS. Equation (15) is the basic
B x.-
L2,
.-;. response equation for the four factor problem.
4
e DE = b, + b,(M1) + b ,(M2) + b;(Bl) + b,(51)
4 o
'{.E:_ — by (S1%#S1) - by, (M2%S1) - bj, (B1%S1) (13
‘ )
P )
e The terms which have been omitted from the equation
i‘;f:f- account for less than two percent of the total sum of
X
::::'.'. squares, and therefore are dropped from the final equation.
. Table 8 lists the coefficients of the response equation
K h\..
:‘_: for the various designs for the four factor problem.
Loy |
S, !
::.‘-:. TABLE B-
e
-'.-;-'.: COEFFICIENTS OF THE RESPONSE ERUATION
ff.-“ FOR FOUR FACTOR DESIGNS
230 DESIGN COEFFICIENTS
R Bo b b2 B3 be Das D 2e D34 —
ot (1) Central| 939.3|.416|.961(1.02 |.507 |. 200023 |. 200054 |. 2OBOS1
J Comp
“
\f.‘.:-j (2) Box- 1320.0].382 |.946 |.987 |.877 | . 080027 |. 002054 |. 200051
s Behnken
o
;—:ﬁ (3) Hybrid |1129.1].434 [1.12]11.08|.793 |. 000015 |. 000048 |. 0800645 }
. i (4160C)
S |
:.,-;:4 (4) Hybrid 11060.1].439 |1.09]1.11].827]|.000017 |. 000064 |. 0000601
oY (416A+CP)
B’ o
o
*-,f.‘-: (5) Box-— 1332.3].395 }.944 |.988 |. 887 |. 000024 |. 00005 |. 0000SAI
Orx Draper
5
N
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:: FIVE FACTOR RESULTS. Equation (16) is the basic

8]

188 response equation for the five factor problem.

‘ DE = by + b,(M1) + b,(M2) + b, (B1)

:. + b (B2) + b (51) — b, (51%51) (16)

v

f The terms which have been omitted from the equation

1 account for less than two percent of the total sum of

"

N

(: squares, and therefore are dropped from the final equation.

. Table 9 lists the coefficients of the response

'

': equation for the various designs for the five factor

~; problem.

~

55

B>

o

i

\ TABLE 9.

15 COEFFICIENTS OF THE RESPONSE EQUATION

;: FOR FIVE FACTOR DESIGNS

E: DESIGN COEFFICIENTS

- by b, b, bs By by bss

) (1) Central 1615.7 1.501 |. 630 }.712 |. 755 |. 951 |. 0000261

[} Comp

)

{f (2) Box- 844.0 |.603|.680 |.729 |.76% |1.04 |. 0000295

N Behnken

2

f (3) Box- '536.6 {. 604 |.683(.739 |.785 {1.09 |. 2000329

N Draper (H)

g (4) Box-~ 388.01.6291.4678 |.756 |.798 |1.09 |. 0000329
Draper (F)
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5; SIX FACTOR RESULTS. Equation (17) is the basic
<.
?j response equation for the six factor problem.

N DE = b, + b,(M1) + b,(M2) + bj(M3)

+ by (B1) + bg(B2) + b g(51)

¥ = bgg (S1%51) — bgg (B2%S1) a7n

-
a
‘.J_

The terms which have been omitted from the equation

{i'.a

_E account for less than two percent of the total sum of
. squares, and therefore are dropped from the final

éi equation.

‘k' Table 1@ lists the coefficients of the response
3 equation for the various designs for the six factor
§%‘ problem.

)

TABLE 106.

COEFFICIENTS OF THE RESPONSE EBUATION
! FOR SIX FACTOR DESIGNS

v DESIGN COEFFICIENTS
L
" be b, b, b, b, bg be b66 b56
v, (1) Centrall 620.1 |.5621.6061.6735]1.685]1.24|1.05].0000235 |. 000057
Composite
‘)
ﬁ (2) Box- —642.1 |.536|.628 |.654 . 692 |1.37]1.28|.0000331 |. 000A73
% Behnken
;3 (3) Hybrid T15.9 |.5673]|.998 |.626].68411.2311.04|.02000228 |. 000057
' (628A)
¥
:? (4) Hybrid 695.91.5954 |.6B86 [.614 |.683]1.23|1.04|.0000232 |. 000057
g (628B)
.
4 %'
e (S5) Box-— -101.0].5681.645 1.678|.695(1.221.21 |. 0000328 |. 000054
Dr aper
<
f "r.
L
&
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', INTERFRETATION OF COEFFICIENTS. The parameter b, is
D
o the y-intercept of the regression surface. This term does

not have any particular meaning as a separate term in any of

o
3

.'l

the regression models because the range of the variables in

a_ e

d‘-.l - &

- e

LI N T §

the model does not include the point where M1=0,...,51=0.

Al
b

If this point had been in the relevant range of the

&
% ¢

»? variables, the b, term would indicate the response level
'E when all of the independent variables are set to zero.

;; When the regqression model does not include cross

3 product or squared terms (i.e., a first order equation),
-E the parameters b, (k#@) indicate the change in the mean
Q- response per unit increase in % when all other variables
é; included in the model are held constant. That is, b,

; indicates the change in the expected value of the

o response with a unit increase in %, when all other
>?E variables in the model are held constant. Since the
if experimental designs which are being considered in this
i,5 section are nearly orthogonal, the independent variables
: are almost uncorrelated and the variables have an

4 additive effect.
f; When the regression model includes cross product or
E squared terms, such as Eq (14) of the three factor model,
33 the coefficients of the main effect terms no longer indicate

the change in the mean response per unit increase in x, for
any given level of the remaining variables, if that variable

is also included in the cross product or squared terms. For

il el e il e

B S e,

example, in Eq(14), b, no longer indicates the change in the

T,
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&
R
F%; mean response for a unit increase in Bl because of the
tﬁi interaction of Bl and S1. Similarly, b; no longer indicates
; \ the change in the mean response for a unit increase in S1
gs% because of the interaction of S1 and Bl and because of the
9;% interaction of S1 with itself. Because of the complexity of
;,3 a regression model which includes several cross product and
i&ﬁ squared terms, the most desirable regression equation which
ig explains the response surface is one in which the main
v effects dominate and the cross product and squared terms
>§$§ terms take minor, secondary roles. In this manner, the
:;i parameters b, would indicate the change in the mean response
.3 per unit increase in x, when all cther variables included in
.:d the model are held constant.
?.j Differences between Coefficients. Tables 7
KO through 18 indicate that no two equations have the same
EE; coefficients to estimate the same surface. That is, each
Lt
.iﬁ design produces a unique response equation to estimate the
;E; true surface. These results are not unexpected and does not
EE; disqualify the use of multiple regression analysis
Fﬁi techniques as an analytical tool when evaluating response
ﬁil surfaces of deterministic models.
,;a; For example, small differences between the coefficients
;ﬁ are to be expected because the predicted surface is not a
'ﬁ perfect representation of the actual surface. The errors in
:Eﬁ the predicted surface are due to two factors: first, each
.Ef design selects different quantities of sample points to
by estimate the true surface and each design selects its design
3
o
e T - 17
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points at different locations in the region of interest; and
second, a small amount of multicollinearity is still present

between some of the variables in these equations.

%

E Y §
A

[ A

The selection of the number of design points and the

LA

placement of the design points have a tremendous impact on

the fitted regression function because the response equation

L

Oy

4

is influenced by whatever design points are selected.

MR -
’ “‘
v

L 4

Because each of the designs selects points from different

>

areas of the true surface, the response equation must
necessarily be different for each design. Any change in the
selection of the design points influences the coefficients
of the response equation to accomodate this change.

For example, the respaonse equation of the hybrid

design (311A) is

s

y = .5243 (M1) + 1.19% (Bl) + .961 (51)

¥ il
PRl LAt o
r]-)"} Pl

- 00000251 (S1%51) - 00006082 (B1%#S1) + 68.4118 (18)

4

al

‘Q}/.

If the design is altered so that the first and third

variables in the design are switched, then the new design

Taghy Yk

sy

matrix is coded as follows: the S1 variable is coded as

*

variable 1; the Bl variable is still coded as variable 2;

voa A ]
« vy
«
'l
»

(s
%

and the M1 variable is coded as variable 3. As a result,

v

different response values are obtained from the same design

i

matrix because different uncoded values have been used in

-
PN
-.1.“-

the MFPOS input files. The resulting response equation for
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the altered hybrid design is:

y = .4678 (M1) + 1.11@95 (Bl) + .98925 (S81)
- 0000275 (S1%51) - .000@S12Z (B1#S1) + 209.2299 (19)

The predictive power for both the original and the altered
designs are equivalent. That is, the degrees of accuracy
for both equations are the same. Howe er, a totally
different set of coefficients has been generated from the
altered design to estimate the true surface.

A second reason to account for the small differences
between the coefficients is the small amount of
multicollinearity which exists between the intercept term
and the squared terms and between the squared terms
themselves. Variables which possess even a small amount of
multicollinearity, produce regression coefficients which
tend to vary from one design to the next.

For example, a regression equation is developed from a
representative sample of points (design 1) from a large
population. If multicollinearity exists between some or all
of the variables, a second sampling (design 2) from the
population will necessarily produce a different regression
equation because of the multicollinearity between the
variables. The degree of variability between the
coefficients of the two equations may be directly related to
the degree of multicollinearity between the variables.

Multicollinearity can be eliminated between the

variables of an experimental design, if the design is made




o

perfectly orthogonal. A full factorial design is perfectly

Llaf 2V D

orthogonal, if the required transformations are performed on

+

the squared terms of the design. (The required

transformation is: X? - f?

2 2 A xS

.} The full factorial design is
not commonly used in RSM because it requires a large number

of design points. However, this design serves as an

e -

excellent standard to which other designs can be compared.

I a X

By performing the necessary transformations, the full
factorial three factor design for the determinstic model

produces the following response equation:

.4979 (M1) + 1.216 (B1l) + 1.1978 (S1)

<
I

. 80003865 (S1%S1) - .0000649 (Bl%51)

964.8424 (20)

- - e

The response equation of the full factorial design achieves
the same degree of accuracy as the other nearly orthogonal
designs in estimatgng the true surface. Thus, the primary
i difference between the full factorial design and the other
E, nearly orthogonal designs is that multicollinearity does not
: exists between the variables in the full factorial design so
that all of the variables are uncorrelated.
) In that case, the full factorial design provides the
{ most representative estimate of the true surface. That is,
the regression equation which is developed from the full
factorial design is strictly determined by the number and
placement of its design points. Whereas, the response

' equations of the other designs are also determined by the

'l
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number and placement of the design points, but, the effects

of multicollinearity also influence the coefficients of some

::. of the variables of the response equations.

N

,Q Thus, the degree of variability which exists between the
XY

o

coefficients of the full factorial response equation and the

coefficients of the other response equations may be a

exists in all of the equations (except the full factorial),

:E measure of the degree of multicollinearity which exists in
'\ those designs. For example, the coefficients of the

}: response equation‘for the Box-Behnken design compare more
é: favorably toc the full factorial design than some of the

: other three factor designs. This may indicate that the

:: influence of multicollinearity for three factor designs, is
‘3 not as significant on the variables of the Box-Behnken

K design as on the variables of the other designs. Haowever,
aé this statement is just a hypothesis because there is no

52 measure of the degree of orthogonality for the various

‘j designs.

‘é In short, the effects of multicollinearity on response
:: surface equations is of primary importance when evaluating
; deterministic models because the analyst is attempting to

!

:j draw direct inferences from the coefficients of the response
3 equation. If the degree of multicollinearity is too great
i between the variables in the equation, any information

E obtained from the coefficients may be misleading.

E: As stated earlier, a small amount of multicollinearity
N

therefore, no two designs produce the same set of

o
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;é coefficients when estimating a surface. Although the
s
oo differences between the coefficients are small, their
A effects may be quite significant.

1

3§ To further address the subject matter of the effects of
Ny
?; the differences between the coefficients, the designs and
]
K the response equations of the five factor model are
§L- evaluated. The five factor model is selected because of the
Yok

e simplicity of the response equations. These equations
"y include five main effect terms and one squared term in its
v{
;; modified form, eq(l6). In this manner, the coefficients of
i o
‘?. the M1, M2, Bl and B2, terms should represent the marginal
;: effects of change of the dependent variable when the
¥
F;: independent variables are altered. The coefficient of the
V- S1 term is excluded from the list because the effects of
g: change caused by S1 are influenced by the Si-squared term.
IE: Therefore, the marginal effects of S1 vary for different
;) levels of S1. Tables 11 through 14 compare the predicted
N

}{ change to the actual change of the dependent variable when
ﬁgﬁ one independent variable is altered while all other

»
by independent variables are held constant.
N2
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DESIGN

(1) Central
Composite

(2) Box-
Behnken

(3) Box-
Draper (H)

(4) Box-
Draper (F)

DESIGN

(1) Central
Composite

(2) Box-
" Behnken

\g (3) Box-
Draper (H)

(4) Box-
Draper (F)
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TABLE 11.
ACTUAL AND PREDICTED CHANGES
WHEN M1 IS DECREASED BY 10@

CHANGE IN RESFONSE

—— i s M s i o oot S oot

ACTUAL PREDICTED

-57.0 ~50. 1

-57.0 -60.3

-57.0 ~60. 4

~-57.0 -62.9
TABLE 12.

ACTUAL AND PREDICTED CHANGES
WHEN M2 IS INCREASED BY 400

CHANGE IN RESFONSE

ACTUAL PREDICTED
260.0 251.9
260.0 271.8
260.0 273.8
260.0 271.0

PERCENT ERROR

12.1

18.4

PERCENT ERROR

3.1

4.5

BEANEAr oA A i’ gt yhet et Lint gty Aot gt bt hntoiur et e and s inden aas )

----------------------




»‘-l
. o,
1254
,513_:.
?ﬁ{ TABLE 13.
‘A
: . ACTUAL AND PREDICTED CHANGES
o WHEN Bl IS INCREASED BY 200
o fe
382
NS CHANGE IN RESPONSE
2 DESIGN ACTUAL PREDICTED PERCENT ERROR
(1) Central 140.0 142.5 1.8
Composite
(2) Box- 140.0 145.9 4,2
, Behnken
N
e (3) Box- 140.0 147.9 S.6
ux; Draper (H)
)
S (4) Box- 140.0 151.1 7.9
- Draper (F)
A%
]1«
o
e
ot TABLE 14.
"y ACTUAL AND PREDICTED CHANGES
.5% WHEN B2 IS DECREASED BY S0@
\A
5!
e
SN CHANGE IN RESFONSE
f), DESIGN ACTUAL PREDICTED PERCENT ERROR
W
?Ij (1) Central -370.0 -377.25 2.0
] Composite
WY
g (2) Box- -3708.0 ~-384.5 3.9
P Behnken
K
e (3) Box- -370.0 ~392.3 6.0
he Draper (H)
oY,
1 (4) Box- -370.0 -398.8 7.8
AT Draper (F)
\.:_ -
P
L
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There are two primary reasons to explain the

%o Juia g

discrepancies between the actual and the predicted changes

¥ e

of the various response surface equations.
The first reason for these discrepancies is due to
& multicollinearity. As was stated earlier, the effects of
multicollinearity influence the coefficients of the
) correlated variables, and thereby influence their ability
i) to ac:u}ately measure the marginal effects of change.
The second reason for these discrepancies is due to the

b
§ fact that several terms have been omitted from the full

P

regression model. In this five factor example,; ten

. -~

interaction terms and four squared terms have been removed.

2 et

If these variables are inserted into eq(16), the differences
between the predicted change and the actual change of the
dependent variable is reduced. The full regression equation

.
) for the five factor model is

Yy = by + b, (M) + b,(M2) + b3(B1) + b, (B2) + bgy(S1)
P + by, (MI%¥M2) + b,y (M1#B1) + b,, (M1%¥B2) + b, (M1#52)
' + by, (M2#B1) + b g4 (M2%#B2) + b, (M2%51) + b,, (B1#B2)

+ bag (B1%S1) + b,, (B2#51) + by, (MI#M1) + b, (M2%M2)

+

bag (B1#B1) + b,, (B2#B2) + by, (S1%S1) (21)

-

Tables 15 through 18 contain the same information as

dam v & &

-

Tables 11 through 14, except for the fact that the full

regression model (5 main effects, 10 interaction terms, S |

j squared terms, and 1 intercept term) is used to determine

A P S N A A Y )
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p ':',\‘
b
148
J ; the predicted change of the response values in Tables 15
1
) \‘ﬁ-:
; > through 18.
0 TABLE 15.
wis
::Q:: ACTUAL AND PREDICTED CHANGES WHEN M1
> IS DECREASED BY 100 (FuULL MODEL)
5 CHANGE IN RESPONSE
o
\:1 DESIGN ACTUAL PREDICTED PERCENT ERROR
}I
"\ 8
- (1) Central -57.0 -57.5 0.9
o Composite
3; (2) Box- -57.0 -59.9 5.1
s Behnken
1y 1
A
k‘ (3) Box- -57.0 -60.2 5.6
Draper (H)
o (4) Box- -57.0 -60.3 s.8
Draper (F)
o
-,
- TABLE 16.
I .
D) ACTUAL AND PREDICTED CHANGES WHEN M2

IS INCREASED BY 400 (FULL MODEL)

Y

Q; CHANGE IN RESFONSE

D ,l'

o DESIGN ACTUAL PREDICTED PERCENT ERROR
‘\.

W (1) Central 262.0 247.6 3.8
Ve Composite

A

Wi (2) Box-— 260.0 267.5 2.9
@ Behnken

.

e (3) Box- 260.8 272.5 4.8
) :: Draper (H)

E (4) Box- 260.0 269.8 3.8
'y Draper (F)
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e
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] *'
k . TABLE 17.
B
ﬁﬁ‘ ACTUAL AND PREDICTED CHANGES WHEN B1
) IS INCREASED BY 280 (FULL MODEL)
“:.{
‘§ CHANGE IN RESPONSE
\::\
’J DESIGN ACTUAL PREDICTED PERCENT ERROR
1
Y (1) Central 140.0 140.1 2.1
%:} Composite
\'!
"Z (2) Box- 140.0 135.1 3.6
o Behnken
o ‘ (3) Box- 140.0 146.9 4.9
uﬁ Draper (H)
o
l. )
K (4) Box-— 140.0 148.2 S.8
( Draper (F)
‘-.‘.'
N
S
4",
N4, TABLE 18.
" ACTUAL AND PREDICTED CHANGES WHEN B2
o IS DECREASED BY S@00 (FULL MODEL)
K-
¢ CHANGE IN RESPONSE
FJ DESIGN ACTUAL. FPREDICTED PERCENT ERROR
A,
,'. (1) Central ~-370.0 ~364. 1 1.6
#0 Composite
-1‘.
.. (2) Box- -370.0 -377.9 2.1
4V‘ Behnken
S
G (3) Box- -370.0 -387.1 4.6
Q X Draper (H)
L 3 (4) Box- -3790.0 -389.5 9.3
- Draper (F)
&
f‘ From the full regression models, the analyst is able to
L)
Y obtain very effective measures of the marginal effects of
s
~
P
o
Ly,
. I - 27
%
Y
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the independent variables. The procedure to obtain this
measure consists of calculating the response value from the
response equation twice. During the first calculation, all
;HE variables are set to a base level; during the second

2 calculation, all variables remain fixed, except for the
variable whose marginal effect is to be measured.

Subsequently, the difference in the response values of the

N

% two calculations represents the marginal effect of that

. variable.

!}

h If the full regression model is used to measure the

G' ,'

’: marginal effects of an independent variable, then the

, requirement for low multicollinearity between the variables
:ﬁ is eliminated. The analyst does not obtain the marginal

Ta

-\

:* effects information from the coefficients, but from the

‘) difference between the estimated response values. Since

> multicollinearity does not affect a design’'s ability to

3]

3 produce a response equation that predicts effectively, the
"y response equation of a non-orthogonal design is able to

al

)

1$ measure the marginal effects of an independent variable as
)

3 well as the equation of an orthogonal design.

:; The drawback to using the full regression model is the
5

:ﬁ complexity of eq(21). The ability to measure the marginal
iy effects is no longer a simple proposal and the marginal

4

< effects of an independent variable is dependent on the level
-

-

N at which it is evaluated. Essentially, the analyst performs
Y

-

ﬁ a one variable at a time procedure to obtain his

g information. Therefore, the method involving the modified
?

b '

o
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: regression model may be a more attractive alternative
K because of its simplicity, provided that the decision maker
is able to accept some limitations in the magnitudes of the

estimates of the predicted marginal effects.

—— s e s e e e Y e s T P AR e e tm e it e e e S e e T e e B e s T e

Eguations. The question of whether or not any error level

& is too great is dependent on the degree of accuracy which

L

the decision maker requires. An important point which the

decision maker must consider, is that the information

modified equations, Tables 11 through 14 indicate that there

-
E pertaining to the marginal effects of the independent

3 variables is readily available from the simplified response
~ equation, but not easily obtainable from other sources.

3 In examiming the predicted marginal effects of the

are discrepancies between the predicted and the actual
changes in the response values. The range of the error

between the predicted and actual change is 1.8% to 12.1%.

P o¥a"s 6" s 0 s

In general, an error of less than 2% is likely to be

accepted in just about any circumstance. However, an error

PRl by Wy U,

of 127 may not be acceptable in certain situations.

s

A simple test to check the magnitude of the error of
the predicted change for the coefficients of the modified
response equation, is to compare the predicted change of the
modi fied response equation to the predicted change of the
full regression equation. If the level of error is
acceptable to the decision maker, the modified response

equation is used and is a very useful analytical tool.
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However, if the level of error is not acceptable, the
analyst may choose to use the full regression equation to
measure the marginal effects of change for the independent
variables. But as was noted earlier, this procedure may be
rather lengthy, in that the marginal effects of change of
any variable is not constant throughout the entire surface.
Therefore, the variables must be evaluated at several
different levels in order to determine the marginal effect.

An alternative to using the full regression model when
the level of error of the modified equation is unacceptable,
is to evaluate the ratios of the coeffitients of the
modified equations. In regression analysis, the ratio of
the coefficients indicates the contribution of one factor as
compared to another factor. Therefore, although the exact
magnitude of their impact on the response value can not be
determined, the relative importance of the various
independent variables can be assessed by rank ordering the
ratios of the coefficients.

For example, the modified response equation for the

five factor Box-Hehnken design is

y = 6029 (M1) + 6795 (M2) + .7294 (Bl)
+ .7689 (B2) + 1.0363 (S1)

- 0008295 (S51%51) + 843.9903 (22)

The mean contribution of B2 to the response value, y, is

estimated to be 1.27 times as great as the mean contribution

-----




}
n":
‘
:\ of M1 to the response value. This amount is obtained by
)
:$ calculating the ratio of the coefficients for the two
) independent variables (.7689/.6029).
is In a similar manner, eq(23) is the response equation
N for the five factor Central Composite Rotatable design.
%_ According to this response equation, the mean contribution
l
- of B2 is 1.5 times as great as the mean contribution of M1
Q-
h to the response value (.7545/.5011).
)
4 y' = .S5@811 (M1) + .6289 (M2) + .7123 (B1)
| + .7545 (B2) + .9511 (S81)
- 0008261 (S51#S1) + 1615.6741 (23)

AN
3: Since the various designs which are used in this study
S
£ produce different coefficients for each design, the
¢ ratios of coefficients are different. Hence, the exact
[
) magnitude of the contribution of each factor as compared to
X
"«
; other factors can not be determined with certainty.
: Nevertheless, the relative contribution of the factors can
.~
-, still be obtained and these contributions can be rank
&
h. ordered.
'y Therefore, an accurate, but less definitive statement
] |
-: about the relative contribution of the two independent |
: i
X variables, is that the mean contribution of B2 is greater
i than the mean contribution of M1 to the response value.
;; This conclusion is permissible because the relative
\

magni tudes of the coefficients are maintained for the
v various designs even though the values of the coefficients
8
)
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themsel ves change from one design to another. That is, no
matter what orthogonal design is selected, the regression
coefficient for B2 always exceeds the coefficient for Ml.

In this manner, the following conclusion is drawn for the
five factor problem: the independent variable which causes
the greatest change is S1, provided the values for Sl remain
within the relevant range. This variable is followed in
order of importance by: B2, Bl, M2, and Mi. Although this
conclusion does not provide an exact measure of the
difference between the factors, the relative ranking of the
factors is still an important piece of information which the

decision maker needs in order to evaluate his alternatives.




24 IV. CONCLUSION

s

K QVERVIEW

';j This research identifies several experimental designs
,?S which are effective and efficient in estimating response

fﬁ surface equations for deterministic models. The specific

E;; deterministic model which is used in this study is a nuclear
% exchange linear programming model, but the results which are
!*j obtained in this study apply to any deterministic model.

&i The purpose of Response Surface Methodlogy in its

332 application to any type of model is to obtain a response

i? surface equation which closely approximates the true

;g surface. A second order polynomial has been shown to be an
:: excellent choice for estimating response surfaces of

S

N determininstic, nuclear exchange models. Ideally, the

;g experimental design should use as few points as possible to
?ﬁ obtain an accurate fit and the response equation should

) .

{j contain as few terms as possible. That is, the equation

}é should contain as few cross product and squared terms as

Egg possible so that direct inferences can be drawn from the

;ﬂ coefficients of the main effects.

{ SPECIFIC RESULTS |
i%; In keeping with the idea of simplifying the response
lﬁ‘ equation, the response surface equations which are used to
'5 evaluate error in fit of the design are modified versions of
S: the full regression equations. That is, selected terms from
5
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the full reéression equations have been omitted from the
modified regression equations because these terms account
for less than two percent of the total sum of squares.

In evaluating the response equations of these designs
for their effectiveness, the results indicate that the
accuracy of a modified response equation is dependent on the
number of design points and on the degree of rotatability of
the design. The accuracy of a response surface equation is
highly correlated to the number of design points, but this
relationship is not a perfect correlation, and their
differences can be explained by the degree of rotatability
of the designs.

In short, more design points improves accuracy,
provided the points are spread throughout the entire
surface. Similarly, if the region of interest is spherical,
a rotatable design improves the accuracy of the response
equation.

In evaluating these designs for their efficiency as
well as effectiveness, the results indicate that a design
which provides the most accurate fit with the fewest number
of design points for all factors does not exist. In fact,
minimizing the number of design points and maximizing
accuracy are dichotomous goals. This trade-off between
accuracy and required number of design points is dependent
on the problem at hand and needs to be defined seperately
for each situation. Therefore, it remains for the decision

maker to evaluate the problem to determine which is more




N

oy

h; important: a more accurate fit or fewer design points.

;ﬁ In evaluating the explanatory power of the response

i equations, the coefficients of the modified response

%“E equation represent marginal effects of change of the

Et} dependent variable when the independent variables are

:f altered provided specific conditions are met. These

iﬂ§ conditions are: a high degree of multicollinearity does not

ﬁ% exist between the independent variables; the main effect

" terms of the response equation dominate the squared and the

Tﬁ interaction terms; and the modified response surface is able

3 to accurately represent the true surface.

L @ The results of this project indicate that there are

;u limitations in the ability of the coefficients of the

L: modified response equation to predict the marginal effects
3 of change. The accuracy of these models to predict the

:§ marginal change can be evaluated by comparing the predicted

£4 changes of the coefficients of the modified response

é{ equations to the coefficients of the full regression

:ij equations. If this difference is unacceptable, then the

ES full regression equation can be used to measure the marginal

*5 effects or the ratios of the coefficients of the modified

s% equation can be used to determine the relative importance of

:E the independent variables.

o

:'i RECOMMENDAT IONS

‘EE This study originally intended to examine the

x differences between bias minimizing and variance

'
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$ minim¥zing designs. As this study evolved, it became
clear that there were no significant differences between
the two types of experimental designs, provided that the
5 designs maintained certain characteristics, such as,

5 rotatability and orthogonality. |

However, very few designs possess pure rotatability

b or orthogonality. Most of the designs are classified in
“I
5 a gray area called, nearly rotatable and nearly

orthogonal. As such, further research is required in

o specifying nearly rotatable and nearly orthogonal. This
\l

. research may find what levels of rotatability are

S necessary to achieve a desired level of predictive power.
;: Also, this research may find what levels of orthoqonality
y are necessary to achieve a desired level of explanatory

power.
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This appendix describes the specific problems which were
analyzed for the three, four, five, and six factor cases. In
addition, this appendix lists a sample of the Multi-Purpose
Optimization System (MPOS) input files which were used to

obtain the response value.

THREE FACTOR PROBLEM

There are three weapon types and five target classes.

The three weapon types are:

WEAPON TYPE LOW VALUE HIGH VALUE
M1 1650 3000
B1 1200 3000
51 6000 12000

Assumption: Each system’'s reliability, probability of launch
survivability, probability of arrival, and warhead
reliability are all 1.0. The single shot probability of kill
(which is damage expectancy on a target because of the
previous assumptions of reliability, etc.) for each warhead

type is provided in the following table:
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TABLE A.1

SINGLE SHOT PROBABILITY OF KILL
FOR THREE FACTOR PROBLEM

TARGET TYPE WEAPON TYPE

M1 B1 s1
TGT CLASS 1 .84 .96 .73
TGT CLASS 2 .75 .88 .64
TGT CLASS 3 - .55 .70 .32
TGT CLASS 4 .88 .98 .78
TGT CLASS S .25 .48 .15

Target class 4 represents time urgent targets and only
ICBMs (M1) and SLBMs (S1) are allowed to hit them. In
addition, the maximum allowable damage on target class 2
targets is .95 of the total target value and at least .68 of
the total target value of target class S5 targets must be
destroyed. Furthermore, a maximum of two warheads can
targeted at any individual target.

The number of targets in each class is 6000, 3000,
2000, 1000, and 200, respectively. The measure of
effectiveness for this problem is the total damage
expectancy, i.e., the sum of the product of the damage

expectancy on a target times the number of targets.
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There are four weapon types and five target classes.

"'_-"
X

The four weapon types are:

LS

'

.

WEAFPON TYPE LOW VALUE HIGH VALUE
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B1 1200 3000

S1 6000 12000
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Assumption: Each system’'s reliability, probability of launch

DA " 2
Y ',r;')"'u""{‘- s W

S

£ A

>
¥

survivability, probability of arrival, and warhead

reliability are all 1.8. The single shot probability of kill

(which is damage expectancy on a target because of the

previous assumptions of reliability, etc.) for each warhead

oy
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type is provided in the following table:
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'_ TABLE A.2

R
) SINGLE SHOT FROBABILITY OF KILL

AN FOR FOUR FACTOR PROBLEM
33
;: TARGET TYPE WEAPON TYPE

W,
: A M1 M2 B1 S1
e} TET CLASS 1 .84 .90 .96 .73
-

AN TGT CLASS 2 e 75 .83 .88 .64
\\..|

{:?_Z TGT CLASS 3 .55 .62 .70 .32

-‘,: .
a-‘ TGT CLASS 4 .88 .74 .98 .78
4N TGT CLASS S .25 .36 .48 .15
L8N

??

)
< Target class 4 represents time urgent targets and only

ICBMs (M1, M2) and SLBMs (S1) are allowed to hit them. In

.E-:
.\% addition, the maximum allowable damage on target class 2
N
W
1 > targets is .95 of the total target value and at least .60 of 3
a the total target value of target class S targets must be
A
$ > destroyed. Furthermore, a maximum of two warheads can
I‘.
ﬁé targeted at any individual target.
fﬁ_ The number of targets in each class is 6000, 4000,
f 1“:
;E& 2000, 1008, and 200, respectively. The measure of
el

f* effectiveness for this problem is the total damage

expectancy, i.e., the sum of the product of the damage

expectancy on a target times the number of targets.
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FIVE FEACTOR PROBLEM

There are five weapon types and five target classes.

The five weapon types are:

WEAPON TYPE LOW VALUE HIGH VALUE
M1 1650 3000
M2 S00 2000
B1 ‘ 1200 3000
B2 2000 4000
S1 6000 12000

Assumption: Each system’s reliability, probability of launch
survivability, probability of arrival, and warhead
reliability are all 1.0. The single shot probability of kill
(which is damage expectancy on a target because of the
previous assumptions of reliability, etc.) for each warhead

type is provided in the following table:
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5: TABLE A.3
E SINGLE SHOT PROBABILITY OF KILL
‘: FOR FIVE FACTOR PROBLEM
‘_ TARGET TYPE WEAFON TYPE
}N M1 M2 B1 B2 51
{; TGT CLASS 1 .84 .70 .96 .78 .73
;J TGT CLASS 2 .75 .83 .88 .92 .64
5 TGT CLASS 3 .55 .62 .70 .74 .32
g TGT CLASS 4 .88 .94 .98 .99 .78
'; TGT CLASS S .25 36 .48 ] - 15
&
:ﬂ Target class 4 represents time urgent targets and only
r ICBMs (M1, M2) and SLBMs (S1) are allowed to hit them. In
,E addition, the maximum allowable damage on target class 2
FE targets is .95 of the total target value and at least .60 of
* the total target value of target class 5 targets must be
{: destroyed. Furthermore, a maximum of two warheads can
'E targeted at any individual target.
‘; The number of targets in each class is 9000, 6000, 5000,
FS 1500, and 300, respectively. The measure of effectiveness
s: for this problem is the total damage expectancy, i.e., the
N sum of the product of the damage expectancy on a target
i; times the number of targets.
®
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& SIX FACTOR PROBLEM

fs There are six weapon types and five target classes. The
g six weapon types are:

' WEAPON TYPE LOW VALUE HIGH VALUE

:‘: M1 1650 3000

% M2 So0 2000

; M3 400 1000

" B1 1200 3000

-J B2 2000 4000

f‘ S1 6000 12000

i; Assumption: Each system’'s reliability, probability of launch
F: survivability, probability of arrival, and warhead

s reliability are all 1.8. the single shot probability of kill
g {(which is damage expectancy on a target because of the

g{ previous assumptions of reliability, etc.) for each warhead
F type is:
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TABLE A.4

SINGLE SHOT PROBABILITY OF KILL
FOR SIX FACTOR PROBLEM

TARGET TYPE WEAPON TYPE
M1 M2 M3 B1 B2 51
TBT CLASS 1 .84 .90 .92 .96 .98 .73
TGT CLASS 2 .75 .83 .87 -88 .92 .64
TGT CLASS 3 .55 .62 .65 .70 .74 .32
TGT CLASS 4 .88 .94 .95 .98 .99 .78
TGT CLASS 5 .25 .36 .45 .48 .55 .15

Target class 4 represents time urgent targets and only
ICBMs (M1, M2, M3) and SLBMs (51) are allowed to hit them.
In addition, the maximum allowable damage on target class 2
targets is .95 of the total target value and at least .60 of
the total target value of target class 5 targets must be
destroyed. Furthermore, a maximum of two warheads can
targeted at any individual target.

The number of targets in each class is 9000, 5606, 380a,
150@, and 300, respectively. The measure of effectiveness
for this problem is the total damage expectancy, i.e., the
sum of the product of the damage expectancy on a target

times the number of targets.
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2696969 36 3636 26363696 96 3696 96 36 96 96 6 96 36 96 96 96 936 36 3696 36 3 3696 646 96 36 36 36 3 96 96
RN EREXX®ER MPOS INPUT FILE 969695 36969696 56 96 96 3696 96
F9 36260 36 26 9 0 3696 96 3 FACTORS 969696 9696 96 36 3 36 96 966 96 6
U3 3636 U 26964 I 936 2 96 I 06 936K 3606 36 06 96 96 36 26 36 36 I 3636 3696966 9 36 36 36 96 96

REGULAR
TITLE
RESPONSE SURFACE FOR ARSENAL EXCHANGE MODEL
VARIABLES *% WEAPON *#
*%* SYSTEM #*
X111 TO X15 *% M1 *%
X21 TO X2S5 *% Bl *%
X31 TO X35 *% S1 *¥
X41 TO X495 *% M1 + M1 *%
XS51 TO XSS #% Bl + Bl »%
X61 TO X655 #%* S1 + S1 %%
X71 TO X795 *#% M1 + Bl *%*
X81 TO X8S *%* M1 + S1 *%
X221 TO X995 *% Bl + S1 =
MAXIMIZE ## DE TABLE #*%
.8400 X11 + .7500 X12 + .3550@ X13 + .8800
2600 X2t + .8800 X22 <+ .7000 X23 + .0000
7300 X3t <+ .6400 X32 + .3200 X33 + .7800
.9744 X41 + .9375 X42 + .7975 X43 + .9856
9984 XS51 + .9856 XS52 + .9100 X533 + .0000
<9271 X61 + .B7B4 X662 + .5376 X663 + .9516
<9936 X71 + .970@ X722 <+ .B650 X733 + .0Q000C
.9568 XB81 + .9100 X82 + .6940 X83 + .9736
9892 X991 + .9568 X92 + .7960 X93 + .0000
CONSTRAINTS

*#% (1) 95 % DE CRITERIA **

.7500 X12 + .B8800 X22 + .6408 X32 + .9375
.8704 X62 + .9700 X72 + .9100 %82 + .93568
*## (2) 6@ % DE CRITERIA **

.2500 X1S5 + .4800 X25 + .15@@ X35 + .4375

<2775 X665 + .61@00 X75 + .3625 X85 + .5580

*#%* (3) TARGET 1 CONSTRAINT %

X14 + .2500 X155 +
X24 + .4800 X25 +
X34 + .1508 X35 +
X44 + .4375 X45 +
XS54 + .7296 XG5S +
X64 + 27735 X65 +
X74 + .6108 X75 +
X84 + .3625 X85 +
X994 + .558@ X955
X42 + .9856 XS52 +
X92 .LE. 3800

X45 + .7296 X555 +
X955 .LE. 120

X11 + X21 + X31 + X41 + XS1 + X61 + X71 +

X81 + X91 .LE. 6000

#% (4) TARGET 2 CONSTRAINT **
X12 4+ X22 + X32 + X482 + X52 + X62 + X72 +
X82 + X92 .LE. 4000
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#% (5) TARGET 3 CONSTRAINT ##
X13 + X23 + X33 + X43 + XS53 + X663 + X73 +
X83 + X93 .LE. 2000

[ X

) #% (6) TARGET 4 CONSTRAINT #%
X14 + X284 + X34 + X844 + XS54 + X64 + X74 +
X84 + X94 .LE. 1000

b %% (7) TARGET S CONSTRAINTS ##

; X15 + X25 + X35 + X45 + X55 + X65 + X7S5 +

! X85 + X95 .LE. 200

(- *% (8) WEAPON SYSTEM 1 (M1) CONSTRAINT ##

;- X11 + X12 + X13 + X114 + X135 +
128 2 X41 + 2 X42 + 2 X43 + 2 X44 + 2 X45 +
« X71 + X72 + X73 + X74 + X75 +

XB81 + X82 + X83 + X84 + X85 .LE. 3000

. *%* (?) WEAPON SYSTEM 2 (Bl) CONSTRAINT

! X21 + X22 + X23 + X24 + X25 +

" 2 X51 + 2 X52 + 2 XG53 + 2 X54 + 2 X535 +
X71 + X72 + X73 + X74 + X753 +

X1 + X992 + X93 + X94 <+ X95 .LE. 3000

#%* (1@) WEAPON SYSTEM 3 (S1) CONSTRAINT *#

. X31 + X32 + X33 + X34 + X35 +
< 2 X61 + 2 X62 + 2 X&63 + 2 X664 + 2 X65 + .
b X81 + XB2 + X83 + XB4 + X85 +
X91 + X92 + X93 + X94 + X95 .LE. 9000
.
i PRINT
! OPTIMIZE
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F6 236 U 3666363 36 296 6 963696 363636 9696 396 36 96 3 3636 96 96 95 36 96 9696 96 36 96 969696 96 96
RN RN HRHX XX ENE MPOS INPUT FILE 3693568599569 6564
AN 969696696636 9696 96 4 FACTOR 26969696 96 9696 96 9 96 96 96 26 %
:-: 36 363 I U6 96 1696 6 36 I I 6 W I I I 363636360 36 I I U6 I I I I I I 6 3 I I I W

REGULAR
1 TITLE
Y RESPONSE SURFACE FOR ARSENAL EXCHANGE MODEL
N
o VARIABLES #%  WEAPON *#%
,5 ** SYSTEM *x
! Xt1T TO X15 *% M1 *%
o X21 TO X235 ## Bl *¥
,? X31 TO X35 %% St *%
ff X41 TO X45 *% M1 + M1 *%
7 XS51 TO XSS #% Bl + Bl ##%
X61 TO X&65 #% S1 + 51 #*
. X71 TO X7S #% M1 + Bl #*%
;g X81 TO X85 #% M1 + S1 *»
o X91 TO X95 ## Bl + 51 *%
N X181 TO X105 *% M2 *%
- X131 TO X115 *e M2 + M2 ®*
o X121 TO X125 *% M1 + M2 %
£ X131 TO X135 #% M2 + Bl #%
> X141 TO X145 #% 