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[

W. H. Fleming, S. P. Sethi, H. M. Soner

Abstract. This paper considers an infinite horizon stochastic production

planning problem with demand assumed to be a continuous-time Markov

process. The problems with control (production) and state (inventory)

constraints are treated. It is shown that a unique optimal feedback

solution exists. The solution is characterized in terms of a turnpike 1?!
set, toward which the optimal inventory level approach monotonically :?}
over time. Moreover, for nondeterministic demand the optimal inventory ::if
level reaches the turnpike set almost surely in a finite time and, : !L
s

thereafter, it wanders inside the set in response to the randomly N
fluctuating demand. - kft
Key Words: production planning,"stochastic optimal control, control t;:
constraints, state constraints, Markov Processes,\turnpike (i{

sets. -
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Introduction.

Thompson and Sethi [16] consider a production-inventory model, which

~

determines production rates over time to minimize an integral representing

. ".;H

.
. P
e s tecte s

a discounted quadratic loss function. The model is solved both with and

Y v e,
o

without nonnegative production constraints. It is shown that there

'\ 'l

exists a turnpike level of inventory, to which the optimal inventory

- rv

]

- levels approach monotonically over time. Of course, if the initial inven-

IR
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.

.- tory level is the turnpike level, then it is optimal to produce just

enough to satisfy the demand so that the inventory level stays at the

. Iy
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v
5
.

o fe b
v

turnpike level. The model was generalized by Sethi and Thompson [12] °

v

PP s

FRE ]

o

and Bensoussan, Sethi, Vickson, and Derzko [1] by incorporating an

t*
]
L

additive white noise term in the dynamics of the inventoryprocess. It was

P
.':

.

shown that there exists a unique optimal solution. Moreover, there

exists a turnpike level of inventory, in the neighborhood of which, the

optimal inventory level stays most of the time.

In this paper, we generalize the Thompson-Sethi model in several
different directions. First, we consider that the demand over time is
a stochastic process,assumed to be either a jump Markov process or a
reflected diffusion process. Second, we deal with fairly general convex
costs that include the special case of quadratic costs. Finally, for
jump Markov demand processes, we can incorporate a state constraint
stating that the inventory level cannot fall below a prescribed level.

We also note that our analysis of the case when the demand is a

diffusion process introduces an approximation, which generalizes the
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model of Bensoussan et. al. [1].

Xy

In order to provide a summary of the results obtained in the paper,

[N
7
:. l‘. 1 )

we denote by y(t), p(t), z(t) respectively the inventory level, pro-

(LAY
YA N

v v
& s 2 4
.

| Yo

duction level, and randomly fluctuating demand at time t. Production

)

is the control variable, subject to the constraint p(t) >0. In
§'s 1 - 6 we put no constraint on the inventory level y(t), but in §7
R’ the lower bound y(t) z-ymin is imposed. The demand z(t) is modelled
as a Markov process, which is bounded above and below (EO < z(t) < £1,
where EO > 0). We consider two cases: (i) z(t) is a jump Markov
process, with bounded generator L of the form (4.11); (ii) =z(t) 1is
a Markov diffusion, reflected at go and El (5.1).

The control objective is to minimize an expected discounted cost
of the form (1.2), which involves convex holding or shortage costs h(y)
and production costs c¢(p}. The value (or minimum cost) v(y,z) defined
in (1.3) for initial data y(0) = y, z(0) = z obeys the dynamic pro-
gramming equation (3.1). Special features of the model allow us to
show that v(+,z) 1is strictly convex and that the quantities 2dv/dy and
Lv(y,*), which appear in the dynamic programming equation exist and are
continuous. The optimal feedback production law p*(y,z) is expressed
as a function of 9v/dy by formula (3.2). We do not know that p*(-,z)
is Lipschitz continuous. However, since p*(-,z) is a nonincreasing
function of y, the differential equation

*

- N,z - 2, YO =y,

has a unique solution for the optimal inventory level y*(t).
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In §4 we treat case (i), when the demand 2z(t) is a jump Markov 1;&

process. We make use of the concept of viscosity solution, introduced !F‘
by Crandall-Lions [4] for nonlinear first-order partial differential ;éi
equations, and by Soner [14] for dynamic programming equations of con- ;i
-

trolled jump Markov processes. The value function v(y,:z is first L{
A

shown to be a viscosity solution of the dynamic programming equation, i;
and afterward a classical solution. In 85 we treat case (ii), when af:
b

z(t) 1is a reflected diffusion. Here we make the additional assumption

-, -
K

.

that the holding cost h(y) is twice continuously differentiable. A Cﬁ:
method to obtain regularity is to replace v by vE satisfying a Eii;
dynamic programming equation to which a small term eazv€/3y2 has been :%;
added. A crucial step in the argument is an a priori bound for :i{
Hveﬂcl’a independent of € (Theorem 5.1). Once this is obtained, ;%Ei
rather standard techniques show that v¢ > v as €+ 0 and that ‘é;
v(y,z) 1is a solution to the dynamic programming equation with the t}?
required regularity properties. zzz

In §6 we show that in nontrivial cases, the optimal inventory level ‘,%

y*(t) reaches almost surely in finite time,a certain interval G, which
we call the turnpike set.

The approach to G is monotonic over time. Moreover, once inside
the turnpike set, the optimal inventory level stays inside the set for-
ever. Of course, inside G, the inventory level keeps varying in
response to the randomly fluctuating demand. We should note that the
turnpike set represents a generalization of the single point turnpike

level obtained in [16].
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Then in 87 the analysis of §4 is modified to deal with a state-

MR R

et

space constraint y(t) > Ymin: Such a constraint imposes an inequality

constraint (7.16) on 3v/3dy at Ypin: Dymamic programming eauations and

viscosity solutions for control problems with state-space constraints
were discussed systematically in [14].

Section 8 concludes the paper with a brief discussion of some
important extensions of the production planning problems that arise in

automated manufacturing systems.
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\ 1. Notation, assumptions and the model

] Consider a factory producing a homogeneous good in order to satisfy
;' a stochastic demand over time. To formulate the optimization problem
of the factory, we define the following quantities:
(2,F,7) : the underlying probability space
Z= [go,gl]C:(O,w) : the set of possible demand rates
z(t) : the demand process; which is a right-continuous Z-valued
Markov process with infinitesimal generator L

y(t) : inventory level at time t (state variable)

P={p(t) :t 2_0} : production process, p(t) > 0 denotes the
- production rate at time t (control variable)
(i) adapted to Ft = g(z(s) : s€ [0,t])
A=({P : Qx[0,») »+ [0,%)

(i1) sup {p(t) : t > 0} < +o
the set of feasible production trajectories

c€C ([0,@) + [0,2)) : the production cost function

h€C((-»,») » [0,»)) : the inventory cost function; on (-»,0) it
represents the shortage cost

@ > 0 : the constant discount rate.

For any PE€A, we define the controlled inventory trajectory y(t)

and the discountedcost associated with it, respectively, by
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t };:?
(1.1) y(t) =y + f [p(s)-z(s)]ds RGN
0 D
-at .
(1.2) J(y,z,P) = E e " [h(y(t))+c(p(t))]dr. DA
0 e,
Note that the inventory trajectory y(¢) depends on the production ij
(SN
process P, the initial inventory level y and the initial demand rate
. z. For simplicity we suppressed these dependences in the notation. i;é
The optimal control problem of the factory is to minimize J over f::
all feasible production processes. Thus, we define the value function i{
by
(1.3) v(y,z) = inf J(y,z,P). e
PEA N

We assume the following throughout the paper:

‘l‘l'
PRV

(A1) h is continuous, convex, nonnegative on (-%,%) with

A

h(0) = 0.

(A2) ¢ 1is continuous, convex, nonnegative on

[0,) with c(0) = O. e

(A3) There are K} 20 and v >1 such that . v
Y _.h

0 <h(y) <K (ly]" +1) for all y€ (-,

Ih(r')-h) | < K+ [y'-y| whenever |y'-y|<2g .

t (A4) ¢ 1is twice differentiable on (0,%) with c”(p) >0 for all

p>0 and ¢ (0) = 0. N 3
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(A5) There is K3 >0 and Vv > 1 such that
c(p) > K (Ip|¥-1) for all p > 0.
(A6) There is K, > ac'(El) such that

h(y) > K,(ly] - 1) for all y€(-=,0].

Remark 1.1.
! ]
(i) Functions h(y) = |y|Y and c(p) = pY with v,y > 1
satisfy the above assumptions.
(i1) Let F(r) be given by (see figure 1)

(1.4) F(r) = inf [c(p)+pr].
p>0

Then the infimum is achieved at p =0 if r > 0. If r <0, the
minimum is achieved at p = (c')-l(-r), where (c:')_1 is the inverse
L.
of ¢'. Note that the inverse function (c) 1 is well-defined on

account of (A2) and (A4).

+ F(r)

Figure 1 : The shape of function F
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Also,

|F(x)-F(r")| f_lr-r'lmax{(c')-l(-l'v 0, ) -r" vyl

REAR AR A gl g R L PR} i

‘-‘f"l AN . v

where avb = max{a,b} and F (r) = -(l/c"[(c')'l(-r)]) for r < 0.

As a function with domain (-»,»), F is concave with a possible dis-

[MEREY R AR

continuity of its second derivative at the origin.

- v -y
‘

(iii) Assumption (A4) implies that (c')'1 is locally Lipschitz
continuous on (0,»). Hence F 1is locally Lipschitz continuous on

[0,=).

AN A

(iv) Most of the results that follow would hold without the
assumption (A6) This assumption is innocuous as it merely serves to
rule out the pathological cases, in which it is optimal, at least
when the current demand is at its maximum, not to decrease the current
level of shortage irrespective of how large that level is. In particu-
lar, it rules out the trivial case hZ 0. Moreover, with (A6) we can

obtain more detailed characterization of the solution of the problem,

see Remark 2.1 and Example 1 in Section 6.
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2. Properties of the value function o~

In this preliminary section, we establish convexity in y of the

optimal value function as well as a bound and a local Lipschitz estimate.

Lemma 2.1: For every z€2Z, v(-.,z) is a convex function.

Proof: It suffices to show that J(-,z,*) is jointly convex. For any
y,YE(-»,»), P,FEA and 2€Z let y(+) and y(+) be the inventory
trajectories corresponding to vy,z,P and ?,Z,F, respectively. Then

for any B € [0,1], we have
BJ(y,z,P)+(1-B)J(y,2,P) = eroe“"t{[sh(y(t))+(1-e)h(?(t))]
+ [Be(p(t))+(1-B)c(P(t))]}de
> Eﬁe'“t[h(ht))w(ﬁ(t))]dt
where p(t) = Bp(t)+(1-B)p(t) and
t

F(t) = (By+(1-B)y) + Jo[ﬁ(s)-Z(S)]dS-

Hence, y(+) 1is the inventory trajectory that corresponds to
¥ = By+(1-B)y,z and P = gp+(1-B)P. Now we rewrite the above inequal-

ity as

BI(y,z,P)+(1-B)J(¥,2,F) > J(By+(1-B)y,z,8p+(1-B)F).

Remark 2.1: In section 6, we shall show that under (A.6) and some

additional assumptions v(+,z) is strictly convex.
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Lemma 2.2. There are Cl’c2’c3 >0 and C, > c'(él) such that

(2.1)  0<v(,2) St ec, VL€ X2

1
(2.2) v(y.z) > G lyl - ¢, Vz€Z and y < -C

£
!
"¢
:I
'.J
o
N
i
>

., -
.-

3 -
Proof: Positivity of the value function is an immediate consequence of

the positivity of h and ¢. To establish the upper bound, we use the

production process po(t) = z(t). Then the corresponding inventory

is y(t) =y for all t. Now majorize v(y,z) as follows

viy,2z) < J(y,2z,Pq) = Er e M h(y)+c(z(t))1dt
0

<

R~

h(y) + [w e Ot c(gl)dt
0

where El is the largest point in z. Hence, (2.1) holds with

1
Cl- > C(E,l) .

To establish (2.2), we obtain an estimate of v from below by the
optimal value of a deterministic control problem. Fix (y,z) € (-=,0] xZ.

Let T be the exit time of y(¢) from (-»,0].

(2.3) J(y,z,P) > EJ‘;e"“[KZIy(t)I+K31p(t)l"]dt - 2ryKy)

| v

T -at t t v 1
E| e [Ky(]y+| p(s)ds|-] Oz(s)ds|)+x3|p(t)l 1dt - S(K,+K;)
0 0

|v

T lat t v 1
Efoe [K,_ly*f Op(s)ds|+l<3|p(t)l Jdt - (K, +K,E, /a+Kz) .

The first inequality is obtained by using assumptions (A6) and (AS) with

v > 0. The estimate z(t) 5_51 is used in the last inequality. Now

K
- oy 1.v72,1/v-1 . - o -
let c3 = (v l)[(axg Y;] and define v(y) on y€ (-, C3] by
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) t
V(y) = inf J e'at[Kzl.WJ p(s)ds|+Kk [p(t)|V]at
PER /0 0
where
t
6 = inf{t > 0 : y + J p(s)ds > -c3}
0
A={P: [0,)>[0,9) : (i) Borel measurable, (ii) Sup{|p(t)|:t>0}<+e}

K
Then Vv(y) = 75{-y-C3) for yf_-C3 because it is a smooth solution of

the following equation:

- : d- v
av(y}= inf [p gv(+Kslp|7] - Kyy 5 y<-Cq
Pe("”,m) )

V('C3) =0 .
The inequality (2.3) yields that

= 1
J(y,2,P) 2 V(y) - S(Ky#KgoK B /)

=1 .
= a{-sz-[K2C3+K2+k251/a+K3]) for all y < -C3 and z,P.

Choose C2 = k2C3+K2+K2C1/a+K3

implies that C, > c'(;l). Hence (2.2) holds.

and C4 = Kz/a. The assumption (A6)

Lemma 2.3: There is C. > 0 such that

5

(2.8) Ivr,2)-viy',2) | <Coly-y' [ (h(y)+1), V2€2Z and |y -y| 22E,

where 51 is the largest point in Z.
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Proof: Given (y,z)€ (-»,©)xZ and &6 > 0 choose POE?A such that
(2.5) J(y,z,P ) < v(y,z) + 6.

Let yo(-) be the inventory process which corresponds to initial points
y,z and the production process PO' Now pick y' satisfying
|y'—y| i'zgl. Then the inventory process starting from y',z with

production P0 is given by yé(t) = yo(t)+y'-y. Using these and

assumption (A3) we obtain

Iy 2,P)-0(y,2,P ) Ef:e'“‘[h(yg(t))-h(yo(t))]dt
5_KIEf: ey (0)-y, (1) | [h(y (1)) +1]at

- Klly'-yl{Ef: e hiyg(t))dte(k /@) .

Since the production cost rate ¢ 1is positive, the integral term above

is less than J(y,z,Po). Also, use (2.5) and then (2.1) to obtain ;;?
]
J(y'z2,P)-0(y,2,P)) < K |y -y[{(v(y,2)+&)+(K /o)) #

| A

Klly'-YI(h(Y)/a+C1+6+K1/a).

ey
AR

reasy b e ) "
N P R T A ML

The following follows from (2.5), definition of v, and the above

inequality

v v(y,2) £ 30 ,2,P)-I(,2,P) + 6

A

Coly' -y (h(y)+1)+8 (K, |y"-y]+D)

where Cs = max{Kl/a, Kl(C1+K1/a)}. Since § is arbitrary, the proof

of the lemma is complete.
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3. Bellman equation

Formally, it is known that the optimal value function is a solution

of the following equation [6]:

(3.1) ov(y,z)= F(a}, (y,Z))-Z%V(y,ZM[LV(y,-)](Z)+h(>'); V(y,z)€(-,2)xZ

where F is as in (1.4). The purpose of this section is to obtain a
sufficient condition for optimality. It is shown that a suitably
behaved solution of (3.1) is the value function and that an optimal
feedback production policy can be constructed from it. These results
are obtained with no additional restrictions on the demand process. In
sections 4 and 5, we shall see that under suitable restrictions on the
demand process, the sufficient condition is also necessary.

In this section, we assume that there exists a solution of (3.1)
in the space D, defined below. That such a solution exists will be

0

shown in Sections 4 and S.

Definition 3.1:

We say that a real valued function v with domain (-=,0°) %X Z 4is in

D, if it satisfies the following

0
(i) v and g%v are continuous and v 1is convex in Y ;
(i1) v satisfies the estimates (2.1),(2.2) and (2.4) ;
(iii) v(y,+) €D(L) = domain of L.
Now we are ready to state the main result of this section which
we call the "verification theorem". The method we use to prove this

theorem is taken from {6].

............................
..............................................
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Theorem 3.1.

Any solution VEZDO of equation (3.1) satisfies the followine

v(y,z) = J(y,z,P") = inf J(y,2,P)
PEA

*
where P is the feedback production policy defined by

'o-1. 9 . 3
. (c) (-g;;V(y,Z)) if 5;V(y,2) <0

(3.2) p(y,2) = \
0 if —3—}-"\/(}’,2) _>_0

Remark 3.1: Since v is convex jn y and (c')‘l is an increasing ii
function, the feedback policy p* defined above is nonincreasing in . ) E?
Therefore for any given demand trajectory z(¢) and the initial inven- ) :f

tory level y there is a unique solution of the following equation

(see Theorem 6.2 in [71])

* t * %*
(3.3) y (t) = y+( [p (y (s),2(s))-z(s)]ds.
0

Now let P = {p*(t) : t >0} where p*(t) = p*(y*(t),z(t)). Then
p*(-) is adapted to {Ft tt 3_0}, the family of o0-algebras generated
by z(*). Also, Lemma 3.2 below implies that it is bounded, therefore
P is in A.

Before we give the proof of Theorem 3.1, we prove some properties

of the production policy defined by (3.2) and the corresponding inven-

tory process y*(-).

. . e . CERC - . - T . R . et Y. va - . Lt e T et e N

B e AU R T Tl PR TR L B AL P UL PR S _ ATt e e m T 8 S %
P R A R P S Rt S U SN S, U SRt I G- U, S S D I IO T T N Ty TR Pe~ S-S shasiuntadivaluissiutatitiesbutichibodd
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Lemma 3.2.

*
(3.4) sup{|y (t)| = t > 0} < K(y) -
"
','-f
* I
where y () 1is the solution of (3.3). -
Proof: QZJ
We start by defining the following set which is the set of the "j

- 15 -

For any y€ (-»,») and the demand process z(+), there is a constart

K(y), independent of z(+), such that

critical points of the differential equation related to (3.3).

*
G={y€(-»» :p (y,z) = z for some z€Z}. A

*
Since p is nonincreasing in y, the following statement is obvious

*
p (y,z) - z>0 for all y<«< Ymin and z€Z

*
p (y,2) - z< 0 for all y > Ymax and z€Z i}g

where Yoin inf{y : y€G} and Ymax = suply : YEG}. Now it is

clear that to prove (3.4) it suffices to show that Ymin and Y max

are finite. But this is an easy consequence of the estimate (2.2) and

convexity of v(-,z). o
Remark 3.2: In Section 6, we will examine the properties of y*(-)

and the set G defined above in more detail.

Proof of Theorem 3.1:

Fix (y,z) € (-»,») x 2, First, we will show that v(y,z) is less
than J(y,z,P) for every PE€A. For this purpose, take any
P={p(t) : t >0}€A. Then p(-) is bounded. So the corresponding

inventory trajectory satisfies |y(t)| < Kt+|y| for some K positive.

P TR TR TR N . e LT

- . . PR R A PR S e L . PRI . o
. ., - .- \ AP A I A P B PO St *\ ST T . e
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Also, p(*) 1is adapted to the family of O-algebras generated by the
denand process. Therefore, the following identity follows from an

application of Dynkin's formula and the fundamental theorem of calculus.

t
(3.5) av(y,z) = EJ e-QSIGV(y(S),Z(S))—(p(S)-z(S))g%V(y(S),Z(S))

O -

- (Lv(y(s),*)) (z(s))]ds

+ e %N (y(t),2(t))
t -QSs -at

:EJ e [h(y(s))+c(p(s))]lds+Ee ~v(y(t),z(t)).

0

The inequality is obtained by using equation (3.1). Now send t

to infinity to conclude the following
av(y,z) < J(y,z,P) + lim sup Ee *Tv(y(t),z(1)).
oo
We complete the first step of the proof by the following chain of
inequalities which are obtained first by using (2.1), then the assumption
(A3) and the fact that [y(t)| < Kt+|y].

lim sup E e-atv(y(t),z(t)) lim sup E e_at[éh(y(t))+cl]

t>o t>o0

| A

| A

lim sup e-at-}-K‘(th+ly[|Y+l)+C1 = 0.

1>
The equality v(y,z) = J(y,z,P*) is derived by the same argument as
above. The only difference is the change of inequality to an equality

in (3.5); and we are able to do that because of the following

Flav(v,2)) = ¢(p (,2)) + P (,2)2v(y,2).

Recall that the above identity is proved in Remark 1.1 (ii).
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We have now obtained a sufficient condition for optimality. We s

must still show that there exists a solution v of (3.1) in DO' In i |
order to do that, we must assume specific stochastic models for the :{:
[

(SR

demand process. In the next two sections, we assume the nature of the s
el

demand process to be either a jump Markov process (84) or a reflected

RIS PN

R

diffusion process (85). For each of these cases, we then show that

the value function is in fact a solution of (3.1) in DO. By Theorem

1
2

3.1, we can then construct an optimal feedback policy. In the later

e

PPN R IR

sections, we further characterize these optimal solutions.
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4. Regularity with bounded infinitesimal generator L

In this section, we consider a jump Markov process with the
infinitesimal generator L defined in (4.11) as the model of the random
demand process. We then obtain the corresponding optimality condition by
showing that the value function defined in (1.3) is a solution of the
Bellman equation (3.1) in DO'

To precisely formulate the random demand model we obtain, in
Lemma 4.1 below, a condition on the demand process, which guarantees
the continuity of the value function. This will serve as the motiva-
tion for assumption (Al0) on the jump Markov process.

It should be obvious that the condition stipulated in Lemma 4.1
(and the consequent results) is not needed in the special case of Markov
chains, when the set Z of possible demand rates contains only

finitely many points.

Lemma 4.1:
Let z(+) and z'(-) be the demand processes starting at z and

z', respectively. Suppose that there is o > 0 such that

(4.1) Elz(t) - z'(t)l < min{|z - z'|ept, 2&1} ;. Vit > 0.

Then v is continuous.
Proof:
Fix (y,z) € (-»,»)xZ and &€ (0,1). Pick a production process

PEA such that

(4.2) J(y,z,P) < v(y,z) + 6.

et 'i."ﬁ"-‘\‘ TR e ST T e e e B S S
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Given any z'e Z, define a stopping time 7T and a production

L] t
process P = {p (t) : t > 0} by:

t
(4.3) T=inf{t >0 : y + J [p(s)-z'(s)]ds > 4n(1/68)}
0
\ p(t) for t€[0,T]
p (t) =
0 for t>1

Let y'(-) be the inventory process corresponding to the production
process P', the initial inventory level y and the demand process

z'(-) i.e.,

t
Y'(t) =y + jo[p'(s)-z(s)]ds.

First, we will obtain an estimate that will be used later. Let

)" = max{y,0}. Then

M SROENDIADE  ASNOEAMEES AR  SAOAPAFINNY LS 2L

>
Pt
-

t
E(v' (0)-y () E[f (p' (s)-p(s)-z' (s)+2(s))ds]
0

t ' ] +
EIO(p (s)-p(s)-z (s)+z(s)) ds

<
t )
E_EJ lz (s)-z(s)|ds
0
t
< j min{]z'-zleps, 2£l}ds
0

l(1/o)|z'-z|(e°‘+1) ; ti% en2€ /|2 -z]) = T,

2gl(t-T0+1/o)+(1/o)|z'-ZI 3 t2T, .

We have used Jensen's ineq 1lity in the first step, then p'(t)ip(t),
and finally the hypothesis of the lemma. Now denote the last expression

by Y(t) and rewrite the above inequality as




Ll R . - Pl LolliC e Cufr o adi " el adhis Pt o it e v'_»r_»v'.r Y-_-‘.'.'v‘r'v'_
"t"-_f-']_"'- gl A i A N i i T N MDA T " -
.
.
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: (4.4) E(r' (0-y()' < y(t) vt >o0.

! Since p'(t) = p(t) for t < T, a similar argument would yield
.

- (4.5) Ely' -y xpp ;p (O S¥(®) 5 V20

where XA is the indicator function of set A. Next, we will estimate

the difference J(y,z',P')-J(y,z,P). First, use p' < p and then the
assumntion (A3) to ohtain

- (4.6) J(y,z'J“)-J(y,z,nxisfme'“t[h(y'(t))-h(y(t))]dt
g 0

T
< EJ e K Iy () -y (0 [ [h(y' (1)) +1]dt
0

» Efme‘“‘[h(y'(t))-h(y(t))]x[o oy (6 (1))t
.[. )

+ Ere'o‘t[h(y'(t))-h(y(t))]x(_m 0](y'(t))dt
T b4

1= Il + 12 + 13.
Il’ I2 and I3 denote the first, second and third integrals in the {2
last inequalities. Finally, we will majorize each term Separately. iéi
Now observe that y-£t f_y'(t) < &n(1/8). Thus, (A.3) implies é}i
that h(y'(t)) < K [max{{n(1/6))]7, Iy-E;t[Y} + 1]. Use this and f&
(4.5) to obtain Ei
(4.7) Il_<_(Kl)zf;e'at[max{[Qn(l/d)]y.]Y-€1t|Y}*2]Y(t)dt
<k (2" -z)+]2"2PP) (|y]T+14]2n] 2" 2] M) -
' E

yowes -
F T

e T e e . O e e el e T S I T RO I SR VL L R
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1]
where K6 1 is a constant independent of z,z , ¥ and P.
’

Since h(y'(t)) - h(¥(t)) < 0 whenever 0 < y'(t) < y(t) and

h(y' (1)) - h(y(t)) £ K [h(xy' (1)) + 1](y' (1) - y(t)) when y'(1) > y(1),
we obtain
P' (hOy" ()= () I oy O (1)

<K I @I G (O-¥ () X (g o (' (1)

p -

First, use the above inequality and then (4.4) with the fact that

y (t) < &n(1/8) in 1., to obtain

2

—
| A

Efme‘atxl[h(y'(t))+1](y'(t)-y(t))*x[o o (1))t
T b

| A

Jme-atKl[h(ln(l/d))+l]Y(t)dt
0

()

Jme'at(Kf(zn(l/s))Y+Kf+K1)Y(t)dt
0

a/py

| A

K6’2(|z'-z}+|z'-z|

Again KG 2 is a constant independent of z,z',y and P.
Observe that y'(t) >0 for all t€ [t1,T + ln(l/d)/gl] because
P'(t) - z(t) 2_-51 and y'(T) = &n(1/6). Now let

6

inf{t >T: y'(t) j_O}; the previous statement implies that

8

| v

T + ln(l/é)gl. Hence we have

—4
|

= E

e h(y' (£))-h(y(t))]dt

o 3

<E e fw e %3 h(y'(s+8))ds.
0

.....................
...................
...........
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s+6

On t€ [&,»), p'(t) = 0. Hence, y'(s+6) = —J z(t)dt > -Els. Use
6

this in the above inequality to obtain

(4.9) 1. < jq;-us h(£.s)ds E e ®°
35, 1

[ A

Ky Jm e-as[|£15|Y+1]ds- exp[-akn(l/d)/gl]
0

(a/E,)
8 1

K

1]
where K is a constant independent of z,z ,y and P. Combine (4.7)-

’

(4.9) to obtain

(4.10) J(y,z ,P )-J(y,z,P) -
' . (a/&;)
< Ky Ky DUy (z -zle ]2 2Py ek 6T

The choice of P and (4.10) yield
V()’,Z')-V(,",Z)iw(b":|Z"Z|:5)

where w(ly|,|z'-2],8) = (Kd,l*‘Ké,z)(|Y|Y*1+(2n|z-z'|)Y)(]z'-z|+|z'-z|a/p)
(a/8;)

+8+K 36 . Since all the constants are independent of P and z,
’ .

the same argument as above would yield
! '
vy,z )-viy,2)| < wilyl.lz'-2],8).
Now the proof of the lemma is complete because for all R > 0

lim 1im Sup w(ly|,|z -z|,8) = o. .
80 z'»z |y|<R

Also, recall that continuity of v in y has been proved in Lemma 2.3.

o
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In this section, we assume that the infinitesimal generator L
has the following form:

(4.11) Lo(z) = A(2) J [o(z")-0(z)In(z,dz") ; VoED(L)
Z

where

D(L) = {9 : Z » (-»,») : bounded and Borel measurable}.

Also, the jump rate A(z) and the post-jump location distribution

m(z,*) satisfy the following

(A8) A is a nonnegative, bounded Borel measurable function with
domain Z
(A9) the function 2z - A(z)w(z,+) maps Z into the set of positive
measures on Z and it is weakly continuous i.e.,
lim A(z')Jﬂp(;)w(z',d?) = Mz)fcp(?)n(z,d?) ; V¢ continuous.
z *z
(A10) For any z,z', there are pathwise realizations 1z(¢), z'(-)
starting at z and z', respectively; and z(-), z' (5) satisfy

(4.1). SeeRemark 4.1 below.

Remark 4.1.

(i) A set of conditions (9.5) on A and w that imply (A10) is
given in Appendix 1. Also, in Appendix 1 a stochastic integral equation
which yield solutions satisfying (A10) is discussed.

(ii) In view of Lemma 4.1, (A10) implies that the value function
is continuous. But all that follow (with the exception of the contin-

uity of g% v) can also be proved by having v to be simply a Borel
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measurable function.

!
3

(iii) More precisely, (Al10) means the following: For any 2z,z
there are Z-valued mappings z(s,), z'[-,-) with domian [0,) xQ satisfying

(i) Pw : z(0,w) = z}) =P({w : z (O,w) = 2'}) =1

(ii) f |z(t,w)-2" (t,w) | P(dw) _<_min{|z'-z|ept, 26,3 R
Q :'1":-4
":-4
(iii) For any @€ D(L) the processes M(¢) and M'(-) are ﬁﬂi

}'t martingales, where ‘
t T
M(t,w) = o(z) - f (L) (2 (s,w))ds e
0 e
5 ' 1 t ' -:.::;:'
" M(t,w) =o(z) - | (L)(z (s,w))ds . . F:'j
0 .
g We will first show that the value function is a "viscosity solution" :iﬂ
2 -3
b' and then using this information we will prove that v is in DO‘ So =;ﬁ

let us define the notion of viscosity solutions for equation (3.1).

o
A
——

s

. _ v .
PRI

b '

e

| ARSI

LN
AP

Definition 4.1.

.

(i) vecC((-»,») xZ) 1is said tu be a viscosity subsolution of (3.1)

,/.

if

oy
.

Y

.
1

l'l
Yoy

T
'
T
r’

. s v e -
[
e

(4.12) av(y,z)-F(r)+zr-[Lv(y,+)](z)-h(y) <0 V (y,2z)€(->,®) XZ and

vod

i

r€n’v yZ
y(y)

where

D;v(y,z) = {r€(-»,») : lim sup[v(y+e,z)-v(y,z)—re]/lelf_O}
€0 =

s

91, SRR

. s
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-

"
o,

o4,
7.

s
WY

(i1) ve€C((-~,») xZ) is said to be a viscosity supersolution of

B

(3.1) if &
S (4.13) av(y,z)-F(r)+zr-[Lv(y, )1 (2)-h(y) >0; ¥V (y,2)E(-=,®) XZ and o
- - Y
. r€D v(y,z) :
Y B
i
where oy
_ :':;:..:
D (y,z) = {r€ (-»,») : lim inf [v(y+e,z)-v(y,z)-re)/|e| >0}. }}3
y £+0 - 334
ifﬂ
(iii) vVvEC((-»,») x2) 1is a viscosity solution of (3.1) if it is e
S
both sub and supersolution of (3.1). e
. -
< Remark 4.2, EE%
. (1) The above definition is a straightforward generalization of i?ﬂ
- ]
o the original defirition given by M. G. Crandall and P. L. Lions [4]. T
Also, see [5] for more information.
i (i1) v 1is differentiable in y-direction at y,z if and only if
D;v(y,z) and D;v(y,z) are both singletons. Moreover, if v is
convex in vy, then D;v(y,z) is empty unless g%‘v exists at y,z.
But when v is convex in y, the set D;v(y,z) is always nonempty and
3 given by
D v(y,z) = [-a—-V(y,Z) , P-tV(y,Z)] !
y ay ay
- + N
B where 2—3 2 are left and right derivatives, respectively. G
a . 9y’ dy B
. e
b
SRR “..’:.._ e e e .;‘.(-.;_-.:’: -.!'_;-‘.;- ':-';:ﬂ';._!';:;-:_.‘(';:'L"A'_";;‘f
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We first approximate the value function v by {VN : N=1,2,...}

vy(y,2) = inf J(y,2,P)

P€AN
where

A, = {PEA: [p(t)| < N for all t > 0}.

Arguing exactly as in Section 2 and in Lemma 4.1, we obtain that vy is
continuous, convex in y and VN satisfies (2.1)-(2.4). Also, the
N corresponding Bellman equation is:
A
o _ P 9 . .
- (3.1)) avy(ly,2) = FN(W"N(V’Z))'ZW"N(Y’Z)"[L"N(Y’ 11(2) +h(y);
W V (y,2) € (-,%) x Z x
B N
- where -:
3 Fo(r) = inf [c(p)+pr]. e
_ N 0<p<N 5—1
b
Lemma 4.2: The value function vy is a viscosity solution of (3.1)N. t;q
Proof:
Fix (yO,zo)E (-»,®) xZ. It is well-known that vy satisfies the N
dynamic programming relation [6], i.e., for any stopping time 6 > 0 »ﬁﬂ
we have E:I

]
(4.14) vy(y,.2y) = inf E{f e X () +cp()) ldtee vy (y(6),2(6))1.

PEAN 0

.
* ‘.'

Take any rEID;vN(yo,zo) and define a test function ¢ by

B

LI

.
atale .

VN(YO,ZO) +r(y—y0) ; Vy and =2,

¢

P

(4.15) o(y,z) =‘

vN(y,z) ; Vy and z;‘z0

.
L

s LN S
EAAY

?1!“.'

. .
Fatatr sy
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Since v,. is convex in v and Tr€D v.(y.,z.), it is easy to show that o
N y N0 o
w(y,:o) < VN(y’ZO) for all y. Hence, the definition of ¢ implies E.
g 4
that ¢ < vy Now let T be any positive constant and T, be the o
first jump-time of the demand process z(¢). Choose 6 = TA T, = min{T,T]} :%
\.
in (4.14) and use the inequality © < VN to obtain: K
TAT .
(4.16) ©(yy,zy) > inf Ef| e *F[h(y(t))+c(p(t))]dt o
-a(TAT,) ="
+e @y (Taty),2(TAT D)} . LS

Since p(*) 1is adapted to the family of o0-algebras generated by z(+},

Dynkin's formula and the fundamental theorem of calculus yield that for

any P€A
-Q(TATI)
(4.17) E e w(y(T‘ATl),zCTATl))=

TAT
w(yo,zdhE|f0 e'at[-aw(y(t).zo)+(p(t)-zo)§%¥(y(t),zo)+

BN

[
o

E.
:‘(

PRSIV

S
LI B
ST

R X I 2 )
B

(Ly(y(t),+)) (z) ]dty.

The above equality holds for every ¢ such that (i) ¢ 1is Borel
measurable, (ii) V¥ satisfies (2.1), (iii) g;w(',zo) is continuous
and has polynomial growth. Since the test function ¢ satisfies (i)- xih
(iii), we choose Y =@ in (4.17) and substitute this identity into
(4.16) to obtain:

TATy =

e ¥ [h(y))+c(p(t)) auly(1),2,)

(4.18) 0 > inf E j

— pea Yo -Q}

+r(p(t)-zp) + [Lo(y(t),)](z,)]dt}. S
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To derive (4.18) we also used the fact g%w(y,zo) = r. Now take

T = (1/m) in (4.18) and choose a (l/m)z-optimal production process

Pm€AN,1.eu
(l/m)AT1

(/m? > E'f e [h(y_(0))+e(p, (£))-a0(y, (t),2()

0
& + v(p (t)-2g)+ (Lo(y, (t),+)) (z4))dt

where ym(') is the inventory trajectory corresponding to Pm. Now

observe that Iym(t)-yol 5.(N+€1)t, because PmEIAN implies that

e A
ta .

lpm(t)l < N. Use this and the Lipschitz continuity of @ in y to

obtain:

(l/m)AT1

a/m? > E‘f e  [h(yg)+c (B, (1)) -00(yy, 20)+7 (p () -2 ()

0

+ (W(Yo,'))(zo)]dt -

o
3
(/m) ¢ ,B‘ﬂ'
- KIJ e |N+g [t dt :
0

where K1 is a positive constant independent of m. Since pm(-) is
bounded the term [h(y0)+c(pm(t))-....] is bounded by some constant

KZ' Hence, we have

(1/m)
[ (1-e'°‘t)dt >

(419) (/m 11Ky (E/2] + K|

(1/m)A’r1
|

. [h(y0)+c(pm(t))-uw(yo,zo)+r(pm(t)-ZO)+[DW(Y0:')](Z&]dt .

Multiply both sides of (4.19) by [E(TIA (l/m))]_1 and rewrite it as

(4.20)  a0(ygy,zg)-(Lolyy,+)) (zg)+2,T-C -TP -h(yq) > -K




(1/m) _

K = [E(TlA(l/m))]-l[(1/m)2(1+K1(N+€1)/2)+K2J0 e %tar)
(l/m)AT1

C, = [E(TIA(I/m))]_IE . C(Pm(t))dtl
(l/m)AT1

P = [E(t,a0/m)] E i pm(t)dt\

Let CP = {(c(p),p) for some p€ [0,N]}. Then (cm,Pm)eE[CPN],

closed convex hull of CPN. Since EB[CPN]

(C,P)ElEE[CPN] such that (Cm,Pm) converges to (C,P) on a subsequence

is a compact set, there is

of m. Pass to the limit in (4.20) to obtain:
Q(D()O,Zo) 'C'TP*‘ZOT-(W()’O,'))(ZO) 'h(yO) _>_ 0.
Thus;
ap(y»2q) -inf{C+rP: (C,P)€CO[CPY] T4z - (L0(y g, *)) (2g) -h(y ) > 0.

But ©(yy.zo) = v(yy,zp)s (L0(yy,))(2p) = (Lv(yy,°))(zy) and

inf{C+rP:(C, )GEBTCPN]} = F\(x). Therefore, v, is a viscosity super-

N
solution of (3.1)N.

Now take any rEID;vN(yO,z and define ¢ as in (4.15). Since

0
vy is convex if D;VN(yo,zO) is nonempty, then vy is differentiable

in y-direction at yo,zo. (See Remark 4.2(ii)).
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b

aa’arae a

Therefore r = and there is a continuous function k with

oTATE 8

3
T NO00 %)
k(0) = 0 such that

.
s

.
" 'm
.

B

TAPLP
LIRS P

(4.21) v (azg) £ 00y, zg)+ vy lk(ly-yo 1) o
oy

Use (4.14) with 6 = TAT1 and (4.21) to obtain !F:j
e

TATl .

(4.22) ©(yy,2y) < inf E‘ e *F[h(y(t))+c(p(t))]dt S
PEA, 170 end

-a(TATl) .

+e @(y(TAT,),2(TAT)) T

+ Iy (@At ) -yolkCly (Tat )=y D)

For any p0€[O,N] the constant production process p(t) = Py is in

AN. Thus (4.22) yields that ;tgt
TATI :’.--;<
-at 3
w(yo,zo)iEU e™ [h(yg(t))+c(py)ldt ‘-#
0 e
-a(TAT,) o
+ e w(yO(TATl),z(TATI)) RO

+ |y (Tat) -y Ik (ly (TaT)) -y, )

where yo(-) is the inventory trajectory corresponding to PO and

ly(t)-yol_g (N+£)t. Use this and (4.17) to obtain:

TAT1

(4'23) 0 i EJO e_at [h()’o(t))+c(p0) 'w(yo(t) )zo)+r(p0-z0)
+ [y, (t),+) 1 (zg) ldt

+ (NVE)T K((NE)T).

Divide both sides of (4.23) by T and then send T to zero to obtain

T8
-
S
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0‘0()'0, Zo) - (p0r+c (po))+zr' (UD()'O:‘)) (20) 'h()yo) i 0 H VPOG[O:N] .

But O(y,,2p) = Vy(vg»2p) and  (L0(y,,*)) (2g) = (Lvy(yg,*)) (zy)-
Therefore VN is also a viscosity subsolution of (S.I)N.

[s]

Proposition 4.3: The value function v defined in (1.3) is a viscosity

solution of (3.1).

Proof:

Clearly, VN2 Vg2V for all N < M. Fix (yO,ZO)G(-m,m)x z
and § > 0. Pick P6€ A such that
(4.24) J(ygr2gsPg) S vyprz)+S .

Any P€A 1is bounded. Therefore, there is M, such that

§
P6€1\M(S and J(YO’ZO’P(S) > VMG(YO’ZO)‘ This and (4.24) yield that

VMG(yO,zO) 5_v(y0,20)+6 . Since ¢ is arbitrary we conclude that

VM(yO,zo) converges to v(yo,zo) monotonically as M tends to
infinity. Moreover, VM and v are continuous. Hence, Dini's theorem
yields

(4.25) vy YV uniformly on every bounded subset of (-o,»)xZ,

Now take r€ D;v(yo,z and for small € > 0, define we by

o)
(4.26) V. (7,2) = 00y,2) - €l - yp)°

where ¢ is as in (4.14). Then the map y = v(y,zo) - we(y,zo) has a

strict minimum at Yo Since v,, converges to v uniformly we have

that
-
.
&
-,
. . ~ . v w s e s s » s - . . . - . . - . N
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(i) the map y = VN(y,zo)—we(y,zo) has a local minimum of YN
(ii) yy converges to y, as N tends to infinity.

5 -
! L, v y 3 Y v , 3
So §;we(}N,LO)€Dy\N()N,zo) and the viscosity property of VN yield

vy (Y 2) “Fiy (g (s 200 -3 b O 20) -hrg) = (v D)) (2) 2 0.

First send N to infinity and then € to zero to prove that v is a
viscosity supersolution of (3.1).

Sunnose that T€ D;v(yo,z Then there is @ satisfying the following

0)'
(i) v-¢ has a local maximum at (yo,zo)
.. — 1

(1) @(+,z) €C ((-=,))
c.. 9=, . _
(iii) 5;.&0()0,20) = T.

Now define Eg as in (4.26) by using @ instead of . Then proceed
exactly in the same way as before to prove that v 1is a viscosity sub-

solution of (3.1).

'
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Theorem 4.4: The value function defined in (1.3) is in DO kt
(Definition 3.1). &
Proof: o
,::\-,
Fix (yo,zO)E (-»,»)} xZ, Since v 1is convex, right and left ?i-
- RS
derivatives in y-direction at (yo,zo) exist. Denote %§'V(y0’20) by E.
. g
d~ and %;v(yo,zo) by at. Also, v 1is locally Lipschitz continuous
in y. Therefore, there are sequences {§£:n =1,2,...} and
{yn:n =1,2,...} converging to y, from above and below, respectively, =
such that s
(1) jLw exists at (v _,z.) and (¥ ,z.) o
Jy ) ‘n’"0 n’“o o
(4.27) (ii) §%¥(;£’zo)\’d+ as n tends to infinity S
\\ .
T P - s s
(iii) 3)-,\ ()n,zo) 7d as n tends to infinity. :-.:‘:»

- + - 3
Observe that Dyv()n’“o) = Dyv()n,zo) = {§§v(yn,zo)} because of

(4.27) (1). Thus, the viscosity property of v yields

(4.28) QV(yn,zO)-F(g;«(yn,zO))+25;V(yn,zo)—h(yn)-(LV(yn, 1) (z)=0. .
Recall that (Lv(y,-))(zo) = A(zo)f[v(y,z')-v(y,zo)]ﬂ(zo,dz'). Hence, ﬁij
it is continuous in y because v 1s continuous. This and (4.27)(ii) '5;

imply that the limit of (4.28) as n tends to infinity is the

following equation

+ + &
d (4.29) GV(YO,ZO)-F(d )+Zod -h(Yo)-(LV(yo,'))(ZO)=0- ;
Similarly, one can obtain H;

- (4.30) av(ygys2zg)-F(d J+zd -h(yo)—(Lv(y0,~))(zo)=0. Ff
E.

T R L A e AT T e T ey e A N T T



—r—— Y B St B Bt S S S 20 S b darie b & un e aes B wn dhvie 4 WL i 20 A0 Jbien AR e 2f R e o e it ol b S R S S I S R T e

R 3 RN

. Subtract (4.30) from (4.29) to obtain

'n\l:

>y "a

Y v

(4.31) F(dY)-F@d") = zo(d*-d').

oD,
f

% %
ety

Suppose that d’>d”. Since 2y > 0, (4.31) implies that F(d*) > Fd).

But F(d')< 0 and F(r) = 0 for all r> 0. Therefore, d” must be

s
.
"

negative and the strict convexity of F on (-»,0) yields

- Yyv

! (4.32) F(%[dﬁd']) > %F(d*) +-;-F(d-).

Ty e

Combine (4.29),(4.30) and (4.32) to conclude that

.
"
»

av (g 2g) -F (5la"+d 1) w230 +d ) -h(y ) - (v (y,+)) () < 0. :

But -%(d++d-)€ ﬁ;v(yo,zo), (see remark 4.2(ii)). So the above inequal-
ity contradicts with the fact that v is a viscosity supersolution of

(3.1) and consequently we conclude that d" = d7. Thus g%v(°,z) is

a continuous function for every =z,

Since v is convex in vy, for every z€Z we have the following

< 9 .
(4.33) V(y,2) 2y, 2)+ (y-yg) vy 205 Vy

-
E
4
. 9
.Y

. 3
The estimate Igyv(yo,z)ljics(h(y0)+1) follows from Lemma 2.3. Now
take a sequence {zn:n =1,2,...}=Z such that z ~ converges to z,.
Then there is a subsequence of n, denoted by n again and a constant

r such that

.9
lim =~ (y,,2.) = .
n dy *“0’"n

.- PRI ST Y . . .. Lo . OO KR
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Pass to the limit in (4,33) and use the continuity of v to obtain

(4.34) vy,zg) 2 vy, zg)sr(y-yg) 5 Vv

Far S i
N
LY
LR

A g
l': .
o

But v is convex and differentiable in y, therefore r = g%w(yo,zo)

0 . . .
and consequently =7V 1is a continuous function.

’

-",
-

. . -,
RN R T

s P
Tt

Corollary 4.5. There is C6> 0 such that

v

Vo2 v,z ) < Colz-z 1P

vhere B8 = min(l,a/p) and p is as in (4.1).
Theorem 4.4, Theorem 3.3 and Lemma 3.2 imply that y*(-) is
bounded. The same argument as in Lemma 4.1 along with this information

yields the result.

- e e T e e e e e T S N N s T . .
.~ IR N T O T T L. St PRSI . L T ‘e
R PN A R T B DV IS PP I N A N DS ¥ RV S ALY B O NP UG IV PRI T DR N DI B TP - B R W e |




ORI ALADE A D A . R R L A A e

. b
N &
&
' - 36 - -..-
" e
% 5. Regularity with unbounded L: The diffusion case i?
’ In this section, we assume that the demand process z(*) is a !&
. G
- Markov diffusion process reflected at the boundary of Z. Then the o
A &
N infinitesimal generator of z(+) has the following form: :if
R 12, d° d -
(£.1) Lo(z) = 507 (2)=0(2)+b(2)z0(2) ; V @ €D(L) o
where :;j
2 1 4 d _ i
] D(L) = {0EC ((£,,E)INC ([E0.E]) = T0(E)=0(E)=0 . ¥
8 See Section 2.4 in [8] for information about reflected
; diffusions. Alsc, we assume that 0 and b satisfy the following .
g (Al1) o,b€ c3([g0,gl]) and there is oy > 0 such that
o(z) > o, for all =z€Z.
|- -0
E! In addition to all the assumptions made in Section 1, we require that
- the holding cost h satisfy

(A12) There are K, > 0 and y'€ (0,1) such that

1)
h(x)+h(y)-2h(5E) <K, (h (D) +1) |x-y| 1Y 5 v x,y€(-,%).
Now we are ready to state the result of this section:

Theorem 5.1.

The value function v defined in (1.3) is in D (pefinition 3.1).

0

.......................................
~~~~~~~~~~~
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Proof: Take any two points x,y€E(-»,®), For &6>0 and z€Z choose

a production process P such that
(5.1) viEL L2235 L) -6,
Then the definition of v yields

(5.2) V(x,2)+v(y,2)-2v(5,2) <I(x,2,P)+J(y,2,P) -2 (55, 2,P) +28

= E{re't[h(yx(t))+h(yy(t))-2h(y(t))]dt}+2<5
0

where yx(-), yy(-) and y(+) are inventory levels corresponding to
P starting at x,y and (x+y/2), respectively. Then, in view of the
assumption (Al2) we obtain

(5.3) V(X,Z)+V()’,Z)‘2V(%Z»z)iE{re K, [h(y(t))+1]dt}|x- y|1+Y 28
0

< Ky (VL 2)+148) |x- Mg

Send &8 to zero in (5.3) and also use the convexity of v in y to

obtain

(5.4) 0<v(x, 1)+ (y,2)-2v(5E,2) < c(fxry| V1) [y | 1Y

The above estimate implies that giv(-,z) is Holder continuous with

.0 '
Holder exponent <Yy (see Proposition 7 on page 142 in [15]).
Note that we have obtained the Holder continuity of the nonlinear
term in the equation (3.1). Now, it is standard to show that v is a

solution of (3.1) and consequently that v€D0. a

Remark 5.1.
An assumption analogous to (Al2) is used in [ 2] to study the

regularity properties of the value function of certain control problens.
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e e e s waToay b e Al afal PP WAL D, W Py Y1 Lalaloladeledoede 8o rnde? o "2ad ahaita’yais




- EINEAOEEY

AR AR
(Rl R A MR AN

- 38 -

6. Optimal trajectories and turnpike sets

Recall that we have constructed an optimal feedback control in
section 3 by using the value function. The corresponding optimal
inventory process y*(') starting at the initial inventory level vy
is given by

* t *
(6.1) y (1) = y+J0[p (y(s),z(s))-z(s)]ds
where p* is as in (3.2). Observe that if the demand process is

*
deterministic (i.e., z(s) = z for s > 0), then y (t) converges to

0
the set on which p*(y,zo) - 25 = 0 or equivalently, the distance of

*
y (t) to the set G(ZO) tends to zero, where G(zo) is defined by

(6.2) G(zg) = (Y€ (=) 1 gvly,zg) = =<' (zp)]).

Such a G(zy) is called a turnpike associated with demand 2z, [16].

0
Since v is convex in y and is bounded as in (2.2), G(zo) is a
bounded interval.

Now define G by

(6.3) G=—co[ U G(2)] = [y,»¥,]-
z2€2Z

Again, in view of (2.2) G 1is a bounded interval and the monotonicity
of p'(y,z) in y yields that
*
(1) p(,2)-2<0 5 V(,2)€ (y,,®)x2

(6.4) , .
(ii) p (y,2)-2>0 ; V(y,z)€ (-=,y,) x 2.
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;

| Hence, for stochastic demand processes G, is an attractor set for the f-}'j

optimal inventory trajectories, i.e., ‘J'—

\

o
(6.5) dist(y (t),G) 0 as t f +o0o e

p : RN

2l

The set G is thus an appropriate generalization of the turnpike !;.
concept for the stochastic case. We shall, therefore, term set G to

be the turnpike set.

In what follows, we will study the important properties of these ‘-

sets. Ln?

Y

. Theorem 6.1. :‘Ei

(i) There is a nonpositive element in G ::'_I:‘_

(i1) G 1is a bounded nondegenerate interval if o

a) For every y€ (-»,»),{-ac'(z) : z€2}¢D h(y), when L =

K.

is given by (4.11), or S

]

W

o e
DA A IR
. et gt Ve
e e *
A .'.' - L _

b) h satisfies (Al12), when L 1is given by (5.1)

Vo
P AL
el e

where D h(y) (= D;h(y)) is as in Definition 4.1,

Proof: Define y(z) by

(6.7) y(z) = inf{y€ (-»,@) : %v(y,z) > -c'(z)}.

[}

Then we have

(6.8) Yy = infly(2) : z€2Z} = inf{y : y€G}.
’ A
Since -aa—)v and ¢ are continuous, y(-) is a lower semi-continuous ‘
function from Z into (-»,»), Hence, there is zOEZ such that -
N
* i
"= X(zo). Now suppose that y(zo) >0, Let y be the solution of |
3

. - - . - - - - « - - R - ot Tt Y. .-t T Y A T N T T Y “ et . - - . . . -. -
T e e s L T e T e e e e e e . T g e e e e T T e e s s T et e st s e \ . y
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o (6.1) with y (0) = 0 and z(0) = zy. Construct P = {p (1) : t>0)} Y
', - e
b‘:’ ‘ﬂ
. as follows (l’r‘
v o
K: (6.9) p'(t) = z(t)X (t)+ *( Y(),z(1) (t) :-'::‘1
- ' [0,7) "R B AR 2R X (1 o) L
- -, {
: 3

where 1T is the stopping time defined by

ST e
e !
R

PR o

i
E T = inf{t > 0 : y*(t) > (1/2)_y_(zo)}.
- Now observe that y*(t) > y*('r) = (1/2)_)_'_(20) for t > T, on account !'1-
- N
e of (6.5). Also, y (t)-y (1) = | [p (y (s),z(s))-z(s)]ds. So we have
- T B
) N
t o, R
(6.10) J [p'(s)-z(s)]ds > 0 for t > 1. o
T
Let y'(-) be the inventory trajectory corresponding to P' starting ’ ::_'-'.'.
at y = O,zo. Then E
0 5 t€[0,1] i
' s
y (8) =9 . o
,
[p (s)-2(s)lds ; t>1

T E

fa
o
N
R
-

*
Therefore, (6.10) yields that y'(t) > 0. Also, p'(s) <P (y*(s),z(s))
with strict inequality for s < 1, implies that y'(t) < y*(t) for all

t > 0. Use these to obtain

(6.11) J(o,zo,p') < J(o,zO,P*) = v(0,2y).

*
This contradiction with the optimality of p implies that y(zo) < 0.

This proves (i).
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(ii) Suppose that G 1is degenerate, i.e., G = {yo} for some Yo

The equation (3.1) yields that for any €, § > 0 and z€2Z:
(6:12) a[v(yg*e,2)-vlyy8,2)]=[ (F (v (ygre, ) -2y (g€, 2)) -
- (Flw (y - 8,2)) -2y (y -6, 2)) ]+
+HLv{ygre,*)-vyy-6,-0)1(2)+ [h(yy*e) -h(yy-6)].

. ] _ ! 1 d . 3 ,
Since 5§v(y0,z) = -¢c (z) for 2€2Z, -c (z)€ [§§V()0'6’2)’ayv(>0+s’z)]'
Also, the map T = F(r) - zr achieves its maximum at -c'(z) and it
is strictly concave at r = -c'(z). Therefore, there are

€"(2),8"(2) € (0,1/n) such that

F g g+ (2),20)- 2w g+ (2), )R (v =67 (), )

) n
—zﬁyv(yo- §°(z),z).
Use this in equation (6.12) to obtain

(6.13) av(yyre"(2),2)-v(yy-8"(2),2)] = Lv(yyre" (2),*)

V(y=6"(2),°)) (2)+[h(yy+e" (2))-h(y-8"(2))].

Case (1) L is as in (4.11):

Divide both sides of (6.13) by (e"(2)+6"(2)) and then send n to

infinity to obtain:

(6.14) 0gv(v4,2) = LGV (D) (2) + Limlh(ygee"(2))

n->o

“h(y-8"(2)) 1 (e™(2)+6™(2)) 1.
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5} We have used the boundedness of the operator L to obtain (6.14).
b

Now the limit in (6.14) is in D‘h(yo), thus we have the following:
>

9., 0 .. _ . _
“a_y“‘bo’z)f“s'y“’()o’ ))(z)+sup{k : KED h(y,)}
ajiw(y z) > L(jlv(y *))(2)+inf{k : XED h(y.,)}

5y Yoo 2) 2LgV s : 0’

The above inequalities yield:
. _ ) -
inf{k : k€D h(yo)} io"é‘;"()’o»z) < sup{k : k€D h(yo)}.

On the other hand, ag&v(yo,z) = -ac'(z). So the above inequality contra-

dicts with the hypothesis (a). Hence, G is not degenerate.

Case (2) L 1is as in (5.1):

. 2
Formally, -%[F(%V(y,Z))-Z%V(y.Z)F(F ('%',V(Yaz))"z)-aay—z"’()’,z)- At

y =y, we know that F'(%%v(yo,z))-z = 0. Moreover,

2
—giv(y,z) is bounded on account of (5.11). So we have:
oy

L1 L) 9
(6.15) éig jg[F(gyv(Yo*E,Z))‘25§V(Y0+€;Z)
- Flgv(ygee, ) g (yg-e,2)] = 0.

Choose € =8 in (6.12), divide both sides by 2g, and then use (6.15)
to pass to the limit as € tends to zero. As a result, we obtain the

following; -

(6.16) agv(yy,2) = Lgvlyg,d) + £h(yy) in D ([60,,D)

- R T T R P N Tt ST S Y
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where D' is the set of distributions on [EO,EI]. Note that (6.16)

is a second order linear differential equation in z with Neumann
boundary conditions at 2z = EO and z = El. Thus §§v(yo,z) =
(l/a)é%h(yo) is the only solution of (6.16) which is an obvious contra-

diction with g%v(yo,z) = -c'(z) for all z€2Z.

Corollary 6.2:

Suppose that hypotheses a) or b) of Theorem 6.1 hold. Let A(z)

be given by

(6.17) A(z) = {z' €Z : n’(z(t)E[z'-e,z'+€]]z(O) =2) > 0;

for all t,e > 0}.

If A(z) # {2z} for all z€Z, then there is a random time Ty <@

such that dist(y (1,),6) = 0.

Proof: The second part of the previous theoren can be modified to con-

clude that for all z25€ Z there is no yg (—~»,») such that
ggv(y,z)=-c'(z) for all z€ A(zo). Now let y*(.) be the optimal

inventory starting at (y,z). Suppose that y < inf{y' : y'€ G} = Yy

Then there exists z€‘A(zo) and ¢ > 0 such that
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* ' ' 1
p (y»z )-z <0 for all |z -z| <.

The above inequality together with (6.17) implies the claimed result.
A similar argument yields the result when y > sup{y' : y €G}.
o

Proposition 6.3: For the case of a constant deterministic demand, i.e.,

z = {&)

G=I(E) := {y€ (-=,@) : -ac (E) €D h(y)}.
Proof: Rewrite the Bellman equation (3.1) as
av(y,2) = c(p*(y,z))+(p*cy,z)-£)§—yvcy,z)+h(y)

*
where p is as in (3.2). Formally taking the y-derivative in above

we obtain
) * 52 '
GV (vs2) = (p (r,2)-8)—v(y,2)+h (y)
oy
which at y€I(E) becomes
3 * 52 '
org;V(y,Z) = (p (y,Z)-E)a—EVCV,Z)-uc (E) 5 Vy€eI(®).
y

Now, if p*(y,z) > £, then the above equation, in view of the fact that
v 1is convex in y, gives g%v(y,z) Z.‘C'(E)- This is equivalent to
p*(y,z)-i £ which is a contradiction with p*(y,z) > &, A similar
contradiction can be obtained if p*(y,z) < £. Thus, p*(y,z) = § and
YEG.

The above argument can be made rigorous by using the technique

developed in the proof of Theorem 6.1(ii). Also, the same technique
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yields that G<I(£). Therefore, the proof of the proposition is
complete.

o
Remark 6.1. An economic interpretation of Proposition 6.3 is useful
to provide. Assume for convenience that h(-) is differentiable.
Let y = Yo be a turnpike point. Then p*(t) = £, Let p(t) = £+¢,

t€1[6,8], 6, €>0 and p(t) =p (t) = £, t€ (6,%). Then

the marginal production cost = c'(E)eG + o(e8)
N -at, ! h (rpe€

the marginal inventory cost = f:e h (yo)eddt+o(€6) = 5
Setting the total marginal production cost to zero and dividing through
by €8 gives the relation -ac'(E) = h'(yo) for Yo

Note that £ > 0 implies Yo < 0. So if the initial inventory
Yy = 0, then it pays to produce less than the demand until y(t) = Yo
This results in savings in production cast. This is exactly offset by
increased shortage cost above the optimal path. Note that the discounting
plays an essential role in this balancing act. In fact, in the absence
of discounting, i.e., o = 0, the turnpike point y0 = 0.

When the value function is strictly convex, there is only one y(z)
such that p*(y(z),z)-z = 0. The next result gives a set of sufficient

conditions for the strict convexity.

+0(eb).
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Proposition 6.4.

The value function v(-,z) is strictly convex in y if one of ﬁi
the following holds .

(i) A(z) # {z} where A(z) is as in (6.17).

(ii) 1I(z) 1is a singleton, where 1I(z) is given by

I1(z) = {y€ (-=,») : -ac'(z) €D h(y)}.

Proof: Suppose that there are Y1 < Yy and zO€ z such that
2 (y,,2y) = 2N (Y,,2y) :
dy 1’70 dy 72’707

*
Let y;(-), yZ(-) be the optimal inventory trajectories starting at
(yl,zo) and (yz,zo), respectively. Then we claim that for every

t > 0, we have

9 * _ 9 * _
(6.18) Py () (8,2(8)) = v (y,(),2(8))) = 1.
S S e S TS IS Ay S P
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Suppose to the contrary that there is to
not hold. Since §§v is continuous, there exists a constant B > 0

> 0 such that (6.18) does

such that
(6:19)  P(p (y(t),2(t) # p)(yy(t),2(t) for t€ [ty,t,+6]) > 0.

* *
Let Pi = {p;(t) : t >0} be defined by p;(t) = p*(yi(t),z(t)) for
i =1,2. Then (6.19) together with the convexity of h and the strict

convexity of ¢ yields
P* p* > 1 + 1 p*+p*
(172) [I(yy 24, P)+T(y502:P5) 1 > IG5y *y ) 2, 5(P+P,))

}

i - . . . 1 1
b which implies that 7(v(yl,zo)+v(y2,zo)) >v(—2-(y1+y2),zo) . But
v(’,zo) is assumed to be linear on [yl,yz]. Therefore (6.18) holds.

g Next, we claim the following

(6.20) P(p (yy(t),2(1)) = z(t)) =1 ; Yt >0 and i=1,2.

Before we give the proof of (6.20), let us complete the proof of the
*
proposition, It is clear that yi(t) =y for t >0 and
i =1,2. So the value function at (y,zo) for ye€ [yl,yz] is given

by:

v(y,zp) = (1/a)h(y) + Ere'atcu(t))dt s VY€ly,y,l.
0

The integral term does not depend on Yy, thus we have

P 0zg) = a)Fh(n) = -¢'(z9) 5 Yye .y,

ERARUMIRS | R/

Ty '«'f_'.' PN
DO N AT .._

oy
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: . . ) ' P} ' ' “-::
Also, (6.18) implies that =v(y,,z ) = =+(y,,z ) for all =z €A(z,).

: dy 1 dy 72 0 o

e e

i So the same argument as the above yields PE. |

; 6.21) 2 Y= () Shy) = -¢'(z') , vye d z2'€A(z.) 3

: ‘ ayY (a2 ) = (Medggh(y) = -c (2 ), Vy€(y),yy) and 2z €A(zg). x

Using either one of the hypotheses of the proposition, we obtain a

4v.
-

contradiction. Hence it suffices to prove (6.20).

Now suppose that p* (yz,zo) >z Then there is € > 0 such that

o
. -
(6.22) P (¥,,2) >z , V 2z such that |z—z0] < E.

Also, for every € and T > 0,]P(|z(t)-zol <e, tel0,T]) > 0. On the

set lz(t)—zol <€ for € <€, the optimal inventory trajectories

move towards the point y_ = inf{y(z) : Iz-zol < e} , where y(z) is

€ ™

as in (6.7). Therefore, given €,6 > 0  there is T(g,8) > 0 and a

random time T<T(€,8) such that 3 i

* ‘:_..

lyz(‘r)—y | < § on the event A(g,§) 1

£ )

3 :::\--‘,':1

where A(e,8) = {|z(t)-zy] < e, Vt€[0,T(e,8)]}. Monotonicity of 3

implies the following:
(6.23) 3 (y*('r) 2 (1)) >inf{lv(y -8,2):|z-z|<e} on A(g,$).
3y Y2l e A A I ’

Since the event A(e,8) has a positive probability, (6.18) implies that -

(6.20) 2v(y, 2 vy, ACe, 8 i

: oy yl (t),z(1) = a_yv(yZ(T)’z(T)) on (e,98) 'i

(&

and * * h) Use thi 6.23 d DA

Y (1) = vo(1)-voryy S Y-Vt to. - . Us is, (6.23),an o

(6.24) to obtain s

o

7 3
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2 _ .0 .
(6.25) sup{gyv(ye-yz-yl+6,z).|z-zo|§;J331nf{5;v(yE,z).Iz zolig}.

Since y(z) 1is lower semi-continuous, Yo converges to y(zo) as €

tends to zero. Hence, (6.25) implies that

d d
3y 7 (2g)y*yya2g) 2 5v 0 (z ),z

Clearly, this contradicts with the definition of y(zo) in (6.7).
Hence, (6.22) is not true. Now arguing similarly, one can show that
the assumption p*(yl,zo) < z, yields a contradiction. Since

* * .
P (yl,zo) =p (yz,zo), we have the following:

* *
P (yys29) = P (¥y:29) = 2z

3 o 9 ' '
Recall that 5§V(y1’z ) = 5;v(y2,z ) for z €1A(zo). So the same

* coe
argument as the above yields that p (yl,z') = p*(yz,z') whenever z'E:A(zO). ii}
This proves (6.20) because IP(z(t)EA(zO)Iz(O)=zo) =1 for ¢t > 0. :j:j::
o ??:

Remark 6.2: If h(+) is strictly convex, then I(z) 1is a singleton.
Also, for deterministic problems G = I(E), where £ denotes the constant

demand.

Remark 6.3: Condition (i) is weaker than the assumption of ergodicity,

which requires A(z) = Z, Vz€Z. However, condition (i) implies that

z 1is not absorbing.




In Proposition 6.4 above, we have proved the strict convexity of
y(+,2z) wunder conditions that are weaker than the assumption that h(-)
is strictly convex. In view of (i), we need (ii) only when A(z) = z.
In that case, v(*,z) is the same as the value function for a determin-
istice problem with the constant demand z.

In the following example, we are able to explicitly obtain the
value function, for a deterministic problem with Z = {£} and thus
illustrate Proposition 6.4(ii) and also Proposition 6.3, When the
shortage cost, which is linear, is too low, Assumption (A6) does not
hold and I(E) = ¢ or I(E) = (=,0]. In these cases, y(*,§) is
not strictly convex. When the assumed linear shortage cost is not too
low, Assumption (A6) holds and I(£] = {0}, which is a singleton. The

value function y(+,E) 1is easily seen to be strictly convex.

s
A
o .

."l.l
P

€ T e e
a
LN

’

N

N

4

7,
.

.
PO

b P

PR IPRY SN W )




AT i A NS AN Y ity S0a e Mip Lot Bt b i e A talh Sad S Sl Al Al Al Bt Bl i A

v
LEE DA AN

- 51 -

2
Example 1: 2z = {£}, £ a constant, C(p) = P

Ky y20
o h(y) =
A 0 y>0

Case (a): Low Shortage Cost: K < 208

For K < 2af, the value function

f

el

K K
+a_2[£‘ml:)’io

v(y,8) =
Lz[ze-a.r(y)g - e’zaT(Y)

K
=], y>0
20 20

]

.

*
where T(y) is the first time at which the optimal inventory y (T(y)) =0

given the initial level y > 0 and, it is the unique positive solution

of
-aT(y)
e —vamm=y+L, yoo
20 20
Furthermore,
¢ for K < 2a§
y I(8) =
. (-»,0] for K > 2af

We note that for K < 2af, Vy > -é > -2 with the consequence that
there exists no turnpike set i.e., G = ¢ = I(£). Although, we can think of
{-»} to be the turnpike point in the extended sense, as the optimal
inventory level approach - as t +
The case K = 2af is the critical case. In this case,
2

-2ty + £%/a ,Y<O0

v(y,€) = g2

-;[Ze'aT(Y) - e‘zaT(Y)]’ y >0

where T(y) 1is the unique positive solution of
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Since vy = -2( for y€ (-»,0], the turnpike set G = (-=,0] = 1(&). .
From y > 0, the optimal inventory level reaches 0 at t = T(y) and 3
. * - '.-.‘
then it stays there. From y < 0, the optimal production p (t) = 13 gs
2
and y*(t) =y, for all té€ [0,%). i:
: 3
= Case (b): High Shortage Cost: K > 20§ s
f_:‘ .‘j"J
- A
= For K > 2af, the value function ;j
. Xy kK2 kg £2 . K2 KE., -aB(y)__-2a8(y) E
3 ot e ke e lyzo
b v(y,E)= 4a o 4a o »f}
2 .~

%[Ze-aT(y)_e-ZaT(y)]’ y >0,

where T(y) 1is as defined in the critical case above and 60(y) is the

first time the optimal inventory level y*(e(y)) = 0 from a given iﬂ

- o
initial inventory level y < 0 and it is given by the unique positive Ej
solution of :{j

AN
et
.
CESRAN

P PR
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—— o) =L+, y2O.

X a’
20

In this case, the turnpike set G = {0} = I(§).

v

. A
. s e

e . - ‘
C Y PSP

B

.......................................................................




The value functions obtained in this example are sketched in

Figure 2.

v(y,§)

Kazez

£

K LS
K< 20E \R(E'Z‘Q\

Figure 2. Value function v(y,£) for different values of K.

The value functions satisfy Vy < -K/2 in all the cases.

K > 2af, the value function is strictly convex and vy + -K/a as

y * -, We note that in this case, Assumption (A6) and hypothesis (ii)
of Proposition 6.4 hold. The value function for K < 20f are linear

on (-»,0] with the slope of -K/a. For these cases, Assumption (A6)

does not hold. Furthermore, both cases a) and b) illustrate Proposition 6.3.
In the rest of this section, we will examine the monotonicity of

y(*) defined in (6.7), when the demand process is a Markov chain with a

LK
ﬁ‘.'_-g‘;_! y

. finite state space. We start with two point chains.

-
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3 ‘ Lemma 6.5.

LS

Suppose that Ip(z) at z and 2, is given by

L &S

Up(zl)
Le(z,)

A [o(z,)-0(z,)]
(6.26) 1772 1

N LS A8

Let 2, < z,. Then y(zl) > y(zz).

Proof: Suppose to the contrary. The argument used in the proof of
Theorem 6.1(ii) implies that y(zl) ¥ y(zz). So the interval
1= [y(zl),y(zz)] is nondegenerate and on this interval the following

inequalities hold:

(6.27) ’887 (y,z;) > -c'(zl) > -c'(zz) 3-%\'()'.22) ;7 Vy€lI.

s

)
|
]

The specific form of the infinitesimal generator L yields

(W (y,)) (2) <0 5 Vy€I 2

(6.28) 2 3
By v (yse))(z) 20 5 Vy€l 1

-]

Now observe that v 1is also the value function of the following

deterministic control problems:

;. _'..'_,.'. e
R AuLnI AR

I(y,2,P) = J e'°t[h(y(t))+C(p(t))+LV(y(t),zi)]dt ; i=1,2

0

4
el
P g

v(y,z;) = inf J(y,z,,P)
P>0

[ ARSI

b

M .

Moreover, the '"verification theorem'" (Theorem 3.1) holds. Therefore, o

LA
RO

(6.29) y(y(z;),2,) = J‘; ey (el 7" (1), 2))+ v (y (1) ,2,) )t =
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M * L *
- where y (t) = y(z,)+| [p (¥ (s),z,)-z,]ds. Since p (y,z,)-z, > 0
- 1 0 27 %2 27 "2 =
for y€I, y*(t) €I for t > 0. Rewrite (6.29) as follows:
: -0t * * ¥* *
) av(y(z)),2,) = Jwe ey ()@ (v (1),2,))+Lv(y (£),2))]dt
Y. 0

* Jze-at[LV(y*(t),zz)-LVCy*(t),zl)]dt

Relation (6.28) implies that Lv(y,zz)-Lv(y,zl)ZLv(y(zl),zz)-Lv(y(zl),zl)
*
for y€I. Since y (t)€I, we obtain

-
9
.
o 8
4

. v (y(z)),2,) Z_fme-at[h(y*(t))+c(p*(y*(t),zz))+Lv(y*(t),zl)]dt .

. 0
- (6.30) -
I + (/) [v(y(z;),2,)-Lv(y(z,),2]].

Now define P' = {p'(t); t > 0} by p'(t) = p*(y*(t),zz)+zz-z1. Then

P >0, the strict convexity of ¢ and (6.30) yield

V0 (2)),2) >3(y(2)),2,,P )+ (1/0) [e(z,) ¢ (2))+Lv (¥ (2 ), 2,)
v (y(z)),2,)]

(6.31) 2v(y(z)),z2 )+ (1) [e(zy)~c(2)+Lv(y(z,),2,)

-Lv(y(z;),z))].

We know that v(y(zl),zl) = (1/0) [c(Zl)+h()'(21))+L(V(}’(Zl),Zl)]-

Substitute this into (6.31)

v(y(z,),25) > (1/0) [h(y(z;))+c(2,)+Lv(¥(z,),2)] = J(¥(z,),2,,P)

where p(t) = z, for t > 0. But the above inequality contradicts

with the definition of v, hence y(zl) > y(zz).
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Next, we give examples to show that y(+) is not monotone, in

general.

Example 2.
Take c(p) = p°, h(y) = y2, a =1 and Z = {1,2,3}. Define L

by
Lp(1) = 0
Lp(2) = Ay [e(1)0(2)]
Lp(3) = A;[0(1)-0(3)]

where Ai's are positive constants. Let Vi be the value function.
273

We will show that for ctertain values of A2’13 the monotonicity of

y(z) breaks down. First, observe that Vy ooy (y,1) 1is independent ii
273 4
of Az and Az, so it will be denoted by v(y,l1). Also, we have the "
following: <
. . . . , =
lim v, , (y,i) =v(y,1) ; i=2,3 unifornly in bounded y N
A, >4 72773 s
1
lim v (y,i) = v (y,i) ; i = 1,2,3 uniformly in bounded y ]
Ags A 0,0 N
A *XO 2’73 >‘2’ 3 S
272 -
0 .
A3+13
where AO,AO are constants. Also, V_. is strictly convex because
h and c¢ are so. Therefore, there is only one point Yy (1) -
Apsdz ‘
3 - - B
satisfying —v (y,i) = -c¢ (i). So, the uniform convergence of o
v implies the following: 1n%
Xz.ks o
2
':ﬁ
3
b

—
S
.
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=yl ; i=2,3

ﬁ
—
[
3
<
N
>
—~
™
~
[l

lim y (2) =y (2)
(6.32) { AZ*O AZ’AS O,Xs

lim y (3) =y, (3
x50 Agyris Aps0

Since v(y,1), v (y,2) and v (y,3) are value functions of
O,Xs AZ,O

deterministic control problems, Corollary 6.2 implies the following
(6.33) y(1) = -1, )’0,>\3(2) = -2, YA2’0(3) = -3, ;V)‘21>‘3 e 0.

Since yo A (3) 1is continuous in ks with Yo 0(3): -3 and
b 3 3

lim Yo% (3) = -1, there is lg > 0 such that y 0(3) = -3/2.
>3

Observe that for the pair (O,Ag), the monotonicity of y(z) breaks down.

Example 3.
Again take c,h,0,Z to be the same as in Example 2. Define LE
by
Le(1) = e[o(3)+0(2)-20(1)]
L.w(2) = e[o(3)+p(1)-20(2)]
Lo(3) = €[0(1)+0(2)-20(3)] + AJ[0(1)-0(3)]

where Ag is as in the previous example. Arguing as in Example 2, we
can conclude that for small but positive €, the monotonicity does not
hold.

Observe that L. generates an ergodic chain on {1,2,3}.
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Now, suppose that L is of the following form

Lp(z ) = A lo(z ;)
Lo(z)) = Alo(zy ,)-0(z)]

-0z )]+ [o(z _)-0(z )] 5 n=2,...,N-1

where Z = {2z .,zN} and z, <z, < ... <z, Let zn(°) be the

1" 1 2 N
process starting at z Then zn(t) f_zm(t) if n < m. Thus it is
reasonable to expect monotonicity of y(+) in this case but we

were unable to prove this assertion.
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7. Inventory Constraint with Jump Markov Demand

In this section, in addition to the nonnegative production con-
straint we impose the constraint that the inventory level cannot fall
below a certain prescribed level Ymin® So the set of feasible pro-

duction processes A(y,z) is given by

t
(7.1)  A(y,z) = {P€A : y+f [p(s)-z(s)]dsiymin for t>0} ;
0

V.2 €y ;) % 2
Then the corresponding value function is defined by

(7.2) v(y,z) = inf J(y,z,P) ; V(y,2)E€[y . w)xZ .
PEA(y,2) man

We will only consider the case when demand process is a jump Markov
process.

Define h° by:
(7.3)  h°() = [(1/e)-1max{y ; -y,0}+h(y) 5 Vy€ (-=,=), €€ (0,1].

Let v° be the value of the unconstrained problem for a given e€ (0,1].

. € _ €
Since h = h on [ymin,w), v <v on [ymin,“)x Z.

Theorem 7.1.

Suppose L 1is as in (4.11). Then for every R > 0 and small

€ > 0, there is KR > 0 such that

(7.4)  0<v(,2)-v(r,2) K 5 V(D E[y, RIXZ.
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Proof: For Yy f-ymin use the production process

p(t) = Z(t)+X[0,y . _y](t) to obtain:
min

(7.5) V) < yy 0F ¢ kD 5 Yy <y

where in this proof k is a constant independent of €. Equation (3.1)

for v© has the following form:

(7.6) F(§§v€(y,z))-z§§v€(y,z> = av®(y,2) - ¥ (7, 2)-h° ()
At y = -/_ equation (7.6) and (7.5) yield that

d.€ 9.€
(7.7 FGzpy (}’min-v’é',Z))-sz piq-7Er2) Sorak(h(y, o -VE)+1)

€ 1
+ k|lv (ymin-/g, M, - -
< k- 1//E.
In the first inequality, we have used the fact that
(WEW,*)) (@< kllvE(y,*) |, Recall that the map r =+ F(r) - zr is

concave. Therefore, (7.7) implies that

(7.8) 2E

3V Upin7E2) € (=1 (2)] U [e5(2),)

where
F(ci(z)) -z ci(z) =k - 1/VE.

]
Then for sufficiently small € > 0, ci(z) < -¢ (z) and

¢5(2) = ((1//8)-K)/z.

............
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Again use (7.6) at y = ymin to obtain \
E
3 € 3 € .
F(a—y-v (ymin,Z)) T Iy (ymin,Z)?_-K. o
o~
A similar argument to that for (7.8) yields that .‘-
(7.9) sup Ialve(ymin,z)l < K. g
0 & o
2€2
Since v® is convex -a—ve(y -Ve,z2) < —§—’VE()’ z) < k. Recall that *
* Qdy min ~ *%7 = 3y min’ ' = ¢
cg(z) = [(1/V€)-k]/z, thus (7.8) yields that i
(7.10) l’ve(y -V/e,z) < ce(z) < —c'(z) ; Y2€Z and ¢ small. ‘-
' dy min 7’77 = "1 ? ¥
i
Now, fix (y,z)€ [ymin’R] xZ. Let p;(t) be the optimal production _
process constructed in section 3. Then (7.10) implies that the optimal 1’.5::
inventory trajectory y;(-) satisfies the following
R
* J— :::::‘
Ye(t) 2y, -ve V¥t >0. i
n“_}‘
Therefore, P8 defined below is in A(y,z).
z(t) + 1 t€ [0,7E] -
pe(t) = g
€ p;(t-/E)n(t)-z(t-/E) ; t> Ve g
" (t-/R)+VE ’
Also, ye(t) = (y+t)x[0’/€—] (t)+(y€(t- €)+ e)x[/g’w) (t). Thus, we have
the following:
.-:C‘.
3

.y~
......
~~~~~

-
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7.1 v, 2)-vE0,2) < 30,2, )-I(y,2,P )
/E_ ~ot
f e  [h{y+t)+c(z(t)+1)]dt
0
-avE, -at * *
+ e {EJ:e [h(ye(t)+/g)-h(y€(t))]dt +

0

As in Lemma 3.2, one can prove that for R > 0, there is K, > 0 such

R
that
* * *
(7.12)  Jy () ]+]p ()] < Kp 3 Yt >0 and y (0)€([y . ,R].
Now use (A4) and (7.12) to obtain .

(7.13)  Ele(p, (£)+2(t+/E)-2(t)) ¢ pa(£)] < Kg (KT+1)E 2 (+VE)-2(8) |

K Plz(t+/e)f2()) < K /e,
Similarly,
(7.14) E[h(y, ()+/E)-h(y_ ()] < Kp/%.

Substitute (7.13) and (7.14) into (7.11) to complete the proof of (7.4).

Theorem 7.2.
The value function v for the constrained problem is in D0 and

it is the only solution of the following equation: -

(7.15) av(y,z) = Fcaiyv(y,z))-z;’—yv(y.zwwcy,-))cz)+h(y) ;

Vy,2) €[y, »=) *xZ.
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9 ' .
(7.16) 5;v(ymin,z) > -c (2) ; Yz€Z,

continuous, convex in y and satisfies (2.1) and (2.4)

Proof: As a consequence of the previous theorem, we know that v is

Now using the method developed in Lemma 4.2, we obtain the

following (also, see Theorem 1.1 in [14]):

[(1) av(y,z)-F(r)+zr-[Lv(y,*}](2)-h(y) < 0 ;

+
Vre DYV(y,Z) and  (y,2) € (y ;) X2

(7.17)
1(2) av(y,z)-F(r)+zr-[Lv(y,*)](2)-h(y) > 0

Vre€ D;,v(y,z) and (y,z)E€ [ymin,w) xZ.

Now proceed as in Theorem 4.3 to conclude that jlv is

ay
(7.15) holds. To prove (7.16), observe that
(7.18) Dv(y . ,z) = (- 2ty z)].
) y ““min’ ’9y ““min’

Therefore, (7.17) and (7.18) imply that

(7.19) avtymin,Z)—(LV(ymin,-))(2)-h(ymin)3 F(r)-zr ;

continuous and

9
Vr < -a—y-v(ymin,z) .

Equation (7.15) and (7.19) yield

F(ij(y

)
3y min,z))ﬂw\l(}’min,z) > F(r)-zr ;

d
<
YT 29y Unine )
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Since the map r -+ F(r)-zr achieves its maximum at r = -c'(z) only,
the above condition is equivalent to (7.6).

Uniqueness follows from the verification theorem. Observe that the
optimal feedback policy P* constructed in (3.2) is in A(y,2) on
account of (7.16).

o

If the value function v° of any of the unconstrained problems
satisfy (7.6), then it is also the value function of the state con-
strained problem. But clearly there are values of Ymin such that

this does not happen. The following result deals with this case.

Proposition 7.3.

Let Ys be given by

(7.20) Ye = inf{y€ (-o,») : ggve(y,z) = -c'(z) for some z€Z}.

- Then either one of the following hold for any € > 0:

’i (1) Y >y, and inf{y : y€G} > Ymin
E (ii) Ye < Ypin and G = [ymin’ymin+a] for some a > 0

where G = co{y€ [y,

min’m) : é%V(y,z) = -c'(z) for some z€7Z}.

Proof: Take a sequence {(ye,ze) : € > 0}e (-»,%) xZ such that
(ye,zs) converges to (yo,zo)e [ymin,w)><z as € tends to zero. The

convexity of vE implies the following -

€ 9
vy,z.) 3V€(y€,z€)+(y-y€)gv€(ye,ze) 3 Yy .

e v e e e
. e e e e e L
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Now suppose that -a—a;ve(ye,ze) converges to r on a subsequence. Then

Theorem 7.1 yields that

vy 2 v(ygszgdt(y-ygdr 5 Yy 2y ..

Again, the convexity and differentiablity of v implies that

. 0. € _ 9 .
21’3 3y’ UerZe) = 53¢ 0ge2p) » iy >y
(7.21) 3 e 5
- < . =
11!2*;111) 3y VerZe) 39V 0nine2o) s 3 Y = Ypiy -
9 € !
Now let (ye,ze) be such that |Y€~y5| < € and a—yv (ye,ze) = -C (zs).

Observe that sup|Y€| is finite and z€€Z. So there is (yo,zo) such
€

that (ye,ze) -+ (yo,zo) on a subsequence. Also, (7.10) implies that

Ye 2 ymin'/g . Hence, (y,2) €y . ,®)*xZ. If y, =y ., then

9 ' .
B_yv(ymin’zo) > -c (zo) on account of (7.21). But (7.16) yields

] ' ) _ '
B_yv(ymin’zo) = -¢ (zo). Therefore, we have a—yV()’o,zo) = -C (zo) and

consequently the following

(7.22) lim inf Y_> inf{y : y€G}.
e —
Y0

Similarly, one can prove that Ye' is lower semi-continuous in €.

Suppose that Ye < Ypin® Then (7.22) and the lower semi-continuity

of Ye imply that one of the following holds:

(1) inf{y : y€G} = Ypin

(2) there is €0 > 0 such that Yeo = Ypin °
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3 2
f:' EO "
But for the second case v ~ =v and inf{y : y€EGl =y_ =y .,
- €0 min B

Also, an argument as in the proof of Theorem 6.1(ii) yields that G

is a non-degenerate interval. Hence the second part of the proposition

I.&.LA-\\-"

is proved.

To prove the first part, we suppose that Ye > Ymin® Then v' = v

and inf{y : y€G} = Ye > Yoin

a0, 8 0

»
i
3
!

"
o oy s s
‘/’:'n ' 3

v

.“'m

-
-
.
.
- +
.
*»
-
.
“
~
.
-. :
4‘.
-'.
.
—
- * .- -‘l
- ° l&" ‘I
. O,
~e ‘u\..
> e
- . ‘-“
. " -'




.

<> .

Y

WE

r
- 67 - 20
ol
N
Var
8. Extensions and Concluding Remarks o
<
We have now completed our study of infinite horizon stochastic k.,
>
Y
production planning problems with demand assumed to be either a jump ;}’
t .
3
Markov process or a reflected Markov diffusion process. Problems with ?2:
and without the inventory constraints are treated. We have shown the 3
e\
existence of optimal feedback production policies. These policies :fh
exhibit an appropriately generalized version of the so-called turnpike :if
behavior. E
An important extension of the problem involves production o
processes, which are bounded from above by a stochastic process repre- ﬁ{#
3
senting the capacity of the production system. The capacity process o
over time may be modeled as a jump Markov process or a piece-wise ffﬁ
deterministic process [5]. Moreover, there may be several different ;?
products competing for a variety of scarce capacities. This is animportant f?ﬁ
problem faced by flexible manufacturing systems [11], upon which the o
methods developed in this paper have some bearing. o
8 In our ongoing work, we use these methods to deal with the j}
¥ special case of the above problem k papely, when the demand is constant. o
- o
E The capacity process is assumed to be a vector jump Markov process. e
|- For a manufacturing system consisting of several machines, such a o
i . . e
5 capacity process results from random machine breakdowns and subsequent .
3 . N
5 repairs. PO
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ARBendix 1

Consider the following stochastic integral equation whose solutions

are jump Markov processes.

t -

(9.1) z(t) = z+f fw 2(z(s),x)m(ds x dx) :

0
where T is a random measure defined on the Borel subsets of

[0,) x [(-=,0) U (0,%)] satisfying

.

(1) For all Borel subsets A of (-»,0) U (0,%) let

ACA) =I dx/|x|%. Then if A(A) is finite
A

(9.2) 4 nA(t) := m([0,t] x A) is a Poisson process with parameter

A(A).

L (ii) Ny is independent of Ng whenever ANB = @.

Also, let & satisfy the following:

[ (1) 2(2,x)+2€Z ;Vz€Z and x€ (-,0) U (0,)

(ii) There is N1 > 0 such that
(9.3) ¢

r |2(z,%)-22" ) [ax/ x| < Ny |z-2" |

k (iii) There is T, > 1 such that ‘

-1

2(z,x) = 0 whenever |x| T

or |x| >r,.

Then there is a unique solution of the equation (9.1) (Theorem 1, -

a

eV

. . LA P . ot T
o N . 1 S

T A, L ' RIS )
L ittt e 2!

page 47 in [13]). Moreover, the solution z(-) is a strong Markov

Il

»
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process with infinitesimal generator L given by
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d
(9.4) Lp(z) = Im [©(z+2 (2,%))-0(2) ] 2
-~00 IX
- So the jump rate and post-jump distribution m(z,dx) are given by

A(z) = M({x€ (-=,0) U (0,%):2(z,x)+z€ 2~{z}).

where M(A) = f dx/[x[z. If A(z) = 0, then ¢(z,dx) is arbitrary.
A

But if A(z) # 0, then for any Borel subset A of Z-{z}
m(z,A) = )\(Z)-IM({XE (-=,0)y(0,%): (z,x)+z€A}).

Straightforward calculations show that the condition (9.3) implies the
assumptions (A8)-(A.10). (See section 2.3 in [13] also.) Note that

it also implies #(z,2~{z}) =1 for all z€Z.

Remark 9.1

(ii) The random measure T can be constructed from the jumps of

a Cauchy process £(t) as follows

'"([0 t]xA) = Z X([E(S) E(s )]€A) H VAC[I‘”’O)U(O:“’)

s<t
where & 1is an independent increment process with its characteristic

function given by

E{exp(iB[E(t+5)-E(t)])} = exp{s[f (e _igx-1

|x|<1 o Ixl

(ele

' Ibcl el

For more information see section 2.4 in [13].

(i) The condition (9.3)(i) implies that z(t)€Z for all t > 0.
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Next we will show that if A and T satisfy (9.5) in addition to

(A8) and (A9), then (Al0) holds.

There is Nz > 0 such that for all AcZ

(9.5) . ' ' .
A(z)m(z,A)-A(z In(z ’AN2|2'-2P SN lz'-z] . )

where A = {2€Z : there is z €A : |z-z'| < cl.
Since A 1is bounded (assumption (A8)), there is €0 > 0 such that
(9.6) r dx/lxl2 > 2 sup{A(z) : z€2} .
€
0
~ {
Now, define F and & by -
: (0.7 F(z,8) = MDn(z,[§,E]) 5 YzE€Z and E€[E,E)] = 2 3
: . o |
. K
. 1nf{£:F(z,Ej)zx-€0} ; if XE[EO,EO*F(Z.EI)) T
(9.8) (z,x) = o
2 H if xe(’m’eo)u[eo+F(z’£1) !°°) N

Straightforward calculations imply that for any € D(L)

L9(z) = J [W(2(z,%)) - ©(z)]dx

(‘°°’°°)

where Ly 1is given by (4.11). Change of variables in above integral .
yield
(9.9) Le(z) = f fotzeg /e -(1/x))-0()1dx/ |x|? .

(-co’co

Define & by
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a & »
e
ey

)

: ~ -1
) c(z,e,+(1/€,)-1/x))-2; ¥x€[e,, [(1/e ) -F(z,E,)] )
: (9.10) &z,x) = o0 0 0 1

0 ; otherwise.

.l

"
3

o0

: Note that choice € yields that €9 < [(1/&:0)—F(z,£1)]-1 5_260, so L

7,

g 'n.‘,l" oy

L is well-defined. Combine (9.9) and (9.10) to obtain

’

.
0T
A
e te E
o MR}

- Lp(z) = r [w(z+2(2.X))-w(Z)]dX/IXIz *

'
N

It is clear that % defined by (9.10) satisfies (9.3)(i) and (iii). N

L. A technical argument which we choose to omit implies that (9.5) implies

(9.3)(ii). Therefore (A.10) holds true.
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