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TURNPIKE SETS IN OPTIMAL STOCHASTIC PRODUCTION PLANNING PROBLEMS

by

I.o

W. H. Fleming, S. P. Sethi, H. M. Soner

Abstract. This paper considers an infinite horizon stochastic production

planning problem with demand assumed to be a continuous-time Markov

process. The problems with control (production) and state (inventory)

constraints are treated. It is shown that a unique optimal feedback

solution exists. The solution is characterized in terms of a turnpike

set, toward which the optimal inventory level approach monotonically

over time. Moreover, for nondeterministic demand the optimal inventory

level reaches the turnpike set almost surely in a finite time and,

thereafter, it wanders inside the set in response to the randomly

fluctuating demand.

Key Words: production planning, stochastic optimal control, control

constraints, state constraints, Markov Processes, turnpike

sets.
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Introduction.

Thompson and Sethi [16] consider a production-inventory model, which

determines production rates over time to minimize an integral representing

a discounted quadratic loss function. The model is solved both with and

without nonnegative production constraints. It is shown that there

exists a turnpike level of inventory, to which the optimal inventory

levels approach monotonically over time. Of course, if the initial inven-

tory level is the turnpike level, then it is optimal to produce just

enough to satisfy the demand so that the inventory level stays at the

turnpike level. The model was generalized by Sethi and Thompson [12]

and Bensoussan, Sethi, Vickson, and Derzko [1] by incorporating an

additive white noise term in the dynamics of the inventoryprocess. It was

shown that there exists a unique optimal solution. Moreover, there

exists a turnpike level of inventory, in the neighborhood of which, the

optimal inventory level stays most of the time.

In this paper, we generalize the Thompson-Sethi model in several

different directions. First, we consider that the demand over time is

a stochastic process, assumed to be either a jump Markov process or a

reflected diffusion process. Second, we deal with fairly general convex

costs that include the special case of quadratic costs. Finally, for

jump Markov demand processes, we can incorporate a state constraint

stating that the inventory level cannot fall below a prescribed level.

We also note that our analysis of the case when the demand is a

diffusion process introduces an approximation, which generalizes the r

,.I
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model of Bensoussan et. al. [1].

In order to provide a summary of the results obtained in the paper,

we denote by y(t), p(t), z(t) respectively the inventory level, pro-

duction level, and randomly fluctuating demand at time t. Production

is the control variable, subject to the constraint p(t) > 0. In P

§'s 1 - 6 we put no constraint on the inventory level y(t), but in §7

the lower bound y(t) > yn is imposed. The demand z(t) is modelled

as a Markov process, which is bounded above and below (C0 < z(t) <

where > 0). We consider two cases: (i) z(t) is a jump Markov
0.

process, with bounded generator L of the form (4.11); (ii) z(t) is

a Markov diffusion, reflected at E0 and E1 (5.1).

The control objective is to minimize an expected discounted cost

of the form (1.2), which involves convex holding or shortage costs h(y)

and production costs c(p). The value (or minimum cost) v(y,z) defined

in (1.3) for initial data y(0) y, z(0) = z obeys the dynamic pro-

gramming equation (3.1). Special features of the model allow us to

show that v(.,z) is strictly convex and that the quantities @v/ay and

Lv(y,-), which appear in the dynamic programming equation, exist and are

continuous. The optimal feedback production law p*(y,z) is expressed

as a function of av/Dy by formula (3.2). We do not know that p (.,z) ?P

is Lipschitz continuous. However, since p (.,z) is a nonincreasing

function of y, the differential equation

: p (y*(t)(t)t)) - z(t), y*(0) y,

has a unique solution for the optimal inventory level y (t).

.. ............. . .. ... -... .. .- -. .. - v ,," "'. .. ".''' .- --.".-"-."- .. -".. .> . .o .:-- - .- - -...... -. -. : . . ¢ -, . - : , . . . .-. ,.. . _ . .
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In §4 we treat case (i), when the demand z(t) is a jump Markov

process. We make use of the concept of viscosity solution, introduced

by Crandall-Lions [4] for nonlinear first-order partial differential

equations, and by Soner [14] for dynamic programming equations of con-

trolled jump Markov processes. The value function v(y,z) is first

shown to be a viscosity solution of the dynamic programming equation,

and afterward a classical solution. In §5 we treat case (ii), when

z(t) is a reflected diffusion. Here we make the additional assumption

that the holding cost h(y) is twice continuously differentiable. A

method to obtain regularity is to replace v by v satisfying a

dynamic programming equation to which a small term 2 v /ay2 has been

added. A crucial step in the argument is an ' priori bound for

i\,Hcl,a independent of c (Theorem 5.1). Once this is obtained,

rather standard techniques show that v v as E + 0 and that

v(y,z) is a solution to the dynamic programming equation with the

required regularity properties.

In §6 we show that in nontrivial cases, the optimal inventor' level

y (t) reaches almost surely in finite time, a certain interval G, which

we call the turnpike set.

The approach to G is monotonic over time. Moreover, once inside

the turnpike set, the optimal inventory level stays inside the set for-

ever. Of course, inside G, the inventory level keeps varying in

response to the randomly fluctuating demand. We should note that the

turnpike set represents a generalization of the single point turnpike

level obtained in [16].
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Then in §7 the analysis of §4 is modified to deal with a state-

space constraint y(t) > y1 n Such a constraint imposes an inequalitv

constraint (7.16) on 3v/Dy at ymn Dynamic prozramminL eauations and

viscosity solutions for control problems with state-space constraints

were discussed systematically in [14].

Section 8 concludes the paper with a brief discussion of some

important extensions of the production planning problems that arise in

automated manufacturing systems.

I.

."

. . . . . . .



1. Notation, assumptions and the model

Consider a factory producing a homogeneous good in order to satisfy

a stochastic demand over time. To formulate the optimization problem

of the factory, we define the following quantities:

(Q F,IP) : the underlying probability space

Z = [0 l c (O,c) : the set of possible demand rates
0' 1

z(t) : the demand process; which is a right-continuous Z-valued

Markov process with infinitesimal generator L

y(t) : inventory level at time t (state variable)

P = {p(t) : t > 0} : production process, p(t) > 0 denotes the

production rate at time t (control variable)

(i) adapted to Ft = (z(s) : sE [O,t])
A = : ×[o,-) - [o,-) : (i i) sup {p(t) :t > O} < +

the set of feasible production trajectories .

cE C ([0,oo) * [0,)) : the production cost function

h EC((--,-) - [0,-)) : the inventory, cost function; on (--,0) it

represents the shortage cost

a > 0 : the constant discount rate.

For any PEA, we define the controlled inventory, trajectory y(t)

and the discounted cost associated with it, respectively, by

.. -.
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(1.1) y(t) = y + [p(s)-z(s)jds
0

(1.2) J(y,Z,P) = E e [h(v(t))+c(p(t))]dt.

Note that the inventory trajectory y(.) depends on the production

process P, the initial inventory level y and the initial demand rate

z. For simplicity we suppressed these dependences in the notation.

The optimal control problem of the factor) is to minimize J over

all feasible production processes. Thus, we define the value function

by

(1.3) v(y,z) = inf J(y,z,P).
PEA

We assume the following throughout the paper:

(Al) h is continuous, convex, nonnegative on (_oQ) with

h(O) = 0.

(A2) c is continuous, convex, nonnegative on

[0,-) with c(0) = 0.

(A3) There are K 1> 0 and 'y > I such that

0 < h(y) < Kl(jyfj + 1) for all yE(-ao)

[h(y')-h(y)l < K (h(y)+l) y'-Yi whenever ly'-yI< 2C.

(A4) c is twice differentiable on (0,-) with c"(p) > 0 for all

p > 0 and c (0) = 0.

. . .. . . . . . . . . . . ..- ,-
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(AS) There is K > 0 and v >1I such that

3 ~.

c~p > 3 Ipl-I)for all p > 0.

(A6) There is K > Ccc( 1  such that

h(y) > K - 1) for all y E"(-,0]

Remark 1.1.

() Functions hos) Kl3 ' and d c()= psh with > 1

satisfy the above assumptions.

(ii) Let F(r) be given by (see figure 1)

(1.4) F(r) =inf [c(p)+pr].
P.10

Then the infimum is achieved at p 0 if r >0. If r < 0, the

minimum is achieved at p = (c') (-r), where (c') is the inverse

of c'. Note that the inverse function (c is well-defined on

account of (A2) and (A4).

F(r) o-_

! r

Figure 1 The shape of function F
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Also, --

fF(r)-F(r')I < Ir-r'lmax{(c')- (-rv0) ,(c) (-r v0)}

where avb = max{a,b} and F (r) = -(1/c"[(c')- (-r)]) for r < 0.

As a function with domain , F is concave with a possible dis-

continuity of its second derivative at the origin.

(iii) Assumption (A4) implies that (c')-  is locally Lipschitz

continuous on (0,o-). Hence F is locally Lipschitz continuous on

(iv) Most of the results that follow would hold without the

assumption (A6) This assumption is innocuous as it merely serves to

rule out the pathological cases, in which it is optimal, at least

when the current demand is at its maximum, not to decrease the current

level of shortage irrespective of how large that level is. In particu-

lar, it rules out the trivial case h-0. Moreover, with (A6) we can

obtain more detailed characterization of the solution of the problem;

see Remark 2.1 and Example 1 in Section 6.

.4..
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2. Properties of the value function

In this preliminary section, we establish convexity in y of the

optimal value function as well as a bound and a local Lipschitz estimate.

Lemma 2.1: For every zE Z, v(.,z) is a convex function.

Proof: It suffices to show that J(-,z,.) is jointly convex. For any

y,yE(_ ,o), P,PEA and zEZ let y(-) and y(.) be the inventor)

trajectories corresponding to y,z,P and y,z,P, respectively. Then

for any [0,1], we have

aJ(y,z,P)+(l-)J(,z,P) e-{[h(y(t))+(l-)h(

+ [ac(p(t))+(l-6)c(p(t))]}dt

> E e-t [h (y(t)) +c @ (t)) ]dt

where (t) = ap(t)+(l-a)p(t) and ft
y(t) = (Sy+(l-B)y) + J[(s)-z(s)]ds.

Hence, (.) is the inventory trajectory that corresponds to

= $y+(1- )y,z and P BP+(1-8). Now we rewrite the above inequal-

ity as

BJ~y, z'p)+(l-W)J z'--) > J(By+Cl-a)yzap+(I-$)p-.

Remark 2.1: In section 6, we shall show that under (A.6) and some

additional assumptions v(.,z) is strictly convex.

.. .. .. . .. : ..... . .. .. . .. .. .
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Lemma 2.2. There are C1,C2,C3 > 0 and C4 > c'( i) such that

(2.1) 0 < v(v,z) < 4(y) + C1  V (y,z) E x- Z

(2.2) v(y,z) > C 2  VzEZ and y < -C,

Proof: Positivity of the value function is an immediate consequence of

the positivity of h and c. To establish the upper bound, we use the

production process p0 (t) z(t). Then the corresponding inventory

is y(t) = y for all t. Now majorize v(y,z) as follows

v(y,z) < J(y,z,P) E eat [h(y)+c(z(t))]dt

<1 h(y) + -e c( 1)dt

where is the largest point in z. Hence, (2.1) holds with
1

Cl= c( l).

To establish (2.2), we obtain an estimate of v from below by the

optimal value of a deterministic control problem. Fix (y,z) E (-,0] x Z.

Let T be the exit time of y(') from (--,0].

(2.3) J(y,z,P) > Eoe- [K yt 3 ) dt - I(K+K.

> E 1[K2(y+ - (s)dsl)+K 3  -

- 2 J 0  o a 3

f at ft V •
EPe[KI(s)dsl+K3 P(t) -dt- -(K2 +K2 l/a+K 3) ."-

The first inequality is obtained by using assumptions (A6) and (AS) with

v > 0. The estimate z(t) <-E is used in the last inequality. Now

K1
let C3 = (-l)[(-) .3J and define v(y) on yE(--o,-C 3] by

3x K 3  3

.571
, ,2>-?
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PET) f= 0~ I p[2~f(s) dsl+K~lp(t)l']dt

where

8 , n,-.t > 0 y + fop(s)ds > -C3 J

A= {P :[o) [0,"-) :(i) Borel measurable, (ii) Sup{ Ip(t) I:t>0}(+oi

Then voy) = (- K2  for y< -C 3  because it is a smooth solution of j
the following equation:

cxv (y"--= inf [p d v(y)+K3 p - K~y;y C

v(-C..

The inequality (2.3) yields that

J(y,z,P) > v (y) -- K2+ K2 /'

-K 2(y-[K 2 C3+K 2+K 2 1 /a+K 3] for all y < -C 3  and z,P.

Choose C2 K 2C3 +K 2+K 2cQ /a+K 3  and C 4  K K2/(x. The assumption (A6)

implies that C 4 > c~y Hence (2.2) holds.

Lemma 2.3: There is C> 0 such that

* -(2.4) Iv (y, z) -v(y' ,z)I< Cy-y'(h (y) +), V z EZ and Iy'-yI<2 1

where ~l is the largest point in Z.

7. .
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Proof: Given (y, z) E (_0,0) x Z and 6 > 0 choose PoE A such that

(2.5) J(y,z,P 0 ) < v(y,z) + 6.

Let yH(.) be the inventory process which corresponds to initial points
0!

y,z and the production process P0. Now pick y satisfying

ly'-yI < 2C. Then the inventory process starting from y ,z with

production P0  is given by yo(t) = Y0 (t)+y -y. Using these and

assumption (A3) we obtain

J(y ,zPo)-J(y,z,P O) = E [h(y (t))-h(yo(t))]dt

< K1 E e-at lyo(t)-yo(t) j [h(yo(t))+l]dt

) y{E e h(Y (t))dt+ (Kl/()}

Sinche Ch production cost rate c is positive, the integral term above

is less than J(y,z,P0) Also, use (2.5) and then (2.1) to obtain

J(y',z,Po0)-J(y,z,P 0 < Kl l y - y l { ( v ( y , z ) + 6 ) + ( K1I / ax) )

< K1 [Y'-Y[ (h(y)/oL+Cl+6+Kl/a).

The following follows from (2.5), definition of v, and the above

inequality

v(y',z)-v(y,z) < J(y ,z,Po)-J(y,z,Po + 6

< C5[y'-y [ (h(y)+l)+6(K1 {y'-y[+l)

where C 5 =maxfK 1/a, K 1(C 1+K 1/a)}. Since 6 is arbitrary, the proof

of the lemma is complete. S

a

• . .y.-.

7II
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3. Bellman equation

Formally, it is known that the optimal value function is a solution

of the following equation [6]:

(3.1) cx,(y,z)=F( "(y,z))-z=--v(y,z)+[Lv(y,.)](z)+h(y); V(y,z)E(--,-)xZ

where F is as in (1.4). The purpose of this section is to obtain a

sufficient condition for optimality. It is shown that a suitably

behaved solution of (3.1) is the value function and that an optimal

feedback production policy can be constructed from it. These results

are obtained with no additional restrictions on the demand process. In

sections 4 and 5, we shall see that under suitable restrictions on the

demand process, the sufficient condition is also necessary.

In this section, we assume that there exists a solution of (3.1)

in the space D defined below. That such a solution exists will be

shown in Sections 4 and 5.

Definition 3.1:

We say that a real valued function v with domain (--,-) x Z is in

D0  if it satisfies the following

(i) v and are continuous and v is convex in y ;

(ii) v satisfies the estimates (2.1),(2.2) and (2.4)

(iii) v(y,.)E D(L) = domain of L.

Now we are ready to state the main result of this section which

we call the "verification theorem". The method we use to prove this

theorem is taken from [6].

* - . -' .- .' '. -. .' '. - ... - -'-'- ' . - - . ' -'- - . .. . , . . . ,. . . . . . . . .. . .. .".. -... . .: .
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Theorem 3.1.

Any" solution vED 0 of equation (3.1) satisfies the following

v(y,z) J(y,z,P = inf J(yzP)
PCA

where P is the feedback production policy defined by

* (c )(-,v(Y'z)) if {- (y,z) < 0

(3. 2) p (y, z)

1 0 if ay (Yz) > 0
-1

Remark 3.1: Since v is convex in y and (c')-  is an increasin

function, the feedback policy p* defined above is nonincreasing in y.

Therefore for any given demand trajectory z(-) and the initial inven-

tory level y there is a unique solution of the following equation

(see Theorem 6.2 in [71)

(3.3) y W Y+[ [p (y (s),z(s))-z(s)]ds.
00

Now let P {p (t) t > 0} where p (t) p (y (t),z(t)). Then

p(.) is adapted to {Ft : t > 0), the family of a-algebras generated

by z(-). Also, Lemma 3.2 below implies that it is bounded, therefore
P* is in A. L

Before we give the proof of Theorem 3.1, we prove some properties

of the production policy defined by (3.2) and the corresponding inven-

tory process y*(.).

- . . .

* _a " . • .. -a' .

- .- . . . ..- .. ." . . - •.. . -. -,- .. --. ..--- . -,- -. -. -.. . . .- --. -p. .. . . . -- ,'i L -
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Lemma 3.2.

For any yE ( and the demand process z(.), there is a constart

K(y), independent of z(.), such that

(3.4) sup{ly (t)l : t > 0) < K(y)

where y (.) is the solution of (3.3).

Proof:

We start by defining the following set which is the set of the

critical points of the differential equation related to (3.3).

G = {yE(- , ) p (y,z) = z for some zE Z}. 7'

*E

Since p is nonincreasing in y, the following statement is obvious

p (y,z) - z > 0 for all y < Ymin and zE Z

p (y,z) - z < 0 for all Y > Ymax and zEZ

where y.i= inf{y yEG} and = sup{Y : yEG}. Now it is

clear that to prove (3.4) it suffices to show that ymin and ymax

are finite. But this is an easy consequence of the estimate (2.2) and

convexity of v(.,z). a

Remark 3.2: In Section 6, we will examine the properties of y*(.)

and the set G defined above in more detail.

Proof of Theorem 3.1:

Fix (y,z) E ( ) x Z. First, we will show that v(y,z) is less

than J(y,z,P) for every PE A. For this purpose, take any

P = {p(t) : t > 0}EA. Then p(.) is bounded. So the corresponding

inventory trajectory satisfies Jy(t)l < Kt+IyI for some K positive.

'4=

... . . . .. ....°..- "...- ".. . . . . . .. •
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Also, p(') is adapted to the family of a-algebras generated by the

deiiand process. Therefore, the following identity follows from an

application of Dynkin's formula and the fundamental theorem of calculus.

* Pt

(3.5) av(,) = e e [O((s),z(s))-(p(s)-z(s)) (y(s),z(s))

(Lv (y(s) ,. )) (z (s)) ]ds

+ Ee 'tv(y(t),z(t))

rtt OL -at --

Eje-Sh(y(s))+c(p(s))ds+Ee V0y(t),z(t)

The inequality is obtained by using equation (3.1). Now send t

to infinity to conclude the following

-atav(y,z) < J(y,z,P) + lim sup Ee v(y(t),z(t)).

We complete the first step of the proof by the following chain of

inequalities which are obtained first by using (2.1), then the assumption

(A3) and the fact that jy(t)j < Kt+IyI.

-at -at1lim sup E e v(y(t),z(t)) < lim sup E e [-hy(t,))+C]
a

< lim sup e (-Kt5L+y[ Y+I)+C 1 = 0.

The equality v(y,z) = J(y,zP*) is derived by the same argument as

above. The only difference is the change of inequality to an equality

in (3.5); and we are able to do that because of the following

F (__ yz)) = p (y,z)) + p(y,z) a(y,z).

Recall that the above identity is proved in Remark 1.1 (ii).

-." . .-, - ".'." --" . . - ."- -.- '.'.". .-. ". ' .-. .''. . .,.'. ... .-.-. "-" " "( -'.' ._' _,:2 -'t_--D
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We have now obtained a sufficient condition for optimality. We

must still show that there exists a solution v of (3.1) in DO. In E.

order to do that, we must assume specific stochastic models for the

demand process. In the next two sections, we assume the nature of the

demand process to be either a jump Markov process (§4) or a reflected

diffusion process (§5). For each of these cases, we then show that

the value function is in fact a solution of (3.1) in DO. By Theorem

3.1, we can then construct an optimal feedback policy. In the later

sections, we further characterize these optimal solutions.

11q
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4. Regularity with bounded infinitesimal generator L

In this section, we consider a jump Markov process with the

infinitesimal generator L defined in (4.11) as the model of the random .

demand process. We then obtain the corresponding optimality condition by

showing that the value function defined in (1.3) is a solution of the 17

Bellman equation (3.1) in DO.

To precisely formulate the random demand model we obtain, in

Lemma 4.1 below, a condition on the demand process, which guarantees

the continuity of the value function. This will serve as the motiva-

tion for assumption (AlO) on the jump Markov process.

It should be obvious that the condition stipulated in Lemma 4.1

(and the consequent results) is not needed in the special case of Markov

chains, when the set Z of possible demand rates contains only

finitely many points.

Lemma 4.1:

Let z(.) and z() be the demand processes starting at z and

z respectively. Suppose that there is p > 0 such that

(4.1) Elz(t) -z (t)j < min{lz- z'Ie t  2El • Vt > 0.

Then v is continuous.

Proof:

Fix (y,z) E (- ,w) x Z and S E (0,1). Pick a production process

PE A such that

(4.2) J(y,z,P) < v(y,z) + 5.

*12

-- ;a

% I'

~. . .. . .

.*.~ * -.
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Given any z E Z, define a stopping time and a production

process P' = p(t) :t > 0) by:

Pt

(4.3) T inf{t > 0 :y + ps-'s]s> kn(1/6))

p~)= Ip(t) for t E [0,-r]

o for t> T

Let y' (-) be the inventory, process corresponding to the production

process P', the initial inventory level y and the demand process

z(. i.e.,

y'(t M y + [p'(s)-z(s)]ds.

First, we will obtain an estimate that will be used later. Let

(y max{y,01. Then

pt
E~y't)= E[f(p'(s)-p(s)-z'(s ~ s)s+

< E p'()-p~)-z(s)+z(s))+ds]

<. E lz'(s)-z(s)Ids

<fo min{Iz'-zle 5 , 2 1}

1 1 '0f (tpjz-zT .1/p ; t<lz- t>2T/zzI

We have used Jensen's ineq lity in the first step, then p _()< t

and finally the hNpothesis of the lemma. Now denote the last expression

by Y(t) and rewrite the above inequality as
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(4.4) E y(t)-(t)) + <Y(t) Vt > 0. -

Since p'(t) =p(t) for t < T, a similar argument would vield

(4.5) (t)()-t < V~t ; t > 0 -

where XA is the indicator function of set A. Next, we will estimate

the difference J(y,z ,P)-J(y,z,P). First, use p < p and then the

assumntion (A3) to obtain

(4.6) J y ' ')- y ,P) <E TOe-t [hOy (t))-.h(y(t))]dt

<JEey ctK lP')-J~~h~'()y+ld

+ E e a [h (y' (t)) -h (y(t))x[0 o)(y' (t))dt

+ E ec [h(y'(t))-h(y(t))]X( 0 (' (t))dt

1+ 12+13

IVI and I denote the first, second and third integrals in the.-
1' 2 3

last inequalities. Finally, we will majorize each term separately.

Now observe that y- t < y (t) < Pn(l/6). Thus, (A.3) implies

that h(y'(t)) < K [max{[2n(1/6))], ly-E tj~}+1. Ueti n
11

(4.5) to obtain

(4.7) 11< (K)2 fe [max{Lkn(l/6)]Y Jy-& tlY}42]Y(t)dt

1 n'1
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where K is a constant independent of z,z ,y and P.

Since h(y' (t)) - h(y(t)) < 0 whenever 0 < y' (t) < y(t) and

hov'(t)) - h(y(t)) < K1 [hoy' (t)) +1] (y (t) - y(t)) when y' (t) > y(t),

we obtain

[h 't))h (y(tfx (y (t

< K [h(y (t))+l] (y (t) -y (t)) 0,)(y t

First, use the above inequality and then (4.4) with the fact that

y(t) < kn(l/5) in I 2y to obtain

I < E e at K, h(y' (t) + (y(t .(t))+(y (t))dt

2

Obere ht y'(t)>0 o al t [, +/6)/ 1] because

<~t e )>-~ at K2(nd y')YK2 =K )n(/). owle

Aga in~ K 6,2 yi(s a c oteprvosstatmnt impliesen that yan P

o> T + kn(1/6) 1. Hence we have

13=Ere [h(y' (t))-h(y(t))J]dt

< Ee e~ ho, (s+6))ds.

rnI
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On t E [e,-), p (t) =0. Hence, y'(s+e) z(t)dt > S s

this in the above inequality to obtain

< K, f e-S!cs CsI Y- Ids. exp -akn (1/6) /El

0

'3

where K is a constant independent of z,z ,y and P. Combine (4.7)-
,3

(4.9) to obtain

(4.10) J (y, z ,P )-J(y,z,P)

The choice of P and (4.10) yield

IF

where w(IyI,Iz'-zj,6) =(K 6 +

+6 3 . Since all the constants are indevendent of P and z,

the same argument as above would yield

jv(y,z )-v(y,z)f w(IyIIz'-zI,6).

Now the proof of the lemma is complete because for all R > 0

lim lim Sup w(IyIIz'-zI,5) =0.

Also, recall that continuity of v in y has been proved in Lemma 2.3.
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In this section, we assume that the infinitesimal generator L

has the following form:

(4.11) LkO(Z)= X(z) [(O(z')-tp(z)]TT(z,dz') ; V OED(L) .. '"
Z

where

D(L) = {(P : Z - (_ceo) : bounded and Borel measurable}.

Also, the jump rate X(z) and the post-jump location distribution

1T(z,.) satisfy the following

(A8) X is a nonnegative, bounded Borel measurable function with

domain Z

(A9) the function z- X(z)7(z,.) maps Z into the set of positive

measures on Z and it is weakly continuous i.e.,

lim X (z )P(z)7T(Z',T X(Z)rp(z)Tr(z,dz) ; V p continuous.

z - !z fJ -'

(AlO) For any z,z , there are pathwise realizations z(.), z(-)

starting at z and z', respectively; and z(-), z'(;) satisfy

(4.1). See Remark 4.1 below.

Remark 4.1.

(i) A set of conditions (9.5) on X and 7 that imply (AlO) is

given in Appendix 1. Also, in Appendix 1 a stochastic integral equation

which yield solutions satisfying (AlO) is discussed.

(ii) In view of Lemma 4.1, (AlO) implies that the value function

is continuous. But all that follow (with the exception of the contin-

uity of v) can also be proved by having v to be simply a Borel

.................................
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measurable function.
!w

(iii) More precisely, (AlO) means the following: For any, z,z ,

there are Z-valued mappings z(o,.), z'(.,.) with domian [0,-)x Q satisfying

(i) W({w : z(O,w) = z}) =]P({w : z (0,w) = z')) = I

(ii) jz(t,w)-z'(t,w)] lP(dw) < min{lz'- l , 2 1 ''

f' -

(iii) For any pE D(L) the processes M(.) and M'(.) are

F t-martingales, where

t ".

M(t,w) = (p(z) - (L ) (z(sw))ds -

M (t,w) = P(z) - (Lo)(z (s,w))ds

We will first show that the value function is a "viscosity solution"

and then using this information we will prove that v is in DO. So

let us define the notion of viscosity solutions for equation (3.1).

Definition 4.1.
"-".4

(i) vEC((-o,) xZ) is said to be a viscosity subsolution of (3.1)

if

(4.12) av(y,z)-F(r)+zr-[Lv(y,.)](z)-h(y)<_0 V (y,z)E(-, ) xZ and

rE D v(y,z)

where

Dv(y,z) = {rE(--,-) lim sup[v(y+c,z)-v(y,z)-re]/jj< 0
y s-O W

W.
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(i i) v E C((~~ x Z) is said to be a viscosity supersolution of

(3.1) if 'I

(4.13) v (y, z) -F(r) +zr-[Lv (y, )](z) -h (y) > 0; V (y, z) E( ~~ x Z and

where

D (y, z) r rEcx) 1Urn inf [v (y+c, z) -v(y, z) -rE E; > 01.
y E-*0

(iii) v EC((--o,-~) Z) is a viscosity solution of (3.1) if it is

both sub and supersolution of (3.1).

Remark 4.2.

(i) The above definition is a straightforward generalization of

the original definition given by M. G. Crandall and P. L. Lions [4].

Also, see [5] for more information. R
(ii) v is differentiable in y-direction at y,z if and only if

D-v(y,z) and D v(y,z) are both singletons. Moreover, if v is
y y aconvex in y. then D v(y,z) is empty unless exists at y,z.

y a

But when v is convex in y, the set D v(y,z) is always nonempty and
y

given by

D v(y,z) = YZ) ___(YZ

where TY .r- are left and right derivatives, respectively.
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We first approximate the value function v by {vN N =1,2,...)

v (y,z) =inf J(y,z,P)
N PEAN N-

where

AN' P {E A p p(t)I N f or all1 t > 0.

Arguing exactly as in Section 2 and in Lemma 4.1, we obtain that N i

continuous, convex in y and vN satisfies (2.1)-(2.4). Also, the

corresponding Bellman equation is:

N av(y, z) F=L y-]z+~)

V (y, z) E x.~,~ Z

where

F N(r) =inf [c(p)+pr].

Lemma 4.2: The value function vN is a viscosity solution of (3 .1)N

Proof:

Fix (yo z) E (oc)x Z. It is well-known that v.N satisfies the

dynamic programming relation [6], i.e., for any stopping time e > 0

we have

at a
(4.14) v N(y0,-z)= inf E{ f e- [h(y))+c(p(t))]dt+e- v N(Y(O),z(e))}.

PEAN 0

Take any rE Dv(YzO and define a test function tp by

(41) ~v ) N (yz 0) + r(y-y0) V Vy and z= z

v (y,Z) ; Vy and z~zN 0
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Since v is convex in Ny and rE D- -yo it is easy to show that

(Py,0  < N,z) for all y. Hence, the definition of (P implies

that (P < vN Now let T be any positive constant and T be the

first iump-time of the demand process z(-). Choose e =TA T =min{T,7T 1

in (4.14) and use the inequality (P < v to obtain:

(TAT

(4.16) wp(y)Z 0) > inf EJ e-t[h(y(t))+c(p(t))]dt

PNO -ct (TAT)1-

+e (p(y (TAT 1 ,z(TAT) 1

Since p(-) is adapted to the family of ar-algebras generated by z(-),

Dynkin's formula and the fundamental theorem of calculus yield that for

any P EA

-cd TAT)
(4.17) E e (y(TAT )z (T AT1 )

rTAT 1 I

ata

measurable, (ii) tpsatisfies (2.]), (iii) --ip(*,z) is continuous

and has polynomial growth. Since the test function (.P satisfies (i)-

(iii), we choose IP = p in (4.17) and substitute this identity into

(4.16) to obtain:

(4.18) 0 > inf E' e h()+c( t -~ y()z0

+ r(p(t)-z)+ [LUP(y(t)i.M)](O dt1

0 0



-28- -,

To derive (4.18) we also used the fact wd-(y,z) = r. Now take

T = (1/m) in (4.18) and choose a (1/m)2 -optimal production process I

PA i.e.,

(1/m) 2> E( eat [h(y m(t))+c(pm(t))-a(p(ym(t) ,z 0 )

+ r(p (t)-z ) +(LAP(Ym (t),))(z 0 )&dtj

where ym is the inventory trajectory corresponding to Pm. Now

observe that IYm(t) -Y0 < (N+ l)t, because PE A implies that

.Pm(t)l < N. Use this and the Lipschitz continuity of (o in y to

obtain: Il
(1/r))^> E1 -at.-

(i/m) > E e [h(y 0)+c(pm (t))-a(Yy0 ,ZO0)+r(pm(t)-z 0 )
0o0

+ (Lz(yo,.))(zo)]dt -

=Ki(l/m) eatlN+&llt dt

where K is a positive constant independent of m. Since pm (-  is

bounded the term [h(y 0)+c(pm(t))-....] is bounded by some constant

K2. Hence, we have

(4.19) (1/m) 2 [I+K (N+ )/2] + K2 0  (1-e-t)dt >

00

Multiply both sides of (4.19) by [E(T 1 A (1/M))] and rewrite it as

(4.20) cap(yO,zo)-(Iip(yo,.)) (z 0 )+z 0r-Cm-rPm-h(y 0 ) > -K

....... ....... ... . ... . .... .. . . . . ,.....-.. .. .. .. ...
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where
K [E (l/m)] -1  (1/m) -[

Km = [E(T A(1/M]-1 [(1/m) 2 (1+K (N+I )/2)+K2  e -dt]

If(1/m)AT

, :[E(A(I/m))]-E1E I(P(t))dt."

m1

If(1/M)A1 1
m [E (-rlA(1/m))]-E (t)dt1m 0 ."M.

[Let Pmt t

Let CPN = {(c(p),p) for some pE [0,N]}. Then (Cm) E -coiCPNI,

closed convex hull of CPN . Since d [CPN] is a compact set, there is
N*

(C ,P) o[CPN] such that (Cm op) converges to (C,F) on a subsequence

of m. Pass to the limit in (4.20) to obtain:

cO(Yoz 0 )-C-rP+z0r-(LLP(yo,.))(zo)-h(yo) > 0

Thus;

k0(y~~ 0 0NifCrI:( P €-[~] z~r- (LA0(Y0,• (z 0 ) -h (y0) _>0. 2

But (P(y0 ,z0) = v(y0 ,z0 ), (LP(y0 ,.))(z 0 ) (Lv(y 0 ,.))(z0 ) and

inf{C+rP:(C, )E-o[CPN]} = FN(r). Therefore, vN is a viscosity super-

solution of (3.1)

Now take any rE DvN(yo'zo) and define p0 as in (4.15). Since

vN is convex if Dyv (yozo) is nonempty, then v is differentiable
Ny NO'0 N

in y-direction at yOzo. (See Remark 4.2(ii)).

%



Therefore r -X--% (y,:z and there is a continuous function k with
DyN' 0o

k(0) =0 such that

(4.21) vN(y,".0) < (,)z )+I)v-y 0Ik(Iy-y01).

Use (4.14) with e =TAT 1  and (4.21) to obtain

(4.22) .p(,yz 0) < inf E f e [h(y(t))+c(p(t))]dt
PEAN I AT f TA

+ e _aTT1(y(TAT ),z(TAT1 )

+ Iy(TAT )-YOk(Iy(TAT)-Y&I)

For any p0E10,N] the constant production process p(t) =p 0 is in

A Thus (4.22) yields that

TAT

-a (TAT
+ e cpy(TAT ),z(TAT1)

+ IY(TAT1)-YO I k(Iy(TAT I)-YohI

where yo(-) is the inventory trajectory corresponding to P0  and

jy(t)-yo I < (N+ I)t. Use this and (4.17) to obtain: -

(4.23 0 ~ TAT1 -

(4.23) 0< E e-a [h(y 0 (t))+c(p0 )-W~(y 0 (t) , z0)+r(p0 -z0 )

+ 1AP (y 0(t),)](Z0 )]dt

+ (N+ )T k((N+E )T).

Divide both sides of (4.23) by T and then send T to zero to obtain

Lb
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0400 z0 porc po)+z- (AP(,O- (o)-ho)< 0; Vp0 E[0,N].

But (P(yolz) v v0y,Z ) and (LAp(y 01.))(z 0 ) = (Lvyo)(z.

Therefore v N is also a viscosity subsolution of (.)N

Proposition 4.3: The value function v defined in (1.3) is a viscosity

solution of (3.1).

Proof:

Clearly, vN >vl > v for all N < M. Fix (y0,z )E(--,-) Z

and 6 > 0. Pick P E A such that

(4.24) J 0,z0,P 6) < v(y0,z0 )+6

Any PE A is bounded. Therefore, there is M6 such that

P(5EAM and J(y0,z0,P) > vM (y0,z0 ). This and (4.24) yield that

VI (y0,'z0 ).< v(y0 ,z0)+6 .Since 6 is arbitrary we conclude that

vM(yO z) converges to v(yO.,Z) monotonically as M tends to

infinity. Moreover, vM and v are continuous. Hence, Dini's theorem

yields

(4.25) v 'vv uniformly on every bounded subset of (-,)Z

N~ow take rE D v(Y0,z) and for small E > 0, define P~by

(4.26) IPE (y' Z) =P(y, Z) c E(y -O

where tp is as in (4.14). Then the map y -v(y,z 0) -IPC (y z ) has a

strict minimum at y0  Since v converges to v uniformly we have

that
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(i) the map y v~ vNy,z0)-4we(y,zO) has a local minimum ofy

(ii) yN converges to yo as N tends to infinity. F

So 71 z )~ED;.vNYZo) and the viscosity property of VNyield

N FNY:)- ~v _ X C yN 0 hyN) - ((YN.)) (zO) > 0.

First send N to infinity and then c to zero to prove that v is a

viscosity supersolution of (3.1).

Surmose that r E D v(yo 0z). Then there is .p satisfying the following
-i V-.p has a local maximum at (yOZ 0)

(i) (. ,z 0)E C'(.om)

--ii) ~py 0, Z r.

Now define ip as in (4.26) by using (P instead of cAP. Then proceed
E

exactly in the samie way as before to prove that v is a viscosity sub-

solution of (3.1).
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Theorem 4.4: The value function defined in (1.3) is in D0

(Definition 3.1).

Proof:

Fix (yoz) E x Z. Since v is convex, right and left

derivatives in v-direction at (jz exist. Denote L vNy0 z) by
a

{y and Ir, there) ared Also, v is lclyLipschitz continuous
vay , 0) yd oal

in y Thrfrteeaesqecs{y :n = 1,2,. ..) and

fy: ,,.}converging to yo from above and below, respectively,

such that

Wi -=-v exists at (y ,z )and (y
0y n 0

(4.27) (ii) .- (Y z ),-.d+ as n tends to infinity

(ii)~ (yz )P 7d as n tends to infinity.

Observe that DvOy z ) = D vy 0, z) {-v (-Y because of
y n' 0 y n 0 ay n0

(4.27)(i). Thus, the viscosity property of v yields

(42) cvYn z0) F y ~(yn ,z 0 ))+z-x-v(y ,z )-h(y n)-(Lv(y n,.)) (z )=0.

Recall that (Lv(y,.))(z) X(z )J[v(yiz')-v(y~z0 )]Tr(z 0,dz'). Hence,

it is continuous in y because v is continuous. This and (4.27) (ii)

imply that the limit of (4.28) as n tends to infinity is the

following equation

(4.29) Ctv (y z 0 )-F(d+)+z 0d -h(y 0)-(Lv(y 0,.M)z0 )=0.

Similarly, one can obtain

(4.30) cv(y,z)-F(d)+zod--h(y0 )-(Lv(y0 ,.)) (z0)=0.
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Subtract (4.30) from (4.29) to obtain

(4.31) F(d')-F(d -) = z(d+-d).

Suppose that d >d. Since z0 > 0, (4.31) implies that F(d+ ) > F(d).

But F(d )< 0 and F(r) = 0 for all r > 0. Therefore, d- must be

negative and the strict convexity of F on (--,0) yields

(4.32) F(L[d++d]) > 1-F(d+) +F l(d-)

Combine (4.29),(4.30) and (4.32) to conclude that

aV(Y,zo- (I[d+ d-]+ zoI(d+ +d-)-h(yo)(LV (yo,.))z(T))< 0.

But -l(d++d-)E Dyv(yOZo), (see remark 4.2(ii)). So the above inequal-

ity contradicts with the fact that v is a viscosity supersolution of

(3.1) and consequently we conclude that d = d-. Thus -v(.,z) is

a continuous function for every z.

Since v is convex in y, for every zEZ we have the following

(4.33) v (y, z) > + (y-yo)Vy (Y _ Z) ;_V y.-

The estimate [ (yOz)I <Cs(h(yo)+l) follows from Lemma 2.3. Now

take a sequence {z n:n = 1,2,...}cZ such that zn  converges to zO.

Then there is a subsequence of n, denoted by n again, and a constant

r such that

lim )z = r.

fl4OY 0z
n-1.



Pass to the limit in (4.33) and use the continuity of v to obtain

(4.34) v(Y, z) > v (Yozo)+r y-yo ) ; V N

But v is convex and differentiable in y, therefore r = x(Yo,Zo)

and consequently Ty" is a continuous function. F

0

Corollary 4.5. There is C6 > 0 such that

Iv(y,Z)-v(y,z )< C6 z-z (y))

where = min(l,a/p) and p is as in (4.1).

Proof:

Theorem 4.4, Theorem 3.3 and Lemma 3.2 imply that y (.) is

bounded. The same argument as in Lemma 4.1 along with this information

yields the result.

I .

. -. -.

-. - -. -~. -, --. . . . . . . -- ..-

-- A . ~ ~. t Z ~ W ~ t t "
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S. Regularity with unbounded L: The diffusion case

In this section, we assume that the demand process z(-) is a

Markov diffusion process reflected at the boundary of Z. Then the

infinitesimal generator of z(.) has the following form:

=12 d 2  d
G- 1) LIpz)*W (z)--.gp(z)+b(z)T--~p(z) ;V (p E D (L)

dz

where

D L) {pEC2 10 nc (OE1 d (E d =

See Section 2.4 in [8] for information about reflected

diffusions. Also, we assume that 0 and b satisfy the following

3
(All) o,bE C 0,ol] ) and there is a > 0 such that

a(z) > an for all zEZ.
0F

In addition to all the assumptions made in Section 1, we require that

the holding cost h satisfy

(A12) There are K4 > 0 and yE (0,1) such that

:~~ ~ (x) +h y) -2h(<K K4h(- +l) Ix-yj' +Y ; Vx, yE(--,- ) ... ,",

Now we are ready to state the result of this section:

Theorem 5.1.

The value function v defined in (1.3) is in D (Definition 3.1).

0L

............ ~............
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Proof: Take any two points x,yE(-o,-). For 6> 0 and zE Z choose

a production process P such that

v ,2)>J(x+y z,P)-6.2° 2

Then the definition of v yields

(5.2) v(x,z)+v(y,z)-2v(x-,z) <J(x,z,P)+J(y,z,P)-2J(- ,z,P)+26
2 2

SE{fe-t [h(yx(t))+h(y (t))-2h(y(t))]dt}+26

where yx (.) y() and y(.) are inventory levels corresponding to

x

P starting at x,y and (x+y/2), respectively. Then, in view of the

assumption (A12) we obtain

(5.3) v(x,z)+v(y,z)-2v(- ,z)<E{fe-tK4 [h(y(t)+l]dt}Ix-yjl+Y +26

< K4 (v(,z)++6)Ix-yl l+y *+2.

Send 6 to zero in (S.3) and also use the convexity of v in y to

obtain

(5.4) O_< v(x,)+v(y,z)-2v(X+-,z)i (lx+yl'l)lx-yl l +
!

The above estimate implies that -v(.,z) is H6lder continuous with

H6lder exponent y (see Proposition 7 on page 142 in [15]).

Note that we have obtained the H6Ider continuity of the nonlinear

term in the equation (3.1). Now, it is standard to show that v is a

solution of (3.1) and consequently that vE DO.

Remark S.l.

An assumption analogous to (A12) is used in [ 2] to study the

regularity properties of the value function of certain control problems.

. . .-
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6. Optimal trajectories and turnpike sets

Recall that we have constructed an optimal feedback control in

section 3 by using the value function. The corresponding optimal

inventory process y*(.) starting at the initial inventory level y

is given by

* It
(6.1) y (t) = y+ [p*(y(s),z(s))-z(s)]ds

where p is as in (3.2). Observe that if the demand process is

deterministic (i.e., z(s) z 0  for s > 0), then y (t) converges to

the set on which p*(y,z0 ) - z0 = 0 or equivalently, the distance of

y (t) to the set G(z0) tends to zero, where G(z0 ) is defined by

80

(6.2) G(z0) = {y (_,) : zV (y,z 0 ) = (z

Such a G(z0) is called a turnpike associated with demand z0  [163.

Since v is convex in y and is bounded as in (2.2), G(z0) is a

bounded interval.

Now define G by

(6.3) G = co[ U G(z)] =_[y1,y2].
zE Z

Again, in view of (2.2) G is a bounded interval and the monotonicity

of p*(y,z) in y yields that

I i) p (y,z)-z < 0 ; V(y,z) E (y 2 ,o) x Z
(6.4)

(ii) p (y,z)-z > 0 ; V (y,z)E (_,Y 2 ) X Z.

21

- ., . . . . . . , .* ,..... . -- ." ,* "'_ ' , ". " " ' , ," " . < "
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Hence, for stochastic demand processes G, is an attractor set for the

optimal inventor), trajectories, i.e.,

(6.5) dist(y (t),G) '>1 0 as t + ..

The set G is thus an, appropriate generalization of the turnpike

concept for the stochastic case. We shall, therefore, term set G to

be the turnpike set.

In what follows, we will stud) the important properties of these

sets.

Theorem 6.1.

(i) There is a nonpositive element in G

(ii) G is a bounded nondegenerate interval if

a) For every yE {-c' (z) z E Z)it Dh(y), when L w
is given by (4.11), or

b) h satisfies (A12), when L is given by (5.1)

where D-h(y)(= D h(y)) is as in Definition 4.1.Y

Proof: Define y(z) by

(6.7) y(z) = inf{yE ( : .rv(Yz) > -C (z)).

Then we have

(6.8) Y= inf{L(z) : zEZ1 = inf{y : yEG}.

Since __-.V and c are continuous, y(.) is a lower semi-continuous

function from Z into ( Hence, there is z 0 EZ such that

y= (zo). Now suppose that y(zo) > 0. Let y be the solution of

:' -. . - - " ,. ; -; ... . - -, - ~ . ., - . . . . - - .. . '. . . , '. . . . . . . . : -" . . . ", --. . ,.
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(6.1) with y(0) =0 and z(0) =z. Construct P {pt) t0

as follows

(6.9)
(69 p(t) =z(t)x[OT]3(t)+P (y()z()x (t)

wher -ris the stopping time defined by

T infft > 0 y*(t) > (l/2)y(zQ}V. 0
Now observe that y*(t) > y (T) = (1/2)2L(z) for t > T, on account

of(6.5). Also, y*(t)-y*(r) =Jp(y(s),z(s))-z(s)]ds. So we have

tt

(6.10) JT[p'(s)-z(s)]ds > 0 for t > T.

Let y () be the inventory trajectory corresponding to P starting

at y = ,z 0 ' Then

0 tE [0,-r]

f 

t

Therefore, (6.10) yields that y'(t) > 0. Also, p'(s) < p*(y*(s),z(s))

with strict inequality for S < T. implies that y (t) < y*(t) for all

t > 0. Use these to obtain

(6.11) J(0,z0VP) < J(0,z0,P )=v(0,z 0)

00

This proves (i).

7,r
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(ii) Suppose that G is degenerate, i.e., G {y0  for some Y0 '

The equation (3.1) yields that for any E, 6 > 0 and zE Z:

(6.12) y[ (yoz) -c (yo-, z) E[( (yo+a, z)) [rv(yo+E, z)- ,'.,

issritycocv)a-z=- z) hreoe there+. are

-(F( av (Y0- 0,1n) uch tha

Us t is in eq at on (6 12 to obtai -z (y - 6 z,z).] or

+[Lvv ()y+E,)-v ((yo- ,•))] (z)+[ho+Z)-h(Yo-6)].

Sic ' vyoz -c (z"o EZ c ()E ( E=I

Case- (1 L) is asin(.1)

Also, the map r F(r) - zr achieves its maximum at -c (z) and it

is strictly concave at r = -c (z). Therefore, there are

En )6(z) E (0, 1/n) such that

F( (yo+Cn(z),z))-z v(Y0+E-(z),z)=F(V (y0-6n(z),z)) i-..

Use this in equation (6.12) to obtain

(6.13) a[V(Yo+E n (z),z)-v(Yo-nn(z),z)] L (v(Yo0En(z),. )

-v(yon (L) ,. ) ) z) li()+[h (yo+n (z))-h

Case (1) L is as in (4.11): -

n n n n -

Divide both sides of (6.13) by (En(z)+6n W) and then send n to -.

infinity to obtain: -'

n-, n

-h(y-6 (z))](c (z)+6 (z))-

Io

................................
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We have used the boundedness of the operator L to obtain (6.14).

Now the limit in (6.14) is in Efh(y 0), thus we have the following:

The above inequalities yield:

inf{k :kEI-h(y0 )} < a.v(yo~z) < supfk :kEDfh(yc9}.

aY
On the other hand, -v(y 0, z) =-ac (z). So the above inequality contra-

dicts with the hypothesis (a). Hence, G is not degenerate.

Case (2) L is as in (5.1):

32
Formally, y[(jvyz)z-~~)=FTvyz)z7f~~) At

y 0 we know that F'(--v(y0 ,z))-z = 0. Moreover, a

--.vy~z)is bounded on account of (5.11). So we have:

1 a
(6.15) lim [F yEz)TVy+C)

F F( 3 (y0-E, Z) + zTYr(y 0 -E,Z)] =0.

Choose e =6 in (6.12), divide both sides by 2c, and then use (6.15)

to pass to the limit as c tends to zero. As a result, we obtain the

following:

(6.16) a>__(y 0,tz) =L 3
34vy0,z) -d-'i (y in D([EWE 1 )A

ay dy 0U
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where D0 is the set of distributions on Note that (6.16)

is a second order linear differential equation in z with Neumann

boundary conditions at z = and z = . Thus ~(y09 Z)=

*(l/a)---h(y ) is the only solution of (6.16) which is an obvious contra-dyO0

diction with a =~z -c'(z) for all zEZ.

Supposer tht.ypthse a) or b) of Theorem 6.1 hold. Let A(z)

be given by

(6.17) A(z) ={z E Z P(z (t)E [z -F-, '1z J(0) =z) > 0;

for all t,E > 01.

If A(z) #{z} for all zE Z, then there is a random timeT<

such that dist(y CT ),G) =0.

Proof: The second part of the previous theoren can be modified to con-

clude that for all z0E Z there is no YE (-om,cO) such that

-v (yz) .c' (z) for all zEA(z 0 ) Now let y .)be the optimal

inventory starting at (y,z). Suppose that y < inf~y' :y'E G} yl.

rThen there exists zE A(z 0 and c > 0 such that
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p (y,z )-z < 0 for all Iz -zI < E.

The above inequality together with (6.17) implies the claimed result.

A similar argument yields the result when y > sup{y' y' E G}.

Proposition 6.3: For the case of a constant deterministic demand, i.e.,

G = I( ) := {yE(-oo1 : -ac ()D-h(y)}.

Proof: Rewrite the Bellman equation (3.1) as

av(y,z) = c(p (y,z))+(p (yz)-.-v(y,z)+h(y)

where p is as in (3.2). Formally taking the y-derivative in above

we obtain

, 2

OtraV(yz) = (p (yz)-)---- v(y, z)+h' (y)
Dy

which at yE I () becomes

ayy(y,z) =(p (y,z)-,--vy,z)-xc (E) VyEI( ).-ay, Dy2

Now, if p (y,z) > , then the above equation, in view of the fact that

is convex in y, gives av (y,Z) > -c (&). This is equivalent to

p (y,z) < & which is a contradiction with p (y,z) > C. A similar
* * ."

contradiction can be obtained if p (y,z) < . Thus, p (y,z) = and

yE G.

The above argument can be made rigorous by using the technique

developed in the proof of Theorem 6.1(ii). Also, the same technique

. . ... . .
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yields that GcI(). Therefore, the proof of the proposition is

complete.

Remark 6.1. An economic interpretation of Proposition 6.3 is useful

to provide. Assume for convenience that h(.) is differentiable.

Let y = y0 be a turnpike point. Then p (t) = K. Let p(t) +c,

tE [e,6], 6, c>0 and p(t) = p (t) = , tE (6,-0). Then -"

the marginal production cost c ()C6 + o(C6)

at h 
h (y )

the marginal inventory cost = h (yO)c6dt+o(c6) + o(F).

Setting the total marginal production cost to zero and dividing through

by C6 gives the relation -ac () = h(y 0 ) for y.

Note that > 0 implies y0 < 0. So if the initial inventory

y = 0, then it pays to produce less than the demand until y(t) = y0 '

This results in savings in production cast. This is exactly offset by

increased shortage cost above the optimal path. Note that the discounting

plays an essential role in this balancing act. In fact, in the absence

of discounting, i.e., a = 0, the turnpike point y0 = 0.

When the value function is strictly convex, there is only one y(z)

such that p (y(z),z)-z = 0. The next result gives a set of sufficient

conditions for the strict convexity.

.I
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Proposition 6.4.F

The value function v(.,z) is strictly convex in y if one of

the following holds

(i) A(z) f zl where A(z) is as in (6.17).

(ii) I(z) is a singleton, where 1(z) is given by

I(z) = (yE (~~o):-c (z) E h(y).

Proof: Suppose that there are y1 < y2  and zE Z such that

a -
- " ('zO) ayC2z=

Let y1() Y (.) be the optimal inventory trajectories starting at

(yz 0 ) and (yVz 0) respectively. Then we claim that for every

t > 0, we have

(6.18) IP C --V Cy M z W)) ----V(Y (t) z (W)) 1.

ay 1 ay1

Je4
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Suppose to the contrary that there is t 0 > 0 such that (6.18) does

ay
such that

(6.19) I ( Y1(t),z(t)) #Pl(y 2(t),z(t)) for tE [t0,t0+a]) > 0.

Let P. {pi(t) t > 0} be defined by pi(t) p p(y(t),z(t)) for

i = 1,2. Then (6.19) together with the convexity of h and the strict

convexity of c yields

(1/) J~ 13 03 1)+J(y 23z0,2) >JTyl~y2),z04(Pl+P;))

which implies that .2L(v(yzO)+v(y2,zO)) > v(l2-(yl+y 2) ,zO) .But

v(-,z ) is assumed to be linear on [y,y 2  Therefore (6.18) holds.

Next, we claim the following

(6.20) 1~ (y(), = z(t)) =1 Y t> 0 and i =1,2.

Before we give the proof of (6.20), let us complete the proof of the

proposition. It is clear that y i(t) =y. for t > 0 and

i =1,2. So the value function at (y,z) for yE [y11y] is given-

by:

V(Y,z) = l i~(y) E fect c(z(t))dt ;VyE [y1,y2].

The integral term does not depend on y, thus we have

___ =~ (1/a)-d -- (y) =-c (z) ; YE (Y1,ly.

Dy 0 y 02
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Also, (6.18) implies that -_(Y z = - yv(2 ,z) for all z EA(z0).

So the same argument as the above yields

(621 dFV(,,) (1--hy -c ,z VyE~I,2 and z'€A(z0.C. -
C621 )-yCy = (/a y) =-cy2 0z) <

Using either one of the hypotheses of the proposition, we obtain a zo).

contradiction. Hence it suffices to prove (6.20).

Now suppose that p(y 2,z0)> z0 . Then there is c > 0 such that

(6.22) p (y2,z) > z V z such that lz-z01 <. "

Also, for every E and T > O,]P(Iz(t)-z 01 E< , t E [O,T]) > 0. On the

set IzCt)-z01 < for C < T, the optimal inventory trajectories

move towards the point y. = inf{y(z) :z-zo < El , where y(z) is

as in (6.7). Therefore, given c,6 > 0, there is T(E,6) > 0 and a

random time T<T(e,6) such that

(y2(T)-y~I < 6 on the event A([,6)

where A(E,6) = {Iz(t)-zoJ < c, YtE[,T(e,6)]). Monotonicity of .

implies the following:

(6.23) y-v(y2(T),z(T)) >inf{v(y,-6,z):z-zoI<El} on A(E,-).

Since the event A(E,6) has a positive probability, (6.18) implies that

(6.24) Vy (Y 1 e()z(T) 5)- (Y; (T), z(T)) on A (,6)

and v(T) = +y-y2.Yl+6. _. Use this, (6.23),and

(6.24) to obtain

.i, "

. . -,. ..

.. . . .. . . . . . . . . . . . ...

-' . .. -- -.-.. .'- -". . " . - -. . -. .' ,'-"-,,. :"-'-,.-,.. . -". -... . ,. . ". . .' . ., , .'.': -, _ '.._.'_, , .., . . .
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Since y(z) is lower semi-continuous, y converges to y(z0) as E

tends to zero. Hence, (6.25) implies that

_Vy (YCZ0 ) -y 2 +y I Yz0 > y (Y(Z0),z0

Clearly, this contradicts with the definition of y(z0 ) in (6.7).

Hence, (6.22) is not true. Now arguing similarly, one can show that

the assumption p (yl,z0 ) < z0  yields a contradiction. Since

p (yl,z 0) = p (y2,z0), we have the following:

p (yiz'0) = p (y2'z 0) = z

Recall that (ylz) y2,z ) for z EA(z0). So the same

argument as the above yields that p (y1 ,z) p (y2,z) whenever z EA(z0 ).

This proves (6.20) because ]P(z(t) EA(z0 ) Iz(0)=z 0) = 1 for t > 0.

0 0

Remark 6.2: If h(.) is strictly convex, then I(z) is a singleton.

Also, for deterministic problems G I(Q), where denotes the constant

demand.

Remark 6.3: Condition (i) is weaker than the assumption of ergodicity,

which requires A(z) = Z, V zEZ. However, condition (i) implies that

z is not absorbing.
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In Proposition 6.4 above, we have proved the strict convexity of

yV-,z) under conditions that are weaker than the assumption that h(.)

is strictly convex. In view of (i), we need (ii) only when A(z) = z.

In that case, v(.,z) is the same as the value function for a determin-

istice problem with the constant demand z.

In the following example, we are able to explicitly obtain the

value function, for a deterministic problem with Z = { } and thus

illustrate Proposition 6.4(ii) and also Proposition 6.3. When the

shortage cost, which is linear, is too low, Assumption (A6) does not

hold and ICE) = or I( ) = (-o,0]. In these cases, v(', ) is

not strictly convex. When the assumed linear shortage cost is not too

low, Assumption (A6] holds and IC[ = {0}, which is a singleton. The

value function v(.',) is easily seen to be strictly convex.

hl -'-



Example 1: Z u a constant, C.p

f-Ky y <O
h(y)

Case Ca): Low Shortage Cost: K S 2c

For K < 2aC, the value function

+ ± - y _

1 ~~2  aT(y) -e2aT(y)i YK 0

where T(y) is the first time at which the optimal inventory y (T(y)) =0

givn heinitial level y > 0 and, it is the unique positive solution

of

Ke CT() K
+ T(y) 2y-- y >0.

Furthermore,

for K < 24

1C(cJ,0] for K > 2ct

K
We note that for K < 2cx4, v> - .> -2 with the consequence that

there exists no turnpike set i.e., G = )=I(Q). Although, we can think of

{c}to be the turnpike point in the extended sense, as the optimal

inventory level approach ~mas t .

The case K = 2ot is the critical case. In this case,

2

[2eyF) = -2cT(y)

where T(y) is the unique positive solution of

e-aT(Y) Ty)-*1,y>0
aa
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Since =y -2E for YE (...c,O], the turnpike set G =(~O ()

From y > 0, the optimal inventory level reaches 0 at t =T(y) and

then it stays there. From y < 0, the optimal production pM B

4and y (t) By, for all tE [0,-).

Case (b): High Shortage Cost: K > 2aE

For K > 2aLE, the value functionI 22 2
KE -K E K -ae(y)-2ae(y), <(

Ut 3 2 3T 2i-- ) e- j y_
4(x a 4ax a

2
E [e -T~y -e2aT(y) y > 0

where T(y) is as defined in the critical case above and e~y) is the

first time the optimal inventory level y*(e~y)) = 0 from a given

initial inventory level y. < 0 and it is given by the unique positive I

solution of

0(y) y +
e K e~y,- y <0.

In this case, the turnpike set G {01 IC)

- - . CA
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The value functions obtained in this example are sketched in

Figure 2.

Figure 2. Value function v(y,Q) for different values of K.

The value functions satisfy v < -K/2 in all the cases.

K > 2aE, the value function is strictly convex and v - -K/a as
y

y _o. We note that in this case, Assumption (A6) and hypothesis (ii)

of Proposition 6.4 hold. The value function for K < 2ctE are linear

on (--,0] with the slope of -K/a. For these cases, Assumption (A6)

does not hold. Furthermore, both cases a) and b) illustrate Proposition 6.3.

In the rest of this section, we will examine the monotonicity of

y(-) defined in (6.7), when the demand process is a Markov chain with a

finite state space. We start with two point chains.

4

--."' : -,% " 'J -" .' -" " " -" : - ." ,_ , " ," -" " -. -'" -' . ' , -'" .' - ." '": ' " '- .' ." '- .' , - , '- "- • - " .- ,'
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Lemma 6.5.

Suppose that Up(z) at z1  and z is given by I

L IA(Zl [ lR(z2)-(CZl)l
S. (6.26)

L (z 2) = Y2 [o(z)-c(z 2 ) ]

Let z < z Then y(zl) > y(z2).

Proof: Suppose to the contrary. The argument used in the proof of

Theorem 6.1(ii) implies that y(z1 ) # y(z2). So the interval

I = [y(zl),y(z2) is nondegenerate and on this interval the following

inequalities hold: :

(6.27) a(y,z1) >-c (z1) >-c (Y > (y,z2) ;VyI.

The specific form of the infinitesimal generator L yields .7

f8 -(Lv(y".))(z) < 0 ; VyEI

(6.28)
t (Lv(y,.))(z2) > 0 ; VyEI

Now observe that v is also the value function of the following

deterministic control problems:

J(y,zi,P) eat [h(y(t))+c(p(t))+Lv(y(t),zi)]dt ; i = 1,2
f0

v(Y,Zi) - inf J(y,zi,P)
P>0

Moreover, the "verification theorem" (Theorem 3.1) holds. Therefore,

(6.29) V,(z)Z2) oe-at[h(*Ct)) c(p*Cy*(t),z2))Lvyt),z2))dt

.-. o.....

"" '" "" " ' ' " " ' "' o2) FO 2) "L (Y* (t) 
'

z2 ]dt . J % ,1

. " "~"- - "- " - ", "- ". ". ". ", ".'",-"4 ".""." ' 
°

" % • ,. ", % " "" '" " "'' - ° .-r"0" o
m

. n° 1 :'___ j L7
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where y (t) = ( yz)+1p (y (s),Z9-2  ds Sic P (y'z29-z 2 > 0

for yEI, y (t)EI for t> 0. Rewrite (6.29) as follows:

Utv(y(z1) ) = e [h(y (t))+c(p (y (t),z )+Lv(y (t),z )]dt

-aet[Lv(y (t),z )-Lv(y (t),z )]dt

Relation (6.28) implies that Lv(y,z )-Lv(y,z )> Lv(y(z ),z)L~~ 1 , 1

for yE I. Since y (t) EI, we obtain

av(y(z ),z2  > je o'[h(y*(t))+c(p*(y t) )+Lv(y (t)bz )]dt

(6.30)
+(1/a) [Lv(y(z ) ,z )-Lv(y(z ),z1)

Now define P {p (t); t > 0} by p Ct) p*~(y(t)z )+z-z 1 Then

P > 0 A the strict convexity of c and (6.30) yield

v(y(z1 ),z2) >J(y(z1 ),z1,*P )+(l/a)[c(Z 2)-Cc~Z1 )+Lv(y(z 1 ),z2)

-Lv(y(z 1),z1 )]

(6.31) > v(y(z1 ),z1 )+(l/a)[c(z 2)-c(z1 )+Lv(y(z 1 ),z2)

-Lv(y(z ),z1)A.

We know that v(y(z ),z)= (1/a) [c(z )+h(y(z ))+L(v(y(z ),z)]

Substitute this into (6.31)

v~1 , 2) >(/)[yz))+c(z 2)+Lv(y(z2),zl)) J(Y(zl),z 2,P'

where p(t) z= for t > 0. But the above inequality contradicts

with the definition of v, hence y(z 1) > y(z2). .
07
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Next, we give examples to show that y(-) is not monotone, in

general.

Example 2.

Take c(p) = p2, h(y) = y2 a = 1 and Z = {1,2,3). Define L

by

UP(l) = 0

IUp(2) = 2 [(1)- 0(2)

up(3) =

where A.'s are positive constants. Let vX ,3 be the value function.
2 23

We will show that for tertain values of X 3  the monotonicity of

y(z) breaks down. First, observe that v (y,l) is independent
2,3

of X2  and X3, so it will be denoted by v(y,l). Also, we have the

following:

lim v (2,3y,i) = v(y,l) ; i = 2,3 uniformly in bounded y
)~4+O 2' 3

1

lim v ,(Y'i) = v 0(yi) ; i = 1,2,3 uniformly in bounded y
2 X  2'3

3

0 0where are constants. Also, v is strictly convex because

h and c are so. Therefore, there is only one point y i)

satisfying --- 3(y,i) = c(i). So, the uniform convergence of .i

v implies the following:

X X

-- - - - - -- - - - - - - - - - - - - - - - - - --. ..
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.57 -k

lir y(i) = y(l) ; i = 2,3

im y,X (2) = y,(2)
(6.32) X 2-+O VX3 '3

wlim y2 (3) = y (3)"
X '3A0 2,A3  2$,0

Since v(y,l), vo, (y,2) and v (Y,3) are value functions of
3 2'

deterministic control problems, Corollary 6.2 implies the following

(6.33) y(l) = -1 , yo ~ (2) = -2 , yA2,(3) = -3, ; VX X > 0.
3 2'P'3

Since yo0k3(3) is continuous in X3  with y0,O(3) = -3 and
'33

0lim Yo X (3) =-l, there is X3 > 0 such that y 0(3) =-3/2.

Observe that for the pair (O,A), the monotonicity of y(z) breaks down.

Example 3.

Again take c,h,a,Z to be the same as in Example 2. Define L

by

L p(l) ; ekp(3)+tp(2)-2p(l)]
E

LCp(2) = E[.0(3)+(l)-2P(2)]

0L (P(3) = c[tp(l)+(p(2)-2(p(3)] + A3 [(P(l)-tp(3)]

0
where X is as in the previous example. Arguing as in Example 2, we

3

can conclude that for small but positive e, the monotonicity does not

hold.

Observe that LE generates an ergodic chain on {1,2,3}.

a.'

.* . . .o• - • • • " ' ° ° ° " • ° o "° "• " " % .. b . - ' . .

";"'" " "" " : " "" " " ' ' ': " "'- " " i" "" ' ' "' " :' "" " /'' "/' " ":,.,'_ " -. - "- .;._ - ;- '--' ', ]:27,-5 .i'..,. .. , . .-



-58-

Now, suppose that L is of the following form

LP(z 1  = Oz) ~

L14(z ) X[.(z )-P(z )J+P [( ~ ;-C n =2..,-

IAD(z N) XN[(PCZN-1)-CZN)I

*where Z ={zl,,**,) and z< z< ... < ZN Let z () be theN 1 2 N'n

process starting at z .Then z (t) < z (t) if n < m. Thus it is
n n -m

reasonable to expect monotonicity of y(-) in this case but we

were unable to prove this assertion.
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7. Inventory Constraint with Jump Markov Demand

In this section, in addition to the nonnegative production con-

straint we impose the constraint that the inventory level cannot fall

below a certain prescribed level Ymin" So the set of feasible pro-

duction processes A(y,z) is given by

(7.1) A(y,z) = {PE A Y+ [p(s)-z(s) ds> Ymin for t >0)

V (y,z) E [ymin,) x Z

Then the corresponding value function is defined by

(7.2) v(y,z) = inf J(y,z,P) ; V (y,z) E [Yminw) x Z
PEA(y, z)

We will only consider the case when demand process is a jump Markov

process.

Define hE by:

(7.3) hE (y) = [ )-l ; Vy E _, EC (0,1].

Let V be the value of the unconstrained problem for a given EE (0,1].

Since hE =h on [ymi,),v < v on [ymin,-)xZ.

Theorem 7.1.

Suppose L is as in (4.11). Then for every R > 0 and small

e > 0, there is KR > 0 such that

(7.4) 0 < v(y,z)-v (y,z) < K R'E ; V (y,z) E [Ymin ,R] x Z.

*0. 
. =

4"•"

... - -~ . .... - . - - - . . . . . . . . -. ~." 5.1 "]
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Proof: For y< ~mn use the production process S

p~t = ~t)X ,t) to obtain:
P~~~t)o~ = z~)XOY -y3jt

(7.5) v ( y,z) < -L(y-ymi. )2 + K(h(y)+l) ; ~Vy < ymi

where in this proof K is a constant independent of e. Equation (3.1)

for v has the following form:

(76) F(- V yv z)z ~YJ'ai~ -vC(C)ae(~)L C (yz-hC)

At y = vrJ, equation (7.6) and (7.5) yield that
Ymin

(7.7) F( Cmxn ) z r- ) ~KC

+ K11VC 7Cm& ')11".

< K 116

In the first inequality, we have used the fact that

(LVC(.Y,-))(Z)< K1VC(,)l Recall that the map r -F(r) -zr is

concave. Therefore, (7.7) implies that

(7.8) & mi y~ z) E (oc (Z)] U c (z),o)

where

C CF(c.(z)) -z c.(Z) =K - iV'E.
1 1

Then for sufficiently small c > 0, c C(z) < -c'(z) and

C (Z) = ((1//)-K)/z.
24
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Again use (7.6) at y mn to obtain

__ Ymnz)) mn

A similar argument to that for (7.8) yields that

(7.9) sup IazV (mnZ) < .*

zEZ

C .Since v is convex, -v (y -,z) < - y ,)< K. Recall that
Dy Ymmn - y (mm -z

C (Z) =[(l/v'E:)-K]/Z, thus (7.8) yields that

(710 A-, Z) C(z < -c (z) ;VzEZ and F- small.

Now, fix (y, z) E y.,R] x Z. Let pF(t) be the optimal production
[min

process constructed in section 3. Then (7.10) implies that the optimal

inventory trajectory y~ satisfies the following

Therefore, P~ defined below is in A(y,z).Iz(t) + I t E [o, r,
pe(t)=

Also, y' (t) (yt X ,-c+cX,,.() Thus, we have

the following:

-79
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EE

V Z)~ [V Y, (tZ.v')- ()
C7.~~ ~ ~ ~ e1 ,ZPC j Z

tha _ a

(7.2) y~C~f4IpEt)I< KRE V n ye [hyt+~ ()6 [y.,R

(7.14 E~~~)v-(y7 ErCt) (t+e-hy(t) + ~v

Subsitut (7.3) ad (714) nto 7.11 tocomlt h ro f(.)

00

Th n emvalu funcn prfor thet conrain0edrbem is in andsuc

(7.12) c *tv~)l~p(~ < K __an_*O) ]

YC~)~ E R [ )xZ.

Now ue CA) and(7-1) to btai

Y7
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(7.16) Dy (mm - ny,z) > -c (z) ; VZEZ.

Proof: As a consequence of the previous theorem, we know that v is

continuous, convex in y and satisfies (2.1) and (2.4).

Now using the method developed in Lemma 4.2, we obtain the V

following (also, see Theorem 1.1 in [14]):

J(1) cav(y,z)-F(r)+zr-[Lv(y,.)](z)-h(y) < 0

(7.17) V r CDv(y, z) and (y, z) E(y.,)x
y (m n

(2) cv(y,z)-F(r)+zr-[Lv(y,.)](z)-h(y) > 0

YrE.Dyv (y, z) and (y, z) Elymio-xZ.

Now proceed as in Theorem 4.3 to conclude that -V is continuous and
Dy

(7.15) holds. To prove (7.16), observe that

(7.18) D y ,Yinz) =yin Z)

Therefore, (7.17) and (7.18) imply that

(7.19) ~vy.,)(vy.,)(z)-hy.) > F(r)-zr

Yr (.~jYminiz>'

Equation (7.15) and (7.19) yield

F(jy a > F(r)-zr

,z))-z---vmy ,z)
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Since the map r F(r)-zr achieves its maximum at r -c (z) only,

the above condition is equivalent to (7.6).

Uniqueness follows from the verification theorem. Observe that the

optimal feedback policy p constructed in (3.2) is in A(y,z) on

account of (7.16).

13

If the value function v of any of the unconstrained problems

satisfy (7.6), then it is also the value function of the state con- -

strained problem. But clearly there are values of Ymin such that

this does not happen. The following result deals with this case.
S

Proposition 7.3.

Let Y be given by

(7.20) Y = inf{yE (--,v) : (y,z) = -c (z) for some z Z}.
a y

Then either one of the following hold for any c > 0:

i > and inf{y :yEG} >Ei > Ymin > '-"

(ii) YE <Ymi and G [YminYmin+a] for some a > 0

where G = co{yE [ymino) :v(y,z) = -c(z) for some zE Z}.

Proof: Take a sequence {(y£,z ) : e > 0}c (-wo) x Z such that

, converges to (yO,z 0)E [ymin,-)x Z as e tends to zero. The

convexity of v implies the following

.V v(y,z) > v( z )+(y-y )-. y 'y zl; Vy. -(
C C C C Dy C' C

....-....



-65-

Now suppose that 7 (y, z) converges to r on a subsequence. Then

Theorem 7.1 yields that

v(yy 0 ) > v(y 0 'Z0 )+(y-y 0 )r ; VY > Ymin

Again, the convexity and differentiablity of v implies that
E:,:

lim- - (y z ) =-' z if Y
- y  E E Dy 0 0  ' 0 min

(7.21)

urm sup y E --y(Yminz , , if =Y _min

Now let (yC,z) be such that iY -y I < e and -v (y£,z) = -c (z

Observe that supiY CI is finite and z EZ. So there is (y0,z0) such
C

that (y£,) - CY0,Z0) on a subsequence. Also, (7.10) implies that

yE > Ymin- ' . Hence, (y0 ,z 0) E [yin,o) x Z. If Y0 = Ymi then

DV(YminZO) > -c (z0 ) on account of (7.21). But (7.16) yields

= -c (zo). Therefore, we have -v (y0 ,z0) = -c'(z 0) and

consequently the following

(7.22) lira inf Y > inf{y yEG}.
e+0

Similarly, one can prove that Y Is lower semi-continuous in e.

Suppose that Y < Ymin" Then (7.22) and the lower semi-continuity

of Y imply that one of the following holds:

(1) inf{y y EG} Ymin

(2) there is 0 > 0 such that Y =Ymin

£.-

0

.'.
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A 0o
But for the second case v = v and inf{y yEG} =y 0 = Ymin

Also, an argument as in the proof of Theorem 6.1(ii) yields that G
up is a non-degenerate interval. Hence the second part of the proposition

4i is proved.

To prove the first part, we suppose that Y > Then v' =v

and inf{y: yE.G} = Y > Ymin"

CC'

a.\

r .,

"9 .'



- 67 -

8. Extensions and Concluding Remarks

We have now completed our study of infinite horizon stochastic

production planning problems with demand assumed to be either a jump

Markov process or a reflected Markov diffusion process. Problems with

and without the inventory constraints are treated. We have shown the

existence of optimal feedback production policies. These policies

exhibit an appropriately generalized version of the so-called turnpike

behavior.

An important extension of the problem involves production

processes, which are bounded from above by a stochastic process repre-

senting the capacity of the production system. The capacity process

over time may be modeled as a jump Markov process or a piece-wise

deterministic process [5]. Moreover, there may be several different

products competing for a variety of scarce capacities. This. is an important

problem faced by flexible manufacturing systems [11], upon which the

methods developed in this paper have some bearing.

In our ongoing work, we use these methods to deal with the

special case of the above problem, namely, when the demand is constant.

The capacity process is assumed to be a vector jump Markov process.

For a manufacturing system consisting of several machines, such a

capacity process results from random machine breakdowns and subsequent

repairs.

W"°.. ..-
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Appendix 1I Consider the following stochastic integral equation whose solutions
are jump Markov processes.

rtr
z~ ) +J ~ C ~ )1 )T~0x x

where 7it is a random measure defined on the Borel subsets of

[0 x [(--O,o) U (0,o)] satisfying wt aaee

Ci)ForallBorel subsets A of (--,0) U (0,-) let

X( A dx IX12. Then if )X(A) is finite

(9.2 (t : r( [O,t] xA) is a Poisson process wt aaee

(ii) TiA is independent of n. whenever Afl B =0

Also, let Z. satisfy the following:

(i) Z(z,x)+zEZ ;VzE Z and xE (o0)U (0,-')

(ii) There is N 1> 0 such that

(iii) There is r0 > 1 such that

L(z,x) =0 whenever lxi < r- or lxi >~ r.

Then there is a unique solution of the equation (9.1) (Theorem 1,

page 47 in [13]). Moreover, the solution z(-) is a strong Markov

process with infinitesimal generator L given by ~.

.Z47
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(9.4) WW~z _~~~.~~)-(z)] 2

So the jump rate and post-jump distribution 'T(z,dx) are given by

X(z) =M({xE(.00,0) U(O,o):L(z,x)+zEZN ,zl),

where M(A) = dx/lx!2. If X(z) = 0, then .r(z,dx) is arbitrary.

But if )X(z) 0, then for any Borel subset A of Z-{z}

7r(z,A) X ?)(z) M({xE C..0,)u(0,oo): (z,x)+zE Al). _

Straightforward calculations show that the condition (9.3) implies the

assumptions (A8)-(A..l0). (See section 2.3 in [13) also.) Note that

it also implies W(z,Z'-{z}) =1 for all zE Z.

Remark 9.1

(i) The condition (9.3)(i) implies that z(t)E Z for all t > 0. F

(ii) The random measure 7T can be constructed from the jumps of

a Cauchy process (t) as follows

T([0,t] xA) = X([E( 5)_C(s_)]E) ;VAc(7o,)U(,o)

s<' t

where is an independent increment process with its characteristic

function given by

iax.,Xl dx
E~x~O t~)Et]) expts[j (e -~-)

I( Lix dxI

+ fk eax dix--.l

For more information see section 2.4 in [13].
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Next we will show that if X and 7T satisfy (9.5) in addition to

(A8) and (A9), then (AlO) holds.{There is N2 > 0 such that for all Ac Z

X~)rzA-~ )rzA * .N 21z-zI -

where A ( zE Z there is z EA Iz-zI < c).
p... C

Since X is bounded (assumption (A8)), there is e0> 0 such that

(9.6) fdx/ 1x12 > 2 sup{AX(z) z EZ}

0

Now, define F and 2.by

(9.7) F(z,Q) X(z).i(z[%,VE]) ; zEZ and E [CPE = z

(9.8) i(z~ x ={x;i
z if xE(-0,c ~0)U[e0O+F(ZY'1 ),)

Straightforward calculations imply that for any (pE D(L)

.L(P(z) [t= £) -(p(z)]dx

where L'P is given by (4.11). Change of variables in above integral

yield

(9.9) Ls(Z) =t~ (z1(0(/00-0)x)00p~)dx II

Define L. by
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*C(z,E+(l/E )-l/x))-z; ..-. c [-/1)F~

(91) (~x 0 t otherwise. L

Note that choice c, yilsta < [(1/e )-F(z,E1) < 2E%, So k.

is well-defined. Combine (9..9) and (9.10) to obtain

L~~) f[(p(z+ (z, x))-Cp (z) dx/ jx1 2

It is clear that k. defined by (9.10) satisfies (9.3)(i) and (iii).

A technical argument which we choose to omit implies that (9.5) implies

(9.3)(ii). Therefore (A-10) holds true.
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