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ABSTRACT .

It is observed that Vorobvev's method of moments, hecause it is a

specialized form of Galerkin's method, is easily accelerated by the use of

Sloan's trick of taking first iterates. The improvement, which is nearly

costless since it requires no new quantities, is illustrated in a numerical

example. 'A I
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SIGNIFICANCE AND EXPLANATION

Operator equations have countless realizations in miscellaneous

engineering and scientific applications. The language of functional analysis

provides a powerful and unifying tool for the study of phenomena associated

with the computational solution of such equations. The functioral analytic

approach avoids tedious details and allows the analyst to focus on major

issues. This methodology, though it may not produce actual software, can

provide invaluable conceptual understanding.

We deal with the approximate solution of the equation

(J - K)u = v

where the operators J - K and J are assumed invertible, by the use of

Vorobyev's method. This technique uses the n + I *moments"

1 J-1Kzi_ -

in order to get an approximate solution of the form

Yn - toZ+ + "'" + &n-lzn-1

Under proper conditions, the sequence yn}  converges to the true solution.
u' = (.7 - K-v i

Sloan has shown that, given an approximate solution un  to the equation,

the first iterate

-n J lKun +

is usually more accurate than un itself. Specifically, under adequate

conditions, the sequence of first iterates (6 n converges to u fastern

than the sequence {un}~ The aim of our note is to report the simple but

useful observation that Sloan's iterative refinement is applicable to

Vorobyev's method and that the computation of the first iterate,

Yn= ZO + &OZl + " + 9n-1Zn

involves only known quantities. A numerical example involving an integral

equation illustrates this nearly costless improvement.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ITERATIVE REFINEMENT OF THE METHOD OF MOMENTS

George Miel*

Let E and F denote Rilbert spaces. Given bounded linear operators J,K : F * F

and an element v C F, consider the split equation of the first kind

(3- K)u v ()

Assume that J has a bounded inverse on F an4 that K is a compact operator. Equation

(1) is equivalent to the equation of the second kind,

u -Mu + w (2)

where N - J K is a compact operator and w - J 'v. The aim of this note is to report

the observation that Vorobyev's method of moments (81 can be advantageously improved by

Sloan's iterative refinement [6]. Since the quantities needed for the latter procedure

are conveniently computed in the former method, the cost of the improvement is

insignificant. After a brief description of the pertinent procedures, we illustrate the

effect of the iterative refinement on a Fredholm integral equation with a Green's kernel.

Sloan's Iterative Refinement I..

We first need to describe Galerkin's method for equation (M). Let Fn - JEn, where

En is a finite-dimensional subspace of E, and let Pn be the orthogonal projection of

F onto Fn.* The Galerkin method consists of solving the approximate equation

(J - PnK)Un - Pnv, un c En

This equation in equivalent to the equation

n u - on. n + Q w , (3)

where (n - 'Pn is the orthogonal projection of E onto En" A standard result

'Address: P. O. Box 9208, Marina del Rey, CA 90295.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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states that if J - K has a bounded inverse and QnX * x for every x c E as n +

then, for large enough n, the operator I - QhM has a bounded inverse on En , the

approximate solutions un = (I - QnM)-tQnw converge to the true solution

u = (J - K)-Iv, and the error bounds

Iu - u I (I - QM) - I I Eu - Qu * I (4)

are valid. We refer to Krasnosel'skii et al. (4] for a proof.

Sloan [6] has shown that the sequence of first iterates

_n - Mun + w (5)

converqes more rapidly to the true solution. Moreover, once un is known, the iterate

3n can be computed with little cost. Indeed, letting 91,...,On constituta a basis

for E, since the Galerkin method requires the quantities 1 0 i in the setting-up
n n

of the n x n linear system needed to find un - Eiyi, the iterate 1n + [ .ii w

is easily obtained.

To see the improvement of 7 over un, we proceed as follows. Define an operator

by

Kn, M.n

Then, (3) and (5) imply that U is a solution of the equation

un nun + w

verify now that

(I- Mn)(u* - ) = (M - Mn)(u 5 
- Qnu * )

rrom this expression, we get the error bound,

Iu*
-u I < I (I - M I * IN M I Ou *U -Qu I

which shows improvement over the error bound in (4). See Sloan (6) for details.

Recent applications of the iterative refinement to integral equations can be found in

Chandler [11, rraham (31, and Spence and Thomas (71. A functional analytic overview of

the iterated Galerkin procedure in given in Chatelin and Lehbar (2] and in Schock (5].
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Vorobyev's Method of Moments

We turn our attention back to equation (1) and its equivalent formulation (2).

Consider the n + I "moments"

0o - V* zi - Nz 0 ,.. z. " M'n-1 (6)

The usual Neumann iterates xn- Mx,-, + v, starting with 10 w, are given by

X- ZO + Zi + ... + Sn

In Vorobyev's method, one uses the n + 1 moments (6) in order to find a linear

combination of the first n moments,

Y- COO + C1: 4z +. + gn..izn.i(7

The algorithm proceeds likce this:

1. Set-up and solve the n x n linear system

ik-a

for

2. Evaluate recursively the coefficients

where c -1/(0 0 + *.+ Qn1+ 1).

3. Evaluate y. using (7).

It turns out that the algorithm is equivalent to Galerkin's method

yn nmyn + w yn eEni (9)

where Q. is the orthogonal projection of E onto En. span(zO,..,z..). The elements

of E.are of the form Yn - q(M)zO, where

q(t) - E)+ tit + +. En- C. 1tn-I (10)

is an arbitrary polynomial of degree 4 n - .The residual is given by

-O yn + Myn -P(M)2 0

where

p(t) = 1-t)q(t) -c(GO + alt + *.+ an-i.tn-1 + tn) .(1

-3-vi



Tb see that the approximate operator equation (9) represents Vorobyvls method, take

t - I in (11), thereby showing that c m 1/(m 0 + *.. + an_, + 
1), and then substitute

(10) and (11) and compare coefficients of like powers of t to get the recurrence

relation for i.

If the elements 
3
O'...,

3
n are linearly independent then the linear system (8) is

uniquely solvable. Otherwise, the operators K and Qn
M  

coincide on the subspace En

and there is then no gain to be made by using the method. If the operator 3 - K has a

bounded inverse then, for sufficiently large n, equation (9) has a unique solution y,

and the sequence {yn
)  

converges to the solution (3 - K)-
1
v faster than any geometric

* progression. We refer to Vorobyev 18] for details. Miscellaneous applications of the

method can be found in Chapters V and VII of the cited text.

Refinement of the Method of Moment

Since Vorobyev's method is a Galerkin method on the subspace

En= span(zOMz",...,Mn'z()) Sloan's iterative procedure can be applied. In view of (6)

and (7), the desired iterate is given by

fn " 0il + C1z2 + + En-lZn + w ( (12)

The refinement is particularly advantageous since the computation of (12) requires only

already known quantities.

Example. Let E - F - L2[0,1] and 3 - I. Consider the Predholm integral equation

of the second kind

u(s) - Xu(s) + s/2 , . -

X E E, Ku(s) -fk(e,t)u(t)dt
0 "

where the kernel is given by

S (2- t)s, s ( t , 2
k(s,t) - 2 B -

(2 s)t, t

-4-
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The exact solution in u*(s) - sin a. We apply Vorobyev's method with three moments
2

(n 2):

zl(s) - Xz0(s) - 12 (2s - a3)

12

z2Ce) - KZe(s) - - (35 - 20s
3 + 31s)

We find that:

- I* 2021t-B 7
120 1" <zO' 12 3

2  
71 B 3 517

<012> "= (l1.> 12 1260 ' <ZlZ2> f2- 3800

+?C9 71 82

70 7112656

I2 ____, -..

?IB 2

780o+ *1 517 83

a42 + "-1" 12601557-

25to . Eo - " o
7b60 - 525w

2 + U 0 7560 - 52564 
2 + 40

Consequently, the desired approxieatnon is

y2(s) - O -OO( Y) + E1z1(s) as - b9
3

where 
2

a "2 + C5 1.552749

b E -v- 0.561564 •"-'

Sloan' s refinement,""

,9 2 (s ) .Ky 2 ( ,)  + v (s ) , .

requires the ouantities Kzo - z1 and Xz 1 - z2 which are already known. We finA that .

i2(11) - EOZl(s) + EI1Z2(8l + v(s) --

m O-d
3  S e .'.

where

MIN.
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w 2 31C 1,,f4  1'""-

, +  1 + "  
1.569244

24 11520 2

d ,- 2 + 7"-" " 0.6385423
48 576

w4

S384 - 0.06928021 .ell

TABLE

S u (s) Y2(8) '2(s) u y 2  U- Y2

0.00 0.00000 0.00000 0.00000 0.00000 0.00000

0.20 0.30902 0.30606 0.30876 0.00296 0.00026

0.40 0.58779 0.58516 0.58754 0.00263 0.00025

0.60 0.80902 0.81035 0.80901 -0.00133 0.00001

0.80 0.95106 0.95468 0.95116 -0.00362 -0.00010

1.00 1.00000 0.99118 0.99998 0.00882 0.00002 -

The above table illustrates the nearly free improvement of the iterate Y2 over y2 "
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