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ABSTRACT

It is observed that Vorobvev's method of moments, bhecause it is a

specialized form of Galerkin's method, is easily accelerated by the use of

Sloan's trick of taking first iterates. The improvement, which is nearly

costless since it requires no new quantities, is illustrated in a numerical
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Fy SIGNIFICANCE AND EXPLANATION \j
e

Operator equations have countless realizations in miscellaneous ;;
engineering and scientific applications. The language of functional analysis ' 
provides a powerful and unifying tool for the study of phenomena associated :

g

with the computational solution of such equations. The functioral analytic Q’

5

approach avoids tedious details and allows the analyst to focus on major )
issues. This methodology, though it may not produce actual software, can ——
provide invaluable conceptual understanding. Aﬁ:

-
u‘:"
We deal with the approximate solution of the equation {I*
(J - X)u = v , :1;

- where the operators J - XK and J are assumed invertible, by the use of

: Vorobyev's method. This technique uses the n + 1 “moments" f;}
Zg = J-1V0 zi = J-1n1_1, 1< i< n, . ‘:
in order to get an approximate solution of the form %;z
g':\
Yn = E0Zo * E4Z9 * *°° *EpqZpag - iy
L'.‘..
Under proper conditions, the sequence (yn} converges to the true solution :iﬂ

o = (3 - K)"v. i
Sloan has shown that, given an approximate solution w, to the equation, f{\
the first iterate e
4 = J"Kun + zg i
.. is usually more accurate than u, itself. Specifically, under adequate .
5 conditions, the sequence of first iterates {ﬁn} converges to uw' faster "~
- than the sequence {“n}‘ The aim of our note is to report the simple but F}-
" useful observation that Sloan's iterative refinement is applicahle to ff‘
Vorobyev's method and that the computation of the first iterate, -

Yn = Zg + Egzq * *** +EqqZy .

involves only known quantities. A numerical example involving an integral :j:
o equation illustrates this nearly costless improvement. ‘f°
e
. =
. “
e ."
\.: {_‘.
=
= The responsibility for the wording and views expressed in this descriptive K

summary lies with MRC, and not with the aathor of this report.
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ITERATIVE REFINEMENT OF THE METHOD OF MOMENTS

George Miel'

let E and F denote Hilbert spaces. Given bounded linear operators J,K : £ + F

and an element Vv € F, consider the split equation of the first kind

(3 - Klu=v . (1)
Assume that J has a bounded inverse on F and that X is a compact operator. Equation
(1) is equivalent to the equation of the second kind,

u=Mi+w, {(2)
where M = J"x is a compact operator and w = J"v- The aim of this note is to report
the observation that Vorobyev's method of moments (8] can be advantageously improved by
Sloan's iterative refinement [6). Since the quantities needed for the latter procedure
are conveniently computed in the former method, the cost of the improvement is

insignificant. After a brief description of the pertinent procedures, we illustrate the

effect of the iterative refinement on a Fredholm integral equation with a Green's kernel.

Sloan's Iterative Rafinement

We first need to describe Galerkin's method for equation (1). lLet Fn - JEn, where
En is a finite~dimensional subspace of [, and let P, Dbe the orthogonal projection of
F onto Fn. The Galerkin method consists of solving the approximate equation
(3 - P,K)u; = Py, u, €E .
This equation is equivalent to the equation
U = OpMu, + Onw , 3

-1

where On = J" P, J is the orthogonal projection of [ onto En. A standard result

*Address: P. O. Box 9208, Marina del Rey, CA 90295.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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states that if J - X has a bounded inverse and Opx * x for every xc¢ £ as n+ @
then, for large enough n, the operator I - QM has a bounded inverse on En' the
approximate solutions u, = (I - QnM)"an converge to the true solution

u* = (3 - ¥~ %, and the error bounds

' st e -om™h e ' - g (4)
n n n
are valid. We refer to Xrasnosel'skil et al. [4] for a proof.
Sloan [6] has shown that the sequence of firsat iterates
ﬁn-Hun+w (5)
converqges more rapidly to the true solution. Moreover, once u, is known, the iterate
Gn can be computed with little cost. Indeed, letting Pqreve sy constituta a basis
for En, since the Galerkin method requires the quantities 61 = M, 1In the setting-up
of the n x n linear system needed to find u, = § E494, the iterate u = f E@; + v
is easily obtained. k !
To see the improvement of Gn over u,, we proceed as follows. Define an operator
by
M, =M, .

Then, (3) and (5) imply that G, 1is a solution of the equation

un-Hnun-O-w.
Verify now that
* - * L
(I =M ¥(u ~-w) = (M=M)u - Quu ) .
From this expression, we aget the error bound,
-G < M e M- e 1
u - un (I - n) =M u Onu ’
which shows improvement over the error bound in (4). See Sloan (6] for details.
Recent applications of the iterative refinement to inteqral equations can be found in

Chandler [1], Graham [3], and Spence and Thomas ([7]. A functional analytic overview of

the iterated Galerkin procedure is given in Chatelin and Lebbar (2] and in Schock [5}.
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Vorobyev's Method of Moments

We turn our attention back to egquation (1) and its equivalent formulation (2).
Consider the n + 1 "moments”
Zg = W, zy = Mzo, see g Ty W MZ, 4 . (6)
The usual Neumann {terates x, = Mx, ¢ + w, starting with x5 = w, are given by
x

n " Zgt Tyt vz,

In Vorobyev's method, one uses the n + 1 moments (6) in order to f£find a linear

combination of the first n moments,

Yo = EoZo + Eq2q * 70 + EqoqZqa - (7
The algorithm proceeds like this: .
1. Set-up and solve the n X n linear system ;\
1‘\
Ca

n=1
I <zgyizppoy = <z 2>, 0<i<n-1, (8)
=0

for “0""'°n-1'
2. Evaluate recursively the coefficients
Eg=1-ocay, £y = 61_1 -} 1¢1i<n-1,
where ¢ = 1/(00 + o0t va g+
3. @Evaluate vy, using (7).
It turns out that the algorithm is equivalent to Galerkin's method
Yn = OgMyn + v, Yn € Eno (9)

where 0, is the orthogonal projection of & onto E, = span(zg,rs+csZy_q)c The elements

of En are of the form vy, = q(M)zg, where
alt) = Eg + Eqt 4 eoe 4 £ _geR”! (10)
is an arbitrary polynomial of degree € n - 1. The residual is given by
29 = ¥p * My, = p(M)zg , e
where ;;’

PlE) = 1 = (1 = t)alt) = c(@g + agt +eoe +a "1+ e . (1)

3=

BT et e .'. . e

Cad, "..p'---n-.." f:-'.[ a2 s a2
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To see that the approximate operator equation (9) represents Vorobyev's method, take

t = 1 in (11), thereby showing that c = 1/(a, + *+* +a _, + 1), and then substitute
{10) and (11) and compare coefficients of like povwers of t to get the recurrence
relation for ;.

If the elements zg,...,z;, are linearly independent then the linear system (8) is
uniquely solvable. Otherwise, the operators M and QnH coincide on the subspace En
and there {s then no gain to be made by using the method. If the operator J - K has &
bounded inverse then, for sufficiently large n, equation (9) has a unique solution y,
and the sequence {y,} converges to the solution (J - X)~'v faster than any geometric
progression. We refer to Vorohyev (8] for detajls. Miscellaneous applications of the

method can be found in Chapters V and VII of the cited text.

Refinement of the Method of Moment

Since Vorobyev's method is a Galerkin method on the subspace

E = span(zo,nzo,...,nn'1zo), Sloan's iterative procedure can be applied. 1In view of (6)

n
and (7), the desired iterate is given by
in = Eqzqg + Eqzp + 000 +E, gz, +w . (12)

The refinement is particularly advantageocus since the computation of (12) requires only
already known quantities.

Example. let [ = F = L2[0,1] and J = I. Consider the Fredholm integral equation
of the second kind
u(s) = Xu(s) + 8/2 ,

1

X:E+E, wu(s) =] x(s,t)ult)de ,
0

where the kernel is given by
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2 8. We apply Vorobyev's method with three moments

The exact solution is u'(s) = sin

L

: (n = 2): K
' s T
X !o(ﬂ) 2’ ’:-:.‘
) 8 3 e
) 31(') - no(!) - ‘1_2' (28 - 87) , .-.:..
L4 -
' g? 5 3
. 22(5) - Kz1(.) - :’%‘ (38° - 208” + 318) . .'.“.
» '.-
We find that: b
: < 1 B, 7 S
) lo,!o) - 1—2 ' <20,21> - 1—2‘ —33 ’ Y
| tnrtss = ez m B T g 82 s17
0’%2 1121 = 37 ° 7260 ’ 122> = 33 ° 37800 *
78 M .2
% * 30 %1~ 7260 © )
: a, = B =S8
i ; ‘ 0~95* %" 48’
718 517 .3
. Mg + 3% " T260 °
. 2
~ 7560 - 5257 7560
N fo " ) 7' YT 2 i
i 7560 - S525%° + 4« 7560 - 525 © + 4x
:- t Consequently, the desired approximation is :,’_
-« -
. 3 T
" ya(s) = Egzy(s) + E424(8) = as - b8~ , S
- e,
- where 2 e
i Eo 51' tu's
! a =+ o~ 1.552749 , i
’ - e
' E 1(2 -
b = 28 = 0.561564 . ::_
- Sloan's refinement, ._
F2(8) = xyy(s) + v(s) , e
requires the cquantities Xz; = z; and Kz, = z, which are alreadv known. We find that .,
Fols) = Eqz,(8) + £ z,(8) + v(s) e
3 5
- + oo
= cs ds es” , ‘..:..-
where =
-5- o
]

=
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g 31511"

c-"gT+—1—1-5—2—0-+3' 1.569244
dm= 50'2 + 51'4 = 0.6385423 -
48 576
grt
e = 3840 ~ 0.06928021 .
TABLE
s u’(s) y,(8) ¥,(8) w’ - Yo ' - 12

0.00 0.00000 0.00000 0.00000 0.00000 0.00000
0.20 0.30902 0.30606 0.30876 0.00296 0.00026
0.40 0.58779 0.58516 0.58754 0.00263 0.00025
0.60 0.80902 0.81035 0.80901 -0.00133 0.00001
0.80 0.95106 0.95468 0.95116 -0.00362 =-0.00010
1.00 1.00000 0.99118 0.99998 0.00882 0.00002

The above table illustrates the nearly free improvement of the iterate §2 over yae

-6~
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