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ABSTRACT

This is an analysis of three dimensional surface waves which occur in a vessel of rectangular
cross section and finite depth. The linearized problem has double eigenvalues for particular
combinations of the parameters. 1t is shown that eight solution branches of finite amplitude are
emitted by the double eigenvalues. Splitting of the double eigenvalues resul s in a secondary
bifurcation. The direction of the emitted branches for the multiple and secondary bifurcation
changes with the depth of the fluid. Finally it is shown that the formal solutions obtained are
not uniformly valid and an additional expansion in the region of non-uniformity shows that the
wave field changes type. One possibility in this region is a field of threesdimensional cnoidal
standing waves. -
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SECONDARY BIFURCATION AND CHANGE OF TYPE FOR
. THREE DIMENSIONAL STANDING WAVES IN SHALLOW WATER

Thomas J Bridges

1. Introduction

Three dimensional irrotational standing waves of finite amplitude in a basin of rectangu-
lar cross section and finite depth are considered in this paper. The governing equation and

boundary conditions in dimensionless form for the potential and the wave height are

00 . 9¢ _ 20¢ _
322 | By g =0 (1)
:—}:—’ =0 on solid boundary (1.2) ' AY
and on y = en(z, 2,t) :_
dn 9nd¢ ,9nd3¢ 9¢ _ bigs
“at T€9z3: 7% 325z "oy ° (1.3) R,
o¢ 1 [,09., 94 ., 2(9¢12
T el —= = = 4
w3 + 34057 (3, +E(G +n=0 (14)

where § = %, 2a is the vessel length in the x direction, 2b is the vesse] length in the z direction,

&= i”;, where h is the vessel still water depth, ¢ = th' where H is a measure of the wave height.
The linearized problem for (1.1)-(1.4) has eigenvalues (bifurcation points, linear natural
frequencies)

00= VAmntanh A, 6 (1.5)

where
Amn = 1V m? + £2n? (1.6)

The solutions for finite but small amplitude emitted by the simple linear eigenvalues have
been found by Verma & Keller (1962) using a formal perturbation expansion. However at
particular combinations of (m,n) and £ there are double eigenvalues. It is shown in section
2 that eight solution branches are emitted by these double eigenvalues. This is done using a

formal perturbation expansion similar to Verma & Keller.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material
is based upon work supported by the National Science Foundation under Grant No. DMS.
8210950, Mod. 4.
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In an interesting discovery Bauer. Keller, & Reiss (1975) observed that as a multiple
bifurcation point is “split” (by varying an auxiliary parameter (in this case £)) into primary

bifurcation points a sccondary bifurcation may oceur.

In the standing wave problem there are four - « branches emitted by the double eigenvalues.
Splitting a double eigenvalue results in two simiple bifurcation points with a single +¢ branch
emitted from each. Rather than vanish. the other two branches from the double eigenvalue
slowly depart by creeping up a primary branch. Bauer, Keller, & Reiss developed a perturbation
method to analyze this phenomena. Subsequently this theory has been successfully applied
by Matkowsky, Putnick & Reiss (1978) to the buckling of rectangular plates, Kriegsmann &
Reiss (1978) to the theory of magnetohydrodynamic equilibria, and has been extended to the
bifurcation from triple eigenvalues, which results in secondary and tertiary bifurcation by Reiss

(1983).

This theory is applied in Section 3 to show that secondary bifurcation occurs in the neigh-

borhood of the double eigenvalues. The secondary bifurcation points for a perturbed square

cross section are found as a function of § and the mode numbers and solutions along the
secondary branches are derived. It is found that the jump to a secondary branch produces

interesting irregular wave forms.

The solution of Verma & Keller, the finite amplitude solutions found in section 2 emitted
by the double eigenvalues, and the secondary bifurcation phenomena elucidated in section 3
are valid for a small range of amplitude only. It is shown that when ¢ = O(62) the higher order

terms are no longer of higher order and the expansion breaks down.

In section 4 a separate analysis is performed with the assumption that ¢ = 0(62). As a
first approximation weakly three dimensional waves are considered. This is done by looking in

the region of the £ — § - ¢ parameter space where the triple balance holds
£ = 0(¢)
& = 0(c)

This analysis results in a field of standing K-P waves. A set of two non-interacting (to first
order) solutions of the K-P equation (Kadomtsev-Petviashvili 1970). The K-P equation, which

is rich in solutions, has been studied in some detail by Dubrovin (1981) and Segur & Finkel
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(1984). Therefore as the amplitude increases beyond ¢ = 0(62) the wave field changes type.
The fact that there are multiple solutions when ¢ << é% and the fact that the K-P equation is
rich in solution possibilities suggests that the region for ¢ - 0(8%) will result in a “rats nest”

of branches of solutions.

The results with the K-P equations are for weakly three dimensional waves. A further
analysis is performed in section 4 with this assumption relaxed. This analysis results in a wave
equation to leading order. The solvability condition at the next order results in a functional
differential equation for the leading order term. A complete solution is not found but it is
shown that one solution is a set of four oblique travelling cnoidal waves which combine to form
a three dimensional standing wave. Distributions of the wave height are shown for these waves.

It is expected that this equation will yield other interesting possibilities.

2. Primary Bifurcation When ¢ < 0(5?)

Linearizing the set of equations about the still water level results in a linear problem which

has eigenvalues (linear natural frequencies)
00 = \VAmntanh A0 (21)

and eigenfunctions
71 = cosamZ cos BnZsint (2.2)

_ ,—10sh Amn(y +6)
1= 0o cosh A6

where A, = Vo2 + €282, am =mx, Bao=nn, T=z+ %, =2+ %, and m, n are the mode

numbers in the x,z directions.

cos a,Z cos f,z cost (2.3)

The solutions which bifurcate from the linear eigenvalues (2.1) were first found by Verma
& Keller (1962) using a perturbation expansion in the amplitude. They found that the natural

frequency for the three dimensional standing wave has the following form as ¢ — 0

W:U()(l"(zﬁﬂ"--) (2.4)
(1]
where
04 | PP Y (at + £48Y)
S2 . _fglmn _o4t"m S Fnl | ga? 4
gn 25 {9 ol ol * 5Amn - 4604}
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___ (803 + 2%, —407)? (308 + Amn — 4€%62)°
6402(am tanh 20,6 ~ 203)  640%(B.€tanh 28,66 — 203)

Taking a,, = 3, = 1 and £ = 1‘1. this agrees with the expression in the paper by Verma &

(2.5)

Keller. The bifurcation for the frequency is sub- or supercritical depending on the value of
& As & — oo (deep water) the bifurcation is subcritical and as § — O (shallow water) it
is supercritical. Figure 2 of the paper by Verma & Keller shows, for the first mode, that as
the vessel cross-section departs from being a square the critical depth §~ (the point where the
bifurcation changes from sub- to supercritical) increases. The same phenomena occurs for the
higher modes as well with the critical depth being smaller as the mode number increases {for
fixed £). Consequently when a lower mode is supercritical it may be that a higher mode, with
all other parameters being equal, may bifurcate subcritically suggesting the possibility of an

intersection of the branches at finite amplitude.

It can be shown however that the asymptotic solution obtained by Verma & Keller is not
uniformily valid. Taking the limit as § — 0 it is found that
o, _k _
oo A%, 64
where k is a constant of 0(1). Therefore the solution is valid for ¢ < 0(62) only. In section 4 the
equations will be reanalyzed for the region ¢ = 0(62) and it will be shown that the solutions

change type in this region.

Inspection of (2.1) also shows that the linearized problem has double eigenvalues at par-
ticular combinations of am, 8., and €. For example, when £ = 1 every pair (@, 8n) such that
m # n is a double eigenvalue and, for example, when £ = % (m,n) = (1,4) and (2,2) share the
same eigenvalue. In fact every rational £ will have an infinite set of double eigenvalues. It will
now be shown that these double eigenvalues emit multiple branches of solutions. For brevity
the problem of a square vessel (£ = 1) will be considered and it is expected that the analysis at
other double eigenvalues will result in a similar conslusion. When £ = 1 the bifurcation points
occur at (2.1) with

Amn = val, + 82 (2.6)

Therefore any pair (m,n) such that m # n will result in a double eigenvalue. The analysis
proceeds by formally expanding the frequency, potential, and wave height in a regular pertur-

bation series. The leading term in the frequency expansion is given by (2.1) with (2.6) and the

4
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leading term for each of the dependent variables is

ny - ApjcosanrcosB3,3 - Ajpcos 3,Fcosamzisint (2.7a)

| h A
01 = - AjcosapmIcos.dy: o 4,1cosﬂnzcosamz]c—(-’s—————""'(y+6) cost (2.7b)

o cosh Apné

A normalization for the coefficients is chosen such that
A%, + AL =1 (2.8)

The relative magnitudes of A;; and A,; are determined at higher order.

Proceeding in the usual way results in the following set of bifurcation equations after

application of the double solvability condition at the third order.
(6142, + 0243, + 207)A1 =0 (2.9a)

([agA}, + a1A%, + 204]A12 =0 (2.9b)

which along with (2.8) form a set of three equations for the three unknowns: o2, A1, Aj2.

The coefficients a; and a; are given by

4 + ﬂ‘)
mn + (am n
a1 = 128[ 9 2 od

- 5A%,, + 460}

(b8~ 30k + 82} _(s08- 381+ aL)’
3200|am tanh 20,6 — 203] * 3200|8n tanh 28,6 — 20]

(2.10)

(308 - A%, -~ 4apmB,)?
1600{v/2(am + Bn) tanh{\/f(am + Bn)8] - 40
(30(‘, - /\3"" + 4amﬂ,.)2
1600|v2(am — Bn)tanh|{v2(am - 8,)6] — 403]
(308 - A2.,)°
80o(v2Amn tanh[\@,\mn | - 40d]
4 4
3 %{11a;+ 3%—"'32 -2, - 3(om +ﬂ

a;

)} (2.11)
The three equations (2.8)-(2.9) have the following set of eight solutions

1
Pure #1:. A = 21 A;p2= 0 0; = -‘501 (2]30)
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Pure #2 A“ =0 An:il ng —ial (2136)
: ] I
Mired /1” oo Al‘.’ = Tz g, = - -((11 hd 02) (2136)
2 V2o 4

The pure modes correspond to the modes of the simple eigenvalues that coalesce to form
the double point. They sharc the same natural frequency and are spatially (horizontally)
symmetric. When the relevant parameters are substituted the amplitude correction to the

natural frequency o} = - %a, agrees with the correction found for the simple eigenvalues

il

(equation (2.5) with £ = 1). The other four solutions are mixed modes. The leading terms are
proportional to the sum or difference of the two pure eigenfunctions. The amplitude correction
of the frequency for the mixed mode solutions o7* differs from that for the pure modes by
an amount %(al - a3). The bifurcation for either the pure or mixed modes will be sub- or

super-critical depending on the value of 6.

Figures la,b,c,d, and e are bifurcation diagrams for the natural frequency for the multiple
eigenvalues occuring in a square cross-section with mode numbers m = 1 and n = 2. The
five frames show the effect of the parameter § on the behavior of the solutions. Figure la
corresponds to infinite depth and agrees with the result in Bridges (1986). The mixed branch
apparently has a higher natural frequency for the range of amplitudes considered and for all
values of the depth. The remainder of the Figure 1 set correspond to decreasing values of 6.
As § decreases the branches all shift to the right and eventually (at the critical depth §) shift
from sub- to supercritical. At § = .115 there is the interesting property that the pure branch

bifurcates subcritically and the mixed branch bifurcates supercritically.

In Bridges (1986) distributions of the wave height for the pure branches and the mixed
mode branches for & — oc are shown. It is expected that, qualitatively, the distributions for

finite 6 (and suitably restricted ¢) will be similar.

3. Secondary Bifurcation when ¢ < 0(6?)

In this section solutions which bifurcate at finite amplitude from the branches emitted by
the simple eigenvalues are considered. Therefore a perturbation is added to the known primary

branch solutions (¥, T,w) found by Verma & Keller,

¢= P+ o (3.1a)
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Figure 1. Effect of 6 on the bifurca-
tion from the double eigenvalues for
€ = 1 and (mn,n) ranging over 1,2,
The dashed lines correspond to the
simple modes o0,,, (left branch) and
03,3 (right branch) and the solid lines
are for pure (left branch} and mixed
(right branch) modes emitted by the
double point 0, 3, 03;.
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n=¢Y+n' (3.18)

T -

These expressions are substituted into the governing equations and boundary conditions which
are then hinearized about the known primary branch solutions. The linear problem to be solved
for the points. if they exist. of secondary bifurcation is

32¢' 62¢, 2a2¢l
527 T 3y T E 5 =0 (3.2)

« "o L A ByFa T

and on y = ¢/Y(z.2,t).

y an' ,09dn' 0T3¢ , ,(8%dn' 3Ty ¢
AR AR A Ch -2 =0 3.3
_I- “ar T ez ar T araz ¢ 16 a2 azaz] 3y (33)
and
. de'  ,[0®a¢ 0BAY  9®IY| ,
“ar ([5—;6:+8y6_y+8z 8z]+n_0 (34)

and in addition the normal derivative is required to vanish on the solid boundary. This is
a linear differential eigenvalue problem with known nonconstant coefficients. However, the
specific value of ¢/ where the secondary bifurcation takes place is sought. Therefore ¢’ is the
eigenvalue. Since ¢’ appears nonlinearly it is a nonlinear in the parameter eigenvalue problem
and there is the further complication that €’ is responsible for the size of the domain. The
qualitative shape of the domain is known since Y(z, z,t) is a known function, but the precise
amount of T(z.z,t) is the unknown eigenvalue. This is to be constrasted with the original
eigenvalue problem in Section 2 where w was the eigenvalue, ¢/ was a variable parameter, and

the shape of the free surface (and hence the domain) was an unknown function.

P

.

E To solve this eigenvalue problem, the conjecture of Bauer, Keller, & Reiss (1975), that a
! secondary bifurcation may occur in the neighborhood of a multiple eigenvalue, is used. For
i'_ brevity. the analysis is undertaken in the neighborhood of £ = 1. It is expected that a similar
f.j analysis will hold in the neighborhood of other values of £ at which double eigenvalues occur.
L It was shown in Section 2 that for £ = 1 there is a double eigenvalue for every pair {m,n)

such that m z n. At the double eigenvalue the bifurcation points are given by (2.1) with (2.6).
In the neighborhood of £ = 1 this double eigenvalue splits into two primary branches emitted

by the bifurcation points

Omn = \ 7/~ €0t tanh néy m? - End (3.5)

8




Onm = \/ﬂ—\/ n? + £2m?tanh|r6\/n? + £2m?| (3.6)

A measure of the neighborhood of £ = 1 is given by the small parameter j defined by
£ - 1o - §1 3 o =
£ 1+ orp” where 7 - sign(€ - 1) - 21 (3.7)

Following the conjecture of Bauer, Keller, & Reiss that the secondary bifurcation disapears at
the double eigenvalue, the point ¢’ on the primary branches where the secondary bifurcation

will take place is expressed as

€'(u) = bop + b+ (3.8)

The solutions previously obtained by Verma & Keller for the primary branches emitted by

simple eigenvalues are recast using (3.7)-(3.9) as expansions in the small parameter u,

¢:¢0+M¢1+... (390)
‘I‘:T0+#Tl+... (396)
w:wO+”2w2+... (3.10)

A separate analysis is undertaken for each of the primary branches o,,,,, and o,,,,. The necessary
details for the analysis along the 0,,, branch will be given and the result only will be stated

for the o,,, branch.

Substituting the expressions (3.7)-(3.10) into the linear eigenvalue problem and postulating
that
¢ = o\ + ey + - (3.11a)

!

n' = un! + plnh + e (3.118)

)

Expanding the free surface boundary conditions in a Taylor series, and equating terms propor-
tional to like powers of u to zero results in a sequence of boundary value problems. The fact

that wp is a double eigenvalue results in the leading term in the set

wqy = A() tanh An(s (3,2)
where
Ao - mvm? . n? (3.13)
9
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n1(z.2,t) = ‘A1 cosamTcos B,z + Ayzcos B,Zcosanzisint (3.14)
m 6 _ -
dy(z,y,2.t) = lc_o_s_}lé_,,(___) Aj1cosanrcos 8,7 ~ Ajgcos 3aTcosan,zicost  (3.15)

Wi cosh Ap,é

and the normalization is taken to be
2 2 _
43 - A% =0 (3.16)

The problem is carried in the usual way to higher order. At third order application of the

double solvability condition results in the equations
biA;; =0 (3.17)

[;—0( ){2,\2 (A )%g}Jfﬂsbg]An:O (3.18)

which with (3.16) form a set of three equations for the three unknowns by, A;;, and A;2. The

term aj is given by

,\4 ’\6 3t 4
— {2722 + 14w - 24— -9} + M
wd w 8wy
(us+2i-dad)? (3l + - 482
32wi(am tanh 20,6 — 2w2)  32w3(B, tanh 26,6 — 2w3)
_ X“’a — (am - ﬂn)2”4w(4) ~ A(2) + Samﬁn]
16(""3{_4“‘)3 + \/i(am - ﬂn) ta'nh[\/i(am - ﬂn)s]}
_ [w§ = (am + Bn)?]l4ws = A — 8amfa
16w3{~4wd + V2(am + Ba) tanh[v2(am + 8,)6]}
wg = Afj[4wg - AF]
© BwZ{—4w? + V2o tanh|v2Ao6]}
For sufficiently large ¢ it has been shown by numerical evaluation for m, n ranging over 1 to 10
A1

Therefore as § — 0 aa will eventually become negative. For example when (m,n) = (1,2) a3

aa(d) = 128

(3.19)

that the expression for a3 is positive definite. In the limit as § — 0 however ag — — 128

changes sign when 6 ~ .075. When a3 changes sign this means that the secondary bifurcation
will “jump” from one branch to another which would be a discontinuous phenomena. It is

more likely that this behavior is a ramification of the non-uniformity in é of the solution.

The solutions to (3.16)-(3.18) are

Case I : b(; = 0, A” =1, ,412 -0 (320(1)

Case I b, = \ S IR LA ), L) AN =00 Ay - 1 (3.208)
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The solution in (3.20a) shows that the basic solution bifurcates from the primary branch. In
(3.20b) the solution for the secondary bifurcation on branch o, is given. The + sign shows
that the bifurcation takes place in both the upper and lower ¢ half-planes. The jump to the
A2 % 0 solution is often referred to as mode jumping because the solution acquired on the
secondary branch is qualitatively different from that on the primary branch. The radical in
(3.20b), when a3 > 0, requires that (am — 8,)7 < O for secondary bifurcation to occur on

branch o mn-

A similar analysis for the o,,,, branch results in the bifurcation equations
T (el - B 2ot H 3.21
[—;g(a"‘—ﬂ"){éz\_g+( o'wo)ﬁ"g}'*'dso n= (3.21a)
bjA12 =0 (3.21b)

which gives the points of secondary bifurcation on that branch. For convenience define €, o, to
be the point of secondary bifurcation on the o,,, branch and ¢, m to be the that on the oy

branch, then

€mn(p) = bm,nps + 0(u?) (3.220)
en.m(tt) = bnmp +0(u?) (3.228)

Retaining the positive branch only for brevity the bifurcation equations on each branch show

that
| _1(ad, - B2),,  (A3-«j)
bpn =/ - o n’ni 6 .
' 2x2as(6) 1+ wd ) (3.230)
_ rle - B82), , (A8 - «j)
bmn = 222a5(6) 1+ ” )| (3.23b)

A secondary bifurcation takes place on one, and only one at a time, branch. Noting that

7 = sign(£ - 1) the branch on which the secondary bifurcation takes place is

§-1{(am ~ Bn) | Branch
+ + (n,m)
+ - (m,n)
- + (m,n)
- - (n,m)

D N I
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In summary. as § departs from € = 1, the split primary bifurcation points given by
{3.5), {3.6) move away from the double point. When £ > 1 they both move to the right
and when £ < 1 they both move to the left. However in all four cases given in the table the
secondary bifurcation takes place on the branch which is emitted, after splitting. by the largest,

in magnitude. of the two bifurcation points, regardless of the sign of 7.

It has been shown that in the neighborhood of a square cross section (£ = 1) a secondary
bifurcation will occur on one of the two branches emitted from the simple eigenvalues which
result from the splitting of the double eigenvalues. By expanding in the neighborhood of this
point an asymptotic representation of the solution along the secondary branch may be found.
A small parameter v is defined as a measure of the distance from the point of secondary
bifurcation. It is assumed that the parameters are such that the secondary bifurcation point
occurs on the o,,, branch. A similar analysis may be performed for a bifurcation from the

7.m branch.
A perturbation is added to the known primary branch solution
¢=¢ed+¢ (3.240)
n=¢l+n (3.24b)
E: w=0+0 (3.24¢)

and the unknown solutions on the secondary branch are expressed as a regular perturbation

series in v and u
¢' = v(ugn + pPdra+ o) + V¥ (uon + p¥baa 4 o0) oo (3.25)
L TR PRE R (R WS TR (3.26)
Q= v(o+ uQu + 10+ ) + 02 (D20 + 402y +4°Dg2 + ) + - (3.27)

The substitution of expressions (3.24)-(3.27) into the governing equations and boundary con-
ditions results in a set of boundary value problems for the unknowns ¢,, and 7,,. The analysis

although straightforward is lengthy and the detaiis will be omitted.

The first order in v problem results in 2y, = 0 for all ;j and

1 cosh Ag(y + & .
o1 = ;70 ?9%08;:(1‘12—)— cos 3,Tcosa Zcost (3.28q) '-j.:-;
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711 = cos B,Tcosamisint (3.28b)

and the higher order terms (in r) are omitted for brevity. The problem of order v? results in

Q'Z(l i (22] = 0, P2y — Ny = 0. and

Qo 1oy g - 6%mfny | i
wo 3277 “ wi 0 18w2{4w? ~ V2o tanh(v2406)

+ [Bwd — A% + damBa)?
32w2[4w? — V2(am ~ Bn)tanh(v2(am — Ba)8)]
. [Bwd — A2 ~ damB,)?
32w2[4w2 — V2(am + Bn) tanh(v2(am + £,)8)]
and the other higher order terms are omitted. The result (3.29) provides an expression for the

(3.29)

frequency along the secondary branches. The complete expression for the natural frequency in
the neighborhood of the double eigenvalue is

w = wo + plwy + v + 0, 0°) (3.30)
Since {233 is proportional to quadratic terms the sign of (1,3 determines whether the bifurcation
is sub- or supercritical. Although no proof has been undertaken the following points regarding
the sign|)22] are made based on numerical evaluation of (3.29). As § — oo the sign[Q22] < 0
for all mode numbers. As & is decreased a critical value of § is reached where ), changes sign
and this critical value differs for different mode numbers. For example when (m,n) = (1,2)
232 changes sign from +~ to — when § ~ 0.1155 resulting in a shift of the secondary bifurcation
from sub- to supercritical. Since the critical value of § on the primary branch is slightly different
from the critical value for the secondary branch there is a small range of 6 where the primary

branch is supercritical and the secondary branch is subcritical.

Figures 2a,b,c,d, and e give an illustration of the secondary bifurcation phenomena for
various 6 when (m,n) = (1,2). Figure la for § = .20 is similar to the infinite depth result
obtained in Bridges (1986). The remainder of the sequence in Figure 2 shows the shifting
of the branches to the right as § is decreased. In Figure 2d the secondary bifurcation is
almost vertical as {222 ~ 0 here, and in Figure 2e the secondary bifurcation has shifted to
supercritical. An example of the distribution of the wave height (for § — oc) as the solution
shifts from the primary to the secondary pranch is shown in Bridges (1986). The wave field
becomes more complex as the solution on the secondary branch is acquiz:d. The addition of
the finite depth is not expected to significantly alter qualitatively this distribution for suitably

restricted amplitude.
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& is decreased the primary and then the
secondary bifurcation shifts from sub- to
supercritical.
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4. Change >f Type When ¢ = 0(6?)

The solutions obtained in Sections 2 & 3 are not uniformily valid in the ¢ - é plane. The
higher order terms are no longer of higher order when ¢ = 0(#?). Thercfore in this section a
separate analysis is performed for that region of the ¢ - & plane where ¢ = 0(62). This is done
by taking § = y/7¢ where r = 0(1) and carries the sign of ¢ (and is different from the 7 used
in Section 3). The governing equations are (1.1)-(1.4) but with the scaling modified so that
é appears explicitly in the equation (y is scaled with h instead of 2a). With this scaling the

linear natural frequency has a finite non-zero limit as § — 0.

Before proceeding to the fully three dimensional problem it is useful to analyze weakly
three dimensional waves by (following Ablowitz & Segur (1979)) considering the region of

parameter space where £2 = 0(e), or

€=yAc and 6= /e (¢.1)

where 4 = 0(1) and carries the sign of . When the relations (4.1) are substituted into the
governing equations and boundary conditions and a regular expansion in ¢ is sought the leading

order problem is a wave equation

U¢O(z, z)t) =0 (42)
where U is the D’Alembertian
32 2
—_ .2
U= w07 - a——z; (4.3)

With the additional requirement that 3£ vanish on the vertical boundaries (4.2) has the
general solution

wo = QU (4.4)

bo(z,2,t) = f(¢,2) + f(x, 2) (4.5)

where am =mA, ¢ =t +apI, X =t—amZ, and Z=z + % The leading order wave height is
2 3

no(z,2,t) = —wol 5= f(5,2) + 5;!()«!)] (4.6)

the unknown function f is found through application of the solvability condition at the next
order. The first order problem is

Uy = Fl(x,z,t) (47)
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where F) is a functional of zeroth order terms. Solvability of (4.7) requires that
2a
a § - X S'*‘ X
RS2 2 =0 48
./ 20 2 1% (48)
This condition is derived is Bridges (1985). Application of (4.8) results in a partial differential

equation for f,

o'f 6w, 0%f 98]321' ~ 8%f
2l xrc s 22 T2 -0 9
TBx‘ w® dx?  wodx dx? T 901 8 (4.9)
When 4 = 0 the equation for f can be integrated to yield
I'(x) = A+ Ben?(x; k) (4.10)

(where A and B are constants) the usual cnoidal wave and subsequent substitution into (4.5)
results in a standing cnoidal wave (Bridges (1985)). With the retention of the g—ié term
the equation (4.10) is a form of the K-P equation. The K-P equation was first derived by
Kadomtsev & Petviashvili (1970) in their study of the stability of solitary waves to transverse
perturbations. A discussion and analysis of this equation can be found in Ablowitz & Segur
(1979). Dubrovin (1981) and Segur & Finkel (1984) have shown that this equation is rich in
the number of qualitatively different types of solutions which may be produced. Here the right
and left running solutions of the K-P equation would be combined to form a weakly three

dimensional standing wave. One example of a solution to (4.9) is an oblique travelling wave

formed from f(x, z) = f(x — Bnz2).

Instead of analyzing this equation and its possibilities further an analysis with £ unre-
stricted will be undertaken. With £ unrestricted and § = y/7¢ a regular perturbation expansion
in ¢ is assumed. Substitution into the governing equations and boundary conditions results in

a wave equation in two space dimensions at leading order.

, 0%
azzo Ao =0 (4.11)
where
62 2 82
= — —_— 4.12
a or? * dz? ( )

and it is required that the normal derivative of iy vanish at the vertical boundaries. The

leading order wave height is given by

'IO(I;ZJ) = —Wwo ¢o(1',7-,t) (413)

9
at

16

. st
PRI . . Tt . Tat .
PP S TN Betebesahainihtecdhied e

LA bt el dnil ar atvl il et s i i aid M S

.....

BRI g s gl Jhar a4 2\ iy

v,
D

G c-
%




The fitst order problem results in XN

4 3 X
Av, - a-{-(,‘,(:.z,t) (4.14) o

t
2
LY

2 9%
Yot
where
S
3 dug . I 2 W(2) a'ﬁo 2 L
S L e 1LY
I(I ) 2 ) 5(82)+2(at) P,
_0% 6wy dwo

) .4.'{—. [( Vd}
Tat a e (419)

For solvability it is required that

ix % é a a“jv'_'.
/ / / 206Gy (2,2,t)drdzdt = 0 (4.16) e
~AJ_ ot N
0 3 4 o
The function oz, z,t) which satisfies this functional differential equation is the leading order '..:,-‘
term for three dimensional standing waves in a rectangular basin when ¢ = G(§2). A general X
solution to (4.16) has not been found. However it may be shown by substitutior that with Eﬁ“ )
<
.E(x; 1 , VS"
wy = —2rw3k~(: =) 5(2 - x?)] (4.17) Ny
R
one possible expression for the leading order wave height which satisfies (4.16) is NN
R
no(z.2,t) = h(t+amZ+ BaZ) + A(t - amT ~ GnZ) ~h(t - amF+ 0,2) + h(t+ amT - fnZ) (4.18) \*f;
where ::"...::.
: h(p) = A+ Ben?(pix) (4.19) 2L
: N
and '-
4 E(»; :':_ 291
A= - 5u§r{x’ -1+ —(’;—’Q} (4.20) oG
u"::ti
4 2
B= -k’ (4.21) SN
3 '{-{"\
2 3.5
where E(x; x), and cn(p; x) are Jacobian elliptic functions ( Byrd & Friedman (1971)). Peri- aam
odicity in time and the finite domain require that x?, the modulus of the elliptic functions, :::'.:-r .
satisfy the equation :::‘_E
/% d¢ RS
- - === =0 (4.22) .
¢ V1-«k?sin®¢ .'
Numerical evaluation results in x2 ~ 0.9691. :::-.:}
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Therefore a solution of (4.16) is a set of four oblique travelling non-interacting (to leading
order) cnoidal waves which when combined result in a nonlinear three dimensional standing
cnoidal wave. It is also illuminating to note that th* wave height (4.18) may be expressed as

the infinite sum,

o
no(z,2,t) = ko Z Pa,, COS PO £ cos pAnZ cos pt (4.23)
p=1

where k¢ is a constant and

1 [E(m;«) 2
=5 [—-"—— + K2 - 1} (4.24a)
2 pg¥
ap = ;c—,;qu-z; fOf p >0 (4-24b)

and ¢ = exp[-K(F; V1 - x?)].

Examples of the three dimensional cnoidal standing waves are given in Figures 3,4, and 5.
Figure 3 is a (m,n) = (1,1) mode at ¢t = 0, Figure 4 is a (m,n) = (1,2) mode at t = 0, and
Figure 5 is a (m,n) = (2,2) mode at ¢t = 0. These figures give a prelude to the richness that is

possible when a complete solution of (4.16) is found.

The solution obtained in (4.19) is only one possible solution. The analysis performed
earlier for £ = 0(¢) which resulted in a K-P type equation shows that at least in the region
¢ = O(e) there are solutions other than the four travelling oblique cnoidal waves and it is

expected that other regions of £ will also have additional solutions.
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