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ABSTRACT
_+ By perturbing properly a linear program to a separable quadratic program
it is possible to solve the latter in its dual variable space by iterative
techniques such as sparsity-preserving SOR (successive overrelaxation)
algorithms. The main result of this paper gives an effective computational

criterion to check whether the solutions of the perturbed quadratic programs

provide the least 2-norm solution of the original linear program.
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SIGNIFICANCE AND EXPLANATION

A novel way is presented in which the smallest solution of a linear
programming problem can be determined. This result leads to an effective

computational way for solving very large sparse linear programs.
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A NEW RESULT IN THE THEORY AND COMPUTATION OF THE
LEAST NORM SOLUTION OF A LINEAR PROGRAM

Stefano Lucidi
1. INTRODUCTION

Recently, it has been recognized that one of the most promising approach for solving
very large linear programs is based on iterative SOR (successive overrelaxation) methods.

It was shown in (1] and (2] that the least 2-norm solution of a linear program can be
obtained by perturbing "properly" the linear program to a separable quadratic program and
by solving the latter in its dual variable space by iterative techniques such as SOR
methods.

In this context some very effective algorithms were proposed in (3]. The principal
and computationally-distinguishing features of these SOR algorithms are that they preserve
the sparsity structure of the problem and require only simple operations, and, hence, very
large problems can be tackled.

The main difficulty encountered by this approach for solving linear programs appears
to be the Aifficulty of knowing "a priori"” if the perturbed quadratic is a "proper"
(according to the results of (1) and [2]) perturbation of the original linear program.

The main result of this paper tries to overcome this difficulty, in fact it gives an
effective computational criterion to check whether the solutions of the perturbed quadratic
programs provide the least 2-norm solution of the original linear program. We describe
this result in section 3. 1In section 2 we give a new convergent result of a sparsity
preserving SOR algorithm (proposed in [1]) for the solution of a class of quadratic
programming problems.

In section 4 we present some algorithms for solving the linear problem with their

convergent results. We briefly describe the notation used. All the matrices and vectors

are real. For the m x n matrix A we denote row { by A;, column } by A.j and the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. DCR-8420963
and by the Italian National Council of Research (CNR).
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element in row i and column j by Aij‘ For x in the real n-dimensional Buclidean space
R™, x; denotes element i for i = 1,...,n and x, denotes the vector with components
(x,); = max{x;,0} 4 = 1,...,n. ALl vectors are column vectors unless transposed by T.

1 n 2 1/2 n
Ixl will denote the 2-norm, (xTx)/2 = ( T ox) . R, will denote the nonnegative

J=1

orthant {x : x ¢ R?, x » 0}. For a point ¢ in R" and a closed set X in R"™ the 2-
norm projection pz(c,x) of the point ¢ on X 1is defined by

c - pz(c,x)l = min flc-x1 .
xeX

-2-




2. SOR ALGORITHM FOR A CLASS OF QUADRATIC PROGRAMMING PROBLEMS

R We consider the following separable quadratic program
; o &
PRAC
Min % XDx + c'x h :'-::*
AR
(1 RN
s.t. Ax < Db .*‘ .h\

x>0

£

where D is a positive diagonal matrix in R™?, A ¢ R™?, c ¢ R®, be R® and

X={x:Ax<Db, x>0} #¢. Associated with this quadratic program is the dual quadratic

program [4)

Max - % xTDx - bTu

s.t. Dx + c + ATu -y =0

3 {u,v) > 0

which upon slimination of x by using the constraint relation

. x = <"V ATyavec) (2)

3

gives

Min 1 (ATu-v+c)TD-1(ATu-v+c) + bTu
2
(3)
Bete (u,v) > 0 .

Problem (3) can be solved by using a sparsity-preserving SOR algorithm introduced in ([3].
More specifically we have the following algorithm where we have agsumed that Aj ¥ 0,

Vj = 1,000,M,

QPSOR algorithm

choose (u%,v%) ¢ &2*", w € (0,2).

Having (uk,vk) compute (uk*1,vk*1) as follows:
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el k+

n
o L (X - ® (Ao ] B e T -V +D))
3 3 - 1/2 '2 3 L=y 2L L=3 Y 2w } j +
A0 for 3>1 J = 1eeem )
vk'” - (\vk - m(-ATuk*' + vk - c))’ .

REMARK. The algorithm works with the rows of A only and is well suited for matrices A
which have a pronounced row structure. We refer to (3] for a similar algorithm which works

with the columns of A.

Some convergence theorems of the preceding algorithm were given in (3] and {5]. Here

we give a new convergence result under a mild regularity assumption on the constraints.

PROPOSITION 1. Let the gradients of the active constraints of problem (1) at the optimal
point X be linearly independent. Then

a) The sequence {(u®,v*)} generated by QPSOR algorithm converges to a point (u,v) which
solves problem (3) and the corresponding x, determined by (2), is the unique solution of

problea (1).

b) 1f, moreover, the strict complementarity holds at the optimal point x of (1) (that
is 9, >0 if Mqx=Db, and v; >0 if %Xy = 0) then, there exists an k such that for
kX > kK the QPSOR algorithm becomes

u‘;”-o . der,

v‘j‘”-o , e,

-, 331 a ~
uk”-uk- = (AD‘(X (AT) uk+1+ E (AT) uk-vk+c)+b)) r Je 1,
p) b 1 3 LR e 3j \
- .2 t=1 L=y
IA.D 1]
3j I»1

vl;” - (v‘; - u(-A'guk” + v'j‘ - cj)) r Je Aiz

I, ={1:a ;<b1) » I, =11 x, > 0)

i

'i‘-{isnii-bi} , 12-(1=?i-o}
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and the sequence {uk,vk) converges to the optimal point (;.;) at linear root rate.

PROOF

a) The problem (1) has a unique solution % and by the linear independence assumption of
the gradients of the active constraints it has a unique optimal multiplier (;};) which is
also the unique solution of problem (3). Now from part iii) of Theorem 1 of (3] it follows
that the {uk.vk} is bounded and every accumulation point solves problem (3). But problem
(3) has a unique solution and, therefore, the bounded sequence {uk,vk) has only one
accumulation point and, hence, it converges.

b) The proof of part b) follows easily by repeating the same steps of the proof of Theorem
2.5 of (6] by taking into account, that from part a) we have that the entire sequence
converges and by noting that, from the linear independence assumption of the gradients of
the active constraints, we obtain that, also in this case, the matrix Mg, (see page 481

of [6)) is nonsingular.

REMARK. Part b) of the preceding proposition says that the algorithm, after a finite

number of sateps, identifies which variables will be zero at the solution.

-5~




3. PERTURBATION OF LINEAR PROGRAMS

We consider the linear program

T
Max ¢ x

(XS n";t'i
i;ztipJ;
2

|
) s.t. Ax < b (4)

)
v, 7,

x> 0

'r‘l‘;l L

where A € R¥™, c ¢ R, be R® and X = (x : Ax < b, x » 0} ¥ 4. Let X denote the
(possibly empty) optimal solution set of (4). First of all we recall the following

fundamental result given in (1].

THEOREM 1. Let the linear program (4) be feasible. Then
a) i) max c’x has a solution ==> Te* > 0 : pz(g,x) - pz(o,f) for all ¢ ¢ (0,e%]
xeX

max has a solution
xeX c
i) <== Je* > 0, x* : pz(—.X) = x* for all € ¢ (0,e*]
— €
and x* = pZ(O,X)

where p,(x,X) denotes the 2-norm projection of x on X.

b) sup cTx = ® ¢=w> lpz(%,x)l + o ag ¢+ 0",
xeX

PROOF. See [1].

We can note that pz(%,x) is also a solution of the problem

€ T T
Min 2 X X - CX

s.t. Ax € b (5)

x>0

and that the quadratic programming dual [3] to (%) is
Min % IATu -V - cl2 + ebTu
(6)
s.te (u,v) 20

where the primal and dual variable x and (u,v) are related by

-6-




x = % (-ATu +v+e) . (7)
Unfortunately the parameter €* in Theorem 1 is not easy to compute (see [2]) and
therefore, in general, we can not be sure that the point x(€¢) obtained by solving (5) or

{(6) is the optimal solution of the linear program (4). Even if we repeat the computation

vl g i

of points p2 j,x) for decreasing values of ej until the condition p2 j+1,x)

p2 j,X) is voritied we can not conclude that the point p2 j.X) is the optinal solution

-

- of the linear problem (4).
The following theorem allows to overcome this last difficulty and it will be useful in

the next section where some algorithms for solving the linear program (4) will be proposed.

. THEOREM 2. Assume that ; ¥ § and let the gradients of the active constraints of the
- linear program (4) at the optimal point x' = pz(o,;) be linearly independent.

:; Let (;,;,;) and (;,;,;) be two points that satisfy the XKT conditions for
problem (5) with two different values for &, namely € = € and € = € respectively
where € = 8 with 0 ¢ (0,1). If X = X = x* then it follows:

< > Wr60u , voov
x* = p (0,X) R .
u-eu)

cTxr = pT(E2Y

. _ ey T
- Furthermore, if x* = pz(O.X), (: 8 : g ) is the optimal solution of the dual of the

[

‘. linear program (4).

PROOF
. (¢=m)
Since (x',;,;) and (x',;,;) satisfy the XXT conditions for (5) with € and ¢ we
have

Tx* - c + AT; -

<4l
]
o

(8)

!l\—
€x* ~c + A u -

<l
]
o

(9)

;8 & Ty VT

ST(AX® = b) = 0 (10)

..
I

=

Y

ST(Ax* - b) = 0 (1

¢
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) W,
Yo e
. Vixr =0 (12) A
- b:'.-'
» Vix* =0 (13) bk
Ax* - b< O (14) .?H\
.. .}
. AT
¥ x* > 0 (15) Rty
0} ~ ‘ r‘\~
g (u,v) > 0 ).11.
o £
‘ (u,v) >0 . -3
. By taking into account that € = 376, from (8) it follows
%x'-c+n"6-$-o
3 which implies
Txt -08c+A6u-0v=0 ., (16)
- Now, by subtracting (16) from (9) and by dividing by (1-8) we obtain
g T, u=8u, _ v-8v _
:. c + A (TT) m— 0 . (17)
= By using (10) ~ {13) we have
: e
. (357 (Ax*-b) = 0 (18)
L) (;-9; Tx. -0
-8 ° t{19)
- Therefore from (17), (18), (19), (14), (15) and the nonnegativity assumption on (%;?h
" —-a~ —-e~ -.9~
. and (%:33) it follows that the pair (%:52 . !:52) is dual feasible and that x* |is

primal feasible for the linear problem (4). By assumption we have also that

. Toe o T a-fu
c'x* = b (757)

which implies that x* 1is an optimal solution for the linear program (4) and that
' (%E%E ' ::gv) is optimal for the dual of the linear program (4).

v’ 1 and (x',
€

€

conditions for the problem N

Moreover we can observe that both (x'. .

LARLE
LEST-X}
o jel

() 59 satisfy the KXT
€

o
‘

v
.
.
.

A .
hl

>

8
9
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s.t. Ax < b
x>0

Ly :l‘.:a"‘y K
LA

)

cxX > Y

hY

L R |

™y
ﬁ'&jﬁ

)

where Y {8 the maximum value of (4), from which it follows that X =X wxt = pz(o,f).

Now from the linear independence assumptions of the gradients of the active constraints we
have that x* has a unigue optimal multiplier and, therefore, we can conclude that

(gé%gr gégz) is the unique solution of the dual of (4). In fact, if it had a different
solution (G,;), the pair (;,;) should be another optimal multiplier for point x* (see
[4] cap. 5 and 8).

(m=>)

Por simplicity we can introduce the vector A, A, A*®

- u ~ ; u*
A= ,A- ;] A=

v v*

el

where (u*,v*) are the KXT multipliers of the linear problem associated to the optimal
point x* = p2(0.;)-

Under the assumption that the gradients of the active constraints are linearly
independent we can use the multiplier function X(x) (see [7) and {8)) to compute the

values of X, 1 and A* in function of x*

T =X (x*) = -D(x’)-1BT[E§'-c] (20)
X =% (o) = (e '8 (Exrmc) = p(x)TTBTE k0 - e (21)
-1_T
A* = \*(x*) = -D(x*) B [~c] (22)
where

T
-9 :”‘:".t"-
St
> A%

v
¢

et e e T e et T e s s e T T T e e ]
I YR AP iy Sy 0 Y D SR WAL VALY,
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aT “A Diag [(Aix' - bi)zl 0
1€i<m
D{x*) = + -
T
-a 1 0 piag ux;)zj
1€<i<n
A Dia * * T
g [Aix - bil 0 A Diag [Aix -b,] 0
i
1<1i<m 1<i<m
-1 0 Diag [x;] -1 0 Diag [le
1<i<n 1€i<n

and

From (20) - (22) it follows

-_— e =~

- -0
namely the pair [%:%3 ’, %:azﬂ is the optimal KKT multiplier of the linear problem (4).

o
REMARK. i) From the proof of the Theorem we can note that the regularity assumption on the
active constraints is not needed for the implication (<==),

From Theorem 1 and Theorem 2 we can also state the following results:

COROLLARY 1. Assume that X # § and let the gradients of the active constraints of the
linear program (4) at the optimal point x' = pz(o,;) be linearly independent. Then there
exist an €* > 0 such that for all € ¢ (0,e*) we have

u{e) = u* + ¢y

v(e) = v* + gy




where (u®,v*) is the optimal solution of the dual of the linear program (4) and

(ule),v(c)) 4is the unique solution of (6), and Y 4is a vector independent of €.

PROOF. The proof follows from Theorem 1 and (20) - (22),

The next result gives a particular characterization of the solvability of a linear

program,

COROLLARY 2. Let (x,u,v) and (x,u,v) be two points that satisfy the KKT conditions for
problem (5) with two different values for €, namely ¢ = € and ¢ =€ respectively
where € = 8¢ with 8 ¢ (0,1).
i) Suppose that
a) X = X = x*
b) The gradients of the active constraints of problem (5) are linearly independent at
the points x*

c);>0;,-v'>9;

then the linear program (4) is solvable (namely X ¢ §) and x* = pz(o,;).

1i) Conversely, suppose that the linear program (4) is solvable and the gradients of the
active constraints of linear program (4) at the optimal point x* = pz(o,;) are linearly
independent, then there exist two values for ¢ such that the conditions a) - d) of part

i} hold.

PROOF. The proof of part i) follows by repeating the same steps of the first part of proof
of Theorem 2.

The proof of part ii) follows from Theorem 1 and Theorem 2.
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4. SOR ALGORITHM FOR LINEAR PROGRAMMING

The quadratic programming problem (6) can be solved by a sparsity-preserving algorithm
which follows Airectly from the QPSOR algorithm of section 3 by replacing D by €I (also
in this case we have assumed that Aj OV =1,...,m).
LPSOR algorithm

Choose (u%,v®) ¢ B, w € (0,2) and € > 0.

Having (uk,vk) compute (uk+1,vk*1) as follows
-1 m

k+1 k w T k T k k

u = (u - (A (Y @, + I ) u -v -c)+eb))

3 I omg? e tr s Lt 3+

] 151
= 1,e0e,m

vk*1 - (vk - m(-ATuk+1 + vk + c))+ .

By using the results of sections 2 and 3 we can state the following convergence result

which gharpens previous LPSOR convergence results given in (1] and [S].

PROPOSITION 2. Assume that X # § and let the gradients of the active constraint of the
linear program (4) at the optimal point x* = pz(o,;) be linearly independent. Then
a) There exists a real positive number ¢* such that for each € ¢ (0,6*], the sequence
{(u®,v*)} generated by the LPSOR algorithm converges to a point (ule),v(€))}) which solves
problem (6) and the corresponding x(€¢) determined by (7) is independent of € and
x(€) = x* = p,(0,X).
b) 1f, moreover, the strict complementarity holds at the optimal point x* = pz(o,;) then
there exists a real positive number ¢€**, ¢** ¢ ¢*, sguch that for each ¢ ¢ (0,6**] there
exists an X such that for k > k the LPSOR algorithm becomes

u?*‘ =0 ' je I,

Wt'=0 . Jex,

-1 m
ket gk L 8 T, ket
e ) (‘3(121 (A7) 40y ¢+ zz

(AT).lu: -v*-c) +eb), je I
" 3
3

3
31

.12~
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v§+1 - vg - u(-Aguk" + v? + cj) r J e ?2

i where
I, - {1: A x* < bi) ¢ Iy = {1 x§ > 0}

: T,=tiap=n) , T,=011x3=0
j and the sequence {‘“k'Yf3} converges to the optimal point (u(e),v(e)) at linear root
: rate. -
"
'; PROOF
3 a) It follows directly from Proposition 1 and Theorem 1.
b) If (u(e),v(e)) is a solution of problem (6) for a fixed €, € € £€*, we have by using
j Corollary 1
2 lim (u(e),v(e)) = (u*,v*)
b €+0
' where (u*,v®*) is the KXT multiplier of the linear problem (4).
3 Now by using the strict complementarity assumptions and theorem 1, we have that there
J exists an €**, e** ¢ €*, such that for all € ¢ (0,e**]
(4 cu(e)>0)={dsup>0 , {1sv(e)>0) ={isvi>0
R {1 : u (e) = 0} = {4 1 uf = o) , {1 vyle) = 0} = {1 : vy = 0 .
i Therefore, by taking into account that ¢€** < ¢* and Theorem 1, it results that the strict
‘3 complementarity assumption holds also for the problem (5) for all € ¢ (0,6**] and, again,
the result follows from Proposition 1.
- .
i In applying part i) of Proposition 2 we must be able to select a value of € such
: that € < €¢*. In order to ensure that ¢ € £* we may have to choose very small values
for €. Computational results have shown that very small values for ¢ yield a very slow
.; convergence of the LPSOR algorithm when applied to the problem (6).
‘é In order to overcome the lack of a practical "a priori" selection procedure for the
» parameter €* we can propone two algorithms which are based on the results of the
9 preceding section.
Y]
i
A
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ALGORITHM I

Choose 6 ¢ (0,1), and €9 o.

tet et = (8)%, i = 0,1,2,... and let (uled),viel)) be a solution of problem (6)

with ¢ = €, anda x(el) defined by (7) with € = ¢ and u = u(cd), v = vici).

By using Theorem 1 and Theorem 2 we can give the following convergence result for

algoritm I. .

PROPOSITION 3. Assume that ;'# # and let the gradients of the active constraints of the

linear program (4) at the optimal point x' = pz(o,;) be linearly independent. Then for

some integer 3

x(e‘) - x(ei-1) = x* = pz(o,f)

is optimal for the linear program (4) and

(u(ti) - suted™h)  vied) - Bviet™y,
1-8 ’ 1-0 ’

is the optimal solution of the dual of the linear program (4).

The next algorithm contains an automatic adjustment rule for the parameter ¢ based
on the abstract models considered in [8]. It carries out the minimization of two problem
(6) for two different values of ¢ and uses the obtained points to adjust the value of ¢
during the minimization.

In the sequel we assume that we have an algorithm defined by an iteration map
F: R x g x g » 2Rm+nxnn' such that for any fixed value of €, any accumulation point
of the sequence produced by F gives a point x(e¢) and a pair (u(e),v(e)) which solve

the problems (5) and (6) respectively for the given €.

For simplicity we introduce
B = [ATr'I]l H'BTB' d-(-:c)l q‘(g)" -(:) ’

where B e RAX(m#n), y o glmn)x(m+n), 4, q, A € R®*N and, in the sequel, we denote the

scalar product with xy. The algorithm model described below makes use of two preselected

=i
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sequences

and {w%}

Data :
Step 0:
Step 1:
Step 23
Step 3:

step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 103

R AN e Sl < O SR Rih A Tl Y Il P

{3} ana (8K}, where 0 celd*' coed ¢ ed, §a0,1,000 , (eI} 20 as Jo -

+o a3 koo,

ALGORITHM II
8 € (0,1), Kykpkykekg > 0, (10,0305,
St k=0, §=0.

set i=0 ana (b, THEH - 0F5,7%,35).
i1+1';1+1

Compute (AL*1 i1y ¢ pad xiedy, ¢ ) e BY, 3 0e7) and set i = i+t.

1 i<Ne go to step 2, else go to step 4.

see Tantoicoleasedg, Pl @ 0dtearecia,.

b< 4 ITLI - o,~l§il = 0 go to step S, elae go to step 6.

e ot -xtr a0, (0 -0d) >0 ana TR - oxt) - bTEP - 0ul)| = 0 wet
(AR k0 T k) w3, ko= ket stops

else go to step 9.

i A
1 x (DL g)) » R(R2, 1) ¢ kit - By, ¢ X - b))
1 ed oe) 2 + +

+ Kz((-xi)+ + (-;1)+) > (cj)z';.‘i - xil2 go to step 7; else go to step 9.

1 w00 | ixh? - 1x12] + et - xhr?) - STt - axth)
+ b’(-\;i - 9u1)|) > ejlc'r(;i - exi) - bT(;1 - Oui)| go to step 8;

else go to step 9.

Ti)* go to step 10,

1 K (irhh o+ 1™ > et -
else go to step 9.

Set 3§ = j+1.

set (A1, TR 3R, Lol TR, 4ke1) = 3, ke x4 and o

to step 1.

The algorithm II is sketched in figure 1.
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i=0

N - ¥

1

Compute
it1 =i+t i
X )

xi-H'x

by using
LPSOR Alg.
1= i+t

opt.

Step 6-8

No

Check Cond.
Theor. 1,2

Change
value of
€

Increase N

k = k+1
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THEOREM 3. Assume that:

a) The linear program (4) is solvable.

b) The gradients of the active constraints are linearly independent at the optimal point
x' = p,(0,X).

c) The strict complementarity holds at the optimal point x' = pz(O.I).

d) Por a fixed € the iteration map ¥ is constituted by an iteration of the LPSOR
algorithm and by the relation (7).

Then, 1) either the aligorithm terminates at some (Xv,xv,iv,;°) where x = x = pz(o,f)

is optimal for the linear program {(4) and (321552519 the optimal solution of the dual of

the linear program (4);

ii) or produces infinite sequences (lk.xk.i*.;k} and {3(x)} such that {3(x)} is

bounded (namely e¢J is changed only a finite number of times), {x*} ana {;k} converge

to the optimal sclution x' = pz(o,;) of the linear problem (4) and the sequence

{ZthsgﬁtJ converges to the optimal solution of the dual of the linear program (4).

PROOF. First of all we prove that the sequence {j(k)} is bounded.

We prove this by contradiction. Therefore we suppose that the sequence {3(k)} is
unbounded and consider the tests at step 5, step 6, step 7 and step 8 that should have
increased the value of parameter 3§ at step 9.

Let €* > 0 be the number considered in Theorem 1 then we must have for some k*,
e3(X) ¢ co gor a1l Xx > x*. By using Theorem 1 and Theorem 2 it follows that the
algorithm could not have increased the value of parameter j on account of a failure to
satisfy the test in step 5. In fact if nk - ax . (Hhk +d+ ej(k)q))+l = ¢ and
|ik - (Xk - (nxk + 44+ Ocj(k)q))*l =0 for k » k* we have that AKX ana f* solve (see
{6) page 472) problem (6) with ¢ = e3(X) ana ¢ = ged(X) respectively. Then Theorem 1
implies that I;k - xkl = 0 and Theorem 2 that

(7 - 01%) > 0 ana 1c(x" - 6x") - B(T" - 80N = 0
and hence, the algorithm should have terminated at step 5. Now we consider the test at

step 6 for k > k*, If we denote with x(€), u(e), v(e) the solutions of problems (5) and

={7=

M «* .. —-q '.- '-. T -
. - .t
PAIUR, 6N, WL AL B

-t



3\-—"”‘7 & ‘r_"'j_ﬂ'. Carehd \r_r,“l':.._'“" Cay "'" e g i g S JE R Sk i Tt gl B A s Tt 3 . Ly P s 0 - e W .‘7‘;““"'.'
>, (6), it follows from Lemma 2.1 of [10] that
4
k J(x), 2 k" 3(x) x )
Ix - -
x - x(€ ne < jm (12%( jm +q)| + tu(e M1 (Ax b) !
(23)
+ 1ved®yy TE SN
; X _ o acdlk) 2 TR M 3(%) &
: Ix x(0¢ e < j(k) (Ix ( jm +q)| + fu(Be W (ax - b) A
: . (24)
X -
s vy
Since for Xk » k* (and, hence, edtx) ¢ €*) we have that
: x(ej(k)) - x(ecj(k)) - x* = pz(o'I)
by using (23) and (24) we obtain for k > k*
N e &M + a x —%
N x2(|x ( j(k) + q)] + | A (——— T +q) + K, (1(Ax" = B) I + 1(Ax" = b)) +
N _k =k - ed) 2% k.2 30K, ke X
+ R =T 1+ 1(=x) 1) = (e R - x5 (k- A (—-—-——j(k) + gl
+ (x, - ‘jm) W(m +q)] + tx, = eI X a3 Ry axk - by R
1 9 j(k) 2 + (_..'_:."
+ (x, - A @I s - byt + (k. - €3 v I xSy R
2 u . 3 € vie X + ‘:“‘-\’
R
jtx) A
+ (k- & tveed Ny .
~ 3 + .*:\"-,.
: From assumption b) it follows that {u(ed X))}, {uceedt®)yy, {V(ej(k))}o {V(ecj(k)n are '\:-:-
‘.-‘1‘ ‘-
: bounded for all k > k* and therefore we can observe that the test at step 6 is satisfied '}Z-_‘{x‘
y NG
for sufficiently large values of k (and hence for sufficiently small values of ej(k)). "-. -
The same arguments hold for test at step 7, in fact we have e
: RO T L P L 103 (1212 112y - o(ZX - 0x5) + b(EE - 85)])
4
- I @ -0y - BE* - 0] > (x, - 3o - 0xk) - bE - 00t
[}

- -18~-
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and, hence, the test is satisfied for suffieciently large values of k (hence for
sufficiently small values of cj(k)).

Finally we verify the test at step 8. We can note that, for sufficiently large values
of k, (and, hence, for sufficiently large values of N and sufficiently small values
of ej(k)). Theorem 1, Corollary 1, Proposition 1 and Proposition 2 imply
R T R TR L B O W T R WS I N P W LIS )

H
(25)
T={iaa2>0)={dsa)>00elis W I O *1“’(k)’ > 0) = (112 (03 5 g

where A* = (u*,v*) is the KXT multiplier of the linear problem (4} and A(cjn‘)) -

(u(cj(k)),v(tj(k))) and X(Ocj(k)) = (u(Ocj(k)).V(Ooj(k))) are, again, the solution of
problem (6) with € = ¢3(X) ana ¢ = 8e3(X) regpectively.

Next we have Vi ¢ I

-k 3(k)

k =X
A, - exi - (1-0)x; + (xi - lx(ec

1 S0 ek - (k)
i )+ (Ki(at ) XZ) O(Xi li(t M

14 S _ 5k [ I o,
- 02 (e ) = A 2 {(1 o;x'tl |xi A, (8¢ i |xt(ac ) x;l

ek . 300y 3(x)
alxi Ale ) olxitc

- »
) xil .
Then by construction of (3%} ana %} in step 2 and step 3, by recalling Corollary 1

3(x)

and by using that lim N® = ® and lim¢ = 0 we obtain

| Sad k>

- X (x X x (x)
Lim max{ [TX - 2 0N}, 03X Cag), B - a3, |xi(e’ ) -agl) =0

Ko

and, for sufficiently large values of X,

ok r0 wier
i i

and, by taking into account (2%),
Rl YL

Hence, we have that, for sufficiently large values of Xk, the test at step 8 is satisfied.
Therefore we can conclude that 3§ can not be increased an infinite number of times as

hypothesised, but there exists a Xk** such that Jj(k) = j* for all % > ke**,

«19-
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Now if the algorithm terminates at step 5 part i) of the Theorem follows from Theorem
1 and Theorem 2.

If the algorithm produces infinite sequencea (Ak} ana (%%} then, by Proposition 2,
these sequencea converge to two points i' and A* which solve the problem (6) with two
different values of € (that is ¢ = ¢d* ana e = Oej') and ;' and x* solve the
primal problem (5).

Therefore we have

" " —.
[ae (2 j:d+<1)|-0. lf'(ej:dnq)l-o, (26)
€ €
(Ax* ~b) =0, (A;'-b)+-0, (27)
(=x*), =0, (-;«)+ -0, (28)

1% = (A% = (M + 4 + cj.q))+l =0, 1% - (Xe - s +a+0ed’qn =0, (29

and from equality between the primal objective function and the dual objective function of

problem (5) it follows:

: LA N j* . ja_ _
LA Ix'l2 - ch' -5 lx'l2 - bT;', be lx’lz - cT;h - - be lx'l2 - bTG; ’
2 2 2 2
PO - - .
ej lx'l2 - ch' + bTu' =0, Ocj lx'l2 - cT;¥ + bmﬁ5 =0 (30)
Now by (26), (27), (28) and step 6 we have
Ix* -« x*l w0 . (31)

From (31), (30) and step 7 it results
l(1-8)cTx* - T(T* - 6u*)| = 0 .
By (29) and step 8 we obtain also
T 00 , > ove

8o that the second part ii) of Theorem follows, again, from Theorem 1 and Theorem 2.
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