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ABSTRACT

By perturbing properly a linear program to a separable quadratic program

it is possible to solve the latter in its dual variable space by iterative

techniques such as sparsity-preserving SOR (successive overrelaxation) *"'

algorithms. The main result of this paper gives an effective computational

criterion to check whether the solutions of the perturbed quadratic programs

provide the least 2-norm solution of the original linear program.
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A NEW RESULT IN THE THEORY ANID COMPUTATION OF THE
LEAST MORN SOLUTION OF A LINEAR PROGRAM

Stefano Lucidi

1 . INTRODUCTION %,%

Recently, it has been recognized that one of the most promising approach for solving

very large linear programs is based on iterative SOR (successive overrelaxation) methods.

It was shown in (11 and (2] that the least 2-norm solution of a linear program can be

obtained by perturbing "properly" the linear program to a separable quadratic program and

by solving the latter in its dual variable space by iterative techniques such as SOR

methods.

In this context some very effective algorithms were proposed in (3]. The principal

and computationally-distinguishing features of these SOR algorithms are that they preserve

the sparsity structure of the problem and require only simple operations, and, hence, very

large problems can be tackled.

The main difficulty encountered by this approach for solving linear programs appears

to be the difficulty of knowing "a priori" if the perturbed quadratic is a "proper"

(according to the results of [1] and [21) perturbation of the original linear program.

The main result of this paper tries to overcome this difficulty, in fact it gives an

effective computational criterion to check whether the solutions of the perturbed quadratic

programs provide the least 2-norm solution of the original linear program. We describe

this result in section 3. In section 2 we give a new convergent result of a sparsity

preserving SOR algorithm (proposed in [3]) for the solution of a class of quadratic

programming problems.

In section 4 we present some algorithms for solving the linear problem with their

convergent results. We briefly describe the notation used. All the matrices and vectors

are real. For the m x n matrix A we denote row i by Ai, column by A- and the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. DCR-8420963 ,'-

and by the Italian National Council of Research (CNR).
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element in row i and column j by Aij. For x in the real n-dimensional Zaclidean space
Rn, xi denotes element i for L - 1,...,n and x+ denotes the vector with components

(x+)t = max{xi,O} i = 1,...,n. All vectors are column vectors unless transposed by T.

lxi~~~~~ ildeoete-nr, (x/2 =(Sx). R; will denote the nonneqativeIxl will denote the 2-norm, (xTx 1/ _  2) 2. n

orthant (x : x e RP, x 01. For a point c in Rn and a closed set X in Rn the 2-

norm projection P2 (c'X) of the point c on X is defined by

Ic- - • -mn Ic-xE-
x X

-2-
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2. SOR ALGORITHM FOR A CLASS OF QUADRATIC PROGRAMMIMG PROBLEMS N.

We consider the following separable quadratic program

Min c- x
2

. t ;uc b(1)

s.t. Ax 4 b
x3 0

where D is a positive diagonal matrix in RfX n , A C RM', C e Rn, b c Rm  and

X - (x t Ax 4 b, x ) 0) 0 Associated with this quadratic program is the dual quadratic

program [4]

I T TMax - xTDx - b u

s.t. Dx + c + A 
T

- V - 0

(uv) ) 0

which upon elimination of x by using the constraint relation

x - -D (ATu-v+c) (2)

gives

Min (AT uv+c)T -(ATu.v+c) + bu
- (3)

s.t. (u,v) ) 0 •

Problem (3) can be solved by using a sparsity-preserving SOR algorithm introduced in 13]. .

more specifically we have the following algorithm where we have assumed that Aj ' 0.

vJ - 1.....

QPSOR algorithm

Choose (u0,v
0
) R R+ , w (0,2).

Having (u kv ) compute (uk+l,v
+ ) as follows:

o ..

-3-
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ke.1 k k+ '-1 Tk k" ~*
IL (/1 (A t Er' (AT).u U, + (AT).us *v +c) +b j

L-1 D-j 1/ 1 I,

j for J>1 j-l..mV

v k+ (vk .a(_AT uk+1 + vk -)+

REM=R. The algorithm works with the rove of A only and is well suited for matrices A

which have a pronounced row structure. We refer to [31 for a similar algorithm which works

with the columns of A.

Some convergence theorems of the preceding algorithm were given in [3) and 15). Here

we give a new convergence result under a mild regularity assumption on the constraints.

PROPOSITION 1. Let the gradients of the active constraints of problem (1) at the optimal

point x; be linearly independent. Then

a) The sequence ((u ,v )) generated by QPSOR algorithm converges to a point Cv) which

solves problem (3) and the corresponding x, determined by (2), is the unique solution of

problem (1).

b) If, moreover, the strict complementarity holds at the optimal point x of (1) (that

is ui 0 if Aix - bi and vi > 0 if x, 0) then, there exists an iisuch that for

k > i the QPSOR algorithm becomes

uk+l.0  j j I1

, E 2

k+1 kc (A) -1k+1 T k kc-u U - /2 (A D( + (AT). CAu 1  v + c) + ba) C I.

1A D I1 1s
j J>1

,,I+1 k tow(Au+ T k v1 - cj)) ,j C -1

where

11 U Aix( bi 2  (1 ;1 0)

-4-



and the sequence (uk,vk) converges to the optimal point (v)at linear root rate. ' J

PRoof

a) The problem (1) has a unique solution x and by the linear independence assumption of

the gradients of the active constraints it has a unique optimal multiplier (;u,v) which ia

also the unique solution of problem (3). Now from part iii) of Theorem 1 of (3] it follows

that the {ukvk} v is bounded and every accumulation point solves problem (3). But problem

(3) has a unique solution and, therefore, the bounded sequence {ukv
k
) has only one

accumulation point and, hence, it converges.

b) The proof of part b) follows easily by repeating the same steps of the proof of Theorem

2.5 of (61 by taking into account, that from part a) we have that the entire sequence .

converges and by noting that, from the linear independence assumption of the gradients of %

the active constraints@, we obtain that, also in this case, the matrix MRR (see page 481 .

of [61) ins nonsingular.

REMARK. Part b) of the preceding proposition says that the algorithm, after a finite

number of steps, identifies which variables will be zero at the solution.

. . .. . , , . .. .•. ..
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3.* PERTUJRBATION OF LINEAR PROGRAMS

We consider the linear program

max c x

a.t. Ax 1Cb ().

where A CR nc ,C n b cR and X -[x:Ax 4b, x 0)* Let Xdenote the

(possibly empty) optimal solution set of (4). First of all we recall the following

fundamental result given in [1].

THEOREM 1. Let the linear program (4) be feasible. Then

a) i max cTx has a solution --> 3e* > 0 : p P(,1 for all c c (O,ec *
xCX

max has a solutionxC'I
ii) <-- 1e' > 0, X* p2(~X x* for all C e (O,C*1

and x* = P2 (OX

where P2(x,X) denotes the 2-norm projection of x on X.

b)~ sup c Tx = Ip (-,X)I as e + 0.
xf 2£

PROOF. See (1].MR

we can note that p2 ( ,X) is also a solution of the problem

Min E x Tx - c Tx2

s.t. Ax C b

x 0

and that the quadratic programming dual [31 to (5) is

Min I-A u - v - ci + £b7u2 (6)

s.t. (u,v) 20 0

where the primal and dual variable x anI (u,v) are related by

-6-
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I T
x (-Au + v + c) (7)

unfortunately the parameter C* in Theorem I is not easy to compute (see (2]) and

therefore, in general, we can not be sure that the point x(e) obtained by solving (5) or .-

(6) is the optimal solution of the linear program (4). Even if we repeat the computation . -" .
C C

of points p2 (-X) for decreasing values of el until the condition p2 [-3 ,X) =
2 C

P2  j X) is verified we can not conclude that the point p2 Z!,X) is the optimal solution

of the linear problem (4).

The following theorem allows to overcome this last difficulty and it will be useful in

the next section where some algorithms for solving the linear program (4) will be proposed.

THEOREM 2. Assume that X 0 % and let the gradients of the active constraints of the

linear program (4) at the optimal point x' p2 (0,X) be linearly independent.

Let (x,uv) and (x,u,v) be two points that satisfy the K"T conditions for a..

problem (5) with two different values for C, namely c = C and C = £ respectively

where C 9 eZ with 9 e (0,I). If x = x = x* then it follows:

•.P2 (0, -

.u-uuO-e . "v;ev\(\Xc T
2 O X . \ x *. b T ( U e ;

Furthermore, if x" = p2 (0,I), T-s- is the optimal solution of the dual of the

linear program (4).

PROOF

Since (x*,u,v) and (x*,u,v) satisfy the XKT conditions for (5) with C and c we

have

Cx* - c + Au-v-0 (8)

Zx* - c + Au -v 0 (9)

u -(Ax b) -0 (10)

u (Ax* - b) -0 (1)

-7-
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v - 0 o (12)

Vx *  0 (13)

Ax - b 4 0 (14)

x* ) 0 (15)

(GOv) 0 ,;

( u v ) > 0 NO W .'

By taking into account that Z Z 10, from (8) it follows

Lx • ". -v-0

which implies ,

x* -ec+Ae -e- (1) , 0

Now, by subtracting (16) from (9) and by dividing by (1-8) we obtain

T u--u v-ev-c + A 0(17)

By using (10) - (13) we have

(Ax*-b) - 0 (18)

(vThe ore fo 07 0 (

Therefore from (17), (18), (19), (14), (15) and the nonnegativity assumption on ( .::

v-v u-eu ;7-e;
and ( ) it follows that the pair (I---- , j----) is dual feasible and that x* is

primal feasible for the linear problem (4). By assumption we have also that

T U-8u
cTx- b uu

which implies that x* is an optimal solution for the linear program (4) and that

U-eu v-er, 1_0) is optimal for the dual of the linear program (4).

Moreover we can observe that both (x*, u , _ and (x', ', ~, ±) satisfy the KKT
C C C £ "

conditions for the problem

- ~~~~~~~~~~~~....... ........ . ..:.................::: ..... -::: .. : :.: -y-:...._. ..\
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Kin Ix,

s.t. Ax b

cx)P Y

where I is the maximum value of (4), from which it follows that x - x-x* = P2(0,X).

Now from the linear independence assumptions of the gradients of the active constraints we

have that x* has a unique optimal multiplier and, therefore, we can conclude that

I-w- -- -) is the unique solution of the dual of (4). In fact, if it had a different

solution (u,v), the pair (u,v) should be another optimal multiplier for point x* (see

[4] cap. 5 and 8).

(C--> )..-..,

For simplicity we can introduce the vector A, A, A'

where (u*,v*) are the KKT multipliers of the linear problem associated to the optimal

point x* - p2 (0,X).

Under the assumption that the gradients of the active constraints are linearly. -•-"-

independent we can use the multiplier function (x) (see [7] and 18]) to compute the

values of A, A and A* in function of x*

- (x*) - -D(x*)-IBT[ix*-c) (20)

-C (x') B ex*-c] -DCx*) B (S x* -c) (21)

wher A'= A(x') -D~(xC)lflTE-C) (22)
where

* -'.

-9-
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T ) 2J

A . (Dl - 1i) (A0 ,

D (x* ) + j
-.AT Z) 0 Diag xi 2 )

[A DiagIAx* -, 0 A Diag [A x* - 0 T
1(ilm lUim-

0 Diag (xc] - 0iag [q.

. and

" [A
T
, -I]

*. From (20) - (22) it follows

rA-ixI 'x°' ¢- II-'.'-

=..D(X*) BC= =L

uenamelyuth-pir .--

the pir - - is the optimal KKT multiplier of the linear problem (4).

REMARK. i) From the proof of the Theorem we can note that the regularity assumption on the

active constraints is not needed for the implication 1%--).

From Theorem 1 and Theorem 2 we can also state the following results: .. 4

COROLLARY 1. Assume that X A 0 and let the gradients of the active constraints of the J. 44

linear program (4) at the optimal point x' - p2 (0,X) be linearly independent. Then there

exist an e* > 0 such that for all £ e (0,c] we have

u(C) = u* + ey

V(C) - V* + Ly

-e- - a - w-



• .A - . .. • -j

, -°, -.

where (u*,v*) is the optimal solution of the dual of the linear program (4) and

(u(S),v(e)) is the unique solution of (6), and y is a vector independent of c.

PROOF. The proof follows from Theorem 1 and (20) - (22).

0

The next result gives a particular characterization of the solvability of a linear

program.

COROLLARY 2. Let (xuv) and (x,u.v) be two points that satisfy the XT conditions for

problem (5) with two different values for e. namely € - and e - respectively

where 0 " 6e with S e (0,1).

i) Suppose that

a) x - x -

b) The gradients of the active constraints of problem (S) are linearly independent at

the points x*

c) u) * , ;)e"-"

d) Jx. - bT u--

then the linear program (4) is solvable (namely 0 0 E) and x - p 2 (0,i).

ii) Conversely, suppose that the linear program (4) is solvable and the gradients of the

active constraints of linear program (4) at the optimal point x* - p2 (0X) are linearly

independent, then there exist two values for C such that the conditions a) - d) of part

i) hold.

PROOF. The proof of part i) follows by repeating the same steps of the first part of proof

of Theorem 2.

The proof of part ii) follows from Theorem 1 and Theorem 2.

-11- .A. .'.'.'
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4. SOR ALGORITHM FOR LINEAR PROGRAMMING

The quadratic programming problem (6) can be solved by a sparsity-preserving algorithm

which follows directly from the QPSOR algorithm of section 3 by replacing D by el (also

in this case we have assumed that A. p 0 VJ = 1,...,m).

LPSOR algorithm % 1

Choose (u
0
0vO) e R+

+ n
, w ( (0,2) and c ) 0.

Having (ukvk) compute (uk+1,vk+
1
) as follows

-'. .

k+1 k T k (AT k k
u j - j 7- 2 (A *tut + j (A). - v - c) + eb %

J>1

k+1 - k - k+ 1 + v1 k + c11
v (v -(Au +v

By using the results of sections 2 and 3 we can state the following convergence result

which sharpens previous LPSOR convergence results given in (1] and [5].

PROPOSITION 2. Assume that I p 9 and let the gradients of the active constraint of the

linear program (4) at the optimal point x* - P2( O,X) be linearly independent. Then

a) There exists a real positive number L* such that for each c e (0,cf
]
, the sequence

{(uk,vk)) generated by the LPSOR algorithm converges to a point u(c),v c)) which solve@

problem (6) and the corresponding x(c) determined by (7) is independent of C and

x() - x* - P 210,).

b) If, moreover, the strict complementarity holds at the optimal point x* - p2 (O,i) then

there exists a real positive number e*, £** ( ce, such that for each e c (O,c*dI there

exists an i such that for k > I the LPSOR algorithm becomes

u ' -o , jell
uk

+ 1  
. 0 j e

2+1
-j 0 j j 1 2

k (- -1 (T k+1 m - -k1)u + C - - c) (Ab), it ttut )+ C

J>1

-12- -'
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i :,. .,..., .,. ., o.
k+l I k Tk I+

* ij ii 2

where

-i t A x. b} a Z2 i I x1 - o)

and the sequence ((uk,vk)) converges to the optimal point (ula),v(l)) at linear root t

rate.

PROOF %

a) It follows directly frda Proposition I and Theorem 1.

b) If (u(c),v(e)) is a solution of problem (6) for a fixed c, z c e*, we have by using

Corollary 1

li (u(c),v(C)) - (u*,v*)

e+0

where (u*,v*) is the KR= multiplier of the linear problem (4).

Now by using the strict complementarity assumptions and theorem 1, we have that there

exists an £*,* c** 9 ,E*, such that for all e e (O,e**]

(i : ui(s) > 0) - {i I u > 0) , ti a vi(e) > 0) - {i , Vt > 0

fi , ui() - 0) - (i , ut- 01 0 i , vi() - 0 - (i vi- 0e

Therefore, by taking into account that C.* 4 e* and Theorem 1,it results that the strict

complementarity assumption holds also for the problem (5) for all e e (O,c**] and, again,

the result follows from Proposition 1.

in applying part i) of Proposition 2 we must be able to select a value of e such

that c 4 c. In order to ensure that 4 c* we may have to choose very small values

for C. Computational results have shown that very small values for £ yield a very slow

convergence of the LPSOR algorithm when applied to the problem (6).

In order to overcome the lack of a practical "a priori" selection procedure for the

parameter a* we can propone two algorithms which are based on the results of the J- ,

preceding section.

-13-
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AWORITID( I

Choose 0 C (0,1), and c
0 

> 0.

Let Ci - (a)it
0 , 

i - 0,1,2,... and lot (u(C:),v(ci)) be a solution of problem (6)

with E - e
i
, and x(e

l
) defined by (7) with e - e

£  
and u - u(ci), v - V(¢i).

By using Theorem 1 and Theorem 2 we can give the following convergence result for

algorithm I.

PROPOSITION 3. Assume that X 0 0 and let the gradients of the active constraints of the -. .

linear program (4) at the optimal point x' p 2 (0,X) be linearly independent. Then for

some integer I

x(£ ) - x(C 1  = x* P2 (0,) ,

is optimal for the linear program (4) and

(u( - Sul') v(Ci) . Sv(Cil
1-86-

is the optimal solution of the dual of the linear program (4).

The next algorithm contains an automatic adjustment rule for the parameter c based

on the abstract models considered in (8]. It carries out the minimization of two problem

(6) for two different values of c and uses the obtained points to adjust the value of c

during the minimization.

In the sequel we assume that we have an algorithm defined by an iteration map -.

: Rm+n X Rn X R + 2 R
- nxR ,' such that for any fixed value of C, any accumulation point

of the sequence produced by P gives a point x(c) and a pair (u(c),v(c)) which solve

the problems (5) and (6) respectively for the given €.

For simplicity we introduce

[ AT ,I), M - BT 9, d _ (-Ac), q (b), X (u). , - ,'0 d - \.-

where 8 C Rnx(m+n), M C R(m + n)x(m+n)o d, q, A C RP+n, and, in the sequel, we denote the

scalar product with xy. The algorithm model described below makes use of two preselected

* -14-
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epences (xiF xand (( +), where 0 < 0 < Of - , t... (0) * 0 as r +

and (9k). an k .

Data e (001), k11k of (A1k5  0 F T

Step 0: Sot kc - 0, t 0. eep-

Step 4* Set S. - 0 and (X.t + - ql)+. ) -i-

Step 21 Compute (k elx±4l C FP.Xxi,g), ( x1, e P( c anduset i £4.1.

Step 3: ifiCN go to stop 2, eIs* go to step 4.

Stop 4: Set TL X1 - (A'± (ML + d + cq))+f T - V (10 M + d + Se q)

If IT1 -0, II -0 9 to step 5, else go to step 6.

step 52 i Ix -x , - 0, (V - Oki) 0 and IT(x -
e 6 3-

b  - u% - 0 set 0,t

(cxx + (1x ,x ), k - k+l stop.

else go to step 9.

Step 6: if K1(JX M'A--"+d+ q), + 0iz + q)1) + K2 (x b). + ("x b)+)

-i 2-
SlC-x )+ + (-x )) ) (C)21x - xI,2 go to step 71 else go to stop 9.

Step 7: Uf K4(0' I--n - xi 21 + ecj(&1'2 _ 3i32) T e1( - ext)

+ b7( -_ u1 )) , c T( - 6) - b(-U - O-i)I go to step 8,

else go to step 9.

Stop 8 U f K5 (IT I + 1I1) (exi T)+ go to step 10i

else go to step 9.

Stop 9: Set j - J+1.

k --k+1 -k1 -
Step 10: set (Ak lx lk ,x j(k+1) k k+1 and go

to step 1.

The algorithm 11 is sketched in figure 1.

% -..

I.

-15- ,-
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Compute
i+1 .i+1 -i+1 i+1

x eAx.A-

b~y using Step 2
LPSOR ?dg.
i j +1

NO
S4N Step 3 .P

yen

Cekyen Check Cond. yes

Opt. ~ ~ ~ ~ igr Cod1o ho.12SO

Ste- #., '.

CheckNO Chnge

-16-
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TxzORD4 3. Assume thats

a) The linear program (4) is solvable.

b) The gradients of the active constraints are linearly independent at the optimal point

Xv . p. 2,

c) The strict complementarity holds at the optimal point x' - P 2 (0,X).

d) For a fixed C the Iteration map F is constituted by an iteration of the LPSOR

algorithm and by the relation (7). .

Then, i) either the algorithm terminates at some. ,x ,x,) where x - x - p(O.X,
X-ex .•..

is optimal for the linear program (4) and -r ) the optimal solution of the dual of

the linear program (4)!

k k -gk-k
ii) or produces infinite sequences (Ak,x , xi) and (J(k)) such that {J(k)) is

bounded (namely CJ is changed only a finite number of times), (xk} and (x converge

to the optimal solution x' - P2(OX) of the linear problem (4) and the sequence

1--. --!L} converges to the optimal solution of the dual of the linear program (4).

PROOF. First of all we prove that the sequence (J(k)) is bounded.

We prove this by contradiction. Therefore we suppose that the sequence {j(k)} is

unbounded and consider the tests at step 5, step 6, step 7 and step 8 that should have

Increased the value of parameter , at step 9.

Let c* > 0 be the number considered in Theorem I then we must have for some k*,

C
j (

k) 4 C* for all k ) k*. By using Theorem I and Theorem 2 it follows that the

algorithm could not have increased the value of parameter j on account of a failure to

satisfy the test in step 5. In fact if 1 A .k (KA~ + d + ei(k)q)) +1 0 and

* irk . ( . (N + d + 6l(k)q))1+1 - 0 for k k* we have that Xk and solve (see

[61 page 472) problem (6) with e l(k) and C - cJ(k respectively. Then Theorem 1

implies that Ix
k 

- xkl = 0 and Theorem 2 that

(1k -A
k ) 

) 0 and Ic(x k -x
k ) -b(u - uk )1 0

and hence, the algorithm should have terminated at step S. Now we consider the test at

step 6 for k ; k*. If we denote with x(e), u(c), v(e) the solutions of problems (5) and

-17-
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*. f,6), it follows from Lemma 2.1 of (10] that

k -

12 1 .k( 
k  

+ + + *u(cjk)U I(Ax k b)k) _4-(.

(23) (23)+ 'v(C J(k)" )I("xk)+ IL:

k-k + (d + q)l + lu(OC(k))I c- - bI

6C 
(24)

+ v(ecJ(k))I I -- )4 +I

Since for k > k* (and, hence, ( e*) we have that

x(ej(k)) = x(ec j (k)) = x. p2 (0,X)

by using (23) and (24) we obtain for k ) k*

O . +d I+ -k + q~l) + K (A b) I + ,(A. - b) I) +
K2S1 £J(I) .ej(I) 2 +. +

K~llx)+r
il ) 

i(-k)l (kl) 21--k xk
2 

) Jlki.,.k(,4 Nk + d +q

( x - -+ IIC + )I (I4)+1))( ( C q *-) l

Ck + d •-,) ..,)
+4 1 - -- , 

+  
l + - J(k)' (e(k) i)I(Ak - i

4. (k SL2- ±Iu c )I I*AXk - b) + I + (kc - iCki) )l)1(-x)I
2,,-3 +

+ (k - - Iv(ecJ(k) i))(-x k ) I
3 + 4.

From assumption b) it follows that {uej()j {u(O cj(k)), (v(Cj(k))} {v(Ocjlk))} are

bounded for all k ) k* and therefore we can observe that the test at step 6 is satisfied

for sufficiently large values of k (and hence for sufficiently small values of e j(k)).

The same arguments hold for test at step 7, in fact we have

x cci k1k2 -k1 -Ic*k -ki(cV.
4(k(I, ' k%21 + je (k)(' - Ik,2) _ c( -exk) . b(? -O k)-

- Ei(k)lc( - exk) - b(? - euk) ( - ei(k)lc( - Oxc - b(-i - eucl ak

-16- i. )
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a'%

and, hence, the test is satisfied for suffieciently large value. ofk (hence for

sufficiently small values of 5 i(k)). A;

Finally we verify the test at step S. We can note that, for sufficiently large values

of k, (and, hence, for sufficiently large values of Nk and sufficiently small values
A . ,.

of cj(k)). Theorem 1, Corollary 1, Proposition I and Proposition 2 imply ,0 % -

-k(IiJk) ) k O(i At -l,; 0) = 1 ; 0) (1 A, O ) 1 1i A 1O) = 1 X* , (a0

'i 
~ ~(2)""".

k k Jil ) il))

U X > 0) U A > 01- i U t X. > 0) U S X (} > ,-(-

where X* - (uS,v*) is the MCT multiplier of the linear problem (4) and X(cj(k)) .

(u(Cj(k)),v(tj(k))) and Mae - (ueei(kl),v(ee (k)) are, again, the solution of

problem (6) with t t J(k) and t - e~
j
(k) respectively.

Next we have Vi e I

-k k -Ic J(k) JWk) Xi *. i~jk

A Ok~i =(I-O)).* (A X (jc +)) C ~ L)- -~(ik)

- 6( l~J(, ) - - - t - Al *5 (k) - Jci(k), -A".

SI X 1 "'()) -( ) i(i(k)) - -

Then by construction of {(A} and (fk} in step 2 and step 3, by recalling Corollary I

k (k)
and by using that lieN -- and hat - 0 we obtain%

li. soxf Ix - a (Se Ilk) )1, 1A lot JW) A Vht ,~ A )L(tiJM )), IX (ei(k) - )~ 0

and, for sufficiently large values of k,

-), ; 0 Wit € . -

and, by taking into account (25),

Hence, we have that, for sufficiently large values of k, the test at step 8 is satisfied.

Therefore we can conclude that I can not be increased an infinite number of times as

hypothesised, but there exists a ks* such that J(k) - J* for all k P k*
*
. "'-\p

S=%



Now if the algorithm terminates at step 5 part i) of the Theorem follows from Theorem '.. "

1 and Theorem 2.

If the algorithm produces infinite sequences (Xk) and (11} then, by Proposition 2,

these sequences converge to two points * and )e which solve the problem (6) with two

different values of C (that is - cJ* and e - Oe6 ) and x* and x* solve the

primal problem (5).

Therefore we have

.X . , .X - + d + q. ...-. ,

- ql -o, It. j1 5 +q) -o , (26)

(Ax -b)+ . 0 - b)+ + 0 , (27)

(-x*)+ -0, (-)+ - 0 , (28)

- (MX* + d + C q))+u - 0 , - - (+* d( + d e 1 0q)) (29)

and from equality between the primal objective function and the dual objective function of -

problem (5) it follows:

is
* 2 T .^b^12 T " -2 T-* , 2 *"

- x c x=--lI b u*, - II- 1x~ 2 bu*
2 2 2 24.

1;.2 CT^ T^ j- 2 (30)1.S*x., - c x* + bu" - 0 , Sc 'x-, - c + b'u"= 0 (30)

Now by (26), (27), (28) and step 6 we have

I X -xI .(31)

From (31), (30) and step 7 it results

I(l-O)cT • 
- bT( " - Ou-)' " 0

By (29) and step 8 we obtain also

e) u , 
e v

so that the second part ii) of Theorem follows, again, from Theorem 1 and Theorem 2.
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