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ABSTRACT

Twordimensional free surface flows without waves, produced by a submerged
sink in a reservoir, are computed numerically for various configqurations. For
a sink above the horizontal bottom of a layer of fluid, there are solutions
for all values of the Froude numbher F greater than some particular value.
However, when the fluid is sufficiently deep, there is an additional solution
for one special value of F < 1. The results for a sink at the vertex of a

sloping bottom, treated by Craya and by Hocking, and for a sink in fluid of R
infinite depth, treated by Tuck and Vanden-Broeck, are confirmed and extended. e
In particular it is shown that as the bottom tends to the horizontal, the . g vy

solution for a sink at the vertex of a sloping bottom approaches a solution j.jf:V
for a horizontal hottom with F = 1. However solutions are found for all el
values of the Froude number F > 1 for a sink on a horizontal bottom. U )
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SIGNIFICANCE AND EXPLANATION

When fluid is withdrawn from a reservoir, the free surface may be drawn
down as in Figures 1 and 6. In order to investigate this phenomenon we
consider two-dimensional free surface flows without waves, produced by a
submerged sink in a reservoir. WNumerical solutions are ohtained for various
configurations. For a sink above the horizontal bottom of a layer of fluid,
there are solutions for all values of the Froude number F greater than some
particular value. However, when the fluid is sufficiently deep, there is an
additional solution for one special value of F < 1. We were led to look for

these solutions by our experience with other free surface flows with gravity,

such as flows over weirs in channels and flows around lips of teapot spouts.

In those cases we found that in fluids of infinite depth there was a flow only
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for a special value of the appropriate Froude number. This kind of flow also

L

o
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occurred in fluids of finite depth, but in addition there were solutions for

all Froude numbers greater than some particular value. ©Our present results
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show that this is also the case for free surface flows produced by sinks.

nocesion For \
NTIS CRA&I v
a

O

DIIC TAB
U.;announced
Justification

By

@ Distribution/
.if;? } Availability Codes
JUR———

Vo ————

Y]

(E I

A IR P R . . . R P AR

The reponsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

o - e e T e . . . .
. P S S w
.:\.’-.-" PRI SR .

a

= ) s LR Tl Ty O I T ;'.‘h
PR OR vT PEFUTE VO TS oY e rLyrnrar i

T e e T4 " .t . R S PR L U S
PP VAT PP SRT SRR O Rl el W WL P P SR R v




FREE SURFACE FLOW DUE TO A SINK

* * %
Jean-Marc Vanden-Broeck 1 and Joseph B. Keller '

§1. Introduction.

When fluid is withdrawn from a reservoir by a sink of strength @ at depth h, the surface
above the sink may be drawn down, as in Figures 1 and 6. An exact solution of this type
was found by Craya (1949) (also in Yih (1965), pp. 124-126) when the bottom sloped
downward at the angle 8 = 7/3 from the vertical, and a numerical solution was found
by Tuck and Vanden-Broeck (1984) for 8 = 0. Then Hocking (1985) obtained numerical
solutions for a sequence of angles ranging from 0 to 7/2. In each case there was just one
solution without waves. We have recomputed these two-dimensional flows and confirmed
their solutions.

For a horizontal bottom, however, we have found solutions for all values of F greater
than some particular value. When the fluid is sufficiently deep, there is an additonal

solution for one special value of FF < 1. We were led to look for these solutions by our

*
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experience with other free surface flows with gravity, such as flows over weirs in channels
and flows around lips of teapot spouts. In those cases we found that in fluid of infinite
depth there was a flow only for a special value of the appropriate Froude number. This
kind of flow also occurred in fluid of finite depth, but in addition there were solutions for
all Froude numbers greater than some particular value. Our present results show that this
is also the case for free surface flows produced by sinks.

In section 2 we compute wave-free flows produced by a sink in a liquid layer of finite
depth with a horizontal bottom. We find that the sink strength @ and the Froude number
F are determined by the sink depth h and the distance W from the sink to the bottom.
The result are discussed in section 3. It is pointed out that the solutions are subcritical
for 0 < h/W < 0.70 and supercritical for 0.70 < h/W < 0.76, while no solutions are found
for h/W > 0.76. Additional supercritical solutions are constructed in section 4, and it is
indicated that there are additional subcritical solutions with waves. In section 5 we find
solutions for a sink at the corner on a sloping bottom, which were mentioned in the first

paragraph of this Introduction.

§2. Sink above a horizontal bottom.

Let us consider the flow in the region of the z-plane shown in Figure 1. At the distance W
from a horizontal bottom there is a sink with strength 2Q. The bottom BI is a streamline
on which we require that the stream function ¥(z,y) = Q. The portion BS of the vertical
wall, where z = 0, 0 < y < W, is part of the same streamline. The portion SC of the
vertical wall, where z = 0, W < y < y., is part of another streamline on which ¥(z,y) = 0.
That streamline continues along the free surface C'I, which leaves the wall tangentially at
some point C which is to be determined.

We denote by h the depth of the sink below the level of the free surface at infinity.
We also choose the unit of length and the unit of velocity so that @ =1 and ¢ = 1. Then
we introduce the complex velocity potential f(z) = ¢(z,y) + i¥(z,y). In the f-plane, the
flow r~gion is the strip 0 < ¥ < 1 with the streamline ICS on ¥ = 0 and the streamline
IBS on ¢ = 1. We map it onto the lower half of the unit circle of the auxiliary t-plane by

the transformation
1 41

f= —;log FW (2.1)

(See Figure 2).
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Vertical section of a reservoir with a sink at S on the
vertical wall BSC, a horizontal bottom BI and a free
surface CI. The height of the sink above the bottom is
W, and its depth below the free surface at infinity is

h. The x-axis is along the bottom and the y-~axis is along
the wall. This figure is an actual computed surface
profile for h/W = 0.5. The Froude number F 1is 0.44.
The vertical scale is the same as the horizontal scale.
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Next we consider the complex velocity ((t) = u —iv as a function of ¢ in the semicircle
& in Figure 2. Here u = ¢, and v = y, are the velocity components. Since there is a sink of
i strength —2 at t = 0 and a right angled corner at z = y = 0, { must have singularities at
these two points and be regular elsewhere. The appropriate singularities are proportional
tot™! at t = 0 and to (¢ + b)% at t = —b, where —b is the image of the corner B in the

t-plane (see Figure 2). Therefore we write ((¢) in the form

C(t)y= -t + b)'lit_1 exp(i ant™). (2.2)

n=0

The coefficients a,, are to be found.

On the wall from B to C, u = 0 so {(t) must be imaginary for —b < t < 1. In addition
on the bottom from B to I, v = 0 so ((¢) must be real for —1 < t < —b. Both of these
conditions are satisfied by (2.2) if we choose all the a, to be real.

On the free surface from C to I the pressure is assumed to be constant. By using the
Bernoulli equation we can write this condition as |[(|2+2y = constant. In the t-plane it must
hold on the circular arc t = €', 0 > ¢ > —n. Differentiating this condition with respect to

o yields 9|¢|?/dc + 28y /0o = 0. Now on the circular arc (2.1) yields f = —2 log cos(a/2),

which is real, so f = ¢ there. Differentiating this relation gives 8p/dc = 1tan(o/2).

.

- We can use this expression to write 8y/80 = (8y/0p)(0p/d0) = [v/(u? + v?)]L tan(s/2).
<

b Upon inserting this result into the differentiated form of the constant pressure condition,
h we obtain

d|¢|? 2 o v ;

::_ 90 +(;tan§ m=0 on t=¢9, 0>02> -7 (2.3)

We now set t = €' in (2.2) to get ((e'?), and we substitute that expression into (2.3).
We will use the resulting equation to determine the unknown coefficients a, that occur in
(2.2).

To do so, we truncate the infinite series in (2.2) after N — 1 terms. We find the N —1

coefficients a, and the constant b by collocation. Thus we introduce N — 1 mesh points,
or=-n(I-3)/(N-1), I=1...N-1 (2.4)

By using (2.2) we obtain ¢ and 0|¢|*/J0 at ¢ = o} in terms of the coefficients a, and

h. Upon substituting these expressions into (2.3) we obtain N — 1 nonlinear algebraic




Figure 2. The image of the flow region in the t-plane

is the lower half of the unit circle with

I at t=-1,B at t=-b, C at t =0
and S at t =1.
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equations for the N unknowns {a,})_! and b. An N-th equation is obtained by fixing

I the position of the sink. This is achieved by specifying either a value for b or a value for
h/W. To fix h/W we evaluate h and W by integrating the identity

‘. Oz 0Oy 1 .

: oz oy _1 (2.5

. 9 '8 ¢ ’

along the real diameter and along the circle in the ¢-plane.

We solved the resulting system of N equations by Newton’s method. Once this system
was solved we obtained the shape of the free surface by integrating (2.5) numerically. In
addition, we calculated the Froude number F based on the total depth at infinity, which
is defined by

F=Qlo(H + W) 2. (26)

From our choice of dimensionless variables, it follows that F is given by
3
F=[¢(-1)2. (2.7)

The coefficients a, were found to decrease rapidly. For example, a; ~ 0.3, ajq ~
—2x107° and az9 ~ =2 x 1078 for h/W = 0.74. Most of the calculations were done with
N = 30.

§3. Discussion of results.

The present problem is qualitatively similar to the flow over a weir which we have alieady
studied (Vanden-Broeck & Keller (1986)). In particular, the flux Q and the ratio //W
cannot be specified independently when h/W is sufficiently small.

Following our analysis of weir flows we define a “discharge coefficient” C(Ii/1i"j by

the relation

Q = C(h/W)gih?. (3.1)
We assume that for /W small, C(h/W) can be expanded in a finite Taylor scries:

h
C(h/W) = C(0) + ﬁ—/-C (0) + O[(h/W)?] (3.2)
Upon substituting (3.1) into (2.6) and expanding for h/WW small, we obtain
3

F (%) 2 {C(O) + % [C'(0) - 2C(0)] + (’)[(h/W)"’]}. (3.3)
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Relation (3.3) is similar to the relation (2.6) we derived for weir flows (Vanden-Broeck &
Keller (1986)).
Tuck and Vanden-Broeck (1984) solved the sink problem numerically for h/W =
0. They found a unique solution characterized by (2Q)?(gh®)~! = 12.622. This result,
together with (3.1), implies
C(0) =1.776. (3.4)
In order to find C'(0) and C(;) for h/W # 0 we plotted our numerical results for

F(h/W)~% versus h/W. For h/W small the graph is close to a straight line of slope —2.4
which intersects the F(h/W)~3/2 axis at 1.78. Therefore (3.3) implies that

C(0)~1.78 (3.5)
C'(0)-3C(0) ~ —2.4 (3.6)

Relations (3.5) and (3.6) yield
C'(0)=10.3. (3.7)

We note that (3.5) agrees with the value (3.4) previously obtained by Tuck and Vanden-
Broeck (1984).

In Figure 3 we have plotted the values of F versus h/W and versus b. For h/W < 0.70,
which corresponds to b > 0.37, the flow is subecritical, i.e., F < 1. For h/W > 0.70,
corresponding to b < 0.37, the flow is supercritical, i.e., FF > 1. As h/W — 0.76, F — oo.
These solutions exist only for h/W < 0.76.

As h/W increases from 0 to 0.76, the parameter b decreases monotonically from 1 to
0.33. We shall show later that this value is exactly 1/3. A typical free surface profile for
h/W = 0.5 is shown in Figure 1.

Our subcritical solutions for /W < 0.70 are characterized by a uniform stream at
infinity. This is exceptional since usually a subcritical flow has a train of waves at infinity.
We bclieve that subcritical solutions with waves also exist for the present problem. Their

wave amplitude @ must be a function of F and h/W:
a=a(F,h/W). (3.8)

The special expression (2.2) requires that there be no waves at infinity. Relation (3.8)
indicates that this is possible only if some relation between F and h/W is satisfied, namely

a(F,h/W) = 0. Such a relation is exactly what we discovered numerically (see Figure 3).
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Figure 3. The Froude number F versus h/W and versus b.




The preceding considerations suggest that there are also additional supercritical so-
iunons for A/W > 0.70. Supercritical flows are characterized by the presence of exponen-

nally decreasing terms at infinity. Thus generally ¢ has the form
¢ ~Coo+ Ae™f as ¢ — —c0. (3.9)
Here X is the smallest positive root of
7A —F %tan7) = 0. (3.10)

Equation (3.10) has real solutions only for F' > 1, i.e., only for supercritical flow. For

F < 1, (3.10) has purely imaginary roots and then (3.9) corresponds to a train of small

amplitude waves at infinity. Therefore the exponentially small term which occurs in the

expression for supercritical flows is the “analytic continuation” of the small amplitude wave

term of subcritical flows. As in the subcritical case, the factor A in (3.10) must depend
upon F and h/W:

A= A(F,h/W). (3.11)

In terms of the transformation (2.1) from f to ¢, we can rewrite (3.9) as

C~Coo+ At +1)2*, t— -1, (3.12)

The special expression (2.2) does not allow a singularity like that in (3.12) as ¢t — —1.

Therefore, the supercritical solutions we have computed correspond to A(F,h/W) = 0. RS

This agrees with our numerical results which show that solutions of the form (2.2) can be - _?._I-

obtained only if some relation between F and h/W is satisfied, as Figure 3 shows. 4
kP $4. Additional supercritical flows. ‘:i“”’”}
}_ We shall now construct solutions for which A(F,h/W) # 0. For F = oo, the velocity is o ii:‘
! constant on the free surface and the problem has an exact solution, namely - ‘
1

(6= i E ey, (81)
t(1 +tb)2

Solution (4.1) is defined for all values of b. By using (2.1) and (4.1) we find that

o 61— 3b
(~ (-1 +e? 53—

((=1) as ¢ — —o0. (4.2)

9 ST
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Relation (3.10) shows that A — 7 as F — oco. Therefore matching (3.9) and (4.2), and
using (2.7), yields

21-3b

The asymptotic expression (4.3) vanishes for b = 1/3. The corresponding value of h/W is
0.76. This is the solution for F' = oo obtained by using (2.2). (See Figure 3). However
solutions for F' = oo exist for b # 1/3. They are given by (4.1).

Solutions for F large can be obtained by using perturbation theory: relation (4.1) can
be considered as the first term of an expansion in powers of F'~!. Instead of doing that we
shall solve the problem numerically for arbitrary values of F.

We generalize (2.2) to allow the singularity (3.12) at ¢t = —1. Therefore we write

0o
¢ =—i(t+ b)%t‘l exp |A(L+ )" + ) ant"|. (4.4)
n=0
Here X is the smallest positive root of (3.10). The coefficients a, and the constant A are
to be found. We truncate the infinite series after N — 1 terms and, as before, satisfy (2.3)
at the collocation points (2.4). This leads to N — 1 algebraic equations for the N + 1
unknowns {a,}Y-2, b and A. Two more equations are obtained by specifying F and the
position of the sink, i.e., h/W or b. The resulting system of N + 1 equations with N 1
unknowns is solved by Newton’s method.

We note that we specify two parameters, F and h/W or b, in order to obtain a vnigue
solution. We checked numerically that specifying more or less parameters did not yield
convergence for N large.

In Figure 4 we present numerical values of the parameter A/F % appearing in (4.4)
versus F’ for b = 0.3, 0.35 and 0.4. As F — oo, the curves approach asymptoticallv ti:»
values (4.3). The points at which the curves intersect the F-axis correspond to supercritical
solutions for which A = 0 in (4.4). These are the solutions described by the portion
% < b < 0.37 of the curve in Figure 3.

For b < 1/3 or b > 0.37 the curves in Figure 4 do not intersect the F-axis. For
b > 0.37 we found that as the Froude number is decreased from infinity each curve in
Figure 4 reaches a limit point and then turns back. Therefore for some values of the

Froude number two different solutions are possible. A typical profile for b = 0.4, F = 1.3

and AF~2/3 = _1.15 is shown in Figure 5. We expect that cach solution branch for
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v » 0.37 will end when a stagnation point appears on the free surface with a 120° angle at
it.

) For b < 0.37 the curves of Figure 4 extend from F = oo to F = 1,. We did not
ce.-anvie these branches into the range F < 1. Since A # 0 as F — 1,, we expect (by
analy lic continuation) the solutions for F' < 1 to have waves at infinity, i.e., to havea # 0
m (3.8).

The results above show that there are two different classes of supercritical lows. The
frst class is characterized by the fact that subcritical flows are ultimately reached when
the Froude number is decreased from infinity (curves a and b in Figure 4). In the second
class a limit point is reached before the subcritical regime is reached (curve c in Figure 4).
Another example of supercritical flow of the second class has been found by Vanden-Broeck

{1986) in his analysis of flows under a gate.

§5. Sink on a sloping bottom.

We shall now extend the procedure of Section 2 to obtain the flow in the region of the
z-plane shown in Figure 6. The rigid bottom slopes at an angle 8 from the vertical. At
the origin there is a sink of strength —27Q/(7 — 8). We choose ¥ = 0 on the vertical wall
and on the free surface. It follows from the value of the sink strength that ¥ = @ on the
sloping bottom. As before we choose the unit of length and the unit of velocity so that
Q@ =1 and ¢ = 1. By using the transformation (2.1) we map the flow domain into the
interior of the unit-circle in the t-plane (see Figure 2).

Since there is a sink of strength —27Q/(xr — §) at t = 0 and a source at t = —1,
¢ must have singularities at these two points and be regular elsewhere. The appropriate
singularities are proportionalto t?~! at t = 0 and to (1+t)!"27 at t = —1, wherey = %— g
Therefore we write

C=—i(1+)" 27" lexp [i ant"] . (5.1)
n=0
The coefficients a,, are found by following the numerical procedure of Section 2.

We shall consider first the special case 8 = 7 /6 corresponding to 4 = 1/3. Then by
choosing ap = } log(2) and an = 0 for n > 1 we obtain an exact solution of (2.3). This is
the solution found by Craya (1949). For 8 = 0 (i.e., ¥ = 1) the problem reduces to the
flow calculated by Tuck and Vanden-Broeck (1984). Hocking (1985) obtained numerical

solutions for a sequence of angles ranging from 0 to 7. Our numerical results were found
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Vertical section of a reservoir with a sloping bottom and
a vertical wall. The sink S 1is at the corner. The
free surface is CI, and B8 is the angle between the
bottom and the vertical. The figure is an actual profile
for B/m = 0.4. The vertical scale is the same as the
horizontal scale.
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to be in good agreement with theirs. In particular we confirmed that a unique solution PASITIX
~1. "..'..'-
exists for each value of 0 < § < 7. All these solutions are characterized by a stagnation gl
) point at infinity. For § = 7 there is a uniform stream at infinity. Our numerical results .
show that a unique solution characterized by F' = 1 is obtained as 8 — Z. However there '-:.".::‘:.;:j;::
N is a family of solutions for # = . This family can be computed by choosing b = 0 in (4.4) ,.;:::"5:.,
AN
and using the numerical procedure of Section 2. As F — 1, A — 0. Therefore the limit 'f {in
as F' — 1 of (4.4) with b = 0, agrees with the limit of (5.1) as ¥ — 1/2. The coefficients *! o
an, n > 1 in both expressions become identical and the difference between the coefficients S
ao is equal to A. These results are illustrated in Figures 7 and 8. In Figure 7 we present o
numerical values of the depth k. of the cusp under the level of the free surface at infinity - i‘
(see Figure 6) versus F? for 8 = J. In Figure 8 we present numerical values of k. versus C ‘:'..':-
Bfor0< B8 < 3.
PO
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