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ABSTRACT

This paper presents a negative result concerning the stable evaluation of simplex spline
functions. It has been conjectured that a great deal of computational effort might be saved
; by implementing the recurrence relation for these functions in a clever way. The main result
of this paper is that there is no clever way to implement the recurrence relation once the

standard recipe for constructing spaces of simplex spline functions has been followed.
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! SIGNIFICANCE AND EXPLANATION

_/ All computational schemes for simplex spline functions to date rely botk on the recur-

rence relation for these functions and the standard construction of the simplex spline basis.
Under these conditions, for numerical methods for computing simplex spline functions to
be as useful as possible, it is necessary to find ways of implementing the recurrence relation
as efficiently as possible. This paper shows that “as efficiently as possible"Ais still not very
efficient. This implies that truly fast algorithms (which have not yet been developed) will

have to either abandon the recurrence relation or the standard construction of the simplex
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THE COMPUTATIONAL COST OF SIMPLEX SPLINE FUNCTIONS

Thomas A. Grandine!+?

Since de Boor defined the multivariate simplex spline in \B76'. many of its mathe-
matical properties have been studied and reported ('B82.. {D79;, 'M&80. ...). However.
numerical methods for evaluating these functions have not been studied. The goal of this
paper is to produce an algorithin which evaluates simplex spline functions. i.e. linear
combinations of simplex splines. This can be done in a straightforward manner by using
the evaluation algorithm for individual simplex splines. described in G84., to evaluate
all non-zero simplex splines at any point z, then summing up the values using the spline

function coefficients as weights. However, since this algorithm is based on the recurrence

relation for simplex splines, M80)|, it seems a wasteful approach. In particular, many of

ALY

DRI
the lower degree simplex splines which need to be evaluated during this process may well :§::3_~:'(

N
be evaluated multiple times. It seems reasonable (and has been conjectured by Dahmen ‘-'ff’-

and Micchelli [DM81] and perhaps others) that a great deal of computational effort might
be saved by taking advantage of this multiplicity. This paper makes an attempt to do just

l that.

In order to begin this attempt, the recurrence relation is needed. This is given by

» M80

n
M(rioy.04,...,0,) = Z a,M(zl0y,01,....0,_1.0i41,...,04). (1)
1=0

'Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
*This material is based upon work supported by the National Science Foundation under
Grant No. DMS- 8210950, Mod. 4.
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where

Here Pz means the first m components of the vector z.

The second necessary step is to clarify just which simplex splines are the correct ones
to deal with when applying this recurrence relation. This requires the construction of an
appropriate simplex spline basis. Hollig H&2 and Dahmen and Micchelli DM82" have
sunultaneously and independently given versions of one such construction. The Hollig
version of the construction is summarized here:

To construct a simplex spline basis over = R™ . start with a triangulation of 1.
A triangulation of a set 2 is a collection T of sets 7 such that

(r) wvolir] >0

(17)  Urerir)=0

(ti2) |rynje’j=lrnr’], n,7'€T

(iv) #r=m+1, 717€T,
where [A; is the convex hull of A and #A is the cardinality of A. Thus, each |7} is a
simplex in §1. Consider the slab 1} - ¥, := {(u.v)ju € Q,v € L}, where T is the
standard unit simplex in R*. The construction boils down to triangulating this slab and
using the vertices of each of the resulting simplices as knot sets for the simplex splines.

The slab can be triangulated as follows: For each 7 & T, consider the following grid:

tox tik oo Umuik
'n.l 'l.l lm.l
’“_u ’l_u PR ,m‘u




AEF T PITRTI ARSI FRASIINCE

Here, t,; is intended to represent ({,,¢;), where ¢, is a point in 7, and ¢, is the j-th standard
unit vector (with e, being 0). Hence t,; is a vertex of 7 x . (This is not quite true. In the
actual construction, the knots are pulled apart. This means that ¢,; is not really (t,,¢;),
but rather some point which is close to (t,.¢,). The actual details are quite interesting and
useful. but not of importance here). Consider all non-decreasing paths from t.  to ¢y, &.
Such a path is denoted by o, 04, ..., 0,. Where 0/, = ti 1, 0p =t i, and. if 0, = ¢}, then
O¢y4y is either t, . ; ort; ;.. The set of all paths through the grid for 7 for all 7 € T give
rise to a simplex spline basis.

Thus, each of the knots, o,, can be classified according to where it was found along
the path from t, to t,, x. Specifically. given o, = t;;, then o, is called a horizontal

knot if 0,_; = tic1y, and gy} = tiv1,;. If 04—, tij-1 and 0441 = t;;+1, then o4 is

Il

called a vertical knot. All other knots are called corner knots. Note that these names
are specific to a given simplex spline. i.e. a knot which is of one type in one simplex spline
S may be of a different type in a different simplex spline. This classification of knots has no
significance except to relate the simplex splines to the paths from which they were derived.
The paths provide the key to piecing lower degree simplex splines together, as will be made

clear shortly.

Definition: The simplex spline M, := M(-|loq,...,0,-1,0,41,....0,) is said to con-

3 tribute to the simplex spline M(-0,,...,0,) if, in (1), M; necessarily has a non-zero

coefficient corresponding to it.

In order to prove the upcoming theorem in this paper, two more concepts are needed.

The first notion is that of a cut corner. A path with a cut corner is obtained from a path

oq,...,0, by removing a corner point. This amounts to finding a path through the grid
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consisting of only horizontal and vertical moves. except for one place, arbitrarily chosen,
where a diagonal move is allowed. The second notion has to do with the grids themselves.
In addition to the grid for 7. a grid may also be considered for 7 ri7’. If 7 # 7'. then this
grid will have fewer than m - 1 columns. and a path through the grid will only produce a '

simplex spline of degree k + ¢ — m - 1. where ¢ is the number of columns of the grid.

Theorem 1: Assume thatt, , = t,/,» unless? = i’ and j = j’. Then the only simplex
splines of degree k ~ 1 which can contribute to two simplex splines of degree k are those
which come from paths with cut corners and those which come from paths corresponding

/

to grids for 77 7'. where =7 ~ 7/ = m. There are no simplex splines of degree k — 1 which

contribute to three or more simplex splines of degree k.

Proof: Take any simplex spline of degree k, say M, deriving from a path correspond-
ing to the grid for 7. Then the only simplex splines which can contribute to M are those
obtained by deleting a knot, say o,, along that path. Suppose o, is a vertical knot. Then '
M, := M(-loa,....0;,-1.0,41,....0,) can only contribute to M, since the only way to get
from o0,_; to 0,. along a path is through o,. Suppose o0; is a corner knot. Assume
that 0,y = t;_¢_1¢. Then, since o; is a corner knot, 0,11 = t;_¢e+1. Thus, the only
way to get from o,_ to o,., along a path is through either ¢; _¢-1,+1 or t;_¢¢, one of
which must be o,. Thus. M, can contribute to at most two simplex splines of degree d.
Lastly. suppose o, is a horizontal knot. Then M, comes from a path along a grid where
the column corresponding to o, is deleted. Suppose there exists 7’ such that 7 N7/ provides
just such a grid. Then M, contributes both to M and to the corresponding simplex spline
from the grid for 7', but to no others. Otherwise, M, just contributes to M. This proves .

the theorem.
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A computer code has been written using this idea. The same approach to implement-
ing the recurrence relation that is employed in ‘G&4 is used here. Here, however, it is
best to have non-zero as few of the a, corresponding to vertical knots as possible. Unfor-

. tunately. including this condition results in a problem whose computational complexity is
equivalent 1o that of the travelling salesman problem. Since the goal here is to write a

fast code. the simple heuristic device of steering the method toward corner and horizontal

knots whenever possible is emploved. This does not behave perfectly, but it does func-
tion adequately. and the non-zero a, obtained usually correspond to corner and horizontal
knots when such solutions are possible. Additionally. the code keeps track of which lower
degree simplex splines have already been computed so that their results can be reused if
possible. A hashing scheme has been implemented to provide nearly direct access to the
values of these already computed simplex splines.

Unfortunately, the code behaves quite poorly in practice. In actual comparison with
the more naive approach, i.e., the one in which no intermediate results are saved and all
simplex splines are computed one at a time, the naive approach is the clear and decisive
winner. The clever approach takes approximately three times as much CPU time, and this
ratjo seems not to change with either the degree of the simplex splines or the complexity
of the knots. at least through seventh degree polynomials in the bivariate case!

The explanation for this lies in the excessive overhead involved in keeping track of the
lower degree intermediate results. The only way to distinguish between values of different
simplex splines is to somehow distinguish between the simplex splines themselves. This
can only be done by enumerating the knots which make up the simplex spline. Thus, the
amount of overhead increases with the degree of the simplex splines. This means that the

5

- * . > et - - - - - ‘u ) - . 3
POPIPR PP AT PR AR P Lﬂ.:\AA._A; ‘_IJ -.‘- PRI O T I TS

ot . . T
~ e ... - % .

. -\. ... ‘..-\- *
&une.,‘ e e g T S




MY A

o sy YT SO

PENEER [MARH

-

-

N
«

“" A -1.‘ 2

payoff that might be expected by making the degree of the simplex splines sufficiently large
does not actually occur.

What’s worse. Theorem ] savs. in some sense. that this cannot be improved on. While
other prograrmmners might be able to improve the code sufficiently to make it competitive.
it cannot be done in such a wav that the performance of the natve method can be bettered
by more than a factor of 2" !, Indecd. such a program would have to have some overhead
not present in the naive code, and th re will usuallyv he lower degree simplex splines
which contribute to only one higher degree simplex spline present. Thus, a factor of 2%!

improvement is really far too much to hope for.
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