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ABSTRACT p,/ " ..

-We-discus- finite difference methods for partial differential equations on polar and
spherical coordinate systems. The distinctive feature of these coordinate systems is the
coordinate system singularity at the origin. We show how to accurately and conveniently
determine the solution at the origin for both scalar and ve tor fields. We also discuss
the Fourier method to approximate derivatives with respect to the angular variable in
polar coordinates. Computational examples are presented illustrating the accuracy and
efficiency of the method for hyperbolic and elliptic equations, and also for the computation -*

of vector fields at the origin. , . , , // -. r-
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SIGNIFICANCE AND EXPLANATION

Many finite difference computations are done for regions with polar or spherical
coordinate systems. The determination of the solution variables at the origin of such coor-
dinate systems has been a source of much confusion. This is especially true for calculations
of vector fields aefined on polar or spherical grids. In this paper we show how to accurately
and easily calculate the variables at the origin of such coordinate systems.
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FiNl:'rE DIFFERENCE METHODS FOR POLAR COORDINATE SYSTEMS

John C. Strikwerda and Yvonne Nagel'

I. Introduction

In this paper we consider the use of polar and spherical coordinates with finite dif-
ference methods, determining how to achieve accurate results with convenience. Although
the use of finite difference methods with polar coordinates is not at all new there are sev-
eral features of their use that are not well known among numerical analysts, computational
scientists, and engineers. In particular, the accurate treatment of vector fields with polar
coordinates is not widely known.

It is the aim of this paper to bring together the pertinent information and present
it in an organized way. As such, this paper presents few new ideas, but it is hoped that it
will be a useful addition to the literature on numerical methods. .::.

Much of what is presented here also applies to axially symmetric problems in polar
or spherical coordinates; the common feature of these problems is the singular nature of
the coordinate system at the origin.

2. The Center Formulas

Consider the plane with a polar coordinate system. Each point is determined by
its polar coordinates (r, 40) which, for points other than the origin, is unique up to integer
multiples of 27r in 0. However the origin has the coordinates (0,0) for all angles 0, and
it is this lack of uniqueness in the coordinates of the origin that introduces difficulties for
numerical methods. These difficulties are displayed in the Jacobian of the coordinate map
which takes ordered pairs in (0,oo)x IR to points in the plane. The Jacobian vanishes
on { 0 } x, IR. However it is important to realize that this singularity is present in the
coordinate map and polar representations of functions and need not be present in the
functions themselves. In this paper we shall only consider functions which are smooth in
the domain being considered.

The singular behavior of the polar coordinate system at the origin usually precludes
the direct use of finite difference approximations to differential equations at that point. We
consider therefore the use of interpolation formulas to accurately determine the solution at
the origin. We begin by considering a function defined in the plane, without considering a
coordinate system.

'Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The first author was also
supported in part by NSF Grant MCS-8306880 and ONR Grant N00014-84-K-0454.
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Consider a smooth function u defined in a neighborhood of a point P in the plane.
We wish to express u(P) in terms of averages, ts(P, p), on circles of radius p centered at P. :V.
We begin by expanding u in a Taylor series in cartesian coordinates with the origin at P,

N Zky I l ,.

u(z,y) = (0,0) + RN. (2.1)
kil=O k !Oky

where RN is the remainder term. Then,

ii(P,p) = fu(Pcos,psinO)dO (2.2)

and using (2.1)
N

u (pP)= ICIPVV21u(p) + RN (2.3)
1=0

where c, = 1/4'(l!). Formula (2.3), which is independent of a coordinate system, is the
basis for determining a function value at the origin given values of the function at points .-,
nearby and given the differential equation satisfied by u.

Consider now a uniform finite difference grid with grid points (ri, ,O) for integers i
and j with i > 0 and 0 < j < J - I where r, = iAr, O, = jAO for Ar > 0 and AO= 2r/J.
For a function u defined in a neighborhood of the origin P, we have

fl(lAr) = ft(P, IAr) = j ut,,+ 0(AO' ) (2.4)

where ut.j = u(ri, 0j) and m is a positive integer whose value will be considered in section
5. Using (2.3) we then have the relations

u(P) = f(Ar) + O(Ar 2 ) + O(AO") (2.5)
and

(P) (4ii(Ar) - ii(2Ar)) + O(Ar4 ) + O(A&'m) (2.6)
3

which can be used with finite difference methods to determine values at the origin. Higher
order formulas can be obtained by similar means.

3. The Laplacian with Polar Grids

When the differential equation being solved involves the laplacian operator then
formula (2.3) can be used to a special advantage. We consider as examples the Poisson
equation

V2u f (3.1) .r

and the wave equation

2
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, = V 2U (3.2) htat2
on a disk of unit radius.

For the Poisson equation (3.1) consider the semi-discrete finite difference. approxi-
* in~ation ~*

ui+1(4) - U40 U,(O) - U,i(4) 1 a2UO
Ar i+ 12 ai I f' (0) for i > 0, (3.3)

* where we discretize only the radial direction. Employing (2.3) we have at the origin

U0 = fi(Ar) - Ar2V2U(O) + O(Ar')
4

* or
Ar 2

U= fs(Ar) - -. f (0) + 0 (A r"). (3.4)

This formula maintains the second-order accuracy of the scheme and is easy to use. How-
ever, even whop the equation being solved involves the laplacian, (2.6) may be more ac-
curate or convenient to use than formulas such as (3.4). Formula (3.4) has been used by

* Swarztrauber and Sweet 11973] for solving the Poisson equation in a disk, and by Swarz-
trauber [1974] for the Poisson equation on a sphere.

For the wave equation (3.2) we also consider a semi-discrete approximation in which
only time and the radial direction are discretized with the angular variation continuous.
Let u"(O) be the approximation to u(nAt, ri, ). At the origin we have

Un= fin Ar) - Ar 2V 2 U n O(Ar4)

1 2 2 + O (Ar 4)

fin(Ar) + ArAt)

4 At 2

U~j 2un -I -4 _ ) (fin( Ar) -Un) (3.5)

which maintains the second-order accuracy of the scheme. Example 1 in section 7 shows
that this formula gives accurate results. Similar methods can also be used with parabolic
equations.

3
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4. Vector Fields with Polar Grids

In addition to the coordinate singularity at the origin, the polar coordinate rep-
resentation of vector fields introduces an additional difficulty. Let F be a vector field
defined on a domain on which there is a polar coordinate system. The polar coordinate .-
representation assigns to each vector F(P) the component in the radial direction and the
component in the direction of increasing angle. This representation is unique at all points
other than the origin.

At the origin the vector F(O) has a different representation for each choice of the
radial direction. This is best illustrated using the mapping between the polar and cartesian
representations. Let (U, V) be the usual cartesian representation of the vector field F which
is uniquely determined, then the polar representation (u, v) is given by

u= Ucos+ Vsino (4.1)

v = -Usino+Vcoso.

Since at the origin the pair (U, V) is single valued, (4.1) shows the multivalued nature of
the polar representation.

Using a polar grid the vector field F will be represented, and approximated, by
vectors (uij, vi) at each grid point (ri, Oj). At the origin, there is a representation (u0j, vo)
for each coordinate direction (0, Oj). For consistency these representations must be related
by the formulas (4.1). That is, there are values (Uo, Vo) such that

ui= Uo cos Oj+ Vosin O, (4.2)
v = - Uo sin Oj+o cos~,.

The values of Uo and Vo can be obtained by formulas such as (2.6). For example, on a
uniform grid define -

U(iAr) - j u,,cos Oj - vi. sin j (4.3)

=~r) - u sin Oj + vi cos Oj.

Then Uo and Vo can be approximated by

Uo = I(4U(Ar) - (J(2Ar)) (4.4)

Vo = -(4'V(Ar) - V(2Ar)).

* . .fo
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These values can then be used in (4.2) to give the values of (uoj, vo). Example 3 in V,

section 7 demonstrates the accuracy of this method as applied to the Stokes equations.
This method has been used in Strikwerda [1984a] and Nagel and Strikwerda 11985] with
excellent results.

For finite difference grids which are not uniform in the angular variable formulas
(4.3) should be replaced by

V(iAr) = i(sinO+, -sin .,) + v,(cos+,- cos ,_,)) (4.5)..

(ir)= (-:ui(cos~i+, -cos~j_,) + v,(sin~j+I -sinai- (4.6)

where
J-1

= 2 sin(Oj+l -0)"
i=0

The formulas (4.5) and (4.6) are exact for the case when the vector field has constant
cartesian components in a neighborhood of the origin...

5. The Fourier Method 
4.

We now consider the Fourier method for the approximation of derivatives with "

respect to 0. Consider a periodic discrete function fi defined on grid points 4'j = jA
with AO = 2/i. The object of both the finite difference and Fourier methods is to obtain
approximations to o.f/4O) at the grid points. The Fourier method begins with the finite .'-

r Fourier series representation of fi, i.e. for the case when J is an even integer

J/2-1

fi= b0 + 1 (at sink4 + bk cos k4j) + bz cos( 4),). (5.1)
k=2

Note that cos(4),) = (-1)'. Replacing 4), in (5.1) by a continuous variable 4) we can
approximate of/ 4) at 4' as

9fJ/2-1

- akk cos k4i - bkk sin k4), (5.2)
C) 0 k= J 

.Lo

and similarly

J/2-1
- Z (ak 2 sin kj - bkk2 cos k4') - (-1)3(I)2b 1 .

k=1

The coefficients ak and bk are easily obtained by

5
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2k = fhcos k,, (5.3)
bk = j si j

for 0 < k < J/2, and = .sn l

bo= f (5.4)

b3= 3 Z(-)f 3. I.......,

The Fourier method has the advantage that it gives far higher accuracy for a given
number of grid points than do finite difference methods (Gottlieb and Orzag [1977]). Al-
ternatively to attain a given accuracy the Fourier method requires significantly fewer grid .'

points than do finite difference methods. For example 2 of section 7, finite difference
methods would require at least three times as many grid points in the angular direction
to obtain comparable accuracy.

The efficiency gained by the Fourier method over the finite difference method for
the angular variation is due to the natural periodicity in the variable 4i. Spectral methods A

can be used with the radial variation but not necessarily with the same gain in efficiency,
Gottlieb and Orzag [1977]. "

Line successive-over-relaxation (LSOR) can easily be used to solve elliptic boundary
value problems in polar coordinates in which the Fourier method is used to approximate the
derivatives with respect to . The basic formula for LSOR as applied to the semi-discrete
approximation (3.3) is

2...L2.
-j2 + r; (0) - Uv(4)) (5.5)

i+ + Ii-
Ar 2 

T.,'8_.

.?+1 (+ ) - u(0) _ +) -u f (()1)-- rAr 2 Ar r; j ,2

In (5.5) the order of progression through the grid for the LSOR is in the direction of
decreasing radius. When the Fourier method is used to approximate the derivatives with r'-
respect to 0, the Fourier coefficients of the update, u' - u' can be easily obtained from
the coefficients of the right-hand side of (5.5). That is, the right-hand side of (5.5) is
evaluated for each value of j, then the Fourier coefficients are calculated. Dividing the -' '
coefficients of the kt" node by -(2/Ar' + k /r?) gives the coefficients of the update, from
which the update is determined at each value of j. This method is used in examples 2 and
3 of section 7.

6
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6. Quadrature Formulas 10.

The approximation of integrals by sums arises in several contexts in the use of finite
difference methods on polar grids. As we have seen the approximations at the origin (2.5)
and (2.6) use integrals in 0 at various values of r. Also, the accurate determination of
integral quantities over the domain requires quadrature formulas in r and 4.

We begin by considering integration in the angular variable only. We consider a
2r-periodic function ff(0). We first consider the error resulting from approximating the
integral ,...

fL2rf (O)dO (6.1)

by the sum J-1

Z (,O,)A0 (6.2)
j;=O" 

"

, where AO - 2/J and 4, - jA . By the theory of Fourier series we have

f() = a.ei"* (6.3)

I* where 31r•

an = 1 of(4)e-od . (6.4)

Thus
J-I J-1 00 00

f (),A =L an c" = akj,
,=0 j=O n=-oo k=-00

J-1 
.-.

since E e'' vanishes unless n is a multiple of J. The integral (6.1) is precisely ao thus

the error in the approximation (6.2) is

002r aki.
k=-oo,k dO

By the definition of the an in (6.4) we have

a. -(in)-' f e-) ' ""---

if f is rn times differentiable. Thus.Z:

jai< Cflj -n I -m,

7 .............................................. . .°..... ...
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for some constant Cm depending on!. Thus the error in the approximation (6.2) is
bounded by

00

2C.. E kJ- -- O(J-") - O(At"). (6.5)
k= 1

We now consider quadrature for the unit circle using uniform spacing in r and 46.
We consider

fj f (r,,O) r dr dO= 2r f (r) r dO (6.6)

where 1(r) may be approximated to 0 (AO"-) as in (6.2). Using the trapezoid formula we
have

27r f(r)rdr = 2r j (r + fj+,r,+d)Ar + O(Ar')
foi=O 2 .".

27r ifrAr + rrjAr + 0(Ar2 ).

Hence
p1 2 I-1J-I ,-I

fl f1(r, O)rdrd. = 0 f, riArAO + 2 1 f, rArAo + 0 (Ar,A'k. (6.7)
i=1 j=O j=

7. Computational Results

In this section we present results of computations using the formulas discussed in
the previous sections applied to three test problems. The first test problem is to solve the
second-order wave equation. The two formulas (2.6) and (3.5) for determining the solution
at the origin are compared. The second test problem is to solve an elliptic equation using
the LSOR method given in section 4 to solve the discrete equations. The third test problem
uses the Stokes equations to illustrate the use of the formulas for vector fields at the origin.

The first test problem was to solve the second-order wave equation

utt= V2u (7.1)

in the unit disk for 0 < t < 1. The exact solution we used was

u(tx,y) cos(t - .61- .8y). (7.2)

~ ~.*.*-* . . . . . . . .. '.. % --
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The equation for the time advancement is
* ,. -'J.

u, 1) 2u- tj ' (At) Vh u ,  .3 i

where the discrete laplacian, V2, is given by the left-hand side of (3.3) and the derivatives
with respect to 0 are approximated by the Fourier method. The formula for the first
time-step is based on a Taylor series in time and is

, 9 4 - At(u )o, + I(At) Vui '  (7.4)
Uij 3 -i , )9

2 t.

where u9 and (ut)9° were obtained from the exact solution.

Both the interpolation formula (2.6) and the formula (3.5) were used to determine
the solution at the origin. The interpolation formula was applied using fz(Ar) and ii(2Ar)
at the given time level to compute u at the origin for that same time level. The results
of four test cases are displayed in Table 1, where I and J are the number of radial and
angular grid points, respectively, and K is the number of time steps. Both the L norm of - -

the error and the error at the origin are shown for each case. The two formulas are seen to
be comparable in accuracy, but the interpolation formula is slightly more accurate. This

was also observed in all the other cases in which these two formulas were compared. Since
formulas (2.6) and (3.5) yielded comparable results, we used the simpler formula (2.6) for
all subsequent runs.

Table 1. Two Center Methods

GRID FORMULA 1 FORMULA 2

I J K 1j ... 11 cer Ilu'rr1l Cerr

21 16 160 .5586(-4) .1010(-3) .5685(-4) .1069(-3)

41 20 220 1662(-4) 3177(-4) .1623(-4) .3105(-4) . ..

L_____ _ ___ __ 1.°___-._____
A list of cases using formula (2.6) is given in Table 2. The data show that errors

are relatively insensitive to J, the number of angular grid points, for the chosen values of
J. The number of time steps must be chosen so that the scheme is stable. No attempt
was made to determine the stability condition for this example. Because the accuracy of
the scheme depends on the three parameters I, J, and K it is difficult to discern the order
of accuracy of the scheme.

• ,::-:+_. |
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Tests were made using a non-uniform radial grid for this test case. We found that
in all cases it degraded the accuracy. Further study is needed to determine if non-uniform 4"

grids can be used to give good accuracy and less restrictive stability limitations on the
time step.

Table 2. Wave Equation Results

I J K IIur,,r Ce er

11 12 40 .2050(-3) .3511(-3)

21 12 80 .5314(-4) .9447(-4)

21 16 100 .5294(-4) .9525(4)

21 20 120 .5397(-4) .9727(-4)

41-12 160 .1595(-4) .2998(-4).

41 16 180 .1623(-4) .3117(-4)

41 20 320 1662(-4) .3177(-4)

The second test problem was to solve the elliptic equation

v2U - C(XY)u = 0. (7.5)

on the unit disk with u specified on the boundary. The exact solution was given by

u(xy) =exp((x -0.1)(y - 0.5)) (7.6)

i ~with . ,
ihc(x,y) (x-0.1)2 +(y-0.5)2 . (7.7)

The equation (7.1) was approximated using the left-hand side of (3.3) for the lapla-
cian with the Fourier method being used to approximate the derivatives with respect to
4. The solutions were obtained with the LSOR method discussed at the end of section 5.
If finite difference methods are used in the angular variable, then a direct solver such as
that of Swarztrauber and Sweet 19731 can be used.

_"I.-:..
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The results of several test runs are displayed in Table 3. The number of grid points 'e6

is given along with the iteration parameter w and the tolerance on the updates. The I%
iterative procedure was stopped when

Ilu,"  - u"lj/W < to). (7.8)

The number of iterations required for convergence is seen to be dependent on the number
of radial grid points and not on the number of angular grid points. The accuracy at the
origin is seen to be relatively independent of the value of J, as is expected from the analysis
of section 5. This was also noted for test problem 1. The norm of the error is, however,
dependent on J for small values of J. If J is sufficiently large then the second-order
accuracy of the scheme is seen.

A center formula similar to (3.4) gave results comparable to those obtained by (2.6).
The results shown were obtained by using center formula (2.6).

TABLE 3. Poisson equation results

I J iter w tol Iluedl Oe -

11 12 42 1.5 I(-5) .13(-2) -. 11(-2)

11 16 42 1.5 1(-5) .13(-2) -.1(-2) n"--'

21 8 53 1.8 1(-6) .39(-2) -.63(-3)

21 12 52 1.8 1(-6) .38(-3) -.28(-3)

21 16 52 1.8 1(-6) .35(-3) -.29(-3)

41 12 131 1.9 1(-7) .19(-3) -.74(-4)

41 16 131 1.9 1(-7) .90(-4) -.75(-4)

41 20 131 1.9 1(-7) .90(-4) -.75(-4)

61 12 281 1.9 1(-7) .17(-3) -.26(-4)

61 16 283 1.9 1(-7) .32(-4) -.27(-4)

61 20 281 1.9 1(-7).30(-4) -.26(-4)

61 24 286 1.9 1(-7) .32(-4) -.27(-4)

...... ,-.,-. .

.. ".. ......
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The third test problem was to solve the Stokes equations

U I av CIp
V U r 2  2 - - - - 0

r2  r2 a4$ 49r
,Vv +21 au 49p 0(79

-2 r 2 60 r =7-

I Oru 1 Ov 0
r4r r i@

on the unit disk with the velocity components u and v given on the boundary.

The exact solution was given by

U~,O =rsinO(rcos - a)(r -acosO)/R' + (r - acos4O)/R 2

1
v(r, ) = a rsin2 @(rcos.- a)/R' + -asino/R.

p(r,O) = 2rsinO(rcosO-a)/R ".

with
R* 2 r2 + a2  - 2ar cos 0 (7.10)

where a had the value 1.5. Notice that for this solution the polar representation of the
solution at the origin is multiply valued with

cos4 sin4. (7.11)

which corresponds to a vector of magnitude (2a) - I in the direction of the negative x-axis.

The system (7.9) was approximated using the discrete laplacian as given in (3.3)
with the Fourier approximation of derivatives with respect to 0. The system was solved
with the iterative method as given in Strikwerda [1984b] with the LSOR method used to
update the velocities. Explicitly the formulas are: '

2 1 a2
( r + -C-02)(Au',) (7.12)

1 ( (ts+I,, -Uij) (t<, -V+

-- w(----- rj~+1/2 A 2  
- ,/2 Ar 2

rA

1 02 U ,j _ 2 8v~1+ r2 02 r; r? a -

Pi+,j - Pi'-Ij P,+2,' - 3Pi+,,, + "Ai,, - pi-I,( 2Ar 6Ar .

12



W. -A -

and

2 + 1 2 ) r (7.13)A2 r; a 2

-(rAr kr+/ Ar2  ri12 Ar2

r a02 r7 r? O r 61, 0

with "-" "

U, =U , + Au.

and
v,,j = .+

The pressure was updated by

(, 1 (rl, + 1 , -r- u-lil,) (7.14)

v+1 3uut' + 3u"+' - + v v+ + _

- ++-.. i- -+ 1
6Ar r, . .

.5-.-.

where -y is an iteration parameter, as described in Strikwerda 11984b) The third-order
differences with respect to -y in (7.12) and (7.14) are necessary to preserve the regularity
of the scheme and hence the smoothness of the solution, e.g. Bube and Strikwerda 119831
and Strikwerda [1984a]. The derivatives with respect to 0) which are marked with a carat
in (7.13) and (7.14) are computed as in the Fourier method with the addition of the term

±b.,I 2 (!4) (-1W, (7.15)

where the plus sign is used in (7.14) and the minus sign in (7.13).These terms are included
to ensure the regularity of the scheme and hence the smoothness of the solution. Without
terms such as these the solution would contain Fourier modes with wavelength 2AO of
sufficient amplitude to affect the accuracy of the solution.

The results of test problem 3 are displayed in Tables 4 and 5. In Table 4 the 12
norms of the error are displayed for the velocity components and the pressure. That is,

Ij•I- Z Z u (r , 0 ) - u ,,12 r A rA, 1/2

7r 1 '=O)

13



where the initial factor of s'1 is included to normalize by the area of the disc. The error A

for v is computed similarly. The expression ts(rj,0 j) is the exact solution evaluated at
(ri, 0) and u1,j is the computed solution at that grid point.

Because the pressure is defined only to within an additive constant we use

=~~ 0() p - - p 12 eiriArAo)1/ (7.16) ~

where
1/ii=0 or I;

1/, otherwise,

as required by the trapezoid rule (6.7), and A p is the average value of p(r,, 4,) -p,,* %.

computed over the disc, i.e.

E; - Z (p(rj~,0) - p,,)ejrjArA0. (7.17)
7t =1 j=O

Table 4. Norm Errors for Problem 3

I J IIuerrII IlVerril IIPerrIl bh
11 16 1.1(-3) 9.1(-4) .34 -1.5(-3)

11 24 3.9(-5) 3.3(-5) 3.2(-2) -5.9(-5)

21 32 2.1(-6) 2.1(-6) 4.0(-3) -2.3(-6)

41 40 1.1(-7) 1.2(-7) 3.6(-4) -1.5(-7)

Also displayed in Table 4 is the value Of bh which is the average of the discrete
approximation to the divergence of the velocity field. The finite difference and Fourier
scheme does not enforce the condition

on the discrete solution, rather the iterative method converges to a solution with

where 6
h, is the average of the left-hand side of (7.18). Thus the value of bl is an
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a posteriori indicator of the accuracy of the discrete solution. As seen in Table 4 the 0'
numerical method gives very good solutions to the Stokes equation.

Table 5. Errors at the center for Problem 3

I J U V p .5....

11 16 2.8(-3) 8.1(-4) -1.8(-7) I.

11 24 8.6(-5) 1.8(-3) 1.7(-7)

21 32 7.3(-5) 4.0(-4) 9.9(-8)

41 40 7.2(-6) 1.1(-4) 1.2(-7)

Table 5 displays the errors at the center for test problem 3. The errors displayed
for u and v are the errors for equal to 0 at the origin. The error in the pressure is

P(O) - pi, - NAp

where A--p is the average of the difference between p(r,, _.) and p;,, taken over the whole
disc given by (7.17). Note that the computation of tAp does not use the values at the
origin.

Table 6. Iteration Parameters for Problem 3

I J -Y W tot iterations

11 16 .4 1.6 10(4) 73

11 24 .4 1.6 10(-4) 65

21 32 .2 1.7 10(-4) 188

41 40 .1 1.8 10(-5) 596

Table 6 gives the iteration parameters and the resulting number of iterations for
each of the cases reported in Tables 4 and 5. The iterative method was considered to have
converged when the successive changes in u and v were less than than tot times W and
when the changes in p deviated from its average value by less than tot times -1. That is, " . "".
when the value of '_

%
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)1/2
EE( -L" M Ap 2crA (7.19)

was less than tot times -1 the solution was considered converged.

Thevalesof heexpressions (7.16) and (7.19) was computed in one pass through
the data by the following modification of West's algorithm jWest (1979)]. To compute the

where

initialize with '

A 0
Q=0

x0

Then for i 0 to 1, andj 0 to J - 1,

Q Q + 4Aa,(X 1 -X)(A +a)
X (A + aiX)/ (A + ct 3 )

A A- A a,,
(7.20)

Thus, to compute the expression (7.19) we have

X,) A=

and { TArA4O, i 54 1
lriArAtO, i =1,0.

This algorithm makes the computation of expressions (7.16) and (7.19) only slightly
more difficult than the computation of the usual norm.

Conclusions *S

The results of the test problems show that the methods presented in this paper can
be used to compute accurate solutions to equations on domains with polar grids. The basic

16
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* tormulas can be used with most numerical procedures. The use of the Fourier method,
while not essential to the center formulas, is very convenient and efficient to use with polar
grids.
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