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On the Probability of Covering the

Circle by Random Arcs .

By

F. W. Huffer and L. A. Shepp

1. Introduction.

Suppose arcs of length Zk' 0 < X < 1, 1 < k < n, are thrown
k-

independently and uniformly on a circumference C having unit length.

Let P(tI,£2, ,zn) be the probability that C is completely covered29 ... ' n

by the n random arcs. Stevens (1939) has explicitly evaluated

P ( z2P... $). in the case Z . z 2 n It seems hopeless to giveP(1,2..,n) nthcae£ 2 " n",

a simple formula for the case of general arc lengths.

There is an extensive literature concerned with random arcs and

coverage problems. For a survey of some of this literature see Solomon

(1978). Much of this literature deals exclusively with the case of equal

arc lengths. We shall brief-ly mention some work dealing with coverage of

the circle by arcs of differing lengths.... ,t i . , ,

Cozsidexrthe following'situation: infinitely many arcs with lengths

IZ2,z 3,... are placed randomly on the circumference C. A number of -

authors studied conditions on the sequence {Z n } which ensure :he

complete coverage of C (with probability one). This work culminated

in a necessary and sufficient condition given by Shepp (1972).
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Other work has dealt with arcs having random lengths. For example,

Siegel and Holst (1982) give an expression for the probability that C

is completely covered by n randomly placed arcs whose lengths are

i.i.d. random variables. This expression, although complicated, may

be explicitly evaluated in some cases.

In this paper we examine qualitative properties of the function

P(l£2 ... 9n . In particular, we show that

(1.1) P(L1,i2 ,... 'n) is Schur-convex,

and

(1.2) P( l 512,...,) is convex in each argument

(keeping the others fixed).

As an immediate consequence of (1.1) and (1.2) we obtain the next result:

Suppose we have a collection of n arcs with lengths l,z. .

Randomly choose k arcs without replacement from this collection and

throw these arcs independently and uniformly on C. Let Pk(il, 2 ,.... X

be the probability that these k arcs cover C completely. Then -. -

(1.3) Pk(zip 29,..,n) is Schur-convex.

These three results are proved in sections 2, 3 and 4 respectively.

See Marshall and Olkin (1979) for information on Schur-convexity.

2

... . . .



N,

Our main result is (1.1) which was proposed as a conjecture by

Frank Proschan. In addition to improving our qualitative under-

standing of the function P( 1 ,t29 ,... , 1n), Schur-convexity allows

n

us to compute explicit bounds in some cases, for instance, 
9

w h e r e -= nz Z it a n d P (1 ,,. .. ) m a y b e e v a l u a t e d u s i n g S t e v e n s '

formula.

The result (1.3) is closely related to Example 3 in Section 4 of -

Huffer (1986). We shall briefly describe this example. Let P(k,F)

denote the probability that C is covered by k randomly placed arcs

whose lengths are i.i.d. with distribution F. It is shown that

P(k,F) < P(k,G) whenever G is a dilation of F, that is,

_(x)dF(x) , .

for all convex functions P. This dilation ordering is the analog for

distributions of the majorization ordering for vectors (see page 16 of

Marshall and Olkin (1979)). Thus we may view the above result as the

limiting case of (1.3) as n - and sampling without replacement

becomes indistinguishable from sampling with replacement.
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2. Proof of Schur-convexity.

Assume without loss of generality that E. 2 To demonstrate

Schur-convexity it suffices to show that

(2.1) P(,, 2 ,t3 ,...,n) < P(, 1+,te 2-cL93 ,..., n)

for all sufficiently small e > 0.

An outline of the proof follows. To prove (2.1) we must

compare two situations: one in which the first two arcs have

lengths Z1, 2  and the other in which these arcs have lengths

1 +C92-s . To do this we construct these two situations on the

same probability space and then condition on the positions of the

first two arcs. Having fixed the first two arcs, we examine the

conditional probability of covering the remaining part of the

circle by the remaining n-2 arcs with lengths Z3 9 ... n It

is easy to handle the case when the first two arcs overlap. _When

the first two arcs are disjoint, a more complicated proof is needed.

For this case we use a reflection argument to express the coverage

probability inequality in the form given in (2.5). A further

conditional argument then reduces this to a consequence of the lemma

given at the close of this section.

For notational convenience, we parameterize the circle by using

the real line modulo one. A real number x corresponds to a unique

point on C which we denote by [x]. [x] = [y] if and only if x-y

is an integer. An interval (a,b) on the line corresponds to a unique

arc on C which we denote by [(a,b)].

Let Xl,X2,...,X n be independent and uniformly distributed on

(0,1). Define

4
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A1 - [(Xlx +) , A2  [(X2,X2 +z2)),

Al= [(X 1 ,X+z 1 +E)], A =[(X2+€,X2+t2)]

and

n
H = u .

i=3

Formula (2.1) is equivalent to

(2.2) P{C c A1 u A2 u H}< P{Cc Al.uA' u H}.

To prove (2.2) we show that

(2.3) P{C c A u A2 u HX,X 2 } < P{C AIu A2 uHIX X2}

almost surely. There are 3 cases to consider:

Wi (X2  A,

(ii) [X2 ] A1  and [X2+£2 ] AI ,

(iii) A n A = -

1 2

In case i we have A uA A' u A' In case (ii) both A u A
1 2 1 2.  1 2

and A! u A' are arcs on C and the length of A u A is less than
1 2 1 2

or equal to the length of A' u A2  The reader can easily verify these
1 2V

facts. Thus (2.3) holds in both cases (i) and (ii).

The remainder of the proof deals with case (iii) so that in the

following we take X, and X2  to be fixed (nonrandom) values such that

A1 nA 2 n . This implies A' n A2  . Let V and V' denote the

5
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complements of A u A2 and A' u A' respectively. We can now rewrite

(2.3) as

(2.4) P{V c HI < P{V' c HI. .

V consists of two disjoint arcs separated by a distance of 2"

V' consists of disjoint arcs having the same lengths but situated

closer together (separated by t2- ). Let A,B,C and C* be the

disjoint arcs given in diagram i. Both C and C have length e.

With this notation V = AuBuC and V' AuBuC*.

Let A* be the reflection of A about the diagonal through the

midpoint of B. Noting that the reflection of C is C* and the

reflection of B is B, symmetry yields

P{A u B u C* c H) P{A* u B u C H)

so that (2.4) is equivalent to

P{AuBuC c H} < P{A* u B u C HI

Since

P{A u B u C cH} P{AuB c H} - P{A u Bc H, C # HI

and by symmetry P{A u B c H} P{A* u B c H}, this may be rewritten as p.'.

P{A u B c H,C H HI > P{A* u BC H,C € H}

7
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*L or equivalently

(2.5) P(A c HIB c H,C € H) > P{A* c HIB c H,C € H)

In proving (2.5), in addition to conditioning on the event

{B c H,C H), we shall assume we know which of the random arcs inter-

sect B and the exact position of these arcs. More precisely, we are

given {B cH,C OH} and the value Xi  for all i such that [(Xi,Xi +i )]

intersects B. For convenience we use F to denote this conditioning.

To prove (2.5) and complete the proof of our theorem it suffices to

show that

(2.6) P{A c HJF} > P{A* c HIF}

Let D be the union of all the random arcs [(Xi,Xi +zi) which

intersect B. Given F, we know that D is an arc containing B and

that one of its endpoints (call it Y) must lie in C. We can ignore

the case where D is very large and has both endpoints in C because

in that case both conditional probabilities in (2.6) are equal to one.

At this point we shall assume that e (which is the length of C)

is less than the minimum of Z 3k 4 z'' '' n " Let be the collection of

those random arcs which do not intersect B, that is,

= {ifi > 3 and Br [(Xi,Xi+zi. ] =-

Given F, the arcs in cannot intersect D n C, for this would lead

to complete coverage of C. Thus, given F, the arcs in are uniformly

8 .- .-
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and independently distributed inside the arc extending from Y to Z

(where Z is the endpoint of B on the side not adjoining C) which we

denote by E.

Various items introduced in the previous paragraphs are pictured in

diagram 2. The diagram depicts A and A as being disjoint, but this will

not always be the case.

Define

A = A-D, A* = A -D

and

H U [(XiXi+zi)]

Then

P{A c HJF} = P{Ar c Hr}

and

P{A* c HIF} = P{A c H I'
r r.

If D intersects A*, then Ar  A r so that (2.6) holds. Now consider

the case when D and A are disjoint so that A = A . Because A

and A have the same length and A is closer than A* to the midpoint

of E, the following lemma shows that

P{A H > P{A c H -

Since A c A we have P(A H > P{A c H } so that again (2.6) holds.r r r -r

This completes the proof.

9
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It remains to present and prove the lemma needed above. This will

be done independently of the previous material.

Lemma: Randomly place k intervals of length 61,e2,.. .,k

inside the interval (0,L). The left endpoint of the interval of

length e is uniformly distributed on (O,L-ei). Fix a value b

in (O,L). For 0 < X < L-b define X(X) and Q(X) as follows.

X(X) denotes the Lebesgue measure of the subset of (X,X+b) which

is covered by the k random intervals. Q(X) denotes the probability

that (X,X+b) is completely covered by the k random intervals, that

is, Q(A) P{X() =b}. For 0 < X < (L-b)/2 we have: Ilk

(a) The distribution of X(X) is stochastically increasing

in X.

(b) Q(M) increases with X.

Part (b) says that the probability of complete coverage increases as

the interval (A,X+b) moves toward the center of (O,L) while keeping

its length fixed. Part (b) follows immediately from part (a) which is

proved below.

Proof: The k random intervals will be denoted I 12 ...,Ik .

Let B = (X,X+b) with X < (L-b)/2. Choose c sufficiently small,

E < (L-b-2X)/2. Instead of comparing the coverage of the intervals

B = (X,X+b) and (X+E,X+c+b), we shall consider only B and transform

the intervals 11,22, 1 k uniformly distributed in L (0,L) into

intervals I1 1 I uniformly distributed in L* (-E,L-E). An
2 * * 9*

interval I. = (c,d) in L is transformed into I. (c ,d ) inL

according to this rule:

If d < L-c, then (c* ,d*) (c,d)

If d > L-e, then (c*,d) = (d-L,d-L+(d-c))

10
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Let v denote the Lebesgue measure. The restrictions on X and

e ensure that the midpoint of B lies to the left of the midpoint PF-

of L so that

(2.7) p(B n I.) < u(B n i) for all I .

Define {i:I.c(O,b+2A)}, C Bn ( u I), D = B n( u 1I),

C* Bn( u I), D* = Bn( U I*). Part (a) may be restated as

(2.8) i(C u D) < iJ(C* uD*)-st --

where < is the stochastic ordering. Note that C = C . This-st

follows because b+2A < L-e so that I= I for ie.-

Suppose we know and the exact position of Ii  for all i4.

Conditional on this information, the sets D and D are fixed

(nonrandom), and for is the intervals Ii are independent and

uniformly distributed inside (O,b+2X). Let R denote reflection about

the midpoint of B. R(C) and C have identical distributions because

B is centered inside the interval (O,b+2X). Using (2.7) it is easily

seen that either D c R(D*) or D c D depending on whether or not the

lefthand endpoint of D belongs to an interval Ii  for which I. # I..
* R(*) * *"""

Therefore, either C uDcC uR(D or C uD cC uD*. Inthe first

case ij(CuD) < i(C* uR(D*)) = u(R(C*) uD*) (C* uD*) where d

denotes equality in distribution. In the second case i(C uD) < ).(C* uD*) .

This shows (2.8) holds conditionally and therefore must also hold without

the conditioning. This completes the proof.

11,
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3. Convexity in each argument.

We now prove (1.2). Let X1 ,X2,.. .Xn be independent and

uniformly distributed on (0,1). Choose y and z satisfying

0 < y < z < y+z < 1. Define

81 = [(Xl,Xl+Z)], 82 = [(XI+Y,XI+Y+z)],

B3 = [(Xl+YX+ 4z)], 8 = +y+z)],

and
nG (Xi,Xi+Zi  

?'

i=2 .-[

Here we use the bracket notation described early in section 2. For

1 < i < 4 define J. to be the indicator of the event {CcB. uG).

Because 1 n 2 nd3 1 1 U 82 B 4, it is easily seen that

Ji + J  < 3 +J 4

Taking expected values leads to

P(z,z 2,..., n) [P(z-y . ) + P (z+ y , 2

This suffices to show that P(z,2,.,z.) is convex in z when

2...'. z are held fixed. The argument above is essentially that used

by Huffer (1984).

12
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4. Proof of (1.3).

By definition we have

(4.1) Pk(tlt2'..'.n) k! P(%il'L 2

with the sum over all k-tuples (il,i2,... ,ik) satisfying

-1~2 2k-2-1 < 1 < 2 < ... < Jk < n. Suppose that 0 < e < X 2 < z 1< z 1+ e < I.""

It suffices to show that

Pk(z1+C,z 2-Q 3,... zn) - Pk(Z1,12,13,...," n) > 0.-

Using (4.1), canceling common terms and then regrouping gives the equi-

valent expression

S[P(.1+ -2-e,x) - P(z1, 2,x) ]..-'""

X

+ l [P(£ 1+ez)+P(t2-ez)-P(1,z)-P( 2,z)] > 0
z

The first sum is over all (k-2)-tuples x - (tii, I2,. I ) with

1 2 k-2

3< 1 i2 < -.. < ik-2 < n. The second sum is over all (k-l)-tuples

z (z~ JZ2'9. )~k with 3 < j 1 < J < k-l < n. Each term" ~ l2 Jk-i -

in the first sum is nonnegative by (1.1) and each term in the second sum

is nonnegative by (1.2). This completes the proof.

13
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