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On the Probability of Covering the FIE
5&

Circle by Random Arcs e

By A

F. W. Huffer and L. A. Shepp

1. Introduction.

Suppose arcs of length 8> 0<% <1, 1<k<n, are thrown
independently and uniformly on a circumference C having unit length.
Let P(nl,lz,...,zn) be the probability that C 1is completely covered
by the n random arcs. Stevens (1939) has explicitly evaluated
P(%;,%,,...,L ) 1n the case £, =&, =-..= g . It seems hopeless to give

a simple formula for the case of general arc lengths.

* There is an extensive literature concerned with random arcs and

coverage problems. For a survey of some of this literature see Solomon

R

(1978). Much of this literature deals exclusively with the case of equal

.. e .1,'

arc lengths. We shall briefly mention some work dealing with coverage of
B —

P,
/ ’

the circle by arcs of differing lengths. . - .. .. | -~ /  7r «, L. Sm;u ;

'
-

g e e ;. - ;
ConsideJ'the following ‘situation: infinitely many arcs with lengths AR
J o

11,22,13,... are placed randomly on the circumference C. A number of "r“"
authors studied conditions on the sequence {ln} which ensure :he f e
complete coverage of C (with probability one). This work culminated ' S

in a necessary and sufficient condition given by Shepp (1972). : é
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Other work has dealt with arcs having random lengths. For example,
Siegel and Holst (1982) give an expression for the probability that C
is completely covered by n randomly placed arcs whose lengths are
i.i.d. random variables. This expression, although complicated, may
be explicitly evaluated in some cases.

In this paper we examine qualitative properties of the function

P(El,ﬁz,...,zn). In particular, we show that

(1.1) P(ll,lz,...,ln) is Schur-convex,
and
(1.2) P(Zl,lz,...,ln) is convex in each argument

(keeping the others fixed).

As an immediate consequence of (l1.1) and (1.2) we obtain the next result:
Suppose we have a collection of n arcs with lengths ll,lz,...,ln.
Randomly choose k arcs without replacement from this collection and
throw these arcs independently and uniformly on C. Let Pk(il,lz,...,ln)

be the probability that these k arcs cover C completely. Then

(1.3) Pk(ll,lz,...,ln) is Schur-convex.

These three results are proved in sections 2, 3 and 4 respectively.

See Marshall and Olkin (1979) for information on Schur-convexity.
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Our main result is (l.1) which was proposed as a conjecture by

S

Frank Proschan. In addition to improving our qualitative under-

2

v

standing of the function P(ll,lz....,ln), Schur-convexity allows E:;
us to compute explicit bounds in some cases, for instance, éﬁ
ot

-

P(2y525,00052) 2 P(L,1,...,2) Ei;:

-1

Oamtan . 0 o ol
a2

where £ = n Zili and P(E,E,...,Z) may be evaluated using Stevens' !!k
formula. :iﬂ
The result (1.3) is closely related to Example 3 in Section 4 of ;&:f

<" M
Huffer (1986). We shall briefly describe this example. Let P(k,F) =
denote the probability that C is covered by k randomly placed arcs L
whose lengths are i.i.d. with distribution F. It is shown that I%{
P(k,F) < P(k,G) whenever G is a dilation of F, that is, "
1 1 o

J ¢ (x)dF (x) f_[ ¢ (x)dG (x) i
0 0 X

for all convex functions ¢. This dilation ordering is the analog for ;:%?
b

distributions of the majorization ordering for vectors (see page 16 of RS
Marshall and Olkin (1979)). Thus we may view the above result as the ;:5‘
limiting case of (1.3) as n + » and sampling without replacement ;;:
l. :h\

becomes indistinguishable from sampling with replacement. if*
e
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2. Proof of Schur-convexity.

Assume without loss of generality that ¢, > ¢

1 2 To demonstrate

Schur-convexity it suffices to show that

L)

(2.1) P(L1atyslyyennsly) < P(L be,0ome,0o,0n, 8

for all sufficiently small ¢ > O.

An outline of the proof follows. To prove (2.1) we must
compare two situations: ome in which the first two arcs have

lengths 21.2 and the other in which these arcs have lengths

2

z-e . To do this we construct these two situations on the

same probability space and then condition on the positions of the

21+€,£

first two arcs. Having fixed the first two arcs, we examine the
conditional probability of covering the remaining part of the

circle by the remaining n=2 arcs with lengths 13,...;£n . It

is easy to handle the case when the first two arcs overlap. When
the first two arcs are disjoint, a more complicated proof is needed.
For this case we use a reflection argument to express the coverage
probability inequality in the form given in (2.5). A further
conditional argument then reduces this to a consequence of the lemma

given at the close of this section.

For notational convenience, we parameterize the circle by using

the real line modulo one. A real number x corresponds to a unique

point on C which we denote by [x]. [x] = [y] 4if and only if x-y
is an integer. An interval (a,b) on the line corresponds to a unique

\
! : arc on C which we denote by [(a,b)].

Let xl,xz,...,xn be independent and uniformly distributed on

(0,1). Define




| AL = LaX D], Ay = [(g,X 401, 3
| R
Al ' a
17 LXX Hgve)], A = [(Xy4e, X, 40,)] -
a
and E%"
WY
n W,
H= u [(X,,Xx,+2)] S
{=3 17174 o
Ry
. tkf‘
[ Formula (2.1) is equivalent to t]
3 o
(2.2) P{C < A u Ay uH} < PIC < ATuAY U H), - 2
To prove (2.2) we show that ;fi
Sty
24
l'::-"
(2.3) P{C <A uAu H!x Xy} < P{C c AJUA) qux X,} 550!
.‘*
-::.4:
P
almost surely. There are 3 cases to consider: ! 7i
R
(i) [X2] € Al’ Si?i
iy
(ii) [XZ] Fl Al and [X2+22] £ Al’ L.
(111) A, n A, =4 . ::Tt}:
T
) '
In case (i) we have AllJAz S A1 U A2. In case (ii) both Al U A2
and Ai 9] Aé are arcs on C and the length of A1 U A2 is less than
or equal to the length of Ai u Aé. The reader can easily verify these ¢§7
facts. Thus (2.3) holds in both cases (i) and (ii). 3:f
The remainder of the proof deals with case (iii) so that in the ;i:
following we take X; and X, to be fixed (nonrandom) values such that T

Al n A2 = 4. This implies Ai n Aé =¢g, Let V and V' denote the

..................................
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complements of Al U AZ and Ai u Aé respectively, We can now rewrite

(2.3) as

(2.4) P{V < H} < P{V' c H}.

V consists of two disjoint arcs separated by a distance of 22.

V' consists of disjoint arcs having the same lengths but situated
closer together (separated by 12-5). Let A,B,C and c* be the

disjoint arcs given in diagram 1. Both C and c* have length «.

With this notation V = AuBuC and V' = AuBucC*.

Let A* be the reflection of A about the diagonal through the
midpoint of B. Noting that the reflection of C is C* and the
reflection of B is B, symmetry yields

PLAUBUC* cH} =P{aA* uBuC cH
so that (2.4) is equivalent to
P{AuBUC c H} < P{a* u B u C < H} .
Since
P{AuBuCcH) =P{AuBc H} -PlauBcH, C¢H

and by symmetry P{AuBcH} = P{A* UBc H}, this may be rewritten as

P{A u B c H,C ¢ H} > P{A¥ u B c H,C ¢ H}
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(2.5) P{A < H|B < H,C ¢ H} > P{a* < H|B < H,C ¢ H} . =
- RN

N

A

In proving (2.5), in addition to conditioning on the event (0

(X

{Bc<H,c ¢ H}, we shall assume we know which of the random arcs inter- !5
sect B and the exact position of these arcs. More precisely, we are i:%
given {BcH,C¢H} and the value X, for all i such that [(xi,xi+zi)] 3
intersects B. For convenience we use F to denote this conditioning. !:

To prove (2.5) and complete the proof of our theorem it suffices to

show that ;i
(2.6) P{A < H|F} > P{a* c H|F} . fi';}:
5

Let D be the union of all the random arcs [(Xi,xi+2i)] which :55
intersect B. Given F, we know that D is an arc containing B and ;ii
that one of its endpoints (call it Y) must lie in C. We can ignore E;i
the case where D is very large and has both endpoints in C because ;Ei
in that case both conditional probabilities in (2.6) are equal to omne. EE;
At this point we shall assume that € (which is the length of () 35‘

is less than the minimum of 13,24,...,2n. Let £ be the collection of E;ﬁ
those random arcs which do not intersect B, that is, Tt

£ = {ili > 3 and Bn [(X;,X;+2.0] = ¢).

i

Given F, the arcs in £ cannot intersect D n C, for this would lead

to complete coverage of C. Thus, given F, the arcs in &£ are uniformly -
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and independently distributed inside the arc extending from Y to Z
(where Z 1is the endpoint of B on the side not adjoining C) which we
denote by E.

Various items introduced in the previous paragraphs are pictured in
diagram 2. The diagram depicts A and A* as being disjoint, but this will

not always be the case.

Define

A_ = A-D, A* = a*p
r

and

H = Y [(Xi,Xi+2i)]

r ieg
Then

P{A c H|F} = P{Ar < H}

and

p{a* < H|F} = P{A} < H )

If D intersects A*, then Ar S A: so that (2.6) holds. Now consider
the case when D and A* are disjoint so that A: = A*. Because A

and A* have the same length and A 1is closer than A* to the midpoint

of E, the following lemma shows that
*
P{A < Hr} > P{A < Hr}

Since A. <A wehave P{(A < H} > P{AcH]} so that again (2.6) holds.

This completes the proof.
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It remains to present and prove the lemma needed above. This will

be done independently of the previous material.

Lemma: Randomly place k intervals of length 61,82,...,ek
inside the interval (0,L). The left endpoint of the interval of
length ei is uniformly distributed on (O,L-ei). Fix a value b
in (0,L). For 0 < X < L-b define X(A) and Q(X) as follows.
X()) denotes the Lebesgue measure of the subset of (A,A+b) which
is covered by the k random intervals. Q(X) denotes the probability
that (A,A+b) 1is completely covered by the k random intervals, that

is, Q&) = P{X(X})=bl. For O < X < (L-b)/2 we have:

(a) The distribution of X(X) is stochastically increasing
in .

(b) Q()) increases with AX.

Part (b) says that the probability of complete coverage increases as
the interval (X,A+b) moves toward the center of (0,L) while keeping
its length fixed. Part (b) follows immediately from part (a) which is
proved below.

Proof: The k random intervals will be denoted 11,12,...,Ik.
Let B = (A\,A+b) with X < (L-b)/2. Choose ¢ sufficiently small,

€ (L-b-21)/2. Instead of comparing the coverage of the intervals

iA

B (A,A+b) and (A+e,r+e+b), we shall consider only B and transform

the intervals Il,lz,...,Ik uniformly distributed in L = (0,L) into

* * * *
intervals 11,12,...,1k uniformly distributed in L = (-e,L-g). An

* * % *
interval Ii = (¢,d) in L 1is transformed into Ii = (c,d) in L

according to this rule:

If d < L-¢, then (c*.d*) (c,d)

If d > L-e, then (c*,d*) = (d-L,d-L+(d-c)) .

10 L
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Let u denote the Lebesgue measure. The restrictions on ) and

€ ensure that the midpoint of B 1lies to the left of the midpoint

%*
of L so that

- v w
L]
Ta

A

-~y
o .

*
(2.7) u(B n Ii) < u(Bn Ii) for all 1 .

Define ¢ = {i:Ii<:(0,b+2A)}, C=Bn(u Ii), D=BnAa(v Ii)’

* * * * ieg ige

C =Bn(u Ii)’ D =Bn(u Ii). Part (a) may be restated as
ieg iég

(2.8) u(€ uD) <_ u(c*vo®

*

where 2 st is the stochastic ordering. Note that C = C . This
*

follows because b+2) < L-¢ so that Ii = Ii for ieg.

Suppose we know & and the exact position of I, for all ifg.

i
*
Conditional on this information, the sets D and D are fixed

(nonrandom), and for icf the intervals Ii are independent and

uniformly distributed inside (0,b+2))., Let R denote reflection about
the midpoint of B. R(C) and C have identical distributions because

B is centered inside the interval (0,b+2)). Using (2.7) it is easily
seen that either D c R(D*) or DcD¥ depending on whether or not the
lefthand endpoint of D belongs to an interval Ii for which Ii # I:.
Therefore, either C u D ¢ C*tJR(D*) or CubDc C*lJD*. In the first
case u(CuD) i_U(C*LJR(D*)) = u(R(C*) uD%) d u(C* uD*) where d

denotes equality in distribution. In the second case u(CuD) < U(C*lJD*).

This shows (2.8) holds conditionally and therefore must also hold without

the conditioning. This completes the proof.
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E 3. Convexity in each argument. e
' A
i We now prove (1.2)., Llet X,,X.,...,X_ be independent and .
A 1°72 n gy

uniformly distributed on (0,1). Choose y and 2z satisfying :EF

[

0 <y<z<ytz <1, Define

i el aress i
X
‘ b J ]

Bl = [(xl’xl+z)]’ BZ = [(X1+y,X1+y+z)],

83 = [(X1+}’,X1+2)], 84 = [(xl’xl+Y+z)], ‘.

and :
n

G = v [(Xi,xi+£i)] . e

i=2 o

5

Here we use the bracket notation described early in sectiom 2. For E;.

1 <1< 4 define J, to be the indicator of the event {CCZBikJG}. f

Because Bl n Bz = 33 and Bl U 82 = 34, it is easily seen that jg

s

I +I, < Iy+T, . o

A

Taking expected values leads to oy

S

1
P(2,09,.00sk) < G2y, 00,0 us 2 ) +R(2Hy, 0p,0 02 )]

This suffices to show that P(z,22,...,2n) is convex in 2z when

2 ’ln are held fixed. The argument above is essentially that used

greee
by Huffer (1984).

12




4, Proof of (1.3).

By definition we have

(4.1) ) = k'(n—k)

P (Byalysennsty ZP(zi 91

with the sum over all k-tuples (il,iz,...,ik) satisfying

L<ig <iy<eer<i <a.

It suffices to show that

Suppose that 0 < e < 22_1 21< El+-e< 1.

P (94 +€’2' , 3,.9 ’ln) - Pk(£1,22,23,.00,ln) z 0 .

Using (4.1), canceling common terms and then regrouping gives the equi-

valent expression

}2{ [B(L +€,2-€,%) = P(L),2,,%) ]

+ ) (P(2 +e,2) +P(2y~€,2) - P(L,,2) = P(L,,2)] 2 0 .
s : ~ : :

-

The first sum is over all (k-2)-tuples x = (li ,21 ,...,21 ) with
- 1 2 k-2
3 < i, < 1) < ere<ip 5 < m. The second sum is over all (k-1)-tuples

z = (¢ 2 . 2 with 3 < j, < < ses < < n. Each term
in the first sum is nonnegative by (1.1) and each term in the second sum

is nonnegative by (1.2). This completes the proof.
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