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ABSTRACT

j The flow of a liquid with a free surface over a weir in a channel is

calculated numerically for thin weirs in channels of various depths, and for

broad crested weirs in channels of infinite depth. The results show that the

upstream velocity, as well as the entire flow, are determined by the height of

the free surface far upstream and by the geometry of the weir and channel, in

agreement with observation. The discharge coefficient is computed for a thin :. , ,

weir, and a formula for it is given which applies when the height of the weir

is large compared to the height of the upstream free surface above the top of

the weir. The coefficients in this formula are close to those found

empirically. "
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SIGNIFICANCE AND EXPLANATION

The flow of a liquid with a free surface over a weir in a channel is

considered. Observation shows that the upstream velocity, as well as the

entire flow are determined by the height of the free surface far upstream and

1,V the geometry of the weir and channel. Therefore the discharge of fluid

along the channel can be found without measuring the upstream velocity, which

is one of the reasons for using weirs. Up to the present this rather

surprising fact has not been treated hydrodynamically.

To analyze it, we calculate numerically the flows over thin two

dimensional weirs in channels of different depths and over broad crested two

dimensional weirs in channels of infinite depth. The numerical results show

that the entire flow is determined by the height of the free surface far

upstream in agreement with observation. The discharge coefficient is computed

for a thin weir and a formula for it is given which applies when the height of

the weir is large compared to the height of the upstream free surface above
p..-

the top of the weir. The coefficients in this formula are close to those

f oud empirically.
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WEIR FLOWS

Jean-Marc Vanden-Broeck and Joseph B. Keller*

1. Introduction

* The flux or discharge Q of fluid along a channel is the product of the fluid's mean velocity U and crows

* sectional area A(H), which depends upon the free surface level H: .

Q =UA(H).(.)

Both U and H must be known to determine Q from (1.1). However observation shows that in a channel

partially obstructed by a weir, Q is determined by H alone. Then Q can be found without measuring U,

which is one of the reasons for using weirs [Ackers et al. (1978)].

This observation implies that although U and H are independent in an unobstructed channel, they are

not independent in a channel containing a weir. Instead U =U(H) is a function of H and of the size and

* shape of the weir. Up to the present, this rather surprising fact has not been treated hydrodynamically.

To analyze it, we shall calculate numerically the flows over thin two dimensional weirs in channels of

different depths, and over broad crested two dimensional weirs in channels of infinite depth. This requires

solving free surface problems in the presence of gravity. For this purpose we assume that the fluid is

incompressible and inviscid, and that each flow is irrotational, steady and two dimensional. We also assume

that there are no surface waves.

For a thin weir at each surface height H, we find that there is a solution for only one value of U, which

depends upon H and upon the height W of the weir. This confirms the empirical result mentioned above.

We determine the flux Q, the discharge coefficient C, and the shape of the free surface for this solution. We

also obtain a formula for C when H/W is small, where H is measured from the top of the weir. This formula

is of the form used in practice, and the computed coefficients in it are close to the empirical ones [Ackers et

al. (1978)].

For a broad crested weir of length L and height W =oo, we find that there is a unique flow for given -

values of H and L. We determine Q, C and the free surface for two values of H/L.
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In Section 2 we define C and introduce the form of the equation for it. Then in Section 3 we consider a

thin weir in a channel of infinite depth. After formulating the flow problem mathematically, we present our

numerical procedure for solving it and display some of the numerical results. In Section 4 we treat a thin
weir in a channel of finite depth. In Section 5 we treat broad crested weirs in a channel of infinite depth.

Finally in Section 6 we discuss a related free surface flow that can be analyzed explicitly.

2. Discharge coefficient

Figure la shows a side view of a channel with a thin weir, and Figure lb shows a cross-section of the channel

at the weir. The height H of the free surface far upstream and the depth W of the bottom are measured

from some point on the upper edge of the weir, as is shown in Figure la. The cross-sectional area A(H) of

the channel, and the area a(H) of the region above the weir up to the level H, are shown in Figure lb.

In terms of these quantities and the acceleration of gravity g, we define the dimensionless discharge

coefficient C by

Q = C(gH)ia(H). (2.1)

The fact that the flow is determined by H means that C is a function only of H and of the geometry of 'P.

the weir and the channel. Since C is dimensionless, we shall write it as a function of the dimensionless ratio

HIW, C = C(H/W). It also depends upon other dimensionless geometrical parameters.

We assume that C is regular for H1W small, so that it has the form

C(HIW) = C(O) + C'(O)H/W + O[(H/W)2]. (2.2)

For flows over two dimensional thin weirs this assumption is confirmed by our numerical results , which are

presented in Sections 3 and 4. The results also determine the coefficients C(O) and C'(0) for those particular

weirs.

Let us specialize these formulas to a weir with a rectangular opening of width b, for which a(H) bH.

Then (2.1) and (2.2) yield

Q = gi H 1bC(O) + C'(O)H/W + O[(HIW)2 ]}. (2.3)

For a weir with a V-notch of angle 0, a(H) - H2 tan 0/2 and we get instead

Q = g1H1 tan 0/2{Cv(O) + CV(O)H/W + O[(H/W)21} (2.4)

Results of the forms (2.3) and (2.4) are used in practice [Ackers et al. (1978)]. They are derived by

dimensional analysis, hydraulic approximations and fitting to experimental data. Corrections for viscous ,

*" and surface tension effects are often included.

By combining (1.1) and (2.1), we can determine the velocity U. From it we find that the Froude number

F U[g(H+ I+V)]-i of the flow in the channel, based upon the total depth, is

2
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Figure la: Side view of a channel with a thin weir.
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Figure lb:

Cross-section of a rectangular channel of width B
at the weir, which has rectangular opening of width
b, at height W above the bottom. The water depth
far upstram is W + H.
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f - C(H/W)(1 + WIH)-Ca(H)/A(H)

Faew a A(H) {C(O) + [C'(o) - IC(O)] + O[(H/W)J}. (2.5)

For a weir with a rectangular opening of width b in a rectangular channel of width B, we have a(H) = bH,

A(H) = B(H + W) and (2.5) becomes

F = W {C(O) + C'(O) - C(O)] + (2.6)

For a thin weir, the only other geometrical ratios upon which C(O) and C'(0) depend in this case are b/B
and the lateral position of the opening. This result shows that F is small of order (H/W), when H/W

is small, so then the flow is extremely subcritical. When b = B the flow is two dimensional and then the

coefficients are constants. We shall determine them in Sections 3 and 4.

3. Thin weir in infinitely deep channel

Let us consider a thin weir, such as that shown in Figure la, in a channel of infinite depth, so that W = 0o.

Let the channel be rectangular with width B = b, so that the opening above the weir extends completely

across the channel. Then the flow is two dimensional. We seek a flow which becomes a falling jet with two

free surfaces after it crosses the weir. Thus the flow appears as in Figure la with the bottom removed to

infinity, and with the jet falling to infinity.

We introduce cartesian coordinates with the z-axis directed vertically downwards through the separation

point S, and with the asymptote to the upper freee surfacdPas the y-axis (see Figure la). Gravity acts in

the z-direction. As y - -oo, the velocity approaches zero. As y - +0o the flow approaches the thin jet ,

solutions of Keller and Weitz (1957) and Keller and Geer (1973).

Let the potential function be p and the stream function be 0. Without loss of generality we choose

V= 0 on the lower free surface and =0 at the separation point S. Let Q be the value of on the upper

free surface. On the two free surfaces the Bernoulli equation yields

12VM)? - gz = 0 (3.1)

We introduce dimensionless variables by taking (Q2/g)i as the unit length and (Qg)i as the unit

" velocity. In these new variables (3.1) be%omes

(VV) 2 - 2z = 0 on 0 1 and on = 0, p > 0 (3.2)

The plane of the dimensionless potential f = p + iio is shown in Figure 2.
Let the complex velocity be ( = u- iv. Here u and v are the z and y components of the vector velocity.

As f -. -oo, we require that there be no waves, so the velocity ( vanishes like e'. As f +00, the velocity

* increases like f1 [Keller and Weitz (1957)]. Thus we have

4
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Figure 2:

The complex potential plane. For a thin weir in an infinitely deep
channel, the point E coincides with I at - . For a channel of
finite depth, E is on the axis between I and S, as it is also
for a broad crested weir in a channel of infinite depth.

C -e!  as f -- oo (3.3)

C f as f -+o (3.4)
*1,.

The problem is to find C as an analytic function of f - + io in the strip 0 < 0 < 1, satisfying (3.2)-(3.4)

and the kinematic condition

v=O on €b=0, j<0 (3.5)

We define the new variable t by the relation
I (t + 1)2 -.

f = In (t+1) (3.6)

nr 2(t2 + 1)

The transformation (3.6) maps the flow domain into the interior of the unit circle in the t-plane so that the

vertical wall goes onto the real diameter and the free surface goes onto that portion of the circumference

lying in the upper i-plane (see Figure 3).

Following deBoor (1961) we define the function fl(t) by the relation

0 -(t + I)[- In c(I + t2 )] en (') (3.7)

Here c is a real constant between 0 and .We shall choose c = 0.2. It can be checked easily that the expression2

(3.7) satisfies the conditions (3.3) and (3.4). The function f(t) is analytic for III < I and continuous for

5
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Figure 3:

The complex t-plane. For a thin weir in an infinitely deep -

channel, E coincides with I at t - -1. For a channel

of finite depth E is on the diameter between I and S.

The same is true for a broad crested weir in a channel of

infinite depth.

It < 1. The kinematic condition (3.5) implies that the expansion of 11(t) in powers of t has real coefficients

With this expansion inserted, (3.7) becomes

= -(t + 1)[- In c(1 + t')]* exp(= u,,tn) (3.8)
n=O

The function (3.8) satisfies (3.3)-(3.5). The unknown real coeffients U, have to be determined to make (3.8)

satisfy the Bernoulli condition (3.2).

We use the notation t = Itleiv so that points on the free surfaces are given by t e'", 0 < a < ir. Using

*(3.6) and the identity

8: .Oy 1 (3.9)

we obtain after some algebra
d! 1 sin o" ,6(a)
d' 21r coso'cos 2 1 i(r) 2 + ( ,)2 (3.10)

dP 1 sino, o, (o)
d CS 2 0, cosr ocos 2  7(0) 2 + (0)2 (3.11) .%

.here (0') = i(o,) - i;(a) denotes the value of C at a point on a free surface.

6 6
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The value of i(a) on the free surface is obtained by integrating (3.10):

X= 2 rco, 2 Oi( .)2 e (z) 2 ,0-(3.12)

If sin " r (r)

dr, < < ir. (3.13)

Here z, is the value of z at the separation point S.

We solve for the U numerically by truncating the infinite series in (3.8) after N terms. For convenience

we choose N to be even. To get equations for the coefficients U. we use collocation. Thus we introduce the w
N mesh points

Using (3.8), (3.12) and (3.13) we obtain C(ai) and i(a,) in terms of the coefficients U,, and z. Substituting

these expressions into (3.2) at the point al, we obtain N nonlinear algebraic equations for the N + 1 unknowns

z,, U1, U2,..., UN. Another equation is obtained by integrating - along the equipotential l = 0 from 10 = 0

to 1 = 1 and equating the value of z at k = 1 to the corresponding value of i(e) obtained from (3.12).

We solve this system by Newton's method. Once it is solved, we obtain the shape of the free surfaces

in parametric form by integrating numerically the identities (3.10) and (3.11). A typical profile obtained in

this way is shown in Figure 4.

To determine the coefficient C(O), which occurs in (2.3), we calculate z., the z coordinate of the

separation point S. It follows from (2.3) and our choice of dimensionless variables that C(0) is related to z,

by

C(O)= "  (3.14)

By using (3.14) and the calculated values of z., we have computed C(0) for different numbers of mesh points

N. Figure 5 is a graph of the values of C(0) versus 1/N. It indicates that C(0) varies linearly with I/N for

N large. The broken line in Figure 5 represents a linear extrapolation to N = oo, which gives .'," ",

C(O) 0.583 (3.15)

The value of C'(0) will be obtained in the next section.

4. Thin weir in channel of finite depth

We now generalize the procedure of Section 3 to include the effect of finite depth, so that W # oo (see Figure

Ia). The dimensionless potential plane is shown in Figure 2. By using the transformation (3.6), we map the

flow domain into the interior of the unit circle in the t-plane, so that the horizontal bottom and the vertical

wall go repectively onto the portions IE and ES of the real diameter. The free surface goes onto the portion

of the circumference lying in the upper t-plane (See Figure 3).

7
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_ (t + eo) 1 2[ In c(1 + t 2ypI/3,fl) 
(4.1)

As in Section 3 we chose c =0.2.

We note that ( .constant as t - -1. Therefore our formulation requires that there be no waves on

the free surface. It follows from the choice of the dimensionles variables that the Froude number F is related

to the value ((1) of Cat t -I by the relation
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C(O)

0.61

0.60

0.59

0.58
L I I , tI = I/IN i.:

0 0.1 0.2 0.3 04 I

Figure 5:

Numerical values of C(O) versus 1/N obtained by the scheme of
Section 3. The broken line corresponds to a linear extrapolation
to N .

.4

F [((_1)13,2  (4.2)

The procedure of Section 3 yields N + 1 equations for the N + 2 unknown x0, eo, U1,..., UN. Another

equation is obtained by using (4.2) where the Froude number F is specified. A typical profile, for F = 0.1, is

shown in Figure 6. The corresponding value of HIW is found to be 0.42. As F - 00 we find that eo - -1

and the solutions approach the solution presented in Section 3.

In order to check the formula (2.6) and to determine the coefficients C(O) and C'(O), we plotted

F(H/W)- 312 versus H/W in Figure 7 for small values of H1W. These values were obtained by using -.*..-.

the extrapolation procedure of Figure 5. The curve in Figure 7 is very close to a straight line of slope -0.80

which intersects the vertical axis at 0.583. Therefore

C(0) - 0.583 (4.3)

3
G'(0) - C(O) -- 0.80 (4.4)

The value of C(0) predicted by (4.3) agrees with the value (3.15) obtained in Section 3. From (4.3) and (4.4)

we find

9
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3/21.F/(H/W)

0.60

056

0.52

I l I '1.I'':

0 0.04 0.08 0.12 H/W

Figure 7: Values of F(H/W) -3/2 versus H/W.

5. Broad crested weir in water of infinite depth

We shall now extend the procedures of Sections 3 and 4 to obtain the flow past a broad crested weir in

water of infinite depth (See Figure 8). We denote by L the dimensionless length of the weir and we write

the flux Q in the form (2.1) with the discharge coefficient CB(H/L). The dimensionless potential plane and

the complex t-plane are the same as in Section 4 (See Figures 2 and 3).

As t -- -eo, the complex velocity grows like (t + eo)- 1/2 . As t - 1, vanishes like t + 1. Therefore

we replace relation (4.1) by

L C = i[-In c(1 + ,2)]1"(, + 1)(t + eo)-l2en(t) (5.1)

We then follow step by step the procedure of Section 4 with (4.2) replaced by an equation which expresses

* the fact that the distance between E and S is equal to L. This equation is found by integrating numerically

the identity (3.9) along the streamline 4 = 0 between E and S. Then CB is found from (3.14).

A typical profile for H/L = 0.88 is shown in Figure 8. A similar profile was found for HIL = 1.23. The

corresponding values of the discharge coefficient are

11



Figure 8:

Computed free surface profile for the flow past a broad
crested weir for L - 1.6. The vertical scale is the same
as the horizontal scale.

CB(O.88) 0.583, (5.2)

CB(l.23) =0.617. (5.3)

These results indicate that for broad crested weirs, the discharge Qdepends only on H and on the geometry2

of the weir and of the channel.

6. Discussion

The weir flows which we have found in Sections 3-5 are subcritical free surface flows without waves. The

condition that there be no waves, which we imposed in our formulation, was essential in determining a

* 12
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particular solution. Therefore it is of interest to consider a case which can be treated exactly, and which

leads to results of the form (2.2) and (2.6).

We consider the flow in Figure 9, which is bounded by one free streamline and two horizontal rigid walls.

We assume that there are no waves and we integrate the z-component of the Euler equation of motion over

the flow domain. Upon using the divergence theorem we obtain

S[unu, + (p-'p+g y)n,]d,-O. (6.1)

* This line integral around the boundary of the flow domain can be evaluated as follows. First the normal

-. velocity u. vanishes on the walls and on the free streamline, while Un = U, = U1 or U2 on the vertical lines

at z = :oo. Next we see that the z-component of the unit normal vanishes on the walls while ynds = ydy

can be integrated along the free streamline where p = 0. Finally p- 1 p + gy = g(H 2 - HI) at z = +oo and

- g(H 2 - H1 ) + (U2 - U2)/2 at z = -oo from the Bernoulli equation. By using all these facts in (6.1) we

find

__U H- [(U2 - U2)/2 + g(Hi - H2)]HI - g(H 2 - H1 )2 /2 + U2H 2 + g(H2 - H1 )H2  0 0. (6.2)

, I y U2 H-2

Figure 9:

Sketch of a two-dimensional flow emerging from beneath a flat plate

above a horizontal bottom.

Now we combine (6.2) with the mass conservation equation U H, = U2 H2 to get

(H 2 - H, )(gH, - U2) = 0. (6.3)

Thus either H2 = H, or U2 = (gH, ) I. In the second case we see that the flow velocity is determined by the

flow geometry. Then the Froude number F = Uz(gH 2)- and the flux Q = U2H2 are also determined by the

flow geometry. To exhibit the similarity of the results to those for a weir we set H, - W and H2 = W + H.

Then we find

13
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F = (1 + HI1- i M + O(H)2, 64

Q = (gW)i(W + H) O &WI(1 + W). (6.5)

When H > 0 this flow is subcritical and without waves, just like the weir flows we have calculated. However

for H < 0, the present flow is supercritical.

Vanden-Broeck (1980) has included waves in this problem in the particular case W = oo, and calculated

their amplitude by using this method. Finally we note that uniqueness theorems for weir flows are lacking.

For flows under sluice gates some uniqueness results have been obtained by Budden and Norbury (1982).

14-
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