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ABSTRACT -

_~ The flow of a liquid with a free surface over a weir in a channel is
calculated numerically for thin weirs in channels of various depths, and for
broad crested weirs in channels of infinite depth. The results show that the
upstream velocity, as well as the entire flow, are determined by the height of

the free surface far upstream and by the geometry of the weir and channel, in

weir, and a formula for it is given which applies when the height of the weir
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is large compared to the height of the upstream free surface above the top of

the weir. The coefficients in this formula are close to those found
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SIGNIFICANCE AND EXPLANATION

The flow of a liquid with a free surface over a weir in a channel is
considered. Observation shows that the upstream velocity, as well as the
entire flow are determined by the height of the free surface far upstream and
by the geometry of the weir and channel. Therefore the discharge of fluid
along the channel can be found without measuring the upstream velocity, which
is one of the reasons for using weirs. Up to the present this rather
surprising fact has not been treated hydrodynamically.

To analyze it, we calculate numerically the flows over thin two
dimensional weirs in channels of different depths and over broad crested two
dimensional weirs in channels of infinite depth. The numerical results show
that the entire flow is determined by the height of the free surface far
upstream in agreement with observation. The discharge coefficient is computed
for a thin weir and a formula for it is gi;en which applies when the height of
the weir is large compared to the height of the upstream free surface above
the top of the weir. The coefficients in this formula are close to tho;e

tound empirically.
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WEIR FLOWS

* Fk
Jean-Marc Vanden-Broeck and Joseph B. Keller

1. Introduction

The flux or discharge Q of fluid along a channel is the product of the fluid’s mean velocity U/ and cross-

sectional area A(H), which depends upon the free surface level H:
Q=UA(H). (1.1)

Both U and H must be known to determine @ from (1.1). However observation shows that in a channel
partially obstructed by a weir, @ is determined by H alone. Then Q can be found without measuring U,
which is one of the reasons for using weirs [Ackers et al. (1978)].

This observation implies that although U/ and H are independent in an unobstructed channel, they are
not independent in a channel containing a weir. Instead U = U(H) is a function of H and of the size and
shape of the weir. Up to the present, this rather surprising fact has not been treated hydrodynamically.

To analyze it, we shall calculate numerically the flows over thin two dimensional weirs in channels of
different depths, and over broad crested two dimensional weirs in channels of infinite depth. This requires
solving free surface problems in the presence of gravity. For this purpose we assume that the fluid is
incompressible and inviscid, and that each flow is irrotational, steady and two dimensional. We also assume
that there are no surface waves.

For a thin weir at each surface height H, we find that there is a solution for only one value of U, which
depends upon H and upon the height W of the weir. This confirms the empirical result mentioned above.
We determine the flux Q, the discharge coefficient C, and the shape of the free surface for this solution. We
also obtain a formula for C when H/W is small, where H is measured from the top of the weir. This formula
is of the form used in practice, and the computed coefficients in it are close to the empirical ones [Ackers et
al. (1978)).

For a broad crested weir of length L and height W = oo, we find that there is a unique flow for given

values of H and L. We determine Q, C and the free surface for two values of H/L.
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In Section 2 we define C and introduce the form of the equation for it. Then in Section 3 we consider a
thin weir in a channel of infinite depth. After formulating the flow problem mathematically, we present our
numerical procedure for solving it and display some of the numerical results. In Section 4 we treat a thin
weir in a channel of finite depth. In Section 5 we treat broad crested weirs in a channel of infinite depth.

Finally in Section 6 we discuss a related free surface flow that can be analyzed explicitly.

2. Discharge coefficient

Figure 1a shows a side view of a channel with a thin weir, and Figure 1b shows a cross-section of the channel
at the weir. The height H of the free surface far upstream and the depth W of the bottom are measured
from some point on the upper edge of the weir, as is shown in Figure 1a. The cross-sectional area A(H) of
the channel, and the area a(H) of the region above the weir up to the level H, are shown in Figure 1b.

In terms of these quantities and the acceleration of gravity g, we define the dimensionless discharge
coefficient C by

Q = C(gH)}a(H). - (2.1)

The fact that the flow is determined by H means that C is a function only of H and of the geometry of

the weir and the channel. Since C is dimensionless, we shall write it as a function of the dimensionless ratio
H/W,C = C(H/W). It also depends upon other dimensionless geometrical parameters.
We assume that C is regular for H/W small, so that it has the form

C(H|W) = C(0)+ C'(0)H/W + O[(H/W)?]. (2.2)
For flows over two dimensional thin weirs this assumption is confirmed by our numerical results , which are

presented in Sections 3 and 4. The results also determine the coefficients C(0) and C’(0) for those particular

weirs.
Let us specialize these formulas to a weir with a rectangular opening of width b, for which a(H) = bH.

Then (2.1) and (2.2) yield

Q = gt H3b{C(0) + C'(0)H/W + O[(H/W)?)}. (2.3)
For a weir with a V-notch of angle 8, a(H) = H?tan§/2 and we get instead
Q = g¥ H4 tan 8/2{Cv(0) + CL (0O)H/W + O[(H/ W)™} (24)

Results of the forms (2.3) and (2.4) are used in practice [Ackers et al. (1978)]. They are derived by
dimensional analysis, hydraulic approximations and fitting to experimental data. Corrections for viscous
and surface tension effects are often included.

By combining (1.1) and (2.1), we can determine the velocity U. From it we find that the Froude number

F=Ulg(H + W)]“f of the flow in the channel, based upon the total depth, is
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Figure la: Side view of a channel with a thin weir.
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Figure 1b:

Cross-section of a rectangular channel of width B
at the weir, which has rectangular opening of width

b, at height W above the bottom. The water depth
far upstram is W + H.




F=C(H/W)(1+W/H)"}Ya(H)/AH)
. }
= S8 (%) co+1c - e +otawyn.

For a weir with a rectangular opening of width b in a rectangular channel of width B, we have a(H) = dH,
A(H) = B(H + W) and (2.5) becomes

(2.5)

L ]
F=3(g) €CO+1C© - F00I +olH/WY. (26)

For a thin weir, the only other geometrical ratios upon which C(0) and C'(0) depend in this case are b/B K
and the lateral position of the opening. This result shows that F is small of order (H/W)} when H/W
is small, so then the flow is extremely subcritical. When b = B the flow is two dimensional and then the

coefficients are constants. We shall determine them in Sections 3 and 4.

3. Thin weir in infinitely deep channel | \
Let us consider a thin weir, such as that shown in Figure 1a, in a channel of infinite depth, so that W = oo. b
Let the channel be rectangular with width B = }, so that the opening above the weir extends completely \
across the channel. Then the flow is two dimensional. We seek a flow which becomes a falling jet with two :'\
free surfaces after it crosses the weir. Thus the flow appears as in Figure la with the bottom removed to
infinity, and with the jet falling to infinity. »
We introduce cartesian coordinates with the z-axis directed vertically downwards through the separation ; ,
point S, and with the asymptote to the upper freee surface®as the y-axis (see Figure la). Gravity acts in ::_{
the z-direction. As y — —o0, the velocity approaches zero. As y — 400 the flow approaches the thin jet "{
solutions of Keller and Weitz (1957) and Keller and Geer (1973). Py
Let the potential function be ¢ and the stream function be ¥. Without loss of generality we choose e

¥ = 0 on the lower free surface and ¢ = 0 at the separation point S. Let Q be the value of ¥ on the upper ';'_-::i
free surface. On the two free surfaces the Bernoulli equation yields :_:’
{4

}(Vp) gz =0 (3.1) b

We introduce dimensionless variables by taking (Q?/g)Y as the unit length and (Qg)% as the unit
velocity. In these new variables (3.1) becomes -
-

(Ve)?!—22=0 ony=1andony =0, ¢>0 (3.2) :-:‘.::
The plane of the dimensionless potential f = ¢ + iy is shown in Figure 2. . E::i
Let the complex velocity be { = u —iv. Here u and v are the z and y components of the vector velocity. s {;

As f — —o00, we require that there be no waves, so the velocity ¢ vanishes like ¢/. As f — 400, the velocity e
¢ increases like f$ [Keller and Weitz (1957)]. Thus we have s :




P A el

Figure 2:

The complex potential plane. For a thin weir in an infinitely deep
channel, the point E coincides with I at -=. For a channel of
finite depth, E is on the axis between I and S, as it is also
for a broad crested weir in a channel of infinite depth.

¢~ et as f— —o0 (33)

(~fY  as f+oo (34)

The problem is to find { as an analytic function of f = ¢ + iy in the strip 0 < ¢ < 1, satisfying (3.2)~(3.4)
and the kinematic condition

v=0 on ¥ =0, <0 (3.5)
We define the new variable t by the relation

(t+1)?

1
f= P In 2—“2_-}-—1—) (3.6)

The transformation (3.6) maps the flow domain into the interior of the unit circle in the t-plane so that the
vertical wall goes onto the real diameter and the free surface goes onto that portion of the circumference
lying in the upper t-plane (see Figure 3).

Following deBoor (1961) we define the function Q(t) by the relation

¢ =—=(t+1)[=Inec(1+12))$® (3.7)

Here cis a real constant between 0 and % We shall choose ¢ = 0.2. It can be checked easily that the expression

(3.7) satisfies the conditions (3.3) and (3.4). The function Q(t) is analytic for |t| < 1 and continuous for
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Figure 3: .
i The complex t-plane. For a thin weir in an infinitely deep
. channel, E coincides with I at t = ~-1. For a channel

of finite depth E 1is on the diameter between I and S.
The same is true for a broad crested weir in a channel of
infinite depth.

jt} € 1. The kinematic condition (3.5) implies that the expansion of §2(t) in powers of t has real coefficients

LRy DI
i X

With this expansion inserted, (3.7) becomes ‘J:_ ‘
) 0 :::

i ¢=-(+1)[-lne(1+1t?)} exp(z Uat™) (3.8) .
L n=e e
t. The function (3.8) satisfies (3.3)~(3.5). The unknown real coeffients U, have to be determined to make (3.8) ‘-:_..
\: satisfy the Bernoulli condition (3.2). i
|'_': We use the notation t = |t|e” so that points on the free surfaces are given by t = ¢'?, 0 < ¢ < 7. Using '
(3.6) and the identity 3
o
we obtain after some algebra . o

di _ 1 sinc () B
do ~ 27 cosg cos? % (o) + i(0)? (3.10) ',:'_:'_:;

dj _ 1 sino #(0)

do ~ 27 cos o cos? 2 i(c)? + v(0)? (3.11) :-"
Here f(o) = ii(o) — iv(o) denotes the value of ¢ at a point on a free surface. . ._
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The value of Z(c) on the free surface is obtained by integrating (3.10):

sy 1 sinr o(r) g
o)==z, + 27 o7 o1 L TR+ 0G) dr, 0<o< 7 (3.12)
fo)= [ =—Snr ) __ar, Z<ocr (3.13)
« 2% cosTcosl T 5 u(r)2 + 9(2)? 2

Here z, is the value of z at the separation point S.

We solve for the U, numerically by truncating the infinite series in (3.8) after N terms. For convenience
we choose N to be even. To get equations for the coefficients U, we use collocation. Thus we introduce the
N mesh points

oy = (I 1) I=1,...,N

2N N
Using (3.8), (3.12) and (3.13) we obtain {(c) and Z(¢1) in terms of the coefficients U, and z,. Substituting
these expressions into (3.2) at the point o7, we obtain N nonlinear algebraic equations for the N +1 unknowns
z,, Uy, Us,...,Un. Another equation is obtained by integrating g-% along the equipotential ¢ = 0 fromy =0
to ¥ = 1 and equating the value of z at ¥ = 1 to the corresponding value of Z(¢) obtained from (3.12).

We solve this system by Newton’s method. Once it is solved, we obtain the shape of the free surfaces
in parametric form by integrating numerically the identities (3.10) and (3.11). A typical profile obtained in
this way is shown in Figure 4.

To determine the coefficient C(0), which occurs in (2.3), we calculate z,, the z coordinate of the
separation point S. It follows from (2.3) and our choice of dimensionless variables that C(0) is related to z,
by
c©) =zt (3.14)

By using (3.14) and the calculated values of z,, we have computed C(0) for different numbers of mesh points
N. Figure 5 is a graph of the values of C(0) versus 1/N. It indicates that C(0) varies linearly with 1/N for

N large. The broken line in Figure 5 represents a linear extrapolation to N = oo, which gives
C(0) ~ 0.583 (3.15)
The value of C’(0) will be obtained in the next section.

4. Thin weir in channel of finite depth

We now generalize the procedure of Section 3 to include the effect of finite depth, so that W # oo (see Figure
la). The dimensionless potential plane is shown in Figure 2. By using the transformation (3.6), we map the
flow domain into the interior of the unit circle in the t-plane, so that the horizontal bottom and the vertical
wall go repectively onto the portions IE and ES of the real diameter. The free surface goes onto the portion

of the circumference lying in the upper t-plane (See Figure 3).
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Figure 43

Computed free surface profile for the flow past 2 thin
weir in an infinitely deep channel. The vertical scale
ig the same as the horizontal scale.

\Ve denote by —eq the value of t corresponding to the corner E. Ast — —¢o, the complex velocity I
vanishes like (¢ + e0)!/?. Therefore we can solve the problem pumerically by using the procedure outlined in

Section 3 with the relation (3.7) replaced by

¢ = ~(t + o)/~ Ine(l +12))1 30 (4.1) ot

- As in Section 3 we chose ¢ = 0.2. :'.'_:-‘-:
. ">
g We note that { — constant as t — ~1. Therefore our formulation requires that there be no waves on ‘_':.-“
N the free surface. It follows from the choice of the dimensionles variables that the Froude number F is related :ﬂ_:
to the value {(—1) of { at t = ~1 by the relation ~
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Figure 5:

= /N

Numerical values of C(0) versus 1/N obtained by the scheme of
Section 3. The broken line corresponds to a linear extrapolation
to N = o,

F=[(-DP? (4.2)

The procedure of Section 3 yields N 4 1 equations for the N + 2 unknown z,,e0,Us,...,Un. Another
equation is obtained by using (4.2) where the Froude number F is specified. A typical profile, for F = 0.1, is
shown in Figure 6. The corresponding value of H/W is found to be 0.42. As F — co we find that g — —1
and the solutions approach the solution presented in Section 3.

In order to check the formula (2.6) and to determine the coefficients C(0) and C’(0), we plotted
F(H/W)~3? versus H/W in Figure 7 for small values of H/W. These values were obtained by using
the extrapolation procedure of Figure 5. The curve in Figure 7 is very close to a straight line of slope —0.80

which intersects the vertical axis at 0.583. Therefore

C(0) ~ 0.583 (4.3)
) 3 R
C'(0) ~ 5C(0) ~ —0.80 (4.4)
The value of C(0) predicted by (4.3) agrees with the value (3.15) obtained in Section 3. From (4.3) and (4.4) B 'ﬁj-
we find i
2 s
i<




Figure 6:

Computed free surface profile for the flow past a thin weir in
a channel of finite depth for F = 0.1. The vertical scale is
the same as the horizontal scale.

C'(0) ~ 0.07 (4.5)

Ackers et al. (1978, p. 57) present experimental values of C obtained by various investigators for
H/W =0 and for H/W = 1. As (2.2) shows, these are just the values of C(0) and C(0)+ C’(0) + - - -. From
the values listed in their table (3.1) we find that the experimental values of C(0) and C’(0) are in the ranges

0.564 < C(0) < 0.591 (4.6)

0.066 < C'(0) < 0.085

Our numerical results (4.3) and (4.5) are evidently within the experimental ranges.
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5. Broad crested weir in water of infinite depth

We shall now extend the procedures of Sections 3 and 4 to obtain the flow past a broad crested weir in
water of infinite depth (See Figure 8). We denote by L the dimensionless length of the weir and we write
the flux @ in the form (2.1) with the discharge coefficient Cg(H /L). The dimensionless potential plane and
the complex t-plane are the same as in Section 4 (See Figures 2 and 3).

As t — —~eq, the complex velocity ¢ grows like (t + eq)~/2. As t — —1, { vanishes like ¢ + 1. Therefore

we replace relation (4.1) by
¢=il=Inc(l +13))V3(t + 1)(t + eo) /2" (5.1)

We then follow step by step the procedure of Section 4 with (4.2) replaced by an equation which expresses
the fact that the distance between E and S is equal to L. This equation is found by integrating numerically
the identity (3.9) along the streamline ¢ = 0 between E and S. Then Cp is found from (3.14).

A typical profile for H/L = 0.88 is shown in Figure 8. A similar profile was found for H/L = 1.23. The

corresponding values of the discharge coefficient are
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Figure 8:

Computed free surface profile for the flow past a broad
crested welr for L = 1.6. The vertical scale is the same
as the horizontal scale.

C5(0.88) = 0.583, (5.2)

Cp(1.23) = 0.617. (5.3)
These results indicate that for broad crested weirs, the discharge Q depends only on H and on the geometry
of the weir and of the channel.
6. Discussion

The weir flows which we have found in Sections 3-5 are subcritical free surface flows without waves. The

condition that there be no waves, which we imposed in our formulation, was essential in determining a
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particular solution. Therefore it is of interest to consider a case which can be treated exactly, and which
leads to results of the form (2.2) and (2.6).

We consider the flow in Figure 9, which is bounded by one free streamline and two horizontal rigid walls.
We assume that there are no waves and we integrate the z-component of the Euler equation of motion over

ibe flow domain. Upon using the divergence theorem we obtain

) f[u,.u, +(p"'p+ gy)n.)ds = 0. (6.1)

9 This line integral around the boundary of the flow domain can be evaluated as follows. First the normal
velocity u, vanishes on the walls and on the free streamline, while u, = u, = U; or U, on the vertical lines
at 2 = ®oo. Next we see that the z-component of the unit normal vanishes on the walls while yn.ds = ydy
can be integrated along the free streamline where p = 0. Finally p~!'p + gy = g(H — H,) at z = 400 and
= g(Hz — H1) + (U} — U})/2 at £ = —oco from the Bernoulli equation. By using all these facts in (6.1) we
find

—~UH; - (U - U})/2+ g(H1 — H3)|Hy — 9(Ha — H\)?/2 4+ U3H3 + g(H2 — H))Hy = 0. (6.2)

l £ A dododod kot do kil 4.x
v Usp —- Ho
A3 : '

” o

Gy aanr ' Sy S Sur A S SNv S Sauy AU AN SN SEF S SN SN AEr ANV AN AR SEF A SN AL ANY ANY 4

Figure 9:

Sketch of a two-dimensional flow emerging from beneath a flat plate
above a horizontal bottom.

Now we combine (6.2) with the mass conservation equation Uy H, = U, H; to get

, e e,
2] o .

) (Hz ~ Hy)*(gH, - U3) = 0. (6.3) NS

, \"@

. A . NN

P, Thus either Hy = Hy or Uz = (gH 1)*. In the second case we see that the flow velocity is determined by the .:.':.
flow geometry. Then the Froude number F = Uz(gHz)~% and the flux Q = U, H are also determined by the ﬁ

& flow geometry. To exhibit the similarity of the results to those for a weir we set H; = W and Hy = W 4+ H. o
) Then we find 2
=3

13 “.-‘ ‘.

v AL

'




F=(+H/W)yt=1- 8 +0(f) (6.4)
Q=(WiWw+H) =gtwia+ ) (6.5) ;1'4'

When H > 0 this flow is subcritical and without waves, just like the weir flows we have calculated. However

s
for H < 0, the present flow is supercritical. N

Vanden-Broeck (1980) has included waves in this problem in the particular case W = oo, and calculated ~

o am an an me

their amplitude by using this method. Finally we note that uniqueness theorems for weir flows are lacking. ¢ "

For flows under sluice gates some uniqueness results have been obtained by Budden and Norbury (1982).
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