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ABSTRACT

Differentiation arithmetic is an ordered-pair arithmetic which evaluates both the value
and derivative of functions defined by formulas or subroutines, without symbolics or ap-
proximations. As in the case of complex arithmetic, multiplication and division are defined
in terms of several real operations. Algorithms are given for evaluation of these operations
with the same accuracy as real multiplication and division, that is. to the closest floating-
point number. The same kind of optimal implementation is described for Taylor arithmetic.
which permits calculation of Taylor coefficients of arbitrary order for functions defined by

-

formulas or subroutines. B
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SIGNIFICANCE AND EXPLANATION

It is commonly believed that evaluation of derivatives of a function requires symbolic
manipulation or numerical approximation. However, for functions defined by formulas or
computer subroutines, evaluation of the function using an ordered-pair arithmetic called
differentiation arithmetic yields exact values of both the function and its derivative at a
given value of the variable. In order to implement differentiation arithmetic with maximum
accuracy on a computer, special algorithms have to be used for the derivative components
of multiplication and division, since these are defined by several real operations, and hence
are subject to more roundoff error than the corresponding real operations. Algorithms
are given which implement multiplication and division in differentiation arithmetic to the
same accuracy as real arithmetic, each component of the result suffering a single roundoff
error. This allows calculation of derivatives with the same level of roundoff error as function
values. For higher derivatives (more precisely, Taylor coefficients), an arithmetic of (n + 1)-
tuples called Taylor arithmetic can be used in the same way as differentiation arithmetic
for the first derivative. The optimal implementation of Taylor arithmetic is indicated.

based on well-known algorithms in the theory of optimal computer arithmetic.
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OPTIMAL IMPLEMENTATION OF DIFFERENTIATION ARITHMETIC

L. B. Rall

1. Automatic Differentiation

The process of automatic differentiation 8: consists essentially of the evaluation of func-
tions defined by formulas or finite algorithms using rules for operations and representations
of variables and constants pertaining to differentiation arithmetic (11 rather than ordinary
real arithmetic. This process is similar to the evaluation of a function f : R — R given by
a formula, such as

(z-1)-(z+3)
+2

(1.1) flz) =

in complex instead of real arithmetic to obtain the complex value f(z) of the function
J/ : C — C defined by (1.1) with the real variable z replaced by the complex variable z.
This reinterpretation of (1.1) as a complex function can be expressed by saying that its
symbols have been “overloaded” by their corresponding meanings as complex operators,
variables and constants.

Evaluation of (1.1) in differentiation arithmetic is carried out by a similar overload-
ing. Like complex arithmetic, differentiation arithmetic is an ordered-pair arithmetic, with
elements of the form U = (u,u’), where u,u’ € R. Complex numbers, of course, are also
usually represented on a computer by pairs z = (z,y), where z,y € R and z = z+ty. The

rules of differentiation arithmetic are as follows:

(1.2) U~V =(uu)~ (v.0) = (u+v,u" + ),

(1.3) U-V=(uu)-(v,v)=(u—-v,u' -2,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(1.4) U-V=(uu) (v,v)=(v-vyu-v'+v-u'),

(1.5) U/V = (v.u))/(v.v') = (uiv, (v - u-v'/v)/v). v#0.

The operations inside the parentheses in the above definitions are, of course, real
operations on real numbers. It is easy to recognize that the first components of the results
follow the rules of real arithmetic. while the second components implement the rules for
differentiation of the results of the corresponding operations, given that u,v represent

values of functions, and u’, v’ values of their derivatives at some real z. Since

dz de
1.6 oy, oo,
(1.6) dx dz
where r denotes the independent variable and ¢ a constant, it follows that if z in (1.1) is

replaced by X = (z,1), and the constants 1,2,3 by (1,0), (2,0) and (3,0) respectively, then

evaluation using the rules of differentiation arithmetic gives
(1.7) f(X) = f((z,1)) = (f(2), f'(x)),

where f(z) and f'(z) denote respectively the value of the real function f : R — R and its
derivative f': R — R at the real value z.

Denoting the set R? with the rules of arithmetic (1.2)~(1.5) by D, the result (1.6)
can be viewed as overloading the symbols of (1.1) to obtain the corresponding mapping
J : D — D in the same way the complex extension of f was obtained. From an algebraic
standpoint, D is a division ring with an identity element [11].

This process is called automatic differentiation to distinguish it from symbolic differ-
entiation, which results in a formula for f'(z) (which would then have to be evaluated), and
numerical differentiation, which produces only an approximate value for f(z). Automatic
differentiation requires only the formula or algorithm for f, and obtains exact values for

f({r) and f'(z). This combines the advantages of symbolic and numerical differentiation,
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while avoiding their disadvantages (an extra evaluation process for f'(z) in the symbolic
case, or approximation error if the differentiation is done numerically).

It is interesting to note that the rules for addition and subtraction in D are the same as
for the complex numbers C. while the rules {(1.4) and (1.5) for multiplication and division
in D are respectively simpler than the corresponding rules in C. The identity element of
addition in D is 0 = (0.0), while the identity for multiplication is 1 = (1,0). Elements
of D of the form (0,u’) are called nonunits. The nonunits are divisors of zero, because
(0,u’) - (0,v’) = (0,0) for arbitrary u’,v’. However, if (u,u’) - (v,v’) = (0,0) and u # 0,
then (v,v’) = (0,0) [11].

Automatic differentiation is not limited to rational functions. In the notation intro-

duced above, the chain rule of calculus can be expressed as

(1.8) fU) = f((u,u)) = (f(u),u' - f'(w)),

where f : R — R is a differentiable real function and U € D. Thus, for example, the

exponential function is defined by
e = e = (e¥ o' - e),

and so on [8], {11]. However, the object of this paper is to focus on optimal computer

implementation of the four arithmetic operations (1.2)-(1.5) in D.
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2. Computer Arithmetic

The discussion here follows the general theory of computer arithmetic as given in [6]. On
a computer. one works with a finite subset S <~ R, which is called the set of floating-point
numbers. The elements of S may vary from one machine to another, but S is assumed
to satisfy certain natural conditions in each case, namely that S contains 0,1, and the

negative —s of each s © S 6 .

In addition to the real numbers, most mathematical systems which appear in numerical
mathematics can be constructed as Cartesian products of a suitable number of copies of
R, with appropriate definitions of operations in terms of real arithmetic. For example,
the complex numbers C and elements of D can be considered to be ordered pairs of
real numbers, that is, elements of R x R. The usual representation of these systems on a
computer is by corresponding Cartesian products of S. Thus, ordered pairs of floating-point
numbers (elements of S x S) are the elements of the computer representations CS and
DS of C and D, respectively. Representations MS C M of other numerical mathematical
systems M in terms of floating-point numbers can be constructed in a similar way. It is
assumed that MS contains the negatives of each of its elements, and the identity elements

for addition and multiplication of elements of M.

In mathematical systems M which are constructed by taking Cartesian products of
R, each element m € M consists of components m,, each of which is a real number. Thus,

it is possible to introduce a partial ordering < of M componentwise, that is, for m,n € M,

The same definition provides a partial ordering of the floating-point representation MS of

M because MS < M. This allows the definition of rounding from M to MS. which is a
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In the case of a rounding from R to S satisfying (2.2), the second condition implies T #
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that there are no floating point numbers (elements of S) between r and [ r for each r € R. _’“ .

In this sense. the rounding is said to be of marimal accuracy. The case most commonly
considered of rounding from R to S is the rounding of an element r € R to the closest
element of S to r, with ties broken by a rule which satisfies the third condition of (2.2).
This rounding, which will be denoted by (O, is said to be of mazimum accuracy. The ideas
of maximal and maximum accuracy of roundings apply componentwise to mathematical
systems M which are products of R. Thus, there will be no elements of S between m,
and [m, in the first case, and Om, is the closest element of S to each component m, of
m € M in the second.

The concept (2.2) of a semimorphism provides a rational way in which to define
operations in MS on the basis of the corresponding operations in M. Suppose, for example,
that » denotes a binary operator in M, for example, one of the arithmetic operators

+,—.- /. Then, the corresponding operator in MS, denoted by [*], is defined by
(2.3) mxn =] (m*n), Ym,n € MS.

Implementation of the operator » in MS in this way is said to be optimal with respect to

the rounding .
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3. Implementation of Differentiation Arithmetic

A method for the optimal implementation of differentiation arithmetic with respect to
the rounding {) : D — DS of maximum accuracy will now be described. First of all,
suppose that the rounding > : R — S and corresponding optimal arithmetic operators
are available. Then. operators - . -,-,/ can be defined for U,V € DS by

U-+V:=(udv, /@),

U-V:i=(udv, v6v),
(3.1)
U-Vi=(uev, uovdvoed),

UV :=(vov, (ouov ov)ov), v #0.
The above is an example of the “vertical” definition of computer arithmetic (6] in
a mathematical system in which arithmetic is defined componentwise in terms of real

arithmetic. Even though the rounding O : R — S of maximum accuracy is used, one has

in general that

Olu-v'4v-u)2uoevoved,
(3.2)
O(u' - u-v'/v)/v) # (W'ou-v 0v)0or.
Hence, the computer implementation (3.1) of differentiation arithmetic, while easy to pro-
gram for applications [8l, |9, [10], is suboptimal. Special algorithms are required for the
implementation of multiplication and division in DS.

Optimal implementation of multiplication can be accomplished by use of the optimal
scalar product of real vectors, which is required by the general theory of computer arith-
metic. That is, if £,y € 8™, say z = (21.22....,7,) and y = (y1,y2,-..,Yn), then their
scalar product is the real number

n
(3.3) Tey = Y Ty
1=1
sometimes also called the dot product. or inner product. of r and y. Optimal implemen-

tation of this product with respect to the rounding . requires the operator *: defined
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n N
(3.4) T®y:= Q(Zr,-~y,). Vr,y € 8".
1=}
According to the definition of . . this means that the closest element of S to the sum

of products on the right sides of (3.3) and (3.4) has to be calculated. It turns out that
implementation of (® is not difficult {1 , and this operator is already available in Pascal-SC
and the IBM product ACRITH. Thus. an optimal implementation of multiplication in DS

with respect to O is given by
(3.5) U-V:i=(uov, (v,v)® (v ,u)), v U,V € DS.

Division in DS requires a more careful approach. Setting W = (w,w’) = U/V, one

can write
(3.6) w=u/v, w = —,

as in elementary calculus. The optimal rounding Qw = u @ v of the first component w
of W presents no problem. The numerator of w’ can be computed to the closest floating-
point number by using the optimal scalar product (u,v) ® (-v’,u’}), as in the case of
multiplication, and O(v2) = v ©® v. Hence, the numerator and denominator of w’ can each
be computed to the closest floating-point number, but their quotient can differ slightly from
w' |2]. There is also a practical problem. which also arises in the algorithm for optimal
complex division [13], namely, that overflow or underflow can occur in the computation of
the numerator or denominator, even though the exact result w’ can be represented with
maximum accuracy by an element of S. This problem can be handled by the introduction of
appropriate scale factors, followed by calculation of the scaled result to maximum accuracy.
and then examination of the scale factors to determine if overflow or underflow will actually
occur [13. If not, then a good approximation w/, to . ‘w' is obtained in this way.
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In order to correct w/, if necessary, the method of iterative refinement of the solution .

of a linear systems of equations is used 2, .3, '12". Note that W = U/V is equivalent to

V. W = U, which gives the lower triangular system of equations
veow ou,

(3.7)

for the components w,w’ of W in terms of the components of U/, V. Thus, given approxi-
p

mations w,, w{, to the solutions of (3.7}, for w = wy + ¢ and w’ = w{, + €/, one has

€ =(u—v-wy/r,
(3.8)

d=w-v-w,-v -wy-v-€/v.

Since wp has been computed to maximum accuracy, ¢ is negligible with respect to wo, but

could effect the value of ¢/. Again, the numerator of ¢ is calculated by use of the optimal

scalar product, giving

(3.9) wi = wi® ((v,-v,—v") ® (1, wh,€) O v.
In this case, one correction is sufficient (2], and one has

(3.10) QOw = wo, Quw' = wi.

In summary, an algorithm for optimal division in DS is as follows:

1. If v = 0 then
(3.11) wo := 0, w, = u' O, \
else compute oo
(3.12) wo:= u v, w!, - (o) & (=v'ou)) > (v o),

scaling the numerator and denominator of u'/, if necessary to avoid over or underflow:

if w/ - S then calculate w} by (3.9):
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(3.13) U/V := (wa.w)) £ DS.

Thus, it is possible to implement the operators * in DS with maximum accuracy
using the corresponding operators * in S and the optimal scalar product . This is
an example of the “horizontal” definition of computer arithmetic in the floating-point
system DS corresponding to the mathematical system D of differentiation arithmetic.
The suboptimal definition (3.1) of computer arithmetic in DS will result in derivatives
being computed with a greater number of rounding errors than function values, while the
definitions of addition and subtraction in (3.1), multiplication by (3.5), and division by
(3.13) will result in equal numbers of rounding errors for both function and derivative
evaluations.

The techniques of B6hm |2], |3] for evaluation of arithmetic expressions with maximum
accuracy can also be extended from S to DS, because derivatives of arithmetic operations

are again defined by arithmetic expressions in (1.2)-(1.5).




‘ 4. Taylor Arithmetic

A
Y
The definition of differentiation arithmetic given in §1 can be generalized immediately to
give values of higher derivatives, or, more conveniently, Taylor coefficients
.: hk
. (4.1) yk:u(k)(z)' PR k -0.1....,
- of the function u(r ~ h), adopting the usual convention for k = 0 that u, = u(z) ;8. The
- corresponding Taylor polynomial u,(z + k) of degree n in h is uniquely defined by the
vector
) (42) U= (uo,ul,...,un)
in R®*'. As in the case of D, arithmetic operations are defined for such vectors to
obtain a mathematical system T,. Addition and subtraction are the corresponding vector
operations:
; (4.3) UxV = (ugtvp,uy £ vy,...,un £ vy).
Multiplication and division are derived from the corresponding operations between Taylor
polynomials, with the result truncated to degree n. For multiplication,
k
. (4.4) W=U-V, wk:Zui-vk_,', k=0,1,....n.
- i=0
In the case of division. W = U/V is equivalent to V -W = U, so (4.4) can be used to obtain
k-1
(4.5) W =U/V, wg = {uk~ Zw,--vk_,}/v.., k-0.1,...,n, vo # 0.
1=0
) One sees immediately that R = T,. D = T,. For 1 < n < +oc, the T, are division
N rings with identity, the same as D. For n = oo, the arithmetic defined by (4.3)-(4.5) is
. simply the arithmetic of formal power series (see ‘5!, Chapter 1), and T is an integral

domain. It follows immediately from the definition of the arithmetic operations in T,

10




that evaluation of a rational function v : R — R at X = (z,h,0,...,0) € T, gives
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U = u(X) = (o, uy,...,up) € T,. where the u, are the Taylor coefficients (4.1) 8!,

Automatic generation of Taylor series is not limited to rational functions. As in the

case of D. it is also possible to define standard functions in T, by use of well-known
recurrence relations for their Taylor series expansions ‘8]. For example, for W = ¢! =
exp{U} = (w..w).....wy), one has
2 SR
(46) un = eu...‘ Wk = Z( k ) * Wit Uk, k= 1,2,...,n
1=0
The floating-point system corresponding to T, will be denoted, as before, by T,S.
Optimal implementations of +,—,- with respect to the rounding O are easily performed
using the corresponding operators ® in S and the optimal scalar product *. For example,
defining
(4-7) Ur = (uO’ulv---suk)s V-—k = (vk’vk—lv"'7v0)y
one has
(4.8) U.V:= (uo © vo,Ul @ V_I,Ug @ V_z,. . ,Un @ V_n).
Just as in DS, division is the only arithmetic operator which requires a special algo- NONSK

rithm for its optimal implementation in T,S. A good, but suboptimal, implementation

can be made immediately on the basis of (4.5) [4]. Define the vectors V/, € S* by

(49) V-{k: (Uk,vk_.l,...,vl).
Then, (4.5) can be approximated closely by
(4.10) W i= Un Q va, Wi 1= (uk ~ Wi 1 & Vk'> O v k=12,....n.

An algorithm for optimal division in T,S can be developed as in DS by noting that

W = U/V is equivalent to V - W = U. which in turn is equivalent to the lower triangular
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system of equations

Vo * Wo uo,

Vi W, + VW) = Uy,
(4.11)

Ppn Wy +Up_1 W1+ ...+09 Wy = Uyp.

Using the values (4.10) as initial approximations, the method of iterative residual correction
can then applied to the system (4.11) to obtain values of wg,wy,...,w, € S of maximal
accuracy (2;, (3], |12]. Thus, the calculation of Taylor coefficients of a function can be
performed at the same level of roundoff error as the calculation of the value of the function.
Furthermore, since the Taylor coefficients of the results of arithmetic operations are rational
functions of the operand values, it is also possible to extend the method given by B6hm
2], [3] for the evaluation of rational functions to maximal accuracy to the evaluation of

Taylor coefficients of rational functions to maximal accuracy.
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