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ABSTRACT

Differentiation arithmetic is an ordered-pair arithmetic which evaluates both the value

and derivative of functions defined by formulas or subroutines, without symbolics or ap-

proxiinat ions. As in the case of complex arithmetic. multiplication and division are defined

in terms of several real operations. Algorithms are given for evaluation of these operations

with the same accuracy as real multiplication and division, that is. to the closest floating-

point number. The same kind of optimal implementation is described for Taylor arithmetic.

which permits calculation of Taylor coefficients of arbitrary order for functions defined by

formulas or subroutines.

AMS (MOS) Subject Classifications: 13F25, 65D25, 65G05, 68Q40 .".

Key words: Automatic differentiation; differentiation arithmetic,optimal computer arith-

metic.
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SIGNIFICANCE AND EXPLANATION

It is commonly believed that evaluation of derivatives of a function requires symbolic

manipulation or numerical approximation. However, for functions defined by formulas or

computer subroutines, evaluation of the function using an ordered-pair arithmetic called 9'

differentiation arithmetic yields exact values of both the function and its derivative at a

given value of the variable. In order to implement differentiation arithmetic with maximum

accuracy on a computer, special algorithms have to be used for the derivative components .

of multiplication and division, since these are defined by several real operations, and hence

are subject to more roundoff error than the corresponding real operations. Algorithms

are given which implement multiplication and division in differentiation arithmetic to the

same accuracy as real arithmetic, each component of the result suffering a single roundoff

error. This allows calculation of derivatives with the same level of roundoff error as function

values. For higher derivatives (more precisely, Taylor coefficients), an arithmetic of (n -- I)-

tuples called Taylor arithmetic can be used in the same way as differentiation arithmetic

for the first derivative. The optimal implementation of Taylor arithmetic is indicated,

based on well-known algorithms in the theory of optimal computer arithmetic.
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OPTIMAL IMPLEMENTATION OF DIFFERENTIATION ARITHMETIC

L. B. Rail

1. Automatic Differentiation

The process of automatic differentiation .8' consists essentially of the evaluation of func-

tions defined b formulas or finite algorithms using rules for operations and representations

of variables and constants pertaining to differentiation arithmetic 1111 rather than ordinary

real arithmetic. This process is similar to the evaluation of a function f R - R given by L,

a formula, such as

(1.1) fix)= (x -1) (x -3) . -"' "

in complex instead of real arithmetic to obtain the complex value f(z) of the function

f : C -+ C defined by (1.1) with the real variable x replaced by the complex variable z.

This reinterpretation of (1.1) as a complex function can be expressed by saying that its

symbols have been "overloaded" by their corresponding meanings as complex operators,

variables and constants.

Evaluation of (1.1) in differentiation arithmetic is carried out by a similar overload-

ing. Like complex arithmetic, differentiation arithmetic is an ordered-pair arithmetic, with

elements of the form U (u,u'), where u,u' E R. Complex numbers, of course, are also

usually represented on a computer by pairs z = (x, y). where x, y E R and z = z + iy. The

rules of differentiation arithmetic are as follows:

(1.2) - ,,')- - (,1, v') = (u + Vu'+- v'),

(1.3) - V = (u,u') - (v,v') = (u - t,', - v'),

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(1.4) U.V= (uu').(t,v') (u .v,u.v'+ V.U'),

(1.5) U 1l = (u. u')i (v./ t) = (u ,, (u'- u t,/,) iv). , , 0.

The operations inside the parentheses in the above definitions are, of course, real

operations on real numbers. 11 is easy to recognize that the first components of the results

follow the rules of real arithmetic, while the second components implement the rules for

differentiation of the results of the corresponding operations, given that u,v represent

values of functions, and u', v' values of their derivatives at some real x. Since

dx dc "(1.6) 0-= - , "'''
dx dx -:

where x denotes the independent variable and c a constant, it follows that if x in (1.1) is

replaced by X = (x, 1), and the constants 1,2,3 by (1,0), (2,0) and (3,0) respectively, then

evaluation using the rules of differentiation arithmetic gives

(1.7) f(X) f((x, 1)) = (f(x), f'(x)),

where f(x) and f'(x) denote respectively the value of the real function f R - R and its

derivative f: R -- R at the real value x.

Denoting the set R' with the rules of arithmetic (1.2)-(1.5) by D, the result (1.6)

can be viewed as overloading the symbols of (1.1) to obtain the corresponding mapping

- f D -* D in the same way the complex extension of f was obtained. From an algebraic

• standpoint, D is a division ring with an identity element [111.

This process is called automatic differentiation to distinguish it from symbolic differ-

entiation, which results in a formula for f'(x) (which would then have to be evaluated), and

numerical differentiation, which produces only an approximate value for f'(x). Automatic

differentiation requires only the formula or algorilhm for f, and obtains exact values for

f(x) and f'(x). This combines the advantages of symbolic and numerical differentiation,

2
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while avoiding their disadvantages (an extra evaluation process for f'(x) in the symbolic

case, or approximation error if the differentiation is done numerically).

It is interesting to note that the rules for addition and subtraction in D are the same as

for the complex numbers C. while the rules (1.4) and (1.5) for multiplication and division

in D are respectively simpler than the corresponding rules in C. The identity element of

addition in D is 0 - (0.0), while the identity for multiplication is 1 = (1,0). Elements e. -

of D of the form (0, u') are called nonunits. The nonunits are divisors of zero, because

(0, u') (0, v') = (0,0) for arbitrary u', v'. However, if (u, u') - (v, v') (0,0) and u = 0,

then (v,v')= (0,0) [11].

Automatic differentiation is not limited to rational functions. In the notation intro-

duced above, the chain rule of calculus can be expressed as

(1.8) f(U) = f((u,u')) = (f(u), u'. f')),

where f R - R is a differentiable real function and U E D. Thus, for example, the

exponential function is defined by

( euu') (e ,u' e

and so on [8], 111]. However, the object of this paper is to focus on optimal computer

implementation of the four arithmetic operations (1.2)-(1.5) in D.
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2. Computer Arithmetic

The discussion here follows the general theory of computer arithmetic as given in 16]. On

a computer. one works with a finite subset S c R. which is called the set of floating-point

numbers. The elemnents of S may vary from one machine to another, but S is assumed

to satisfy certain natural conditions in each case, namely that S contains 0,1, and the

negative -s of each , C S '6 .

In addition to the real numbers, most mathematical systems which appear in numerical

mathematics can be constructed as Cartesian products of a suitable number of copies of

R, with appropriate definitions of operations in terms of real arithmetic. For example,

the complex numbers C and elements of D can be considered to be ordered pairs of

real numbers, that is, elements of R x R. The usual representation of these systems on a

- computer is by corresponding Cartesian products of S. Thus, ordered pairs of floating-point

numbers (elements of S x S) are the elements of the computer representations CS and

DS of C and D, respectively. Representations MS C M of other numerical mathematical

systems M in terms of floating-point numbers can be constructed in a similar way. It is

assumed that MS contains the negatives of each of its elements, and the identity elements

for addition and multiplication of elements of M.

In mathematical systems M which are constructed by taking Cartesian products of

R, each element m = M consists of components mi, each of which is a real number. Thus, b.

it is possible to introduce a partial ordering < of M componentwise, that is, for m, n E M,

(2.1) m <n min, Vi.

The same definition provides a partial ordering of the floating-point representation MS of

M because MS c- M. This allows the definition of rounding from M to MS. which is a

. . .4. ..-.. .. ..

-, ** t--.



mapping ,-: M -, MS with the properties of a semimorphism '61: .

m M, Vm E MS, n"

(22) m n m m < En, V comparable m, n E M,

S r) - -- m, Vm C M.

In the case of a rounding from R to S satisfying (2.2), the second condition implies

that there are no floating point numbers (elements of S) between r and ] r for each r G R.
A....

In this sense, the rounding is said to be of maximal accuracy. The case most commonly

considered of rounding from R to S is the rounding of an element r E R to the closest

element of S to r, with ties broken by a rule which satisfies the third condition of (2.2).

This rounding, which will be denoted by Q, is said to be of maximum accuracy. The ideas "-"" ""

of maximal and maximum accuracy of roundings apply componentwise to mathematical

systems M which are products of R. Thus, there will be no elements of S between m,

and Z m, in the first case, and Om, is the closest element of S to each component mi of "

m C M in the second.

The concept (2.2) of a semimorphism provides a rational way in which to define

operations in MS on the basis of the corresponding operations in M. Suppose, for example, -

that * denotes a binary operator in M, for example, one of the arithmetic operators

, -.- , /. Then, the corresponding operator in MS, denoted by F±], is defined by

(2.3) m D] n =l (m *n), Vm, n E MS.

Implementation of the operator * in MS in this way is said to be optimal with respect to "'

the rounding iii.

.-..-. .... ... -. ,.. .... . .. . . . . . . . . . .. _ -. • . . . .



3. Implementation of Differentiation Arithmetic

A method for the optimal implementation of differentiation arithmetic with respect to

the rounding D - DS of maximum accuracy will now be described. First of all,

suppose that the rounding R - S and corresponding optimal arithmetic operators 

are available. Then, operators . -,.,, can be defined for U, ' E DS by

(U V, u' v'),

U - (u v, u' E v
(3.1)

U.V (uCV, u®v'ev®u'),

u/V:(u v, (ul'e uev'o v) o), v o.

The above is an example of the "vertical" definition of computer arithmetic 16] in

a mathematical system in which arithmetic is defined componentwise in terms of real

arithmetic. Even though the rounding 0 R - S of maximum accuracy is used, one has

in general that

Q(u.v'-i v u') u® v'e V 0 u', WK
(3.2)

((U'- u v'/v)/v) (u' e u v v) 0 v.

Hence, the computer implementation (3.1) of differentiation arithmetic, while easy to pro-

gram for applications [81, 9, [10, is suboptimal. Special algorithms are required for the V

implementation of multiplication and division in DS.

Optimal implementation of multiplication can be accomplished by use of the optimal

scalar product of real vectors, which is required by the general theory of computer arith-"

metic. That is, if x,y E S ' , say x - (x],x 2 ,...,z) and y (y],y2,.. .,y,,), then their

scalar product is the real number

n 1

(3.3) - y X .

sometimes also called the dot product. or inner product, of x and y. Optimal implemen-

tation of this product with respect to the rounding requires the operator , defined

6
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by

(3.4) xXi.Y Vx, y S".

According to the definition-of . Ihis means that the closest element of S to the sum

of products on the right sides of (3.3) and (3.4) has to be calculated. It turns out that

implementation of @ is not difficult i I and this operator is already available in Pascal-SC

and the IBM product ACRITH. Thus. an optimal implementation of multiplication in DS

with respect to Q is given by

(3.5) U V:= (u 0 v, (u, v) (v',u')), V U,V E DS.

Division in DS requires a more careful approach. Setting W (w, w') U/V, one

can write

(3.6) w u/v, w' : Vu -uv

as in elementary calculus. The optimal rounding Ow u 0 v of the first component w

of W presents no problem. The numerator of w' can be computed to the closest floating-

point number by using the optimal scalar product (u,v) 0 (-v',u'), as in the case of

multiplication, and 0(v 2 ) v 0 v. Hence, the numerator and denominator of w' can each

be computed to the closest floating-point number, but their quotient can differ slightly from

Sw,' i2J. There is also a practical problem, which also arises in the algorithm for optimal

complex division !131, namely, that overflow or underflow can occur in the computation of

the numerator or denominator, even though the exact result w' can be represented with

maximum accuracy by an element of S. This problem can be handled by the introduction of

appropriate scale factors, followed by calculation of the scaled result to maximum accuracy.

and then examination of the scale factors to determine if overflow or underflow will actually

occur [13. If not, then a good approximation iv,, to ,w' is obtained in this way.

7....



In order to correct, w',, if necessary, the method of iterative refinement of the solution

of a linear systems of equations is used :2 ., 12'. Note that W U/V is equivalent to

V -11' U, which gives the lower triangular system of equations

1' U, U,

(3.7) .1

* for the components w, w' of IV in terms of the components of U, V, Thus, given approxi-

mations wt), wf to the solutions of (3.7), for w w,: 0 n 'W n a

E (u - Vw(),!v-,

(3.8)
-(u' - WC V - C - v'(* V

* Since wo has been computed to maximum accuracy, £is negligible with respect to wo, but

could effect the value of '.Again, the numerator of c' is calculated by use of the optimal

scalar product, giving

* (3.9) w~ W~ ((U, -v, -v)0(,~£)0V

* In this case, one correction is sufficient [2j, and one has

(3.10) OW WC), owl w.

*In summary, an algorithm for optimal division in DS is as follows:

, ..If u 0 then

*(3.11) W:O. u, W1- ul V,

else compute

-,(3.12) 11'1 U7 T"Qa W, t--(u"' ~ - '. u')) 2(a' 1),

scaling the numerator and denominator of w if necessary to avoid over Or underfiow;A

if u-!, -S. then calculate w' by (3.9);



2 Set

(3.13) U/V (wo.w) F DS.

Thus. it is possible to implement Ihe operators * in DS with maximum accuracy

using the corresponding operators '. in S and the optimal scalar product @S. This is

an example of the "horizontal" definition of computer arithmetic in the floating-point

system DS corresponding to the mathematical system D of differentiation arithmetic.

The suboptimal definition (3.1) of computer arithmetic in DS will result in derivatives

being computed with a greater number of rounding errors than function values, while the

definitions of addition and subtraction in (3.1), multiplication by (3.5), and division by

(3.13) will result in equal numbers of rounding errors for both function and derivative

evaluations.

The techniques of B6hm 12], 131 for evaluation of arithmetic expressions with maximum

accuracy can also be extended from S to DS, because derivatives of arithmetic operations W
are again defined by arithmetic expressions in (1.2)-(1.5).

9 -
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4. Taylor Arithmetic

The definition of differentiation arithmetic given in §1 can be generalized immediately to

give values of higher derivatives, or, more conveniently, Taylor coefficients

(4.1) Uk x)

of the function u(x -- h), adopting the usual convention for k 0 that u,, u(x) :8j. The r.

corresponding Taylor polynomial un(x + h) of degree n in h is uniquely defined by the

vector

(4.2) U= (u0,u,..., u )

in R"' . As in the case of D, arithmetic operations are defined for such vectors to

obtain a mathematical system Tn. Addition and subtraction are the corresponding vector

operations: . .-.

(4.3) U V = (uo + Vo, U v .,un :vn). "

Multiplication and division are derived from the corresponding operations between Taylor

*. polynomials, with the result truncated to degree n. For multiplication,

k

. (4.4) Wz U'V, wk =ZUiVk-i, k=0,,..
=0

In the case of division. W U/V is equivalent to V .W U, so (4.4) can be used to obtain b.

k-i

(4.5) W u/V, Wk - Zw, k o,,...,n, V0  O. W,.

One sees immediately that R - T-. D - T1. For 1 < n < +oc, the T, are division

rings with identity, the same as D. For n = oc the arithmetic defined by (4.3)-(4.5) is

simply the arithmetic of formal power series (see !51, Chapter 1), and T, is an integral

domain. It follows immediately from the definition of the arithmetic operations in T.

-............................... ................................................. "
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that evaluation of a rational function u :R R at X = (x,h,O, .. ,O) E T" gives

U = u(X) = (Ut,0,,...,u) e- T.. where the U, are the Taylor coefficients (4.1) !8..

Automatic generation of Taylor series is not limited to rational functions. As in the

case of D. it is also possible to define standard functions in T, by use of well-known 4-.-

recurrence relations for their Taylor series expansions 8. For example, for W9 e

exp{U} (wU). ww), one has

k-(4.6) e.=> (k) W~i =12..n
i=O

The floating-point system corresponding to Tn will be denoted, as before, by TnS.

Optimal implementations of +,- with respect to the rounding 0 are easily performed

using the corresponding operators ® in S and the optimal scalar product ®. For example,

defining

(4.7) Uk (uo, U,.. ,Uk), Vk = (Vk,Vk- I,....O),

one has

(4.8) U. V :=(uo0vo, UI ® V_ 1 ,U 2 ® V- 2 ,...,Un ® Vn).

Just as in DS, division is the only arithmetic operator which requires a special algo-

rithm for its optimal implementation in T'rS. A good, but suboptimal, implementation

can be made immediately on the basis of (4.5) 14). Define the vectors V'k E Sk by

V1V

(4.9) V!k (vk, vk- ,.. .,v).

Then, (4.5) can be approximated closely by

(4.10) w,:= Ur, 0 Vri, Wk := Uk - Wk- I (V") o v,,. k 1,2,. n.

An algorithm for optimal division in TS can be developed as in DS by noting that

W U/V is equivalent to V R' U. which in turn is equivalent to the lower triangular

, . . °,

• ° . - .. -. - . -. - , - o - - . . - - - . . . - " .- - ° - i , . . . . . - . % , • -. . °.
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system of equations

Vo WTI = U0,

V1 W", -r Vr" W 1 = UI,(4.11)

T*n •Wo -t- Vn I • W 1 + ... + O n  U n .

Using the values (4.10) as initial approximations, the method of iterative residual correction

can then applied to the system (4.11) to obtain values of w 0 , w,... ,wn E S of maximal

accuracy 12. 3, 121. Thus, the calculation of Taylor coefficients of a function can be

performed at the same level of roundoff error as the calculation of the value of the function.

Furthermore, since the Taylor coefficients of the results of arithmetic operations are rational

functions of the operand values, it is also possible to extend the method given by B6hm

12], 13] for the evaluation of rational functions to maximal accuracy to the evaluation of

Taylor coefficients of rational functions to maximal accuracy.

5* 12
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multiplication and division are defined in terms of several real operations.
Algorithms are given for evaluation of these operations with the same accuracy
as real multiplication and division, that is, to the closest floating-point
number. The same kind of optimal implementation is described for Taylor arith-
metic, which permits calculation of Taylor coefficients of arbitrary order for
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