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ABSTRACT

\ A random sample is taken from a population consisting of an unknown

number of distinct species. A quantity of interest is the probability of

discovering a new species when an additional draw from the population is

made. An estimator of this quantity was introduced by Starr (1979). "MWe-prove'-

a conjecture of Starr's that the estimator is uniformly minimum variance

unbiased and give various asymptotic properties of the estimator. A

nonparametric maximum likelihood estimator is introduced which has similar

asymptotic properties. A Monte-Carlo study is given which suggests guidelines

for choosing an estimator under various circumstances. .. ,' " ' " '5 >'"
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NONPARAMETRIC ESTIMATION OF THE PROBABILITY OF %

DISCOVERING A NEW SPECIES

Murray K. Clayton and Edward W. Frees

§i. Introduction

In many ecological studies, a population is sampled to determine the

number of species that exist in the population. This quantity provides a

partial description of the population and may be used in the comparison of

populations over time or space. Such sampling often takes place sequentially

and it is in this context that a related quantity arises: the probability of

discovering a new soecies in a future sample based on sampling which has

already taken place. By itself, this probability indirectly leads to informa-

tion about the number of species in the populationi it might also be used in a

sequential sampling scheme where the goal is to decide when to stop sampling.

To describe the problem formally, consider a population composed of dis-

tinct species and use Mi to represent the ith species, i-1,2,.... We assume

that the species have no natural order and that the number of species may be

countably infinite. Suppose n independent drawings are made from the popula-

tion, with replacement if the population is finite, and define X. = i when the
th i. etn _In

.th draw is from i  Let ni " I(X - i) be the number of representatives
J Ji -I j

of the species Mi in n drawings, where I(A) as the indicator function of the

set A. The conditional probability of discovering a new species in one addi-

tional search is

0
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UritPi (X n ( 1

where Pi = P(Xl = i). The corresponding unconditional probability of new

species discovery is

e = E(U ) ( (1.2)
n n i

where qi = 1 - pi.

As argued, for example, by Starr (1979), standard statistical procedures

for direct estimation of a realization of the random variable Un are inade-

quate. An alternative, and closely related, goal is the estimation of the

parameter 0 Estimation of 0 has attracted interest in the recent litera-n n

ture; for example, Starr (1979), Chao (1981, correction, 1982), and Banerjee

and Sinha (1985) have recently introduced estimators of 0 . For earlier
n

efforts on this and related problems, see Good (1953, 1965), Good and Toulmin

(1956), Goodman (1949), Harris (1959, 1968), Knott (1967) and Robbins (1968).

We note that our model is not confined to sampling species from populations;

related problems are discussed in Efron and Thisted (1976) and others. The

sequential problem mentioned above is discussed in Goodman (1953), Rasmussen

and Starr (1979), and Banerjee and Sinha (1985). A Bayesian approach can be

-. found in Hill (1979).

Without additional constraints on the model, it is well known that there 4-

is no unbiased estimator of 0 based on a sample size less than n+1 (cf.,
n

Appendix A, Lemma A.1). However, if one additional search is made, Robbins

(1968) noted that

V 1  (n + 1) 1),. Ilxn1 = 1) (1.3)

1

is an unbiased estimator of 0 . Robbins also argued that V1 follows Un in then

sense that the expected squared difference is strictly bounded from above by

,,' .%
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(n + I)- . Starr (1979) gave a more general version of the Robbins estimator.

Starr supposed that the initial search of size n was extended by m additional

stages and defined

m
M- ,n+m)-1 n+m (1.4)

Vm kM I- I(X' = k).(14

_.n+m
The term )i I(X k) is the number of species with k representatives and is

a part of the so-called "sampling frequency of frequencies" (cf., Good,

1953). It is important in applications because only the summary statistics

11 I(X+m = k)= nk= need to be retained for analysis. Starr showed that is

the unique unbiased estimator which is a linear combination of

n+m n  m

I(X k) and conjectured that it is the minimum variance unbiasedk=1q

estimator (MVUE). This property was discussed by Chao (1981) who proposed an

alternative estimator which was further modified by Banerjee and Sinha (1985).

Chao's estimator was motivated by Harris's (1968) work in the important -
.%. .%

special case of equal cell probabilities.

In §2 we answer the issues raised by Chao (1981, 1982) and Banerjee and

Sinha (1985) by proving Starr's conjecture that Vm is the MVUE. The technique

is to use some results of Halmos (1946) on unbiased estimation and show that

Vm is a U-statistic. Several other properties of Vm are also immediately

available based on the theory of U-statistics and are described in §2. In §3

we introduce a nonparametric maximum likelihood estimator (NPMLE) as an alter-

native to Vm. Although the NPMLE is biased in finite samples, we show that it

has similar large-sample properties. Some heuristic arguments in addition to

the simulation results of §4 suggest that the NPMLE may be a desirable alter-

native to Starr's estimator in certain situations. We close in §5 with some

general remarks. Appendices A and B provide details of the proofs of the

technical results of §2 and §3, respectively.

-3-
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12. Properties of Starr's Estimator

For convenience, we begin by stating some results of Halmos (1946). A

direct consequence of these results is the verification of Starr's conjecture.

Another consequence is that Vm, defined in (1.4), is a U-statistic. This

property has further consequences which we exploit.

To state Halmos's results, define H* to be the class of all probability

distributions on R, the real line. Let E be a Borel subset of R. Define R(E)

to be the class of all P C 1* that assign probability to some finite subset of

E and let H be some subset of 1* that contains N(E). For each P e T, let

X1 , *.,XN be an i.i.d. random sample. Let {il,..,ik} be a subset of size k

of {1,2,..,N1 and let I be the sum over all (") distinct combinations of
c k

il ... 'ik 1 . A linear functional F(P) is said to be homogeneous of degree k

if there exists a mapping h from Rk to R such that

F(P) Ep h(Xl,...,Xk) = I .•• I h(xl,...,xk) dP(x I ) ... dP(xk)

for all P C T and if the integer k is minimal.

Lemma 2.1 (Halmos, 1946, Theorems 3 and 5)

Let F(P) be homogeneous of degree k over R with F(P) = Ep h(Xl,...,Xk).

(a) If f(Xl,...,XN) is a symmetric, unbiased estimate of F(P), then for

every point (x1,•..,xN) with xi C E, f(xl,.•.,x,) = k c h ....,x
k c i 1

(b) Among all unbiased estimators of F(P), Ch(X '•X ) has
1 k

minimum variance.

To prove Starr's conjecture, define E f {1,2, , }, N = n+m and let I be

the set of all probability distributions defined on E. We shall find the form

of h(e) which is appropriate for this application. To motivate the discus-

sion, we note that the indicator of the ith species having one representative

-4-
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can be expressed by

n+1 n+1
I(Xn +  - 1) - 1 I(X i) I(X i). (2.1)

£k-1 k

We use the kernel function of size n+1 defined by

n+l n+1
h(X ,.%.,Xn~ ) -1 (n+l)-1 ) 1 I(X , i) a I(Xk # i1, (2.2)

i J-1 k-1

kp~j

that is, the proportion of species with one representative. It is easy to see

that h( e) is symmetric and unbiased for e . The proof that e is homogeneousn n " i'

of degree k - n+1 over R is standard and is given in Appendix A (Lemma A.1).

Thus, by Lemma 2.1 we immediately have the following properties.

Property 2.1

The statistic Vm is a U-statistic with kernel h(') and degree n+1, i.e.,

Vm - "n+n+1-1j c h(Xi 1 ' '..ixi 1. (2.3)

S n+ 

.1

Property 2.2

Based on a random sample of size n+m, Vm is the MVUE for B over ff.
n

A consequence of Property 2.2 is that Vm has desirable properties as an

estimator of 8 for any fixed number m additional searches. If the number ofn

additional searches is large, from Property 2.1 and the theory of U-statistics

it immediately follows that V + 6 with probability one, as m + 00. Thus, the
m n

estimator converges to the parameter of interest. The rate of convergence can

further be described by

- ... %

-5-
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Property 2.3. ;
Dfna nl2- 2 n-2 2 n(i-q )2 n-1 )..'

Define 02 - (n+1)2 pq~~iq )i2 - q Pqi (nPi-qi))" Then,

-1/2 -1/2

V =8 +( Z + o ((n+m) (2.4)
m n p

as m + , where Z is a standard normal random variable.

Remark: The proof of Property 2.3 is standard in the theory of U-statistics

(cf., Serfling, 1980, page 192). One only needs to check the calculation of

the asymptotic variance which is provided in Appendix A (Lemma A.2). Perhaps

the most interesting aspect of Property 2.3 is the fact that in the case of

equal species probabilities, it can easily be shown that a = 0. Indeed, by

another application of U-statistic theory in Appendix A, we have

Property 2.4.

Suppose p = P2= = P/ = U for some 0 > 0. Then,

Vm = 8n + (n+m)- I n+1 l'(1-U)n-2 (U-2(n+1) )(X 2-1) + o ((n+m)-

p -12

2
as m + 0, where X is a chi-square random variable with 1 degree of freedom.

Thus, the rate at which Vm approaches 8 in the important special case of

m n

equal probabilities is of a different order of magnitude (with respect to weak

convergence to a nondegenerate distribution) than the general case. This

characteristic is important since a comparison of various alternative esti-

mators in this special case can be misleading when drawing conclusions about

their relative performance in the more general set-up of unequal probabili-

ties. In other situations, Starr (1979), Chao (1981), and Banerjee and Sinha

(1985) use the equiprobable case as examples of their results. It should also

be noted that the equiprobable cells model is unlikely to arise in nature when

r-6-
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sampling for species although it arises naturally in the cataloging problem

of, for example, Harris (1959).

13. An Alternative Nonparametric Estimator

Starr's estimator Vm is attractive computationally, since it is the

linear combination of the "frequency of frequencies," and it has desirable

theoretical properties since it can be described as a U-statistic. However,

because it is derived from summary statistics, there may be some loss of

information in a finite numbet of additional searches, in some sense. For

example, if we set m = 1, then from (1.3) we see that V1 is the sample propor-

tion of species with one representative. Note that this estimator treats

species with 0,2,3,...,n+I representatives equally. Motivated by these

heuristic arguments, we introduce the following nonparametric estimator of "n -"

based on an initial sample size n and additional search m. Define
Pi = (n~m -"n+m

= (n+m) )P= I(X j i) and qi I - i 1,2 ...... The NPMLE of n is

defined to be:

nm Piqi (3.1)

Unlike V ,Bis a biased estimator of .Since (n+m)q. is a binomial random
m m n'-

variable, it is straightforward to explicitly write out the bias as a linear

combination of powers of qi and Stirling numbers of the second kind. Finite

sample properties of e are further discussed in §4. Asymptotically (as
m

m + ) B behaves similarly to Vm. By the strong law of large numbers, with
m

probability one, qi + qi' and it is not hard to show that e n B with proba-m n

bility, one as m + '. We also have the following two asymptotic properties.

-7-
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p-h.

Property 3.1

Let a be as defined in Property 2.3. Then

-1/2 1/2)
e =e + (n+m) az+o ((n+m)"
m n p

as m'+

Property 3.2

Suppose p, = p2 = u = = L for some v > 0. Then,

8m =e + (n+m)-1(n+1)( 1-)n-2 (-2(n+1) -)(U(X 2-1) + (-P))

m n 2 -P2(-l

+ O (tn+m -1)
p

as m +

The proof of Properties 3.1 and 3.2 are in Appendix B. Comparing Proper-

ties 2.3 and 3.1, we see that V and e are asymptotically equivalent to the
m

first order (i.e., (n+m)-1 /2). An advantage of the NPMLE m is that, sincem ::
strongly consistent estimators of qi and hence 0 can be constructed, we have

as an immediate corollary of Property 3.1 large sample interval estimates

of B . Comparing Properties 2.4 and 3.2, we see that Vm and 8 are of then To m

same order of magnitude and have same variance in their respective asymptotic

distributions. The estimator Vm is slightly superior to 8 in the sense that
m

the asymptotic distribution of Vm-en has mean zero unlike that of ;m -e n We

remark that in this special case of equiprobable cells, Chao's (1981)

extension of Harris's (1968) estimator is MVUE for fixed m and hence is a

strong competitor to Vm and 6m.m,,

As noted, the rate of convergence of Vm and 0 is markedly different inm

the equiprobable case in comparison to the general case. Moreover, in some

. ." .
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sense the equiprobable case is the only one in which this can happen. Specifi-

cally, we have the following result. ..

Property 3.3

Consider defined in Property 2.3 and suppose that the number of

species exceeds n. Then, 0 = 0 if and only if p, P 2 = p"" P,,, for

some U 0.

14. Small Sample Properties

In this section we investigate the behavior of Starr's estimator, Vm, and

the NPMLE, e # when m is small via a Monte-Carlo simulation. We look at their
3

bias and mean square error as estimates of 0 and make some comments regardingn

modifications of 6 which have desirable properties. Finally, we investigate
m

modifications of Vm and e suitable for use when m = 0. All computations were
m

done on a VAX 11/750 owned and operated by the Department of Statistics at the

University of Wisconsin-Madison. The simulations were performed using the

National Bureau of Standard's Core Math Library (CMLIB) pseudo-uniform random

number generator UNI.

Two classes of distributions were used to construct the probability distri-

bution {pi I i ) il. These were: (1) equiprobable, with pi 1 ( i /

and (2) truncated geometric, with pi = qpl/(1-pC) 1 ( i < c, 0 < p < 1,

q 1 - p. For the equiprobable cells model, values of P f .1, .02, .01 were

used; for the truncated geometric model, values of p = .1, .5, .9 and c = 10,

100 were used. For each assignment of {p.}, 0 was determined and 1,000 simu-n
lations were performed. For each simulation, this involved drawing a sample

• ' of size n and a subsequent sample of size m. The pairs (n,m) = (10,1), .'

(10,10), (50,1), (50,10), (50,50) were included. For each sample, 0 and V m. Z4

were computed. Tables 4.1-4.2 show the mean values of 0 and V over the

-9-
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1,000 samples denoted in the tables as EO and EVm, respectively. (The rowsm m

corresponding to m = 0 will be discussed below.) In addition, the estimated

root mean square error of the estimates, denoted by RMSE (0 ) and RMSE (V ),m m

respectively, are given in Tables 4.1-4.2. Of course, since Vm is unbiased,

RMSE (Vm ) is also an estimate of the standard error of Vm . 4m..

Generally, in the equiprobable case, V has lower root mean square errorm

-1than em. Comparing Properties 2.4 and 3.2, we have up to order (n+m)-

E(VM_8 )- 2 E(; - )2 21.' /(3U -20+1). Thus, for P small, RMSE (V ) will ben m n m

approximately 2P 2 times RMSE (8 ). While the differences in RMSE for Vmm -

and 8 in Table 4.1 are not all of this magnitude, we do see that Vm is am ..

better estimator of 0 in terms of RMSE.
m

The situation is reversed to a large extent when the truncated geometric

is used for pi These results appear in Table 4.2. It is evident in this

case, as in Table 4.1, that 6 tends to underestimate 0 and that the bias can
m n

be considerable. From the results of sections 2 and 3, we expect

6 and V to have the same asymptotic mean square error. From Table 4.2, it
m m

appears that, when p is not too large, the mean square error of 6 is less
m

than Vm, sometimes considerably so. That this can fail when p is large is not

surprising since the truncated geometric distribution tends to the

i cequiprobable case when p tends to one. Specifically, qp /(1-pC) + 1/c for

each i as p + 1.

That 0 dominate Vm in terms of the truncated distribution when p is small
m

can be seen in an example: Let c = 2, m = 1, and n = 2, so P, = q(1-p 2 ) and

P2 = qp/(1-p 2)" Then 02 = plP 2 and it is easy to show that Eel = 2/3 pip 2,

which represents a considerable bias. For this example it can be shown that

2 2 2 2 2E(; -e2  = (4 p p2- 9pl p2 )/27 and E(V -0) = p p(p -p2 ) . It follows that
1 2 1 2 12 2 1 2=1'

E(V - ) 2 > E(; e 2 if - //66, or equivalently, if p < .5799.
1 2 1 22 2

-10-
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Table 4. 1
Equiprobable Case ,'.,

m Et RSV E; RS; 8* RMS

n n m n  v se RMSEO Rt

1 10 0 .3487 .3923 .1660 .1836 1717 .3671 .0961

10 1 .3487 .3488 .1364 .1951 .1603 .3724 .0904

10 10 .3487 .3471 .0555 .2598 .0555 .3897 .0658

50 0 .0052 .0057 .0099 .0136 .0953 .0271 .0231

50 1 .0052 .0058 .0101 .0136 .0092 .0269 .0229

50 10 .0052 .0053 .0060 .0125 .0080 .0230 .0187

50 50 .0052 .0050 .0025 .0097 .0050 .0146 .0099

.02 10 0 .8171 .8376 .1577 .3085 .5102 .6169 .2153

10 1 .8171 .8242 .1469 .3403 .4783 .6496 .1828

10 10 .8171 .8183 .0782 .5108 .3088 .7661 .0775

50 0 .3642 .3716 .0695 .1932 .1723 .3863 .0470

50 1 .3642 .3656 .0670 .1959 .1695 .3880 .0479

50 10 .3642 .3618 .0530 .2168 .1488 .3975 .0509

50 50 .3642 .3639 .0260 .2731 .0925 .4097 .0515

.01 10 0 .9044 .9146 .1240 .3280 .5772 .6560 .2556

10 1 .9044 .9051 .1206 .3614 .5439 .6900 .2224

10 10 .9044 .9054 .1550 .5534 .3522 .8301 .0869

50 0 .6050 .6101 .0818 .2650 .3407 .5300 .0870

50 1 .6050 .6047 .0799 .2699 .3359 .5344 .0829 -'. .

50 10 .6050 .6033 .0690 .3078 .2981 .5643 .0591

50 50 .6050 .6059 .0370 .4077 .1983 .6116 .0308

V.'.4' .
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Table 4.2
Truncated Geometric Distribution

p c n m 0n EVn MEm E RMSEO m R 4SEe

*.1 10 10 0 .0443 .0494 .0566 .0214 .0293 .0429 .0367

10 1 .0443 .0457 .0530 .0230 .0283 .0439 .0357

10 10 .0443 .0460 .0274 .0324 .0204 .0486 .0252

50 0 .0075 .0078 .0108 .0047 .0051 .0093 .0087

50 1 .0075 .0079 .0108 .0047 .0050 .0094 .0085 .-

50 10 .0075 .0071 .0087 .0047 .0051 .0086 .0078

50 50 .0075 .0072 .0058 .0055 .0044 .0083 .0060

.5 10 10 0 .1302 .1454 .1036 .0708 .0691 .1416 .0717

10 1 .1302 .1308 .0950 .0745 .0659 .1423 .0686

10 10 .1302 .1292 .0515 .0968 .0467 .1452 .0512

50 0 .0273 .0274 .0200 .0158 .0136 .0315 .0148

50 1 .0273 .0268 .0189 .0160 .0132 .0317 .0141

50 10 .0273 .0265 .0162 .0173 .0123 .0317 .0136

50 50 .0273 .0274 .0103 .0211 .0091 .0317 .0109

*.9 10 10 0 .3319 .3648 .1567 .1731 .1655 .3463 .0950

10 1 .3319 .3145 .1386 .1876 .1515 .3582 .0920

10 10 .3319 .3314 .0604 .2487 .0914 .3730 .0702

50 0 .0096 .0107 .0131 .0161 .0078 .0322 .0242

50 1 .0096 .0098 .0130 .0160 .0077 .0317 .0237

50 10 .0096 .0097 .0083 .0156 .0073 .0286 .0205

50 50 .0096 .0098 .0042 .0139 .0053 .0208 .0122

-12-



Table 4.2 (continued)

AA A

p c n m 6n  EVn  RMSEVm  E6m RMSE8 so RMSE6

.1 100 10 0 .0443 .0494 .0566 .0214 .0293 .0428 .0367

10 1 .0443 .0388 .0498 .0208 .0297 .0396 .0348

10 10 .0443 .0438 .0270 .0310 .0213 .0465 .0251

50 0 .0075 .0078 .0108 .0047 .0051 .0093 .0087 "Pup

50 1 .0075 .0075 .0106 .0045 .0051 .0089 .0083

50 10 .0075 .0077 .0093 .0049 .0051 .0090 .0081 ,.

50 50 .0075 .0074 .0057 .0057 .0042 .0086 .0058

.5 100 10 0 .1312 .1471 .1057 .0719 .0691 1438 .0720

10 1 .1312 .1305 .0951 .0759 .0656 .1448 .0686

10 10 .1312 .1318 .0543 .0982 .0476 .1473 .0539

50 0 .0283 .0290 .0212 .0163 .0141 .0327 .0157

50 1 .0283 .0277 .0205 .0163 .0142 .0322 .0152

50 10 .0283 .0284 .0163 .0180 .0126 .0329 .0140

50 50 .0283 .0291 .0108 .0222 .0093 .0333 .0116

.9 100 10 0 .6095 .0269 .1890 .2505 .3628 .5011 .1511

10 1 .6095 .6150 .1792 .2771 .3368 .5220 .1319

10 10 .6095 .6084 .1051 .4011 .2161 .6017 .0861

50 0 •1855 .1856 .0533 .1030 .0846 .2060 .0428

50 1 .1855 .1856 .0509 .1059 .0816 .2098 .0435 " .

50 10 .1855 .1857 .0447 .1155 .0725 .2117 .0437

50 50 .1855 .1857 .0269 .1410 .0477 .2115 .0367

ON

- 1
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While e may be an attractive estimator in the truncated geometric case
m

in terms of its mean square error, it has already been noted that its bias can

be considerable. In fact,

ECO M = n + (n+m) 1 ( )e - + eni + o((n+m)-)
-1n -i 2n n

This suggests that the quantity 6 + (n+m)((n+  - ( piqi) would be
%m 2 m 2 iii

a better estimator of 0 than 6 alone. For the size of the samples discussed **

n-1 
here, Y Pi q_ tends to underestimate 6 too severely and a better esti-

n-1

mator can be obtained by replacing p q by e, leading to the estimator

e ( + n/(n+m)).

Values of E(0 ) and RMSE (8 ) are given in Tables 4.1-4.2. Generally, e has
mm m

good bias properties and compares favorably with Vm in terms of RMSE, even for

the equiprobable case.

It should be noted that e and Vm are, in some sense, "retrodictors."m

That is, they predict, on the basis of n+m observations, what would be

observed for the last m observations. In Starr (1979), an argument is given

that this is not a vacuous exercise; Vm can be used effectively to predict, on

the basis of an initial sample size n and a subsequent sample of size m, what

will occur in a large future sample of size M. This argument applies equally

well to the NPMLE 9 . However, it can be argued that the principle interest
m

of estimators such as 6 and V is in their properties as true predictors. Form m '

example, Rasmussen and Starr (1979) used the estimator V = n -i I(Xi = 1)
0 iSp

to consider a rule for sequentially sampling a population. Similarly, the
A .

estimators e and 8 could also be used in such a capacity. We leave the

examination of such sequential rules to a future paper and consider here only

the properties of V and as estimates of 8 simulation results appear
0 o o n

-14-
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in Tables 4.1-4.2. In terms of mean square error, again we see that, in the

equiprobable case, Vo dominates ; and that e* compares favorably with V0 In
0 0

the truncated geometric case, both ; and 8* dominate V except when p is near0 0

one in which case VO tends to be a better estimator than 8 .
0

15. Summary and Discussion

This paper has focused on nonparametric estimators of 6, the probability

of discovering a new species. We have shown Vm to be a minimum variance

unbiased estimator with a high rate of convergence in the equiprobable case.

The nonparametric maximum likelihood estimator, , has similar asymptotic

properties. In small samples, Vm is a better estimator than m in the equi-

probable cell case with respect to mean square errorp this is reversed for

truncated geometric distributions when p is not large. An estimator with

somewhat less bias than 6 is e , defined in (4.1), it compares favorably with

Vm in terms of mean square error.

Besides the theoretical interest in 8 as an estimator which competes
m

well with Vm in the truncated geometric case, we argue that this has practical

implications. For example, data collected by Andrews (1985) of the species

abundance of epiphytic fungi on apple leaves fit a truncated geometric distri-

bution quite well with p - .77. Arguments are given by Pielou (1977) that a

geometric distribution, or more generally, a negative binomial distribution is

appropriate in some situations for modeling species distributions. It remains

to be seen how Vm and 8 compare over a wider class of distributions.

-1*5"
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Appendix A. Proof of §2 Results

Lemma A.1

The parameter n is homogeneous over fl and is of degree n + 1.n

Proof:
k

Sufficient for the proof is to show that )i qi is homogeneous of degreek k k

k. Since E(i j I(X * ) for all P , we have that q is

k
homogeneous of degree ( k. We now suppose that q is homogeneous of degree

h and show that h > k. Thus, assume there exists *(xl,...,xh) so that

(A.• 1)

i qi = Ep(XlX...,Xh))

for all P C T. Suppose U is a subset of H so that

P (1) - q and P (2) = 1 - q
q q

andH = {P  E 0 < q < 1}. With the choice of P the left-hand side of
1 q q

(A.1) is a polynomial in q of degree k while the right-hand side is a poly-

nomial in q of degree, say, h, ( h. Since these polynomials are must be of the

same degree, we have k =h 1  h. "

Define h . = E(h(XI,...,Xn)IXi) - 6. The proof of Property 2.3 is

2 2
complete with = (n+1) Var(h (X )) and the following

, Lemma A.2.
-1)2 2n-2 - 1 2

Var(h. (Xi)) -(p2 (n+1) ) - ( (.+n

* Proof:

Use (2.2) to get

E(h(Xl' '' Xn+IX = (n+1)- 1  q 1{nP iXl i) + qiIX = i)}.
1 + 1*.1 i

.- 6- ... .



Thus, by rearranging terms.* .o

hlnlX1 (n+l) 1  n-1 1-1 i.
X qi (pi" (n+1 )(P "(Xi i)).

Hence, r

3 hIn(X1 2  (n+l)2 { Piq i " (p n+11 12

p " qi qj (Pi (n+1 ) -1 )(pj - (n+,)%}
i*j

which gives the result upon a rearrangement of terms. 4

To prove Property 2.4, we need to examine the properties of the following

projection of h,

h2n(XIX 2 1 -Elh(X 1  ..,Xn+I )IXX 2 ) - hn(X) - hn(X2 ) - en

(1-P) n(J-2(n+)
I) ) (I (XIX2 ) - (A). (.2)

To see (A.2), first note that it is easy to check that e - (1 - O1n and

that hin (X 1 - hIn(X2 ) - 0. Now, use (2.2) to get

EllX, . ., n+ 1 ) I , 2 t

- (n+1) 11(I-tn 2  {(n-1)U I(X 10 i) M(X ' i)

1 2

C(1-1)I(X 1 - i1 I(X2 #d i) + I(X1  ) i I(X - iW}

- 1- 2vn/(n+1) + (p-2(n+l) 1- I(X1 - X2 }

after some algebra. Subtracting 0 yields (A.2). The proof of Property 2.4

is now an application of a result independently due to Gregory (1977) and

Serfling (see Berfling, 1980, page 192).

-17- "'..
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Proof of Property 2.4:

L~et X = (I-) (-2(n+1) ) so that h2n(XIgX 2) K(I(X 1 MX 2) V ). it is

immdiae tat ar~~n~lfx)) K2U(1-) > 0. Now, let g be an arbitrary,

2
measurable function such that E(g(X)) < 00 and let x,X be real constants. The

forms of g(e) and X satisfying

= Kull). I(lx-i)g(i) -Eg(X)} I K1Jlg(x) -Eg(X) I
i

are of two types. If E g(X) 0, then

g(x) =E g(X)/(1 - /K Ui)

is a constant (E0) and thus AX 0. If E g(X) = i~ g(i) =0, then AX Ku. .

* ~Thus, for example, by Serf ling (1980, page 194), we have the result. +9



Appendix B. Proof of 13 Results

Proof of Property 3.1:

Define G(x) - x(x)n and note that n " Xi G(pi) and that em = iGlpi'-

By a Taylor-series expansion,

e n + pi-Pi)G,(pi + (Ii(pi-pi)2)

since GI(x) is bounded for 0 < x < 1. Now, since

1 A 2/
(n+m)1/  p p-P1  In+m) - /  pq i

-1/2
(n+m) + 0, :'

we have that (n+m)1/ 2 1i (pi-pi) 2 0 in probability. By Fubini's Theorem, we

have that

n+m

(p i-pi G'(Pi) (n+m)-  Y {) G'(p )(I(Xj=i) -Pl).
i J-1 i

This, the central limit theorem and Slutsky's theorem give the result. +

Proof of Property 3.2:

By a Taylor-series expansion,

A A A 3

m =n + G"(P)/2 i (pi-u) + O(1 (Pi- )3

since G"(x) is bounded for 0 < x < 1 and li(Pi- ) = 0. Similarly to (B.1), we

have that (n+m) i(P i-P) + 0 in probability. Thus

(n+m)(e.-e - (n+m) G"(ii)/2 (pi2-I 2 ) + o (1). (B.2)mn pi P"

.,. - '..

* ~,'
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pNOW

Now,

r--m
(i12_U2) = ((n+m) nl I(X.i)) 2  U

i i j=l

= (n+m)-I + 2(n+m)-2 I I(Xj=Xk ) - U

j<k

= In+m)-  (1-10 + (1 - In+m) "1 ) U, (B.3)-

where U = I(X - U is a U-statistic. hs in the proof of
2 kj<k"' "

Property 2.4, E(UIX 1 ) = 0 and

(+m ) E(U fXIx 2 ) = (I(xl=x2) U).

Thus, by the same argument as in the proof of Property 2.4 (with K=I), we have

2
(n+m) U +D (x2-1).

This, (B.2), (B.3) and Slutsky's Theorem yields the result. +

Proof of Property 3.3

2 -
We need only show that a = 0 implies pi = pj for each i,j. To do this

we construct the random variable

n-1 

.
X (n+1)(nPi-qi) qi with probability pi' i=1,2....

2 2Now, it is easy to see that Var(X) = 0 and thus, a = 0 means that

n-I 2 -I n-i(n+1)(np -qi)q = (n+1) (p-(n+1) )q must be some constant C for
i i i

i=1,2,... Since the number of species exceeds n, we have Pi < (n+I)-1 for

some i and C must be nonpositive. The question of whether different Pi may
2-1 n-i1*'

satisfy (n+i) i - (n+1) q = C is equivalent to finding the number of

roots of

-20-
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h(x) -(n/(n+1) -x)X~ C 0 < x < 1

* Now, h'(x) -nxn- 2((n-l)/(n+l)-x) is positive for 0 < x < (n-l)/(n+1) and is

negative for (n-l)/(n+i) < x < 1. Further, h(0) -C and hW) - -(n+1) - C.

Thus, for -(n+ )- < C < 0 there is exactly one root and no roots for

CC< -(n+1) * +

-21-
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