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Exrata to:
MRC Technical Summary Report #2915
Zero and Negative Masses in Finite Element Vibration and Transient Analysis

David S. Malkus and Michael E. Plesha

page 1, paragraph 2 negtive should be negative
page 9, paragraph 1 0<4i<...should bel <1i<...
page 16, equation (37) last term in equation should be postmultiplied

by (¥} instead of {V'}
page 16, equation (40) 4/Ac2 should be At2/4

. page 18, paragraph 5 last sentence: reference to equation (46) should
: be to equation (47)

page 21, paragraph 2 an viable should be a viable
page 22 somes sense should be some sense
Section 6 following references on original work in

partitioned transient analysis should be added:

T. Belytschko and R. Mullen, Mesh Partitions of
- Explicit-Implicit Time Integration, in Formulatioms
" and Computational Algorithms in Finite Element
Analysis, K. J. Bathe, et al eds., MIT Press, 1976,

T. Belytschko and R. Mullen, Stability of
Explicit-Implicit Mesh Partitions in Time Integration,
- Int*l, J. Numerical Methods in Engr., 12,
) 1575-1586 (1978).

NOTE: This report w1l e ~ublished in substantially the same form in
Computer at'cls in Applied Mechanics and Engineering,
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ABSTRACT ¥
™ Mass matrix lumping by quadrature is considered. Accuracy requirements seem to RN

dictate the use of zero or negative masses for multi-dimensional higher-order elements. \
It is shown that the zero and or negative masses do not destroy the essential algebraic Yy

properties of the discrete eigenproblem, in spite of the negative or infinite eigenvalues which
, may result. Explicit transient methods require positive definite lumping which, for some K
‘ elements, may only be achieved by sacrificing accuracy to avoid the negative or zero masses
that would render the lumping indefinite. An implicit-explicit time integration method T

based on quadratic triangles with optimal lumping is devised, analysed, and tested. It "
treats the nodes with nonzero masses explicitly and the nodes with zero masses implicitly. ﬁ,

Analysis and numerical tests show that this formulation is optimally accurate and less

J costly than a similar method with nonzero masses, based on optimally lumped biquadratic e
rectangles. The method is also found to be substantially more accurate than the fully ;:fjj

explicit method based on lumping the triangular elements in an ad-hoc fashion to retain -
non-zero masses.  ». ,‘
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ZERO AND NEGATIVE MASSES IN FINITE ELEMENT VIBRATION
AND TRANSIENT ANALYSIS

David S. Malkus* and Michael E. Plesha**

1. INTRODUCTION

Mass matrix lumping is a technique in finite element transient and vibration analysis
whereby the banded. symmetric, positive definite matrix representing the L, inner product
{i.e., the consistent mass matrix) is replaced by a diagonal matrix which is in some sense
equivalent. This is done for two basic purposes: first, to make truly explicit finite element
transient analysis possible, and second to save computer storage space and operations in
the solution of eigenproblems associated with the finite element vibration problem. There
are two additional benefits associated with lumped masses: in transient analysis, lumping
lowers the highest wave speed in the mesh significantly. with an attendant raising of the
critical time step for explicit integration schemes; in eigenanalysis. lumping removes the
strict upper-bounding of the discrete eigenvalues. The result can be that the eigenvalues
remain optimally accurate in terms of convergence rate, but have a better constant in the
error bound.

The role of lumping in transient analysis makes it an essential tool in finite element
analysis. Many problems in structural analysis are nonlinear hyperbolic problems which
can be treated explicitly. The geometric complexity of many practical problems, such as
in reactor technology requires so many finite elements that any fully implicit treatment
of the nonlinearity would be impractical. Thus the basic idea behind lumping stems from
practical necessity and has a ready physical interpretation: the continuous distribution of
mass in the body is replaced by one in which the mass is concentrated at the nodal points.
That this has the desired effect on the mass matrix can easily be seen by replacing the
mass density function by the sum of delta functions with support at the nodes. For low-
order elements, the requirements of preserving the total mass of the element and respecting
the symmetry of the distribution about natural axes of the element uniquely determines
the lumped distribution. For higher-order elements, many distributions seem to respect
natural symmetry, but most seem to lead to schemes with reduced accuracy.

An approach to recovering optimal accuracy with lumping schemes is to require each
element to exactly reproduce as many moments of the mass distribution as possible. This
turns out to be equivalent to the use of a nodally based quadrature formula to evaluate
the L, inner product. This is the fundamental observation of ref. 1. Once we recognize
that lumping and numerical quadrature correspond, then we can be guided by the error
analysis of the latter in devising lumping schemes. Here we consider only second-order
problems, and in that case, ref. 1 argues that we should choose a nodal formula of degree
of precision 2p — 2 where p is the degree of the maximal complete polynomial on each

“Mathematics Research Center and Engineering Mechanics Dept., University of Wisconsin-
Madison, Madison, W1 53705.

**Engineering Mechanics Dept., University of Wisconsin-Madison, Madison, WI 53706.
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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element. When that is done. the error introduced by quadrature will be bounded by
ChP|lu| p+1 and thus be on the same order as the overall error of the scheme, and no
accuracy will be lost.

One quickly finds that the degree of precision requirement for retaining optimal ac-
curacy is not a trivial one. In fact, for elements with p > 3. the traditional equal spacing
of nodes in the reference element will no longer suffice [1;. A multidimensional generaliza-
tion of Lobatto 2 integration is called for; vertex nodes must be included, and boundary
nodes must remain on boundaries, but the nodal locations must be chosen so as to oth-
erwise maximize the degree of precision ;1. For one-dimensional problems, the Lobatto
weights can be shown to be positive 2. This is important, since in all dimensions the
quadrature weights are the diagonal entries of the lumped mass matrix. But in two or
more dimensions, a fundamental difficulty in numerical analysis arisies: maintaining posi-
tive weighting and specifying quadrature point locations can be mutually exclusive. Two-
dimensional elements for which this conflict occurs are schematically illustrated in Figure
1. The appearance of zero and negtive weights seems to leave the practitioner four choices:
(1) use low order elements, (2) use elements which are tensor products of one dimensional
elements, (3) use lumping schemes which sacrifice degree of precision to the maintenance
of positive weights, or (4) employ a non-positive-definite mass matrix with coefficients that
can be positive, zero or negative. The purpose of this paper is to demonstrate that (4) is
a viable computational alternative.

2. THE NONPOSITIVE MASS PROBLEM

There appear to be at least three difficulties with nonpositive mass lumpings, beyond
the obvious physical peculiarity. Actually, the physical peculiarity cannot be a particularly
serious problem, because the lumping scheme is devised to produce optimally accurate
eigenvalues. Their presence in the spectrum and their accuracy can thus be guaranteed
a-priori, and any other modes present in the problem must take their place within the
unphysical portion of the spectrum, which is there whether or not the masses are lumped.
But there are a number of possible technical difficulties. In eigenanalysis, zero masses are
known not to be problematical, and can in fact be put to good use in static condensation
{3]. But in transient analysis zero masses seem to defeat the very purpose of lumping. An
explicit multistep method would have the form

IMI{D7} = {F({Dn-1},{Dn-2}....{Dn-r}, {Fa-1})} (1)

Clearly no unique solution can exist when [M] is singular, even if diagonal. Negative
masses seem even more troublesome. The finite element eigenproblem

[K|{D} = A[M|{ D} (2)

could have negative eigenvalues when |M] is indefinite. For statically well-determined
problems we shall presume K| is positive definite. In that case it is clear that there will
be as many negative eigenvalues as negative masses. However. for free body vibrations.
K| is singular. In such a case there may or may not be negative eigenvalues when | M’
has negative entries. One cannot be sure a-priori because when M| is indefinite and |K|
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FIGURE 1

Optimal lumpings for some common 1- and 2-D elements. Tri-
angular elements are equilateral reference elements in area co-
ordinates. Complete symmetry of lumping formula in area
co-ordinates is assumed, determining nodal locations and un-
specified weights completely from given information. Square
elements are isoparametric master elements. Complete sym-
metry in Cartesian co-ordinates uniquely determines lumping
formulas. “A” denotes area of 2-D elements.
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is singular, the fundamental structure of the eigensystem can be quite different from the
case in which either matrix is positive definite. A simple example:

1 1] -1 0
Kl=1.7 '!M}z[ 0 1]
Let , -
. 1 -2 . 1 -2
Pr= -1 a1 QV‘[] —1]

Then the matrix pencil (K — A!M: is equivalent to 4
P -AM) @ =|"Y ] (3)
R R S A 0 -

We therefore have a multiple zero eigenvalue and a nonlinear divisor. No negative eigenval-
ues exist, and the matrix pencil is no longer diagonalizable. Examples can be constructed
in which the eigenvalues are complex. Even worse, if there are zero masses, examples can
be found in which there fails to be a complete set of eigenvalues 4]. The simplest way this
can happen is for [K| and {M| to have a common null-space.

The above example is clearly contrived. It would not arise in finite element analysis;
‘K] is a simple stiffness matrix for a linear element, but the mass matrix is lumped in a
way that does not preserve mass. To put it another way, the quadrature formula whose
weights are the diagonal entries would violate the degree of precision requirement: the
degree of precision is not even zero, whereas 2p — 2 = 0. The fear in using negative masses
is that, while quadrature accuracy may force the existence of accurate eigenvalues, they
may be tied up in nonlinear divisors, have the wrong multiplicity, and be hard to compute.
There could conceivably be negative eigenvalues of the same magnitude of the accurate
eigenvalues leading to spurious, unstable, low frequency modes.

The first task to which we turn our attention is to generalize what we observed in
the simple example, the fact that preservation of mass and higher moments of mass rules
out the pathologies. But this is easier to tackle in an equivalent form; satisfaction of the
degree of precision requirement rules out all the difficulties allude to above.

3. MASS MATRIX LUMPING BY QUADRATURE
We shall deal with second-order, self-adjoint problems in which the natural modes of
the exact problem make the Rayleigh quotient, Q(u), stationary,
_ a(u,u)

Q(u) = bu,u) (4)

where a(-,-) represents the strain energy, b(-, ') represents the L, inner product, and for
some real «

a(u,u) > 7*[luif]
forue HE x HE x Hg = H. HE denotes the space of functions with square integrable

first partials satisfying essential boundary conditions appropriate to the ith vector compo-
nent of the solution. For plane or 1 - D problems, from which our examples are drawn, we

4
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may consider that H " = 0 for one or two factors of the trial space. Generalization of our
results and examples to 3 - D is straight-forward.

It will be convenient here to use fairly standard engineering finite element notation
(3]; u € H will be approximated in element “e” by

uhi, = N} {d) (5)

where {d} represents the nodal-value degrees of freedom and |N,| is the element shape-
function matrix which has the form
| Ny, 0O ... N 0
! - e me 6
'Ne) O N]e “o e 0 Nme] ( )

for an m-noded element in 2 - D. Generalizations to 1 - and 3 - D problems are cbvious.
Note that equation (6) implies a nodal ordering in which the degrees of freedom associated
with a given node are grouped together in {d} (3]. Element shape functions are pieced
together in the usual manner to produce a global nodal representation

u® = [N]{D} (7)

where
Ny 0 ... Ny O

[le[o Ny ... 0 Ny (8)

which illustrates the M-noded, 2 - D case. Satisfaction of the essential boundary conditions
in equation (7) is assumed to be accomplished by specification of appropriate entries of
{D} to prescribed values [3].

The free-structure stifiness matrix is assembled from element matrices

k) = [ 1BJT1E) B v ©)
e
where [E] is a symmetric matrix of material coefficients and

|Be] = [D][Nei (10)

(D! is a matrix of first-order partial differential operators relating stress to strain (or strain-
rate in fluid problems). For example, in plane elasticity

9] = (11)

o o Flo
Vo Llw o

Boundary conditions implied by H ,',: are assumed to be homogeneous and are enforced
by omission of corresponding rows and columns during assembly {3]. Entries in the global
nodal-value vector, { D}, are omitted along with corresponding columns in {N|. The space
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of all such functions defined by equation (7) is denoted by S*. The global stiffness matrix,
possibly dimensionally reduced by imposing boundary conditions, is

= [ 1B E1B| 4V (12)

where

|B! = D!IN (13)

For future reference in dynamic problems we note that

(d)7 ke {d} = / {0} (e} dV
{ec} = (B {d} (14)
{o.} = [E] [Be] {d}

and

(D} |K){D} = /n {0)T{c}av

{¢} = [BI{D} (19)
{0} = [E] (B]{D}

Equations (14) and (15) give the virtual work done against internal stresses by the displace-
ments. The matrix of a(:,-) in equation (4) is [K|. With no essential boundary conditions,
v=0.

The mass matrix gives the matrix of b(-, ) in equation (4) and is defined on the element
and global level by

mdl = [ pINJTIN. av
= (16)
M) = / o[N|T[N] av

where p is the material’s mass-density function. In what follows. p may be non-constant,
but p > 0 is assumed. When the integrations in equation (16) are exact, [m.| and [M|
are called “consistent”. To lump the mass matrix by quadrature, the nodes are located in
order to maximize the degree of precision of a nodal quadrature formula, while retaining
interelement compatibility {1}, and equation (16) is integrated with the nodal quadrature

6
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rule, resulting in

[0 0]
0 0
o .
- |1 o]fo o 10 00
; e ”Z”"”‘J' 0 1 {0 0 0 1 00
. .o
00 (17)
[0 0]
[ prwyJy (12] ‘ 7
pawada Iz o
o) .
L PmWmdm |I2] -5
where, again, an m-noded 2 - D element illustrates the generality; p, and J; are evaluations Z:::;::
of the density and any isoparametric or curvilinear Jacobian implied in “dV” at the element R
nodes, respectively, and the w, are the quadrature weights. [I] is the 2 x 2 identity. In this 3
notation superposed tilde denotes quantities evaluated by numerical quadrature. Clearly :-::}:
the [m,] can be assembled into a global, lumped mass matrix, [M], which is diagonal. "
4. LUMPING AND EIGENSTRUCTURE ) NN
The basic result we use to investigate the effect of lumping on the pencil (K] —~ A[M] g
is that of G. Fix [5], which deals with the accuracy of applying a quadrature formula to L_‘:
equations (9) and (16) (on the element level) to produce numerically integrated forms a(-,) ‘-:.'.:
and b( -} when numerically integrated stiffness and mass matrices are assembled. The o
analysis applies to lumping by quadrature. The major result is based on the satisfaction ::
of two conditions:
(A) Stability: Let u®, vk € Sk
sup h by _ Z(h h :
B okl le(u®,v?) - c(u®,v*)| -0 (18) e
Jub{y =[]v* |, =1
(B) Accuracy: Let uP € S* be a finite element eigenfunction and vP € S*
X
s sup . L'.:.
: b le(u®, vP) — c(uP,vh)| < 62 (u®) (19) o
; ¥Ry =1
[
,__!- where ¢(-,-) denotes a(:,-) or b(-,-), and h is the mesh parameter, typically the maximal
= element diameter. L
’,'{. Let uP denote eigenfunctions which are stationary points of N
':: . &(uh, Uh) \::
u) = > 20 o
7

el

» L

L
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Note that a = a is possible (mass matrix quadrature only), or a(-,-) could be subjected :

ot to quadrature as well (the same or different from that applied to &(-,-)). Let Ay and A -

\ denote eigenvalues of Q and Q, respectively. Fix's major result states that if conditions r
ry (A) and (B) are met for a given uP, then there is a u® such that E
! uh-uh . <ot ) =6 (21)
No %
Q for constants €' and ' independent of h. For the symmetric problems considered here o
X a simple argument leads to the conclusion that ‘A, — A" = O(62) for A, = Q(uP) and ’ r"v
ﬁ An = Q(uP). A simple consequence of condition (A) is that if it is satisfied and v > 0, F-
¥ there is an h. such that for all h = h,. a(vP,vP) > 22 yh 2 with 4 > 0. This will soon “J
< play a crucial role here. .
:'.:j In order to make 6" = O(h*liu’ - ;) where p is the degree of the maximal complete
y polynomial on each element and u is a stationary point of equation (4), the degree of

precision of the quadrature formula must be sufficiently high. If it is, then no inaccuracy

will be incurred by the quadrature which is of lower order in h than H u-ub ||” In ref.

9 1 the statement is made that the degree of precision should be 2p — 2. According to the
y analysis in ref. 5, this is both necessary and sufficient for non-isoparametric triangles,

which will be the elements of most concern to us here. The degree of precision criterion
given in |5] is more stringent than 2p — 2 for rectangles and appears to be excessively so,
to the point of excluding optimal lumping formulas based on product Lobatto formulas
for b1 — p degree rectangles (see Figure 1). The reason is that Fix’s analysis applies to
integration of the stiffness and mass matrices, whereas if only the mass matrix is perturbed,
Fix’s result can be sharpened. In the Appendix to this paper we provide a proof which
applies to undistorted bilinear and biquadratic elements and shows that (A) and (B) are
satisfied, whereas the degree of precision is higher than 2p — 2 and lower than required by .
Fix.
In general the authors have found that optimizing the degree of precision subject to
the appropriate nodal constraints leads to stable and optimally accurate schemes. We
know of no completely general proof of this which applies for non-trivial isoparametric
transformations. But computational experience seems to suggest that optimal lumping by
quadrature produces accurate schemes for isoparametric elements. For the elements we
use here our own proof applies. For those elements for which no optimality proof is known,
it seems to stand to reason that choosing the lumping formula with highest possible degree
of precision is the wisest practical choice from the point of view of retaining accuracy.
We turn our attention to the eigenstructure of the lumped pencil, [K] — A\|[M]. We
first consider the constrained body case in which [K| is positive definite. From ref. 4 it
follows immediately that there is a nonsingular, real Q! for which
[a; — A3, h )
az; — A3, & S
oS
QT (K - AM})Q == o (22) s
0 -2

L | On ~ A3y




Clearly a;,, are real and a, > 0. Assume the ordering is such that the k zero 3, are
ordered first,so 5; =0, 0 <t < k < n. A few simple facts should be apparent:

(1) The eigenvalues are a;/8;, k < ¢ < n and oo (k times).

(2) If A is any real number, the eigenvalues of [K: — () — Ao)[M] area,/B,+ M. k<1 <n
and oc (k times).

We now turn our attention to the case in which ;A" has rigid body modes and is only
semi-definite.

Lemma: Let Condition (A) hold for the lumping formula. Given any Ay > 0, there is an
h sufficiently small such that for all A < h,. K' = A, M’ is positive definite.

Proof: K|+ Xy|M!is a positive definite stiffness matrix. 'K +A[M] is a stable quadrature
evaluation of the consistent matrix. Stability implies the existence of a ~ such that

1
Theorem 1: For sufficiently small h there exists |Q: as in equation (22) diagonalizing the

pencil (K| — A\[M] whether |K] is positive definite or semi-definite, whenever the lumping
quadrature is stable.

Proof: Pick any Ag > 0. Let h be sufficiently small so that [K] + Ao[M] is positive definite.
Equation (22) applies to (K] + Ao[M]) —~ A|[M] = [K] — (A — Ao)[M]. As observed above,
reshifting by ~Ao[M] does not change the eigenstructure and results in (K] — A[M]. ]
Remarks:

(1) Since A can be arbitrarily small in Theorem 1, it is no surprise that in practice the
result is observed to hold without making A small and even to hold for one element.

(2) Theorem 1 says that the divisors of the pencil [K] —~ A[M] are linear and furthermore
the pencil is diagonalizable by |M]-orthogonal transformations.

(3) \Q!T'M!|Q] has the same signature as [M], so that the number, k, of zero 3; is the same
as the number of zero masses. The number of negative 3, (and thus negative eigenvalues)
is the same as the number of negative masses (assuming, of course, h < ho).

(4) There is no restriction on the number of zero and negative masses, as long as the
stability condition holds. Our stability proof requires degree of precision is at least zero
(see Appendix). If we let {1}7 represent a vector with all entries associated with the first
degree of freedom at each node equal to 1:

{1}7[meJ{1} = pmin vol. () # O
{(1}TIM]{1} > ppminvol. (1) # 0

where ). = element e, and ! = problem domain, and p,;, is the minimum value of p in
the appropriate domain. Thus the pathologies of the example of the previous section are
ruled out. and elements wiht nonpositive mass cannot result from stable lumpings.

Next we consider the negative eigenvalues. The worry is that they could lead to
unstable modes with low enough frequency to represent mode shapes with significant ap-
proximation value. This cannot happen, at least on a fine enough mesh:

Theorem 2: For a stable lumping, given any N > 0, there is a sufficiently small ho = ho(N)
such that for all A < A any a,, 8, < O satisfies [a,/8;| > N.

9




Proof: Choose hy so that for all h < hg, | K1+ N|M] is positive definite. Then a,+NB; > 0,
and if a;/8; < 0 this must happen because 3; < 0(a; > 0). Thus

/B, < -N

or

"01/31 >N

[
Corollary 2.1: Under the conditions of Theorem 2 the pencil [K| — A[M| is always regular;
that is there are no eigenvalues of the form “0/0”.
Proof: In the above proof take N > O arbitrarily small. a; + ;N > 0. This is a
contradiction if a; = 3, = 0. 1
Corollary 2.2: Under the conditions of Theorem 2, there is a complete set of eigenvalues
of |K) — A\|M), namely, a,/3,.k < i < n and oo (k times).
Remarks:
(1) Experiments show that the negative eigenvalues are large in magnitude relative to the
lower spectrum, even when h is not small.
(2) The unstable modes due to a negative-weighted lumping formula are always mesh-
dependent and are driven higher and higher in frequency with mesh refinement.
(3) The results of the Theorem and Corollaries flow from stability and the fact that for
small enough h, |[K| + N|M] can be made positive definite.

This may seem hard to believe in that N [M | adds negative weights to the diagonal of
|K]. But closer inspection and ref. |6] shows that the diagonal of |[K| + N|M) has entries
with the following orders of A:

1-D: (K] = O(1/h),|M] = O(h). Thus diag(|K] — N[M]) ~ O(1/h) + O(Nh)

2 - D: |K| = O(1),(M] = O(h?). Thus diag(|K] + N[M]) ~ O(1) + O(Nh?)

3 - D: |[K| = O(k),(M] = O(h®). Thus diag(|K|+ N(M)) ~ O(k) £ O(NR3).

In the light of the above, the result is less surprising.

Theorem 3: If a is the negative eigenvalue of K — A[M| of smallest magnitude, then given
and two real spectral shifts A, > A, which are not eigenvalues and which satisfy one of
the following

(a) Ai 2 0

(b) X2 <0

(C) A >0and A € (0.0)

Then the number of eigenvlaues on [\, A,] is the difference between the number of
positive members of the signatures of K — A,(M] and K — X;(M].

Remarks:

(1) The proof of Theorem 3 follows directly from the canonical form, equation (22), which
has been shown to hold for all stable lumpings.

(2) Theorem 3 says that a modified Sturm property holds for K — A\|M], but two shifts are
required to begin.

(3) The excluded case is A2 > 0, and Ay < a. This can be avoided by using Ay = —¢ > a
and varying A; > 0 to find the positive eigenvalues. If the negative eigenvalues are needed.
take A, = —¢ and vary A; < 0. In view of Theorem 2, the chances that a “safe” ¢ < —a
cannot be guessed a priori are negligible.




(4) The number of positive members of the required signatures can be computed from the
number of sign agreements of the minors [6;.

5. ALGORITHMS FOR THE LUMPED EIGENPROBLEM

For vibration analysis and dynamic analysis by modal synthesis, only the lower portion
of the spectrum is needed. We have already argued that this portion of the spectrum is as
accurate in the optimally lumped case as the consistent case. However, the indefiniteness
and/or singularity of the mass matrix does affect the choice of algorithm for the solution
of the eigenproblem. Clearly the inverse and or square root of M} is no longer available.
Lumping in vibration analysis always saves the storage of the upper triangle of |[M|, which
may be significant. but to take full advantage of lumping, solution algorithms should be
chosen which, apart from being indifferent to the indefiniteness and/or singularity, display
a reduced operation count owing to the diagonal form.
5.1 Algorithms

We have chosen two algorithms which are indifferent to the indefiniteness of [M] and
each of which saves essentially a matrix-vector multiplication per iteration owing to the
diagonal form of the mass matrix. These algorithms have not been extensively tested, but
preliminary numerical tests suggest that they are as robust as their consistent counterparts.
In each case, we assume that h < hg for hg sufficiently small to guarentee linear divisors.
As pointed out earlier, this has be found to be no real restriction in practice, as the divisors
are usually linear with few or even one element. When the divisors are linear, one may
easily generalize the standard convergence proofs for each of the algorithms given below.
(1) Inverse iteration

(K] — » [M)) {Wri1} = v [M] {Wi} (23)

where {W;} is the current eigenvector iterate and + is an approriate normalizing factor
[7]. Iteration for one eigenvector at a time, as implied by equation (23) is not the usual fi-
nite element practice. Instead block iteration is often employed [6]. This method is greatly
enhanced by the use of generalized Jacobi iterations on the pencil [ K]~ A| M) obtained by
transformation using the current eigenvector iterates at each step. The transformed pencil
is not sparse, but approaching closer to a diagonal one at each block iteration; the gener-
alized Jacobi method is more attractive than it would be otherwise in this circumstance.
If {M] is rendered indefinite, this could cause problems if the indefiniteness carries over to
the transformed matrix, because it does not appear that Jacobi iteration will work if [My]
is indefinite. We are currently testing the following strategy: shift [K] to make it and each
| K«| positive definite, if necessary, and reverse the role of | K| and [M,] during the Jacobi
iterations. The reciprocals of the eigenvalues thus obtained are used where appropriate.
(2) Factored, shifted Lanczos:

Again, if neccessary, we shift to make | K] positive definite and exchange the roles
of [K| and {M|]. The Lanczos algorithm is applied in factored form (8,9] to produce a
tridiagonal matrix with rows {0...v,_; a, B;4+;...0}:

3 {

Wil {Via} = IMOLTT{V) - o, [LI{V)} - 8,|L]{Vi} (8 =0)

(Al = K+ X (M (LILT =4
1 |+ Ao [M; [L][L]" = [A] (24)

11




..............

where the Cholesky decomposition is used to obtain !L]. The normalization factor, ;-
can be made equal to §; by suitable recursive definition of a; and S;, so that the resulting
tridiagonal matrix is symmetric. The tridiagonal ordinary eigenproblem can be solved any
number of ways [10}, and the V, can be saved to reconstruct the original eigenvectors.
The attractive feature of this implementation is that the Lanczos algorithm produces all
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eigenvalues in N iterations in exact arithmetic. but acts as an iterative algorithm for the &
extreme eigenvalues and vectors requiring very many fewer than N iterates. The extreme f;?
eigenvalues at the high end of the spectrum for equation (24) are the reciprocals of the . t"i'*'
smallest positive eigenvalues of the original shifted pencil, and are precisely the modes we o
are interested in getting. o3
There appear to be several other indefinite-indifferent algorithms which save time ;:f-
if the mass matrix is diagonal: one is mentioned in ref. 1. That is the direct conjugate ;:f
3 gradient minimization of the square of the Rayleigh quotient '1,11|. This is nearly identical ;:-;
in form to the minimization of the Rayleigh quotient itself (the difference only appears in L
the scaling of the search direction, which has no practical effect). In fact, a code devised 4
for the consitent case can be modified to take advantage of the diagonal form of [M] and O
will work otherwise unmodified, even with zero and/or negative masses — as long as some -:::
care is exercized in choosing the initial guess. In a number of tests carried out by the first e
author, the lumped algorithm was unaffected by the poles in the Rayleigh quotient, which X
are present when the lumped mass matrix is indefinite. The algorithm is nearly twice as "‘3
fast — half the number of matrix-vector multiplications are required per iteration when ::Z:;::
compared to the consistent mass matrix algorithm. Furthermore, the lumped algorithm R
often converged in fewer steps than the consistent algorithm. The algorithm could be SN
- defeated only by choosing a singular vector or a vector entirely deficient in the lower modes > 2
as an initial iterate. This situation can be entirely avoided by using physical intuition as R
i a guide in the choice of V. . R S
: 2
: 6. TRANSIENT ANALYSIS by
: In this section we will demonstrate the feasibility and attractiveness of transient anal- o)
ysis by direct time integration using optimally lumped mass matrices. Attention will be -
N restricted to mass matrix lumpings resulting in positive and zero nodal masses* and we ,'
will consider, as a model finite element, the 6-node quadratic triangle in which the vertex Loy
¥ nodes have zero mass; see Figure 1. T
X 6.1 Partitioned Mixed Integration Schemes ’i"
A time integration scheme is constructed by employing a nodal partition consisting of R}
implicit and explicit nodal groups; the implicit nodal group contains all of the zero mass R
nodes and the explicit group contains all of the positive mass nodes. The partitioned, 1
linear undamped equations of motion become o
f:\:'
0 i 0 al ki1 | kTE d! p! e
—_—— - - —_— |- = = —— 3= —— (25) i
0 | mE aE kET | kv E dE PE :.:.
* Research into the stability and accuracy of direct time integration methods for finite ".:;
element models with indefinite mass matrix lumpings is currently in progress. .‘
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where {d’} and {a’} are (n x 1) vectors and represent implicit approximations to the ol
displacement and acceleration, respectively, and {d¥} and {af} are (m x 1) vectors and o
represent explicit approximations to the displacement and acceleration, respectively. In :$;:
equation (25) and in what follows, there often are corresponding statements on the global :
’ and element levels, while some statements — such as those involving global matrix inverses F X
: - make sense only on the global level. Since the algorithm presented in this section performs f.‘-'
) as many operations as possible at the element level. we have opted to use the lower case ::'. 1
., symbols indicating element level expressions whenever a statement has both global and ;.. \
element level versions. reserving upper case symbols for those statements which make sense
only on the global level. The explicit mass matrix, ;mE|, is positive definite and the stiffness -;
matrix given by the assemblage of the four partitioned submatrices shown in equation (25) L
is assumed to be positive semi-definite on the element level, and its assembled global N
counterpart is assumed to be positive definite because of restraints. This latter restriction
on the global stiffness matrix does not seem to be essential but simplifies the analysis. The
external force vector is partitioned as {p’} and {pF}, the components of which are given i
on the element level by it'_:'.:
55 = [ Nisa)dn (26) =
where N; is the shape function for node / of element e, ¢,(z) is either a body force or surface ‘
traction in spatial direction ¢ and 02, represents element surface or volume depending upon e
whether ¢ is a traction or body force, respectively; J is the degree-of-freedom number of .
d.of. i at node I. By using the same quadrature rule to evaluate equation (26) as that N
used in the mass matrix lumping, all of the external loads are lumped into {p£} and {p'} s
is null. B
Numerous combinations of implicit and explicit formulas are possible for the time in- )
tegration of equation (25). However, because the implicit mass matrix is null, the accuracy BN
and stability of the time integration is directly dependent upon the explicit method that
is employed and is independent of the implicit method that is used which simply serves to 5
define the average acceleration and velocity of the massless nodes whose position in time -
. are exclusively dependent upon the position of the adjacent positive mass (explicit) nodes. Dt
: In particular, we will employ the explicit Newmark formula {12] with § = 0 and v = 1/2, oo
; which is similar to central difference, and the implicit Newmark formula with 8 = 1/4 and ol
v = 1/2, which is identical to the trapezoidal rule (we omit braces enclosing nodal vectors ]
in what follows, whenever it is clear from the context to do so): -
E E e A g e
d;,, =d; + Atv, + 5 n (27) _.-_:j\
- v,y = Up + éz! af +af, (28) -
: =
. i
: 2
:
s 2
: 13 i
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: e
2 ~
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At?
dnsy = dn+ Atvy ~ ==lap +apy,] (29)
At .
Vnay = vp + ‘2‘i“rlz ~aqy) (30)

where subscript n denotes time nAt.

Combining equation (27) with (25) and noting that p’ is null if the external forces are
lumped using the same quadrature rule as that used in the mass matrix lumping, provides

2
:k”i {dlﬁl} o ikw] {df - Atvf-.L —A—zt—af} (31)

o _ At?
ijEJ {‘154-1} = {Pfﬂ} - lkm] {d!'“} - {kEE] {df M Atvf M ——2—0'5} (52

The computational procedure is shown in Figure 2; for linear problems, its implementation
in analysis software with existing stiffness method static analysis and explicit method
transient analysis capabilities is straightforward.
Remarks:
(1) Because the method is partially implicit, it is necessary to form and factor the global
stiffness matrix | K H ]. However, ﬂ’irough a suitable node numbering scheme, this matrix
has the same size and band structure as that associated with a mesh of an equal number
of constant strain triangle finite elements. Thus, the requirements for storage and factor-
ization are considerably less than those usually associated with quadratic triangle finite
elements.
(2) In the implementation shown in Figure 2, two internal force vector evaluations per
time step are required. While these evaluations represent the major source of effort per
time step, a subsequent example problem will illustrate that it is still very competitive in
terms of efficiency.
(3) These internal force evaluations can be carried out at the element level, as pointed out
by the correspondence implied between equations (14) and (15).
6.3 Stability

An important consideration regarding the proposed technique is its numerical stabil-
ity. Because an explicit method is being employed for the motion of the positive mass
nodes, the procedure will be conditionally stable. With typical finite element approxima-
tions having positive definite mass matrices, the stability limit for explicit computation is
proportional to the reciprocal of the highest natural frequency of the semi-discretization
[13] which is strictly mesh dependent and has no physical meaning. In fact, a substantial
portion of the upper frequency spectrum is physically meaningless. The effect of a mass
quadrature lumping rule that produces positive and zero nodal masses is to force the mean-
ingless portion of the frequency spectrum to infinite; in the proposed scheme the motion
at these frequencies is treated implicitly which renders their treatment unconditionally
stable. Furthermore, because the remaining portion of the frequency spectrum has been
reduced, we expect an improvement in the time step permitted for explicit computation.
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1. set initial conditions, n = 0, {Dn}, {Vo} — {A4u}
2. compute {DE, |} = {DE} - At{VF} + Azﬁ {AE}

3. compute {Diﬂ}:_!’}(“]*‘ [K!E] {DE

n+1

—p—

compute element-by-element

4. compute {Al_|} = A—“ﬁ {D!_,} - {DI} - At{Vn’}: -~ {A,’z}

v

. compute {AE_|} =

n~1

ME T {PEL ) - (KE D)) - [KBP) {DF

n+1 J N
compute element-by-element E{f o
i

1 1 At I 1
6. compute {Vn+l} = {V,1 } + 5 [{A,,} + {An+,}] e

W~

vy,

LG

At E ';‘~h
7. compute {V.E,} = {V.E} + &t [{AE} + {AE,,}] s
3

)

8 n—n+1,goto?2 g

FIGURE 2 oo

Computational procedure; steps 4 and 6 can be omitted if the

velocities and accelerations of the implicit nodes are not of _

interest. s

R

“s\_.

o

We define a stable method as one in which a norm of the solution, S, exists at time e

nAt such that R
Sp<e¢ (33) T
e

for all n where ¢ is a nonnegative finite constant [13]; any vector whose norm satisfies Ny
equation (33) is said to been bounded. In our analysis of stability, we will employ an
energy method similar to [14] in which the conditions required for the satisfaction of ;::::-
equation (33) are deduced. The following definitions are employed :j::
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d=dn-l “dn (34)
d= dnyy +dp

with similar definitions for the velocity and acceleration diflerence and sum.
Moving to the global level, the difference of the equation of motion at times (n + 1) At
and nAt provides

KIE] {DE} - K™ {ﬁl} = {0} (35)
ME [AEL - KEE {DEL L TKEN [P} < (o) (36)
where we note that it is sufficient to consider the homogeneous form of equation (25)

under our assumption that the external forces are bounded. Premultiplying equation (35)
by {VE}T and combining with the explicit formula, Eqs. (27) and (28) provides

{AE}T | ME - AT‘Q EK']J {4} - {VE}T[K'] {vE} =0 (37)

i

where

K] = (K55 - (KB ([KT]) 7 K (38)

Upon rearrangement, equation (37) becomes

T, T, .
{Af-H} '.M .'{Af+l}+{VnE-+-l} {K i{VnE-H}z

39
{AE}T (M) {AE} + (vE} K| {V.F) )

where
M) = [MP] - o K] (40)

Theorem 4: If M ") and [K ") are positive definite, then {AE, |} and {V,E_,} are bounded.
Proof: Using induction on equation (39) provides

(B} M {AE. )+ (VE,} (K] {VE,} =

. T (41)
{47} IM]{ac}+ {vo"} (K ){Ve'}

and by virtue of equation (28), the theorem follows. 1

Corollary: DE, | and D!, are bounded.

Proof: The boundedness of Df‘, results from equation (27) at the global level, and then

the boundedness of D], results from equation (31) in which it is noted that a sufficient

condition for nonsingular {K '/} is that the global stiffness matrix is nonsingular. [

Thus, it only remains to determine the conditions under which the matrices [K "} and
M~ are positive definite.
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Theorem 5: [K") = |KEE! ~ [KE'i(IK11))-1K'E! is positive definite for arbitrary parti-
tions if the assembled stiffness matrix

Kll ! KIE

Ki=|-- - -- (42)
C KE!? KEE

is symmetric and positive definite.
Proof: Pre- and post-multiply equation (42) by a partitioned vector {(XE)T[(X’)7} where
{XE} is (n - 1) and is nontrivial and {X'} is (m x 1) and is arbitrary

(X7 KX o xR (XE) + (XPYT (KEE {XF) >0 (a3)
For the particular choice {X'} = —[K'!|-'|K1E]{ X F}, equation (43) provides

{XE}" [(KZ") - (KB ([K"]) 7 [K'E]] {XE} >0 (44)

and the conclusions follow. ]

Thus, the stability of the n}ethod depends exclusively upon the positive definiteness
of the matrix [M "] = [MF| - AL (K"}, If (wF)? and Y, k = 1,2,...,n, are the eigenvalues
and vectors corresponding to

) 2
(157 - @E)* [ME]) {w} = {0} (45)
then [M "] can be uncoupled to give the time step size condition for stability
2
At < (46
ke )

where we refer to w® as the explicit frequency, even though it is dependent upon the

implicit part of the stiffness matrix as shown in equation (38).

Remarks:

(1) The extreme frequency entering in the stability criterion, equation (46), is based upon
a stiffness matrix that is the difference of two positive definite matrices, as shown in
equation (38), and a mass matrix, which because of the quadrature lumping rule, has
entries of larger magnitude than those associated with more conventional positive definite
mass matrix lumpings. Thus, the proposed technique results in a more generous time step
restriction than that associated with the exclusive use of an explicit method with a positive
definite mass matrix.

(2) Because the eigenproblem given by equation (45) involves a global matrix inversion,
the extreme eigenvalue cannot be bounded by the maxima of all unconstrained element
frequencies [15]. However, because the second term of equation (38) is positive definite, it
is possible to bound the frequency entering in equation (46) by the extreme frequency of
the eigenproblem
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in which it is noted that the eigenvalue separation theorem 15,16 is applicable.

(3) Because of the definition of K ;. equation (3%). and the particular nodal partition
that we are emploving (i.e.. the implicit nodal group does not occupy a contiguous region
of space. but rather is interspersed with the explicit nodal group such that each pair of
implicit nodes is separated by an explicit node) the time step restriction given by equation
(46) shows that stability is not independent of the part of the stiffness that is treated
implicitly. For example. a stifl spring placed between any two implicit nodes in a mesh of
quadratic triangle finite elements will adversely affect the timestep restriction.

6.2 Example Problem

In the examples that follow, we will demonstrate the cost effectiveness of the implicit-
explicit optimally lumped quadratic displacement triangle element by comparison with an
explicit analysis employing a leading competitor element, the 9-node quadratic displace-
ment quadrilateral with optimally lumped mass matrices that are positive definite. Also,
the loss of accuracy associated with a particular ad-hoc lumping rule when applied to
the quadratic triangle element will be demonstrated by example. All computations were
performed on a Harris 800 computer with double precision arithmetic (48 bits per floating
point word).

Shown in Figure 3 is a model of a cantilever beam consisting of 40 quadratic displace-
ment triangular finite elements; the material parameters are also listed in the figure. The
beam is unloaded and the initial condition consists of the beam at rest except for the free
end of the beam (nodes 31-33, 104 and 105) which has a vertical unit step velocity.

Because optimal mass lumping is employed, nodes 1-33 have zero mass and are treated
implicitly and nodes 34-105 have positive mass and are treated explicitly. Note that the
node numbering scheme is such that the size and band structure of [K//] is minimized.
Furthermore, because the explicit matrices [K7Z|, [KE!] and |[K FE| are never assembled,
as shown in Figure 2, the efficiency of the explicit phase of the computation is independent
of the node numbering scheme.

The maximum time step for stable computation based on an eigenanalysis of the global
matrix equations, Eqs. (45) and (46), is At < 1.93 x 10~° sec. Because the eigenanalysis
required to arrive at this result is rather involved, we also consider a more conservative and
much easier to compute bound based on an eigenanalysis of the explicit-explicit stiffness
matrix only, equation (46), for a single element; this provides At < 1.84 x 10~° sec. which
is conservative by about 5%.

Simulations were performed for a duration of a little more than one fundamental period
of vibration and at various time step sizes to validate the stability criteria determined
above; computer execution times for these analyses are listed in Table 1.

Results for the two lower time step sizes considered were stable and virtually identical;
the vertical displacement time history of the beam tip at the midsurface (node 32) is shown
in Figure 4 for the simulation employing the larger step size, At = 1.9 x 10~ sec. In order
to verify the theoretical stability limit for the method, the simulation was repeated using
At = 2.0 x 107° sec. and indeed. the computation was unstable.
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FIGURE 3
Finite element models consisting of 40 quadratic displacement
triangle elements (Fig. a) and 20 biquadratic isoparametric
elements (Fig. b); material properties: modulus of elasticity =
30x10° psi., Poisson’s ratio=0.3 and density=7.4x 104 "’—;’5‘—2 .

To show that the method is accurate and cost effective, comparison simulations were
performed employing a mesh of 20 bi-quadratic displacement quadrilateral finite elements
with optimal mass lumping; see Figure 1. Because the Newton-Cotes formula employed
in the mass quadrature has positive weights. the resulting mass matrix is positive definite
and a strictly explicit method can be used for the time integration. This is a particularly
fair comparison because one quadrilateral element has the same number of degrees-of-
freedom and a similar displacement field as a macroelement consisting of two quadratic
triangular finite elements. Based upon an eigenanalysis of a single element. the time step
restriction was determined to be At < 1.65 « 10" © sec. Simulations were performed using
various time step sizes and for a duration equivalent to that employed for the triangular
finite element computations: the computer execution times are given in Table 1 and the
vertical displacement time history of the beam tip at the mid-surface (node 32) for the
largest stable time step. At - 1.7 > 10 " sec., is shown in Figure 4 beside the results
for the implicit-explicit optimally lumped triangle element. These results agree extremely
well except for a slight period error. Furthermore. a comparison of the execution times
for the simulations surprisingly show the implicit-explicit triangular element analysis to be
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Quadratic Triangle with Optimal Mass Lumping

At( x10~C sec.) #steps  execution time (minutes)
1.8 1775 94
1.9 1685 89
2.0 1600 unstable

Quadratic Quadrilateral with Optimal Mass Lumping

At( <10~ % sec. ) #steps  execution time (minutes)
1.6 2000 137
1.7 1800 129
1.8 1775 unstable

Quadratic Triangle with Ad-hoc Mass Lumping

At( x10"%sec.)  #steps execution time (minutes)
1.2 2665 76
TABLE 1
Time step sizes and computer execution times for example
problem.

substantially more economical than the explicit quadrilateral element analysis. The reason
for this efficiency is threefold: first, the effort required to store and factor (K //| was minimal
for this problem. In fact, the size and band structure of this matrix is identical to that for a
mesh of 40 constant strain triangular elements. Although the number of equations in | K /]
is considerably smaller than the total number of equations (in this example, it has about
30% of the total number of equations) it is noted that its storage and factorization become
increasing more inconvenient with increasing problem size. The second source is the fact
that fewer time steps are required because of the improved stability, thus, approximately
6% fewer steps were needed. The last source of savings stems from the cost associated with
internal force evaluations. Even though the implicit-explicit triangle algorithm requires
two internal force evaluations per time step; see Figure 2, as opposed to one for a strictly
explicit analysis, the fact that only six integration points per two-triangle macro element
are required compared to nine integration points for the quadrilateral, coupled with the
fact that the triangle evaluations are easier (fewer multiplications) renders the triangle
internal force evaluations slightly more efficient per time step.

In order to demonstrate the importance of using an integration rule of sufficient ac-
curacy in the mass quadrature, we will compare the results obtained by the previous
implicit-explicit optimally lumped triangle simulation with an explicit analysis employing
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k. an identical mesh of quadratic triangle elements with ad-hoc mass lumping to preserve o
. the positive definiteness of the mass matrix. The particular scheme that was employed is -
2 detailed in |3, and consists of letting the diagonal entries of the lumped matrix equal the EN
E:'. diagonal entries of the consistent mass matrix multiplied by the ratio m/s where m is the :'. 3
v total mass of the element and s is the sum of the diagonal entries of the consistent mass N
::: associated with translational degrees-of-freedom in one coordinate direction only. The re- L
quired computer execution time is given in Table 1 and the vertical displacement time .

B history of the beam tip at the mid-surface is shown in Figure 5. Although the phase of
N the two solutions agree quite well, the amplitudes disagree by as much as 35%. Therefore :l:::
- it is quite apparent that, at least for the particular ad-hoc lumping rule employed in this A
. simulation, that substantial inaccuracies can result from non-optimal mass lumping rules. e
: 7. CONCLUSIONS 3
o We have demonstrated that optimal lumping of masses for higher-order elements can :::-
i be an viable computational technique, in second-order problems. When only zero masses :::f

‘ result from such lumping, we have shown that both vibration and dynamic analyses can
be carried out in a manner which is more accurate than an ad-hoc lumping which pre- =3
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FIGURE 5
Cantilever beam tip displacement time histories for quadratic

triangle element analyses employing optimal mass lumping and
ad-hoc mass lumping.

serves positive mass, and even more computationally efficient than a widely-used scheme
of comparable accuracy which has positive masses. Implicit treatment of the resulting
infinite frequencies appears to be a favorable trade-off in dynamic analysis, as long as the
number of zero masses is not excessive. We envisage that most of the application of the
techniques decribed here will be in structural and elasto-dynamic problems, but it may
be of interest to mention that the motivating example in devising the dynamic algorithm
presented here is that of fluid mechanics. There the pressure is in somes sense analogous
to the modes of infinite frequency introduced by zero masses. It has long been known that
the pressure must be treated implicitly in algorithms which treat the velocity explicitly.
The reader may have observed that there is a subtle difference with the pressure in incom-
pressible fluid dvnamics, however. The pressure at the current iterate of a velocity-explicit
Navier-Stokes method must be chosen to make the velocity field weakly divergence-free
at the next iterate. The situation here is simpler: the massless nodes. involving modes
of infinite frequency. are carried by the stiffness of connected nodes with non-zero mass.
As a consequence, the motion of the nodes with nonzero mass is computed first, and the
motion of the massless nodes is computed from the motion of the nonzero masses. Such a
computational ordering would by unconditionally unstable in fluid mechanics.
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In vibration analysis, the infinite frequencies introduced by lumping can be viewed
as the setting of some of the inaccurate. high frequency portion of the discrete spectrum
to infinite frequency. Heuristically, this is similar to what is done in static condensation,
which is equivalent to creating infinite frequencies an a more-or-less ad-hoc basis. Static
condensation is likely to lead to reduced accuracy. whereas optimal lumping is guided by
-ieorous notions of stable and accurate quadrature, and accuracy will not be lost. Of
course, optimal lureping will not accomplish the same goal as static condensation. which
Is to replace all but a few of the most accurate vibration modes by ones with infinite
frequency. thereby greatly reducing the dimension of the eigenproblem. It nevertheless
appears that optimal lumping can be used in a similar spirit to reduce the computational
cost of eigenanalysis. Optimal lumping may also be viewed as a means of pushing to the
limit the notion of modifying the upper portion of the discrete spectrum without suffering
an accuracy loss.

This finally brings us to the question of negative masses. In spite of first appearences
to the contrary, we have shown that they do not interfere with vibration analysis. We
like to think of the negative masses as ones that have been forced to even “higher than
infinite” frequency by the lumping scheme, though this may only be a somewhat quaint
descriptive analogy. There should be a very real doubt about the dynamical viability of
negative masses: they introduce high frequency, unconditionally unstable modes into the
problem, which seems the last thing anyone would want to do in dynamic analysis. We do
not believe it is as bad as that; the saving grace may lie in the fact we have established
here: the negative masses give rise to very high frequency modes. This portion of the
spectrum is just the one subject to algorithmic damping by many good integrators. To
put it another way, many ODE integrators have stable regions which include substantial
portions of the right half plane (backwards Euler’s method, for one, though we are not
recommending it as a practical method). We are currently invesigating the possiblity of
devising time-stepping procedures with sufficient algorithmic damping to be indifferent to
spurious unstable modes introduced by optimal lumpings with negative masses.
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APPENDIX
Sharpening of G. Fix’s result :5/* on quadrature errors when a(-,-) = a(-,). Following
ref. 5, element-by-element quadrature errors are of the form (applied to scalar component
of uP, call it u*):

h“'/ D (u"eh) Vi = gy - g = L (A.1)

where ~ = typical derivative multi-index. (. = degree of lowest order polynomial not
integrated exactly. We assume. as does ref. 5, that the inverse inequality
C. on.

'D"""u'h L gk .
Ly — h i )€

100} =1 (A.2)

on each element. There are two cases. (A) Stability: u” and v"* are arbitrary trial functions
and (B) accuracy: " is the f.e.m. solution and v" is an arbitrary trial function. In case
(B)for0<s<p
i,k 2
Dt S Clielly, (4.3)
€

where u is the exact solution. The left-hand side sums to H uh IL fors=0or1l.

Case A: (A.1) is the sum of terms of the form
E. = Ch® / [((D°u") (DPv*)| dV; |a|+ B8] = |7] = & (A.4)
e

Suppose |a} # 0 and |3] # 0, then

4

| Doutly || DRv™ |,

E. < Ch% || D*u* ||0,e | DPv* llo. < Ceh®

plai-1 RIBI~1
where |ap| = |80| = 1. Thus
E. < ChfetemPI{lub || flob ]|, = Co®[[u®|l, o™ ], (4.5)
Now
. /D7 (uho™) dVi
=1/
) A (A.6)

<yaswt(TII) (Tt ) = omivtl, i,

* Reference numbers in the Appendix refer to the Reference section of the main body

of the paper.
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g TSIy a2 - ¥ g Y iy N g g
o
. . . : N
: If either ja| = 0 or |3} = 0, then the following case is representative: ,,r":
L ,l
l eu h h N h i " h a5
h /(D’Yu )v dv < |"D’7u l’_l'e!lv H],e (A’7) et
e ;
and , v
o b sup o h .‘n
' (D" . (D u")wdV ‘
h wé€ Hile). wi,, =1/ o
sup " .
= [~ / (D’ uh) (D™ w) dV]
o tu 1,6 =1 €
K where |4'i = €, — 1.:v0 = 1. Now
. <,
/ (D‘V'uh) DY wdV Ej
e "{:'J‘
‘ ; C | C’ :"':“
h i Tugy | h Yo R | Y e
: s H DYu !;r_.e”D w]'o'e s hiv'i-1 H" |=l,e 1D ‘wHO,e < RIY'1=1 ”“ ”l,e PN
. , R
Thus
¢, N 2.k h o
h |/e(D u?)vhdV| < Ch? || u ”l,ch |11,e .:-;:;1
& IEN
’ and summing as before shows in general that R
e
h hy _f(.h ,h 2,k h <
jb(u* v*) ~ B(u*,0%)| < CR? [[u |, 0" |, (4.8) E
where b(-,-) refers to the L, inner product in one vector component of the trial spaces o
defined in the main body of the paper. Since the same interpolations and quadratures are :'_;Z:j-
used in each component, the result of equation (A.8) carries over to b(u®, v?); this proves _
stability. v
Remarks: :}_:3
1. Fix’s result can be sharpened because b(-, -} involves no derivatives. One derivative “on ,:f‘:
. Y
each side” must be left behind to compare to || - ||,, hence two fewer powers of h are lost é
in the process. NEN
2. When all ¢, derivatives are on one side, one must be “moved over”. The negative norm :jZ:j:
argument is just a compact way of applying the divergence theorem and arguing away the ';I:f:
boundary integral. -‘\.\,
3. The above argument shows that any quadrature formula with degree of precision > 0 !
. . - P
is stable for b(-,-). Accuracy is another matter. e
o
Case B: We argue that (A.1) is small indirectly, making use of (A.3). Assume that a A
non-conforming triangle of (complete) degree 0 < ¢ < p can be inscribed in every element G
::\~
NS
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of the mesh, and that the conditions on the mesh are such that the standard error analysis
{17} applies to elements, so that if u” is a standard approximation to u” from the implied
space of complete (discontinuous) polynomials

fuh —whii < Crtuhy

1,e g=-1.e (AQ)

Note that g = 0 is allowed giving only boundedness of the left-hand side. Further let us
assume that b(u”.v") = b(u", v") (whereas b(u".v") may differ from b(u",v")). Then

blu".vh) - b(u". v?) = buh - uh M) - b(ut - uh o) =

p/ (uh - ;1") vhdV - pZ Zu; (uh - ih)kv,’:
Q .

€

S Zc'th+2 li uh i!q+1,e l: Uh %Ih,e = Zcehq+2 H u'h Hq-\\—!,e H vh H],e
e e

where the inequality is determined from the assumption of stability. The subscript k refers
to function value at the k** quadrature point. Note we assume p = constant; the result
will apply when p is a smoothly varying coefficient {17). We accumulate the error as in
equation (A.6), and finally arrive at the desired result:

b, 0%) — B(u*,v")| < CRI2 [fu ], [lv* ], (4.10)

Remarks:

1. For the bilinear element, ¢ = 0, leads to b(u",v") = b(u*,v*), thus the entire solution
is O(h) (optimally) accurate [5]. For the biquadratic element, ¢ = 0 or 1 leads to O(h?),
which is also optimal.

2. Bi - p polynomials have a power of h to spare. With linear, quadratic and cubic
triangles the exact integration condition cannot be met unless ¢ = 0,0 and 1 resp.

3. All elements discussed in the body of the paper lead to recovery of full accuracy by
allowing p— ¢ < 2.
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