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ABSTRACT

We prove that for 2 x 2, strictly hyperbolic, genuinely nonlinear C~

systems of conservation laws, there is no metric D such that *

f D)(u(x,t),c)dx

is a decreasing function of time for every weak solution u, uo(±-) -c.

AMS (MOS) Subject Classifications: 35L65, 76NI0

Key Words: Conservation laws, Decay of solutions, L1-dependence

Work Unit Number 1 (Applied Analysis) .~~

* 1Work done while the author was a visiting member of the Mathematics Research ~
Center, 17niversity of Wisconsin-Madison.
Present address: Departamento de Matematica, PUC-RJ, Ruia Marcp:69 de Sao

* Vicente 225, 22453 Rio de Janeiro.

Sponsored by the United States Army under Contract No. DAAG29-Sfl-C-0041. .' *

*~~~~~~~~ .** . . .*~ . .. .. .. .. .4 . N N



/

SIGNZFICANCE AND EXPLANATIOW

-' The Cauchy problem for a 2 x 2 system of conservation laws in one

dimension is

Ut + (flul a 0, x j, t > 0

u(x,O) - uO(x)

where u - (4'4,4), f

Such systems of equations usually come from the application of the laws

of conservation for physical quantities like mass, momentum and energy, and

arise in problems of gas dynamics, elasticity, oil reservoir simulation and

other areas of engineering.

The questions of decay and continuous dependence with respect to the

initial data are central issues in the study of the problem above. The result

proved here rules out the use of certain functionals to study the decay of

solutions and is relevant to the issue of L continuity with respect to the

data.
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ON L1-CONTRACTION FOR SYSTEMS OF CONSERVATION 
LAWS1

Jorge G. S. Pati'no

For 2 x 2, strictly hyperbolic, genuinely nonlinear (cf. []) systems of

conservation laws it was proved in (2] that there is no metric D, compatible

with the state space, such that

ID(U,V;t) B f D(u(x,t),v(x,t))dx (1) I- ,

is a decreasing function of time for any two weak solutions u,v whose initial

conditions agree off a compact set. p.,

In 12] a metric D is compatible with the state space Z if

C1. D : E X E + R

is a symmetric function.

C2. D(u,v) + D(v,w) > D(u,w) vu,v,w C ,

C3. C-lu - v1 ( D(u,v) C Colu - v) Vu,v C E

with a uniform constant Co .

Here we give an easier proof of this result, and give conditions that a

metric must satisfy if condition C3 is to be relaxed.

We wish to point out that relaxing condition C3 is important since it rules

out the use e.q. of entropies or quadratic functions to obtain certain integral

decay estimates. It is also interesting to note that the solutions used in the

IWork done while the author was a visiting member of the Mathematics Research
Center, University of Wisconsin-Madison.
Present address: Departamento de Matematica, PUC-RJ, Rua Marquis de So Vicente
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construction of the counter examples below are the elementary "spikes" used

frequently in decay arguments (cf. [31).

Thus let

u + (fu))x 0 (2)

be any 2 x 2 system strictly hyperbolic and genuinely nonlinear on a region

N C R2. Let A1 (u) and X2 (u) be the eigenvalues of df(u) with

corresponding eigenvectors r1 (u) and r2 (u)• Let 11 (u,u*) and R2 (u,u*) be

respectively the integral curves of rl(u) and r2(u) passing through u •

R1(u,u*) and R2(u,u*) are called rarefaction curves. Let S1(u,u*) and

S2(u,u ) be the curves of states that can be joined by respectively a 1-shock

and 2-shock to the right of u • These are called shock curves. Given a

state u on N, shock and rarefaction curves exist locally [1].

we then have the following theorem

Theorem 1. Let u and v be weak solutions of (2) whose initial conditions

agree off a compact set, then there exists no metric D, which is symmetric,

such that 1(u,v;t) is a strictly decreasing function of time.

Proof. Take any states uL,UR,u and ! related in the followir4 way

(Figure 1)

1) uR and uL are joined by a 1-shock with speed s1, with UL on the

left.

ii) UR and 1 are joined by a I-rarefaction.

111) and ULare joined by a 2-rarefaction.

iv) u and uL are joined by a 2-rarefaction.

iv) and u are joined by a I-rarefaction.

(We assume here that A2(u) increases from u to uL . The case where A2(u)

r ecreases from G to u L  is discussed below.)

-2-
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R,(u, u L  uL

u f(u, U)
uR R

Figure 1

The system (2) with initial condition{ uR  if 0 < x < (, - I(UR))T
u(x,0) -.

uO otherwise ...-
U*. ,.

has, for t C T, the solution u shown in Figure 2.

t T

UL  RL• .
t~-.-...

t 0 L " "

x 0 x = (Sl-Xl (uR))T

Figure 2. A line denotes a shock and a fan denotes a rarefaction. " *.

Then

ID(uuL10) D(URUL)(SI -X(UR)T

and . .

IT)~ ) (U)O ' (U j~1)

ID(UULIT) - U + D(ULU)(2(I - 1 (U))T"
I~ .1 2(UL)

+ T f -D(V(X),UL)dk I

2
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where PM) and v,(X) denote paramotrizations of Rl(ui) with respect to

and of R2(u,uL) with respect to A2 , respectively.

Now, with uR,uL and 72 denoting the same states as in Figure 1, consider

the following initial conditions{ L. if 0 < x < (X2(uL) - S1 )T
v(x,0) - UR otherwise.

The solution v of this problem, for t 4 T, is given by the waves in

Figure 3. A.'

UR
U U
RL

"a%!t 0

x-O x ( 2 (uL)-Sl)T

Figure 3

Then

!D(vguRlO) - D(uL'uR)PX2(uL) " si)T

and

(u) X (UL)
12

ID(IV,uR0) T f D(Ij(X),UR)dX + T D(V X )UR)X "
x'I (uR) 12( ) ()-

+ D(I.,U Mll 2) A (72))IT•"'-

To prove the theorem by contradiction, assume now that

ID(vuR;T) + ID(U,ULIT) 4 ID(vuR;O) + ID(u,uL;O) (3)

Thus
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( O"A) DA),uL) + DOMu(AR)ldA
AA I(uR )

+ f - D(V(X),UL) + D(v(X),uR )I dA
x 2 (u)

+ (L)((i)-+ D(ii,uR)(X 2 (
1 ) -A()

4 D(u,,u L)(8 1 - AiURj)) + D(ULIUR) (A 2 (UL) SO

Now, adding and subtracting

D(ULIUR)0Xi(;) - I(uR)) + D(uL'uRI)(A2(uL) -X 2(;))

we get

f {D(Ij('),uL) + D(U(X),uR) - f(UL~uR))}dA

A IA Cu

" f1 {D)(V(N),uL + D(VPI),UR - DhiR#UL)ldX (4)
x (u)
2

" CD(u LIG) + D(5, u R) D(uR,UL))(A2fu 6i())

By the triangle inequality the two integrands and the third line above are

positive. Since AICUR) ~() adA 2 (i) < A2 (uL).euithod in()f

and only if equality holds in each of the triangle inequalities, in particular

only if

D(uLI i) + D(;a,uR) -D(U R UL

A similar construction as above using the initial conditionsIUL if 0 < x < X (uL) -

u()
Sotherwise

and { if 0 < x < A2(v) - A(v)

'a"u~otherwise I-

will, by the same argument, yield



D(uRg) + DlUR,UL) - D(I,uL) . (6)

No,(5) ana (6) give
D(,UL) - D(B,UR) - D(UL,) + D(UR,G) (7)

This equation gives, using the compatibility condition C3. Lemma 4 in (2) after

which the proof proceeds identically.

If one does not assume C3, (5) and (6) put restrictions on the metric D.

For instance the Euclidean distance or a linear combination of changes in

Riemann invariants will not work.

In the case where X2(u) decreases from u to uL a similar construction

using the shock curves S2 (u,U) and S2 (ue) (see Figure 4) and the same

initial value problems as above yield conditions similar to (5) and (6) from

where the proof would proceed identically.

LL

R1 (uuS2 (u,u R )  S 2 (u'u) : --

R (u,u5)

Figure 4
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