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ABSTRACT
We prove that for 2 x 2, strictly hyperbolic, genuinely nonlinear

systems of conservation laws, there is no metric D such that
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is a decreasing function of time for every weak solution u, ug (o) = c.
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SIGNIFICANCE AND EXPLANATION "-,;.s:,

. N

‘; ) The Cauchy problem for a 2 x 2 gystem of conservation laws in one } vj'

EL

. dimension is . - e :

l‘ ;’. \’4 ° 3 &ﬁg i

] A

] u + (f(u))i = 0, x & R, £>0 Yty

¢ sut v '_ l'

'— e u(x,0) = ug(x) ke

3 -.‘t“ Tl a0 2 ) }:

where u = (“"'“L)p £f = (f\(u)'fh(u))' iy"?

- o

Such sgystems of equations usually come from the application of the laws u\;'

- of conservation for physical quantities like mass, momentum and energy, and ',::f:-:‘
arise in problems of gas dynamics, elasticity, oil reservoir simulation and

By

; other areas of engineering. f;?ﬂ

5 The questions of decay and continuous dependence with respect to the ?:?ﬁ

- ’f “-

initial data are central issues in the study of the problem above. The result “.

proved here rules out the use of certain functionals to study the decay of

Tl

-t . sub 1L :'.":
N solutions and is relevant to the issue of L’ continuity with respect to the '..{:' ’
data. ( ‘8‘.
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. For 2 x 2, strictly hyperbolic, genuinely nonlinear (cf. [1]) systems of
conservation laws it was proved in (2] that there is no metric D, compatible
with the state space, such that

Iylu,vit) = [ Dlulx,t),vix,t))dx (1
-
is a decreasing function of time for any two weak solutions u,v whose initial
conditions agree off a compact set.
In [2] a metric D 4is compatible with the state space I if
Cl. D: Zx T + R
is a symmetric function.
C2. D(u,v) + D(v,w) > D{u,w) Vwa,v,wel
c3. C51|u - v| € p(u,v) € Co,“ ~vl wavetl
with a uniform constant Cg,.
Here we give an easier proof of this result, and give conditions that a
metric must satisfy if condition C3 is to be relaxed.
We wish to point out that relaxing condition C3 is important since it rules
out the use e.qg. of entropies or quadratic functions to obtain certain integral

decay estimates. It is also interesting to note that the solutions used in the
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construction of the counter examples below are the elementary "spikes™ used

§ frequently in decay arquments (c¢f. [31).
g Thus let
"
u + (f(u)), =0 (2)

'i be any 2 x 2 system; strictly hyperbolic and genuinely nonlinear on a region
.
E NC R2. lLet A4(u) and Xz(u) be the eigenvalues of df(u) with

corresponding eigenvectors r (u) and r,(u). Iet R1(u,u*) and Rz(u,u*) be
:> respectively the integral curves of ry(u) and r,(u) passing through u'.

R,(u,u’) and Rz(u,u') are called rarefaction curves. Let s1(u,u') and

sz(u,u') be the curves of states that can be joined by respectively a 1-shock
E and 2-shock to the right of u'. These are called shock curves. Given a
.5 state u' on N, shock and rarefaction curves exist locally [1].
N We then have the following theorem
5 Theorem 1. Let u and v be weak solutions of (2) whose initial conditions
:: agree off a compact set, then there exists no metric D, which is symmetric,
= such that ID(u,v;t) is a strictly decreasing function of time.
;E Proof. Take any states “L'“R'G and 1 related in the followin‘gway
ﬁ (Figure 1)
8 i) ugp and u, are joined by a 1-shock with speed sy, with uy on the
& left.
?ﬁ ii) ug and u are joined by a 1-rarefaction.
5 1i1) © and u; are joined by a 2-rarefaction.
: iv) U and u, are joined by a 2-rarefaction.
f v) U8 and u; are joined by a 1-rarefaction. o
j (We assume here that A,(u) increases from U to u;. The case where A5 (u) Fifi
3 decreases from U to u; is discussed below.) . kgf
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The aystem (2) with initial condition

“(x'o) =

uy, otherwise

has, for t € T, the solution u shown in Figure 2.

x=0 X = (sl—kl(uR))T

Figgte 2. A line denotes a shock and a fan denotes a rarefaction.

Then
ID(\Io“Lfo) = D(uR,uL)(S1 - 11(“R) )T

and

x,n’:)
Ip(u,upsT) = T [ D(u(A),up)dh + D(uy,8)(A5(T) = A4 (@))T
A1(uR)
. Xz(uL)
+Tf _  Dv(d),up)ar ,
Xz(u)
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where u{A) and v{)A) denote parametrizations of R,(u.ﬁ) with respect to 11

and of R,(u,u;) with respect to Xz, respectively.

Now, with Upsuy, and u denoting the same states as in Figure 1, consider

the following initial condition:

1€ 0 ¢ x ¢ (Az(uL) - 31)T

v(x,0) =

up otherwise.

The solution v of this problem, for ¢t < T, is given by the waves in

Figure 3.
2
N
: x=0 x= (Az(uL) -sl)'r
i Figure 3
3 Then
% Ip(V,ugps0) = Dlug,up) (Ay(up) = 84)T
N
: and
. A,(u) Az(uL)
: Ip(v,ugs0) = T [ Du(A),ug)dh + T [ _  Dv(A),up)d
. X1(uR) xz(\l)

+ D(d,ug) (A,(T) = A (D)) .
To prove the theorem by contradiction, assume now that

In(v,ugiT) + Ip(u,uysT) < In(v,ugs0) + Ig(u,up;0) . (3)
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A (@)
| {o(u(X),up) + D(u(A),ug)}ar
Ay (ug)
Xz(uL)
+] _ {otvid),ug) + DvA),up)lar
Az(u)

+ D(uL,G)(Az(G) - A1(\;)) + D(ﬁruR)(Az(a) - A1(\3))
< D(URIUL)(31 - x1(uR)) + D(ULIUR)(Az(“L) - 91) .
Now, adding and subtracting

Dlug,ug) (A4() = Aqug)) + Dlug,up) (Ay(ug) = A, (3))

vwe get
A, (w)
[ {D(u(2),uy) + D(u(A),up) = Dlug,up)}d
Ay lup)
Ayuy)
+[ _  {p(v(),up) + DVA),ug) - Dlug,up)ldr (4)
A, (u)

+ (D(u, ,U) + D(@,up) =~ Dlup,u )M {A,(8) = A (W) < 0 .

By the triangle inequality the two integrands and the third line above are
positive. Since A, (up) < A(W) and A, (%) < Ay(uy), equality holds in (4) if
and only if equality holds in each of the triangle inequalities, in particular
only if

D(up,d) + D(u,ugp) = D(ug,uy) . (5)
A similar construction as above using the initial conditions

u, if 0 < x < Ay(uy) - 8

uglx) =
otherwise

[}

and

G OAf 0 < x < Ay(v) = Ay(v)
ug(x) =
up otherwise

will, by the same arqument, yield




E_.r - ‘l‘:*'-—"' e

D(uR.ﬁ) + D(up,uy) = D(ﬁ,uL) . (6)
Now, (5) and (6) give
D(¥,Up) - D(T,ug) = Dluy,8) + Dlug,d) . (7)
This equation gives, using the compatibility condition C3. Lemma 4 in (2] after
which the proof proceeds identically.
If one does not assume C3, (5) and (6) put restrictions on the metric D.
For instance the Fuclidean distance or a linear combination of changes in
Riemann invariants will not work.
In the case where Xz(u) decreases from uU to u, a similar construction
using the shock curves sz(u,ﬁ) and Sz(u,ﬁ) (see Figure 4) and the same
initial value problems as above yield conditions similar to (5) and (6) from

where the proof would proceed identically.

Rl(u,uL)

-~

nl(u,ﬁ)

Figure 4
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