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NOTAT ION

a Area

Bf Magnetic flux density (or magnetic induction) vector

c Velocity of light in free space

DElectric displacement vector

EElectric field intensity vector (in original medium)

*Electric field intensity vector in model

e Ratio of model characteristic electric field intensities to those in
original medium

f Frequency (and, including and following Equation (10c), ratio of
model to original frequencies)

H Magnetic field intensity vector (in original medium)

H' Magnetic field intensity vector in model

HTangential component of magnetic field intensity vector

h Ratio of model characteristic magnetic field intensities to those in
original medium

* i

j7 Free electric current density vector

k Propagation constant of light when a = 0

L Characteristic length (in original system)

Lf Characteristic length in model

9. Ratio of model characteristic lengths to those in original system

* M Induced magnetization vector

Induced electric polarization vector

p Time-average electromagnetic power absorbed

* p Mechanical scale factor (reciprocal of Z.)

Poynting Vector f x K H)

T Hatie of model characteristic times to those in original system

iv



t Characteristic time (in original system)

t' Characteristic time in model

v Velocity of light in a material medium (v =1/-)

xyz Rectangular Cartesian coordinates of a point in space

Z Complex characteristic (or wave) impedance of a medium

Zf Real part of the characteristic impedance (resistance)

711 Imaginary part of the characteristic impedance (reactance)

Z o  Characteristic impedance of a medium when a = 0

OL Real part of the complex propagation constant or attenuation constant

B Imaginary part of the complex propagation constant (= k when u = 0)

Y Complex propagation constant

5 Skin depth

Partial derivative operator

Electric permittivity (dielectric constant) in original medium (and,
following Equations (13a), ratio of model to original permittivity)

Electric permittivity in model

Electric oermittivity of free space

Ratio of model characteristic impedances to those in original medium

n Electric loss tangent

KC Electric permittivity relative to free space

Km Magnetic permeability relative to free space

A Wavelength .1

Magnetic permeability in original medium (and, following Equations
(13a), ratio of model to original permeabilitccesion For

For esio--Fo

' agntic pormeability in model NTIS CRA&I 
DTIC TAB ''-

* Minetic permeability of free space UnannouncedJustification v.@- : ..........-2 -
Pi (3.141592654) a

FBy ........ .h E .......

v Availability Codes
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a Electric conductivity in original medium (and, following Equations

(13a), ratio of model to original conductivity)

o' Electric conductivity in model

×e Electric susceptibility

X11 Magnetic susceptibility

Angular frequency (= 2fff) -

V" Divergence operator (div)

Vx Curl operator

V
2  

Laplacian operator (div(grad))
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° £.

-4"g



ABSTRACT

This report presents a complete and rigorous treatment
of the predictions of electrodynamic similitude relating
scattering from scaled targets to scattering from full-size
targets. The usual assumption is made that the targets
treated are those whose conductivity, permittivity, and
permeability do not change with frequency. Three general
nonlinear modeling equations in six variables are derived,
and a complete set of solutions is presented. For the first
time, particular emphasis is given to the effects of
differences between geometric and complete scaling on the
electromagnetic fields and on the radar cross section, and
effects of approximations to complete scaling are evaluated.
Conditions are obtained on properties of materials required
for models made from these materials to accurately simulate
systems. Absorption and energy balance are also treated,
and the influence of finite conductivity on surface currents

is shown.

The possibility of using scaled-down models of real
targets is usually claimed to be based on the linearity of
Maxwell's equations. Therefore, we first examined the
physics involved in linearity, its relation to the Maxwell
equations in macroscopic media, and its impact on physical
scale modeling. The behavior of electromagnetic fields was
also examined as a function of frequency. Upper bounds on
the electric conductivity and limitations on the electric
and magnetic polarizability of realistic materials may have

profound implications for model measurements. All the
energy density in the reflected wave may be lost at higher
frequencies by incomplete scaling of even apparently
nonabsorptive targets. Thus, the ratio of measured radar
cross sections of geometrically scaled targets to those
predicted for a completely scaled model will eventually
approach zero.

ADMINISTRATIVE INFORMATION

This project was supported by the DTNSRDC Independent Exploratory Development

Program, sponsored by the Office of Chief of Naval Research, Director of Navy

Laboratories, OCNR 300 and administered by the Research Coordinator, DTNSRDC 012.3

unrier Program Element 62766N, Task Area ZF-66-412-001 under DTNSRDC Work Unit --

1-2930-001.

INTRODUCTION

The recent development of millimeter and submillimeter and of infrared and
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visible laser (lidar) rad )r sy:3tm3 for detection of military vehicles []* has

stimulated oonsilerahle int,< in -nai.d-down models of radar targets. The

distribution of radiation ,re d from i full-size target is expected to be

predictable from measur-m'nts -n -, fiithful scale model.

Models of electroma...ti- system.s have been used for antenna studies [2] since

the early 1900's. However, the earliest known work on model measurements of radar

cross sections (RCS) was at Massachusetts Institute of Technology Radiation

Laboratory in 1942 [3]. This application received considerable impetus from the

suggestions and work of Sinclair and his colleagues during World War II [4, 5], and

has been extensively pursued since then [6-12]. Despite some problems in preparing

the models themselves and in making measurements, scale models provide an important

means both of determining the RCS of targets for which no other method is practical

-and of providing independent verification of values found in other ways.

Scale models of physical systems all depend on principles of similitude which

allow relationships to be established between model and full-scale behavior.

Equations for scaling electromagnetic models have previously been written by

Stratton H13], Brown and King [14, 15], and Sinclair [57. However, practical

difficulties with scaling properties of realistic materials now exist which, for

most scattering measurements, discourage all but simple geometric scaling [1, 9-12,

16-78]. Geometric scaling is a partial form of scaling, where the scaled target

has the same dimensions in scaled wavelengths as the actual target has in actual

w anvclengths, but material properties are ignored.

Since a complete set of solutions to the general scaling equations has never

previously been published, little concern was shown about differences between

g-ometric and complete scaling in radar applications F-]. Although it has been

Kn)wn that scaled electric conductivity (a) should increase with frequency (f),

* References are listed on page 39.
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differences between surface current distributions on poor conductors and on

perfectly concucting targets were believed to be unimportant. Thus, infinite a is

usually assumed, the f-dependence of material properties is usually ignored, and

little attention has been given to resulting differences in the electromagnetic

AP
fields involved.

However, this report will show this lack of concern is not justified. Here,

we develop a complete and rigorous treatment of the relations between scattering

from scaled and full-size targets on the basis of electrodynamic similitude,

starting with the usual assumption that not only a but also electric permittivity

(dielectric constant) (E) and magnetic permeability (vi) do not change with f.

Three general nonlinear modeling equations in six variables are derived, and a

complete set of solutions is presented. For the first time, particular emphasis is

given to effects of differences between geometric and complete scaling on the

electromagnetic fields involved and on the RCS, and effects of approximations to

coiplete scaling are evaluated. Conditions are obtained on properties of materials

required for models made from these materials to accurately simulate systems.

Absorpticn and energy balance are also treated, and the influence of finite a on

surface currents is shown.

The possibility of using scaled-down models or real targets is usually claimed

to be based on linearity of Maxwell's equations [6, 10-12]. Thus, we first examine

the physics involved in linearity, its relation to the Maxwell equaitions in

macroscopic media, and its impact on physical scale modeling.

The bhhavior of electromagnotih fields is also ex:amined as a function of

frequency. Unfortunately, it is physically impossile to s, Iisfy sealing

conditions exactly when realistic matreials are isod and the chanr, ii f is

aspre,,-abl, because this would reqii.- that upper bounds on physi cal n be ix < o,.I

t highsr f and definite limitations also exist on physical a nd , .13l~i



This report will show that incomplete scaling of apparently nonabsorptive

targets may have profound implications for model measurements. Both electric and

magnetic scattering are considered. The energy density in the reflected wave will

be examined at higher frequencies for both geometrically and completely scaled '

targets, and the frequency dependence of the RCS measured for geometrically scaled

targets will be compared to that predicted for a completely scaled model.

THE MAXWELL EQUATIONS IN MACROSCOPIC MATERIALS

All scattering characteristics, including interference and diffraction,

DolArization, and creeping and traveling (surface) wave phenomena, should be -

correctly represented by rigorous scale modeling.

If the model is to be an accurate simulation of a full-scale system,

transformations relating modol to full-scale quantities will transform Maxwell's

equations from model to full-scale systems. Since electromagnetic fields in both

systems must satisfy Maxwell's equations, we can thereby determine how E, U, and ..

must transform for simulation to be accurate. However, because upper bounds on

elrectrie conductivity and limitations on electric and magnetic polarizability -

soot io rend!r comolete scaling impossible, approximations to complete scaling

lo rxarn s the origin and impact of these approximations, we must start from

thr iz.. ll cuations in macroscopic materials. Following the rationalized

io~r - - ( s MKSA) system of units usd by Stratton L 13], these

ri C Ico ,In b wr it ten

SE = - - (la)

(1b)

:..::.
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and

xH J+ - (2a)
at

D= p (2b)

where

E = electric field intensity (V/m)

magnetic induction (T or Wb/m 2)

H = magnetic field intensity (A/m)

electric displacement (C/m2)

= free electric current density (A/m)

p = free charge density (C/m)

*. and the vector operators (V x and V .) are used to indicate how changes in space of

the above quantities are coupled to their changes in time (t).

E and B are macroscopic electric and magnetic field quantities, averaged over

volumes which are large compared to the volume occupied by a single atom or

molecule. D and H are corresponding derived electric and magnetic fields, related

to E and B through constitutive relations

Square brackets are used to signify functional relations that are not necessarily

sirile, because they may d-pend on past history (hysteresis), may reflect the

derived polarization fields' lagging behind the changes in source fields causing ,

these effects, may be nonlinear, or some other factor.

The two homogeneous equitions, Equations (la) ind (Ib), can be solved formally

by expressing E and B in tPrms of scalgr and vctor potentials, but the two

inhomogeneous equations, Equations (2a) and (2b), cannot be solved until the

derived fields D and H are known in terms of E and B. Bound charges and currents

enter Equations (3) through these derived fields, which represent macroscopically

, -°
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averaged electric and magnetic dipole, electric and magnetic quadrupole, and higher

moment densities of material media induced by applied fields.

In addition, forces on electrons depend on both magnetic and electric fields,

so for currents in conducting materials there is a generalized Ohm's law,

= jf, g] (14)

In most materials, only electric and magnetic polarizations P and M are

significant. Then, electric quadrupole and higher terms in Equations (3) are

completely negligible, and we may define

(5)
B po( + M)

where

P = induced electric polarization (C/m2 )

M = induced magnetization (A/m)

c, = permittivity of vacuum = 8.854 pF/m

= permeability of vacuum = 400 nH/m '

These equations form the basis of all classical electromagnetic phenomena.

When they are combined with the Lorentz force equation and Newton's laws of

classical mechanics to describe coupling between the fields and their moving

sources, they provide a complete description of the classical lynamics of
4

interacting charged particles and electromagnetic fields [191.

IMPACT OF LINEARITY ON PHYSICAL SCALE MODELING

Fhe claim that scaled-down models can be used to simulate real targets is

based on linearity of Maxwell's equations [6, 10-12]. Hence, our treatment. does -

not apply to obviously nonlinear materials, such as ferromagnetic materials ,ind

ionized regions with magnetic fields. However, the impact of linearity on other"

types of physical scale models deserves ome clarification.

fp.,F.

6.
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The Maxwell equations are linear partial differential equations. Since they

are linear in the fields, these only appear to the first power, and linear

superposition holds. Therefore, any sum of solutions of Maxwell's equations is

also a solution.

However, nonlinear effects may intrude in physical scale modeling, and it is

helpful to distinguish between the trivial linearity of equations, the more

complicated linear response of electrical devices, and the still subtler linearity

of materials. Common examples of transitions from the linear to the nonlinear

regime occur in transducers used to couple telephone conversations with a microwave

bean, in crystals responoing to intense laser beams, and in magnetic materials.

The constitutive relations, Equations (5), permit a simple definition of the

linear response of a medium. Accordingly, materials are termed linear when an

applied E or H field induces a P or M polarization, respectively, that is

proportional to the magnitude of the applied field. Thus, our treatment also does

not apply to substances where P or F is not proportional to the magnitude of the

applied field, such as ferroelectrics or ferromagnets, which have nonzero P or M in

the absence of any applied fields.

The Maxwell equations are valid for nonhomogeneous as well as for homogeneous

materials. For weak enoucgh fields, however, different C(artt, iin components of E and

and of B ani H are coupi d through the, ,loctric permittivity or dielectric

tensor, and through the magnetic permeahility tousor, respectively. These tensors

.sunrmirize the linear, response of thc medium and are depend-nt on molecular -nd, -

perhaps, crystalline structure of the matriAl, as well as on such hulk properties

as density and temppratur , .

For simple materials, this linear response may be isotropic in space,

whereupon the tensors become diagonal with all three elements equal. Equations (5)

then become

7
Sp.' ',



D = coE + XeEoE = o(I + Xe)E = KeEoE = E

= + mg) = 1i1(0 + xMh) = mH = p

In addition, assuming no Hall or low temperature effects, Equation (4) becomes

Ohm's law

J = oE (7)
where

Xe = electric susceptibility (dimensionless)

Ke = electric permittivity relative to free space (dimensionless)

E = permittivity of medium (F/m)

Xm = magnetic susceptibility (dimensionless)

Km = magnetic permeability relative to free space (dimensionless)
..

p = permeability of medium (H/m)

a = electric conductivity of medium (mho/m)

NONLOCALITY IN SPACE AND TIME

In general, the basic linear connection between D and E, as well as between

H and B and between .5 and E, may be nonlocal. Nonlocality in time and space

implies that a principal property of the relations (6) and (7), namely the

dependence of J, D, and B only on values of E and H at the instant or place

considered, is no longer true.

In general, the values of J, D, and B at a given instant are determined not

only by the values of E and H at that instant, but also by values of E and H at

every previous instant. Furthermore, with sufficiently rapidly varying applied

fields, because of the inertia of electrons and other more massive atomic and

molecular solid state constituents, establishment of P or R polarization in

materials and the flow of currents through them will eventually not be abl, to keep

up with the changes in E and H causing these effects [19-211.

Also, long-range effects may become important, so a spatially local form of

S 8



Ohm's law is no longer adequate. Thus, Equations (6) and (7) should be understood

as holding for Fourier transforms of the field components In space and time. The

permittivity, permeability, and conductivity tensors are then functions of

frequency f and wavelength A [19,20]. Nonlocality in space may often be neglected

in conductors up through optical frequencies, as long as the mean free path for

conduction electrons colliding with the lattice structure is small compared to the

skin depth, whereupon E, v, and a become functions only of f in dispersive targets. -.

However, this f dependence can be present down through radar frequencies and it

complicates scaling, since e, u, and a are complex variables having both real and

imaginary (i.e., reflective and absorptive) parts.

ENTRA.\CE OF THE SKIN DEPTH

When an electromagnetic wave enters a good conductor, its amplitude is a

rapidly decreasing function of distance. It is damped to 0.36788 (the reciprocal

of the 2.71828 base for natural logarithms) of its initial amplitude in the skin

depth 6, where: [13, 19]

'I- (8a)

a is also a function of f, so 6 decreases as either f or a increases,

approaching zero either when a becomes very large (perfect conductor) or when f

becomes very large. A conductor with vanishing 6 would reflect all incident light

and would not permit penetration of an electromagnetic wave to any depth at. 311.

We can understand the electromagnetic fields in the neighborhood of this thin

surface layer, as well as the power absorbed in and scattered from it, by

considering waves incident on both perfect and good, but not perfect, conduetors.

With waves incident on a perfect conductor, the boundary condition associatd

with Equation (2b) requires that surface chairges move instantly in responso to

9
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normal D outside to produce the correct surface-charge density which gives zeroE

Inside. Similarly, in response to tangential HT Outside, the second boundary

condition associated with Equation (2a) requires that surface charges move fast

enough to produce the correct surface current to give zero Hf inside.

The boundary condition on normal B associated with Equation (1b), as well as

the other boundary condition on tangential Ef associated with Equation (1a), imply

continuity of these two across the surface. Thus, their vanishing values inside

require that these two both vanish outside the surface. Therefore, only normalE

and tangential HT can exist just outside a perfect conductor, and all fields drop

abruptly to zero inside.

For a good, but not perfect, conductor the surface fields and charges behave

approximately the same as for a perfect conductor [19, 21]. However, with finite

a, charges and currents do not respond to fields instantaneously, so there is a

thin transitional surface layer in which tangential Hf outside undergoes the rapid

exponential decay inside that is measured by 6. There is also a normal Eoutside,

which undergoes an exponential decay inside similar to tangential Hf, but whoser .

* energy density inside is much smaller than the magnetic energy density.

In addition, there are small components of Ef and H, tangential and normal to

* the surface, respectively, outside the conductor. These also decrease \

* exponentially inside, and result in a power flow into the conductor, which can be

calculated from Poynting's vector, S

S= E x H(8b)

* which is the power flow across a unit area normal to Hor the energy flux density. x

M~any such quantities can be shown to be proportional to 6. For example,

Panofsky and Phillips have shown [22] that the ratios: (a) of tangentill E at the

* metal's surface to its normal component there, as well as (b) of normal Hto its

tangential component there, are both approximately 6/A.

10
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In addition, the time-average power absorbed (P) per unit area (a) equals the

time-average normal component of Poynting's vector [191, which can be written

dP pwf6---- Ht t2  (8c)
da 2

and thus is proportional to 6. This can also be calculated from ohmic losses due

to energy dissipation by the surface currents in the conductor's transition layer.

The power absorbed in the conductor leads to a loss of energy in the reflected wave

and a decreased scattering cross section.

Therefore, very little power flows into the conductor, to be dissipated there

because of wave damping due to development of heat in the surface resistance...4'-

Poyriting's vector at the surface is very small, since the ratio of f to H within J1

* the metal is much smaller than its value in free space, representing a small energy r

flow into the metal. The situation is almost like that with a perfect conductor,

for which the E vectors of the incident and reflected waves are equal in magnitude,

but exactly cancel at the netal's surface, whereas the H vectors are equal in 4:

magnitude, because of the perfect reflection, but add. V ..

For a realistic material such as copper, the above formula for 6 becomes -.

6.6 66,000
4 6 - Om - Pm (8d)

yielding 6 = 0.66 pm at f = 10 GHz, where the A = 3 cm, and 6 = 0.04 7 Pm at

f = 2000 GHz, where A = 150 tim. This rapid attenuation implies that current flows

in a rather thin surface layer at high frequencies, and that 6 is a very small

fraction of A. Thus, no complicated constructive or destructive interference

occurs in this surface layer, and at the metal's surface both tangential £ and

normal H are small compared to normal and tangential H, respectively, according

to the paragraph above Equation (9c).
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The above equation will also yield the frequency at which 6 and X eventually

become equal: 
%

c loll
f .- =- GHz -20.66 GGHz (8e)

x 4.84

where c is the velocity of light (3x108 m/sec), and 1 GGHz = 109 GHz. This

frequency corresponds to

= 0.00001452 Pm = 0.1452 (8f)

or about one-quarter the Bohr radius of the hydrogen atom. Both 6 and X appear to

be in the quantum mechanical regime, outside the range of classical electromagnetic

phenomena.

Although the above conclusions are based on Equation (3a), derived under the

assumption w << a, where w is the angular frequency (= 21Tf), dependence on X '.

becomes important in phvsical scale models when the mean free path of electrons

colliding with the conductor's solid structure becomes comparable to 6, which

usually does not occur until one reaches optical frequencies. Then, a spatially

local form of Ohm's law is no longer adequate, and long-range effects occur which K
become important in understanding the surface impedance of metals.

A metal's surface impedance is the ratio of tangential E to tangential H at

its surface. Although its value can be calculated from classical electromagnetic

theory, at sufficiently low temperatures the spatial nonuniformity of the

electromagnetic fields becomes important. Consequently, a macroscopic description

of a metal in terms of c, w, and G is no longer possible.

More precisely, as a metal's temperature falls, its o increases, and an K

electromagnetic field's depth of penetration into a metal decreases in accordance

with the above expressions for 6. At the same time, the amplitude of lattice

vibrations decreass with a decrease in temperature, so the electronic collisional

mean free path increases and may exceed 6 by a large factor. When the mean free

12
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*path is comparable with or much greater than 6, electrons will traverse regions

with different values of' E between collisions, and their resultant velocity will

depend on the changing values of E along the entire path. Since E varies over the

electron's path, c is not constant over all parts of the metal, so Ohm's law must

be replaced by a more detailed expression where the spatial variation of E is taken

into account.

The above behavior implies not only that the current at a point depends on the

r field- at other points, but also that the effects of a boundary can be felt at

substintial lepths. This leads to a nonexponential decay of the field as it

penetrates into the medium. These and other departures from the behavior described

by the formulas given above for 6 are known collectively as the anomalous skin

effect [19-21], and can be utilized to map out the energy levels allowed to

electrons in metals.

In metals, electrons that have the most available energy, lie on what are .-

ca!ed Fermi surfaces. For most electronic properties of metals, the behavior is

determined by electron states very near the Fermi surface. This is particularly %

true with transport properties, for only electrons near, the Fermi energy can find

an unoccupied state at a nearby energy. Correspondingly, with small applied fields

it is only states near this surface for which the occupation number changer'. Thus,

energy bands in the neighborhood of the Fermi surface are the ones of primary

importane.e.

To summarize, as f increases the classical skin denth decreases. When 6

becomes comparable to the mean free path of carriers, we reach the nonlocal regime

described above, which usually can be ignored in conductors up through optical

frequencies. When 6 is much smaller than the carrier mean free path, we encounter

what is called the extreme anomalous skin effect. More detailed study of the

anomalous skin effect leads to information about the transition between the

13
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classical skin effect and the extreme anomalous region, and to information about

details of the shape of the Fermi surface [20].

NONLINEAR OPTICS

Conductors are composed of atoms and molecules bound together in a regular

arrangement to form a solid. The electrons in the outer shells of these atoms and

molecules can be regarded as being in a potential in which both the electrons and

the resulting ions will oscillate linearly at small amplitudes.

Materials showing a linear response to weak electromagnetic fields will

eventually show nonlinear behavior at higher field strengths when electronic or

ionic oscillators are driven to large amplitudes. A monochromatic wave, when

pulsed, develops a spectrum of frequencies which, for large amplitude, may then

generate waves in the medium with harmonic, sum and difference, cubic, and higher

nonlinear terms, giving rise to a broader spectrum of frequencies. With the

development of lasers, such nonlinear behavior has become an active research area,

called nonlinear optics [19, 23].

Lasers are capable of generating pulses with peak E fields of 10 or even 100

Gigavolts/cm. On the other hand, the static E field felt by an electron in the

hydrogen atom's ground state is only 5.14 GV/cm, and fields of 100 kV/cm are equal

to the average internal fields seen inside a dielectric lattice. Since fields of

100 kV/cm can thus cause electrical breakdown in a solid and destroy it, the laser

fields often used with physical scale models may well be capable of driving atomic

oscillators into their nonlinear range.

MODELING OF ELECTROMAGNETIC SYSTEMS

>:caling laws result from imposing exact conditions on the Maxwell equations.

If --3 m o I is to be an accurate simulation of a full-scale system, transformations

relating model to full-scale quantities will transform Maxwell's equations from one



system to another. Since electromagnetic fields in both systems must satisfy

Maxwell's equations, such a transformation will determine how E, 0i, and a must 'b

transform for simulation to be accurate. Replication of each coefficient of the

Maxwell equations, considered separately, will then give three general nonlinear

modeling equations in six variables.

To obtain these equations, consider a linear, homogeneous, isotropic system

with no free charge, where Equations (6) and (7) are valid, and Maxwell's two curl

equations, given in Equations (1a) and (2a), take the form

V T (9a)

X H=O + E -(9b)

The electromagnetic properties of a configuration of imperfect conductors, .-

dielectrics, and magnetic materials in unbounded space can be compared with the

properties of a scale model, which differs geometrically from the original only in

having its dimensions changed by a factor Z, which may be larger or smaller than

one. If model characteristics are denoted by primes, each model length LA is

related to a corresponding length L in the original system according to

L= U (10a)

The conditions imposed by Equation (10a) represent the requirements for a

mechanical model of the material portions of a full-scale system, in which there is

geometrical similarity in shapes of corresponding material parts. Frequently, a

quantity p is defined, the ratio of any full-scale to corresnonding model length,

called the mechanical scale factor. The parameter p is normally chosen to yield a

model of convenient size, would usually be greater than ono for smaller mod-1ls used:

at h'gher f, and satisfies

p =1/k.(1b

15



Time is likewise scaled 4.

t' = T t = - t (10c)

where T is the ratio of model characteristic times to those in original system and,

since the field's period is inversely proportional to frequency, we redefine f to

be the ratio of model to original frequencies.

The requirement that a model's electromagnetic properties shall be the same as

those of the original, except for a change of scale, means that the E and H fields

in the space about a model will pick up miltiplicative factors

E' =eE and H' =hH (11a)

where e and h are the ratio of model characteristic electric and magnetic field

intensities to those in original medium, respectively. Likewise, e, p, and o have

new values in the model denoted by primes.

Since Equation (10c) states that all times are to be multiplied by a factor T

in a model, first time derivatives may be replaced by

. . f- (1 1b)

3t' T 3t 3t

The curl operator, which involves first derivatives with respect to space

coordinates, may similarly be replaced according to Equation (10a). Then, starting

with model variables, the Maxwell Equations (9) take the form

1e 311' ' "

K ~ E V'-~ E' V E-

1 E'(12a)

7' H ' = - x H' = - .x H= ':f' + ' -

2,.

Multiplying the first equation by (4/e), the second by (/b), and continuing

thp transformation from primed to unprimed variables

* ... K. -.. '- * *



e )t' e 3t
(12b)

V H = -o'E' + Eu' IZ - E + E'if - -b

h t' h h 3t

Since the electromagnetic boundary-value problems presented by the model and

the original are to be similar, we can determine how e, p, and o must transform by

requiring that the coefficients of

-- , E , and -

- ,

be identical in both model and original.

Equating the coefficients in Equations (12b) to those in Equations (9), three

obviously independent relations result

h* I f .-;
= ;'Oif -

e

e?

- (13a)

h ,
e

h

For simplicity of notation, since Z, f, e, and h are ratios of model to

oriirinil sizes, frequencies, . and fi-ls, respectivwly, we now redefine c, 11,

and toe h rat ios of mod" 1 perm ittivity, nertnezbility, and conductivity to those

of the original.

F'hen, the Thove t hro at r t I I o s5!1ler Vorm

'7'-
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h

e

o2.~~ - 1(3b)

e

h

and involve the seven variables

e
i:, , , Z, f, and -

Since the Eand Ti- field coefficients only appear as a ratio, we then define

0 (1 4

* wru 4:- actually the ratio of model impedances to those in the original, and our

,q ir rut ions takP the f inal f orm

p9Zf =(15a)

a~ = 1(15b)

(15c)

i t a tt af s ix va iri able- s.

SOLUTIoNS OF' THEF MODF1,ING F:QUATI(DNS

'omalte solutions to the three nonlinear equations ii six v iriobies given i

i~a -im;( 5 ) have_ not a prparently been published. In pra:ctico, noo ek

5<'i insf'or Z~, f, and r as funct ions of the paaetr :,u nd cj aviilable in

-1 uit materials used for models.

Fli-minating ,,the ratio of flieils, from FVquatiions (11O) yields the three

* expressins



( 1 (16a)

patQ
2 f =1(16b)

a
- = 1 (16c)
Cf

The first two are similar to Stratton's conditions for electrodynamic

similitude [13], although arbitrary constants have been evaluated and no appeal is

made to dimensionless measure numbers of the field variables.

The third equation is new, although it has often been stated that scaled model

conductivity should be p times that in the original system [1, 4, 5, 8-11, 14-16,

18].

What has been untouched is other solutions of Equations (15) and the behavior

of electromagnetic fields in physical scale models. Going back to Equations (15),

and solving each of these expressions for .

(17a)

= - (17b)

= - (17c)

However, the presence of all six variables in Equations (17) complicates

interpretation.

On the other hand, if Z is eliminated from Equations (15), two new expressions

result

S= -- b(18a)

o

A third is also producpd which is actually the same as Equation (16c).

19
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If f, last of the three variables, is eliminated from Equations (15), only one

relation is produced, which is the same as Equation (18a).

This constitutes a complete set of solutions to the three nonlinear Equations

(15), as can be seen by successively eliminating either E, or f, or from

Equations (15) and finding all solutions for each of the remaining two variables as

a function of the third and of the remaining three parameters E, u, and a.

Equations (18) may have profound implications for physical scale models,

because they provide a general solution relating t, the ratio of electric and

magnetic fields as defined in Equation (14), to f and the three material parameters

c, u, and a. Equations (16), (17), and (18) will now be used to show how finite a

affects the surface currents and to discuss proper scaling of the electromagnetic

fields and the scattering cross section, differences between geometric and complete ILL

scaling, and dependence of absorption and energy balance on f.

FINITE CONDUCTIVITY AND SURFACE CURRENTS

In practice, scale models are limited by values of c, v, and a obtainable in

model materials. For many measurements, E' and p' in the model will not differ

appreciably from their values in the full-scale system. According to Equation

(18a), the ratio of fields should also not differ appreciably in a completely

scaled system.

However, if one uses Equation (14), definition of the impedance, in Equation *<.

(18b), one obtains

ea
h =-=e - (19)

which implies that, if o (or, more properly, o/P) does not increase linearly with

f, the ratio of H fields shrinks with respect to the ratio of f fields.

This is understandable because a a not increasing fast enough for proper

20
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scaling leads to diminished surface currents, which cause a decline in their

associated H fields.

The coupling between electromagnetic fields and surface currents is simple and

direct.

For a perfect conductor, tangential E at the surface is zero (otherwise, any

surface current would be infinite), but tangential H is finite, and the fields are

damped waves that fall off infinitely rapidly with penetration into the metal, so

and E are both zero directly below the surface. Stokes's theorem implies a

surface-current density, numerically equal to tangential H, but at right angles to

it, to account for the rapid decrease of tangential H from its finite surface value

to zero directly below the surface. This current can flow without a corresponding

tangential E because of the perfect conductivity.

Inside a good conductor, the transverse H falls off rapidly as we penetrate S.

the metal. This rapid change of H with depth leads to a large x H, and hence the .- '4

Maxwell Equation (2a) implies a large current density J, since conduction currents

are much larger than displacement currents in a good conductor. Thus, there will

be a large current flowing in a thin metal surface layer. By Ohm's law [Equation

(7)], this surface current is parallel to F and proportional to it, but the

magnitude of E is small for large values of a. Since H drops to zero well inside

the conductor, Stokes's law implies the tangential component of H just outside the %I

metal surface equals the current flowing parallel to the surface, per unit length

of surface.

In the limit of infinite conductivity, J in the surface layer becomes

infinite, but 5 becomes zero in such a way that a finite current per unit length of

surface results, which is numerically equal to the tangential component of H at the

3urfaoe. On the other hand, tangential goes to zero all through the surface

layer', so tangential E at the surface i3 also zero.

21 "][
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In fact, when both target and model conductivity are infinite, so both metal

surfaces are perfect reflectors for waves at all frequencies, then a becomes the

ratio of two infinities, which is indeterminate. Therefore, one general scaling
"I

equation, Equation (15b), becomes trivially satisfied, and the other two, Equations

(15a) and (15c), have the simple solutions given in Equations (16a), (17a), (17c),

and (18a). Furthermore, since Z and f appear only in the product (f) in the

general modeling Equations (15a) and (15c), if one assumes geometric scaling

Zf= (20)

then, according to Equation (18a), the usual f-independence assumed for e and

will imply electromagnetic fields whose ratio C doesn't depend on f.

In addition, with Equation (20) used to link Z and f in the general modeling

Equations (15a) and (15c), all dependence on both these variables disappears from

their solutions, so no f-dependence of material properties is required for proper

scaling.

On the other hand, with both target and model a taken to be finite, additional

requirements imposed by the general scaling equation, Equation (15b), lead to a

patent f-dependence of material properties being needed for proper scaling that

complicates the new solutions given in Equations (16b), (16c), (17b), (18b), and

(19). To better understand this required f-dependence of material properties, it

-- is helpful to consider the differences between geometric and complete scaling.

DIFFERENCES BETWEEN GEOMETRIC AND COMPLETE SCALING : .:

In our notation, the geometric scaling condition is expressed by Equation

(20). Increased f is then associated with decreased size, so a scaled target has

the same dimensions in scaled wavelengths as the actual target has in actual

wavelengths.

For realistic natprials with finil o, models built according to the geometric

%2 ":2



scaling condition of Equation (20) lead r,) further cond r i 'n; on -1n,

properties involved if complete scaling i.i to pre-vail. Thks - pn~:tLn_

:eatly obtained by using Equation (20) to link , 3n,1 f in tifl - generali MooK -

Equations (15). This process permits elimination of Z. Solutions fcr :' t.

be obtained as functions of f and of the parameters c, u, and u ivliLable [n mI

model materials.

Explicitly, using Equation (20) to eliminate Z from Equations (15), the threp

independent basic modeling relations simplify to

= f (21) ?

Eliminating C from Equations (21) yields the analogues of Equations (16)

UE = 1

O = f (22)

I %

These are the conditions Maxwell's equations place on the materials needed for

accurate simulation of systems by models. We see that various combinations of .

with E and p should increase linearly with f, while c and p also satisfy the first

of Equations (22).

In Equations (21), no . or f, common to more than one equation, can be

eliminated there. However, solving each of Equations (21) for C, the analogues of

Equations (17) are

".
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f
= - (23)

and multiplying pairs of these yields the analogues of Equations (18)

= - (24)

f

f

Equations (24) are very similar to Equations (1P), and again imply that a a

not increasing fast enough for proper scaling leads to diminished surface currents

and declining H fields.

CONDITIONS FOR AN ABSOLUTE MODEL ,"

Sinclair [5] also discussed modeling theory for electromagnetic systems.

Since there are only four fundamental units (mass, length, time, and charge), four

scale factors should suffice to describe any eiectromagnetic quantity. Thus, he V,

introduced four factors to relate full-scale length, frequency (or time), E, and H,

to model quantities, analogous to those in Equations (10) and (11).

He derived three equations similar to Equations (13a), intending to absolutely

replicate a full-scale system, with both geometries and field strengths being

modeled. He then calculated how 24 quantities [including Poynting vector and radar

cross section (RCS)] transform as functions of the four scale factors, and claimed

ho- could obtain quantitative data on all electromagnetic properties of a system,

24
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including absolute power levels as well as configurations of lines of force. . .

However, Maxwell's equations fix only the ratio C = e/h, and not e or h,

separately. Thus, Sinclair simply noted that if a specific value Is assigned to

either e or h, his model is absolute and will yield quantitative results for all

quantities. Otherwise, his model is a geometric one.

Many scale models are built to satisfy the geometric scaling condition of

Equation (20), so one cannot then deduce power levels directly from model

measurements. However, absolute values can be obtained by measuring relative power

in the model system and calibrating this power by comparing signals returned from a

model with those from a target of known RCS.

Unfortunately, Sinclair [51 provided no general solutions of the modeling

equations, and did not consider effects of differences between geometric and

complete scaling on electromagnetic fields, nor the influence of finite a on

surface currents. Also, little attention was paid to dependence on frequency.

ABSORPTION IN NONDISPERSIVE TARGETS

The scaling laws considered above imply replication of each field coefficient

ir the Maxwell Equations (9), considered separately, and consist of three general

nonlinear modeling Equations (15) in the six ratios: Z, f, t, e, pi, and u.

However, now going back to the original meaning of c, v, and a (and f), while their

static values are reasonably well known, absorption at higher frequencies occurs

near eigenfrequencies of the molecular or electronic vibrations causing P or M

polarization of materials.

At these frequencies, the linear constitutive Equations (6) and Ohm's law,

Equation (7), are not valid. The values of these eigenfrequencies depend on the

substance concerned, and vary widely, but become important whenever c, p, and a

exhibit the f-dependence known as dispersion. Moreover, since the presence of

25



dispersion in general signifies a dissipation of energy, nearness to these

eigenfrequencies is also indicated whenever materials absorb. Thus, a dispersive

medium is also an absorbing medium. In addition, the frequencies at which

dispersion phenomena first appear may be entirely different for the electric and

magnetic properties of a substance, as well as being dependent on direction in the

lattice. In this report, while we continue to acknowledge anisotropy, we defer its

proper treatment until a future time.

Since absorption at higher frequencies occurs near eigenfrequencies of the '.

molecular or electronic vibrations causing P or M polarization of materials, one

would expect this absorption to be associated with A for the electromagnetic fields

eventually becoming comparable with atomic dimensions, so the macroscopic

fnrmulation utilized above is invalid. On the contrary, there is an extensive

frequency range in which absorption and dispersion phenomena are important but,

fortunately, X for electromagnetic fields is much larger than that of atomic or

molecular dimensions, so a macroscopic formulation utilizing E, p, and 0 is

appropriate.

The quantum-mechanical band structure of solids shows that conductors have

"free" electrons in partially filled bands, while insulators have bands filled to

the full extent permitted by the Pauli principle. In conductors, these "free"

electrons have their motion damped by collisions involving momentum transfers to

the atoms making up the resistive medium, lattice imperfections, and impurities.

This electron inertia usually is felt at a lower frequency than any resonant o-

absorption frequency, and is then the first cause of dispersion. The Drude theory

explains these dispersive effects of electron inertia by means of a complex c [19,

24]. Hence, it is quite proper to consLier nondispersive absorption up through

microwave frequoncies to the range where the effects of electron inertia begin to

be felt.

26
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ELECTRIC AND MAGNETIC SCATTERING

Since both the physical causes and mathematical formulation of electric and

magnetic scattering are quite different, each type of scattering can be considered

separately.

Siectric Scattering

For nondispersive materials with real E and a, typical electric absorption

woull take place in a lossy dielectric, whose parameters satisfy the Maxwell curl

equat-on

3EF
V x H .E + E (9b)

The two terms on the right 'hand side of Equation (9b) represent conduction and

convection currents, which depend on frequency. However, any variable field can be

Fourier transformed into a series of single-frequency components, in which all

quantities depend on time through the complex exponential factor exp(iwt). This

form makes it possible to reduce operations of time differentiation to simple

multiplication by iwO, and also to more readily consider all parameters of equations

as complex variables.

Assuming an exp(iwt) time dependence, monochromatic fields are singled out,

and Equation (9b) becomes

Of c icwE, (25a)

whereupon it can be seen that the conduction and convection currents are 90 degrees

• out of phase. The io dependence apparent on the right hand side implies that the

resistive conduction current dominates at lower w, whereas the reactive convection

•. current dominates at higher w.

If a is considered to be the scat of all electric losses, it is convenient to

define a quantity Tj called the (electric) loss tingent

27
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0 conduction current density
(26)

w displacement current 
densitySince q is obviously a function of frequency, then the degree to which a

material exhibits conductor or dielectric properties depends on frequency. More

specifically,

>> 1 conductor

<< 1 dielectric -

On the other hand, scaling of o and c according to Equations (13a), which

insures proper replication of each coefficient of the Maxwell equations, leads to a

loss tangent not changing with frequency, so the degree to which a properly scaled

material exhibits the properties of a conductor or dielectric should not change

with frequency. -.p.

Magnetic Scattering -

Typical magnetic absorption occurs in magnetized ferrites, which can be very

anisotropic (e.g., directional couplers) and whose parameters may show strong K
nonlinearity in their dependence on the magnitude of H. However, the right-hand

side of the other Maxwell curl equation

* E = - - (9a)

consists of only one term.

Assuming a time dependence of the form exp(iwt), monochromatic fields are

again singled out, and Equation (9a) becomes

f E = - iiwH (25b)

whereupon it can be seen that nondispersive materials with real p have no room for :

magnetic absorption. How-ver, magnetic absorption will occur in dispersive

materials when P acquires an imaginary part. The imaginary part of w then plays a

2"

• a "



-L J - - -7 - -- 7T - - 'V- U YU ZF4-RL 6 - i.-

role in Equation (25b) analogous to that of o in Equation (25a), so it becomes

possible to define a magnetic loss tangent that is the ratio of two current

densities like those in Equation (26). ,

However, for nondispersive materials with real 11, there is no magnetic

conduction current, as well as no free magnetic charge, and the magnetic loss

tangent is zero at all frequencies.

Furthermore, scaling of p according to Equations (13a) does not allow for

magnetic absorption here at any frequency.

PLANE WAVES IN DISSIPATIVE MATERIALS

The electric and magnetic properties of materials both influence the

reflection and absorption of electromagnetic waves by targets. We now consider how

the reflection coefficient and radar cross section (RCS) change as frequency

increases, and as incomplete scaling causes n to decrease through the value n 1 1

[13, 19, 25].

Both E and H satisfy (damped) wave cquations of the same form. Taking the

curl of Equation (9a), substituting from Equation (9b) for V x H, and assuming no

free charges on surfaces, yields

P
2  

- --P (27a) r~
3t t 2 .

An analogous procedure yields an identical equation for H.

In a rectangular coordinate system, for incident uniform plane waves normal to

a surface at z = 0, the solution of Equation (27a) takes the form

= E exp(iwt - Yz) (28)

where E o is a constant amplitude vector in the direction of the wave's
'".

polarization, and Y is the complex propagation constant. Inserting Equation (28)

into Equation (27a) yields

%%



Y' iWi(O + WE)%

= - w2 E(I - in) = - k2(I - in) (29)

Thus, Y is actually a function of only two parameters: (a) k, the propagation

constant of light when a - 0

f 27r
k = wV--P = 2r-= - (30)

where v is the velocity of light in a material medium (v = 1//-), and (b) the

electric loss tangent n from Equation (26).

By taking the square root of Equation (29), Y itself can be written as a sum -

of the proper real (a) and imaginary (8) parts
% + i6 (31)

to make Equation (28) a solution of Equation (27a). The nonnegative character of

E, p, and o causes y2 to lie in the second quadrant of the complex plane, so its

positive square root lies in the first quadrant, and thus ot and 8 have the same

sign. The other square root would be denoted by -Y.

Substituting expressions of the form of Equation (28) for E and H into

Maxwell's equations, the plane wave considered is polarized, with E and H at right

angles to each other and to the direction of propagation. The wave (or

characteristic) impedance Z of a medium is defined as the ratio of the magnitude of

E to the magnitude of H, where

U iW
Z 2 

- -°

a + iWE

- - (Z,) 2  
(32)

(1 - in) (1 - in)

Thus, Z also tur.s out to be a function of two parameters: (a) Z0, the

characteristic impedance of a medium when a = 0

30
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Zo (33)

which reduces to 376.6 0 for free space, and (b) the electric loss tangent n from

Equation (26).

By taking the square root of Equation (32), Z itself can also be written as a

sum of real (Z') and imaginary (Z") parts

Z = Z' + iZ" (34)

where Z has the dimensions of a resistance. Since it, like Y, is complex in a

conducting mediui, thpre is in general a phase angle between the time dependence of

E and H. The nonnegative character of c, p, and G now causes Z2 to lie in the

first q';drant of the complex plane, so its positive square root lies in the first

octant, and thus Z' and Z" have the same sign.

The properties of the medium may be neatly expressed in terms of Y and Z,

allowing the two Fourier-transfoi.,nd Maxwell curl Equations (25a) and (25b) to be

4ritten
V - (ZH) = YE (35a)

- ff =- Y(ZiH) (35b) .4

From then, as wih Equation (27a), we may derive the wave equations

V 2 2ff 0 (27b)

72H- -yH = 0 (27c)

satisfied by all components of E- and H.

411 solutions of Equations (27b), (27c), and (35) are thus functions of only Y

" nl , nd t'orefore of the three parameters: k, Z0 , and n, a s given by Equations

", , and (,"6,, respectively. It is often convenient to use the Maxwell

i ira l t.ho w-ve equations in these forms.

-, '; ; " v E ;CATTHRI CROS3S SECT'I)N,

- i all solitions of thn Fourier-transformed wave and '.xwcll equations for
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E and H, Equations (27b), (27c), and (35), are functions only of Y and Z, and

therefore of the three parameters k, Z,, and q, investigating the scaling of any

quantity derived from the E- and H fields reduces to investigating the scaling of

these three quantities, given by Equations (30), (33), and (26), respectively.

For nondispersive materials, neither c' nor p' will differ from their values

in the full-scale system. As we have seen from Equations (18) and (24), the ratio

of fields should also not differ in a completely scaled system. Thus, Z, should

not change with frequency.

Equations ()2) are the conditions Maxwell's equations place on the materials

needed Cor accurate simulation of systems by models. If neither E' nor p' differ

from their values in the full-scale system, the first of Equations (22) is

automatically satisfied, and the second and third of Equations (22) both imply that

o should increa- s linearly with f. Therefore, neither n nor Z should change with

frequency in a colipletely scaled system. -.

Thus;, .inor complete scaling, neither Z, Z0 , nor n will change with frequency,

while Y and ' t'nh (an easily be seen from Equations (29) and (30) to increase

lin-r'iy with f.

)n uhe other hand, for the special aase of a uniform plane wave normally

ie ilont from fret ,pmce (medim 1) upon the plane surface of a dissipative block

(.ndian 2), such g,-nerality is not necessary.

In me dijo I, x consists of incident and reflected waves, and one defines a

reflection cowfficicnt R, measuring the amplitude ratio of reflected to incident E.

In r7-i i 2, there is also a transmitted wave, so one can define a transmission

ccefficint T, analogous to R. Both Stratton 3 and Adler et al. [25] calculated

[ i T for scatte-ing from dissipative surfaces and found that both these

co' fioients depend only on the 7's and not on the V's. J,

Thus;, under complete scaling, since both R and T depend on the Z's and not on

32 10.
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the 'Y's, although the scaled RCS of a target will decrease as the square of

increasing frequency (like a physical area), its properly scaled reflection

* coefficient should not change.

On the other hand, under incomplete scaling, with the scatterer's vi, E, and ai

not regarded as functions of frequency, and with medium I being free space with

* loss tangent zero, the only remaining f-dependence resides in n for medium 2, which

* is also a function of the values of ai and c there.

ENERGY BALANCE AND DEPENDENCE ON FREQUENCY

* It is physically impossible to satisfy scaling conditions on ai when good

* conductors like copper or aluminum are used in the orlginal system and the

- frequency change is appreciable because, for copper and aluminum, ai is so near the

- theoretical maximum that it cannot be increased in accordance with Equations (16c)

and (18b). However, water, resistive conductors, and lossy dielectrics have

conductivities far enough from the theoretical maximum that their ui can be

- increased in accordance with Equations (16c) and (18b) for appropriate changes in

f. Experience with more severe requirements in obtaining materials with necessary

oi is found in geophysical applications, where p in Equation (l0b) must be of order

- 200 to 1000 for modeling mineral prospecting problems and perhaps as large as

100,000 to 1,000,000 to study effects of large-scale structures on geomagnetic

variations [1

- On the other hand, little concern has been shown about scaling ui in radar

- applications [1], if the model is a metal of high ai, since it is felt that high c

modols have only a small surface component of If, and differences between the

surface current distribution on a poor conductor and that on a perfectly conducting

target have been believed to be unimportant.

However, a simple argument based on Equation (19) leads to quite different
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predictions. For a plane wave incident on a physical scale model, electric and

magnetic energy densities are equal to each other outside the conductor, and the

radar cross section (RCS) comes equally from both electric and magnetic scattering.

* Therefore, if the ratio of scattered Hi fields shrinks with respect to the ratio of

fields in accordance with Equation (19), then measured values of the RCS of

scaled targets should approach one-half the value predicted for an ideal model.

Actually, magnetic losses are twice as important as the above argument would

indicate. Inside th- conductor, the time average of the electrical energy density

is cE 2I/2, while that associated with the H fields is aE /2w, so their ratio is

cu/a, which is assumed small in agreement with Equation (26). Therefore, the

energy density in a conductor is predominantly magnetic, so good conductors are

essentially not penetrated by E fields satisfying the condition that Ew << a.

Thus, instead of measured values of the RCS of incompletcly scaled targets

approaching one-half the value predicted for an ideal model, the diminished surface

currents and declining H fields associated with a a not increasing fast enough with

frequency for proper scaling lead to a ratio of measured values of the RCS to that

predicted for an ideal model which will eventually vanish [26].

These general concepts remain valid in variable electromagnetic fields, even

if dispersion is present [273. Because of thc continuity of the tangential 9 -

components of E and H, the normal component of S in Equation (8b) is continuous at

the boundary of a body, and the interpretation of S as an energy flux density

carries over from a vacuum, across surfaces, into more complicated bodies.

Howcver, in the presence of dispersion, the interpretation of energy density i3

more complicated, because the presence of dispersion generally signifies

dissipation of energy, since a dispersive medium is also an absorbing one.
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SUMMARY AND CONCLUSIONS

Since, all scattering characteristics, including interference and diffraction,

polarization, and creeping and traveling (surface) wave phenomena, should be

correctly represented by rigorous scale modeling, the distribution of radiation

scattered from a full-size target is expected to be predictable from measurements

on a faithful scale model.

Therefore, a complete and rigorous treatment of the predictions of

electrodynamic similitude relating scattering from scaled and full-size targets was

developed, starting with the usual assumption that e, v, and a do not change with

f. Three general nonlinear modeling equations in six variables were derived, and a

complete set of solutions was presented. Scaling laws for such models explicitly

involve c, V, and a. However, practical difficulties with scaling properties of

realistic materials now exist which, for most scattering measurements, have

discouraged all but simple geometric scaling.

Particular emphasis was given to the effects of differences between geometric

and complete scaling on the electromagnetic fields and on the radar cross section

(RCS), and the effects of approximations to complete scaling were evaluated.

Conditions were obtained on properties of materials required for models made from l
these materials to accurately simulate systems. Absorption and energy balance were

also treated, and the influence of finite G on surface currents was shown. 24_k.0

Scaling laws are the result of exact conditions on each coefficient of

Maxwell's equations. Since the claim that scaled-down models may be used to

represent real targets is based on linearity of Maxwell's equations, we also -"

examined the physics involved in nonlocality and nonlinearity, its relation to the

Maxwell equations In macroscopic media, and its impact on physical scale modeling.

Nonlocality in space may often be neglected in conductors up through optical

frequencies, as long as the mean free path for conduction electrons is small, and
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the radar wavelength is large, compared to the skin depth. When these conditions

are satisfied, E, vi, and a become functions only of f in dispersive targets.

The behavior of electromagnetic fields was also examined as a function of f.

If a were infinite, as is usually assumed, satisfying general scaling requirements

would be elementary, because all solutions to the general modeling equations are

* then trivially satisfied, except those leading to geometric scaling.

Unfortunately, it is physically impossible to satisfy scaling conditions

* exactly when realistic materials are used and the change in f is appreciable,

because this would require that upper bounds on physical a be exceeded at higher f,

* and definite limitations also exist on physical c and p'.

This paper showed that incor~plete scaLing of apparently nonabsorptive targets

may have profound implications for model measurements. Both electric and magnetic

scattering were considered. All the energy density in the reflected wave may be

lost at higher f, and the ratio of the measured RCS of geometrically scaled targets

* to that predicted for a completely scaled model will eventually: approach zero.

RECOMMENDATIONS

Even though we have concentrated on scattering of radar waves from targets,

* very few conclusions actually depending on properties of waves have been Used,

beyond Equation (20). To assess effects Of compromises with coto.plete scaling, a

more realistic calculation of the precise interaction of electromagnetic waves with

physical models is needed.

*First, the scattering amplitude should be calculated for electromagnetic waves

impinging on nondispers1ve materials in the proper frequency domain with a more

careful description of fields and currents. Such a description is quite applicable

up through microwave frequencies to the range where the effpects of electron inertia 5

begin to be felt. Both reflection and absorption coefficients should be O
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calculated, as well as phase angles. Ratios of the measured radar cross section

(RCS) values of scaled targets to those predicted for an ideal nondispersive model

should also be calculated.

These calculations should be extended to dispersive materials up through

higher microwave frequencies into the range where the effects of electron inertia

can be felt. In general, as f increases up through the modeling range, and becomes

comparable with frequencies corresponding to electron-lattice interactions and to

electron motion within atoms and molecules of the material media (optical

frequencies), absorption takes place, which leads to p, e, and a becoming complex

functions of f with real and imaginary (reflective and absorptive) parts.

The gradual onset of absorption in good conductors as f increases through the 4
modeling range permits a simple description in terms of electron inertia. In

conductors, electron inertia is usually felt at a lower f than other forms of

absorption, and is also the first cause of dispersion. The Drude theory describes

these dispersive effects of electron inertia well with a complex c, and can be

applied to metals as a decreases with increasing f through the modeling range from

the X-band used on full-scale ships to the shortest X considered for physical scale

models. Ratios of the measured RCS values of scaled targets to those predicted for

such a dispersive model should also be calculated and compared with those obtained

for the nondispersive case.
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