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~tobe based on the linearity of Maxwell's equations. Therefore, . we-fi¥st examined~
—> the physics involved in linearity, its relation to .the Ma ell equations in macro-
scopic media, and its impact on physical scale modeiln ~ The behavior of electro-
magnetic fields was examined as a function of frequency. Upper bounds on the
electric conductivity and limitations on the electric and magnetic polarizability of
realistic materials may have profound implications for model measurements. All the
energy density in the reflected wave may be lost at higher frequencies by incomplete
scaling of even apparently nonabsorptive targets. Thus, the ratio of measured radar
cross sections of geometricallv scaled targets to those predicted for a completely
scaled model will eventually approach zero.
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NOTATION
Area
Magnetic flux density (or magnetic induction) vector
Velocity of light in free space
Electric displacement vector
Electric field intensity vector (in original medium)
Electric field intensity vector in model

Ratio of model characteristic electric field intensities to those in
original medium

Frequency (and, including and following Equation (10e¢), ratio of
model to original frequencies)

Magnetic field intensity vector (in original medium)
Magnetic field intensity vector in model
Tangential component of magnetic field intensity vector

Ratio of model characteristic magnetic field intensities to those in
original medium

V=1

Free electric current density vector

Propagation constant of light when o = O

Characteristic length (in original system)

Characteristic length in model

Ratio of model characteristic lengths to those in original system
Induced magnetization vector

Induced electric polarization vector

Time-average electromagnetic power absorbed

Mechanical scale factor (reciprocal of %) -
Poynting Vector (S = E x H)

Ratio of model characteristic times to those in original system
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Characteristic time (in original system)

Characteristic time in model

Velocity of light in a material medium (v = 1/Vey)

Rectangular Cartesian coordinates of a point in space

Complex characteristic (or wave) impedance of a medium

Real part of the characteristic impedance (resistance)

Imaginary part of the characteristic impedance (reactance)
Characteristic impedance of a medium when o = 0

Real part of the complex propagation constant or attenuation constant
Imaginary part of the complex propagation constant (= k when o = 0)
Complex propagation constant

Skin depth

Partial derivative operator

Electric permittivity (dielectric constant) in original medium (and,
following Equations (13a), ratio of model to original permittivity)

Klectric permittivity in model

Electric permittivity of free space

Ratio of model characteristic impedances to those in original medium
FElectric loss tangent

Electric permittivity relative to free space

Magnetic permeability relative to free space

Wavelength

Magnetic permeability in original medium (and, following Equatieons
(13a), ratio of model to original permeabili

"Accesion For
Magnetic permeability in model NTIS CRA&I

. . DTIC TAB
Magnetiec permeability of free space Unannounced

Justification

aoas

Pi (3.141592654)

By .
Dist ibution |
v Availability Codes

) Avail andjor
Dist Special

Frve ohnarg: density
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o Electric conductivity in original medium (and, following Equations
(13a), ratio of model to original conductivity)

a' Electric conductivity in model

Electric susceptibility

X Magnetic susceptibility
w Angular frequency (= 2uf)
7 Divergence operator (div)

Vx Curl operator

Laplacian operator (div(grad))
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ABSTRACT

This report presents a complete and rigorous treatment
of the predictions of electrodynamic similitude relating
scattering from scaled targets to scattering from full-size
targets. The usual assumption is made that the targets
treated are those whose conductivity, permittivity, and
permeability do not change with frequency. Three general
nonlinear modeling equations in six variables are derived,
and a complete set of solutions is presented. For the first
time, particular emphasis is given to the effects of
differences between geometric and complete scaling on the
electromagnetic fields and on the radar cross section, and
effects of approximations to complete scaling are evaluated.
Conditions are obtained on properties of materials required
for models made from these materials to accurately simulate
systems. Abscrption and energy balance are alsc treated,
and the influence of finite conductivity on surface currents
is shown.

The possibility of using scaled-down models of real
targets is usually claimed to be based on the linearity of
Maxwell's equations. Therefore, we first examined the
physics involved in linearity, its relation to the Maxwell
equations in macroscopic media, and its impact on physical
scale modeling. The behavior of electromagnetic fields was
also examined as a function of frequency. Upper bounds on
the electric conductivity and limitations on the electric
and magnetic polarizability of realistic materials may have
profound implications for model measurements. All the
energy density in the reflected wave may be lost at higher
frequencies by incomplete scaling of even apparently
nonabsorptive targets. Thus, the ratio of measured radar
cross sections of geometrically scaled targets to those
predicted for a completely scaled model will eventually
approach zero.

ADMINISTRATIVE INFORMATION

This project was supported by the DTNSRDC Independent Exploratory Development
Program, sponsored by the Office of Chief of Naval Research, Director of Navy
Laboratories, OCNR 300 and administered by the Research Coordinator, DTNSRDC 012.3

under Program Element 62766N, Task Area ZF-66-412-001 under DTNSRDC Work Unit

INTRODUCTION

The recent development of millimeter and submillimeter and of infrared and
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visible laser (lidar) radar systoms for detection of military vehicles [1]* has
stimulated ronsiderahle interest in scaled-down models of radar targets. The
distribution of radiaticn soittered from i full-size target is expected to be
predictable from measurements nn o £aithful scale model.

Models of elactromapgnetinc systems have been used for antenna studies [2] since
the early 1900's. However, the carliest known work on model measurements of radar
cross sections (RCS) was at Massachusetts Institute of Technology Radiation
Laboratory in 1942 [3]. This application received considerable impetus from the
suggestions and work of Sinclair and his colleagues during World War II [4, 5], and
has been extensively pursued since then [6-12]. Despite some problems in preparing
the models themselves and in making measurements, scale models provide an important
means both of determining the RCS of targets for which no other method is practical
and of providing independent verification of values found in other ways.

Scales models of physical systems all depend on principles of similitude which
allow relationships to be established between model and full-scale behavior.
Equatinns for scaling elsctromagnetic models have previously been written by
Stratton T13], Brown and King [14, 15], and Sinclair [57. However, practical
difficulties with scaling properties of realistic materials now exist which, for
most scattering measurements, discourage all but simple geometric scaling [1, 9-12,
16-18]1. Geometric scaling is a partial form of scaling, where the scaled target
nas the same dimensions in scaled wavelengths as the actual target has in actual
wavelengtns, but material properties are ignored.

Since a complete set of solutions to the general scaling equations has never
previously been published, little concern was shown about differences bhetween
geometric and complete scaling in radar applirations T1]. Although it has been

known that scaled electric conductivity (o) should increase with frequency (f),

* References are listed on page 39.
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differences between surface current distributions on poor conductors and on
perfectly conlucting targets were believed to be unimportant. Thus, infinite o is
usually assumed, the f-dependence of material properties is usually ignored, and
little attention has been given to resulting differences in the electromagnetic
fields involved.

However, this report will show this lack of concern is not justified. Here,
we develop a complete and rigorous treatment of the relations between scattering
from scaled and full-size targets on the basis of electrodynamic similitude,
starting with the usual assumption that not only o but also electric permittivity
(dielectric constant) (€) and magnetic permeability (u) do not change with f,

Three general nonlinear modeling equations in six variables are derived, and a
compiete set of solutions is presented. For the first time, particular emphasis is
given *to effects of differences between geometric and complete scaling on the
elerctromagnetic fields inveived and on the RCS, and effects of approximations to
complate scaling are evaluated. Conditions are obtained on properties of materials
required for models made from these materials to accurately simulate systems.
Absorpticon and energy balance are also treated, and the influence of finite ¢ on
surface currents is shown.

The possibility of using scaled-down models ot real targets is usually claimed
to> be based on linearity of Maxwell's equations [6, 10-12]. Thus, we first examine
the physics involved in linearity, its relatinn to the Maxwell equitions in
macroscopic media, and its impact on physical scale modeling.

The behavior of electromagneti: fields is also examined as a function of
frequency. Unfortunately, it is physically impossible to satisfy scaling
conditinns exactly when realistic materials are used and the change in { is
appreciabla, beciuse this would require that upper bounds on physical o be oxeeeded
1t higher £, and definite limitations also exist on physical « and ..
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This report will show that incomplete scaling of apparently nonabsorptive
targets may have profound implications for model measurements. Both electric and
magnetic scattering are considered. The energy density in the reflected wave will
be examined at higher frequencizss for both geometrically and completely scaled
targets, and the frequency dependence of the RCS measured for geometrically scaled

targets will be compared to that predicted for a completely scaled model.

THE MAXWELL EQUATIONS IN MACROSCOPIC MATERIALS

All scattering characteristics, including interference and diffraction,
polarization, and creeping and traveling (surface) wave phenomena, should be
correctly represented by rigorous scale modeling.

If the model is to be an accurate simulation of a full-scale system,
transformations relating model to full-scals quantities will transform Maxwell's
equatinons from model to full-scale systems. Since electromagnetic fields in both
systems must satisfy Maxwell's equations, we can thereby determine how €, u, and ¢

nust transform for simulation to be accurate. However, because upper bounds on

electric conductivity and limitations on electric and magnetic polarizability

sometimes render complete scaling lmpossible, approximations to complete scaling
s atd he investigated,

To examine “he origin and impact of these approximations, we must start from
the Maxwll equations in macroscopic materials. Following the rationalized
e

Lomer=Kilagr an-Gecond-Ampere (MKSA) system of units used by Stratton [13], these

Wwrritten
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electric field intensity (V/m)

magnetic induction (T or Wb/m?)

magnetic field intensity (A/m)

electric displacement (C/m?)

free electric current density (A/m?)

p = free charge density (C/m?®)

and the vector operators (V x and V +) are used to indicate how changes in space of
the above quantities are coupled to their changes in time (t).

E and B are macroscopic electric and magnetic field quantities, averaged over
volumes which are large compared to the volume occupied by a single atom or
molecule. D and H are corresponding derived electric and magnetic fields, related
to E and B through constitutive relations

b = D[E,
(3)
i - #[E, B)
Square brackets are used to signify functional relations that are nct necessarily
simple, because they may depend on past history (hysteresis}, may reflect the
derived polarization fields' lagging behind the changes in source fields causing
these effects, may be nonlinear, or some other factor.

The two homogeneous equations, Equations (1a) ind (1b), can be solved formally
by expressing E and B in terms of scalar and vector potentials, but the two
inhomogeneous equations, Equations (2a) and (2b), cannot be solved until the
derived fields D and H are known in terms of E and B. Bound charges and currents

enter Equations (3) through these derived fields, which represent macroscopically

5
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averaged electric and magnetic dipole, electric and magnetic quadrupole, and higher
moment densities of material media induced by applied fields.

In addition, forces on electrons depend on both magnetic and electric fields,
so for currents in conducting materials there is a generalized Ohm's law,

J - J[E, B] ()
In most materials, only electric and magnetic polarizations P and M are

significant. Then, electric quadrupole and higher terms in Equations (3) are

completely negligible, and we may define

D = eoﬁ’* P
- _ (5)
B = UO(H + M)
where
P = induced electric polarization (C/m?)
M = induced magnetization (A/m)
£, = permittivity of vacuum = 8.854 pF/m
U, = permeability of vacuum = 400w nH/m

These equations form the basis of all classical electromagnetic phenomena.
4hen they are combined with the Lorentz force equation and Newton's laws of
classircal mechanics to desecribe coupling between the fields and their noving
sources, they provide a complete description of the classical dynamics of

interacting charged particles and electromagnetic fields [19].

IMPACT OF LINEARITY ON PHYSICAL SCALE MODELING
[me claim that scalsd-down models can be usa2d to simulate real targets is
based on linearity of Maxwell's equations [6, 10-12]. Hence, nur treatment does
not apply to obviously nonlinear materials, such As ferromagnetic materials and
ionized regions with magnetic fields. However, the impact of linearity on other
types of physical scale models deserves some clarification.
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The Maxwell equations are linear partial differential equations. Since they
are linear in the fields, these only appear to the first power, and linear
superposition holds. Therefore, any sum of solutions of Maxwell's equations is
also a solution.

However, nonlinear effects may intrude in physical scale modeling, and it is
helpful to distinguish between the trivial linearity of equations, the more
complicated linear response of electrical devices, and the still subtler linearity
of materials. Common examples of transitions from the linear to the nonlinear
regime occur in transducers used to couple telephone conversations with a microwave
beam, in crystals responding to intense laser beams, and in magnetic materials.

Tne constitutive relations, Equations (5), permit a simple definition of the
linear response of a medium. Accordingly, materials are termed linear when an
applied E or H field induces a P or M polarization, respectively, that is
proportional to the magnitude of the applied field. Thus, our treatment also does

not apply to substances where P or M is not proportional to the magnitude of the
applied field, such as ferroelectrics or ferromagnets, which have nonzero P or M in
the abscnce of any applied fields.

The Maxwell equations are valid for nonhomogenecus s well as for homogeneous
materials. For weak enough fields, however, different Cartesian components of E and
D and of B and H are counlad through the electric permittivity or dielectric
tensor, and througnh the magnetic permeability tensor, respectively. These tensors
surmdrize the linear response of the mediam and are dependent nn molecular and,
perhnaps, crystalline structure of the material, as well as on such bulx properties
as density and temperatur~.

For simple materials, this linear response may be isotropic in space,
whaereunon the tensors become diagonal with all three elements esqual. Equations (5)

then become
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D = g, + erOE = gq,(1 + Xe)E = KeEoE = €E

— - _ _ - _ (6)

B = uo(H + x H) = wo(1 + xJH = kpuoH = uH
In addition, assuming no Hall or low temperature effects, Equation (4) becomes
Ohm's law

J = oE (7)

where

Xe = electric susceptibility (dimensionless)

Ke = electric permittivity relative to free space (dimensionless)
¢ = permittivity of medium (F/m)

= magnetic susceptibility (dimensionless)

Km = Mmagnetic permeability relative to free space (dimensionless)
u = permeability of medium (H/m)

0 = electric conductivity of medium (mho/m)

NONLOCALITY IN SPACE AND TIME

In general, the basic linear connection between D and E, as well as between
H and B and between J and E, may be nonlocal. Nonlocality in time and space
implies that a principal property of the relations (%) and (7), namely the
dependence of J, D, and B only on values of E and H at the instant or place

considered, is no longer true.

In general, the values of 3, 5, and B at a given instant are determined not

™

only by the values of E and H at that instant, but also by values of E and H at
every previous instant. Furthermore, with sufficiently rapidly varying applied
fields, because of the inertia of electrons and other more massive atomic and
molecular solid state constituents, establishment of P or M polarization in
materials and the flow of currents through them will eventually not be abl~s to keep

up with the changes in E and H causing these effects [19-21].

Also, long-range effects may become important, so a spatially local form of
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Ohm's law is no longer adequate. Thus, Equations (6) and (7) should be understood
as holding for Fourier transforms of the field components in space and time. The
permittivity, permeability, and conductivity tensors are then functions of
frequency f and wavelength A [19,20]. Nonlocality in space may often be neglected
in conductors up through optical frequencies, as long as the mean free path for
conduction electrons colliding with the lattice structure is small compared to the
skin depth, whereupon €, u, and ¢ become functions only of f in dispersive targets.
However, this f dependence can be present down through radar frequencies and it
complicates scaling, since €, u, and ¢ are complex variables having both real and

imaginary (i.e., reflective and absorptive) parts,

ENTRANCE OF THE SKIN DEPTH
When an electromagnetic wave enters a good conductor, its amplitude is a
rapidly decreasing function of distance. It is damped to 0.36788 (the reciprocal
of the 2.71828 base for natural logarithms) of its initial amplitude in the skin
depth 8, where: [13, 19]
1
§ = — (8a)
v nfou
¢ is also a function of f, so § decreases as either f or ¢ increases,
approaching zero either when o becomes very large (perfect conductor) or when f
becomes very large. A conductor with vanishing & would reflect all incident light
and would not permit penetration of an electromagnetic wave to any depth at all.
We can understand the electromagnetic fields in the neighborhood of this thin
surface layer, as well as the power absorbed in and scattered from it, by
considering waves incident on both perfect and good, but not perfect, conductors.
With waves incident on a perfect conductor, the boundary condition associated

with Equation (2b) requires that surface charges move instantly in response to
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normal D outside to produce the correct surface—charge density which gives zero E

inside. Similarly, in response to tangential H outside, the second boundary
condition associated with Equation (2a) requires that surface charges move fast
enough to produce the correct surface current to give zero H inside.

The boundary condition on normal B associated with Equation (1b), as well as
the other boundary condition on tangential E associated with Equation (1a), imply
continuity of these two across the surface. Thus, their vanishing values inside
require that these two both vanish outside the surface. Therefore, only normal E

and tangential H can exist Just outside a perfect conductor, and all fields drop

abruptly to zero inside.

For a good, but not perfect, conductor the surface fields and charges behave
approximately the same as for a perfect conductor [19, 21]. However, with finite
g, charges and currents do not respond to fields instantaneously, so there is a
thin transitional surface layer in which tangential H outside undergoes the rapid
exponential decay inside that is measured by 8. There is alsoc a normal E outside,
which undergoes an exponential decay inside similar to tangential H, but whose
energy density inside is much smaller than the magnetic energy density.

In addition, there are small components of E and ﬁ, tangential and normal to
the surface, respectively, outside the conductor. These also decrease
exponentially inside, and result in a power flow into the conductor, which can be

calculated from Poynting's vector, S:

S=ExH

X

(8b)
which is the power flow across a unit area normal to §, or the energy flux density.
Many such quantities can be shown to be proportional to 8. For example,
Panofsky and Phillips have shown [22] that the ratios: (a) of tangential & at the
metal's surface to its normal component there, as well as (b) of normal H to its

tangential component there, are both approximately &/i.
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In addition, the time—average power absorbed (P) per unit area (a) equals the

time-average normal component of Poynting's vector [19], which can be written

(8c)

This can also be calculated from ohmic losses due

and thus is proporticnal to 6.

to energy dissipation by the surface currents in the conductor's transition layer.

The power absorbed in the conductor leads to a loss of energy in the reflected wave

and a decreased scattering cross section.

Therefore, very little power flows into the conductor, to be dissipated there

because of wave damping due to development of heat in the surface resistance.

Poynting's vector at the surface is very small, since the ratio of E to H within

the metal is much smaller than its value in free space, representing a small energy

flow into the metal. The situation is almost like that with a perfect conductor,

for which the E vectors of the incident and reflected waves are equal in magnitude,

but 2xactly cancel at the metal's surface, whereas the H vectors are equal in

magnitude, because of the perfect reflection, but add.

For a realistic material such as copper, the above formula for 6 becomes

y 6.6 66,000 e
) § = — om = — unm (8d) fﬂ}
: Vf /f :-{"«'
: ¢

yielding 6 = 0.66 um at £ = 10 GHz, where the X = 3 ¢cm, and § = 0.047 um at

f = 2000 GHz, where A = 150 um. This rapid attenuation implies that current flows .l

in a rather thin surface layer at high frequencies, and that 8 is a very small

fraction of A.

Thus, no complicated constructive or destructive interference

occurs in this surface layer, and at the metal's surface hoth tangential E and

normal H are small compared to normal £ and tangential H, respectively, according

to the paragraph above Equation (8c¢).
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The above equation will also yield the frequency at which 8§ and A eventually
become equal:
c 1011
f = — = — GHz = 20,66 GGHz (8e)
A 4,84
where ¢ is the velocity of light (3x108 m/sec), and 1 GGHz = 10° GHz. This
frequency corresponds to
8§ = A = 0.00001452 un = 0,1452 X (8f)
or about one—quarter the Bohr radius of the hydrogen atom. Both 8 and A appear to
be in the quantum mechanical regime, outside the range of classical electromagnetic
phenomena.

Although the above conclusions are based on Equation (8a), derived under the
assumption ew << 0, where w is the angular frequency (= 2nf), dependence on A
becomes important in physicAal scale models when the mean free path of electrons
colliding with the conductor's solid structure becomes comparable to §, which
usually does not occur until one reaches optical frequencies. Then, a spatially
local form of Ohm's law is no longer adequate, and long-range effects occur which
become important in understanding the surface impedance of metals.

A metal's surface impedance is the ratio of tangential E to tangential H at
its surface. Although its value can be calculated from classical electromagnetic
theory, at sufficiently low temperatures the spatial nonuniformity of the
electromagnetic fields becomes important. Consequently, a macroscopic description
of a metal in terms of €, u, and ¢ is no longer possible.

More precisely, as a metal's temperature falls, its ¢ increases, and an
el ctromagnetic field's depth of penetration into a metal decreases in accordance
with the above expressions for §. At the same time, the amplitude of lattice
vibrations decr2asss with A decrease in temperature, so the electronic collisional

mean free path increases and may exceed 6§ by a large factor. When the mean free
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path is comparable with or much greater than 8§, electrons will traverse regions

with different values of E between collisions, and their resultant velocity will

depend on the changing values of E along the entire path. Since E varies over the
electron's path, ¢ is not constant over all parts of the metal, so Ohm's law must
be replaced by a more detalled expression where the spatial variation of E is takan
into acecount.

The above behavior implies not only that the current at a point depends on the

]|

fi=zld at other points, but also that the effects of a boundary can be felt at
substintizl 1depths, This leads to a nonexponential decay of the field as it
penetrates into tne medium, These and other departures from the behavior described
by the formulas given above for & are known collectively as the anomalonus skin
effect [19-21], and can be utilized to map out the energy levels allowed to

lectrons in metals.

4]

In metals, electrons that have the most available energy, lie on what are
called Fermi surfaces. For most electronic properties of metals, the behavior is
determined by electron states very near the Fermi surface. This is particularly
true with transport properties, for only electrons near the Fermi a2nergy can find
an unoccupied state at a nearby energy. Correspondingly, with small applied fields
it is only states near this surface for which the occupation number changes. Thus,
eriergy bands In the neighborhood of the Fermi surface are the ones of primary
importance,

To summarize, as { increases the classical skin depth decreases. When §
necomns comparable to the mean free path of carriers, we reach the nonlocal regime
deseribed above, which usually can be ignored in conductors up through optical
frequencies. When § 1s much smaller than the carrier mean free path, we encounter
what. is ecalled the extreme anomalous skin effect. More detailed study of the
anomalous skin effect leads to information about the transition between the
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classical skin effect and the extreme anomalous region, and to information about

details of the shape of the Fermi surface [20].

NONLINEAR OPTICS

Conductors are composed of atoms and molecules bound together in a regular
arrangement to form a solid. The electrons in the outer shells of these atoms and
molecules can be regarded as being in a potential in which both the electrons and
the resulting ions will oscillate linearly at small amplitudes.

Materials showing a linear response to weak electromagnetic fields will
eventually show nonlinear behavior at higher field strengths when electronic or
ionic oscillators are driven to large amplitudes. A monochromatic wave, when
pulsed, develops a spectrum of frequencies which, for large amplitude, may then
generate waves in the medium with harmonic, sum and difference, cubic, and higher
nonlinear terms, giving rise to a broader spectrum of frequencies. With the
development of lasers, such nonlinear behavior has become an active research area,
called nonlinear opties [19, 23].

Lasers are capable of generating pulses with peak E fields of 10 or even 100
Gigavolts/cm. On the other hand, the static E field felt by an electron in the
hydrogen atom's ground state is only 5.14 GV/cm, and fields of 100 kV/cm are equal
to the average internal fields seen inside a dielectric lattice. Since fields of
190 kV/cm can thus cause electrical breakdown in a solid and destroy it, the laser
fields often used with physical scale models may well be cAapable of driving atomic

oscillators into their nonlinear range.

MODELING OF ELECTROMAGNETIC SYSTEMS
s2aling laws result from imposing exact conditions on the Maxwell equations.
If 2 mhdel is to be an accurate simulation of a full-scale system, transformations
relating model to full-scale quantities will transform Maxwell's equations from one
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system to another. Since electromagnetic fields in both systems must satisfy
Maxwell's equations, such a transformation will determine how €, u, and o must
transform for simulation to be accurate. Replication of each coefficient of the
Maxwell equations, considered separately, will then give three general nonlinear
modeling equations in six variables.

To obtain these equations, consider a linear, homogeneous, isotropic system
with no free charge, where Equations (6) and (7) are valid, and Maxwell's two curl

equations, given in Equations (1a) and (2a), take the form

_ o
VxE=—u— (9a)
ot
oF
VxH=0¢E+ ¢ — (9b)
at

The electromagnetic properties of a configuration of imperfect conductors,
dielectrics, and magnetic materials in unbounded space can be compared with the
properties of a scale model, which differs geometrically from the original only in
having its dimensions changed by a factor %, which may be larger or smaller than
one. If model characteristics are denoted by primes, each model length L' is
related to a corresponding length L in the original system according to

L' = 4L (10a)

The conditions imposed by Equation (10a) represent the requirements for a
mechanical model of the material portions of a full-scale system, in which there is
geometrical similarity in shapes of corresponding material parts. Frequently, a
quantity p is defined, the ratio of any full-scale to corresponding model length,
called the mechanical scale factor. The parameter p is normally chosen to yield a
model of convenient size, would usually be greater than one for smaller models used
at higher f, and satisfies

p = 1/% {10b)

15
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Time is likewise scaled

t' =T ¢t

t (10¢)

(o T el

where T is the ratio of model characteristic times to those in original system and,
since the field's period is inversely proportional to frequency, we redefine f to
be the ratio of model to original frequencies.

The requirement that a model's electromagnetic properties shall be the same as
those of the original, except for a change of scals, means that the E and H fields
in the space about a model will pick up multiplicative factors
E' =¢ekE and H' = h H (11a)
where e and h are the ratio of model characteristic electric and magnetic field
intensities to those in original medium, respectively. Likewise, ¢, u, and o have
new values in the model denoted by primes.

Since Equation (10c) states that all times are to be multiplied by a factor T
in a model, first time derivatives may be replaced by

3 19 3
— - — =1 — (11b)
atr T 3t at

The curl operator, which involves first derivatives with respect to space
coordinates, may similarly be replaced according to Equation (10a). Then, starting

with model variables, the Maxwell Equations (39) take the form

1 ) BH'
T X E = T xE = -TxBE=-y —
2 2 at!
(12a)
1 n SE!
Tt «x H' = =T x H' = -~V xH=0g'S' + ¢! —
2 2 3t!

Multiplying the first equation by (%/e), the sccond by (2/h), and continuing

the transformation from primed to unprimed variables
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_ _ 4 _ oE" e _ e 9E
VxH=~{¢'E" + ¢ — 1} =0"8 -E+ e"0f - —
h ot' n h 9t

Since the electromagnetic boundary-value problems presented by the model and
the original are to be similar, we can determine how ¢, u, and ¢ must transform by

requiring that the coefficients of

H 3E
- , E, and —
at ot

be identical in both model and original.
Equating the coefficients in Equations (12b) to those in Equations (9), three

obviously independent relations result

h
uo= p'if -
e
e
g = 0'2 - (13a)
h
e
e = g'Qf -
h

For simplinity of notation, since 2, f, e, and h are ratios of model to
originil sizes, frequencias, % and ¥ fi-~lds, respectively, we now redefine ¢, u,
and 1 to be ratins of model permittivity, nermenbility, and conductivity to those

of the original.

Then, the above rthroe coquations Lake the simpler form
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plf - =1

o — =1 (13b)

ef - =1

and involve the seven variables
e
€, W, 0, ¥, £, and -

h

Since the E and H field coefficients only appear as a ratio, we then define
¢ = - (14)

whizn {3 actually the ratio of model impedances to those in the original, and our

tnres cquations take the final fornm

wlf = ¢ (15a)
ol =1 (15b)
cfr =1 (15¢)

in a total »f six variables.

SOLUTIUNS OF THE MODELING EQUATIONS
somplete solutions to the three nonlinear equations in six viriables given in
Fquationg (15) have not apparently been published. 1In practice, one seeks
s~intions for &, f, and ¢ as functions of the parameters s, u, and ¢ available in

artual materials used for models.

GENERAL SOLUTION
Eliminating 7, the ratio of fields, from Equations (15) yields the three

expressiong
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ne(ff)? =1 (16a)
pol2f =1 (16b)

) ]
— =1 (16¢)

N ef

The first two are similar to Stratton's conditions for electrodynamic
similitude [13], although arbitrary constants have been evaluated and no appeal is

made to dimensionless measure numbers of the field variables.

The third equation is new, although it has often been stated that scaled model
conductivity should be p times that in the original system [1, 4, 5, 8-11, 14-16,
181].

What has been untouched is other solutions of Equations (15) and the behavior
of electromagnetic fields in physical scale models., Going back to Equations (15),

and solving each of these expressions for g

z = uif (17a)
1

r = — (17b)
ol
1

r = — {(17e)
elf

However, the presence of all six variables in Equations (17) complicates
interpretation,

On the other hand, if & is eliminated from Equations (15), two new expressions

result

1
u

[l
it

{18a)

€
uf
_ {18b)
g

A third is also produced which is actually the same as Equation (16c).
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If £, last of the three variables, is eliminated from Equations (15), only one
relation is produced, which is the same as Equation (18a). .

This constitutes a complete set of solutions to the three nonlinear Equations
(15), as can be seen by successively eliminating either &, or f, or ¢ from
Equations (15) and finding all solutions for each of the remaining two variables as
a function of the third and of the remaining three parameters ¢, u, and o.

Equations (18) may have profound implications for physical scale models,
because they provide a general solution relating g, the ratio of electric and
magnetic fields as defined in Equation (14), to f and the three material parameters
€, u, and o. Equations (16), (17), and (18) will now be used to show how finite ¢
affects the surface currents and to discuss proper scaling of the electromagnetic
fields and the scattering cross section, differences between geometric and complete

scaling, and dependence of absorption and energy balance on f.

FINITE CONDUCTIVITY AND SURFACE CURRENTS

In practice, scale models are limited by values of ¢, u, and ¢ obtainable in
model materials. For many measurements, €' and p' in the model will not differ
appreciably from their values in the full-scale system. According to Equation
(18a), the ratio of fields should also not differ appreciably in a completely
scaled system.

However, if one uses Equation (14), definition of the impedance, in Equation

(18b), one obtains
h = —=o¢8 —_ (19)

which implies that, if ¢ (or, more properly, o/u) does not increase linearly with
f, the ratio of H fields shrinks with respect to the ratio of E fields.
This is understandable because a o not increasing fast enough for proper
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scaling leads to diminished surface currents, which cause a decline in their ~i¢
e

— U
associated H fields. :‘o".:.‘
l"’!s ]
: The coupling between electromagnetic fields and surface currents is simple and e—é
A
direct. A

& . ‘: 3
For a perfect conductor, tangential E at the surface is zero (otherwise, any :&Q
surface current would be infinite), but tangential H is finite, and the fields are f7£

9.
- », ‘l
X damped waves that fall off infinitely rapidly with penetration into the metal, so H T#
PO

’ I
. _ e
and E are both zero directly below the surface. Stokes's theorem implies a Qﬁh

surface-current density, numerically equal to tangential ﬁ, but at right angles to

it, to account for the rapid decrecase of tangential H from its finite surface value

v e'a & 8 o4 &

to zero directly below the surface. This current can flow without a corresponding
tangential E because of the perfect conductivity.
Inside a good conductor, the transverse H falls off rapidly as we penetrate
- the metal. This rapid change of H with depth leads to a large V x H, and hence the
Maxwell Equation (2a) implies a large current density J, since conduction currents
are much larger than displacement currents in a good conductor. Thus, there will

be a large current flowing in a thin metal surface layer. By Ohm's law [Equation

a's # a 223

(7)], this surface current is parallel to E and proportional to it, but the
magnitude of E is small for large values of o. Since H drops to zero well inside

N the conductor, Stokes's law implies the tangential component of H just outside the

metal surface equals the current flowing parallel to the surface, per unit length

of surface.

[ R

N In the limit of infinite conductivity, J in the surface layer becomes {34

¥
e

infinite, but § becomes zero in such a way that a finite current per unit length of

» J'~

- surface results, which is numerically equal to the tangential component of H at the

X

surface, On the other hand, tangential E goes to zero all through the surface

tayer, so tangential E at the surface i3 also zero.
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& In fact, when both target and model conductivity are Infinite, so both metal ‘SE
1) I’q'l
K surfaces are perfect reflectors for waves at all frequencies, then o becomes the . L
o ratio of two infinities, which is indeterminate. Therefore, one general scaling "E
d hGY
\ equation, Equation (15b), becomes trivially satisfied, and the other two, Equations : }ﬁb
? "'i.
B (15a) and (15¢), have the simple solutions given in Equations (16a), (17a), (17¢), ¥3$
-

/ and (18a). Furthermore, since & and f appear only in the product (&f) in the g
oy general modeling Equations (15a) and (15¢), if one assumes geometric scaling EP'
) NG
7") L.- -

. b= (20) L
) o

o then, according to Equation (18a), the usual f-independence assumed for e and u -

"
:: will imply electromagnetic fields whose ratio ¢ doesn't depend on f. R
~ O
>, In addition, with Equation (20) used to link £ and f in the general modeling i
N Equations (15a) and (15c¢c), all dependence on both these variables disappears from Ve
g: their solutions, so no f-dependence of material properties is required for proper :;:
‘ e
Y scaling. -~
"
.. On the other hand, with both target and model o taken to be finite, additional - Pb;
. oL
~.. requirements imposed by the general scaling equation, Equation (15b), lead to a ::i
> ~
- patent f-dependence of material properties being needed for proper scaling that Py
- complicates the new solutions given in Equations (16b), (16¢), (17b), (18b), and i:‘
3 (19). To better understand this required f-dependence of material properties, it t}
‘4' '~"-
'. 1] ’
2 is helpful to consider the differences between geometric and complete scaling. s
- v':‘.-
b, DIFFERENCES BETWEEN GEOMETRIC AND COMPLETE SCALING KON
- P:b:'
. In our notation, the geometric scaling condition is expressed by Equation t"‘
A
-

—~ (20). Increased f is then associated with decreased size, so a scaled target has L=

K

kY ‘lN.
. the same dimensions in scaled wavelengths as the actual target has in actual - :¢:
N wWwavelengths. :G?
™ o
. For realistic materials with finite o, models built according to the geometric Ly
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scaling condition of Equation (20) lead t» further conditicng on the matorial
properties involved if complete scaling i3 tno prevail, These 2onditions b
~eatly obtained by using Equation (20) to link « and f in the general modeiny
Equations (15). This process permits elimination of 2. Solutions for 7 my <ren
be obtained as functions of f and of the parameters g, u, and v available in xectusl
model materials.

Explicitly, using Equation (20) to eliminate & from Equations (15), the tnree

independent basic modeling relations simplify to

T = u
gy = f (2v)
eg = 1

Eliminating ¢ from Equations (21) yields the analogues of Equations (16)

e = 1

ou = f (22)
o
— = 1

ef

These are the conditions Maxwell's equations place on the materials needed for
accurate simulation of systems by models. We see that various combinations of o
with € and g should increase linearly with f, while € and p also satisfy the first
of Equations (22).

In Equations (21), no £ or f, common to more than one equation, can be
eliminated there. However, solving each of Equations (21) for g, the analogues of

Equations (17) are
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f .
z = - (23)
g
1 3
C = - ‘_.'
€ 3
. - e
and multiplying pairs of these yields the analogues of Equations (18) A
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Equations (24) are very similar to Equations (18), and again imply that a o

le

not increasing fast enough for proper scaling leads to diminished surface currents '2
— 2N

and declining H fields. AN
.L-“o !

BR

CONDITIONS FOR AN ABSOLUTE MODEL ) :ﬁ

?,

Sinclair [5] also discussed modeling theory for electromagnetic systems.

Since there are only four fundamental units (mass, length, time, and charge), four
scale factors should suffice to describe any electromagnetic quantity. Thus, hea
introduced four factors to relate full-scale length, frequency (or time), E, and H,
to model quantities, analogous to those in Equations (10) and (11).

He derived three equations similar to Equations (13a), intending to absolutely
replicate a full-scale system, with both geometries and field strengths being
modeled., He then calculated how 24 quantities [including Poynting vector and radar
cross section (RCS)] transform as functions of the four scale factors, and claimed

he could obtain quantitative data on all electromagnetic properties of a system,

24 R
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including absolute power levels as well as configurations of lines of force,. ‘: :
. However, Maxwell's equations fix only the ratio ¢ = e/h, and not e or h, *Ef
} separately. Thus, Sinclair simply noted that if a specific value is assigned to g:gs
elther e or h, his model is absolute and will yield quantitative results for all %ﬁ;;
quantities, Otherwise, his model is a geometric one. ;ﬂé

T

Many scale models are built to satisfy the geometric scaling condition of tii;

Fquation (20), so one cannot then deduce power levels directly from model é%g,
measurements. However, absolute values can be obtained by measuring relative power o

in the model system and calibrating this power by comparing signals returned from a -ﬁgj
model with those from a target of known RCS. g;%
Unfortunately, Sinclair [57 provided no general solutions of the modeling ; ;;

equations, and did not consider effects of differences between geometric and i;f

complete scaling on electromagnetic fields, nor the influence of finite ¢ on Egi

surface currents. Also, little attention was paid to dependence on frequency. ‘?;”

2%

X ABSORPTION IN NONDISPERSIVE TARGETS %2{
3 The scaling laws considered above imply replication of each field coefficient &:‘
ir the Maxwell Equations (9), considered separately, and consiat of three general j?i

X nonlinear modeling Equations (15) in the six ratios: %, f, ¢, €, u, and o. Eé?
However, now going back to the original meaning of €, u, and ¢ (and f), while their 555

"

static values are reasonably well known, absorption at higher frequencies occurs ’1ff

near eigenfrequencies of the molecular or electronic vibrations causing PorM §€S

\ polarization of materials. EES
At these frequencies, the linear constitutive Equations (6) and Ohm's law, ':::

Equation (7), are not valid. The values of these eigenfrequencies depend on the EE:‘

: substance concerned, and vary widely, but become important whenever e, u, and o i*:;
) exhibit the f-dependence known as dispersion. Moreover, since the presence of ,;2;
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. dispersion in general signifies a dissipation of energy, nearness to these
: eigenfrequencies is also indicated whenever materials absorb. Thus, a dispersive
i
) medium is also an absorbing medium. In addition, the frequencies at which )
:t dispersion phenomena first appear may be entirely different for the electric and '
Ly . .
g magnetic properties of a substance, as well as being dependent on direction in the §$
v
> lattice. In this report, while we continue to acknowledge anisotropy, we defer its %ié
; proper treatment until a future time. EEE
Since absorption at higher frequencies occurs near eigenfrequencies of the ;Eé
] S
molecular or electronic vibrations causing PorM polarization of materials, one
; would expect this absorption to be associated with A for the electromagnetic fields .;ﬁ»
£ eventually becoming comparable with atomiec dimensions, so the macroscopic Eﬂf
1 formulation utilized above is invalid. On the contrary, there is an extensive i
3 frequency range in which absorption and dispersion phenomena are important but,
{ fortunately, A for electromagnetic fields is much larger than that of atomic or -
molecular dimensions, so a macroscopic formulation utilizing €, u, 2and o is
; appropriate. . E:\
N y‘-$ )
} The quantum—mechanical band structure of solids shows that conductors have ﬁg}
l "free" electrons in partially filled bands, while insulators have bands filled to ':
; the full extent permitted by the Pauli principle. In conductors, these "free" Eéi
E electrons have their motion damped by collisions involving momentum transfers to i&:
j the atoms making up the resistive medium, lattice imperfections, and impurities. 3;7
i This electron inertia usually is felt at a lower frequency than any resonant ;;Z>
1 absorption frequency, and is then the first cause of dispersion. The Drude theory E&{
i explains these dispersive effects of electron inertia by means of a complex ¢ [19, i;:
S 24]. Hence, it is quite proper to consiier nondispersive absorption up through - Ei;
E microwave frequencies to the range where the effects of electron inertia begin to E;{
s “La
. be felt. “f
R
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cLECTRIC AND MAGNETIC SCATTERING
Since both the physical causes and mathematical formulation of electric and
magnetic scattering are quite different, each type of scattering can be considered

separately.

“lectric Scattering

For nondispersive materials with real € and o, typical electric absorption
would take place in a lossy dielectric, whose parameters satisfy the Maxwell curl
equation

_ 3
VxH=gE+ g — (9p)
at

The two terms on the right 1and side of Equation (9b) represent conduction and
convection currents, which depend on frequency. However, any variable field can be
Fourier transformed into a series of single-frequency components, in which all
quantities depend on time through the complex exponential factor exp{iwt). This
form makes it possible to reduce operations of time differentiation to simple
multiplication by iw, and also to more readily consider all parameters of equations
38 complax variables.

Assuming an exp(iwt) time dependence, monochromatic fields are singled out,
and Equation (9b) becomes

Y x H= oE + icuf (25a)

whereupon it can be seen that the conduetion and convection currents are 90 degrees
out of phase. The w dependence apparent on the right hand side implies that the
resistive conduction current dominates at lower w, whereas the reactive convection
current dominates at higher w.

If 0 i35 considered to be the seat of all electric losses, it is convenient to
define a quantity n called the ‘elzctric) 1oss tangent

27
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l o34
i l.‘
r RS
! . , Nl
! ] conduction current density A
) n=— = (26) NG
' we displacement current density . E
; Since n is obviously a function of frequency, then the degree to which a :&:
} . Nty
material exhibits conductor or dielectric properties depends on frequency. More :}*
o der

specifically,
>> 1 conductor i 2
b FTS:
" )
<< dielectric ﬂ%i‘
l).i.)'

On the other hand, scaling of ¢ and & according to Equations (13a), which

o

h insures proper replication of each coefficient of the Maxwell equations, leads to a Qii
h e
b RIS
; loss tangent not changing with frequency, so the degree to which a properly scaled }ﬁf‘
N o }
4 material exhibits the properties of a conductor or dielectric should not change -
b with frequency.
4
Magnetin Scattering
Typical magnetic absorption occurs in magnetized ferrites, which can be very )35
)
DAY
anisotropic (e.g., directional couplers) and whose parameters may show strong o
— N
nonlinearity in their dependence on the magnitude of H., However, the right-hand oo
"
side of the other Maxwell curl equation N
R
— N
5 = oH h
VxE=-y — (9a)
ot .
consists of only one term.
‘ Assuming a time dependence of the form exp(iwt), monochromatic fields are : e
agiin singled out, and Equation (Ya) beconmes ;
”
VxE =~ iul (25b) e
_‘1'
| whereupon 1t can be seen that nondispersive materials with real u have no room for ’ -4 ;
... '*
~ J
magnetic absorption. However, magnetic absorption will occur in dispersive 5{='
. Nl
materials when u acquires an imaginary part. The imaginary part of u then plays a ,_' 
28 R
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role in Equation (25b) analogous to that of ¢ in Equation (25a), so it becomes
possible to define a magnetic loss tangent that is the ratio of two current
densities like those in Equation (26).

However, for nondispersive materials with rreal u, there is no magnetic
conduction current, as well as no free magnetic charge, and the magnetic loss
tangent is zero at all frequencies.

Furthermore, scaling of u according to Equations (13a) does not allow for

magnetic absorption here at any frequency.

PLANE WAVES IN DISSIPATIVE MATERIALS

The electric and magnetic properties of materials both influence the
reflection and absorption of electromagnetic waves by targets. We now consider how
the reflection coefficient and radar cross section (RCS) change as frequency
increases, and as incomplete scaling causes n to decrease through the value n = 1
(13, 19, 25].

Both E and H satisfy (damped) wave cquations of the same form. Taking the
curl of Equation (9a), substituting from Equation (9b) for ¥ x H, and assuming no
free charges on surfaces, yields

B 3E 3k
VZE = oy — - gy — = 0 {27a)
ot at?
An analogous procedure yields an identical equation for H.
In a rectangular coordinate system, for incident uniform plane waves normal to

a surface at z = 0, the solution of Equation (27a) takes the form

= E, expliut —- Yz) (28)

)

where Eo is a constant amplitude vector in the direction of the wave's
polarization, and Y is the complex propagation constant. JInserting Equation (28)
into Equation (27a) yields
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, Y2 = fwpo + iwe) e
\ ‘f-.'
’ = -~ w¥ep(1 - in) = - K*(1 = in) A0
) = - w'en n) = - k*(1 n (29) e
Thus, Y is actually a function of only two parameters: (a) k, the propagation g
.
z S
\ constant of light when o = 0 . Y
\ o
5 _ f an o
l k = wey = 21— = — (30) -
q v A ."P\
: — A
N where v is the velocity of light in a material medium (v = 1//eu), and (b) the Rt
y electric loss tangent n from Equation (26). g;}f
l By taking the square root of Equation (29), Y itself can be written as a sum - J
X CAL
\ e
v of the proper real (a) and imaginary (B) parts s
N Y =a -+ i (31) A
! to make Equation (28) a solution of Equation (27a). The nonnegative character of by ;‘
v‘ :'.:‘:‘
k €, M, and o causes Y? to lie in the second quadrant of the complex piane, so its el
. e
o S
Y positive square root lies in the first quadrant, and thus a and 8 have the same .q?;
! sign. The other square root would be denoted by -Y. . :_;
Y e
; Substituting expressions of the form of Equation (28) for E and H into s
N _ _ e
b Maxwell's equations, the plane wave considered is polarized, with E and H at right ﬂi;
! angles to each other and to the direction of propagation. The wave (or NS
. el
? characteristic) impedance Z of a medium is defined as the ratio of the magnitude of
.

E to the magnitude of H, where

lwu g
ZZ = e——— A\:.A
g + iwe :;;
u 1 ] C:\:,
- = (2) (32) i
e (1 - 1in) (1 - in) Do
Thus, Z also turns out to be a function of two parameters: (a) Z,, the cjk:
: e
characteristic impedance of a medium when a = 0 \iui
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(33)

which reduces to 376.6 Q for free space, and (b) the electric loss tangent n from
Equation (26).

28y taking the square root of Equation (32), Z itself can also be written as a
sum of real (Z') and imaginary (Z") parts

Z = 2" + iZ" (3W)

where 7 has the dimensions of a resistance. Since it, like Y, is complex in a
conducting medium, there is in general a phase angle between the time dependence of
£ and H. The nonnegative character of e, u, and ¢ now causes Z2 to lie in the
First quadrant of the complex plane, so its positive square root lies in the first
octant, and thus Z2' and 2" have the same sign.

The properties of the medium may be neatly expressed in terms of Y and Z,
allowing the two Fourier—transfor.ed Maxwell curl Equations (25a) and (25b) to be

Aritten

V x (ZH) = YE (35a)

7 xE ~ Y(ZH) (35b)
From them, as with Equation (27a), we may derive the wave equations

V2E - Y?E = 0 (270)

V2H - Y2H = 0 (27¢)
satisfied by all components of E and H.

All solutions of Equations (27b), (27¢), =nd (35) are thus functions of only Y
ind 7, and therefore of the three parameters: &, Z,, and n, as gliven by Equations

Ty, (349), and (26}, respectively. It is often convenient to use the Maxwell
p y

enpiticng 1nd the wave equations in these forms.

SCALTING W THE SCATTHRING CROSS SECTION
Sinee all solutions of the Fourier-transformed wave and Maxwell equations for

31
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E and H, Equations (27b), (27¢), and (35), are functions only of Y and Z, and
therefore of the three parameters k, Z,, and n, investigating the scaling of any
quantity derived from the E and H fields reduces to investigating the scaling of
these three quantities, given by Equations (30), (33), and (26), respectively.

For nondispersive materials, neither e¢' nor p' will differ from their values
in the full-scale system., As we have seen from Equations (18) and (24), the ratio
of fields should also not differ in a completely scaled system. Thus, Z, should
not change with freguency.

Equations (22) are the conditions Maxwell's equations place on the materials
needed tor accurate simulation of systems by models. 1If neither e' nor p' differ
from tneir values ia the full-scale system, the first of Equations (22) is
automatically satisfied, and the second and third of Equations (22) both imply that
g should i{ncrease linearly with f. Therefore, neither n nor Z should change with
frequenny in a conmplately scalad system.

Thus, under completa scaling, neither Z, Z,, nor n will change with frequency,
Wwhila ¥ and ¥ hoth can easily be seen from Equations (29) and (30) to increase
Lineariy with f.

On the other hand, for the special 2ase of a uniform plane wave normally
inecident from free space (medium 1) upon the plane surface of a dissipative block
{m~diam 2), such generality is not necessary.

In madium 7, E consists of incident and reflected waves, and one defines a
r2flactinn confficiant R, measuring the amplitude ratio of reflected to incident E.

In moadim 7, there i3 also a transmitted wave, so one can define a transmission

AN OO i e T
Chmrriclanc |

, analogous to R. Both Stratton T3] and Adler et al. [25] calculated

~

oand

™
i

for scattering from dissipative surfaces and found that both these
conffiniants depend only on the Z's and not on the Y's.

Thus, under complete scaling, since both R and T depend on the Z's and not on

32
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the Y's, although the scalad RCS of a target will decrease as the square of

Y
Ly

increasing frequency (like a physical area), its properly scaled reflection

.

coefficient should not change.

On the other hand, under incomplete scaling, with the scatterer's u, €, and ¢

f{

not regarded as functions of frequency, and with medium 1 being free space with

loss tangent zero, the only remaining f-dependence resides in n for medium 2, which

'r(v’w

is also a function of the values of ¢ and € there.

ENERGY BALANCE AND DEPENDENCE ON FREQUENCY

It is physically impossible to satisfy scaling conditions on o when good
conductors like copper or aluminum are used in the original system and the
frequency change is appreciabls because, for copper and aluminunm, 0 is so near the
theoretical maximum that it cannot be increased in accordance with Equations (16¢)
and (18b). However, water, resistive conductors, and lossy dielectrics have
conductivities far enough from the thecretical maximum that their v can be
increased in accordance with Equations (16¢) and (18b) for appropriate changes in
f. Experience with more severe requirements in obtaining materials with necessary
¢ is found in geophysical applications, where p in Equation (10b) must be of order
200 to 1000 for modeling mineral prospecting problems and perhaps as large as
190,000 to 1,000,000 to study effects of large~scale structures on geomagnetic

variations [8].

>

On the other hand, little concern has been shown about scaling o in radar

applications [1], if the model is a metal of high o, since it is felt that high o

L AL PN

models have only a small surface component of E, and differences between the

surface current distribution on a poor conductor and that on a perfectly conducting

OO NN

target have been believed to be unimportant.
However, a simple argument based on Equation (19) leads to quite different
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predictions. For a plane wave incident on a physical scale model, electric and

L.
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magnetic energy densities are equal to each other outside the conductor, and the

LJ
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oy

radar cross section (RCS) comes =2qually from bLoth electric and magnetic scattering.

Therefore, if the ratio of scattered § fields shrinks with respect to the ratio of

<

Pt
o

E fields in accordance with Equation (19), then measured values of the RCS of

td
2.

scaled targets should approach one—half the value predicted for an ideal model.

ANy
-ty Ax Sy S B

Actually, magnetic losses are twice as important as the above argument would
indicate. Inside th~ conductor, the time average of the electrical energy density
is €E2/2, while that associated with the H fields is oE2/2w, so their ratio is
cw/0, which is assumed small in agreement with Equation (26). Therefore, the
energy density in a conductor is predominantly magnetic, so gdod conductors are
essentially not penetrated by E fields satisfying the condition that ew << o.

Thus, instead of measured values of the RCS of incompletcly scaled targets
approaching one~half the value predicted for an ideal model, the diminished surface

currents and declining H fields associated with a o not increasing fast enough with

RS
S

4

frequency for proper scaling lead to a ratio of measured values of the RCS to that

g.".“.".
LS

predicted for an ideal model which will eventually vanish [26].

(X,
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These general concepts remain valid in variable electromagnetic fields, even

XX

v

if dispersion is present [27]. Because of the continuity of the tangential

-y
v
A

components of E and H, the normal component of S in Equation (8b) is continuous at

Y A

NS
"
PRy
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the boundary of a body, and the interpretation of S as an energy flux density

o
7
N

4

carries over from a vacuum, across surfaces, into more complicated bodies.

.,
.
"

2

However, in thne presence of dispersion, the interpretation of energy density is

v =g
.
.

N, Ny

more complicated, because the presence of dispersion generally signifies

AL

1, Ay ﬂ#_‘t‘*%.‘; .

dissipation of energy, since a dispersive medium i3 also an absorbing one.

»

S,
WA

-.". ORI R R RNy W



SUMMARY AND CONCLUSIONS

Since, all scattering characteristics, including interference and diffraction,
polarization, and creeping and traveling (surface) wave phenomena, should be
correctly represented by rigorous scale modeling, the distribution of radiation
scattered from a full-size target is expected to be predictable from measurements
on a faithful scale model.

Therefore, a complete and rigorous treatment of the predictions of
electrodynamic similitude relating scattering from scaled and full-size targets was
developed, starting with the usual assumption that €, u, and o do not change with
f. Three general nonlinear modeling equations in six variables were derived, and a
complete set of solutions was presented. Scaling laws for such models explicitly
involve ¢, u, and o. However, practical difficulties with scaling properties of
realistic materials now exist which, for most scattering measurements, have
discouraged all but simple geometric scaling.

Particular emphasis was given to the effects of differences between geometric
and complete scaling on the electromagnetic fields and on the radar cross section
(RCS), and the effects of approximations to complete scaling were evaluated.
Conditions were obtained on properties of materials required for models made from
these materials to accurately simulate systems. Absorption and energy balance were
also treated, and the influence of finite ¢ on surface currents was shown,

Scaling laws are the result of exact conditions on each coefficient of

Maxwell's equations. Since the claim that scaled-down models may be used to

represent real targets is based on linearity of Maxwell's equations, we also
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examined the physics involved in nonlocality and nonlinearity, its relation to the

:__',:

Maxwell equations in macroscopic media, and its impact on physical scale modeling. -;n(\
. ‘.:\ :_-

WX

Nonlocality in space may often be neglected in conductors up through optical 5-\¢;
frequencies, as long as the mean free path for conduction electrons is small, and s
._::-_';.
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the radar wavelength is large, compared to the skin depth. When these conditions
are satisfied, €, 4, and o become functions only of f in dispersive targets.
The behavior of electromagnetic fields was also examined as a function of f.

g If o were infinite, as is usually assumed, satisfying general scaling requirements

Zf would be elementary, because all solutions to the general modeling equations are

1: then trivially satisfied, except those leading to geometric scaling.

lé Unfortunately, it is physically impossible to satisfy scaling conditions

2 exactly when realistic materials are used and the change in f is appreciable,

- because this would require that upper bounds on physical ¢ be exceeded at higher f,
i and definite limitations also exist on physical € and u.

This paper showed that inconplete sca'ing of apparently nonabsorptive targets

may have profound implicaticns for model measurements. Both electric and magnetic

; scattering were considered. All the energy density in the reflected wave may be
'’ .
; lost at higher f, and the ratio of the measured RCS of geometrically scaled targets
; to that predicted for a completely scaled model will eventuallv approach zero. .
i RECOMMENDATIGONS
7 Even though we have concentrated on scattering of radar waves from targets,
) very few conclusions actually depending on properties of waves have been used,
] beyond Equation (20). To assess effects of compromises with cormplete scaling, a
more realistic calculation of the precise interaction of electromagnetic waves with
»: physical models is needed.
; First, the scattering amplitude should be calculated for electromagnetic waves
= impinging on nondispersive materials in the proper frequency domain with a more i
it careful description of fields and currents. Such a description is quite applicable §
"
-~

-

up through microwave frequencies to the range where the effects of electron inertia

begin to be felt. Both reflection and absorption coefficients should be
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36

ST
XA

a3 )
p A

.Y

e Y S -.'s' N T R N L N I S (0 R R Sy Y

e ..;\-:_\:_..'_‘.:_‘ o e

-

L L . ATy et DI A

A LY DR ¢
o e it ) -



calculated, as well as phase angles. Ratios of the measured radar cross section
(RCS) values of scaled targets to those predicted for an ideal nondispersive model
should also be calculated.

These calculations should be extended to dispersive materials up through
higher microwave frequencies into the range where the effects of electron inertia
can be felt. In general, as f increases up through the modeling range, and becomes
comparable with frequencies corresponding to electron-lattice interactions and to
electron motion within atoms and molecules of the material media (optical
frequencies), absorption takes place, which leads to p, €, and ¢ becoming complex
functions of f with real and imaginary (reflective and absorptive) parts.

The gradual onset of absorption in good conductors as f increases through the
modeling range permits a simple description in terms of electron inertia. In
conductors, electron inertia is usually felt at a lower f than other forms of
absorption, and is also the first cause of dispersion. The Drude theory describes
these dispersive effects of electron inertia well with a complex €, and can be
applied to metals as ¢ decreases with increasing f through the modeling range from
the X-band used on full-scale ships to the shortest A considered for physical scale
models, Ratios of the measured RCS values of scaled targets to those predicted for
such a dispersive model should also be calculated and compared with those obtained

for the nondispersive case.
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