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PREFACE
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Arnold Air Force Station, Tennessee 37389-5000.The research was conducted in the
Propulsion Wind Tunnel Facility (PWT) during the period November 1, 1980 through
October 1, 1985 under AEDC Project Numbers DB205PW and DB25PW, and the
manuscript was submitted for publication October 1, 1985.

This work was the result of a joint effort with NASA Ames Research Center personnel,
who provided computer support and technical guidance regarding the implementation of the
embedded mesh concept. The authors also acknowledge the contribution of Dr. J. C. Erickson,
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1.0 INTRODUCTION

Solution of the partial differential equations of fluid motion by finite-difference
techniques requires that the computational domain and dependent variables be represented
on a network of discrete points. The distribution of these points is influenced by the choice
of the coordinate system, the order of the numerical approximation, and the location of
strong geometric and flow-field gradients. Typically, body-fitted, curvilinear coordinate
systems are used to simplify the application of boundary conditions. Construction of grids
with the requisite smoothness and point clustering remains one of the most nettlesome tasks
associated with the solution of the equations of fluid motion. This is especially true for
three-dimensional (3-D) configurations as the effort required to generate an acceptable mesh
increases rapidly with increasing geometric complexity and quickly becomes prohibitive. The
considerable effort (e.g., Refs. 1 through 4) that has been devoted to the development of
reliable methods to mitigate these difficulties may be broadly put into two groups, (1)

domain-decomposition and (2) grid-adapting methods.

Domain-decomposition techniques subdivide the computational domain into simpler
subdomains which admit a more easily constructed mesh. Several strategies have been
explored to subdivide the domain and establish communications among the subdomains.
One group of approaches, the grid-patching or zonal methods, uses common or shared
boundaries and another uses embedded or overset grids to subdivide the domain. The work
of Rubbert and Lee (Ref. 5) and Lee (Ref. 6) is typical of the methods which construct a
global mesh from subdomains which share common boundaries. They generate a global
mesh by solving grid-generation equations on all subdomains simultaneously and by
requiring that the grid lines be continuous across subdomain boundaries. A difficulty with
this approach is that irregularities which occur in corners and along boundaries impose
constraints on the algorithm used to solve the flow equations. Lasinski et al. (Ref. 7) take an
alternate approach and solve for the flow field on each subdomain separately with
communication among the grids established by the transfer of boundary data. In their
approach, the patches overlap one point with common points on the boundary to obviate
interpolation for boundary data. Hessenius and Pulliam (Ref. 8) have modified the
approach of Ref. 7 to allow characteristic boundary conditions to be applied at subdomain
boundaries. Rai (Ref. 9) further generalized the method to admit independent grids in each
subdomain. Communication across grid boundaries is accomplished by means of special
difference formulae at the boundaries which maintain conservation properties across the
subdomains. Similar methods have been developed by Miki and Takagi (Ref. 10). Holst et
al. (Ref. 11) have applied the technique to large 3-D grids.
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The grid-embedding or oversetting techniques do not require common boundaries
between subdomains, but rather, a common or overlap region is required 'to provide the
means of matching the solutions across boundary interfaces. The usual procedure uses
interpolation of embedded boundaries to provide the necessary communication among the
grids. Atta (Ref. 12) and Atta and Vadyak (Ref. 13) employed this approach to solve the
full-potential equation in two and three dimensions. Their implementations used a separate
implicit solution algorithm for each mesh. Steger et al. (Ref. 14), Benek et al. (Ref. 15), and

Benek et al. (Ref. 16) developed a "chimera" scheme in two and three dimensions for the
solution of both a linearized flow model and the Euler equations. Lombard and
Venkatapathy (Refs. 17 and 18) use overset grids aligned with shock waves to produce highly
resolved solutions of inlet flows. Fuchs (Ref. 19) applied the method to internal flows, and
Rai (Ref. 20) uses a combination of patched and overset grids to solve rotor-stator
interactions. Dougherty (Ref. 21) and Dougherty et al. (Ref. 22) have extended the grid­
embedding technique to allow movement of embedded grids to follow time-dependent
motions. A closely related approach developed by Wedan and South (Ref. 23) employs a
global Cartesian mesh in which the body is embedded. Grid points that lie within the body
are located and automatically excluded from the solution process.

The second technique, grid-adapting methods, causes the mesh to evolve with the
solution of the flow equations. These methods seek to make the most efficient use of
available mesh points, as well as to reduce the grid-generation effort by automatically
clustering grid points to regions of high gradient. An advantage of the method is that the

initial mesh does not need to anticipate accurately all regions of large flow gradients. There
are several implementations of the method. Gnoffo (Ref. 24) models the mesh as a network
of springs whose constants are determined from the flow gradients. Nakahashi and Deiwert
(Ref. 25) extend this idea to allow both linear and torsional springs and have applied the
method to both steady and unsteady flow problems. Ghia et al. (Ref. 26) couple the grid­
evolution equation to the flow equation by requiring that the coefficient of the convective
term in the flow model be minimized. Brackbill (Ref. 27) and Saltzman and Brackbill (Ref.
28) use variational techniques to produce grid-evolution equations. Berger (Ref. 29) and
Berger and Oliger (Ref. 30) developed a dynamic grid refinement technique which embeds
successively finer grids to resolve flow gradients as they develop in the solution process.
Unfortunately, the adaptive techniques have not been sufficiently developed to allow an
assessment of their applicability to general 3-D flows.

This report documents the development of the chimera grid-embedding technique
described in Refs. 14, 15, and 16. We chose the grid-embedding approach for solution of
complex 3-D flows because it provides the flexibility to employ boundary-conforming grids

8
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on component parts of the geometry, to refine the mesh selectively in regions of interest, and
to permit the solution of different flow models on the component grids. Because of its
structural diversity, we call our implementation a chimera scheme after the creature from
Greek mythology which is compounded of incongruous parts. The method is a
generalization of the versatile grid-patching/zonal approach, and therefore, includes their
advantages. Thus, advances made in the latter approach have an immediate counterpart in
the chimera technique. Although the chimera approach allows different flow models to be
solved on each subdomain (e.g., Refs. 11 and 31), the present implementation is restricted to
the solution of the Euler equations on each grid.

2.0 GENERAL DESCRIPTION

Domain-decomposition techniques have two principal elements, (1) decomposition of
the computational domain into subdomains and (2) communication among the subdomains.
In the chimera approach, each subdomain requires a separate, independent grid generation
by any acceptable technique. Each subdomain is chosen to lessen the effort required to
construct an acceptable mesh, and perhaps, to isolate a particular region of the flow (e.g.,
where viscous effects are important). As explained in Section 3.2, the chimera
implementation increases the flexibility of subdomain selection by removing regions of a
mesh common to an embedded grid. That is, an embedded mesh introduces an artificial
boundary or "hole" into the mesh in which it is embedded. Because the regions interior to
the hole do not enter into the solution process, intergrid communication is simplified since
communication among the grids is restricted to the transfer of boundary data. Appropriate
boundary values are interpolated from the mesh or meshes in which the boundary is
embedded. The chimera procedure naturally separates into two parts, (1) generation of the
composite mesh and associated interpolation data and (2) solution of the flow model or
models on the composite mesh. Each part is embodied in a separate computer code,
PEGSUS and XMER3D. PEGSUS takes the independently generated component grids and
the embedding structure as input and automatically constructs the composite mesh and
interpolation data which are output. XMER3D takes the PEGSUS output and flow
specifications as input and solves the appropriate flow equations on each grid.

3.0 PEGSUS

Automatic generation of a composite mesh from the input component grids requires
PEGSUS to (1) establish the proper lines of communication among the grids through
appropriate data structures, (2) construct holes within grids, (3) identify points within holes,
(4) locate points from which boundary values can be interpolated, and (5) evaluate

9
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interpolation parameters. In addition, PEOSUS performs consistency checks on

interpolation data to assure its acceptability and constructs output files with the data

structure used in XMER3D. A structure chart of PEOSUS is given in Appendix A.

3.1 EMBEDDING HIERARCHY

The data structures required to manage the flow of data among the grids can become

cumbersome unless some restriction is placed upon the allowable interactions. A hierarchical
form follows naturally from the embedding process; embedded grids occupy a lower level of

the hierarchy than the grids in which they are embedded. Hierarchical forms also have a

convenient mathematical representation as graphs. Such a representation greatly simplifies

the development of data structures required to manipulate the transfer of data among the

grids by identifying the communication links that must be established. To facilitate the

discussion, introduce the following nomenclature: designate grids which comprise level eof
the hierarchy as Of,i, i = 2, '" In general, grids on a given level Rare embedded within

grids on level e- 1, overlap other grids on level e, and have one or more grids on levels e+ 1
embedded within them. Such an arrangement is shown in Fig. 1. The figure includes the

corresponding graph (See Section 3.4). The lines connecting the grids indicate the intergrid

communication links that must be supported by the data structures and suggest the

complexity involved.

It is not necessary to include all the interactions shown in Fig. 1. Very general
configurations can be considered with a restricted hierarchy at the expense of additional

labor in the construction of the component grids. The interactions permitted by the

hierarchy adopted for the work described in this report are shown in Fig. 2; grids on level e
are constrained to be completely contained within a single grid on level e - 1, and grids on
level e must be disjoint. The major advantages of the adopted structure are the

simplifications it provides in the construction of the data structures and in the limitations on

the searches required to locate points in other grids which may serve for interpolation of

boundary data.

3.2 HOLE GENERATION

Because each component mesh is generated independently, complications frequently

arise when the grids are embedded. For example, points of an enclosing mesh, 0C,i> may be
found to lie within a solid boundary contained within an embedded grid, Of+l,j. Such points

lie out of the computational domain and must be excluded from the solution process. In
addition, a large number of points must be interpolated if every point common to 0C,i and

Of+l,j (i.e., Of+l,j n 0f,i) is to be updated. Lombard and Venkatapathy (Ref. 17) found that

10
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such extensive interpolation can degrade globaL accuracy when there is a considerable
difference in mesh cell size (i.e. spatial resolution) between the grids GC,i and Gc+ I,j' To
avoid such complications, only the boundary of each embedded grid is updated; the points
of Ge,i contained within a subregion of GC+I,j are excluded from the solution on GC,i' Thus,
the embedded mesh, G c+ I,j introduces an artificial boundary or "hole" into GC,i' The only
computational requirement is that there remains a sufficient overlap (i.e., points in
Ge,i n Gc+ I,j and exterior to the hole). to support an interpolation for the outer boundary of
Gc+ I,j from points in GC,i (Fig. 3). Similarly, the overlap must be sufficient to aUow the hole
boundary in GC,i to be interpolated from points in G c+ I,j. A minimum overlap exists that is
dependent on the type of interpolation used.

A hole is constructed as follows: a surface, C, is introduced into GC,i. In general, the
surface encloses solid boundaries contained within the embedded grid GC+ I,j and serves as
an initial hole boundary. Whenever boundary-conforming component grids are employed,
the simplest choice for C is a leveLsurface of Gc+I,j' A search of GC,i locates points interior
to C. These points are "marked" for future reference by changing the value of an integer
array, IBLANK, corresponding to these points, from 1 to 0.

Figure 4 illustrates the details of the search procedure in two dimensions. The procedure
is as follows: (1) Define the iI!.itial hole boundary by a level curve in Gc+ l,j (Fig. 4a). (2)
Construct outward normals, N, at each point, Pc> defining C (Fig. 4b). (3) Determine a
temporary origin, say Po, located within C by averaging the coordinates. (4) Define a
"search" circle about Po with radius Rmax ; where Rmax is the maximum distance from Po to
points on C (Fig. 4c). (5) Test the magnitude of r: the position vector relative to Po, for every
point P of Gf,i. If I r I ~. Rmax, Plies outside the search circle and hence need not be
considered further. Whenever I E: I S Rmax , PJalls within the search circle and additional
testing is required~ (6) Compute N • Rp where N is the outward nor~al ~t the point Pc on C
closes£.to~, and Rp is the position vector to P from Pc (Fig. 4d). If N • Rp ~. 0, P is outside
C; if N • Rp < 0, P is inside C and IBLANK corresponding to this point is set to 0.

The points of Gc,i within the hole are excluded from the solution and are not usable as
boundary points. Therefore, additional points of GC,i are identified as hole-boundary or
fringe points. Values of the unknowns at these boundary points will be interpolated from the
embedded mesh, Gc+ I,j. The boundary points are constructed from points in GC,i which are
not hole points but which have nearest neighbors that are. Figure 5 illustrates the boundary
construction. The procedure is to examine the nearest neighbors (Fig. 5) of each point, P,
in Ge,i at which IBLANK = 1. If a neighbor is a hole point, P is a boundary point. The
indices of the fringe points are added to a list of boundary points which will require interpolated
data. The boundary point is also temporarily "marked" by setting the value of IBLANK
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to a nonpositive number which PEGSUS associates with GI'+I,j. Once all the hole boundaries
in Gl',i are constructed, the fringe point indices are added to a list of boundary points which
will require interpolated data. (Refer to Appendix B for details of the associated data
structures.) To simplify the logic of XMER3D, the values of IBLANK corresponding to the
boundary points are reset to O.

The primary function ofthe hole or artificial boundary introduced into a mesh, GC,i> by
an embedded mesh, Gr+ 1,j, is to exclude a region of Gr,i which may fall within solid
boundaries contained in Gr+ l,j. It is possible for the reverse condition to exist. A region of
the mesh Gc+ 1,j may fall within solid boundaries of Gr,i' A two-dimensional (2-D) example is
given in Fig. 6. Because the mesh about Body 2 overlaps Body 1 in mesh Gr,i in which it is
embedded, a region of Gr+ 1,j about Body 1 must be excluded from the solution on GC+ 1,j.

The procedure for constructing such a hole boundary is similar to that described above. The
examples of the chimera scheme given in this report avoid such complications. The
interested reader is directed to Refs. 21 and 22 for examples which include holes induced in
embedded grids.

3.3 INTERPOLATION

As the separate grids are to be treated as independent entities, boundary conditions must
be supplied to each. The boundary conditions of the differential equations which model the
flow provide data only at the boundaries of the computational domain. Thus, other data
must be obtained for the subdomain boundaries which are not coincident with those of the
computational domain. Because the subdomain boundaries typically lie in the interior of the
computational domain where the differential equations are valid, it seems appropriate that
the soluddn of these equations should provide the necessary boundary data. There are
currently several approaches (e.g., Refs. 15, 16, 20, 29, and 31) to obtain these data, but all
involve some form of interpolation of data in one mesh to provide the necessary data to
another.

Experience with a 2-D application of the chimera grid-embedding scheme (Ref. 15)

indicates thatdifficulties can arise when a shock crosses grid boundaries. Figure 7 makes a
comparison of pressure distributions obtained from solution of the Euler equations about a
supercritical airfoil on a single mesh and on a chimera grid. There is a mismatch in the
solutions in the neighborhood of the expansion preceding the shock. Examination of the
Mach number contours of the chimera-grid solutions (Fig. 8) reveals a considerable amount
of mismatch and hash in the overlap region near the shock/grid-boundary intersection.
Several factors could contribute-the nonconservative nature of the Taylor series
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interpolation; the reflecting boundary conditions imposed at the overlap; and the meager
extent of the overlap in the vicinity of the shock (Fig. 9).

There is much disagreement about the proper interpolation method to employ, especially
for cases in which shock waves or other regions of high gradients cross grid boundaries. The
basis of concern is that interpolation schemes assume continuity of the interpolant. Regions
of high gradient require approximations to the higher derivatives of the solution, terms
which are typically neglected. As a result, several methods have been developed which
modify the numerical difference procedure applied at grid interfaces to maintain a proper
representation of fluxes at the boundaries. The schemes proposed by Hessenius and Pulliam
(Ref. 8) and Rai (Ref. 9) are typical of such methods. Berger (Ref. 32) developed a
generalized difference scheme based upon the concept of a weak solution to the differential
equations and has the advantage that continuity of the interpolant is not required. The
method was illustrated for the case of 2-D overlapping grids.

Several investigations have found factors other than the nonconservative interpolation to
be important. Eberhardt (Ref. 33) examined shock/grid-boundary interactions between
embedded grids. He found that a major factor in the interaction was the boundary
conditions imposed at the overlap boundaries. Characteristic or nonreflecting boundary
conditions reduced the mismatch at the shock, improved accuracy, and increased the
convergence rate for both first- and second-order Taylor series interpolation. (Similar results
are reported in Ref. 8.) Lombard and Venkatapathy (Ref. 17) found that a disparity in

spatial resolution can significantly affect the shock/grid-boundary interaction. They also
found the proximity of the boundaries (i.e. overlap) to be important, particularly whenever
a significant difference in mesh resolution exists.

Mastin and McConnaughey (Ref. 34) studied computational problems associated with
interpolation on composite grids. They showed that bilinear interpolation in two dimensions
is superior to a Taylor series expansion when higher order derivatives of the solution are not
important. They also found that a two-cell overlap was sufficient to provide accurate
interpolation whenever the cell sizes of the overlapped grids are comparable. Simple
computations (Ref. 35) of the flow variables interpolated across an oblique shock on a
rectangular grid indicate that bilinear interpolation is superior to Taylor's series
interpolation.

We employ a trilinear interpolation for the 3-D chimera scheme. This method provides
an additional advantage of a more compact stencil. We also attempt to maintain a four- to
five-cell overlap between grid boundaries. The interpolation scheme is coupled with
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nonreflective boundary conditions on the grid boundaries. (For more details of the
interpolation, see Appendix C.) However, it remains possible that nonconservative effects
may be important for the acuracy of solutions near shock/grid-boundary interactions,
particularly in cases for which the spatial resolution between grids is comparable and in cases
with strong shocks.

3.4 DATA STRUCTURES

A chimera method requires the management of a large amount of grid and solution
information. It is necessary to keep track of the storage locations of the coordinates of each
grid, solution data on each grid, interpolation points, interpolated data, interpolation
stencils, points within holes, and the relationships among the grids in the hierarchy. In
addition, the management function must be implemented in an automatic manner that is
transparent to the user. Fortunately, the computer scientists have developed the required
management techniques (e.g., Refs. 36 and 37). Unfortunately, implementing these
techniques in FORTRAN is not always straightforward.

Concepts which can be helpful for use with the data structure draw on ideas from the
theory of graphs (e.g., Ref. 38). The graphical representation of the grid-embedding
hierarchy used in this report is shown in Fig. 2. Each grid Gr•i is called a node of the graph.
However, a node may contain much more information than just the grid coordinates.
Additional information we have associated with each node includes grid-storage location;
number of points in each coordinate direction; location of the grid in the embedding
hierarchy; the precursor grid, Gr - 1,k; number of descendants, GC+ 1,j, j = 1,2, ... ; location
of descendants; location of interpolation stencils; location of interpolation coefficients;
location of interpolated boundary data; and location of hole or excluded points. Most of
these data can be stored in lists; connections among the data are made through the use of
linked lists, and pointers (See Refs. 36 and 37). To illustrate, consider the management of a
single array containing spatial coordinates. The data are stored in a stacked or sequential
manner. Thus, it is only necessary to store the position of the first element (a pointer) in each
grid and the number of points in each coordinate direction on each grid (a linked list) to
locate the coordinates of any point. Details of the data structures are contained in
Appendix D.

Other approaches to the data structures are possible. For example, Norton et al. (Ref.
39) use a generalized grid structure similar to that used in finite-element methods. Each
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computational cell (or grid point) is numbered in an arbitrary manner as opposed to the
usual systematic ordering of points employed by finite-difference techniques. Instead, lists
of the indices of the points used in the finite-difference representation of each of the flow
equations are maintained. This procedure allows very different topologies to be used on
component grids and implicit interpolation for grid interfaces to be incorporated into the
scheme. The major disadvantage of the method is the large storage overhead required for
the lists of points in the difference stencil.

4.0 XMER3D

The implementation of the chimera scheme must provide for the use of multiple flow
models. The simplest choice of models is the Euler equations for inviscid flow and the
Navier-Stokes equations for viscous flow. For purposes of demonstration of the method, we
solve only the Euler equations. However, because of the choice of numerical algorithm, the
extension to viscous flow is straightforward. The 3-D Euler equations are solved by the
implicit, approximate factorization algorithm of Beam and Warming (Refs. 40 and 41). The
implementation follows that of Steger (Ref. 42) and Pulliam and Steger (Ref. 43). These
formulations use explicit boundary conditions which provide a convenient method of
imposing the correct boundary conditions on the various grids with minimal changes to the
code. A version of the code (Benek, J. A. "Vectorized Implicit Algorithm for Solution of
the Navier-Stokes Equations," unpublished, 1979) vectorized for the Cray computer served
as the basis for XMER3D (Appendixes D, E, and F).

4.1 THE SOLUTION ALGORITHM AND GRID HOLES

Grid points that belong to a hole must be excluded from the solution. Once the points
have been located and identified (i.e. !BLANK = 0), it is a simple matter to modify the
implicit algorithm. The modification required is illustrated by considering the algebraic
system typical of numerical approximation of the flow equations.

A¢ = F (1)

where A is the coefficient matrix assumed to be tridiagonal for convenience, ¢ is the vector
of unknowns, and F is a known vector. Let ¢3, ¢4, and ¢5 be elements belonging to a hole,
and let f3, f4, and f5 be values specified for ¢3, ¢4, and ¢5' The equations may be partitioned
to isolate the hole
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all a12 0 0 0 ¢] F]

0

a21 a22 a23 0 0 ¢2 F2
· ...................... , ....................· .

0 a32 a33 a34 0 0 0 ¢3 F3
0 0 a43 a44 a4S 0 0 ¢4 F4 (2)

0 0 0 aS4 ass aS6 0 ¢s Fs
· .......................................... .· .

0 0 a6S a66 a67 ¢6 F6
0

0 0 0 a76 an ¢7 F7

The desired modification must allow the application of the standard tridiagonal solution

algorithm and must not interfere with vectorization. These criteria may be satisfied if a32,

a34, a43, a4S, aS4, and aS6 (i.e. the off-diagonal elements) are set to zero; a33, a44, and ass (the

diagonal elements) are set to the identity; and F3, F4, and Fs are set to f3, f4, and fs. The

system takes the form

The hole logic can be incorporated into the algorithm so that vectorization is maintained.

The array IBLANK is defined for each point of the grid. If a point is within a hole, IBLANK

= 0; otherwise IBLANK = 1. A simple set of switches can be constructed that

automatically multiply each row of the coefficient matrix, A, by IBLANK

i = j
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The known vector, F, can similarly be modified as

For applications to the Beam and Warming algorithm, 4> corresponds to corrections to
the latest approximation cpn of the solution to the flow equation and

cp!l+ 1 = cp!l + "-!l
1 1 'PI (4)

Thus, the specified values of Fi in the holes are zero (i.e., fi = 0, i = hole point). Since the
values of cp~ and cp~ are determined by interpolation from the solution on another mesh, and
since the modified algorithm automatically produces 4>3, 4>4, 4>5 = 0, the interpolated
boundary values cp~ and cp~ are automatically preserved.

4.2 CONVERGENCE ACCELERATION

Additional changes to the solution algorithm were made to improve the convergence
rate. These include modifications to the numerical dissipation terms and modification of the
time step. The explicit dissipation term in Ref. 43 has the form

(5)

-
where J is the Jacobian of the coordinate transformation; Q = [Q, QU, QV, QW, e]/J is the
vector of dependent variables; density, Q; momentum components (Qu, QV, QW); total
energy, e; and E is a user-supplied constant of O(.~t), where .M is the time step. Equation (5)
was initially modified to

where lh = I ~x I + I ~y I + I ~z I

1/;1) = I YJx I + I YJy I + I YJz I

1/;\ = I sx I + I Sy I + I sz I

(6)

(7a)

(7b)

(7c)

and ~, YJ, and sare the curvilinear computational coordinates. The dissipation remains in a
nonconservative form but is weighted by an approximation to the eigenvalues of the
Jacobians of the flux terms (Refs. 44 and 45). The approximation has the advantage of
avoiding the evaluation of square roots. A similiar approximation to the implicit smoothing
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term of Ref. 43 preserves the block tridiagonal structure of the difference equations. The
3-D solutions presented here were obtained with that form of the smoothing.

However, additional experimentation with the smoothing terms showed that improved
convergence rates can be obtained with the combined form

(8)

where, e.g.,

v~ =

(9)

A~ = (1 + II V 11)( I ~x I + I ~y I + I ~z I)

A~ = (1 + II V II) (I YJx 1+ I YJy I + I YJz I)

A~ = (1 + II V 1I)(rx 1+ Iry 1+ Irz I)

and where
2 IQj + 1 - 2 Qj + Qj - 1 Ik,Ca~Q

= 4!t~ =
1 Qj + 1 + 2 Qj + Qj - 1 Ik,C<Q>

a~Q
= 4

IQk + 1 - 2 Qk + Qk - 1 Ij,c
!try =

I Qk + 1 + 2 Qk + Qk - 1 Ij,c<Q>

(lOa)

(lOb)

(We)

(lla)

(lIb)

I Qc + 1 - 2 Qc + Qc - 1 Ij,k
= 4 ---,----------

I QC + 1 + 2 QC + QC - 1 Ij,k (lIe)

The corresponding implicit term has the form
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whereq is the intermediate correction vector for the ~ direction, and where E, Es, and Ei are
user-supplied constants. Typically, E = 0.05, Es = 1.0, and Ej = 0.15.

The second modification to Ref. 43 is the addition of local time stepping. At each point
the time increment, L1t, was replaced by a local time step, h, in the form

h = L1tlim/(1 + --{J) (13)

where L1tlim is a limiting value at L1t; generally, L1tlim ::; 5. This form, suggested by Pulliam
(Ref. 46), greatly speeds the convergence of single-mesh solutions. We employed it on the
assumption that it would also enhance the convergence rate of the embedded grid as well.
Holst et al. (Ref. 11) used Eq. (13) for the local time step. Flores (Ref. 47) presented
computational results that show excellent convergence rates can be obtained. He also
indicated that the diagonal form of the Beam and Warming algorithm implemented by
Pulliam and Chaussee (Ref. 48) can achieve improved convergence with a fourth-order
implicit smoothing term. A fourth-order, implicit term destroys the tridiagonal nature of the
algorithm and produces a pentadiagonal form. This is not a severe penalty for the scalar
inversions used in the diagonal algorithm. The tridiagonal form was retained here because
the method will also be applied to time dependent problems (e.g., Refs. 21 and 22), and the
diagonal form (Ref. 48) is not conservative in time.

An alternate form for the local time step was investigated. The new form uses a more
exact approximation of the local Courant number; it is

h = CFL
A

(14)

where CFL is the local Courant number which isa user-supplied input for each mesh, and

(15)

where A~, A'l' and AI have been defined previously. Equation (13) was found to provide the
most consistent acceleration for arbitrary combinations of grids. For the cases tested, it was
found that CFL < 2.0.

5.0 APPLICATION AND VERIFICATION

The motivation for development of the chimera scheme is the simplification of grid
generation for computational problems involving complex geometry. In particular, the
requirement for routine computation of the effects of the wind tunnel environment on
aerodynamic models at the AEDC (Ref. 49) has emphasized the importance of a simple

19



AEDC-TR-85-64

method for 3-D grid generation. In addition, there is a requirement for computations of
time-dependent problems involving aerodynamic configurations in relative motion as
exemplified in the space shuttle booster separation and store separation from fighter
aircraft. Because of the complexity inherent in the grid-embedding process, particularly with
the associated data structures, we decided to first test the general concepts in two
dimensions. The lessons learned from this initial development step proved to be invaluable
to the extension of the procedure to three dimensions. Therefore, the following first
summarizes the 2-D results and notes the lessons which were found to be significant for the
development of the 3-D procedure. Then, the 3-D results are presented.

5.1 2-D APPLICATIONS

The chimera scheme was initially demonstrated in two dimensions using a linear,
incompressible flow model (Ref. 14). The method was extended to solution of the Euler
equations about three, more complex geometries (Ref. 15). The first was a circular cylinder
which served as a check of the method since an analytic solution exists for the incompressible
case. The second was a supercritical airfoil with a shock wave crossing grid boundaries. This
example was used to explore possible difficulties with a shock/grid-boundary interaction.
The third was a flapped supercritical airfoil which served to illustrate the method with a
complex geometry.

5.1.1 Circular Cylinder

The flow about a circular cylinder in crossflow was computed for two Mach numbers. A
two-level grid hierarchy was used (Fig. 10); the first level consisted of a 51 by 51 stretched
Cartesian grid; and the second level was an 85 by 30 polar grid that contained the cylinder.

The first calculation of cylinder surface pressure for Moo = 0.25 was found to agree very
well with a potential solution with a Prandtl-Glauert compressibility correction and with an
Euler solution on a 90 by 70 polar mesh as shown in Ref. 15. A second, supercritical,
calculation was made for Moo = 0.50. The vortex phenomena described by Salas (Ref. 50)
were observed as expected. The resulting solution was found to produce an asymmetric
shedding of vortices. The shed vortices passed freely downstream through the polar grid
boundary. Only the dispersion caused by the change in mesh resolution was noted.

5.1.2 Airfoil

The second geometry was the Dornier SKF1.1 supercritical airfoil (Ref. 51) with a
modified, sharp trailing edge geometry. Two Euler equations solutions were obtained for a
Mach number of 0.76 and an angle of attack of 2.5 deg. Two grids were used. The first, a

20



AEDC-TR-8 5-64

105- by 70-point a-mesh, provided a reference solution. The second consisted of a two-level

embedded grid; the first level, a 105- by 28-point a-mesh, the second, a 105- by 46-point

a-mesh (Fig. 9). All grids had a 5-point overlap at the trailing edge cut so that the effective

number of points defining the airfoil was reduced to 100. The elliptic grid generator GRAPE

(Ref. 52) was used to construct all grids. The reference and chimera grids had the same point

distribution on the airfoil and along the far-field boundary.

Both solutions were obtained with a global Courant number of 10 as defined by the

smallest cell volume. Thus, the time steps between the component grids in the chimera

scheme were different by a factor of 50. An ancillary result of the chimera solution was an

improvement in convergence rate over the single-mesh solution by a factor of 3. The

mismatch in the solution-pressure coefficients was discussed in Section 3.3. The major point

to be noted is that the shock location, and hence the surface pressure distribution, is affected
by the shock/grid-boundary interaction.

5.1.3 Maneuver Flap

Figure 11 illustrates the maneuver flap geometry that was created from the basic SKFl.l

geometry (Ref. 51). Some liberties were taken with the geometry for purposes of mesh

generation. The abrupt change in curvature at the flap location on the lower surface of the

airfoil was reduced by arbitrarily rounding the corner; the finite thickness of the trailing

edge of the airfoil at the flap location was eliminated in favor of a sharp trailing edge; and

the flap retained the sharp trailing edge discussed in Section 5.1.2.

A three-level grid hierarchy was employed. The first-level grid, G11 , consisted of a 105­
by 28-point a-mesh; the second-level mesh, 0 21> was a 105- by 46-point a-mesh which

contained the airfoil; and the third-level grid, G31 , consisted of a 55- by 16-point a-mesh

which contained the flap. Each grid had a 5-point overlap at the cut to avoid the use of an

implicit periodic boundary condition. Grids Gil and 0 21 are shown in Fig. 12 without 0 31 ;

G31 is shown embedded in G21 in Fig. 13. The grids were combined so that the flap chord line
formed a lO-deg angle, {3, with the chord line of the airfoil. The flap gap indicated in Fig. 13

is approximatly 1.5 times larger than the experimental configuration. The larger gap greatly

simplified construction of the flap mesh G 31 pecause points of G31 were constrained to lie

completely within the computational domain (Le. outside the airfoil).

Two solutions were obtained for supercritical conditions, Moo = 0.6, ex = 3 deg, {3 = 10

deg, and M = 0.7, ex = 3 deg, {3 = 10 deg. The angle of attack, ex, is measured relative to the

airfoil chord. Figures 14 and 15 present a comparison of the computations with experimental

data (Ref. 51). Agreement is better for the Moo = 0.6 condition although the pressure peaks
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are overpredicted on both the airfoil and the flap. The overprediction of the suction peak
causes a stronger shock which induces a downstream re-expansion. The effects of the
modified lower surface geometry at about 70-percent chord are also visible. The Moo = 0.7
solution also overpredicts the expansion on the suction surface resulting in a stronger shock
which is too far aft. The shock location at the trailing edge of the airfoil produces a higher
pressure over the flap and reduces the predicted flap suction peak. The major cause of the
disagreement with experiment is the lack of viscous effects in the computations which are
known to be significant for supercritical airfoils. Nevertheless, the solutions demonstrate the
ability of the method to simplify grid generation for complex geometries.

The Mach number contours for the two solutions are presented in Figs. 16 and 17. The

Moo = 0.6 condition (Fig. 16) Mach number contours pass smoothly through the grid
boundaries. The shock is weak and does not cross the grid boundary. The Moo = 0.7 Mach
number contours (Fig. 17) show significant distortion of the shock at the grid boundaries.
The resultant shock distortion at the grid interfaces is stronger for M = 0.7 solution than

00

for the Moo = 0.6 solution (See Section 3.3).

5.1.4 Conclusions Drawn from 2-D Work

The most important conclusion drawn from the 2-D work just described is that the
chimera scheme is a viable technique for simplification of grid generation. The procedures
for combining grids, locating overlap boundaries, constructing holes, identifying
interpolation points, and manipulating complex data structures were demonstrated and

found to be workable.

Several problem areas were also identified. The restriction which limited hole formation
to embedded grids did not provide sufficient flexibility. The algorithm for constructing holes

allowed the embedded grid G f + l,j to induce a hole in mesh G f ,i in which it was embedded;
however, Gf,i could not cause a similar hole to be formed in Gf+1,j. This problem became
evident with the construction of the flap mesh described in Section 5.1.3. The outer
boundary of the flap mesh had to be distorted so that it would not intersect the airfoil. As
a result, a compromise was reached in which the gap between the airfoil and flap was increased

beyond that of the experiment so that a flap mesh with a reasonable outer boundary could
be constructed. This feature became prohibitive for the moving mesh computations described
in Ref. 21. For the computations of Ref. 21 this restriction on hole formation was removed.

As has been noted in Section 3.3, the shock/grid-boundary interaction was found to be
much more troublesome than originally expected. The problem grew as the shock strength
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increased. It was speculated that the nonconservative interpolation could be the cause of the
difficulties. Although much effort has been devoted to verifying this hypothesis, no
definitive answer has been obtained. Some significant findings have come to light; the use of
nonreflecting boundary conditions reduces the interaction (Ref. 33); the type of
interpolation scheme and extent of the overlap region are important (Refs. 18, 32, 33, 34,
and 35); and the relative difference in spatial resolution may also be very important (e.g.,
Refs. 18 and 35).

The convergence rates of the solutions given in Sections 5.1.2 and 5.1.3 were slow. While
the convergence rates were not of primary concern, it became obvious that something must
be done to make 3-D computations feasible. In Section 5.1.1, improvements in convergence
rates were observed on the chimera grids. This result suggested that the different time steps
on each grid were important for further accelerations. Therefore, the 3-D extension used
local time stepping everywhere.

5.2 3-D APPLICATIONS

The 3-D capability of the chimera grid embedding is demonstrated by three example
configurations. The first example is a generic three-body configuration consisting of three
ellipsoids in a triangular arrangement. The second two are closely related wing/body and a
wing/body/tail combination. The embedding hierarchy used in these examples is shown in
Fig. 18. As in the 2-D case, the hierarchy requires that embedded grids, G C+ 1,j, j = 1,2, ... ,
be contained completely within the enveloping mesh, GC,i' The examples illustrate the wide
range of geometries that may be accommodated within the simple hierarchical framework.
The wing/body and wing/body/tail configurations illustrate the manner in which a complex
geometry can be represented by adding component grids. All of the following solutions were
obtained on the AEDC Cray Model XMP 1/2 computer.

5.2.1 Three-Body Configuration

A generic, three-body configuration was considered to test the flexibility of the
embedding hierarchy. The configuration consists of three ellipsoidal bodies in a triangular
arrangement (Fig. 19). The grids of the two smaller bodies have major and minor axes one­
half of the larger; each ellipsoid has a length-to-maximum-diameter ratio of 10. The two
smaller bodies are embedded in the mesh of the larger as indicated in Fig. 19. All the grids
are spherical with a 5-point overlap in the Y/ coordinate. The mesh of the large ellipsoid has
26,250 points distributed 30 by 35 by 25 in the t Y/, and t directions; the meshes of the two
smaller ellipsoids have 15,750 points distributed 30 by 35 by 15; and the composite mesh has
57,750 points. All grids were constructed using a hyperbolic grid generator (Refs. 53 and 54).
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5.2.2 Computation of Three-Body Configuration

A computation was made for Moo = 0.8 and ex = ~ 2.0 deg using the complete mesh
with no assumptions of symmetry. Thus, any asymmetries observed in the solution would be
a result of an artificial asymmetry built into the calculation procedure. Surface contours of
Mach numbers are shown in Fig. 20. The contours indicate that the flow between the bodies
is symmetrical. Therefore, it was concluded that the codes were functioning properly.

5.2.3 Wing/Body

The wing/body configuration was designed to provide a simple configuration which

could be used to assess wind tunnel wall interference (Ref. 55). It consists of a blunted ogive­
cylinder fuselage and a midmounted wing (Fig. 21). The wing has a constant chord planform
which is swept back at 30 deg with no twist or taper. Cross sections of the wing parallel to the
plane of symmetry are NACA-0012 airfoils. The wing/body dimensions in units of fuselage
cylinder radii are shown in Fig. 21. The figure includes the dimensions of the tail which has a
constant chord planform swept back at 30 deg without twist or taper. The equations
describing the fuselage geometry are

1
~(0.427 - x)x

y = 0.162 - 0.286x - 0.024x2

1.0

o ::::; x ::::; 2.42

2.42 < x ::::; 4.11

4.11 < x (16)

The dimensionless model coordinates x and yare indicated in Fig. 21. The model has been
tested in several wind tunnels over a wide range of Mach and Reynolds numbers; however,
the experimental data are as yet unpublished. An assessment of their accuracy is underway.

5.2.4 Grids

The 3-D grid-embedding process is illustrated with the wing/body configuration (See
Fig. 18). An outer mesh, Fig. 22, encloses the model. It is a warped, hemispherical shell
whose polar axis is coincident with the fuselage centerline. The mesh was constructed by
using the GRAPE code (Ref. 52) to generate a mesh in a longitudinal plane. The plane was
then rotated about the polar axis. The mesh extends from 9 to 51 radii from the fuselage and
contains 19,740 points which are distributed 47 by 21 by 20 in the t Y), and t directions (See
Fig. 22). The fuselage mesh (Fig. 23) is also a warped hemispherical shell whose inner
boundary is the fuselage surface. The grid contains 29,375 points distributed 47 by 25 by 25
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and extends to 11.5 radii. Thus, the outer boundary of the fuselage mesh overlaps the inner
boundary of the outer mesh by 2.5 radii (about 4- to 5-point overlap). The wing grid (Fig.
24) is a warped cylindrical mesh whose axis is directed along the wing span. The end surface
containing the wing root is coincident with the fuselage surface. The grid was constructed by
using the GRAPE code (Ref. 52) to generate O-mesh grids at selected spanwise planes. The

planar grids were then sheared onto cylindrical surfaces whose radius was equal to the
spanwise location. The mesh contains 16,698 points distributed 66 by 23 by 11. The ~

coordinate (Fig. 24) contains a 5-point overlap at the trailing edge cut to eliminate the
requirement for an implicit periodic solution; the 1/ coordinate has 15 spanwise surfaces
defining the wing. The composite mesh has a total of 65,813 points.

Because the fuselage mesh has points which lie within the wing, points in the
neighborhood of the wing are removed from the fuselage grid. Figure 25 displays the
resulting hole boundary. Values of the dependent variables at points on the hole surface are
obtained from the wing mesh by trilinear interpolation (See Section 3.3 and Appendix B).

5.2.5 Wing/Body Computations

Three calculations of the flow about the wing/body were made, (1) a subcritical,
compressible flow at Moo = 0.6 and ex = 0 deg, (2) a slightly supercritical flow at Moo = 0.75
and ex = 4 deg, and (3) a highly supercritical flow at Moo = 0.9 and ex = 2 deg. In the
comparisons of computed and experimental data that follow, the pressure coefficient, Cp , is
plotted as a function of the local dimensionless chord, X/C, where X is aligned in planes
parallel to the plane of symmetry. Experimental data are available at three spanwise
locations. In terms of the fraction of the semispan, Y/(b/2), the locations are 0.4, 0.6, and
0.9. Data are also available on the fuselage upper surface in the symmetry plane and are
presented as a funtion of the dimensionless fuselage length, X/D, where D = 10 in. This
scale was chosen to facilitate plotting. Note that the computational model continued the
cylindrical portion of the fuselage to X/D = 1.4, whereas the experimental model ended at
X/D = 1.2. No effort was made to model the support structure.

The subcritical condition, Moo = 0.6 and ex = 0 deg, was selected as an initial test of the
3-D chimera technique. Figure 26 presents a comparison of computed and experimental
(Ref. 55) pressure coefficients. The agreement is favorable, even near the tip. No effort was
made to model the tip; the only computational requirement was that the grid be packed
somewhat near the tip. Packing was achieved using hyperbolic tangent spacing obtained
from the method described in Ref. 56. The comparison with the fuselage data is good except
in the region where the tail is located (X/D == 1.0). In that region, the computation predicts
a constant value of Cp == 0, whereas the data show the flow to be slightly accelerated.
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The slightly supercritical condition, Moo = 0.75 and IX = 4.0 deg, was investigated next.
A comparison of the computed and experimental pressure data is made in Fig. 27. Again the
comparison is encouraging. The computation overpredicts the suction pressure on the wing
upper surface, and the disagreement increases toward the tip. Much of this disparity is
attributable to the increasing importance of viscous effects as the flow becomes
supercritical. The fuselage data continue to be well predicted except near the tail location
where the disagreement is larger than in the subcritical case.

The supercritical condition was computed for Moo = 0.9 and IX = 2 deg. Figure 28
compares the computation with the experimental data. The agreement is acceptable. The
agreement near the wing tip remains surprisingly good; the disagreement in the region of the
tail has become much more significant. The fuselage data show the presence of a shock wave
slightly downstream of the wing trailing edge. The computed shock surface is shown in red
in Fig. 29. The shock extends to the symmetry plane from a complex shock structure at the
winglfuselage junction. The ragged nature of the shock surface is caused by the plot
program (Ref. 57). Figure 29a shows the curved structure of the shock from the root to the
tip (See Fig. 28). Because the shock is "painted" last by the plot program, the lower surface
shock also appears in Fig. 29a as the most forward patch of red near the wing tip. Figure 29b
shows the lower surface shock more clearly. The shock location on the wing/body surface
can also be seen in Fig. 30 which displays the surface grids of the fuselage and wing; the
portion of the wing grid that is coincident with the fuselage is also shown. Mach number
contours on the body surface show the M = 1.0 (green) contour from the symmetry plane
down the fuselage to the wing root and across the wing. The figure indicates that a major
portion of the upper wing surface is supersonic (Le. region between the green contours). The
expansion over the wing is sufficiently strong to induce a supercritical flow on the fuselage.
Mach number contours in YJ = constant surfaces at the wing root, midspan, and tip are
presented in Fig. 31. The dotted lines in the figure represent the computational mesh and the
solid lines are the Mach number contours. The shock (green, M = 1.0 contour) is smeared
because of insufficient clustering of grid points. The contours at the grid boundaries are as
smooth as the spatial resolution allows.

Figure 32 displays Mach number contours on the outer boundary of the wing mesh.
These contours are of interest as they result from interpolations in the fuselage grid. The
exchange of information between the grids results in a smooth set of contours. The sonic
bubble on the wing (green contour) passes through the outer boundary. The shock surface
(Fig. 29b) continues into the fuselage mesh where the differences in spatial resolution
between the grids smear the shock.
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5.2.6 Wing/Body/Tail Configuration

The horizontal tail was added to the wing/body and new grids were constructed using the
techniques described in Section 5.2.4. The outer grid has 37,000 points (74 by 25 by 20); the
fuselage mesh contains 77,700 (74 by 35 by 30); the wing mesh has 27,720 points (66 by 28 by
15) with 20 points in the YJ direction defining the wing surface; and the tail contains 15,120
points (56 by 18 by 15) with 10 points in the YJ direction defining the tail surface. Thus, the
composite grid consists of four component grids and has 157,540 points. The new grids were
used to test the behavior of the chimera scheme with large component grids.

Because the fuselage mesh has points which lie within the wing and tail, two holes are
introduced into the fuselage grid in the neighborhood of the wing and tail. Figure 33 displays

the resulting hole boundaries. Values of the dependent variables on the hole surfaces must
be interpolated from either the wing or tail grids, as appropriate (See Section 3.3 and
Appendix B).

5.2.7 Wing/Body/Tail Computations

The Moo and ex = 2.0 deg condition was rerun for the complete configuration. A
comparison of experimental and computed pressure coefficient, Cp , as a function of the
dimensionless chord X/C is presented in Fig. 34 in the same manner as Section 5.2.5. Data
are available for only one semispan location on the tail, Y /(b tl2) = 0.60. Figure 34 shows

the computed results to be in excellent agreement with the experimental data. The addition
of the tail had very little effect on the wing pressure distributions. The agreement with the
fuselage data is significantly improved. However, the data show a slightly more extensive
expansion on the fuselage than is computed. The tail data and the computation indicate that
the 2-deg angle of attack is negated by the downwash from the wing. The data indicate the

presence of a shock which is not observed in the calculation. Comparison of the solution for
the wing/body configuration presented in Fig. 28 with that in Fig. 34 shows some

discrepancies which are attributed to differences in spatial resolution and convergence
between the solutions. The large composite grid of the wing/body/tail (157,540 points) was
not converged to the same degree as the wing/body grid (65,813 points), a three order-of­
magnitude reduction of the residual compared to four.

The fuselage data (Fig. 34) indicate the presence of a shock wave (See Section 5.2.5). The

computed shock wave structure is shown in red in Fig. 35. A shock wave extends from the
fuselage symmetry plane around the fuselage to the wing root, across the upper surface of
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the wing to the wing tip, and around the tip to the lower surface as in Fig. 29. The shock in
Fig. 35 is sharper and less ragged because of the increased spatial resolution. A small shock
can also be seen on the tail. This shock is weaker and does not extend to the tail root nor
does it cross the tail grid outer boundary. This is consistent with the effective reduction of
the angle of attack at the tail noted in Fig. 34. Mach number contours on the full
configuration are shown in Fig. 36, which also displays the surface grids (compare with Fig.
30). The Mach = 1.0 (green) contours can be traced around the fuselage and across the
wing. A large portion of the wing upper surface is supercritical. In comparison, only a small
region concentrated near the tip is supercritical on the tail. Figure 37 presents Mach number
contours in YJ = constant surfaces at the root, midspan, and tip for both the wing and tail.
The small extent of the supercritical flow on the tail is evident (the green, M = 1.0 contour).

Figure 38 displays Mach number contours on the outer boundaries of the wing and tail
grids which result from quantities interpolated from the fuselage mesh. The information
exchange among the grids results in smooth contours. The sonic bubble over the wing (green
contour) passes through the grid boundary, whereas the tail has no such interaction.

6.0 CONCLUDING REMARKS

A set of computer codes have been described that implement 3-D grid-embedding
techniques as a part of a flexible solution concept that we have called a chimera method.

The codes utilize procedures for combining grids, locating embedded boundaries and
interpolation points, and manipulating complex data structures. The validity of the method
was successfully demonstrated on several geometries for inviscid flow. Extension of the
method to include viscous effects is underway.
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Figure 1. Hierarchical structure of embedded grids.
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Figure 2. Restricted hierarchy used in this report.
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SKF1.l

Figure 11. SKF1.1 maneuver flap configuration.
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Figure 16. Mach contours for subcritical conditions, Moo = 0.6,
ex = 3 deg, (3 = 10 deg.
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Hierarchy for Wing/Body/Tail Hierarchy for Three Ellipsoids

[
Gl 1 ~Large EI'lipsoid
Grid[out~;'~ridl

Fig. 22 J
I

[FuseIG;~el Grid]
Fig. 23 ~

G2 1 ~
Small Ellipsoid

Grid l G2 2 ~
Small Eilipsoid

Grid

[
. G3 1 ~

Wing 'Grid
Fig. 24

[ G J3,2
Tail Grid

Figure 18. Grid-embedding hierarchies for 3-D applications.
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Figure 19. Three-ellipsoid-body configuration and grids.
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Figure 20. Mach number contours on surfaces of ellipsoids,
Moo = 0.80, ex = - 2 deg.
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Figure 21. Wing/body/tail configuration.
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- Computation
o Lac kh eed CFWT

oI----,--,LJ-----

011----

01+----

o~--

0.4

000

X/D

Y/(b/2) = 0.4

Y/(bI2) = 0.6

1.2O. 80.4
O. 8 L------L_-l-_L---..L..._--l...-_L----.J

o
XfC

Figure 26. Wing/body solution, Moo = 0.60, a = 0 deg (open symbols,
upper surface; solid symbols, lower surface).
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XID Computation
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Figure 27. Wing/body solution, Moo = 0.75, ex = 4 deg (open symbols,
upper surface; solid symbols, lower surface).
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Figure 28. Wing/body solution, Mao = 0.90, a = 2 deg (ope" symbols,
upper surface; solid symbols, lower surface).
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a. Upper-surface view
Figure 29. Wing/body shock surface, Moo = 0.90, a = 2 deg as determined'by PLOT3D.
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Shock Locations Based on Pressure Gradient

b. View from planform plane
Figure 29. Concluded.
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Figure 30. Mach number contours on wing/body surface, Moo = 0.90, /X 2 deg.
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Figure 31. Mach number contours in three 11 = constant planes, Moo = 0.90, a = 2 deg.
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Figure 32. Mach number contours on outer boundary of wing grid, Moo = 0...90, a = 2 deg.
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Figure 33. Fuselage mesh holes caused by embedded wing and tail grids.
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Figure 34. Wing/body/tail solution, Moo = 0.90, a = 2 deg (open symbols,
upper surface; solid symbols, lower surface).
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Figure 35. Wing/body/tail shock surface, Moo = 0.90, ex = 24eg.
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Figure 36. Mach number contours on wing/body/tail surface, Moo = 0.90, a = 2 deg.
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Figure 37. Mach number contours in three Tl = constant surfaces in wing and tail gri4s, M", = 0.90, a = 2 deg.
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Figure 38. Mach number contours on outer boundary of wing and tail grids, Moo = 0.90, ex = 2 deg...
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APPENDIX A
STRUCTURE CHART FOR PEGSUS

The· structure charts (Figs. A-I, A-2, and A-3) for the PEGSUS Code clarify the
conceptual components of the program and the relationships among them. The conceptual
elements are arranged in a hierarchy with the most general components on the highest levels
and the most specialized on the lowest. Whenever a specific element is accomplished in a
single subroutine, it is identified on the structure chart by SXX, where XX is the number of
an entry in Table A-I which identifies the subroutine by name. Thus, the charts also
illustrate the calling sequence of subroutines. Note that the charts may identify the same
conceptual element in more than one place. This repetition occurs for purposes of clarity.
Similarly, namelist data inputs are indicted as NLXX and are identified in Table A-2. For
details of the functions performed in each subroutine, see Appendix D; for details of the
input data, see Appendix F.

Table A-l Subroutine Names for PEGSUS Structure Chart

Number

SI

S2
S3

S4

S5

S6

S7

S8

S9

S10
Sl1

S12
S13

S14

S15

S16

S17

S18

S19

S20

Subroutine Name

INITIA

COMPOS

OUTPUT

WCOORD

CHKPLT

HOLE

OUTER

RGRID

TRANS

CHKOUT

CHKSTN

CINDEX

WIBLNK

HDATA

INTDAT

HINTPT

PLTHOL

INITHB

FRNGE

PLTIBL
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Table A-l Concluded

Number

S21
S22
S23
S24
S25
S26
S27
S28
S29

Subroutine Name

HLOCAT
SETPTR
QUAD

NEARPT
NORMAL
ODATA

OLOCAT
OBOUND

PLTOI

Table' A-2 Namelist Names for PEGSUS Structure Chart'

Number

NLl

NL2
NL3
NL4
NL5
NL6

Subroutine Name

HIERCY
SEARCH
CKPLOT
GRDPRM
HBOUN
OBOUN
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APPENDIX B
TRILINEAR INTERPOLATION

Trilinear interpolation can only be used on cubes. Unfortunately, the typical cell resulting
from grid generation in curvilinear coordinates is a warped hexahedron. Therefore, each cell
containing a point at which a function value is to be interpolated must first be transformed
to a cube (Fig. B-1). This is most easily accomplished by applying the same isoparametric
form to the coordinates of the hexahedron as is used for the interpolation. This is

where the ai, i = 1, ... 8 are coefficients depending on the values of f at the vertices of the
cube, and a, ~, 'f) are coordinates of the interpolated point, P, relative to a vertex of the
cube. For convenience, we map to the unit cube (See Fig. B-1), so

°:5 ~, 1/, r :5 1 (B-2)

The coefficients ai can easily be obtained from the values of f at the vertices of the cube.
For example, at a, ~, 'f) = (0, 0, 0), fl = aI, where fl is the value of f at vertex 1 (See Fig.
B-1). Repetition of this procedure leads to the system

fl = al

fz = al + az

f3 = al + az + a3 + as

f4 = al + a3

fs = aj + a4

f6 = al + az + a4 + a6

f7 = al + az + a3 + a4 + as + a6 + a7 + as

fs = aj + a3 + a4 + a7 (B-3)
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Solution for the aj in terms of the fj yields

a3 = -f1 + f4

a4 = - f1 + fs

as = f1 f2 + f 3 f4

a6 = f 1 f2 - fs + f6

a7 = f1 f4 - f s + fg

ag = - f1 + f2 - f3 + f4 + fs - f6 + f1 - fg (B-4)

We now identify the origin of the cube in interpolation space with the coordinates in

physical space as

Hence,

(0, 0, 0) (X, Y, Z)j, k, I

The subscripts U, k, 1) corresponding to the vertices become

f 3 = f j + l,k+ 1,1

fs = f j ,k,I+1
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f7 = fj+l,k+I,!+1

fs = fj,k+I,l+! (B-5)

Thus, the interpolation stencil is specified by specifying U,k,l) which simplifies the storage

requirements.

The mapping of the warped hexahedron to a cube using the same isoparametric mapping
as for f defines the transform from (~, ~, t) to (X,Y,Z). Thus,

where the constants, aj, bj, Cj, j = 1, ... ,8 are determined by the corresponding values of the
coordinates at the vertices in physical space according to Eq. (B-4). Equation (B-6) is valid
for any point in the interior of the hexahedron. Thus, since the (X, Y, Z) coordinates of P
are known, we have a system of equations for the coordinates of P in interpolation space.
The above mapping must be one-to-one (i.e., the inverse mapping must exist). The
mathematical requirement is that the warped hexahedron be "convex" (Le. not too
warped). For our applications, this requirement should be implicitly satisfied since the
transformation to computational space maps the warped hexahedrons to cubes and is one­
to-one.

Solution for the a, ~, t) corresponding to P is accomplished iteratively by applying
Newton's method. Let the system be written as

-
X = G(~, ~, F) = G(~)

Let

Newton's method gives

G(~) - X = 0

-v+!

~

90

(B-7)



AEDC-TR-85-64

for the iteration, where

aFj
F = -- = M..f a~ 1J

and

(C2 + Cs ~ + c6 ~ + Cg TJ.\) (C3 + Cs ~ + C7 ~ + Cg ~ S) (q + C6 ~ + C7 ~ + Cg ~ ~)

(B-8)

M is the Jacobian of the isoparametric transformation. Hence, M -1 must exist as long as the
mapping is one-to-one. Since M is 3 by 3, its inverse can be computed directly as

(M22 M33 - M23 Md - (M12 M33 - M13 Md (M12 M23 - M13 M22)

M-I = - (M21 M33 - M23 M31) (Mll M33 - M13 M31) - (MIl M23 - M13 M21) 1

det M

(M21 M32 - M22 M31) - (Mll M32 - M12 M31) (MIl M22 - M12 M21) (B-9)

where

(B-I0)

The function F(x, I) is

F3 = (CI - z) + C2 I + C3 ~ + C4 ~ + Cs I ~ + C6 I t + C71/ t + Cg ~ 1/ t
(B-ll)

Typically, Io = (112, 112, 112) and the iteration converges to an rms residual of 10- 4 in
about five steps. The values of (I, ~, t) are stored in arrays DXI, DYI, and DZI in PEGSUS.
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They are reordered for use in XMER3D where they are called DXINT, DYINT, and

DZINT.

Isoparametric
Mapping

(0,1,1)

2

(1,0,0)

...---------.... (1,1,1)

,4r;---
/ (0,1,0)

/
/

/
/

/
1

;:(0,0,0)

1

Physical Space

\ \ \ \ \ 7"
8\\\\\\\\\ .. '

\ \ \' \\\\\\\\\\
\\\\\\\\\\\\\

\ \\\\\\\\
\ '\ \ \ \ \ \ \ \ \ \ \
~~\ \\\\\\ \

~\\\\\\\\
,~ \ \\ , \

\~ \ "

P * '..: 6

Interpolation Space

Figure B-l. Isopal'ametric mapping used for trilinear interpolation.
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APPENDIX C
DATA STRUCTURES

PEGSUS

The Embedding Hierarchy

The embedding hierarchy establishes how the component grids are allowed to interact. It
also determines the form of the data structure. The experience obtained from the 2-D

chimera work (Refs. 15 and 21) shows that a less restrictive hierarchy will be required. In

particular, an embedded grid must be allowed to overlay solid boundaries in the grid in

which it is embedded. This extension means that holes may be introduced into a grid, G1,j,

not only from the embedded mesh, G1+ 1,j, but also from the mesh in which it is embedded,

GI- 1,k. Additionally, grids on the same level of the hierarchy must be allowed to interact or

become linked. These requirements were kept in mind when the data structures were

designed for the 3-D implementation. Therefore, the data structures are described for the
more general case but are illustrated for the restricted case.

The restricted hierarchy described in Section 4.1 is illustrated in Fig. C-l. The notation

G j i is used to indicate the ith grid on levell. We now introduce additional nomenclature that,
will be related to the data structure. The mesh G1,i is a precursor to its descendent grid

Gl+j,j, which is embedded within it. For example, in Fig. C-l mesh G22 had G 31 and G33 as
descendants and G ll as its precursor. To account for these relationships, the arrays

PRECUR and DECEND are introduced. To allow for a general structure of relationships

among the grids, they are stored in an arbitrary order in memory and are assigned a mesh

number. Only the root grid, G ll , has a predetermined number and it is one (1). The

embedding hierarchy of Fig. C-l with assigned mesh numbers is shown in Fig. C-2. The

introduction of the pointers also simplifies the construction of lists and pointers.

Hierarchy Pointers

Because each grid has a unique number, M, assigned to it, any mesh is identified by a
single number. For example, from Fig. C-2,

M = 3 = G22

A grid's relationship to other grids in the hierarchy can be determined by specifying grids

embedded within it (descendants) and the grid in which it is embedded (precursor). We
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define arrays to store precursor and descendent mesh numbers. These are PRECUR(M)
which contains the mesh number of grid M, NDCEND(M) which stores the number of
descendants of M, and DECEND(M,N) which holds the mesh number of the Nth descendant
of M. The PRECUR array points to grids which are in lower levels of the hierarchy and
DECEND points to grids which are in higher levels of the hierarchy.

The cartesian coordinates are stored in single arrays XCI), Y(I), and Z(I) to minimize
storage.. A pointer, IXPNTR(M), is used to store the value of the index I corresponding to
the first element of mesh M. The maximum values of the indices (j ,k,l) are stored in the
arrays MJMAX(M), MKMAX(M), and MLMAX(M). If the address of the starting elements
of the arrays X, Y, and Z are passed to subroutines via argument lists, the coordinates of any
point in Mare

X(J,K,L)

Y(J,K,L)

Z(J,K,L)

J E [1, MJMAX(M)]

K E [1, MKMAX(M)]

L E [1, MLMAX(M)]

The arrays XCI), Y(I), and Z(I) are ordered lists.

Thus, the pointer IXPNTR becomes

M = 2, IXPNTR(l) = 1

2, IXPNTR(2) = MJMAX(l)*MKMAX(l)*MLMAX(l) + IXPNTR(l)

3,IXPNTR(3) = MJMAX(2)*MKMAX(2)*MLMAX(2) + IXPNTR(2)

Extension of the Hierarchy and Data Structure

Even limited experience with the chimera scheme has shown the method to have a
significant potential to simplify grid generation. This potential can be increased by an
extension of the hierarchy to allow grids on the same level to intersect. Relaxation of the
hole generation restriction to allow an embedded grid, G1+ l,j to have a hole introduced by a
solid boundary in the precursor grid, G1,i requires only a slight change in the data structure
and composite grid construction algorithm.
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The increase in efficiency gained by allowing grids on the same level to intersect may be
illustrated by the following example. The simple hierarchy shown in Fig. C-3 leads to a
composite mesh such as that illustrated. The restriction to disjoint grids on the same level
requires the wing grid, G31 , to be embedded in the fuselage grid. The total number of points
could be reduced by relaxing this restriction (Fig. C-4). The complications that can be
expected from the extension of the hierarchy are illustrated in Fig. C-4. They entail a hole
crossing both grid boundaries and levels of the hierarchy.

The modification to the data structure to accommodate overlapping grids is the addition
of a pointer to grids on the same level of the hierarchy which intersect a given grid. We
introduce the pointer LINK(M,N) to store mesh numbers of the Nth grids intersecting or
linking mesh M. The total number of such grids for mesh M is stored in the array
NLINK(M). A similar structure is introduced to account for the holes-the pointer
HOLES(M,N) to store mesh numbers of the Nth grid which introduces a hole into M, and
the array NHOLES(M) to record the total number of grids which cause holes in M. The
modifications will provide the capability to allow very general interactions among the grids ..

Once the data structure is modified, the algorithm for constructing the composite mesh
must be altered. The requirement is that additional searches be made of more grids to locate
appropriate interpolational stencils. The above modifications are underway.

Boundary and Interpolation Data

The form of the data structure used for the boundary interpolation data depends upon
how the data are collected. The procedure obtains hole data for all the grids and then
generates outer-boundary data for all the grids. The data structure must associate the
interpolated boundary point in a mesh M with the corresponding stencil in mesh Ml. It must
also associate the interpolation stencil in M with the corresponding boundary point in mesh
M2.

The indices of the interpolated boundary points and the corresponding interpolation
stencil reference point (See Appendix B) are stored in separate lists for each mesh. For
simplicity, double-dimensioned arrays are used, JBPT(M,I), KBPT(M,I), and LBPT(M,I)
for boundary points and JI(M,I), KI(M,I), and LI(M,I) for the stencil reference point.

The arrays are filled as follows: Mesh Ml is searched for an interpolation stencil for a
boundary point in grid M. When the stencil is located, the stencil reference point indices are
stored in the lists H(Ml,I), KI(Ml,I) and LI(Ml,I) and the interpolation coefficients (See
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Appendix B) are stored in the lists DXI(Ml,I), DYI(Ml,I), and DZI(Ml,I). For
convenience, the boundary point indices of the point in M are stored in the lists
JBPT(Ml,I), KBPT(Ml,I), and LBPT(Ml,I). The lists organize the data by the mesh
number of the grid which contains the interpolation stencil. The total number of boundary
points interpolated from mesh M is IBPTS(M). Thus, the lists JI, KI, LI, DXI, DYI, and
DZI for mesh M contain information obtained from mesh M, whereas the data in the lists
JBPT, KBPT, and LBPT for M are indices of points which belong to other grids.

The collection and data storage procedure automatically associate an interpolation
stencil to the proper boundary point by the mesh number of the stencil. However, additional
pointers are needed to sort the data according to the mesh number of the boundary point.
Because PEGSUS first collects the data for all the hole boundaries and then all the outer
boundaries, the lists for each mesh are naturally divided into sublists which correspond to
separate boundaries of other grids (Fig. C-5). An additional set of pointers identifies the
sublists; IPNTR(M,N) points to the first member, and NPNTR(M,N) points to the last
member of the Nth boundary interpolated from mesh M. The total number of sublists or
subsets for M is NSETS(M). Figure C-5 illustrates how the pointers are related to the
interpolation data lists.

The bookkeeping is completed by providing a means of isolating a particular hole
boundary or outer boundary. Consider the system of embedded grids given in Figs. C-l and
C-2. The grids are embedded according to the hierarchy allowed by PEGSUS. Each
embedded grid is disjoint with respect to other grids on the same level of the hierarchy and
contained completely within a single mesh on the next lower level of the hierarchy. Suppose
we wish to examine the hole boundary in G22 (M = 3) caused by G32 (M = 5), according to
the adopted storage convention, the indices of the hole boundary are contained in a subset
or sublists of the points interpolated from mesh M = 5 [That is, G32 is the mesh from which
values will be interpolated for points in G22 (M = 3) on the hole boundary caused by Gd.
Thus, all that is required is to locate the particular subset, say N, and the data will be
contined in the lists between

IPNTR(5,N) :5 I :5 NPNTR(5,N)

We introduce a new pointer MHB(M,Ml) to serve as a cross index for the subsets of the
mesh interpolation lists. Suppose we wish to locate the subset number, ISET, of the hole­
boundary data of points in M caused by the embedded grid, MI, then

ISET = MHB(M, Ml)

If Ml does not introduce a hole into M, then ISET = O. For the restricted hierarchy of Fig.
C-6, only the descendants of mesh M need to be searched. Thus,
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Figure C-6 illustrates the structure of MBH for the hierarchy of Fig. C-2.

In the example, the required subset is

ISET = MHB(M,Ml) = N

where M = 3, Ml = 5. The desired boundary indices are located in the lists JBPT(Ml,I),
KBPT(Ml,I), LBPT(Ml,I) between the indices

IPNTR(Ml,N) ::; I ::; NPNTR(Ml,N)

A similar procedure is used to locate outer-boundary data for mesh M in the interpolation
lists of the precursor mesh MI. The appropriate sublist in Ml is

ISET = MOB(M,Ml)

where MOB is the outer-boundary cross-index pointer. Note that no alterations are required
to MHB and MOB for the extensions described in the section of this appendix entitled
"Extension of the Hierarchy and Data Structure."

XMER3D

The code XMER3D contains the flow solver or solvers. It serves the executive functions
of controlling input, output, directing the solution on each mesh to the appropriate flow
solver, and regulating the number of iterations performed on a mesh before proceeding to
the next. However, there are only two functions that XMER3D must perform on the
interpolation data. The first is to update interpolation boundaries of a mesh; the second is to
interpolate data for the boundaries of embedded grids. Therefore, PEGSUS reorganizes the
interpolation data for each grid into two sets of lists for use in XMER3D.

The first set contains the indices of the interpolation stencil reference points. JI(I), KI(I),
and LI(I) and corresponding interpolation coefficients, DXI(I), DYI(I), and DZI(I). (Note
the change in notation.) There are IIPNTS points which require interpolation from mesh M.
The second set holds the list of indices of points in M that have values interpolated from
other grids, JB(I), KB(I), and LB(I). Because all the interpolated values are retained in
memory in a single list, QBC, a cross-index list, IBC(I), is also included in the second set of
lists. There are IBPNTS points in the second set of lists for each mesh and IITOT points in
QBC. Figure C-7 illustrates the structure of the lists for mesh M.
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The data management in XMER3D maintains the grid, interpolation lists, and update
lists on separate external units. XMER3D reads the appropriate data into memory as
required. The management strategy minimizes the storage required for solution at the
expense of more I/O overhead. In order to reduce the complexity of the data management,
all the interpolated values in the list QBC permanently reside in memory. To minimize the
storage requirement, the interpolated values are stored contiguously (Fig. C-8). For each
grid a pointer, IISPTR, points to the element of QBC which corresponds to the first element
in the list for mesh M. Storage in the list is arranged such that once the solution is advanced
on mesh M and the required interpolations performed, the new values are stored by grid in
QBC (i.e. one subset or sublist for each mesh). The storage strategy requires that a
mechanism be provided which will allow the QBC list to be sorted to locate the proper values
to update the interpolated boundaries of M. The required sorting information is supplied by
the list IBC. Its function is to provide the index, I, in QBC which corresponds to a given
boundary point (JB,KB,LB) in M. Thus, the data required to update (JB,KB,LB) in Mare
stored in QBC(I) (See Fig. C-8).
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Hierarchy

Level 1:

Level 2:

Level 3:

Figure C-l. Embedding hierarchy and graph.

Gll (M =1)

I~
G21 (M = 2) G22 (M = 3)

7~
G31 (M =4) G32 (M =5)

Figure C-2. Embedding hierarchy and associated mesh numbers.
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Figure C-3. Example of composite mesh for restricted embedding hierarchy.
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Figure C-4. Example of a composite mesh for embedding hierarchy
allowing intersecting grids.
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Figure C-5. Pointers into interpolation data lists
used in PEGSUS.
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~ 1 2 3 4 5

1 0 X X 0 0

2 0 0 0 0 0

3 0 0 0 X N

4 0 0 0 0 0

5 0 0 0 0 0

Figure C-6. Matrix structure of cross-index array, MHB,
for hole boundaries.
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Figure C-7. Structure of interpolation data lists used in XMER3D.

104



AEDC-TR-8 5-64

QBC
List

Interpolation
Lists

ISPTR 1

ISPTR 1

ISPTR--;.--1-....-------.

4

2

3

IIPNTS

IIPNTS

IIPNTS

Index JI I etc.

1

Mesh = 1

IIPNTS

IISPTR

Index

1_

Mesh = 1

Update List Storage
for M = 2 Location

in

JB,
QBC

Index etc. IBC - ----- -- I
1

IBC(I )
2

I--

- -- ---- f-- I

f--- 3

IBPNTS

-- - --:.=,l-
I

4

IITOT

Figure C-S. Summary of data structure used in XMER3D.
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APPENDIX D
SUBROUTINE DESCRIPTIONS

Numbert Subroutine Descriptions

CHKOUT SlO Checks the interpolation stencils to locate those which do not contain the
interpolated point. Trilinear interpolation requires the interpolation
coefficients to take values in the interval [0,1]. If any value is outside the
interval by more than E (= 0.0001) the point is flagged.

CHKPLT S5 Plots specified surfaces of the input grids as a check. See namelist
CKPLOT.

CHKSTN SII Checks points in the interpolation stencil to determine if they. contain
interpolated data. For each point in the lists JI(M,I), KI(M,I), LI(M,I),
and associated stencils of mesh M, sublists of JBPT(MI ,1), KBPT(Ml,I),
and LBPT(Ml,I) corresponding to points in Mare searched to locate
common indices.

CINDEX S12 Constructs the cross-index array IBC and the update list of boundary
points, then computes the total number of points IBPNTS and IIPNTS in
the update and interpolation lists for each mesh.

COMPOS S2 Supervises the construction of the composite grid from the component
grids. The hierarchy specifications and component grids are input; the
component grids transformed; composite grid points set; and the
composite grid written to external storage for input to XMER3D.

FRNGE S19 Constructs the fringe or boundary about the hole introduced by grid Ml
(descendant in present hierarchy). The fringe points are identified by
setting IBLANK = MI.

HDATA S14 Reads the namelist HBOUN which contains the specifications for the
initial hole boundary for all grids. The assumption is that each descendent
mesh causes only one hole.

HINTPT S16 Locates interpolation stencils in descendent mesh Ml for hole-boundary
points in M. Trilinear interpolation is assumed.

t NOTE: Numbers correspond to subroutine numbers in Table A-I in Appendix A.
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Number Subroutine Descriptions

HLOCAT S21 Identifies the points of mesh M interior to the initial hole boundary
introduced from descendent mesh MI. Interior points are located by- - -
forming dot product of Rp and N where Rp is the position vector f!:.om the
nearest point on the boundary to a field point of mesh M, and N is the
corresponding surface outward unit normal. If the dot product is positive,
the point is outside the hole. The search is restricted to points within a
sphere whose origin is the mean value of the coordinates of the initial
surface and radius equal to the maximum from the sphere origin to the
farthest surface point (See Section 3.2).

HOLE S6 Supervises the construction of holes and computation of the associated
interpolation data for all grids. The construction procedure sets IBLANK
= 0 at interior points and boundary points.

INITHB S18 Constructs the initial hole boundary. The boundary coordinates are stored
in 2-D arrays.

INITIA SI The initial values of the code parameters are set (also BLOCKDATA), and
the title, hierarchy data in namelist HIERCY, and search limits in namelist
SEARCH are read. Summaries of the input values are written to unit 6.

INTDAT S15 Computes the interpolation coefficients for trilinear interpolation using
Newton's method.

MAXMIN Determines the maximum and mmlmum values of component grid
coordinates for plotting purposes.

NEARPT S24 Locates the nearest point in mesh M to a specified point.

NEWTON Solves the trilinear interpolation equations for the coordinates of the
interpolated point in interpolation space (Le. t, ~, t). For details, see
Appendix B.

NORMAL S25 Computes the outwa~d unit ~ormal to a specified surface by co~struc0.ng

the surface tangents T 1 and T2 and forming the cross-product T1 x T2.

NUMHOL Counts the total number of points within holes (including fringe points) in
the composite grid.
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Number Subroutine Descriptions

OBOUN S28 Loads the outer-grid boundary into 2-D arrays.

ODATA S26 Reads the namelist OBOUND which contains the specifications for all the
component grid outer boundaries.

OLOCAT S27 Locates interpolation points for the outer boundary of mesh M by
searching the precursor grid Ml for the nearest point corresponding to
each boundary point.

OUTER S7 Supervises the computation of interpolation data for the outer boundaries
of embedded grids. The outer-boundary specifications are input; the
interpolation data computed; and points are set.

OUTPUT S3 Supervises the final check on and output of interpolation data. It also
writes all the final summaries for the composite grid and makes estimates
of storage parameters used in XMER3D.

PLANE Plots a constant surface of J, K, or L depending upon the value of the flag
ICASE, which is set in the calling routine.

PLTHI Supervises the plotting of hole boundary and corresponding interpolation
stencil reference points.

PLTOI S29 Supervises the plotting of outer-boundary and corresponding
interpolation stencil reference points.

PLTHOL S17 Plots the initial hole boundary in mesh M caused by the descendent mesh
Ml.

PLTIBL S20 Plots the final hole boundary in mesh M caused by all its descendants. The
plot is made in computational space.

PLTINT Plots the hole boundary and interpolation point by connecting them with
a line segment.
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Number Subroutine Descriptions

QUAD S23 Designates the interpolation reference point by identifying the point
(JMIN, KMIN, LMIN) of the cube containing the interpolated point. The
reference point is selected based on a transform to the uniform
computational space. Note that INTDAT performs additional checks to
ensure that the cube specified by the reference point actually contains the
interpolated point (See Appendix B).

RGRID S8 Reads a grid from the external unit MESH + 10 and checks the consistency
of the data input from namelist GRDPRM with similar data on the
external unit.

SETPTR S22 Sets the grid pointers MHB, MOB, IPNTR, and NPNTR; loads the lists
NSETS, IBPTS, JBPT, KBPT, LBPT, JI, KI, Ll, DXINT, DYINT, and
DZINT.

TRANS S9 Transforms an input component grid by translating, rotating, and scaling
the coordinates. The rotations are assumed to be applied in the following
order: z-axis (pitch), y-axis (yaw), and x-axis (roll). It is very important to
remember that all transformations are with respect to the composite grid
origin.

WCOORD S4 Writes the composite grid coordinates to unit 1 in the format that is
expected by the flow solver, XMER3D. The records contain the x, y, z
coordinates for each grid, one grid at a time.

WIBLNK S13 Writes IBLANK to unit 2 in form expected by the flow solver, XMER3D.
Each record will contain the IBLANK array for a single grid.
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Variable

ALFA(3)
BETA(3)
GAMA(3)

DECEND(M,N)

DXINT(M,I)
DYINT(M,I)
DZINT(M,I)

IBC(I)

IBMAX
JBMAX

. IBDIM

JBDIM

IBLANK(I)

APPENDIXE
GLOSSARY OF GLOBAL VARIABLES

Description

Transformation Parameters. They are rotation angles of new coordinate
axis (composite) grid relative to input axis system.

ALFA - rotation about x-axis (deg)
BETA - rotation about y-axis (deg)
GAMA - rotation about z-axis (deg)

Hierarchy parameter. It is an integer pointer which points to mesh
number of the Nth descendant of mesh M.

Interpolation Variables. They are lists which contain the interpolation
coefficients for the trilinear interpolation of boundary points in mesh M
(Le. ~,~, F).

XMER3D Bookkeeping. IBC isa cross-index list that points to storage
locations of interpolated values for boundary points (See Appendix D).
It connects lists of boundary-point indices to the corresponding
interpolated value.

Boundary Surface Variables. These variables specify the maximum
number of points in each surface coordinate direction (See VNX, VNY,
VNZ, JB, etc., and JBO, etc.).

Code Parameters. These parameters specify the maximum allowable
values for IBMAX and JBMAX. They are array dimensions.

XMER3D Bookkeeping. This is an array of flags for each grid point in
each mesh. It takes the value of 1 for points exterior to the hole and 0
for points within or on the boundary of a hole. Note that points interior
to a hole are excluded from the solution on that mesh. Hole points that
are boundary points have values of the flow variables interpolated from
other grids.

110



Variable

IBPNTS

IBPTS(M)

ICKPLT

IDIM

IFLAG(I)

IFORMT

IHBTYP(M)

AEDC-TR-85-64

Description

XMER3D Bookkeeping. This variable specifies the total number of
boundary points in mesh that must be updated from values interpolated
in other grids.

Interpolation Variable. IBPTS contains the total number of boundary
points interpolated on mesh M (See JBPTS, DXINT, JI, etc.).

Plot Parameter. (Logical) If this plot flag value is TRUE, check plots of
grid coordinate surfaces are to be made; if value is FALSE, no check
plots are made (Also see JPLOTS, etc., and NPLOTS).

Code Parameter. This parameter specifies the maximum allowable
number of interpolation points for each mesh. It is used as an array
dimension.

Work Array. It is used with outer. boundary surface index lists JBO,
KBO, LBO to sort boundary interpolation points for linked grids.

Input Format Parameter. This parameter allows for multiple forms of
the input format of component grids. Code currently has only one
allowable format, hence IFORMT = 1 (See subroutine RGRID).

Hole Boundary Specification Parameter. This parameter specifies the
topology and type of initial hole boundary to be specified. Permitted
values are

110-warped spherical surface given by L
lines of longitude;

120-warped hemisphere with base at J = JE;

constant and J along

210-warped cylindrical surface with L = constant surface and K
along the cylinder axis. End planes included;

220-warped cylindrical surface with open end at K = KS;

[Also see JHl(M), etc., and subroutine INITHB.]
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Variable

IIEPTR
IISPTR

IIPNTS

IITOT

IOBTYP(M)

IPNTR(M,N)

ITO

ITOTAL

Description

XMER3D Bookkeeping. These are pointers into lists of interpolated
boundary data. They correspond to last and first element of list QBC
for data interpolated in mesh M.

XMER3D Bookkeeping. This variable specifies the number of
boundary points interpolated from solution on mesh M.

XMER3D Bookkeeping. It specifies the total number of points
interpolated in the composite mesh.

Outer-Boundary Specification Parameter. This parameter specifies the
topology and type of outer-boundary surface for mesh M. Permissible
values are
llO-warped spherical surface given by L = constant and J along lines

of longitude;

120-warped hemisphere with base at J = J02;

130-warped hemispherical surface with open base at J = J02;

21O-warped cylindrical surface with L = constant surface and K
along the cylinder axis; end planes included;

220-warped cylindrical surface with open end at K = KOl;

[Also see JOl(M), etc., and subroutine OBOUND.]

Interpolation Variables. These are pointers into lists of interpolation
stencil reference points, interpolation coefficients, and corresponding
boundary-point lists. They specify the first and last index of points
which belong to the Nth subset of the list. The points are members of
grid M (See JBPT, etc.).

Work Variable. It is the number of points in the JNO, KNO, LNO,
JBO, KBO, LBO arrays.

Work Variable. It is the number of points in the IN, KN, LN arrays.
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Variable

ITRANS

IXPNTR(M)

JB(I)
KB(I)
LB(I)

JBO(I)
KBO(I)
LBO(I)

JBPT(M,I)
KBPT(M,I)
LBPT(M, I)

JDIM
KDIM
LDIM

JHl(M)
KHl(M)
LHl(M)
JH2(M)
KH2(M)
LH2(M)

Jr(M,I)
KI(M,I)
LI(M,I)

AEDC-TR-85-64

Description

Transformation Parameter. (Logical) This parameter specifies whether
or not a transformation of input grid coordinates is required. If the
value is TRUE, a transform is required; if it is FALSE, no transform is
needed (See ALFA, BETA, GAMA, XO, YO, Z, SCALE).

Bookeeping Parameter. This is a pointer into the grid and IBLANK
arrays. It points to the location of the first element in mesh M. Values
of the flow variables at these points will be interpolated from M (Also
see 11, Kl, Ll, IPNTR, NPNTR, NSETS).

Work Arrays. They hold boundary-point indices of the current mesh.

Work Arrays. They contain boundary-point indices of outer
boundaries. They are used with IFLAG(I) and are necessary to deal
with linked grid outer boundaries.

Interpolation Variables. They are lists of boundary-point indices that
belong to boundaries of other grids which are embedded in mesh M.
They specify the first and last index of the Nth subset of the list. The
interpolation coefficients and corresponding boundary-point lists are
DXINT, DYINT, DZINT, and Jr, KI, LI.

Code Parameters. They specify the maximum allowable values of
JMAX, KMAX, and LMAX. They are used as array dimensions.

Hole Boundary Specification Parameters. These variables specify the
beginning and ending values of grid coordinates which specify the initial
hole boundary caused by mesh M. Specific values depend upon grid
topology (See subn;mtine INITHB description, IHBTYP and input
description, Appendix F).

Interpolation Variable. They are lists of interpolation stencil reference
indices. The points belong to mesh M (See JBPT, KBPT, LBPT,
IPNTR, NPNTR, and NSETS).
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Variable

JLHl(M,N)
KLHl(M,N)
LLHl(M,N)
JLH2(M,N)
KLH2(M,N)
LLH2(M,N)

IN(I)
KN(I)
LN(I)

JOl(M)
KOl(M)
LOl(M)
J02(M)
K02(M)
L02(M)

JPLOT(M,N)
KPLOT(M,N)
LPLOT(M,N)

JRSl(M)
KRSl(M)
LRSl(M)
JRS2(M)
KRS2(M)
LRS2(M)

LHBTYP(M,Ml)

MDIM

Description

Hole-Boundary Specification Parameters. These variables specify the
beginning and ending values of grid coordinates which specify the initial
hole boundary used by the Nth grid linked with mesh M. Values depend
upon grid topology [See JHl, etc., LHBYPM(M,N), and Appendix F.]

Work Arrays. They contain indices of the interpolation stencil reference
point in the current grid, M (Also see JB, KB, LB).

Outer-Boundary Specification Parameters. These variables specify the
beginning and ending indices to be used in defining outer-grid
boundaries. Values depend on grid topology (See description of
subroutine OBOUND, IOBTYP, and Appendix F).

Plot Specification Parameters. These variables specify constant
surfaces of J, K, or L to be plotted for the Nth plot of mesh M (See
ICKPLT and description of subroutine CHKPLT).

Grid search parameters. They specify limiting values of grid' indices to
be used when searching for interpolation points contained in mesh M.
Defaults are maximum grid dimensions (See Appendix F).

Hole-Boundary Specification Parameter. This parameter specifies the
initial hole-boundary type (See IHBTYP) for holes introduced into
mesh M by the linked Mesh Ml (See JLHBl, etc.).

Code Parameter. This parameter specifies the maximum allowable
number of component grids. It is used as an array dimension.

114



Variable

MESHN

MESHNO

MHBS(M,MI)

MJMAX(M)
MKMAX(M)
MLMAX(M)

MOBS(M,MI)

MPLOTS

NDCEND(M)

NLINK(M)

NMESH

NPLOTStM)

AEDC-TR-8 5-64

Description

Input Parameter. It is the mesh number assigned a priori to a
component mesh. It is part of the data on the external file containing
the input grid. It serves as an internal check on input data.

Input Parameter. It is the mesh number of the component grid whose
parameters are contained in namelist GRDPRM. It is used as an
internal check to verify the proper correspondence with the input
component grid file.

Bookkeeping Parameter. This pointer points to the subset number of
the hole-boundary points of mesh M caused by mesh MI. In the present
hierarchy, M is a descendent mesh (Also see NSET, IPNTR, NPNTR).

Hierarchy Parameter. These parameters contain the number of points in
the three coordinate directions (~, 1/, nof each mesh M in the hierarchy
(See JDIM, KDIM, LDIM).

Bookkeeping Parameter. This is a pointer to the subset number of the
outer-boundary points of mesh M which are interpolated from values in
Ml. (Also, see IPNTR, NPNTR, and NSETS).

Plot Parameter. This counter records the total number of plots made
during an execution of PEGSUS.

Hierarchy Parameter. This parameter contains the number of
descendent grids of mesh M (See DCEND).

Hierarchy Parameter. This parameter specifies the number of grids
linked to mesh M.

Hierarchy Parameter. It specifies the total number of component grids
in the composite mesh (See MDIM).

Plot Parameter. This variable is the total number of check plots made
for mesh M.
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Variable

NPNTS

NSETS(M)

PRECUR(M)

SCALE

VNX(I,J)
VNY(I,J)
VNZ(I,J)

XB(I,J)
YB(I,J)
ZB(I,J)

XFAC
YFAC
ZFAC

XI(I)
YI(I)
ZI(I)

XO
YO
ZO

Description

Hierarchy Parameter. This parameter is the total number of points in
the composite grid.

Bookkeeping Variable. This variable has a value equal to the total
number of boundaries requiring interpolation that are embedded in
mesh M.

Hierarchy Parameter. It is a pointer to the mesh number of the
precursor grid of mesh M. In the present hierarchy, each mesh can have
only a single precursor.

Tranformation Parameter. It is a multiplicative scaling factor for input
component grids.

Boundary Surface Variables. These are the outward unit normal vectors
to the surface stored in XB, YB, ZB (Also see IBMAX and JBMAX).

Boundary Surface Variables. These are the coordinates of the boundary
surface (See IBMAX, JBMAX, and XB, etc.).

Plot Parameters. They specify the plot viewpoints.

Interpolation Variables (Work Arrays). They contain the interpolation
coefficient data for points interpolated from values in mesh M.

Transformation Parameters. These are the unsealed coordinates for a
translation of component grid coordinates.
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APPENDIX F

DESCRIPTION OF INPUT AND OUTPUT

INTRODUCTION

Input to PEGSUS takes the form of binary data (Le. the component grid data) and
namelist input. This appendix details the formats required of the binary data, the namelists,
associated variables, and their default values.

BINARY FILE INPUT

The default format for the component grid files is (IFORMT = 1 on unit number IUNIT
= MESHN+10)

Record Number

1

2

3

Variable

MESHN

JMAX, KMAX, LMAX

«(X(J,K,L), J=1, JMAX), K=1, KMAX) , L=1,
LMAX) ,

«(Y(J,K,L), J = 1, JMAX), K= 1, KMAX) , L= 1,
LMAX) ,

«(Z(J,K,L), J=1, JMAX), K=1, KMAX), L=1,
LMAX)

where MESHN is the mesh number assigned a priori.. This number is arbitrary except for
MESHN = 1 which must be the global mesh. JMAX, KMAX, and LMAX are the maximum
values of the J, K, and L indices (i.e. the number of points in each coordinate direction).
These data are input in subroutine RGRID.

INPUT

A schematic of the input data is given in Fig. F-1, and a detailed description is contained
in the following subsections. The figure illustrates the order of input and the subroutine in
which it is read.
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TITLE

TITLE is read on a lOA8 format in subroutine INITIA. It is an 80-character description
of the composite grid.

HIERCY

HIERCY is a namelist and is read in INITIA. It contains the following parameters:

DECEND (M,N)

LINK (M,N)

MJMAX (M)
MKMAX (M)
MLMAX (M)

NDCEND (M)

NLINK (M)

NMESH

PRECUR (M)

Mesh number of the Nth descendant of mesh M
TYPE: INTEGER, Dimensions: MDIM x MDIM
Default = 0.0

Mesh number of the grid linked to mesh M (not
used), Dimensions: MDIM x MDIM

Number of points in J, K, and L
coordinate directions for mesh M
Dimension: MDIM

Number of descendants of mesh M
Dimension: MDIM
Default = 0

Number of grids linked to mesh M (not used)
Dimension: MDIM
Default = 0

Number of component grids
Default = 1

Mesh number of precursor of mesh M
Type: INTEGER, Dimension: MDIM
Default = 0
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GRDPRM

GRDPRM is a namelist which is read in RGRID. A separate GRDPRM namelist is
required for each component mesh. It contains the grid parameter specifications

IFORMT

ITRANS

ALFA(3)
BETA(3)
GAMA(3)

XO
YO
ZO

SCALE

MESHNO

Integer flag denoting the format of the component
mesh input file; default and only acceptable
current value is 1; this parameter allows multiple
formats for binary grid files.
Default: 1

Specifies need to transform component mesh;
acceptable transforms are translation, rotation,
and scaling; NOTE: All transforms are referenced
to the composite grid coordinates (See Appendix
E)

Type: LOGICAL
Default: FALSE. (i.e. no transformation)

The rotation angles in degrees of each coordinate
axis of input grid relative to composite grid; the
angles are associated with the axis: ALFA/x-axis,
BETA/y-axis, and GAMA/z-axis (See Appendix
E)

Default: 0.0
Dimension: 3

The origin shift of input grid in the input
(unscaled) coordinates (See Appendix E)
Default: 0.0

Multiplicative scale factor
Default: 1.0

Mesh number corresponding to data in GRDPRM;
this number must match MESHN on component
grid file
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CKPLOT

CKPLOT is a namelist which is read in subroutine CHKPLT. The namelist contains
specifications for plotting coordinate surfaces of the component grids. The parameters are

ICKPLT

NPLOTS (M)

JPLOT(M,N)
KPLOT(M,N)
LPLOT(M,N)

XFAC
YFAC
ZFAC

HBOUN

Flag specifying that checkplots are to be made
Type: LOGICAL
Default: .FALSE. - no plots

Number of plots to be made from mesh M
Dimension: MDIM
Default: 0

A nonzero value specifies the surface to be plotted
in the Nth plot from mesh M
Only one coordinate may be nonzero for each plot
Dimensions: MDIM x PLTDIM
Default: 0

Magnification factors for coordinates of the view
point for the plots; large values provide less
perspective
Default: 1000.0

HBOUN is a namelist which is read in subroutine HDATA. It contains specifications for
initial hole boundaries. They are

IHBTYP (M) Flag specifying topology and type of initial hole
boundary. Currently acceptable values are

100-Warped spherical surface given by L
= constant and J along lines of
longitude;

110-Warped hemispherical surface as
above with base at JH2(M);

120



JH1(M)
KHI (M)
LHI (M)
JH2 (M)
KH2 (M)
LH2 (M)
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21O-Warped cylindrical surface given by
L = constant and K along cylinder
axis; both end surfaces are included;

220-Warped cylindrical surface as above
with open end at K = KH1(M)

Dimension: MDIM
Default: 0

Ranges of indices defining surface; those ending
with 1 are initial value, and those ending with 2 are
final value of index; their significance depends on
IHBTYP (M); typical values are
IHBTYP = 110 JH1(M) = 1 JH2(M) = JMAX

120 KH1(M) = 1 KH2(M)
= KMAX

LH1(M) = 1 LH2(M) = La,
La < LMAX

= 210 JH1(M) = 1 JH2(M) = JMAX
220 KH1(M) = K1 KH2(M) = K2

LH1(M) = 1 LH2(M) = L2
where Kl, K2 E [2,KMAX] and
L2 < LMAX

NOTE: 1. The parameters JH1(M), etc., specify
the hole boundary caused by mesh M

. in its precursor grid Ml;

2. The linked grid logic is not included;

3. All the current boundaries can be put
into a spherical surface coordinate.

Dimension: MDIM
Default: 0
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OBOUN

OBOUN is a namelist read in subroutine ODATA and contains the specifications to be
used to define the outer boundary of mesh M for the purpose of locating suitable
interpolation stencils in other grids. The parameters are

IOBTYP(M)

JOl(M)
KOI (M)

LOI (M)
J02 (M)
K02 (M)
L02 (M)

Flag specifying topology and type of outer boun­
dary; currently acceptable values are

110-Warped spherical surface given by L
= constant and J along lines of
longitude;

120-Warped hemispherical surface as
above with base at J02(M);

130-Warped hemispherical surface with
open base at J02(M);

21O-Warped cylindrical surface given by
L = constant and K the cylinder axis;
both end surfaces are included

220-Warped cylindrical surface as above
with open end at K = KOl(M)

Dimension: MDIM
Default: 0

Ranges of indices defining surface; those ending
with 1 are initial value and those ending with 2 are
final value of index; their significance depends on
IOBTYP (M). Typical values are
IOBTYP = 110 JOl(M) = 1 J02(M) = JMAX

120 KOl(M) = 1 K02(M) = KMAX
LOl(M) = 1 L02(M) = LO

where

LO < LMAX
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21OJ01(M) = 1 J02(M) = JMAX
220 K01(M) = K1 K02(M) = K2

LO1(M) = 1 L02(M) = L2

where

K1, K2 E[2,KMAX] and
L2 < LMAX

BINARY OUTPUT FILES

PEGSUS generates two output files for input to XMER3D. They are the composite
mesh, and the interpolation and bookkeeping data. The data on these files are organized by
grid to facilitate separation into individual working files. The formats for each are described
in the following subsections.

Composite Mesh File

This file is written on unit 1. Each grid is written separately.

Record Number

1

2

MESH = 2,3, ....

Format

MESH, JMAX, KMAX, LMAX

«(X(J,K,L), J=l, JMAX) , K=l, KMAX) , L=l,LMAX),

«(Y(J,K,L), J=l, JMAX), K=l, KMAX) , L=l,LMAX),

«(Z(J,K,L), J=l, JMAX), K=l, KMAX), L=l,LMAX).

Interpolation and Bookkeeping Data File

This file is written to unit 2. The data for each grid are written separately.

Record Number

1

Format

IBPNTS, IIPNTS, IIEPTR, IISPTR
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2

3

MESH = 2,3, ....

(JI(I), KI(I), LI(I), DXINT(I),DYINT(I)

DIINT(I), I = 1, IIPNTS)

(JB(I), KB(I), LB(I), IBC(I), I = 1, IBPNTS)

«(IBLANK(J,K,L), J = 1,JMAX),

K= 1,KMAX),L= 1,LMAX)
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Note: There is a separate GRDPRM
for each component mesh.
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Subroutine

INITIA

INITIA

INITIA

RGRID

CHKPLT

HDATA

ODATA

Figure F-l. Input data for PEGSUS.
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