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ABSTRACT

Singularly perturbed second order elliptic partial differential equations

with Neumann boundary conditions arise in many areas of application. These

57\ : (fj/m.
problems rarely have smooth limit solutions. 1In this paper, we characterize

-
i

the limit solution for a wide class of such problems. We also give an

abstract rate of convergence theorem and apply the abstract theorem to certain

finite difference approximations. Lééﬂ44#"1/; : \
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THE NEUMANN PROBLEM FOR NONLINEAR SECOND
ORDER SINGULAR PERTURBATION PROBLEMS

o

H Benoit Perthame1 and Richard Sanders2
§1. INTRODUCTION.

In this paper, we study the singular perturbation problem for partial

-

differential equations which have the form:

(NPE) -eAue + H(x,ue,Vue) = 0, xeqn,

aue
o {(x) = y(x), x e a3 ,

where 1 is a bounded domain in !ﬁ, n is Q's outward unit normal, u,
is a scalar unknown and H is a continuous function on & X R x Rd. One
application that motivates the study of singular perturbation problems of the
form (NPE) is found in the theory of optimal stochastic control. There, H
depends on the deterministic part of a stochastic ODE, a control space and a
specified cost function. u. can be identified as the optimal cost
function. The positive parameter € in (NPe) can be regarded as the
intensity of noise in the dynamics equation. Control problems whose
trajectories reflect at a boundary, give rise to Neumann problems of the type
studied here; see [1] or (17] for a detailed treatment of this topic. One
could ask for instance, is the optimal cost function of a stochastic control
problem related to the optimal cost of its assoclated deterministic problem?
Are the two close in any way when the noise is small?

As € + 0, it is well known that solutions of (NPe) do not generally

converge to a classical solution of:

1CMA, Ecole Normale Superieure, 45 Rue d'Ulm, 75230 Paris, France.
Department of Mathematics, University of Houston, Houston, Texas 77004,
This work was completed while the author was at the Ecole Normale Superieure.

Spongored by the United States Army under Contract No. DAAG29-80-C-0041 and by
the National Science Foundation under Grant No. MCS 82-00676.
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Y (NPg) H(x,u,%u) =0, xeQq, P2
E' 2u N

. — - . fo

A an(x) y{x), x € 3Q ?th;

1 Y

Indeed, (NP;) does not generally admit a C° solution, as can easily be seen ! N

. AL

h.-. .e‘.'

N by considering the simple example: i

“ . i X f‘

\ 3

) Lru=0, xefo1, Pt

o X

du du RO

dx(0) 0, dx(1) 1. s

This example is clearly overdetermined, and here the data at 0 1is not
compatible with the data at 1. For this reason, a more general class of
solutions to (NP;) must be sought.

A new notion of continuous weak solutions to equations of Hamilton-Jacobi

type has recently been introduced. 1In [4] and [5), M. G. Crandall and P. L. :;¢Zi

Lions have developed techniques that have been extremely successful in

establishing a number of new results concerning continuous, but not
necessarily differentiable, weak solutions to first order, fully nonlinear, "
partial differential equations. In their work, Crandall and Lions have
utilized the "vanishing viscosity method", so named because of the link to the
classical technique of vanishing viscosity from fluid mechanics, and they show
that the method of vanishing viscosity gives rise to a specific notion of a
"viscosity" weak solution.

In {15), and here as well, the notion of a viscosity solution for the
generally over determined Neumann problem (NP,;) is given and is shown to
include all L” e-limits of solutions to (NPe)' All L” e-limits are shown
to satisfy the so~called viscosity inequalities of Section 2; additional

details in this direction can be found in [15). Remarkably, (with additional

hypotheses of course), these viscosity inequalities uniquely determine all

such limits. 1In Section 3, we introduce what we call "approximate viscosity 'E}“J“

inequalities” and we ghow there that any reasonable approximate viscosity
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solution is approximately equal to the viscosity solution of (NPgj). More

e
v, »

precisely, we give an abstract minimal rate-of-convergence theorem, Theorem 2,

-“." .l 'I ?,

' for approximate viscosity solutions to (NPO). We also show that this rate is
essentially sharp. A particular application of Theorem 2 gives an easy to
determine measure of how far the solution of (NPe) can be away from the
viscosity solution of (NP;). In Section 4, the abstract rate-of-convergence
theorem of Section 3 is applied to numerical approximations which are obtained
from a class of finite Aifference schemes. Moreover, we show in Section 4
that these schemes have "computable” solutions and we motivate how they can be
obtained.

The reader is encouraged to see [2], [18] and [19] where similar results
as those above are obtained for divergence form singular perturbation problems
with mixed or Dirichlet boundary conditions. Also see [6], [7] and [21) for a
further treatment of approximations for time dependent Hamilton-Jacobi

equations without spatial boundaries.

§2 VISCOSITY LIMIT SOLUTIONS.

As mentioned in the previous section, as ¢ ¢ 0, the corresponding

1 solution of

solutions to (NPS) do not in general converge to a classical C
(NPg). In this section we offer a characterization of viscous limits to (NPj)
and we show that this characterization often allows for only one solution in
the class of continuous functions. Throughout, we shall agsume that 0 1is a
bounded domain in 80 which has a c? boundary 3fie¢ The outward normal of

! at a point x € 30 will be denoted by n(x) and we write the outward

normal derivative of ¢ at x € 30 as %ﬁ (x).

We should like to mention that previous to the writing of this paper
P. L. Lions had introduced the same viscosity characterization of solutions to

(NPO) as we give below; see {15]. For this reason, we borrow much of the
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Remark 2.1. Any C

notation and hypotheses of (15] and in this section we omit all proofs but
those which motivate the results of the next sections.

We now state the vicosity characterization (see Proposition 1) of !
continuous weak solutions to (NPj).
Definition 1. Suppose that H(x,u,p) € C(% x R x B) and u(x) € C(fi). we
say that:

(a) u(x) 1is a viscosity subsolution of (NPy) if for all test functions

9 e c‘(l?) with %ﬁ (x) > y(x), we have
H(xo,u(xo),V0(x°)) <0,
where xq € Q satisfies

u(xy) = o(x,) = max (u(x) = ¢(x)) .
xeq

(b) u(x) is a viscosity supersolution of (NP;) if for all test

functions ¢ € C‘(Ig) with %ﬁ(x) € v(x), we have
H(xo,u(xo),vv(xo)) >0, ’

where x;, € Q satisfies

ul(x,) = o(xy) = min (u(x) = 9(x)) .
xeQ

(c) wul(x) is a viscosity solution of (NPy) if it satisfies both (a) and

(b) above.

The fact that our test functions are required to satisfy %ﬁ(x) > yix),
(resp. %f(x) < v(x)), 4in our definition of viscosity subsolution, (resp.
supersolution), may at first seem superfluous. This is however, precisely the
mechanism that "sees” the Neumann boundary conditions when vanishing viscosity
is taken into account; (see Proposition 1 below).

1

solution of (NP;) is also a vigscosity solution. This

fact is nontrivial only for the case when max(u - ¢) or min(u ~ ¢) is

attained for some x0 € 30. To see that u must indeed be a viscosity
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subsolution, take an arbitrary ¢ € C1(3d) with %ﬁ(x) > y(x). PFirst choose

a sequence {on}, such that for every m, wm(xo) - o(xo), ¢m(x) > p(x) for
99
X v Xqs SEP‘*’ > %%(x) and with o * @ in ¢! as m + ». We then have

that (u - v)(xo) = max(u ~ wn) and x; is the point where the strict

maximum of u - P is attained. Next, for any fixed m, choose a sequence
n

99 99
n _m _m n 1
{vm} such that 3=(x) > =="(x) andwith ¢ +¢ in C as n=+ =,
Denoting by x, the points where max{u - Q;) is attained, we must have
that x, * x5 as n + =, This is true because (u - o) (Xq) is a strict

maximum of u ~ L For x € 3}, we also have that %;4u - 9:)(x) <o,
which implies x, € 90- Therefore, since now x, 1is an interior maximum of
u - w:. Vu(xn) - Vv:(xn). and so by taking limits we have
Hixg,u(xg) Vo(xg)) = lim H(x_,u(x_),Von(x )) = 0 .
m,n
Remark 2.2. Obviously, the converse of Remark 2.1 is false. That is, a
smooth viscosity solution need not satisfy the boundary conditions of (NPg).

Proposition 1. Let u_€ c2(§) be a solution of (NPE) and suppose that

o € Cz(ﬁ). Then:

(a) For %ﬁ(x) » v(x) and u (1) = olxg) = max {u_(x) = ¢(x)) we have

xeq °©

that H(xo,ue(xo),V¢(x°)) < sAv(xo).

(b) For %ﬁ(x) < Y00 and u_(x)) = alxy) = ::3 (a_(x) = 9(x)) we have

that H(xo,ue(xo),vo(xo)) > eAv(xo).

If in addition, we have that u, +u in L“(a) for some sequence ¢ +V 0,

then:
(¢) u =1lim ue is a viscosity solution, that is, u satisfies ;‘ b=
€ s
Definition 1c.

The proof of Proposition 1 can be found in [15], however the interested

reader can easily reproduce its proof by taking limits as in Remark 2.1.
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Before stating the main result of this section, we give a simple lemma.
Lemma 1. Let Q be a bounded domain in R3 having a c? boundary 99Q.
Then:

(a) There exists a constant CQ < ® guch that for all x € 9Q,

o

> sup (-(x 14y)'n(x)].

Q )
veR  |x - y|

(b) There exists a function w € Cz(ﬁ) such that
Iw _
[Vwix)| < max(Co,0), x € Q.

Proof: CQ = w(x) = 0 would suffice in the case of convex {. For nonconvex

f, (a) is shown in [12]. (b) can be shown by constructing a particular
example. Under the hypotheses of the lemma, it is known that the distance
function d(x) = d(x;d9) is c? in a neighborhood of 99; (23], [10). That
is, d(x) e CZ(QT), where Qt ={xef: d(x) <1} and T > 0 is chosen

sufficiently small. Set 0 < To < T and verify that

C
—9—2(10-d(x))3 if xead
3t To
0
wix) =
0 if xed Q. ,
Yo

is a particular example that satisfies (b).

Now, consider the following set of assumptions.
Assumption A: H(x,u,p) is strictly increasing in u for all x € @ and
uniformly for p € R@. That is, for all R > 0 and ~-R € v € u € R, there

exists a > 0 such that

MR

H(x,u,p) - H(x,v,p) > uR(u -v) .
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Assumption B: Let a,8 € R

N Y W
ol
~ %
]

satisfy |G|o|8| < max(CQ,O). where Cq is as

."w
Pl A
yﬁf’

X
»
P4

defined in the previous lemma. Then, for all such a,8 and all x e {1,

TN

'\,u
>

ot
}'

2

x+&efl, all |ul €R and any X > 1, assume

A

‘s
P
l... -..1
Y

|H(x + E,u,)E +§ le]2a + 060 - Hxu g + 2 [6]28)] < w alE|? + gD

(g

&
LN e
P N\

A

by

Wy a
wl:: :
ﬁ* '

where wR(s) is some function such that 1lim wR(s) = 0.
s+0

Remark 2.3. Assumptions A and B are standard; see (5], (8] and (15]. 1In

the following theorem, Assumption B may always be relaxed so that a = 8 0
and 0({) = 0 except for x in a neighborhood of 4d{i. Assuming additional
regularity on the class of solutions allows Assumption B to be neglected

entirely.

Theorem 1. Suppose that H(x,u,p) € C( x R x R?) and that it satisfies
Assumption A above. Let u € C({l) be a viscosity subsolution of (NPg) and
let vecll bvea viscosity supersolution of (NPg). Finally, assume one
from the following three sets of hypotheses:
(1) § is convex and Assumption B holds with a =8 = 0.
(ii) Assumption B is satisfied.
(iii) Either u or v is Lipschitz continuous.

We then have that

max (u(x) - v(x)) <€ 0 .
xefl

Obviously, establishing this result would imply that a viscosity solution }{'j;;
to (NPj) is unique in the specified class of functions. LRI

Proof: Given a § > 0, define the function ¢6(x,y) by
é 2
(2.1) ¢ (x,y) = plx)p(y)[x - y|“/6 ,

where p(x) = exp(w(x)) and w(x) satisfies the second conclusion of

et e, o . . S A T e A, St .. [N

TR M AR ML MU € N R R R A
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Lemma 1. For x € 32 and any fixed y, € i, observe that

2(x = yglen
2

3,6 8 2
a6 xyg) = ¢ (xeyg)ptx) +
x lx - v,

and Lemma 1 implies that the bracketed term above is nonnegative. Therefore,

%5 ¢6(xlyo) >0,
X

and similarly, for y € 3 and any fixed xg € &
) )
K ¢ (xo,y) > 0.

Now, choose V € Cz(ﬁ) such that %& (x) = Y(x). By the construction above,
we have that for any fixed yq € {l
8
¢1(x) = ¢ (xlyO) + W(X) ’

is an admissible test function according to Definition 1a and similarly for

fixed xy € {
0,0 = 4%0x.) + ¥vin)
is admissible according to Definition 1b.

The next step is to note the obvious inequality

max (u(x) - v(x)) < max (u(x) = v(y) = ($3(x,¥) + w(x) = v(y)) .

x€ef xef
yeQ

(2.2)

We denote by Xgr Y the points in Q where the right hand side of (2.2) is

attained and we rewrite (2.2) as

:Zg (u(x) = v(x)) € u(xg) - viyg) = (¢6(XG:Y5) + ¥lxg) = Viyg)) .

(2.3)

Using (2.3), we easily arrive at

8
07 (xg0ys) < fulxg) = ulyg)| + [wixg) = wiyg)| »

o I
|

A, %y
.

(2.4)
s
0 (xgeyg) € |vixg) = viyo)| + Jwixg) - vy o

Vi

2

SN
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and recalling the definition of ¢6(x,y), (2.4) gives us that
(2.5) Ixs - Yal < const./6 .

Furthermore, since u, (or vVv), and V¢ are continuous, (2.4) combined with

(2.5) shows that

(2.6) lim ¢6(x6,y6) =0 .
§+0

The object now is to show that the right hand side of (2.2) can be made
arbitrarily small by choosing § sufficiently small. From above, we see that

the test functions defined as

8,0x) = viyg) = lyg + ¢%x,yg) + wx)

0,9) = ulxg) = Wixg) - o°xgy) + ¥iy) .

are admissible according to Definition la and Definition b respectively.
Inserting these into Definition 1, and using the fact that u is a viscosity
subsolution and v is a viscosity supersolution, allows us to conclude that
H(xé'“(xé)’vx¢1(x6)) <0,
and
Hlygvi(yg) Y d,(yg)) > 0,
because Xg satisfies

ul(xg) = ¢,.(xs) = max (u(x) = ¢.(x)) ,
8 1'78 xef 1

and y; satisfies

v(ya) - ¢2(y6) = :ég (v{y) - ¢2(y)) .

Combining the inequalities above and rearranging, we obtain
(2-7) H(xs,u(xs),vx¢1(x5)) - H(XG'V(YG)'VX¢1(XG))

< H(ys,v(ya).Vy¢2(y5)) = Hixg,viyg) Y 64(x5)) -«

» - . « . - - . RS LRI S Y Ty R S R . o T T Y-
B LI AL S T A STl e R I . . . PR R T IR R L R S »
- AN LN I I O A A P S P N PG G R TP '_."..)‘.‘A.’..n\“..‘) '.A‘_A“A".A‘\‘-l'x“,n.'.g"A“ 5




. By a direct calculation, the right hand side of (2.7) can be written as

HUy g vy g) o Alxg = ¥) +.% Ixs = v528 + Yoty )

(2.8)
- Hixg,viyg) Mxg = yg) + -é-lx(S - y6|2a + Wixg))
where
A = 2p(xg)p(yg)/8
a= Vw(xG)
B = Vwlys) -

0 and

(Recall from Lemma 1 that if § is convex we may assume that a = 8

p(x) = p(y) = 1). Assumption B allows (2.8) to be bounded above by
(2.9) w (Axe = yol? + |xc = ¥y )
: R § ) 8 8 !
where R = max(|u|w,|v|w).

To complete the proof of conclusions (i) and (ii), we again use

inequality (2.3) to write

max (u(x) = v(x)) < ulxg) = vlyg) + |wixg) = viyg)|
xeq

which is bounded above by

(2.10) max((ulxg) = vlyg)),0) + |¥(xg) = viys)| -

Assumption A applied to the left hand side of (2.7) combined with (2.8) and

(2.9), allows us to bound (2.10) by

1 2
(2.11) u—R' “)R(Alxs = yﬁl + de = Y&l) + I‘P(XG) - W(Ys)l .

Recalling that XIXG - y6l2 = 2¢6(x6,y6), (2.6) along with (2.5) show that
(2.11) tends to zero as § tends to zero; therby proving

max (u(x) = v(x)) <0 .
xesnN

-10-
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To establish (iii), observe that if u, (or v), is Lipschitz
continuous, inequality (2.4) leads to an improvement of (2.5). That is, we
may conclude that

(2.12) |xs - yg| < const & .

This improved estimate implies that the p term of H(e,e,p) in (2.8)

remains bounded. Therefore, conclusion (iii) follows by noting the uniform

continuity of H(x,u,p) on a compact subset of xR x Rg-

Remark 2.4. The combined results of Proposition 1 and Theorem 1 imply that if

-]
the family {u of solutions to (NPe) is relatively compact in L , then

e}e>0
(-]

lim u. exists in L . For further results concerning the compactness of

€+0

{“e}e>0' see [13]) or [14].

§3. VISCOSITY APPROXIMATIONS AND A RATE OF CONVERGENCE.

In this section we consider the rate at which certain approximations
converge to the viscosity solution of (NPj;). We show in a precise sense
below, that if an approximation "almost" satisfies the viscosity inequalities
of Definiton 1 then the approximation is "almost” equal to its associated
viscosity limit solution. The abstract rate of convergence theorem given in

this section is then applied in Section 4 to particular approximations

generated by a class of numerical schemes.
Before making a precise statement of "almost satisfies the viscosity :ﬂrV{

inequalities", recall the definitions of the test functions used in the proof

of Theorem 1: N R

ke
'.-_-..g‘
(3.1) k) = ptxip () |x - y|2/6 R
AN
u‘\-...:
where § > 0, p(x) = exp(w(x)) and w(x) satisfies the second conclusion of f{}ff

Lemma 1. Also recall the function ¢, which satisfies

-11=

. ’.- - - .
TN
:H-r'-




(3.2) vix) e c2(f
g.'k
n(x) = y(x) on 23R,
and the specific test functions

(3.3a) 0,0 = Sy + wix)

s a8 AR F

(3.3b) o, (x) = -6%tx.0) + wiy)

where xg, yo are arbitrary fixed points in {i.
We now give:

Definition 2. Suppose that H(x,u,p) € c(fl x R x Rd) and ue(x) e c(fl). we

_ say that:
f (a) u. is an approximate viscosity subsolution to (NPj) if for all test
; functions ¢1, which have the particular form (3.3a), we have that

H(xo.ue(xo),vx¢1(xo)) < ed o,(xy) + CE,

where xg € 0 satisfies .

ue(xo) - ¢1(xo) = ::g (ue(X) - ¢1(x)) ‘

> and C is some fixed constant.

(b) u, is an approximate viscosity supersolution to (NPj) if for all

test functions ¢2, which have the particular form (3.3b), we have that

: H(Yo:ue(yo): vy¢2(Y0)) > EAY¢2(YO) ‘Ee ’
where yg € { satisfies

u.(ys) - ¢,(y,) = min (u_(x) - ¢,(x)) .
€E-0 240 xef € 2

(¢c) u. is an approximate viscosity solution if it satisfies (a) and (b)

above.

-12-
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In the proof of Theorem 1 we showed that sgj(x) ? Y(x) and
x

(1)
2
3 (¥} € Y(y), therefore the statement of Proposition 1 implies that if u

is a ¢? solution of (NPE), then it is also an approximate viscosity solution

of (NP;) as defined above.

With Definition 2, we now state:

Theorem 2. In addition to Assumption A of Theorem 1, assume for ease of

presentation that ¥(x) = 0. Furthermore, assume that (NP;) admits a
Lipschitz continuous viscosity solution u, with say Lipschitz constant L,
and assume that H(x,u,p) is locally Lipschitz continuous. Then, for any

approximate viscosity solution to (NPO), say u we have that

el

lu, - ul, < il“ [(sar,u(1 + 2 11e) /2 4+ oced)
R
0
where

Ry = sup ju

15€>0 ele v

|H(x1,u,P1) - B(xz,u,Pz)l
Ly = sup _ Tx, - x| + [P, = P_] !°
H x1,x2eﬂ 1 2 1 2
'“I‘Ro
[e,[/ [P l<3L

The definition of Cn is given in Lemma 1.

Remark 3.1. We may replace the assumption that (NP;) admits a Lipschitz

continuous viscosity solution by the assumption that u_, is Lipschitz

€

continuous, uniformly in € > 0.

Remark 3.2. The interested reader can easily modify the following proof to

include inhomogenious boundary data to obtain the same Ye rate of
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convergence. Relaxing the hypothesis on H(x,u,p) and the regularity of u
can also be done to obtain a more general, (and slower), rate of
convergence. This however, will not be done here.

Proof of Theorem 2: Mimicking the proof of Theorem 1, we arrive that the

analogue of inequality (2.7):
(3.4) H(xsoue(xa).vx¢1(x6)) - H(XG'“(YG)'vx¢1(x6))
< H(ys,u(ys)lvy¢2(ye)) - H(xspu(yc).vx¢1(x6)) + GAx¢1(x6) + Ce ,

where Vx¢1 and Vy¢2 are given by (3.3), (with ¢ = 0), and x5 and y;
are as in (2.3). Recalling (2.4) and using the fact that u, (or “e)' is

Lipschitz continuous, we have that

(3.5) 8 (xguvs) < lutxg) = utyg)] < Llxg - vl o

or
§
(0" (xg0¥5) € |u_(x5) = u lyg)| < Tlxg -y,
which, with the definition of ¢6: gives us that

- N "
(3.6) |x6 y6| < D(XG)D(YG) 8

Furthermore, a direct calculation shows that
19 0,(x) = ¥ ¢,(y)] € 200%(x,¥)
x'1 y'2 Q ! '
where Cg is as in Lemma 1. This inequality, along with (3.5) shows that
(3.7) IVx¢1(x6) - Vy¢2(y6)’ < 2CQL|x6 - ysl .

Returning now to inequality (3.4), we use (3.7), Assumption A and the

fact that H is (locally) Lipschitz continuous to obtain

uRomax((ue(xs) - u(ys)),o)

<L (1 + 2cL) o [xg = yg| + €8, 0,(x5) + CE .

~14-
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Calculating Ax¢1 and inserting (3.6) into the right hand side above, we find
that

{3.8) max((ue(xs) - u(ys)),o)

u
Ry

D(XG)D(YG) $
< [2de(———g——) + LL(E(TG)—F(—y-G—)-)] + const.(e + €§) ,

where L = LH(1 + ZCQL)- By setting

8 ] 12
B(xg)P(¥g) (u. 2

which can be done for LL ¥ 0 by the continuity of the left hand side with
respect to 6, we minimize the bracketed term in (3.8). This yields

ug max((ug(xg) = ulyg)),0) < (8arre) /2 + const. (e + €7/2)
0

and using the fact that

max (u (x) - u(x)) < u (xc) - u(ys) '
xeR

as done in the proof of Theorem 1, we have established the desired result for
max(u. - u).
An identical estimate can be obtained for max(u - ue) by a similar

arqument and so the proof of Theorem 2 is complete.

Remark 3.3. When the domain R is convex and ¢ = 0, the term O(e) in the
estimate of Theorem 2 is precisely Ce. In addition, if the approximate
viscosity solution is the solution of (NPE), the constant C is zero.

Next, we show that the order of the rate of convergence obtained above

can not in general be improved. To see this, consider the example

-15=
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dzu
-€ +u_ =0
dx2 €
(3.9)
du du
€ €
&= 0 =0 FN =

The exact solution of (3.9) is given by
u (x) = Y€ cosh(x/Y€)/sinh(1/V€)

and its an easy exercise to show that ue * 0 uniformly as ¢ + 0. In fact,

one easily finds that

[ug = 0]y = Y€ {1 + o(exp(-2/¥e))} ,

which is exactly the order obtained by Theorem 2. We should mention however,
that the rate constant of Theorem 2 is not the best possible.

We conclude this section by analyzing the specific example:

2 du
€ 1 e
e ——+(35=—) +u_ =0,
dx2 2 dx €
(3.10)
du du
€ €
e U2 Rl Y o Rl Bl (1

Setting € = 0 and solving the reduced differential equation, we find that

u = lim uc should be built from functions having the form <=(x - c)2 and
€

0. The objective now is to piece things together in a way such that the

constructed function satisfies the viscosity inequalities of Definition 1.

We have three basic cases, (which depend on YO). Set

Y, 2
-(x_2_° ,

uL(x)

Y
ug(x) = =(x +-23- 1)?,

and note that u; satisfies the left boundary condition of (3.10) and ug

satisfies the right boundary conditions.

-16~
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Cage 1. For 1 Yo » 0, consider the candidate limit solution:

Yo
uL(x) 0 € x ¢ Tl
Y Y
0 0
\11(8) 4 0 —2— Cx< 1= "2—
Yo
\IR(X) 1 - -2-— <Cx< 1.

The analysis of this case is trivial since u4(x) is a classical ct
solution to the reduced problem. By Remark 2.1, it must therefore be a
viscosity limit solution.

Case 2. For YO > 1, consider the candidate limit solution:

uL(x) 0 € x< 1/2

u,(x) =
uR(x) 1/2 < x< 1.
opviously, we need only check the viscosity inequalities at x4 = 1/2, the
corner of uj. In this case however, min(uy; - ¢) can not occur at
i 1/2 for any C1 function ¢. If max(u; - ¢) occurs at xg = 1/2,
its easy to check that we must have (up),(1/2) > ¢x(1/2) > (ugl,(1/2).
Computing these derivatives, we have that all possible values of ¢x(1/2) lie

in the interval (1 - YO' YO = 1], 4in which case
1 1112 1 (A 112 _ () 4 o 2
(7 ¢,(3))% + u,(3) oG -(Fa-vp)co.

Therefore, u, is a viscosity solution.
Case 3. For Y, < 0, consider the candidate:
usa(x) = 0 .
Here, u; does not take on its boundary condition at x = 0 or at x = 1.
However, max(u3 - ¢) can not occur at x = 0 for any admissible test

function, (%3 (0) > -Yo). If on the other hand, min(uE ~ ¢) is attained

-17-
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at xqg = 0, we must have that ¢x(0) lies in [70,0] and in this case
1 2
(3 ¢,(0)° + ugc0) >0 .

A similar argument shows that uj3 satisfies the viscosity inequalities if
max(uj - ¢) is attained at xg = 1.

In these specific examples, we have demonstrated that these candidate
limit solutions are viscosity limit solutions of (3.10) since they satisfy
Definition 1c. They are furthermore Lipschitz continuous and so by
Proposition 1 and Remark 3.2 of Theorem 2, they satisfy |ue - u|, < const.ft
where u. is the exact solution of problem (3.10). However, for these
examples, (as well as other nonlinear examples) there is evidence that
indicates a convergence rate faster than the JE, [3]. We believe that there
is a yet undiscovered mechanism that links certain nonlinearities in H to

diffusion which often gives rise to a faster rate of convergence than

Theorem 2 predicts.

§4. NUMERICAL APPROXIMATIONS.

In this section, we introduce and analyze a class of numerical schemes
that generate approximations of the viscosity limit solution to the one-

dimensional version of (NPe), which we write here as:

2

d ue due
-e —5— + H(x,u_,= )=0
dx
(4.1)
du du

€ €
" = (0) =v, = (n = Yy ¢

Throughout this section, we make the following assumptions concerning

H(x,u,p), which for ease of presentation only, is assumed c! smooth.
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Assumption A': For all x € (0,1], |u| = R and |P| € K, there exists a

Uy >0 and an 0 < n, < 1, such that

3 M4
-3-\; H(x,u,p) ? ux/(W(Rl1))

Assumption B': For all x e [0,1] and |p| = X, there exists an

0 <n, <1 and a constant c(|u|) such that

3 N2
lez HOGup)| € oy (max(k, 1)) c(lul) .

Assumption A' is merely a refined version of Assumption A of Section 2.
Assumption B' guarantees that the viscosity limit solution of (4.1) is
Lipschitz continuous and therefore supercedes Assumption B of Section 2.
The numerical approximation that are considered here are built from a
piece-wise linear interpolation of gr#d values {“j}gso' That is, we

partition the interval {0,1] as ll [xj,xj+1], where we shall assume that
j=0

Z(Xj - xj-1) > (Xj+1 - Xj) >‘;- (Xj - Xj_1) [4

and then define uA(x) by

A J
(4.2) u(x) = ) uyTy(x)
3=0

where

(x - xj_1)/(xj - xj_1) if x € [xj_1,xj]

]

X

- x)/(xj+1 - xj) if x e [xj 341

0 otherwise .

In (4.2) the superscript 4 is to represent a measure of grid refinement and
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we set it equal to max (X441 ~ %3). For each 0<j<J, the grid AR

‘ . 3 3 IR
, 0<J<J-1 v\- ‘v
; values uj are required to satisfy the difference scheme bﬁ >
X \]
l . <+ . - . = E’F\‘T",
\ (4.3) H(XJ,uj,D \IJ,D “J) 0 :‘_::?:: :
\ f f‘ v,
N D un = ptu. = ' Ch
: Ug Yol UJ Y1 ’ /
¥ ]
¥ 3 Al
+ = - . Iy - » = ., I - Y - . 7

! where D uy = (ujy4q = uy)/(X44q9 = X3), Duy = (uy uy-1)/(x5 = x4.4)

and ﬁ(x,u,p1,p2) is some difference operator that does not explicitly depend
on any grid parameter. E(x,u,p1,p2) is assumed to be locally Lipschitz

continuous and it is also assumed to satisfy three basic properties:

TV .t ¥ V. eT s @

Property 1. ﬁ(x,u,p1,p2) is consistent with H(x,u,p). That is,
H(x,u,p,p) = H{x,u,p).

Property 2. H(x,u,p1,p2) is nonincreasing in the p; argument and

v vy v Y ¥V

nondecreasing in the p,; argument.

Property 3. For all |py| € K and |p,| < K, H(x,u,py,p;) satisfies

Assumption A' above.

Of course, Property 3 simply says that HR(x,u,py,p;) is strictly

increasing in u at the rate prescribed by Assumption A'. We now give:

N >
L
Pt ]

o,

Theorem 3. With Assumptions A' and B' above, suppose that v comes from AR
———— AN
Faste @
scheme (4.3), where H(x,u,pq,py;) satisfies properties 1, 2 and 3. Then, E{iQi}
. A i “ -.*
(4.3) generates a unique approximate solution uA and moreover, u Graaaas
converges to u = lim u. at least as fast as
€
A
|u™ = u|, < const./d ,

where above, u 1is the viscosity limit solution of (4.1) and

A = max (Xj+1 - xj).
0<3¢3-1

-20-
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Before proving Theorem 3, we give two examples of finite difference

operators which satisfy properties 1,2 and 3. Furthermore, we show that the

rate above is the best possible under the hypotheses of Theorem 3.

Example 1. The Lax-Friedrichs difference operator [11], [20], is based upon

approximating B(x’“’%%) by a convex combination of H(x,u,D*u) ana

H(x,u,D"u) along with the introduction of an artificial numerical viscosity

term. To be more specific, R is given by
R(x,u,pq,p3) = 8H(x,u,p,) + (1 - )H(x,u,p,) - clpy - pP2)
where 6 is chosen in [0,1] and

¢ > max(9 sup Hp,(e - 1)inf HP,O) .

Clearly, this difference operator satisfies properties 1, 2 and 3 above.

Moreover, if Hp 2 0, (resp. Hp < 0), we could have chosen 6 = 0,
® = 1), and c¢ = 0; thus giving a scheme based on backward, (resp.

forward), differencing.

Example 2. The Godunov difference operator, [9], (20)], is given by

min H(x,u,v) if p, < p,
ve[pzlp,]
ﬁ(x,u,p,.pz) =
max H(x,u,v) if P4 < P, -

This difference operator clearly satisfies properties 1 and 2, and a

(resp.

straightforward exercise will verify that it satisfies property 3 as well.

Again, when H(x,u,p) is monotone in p, the scheme reduces to either a

backward or a forward difference scheme.

-21-
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Next, we show that the rate of convergence of Theorem 3 is sharp. We
again consider the trivial example (3.9) and we approximate its viscosity
limit solution, (u = 0), by the Lax~Friedrichs difference scheme - however,
we intentionally add too much numerical viscosity, (we take ¢ = 1 rather
than the allowable ¢ = 0). Setting Xj41 = X3 = h, where h = 1/3J, uy is
required to satisfy:

+ » =

D uy = O, D+uJ=1.

One easily computes the exact solution of (4.4)

- h 1 3+1 1 541
Uy = 3F T 9+ (=t 1
a -a 1 2
2 1
where
_ h _ oA~ hy1/2
(!1 =1+ 3 (1 + 4) A

h hy1/2
a=1+3+/_-(1+z)/ ,

and furthermore, since u. » 0, we have that

J

A
o™ - ulg 2wy > 5=

Finally, calculating the right hand side above, we arrive at

lu® - ul, > /R (!—E s+ L mrom

which is exactly the rate of Theorem 3.

We shall prove Theorem 3 via three lemmas.
lemma 2. Assume that H(x,u,p1,pz) satisfies properties 1, 2 and 3 above.
Then, if the difference scheme (4.3) had a solution, say uA, uA is bounded

and has a bounded Lipschitz constant, uniformly in A > 0.

.22~
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Proof: We first prove that uA must be uniformly bounded. Suppose that

max uj 2 0 is attained for some 1 € j0 € J - 1. since at an interior

0<3<J
maximum Dtu, < 0 <DTu, ,
Jo Jo

(4.3) and Property 2 imply that

o

. < . ,ptu. ,D” =0 .
H(XJOIUjOJOIO) n(xjo'uJO'D uJDID ujo) 0

T aTeT ey
Sl

Therefore, we have from Property 3 that

'.'vyw!

ﬂ1 -
') IH(xj ,0,0,00] .

<
uouj (max{u .

0 j0

Similarly, if max u, » 0 is attained at j =0 or j = J, we would have - el
0$j<g 3 .3
that -

ny
by o ¢ maxtug, 1) 'Hco,0,0,-vp)]

or S

n
1, =
ulY1|uJ < (max(uJ.1)) lH(1IOIY1lo)| ’

which proves that uA(x) must be bounded above independent of A > 0. An {?*I

identical argument would show that min u_, must be bounded below
0<3j<J
independent of 4 > 0.

Next, we show that |D+uj] must be uniformly bounded. Suppose that

max D+u. b max(—Yo,Y1,0) is attained at jg. Again using (4.3), we must
0<3<T-1
have that

p*u

= R . *u. - . . *tu.
0 H(Xj0+1,0j0+1,0 ujo+1,D uJO) R(xjoyujol JOID uJ°_1)

+ + + +
D™u, ,D'u; ) - R(xy ,u, (D'u, ,D7u,
+1D7uy u30) (xJO,uJO. 950 uJo)

v

a(xjo+1rujo

+ +

Setting K = ptu. > 0, we have from above and Property 3 that

Jo

Ny
.x)l(max(luj [,y

]
UKK < |§; H(E'uj 0

0

-23=
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and this inequality combined with Assumption B' implies that

n 1

2 n
K < (max(K,1)) C(lujol)(max(lujol,n) .

Therefore, D'u; is bounded above, again independent of A > 0. A similar

3
argument would show that D+uj is bounded below independent of A > 0. This

proves the lemma.

Lemma 3. Assume that ﬁ(x,u,p1,p2) satisfies properties 1, 2 and 3. fThen,
the difference scheme (4.3) has a unique solution.

Proof: Consider the map F, : ) AL Ig+1, defined by
= - 7 (3 . + ] = 0y
(4.5) (Fv(u))j uj vH(xJ,uJ,D uJ,D uJ) R

for 0< j < J, where =D u, = Y, and D+uJ = Y4. We show below that F,
has a unique fixed point and obviously this fixed point is the desired
solution of difference scheme (4.3). We may assume that H(x,u,p1,p2) above
is globally Lipschitz continuous, since R could be modified in a smooth way
outside the bounded a priori domain established by the previous lemma.

We now claim that (Fv(“))j is a nondecreasing function in u u

j-1 Y4

and Ujeqe provided that Vv is chosen sufficiently small. Assume for

simplicity that H is smooth. We then find upon differentiating

(Fv(“))j =VH_ /(x, -x, ,) for 1< 3j<J,

3-1 Py 3 j-1

j+1(FV(u))j = -va1/(xj+1 - xj) for 0< j < J-1,

and Property 2 implies that these quantities are nonnegative. Furthermore,

a - - H - - s i : -
(4.6) ‘aij(Fv‘“”j" viH ﬁp1/(xj+1 xj)+Hp2/(xJ x5-9}




N \.'- L

for 1€ 3 <J=-1, and sz =0 for j =0 and Hp1 =0 for j =J.
Therefore, since R is assumed to be globally Lipschitz continuous, we can
' choose V small enough so that these derivatives are nonnegative as well.
Next, we show that Fv hags the fixed-point property for v as above;
(v should be thought of as an artificial time parameter and the restriction
on V imposed in (4.6) as a CFL condition). let u € *!' and v e B!

and define T = v ~ u. Now consider

H Fv(v) - Fv(u) = Fv(u + 1) - Fv(u) .
Setting T“ = max( max T,O), we have by the claim above, that
0<j<J
(4.8) (Fy(u + T) = F(u)), < (F(u+ rMT) - Py,

Now, recalling the definition of Fv in (4.5), we see that the right hand

side of (4.8) is equal to

+ - W
a,Du.,Dul)), SO

33 J b S

- + - -
T V(H(x .uj + TM'D uj'D uj) - H(x

M J

which by Property 3 is bounded above by

TM(1 - vu) ,

~

where U is the appropriate positive constant of Property 3 governed by the a

priori domain of lLemma 2. Setting T ™ min( min T,O) and repeating the
0<j<J
argument above, we find that

(4.9) Tm(1 = vu) < (Fv(V) - Fv(u))j < TM(1 - vu) .

Therefore, the Banach fixed-point theorem guarantees a unique fixed point of j}:*:%:

F for v sufficiently small, which is the desired result. ,;5

\"

Remark 4.1. Inequality (4.9) tells us that implementing an artificial time

method, (uP*! = Fv(un)): to obtain a solution of difference scheme (4.3),
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a

converges at an L rate of e-ut. This of course, is computationally slow

in light of the increment restriction imposed by (4.6). We recommend a few
iterations of artificial time to pull the initial approximation into the g
domain of attraction for Newton's method, which with some "smoothness”,
converges at a much faster quadratic rate.

The next lemma is crucial to establish the fact that uA satisfies the

approximate viscosity inequalities.

Lemma 4. Suppose &(x) = k|x - y|? + ¥(x), where y € [0,1] is fixed, «
is a constant and VY(x) is an affine function with =y'(0) = YO and
y'(1) = Y1. Then:

(a) If x » 0 and max (uA(x) - ¢(x)) is attained for some
xe[0,1)

. < j < *u. =~ DTu; < Ae .
£ # X5 0 <3 <J, wehave D uJO D uJo A ¢xx(£), where xJo is the

nearest grid point to &.

(b) If k € 0 and min (uA(x) - ¢{x)) is attained for some
xe[0,1]

. + - D . X
£ # X4 0<3j<J, we have D ujo D ujo > A ¢xx(5), where xJO is the

nearest grid point to £.

Proof: We prove (a) only since the proof of (b) is identical. lLet xjo be

the nearest grid point to £. We have three basic cases to examine: They

Jo Jo

Case 1: when xjo = 0, we must have D+uo = ¢x(5) since £ € (0,x1) is

are: x. =0, x =1 and 0 < x. < 1.
3o

where the maximum of uA -~ ¢ occurs. However, because ¢ is quadratic,
¢x(5) = ¢x(0) + E¢xx(5). Therefore, D+uo = E¢xx(§) + ¢x(0) < E¢xx(5) = Yo
Case 2: The case when xjo = 1 is identical to case 1 above.
Case 3: Suppose now that £ € (xj0_1,xj0) and choose an arbitrary
T € (xjo'xj0+1)' (if on the otherhand, £ e (xjo,xjo+1), the argument below

is essentially the same). Using the definition of uA and the fact that

-26=




(uA - ¢)(E) is maximum, we have that

(4.10) ujo +D ujo(E - xjo) - ¢(§)

> ujo + D+uj°(1 - xjo) - ¢(1),

D ujo = ¢x(E) .
Therefore, a simple calculation will show that (4.10) implies

¢x(€)(E = T) + ¢(1) = $(E)

o1 *u. - D" < .
(4.11) D uJO ujo T - xj
0

Taylor's theorem allows us to write the right hand side of (4.11) as

2

1 (1t - &)
2 [t - X ]¢xx(€) *

0

Recall that we have assumed our grid satisfies the constraint
(X449 = %4) >'% (x4 = xj_15. This allows us to minimize the bracketed term

above by choosing T = ij - E. Doing this, we have

p*u - D-ujo < 2(x - E)¢xx(£) P

and since xjo is the nearest grid point to §, the proof is complete.

Proof of Theorem 3: The proof of the theorem is complete, (Lemmas 2 and 3),

except for showing that uA satisfies the approximate viscosity inequalities

of Definition 2. With this in mind, set ¢1(x) = Ix - y°|2/6 + Y(x), where
Yo € (0,1), is fixed and V(x) is affine, with Yr(0) = Yo and
V(1) = Yy (as in Definition 2a). Suppose now that uA - ¢1 is maximum at oote

£ e [0,1]. To show that uA is an approximate viscosity subsolution, we :$
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must verify that
A
H(E,u (E),¢1x(£)) < (K+4) ¢1xx(€) +CA,

where K is some constant, independent of A, and as always in this section,

4 = max (X541 = %4).
0<j<J-1
Using difference scheme (4.3) and Property 1, we have that for every

0< 3j<J
A - A -
H(E,u (E)I¢1x(g)) = H(E,u (g)'¢1x(g)'¢1x(g)) - n(xjoujvb+“jlp uj) ’
and we rewrite this identity as
A
(4.13) H(E,u (E).¢1x(€))

g = -
= [H(xj,u ,¢1x(§)a¢1x(§)) H(xjvu Du,,Du)l

3 3 3 3

+ TRERNE), 0, (600, (8)) = Blxg,u i0 (00, (ED)] .

3

The second term on the right hand side of (4.13) is bounded above by
L |t - xj| +LL|E - xj| '

where L and L, are the Lipschitz constants of B in the x and u

X
arguments respectively, and L is the Lipschitz constant of uA. The first
term on the right hand side of (4.13) can be written as

(4.15) H (¢ (E) - °+“j’ + ﬁp

(¢, (§) -Du.) ,
Py 2 X J

where again, we have assumed that H is smooth for simplicity.

If E = Xy for some 0 < j0 <€ J, we have nothing to prove since it's
0
an easy exercise to determine that in this case D+ujo < ¢1 (E) < D u.
x
0
when xjo, (=€), is a maximizer of uA - ¢1- (Recall by the definition of

<D M = (
¢1 that ¢1x(0) D u, and ¢1x(1) > D'uy in the event that ¢ or

0
1.) Therefore, setting j = jg in (4.15) and recalling Property 2, (which

=2f=-

.:f"
éég.r }_f:
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ﬁp <0< ﬁp ) verifies the approximate viscosity inequality 2a
1 2

here in a trivial way.

says that

If on the other hand, £ # x4 for all 0 < j < J, take xjo to be the
nearest grid point to £. Set j = jg in (4.15) and insert the identity
= D = pt
¢1x(5) D ujo, (or ¢1x(€) D ujo) into it. Using the result of Lemma 4,

allows us to combine (4.15) with (4.13), to arrive at
H(EuP(8), 0 (§)) € (Red)eg, (E) + B,

1
- i - + .
where K = max( Hp1,ﬂp2) and C is given by 2 (Ly + LyL)
An identical argument will show that uA is an approximate viscosity
supersolution, (see Definition 2b), and so by applying the abstract result of

Theorem 2, the proof of Theorem 3 is complete.
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