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ABSTRACT

Singularly perturbed second order elliptic partial differential equations

with Neumann boundary conditions arise in many areas of application. These

problems rarely have smooth limit solutions. In this paper, we characterize

the limit solution for a wide class of such problems. We- also give an

abstract rate of convergence theorem and apply the abstract theorem to certain -

finite difference approximations. "~-~,--
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THE NEUMANN PROBLEM FOR NONLINEAR SECOND
ORDER SINGULAR PERTURBATION PROBLEMS

Benoit PerthameI and Richard Sanders 2

§1. INTRODUCTION.

In this paper, we study the singular perturbation problem for partial

differential equations which have the form:

(NP) -Eu + H(x,u, 0, x e n

E - 4 
-

m

au

where 0 is a bounded domain in Rd, n is n's outward unit normal, u OAS,

_d

is a scalar unknown and H is a continuous function on n x R x Rd - One

application that motivates the study of singular perturbation problems of the

form (NP ) is found in the theory of optimal stochastic control. There, H

depends on the deterministic part of a stochastic ODE, a control space and a "

specified cost function. uC can be identified as the optimal cost

function. The positive parameter e in (NP) can be regarded as the

intensity of noise in the dynamics equation. Control problems whose

trajectories reflect at a boundary, give rise to Neumann problems of the type

studied herei see [1] or (17] for a detailed treatment of this topic. One

could ask for instance, is the optimal cost function of a stochastic control

problem related to the optimal cost of its associated deterministic problem?

Are the two close in any way when the noise is small?

As £ 0, it is well known that solutions of (NP) do not generally

converge to a classical solution of:
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(NP0 ) H(x,u,7u) - 0, x e a

(x) - y(x), x •e .an

Indeed, (NPo) does not generally admit a C solution, as can easily be seen

by considering the simple example:

'.-

du + u 0 0, x e [0,1]

d( 0) -0,du)-
dx dx

This example is clearly overdetermined, and here the data at 0 is not

compatible with the data at 1. For this reason, a more general class of

solutions to (NP0 ) must be sought.

A new notion of continuous weak solutions to equations of Hamilton-Jacobi

type has recently been introduced. In [4] and [5], M. G. Crandall and P. L.

.. Lions have developed techniques that have been extremely successful in

establishing a number of new results concerning continuous, but not

necessarily differentiable, weak solutions to first order, fully nonlinear, .

partial differential equations. In their work, Crandall and Lions have

utilized the "vanishing viscosity method", so named because of the link to the

classical technique of vanishing viscosity from fluid mechanics, and they show

that the method of vanishing viscosity gives rise to a specific notion of a

viscosity" weak solution.

In [15], and here as well, the notion of a viscosity solution for the

generally over determined Neumann problem (NP0 ) is given and is shown to

include all L C-limits of solutions to (NP ). All L c-limits are shown -

to satisfy the so-called viscosity inequalities of Section 2; additional

details in this direction can be found in [15]. Remarkably, (with additional

hypotheses of course), these viscosity inequalities uniquely determine all ..-

such limits. In Section 3, we introduce what we call "approximate viscosity

inequalities" and we show there that any reasonable approximate viscosity

-2-

.. .. W. . . . . .



PT ! 7

solution is approximately equal to the viscosity solution of (NP0 ). More

precisely, we give an abstract minimal rate-of-convergence theorem, Theorem 2,

for approximate viscosity solutions to (NP0 ). We also show that this rate is

essentially sharp. A particular application of Theorem 2 gives an easy to

determine measure of how far the solution of (NP can be away from the

viscosity solution of (NPo). In Section 4, the abstract rate-of-convergence

theorem of Section 3 is applied to numerical approximations which are obtained

from a class of finite difference schemes. Moreover, we show in Section 4

that these schemes have "computable" solutions and we motivate how they can be

obtained.

The reader is encouraged to see [2], [18] and [19] where similar results

as those above are obtained for divergence form singular perturbation problems

with mixed or Dirichlet boundary conditions. Also see [61, [7] and [21] for a

further treatment of approximations for time dependent Hamilton-Jacobi

equations without spatial boundaries.

§2 VISCOSITY LIMIT SOLUTIONS.

As mentioned in the previous section, as e + 0, the corresponding i-'-"

solutions to (NP) do not in general converge to a classical C1  solution of

(NP0 ). In this section we offer a characterization of viscous limits to (NP0 )

and we show that this characterization often allows for only one solution in

the class of continuous functions. Throughout, we shall assume that Q is a

bounded domain in Rd which has a C2 boundary an. The outward normal of

n at a point x e aV will be denoted by n(x) and we write the outward

normal derivative of 0 at xe an as (x).

We should like to mention that previous to the writing of this paper

P. L. Lions had introduced the same viscosity characterization of solutions to

(NPo) as we give belowt see [15]. For this reason, we borrow much of the

-3-
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notation and hypotheses of [15] and in this section we omit all proofs but

those which motivate the results of the next sections.

We now state the vicosity characterization (see Proposition 1) of

continuous weak solutions to (NP0 ).

Definition 1. Suppose that H(x,u,p) e c(B x R x a) and u(x) e C(fi). We a

say that:

(a) u(x) is a viscosity subsolution of (NP0 ) if for all test functions

SCI(Rd) with W(x) > y(x), we have

H(Xou(x),V(xo)) 4 0 ,

where x0 e satisfies

u(xo ) - 9( o) - max (ux) -9 )
xen

.. (b) u(x) is a viscosity supersolution of (NP0 ) if for all test

functions v e cI(a with 2(x) 4 Y( we have ..

H(xou(xo),Vy(xo)) ) 0 "

where x0 e a satisfies

u(xO ) - (xO) -m (u(x) -W)

(c) u(x) is a viscosity solution of (NP0) if it satisfies both (a) and

(b) above.

The fact that our test functions are required to satisfy 2.in(X) y(x),
an

(resp. 22(x) y(x)), in our definition of viscosity subsolution, (resp.
an

supersolution), may at first seem superfluous. This is however, precisely the
°- .-° .

mechanism that "sees" the Neumann boundary conditions when vanishing viscosity

is taken into account; (see Proposition I below).

Remark 2.1. Any C solution of (NP0 ) is also a viscosity solution. This

fact is nontrivial only for the case when max(u - 1 or min(u - 9) is

attained for some xo e an. To see that u must indeed be a viscosity

-4-
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1d a
subsolution, take an arbitrary 4 e C (Rd ) with -'n(X) y(x). First choose .an

a sequence {gm }, such that for every m, pm(x,) - V(x0 ), pm(x) > p(x) for

xvx O, j-(x) -(x) and with vm + v in C 1 as m a. We then haven an

that (u - V)(x 0) - max(u - (P) and x0  is the point where the strict

maximum of u - is attained. Next, for any fixed m, choose a sequence
n

{(n such that -t m (x) > ig (x) and with n + V in C as n +.
£ n

Denoting by xn  the points where max(u - ,n) is attained, we must have

that xn + x0  as n + m° This is true because (u - im)(x) is a strict
n m 0

maximum of u - *m" For x e an, we also have that a - ,(x, < 0,

which implies xn e nl Therefore, since now xn is an interior maximumo

Vu(x ) and so by taking limits we have
m n int

H(x 0 ,u(x 0 ),vy l x0 )) - lim HlXnU(X n ) , V : l x n  0

m,n

Remark 2.2. obviously, the converse of Remark 2.1 is false. That is, a

smooth viscosity solution need not satisfy the boundary conditions of (NPO).

Proposition 1. Let u¢ e C 2() be a solution of (NP ) and suppose that

, e c 2 (E). Then:

(a) For 21(x) ) Y(x) and u () - T(x ) - max (u,(x) -9(x)) we havean c 9() xe

that H~xO~u (x ),V9i(x )) -C ehq(x 0)

(b) For 112(x) 4 y~x) and u (xo min (u,(x) - ~x)) we havean C 9( 0) mm-

that H(xOiu C(x 0 ),VvCx 0) CA4(x 0 ).

If in addition, we have that u + u in L for some sequence £ + 0,

then:

(c) u - lm u C is a viscosity solution, that is, u satisfies

Definition lc.

The proof of Proposition I can be found in (15], however the interested

reader can easily reproduce its proof by taking limits as in Remark 2.1.

-5-
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Before stating the main result of this section, we give a simple lemma.

Lemma 1. Let f be a bounded domain in Rd having a C2  boundary 30.

Then:

(a) There exists a constant Ci < - such that for all x e an,

c SUL (-(x y)'n(x)).
yel Ix -yl 2

(b) There exists a function w e c2 ( ) such that

(x)= max(C ), x e fa-

IVw(x)i 4 max(C,O), x e -

Proof: C= w(x) 0 would suffice in the case of convex Q. For nonconvex

Q, (a) is shown in [12]. (b) can be shown by constructing a particular

example. Under the hypotheses of the lemma, it is known that the distance

function d(x) d(x;ag) is C2  in a neighborhood of 39; [23], [10]. That

is, d(x) e c2 (), where r= fx e f : d(x) < T} and T > 0 is chosen

sufficiently small. Set 0 < T < T and verify that

3T2 (T d(x)) if x e T.O

0 if x e a Q

is a particular example that satisfies (b).

Now, consider the following set of assumptions.

Assumption A: H(x,u,p) is strictly increasing in u for all x e and

uniformly for p e Rd. That is, for all R > 0 and -R ( v ( u 4 R, there

exists a 'R > 0 such that

H(x,u,p) - H(x,v,p) ; pR(U - v)

-6- ; ..r..



Assumption B: Let a,o e R satisfy lal, 1 01 < max(C,0), where C is as,

defined in the previous lemma. Then, for all such a,8 and all x e -

x + 4 e D, all Jul 4 R and any A > 1, assume

IH(x +,, +.JJa +0(€)) - H(x,u,X +. I€I2 I wR(XI¢I + II)

where wR(s) is some function such that lim wR(s) = 0.
s+0

Remark 2.3. Assumptions A and B are standard; see (51, (8] and [151. In

the following theorem, Assumption B may always be relaxed so that a = - 0

and 0(M) 0 except for x in a neighborhood of an. Assuming additional

regularity on the class of solutions allows Assumption B to be neglected

entirely.

Theorem 1. Suppose that H(x,u,p) e C(n x R x Rd ) and that it satisfies

Assumption A above. Let u e C(n) be a viscosity subsolution of (NP0 ) and

let v e C(n) be a viscosity supersolution of (NP0 ). Finally, assume one LW
from the following three sets of hypotheses:

i) Q is convex and Assumption B holds with a = 8 0.

(ii) Assumption B is satisfied.

(iii) Either u or v is Lipschitz continuous.

We then have that

max (u(x) -v(x)) ' 0
xeSI

Obviously, establishing this result would imply that a viscosity solution

to (NPO ) is unique in the specified class of functions.

6
Proof: Given a 6 > 0, define the function *(x,y) by

(2.1) *6(x,y) = P(x)P(y)lx - yI2/6

where p(x) exp(w(x)) and w(x) satisfies the second conclusion of

-7-
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Lemma 1. For x e 3a and any fixed yo e observe that .. ,

2(x - Y oa 06 
______Xy 13(X

rn x 0) *(y 0).() +n - 02 -

yj

and Lemma 1 implies that the bracketed term above is nonnegative. Therefore,%

a 6
*(x,y) 0 NEW

x

and similarly, for y e 39 and any fixed xO e

a 6* (x01y) ;0
y

* Now, choose i~e C (n~) such that 4.(x) =Y(x). By the construction above,

we have that for any fixed yo e

(x *6(x'y) + Vix)

is an admissible test function according to Definition la and similarly for

* fixed x 0 e

(Y) (x01y) + 0J(y)

is admissible according to Definition lb.

*The next step is to note the obvious inequality

( 6
(2.2) max (u(x) - v(x)) (max (u(X) - v(y) - ( x,y) + *(x) -())

xeQ xe5i

We denote by x6 ' y6  the points in 5 where the right hand side of (2.2) is

attained and we rewrite (2.2) as

(2.3) max (u(x) - v(x)) 4 u(x 6  -v(Y 6 ) - (*(6OY6) + Vix 6  - 4(y6))

Using (2.3), we easily arrive at

*(x 61 y6 ) 4 Iu(x 6) -u(y 6)I + *4x6) C FyO)

6 (x 6'y6 Iv(x 6) v(y6)j + I*x6) - *(y6)I



6
and recalling the definition of *(xry), (2.4) gives us that

(2.5) Jx6 -~ 9 const.fi

Furthermore, since u, (or v), and 4iare continuous, (2.4) combined wi.th

(2.5) shows that

(2.6) urn (xvy) 0 .~

6+0 6

The object now is to show that the right hand side of (2.2) can be made

arbitrarily small by choosing 6 sufficiently small. From above, we see that

the test functions defined as

6

02y U(Y6  - 4(x6) - 6 (X61y) + iJy)

are admissible according to Definition la and Definition lb respectively.

Inserting these into Definition 1, and using the fact that u is a viscosity

subsolution and v is a viscosity supersolution, allows us to conclude that

H(x6 ,u(x6),VOi(x6)) 4 0

and

H(y6 ,v(y6),V Y 2(YO) > 0

because x6 satisfies

ux)- 01(x,) max Cux) - Yx))
xesl

and y6satisfies

v(YS) - 0~2(y6) =min (v(y) 0 2(y))
ye5

Combining the inequalities above and rearranging, we obtain

(.)H(x 6gu(x 6)'Vx$i(x6) - H(x6gv(y6)'Vx~l(x 6)) N

(H(y 6 ,v(y6 ),V y 2(y6)) -H(x 6,v(y6),VxOi(x6)).

-9-



By a direct calculation, the right hand Bide of (2.7) can be written as

H~yv~,),~ - "' +. Ix-Y612 + Vi(y))

(2.8) II
- H-x Ix, Y6 12aH,'V(Y6 ),X(x 6 - y6) 2 + V*i(x6)),

where

X = 2p (x6)P(y6)/6

ai = Vw(x)

B Vw(y6)

(Recall from Lemma I that if Q is convex we may assume that ai S 0 and

P(x) =P(y) 1). Assumption B allows (2.8) to be bounded above by

* (2.9) W (XIx6 -y 6 1
2 + x-y 5 )

* where R =max(IuI.,IvIm).

*To complete the proof of conclusions i)and (ii), we again use

inequality (2.3) to write

ax(u(x) -v(x)) (u(x 6 ) -v(y 6 ) + I4( 6) py

which is bounded above by

* (2.10) max((u(x6) -v(y 6 )),0) + bp(xo - '(y 6)I

*Assumption A applied to the left hand side of (2.7) combined with (2.8) and

(2.9), allows us to bound (2.10) by

* (2.11) -& W(X x - 6
2 +1 -Y61) + j*(x 6)

R

Recalling that AX 6  6  
2 0 (x 6 'y6), (2.6) along with (2.5) show that

(2.11) tends to zero as 6tends to zero; therby proving

dmax (u(x) -v(x)) 0

-10-
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To establish (iii), observe that if u, (or v), is Lipschitz-,'

continuous, inequality (2.4) leads to an improvement of (2.5). That is, we

may conclude that

(2.12) Ix6 - Y61 4 const 6

This improved estimate implies that the p term of H(.,.,p) in (2.8)

remains bounded. Therefore, conclusion (iii) follows by noting the uniform

continuity of H(xup) on a compact subset of fx R x Rd.

Remark 2.4. The combined results of Proposition 1 and Theorem I imply that if

the family {u}> of solutions to (NP ) is relatively compact in L then

E e>00C

lim u£ exists in L - Far further results concerning the compactness of

[ud6 >0 , see [13] or (14].

J3. VISCOSITY APPROXIMATIONS AND A RATE OF CONVERGENCE.

In this section we consider the rate at which certain approximations

converge to the viscosity solution of (NP0 ). We show in a precise sense

below, that if an approximation "almost" satisfies the viscosity inequalities

of Definiton 1 then the approximation is "almost" equal to its associated

viscosity limit solution. The abstract rate of convergence theorem given in

this section is then applied in Section 4 to particular approximations

generated by a class of numerical schemes. .

Before making a precise statement of "almost satisfies the viscosity

inequalities", recall the definitions of the test functions used in the proof

of Theorem 1:

(3.) 6 2(3.1) (x,y) P(x)p(y)Jx yl2/6

where 6 > 0, p(x) exp(w(x)) and w(x) satisfies the second conclusion of

Lemma 1. Also recall the function ', which satisfies

* - - * *.. .4 * *.. *,* .-...-. . ,

*, , % ' , . . . . . % . . . * . , . .. .4 . ... *. - . .. . . * . . . . .. . .~ . . . .-



(3-2) .(x) C.2.%.. . . . .,....,,

(x) " Y(x) on aQ ,

and the specific test functions

(3.3a) *l(x) * (x,y0) + *(x) .

(3.3b) f2 (Y) -- (x0 ,Y) + 4(y)

where x0, Yo are arbitrary fixed points in o "

We now give:

d
Definition 2. Suppose that H(x,uep) e C(O x R x I ) and u,(x) e C(s1). We

say that:

(a) uE  is an approximate viscosity subsolution to (NP0) if for all test

functions 01, which have the particular form (3.3a), we have that

H(x0 ,u :(xO),vxfl (x0 )) CA x (X0 ) + Cc

where x0 e f satisfies *

u~lx0 ) - *1(x0 ) = max (usc:x) - llx)) ,-xe5 - -;

and C is some fixed constant.

(b) u is an approximate viscosity supersolution to (NP0 ) if for all

test functions *2' which have the particular form (3.3b), we have that

HlY 0 ,uYY 0 ), Vy 2 lY 0 )) cAy 2 (Y0) -Cc

where Yo e satisfies

u (y 0 1 - *2 (Y0 ) = mix (u,(x) - *2 (x))
xe5

(c) u is an approximate viscosity solution if it satisfies (a) and (b)

above. .5' -

N.'-. .

-12-



in the proof of Theorem 1 ye shoved that (x) Y y(x) and

'rn (y) 4 'Ny), therefore the statement of Proposition I implies that ifu
y C.,

is a C2 solution of (NP ), then it is also an approximate viscosity solution

of (NP0) as defined above. V

With Definition 2, we now state:

Theorem 2. In addition to Assumption A of Theorem 1, assume for ease of

presentation that 4i(x) E0. Furthermore, assume that (NPO) admits a

Lipschitz continuous viscosity solution u, with say Lipschitz constant L,

and assume that H(x,u,p) is locally Lipschitz continuous. Then, for any

approximate viscosity solution to (NP0 ), Say ur, we have that

u u I [(8IidL HL(1 + 2C L)C)11  + Ocel

0

where

RD sup jucjO

L sup [ 1 1 -HxguP)V-

l x1 ox2 en 1 1 - 2 1 + 1P1  P21

2u R

The definition of C~ is given in Lemma 1.

Remark 3.1. We may replace the assumption that (NP0) admits a Lipschitz

continuous viscosity solution by the assumption that u. is Lipschitz

continuous, uniformly in C > 0.

Remark 3.2. The interested reader can easily modify the following proof to

include inhomogenious boundary data to obtain the same ic rate of

-13-



convergence. Relaxing the hypothesis on H(xup) and the regularity of u

can also be done to obtain a more general, (and slower), rate of

convergence. This however, will not be done here.

Proof of Theorem 2: Mimicking the proof of Theorem 1, we arrive that the

analogue of inequality (2.7): 

(3.4) H(x6 ,u(x 6 ),Vx$lx6 )) - H(x6 ,u(y6 ),Vxt1(x 6 )) .t

( H(y6 ,u(~lVy*2 (Y6 )) - H(x6 ,u(yP),Vx*ilx6)) + cAxf1 (x6 ) +SC Cc

where Vx and Vyt2 are given by (3.3), (with * -S 0), and x6  and y6

are as in (2.3). Recalling (2.4) and using the fact that u, (or us1, is

Lipschitz continuous, we have that

(3.5) 6 (xOy) 4 Ju(x 6) - u(y WIx 6 -f. y6

or

( 1(xx - '+ , 'y-:

which, with the definition of *, gives us that

(3.6) Ix6 - L L x

'6 6 p(x6)pY 6 )

Furthermore, a direct calculation shows that

IVxf, (x - Vy2(y)I 2* (x,y),-

where C, is as in Lemma 1. This inequality, along with (3.5) shows that

(3.7) IVl(x6) - V0 2 (y)l 4 2CLlx6 - y6  •

Returning now to inequality (3.4), we use (3.7), Assumption A and the

fact that H is (locally) Lipschitz continuous to obtain

R' max((u (x6) - ulyO)

4 LH(l + 2CaL) .Ix6 -Y6 1 + CA x 6 ) + Cc

-14-
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Calculating A xi and inserting (3.6) into the right hand side above, we find

that

(3.8) tUR 0max((u (x6) -u(y 6 )),o)

P(x6)P(y6) Lg 6
< + *dc()+ + const.(c + e6

where L HO 2Ca.L). By setting

6 *(2d )1/2

p(x6)p(YS) L

A _-

which can be done for LL. it0 by the continuity of the left hand side with

respect to 6, we minimize the bracketed term in (3.8). This yields

iiR max((u (x6) -u(y 6 )),0) < (8dLLE) 1/2 + const.(C + C 3/2

0

and using the fact that

max (u,(x) -u(x)) (,x6 u ~ 6
xeR ( 6  ~ 6

*as done in the proof of Theorem 1, we have established the desired result for

* max(u. - U).

An identical estimate can be obtained for max(u -u )by a similar

* arguiment and so the proof of Theorem 2 is complete.

Remark 3.3. When the domain Ql is convex and S 0, the term 0(e) in the

estimate of Theorem 2 is precisely Cc. In addition, if the approximate

* viscosity solution is the solution of (NP ),the constant C is zero.

Next, we show that the order of the rate of convergence obtained above

can not in general be improved. To see this, consider the example

-15- .
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%

d u

(3.9) -

-u(0) -(1 ue1) 1%
dx dX

The exact solution of (3.9) is given by.*.

ue(x) - w/C cosh(x/iC)/sinh(1/'C)

and its an easy exercise to show that u C + 0 uniformly as e + 0. In fact, ,*.

one easily finds that

Iu~ - 01,, -~ (e1 + O(exp(-2//CE)))

which is exactly the order obtained by Thxeorem 2. We should mention however,

that the rate constant of Theorem 2 is not the best possible.

* We conclude this section by analyzing the specific example:

2
d u du 2

dx2
(3.10) .

due u

(0) _Y-() V

Setting e 0 and solving the reduced differential equation, we find that

*u = lim u should be built from functions having the form -(x - c)2  and

*0. The objective now is to piece things together in a way such that the

*constructed function satisfies the viscosity inequalities of Definition 1.

*We have three basic cases, (which depend on YO) Set

uL(x) = -(x-y2

uR(x) = -( 2 )

and note that uL satisfies the left boundary condition of (3.10) and uR

satisfies the right boundary conditions.

-16-
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Case 1. For 1 ;0 ) 0, consider the candidate limit solution: ..

0 )x)I,

YOUR()) W I x 1

R 2

The analysis of this case is trivial since u1 (x) is a classical C1

solution to the reduced problem. By Remark 2.1, it must therefore be a

viscosity limit solution.
,. - :

Case 2. For y > 1, consider the candidate limit solution: . ,

UL(X) 0 < x 4 1/2

u2 (x) 1/- (1
UR(W 1/2 4 x 4 1•.,.-_

Obviously, we need only check the viscosity inequalities at x0  1/2, the

corner of u2. In this case however, min(u2 - *) can not occur at

XO- 1/2 for any C1  function 0. If max(u2 - )occurs at x0- 1/2,

its easy to check that we must have (uL)x(I/2) > (1/2) ) (UR)x(I/2).

Computing these derivatives, we have that all possible values of x(1/2) lie

in the interval (1 - y0, y0 - 1], in which case

(1*()2 + u22 1*i) 1(1 -Yo))2 C 0

Therefore, u2  is a viscosity solution.

Case 3. For y < 0, consider the candidate:

u3(x) - 0

Here, u3  does not take on its boundary condition at x = 0 or at x = 1.

However, max(u3 - ) can not occur at x = 0 for any admissible test ,.-.*,:

function, (0) > - 0 "). If on the other hand, min(u. - *) is attained

-17-
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At x0 0, we must have that x() lies in [yoO] and in this casex

(_1 x(O))2 + u3 (0) 0 0

A similar argument shows that u3 satisfies the viscosity inequalities if

max(u3 - *1 is attained at x0 - 1.

In these specific examples, we have demonstrated that these candidate

limit solutions are viscosity limit solutions of (3.10) since they satisfy

Definition Ic. They are furthermore Lipschitz continuous and so by

Proposition 1 and Remark 3.2 of Theorem 2, they satisfy Iu, - ul. 4 const."

where u is the exact solution of problem (3.10). However, for these

,. examples, (as well as other nonlinear examples) there is evidence that

indicates a convergence rate faster than the VC, (3]. We believe that there .

" is a yet undiscovered mechanism that links certain nonlinearities in H to

diffusion which often gives rise to a faster rate of convergence than

Theorem 2 predicts.

J4. NUMERICAL APPROXIMATIONS. ..

In this section, we introduce and analyze a class of numerical schemes

that generate approximations of the viscosity limit solution to the one-

dimensional version of (NP.), which we write here as:

2d ue du
-C 2 + '(x,u ' o

dx
* (4.1)

* due du,
-- (0) -(1) = Y

dx '~0 dx

Throughout this section, we make the following assumptions concerning

H(x,u,p), which for ease of presentation only, is assumed CI smooth. ' "F

.. 4

"C-., - -



Assumption A': For all x e [0,1], Jul -R and IPI r- K, there exists a

UK > 0 and an 0 4 n 1, such that

T H(XUp ), /(MaX(R,1))I

Assumption B': For all x e [0,1] and IpI - K, there exists an

0 1 ~2 < 1 and a constant C(IuI) such that

TIp

[.-x H(x,upp)I 4 (MaX(K,1)) Colul)

Assumption A' is merely a refined version of Assumption A of Section 2.

Assumption B' guarantees that the viscosity limit solution of (4.1) is

Lipschitz continuous and therefore supercedes Assumption B of Section 2.

The numerical approximation that are considered here are built from a

piece-wise linear interpolation of grid values fuJ.j . That is, we
J-10

*partition the interval (0,1] as U [xjixj+ll, where we shall assume that

2(x1  1 .) x+ - x1)) -(xi x1..1)

and then define u (x) by

*(4.2) u (x) - .ujTjx),

iwo

where

Cx {(X- xj- 1 )/( x -x~ 1  if x e [x) 1 I

Tx 1(x)(xx+ - x if x e [xjIX+ 1
i J+I j+I j +

0 otherwise

* In (4.2) the superscript Ais to represent a measure of grid refinement and.5-

-19-



we set it equal to max (xj+ I - xj). For each 0 4 J 4 J, the grid

0<j(J-1

values uj are required to satisfy the difference scheme

(4.3) R(xjuj,D+uj,D-Uj) - 0

~+
-D-u0 = yo' D+Uj . Y I

where D+uj (uj+ I - uj)/(xj+l - xj), D-uj (uj Uj_ul/lx j  xj_,.

and H(xu,p1,p2 ) is some difference operator that does not explicitly depend

on any grid parameter. R(xu,P1 ,P2) is assumed to be locally Lipschitz

continuous and it is also assumed to satisfy three basic properties:

Property 1. R(x,u,p1 ,p2) is consistent with H(x,u,p). That is,

H(x,u,p,p) H(x,u,p).

Property 2. R(x,u,PlP 2 ) is nonincreasing in the p1 argument and

nondecreasing in the P2 argument.

Property 3. For all Ipll 4 K and Ip21 4 K, R(x,u,P 1,p2 ) satisfies

Assumption A' above.

Of course, Property 3 simply says that f(x,u,p1,p2) is strictly

increasing in u at the rate prescribed by Assumption A'. We now give:

Theorem 3. With Assumptions A' and B' above, suppose that u comes from

scheme (4.3), where R(x,u,Pl,P2) satisfies properties 1, 2 and 3. Then,A J

(4.3) generates a unique approximate solution u and moreover, u

converges to u= lim u£ at least as fast as
C

u- u_. const., FA

where above, u is the viscosity limit solution of (4.1) and " -'

= max (xj+1 - xj).

014 ,- :.-.16 oY:
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Before proving Theorem 3, we give two examples of finite difference

operators which satisfy properties 1,2 and 3. Furthermore, we show that the . ..

rate above is the best possible under the hypotheses of Theorem 3. P

Example 1. The Lax-Friedrichs difference operator (11], [20], is based upon

approximating H(x,u,) by a convex combination of H(x,u,D~u) and ....

H(x,u,D-u) along with the introduction of an artificial numerical viscosity

term. To be more specific, 9 is given by

R(x,u,PlP 2) - OH(x,u,p1 ) + (I - e)H(x,u,P2 ) - c(p 2 -p2
)

where 6 is chosen in [0,1] and

c max(e sup H ,(e - 1)inf H ,0)
p p

Clearly, this difference operator satisfies properties 1, 2 and 3 above.

Moreover, if H; 0 0, (reap. Hp ( 0), we could have chosen 6 0, (reap.

e - 1), and c -01 thus giving a scheme based on backward, (resp.

forward), differencing.

Example 2. The Godunov difference operator, [9], [20], is given by

min H(x,u,v) if P2 
< P1

ve~p 'p]' [ 2, 1]

H(X,u,p11P2)
max H(x,u,v) if p1 ( p2

ve[p
1 ,p 2]

This difference operator clearly satisfies properties 1 and 2, and a

straightforward exercise will verify that it satisfies property 3 as well.

Again, when H(x,u,p) is monotone in p, the scheme reduces to either a

backward or a forward difference scheme.

-21-

. . . . . . . . . . . . . . . . . .. . . .

. .'..'.,--.',.'.-..-.',. .';,.-..',"-.',-:-,' . ..-.. ,.: .. " ....... .. -.... .''''..'.......'... "... .... *. ...'-, .. '.-.-.-
',". •-. -.. - .. ,' • - .% ,.'°. -',, - -- . ,-.-'.,, ,- ° .j -.. •/ .- , -,.-'. '°" .' ,",... . " ...-... . ...'. -, -..- ' .' .'.,



Next, we show that the rate of convergence of Theorem 3 is sharp. We.

again consider the trivial example (3.9) and we approximate its viscositl

limit solution, (u = 0), by the Lax-Friedrichs difference scheme - however,

we intentionally add too much numerical viscosity, (we take c = 1 rather

than the allowable c = 0). Setting xj+l - xj = h, where h = 1/J, uj is

required to satisfy:

(4.4) -(Du . + u 0

D-u0 =, uj= I.

One easily computes the exact solution of (4.4)

h [ 1  a +1 + IU.' a+1+ '
I. J+1 J+t 1a I a 12

a 2  a 1 2

where

h_ . (i + -h) ""1/2
= 1 +

t h 4 / .'.1...,
0, 2 = + V /h + !1 +) 1/2'-

"' +.~ 4

and furthermore, since uj > 0, we have that

IuA- ul. >  h

Finally, calculating the right hand side above, we arrive at

SluA - u1 . > (r + (I + /)/2 - = + O(h) ,2_ 4

which is exactly the rate of Theorem 3.

We shall prove Theorem 3 via three lemmas.

Leua 2. Assume that R(xu,P1 ,P2) satisfies properties 1, 2 and 3 above. "-

A
Then, if the difference scheme (4.3) had a solution, say u , is bounded

*and has a bounded Lipschitz constant, uniformly in A > 0.

-22-
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Proof: We first prove that u must be uniformly bounded. Suppose that

max uj ) 0 is attained for some I ( 4 J - 1. Since at an interior

maximum D +uj 4 0 4 Duj0, (4.3) and Property 2 imply that L .

u 0 0

Therefore, we have from Property 3 that

4 0  (max(u 11)) IH(x 0,0,0)1

Similarly, if max u. 0 0 is attained at j = 0 or j = J, we would have

that

ni
llo u 4 (max(u0,1)) l((O,0,0,-Y0 )I

or

IylI uJ 4 (max(uj,1))

which proves that uA (x) must be bounded above independent of A > 0. An

identical argument would show that min u. must be bounded below
0 ( j "- "

independent of A > 0.

Next, we show that ID+Uj1 must be uniformly bounded. Suppose that

max D u. • max(-Y0y ,) is attained at j0" Again using (4.3), we must
0 (4 j J - I 3y 1  

' - .

have that

0 R(xj0+Iuj +ID+j 0 +D+uj0 ) - (xj 0 'U 0 D+Uj0uD+Uj0_I )

(Xjo+IUj0+ID+ uj0D+u) - R(xj0,Uo ,D+uj,D+uj )

JOuH(x jo+ I uo,D ujO 0 0,ojoD+ujU. "" "

Setting K D u. > 0, we have from above and Property 3 that

jjKK < I T H( ,uo'X) I (max( u ujo I,'M !-.

-23-
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and this inequality combined with Assumption B' implies that P

K 2 (max(K(1)) 2 C(ulj)(max(ju. j,1)) .

Therefore, D uj is bounded above, again independent of A > 0. A similar

argument would show that D+uj is bounded below independent of A > 0. This

proves the lemma.

Lemma 3. Assume that R(x,u,Pl1p2) satisfies properties 1, 2 and 3. Then,

the difference scheme (4.3) has a unique solution.

Proof: Consider the map Fv : + -+1 defined by

(4.5) (F(u)) . V(x Uj,ujDuj,D-uj)

for 0 < j < J, where -Du 0 = and Duj y. We show below that Fv

has a unique fixed point and obviously this fixed point is the desired

solution of difference scheme (4.3). We may assume that R(x,u,PlP 2 ) above

is globally Lipschitz continuous, since R could be modified in a smooth way

outside the bounded a priori domain established by the previous lemma. . ,

We now claim that (F (u)). is a nondecreasing function in uj_ I, uj

and uj+l, provided that V is chosen sufficiently small. Assume for

simplicity that R is smooth. We then find upon differentiating

U I(F (u)). = vH2/(xJ - x.-) for 1 ( j 4 J

au p2 Ij j-1
j-1

a (F (u)) = -vH /(x - x.) for 0 < j < J-1
au + V p1  j+1 j

and Property 2 implies that these quantities are nonnegative. Furthermore,

(4.6) . (F (u))j 1- V(H /(Xj+l -Xj) + x - Xj 1)} ,..au~ V ju P1 P
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for 1 j J- 1, and 0 0 for j 0 and - 0 for j- J. ..
P2  Pi

Therefore, since R is assumed to be globally lApschitz continuous, we can

choose V small enough so that these derivatives are nonnegative as well.

Next, we show that F has the fixed-point property for V as above; -

(V should be thought of as an artificial time parameter and the restriction

on V imposed in (4.6) as a CFL condition). Let u e X7+1 and v e RJ + 1

and define T - v - u. Now consider

F v) - F (u) F (U + T) - (u)

Setting T. max( max ',O), we have by the claim above, that.

(4.8) (F V(u + T) - F VU)) (FV(U + - F V(u))"

Now, recalling the definition of Fv  in (4.5), we see that the right hand

side of (4.8) is equal to

M - v(H(xiu + TMD UD U) -iH(xjujD+ ujD u ' I

which by Property 3 is bounded above by

' ( 1 - V ) " -

where M is the appropriate positive constant of Property 3 governed by the a

priori domain of Lemma 2. Setting Tm min( min T,O) and repeating the

argument above, we find that

(4.9) T (1 - V;) ( (F Cv) - F (u)) 4 T (1 - vj)
m V V 3

Therefore, the Banach fixed-point theorem guarantees a unique fixed point of

FV, for v sufficiently small, which is the desired result.

Remark 4.1. Inequality (4.9) tells us that implementing an artificial time

method, (Ul+l - F (un)), to obtain a solution of difference scheme (4.3),

-25-



converges at an £ rate of e - t  This of course, is computationally slow

in light of the increment restriction imposed by (4.6). we recommend a few

iterations of artificial time to pull the initial approximation into the I

domain of attraction for Newton's method, which with some "smoothness",

converges at a much faster quadratic rate.

The next lemma is crucial to establish the fact that uA satisfies the

approximate viscosity inequalities.

Lemma 4. suppose O(x) = Klx - y12 + *(x), where y e [0,1] is fixed, K

is a constant and *(x) is an affine function with -*'(0) - y and

M'(1) = Y1 " Then:

(a) If K > 0 and max (u (x) - O(x)) is attained for some
xe[0, 1]

*$xj, 0 j J, we have D+uj0 -D-uj0 4 A*xx(t), where xj is the

nearest grid point to .

(b) If K 4 0 and min .(ux) - (x)) is attained for some
xe[O,1]

xi, 0 •j J, we have D+u. -D-u0 A0 (), where x.0 is the
j- UJ xx

nearest grid point to F.

Proof: We prove (a) only since the proof of (b) is identical. Let xj0 be

the nearest grid point to t. We have three basic cases to examine: They

are: x. =0, xjOJ  1 and 0 < xj <1.

Case 1: When xi0 
= 0, we must have D+u0 = x since t e (0,xI ) is

A
where the maximum of u - 0 occurs. However, because 0 is quadratic,

( = (0) + tx(o ). Therefore, D+uo = to M + *x (0) 4 U1  - Y'0

Case 2: The case when x. = 1 is identical to case 1 above.

Case 3: Suppose now that e (xj0- 1 xj0) and choose an arbitrary

T e (x 1 xj ), (if on the otherhand, t e (xj1 ~l), the argument below

is essentially the same). Using the definition of u and the fact that

-26-
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(uA )~ is maximum, we have that

(4.10) u + D x ~-AijJ

U, + Du (T- x'-

Therefore, a simple calculation will show that (4.10) implies

D )( - r) u (~(4.11) DJO T -u X

0~

Taylor's theorem allows us to write the right hand side of (4.11) as

2 T X x
Xj X

Recall that we have assumed our grid satisfies the constraint

(xj+l xj) > -1 (xj -xj-..). This allows us to minimize the bracketed term

above by choosing Tr 2xj-F Doing this, we have

D+u -1 D-uj 4 2(x - 9)* (X)

and since xi is the nearest grid point to C~, the proof is complete.

Proof of Theorem 3.: The proof of the theorem is complete, (Lemmas 2 and 3),

except for showing that u satisfies the approximate viscosity inequalities

of Definition 2. With this in mind, set I1 x x - Y012/6 + 4i(x), where

Ye c0,11, is fixed and *I(x) is affine, with 1(0) - -y0and

-Y1, (as in Definition 2a). Suppose now that u A - ~ is maximum at

C~ e (0,11. To show that u is an approximate viscosity subsolution, we

-27-
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r. ,~~ '1 10 -- -1.7

must verify that

H(F,u (l ) (K.A).$X (F) + CA

where K is some constant, independent of A, and as always in this section,

A = max (xj+ 1 - xl .
O4j~j-1
Using difference scheme (4.3) and Property 1, we have that for every

0 4 j 4 J ,1

H(l,u l l lx (t)) HI,u, - R(xj,uj,D+uj,D-uj)

and we rewrite this identity as

(4.13) H(t,uA(F),,l(F)) ".M•)D,,.)

= Hl(x.j,ul IX ) - gxjujD+j iD-U

+ [f( A M ,ll lxM) - H(xjfu*,40xl,4 1x(M]

The second term on the right hand side of (4.13) is bounded above by

LI - + LuLI - x j

where Lx  and Lu  are the Lipschitz constants of 9 in the x and u

arguments respectively, and L is the Lipschitz constant of u * The first

term on the right hand side of (4.13) can be written as

(4.15) H ( ( ) - D+u) + 2 - D-u.) ,[i Pl P2

where again, we have assumed that 9 is smooth for simplicity.

If = xjo for some 0 4 jo 4 J, we have nothing to prove since it's

" an easy exercise to determine that in this case Du(t) IC D-u.

" when x., (=&), is a maximizer of u - 1 (Recall by the definition of .'.

that *1(0) < D -u and *1x(l) > D'uj in the event that E = 0 or

1.) Therefore, setting J = J in (4.15) and recalling Property 2, (which

* -26-
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says that S C 0 IC ) verifies the approximate viscosity inequality 2&
, p1 P2

here in a trivial way.
A-

If on the other hand, x for all 0O4j 4J, take xOto bethe-

nearest grid point to C. Set j J- in (4.15) and insert the identity

#1()- D-j,(or -j~g Duj,) into it. Using the result of Lemma 4,

allows us to combine (4.15) with (4.13), to arrive at

where KC max(- HPH ) and C is given by Mx'(L + LUL).

An identical argument will show that uA is an approximate viscosity

*supersolution, (see Definition 2b), and so by applying the abstract result of

Theorem 2, the proof of Theorem 3 is complete.
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