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ABSTRACT

We prove an existence result for steady flows through a strip which can be regarded
as a perturbation of rigid motion. The fluid is viscoelastic with a differential constitutive
law, e.g. an upper convected Maxwell model. Particular emphasis is focussed on the
question which boundary conditions need to be imposed at the inflow boundary to make
the problem well-posed.
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SIGNIFICANCE AND EXPLANATION

Steady flows of viscoelastic fluids can not be uniquely determined by imposing bound-
ary conditions only for the velocities as in the Newtonian case. The reason for this is
that the fluids have memory. and therefore the flow inside the domain is affected by what
happened before the fluid entered the domain. This leads to the need for extra boundary
conditions at an inflow boundary. The nature of these inflow boundary conditions has
not been analyzed previously, and it is certainly dependent on the constitutive law. In
this paper, we look at the special case of differential constitutive relations with a single
relaxation mode. We consider steady transverse flows across a strip which are small per-
turbations of a flow with constant velocity. It turns out that in this case two extra inflow
boundary conditions are required in two dimensions, and four in three dimensions. This
is what would be expected from an analysis of characteristics, but it contradicts the belief
of many rheologists that it is possible to prescribe the extra stress at an inflow boundary.

The problem studied here is of potential relevance for numerical simulations of steady
flows. Many of the flows currently simulated are on infinite domains. Numerically, these
domains are truncated, and on the inflow boundary of the truncated domain people usually
prescribe the extra stress. According to the analysis in this paper, this is an overdetermined
problem, and therefore errors must be expected from this procedure unless the artificial
boundaries are chosen far enough out. K .. . . . c, >. - - ,.' j ' -
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INFLOW BOUNDARY CONDITIONS FOR STEADY FLOWS

OF VISCOELASTIC FLUIDS

WITH DIFFERENTIAL CONSTITUTIVE LAWS

Michael Renardy

1. Introduction

Steady flows of non-Newtonian fluids can not be uniquely determined by imposing
boundary conditions only for the velocities as in the Newtonian case. The reason for this
is that the fluids have memory, and therefore the flow inside the domain under consideration
is affected by the fluid motion that occurred before the fluid entered the domain. This
leads to the need for extra boundary conditions at inflow boundaries, which must contain
some information about the flow history outside the domain. The precise nature of such
inflow boundary conditions is not understood; it is certainly dependent on the constitutive
law of the fluid.

In this paper, we consider differential constitutive models, which relate the extra stress
tensor to the velocity gradient by an evolution equation along streamlines. For the sake
of concreteness, we consider the special case of an upper convected Maxwell fluid, we
emphasize, however, that the analysis in this paper does not depend on the special form of
the nonlinearities and also applies to other differential models (for examples, see 3],[S],171).
In a steady flow, the extra stress tensor T in an upper convected Maxwell fluid satisfies
the equation

(u . V)T - (Vu)T - T(VU)T + AT = 11A(V + (Vu)T). (1)

Here u is the velocity of the fluid, and rl and A are positive constants. The Newtonian
fluid is recovered in the limiting case A - oo. This equation for the stress is to be solved
in conjunction with the equation of motion

p(u . V)u = div T - Vp +/, (2)

div u = 0.

The fact that (1) describes an evolution of the stress along streamlines may suggest
that appropriate boundary conditions for (1) and (2) are given by prescribing T at an
inflow boundary, in addition to the Dirichlet conditions for the velocity which are required
in the Newtonian case. In fact this seems to be what rheologists generally believe (see
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e.g. 121, p. 31). The study of characteristics 14),j6,j9, however, suggests otherwise. We
may regard (1) and (2) as a first order system for p and the components of u and T.
In this system, it turns out that the streamlines of the flow are double characteristics in
two dimensions and quadruple characteristics in three dimensions, while the number of
independent components of the symmetric tensor T is three and six, respectively. From
this it appears that prescribing the stress at an inflow boundary may overdetermine the
problem.

In an earlier paper j8j, the author has proved an existence result for slow steady
flows of differential non-Newtonian fluids. These flows were in a bounded domain with
prescribed homogeneous Dirichlet conditions on the boundary. In this case, there are no
inflow boundaries, and no extra boundary conditions are needed. The existence proof
was based on an iteration scheme that alternates between solving an elliptic system and
a hyperbolic system which has the streamlines as characteristics (a similar approach was
recently used by Beirio da Veiga [i to prove the existence of steady flows of compressible
Newtonian fluids).

In the present paper, we consider transverse flows through a strip which are small
perturbations of a flow with constant velocity and zero stress. If we want to use the
iteration scheme of [8j, we have to impose boundary conditions at inflow in order to be
able to solve the hyperbolic part. If this is done, it turns out that in fact the iteration
converges, but in general not to a solution of the equations (1) and (2). An extra condition
has to be satisfied for this to be the case. We shall then modify the iteration scheme to
accommodate this condition. If this is done, the number of inflow conditions requiredis
as the analysis of characteristics suggests.

2. An iterative procedure for steady flows perturbing flow with constant
velocity

We consider transverse flow through the strip 0 < x < 1 with periodic boundary
conditions imposed in the y- and z-directions. The periods are denoted by L, and L2.
For f = 0, a solution of (1) and (2) is given by a flow with constant velocity U > 0:
u = (U. 0,0), p = 0, T = 0. We are looking for flows which are a small perturbations
of such a flow. L.e., we prescribe a small body force f and boundary conditions for the
velocity which are small perturbations of the constant velocity: u(0,y,Z) = (U,0,0) 4
vI(y,z), u(l,y, z) - (U,0,0) -- v 2(y, z). These boundary conditions must be consistent
with incompressibility,

e/L f v (y, z) dy dz = e V2(y, Z) dy dz (3)

In addition, we shall need conditions on the stresses at the inflow boundary x = 0. The
nature of these conditions will now be discussed.

Following 181, we apply the divergence operator to the constitutive equation (1), and
obtain

(u . V)div T - (Vu)div T - Adiv T T : , -IAAu. (4)
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Here we have set T 2 = - - If we substitute div T from the equation of motion,
we find

V[(U . V)p + API - IVu + (Vu)T Vp - (U. V)f (Vu)f - Af

- T: a 2 u - ,7A U - p(u. V)(u. V)u -- p(Vu)(u • V)U - Ap(u . V)u. ()

In [8], the construction of a solution was based on an iterative method, which alternates
between solving a "Stokes-like" problem and a hyperbolic equation whose characteristics
are streamlines. Similar iterations are in fact used in numerical calculations (21. Since we
are looking for small perturbations of the flow with constant velocity, we can take this
flow as a starting point for the iteration. The iteration scheme of 18] is the following (we
introduce the new variable q = (u • V)p + Ap)

u= (U,0,0), po = 0o = 0, T o = 0, (6a)

TV : a2U 'n+ 
- - p(u' . V)(u' - V)U"

+ ' - ,p(u
' , V)u"

4 ' _ Vqfn+1

S-(Vu ) + (Vun)TIVpn - (U" V)f + (Vu")f - \f - p(Vun)(u
n " V)u

,

div u" 1 = 0, u" + = (U,O,0) + vi on x = 0, un +1 = (U,0,0) -T- v2 on x : I,

fo foL, foL q+ dz dy dx = 0, (6b)

(Un
+ * . V)pn

+ ' + APp+1 q+1, (6c)

(un+ 1. V)T n +1  (Vun+l)T n
+ I - Tn+l(VUn+I)T + Tn+ 1

= Aj(Vu + ') + (Vun,+l)T1 (6d)

In setting up this iteration, it is essential that the singularly perturbed operator (u . V) + A
is inverted rather than evaluated. As long as U2 < Ar//p, and u n and T n are small
perturbations of (U,0,0) and 0, equation (6b) is an elliptic system for u n + I and qn+ 1 . If
U2 > A l/p, a change of type occurs 141,161,1101, and this case will not be considered here.
Equations (6c) and (6d) are hyperbolic equations with the streamlines as characteristics. If
there are no in- and outflow boundaries as in [8], characteristics do not cross the boundary,
and (6c) and (6d) can be solved without any boundary conditions imposed. In the present
situation, however, we have to prescribe p and T at the inflow boundary x = 0 in order to
solve (6c) and (6d).

It can in fact be shown along lines similar to 18] that with such inflow boundary condi-
tions the iteration will converge, provided that the data are sufficiently small. However, it
will in general not converge to a solution of the original problem. The "solution" obtained

from the iteration will satisfy (1) and (5), but the original problem is (1) and (2). Let us
recall that (5) was obtained by substituting p(u . V)u -i- Vp -'f = div T into (4), and (4)
was obtained by differentiating (1). Hence the fact that (5) is satisfied means the following:
If we set

p(u. V)u + Vp- f- div T = h, (7)

then
(u. V)h - (Vu)h - Ah=o. (8)
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If streamlines do not cross the boundary as in 18;, then (8) does in fact lead to h = 0,
but in the present case we need to know that h = 0 at the inflow boundary in order to
make that conclusion. This condition has to be viewed as a constraint on the possible
inflow data for p and T, and the iteration (6) has to be modified in order to accommodate
this constraint. If we simply count numbers, we see that in three dimensions T has
six components, p has one and h has three, thus suggesting that four inflow boundary
conditions can be prescribed. In two dimensions, T has three components, p has one
and h has two, suggesting that one needs two inflow boundary conditions. This is also
suggested by the analysis of characteristics 14],[61,191.

We want to restrict the choice of inflow boundary conditions in (6c),(6d) by the
constraint

div T'-' - Vp + = p(Un+ 1 
. V)un + 

- f at z = 0. (9)

On the left hand side of (9), the x-derivatives of pn". and Tn+1 can be expressed using
(6c) and (6d), e.g.

apn+I
l  A n+l qnl+Ip nP n + + nonlinear terms. (10)

When doing this, (9) assumes the form

(n+1 - Tn:') n+ +1, ....

A T__T + p. T
1
+ -

Tn1+ (T'22~ - JI+1Y + T3 -n(11
1 2 +T2 + + 23,z=.

Tn + T1 + (T n1 - Pn+1)z

The right hand sides indicated by dots contain terms involving f, un + 1 , qn-l and nonlinear
terms which also involve Tn+l and p'"'.

We have to use equation (11) in order to express some stress components at z = 0
in terms of others. To obtain a convergent iteration, we want to do this in such a way
that no loss of regularity occurs when solving for the undetermined stress components.
Unfortunately, this is not possible in such a way that certain components of stress are
prescribed at inflow and others are left to be determined. Rather, we have to prescribe
stress components partially. For example, we can do the following. Let each component
of the stress be expanded in a Fourier series in y and z, e.g.

T11 0'Y Z ,k'je2ori(ky/L,+lz/L,) (12)

k,

We can then prescribe the Fourier components of T,,, T 2 2 , T 13 and T33 for jk? _1l1, k $ 0
and solve for those of p, T12 and T 23 . For !l > Ikl, we prescribe the Fourier components
of T,,, T1 2 , 7'22 and T33 and solve for those of p, T13 and T23 . For k I = 0, we prescribe
the Fourier components of T1 , 722, T23 and T33 and solve for those of p, TI2 and Ts. In
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the two-dimensional case, this amounts to prescribing T11 and T22 and solving for p and
T 1 2 .

The solution procedure is now as follows. We start the iteration with initial data
(6a). Then at each step of the iteration we compute a new u and q using (6b). Then we
compute a new p and T from (6c) and (6d) with inflow boundary conditions which are in
part prescribed ane in part computed from (11) in the manner outlined above. We show in
the next section that such an iteration converges under appropriate smallness conditions
for the body force f, the velocity boundary data v, and v 2 and the prescribed part of the
stress boundary data.

3. Proof of convergence

As usual, we denote by HO the space of all functions on the strip 0 < z < 1, which are
periodic with periods L. and L, in the y- and z-directions and have s derivatives which
are square integrable over one period. Sobolev spaces of periodic functions living on one of
the boundaries x = 0 or x = 1 are denoted by H('). The corresponding norms are denoted
by 11.11. and f.I (o).

In the following, let s be any integer > 1. We assume that the body force and the
velocity boundary data satisfy the bound

If 11-+1 !5 Y, 1IlV11(,+s/2) - Y, 11v211(.+s/2) < 1, (13)

where -y is a positive number which will later be chosen small. The stress at the inflow
boundary consists of a prescribed part T., and an unknown part T,, which must be
determined from (11) at each stage of the iteration. We assume that

IITpII(,+1) < -. (14)

The convergence proof consists of two parts: First we show that all iterates remain
bounded in a certain norm, and then we use this fact to prove convergence in a weaker
norm. This procedure is typical in dealing with hyperbolic problems, and the iteration (6)
involves the hyperbolic part (6c),(6d). In order to carry out the first part, let us assume
that

11un - (U,0,0)11.+2 < f, I1P"l1.+1 -- C, IITnII.+, < C, (15)

where c is small. As long as pU2 < Y7A and c is sufficiently small, (6b) is an elliptic system

for u + I and q+ , and a standard argument shows that there is a constant C1 such that

llun + ' - (U,0,0)11.+2 + Iiq'+l,+i < Ci(y " 2) =: 6. (16)

In the next step, T" +1 and pn+ on the inflow boundary are determined from (11). Using
the trace theorem, we see that q"+ 1 and Vun+ 1 are in H (

8
+1 / 2 ) . By using this in (11), it

is easy to show that for small 6 there is a constant C 2 such that

,IT+ C2 (1 + b) (17)
I{. I(+) Ip l<+s ¢( +6)=:o



We now turn to the hyperbolic equations (6c) and (6d). The solution to these equations
can be obtained by integrating along streamlines (since v"~z is Lipschitz, streamlines exist
and are unique). To obtain estimates for the solution, let us multiply equatin (6c) by p
and integrate over the domain. This yields

Pn+1(un-'.'V)P" +1 -A(Pn+1)2 dz dyjdx  j 'n+1q n dz dy dx.

(18)
The left hand side is equal to

.+ (, Y' )(PI (1,,Z))2 dz dy

~21 L n, *(O'Yz)(Pn 1(O'y'z))2 dz dy+ A, .Io1) .zdydz

(19)
The first term in this is positive, and hence we obtain

A fL L (pn+. ) dz dy dx

< I 1  pn" lq nl dz dy dx + L j .e, . un+'(O,y,z)(p1+'(O,y,z)) 2 dz dy.

(20)

That is, we have an estimate of the L2-norm for p in terms of the L2-norm of q and the
L 2-norm of the inflow boundary data. By differentiating (6c) with respect to y or z, we can
obtain estimates for derivatives of p in these directions, and estimates for x-derivatives can
be obtained from the equation itself. Similarly, we can deal with (6d). If 6 is sufficiently
small, this argument leads to estimates of the form

Ilp"+'l,, + IIT+'lI8,,+, < C3 (Oc + -y + 6). (21)

If we now choose ( small enough and -y sufficiently small relative to c, we will have 6 < c
and C3 (0 + I +6) < E. This implies that (15) holds with n replaced by n + 1. By induction,
we see that (15) holds for all values of n.

The fact that all the iterates are bounded and in fact small can now be used to show
convergence of the iteration in a weaker norm. More specifically, we can show that u'
converges in H'+' and that p", q", T' converge in H'. The argument is fairly routine,
and we shall just show a typical step. Let us take (6c) at step r + 1 and step n and take
the difference. We find

(un'-. V)(p"' p") + A(p -pn) + ((U'n+ - Un) .V)pn - qn+1 
- q n. (22)

From this we find

-tpQl P9" <+C(1q , '- i , u' 8I 1j!p a;8  + Ipn" - P,11(")). (23)
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From above, we already have a bound on the term Iip'fl, ±. Similar arguments are applied
to (6a), (6d) and (11). By putting the resulting estimates together, we obtain an inequality
of the form

flu' + ' - u'nH8 , I+q"+ - . '' - p nli I - Tn ,.

K(f,-y)[Iun-un-,.. l+ q - q"-!, IVp - P"'K-I + !IT" - T'-',. (24)

The constant K(f, "') tends to zero as -y and ( tend to zero. Hence a contraction is obtained
if we choose c and -y sufficiently small.
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