. AD-R167 423 C31 RAPID PROTOTYPE INVESTIGATIONCU) MARTIN MARIETTA 172
ﬁE 0SPACE DENVER CO P C DALEY JRAN 86 MRC-83-616
DC-TR-85-216 F3@602-83-C-0067
UNCLASSIFIED F/G 1772

m.. N I B_..
O-

4
El
3

I.
—
—
—
——
——

s it i

£
I

MICROCOPY RESOLUTION TESTRCHAR!

STANLAr,

~F

NALIUNAL Biik: ai

January 1986

AD-A167 423

OTIC FiiE GPY

RADC-TR-85-216
Final Technical Report

Martin Marietta Denver Aerospace ~

DTIC

ELECTE
MAY 0 5 1988
Philip C. Daley

XFI

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

...

3l RAPID PROTOTYPE INVESTIGATION

D

|

: TN
r_', e
" .-'q'l.l

B

e . LT e

R . . . PO
A . L T
. o i
, .

; e . . o .
P - A

.........

.......

............

IS

......

CRai S AL e i ol i ar i T - v
DA AR AR SRR RN s e Al TN Ty

S At B Shags Jand e g a0y g NS P i, S fof i et Aok ol
At A, L e T T TR A e bt P ol o ohe® B
BRI PR N R P R TN At A o he bt et gt e

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-05-216 has been reviewed and is approved for publication.

s Wiln e .

WILLIAM E. RZEPKA o]
Project Engineer) n

) ~ .
/' ” / ?‘ ! * oo -
' L AN RS
APPROVED: {,/df/}m‘ML o "/Zi“ : '
\V l]
RAYMOND P. URTZ, JR. S

Technical Director
Command & Control Division

mhittei 4

) o
NP S T SR

RICHARD VW, POULIOT
Plans Office

FOR THE COMMANDER: W wm L‘:ﬂ

’-

-
., ‘ A * l‘
— 2 N e e a shh e

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COE®) Griffiss AFB NY 13441-5700. This will assist us in

maintaining a current mailing list. ,»m ’

Do not return copies of this report unless contractual obligations ur notices
on a specific document requires that it be returned.

L P A

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

AD-AI L1423

REPORT DOCUMENTATION PAGE

‘a REPORT SECURITY CLASSIFICATION

1b RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
7a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT
LA Approved for public release;
2b DECLASSIFICATION ' DOWNGRADING SCHEDULE distribution unlimited
N/A
4 PERFORMING ooymzmrow REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
MCR-85-616 RADC-~TR-85-216

6a NAME OF PERFORMING ORGANIZATION 6o OFFICE SYMBOL

. (If applicable)
Martin Marietta Denver Aerospace PP

7a NAME OF MONITORING ORGANIZATION
Rome Alr Development Center (COEE)

6c. ADDRESS (City, State, and ZIP Code)
PO Box 179
Denver CO 80201

75 ADORESS (City, State, and ZIP Code)
Griffiss AFB NY 13441-5700

83 NAME OF FUNDING / SPONSORING
ORGANIZATION
Rome Air Development Center

8b OFFICE SYMBOL
(iIf applicable)
COEE

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F30602~-83-C~0067

8¢ ADDRESS (City, State, and ZIP Code)

- PROGRAM PROJECT TASK WORK_ UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO [NO. NO ACCESSION NO
62702F 5581 22 12

10 SOURCE OF FUNDING NUMBERS

Tt TITLE (include Security Classification)
C3I RAPID PROTOTYPE INVESTIGATION

12 PERSONAL AUTHOR(S)

P.C. Daley
133 TYPE OF REPORT 13b TIME COVERED 14 DATE Of REPORT (Year, Month, Day) |15 PAGE COUNT
Final FROM Apr 83 _ TOJun 85 January 1986 158
16 SUPPLEMENTARY NOTATION 1
N/A
17 COSAT!I CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Rapid Prototyping Development Methodology
15 07 €31 Systems Model ing
09 02 Requirements Analysis

ABSTRACT (Continue on reverse f necessary and ident:fy by block number)
Rapid prototyping of c3r systems has high payoff for the Air Force. It can aid in identifica
tion and stabilization of requirements, thereby reducing the risk in developing these systems

Rapid prototyping provides a general tool and way to mock-up the functionality of software
intensive systems. The resulting prototype can be exercised before system development to
provide a tangible basfs and media for presentation of system requirements and design.

Rapid prototyping at this time is best achieved through the use of models of the proposed

system's human-computer interface, system performance, data-base structure, and system logica]
structure,

A system to aid rapid prototyping has been defined. Required attributes of the system are
that it be accessible and usable by at least three classes of user: mission user, system
acquisition manager, and software specialists, .

\#- ;

20 DISTRiBITION AVAILABILLTY OF ABSTRACT

21 ABSTRACT SGCURITY CLASSIFICATION
Funcassitenunmited O same As reT

CJoTic USERS UNCLASSIELED

223 NAME OF RESPONSIBLE INDI /'DUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

William E. Rzepka (315) /330-2762 RADC (COEE)
DD FORM 1473, 384 Mar 83 APR edition may be used urtil exhaustgd SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete / UNCLASSIFIED

ARL L W Q'Y Y b gk Rt il i s Sl € AR AR RS (i St 7 ¢
1205 et AN I il Micid LAl S AR Aol A S AR AL AR i b i g gt g

i) OUTLINE

1.0 EXECUTIVE SUMMARY ;
0% .

1.1 Activities T

1.2 Results o]

1.3 Recommendations

2.0 INTRODUCTION

2.1 Purpose
2.2 Scope
2.3 Tasks

3.0 PROBLEMS IN DEVELOPMENT OF c31 SYSTEMS

1 Overview

2 C°I Systems Definition
3 History

4 Problems

5 Taxonomy of Frrors

6

Conclusions
4.0 RAPID PROTOTYPING AS A SOLUTION

4.1 Solution Set
4.2 Definition of Rapid Prototypin§
4.3 Role of Rapid Prototyping in C’I System Development

\

&2
e
5.0 APPROACHES TO PROTOTYPING ® 5%)
\ ‘3
5.1 Types of Rapid Prototyping b
5.2 Taxonomy of Approaches
5.3 Analysis Criteria N
5.4 Evaluation of Approaches Accesion For \
5.5 Two Mainstreams of Prototyping Systems NTIS CRA&I d
; 5.6 Conclusion DTIC TAB a
3 Unannounced D
6.0 MATCHING PROTOTYPING APPROACHES TO C-I FUNCTIONS Justification
----- Setante e L SR
6.1 Overview B
6.2 Functional Decomposition of C3I Systems Dyii s
6.3 Analysis Criteria 1t ib.tio:: f
6.4 Evaluation of Functions ;vaﬂébﬂﬂ Cod
6.5 Matching Functions to Prototyping Approaches —_— y - es
6.6 Programming Environments Di t © Avas, a.djor
6.7 Object Oriented Programming vpccial
7.0 RELATIONSHIP OF PROTOTYPING TO MILITARY STANDARDS iﬂ"’ l

8.0 LESSONS LEARNED IN THE PROTOTYPING TESTBED

1 Context of the Rapid Prototyping Testbed

2 Prototyping's Relationship to Other Software Development Tools
.3 Rapid Prototyping System Concept

4 Summary

e T e T T N

R
K LI P S PR
\¢~.'l _"--;\ f\:. % W n‘~"~.. . (.'

cwta "
" tas
o e .

v, T,

.D

.

-

UL € A
.

el lrl .

i~

9.0

10.0

11.0

12.0

LA ADARIL S A MM A £ 6 A T R A S R A DA RS N B A IR

TESTBED ELEMENTS

Inventory of Application Software
Computer Resources

Interface Prototype

Methodology Requirements

Scenario Library

(Y- R T-JRV- V- V-]
*
(V. X

CURRENT TESTBED

10.1 Inventory of Application Software
10.2 Computer Resources

10.3 Interface Prototype

10.4 Methodology

10.5 Scenario Library
PROTOTYPE ENVIRONMENT DESCRIPTION
DEMONSTRATION SCENARIO

12.1 Introduction
12.2 Demonstration Results

PR N A

s

8 a _& 2T

APPENDICES

Al A Designer's Workbench Expression of the Methodology
A2 References
A3 Tables

1.0 EXECUTIVE SUMMARY

This study was undertaken to assess the feasibility of applying rapid
prototyping techniques to Air Force C3I system developments. This report
presents the technical progress during the effort, which entailed studies of
problems in developing c31 systems, approaches to rapid prototyping,
relating 31 system elements to rapid prototyping approaches, and assessing
the adequacy of current military standards. During this study we also
conducted three demonstrations illustrating prototypical elements of a
prototyping system.,

Prototyping is a process which has received much recent attention as a
way to improve the process of c31 system development. Rapid prototyping
refers to prototyping supported by generalized tools, thereby incurring less
eftort and time than custom prototyping. By improving the development process
through the use of these tools, we expect the system acquisition to be
smoother. As au incidental fall-out, we expect the ¢ system product to
contain fewer errors and be more usable. Many problems in developing complex
¢31 systems are associated with software. Studies have shown that many of
the problems of software are tied to requirements definition. This definition
process has three aspects (identification, expression, and evaluation) which
rapid prototyping must support.

When considering C3I systems as multi-function systems, we find the
portions for which it is most difficult to define requirements are those
supporting the cognitive processes of the user. They are also the functions
most directly related to the mission of a C3I system. These are the
high-payoff candidates for prototyping. c31 systems are human systems
augmentea by ADP.

1.1 Activities Summary

Task One: Investigation

Several large c31 systems were studied including NORAD and tactical
systems. This study included analysis of the acquisition process. A library
of over 200 articles and documents was prepared concerning rapid prototyping,
software development environments, and structured requirements analysis. An
analysis of the problems facing le system developers was undertaken to
identify problem drivers. At the same time a study was undertaken of the
structure and component functions of C3I systems and their difficulty of
specitication.

Current approaches to rapid prototyping were investi§ated to aeteruine

those prototyping approaches which are useful in modeling C°I1 embedded
computer functions. The cost to use each in terms of hardware, software,
analysis, and needed further developments was assessed. Prototyping
appruaches were investigated which focused on the empirical or visible actiouns
ot the software function (clearly important in user interface prototyping),
its predicted perlormance, and its tunctional structure representation.

A study was undertaken to determine which rapid prototyping techniques
are useful in C31 specitic applications. This study addressed the use of
parameterized models, reusable software, prefabrication methods, restricted

‘e v ws

v s’

0

-

functionality, and reconfigurable test harnesses., This was performed through
review of literature describing the results of prototyping activity and
interviews with people who had conducted prototyping for C° applications.

The impact which the use of rapid prototyping techniques may have on
the Air Force embedded computer acquisition process was studied. This
included consideration of what kind of prototyping was appropriate to each
phase of the software development life cycle. Modifications to the life cycle
were considered as well as the potential schedule impacts of rapid prototyping
on the Air Force acquisition process.

An investigation was undertaken into procedures for preserving
information gained from prototyping and translating it iato
requirements/design specifications or the actual implementation. This
included cases where the prototype would serve as the program design language,
cases where the prototype behavior is examined by the user during the

requirements review process, and cases where the prototype is capable of
evolving into a final system product.

Task Two: Methodology Development

A method for utilizing rapid prototyping in the development of software
for C31 systems was developed. The methodology was specifically designed
for rapid prototyping of high-payoff aspects of C°I systems to support
identification and validation of requirements., The methodology emphasizes the
rapid construction, change, and discarding of prototypes instead of evolution
of prototypes into final system. Consideration was given to the need for
novel approaches to requirements specification, design reviews, and
configuration management when using rapid prototyping. The methodology was
developed with reference to AFR800-14 and MIL-STD-490.

Task Three: Tool Environment Design

A set of software tools was specified and designed which implement the
construction of rapid prototyping consistent with the methodology defined in
Task Two above. The tools will form an integrated software prototyping
environment with a specialized tool user's interface.

The prototyping system was designed to allow prototype development by ;
users with a variety of skill levels. The tools were designed to support the \§;
process of identifying and validating critical C3I software functions to R
support the incorporation of the information gained into the decision-making ROORIS
and specification processes which occur during the requirements and design)
phases of the software development life cycle. This software has been
documented in accordance with DOD Standard 7935.

Task Four: Feasibility Demonstration

[y

L L

Three demonstrations were held at Martin Marietta Denver Aerospace to «?.ig‘
present the prototyping tools and select scenarios. The key demonstration :3:3:¢2;
focused on the Ground Attack Control Center (GACC) with a Korean theatre AR
scenario. The intention was to present an element of a GACC as an example of :e;:;a‘
prototyping--not to define or solve a GACC problem. The scenario was L?“ =2
incidental. The aspect selected was a user interface prototype of an analyst A A

2
4
R e R S N L CT R TI
o PR Lo Ot LRt OO P
e e e T T N ".'_ Vet BT
AR NI T O R AT RN
AR ANES 05 L A S R M SR A SN ST

w.

performing planning/analysis for a ¢3cM mission. Feasibility of the
prototyping tools and concepts was demonstrated through identifying and
validating some potential user requirements.

1.2 Results Summary

Rapid Prototyping is Feasible with Current Technology. While
prototyping has been used for some time in the business world, its application
in the crucial arena of ¢3 systems has been limited by the complexity of
that arena. By applying some of the concepts and lessons from artificial
intelligence (specifically planning systems), and by mechanizing the tools
using an object oriented executive and tool set, these complexities can be met.

Communication problems between user, acquirer, and developer are the
basis tor problems in C°I system developments. These problems destabilize
the requirements determination process and in turn leave requirements in a
state of flux. Requirements definition for C31 systems is difficult because
of the mission criticality of such systems and because the software of such
systems (which provides the prime functionality) must be designed to support
human cognitive processing.

Structured analysis and modeling tools are the hasis for rapid
prototyping of C31 systems. Rapid prototyping for CJI systems can best be
achieved by binding together powerful modeling tools. The linquistic approach
to rapid prototyping is insufficiently mature for application to these
systems. The binding process is complicated, and provision for further
currently unspecified models in the prototyping system induces a design
problem for the prototyping executive.

Prototyping may have an important role as a communications vehicle in
multisegment evolutionary acquisitions. While evolutionary acquisition may
help in acquiring C51 systems, organizing large projects is difficult. An
example could be taken from the Strategic Defense Initiative (SDI).
Prototyping could help determine feasibility early and improve
contractor-to-contractor transfer of intentions.

Future C31 system acquisitions will require new management techniques
that must be founded upon tools which explore "what-if' aspects of the
problem. With the abandoning of intent to establish a complete requirements
set for a system a priori, management techniques must evolve to support a more
reactive style. This in turn will call more upon the leadership qualities of
program managers and less upon their contingency planning abilities. This
results in the need to supply program managers quick reaction tools to give a
look into problems at hand and quickly develop likely solutions. This fits
nicely into rapid prototyping methodology.

A rapid prototyping environment has major effect when focused on
support of requirements determination - not on design. Problems in software
intensive developments tend to appear during the software design phase and
during the system integration and test phases. These problems are founded in
unstable requirements which flow down to the software elements. System
requirements determination must be stabilized. Therefore, the proper role for
rapid prototyping is in system requirements and high-level software
requirements definition. Emphasis should be placed on the integration and
test phases in later stages of development.

-

L4 L0 WEREE S = R L e

TS

N

LA N

i

A M

B A

'

!

LA

LA

CHEY VY Y AR

SERPTESFTI LN I3 F TN T N PRI AT A e S L Y e, - PSR b vE 8 4g » vy TR
M - - A) o PouLs s e a

A rapid prototyping environment should provide that useful work can be
performed by a broad spectrum of users with varying skill levels. The proper

rapid prototyping environment should, within the tool design itself,
accommodate many different users. Each has a piece ot the "picture” of the
ultimate ana proper c31 system component. The tool should integrate these
views automaticglly to the maximum extent possible. This problem is related
to a key artificial intelligence area of research~"knowledge engineering.”
Complete solution of knowledge enginecering problems is not necessary to profit
from rapid prototyping, however we must structure the knowledge domain of

c31 system components sufficiently to allow mapping of their specifications

to proven representations based in existing modeling systems.

Use of rapid prototyping can take place without disturbing AF800.14 or
MIL-STD-490. 1If we interpret rapid prototyping's main goal as adding to the
requirements definition process, then it becomes just another system
engineering tool. No special life cycle steps are needed to accommodate use

of rapid prototyping.

1.3 Recommendations

A rapid prototyping environment for c31 systems should be constructed
and made available to users, acquirers and developers. The technology is
mature and such an environment is feasible. The environment should reside in
conjunction with a major Air Force test and evaluation facility focused on
¢c31 battle management problems because the requirements definition for human
cognitive processing aspects of ¢31 systems is most intense in the battle

management arena.

Provision should be made to interface the rapid prototyping environment
to other support environments. These should include programming environments,
decision aid development environments, automated management support tools,
structured requirements aata bases, scenario generators, and further modeling
systems. Integration of support tools such as these will give government
program managers the capability to play extensive what-if games with the
entire gamut of programmatic issues.

‘;a ‘.

L R e

- T W ¥ ¥V W W WV vymmmw T V.V 7 N e s e ¥ T R W TV

s wamees ¥ % ¥V 7.0 07

S e i gt Ty Ve e At 2t ot Rt R B

2.0 INTRODUCTION

2.1 Purpose

This volume presents our report on the work and results of tasks &4.1.1
through 4.1.4 of contract F30602-83~C-0062.

L

NG
RS AN
ot

AN

¢

2.2 Scope

In this volume, we describe our efforts to define, design, and
demonstrate a rapid prototyping capability. The capability is being tailored
specifically to C’I system embedded computer functions. This restriction of
the problem domain prompts us to use existing technology and reuse existing
prototype tool software. Our approach focuses on the rapid construction, use
and discarding of prototypes, rather than refining prototypes into final
products. We expect the users of the capability to span a range of computer
expertise from engineers to mission personnel. Software engineers would
construct the prototypes which would be evaluated by the eventual user and
possibly modified by acquisition personnel. We discuss our effort to
integrate the capability into the Air Force acquisition process. _The
integration will allow prototyping to improve the validation of C’I system
software early in the development process. Examples, procedures and
guidelines have been developed so that all levels of users can understand and
apply the capability.

2.3 Tasks

These technical tasks were identified in the contractual statement of
work:

2.3.1 Task Technology Investigation

Study at least two large ¢ systems for the purpose of
determining those embedded computer functions whose prototypes would have a
high payoff in terms of requirement or design information gained. Selected
functions should be common to several classes of C-I systems, critical to
system operation and especially difficult to specify and design. Candidate
functions include the man-machine interface, real-time interrupt handler,
communications processor and the data base management system.

Investigate rapid prototyping technology for the purpose of
determining those prototyping approaches which are useful in modeling C”I
embedded computer functions. Hardware and software requirements for each kind
of prototyping approach shall be identified along with advantages (kind and
quality of information gained) and disadvantages (accuracy, realism and
scaling problems). At a minimum, the following three kinds of prototyping
shall be studied:

User Interface Prototyping--Captures the user interaction with the
system at the expense of system performance and function.

Performance Prototyping--Predicts system time and space characteristics
at the expense of user interface and system functionality.

e e s _'.A - A TR SR - P

- . . - . L) - . n. . .
. ¥ I 15 AU L SRR «® o S R W RN “
. A e e e R () L . > I TR I
R PR PPV RT ST SO PR AT I N N AN A AN N AP A P PE PR LY. . SR S

Functional Prototyping--Perform data transformations of the final
system without necessarily using the final algorithms, commands or
displays.

Study existing rapid prototyping technology for the purpose
of determining which rapid prototyping techniques are useful in modeling C3I
functions., At a minimum, the following techniques shall be studied.

Parameterized Models--A family of systems that differ by variations in
parameters or tables.

Reusable Software--Libraries of modules which can be quickly and
conveniently assembled.

Prefabrication Methods~-Programs which accept parameterized inputs and

generate specialized functions (e.g., displays, reports) according to
some standard.

Restricted Functionality--Model only the functions and only as much of
each function as is required to obtain the necessary feedback.

Reconfigurable Test Harness--Simulates the environment of operation and
its interaction with the prototype to determine behavior.

Study the impact which the use of rapid prototyping
techniques may have on the Air Force embedded computer acquisition process.
The kind of prototyping appropriate to each phase of the software development
life cycle shall be identified. Additional life cycle steps required by the
use of rapid prototyping shall be identified, and a plan for integrating these
steps into the Air Force software acquisition process shall be developed. The
cost and schedule impacts of using rapid prototyping technology on the Air
Force acquisition process shall be investigated, and appropriate management
techniques for their assessment and control shall be identified.

Investigate procedures for preserving and translating
information gained from prototyping into requirements/design specifications or

the actual implementation. At a minimum the following coupling techniques
shall be studied:

Feeding Design--The prototype serves as a design specification for the
implementation, in effect, being used as the program design language.

Requirements Review and Testing--Prototype behavior is examined by the L
user during the requirements review process. el ;

Incremental Redevelopment--Under certain circumstances it may be
possible to refine selected parts of the prototype into a final system
product with the required functionality and performance.

2.3.2 Task Methodology Development

Based on the results of the technology investigation
(reference paragraph 4.1.1), the contractor shall develop a methodology for
utilizing rapid prototyping technology in the development of software for

R

n'l'
VA

c31 embedded computer systems. The methodology shall incorporate the
following concepts, at a minimum:

Yy
'

Do,
0y Yty

The methodology shall be specifically designed for the rapid
prototyping of critical, high payoff functions of C31 embedded

computer systems., Its obJectlve is to identify and validate these
functions during the requirements and design phases of software
development. The information gained from the rapid prototyping process
shall be used to facilitate the design decision making and
specification processes.

The methodology shall emphasize the rapid construction, change and
discarding of prototypes, as opposed to a more structured
implementation approach which could be refined into the final system.

The methodology shall consider that a different approach to
requirements specification, unspec1f1ed capabilities, design reviews
and configuration management is required when rapid prototyping is
utilized.

The methodology shall present to its users a comprehensive set of
procedures and guidelines for using rapid prototyping as an integral
part of the software development life cycle as specified by Air Force
and DOD regulations and standards (reference AFR 800-14 and
MIL-STD-490) for acquiring C31 embedded computer systems.

The methodology shall be fully documented with examples to enhance its
understandability.

2.3.3 Task Tool Environment Design:

Design a set of software tools which implement the
construction of rapid prototyping consistent with the methodology defined in
paragraph 2. 3.2. The tools shall form an integrated software prototyping
environment with a uniform tool user's interface and shall incorporate the
following concepts:

The tools shall be designed for prototyping the critical and high
payoff functions of c31 embedded computer systems. Their design

shall be flexible to allow prototype development by technical analysts,
prototype modification by Air Force software acquisition specialists
and prototype execution by Air Force Mission personnel.

The tools shall be designed to support the process of identifying and
validating critical €31 embedded computer functions and of
incorporating the information gained into decision making and
specification processes which occur during the requirements and design
phases of the software development life cycle.

All newly generated software shall be provided in accordance with
paragraphs 5.3.1 and 5.3.3.1 of CP 0787796100e, entitled, '"RADC
Computer Software Development Specification, General Specxflcatlon
for", dated 30 May 1979. Software documentation will be in accordance
with DOD standard 7935.1-S, entitled "Automated Data Systems
Documentation Standards', dated 13 Sep 1977 (see CDRL).

7

AR

L
i

Pate s

2.3.4 Task Feasibility Demonstration

Demonstrate at the contractor's facility the feasibility of
the rapid prototyping methodology and tools developed in paragraphs 4.1.2 and
4.1.3 by constructing a user interface prototype of a contractor-selected,
Government-approved ¢31 embedded computer function. Feasibility shall be
shown by using the prototype to assist in identifying and validating user
requirements. The demonstration shall also show how information gained from
the prototype can be integrated into the decision-making and specification
processes.

Utilize existing technology in constructing the demonstration
system. Design and implementation of new software shall be held to a minimum
and used primarily to interconnect existing software capabilities.

2.3.5 Task Oral Presentations

The contractor shall conduct two oral presentations at his
facility. The first, presenting the design of the rapid prototyping tools,
shall be held in the twentieth (20th) month after the start of the effort.
The second oral presentation shall be held in the twenty-fourth (24th) month

after the start of the effort.

2
.

]

RO
’)

®)

W L BT B TR TN S TR IR e faflie Y A IR g L R R T TS TATNT Y g YIS ATA rE
Sl aex
v

-

3.0 PROBLEMS IN DEVELOPMENT OF C3I SYSTEMS

3.1 Overview

The development and acquisition of c31 systems has long been plagued
by problems which have limited the effectiveness of those systems when finally
fielded. This lack of effectiveness has also broadened the gap between users
and developers which leads to an even more difficult development and
acquisition process. The purpose of this section is to identify and address
these evolving problems, providing the basis for a solution to this growing
concern. The following paragraphs provide a definition of C3I systems to
establish the context of the problem, a review of past development and

acquisition problems, and finally an analysis of how those problems have
evolved to date.

3.2 E;I System Definition

Before stating the problems involved in the development and acquisition
of C31 systems, it is critical that a definition of those systems be
p§ovided. Within the context of this paper, and as defined in JCS Pub. 1, a
C’1 system enables the military commander to accomplish the basic functions
of command and control (planning, directing, and controlling) in the conduct
of military operations. The specific definition of a C2 system is: "The
facilities, equipment, communications, procedures, and personnel essential to
a commander for planning, directing, and controlling operations of assigned
forces pursuant to the missions assigned". While the functions are
fundamental to any and all military environments, the c31 systems must be
structured appropriately for the particular conditions encountered within each
environment., Therefore, these types of systems can have numerous complex and
changing external and internal interactions, often of an inter-service or
multinational (as in NATO) nature. They involve operational requirements, use
acceptance criteria and measures of worth which often cannot adequately be
specified in advance. They are also highly dependent on the specific
doctrine, procedures, threat, geographic constraints, mission scenarios and
management approaches of specific mission users. As a result of these
considerations, C°I systems are often subject to frequent change throughout
their life cycle. Finally, these systems are normally dominated by software
which agsists the decision making processes of mission commanders and their
staffs at multiple organizational levels,

c31 gystems can be viewed from their component and subcomponent
make-up. c3t systems can be defined in terms of communications, data
presentation/ analysis, data management and system management components.
Each component can then be further decomposed into subcomponents.
Communications incorporates message handling, local area networking, secure
communications and sanitization, while data presentation/analysis includes
user interface, decision aids, AI techniques and Tracking/Correlation/Fusion.
Data management is composed of data base management systems, data structure,

concurrency controls, and multi-level secure access. Finally, system :;Qku;ﬂ}.
management includes resource management and fault tolerance. :¢:¢: :a:
.::{;-.;\ ::-.

The preceding discussion of c31 systems points out characteristics :¢;¢:¢:«:

which lead to the search for improved development and acquisition techniques. Lo tntalsd

Existing techniques are more readily applicable to weapon systems which

generally have discrete, relatively predictable functions, while in c31
systems changes in requirements are inevitable at some point in the
development cycle if the system is to fulfill its primary objective--
suppgrting the human decision maker. In fact, an average of 60% of the cost
of C’1 systems occurs post-deployment. This represents changes to the
system as the result of changed requirements,

3.3 History

The inadequacy of the traditional development and acquisition approach
has long been recognized. There are many examples of cost growth, program
delays, equipment deemed obsolete by the time it is fielded, and general user
dissatisfaction with systems when they finallg are fielded. Figure 3.3-1
shows some of the recent Air Force specific C% programs. The Army's
Tactical Operations System/Operable Segment (T0S/0S) program, the original
version of the Navy's Tactical Flag Command Center (TFCC) and the Air Force
Tactical Air Control Center Automation (TACC AUTO) program are but three

examples of programs that evidenced these problems and were cancelled as a
result,

J‘?
:e%‘?:f .
CFrr 2 Ka M L2

o B

-
.
.

-
-

0
0,
.
)

‘ll ."\‘ -

»-'g e
'i-'

s
)
S AL

CARN

—v—

P

LA AL)
»

'/ »
N

*
v

.

Rafiundi o nth aii- alh o uh S oy e S

o yrrTe v,

L ™

Y O Al

TR LRAT LT

" SAn 1t el

suoi31einboy wa3shs [0AUOY UL pUDUUO)

80u04 J1y awoS [-¢'¢ 2anbiq

aanTre]d
faanyred yeriaeg

d ¢1n3ssadong AyrerIIEed Sd
f{Injyss920ong S

dd

:puada

309foag

weidoxg uorsng

uoysnd [eO}3IOER]L JUTOr sd ~Ig] uorsnj/sysATeuy OvVl/Awiy| Ted>Taoel juror
uworlysInboy 398ae] pue
uorjeljordxy prayjarlaed dd| 18-¢L| uorsng/sisdreuy JVL/ A uay vidad
JuTof
JuUlaWITY UOTILTD110D
uoyleniys Awouy Sd -1g| uoysni/sysdTeuy VL OSN3
- Sd -Gl AVOvVd | yoiem 3jueljsuo)
- Sd} 78-LL 1SY OLVN I 13413
wo3ISAS Juswadeuel avi
#0104 pepiv-i123ndumo) s| 18-6¢ uy3izr ‘yig SWAVD
uoyIeWOINY I3JUu3d)
To0ajuo) 1fV [eO13I0F] d| 08-19 Judp VL OlLiv DOVL
aT33eg TEOTIOE]
apeaddp aajuap w3
UTe3IUNO) JUUALIYD QVAON S| €8-6L| ®su@3aq pue MYI avyON apea3d JWON
- dd} 6L-0L AVION WLZY
swalsAg Jusdy
@ouadrrTaiul TEIO29ds jo aouadiIroIlul
uotrledyrddy jeuoraeaadp s| ¢8-8¢ Teyoads 34vsn SISVO
?d104 11V
27311 weadoxg] ssaoong quma UOFSSIN a9s]) suweN weasdoxad

T— pre . R .\ . ;
. B LAURS & Puiy "0 Ay Sn ol i XA pnry 24 v - AT A Pt NI I T T TR ¥ [gte" of & -a ISl

As a result, the Air Force user community, under the direction of the Air
Staff, has taken on the acquisition role for several of their own c31
programs. Examples include PACAF's Constant Watch Program, TAC's Computer
Aided Force Management System (CAFMS) and USAFE's EIFEL I System. This
activity further complicates the problems with c31 system development and
acquisition with the costly duplication of acquisition efforts at each of the
' operating commands.

In general, the many problems associated with ¢ development and
acquisition stem from a long history of "force fitting" c31 systems into
weapon system molds. Although the fundamental problems have been recognized,
few coordinated efforts have been made to improve the situation. Therefore,
the problems of the past are the problems of the present.

3.4 Problems

Primarily there are four areas of potential concern in approaching
acquisition and development problems associated with c31. These general
areas can be categorized as: Technical, Communications, Cost, and
Scheduling. The last two areas, cost and scheduling, are normally driven by
N technical and sociological factors in similar manners. In today's environment
of rapid technical advances and capability improvements, technical problems
such as wrong ADP choice does not adversely impact C3I system acquisition
and development as it has in the past.

s 1 |

b ",
a'a s e

Most of the major problems facing the ¢31 community in today's
environment fall into the communications category. c31 development and
acquisition requires complex, multi-faceted interactions that occur throughout
the life cycle of the development and acquisition phases within and among all
N members of the community including the user, the acquisition agencies and the
> developers as shown in Figure 3.4-1. However, c31 systems have been forced
“ into the mold of weapon system development and acquisition techniques which
N have proved inefficient due to the one-of-a-kind nature of the systems. The
"force fitting" has prevented many of the essential human interactions from
taking place. These interactions must occur at all stages and levels during
K the development of any system designed to aid in decision making and
- execution. All too often, this interaction has been lacking in past systems
designed for this purpose and the end results were systems that did not "do"
- what the user expected.

Acquirer

User Developer
User Consultant
Acquirer Developer
FPigure 3.4-1

Communications paths within current acquisition can be complex.

Lack of communications between the user and the acquisition and
development agencies has resulted in systems which are not interoperable,
utilizing incompatible hardware and/or software designs. They also often lack
in their ability for growth and refinement. Therefore, ¢ systems designed
and developed in isolation may not provide the capabilities required by the
user.

Escalating costs in system development and acquisition continues to be
a major concern. Beside being driven by problems created by technology and
sociology, other factors such as funding strategy changes (both politically
based and internal to the DoD) have major impacts on the fielding of new
systems. Likewise, social and technical problems create problems in meeting
schedules, At present, the time required from the program start to the final
realization of a fielded €31 system can normally be measured in years. We
define the program start as the initial activity for a specific program such
as creation of an SPO, directive of program start, or approval of an SON. A
study [Affordable Acquisition Approaches, A3, 1980] for Commander AFSC
analyzing trends in Air Force system acquisition has projected 10 years as the
average development time for a c3 system when measured from program start
through start of full scale development (DSARC II, PMD directing FSD or
initial 6.4 funds expenditure) to first production delivery.

13

:r-rv’-

L

NS ..,‘.

A

ol R 3

Al wr

DM RO o

o e S O

LN o

{ [/

I I A Y

Large~Scale C3I Developments

c31 system developments cannot be viewed in isolation.

CT o, WO "."."-"Ll.r.,'. LR

The nation's

command and control system exists in what might be viewed as large chunks. A
problem facing program managers on both the part of government and industry is

planning within multi-segment upgrades.
and Control System (SPADCCS).

contract.

evolutionary acquisition approach.

Consider the Space Defense Command

Elements of the SPADCCS upgrade include sensor
improvements, communications system improvements, combined Space Operations
Center (CSOC), SPADOC 4, IDHS upgrade, CSSR, and SPADCCS integration

functional prioritization within a segment.

functions/capabilities of the segment?

capabilities?
block planning?

obtained.

These are all occurring simultaneously and all are using the
Two problem areas exist.

The first is

What are the desired

Which of these are the core required
How should the capability list be time-ordered to facilitate EA

By exposing some of the deeper areas in the requirements set
through prototyping, information necessary to answering the questions may be

The second problem area is in aligning required performance across
segments to facilitate overall system integration and uniform performance

improvements as shown in Figure 3.4-2.
Are the block phasings across all segments consistent?

finished?

When must a particular block be

We are

pointing out that in large multi-segment C3I system acquisitions, there is
an additional destabilizing factor provided by the existence of parallel

developments.

While the evolutionary approach mitigates some of this

influence, there remains a complex effort to provide the planning which allows

the evolutionary approach to realize its potential.

Prototyping can aid in

resolving this problem through provision of a communications medium and basis
across segment participants.

Segment A Segment B
AN
Block 1 N | Block 1
Block 2 \\ Block 2
Block N1 Block N2
Figure 3.4-2

Large-scale C3I system present further problems such as coordinating

Coordination
< Required

Segment C
Block 1
Block 2

~
Block N
~ 3

block contents and deliveries across several segments.

3.5 Taxonomy of Errors

We have prepared a taxonomy of the types of errors which adversely

impact 31 development.

This is not a usual tree structured taxonomy in
that all nodes separated by a plus sign may be active at the same time.

That

is, there may be many different error types occurring on a program
This structure is shown below in Figure 3.5-1.

simultaneously.

14

)
Y

-
-

. .
LRl ol
o v

e
'.-

w
.
"o

at Sab 0ot 9 oR i TN AR Y v } TRE AT 2 gt ¢ av X s 5 an 8. 8% Sat Y- da-

N €31 Development
! Problens
I 1
Requirements User Needs Not Technology
Problens Understood Problens
Program Scope Exceeded User Does Mot Know fequired Technology
- Incomplete hat He Needs Unstable
- Unknown Completeness User Not Involved Technology Exceeded
. - Unresolved Known = User 1solated
1ssues - Surrogate User
Instability - User Not in Project
- 180's Present Organization
- Unresolved Known - User Representative
3 1ssues Not Selectable
. - Performance - Surrogate Does Not
Parameter’s Missing Understand User
Too Interpretable - Wrong User
- Wrong Site
: = Wrong Level
WIung Organizational
- Component
- User Knows But Cannot Say
. Figure 3.5-1 Problem Taxonomy _
: SN
: R
SESASAN
I
- PROBLEM TAXONOMY N
- LY RS
. X
This taxonomy (Fig. 3.5-1) is the current perception of where problems ::.::
9 arise in €31 system developments. - E‘
Level 0 C3I Development Problems = -
: Requirements Problems + User Needs Not Understood + Technology Problems)
: Level 1 Requirements Problems =
. zProgram Scope Exceeded + Instability + Too Interpretable)
Level 2 Instability =
(Incomplete + TBDs Present)
Level 3 TBDs Present =
(Performance Parameters Missing + Unresolved Known Issues)
Level 3 Incomplete =
- (Unknown Incompleteness + Unresolved Known Issues)

A

-'.‘-'\.q'_;- - .'_./“.
Lalaladadoerd

A %

LA T, A

| RS

RN SR A

IO

- . v
s tha PJ PRI ¥ aV a n ' e e r "% Ao

Level 2 User Needs Not Understood =
User Not Involved + User Does Not Know What He Needs + User Knows But Cannot
Say)

Level 3 User Not Involved =
(User Isolated + Wrong User)

Level 4 Wrong User =
(Wrong Site + Wrong Level + Wrong Organizational Component)

Level 4 User Isolated =
(User Not In Project Organization, Surrogate User)

Level 5 Surrogate User =
(User Representative Not Selectable + Surrogate Does Not Understand User)

Level 1 Technology Problems =
zRequired Technology Unstable + Technology Exceeded)

Technology Problems

Some development problems run afoul of the state-of-the-art in
technology. The technology necessary to build a particular system may be
unstable. An example is memory-staging schemes for high speed parallel
processors such as the CDC 205. This error type occurs when state-of-the-art
solutions are being used in new applications.

The other branch under technology problems is labeled 'technology
exceeded." This refers to a development necessitating a solution which is
beyond the state-of-the-art. An example is a computer with a sustained
throughput rate of 1 GFLOP/sec.

Requirements Problems

These error types appear on the left-hand side of the Figure. At the
first level is the node "program scope exceeded.'" This refers to a
requirements set which defines a set of solutions taking more time or money
than is available in allocated development funds. The requirements may be
good in all other respects.

Another type of error is "unclear, too interpretable." This refers to
a requirements set which does not adequately define the task or language which
is too loose. An example would be language which said 'data base updates
shall occur instantaneously".

The third node at this decomposition level is instability of
requirements, This has a substructure containing incompleteness and TBDs (to
be dones). The most usual TBDs seen in specifications are undetermined
performance parameters. It is conceivable that there would be TBDs which are
not performance related, such as determining the number of workstations
necessary for a site. Incompleteness is in one case equivalent to "other
TBDs.”" This is where some portion of the specification has been overlooked as
to number, quality, or other attributes. 1In the other case, the specification
is incomplete and does not adequately define the work to be performed.

16

User Needs Not Understood

The last major type source of error is under the heading "User needs
not understood." This is the classical way requirements analyses go astray.

The current acquisition plan in use by the Air Force can keep the
eventual user of the C3I system insufficiently exposed to the development
process. This occurs through isolating the future site user or by involving a
wrong/inappropriate user representative. The wrong user representative can
occur three ways. The first is through selection of someone familiar with
another site in the same command. The second is through selecting someone at
the wrong command level. This occurs a great deal. Our studies have shown
that there are two user representatives, one at the analyst level and the
second at the staff or CO level. Selection of one of these users to the
exclusion of the other can bias the determination of user needs. The third
way to make an inappropriate selection is to select someone familiar with the
site but in the wrong organizational component. An example is found in one of
the SAC command center upgrades. There a user representative was chosen from
SI, the ADP governing organization. The people whom the system was actually
to support were in DC, the command and control organization.

Isolation of the user can come about in two ways. The first is through
insufficient integration of the user (user representative) within the
developer's organization. The normal project review process is insufficient
to provide guidance on complex c31 systems. If the user is kept at arm's
length for the requirements and design phase, his insights, viewpoints, and
goals will likely go unheard.

The second way to isolate the user is through the surrogate user
system. Various acquiring authorities of the government or consulting
companies have been 'tagged" as the user representative., While this has
worked in some cases, the system introduces further organizational and
communications problems. These occur, first, because a representative cannot
be found. This was the case on the original Navy TFCC program. No single
person or group could be found to integrate the needs of the many flag
commanders who would use the system. Their views were not 'representable.”

A more common occurrence is when the appointed user does not understand
the operational environment which the system is supposed to manage. A classic
example 1s on the OASIS program. There a site user desired “annotation" data
to be included on displays by the operator. The surrogate user generalized
this to "amplification" data, using arbitrary data base sections. The
proposed solution went through several levels of project review by all
parties, but the disparity was not discovered until the system was delivered
to the site user.

3.6 Summary of Problems in Developing C31 Systems

Urganizational communication paths are complex. When we have an
acquisition that comprises a developer, an acquirer and a user, there are
diffriculties of translation. When we add a consultant, the number of
communication paths proliferates and translation problems multiply. In multi-
segment acquisitions we have a very confusing mix of contractors, acquiring
authorities or authority, and one or more consultants.

17

7|

5

ST pn,

v v
.

v T

L e e Set Fak iy ik Set iod tof Sal b

Requirements analysis is notoriously difficult for c31 systems,
Requirements analysis tends to be a well-defined process for systems which we
understand and have developed successfully in the past. The threat and its
countermeasures are becoming more sophisticated and more capable. The ability
of the threat to posture its forces ever closer to the shores of the United
States and to have at its disposal long-range aviation assets is challenging.
Clearly this results in a reduction of the time available to assess, decide
and respond correctly. This in turn drives us to make more demands for
accuracy, timeliness and precision on the part of our nation's command and
control systems. This forces a closer and more intimate integration of these
command and control systems with the user and his cognitive and inferencing
processes. This is a new field. We do not have paradigms. We do not have a
long, well-documented track record. We are exploring new territory. The
problem is one of supporting identification of requirements, expressing and
representing those requirements accurately, and evaluating them in a manner so
as to provide structured feedback to the identification process. Anything
which helps mitigate problems in identification of requirements would be a
great boon to our nation's command and control acquirers, developers, users,
and consultants.

Acguisition

Development strategies of c31 systems have proven inappropriate.
Standard acquisition strategy is serial and is focused on standard weapon
system acquisition descriptions and guiding documents. Such acquisitions
provide feedback to the user, basically through document such as those
delivered as requirements documents, design documents, and test plans. The
validation of requirements at the system level and correspondingly at
subordinate levels occurs with the delivery of a system to the hands of the
user. There is well-documented lack of success for standard serial
acquisitions such as the Tactical Flag Command Center (TFCC) and the Tactical
Air Control Center Automation Program (TACCAUTO). The serial nature of this
acquisition strategy calls for requirements to be completed for the entire
program and then the contractor stops. Design for the entire program
commences and then stops. Development occurs, and then integration and test.
This presumes that we understand the goals of the program sufficiently when we
start to preplan. This does not work for command and control systems.

v T YT RN N T e e Y e T e W TR S o

=t

DAV WOMRAMAANINS O

This has caused many contractors and acquiring personnel to look
towards an evolutionary acquisition strategy. An evolutionary acquisition
strategy tends to be a block-structured serial acquisition emphasizing many
life cycles of requirements design, development, and test. There are mini
contracts issued at the beginning of the next block and there is some
preliminary analysis done to assure that a basic design is achieved with the
first delivery. This has been used successfully on some command and control
systems such as Operational Application of Special Intelligence System (OASIS) &}1{¥‘$
and the Space Defense Operation Center (SPADOC). The feedback through the ALY
user is through documents and the block deliverables. The final delivery is — .
broken up into a staggered set of deliveries of fully functional system
vergsions. There are several requirements validations occurring spread out in
time, and this provides the user the ability to feedback to the developer and
acquirer crucial data. That which has been left out or done incorrectly due
to misunderstanding can be corrected to some extent in the following
acquisitions, There is a well documented success for this from the OASIS

program, which was the first planned evolutionary acquisition by the Air Force.

'
.
g

e % % Y

18

e JEER AT

= €

~ o

O]
S ala s 8 B

A

The third approach is what we refer to as an experimental or
evolutionary approach. It tends to be a free form evolutionary acquisition
stressing continuing development. It has been used extemsively in the R&D
world, and most are familiar with it. The experimental approach calls for
work and requirements to progress simultaneously in a continuous and
open-ended manner until 1) funds run out, 2) time of the program is exhausted,
3§ the technical and/or contractor people give up because they are tired, or
4) they achieve an acceptable level of functionality and therefore success.

It tends to be used on well defined subproblems that have embedded kernels
whose solutions are unknown. The work on the Navy Secure Message Processor by
NRL is one example of the application of this experimental acquisition
strategy. Feedback is provided through an almost continuous hands-on access
to the system as it is brought into being by the user. Requirements,
therefore, are validated almost constantly. Some success in small programs
has been achieved. Drawbacks are that these acquisitions are hard to manage,
require specialized talent and support environments, and have yet to prove
themselves on large acquisitions.

The last acquisition strategy may be termed "opportunistic.”" It is a
combination of the serial and experimental life cycles. There has been some
use of it in R&D work. The opportunistic approach calls for simultaneous,
parallel progress of standard serial acquisition and experimental
acquisition. The experimental acquisition is a prototyping activity feeding
the requirements and design activities of the serial acquisition as well as
being fed by them. The user has extensive involvement with the experimental
acquisition component, and this insight is passed into the requirements
review, design review, and documentation processes of the serial program.
Therefore, there is feedback through both document preparation and hands on
activity. There are several requirements validations which can support an
almost constant process of requirements validation, and the acquisition
strategy of a standard or serial acquisition can remain in place. We believe
the opportunistic acquisition strategy has the correct approach to the
application and potential high-payoff for c31 systems. It is basically a
prototyping life cycle which allows well definition of the government/contractor
business relationship.

Planning

Planning and management techniques tend to be ineffective as currently
applied to c31 systems, There is a limit to how finely we can decompose the
goals of the c31 program. We have no track record, no metamodel, of the
problem domain. The results of requirements analysis remain unclear. As
such, a priori planning at a very decomposed level doesn't make sense. We
must use management techniques much more akin to real-time command and
control, which tend to emphasize reactive strategies more than the approaches
currently in vogue. 1In order to support a reactive management style, risk
management and prediction becomes important, and we must withhold a detailed a
priori commitment of resources so as to be able to meet risks as they become
realized. Therefore, the ability to integrate schedule and cost estimation
tools together with technical performance management tools is crucial. The
program manager must be given the tools necessary to evaluate immediately
where he is technically and drive out new schedules, new cost estimates and
technical approaches which are appropriate., This runs almost completely

counter to what is taught in management schools and what appears to have been
the foundation of management philosophy for past larger aerospace programs.

19

P& EST

Testability

The notion that we can design a system and then test it for the complex
distributed systems of today is inapplicable. The design of a complex system
capitalizing upon the distributed architectures that allow inclusion of
special purpcse processors may create an overly complex architecture. Such a
system can have hundreds of thousands of accessible states. Perhaps as many
as fifty or sixty thousand are high probability states. With the advent of
fault tolerance as a design imperative, we are actually creating additional
states of the hardware and software system which may be accessed. Therefore,
we can only expect, especially with the increase in specialized small

computers bound through LANs which have fault tolerant aspects, a
3 proliferation of the number of accessible states. Current test philosophy is

based on a notion that one may enumerate the accessible states of a system and
create test procedures driving that system into the high probability
accessible states. At that point, the performance of the system as well as
whether or not it can be partitioned into required states can then be

.- assessed. This doesn't make sense for the systems of today. We cannot

N enumerate all the accessible states; we cannot identify the high probability
accessible states; we do not have the time nor the appropriate drivers to
place that system into all the states which we have identified. Therefore, we
- are forced to consider "testability' as a requirements criteria and a design
criteria. We must choose to design testable systems and we must choose to
specify testable systems. But determination of design attributes resulting in
. testability are not the subject of this study; similarly, neither is
determination of the qualities of a specification which lead to a constraining
of the design solution towards testability,the subject of this study.

Estimation

A further problem of c31 systems is that current software estimation

. techniques cannot always be applied so as to yileld usable results. It is well
2 known that software estimation techniques tend to rely on line of code
estimates. A line of code estimate has some relationship to the underlying
complexity of the problem when the problem domain is well understood and we
have developed significant similar programs. Real cost to a program is
founded in the complexity and scope of the requirements. Current software
estimation techniques do not rely on some structural model and/or
X quantification attribute of the requirements. Perhaps at some point in the
y future they will and the function point method of estimation has promise. A

further problem for c31 systems is that we do not understand the
. requirements domain even as well as we do the weapon system domain. Within
- the weapon system domain we have notorious failures of the lines of code
estimates. Therefore, applying current software estimation techniques to
c31 systems will in all likelihood fail.

3.7 Conclusions

Our examination of the basis for error and problems on C3I system
development has shown that requirements definition for those aspects of the

. system directly supporting the site user's cognitive processes is key. Any DR
- process which serves to mitigate problems in the communications process A,
between user-developer, acquirer-user, and acquirer-developer would be a major -?si&fﬁﬁ,

help. & . &

LN e n an _casrag ae mm e o

T

4.0 RAPID PROTOTYPING AS A SOLUTION

4.1 Solution Set

Given these general problem areas and types, what are the potential
solutions and how does prototyping fit within the solution set? Basically, as
shown in Figure 4.1-1, the kernel activity leading to better systems is
requirements validation. We have examined what this entails in order to
better define how to use prototyping to support c31 system development.

Goal:
Better C3I
Systems

T

System Development
Process Improvements

T

Software Development
Process Improvements

[

Requirements
Definition

Requirements
Validation

Figure 4.1-1 3
The kermal of the problem of developing better C°I systems is
requirerents definition.

Problems in software development do not arise in software. The key
driver of software problems in development is the destabilizing effect of
higher level requirements which are themselves unstable. The requirements
validation process has three components, as shown in Figure 4.1-2. These
parts are requirements identification, requirements representation/expression,
and requirements evaluation. Much work has been performed recently in the
area of requirements expression. Use of structural techniques is mature. The
role ot modeling and the use ot test beds to support requirements evaluation
is mature in several areas, though its use is not widespread. It is in
requirements identitication that the majority of work remains to be done. Few
tools exist to aid a user/developer in deciding what is needed. Our analysis
has shown that there are three attributes or facets of the requirements
identification problem.

21

I T)

PR T e Tt i S
e S e et TR T A b A A A Al A Al

-

‘)}?f/ Ay
';’f/'v'

e .

¢

Sow

.
4

.
L

PR

30

c e
v

“

‘.
L 3
ST <

S

R -h_' K .
A S
SN ala?ata

The three attributes of the requirements identification problem are
Consistency (Will the system hang together? In other words, do the
requirements mutually agree, or do they contradict one another.); Completeness
(Do the requirements adequately define what is to be done? Have we defined a
c31 system or left anything out?); and Validity (Will the system satisfy its
intended users, or are we building the right C°I system?).

Identify

Evaluate

Express/Represent

| __—
1l -

,11' '.1"{'
H‘{ "v{ .

-

.

Figure 4.1-2
The Three Aspects of Requirements Validation

These issues might be expressed as: Are we building & system, are we
building a ¢ system, and are we building the appropriate C°I system.

The ways to answer these questions and the tools to support the process
are lacking. Rapid prototyping offers a means to improve the process of
answering the questions by allowing construction of large portions of a
system's functionality early and cost effectively. The system so approximated
can be the subject of experimentation to determine its attributes. How to
choose the approximation is key to the character of the prototyping activity.
There is no clear consensus of how this choice should be made, and it remains
in the realm of art. Software exists in several forms /dimensions:

- performance
- resource requirements

- functional description

- logical description
- algorithms

- actual code

Te T e -
. RS N " A S
DT YRR WV VDL W WP A0 Y SR O

olet i i i gl S i A B Dl h Tk Rt Bk Rt Tadl A S o Ble b s fo g & e pin
PR

O R Y

Each aspect may be represented to the detriment of the ability to represent or
evaluate the others. Given constant resources, the better prototyping
approach would represent, exercise, or create software prototypes exercisable
in all of these aspects. Figure 4.1-3 shows a cartoon of how prototyping is
to do its job. The artfulness in the process is associated with what is
included and left out in the skeleton functionality.

Prototyping

Skeleton
Function

Early-Phase
Activities

\

Study, Analysis

Revision for a Z}

Better Product
System

Developer

System
User

Implications
of the

Document's
Statements

Figure 4.1-3
Prototyping is a forward-looking activity within the development process.

Alternative Solutions

We perceive three alternatives to solving the problems of c31 system
development. They are not exclusive but represent general partitions of the
solution set:

- extending and deepening the requirements analysis process; kkw:.,:(
- vesting the using command with acquisition authority; :{f{:{i{{-
- automating the requirements process through, say, knowledge ,:}?,.,}}

S ol -‘..n'

based techniques.

pJ

I A R Y '.. .
:'i'*r'):-“:":ﬁ' -

;:g;gf;:-

The first alternative involves increasing the time allocated to
requirements definition as a development phase as well as increasing the
effort/cost of such a phase., During this period, more and more extensive
activities of the type currently occurring during requirement analysis would
take place. Various degrees of automated support of a record keeping nature
may occur. This would involve such aspects as more use of project data base,
electronic media, and automated consistency checking.

There is evidence to suggest that the use of Ada as a target language
will extend the requirements process. This planned increase should occur if
Ada or a subset is used as a PDL. During this extended period there would

presumably be additional contact with users and more opportunity to consider i |
alternative solutions. The likely effect is to increase the program cost at K=$\$%h
the early phases in order to minimize the high cost of integration and test as }: Qﬁ}ﬁ
well as reducing risk. Most proponents claim that this approach may reduce RN
total program cost over a complete system life cycle. - \)}q

AN A A

Use of evolutionary acquisition is a subcategory of this theme of
increased requirements lefinition effort. This process, as shown in Figure
4.1-4, consists of a sequence of carefully phased blocks. 1Its intention is to
limit development risk and to virtually increase the requirements analysis
period. The approach has had large success on OASIS recently.

In the second approach to reducing development problems, the using
authority would also be the acquiring authority. This in principle reduces
the number of intermediate translations of the requirements, reduces the
communications problems, speeds up the turnaround time of the feedba.k loop,
and costs less (by reducing the involvement of other organizations). The
trade- off and source of risk is the reduced technical sophistication of the
user and his reduced experience in program management. The recent TAC
experience in fielding CAFMS is a notable data point. CAFMS was an in-service
acquisition fielded in considerably less time than the average 10 years for a
c31 system deployment. The cost was also considerably less, even

discounting some cost and time reduction due to the heritage of TACC/AUTO used
by CAFMS.

24

J LU

RN

Time

LR)

Test

Implementation

Design

Requirements

Block A

IR

[=
(o)
o
Es)
«
pu]
g
=]
)]
o
g8
-
[«
&0
o
[}
[
A
/)]
's)
=1
g
8 &
..m [« 9
w <
~ 9
o)
—t
m
-
()
ts)
U4
[y}
=]
Eal
&0
)
m
[=i
4
(4]
o]
—i
/m

Requirements

€ a ¥ e v o 4

Block C

Begin after Block A Development

Y

to CsI systems.

Ltion 1s basic

181

Figure 4.1-4 Evolutionary system acqu

25

The constant watch program for PACAF and the EIFEL 1 program for USAFE
invglve significant direct user control. While not a €31 system but rather

a C’°I simulation system, the Warrior Preparation Center (WPC), a joint USAFE
and Army program, is also a data point, The WPC is a larger effort than CAFMS
and is early in its life cycle, so an evaluation is not possible. Taken
together with the other efforts, however, it points to a trend toward a
merging of the using and acquiring command authorities,

The third alternative is the automation of the requirements analysis
process through the use of techniques such as knowledge bases. Research
toward such a goal has been conducted by the Knowledge Based Software
Assistant (KBSA) effort funded by RADC through the University of Dayton. The
KBSA would require construction of various expert systems and meta-models, the
most notable of which would be a meta-model of the structure of the
application domain ~ c31 systems. An intermediate stage for such an
approach would use mixed- initiative knowledge based systems providing some
user interaction. The time necessary to develop such an approach is projected
at 10-15 years by the above group. This is certainly far from maturity.

The most likely course for ¢ system development over the next few
years is a combination of all four solution approaches. This would see
evolutionary acquisitions characterized by increased and deepened requirements
definitions using rapid prototyping and ever more increasingly automated
support environments. Finally, increasing sophistication and involvement of
the using authority in the acquisition can be expected,

4.2 Definition of Rapid Prototyping

Stating a definition for rapid prototyping is not an easy task. A
special edition (12/82) of the SIGSOFT Software Engineering Notes devoted to
rapid prototyping did not present a consensus, Most of the articles offered
their own definitions. Prototyping of hardware systems is well understood and
refers to construction of a scale model of the system. Prototyping of
software is different due to its abstract nature until it becomes code.
Prototyping of software in the stages before it assumes this concrete shape
has the highest payoff. This is due to the fact that the problems of software
are in its definition, not in the production of code. Rapid prototyping of
hardware is clearly the quick/early production of a scale model. Rapid
prototyping of software refers to the quick and cheap production of an
approximation of the software in some stage of its development.

Prototyping is a process. We believe that the term rapid prototyping
should be seen as a code word for modern tool-aided software development
practices which stabilize requirements and design quickly and completely.

This is counter to much of the work reported in the literature which takes the
view that software prototypes should be like hardware prototypes and be
capable of evolution to the final product,

Rapid prototyping for systems as complex as c31 systems can only take
place within a special facility, laboratory, or test bed geared to the special
needs of C31 system definition. The tools and support environment of a
laboratory would make it possible for less experienced or sophisticated people
to define and build software. Similarly, it would allow experienced and
sophisticated personnel to build more complex systems. This is the general

26

d

L4

n,-‘ ‘
-I'i
Y
"

a
o
RS

.,A
/;gf
Ay

4
AT

27,

/)
*A

7

JH

.,,
'\ v" -
'y ')“\:‘
) ra”
e ey
%- % '\

“§n;

<
i

»
3‘,“ ‘:-' Y

-
P
LI
et
AN
R

?,
v,
-
o

L

AL
'b"‘v“v;u," o
oA
LA A
\':
~(

n
L4

7
A7
P
X
Ay

"
St

g ta’ Yo % a8 e’ o8 &’ a v '8 a8 MR atR a'A e 1.8 4t o't v IR W UN Y U . ’ jiniitadaidt i i.?.‘{‘?"
O 4]

‘l..'

Attt

ps

lesson of programming environments and tools to support system development.
Without a specialized facility, rapid prototyping could still take place;
however one would need a permanent team of productive, creative software
engineers to quickly build their notion of a system on a custom basis.
Current trends towards system complexity and difficulties in retaining
creative personnel militate against the second solution.

4.3 Rapid Prototyping's Role in c31 System Development

The basic principle supporting the application of rapid prototyping is :xﬁ::%:fz’:fv
that the earlier in the system life cycle problems are identified, the less
costly will be the solution. Prototyping is one major way effective

preplanning can be conducted. Our experience has shown the following:

1) Prototyping must be invoked at the earliest possible stage of
system design and development,

2) Several cooperative (but distinct) types of prototyping are
required.

3) An effective procedure must be invoked to incorporate

prototyping results into the planning, design, and development
processes.

Careful formulation of requirements, specifications, and design are
important. But behavioral feedback from the intended user reveals information
that is difficult to discover by analysis of a static system description such
as a specification.

Prototyping provides a new, richer basis for discussion and statement
of intent that complements normal specifications. In short, the study of the
potential behavior of a system has a greater payoff in requirements and design
stability than study of static descriptive information. In the traditional
life cycle model, this behavioral feedback from the intended user becomes
available only at the end of a lengthy development, as shown in Figure 4.3-1,

Perceived _ | System
Operational "] Requirements
Needs
Validity
1
Iteratively Validity System
Design
‘ Validity
Evolved
Operational \\\ Validity Check | peyeloped
Environment/ System 1
Needs me

Figure 4.3-1 Validation of Requirements
27

.
LR P

e

Ll

W, T T e N

c‘\. n‘

gt v il LWL HUW R 4 : iy ¥ 1 ™ L IVESRK YL VW GO LW Sl *u e B0 4 Alg sty g-a ¢ ~
“,“ ‘1

Y 2 (3
WDSHLN,
IONOAGAGA

Prototyping can shorten the feedback loop in key risk areas before
large investments have been made in development. Prototyping can aid in these
areas: Definition of system requirements; establishment of criteria to
evaluate system performance for a given system concept; simulation of
operational concepts; operator-to-system interaction; system architecture and
operation procedures; capability to demonstrate system operation to provide a
common base of dialogue between designer, developer, and decision maker.

Just as the problems provided by c31 system development are varied,
the tool set and the approaches to creating an executable prototype are also
rich,

Prototyping Drivers -~ Schedule maintenance, technical compliance,
operational success, and maintenance of cost and performance milestones are
drivers of prototyping activities. The results of prototyping activities
should aid in identifying and validating requirements soon enough to maintain
program schedule. In an evolutionary acquisition, this means that the
timestepping will force prototyping to start earlier in real time, which, in
turn, is the driving requirement for earlier existence of the prototyping
tools. This also points towards the need for a laboratory.

There is a cycle of requirements identification, expression, and
validation that returns to identification as was shown in Figure 4.1.2.
Prototyping can assist in each part of the process. A hierarchical
description of ¢31 functions supplemented by a help file aids in requirement
identification. A structured means of requirements statement, such as that
available in SREM and Designer's Workbench, aids in requirements expression.
Tools such as system performance models, structured groblem statements based
on state-transition diagrams or Denver Aerospace's C-° Systems Laboratory aid
in requirements validation. Certain high-level procedural languages, if they
are mature, such as Prolog (for data base and query systems) provide the
capability to express requirements in an executable form.

28

5.0 APPROACHES TO PROTOTYPING

5.1 Iypes of Rapid Prototyping

We studied all four present approaches to prototyping. An analysis of
each follows:

Very High-level Languages (VHLL) - The first is through the use of
special-purpose high-level languages. These languages are either procedural
in nature, like PASCAL or Ada, or are data-type oriented like the graphics
tools GRASYS and XPL/G and the specification tool GIST. The ways these tools
are used to prototype are as follows:

1) Identify requirements (not part of the tool);

2) Express the requirements in the language;

3) Execute the resulting program.

Fundamentally, the requirements specification is a program that is
executable, and therefore, a prototype. Use of these tools for C’1 system
applications is not yet mature. Use of the tools for any specific
application, e.g., message processing, is similarly not mature. Effective use
of such tools requires a robust application specific support environment to
aid in identification of requirements. Such tools linked to the existing
high-level languages do not exist. Further, these tools have only been proved
in extremely limited applications. Our work has categorized this high-level
executable specification approach as immature. There is one exception. The
language Prolog has been developed to support data base system development.
Data base management systems and general command language access mechanisms
can be constructed very easily in Prolog.

A Prolog-expressed set of requirements is immediately executable with

good performance. Prototyping of data base system components is a key to
intelligence system applications and is especially important in analyst
support environment applications.

Modular Algorithm Libraries - The second approach to prototyping is
through the use of modular algorithm libraries. This approach is highly
site-specific, depending on the algorithm heritage available. These systems
could be used as follows:

1) Identify requirements (not part of the tool);

2) Express requirements in an informal document;

3) Browse the library to select heritage;

4) Assemble a software package.

Such approaches require a fairly longstanding commitment to maintaining

a code heritage and support library. The function of the library is to
maintain documentation and aids to control the software interfacing between
the modules. Our study has not shown any major libraries that support such an

approach for any problem or generalized problem area.

29

Data-Base-Driven Tools — A third approach is to use data~base-driven
hardware and software tools that, when instantiated, provide varying degrees
of functionality. The area where these tools have success is in
characterizing the man-machine interface. For the man-machine interface (MMI)
application, a computer and display-device hardware suite host a picture
generator. The tools are used as follows:

1) Identify requirements (not part of the tool);
2) Express requirements in an informal form;

3) 1Initialize a scenario in the test bed;

4) Refine the scenario "hands-on."

The test beds have most widely been used in the MMI areas. Examples
are TRW Corporation's FLAIR and Martin Marietta Denver Aerospace's C3
Systems Laboratory. The world of MMI test beds has two components. The first
uses static display frames and static graphic entities to create a sequence of
fixed images that can be played back to give an illusion of movement. Online
modification of scenario dynamics is not possible because the dynamics are
provided through "flashcarding” the frames. TRW is currently extending the
picture building portion of FLAIR to include dynamic models of elements such
as ships. The second approach uses an object-oriented graphics builder and an
extremely elaborate data base to hold definition of pictures and overlays.
Either (1) a vector calligraphic-quality display device such as an Evans and
Sutherland, or (2) a bit-mapped device such as RAMTEK with special software is
necessary.

This second MMI test bed provides very dynamic "on-the-fly" picture
manipulation. Online scenario modification is possible. Denver Aerospace
uses this approach in its c3sL. The data-driven test bed approach is mature
and has been proved in application to intelligence systems. Drawbacks are
that there is no way the system will of itself identify requirements or the
system's cost, and there is little opportunity to directly migrate solutions
into development. Some identification of necessary workstation and display
components occurs by virtue of the tool's underlying meta-model of a class of
c31 displays. This provides a kind of completeness information through
offering subelements of an abstract workstation (maps, overlays, alarms,
menus, etc.). Significant investment must be made in either approach, and the
dynamic, online modifiable test bed is more costly. Clever implementations
could be made using modern technology and the heritage of our C-SL to
provide the same functionality for less cost than c3sL's development cost.

Structured Problem Statement/Analysis Tools - The fourth major approach
to prototyping uses structured problem statement/analysis tools. These
methods characterize the system to be prototyped in terms of a graph,
procedure, state-transition diagram, or hierarchically structured data base.
Often, a large prototype constructor may interleave these techniques. They
are all equivalent to describing the problem to be prototyped as a
finite-automata problem. Certain extremely general discrete-event-based
model-building tools fall within this approach. These have been referred to

LT

-
ARITAS AR
AN »

O AU A S,
-) . o .
S P R TR TR, W W S AR

v

“

e

PN

«

v

. :’t‘.t/' !

Do S

13

in the literature as application specific simulation languages. SAINT is one
example., The tools are used to:

1) 1Identify requirements (some help provided by the tool);
2) Express a problem or requirement in the tool;
3) Run prototypes.

At times, a structured requirements expression language may be linked
with the tools. This is the case of the Software Requirements Engineering
Methodology (SREM) approach. We evaluated SREM under contract to RADC to
determine its applicability to Air Force C’°I system developments. We
determined that generation of the "beta" system descriptions was

insufficiently automated, and the tools (model builders) to construct the
betas were not general enough.

The structured problem statement/analysis approach is mature and is
proved by application to c3r systems. Our investigation showed that it was
the most cost-effective for application to C3I problems.

5.2 Taxonomy of Approaches

The previous section provided a synopsis of the main portions of
prototyping approaches. We have prepared a detailed taxonomy of the world of
prototyping as shown in Table 5.2-1. 1Its purpose is to provide a means to
classify prototyping approaches in a fundamental manner and to supplement the

more empirical discussion of the previous section. There are six dimensions
or aspects to the field of prototyping.

Table 5.2-1 High-Level Prototyping Taxonomy

Level 0 Prototyping =
(Evolution Dimension + Functionality Dimension + What Entities Addressed +
Automated Prototyping Dimension + Which Phase + Parent Specification)

Level 1 Evolution =
(Refinable to The Product, Discardable)

Level 1 Parent Specification =
(Prototypical Specification, Normal Specification)

Level 1 Functionality Dimension =
(Non-restricted, Restricted)

Level 1 How Defined =

(Separate Requirements Generation, No Separate Requirements Generation) V.ﬁcﬁaxi
| Level 1 Which Phase =
| (Statement of Need, System Definition, Software Requirements, Software Design,
Other)
Level 1 Which Entity =
(Operational + Functional + Logical + Algorithmic + Physical)
i .
i
| -
y

B P

B . -,
' P AT PODE A BPINP PP I P SO

S AT e T T L T T . . s

»

LN PR
.

LUURTURY 4

LA
)

A ¢

L, lx

..

o & ¥ ¥ 7
LR AR AR

B TLERE

SR e

TYS 5

bt
3

‘e TR

& ¢
I.I‘- .

Table 5.2~1 (concl)

Level 2 Refinable To The Product =
(Language Evolution + Host Evolution)

Level 2 Discardable =
(Effective Procedure To Obtain Output, No Such Effective Procedure)

Level 2 Prototypical Specification =
(SON*, System Spec*, Interface Control Document (ICD)*, Ops Concept*, Bl¥,
B5%, Cl*, C5%, Other)

Level 2 Normal Specification =

(SON, System Spec, ICD, Ops Concept, Bl, B5, Cl, CS)
Level 2 Separate Requirements Generation =

(Effective Procedure To Obtain Prototype, No Effective Procedure)

Level 2 No Separate Requirements Generation =
(Templating, Executable Specifications, Translation)

Level 2 Restricted =

(Restricted Functional Elaboration Scope Unrestricted, Complete Functional
Elaboration Scope Restricted, Restricted Functional Elaboration Scope
Restricted)

Level 3 Templating =
(Hierarchical, Non-Hierarchical)

Level 3 Language Evolution =
(Language Change, No Language Change)

Level 3 Host Evolution =
(Host Change, No Host Change)

Level 3 Executable Specifications
(Mathematical, Operational, Axiomatic)

Evolution Dimension - A prototype is refinable to the eventual product,
or it is discardable. 1If it is discardable then there is an effective
procedure to obtain the results or insights from its use, or there is not. An
example of an approach where there is no such effective procedure would be an
MMI prototype developed on a test bed very different from the eventual target
ADP environment. It may provide general information on the type of system
desired, e.g., a raster display vs. a vector display, but the tool itself does
not print out the words "raster display recommended." This sort of approach
provides its information through users reacting to it and communicating their
impressions in an unstructured or free-form manner. An example of an approach
including an effective procedure would be the same test bed with a file in
which to collect user impressions, or a performance prototype which collects
data translatable into the resource requirements to run the software
represented.

32

TEEN T & e LYV THEE AL AT . RT3 TR SITEER T T YaT T

AT N % ™YV TEENF."s"."2 v ¢« s /DB * * -

'
v

-

3

AN,
N ONL
R
5
2 p

o
'. .‘
.l
3
*
)

L)
l‘
v

If the prototype is refinable to the product, then there is a possible
sequence of programming language changes to evolve the prototype to the
product, and/or there is a possible change of host processor/ADP to the target
system. This is the case of the Naval Research Laboratory's (NRL) Secure

f?l
P e
L

™ " “w
7,
X
3
13

Message Processing system prototyped in FRANZLISP., Of course it is possible !;f!g!?
that the original prototype is a major portion of the desired target system :;?}},:,_
requiring neither a language change nor an environment change. afﬂj(;f}
NI

T

Parent Specification - We can classify a prototyping approach by what P TR

sort o input it requires in terms of a specification. This refers to the
approximate level of detail in terms of normal life cycle documents necessary
to use the approach. This parent specification is either a working
specification/document (appearing in the taxonomy with asterisks under Level 2
prototypical specification), or it is a normal document. A key point is that
working documents can be available earlier in the life cycle than normal
documents. Additional differences involve rigor and format. One can see the
difference in comparing a working document containing some B5 together with A
and Bl level data with a formal B5 document.

Phase - This dimension refers to the earliest or best phase: of the
development cycle which the prototyping approach supports. The phases are
listed as statement of need (referring to early formative activities), system
definition, software requirements, software design, or other. This last
refers to later life cycle elements. An example of prototyping in the
statement of need phase might be supporting constraints analyses on the time
to process new reports by a tracker-correlator in a proposed
correlation/fusion center.

Which Entity - This aspect refers to what level of abstraction of the
software is being represented or manipulated. The subcategories are
operational, functional, logical, algorithmic, or physical (code) as shown in
Table 5.2-2. The earlier a software system can be represented and evaluated,
the more stable subsequent detailing will be. Most prototyping
tools/approaches currently discussed in the literature deal with representing
software in the algorithmic astage of its existence.

Functionality Dimension - This aspect of an approach should be fairly
intuitive as it refers to the portion of the overall system that is being
prototyped. The represented functionality is either restricted to a subset of
the total system or not. In general, prototyping of the total system
functionality as through a hardware mock-up is very unusual in the €3I
world., It is not at all unusual in the world of aircraft, simulators, cars,
or missiles. Non-restricted prototyping is equivalent to the "build it twice"
philosophy of system development.

33

a1
Ly b 7

o

- 7 R
At e U e T -

50 ftware takes shape through several lévels of abstractions.

Subcategory Entities Described Form
Operational Operability Requirements Document
Functional Functional Requirements Document
Logical Data Flows Graphic
Algorithmic PDL Document
Physical Code Tape

If the prototyping is restricted, there are three states of this
restriction depending on whether the scope or functionality of a system
component is being represented. Scope restricted refers to limiting the
number of functions represented, e.g., representing the message handling
aspects of a C’I system but not the track generation function of the
system. Restricted functional elaboration refers to the extent to which the
represented function is exercisable; or, similarly, the extent to which it is
approximated. Most prototyping currently falls into the restricted functional
elaboration/scope restricted category.

Automated Prototyping Dimension

Use Computer-Based
Tool

!
Results

Use Computer-Based
Tool

Requirements for
the C31 System

Requirements Analysis
for Using Tool

Figure §.2-1
Automated prototyping can occur only where a computer tool can directly
process the system's requirements.

Figure 5.2-1 shows the two parts of this dimension. Details of
approaches to automated prototyping have received significant attention in the
literature. The level one decomposition considers whether or not, given a
parent specification, the prototyping tool can directly process it. If not,
then there must be a new mini-requirements analysis process to define how the
tool will be used. Until systems such as Dr, Balzer's GIST concept become
mature and are appropriately instantiated for c31 systems, separate
requirements generation will be the normal course of prototyping. We discuss
this distinction more fully in a discussion of our preliminary methodology
later in this report.

If no separate requirements generation is required, then the
prototyping tool can be instantiated one of three ways: Templating,
executable specifications, or translation. Translation refers to the
existence of a front-end to the prototyping tool which can parse a
specification and translate it into an executable form automatically. This
might be a natural language processor. Templating refers to a human
augmented, totally guided procedure to instantiate the prototyping tool (from
a parent specification or quasi-specification). This templating is either
hierarchical or not. An excellent candidate for templating based prototyping
tool instantiation is the MMI. A great deal of analysis has been performed on
the structure of determining MMI requirements against the possible universe of
solutions. The Mitre work of Sidney Smith is foremost in the area.

Many workers in the field evidently believe the use of executable
specifications is the only way to perform rapid prototyping. The project
documents would be written in a format or language which was a high level
language. They would be human readable (after appropriate training) and
executable (code equivalent). We are far from realizing the potential of this
approach for c31 systems. Once an appropriate language has been selected, a
support environment and/or set of c31 system specific constructs must be
defined and built. There are four bases for executable specifications. They
correspond to the systums of defining the semantics of the languages. These
categories are mathematical semantics (also known as denotational),
operational semantics, the axiomatic approach (implicit semantics), and
informal (implied semantics).

5.3 Analysis Criteria

In order to evaluate the different approaches and instances of
prototyping, we developed some criteria as shown in Figure 5.3-1. For each
criterion the potential valuation is also shown. Note that there are three
subfactors associated with relevancy to requirements evaluation. We noted
what life cycle phase the approach supported, what aspect of requirements
analysis it supported, its maturity, and its immediate applicability to C31
systems. Valuation judgments were made by reviewing critical literature and
studies, tool and approach documentation, and interviewing task leader/program
manager/ IR&D principal investigator personnel at Denver Aerospace. In the
course of our literature search to support the program, we have collected and
reviewed over 350 documents.

Two approaches were not ranked. The first is the use of software
remaining from previous developments (heritage software) or algorithm
libraries. This is site specific and no evidence occurred in the literature

R

et

W
ll.

B bW

PO

s

'\-(!t

LA

" .
o ael s
s S b

L

I N R

LNNCENNCIR (

c Rt e Lt - A~ SR v b S SR ne & o doBl R S, gL ik

TYTHTTOR UV O vy
AT T
soat At
r’,"'.""“

X4

2 3 F:
A
elby
where a company had made use of such an approach. The second approach was ! ?ﬁﬂ
reduced functionality quick build. This approach refers to creative and
productive teams of software engineers who, using a build-it-twice philosophy,
hypothesize a portion of a system's software. No doubt this occurs on a

relatively widespread basis but is insufficiently disciplined/structured to
value. An example might be NRL's Secure Message Processing System work.

- Applicability to C3I (0,1)
- Maturity as a Discipline (0,1)
- Relevant to Requirements Identification (0,1)
- Relevant to Requirements Expression (0,1)
- Relevant to Requirements Evaluation (0,3)
~ Consistency
- Completeness
~ User Validation

- Supports Study, Preliminary Design Phase (0,1)

- Supports Detailed Design, Test Phases (0,1)

Figure 5.3-1 Criteria for Evaluation

5.4 Evaluation of Approaches

The results of the valuation of the instances of the approaches for the
criteria were collected in a table. This is shown in Figure 5.4-1. The
scores were collected into a raw score which was weighted by dropping out the
contribution of those scores related to support of the detailed design-test
phases. This was based on a determination that high payoff for prototyping's
use is early in the life cycle. We further weighted the scores by dropping
out the immature technologies. The weighted scores were then combined to give
an average by area for those technologies which were rated.

O
> -

l ﬁf

QAN

Formal Rapid Prototyping Languages

We

subareas:
tools are

have broken the area of rapid prototyping languages into three
general, graphics related, and other. In the general category
basically built around subsets of high level languages which are
procedure oriented. The approach consists of using a subset of Ada or PASCAL
as a PDL. A notable example is the work by Taylor and Standish at UC Irvine.
For application to c31 systems development, however, the concept requires
development of a special set of functions. This work has yet to be done.
Without this work, the approach is restricted to support of detailed design
and not preliminary phases. It is essentially a way to facilitate, to a
limited extent, the expression of requirements.

Table 5.4-1 A Weighting of Approaches

Five-PD

Raw Weighted

Average by Area

Formal
Rapid
Prototyping
Languages

General

Taylor's Use
of Ada Subset

© |Applicability

o [Maturity

© |supports ID

© |Supports Expression

w

o |Consistency

O [Completeness

© luser Validation

(=]

Graphics
Related

- Mallgren's
XPLG/GRASYS

&~
~
w

ata
Management
Related

- PROLOG

Other

- Balzer's GIST
- SREM

Structured
Problem
Definitions

Hierarchical
Models

CZSAM

Relational
Models

FAM, AUTOIDEF

Graph Theory
or State-
Transition
Models

GOM, GPM,
PERCAM

Functional
Test Bed’

csi, FLAIR,

1DS.

Heritage
S/W

By Area
(Application)

Note: This
build below.

is site-specific
We do not

and

quantify

Scenario
fenerators &
Test Harnesses

By Area
(Application)

- Denver
Aerospace's
SMARTS
MSG System

- TYC-16

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

4.0

2.0

Quick-Build

Reduced
Functionality

Ad-Hoc
Approaches

This is

site- an
is not quantified.

d individual-specific,

Full Func-
tionality

Dart System

0

0

0

0

0

2.0

1.0

PP e"a"a " a & o 2 8 b % £ A S

v 0
Sl

PR Y

N A
S A,

. . v
R A

‘.
O

4
L

The logic programming tool Prolog is popular in Europe. Our version
was obtained from the University of Edinburgh. It has been shown to be
valuable in expressing data base system and command language requirements in
an executable form., The utility of Prolog is in the ease of using it to
express first and third normal form relational descriptions of a data base
system in the Horn clause subset of the first order predicate calculus. It is
up to the user to provide the c31 related constructs, however.

More work has been performed in the area of graphics specification
languages which are executable. Here, the work has proceeded to the level of
defining the data objects and operations to allow manipulation of picture
components at the level of CORE graphics primitives. Examples are Mallgren's
XPL/G work at the University of Washington and Ohlson's GRASYS at Texas A&M.
There is applicability of these to C3I systems. Maturity is lacking,
however. Also, there is no facility to support requirements identification.
Early phases of the life cycle can be supported through this work, but it is
restricted to preliminary design.

The category of "other" embraces approaches such as Balzer's GIST at
USC and the TRW SREM concept. Balzer's work falls into what may be a separate
subcategory of knowledge-base-supported rapid prototyping. GIST uses the
operational (lambda calculus) approach to defining semantics of the language.
This work is not currently applicable to C3I systems as, again, the analysis
of the application domain has not been done. It is far from maturity. It
supports expression of requirements and, when complete, will support the
formal validation of specifications.

The SREM approach is important and cousists of a methodology and
several tools. It is applicable to ¢ systems and is mature. In the sense
that it enforces a structure for expressing stimulus/response network
requirements (the R-NETS), it supports the identification of requirements to a
limited extent. It provides consistency checks and, through development of
the simulations, allows a degree of uses validation. There is no "world
model" contained in the approach, so completeness checks are not possible.

The data structures of the support tools make it difficult to capture
concurrency and parallel operations - they enforce a sequential world view.
SREM scored well, however.

ggickauild

We have already discussed why reduced functionality quick builds were
not ranked. This approach is part of the build-it-twice or built-it-several
times philosophy. An example of a full functionality prototype is found in
the Naval Research Laboratory's (NRL) use of FRANZLISP to prototype a secure
message processing system. The NRL project chose a powerful object-oriented
system which hides the data manipulations to quickly construct the software.
They coupled it with a specification methodology (manual) using state
transition diagrams. Of more interest as a general tool is the General
Dynamics DART system and its extensions at General Motors Corp. The DART's
concept is to accept structured expression of presumably validated
requirements. Given an implementation of a design instantiating those
requirements, this code can then be refined and translated to another target
machine, It is mature in retargeting code and not mature in developing code.
The major drawback is in the presumption of validity of its inputs. It
achieves prototyping by quickly getting code for a full system or accelerating

38

s “'J‘ 3
‘v O
A
‘v]

.-
.
.
Pty
»
.
a

-4ty
f

A
i
D

1)
P}
' N
AL

PRty
ar

T oty

L
LA

-y
]
!""‘
@
S
4

X
27
P s
P A

s
N,'v ‘s
AL
0
L X s
&

.
¢
""

the later life cycle phase. It is not specific for C3I systems. The idea
behind this approach is a notion of prototyping most widely held by
practitioners believing the problems of software development arise in
software. They do not. Figure 5.4-2 shows the quick-build view of
prototyping. If the cycle time tjtyt3 is small, there is a chance the
approach can influence the system development. This notion of small can be
further quantified. In order to '"zero-in" on requirements the cycle must be
run through several times, each cycle identifying misperceptions in the
requirements. The sum of these times, tp, must be smaller than or equal to
the time allotted for requirements definition. The problem is further
exacerbated by the quick-build approach's presumption of validity of the
majority of the input requirements. The general area of quick-build did not
score well,

Normal Life Cycle

Preliminary
| Requirements Definition De?iﬁ? -
== R ~n

le t -l
™~ ! —1
-

ol

Tool ’IFunctionality

Develop S/wW
—

Requirements
Requirements d ty
SRS
f—x —_—] RSNG00,
Judgment & Change R P
Qﬁs Mo
:~ ‘}\‘ -_:‘." '
g A
= ts3 J A\ AT
- |i'||llii
SN
. ."n\‘-n."\.“
["aNoa
t .= k + n(t)+to+t AT
prototyping (ty+ea+es) y:u;§{¢5
O TR
Where n Is the Number of Iterations of Prototyping. \5;“:{\=b
A e A
Note: t . must be very small with respect to normal
—_— prototyping

life-cycle activity times, or th<<RD.

Figure 5.4-2
The time available to produce results is critical.

s

P

]

PN S I

> "ol SN Y

la " s & 8 8.

'

Lo RN

N YA PN ol el b it TRl TN P X AN RGN N TS ' a4

Scenario Generators/Test Harnesses

Within this category we find forms generation systems or forms
management systems. These packages, such as DEC's FMS, are generally bundled
together with DBMS or office automation packages. They allow the user to
define a screen format or template which is usually restricted to
instantiation with alphanumeric data. Some systems also provide a way to
populate the defined forms from a file. These systems have limited utility in
supporting development of the more operationally oriented ¢ systems as
they lack means of defining graphical form components. For message processing
or some intelligence applications, however, such forms generators have
utility. Once the set of forms corresponding to the set of displays has been
defined, they can be instantiated and sequences played back. This provides an
effective way of communicating to the user what he will see in the eventual
system. The utility of this approach has been proven on Denver Aerospace's
SPADOC 4 definition phase work and the OASIS program. In both cases special
graphics generators were built.

This approach is useful and it can improve the quality of user
iqterface developments., It tends to be very cost effective and fits well
within the object oriented approach to software development.

In the category of Test Harnesses there has been a lack of success at
finding examples outside Denver Aerospace. The issue is not that they don't
exist, but that they are not widely discussed in the literature. The basic
approach makes use of extensive simulation software to create, for example, a
system's message environment. This role in rapid prototyping is limited,
however, because of the enormous effort required to define the data bases for
a new application. The Simulation Monitoring Analysis Reduction and Test
System (SMARTS) is being developed for TAC at Langley. It is a system to
produce, at the packet level, message streams for a variety of TAC c31
sites. The use of the system will be in conducting and prototyping exercise
scenarios. Its strength as a prototyping tool is in user validation of
requirements. Rapidity, in the sense of other tools, is not obtained.
Another tool is the Denver Aerospace TYC-16 message formatting and processing
system. This provides a quick formatting and processing of certain JINTACCS
messages such as JANAP128, As a component of a larger testbed to prototype
message processing systems, it has merit, In the same vein as these tools is
the Offsite Test Facility (OTF) of NORAD for the 427M program built by Ford
Aerospace. This provides a training and system test replica of the NCMC
message processing system. It could be used in ways similar to Denver
Aerospace's SMARTS. The general category scored well but applications are
restricted due to the level of detail and difficulty of use.

Structured Problem Definition/Analysis

This area, as discussed in the overview section 5.1 above, is most
promising. Section 5.5 of this report discusses some details of the
approach's foundations. There are four subcategories: Hierarchical models,
relational models, graph theory or state transition approaches, and functional
testbeds. They can be considered crude languages whose only syntax is table
or menu population. Each encompasses a model of the c31 application area,
and, in fact, the tools may be grouped on the basis of their modeled
work-views. They have in common the fact that they all use an informal means

40

O
DAGOGNC

.
D)

A

T

%

‘f (' .
S 1

{d'_j;*:‘ .

of defining or implying their semantic structure. They are all means of
representing objects and operations, and all are built on top of programming
languages which similarly use an informal or implied semantic structure, such
as FORTRAN,

Hierarchical Models

This category contains structured models of the application domain
arranged in a top down hierarchy. The c? System Analysis Model (C“SAM)
built by BETAC/LOGICON for TAC and RADC/CO is the single tool here. C2SaM
provides a data base of functional gnd operational requirements for TAC/CONUS,
MAC, and USAFE/CENTCOM. One uses C“SAM by choosing a command level, site,
or function. The package shows what subfunctions are performed down to the
operator activity level. It keeps track of the informational input/output
requirements for the function as well as which other sites could provide the
necessary inputs. These inputs are referenced as specific JINTACCS formats.

The C2SAM is a very strong tool to guide the user in identifying
requirements. Various consistency checks can be run on the defined systems.
The structure of the data base guarantees completeness to the extent that the
data base is complete, The data bases have been validated by the subject Air
Force commands. C2SAM does not provide facilities to generate code, and its
principal use is in passing from SON to validated quasi-B5 data. Integration
and development of ICD's are well-known stumbling blocks in system
development, and this tool mitigates these problem areas. The C2SAM is
discussed in more detail in section 10 of this report.

Relational Models

This approach uses a very restricted underlying relational model of
requirements and design entities associated with system or C3I system
development. The tools allow instantiation of project data bases which can
then be used to exercise the system as a logical structure.

Boeing Computer Services under contract to SOFTECH, Inc. is developing
a mechanization of the ICAM methodology called AUTO IDEF. The tool, while
originally designed to support definition and study of manufacturing
facilities, has utility for software development, provided that a structured
technique such as the YOURDON approach is in use to define requirements or
design. It permits the interactive definition or manipulation of graphical
entities corresponding to project entities., The work has been extended by
Pritsker and Associates for Wright-Patterson AFB as IDEF III. This effort has
coupled the SLAM II simulation system to the graphical entities. This could
provide a capability for production of BETA elements like SREMs if the work
was modified to support software design. What is lacking is a support tool or
environment for AUTOIDEF or IDEF III focusing on c31 systems.

The Denver Aerospace Functional Allocation Model (FAM) is a tool to
support requirements definition using a YOURDON technique, There is no
graphics interface as in AUTOIDEF. The system allows definition of abstract
software functions in terms of data flows and then exercises them in
accordance with the defined concept of operations. The system was used on the
SPADOC definition phase contract. It properly can influence life cycle phases
from SON studies to preliminary design and can be initialized at varying

,,‘
Ny B

PAAS

n"

24
B

41

I}
A
l.'
’
a

1)
A o
<
[|
»
P
o

~
~
R

gt Sat Wa¥ Am? 2 o TR dg'$¥, & N, g B N G L ‘et ¥, ? 2 g, ’, Y

levels of detail. The strong point of the tool is its ability to support
requirements expression and evaluation strongly linked to a system engineering
methodology.,

The category of relational models also comprises the more elaborate
models of data base system requirements. The use of products like DEC's
DATATRIEVE is one example. DATATRIEVE is a dictionary/directory system
permitting generation of different views of a single physical store
corresponding to an instantiation of a more general normal form model. An
early version of data base simulation, Representation Independent Programming
System (RIPS) does the same in more detail but also with more effort. It was
used on the RADC/IR DIAMS-PACER contract to model and prototype a large c31
data base. DATATRIEVE has been applied to prototyping of a joint Air Force
and Navy program.

This category of relational models scored well in evaluation and is
especially useful in getting to better B5 level documents.

Graph Theory/State Transition Models

The underlying model used by these tools is a state transition view.
Their data bases can be populated once the states of a system have been
enumerated, the transition rules established, and a graphical representation
prepared. The Denver Aerospace General Operator Model (GOM) is an example.
This tool represents the ways an analyst set will interact with a processor in
performing their mission, It was used to support an RADC/IR contract
analyzing an FTD application. The tool aids definition of a site's internal
operational concept as well as performance constraints and is best applied
during pre-B5 level definitional activities.

The Performance and Configuration Analysis Model (PERCAM) of TRW is
another instance of this category. It is driven by event logic tree
representations of systems. These are graph models representing a system's
operational logic such as sequence of events, time delays, and decision
nodes. This system then allows construction of exercisable simulation
elements and provides insight on performance and resource requirements. As
with the other instances of this class of tool, generation of design or code
is not possible. Certain controlling or key algorithms may be checked out
against the simulated environment, however.

The Denver Aerospace General Processor Model (GPM) represents the
physical structure of a hardware/software environment. CPC or module
sequences are represented and run against a model of the processor and
operating system. Interleaving of operating system functions with application
codes can be examined. Such things as CPU schedules, swapping, paging, and
the physical and logical distribution of data can be represented. It takes a
large amount of knowledge of the system or proposed system to use. We have
applied it on a large classified program and on analysis of a Navy

correlation/fusion problem., It is mature and supports preliminary and
detailed design issues.

The category of graph theory/state transition models scores well in the
evaluation but basically finds application later in the life cycle than the
two previous categories.

42

Functional Testbeds

These systems are basically focused on the MMI/workstation elements of
c31 systems. One of the predominant problems of C31I development is the
definition of the MMI. The tools in this category allow definition of
prototype MMI components which are exercisable. The purpose is to allow user
validation of the artfully defined graphics displays. Application is
throughout the pre-detailed design phases.

The TRW General Purpose Interactive Display System (GIDS) is a tool to
ugse display language and display drivers to develop transportable graphics
code. It allows definitions of graphical entities and scenarios. A variety
of post-processors exist to calculate distances, etc., in the modeled world.
This capability is applicable to C31 systems and is mature. It supports
identification of requirements and user validation.

The TRW Functional Language Articulated Interactive Resource (FLAIR) is
a voice-accessed display builder. It functions by quickly building display
frames which can be "played back" to provide the illusion of dynamics. It
appears that FLAIR and GIDS can be used jointly to mockup MMI and scenarios.
FLAIR provides the control and access mechanisms while GIDS provides the
software display builders. The utility of these two tools appears mature
within the early life cycle.

The Denver Aerospace c3 Systems Laboratory is an integrated facility
for definition of MMI and operational scenarios. It is controlled by an
event-driven simulator. Each unique simulation uses a custom defined
operational data base (ODB) that may be dynamically altered by’an operator
using one of the interactive function or processing algorithms within the ¢3
Software System (C3SS). The ¢3S is built around an ob ject-oriented
meta-model of C3I system displays. As such, it provides strong requirements
identification capabilities. The picture components may be controlled through
a variety of access devices, but it currently does not include voice access.
The system has been used on many ¢ system definitions/developments,
including the SPADOC 4 Definition contract and a SPADCCS study contract.

All of these tools offer strong prototyping approaches. Consistency
and completeness of requirements generally cannot be examined with them,
however. Used in conjunction with other tools, this drawback may be
eliminated.

As shown in the figure, the structured problem definition/analysis

tools scored highest among prototyping approaches. The next section discusses
how this approach relates to the current research activities in rapid
prototyping.

5.5 Two Mainstreams of Prototyping Systems

Prototyping certainly supports all aspects of the life cycle, but there
are varied tool requirements. Let us examine how a prototyping tool,
supporting early phase activities, and its structure as a software system,
needs to differ with another prototyping tool, supporting later phase
activities, The technology which supports the later phases, such as passing
to a preliminary design from the detailed, validated complete set of software

43

sl

=,

Py

- e g0

~

o e a1 A N

/2 A T

POty

FOF R AN

. a4

requirements or passing to a detailed design from a preliminary design which
had been validated and is complete, or certain applications generators is
relatively well understood.

5.5.1 Later Phase Prototyping Tool

Prototyping of this stage of the life cycle refers to
prototyping and production of a first cut of the code. What would be
necessary in such a prototyping environment would be tools to generate code
from a standard PDL. Executable PDL is a good example. When this problem has
been solved an additional package which allows the creation of a specification
language would make sense. This could be obtained by the process of
abstraction to define application specific macros for this PDL. Certainly
these macros would correspond to functions which would have to occur in the
ultimate application.

The emphasis in such a tool system would be on the production
of a function's algorithms. Object-oriented programming systems as part of
programming environments support such an emphasis. They hide the data
structure underlying the objects. Data bases containing information on
requirements and design documents appropriately structured and encoded in the
form of one or more data dictionaries also makes sense, The ability to do
traceability from these documents or their isomorphs, the structured data
dictionaries, would be necessary. Algorithms that would support the
construction of code from an appropriately well-defined design language or
requirements language would have to be included. This points out that in
order for there to be any sort of automatic generation of code, a careful
analysis of the syntax and semantics of the requirements language and the
design language as contained in the requirements or design documents needs to
take place. Algorithms would then be sensitive to that language. Another
component of a later life cycle support tool might be a library of existing
algorithms or existing PDL from which one could "cut and paste" and assemble
to obtain a larger functionality. For advanced systems supporting the later
part of the life cycle, one could envision the inclusion of a package to do
structural modeling of the developed code to support computer security
analysis in accordance with government requirements. Should such a package be
in place as an engineer produced the prototype code, and it passed a certain
level of functional test, it would then be submitted to the security analysis
package which would create a model and exercise that model and pass judgment
or provide output supporting human judgment on that code fragment's attainable
level of security. Another package that might be included would be a tool to
analyze the produced software to determine its testability. This would have
to take place against a meta model of software testability., This means that
the software would be analyzed by some algorithm or algorithms which would
check for certain attributes related to testability in a one- or two~pass
process. The algorithms would embody known knowledge on those local
constructs and more aggregate constructs which are known to cause difficulties
in testability. It would be very important to integrate such a later
litecycle support tool with one or more programming environments featuring
debug, edit and compile support.

Tool Structure The system structure for such a tool would
consist of a parent data dictionary supervising access to subordinate data
dictionaries and subordinate data bases. It further would contain an

44

i’ Sl SR

vy

s

1R Ay 8,

PR

[R B R

Vaveavaas

executive which would basically manage the data dictionary. Processes could
be invoked through any of the support packages to obtain the appropriate data
from the data dictionary to pass into the support packages where mainly
automated means would be used to construct a portion of the code, exercise it,
ana judge its acceptability. An additional feature would have to be the
addition of some type of reconfigurable test harness that would be used to
drive these pieces as they have been constructed. An open question is: To
what extent would this cause a difficulty in our ability to construct a module
at a time, elements of a large piece of software? It would seem that the
reconfigurable test harness would have to have some way of mimicking the
expected performance and expected data of the missing pieces of software.

The requirements for such a tool environment are driven by the need to
have a relatively stable paradigm or meta model of the application domain.
Certainly, should we possess one of these paradigms that was reasonably
acceptable, it could drive the construction of support packages that would
exercise or test-out the constructed pieces of software. Further, once an
application is understood to a fairly deep level, it is quite feasible to
construct a type of menu-based system to parametrically build it. This would
allow a user to make selections from menus, fill in the blanks, much like is
done in current systems to support the development of business data bases.
This is often referred to as "fourth generation" or "fifth generation"
languages. Note, this whole discussion presumes that we have accepted the
notion that there is a need for separate prototyping tools to support
different components of the life cycle. Certainly a tool that supports
construction of code can be used to stabilize requirements through use of many
life cycles. An argument against this as a reasonable approach to developing
Air Force C31 systems is given elsewhere in this document.

5.5.2 Early Phase Prototyping Tool

A tool which supports the early portions of the life cycle
(e.g., requirements analysis or preliminary design analysis) on a system-wide
basis aiffers from the previously discussed prototyping environment. The
structure of an early life cycle support tool would be as follows: The
fundamental job of such a tool would be to support the identification of
requirements as well as to support the identification of design components.
It would have to be a tool to support the structuring of the requirements and
the decomposing of those requirements. How do we structure these early
requirements? They are derived from operational requirements, mission
structure and the functional requirements of the system. As we move towards a
complete set of operational mission, and functional requirements we can start
to drive out derived requirements for elements of the software system.
Pictorial representations of requirement sets have proven to be useful in the
past. Whichever way we choose to record them for this early phase tool, it
shouid be done in a manner that can be translated to the various major
pictorial representations (e.g., SADT and Yourdon). We would include
hierarchical decomposition in the list. This pictorial representation is
different from a structured requirements language. We should note that this
tool component supports an engineer's '"quick and dirty" thinking about the
requirements set and is not a representation necessarily of the final set.
There should be a way to proceed from this pictorial representation to
data-bases containing requirements information, and published documents, or

45

data-bases containing structured requirements definition, or even design
information.

To support the identification of interface requirements (also
known as man-machine interface (MMI) requirements or operator system interface
(0SI) requirements) we need another tool. This tool should allow the rapid
construction of screens and control formats, yet allow the organization of
these screens and control events in a very easy manner to build up complex
scenarios. The analyst should then be able to play back the scenario taking a
variety of paths through the screen set, This tool would support the
identification of operational requirements or empirical requirements.

The next element of the tool set would be a set J»f tools that
would allow one to encode the structure of the system and either the
performance requirements or the performance expectations of the components of
the system. This tool should then allow the aggregation of performance data
so as to predict the attainable performance of the system or its components.
Of course, this must take place with respect to a context defining scenario
and there should be components within this tool set to allow the encoding of
various scenarios. Some sort of scenario generation should be available for
the entire early phase tool set. Scenario generation will be supported by a
tool built on an application-by-application basis. For example, one would
neéd a tool to support the generation of Space Defense Initiative related
scenarios, another tool or data base to support construction of tactical
scenarios, and a third to support the construction of intelligence and
reconnaissance related scenarios. This tool or tool set should allow the
examination of the human system component, the ADP at various levels of
detail, the logical structure of the system, and the communications system
supporting these elements. It should predict, using statistics, the resource
requirements, throughput, queueing, and time to perform various functions as
defined by the analyst.

5.6 Conclusion

Our examination of the approaches to prototyping and the instances of
prototyping tools has resulted in selection of the category of Structured
Problem Definition/Analysis (SPDA) tools as the most promising for application
to C31 systems. These types of tools and this approach do not appear to be
areas of research in the literature. Most efforts are focused on development
of executable specification languages. The work on these language systems is

46

EI-I-'- ‘-Eaeulllzlnl-'e‘.“.u.‘.E!E'E'E'U'Fx‘L““"L‘L"k‘W':b'_‘W‘.‘“‘L Ol 4 YA i Aln R e 5t Ry T T R T Ty T T T Y TR TN

intimately tied to work in formal semantics definition. This is related to
the problem of proving correctness of programs written in the new language.

Figure 5.6-1 shows the development of a prototyping system as a
sequence of translations. An analysis of the world of C3I systems must be
' made to identify the objects, operations, and control structures necessary to
best describe that world. This set is then captured in a new programming
language such that its code is reasonably human readable. This allows it to
function as a specification of the system in a normal sense. The ability to
execute the specification on a machine can occur thanks to a compiler which
maps the language constructs to register manipulations.

The World of Analysis
C31 Systems
’ Abstract
’ Jsing lformal Methods Model of Objects,
{"""“" to Def:.me Syntax and Operations, and
Semantics Control (0,L.C)
Prototyping . .
Language Definition By Virtue of Campiler
of (G.L.C) and Machine Language
Machine
Operations

Figure 5 6-2 A view of prototyping language development as translation.

There are two problems with this new language approach. The first is
that the life cycle of a new language is large - on the order of 10 years.
But, more importantly, the language cannot be "best'" or "natural” for C3I
systems without an in-depth analysis and abstraction of the objects,
operations, and control structures of the world of C31 systems. This is
non-trivial, first, because of the complexity of c31 systems, and, second,
because the difficult structures to represent are those associated with human
cognitive processes - an open question in psychology. This field does not
possess models of human cognitive processes; further, most research work in
the field has been in the analysis of children's cognitive processes. This
problem of extracting extremely subjective information from diverse
individuals and groups of people and distilling abstract models is equivalent

47

AT

¥

sTAE
ey

. |
AL AN IL AN

AN

o
» a7

oy
N
>
“~
-~
o
3]

YA VA SRR

]
i
[

A s DA hgdt L N ~ A A A S

to the knowledge engineering problem of artificial intelligence. Predictions
have ranged from 5 to 10 years for solution of this class of problems within
the field. Therefore, we must consider the time to_develop an adequate
specification language approach to prototyping of c31 systems to be anywhere
from 10-20 years away. Further problems are caused by the course of research
in this area today. All approaches to development of such a programming
language focus on a general use set of concepts. When developed and mature,
they will define and provide a set of objects, operations, and control
structures to which the C3I systems' objects, operations, and control must

be mapped. This is the same problem faced today in using high level
languages. One is constrained within, for example, FORTRAN's data-type
structure and control structure. The process of design is the process of
describing the application's objects, operations, and control in the limited
set provided. One of the advances offered by PASCAL or ADA is the ease of
defining data structures and the wide variety of data-types. In summary
concerning this approach, we have to report that there are many problems yet
to be overcome and few of them are currently being worked.

In comparison, consider the sequence of translations/mapgings shown in
Figure 5.6-2. Again, there is a need to analyze the world of CJ1 gystems to
abstract a set of objects, operations, and control. This is translated into
an application's world view through instantiation of the data base and perhaps
changing parameters in the algorithms. This application is written using the
objects, operations, and control structure of a modeling language such as
SIMSCRIPT, SIMULA, or SLAM. These, in turn, are built on top of base language
constructs such as FORTRAN (in the case of SIMSCRIPT IIF and SLAM), and then
mapped to a machine's register operations. The number of translations of the
abstracted objects, operations, and control is four compared to two in the

previous approach, or three compared to one if we disregard the machine
dependent translation.

There are some advantages to this approach, however. First, these SPDA
tools exist and have undergone a degree of evolution over the last five
years. Secondly, they contain a model or world view of c31 systems which,
though sometimes based on heuristics, has proven valuable within a structured
system engineering methodology on real c31 developments. This skirts the
problem of abstract analysis which is the fundamental base of defining new
prototyping languages.

A A S Al A Tl A S e AP N SN DA ALt N

8ty AN 8 e ") At A e $ 0w A e 4te aw T YT . . n

} C 2 A Wy MY » et o & Bv
)
1)
8
4
’ The World
h of C31
Systems
== Analysis
3
d »
Abstract Y
Model of Objects, N Yt ok
Operations, & F
Control (0,£,C) -
X ‘__S——A Human Controlled, Best-Fit Process ::
Modeled
View of C3I
Elements in
Data Base
By Virtue of How the
Model Is Mechanized
Discrete
Event
Language Version
of (0,L,C)

By Virtue of How the
-— Programming System

Is Mechanized

< S=Through Compiler
and Machine Language

Machine
Operations

Figure 6.2-2 Ihe SPDA arproach to rrototyping seen as translation.

o

-h. - .
3 o S -

'.'.‘.'.‘.\-.- o
‘d‘-; FI W WG PR Wy

>

Am

Base-Language
Definition of Dy
(0,£,C) :

w4 8 8

PR I AR}

"_:':A_r_

. ."- - a,

EallCit
e'aaa

T

By using intermediate steps, the SPDA approach approximates the
translation of objects, operations, and control to an executable form which
could take place if a prototyping language were available. We consider use of

SPDA to be a prototype of the language approach. By putting in place a
laboratory based on the SPDA approach, we would obtain the following benefits:

(o]
o

o

o]
(o]

immediate prototyping support of c31 system developments;
a prototype of a prototyping language system;

a basis for evolving and evaluating the abstraction of C3I
objects, operations, and control structures;

significant cost saving;

testbedding of the prototyping process/methodology.

In the future it may be possible to "tune" the translation steps or to
sequentially collapse the translation steps onto one another. This would be a
way to evolve a version of the executable specification approach.

50

R NGRSl A L bl o lvin i aaiis e o b0 4 ba g

X0,

o

X

2 "
o 0. N
'."“_'““z'l“iﬁh
N 5

s %W

p e

: Ml i e A

.
.
.
.
.
’
.

6.0 MATCHING PROTOTYPING APPROACHES TO C3I FUNCTIONS
6.1 Overview

In order to ascertain where rapid prototyping would have the most
impact in support of c31 system developments, we have analyzed the structure
of ¢31 systems. Our plan was to decompose the components of typical c31
systems, establish which were most important, and then map these functions to
the prototyping approaches/tools. We encountered some problems in this task.
The notion of "importance" of a function was difficult to establish.
Secondly, cdr systems elements depend on one another to a large extent.
Isolation of functions was difficult. Thirdly, some of the different
functions were unable to be measured by a common standard. The qualities,
attributes, and sources of difficulty were alien to one another. We were able
to achieve a weighting, however, through appeal to the government's recent
study activities,

6.2 Functional Decomposition of c31 Systems

Figure 6.2-1 shows those embedded computer functions which are
considered to be the kernel, i.e., common to all C°I systems. This flow
represents the bidirectional transformation of event-related data to output
information. The three activities of data management, data presentation, and
intelligence processing/analysis are really a cycle which may be traversed
many times. This breakout of functions is common and well supported by the
literature, practitioners in the field, and site users.

Figure 6.2-2 shows that these functions are made possible by other
functions, some of which are allocated to humans. This figure attempts to
communicate that the structure of CSI systems functions is dense and highly
dependent. Each plane in the figure corresponds to a class of functions.
Certainly the kernal functions cannot take place without the underlying system
management and support functions. Figure 6.2-3 shows that the kernel
functions support the mission areas of the particular site. To each of these
mission areas (air defense, for example) correspond specific supporting
computer functions. These mission areas functions are dependent upon the type
of 31 system under consideration. There is of course a spectrum of system
types ranging from weapon pointing systems to administrative decision support
systems. The four main system types are:

(1) weapon/platform control;

(2) intelligence information and exploitation;
(3) tactical battle management automation; and
(4) top-level strategic force management.

51

K

RS

LR A AN

R il
L S

Message
Processing
In/Out

Local
Communications
Handling

xternal
Communications
Handling

Data
Management

Information

Data
Presentatio

Intelligence
Processing/Analysi

Figure 6.2-1 Kernal-Imbedded Computer Functions

We prepared a structuring or taxonomy of the set of functions which is

shown in Figure 6.2-4., There are three mission categories which are

partitioned by functional areas, which, in turn, consist of several types of

embedded computer functions. Further decomposition is site specific. The
mission functions are organization, site, and mission specific. It was
against this set of functions and their organization that we began our
evaluations.

52

)
3
.:'e
A%
)
i
£
People
: 4 h

Kernal Imbedded Functions

Figure 6.2-2 These functions are made posaible by other functions.

e
W

Y’
i
2

_'a"

“.'L ‘ o

s Sl
KRS0 SN
' \ 3 -
%
2
K
‘i
¢
!
o
4
* -
: Kernal Imbedded Functions
_ Figure 6.2-3 These kernal functions support migsion areas.
Migsion Categories | Functional Area Embedded Computer Functions
Mission SAC Specific
- Functions pecific
TAC Specific
. MAC Specific
‘-: Support Communications)S(essage Handling; External I/F; Internal I/F Crypto/,
2 3 Functions anitization
b [onl ¢ Data Management DEMS; Data Base; Access Utilities; Update Facilities
Data Presentation |User Interface; Decision Aids
Q
- Intel/Analysis Tracking Fusion; Decision Aids
N Utilicy System Management |Resource Management; Performance Management
‘ Functions
Training Exercises; Scenarios
Utility Support Data Reductfon; Backup
% Figure 6.2-4 A Taxonomy of Embedded Computer Functions
3 6.3 Analysis Criteria
.
L Studies
) . .
¥ In the course of establishing weighting criteria for these functioms,
= we reviewed some of the relevant recent studies and their recommendauong.
3 The Defense Science Board report of July 1978 pointed out the need for C ;
‘. AN
.l .-.\.‘l .
. 54 T
A
i aNa

system's focus on the users and the need for its ability to adapt to user
needs. It identified the costly nature of software development for €3I
systems, and it pointed out the evolutionary nature of C2 systems. This

last was due to the peculiarly difficult nature of requirements definition on
such systems.

Department of Defense Instruction 5000.2 dated March 1980 recognized
the unique nature of C2 systems and recognized that the problem of
requirements definition was founded in the support role C’I systems play to
human cognitive processes. It recommended evolutionary acquisition for those
systems most tied to cognitive processes. It did not, however, mandate the
approach.

The Software Acquisition and Development Working Group's July 1980
report for the Assistant Secretary of Defense for C’I called for prototyping
of C31 systems and revisions to management and contracting practices. They
noted that 60%Z of the life cycle cost for software is spent after the system
is built, not in building it. Much of the 60% life cycle cost is attributable
to requirements changes which were unanticipated during initial development.
This means that at least some of the cost is attributable to errors introduced
in the requirements, design, and development processes. The elements of
software development most requiring user input to the development process were
judged the most difficult.

The AFCEA C2 System Acquisition Study final report of September 1982
was an in-depth analysis of the problems/potential solutions of €3 systems.
The study introduced the idea of a Rapid Requirements Definition Capability
(RRDC) under the control of the government. This laboratory would be a
prototyping and analysis facility to aid generation of better preliminary
requirements and better/more timely evaluation of contractors' products. The
study also recommended that a system architectural context be established for
c3 systems built around the seven—-layer ISO model of local area networks
(LAN). The study strongly supported evolutionary acquisition for these
systems.

The National Security Industrial Association's Software Working Group's
August 1983 report extended the recommendations of the AFCEA report. It
recommended discarding MILSTD 483-490 in favor of MILSTD 1679 or SDS. The
study identified user interface issues as the proper focus of an RRDC because
they are the most visible examples of requirements related to user cognitive
procesges. The report also showed how evolutionary acquisition is a viable
approach based on the OASIS experience. OASIS successfully delivered 22
blocks of functionality and has been judged a management success by the Air
Force.

The conclusion of this examination of these recent studies is that user
interface and other cognitive process supportive system elements are strong
candidates for prototyping.

F s 2 a'a’s

e

).},'-‘.‘-

o

. P4 -' t' .'

N

L'.' Pl A

-
10,

!

LY T,

A

VN

Selection of Criteria

The potential criteria that were established to compare c31 functions
as subjects for prototyping are:

o degree of importance to final product;

o degree of importance within the life cycle;

o extent of existing tools which support the development of the
function;

o other - experience, personal choice, or literature;

o some combination of these.

Note that the importance of a particular function varies with the
system and its mission. Further, the importance of a function varies with the
context of a system's use. For example, a weighting of the importance of
functions for an IDHS during amn exercise in CONUS versus a weighting of the
same system's function when deployed on the second day of conflict in central
Europe would be different.

. "
v'v"l
.
N %
PO
.

There is also a problem with respect to the definition of importance of
a function. One definition would select that function as most important which
takes the most effort to properly develop with most risk of error. A second
definition would select that function as most important which, if removed from
the system or undefined during a given phase, would cause the most total
system failure,

a4, % e
> ﬂ! Sl

v’

(Pl
o
" ’;,.,‘

AL
o

v
4 P’)
e

7y t"‘;l"
L2
r
T
>

Given all of these conditions, we evaluated the functions against a
combination of the criteria above. In evaluating the function's importance to
the product, the first definition of importance was used. To establish
importance within the life cycle the second was used. There were three
assumptions. The mission functions were discarded as they are not common
kernel elements. Further, they are site specific. Training was discarded as
it is not a near-real-time critical function, Utility support was discarded
as it must be defined with respect to other functions which are therefore more
basic.

f

2y

S

»
"
-

.

N s

6.4 Evaluation of Functions

The first valuation was of the importance of the function within the
life cycle phases. This valuation was presented in a rank ordering of
functions by phase. Figure 6.4-1 shows the results. Phases are ordered
across the top with some explanation at the bottom. If there was equality of
importance, then the numerical rankings were assigned equally.

Figure 6.4-2 presents the scorings. Column one is an evaluation of the
importance to the final product. Data presentation was most important as the
user's satisfaction with the system is founded on how he interacts with it.
The importance by phase is based on the previous figures' results. Figure
6,4-3 shows the way the next column was achieved. We removed the phase scores
for integration and test as we have already decided that prototyping will best
support the study, requirements, and preliminary design phases. The final
ordering has data presentation functions as the most important.

56

asvyg 910An-8f17 uo posvg fialiondd Jo uorgounuwwxg I[-5°9 aunbg

‘?uWEl STYl
J® pIsSTIIIX3
LTe3aTdmooury
A{Tea9u98 aae
suor3oung *ma3sfs
paiuatio juSm ejep oyl *£1epUOI3S ST
-I19s8n ayg st udrsap £3ITTIqRaSN ‘aToyM
-queaedsueas * (aoded) ® JO 3100 +qunomeaed ST e se
218 Sswalsis sjwbx o3 .| 9yl °sTyl £31a893ut waIsks
19430 IR uostaeduod soTweulp X103 SISeq ST wo3sLs aya
y8noayl waisds S9ATOAUT 2an3o1d u81rsap jo Suransse | yitm 1EAP
so3epITeA 19S() aseyd sTyjp /sfe1ds1q £3nOTIITA Mo} ojul 03 pual
o) Juld waisds
sTsATeUY/To3Ul wmno) | sysATeuy/Te3uUl
Judp eleq uoFlIe3udsIg Jusy eled S30FAIS uoyj3IBIULSIAJ (wa3s4S)
yud wa3sAs vleq wmno) walsLg eleq umo)
sysATrRUY/T23Ul uoy3lEeIUISIAJ
wmoy qudj walysks e3R(Q aseg eje(q
sysdteuy/To3ul Judn eieq uofleludsaig | sysATeuy/T93ul (waisfsqng) | suoriduUng
uojieluasaXd eileQq JulN wa3sks eaeq JwSK ealed umo) UOTSSTH
uofrleadaizul
jonpoad padordag » 3s9l | uorszeauswardu] udrseq sjuswaaynbay Apnas

v v_& 3 3 v v _v v 9 _J

57

~fa¥ec"a

A a8

<

y PP
LIRS

Pl
LR R

-

Importance | Importance by Have vs | Literature | Total { Weighted | Final
to Final Phase Needed Raw Total Order
Product S R D I T
Communications | 3 1 1 5] 4 5 4 3 26 15 2
Data Mgmt 5 3.212 (1| 5] 2 1 4 22.2 |15.2 3
Data 1 3,213 3(1) 3 2 1.5 17.7 [13.7 1
Presentation
Intel/Analysis | 2 3.214 [2] 3| 4 3 1.5 22,5 |[15.5 4
System Mgmt 4 3,2|15 | 4 2 1 5 5 29.2 26.2 5

Figure 6.4-2 Numerical Ordering of Functions

Functional Area Means Weight

Communication Residue S/W 4

Data Management None 1

Data Presentation Test Beds 2

Intel/Analysis Residue (Some) 3

System Management Commercial 5
Figure 6.4-3

What means currently exist to support prototyping in each area?

Therefore, we conclude that data presentation is the key embedded
computer function based on abstract reasoning. It is sensible to ask if this
conclusion will stand up under examination of real systems or if it is
validated by other data. In particular, does a real system show differences
between first presentations (ranked data) and communications (second ranked)?

We studied National Cheyenne Mountain Center (NCMC). Part A of Figure
6.4-4 shows the top level functional decomposition of NCMC. Part B of the
figure compares graphic display types required to support NCMC mission areas
to output message types required for the same support. The numbers occurring
in the columns of Part B are the number of different output display types
compared to the number of different message types. This data was obtained
from an ADCOM prepared functional description document. The figure makes the
case that in constructing the NCMC system, there would be significantly less
software to support message preparation than to support display preparation
software. Displays in this case are outputs to the user which inform him of
situational elements. Comparison of output message preparation difficulties
to displays has some basis.

NCMC Mission Battle
Staff
Mission ~ Missile Warning Missile |Space Alr Support
Functions | ~ Space Defense Warning |Defense | Defense Center
~ Alr Defense
~ Battle Staff MMI Graphics | Classi- | 133 0 0
Support Center Displays | fied
Support ~ Communications Hardcopy 104 8 12
Functions | - MMI
~ Intelligence Tabular 0 14 8
Displays
Utility - Verification
Functions { - Performance Mgnmt Alarms 55 5 1
- Resource Mgmt
- Historical Data Display 0 9 2
System Category
- System Exercises
- Recording Display 0 3 1
- Data Reduction Special
{a)
Communi~ | Output 89 4 6
cations M. _sages }
(b)

Figure 6.4-4 C(lose Examination of a Particular System

The current prioritization of function types as candidates for

prototyping

are:

Communications
Data Management

System Management

Data Presentation

Intelligence/Analysis

In the course of evaluating these functions, several past or ongoing
€31 systems or their components were studied. These are listed in Figure
6.4~5. In all of these except 427M and CSSR, data presentation is either the
key concern or the number two concern.

59

A 1A PR LA (e Ao in /A hai e i e aip ety

DA e - - . ki L
AN RIS A & e v gt d RSN SR A as gt e gl s M~y i ® St s S o 4 ¥

et P e it £

‘ﬁﬁgiéﬁ
S
P

%,

SPADOC

Original TFCC

FLA
s,
%

SPADOC 4 GACC

o b
]

i

5
[

Constant Watch

CSSR

7
A

427 ITSS

peS

plo

e

- CCPDS Upgrade | - OBU

Various Classified Efforts
(Sanitized Mode)

- OASIS

Figure 6.4-5 Systems We Have Examined

6.5 Matching Functions to Prototyping Approaches

Prototyping approaches were evaluated with respect to c31 systems and
their components, as were specific tools as instances of these approaches. We
have been able to select the most appropriate approaches to each of the top
three €31 functional areas.

Data Presentation

In terms of formal description languages, Mallgren's XPL/G is the most
powerful and general. It has yet to be instantiated for c31 applications.
A few years' effort building up ¢31 specific constructs in the language
would be enough to judge its further suitability as a tool for c31 system
development.

In the area of SPDA approaches, hierarchical or guidebook type models
exist, They are mechanized to a limited extent. Smith's MMI definition
guidebook work at Mitre is extensive. This would have to be mechanized as a
large help file in conjunction with a carefully-thought-out template system.
Such a set of hierarchical templates or menus would guide a user in the
population of a data base which modeled MMI. This data base would then have
to be linked to a functional testbed system to allow exercising of the
prototypes. This is a promising area. Section 6.7 discusses this further.
Functional testbeds have already had impact on cr systems through
prototyping. Both Ford Aerospace and Martin Marietta Denver Aerospace teams
used prototyping during the SPADOC 4 definition phase to refine operational

requirements. No work needs to be done to apply those systems today with NS
effect. A system such as the Denver Aerospace C3SL is more costly to RO AN
develop than TRW's GIDS/FLAIR. One can obtain more dynamics in the resultant I

displays by expending more money. These systems would profit from coupling to e
a hierarchical MMI model as described above. The improvement would be in a
higher confidence and more complete MMI definition as input to the testbed. L
Use of forms or screen generation techniques are likewise mature for limited R
application in €31 system developments., Effort must be made, however, to Y T
provide complex graphics as a part of existing forms packages.

XN T 0aT $a% Bat gt e 4 * fot W TR TR P LT - N Ta 00 mVa, 0y

Figure 6.5-1 shows the timelines to exploit these different
approaches. The functional test bed approach can be used today, and most of
its drawbacks could be improved by coupling it with the guidebook work.
Therefore, this combined approach is recommended.

Year 1 Year 2
L |
| 1
%g XPL/G Study Implement
|
MMI Guidebook Discard

T

Help-File Generation
[

-]

Link to Data Base

S

L Screen 1 Screen g
Generation L Generation !
(Limited) (Extensive)

Functional Test Beds

- Denver Aerospace c3sL

- TRW GIDS/FLAIR

Figure 6.5-1

Exploitation Timelines for OSI Prototyping Approaches

Communications

Formal definition language based systems do not exist for
communications system elements of cdt systems. Within the SPDA approach
c2s5AM by BETAC/LOGICON is an important tool. It models organizational
structure and informational requirements for existing C2 systems and will
tell a user what messages need be received for a newly defined system.
Necessary extensions to C2SAM are in the area of improving its user access
and in coupling it to other packages/data bases. The Denver Aerospace SMARTS
is a large C° message traffic generation system falling within the scenario
generation/test harness approach. When finished it would provide extremely
detailed operationally defined message system prototypes. Its use in rapid
prototyping would be very limited, however, by the size and complexity of the
system. The recommended approach is through use of the c2saM.

Data Management

While much work has been performed in the area of data base system
(structure and management systems) development methodology, there has been
little work on prototyping of these systems. One approach is built around
DEC's DATATRIEVE., The use of DATATRIEVE to produce different logical views of
the same physical structure would support prototyping as follows:

A command language would map a set of user defined views to a DBMS.
This would invoke DATATRIEVE and map the logical view to applications
processes such as graphics displays and simulations. The applications
would be hidden from the "initial" existence of the data base system
they were using.

-
-
L

.
o =%y
e

[
.

afeletals,

a

. 8

A Ak,

“ I'

P

We have used DATATRIEVE at Denver Aerospace to prototype portions of a NAVY
C2 gystem. The use of Prolog has great potential. It is well known that
any database structure (hierarchical, relational, or network) can be described
with a relational model. This can be a first normal form expression of the
schemas. Both management systems, access schemes, and data structures can be
easily described in Prolog's (first order predicate calculus constructs).

6.6 ProgrammingﬁEnvironments

The concept of a programming environment (PE) has received much
attention since Winograd's 1974 paper. Basically, PE's are integrated sets of
software tools designed to support a software builder in constructing programs
in a particular language. These tools act as an approximation of an assistant
standing over the builder's shoulder and aiding him in managing the complexity
of the software design task. Common examples of PE's are UNIX and INTERLISP.

This notion of a design support environment has some utility as a means
of rapid prototyping. The INTERLISP environment especially has been designed
to support evolutionary or experimental programming. This notion is the
current way LISP-based programs are developed given the difficulty of
specifying requirements for artificial intelligence software.

Role of PE in Rapid Prototyping

Proponents of the PE as a rapid prototyping tool subscribe to the quick
build philosophy. By decreasing the time spent in detailed design, code, and
checkout, judgments may be made about requirements. Appealing to our earlier
discussion (including Figure 4.1-3), this means the approximation of the
functionality of the software is not an approximation, but rather fully
functioning software. The constituents of these environments are shown in
Figure 6.6-1. Some programming environments are listed in Table 6.6-1.

There are two circumstances in which the PE approach has utility.
First, if the target language for the implementation is the focus of the PE
and if the PE is hosted on the target ADPE, then the required software may be
built in a friendly environment. We can expect to spend less time in detailed
design through checkout in such an instance. Further, requirements
instability can be expected to have less effect on these later life cycle
phases due to the presence of tools to manage change. Major requirements
issues on the A or Bl level will still have a major destabilizing effect
however. The importance of using the PE hosted on the target ADPE relates to
the importance of MMI functions for the C’I systems. A major return of
using PEs is quick check-out. If intermediate steps are needed to port the
developed code to try it out on the target display suite, much of the
environment's utility may be lost.

62

X E
N 518

4

g e I
3’)

o
4
{'l“'k‘i

3
)

) ’ Tools Encouraging/Enforcing
Method-Oriented Environments Following Rules & Guidelines

Notations & Reasoning Aids
for Persons Other Than
Programmers, & Phases Other
Than Implementation

Support Systems

Description Storage &

Inf ti i
ormation Repositories Retrieval Capabilities

Tools Aiding the Team

Tool Boxes Preparation of Programs

Basic Environments{ Basic Set of Programming Tool%

Figure 6.6-1
Programming and software environments may possess
varied capabilities.

The second instance where use of a PE would be of aid is when
requirements are undetermined, yet software must still be constructed. This
can occur during the study portion of a c31 acquisition, before full scale
development (FSD); or it can occur when artificial intelligence software is
being built. The PE would support experimental programming. This can take
place either when there is no particular software deliverable required of the
effort, or when there is no other choice. This means that we were forced to
accept the risk that a non-useable product was obtained.

Programming environments therefore have some ability as means for rapid
prototyping on c31 developments. They support the quick-build approach to
prototyping by accelerating the later phases of software construction. They
aid in evaluating requirements through mini-lifecycle-based feedback and
really do nothing for expressing requirements in structured form. Rather,
they support the direct processin§ of English-language-based requirements.
Another drawback is the lack of C3I specific information in the tool base of
these environments.

63

O

T e ..-‘-'L-,-_-_._._._-. PRI et e e e T e
PP W Uy Ykl Py ST LW YL U PR TSl U P, G -, Y56, S0 PP TG, S

Table 6.6-1 Some Programming Environments

Name

Language
Supported

Supplier/
Reference

Experimental
vs
Commercial

Methodology Enforced

UNIX

C, PASCAL

Bell,
Berkeley

c

SMALLTALK 80

Xerox

INTERLISP-D

DARPA,
BDM,
Others

MENTOR

PASCAL

INRIA

TOOLPACK

FORTRAN &
a Command
Language

L.J.
Osterwell

JOSEPH

Reqmts
Language
Pharoh
Model
Language
- OAS1IS

W.E.
Riddle

Special
Notation

W.E.
Riddle

GANDALF

ADA

Carnegie~-
Mellon
University

6.7 Object Oriented Programming

Xerox Corporation's learning research group from Palo Alto, California
has done extensive work with children to investigate natural ways of
communicating with computers. Out of this research came the object oriented
programming language Smalltalk, that was developed in 1972 and has since
undergone numerous iterations. Smalltalk is a simple but powerful concept and
is more limited in scope than current dialects of LISP. Under the LISP
machine project begun in 1974 at the MIT AI laboratory, the Smalltalk concept
was altered and extended to become the FLAVORS system.

Although the system contains many Smalltalk constructs, it also permits
multiple inheritance, a characteristic that Smalltalk did not have. Multiple
inheritance is the ability to inherit characteristics from classes (similar
objects) that are hierarchically unrelated. Another major diference is that
Flavors is a fully integrated extension of Lisp.

X

"

RO IS G b L LSk v . e W, o Car i il g s a R i i e ol sl arf B ptl i SN gl e

Object-oriented LISP programming is concerned with modeling the
behavior of real world or abstract objects. It depends upon four key
concepts: objects, instances, methods, and messages. An object is an
encapsulation of data structures and of the functions or methods that operate
on them; an object can be sent a message requesting that it enact a method.

Early implementations of object oriented programming were designed so
that objects fell into strict hierarchical patterns with levels successively
more specialized than earlier ones. In Zeta LISP the generic object classes
are called Flavors, which along with the methods associated with them are
defined by the programmer. The Flavor system differs from the
earlier implementations because it allows non-hierarchical inheritance;
thereby providing the means for building arbitrarily complex Flavors while
retaining the advantages of modularity and maintainability.

Thus, some flavors are designated by convention as base flavors, others
as mix-ins. The latter add particular features to other flavors. Users may
define flavors by combining base and mix-in flavors as needed. Defining
methods for these new flavors can over-ride, augment or modify the methods
from the component flavors. This non-hierarchical definition facility
distinguishes flavors from hierarchically dependent systems like Smalltalk,
and gives Zeta LISP programmers additional power and flexibility. The RPS
system developers, especially the system programmers, may well find tremendous
advantage in the use of Flavors to build complex 31 specific models. These

models would be executable because of being implemented in a Flavors-like
system,

Flavors represents generic objects. For example, a generic ship with
its description could be a Flavor. An aircraft carrier with the addition of
its unique and non-generic descriptors would be an instance of the Flavor
"ship." The process of going from the generic to the specific is called
instantiation. Such instantiated Flavors are manipulated by sending messages
that request specific operations. Since the procedures are already contained
within the object, it responds by performing the operation requested.

There are two areas in the RPS where such object-oriented environments
allowing the sending of messages between objects having the ability to operate
may be useful, The first is in extensions to the RPS executive or to the RPS
specification component. The object~oriented environment concepts,
specifically something like Flavors, could also be used as a means of
structuring macros in using the RPS system. For example, as prototypes were
developed, should they be stored in a Flavors environment, we could use a
particular prototype definition as if it were a function itself and therefore
build up in a modular fashion a prototype of a much more complex system-—or be
able to make use of the prototype libraries--aggregating and de~aggregating
them on a very high level. This would support, after some use had been made
of the prototyping system, the ability to use these large detailed prototype
definitions as functional components. This would in turn allow examination of
the system that we were studying at a level of detail closer to the detailed
design phases of the life cycle. Certainly this is not a replacement for code
generation systems and other methods of automatic generation of detail design
from preliminary design or preliminary design from validated requirements.
However, it would provide a way of exercising, in a fairly thorough manner,
part or all of unvalidated conceptual designs.

65

on &'

o aia
i

U
IJ.

|
Al

Wy
DA
B
7.0 RELATIONSHIP OF PROTOTYPING TO MILITARY STANDARDS
~

Rk

e

Our study thus far indicates that only minimal changes need be made to
relevant Air Force Standards. We believe this because the language of the
standards implicitly provides for the use of a rapid prototyping tool in
system acquisition. The word tool is used here in the sense of something used
to augment or facilitate our existing process. Rapid prototyping is a tool
augmenting the system analysis process. It does not imply any fundamental
addition to the process but rather an improvement of the validation and
analysis activities already embodied in the standards.

Another way to consider this is through a modular view of the acquisition
process. The standards MIL-STD-483 and AF-800~14 establish the high level
description of the process. Validation is a subfunction of the overall
process. By viewing rapid prototyping as one of many possible implementations
of the high-level concept of validation, it is clear that explicit language in
the high-level standard unduly restricts choice of mechanization in the
process. Rapid prototyping implements subfunctions of the validation portion
of the acquisition process.

Rapid prototyping, however, does implement a validation activity in a
significantly unique manner, so the standard should reference it to some
extent., Reference should be limited to simple textual addition and need only
be included in AF 800-14. MIL-STD-483, which we also considered, and
MIL-STD-490 do not deal with issues truly relevant to prototyping.
MIL-STD-490 deals with program-peculiar item specifications and is much too
detailed and rigid to be applied to rapid prototyping. Conversely, rapid
prototyping in no way applies to specification practices in the sense that
MIL-STD-490 deals with them. Prototype software is not deliverable and, while
needing management by the developer, should not be subject to 483. We feel
that it detinitely should not be subject to 483. The organization directly
involved, contractor or acquirer, should control the configuration of a
prototype according to their internal standards for nondeliverable software.

In summary, prototyping is an adjunct to the normal analyses occurring
during system development. It happens that it may involve software
development. In general, prototype software does not migrate into the
deliverable software; rather, insights from the process of prototype software
development influence the process of deliverable software development.

The tables in Appendix A3 enumerate the changes we are considering
recommending to AFR 800-14 as a result of our current review of the standard.
Column one lists the specific section of the standard; column two, acquisition
process topic; column three, the issue in regards to that topic; and column
four, our preliminary recommendation.

8.0 LESSONS LEARNED IN DENVER AEROSPACE TESTBED

y Our investigation juxtaposed the desired rapid prototyping capability
and existing prototyping techniques. We have learned several lessons from
this side-by-side comparison. Four in particular have guided our study and
provide direction for future effort.

First, we learned about the nature of the rapid prototyping ‘'tool' to
be developed. The state of the art makes it clear that no single technique or
small group of techniques will satisfy the need, even within the restricted
domain we are addressing. Only the proper rapid prototyping environment can

' provide the full complement of capabilities being sought. The environment

must tie together a range of tools, specialized and general purpose, in a
3 coherent package.

Second, we learned about the nature of this investigation. We seek to
develop a system to augment the development of other target systems. This
development system is based on the assumption that it is better to 'try before
you buy.' Although this effort is restricted to a particular set of target
systems, the prototyping concept itself has much greater generality. In fact,
the concepts to be embodied in the rapid prototyping environment apply to the
development of the environment itself. To validate these concepts, we must
use what knowledge we have of them now, even as we develop a system to exploit
them. To build a rapid prototyping system, one must prototype that system.

The third lesson is that prototype development is a microcosm of
general system development. Usually the only distinguishing attribute of a
prototype system is that it is less complex than its counterpart production
system. In some cases, not even this is true.

« B 2 AR

5 Lesson four says that we should borrow as much as possible from the

‘ general system development environment. This follows from lesson three

because what is good for system development should be good for prototype

\ development. It also derives from another observation. Prototyping exists so

that results of exercising prototypes can influence the requirement and design

' of production systems. Therefore, it is vital that communication be

) established between prototyping activities and activities that use the results
of prototyping. By sharing the system development environment, formal and
informal flow of information can be established.

With these ideas in mind we have investigated the various tools and
techniques that seem likely candidates to make up the rapid prototyping
: environment. In the process of studying tools and techniques we are
. identifying a set of testbed requirements. Also, in the process, we have
brought together many of the components of the testbed in true prototyping
fashion.

8.1 Context of the Rapid Prototyping Testbed

The process of developing software~dependent systems is part discipline
and part art. In this respect it is not unique in the world of system
development and engineering. The software dimension, however, shifts the
process further into the world of art. By discipline we mean structured
methodology that can be applied consistently to produce desired results. Art

67

* e,
LR RAL YL YARL AN
IR
RS B

n"-b-"‘-" -r “h“’

T IR -
D
Mo tel A T . DR,

A U N R AR S
LA R R R U SR A A S)

¥

s 4 & 2

A

Rt s® s s I

2 Ve e
<.

X

(A S ARNACIL R S A At A AU G A B A

refers to the use of style and instinct to achieve results. The "artfulness"
in the development of software derives from software's inherent flexibility,
its abstract nature, and its relative infancy as a discipline.

Software exists at several levels; viewing it at the proper level
reveals the inherent flexibility. At the lowest level we can look at software
as a static bit pattern in some storage medium. Such a bit pattern in
execution on a computer can be thought of as a process. At a higher level,
software is seen as a description of processes. This process-description
level characterizes software in terms of language constructs. Here the
flexibility of software becomes apparent. Languages, even primitive ones like
programming languages, can express an infinite number of ideas. Almost any
conceivable process can be expressed. Furthermore, the same process may be
expressed in thousands of different ways.

The perspective of software as a description of processes also reveals s
the abstract nature of software. A description is static., Processes are 3
dynamic. Understanding software requires mental abstraction between the A
description and the process. We never really "see" the process. We interact R
with its software, we see its inputs and outputs, but we can only perceive in Sl
our abstract and personal way the executing process. \i}i&"
l:’._ LY

The science for dealing with abstract software processes is relatively
young. In absolute terms, we have been developing software for less than
three decades. In that time, software has undergone a divergent evolution.
Software has been applied to a vast array of needs with an equally vast array
of techniques. Lagging behind the pressing need to apply software are efforts
to develop an encompassing view and supporting discipline. This is not to say
that we do not have any discipline in the software development world. The
life cycle of software is generally understood, and there are many techniques
to support it. However, we are far from consensus on many issues. In any
case, the mainstream of software development has not applied many of the
available solutions because they are not mature enough to be smoothly
integrated into the ongoing process of software development.

These factors paint an unsettling picture of software development. It
is one of a poorly mapped and hostile land we must cross to get from user's
needs to final solutions. To cross it we must rely on a collection of guides,
pundits and wizards. Understandably, the user, acquirer, and developer would
like to replace a few of the wizards with a good road map. They would like to
see the science of software development mature.

The purpose of the preceding discussion is to establish the context of
our efforts to create a testbed for rapid prototyping concepts and
techniques. Figure 8.1-1 illustrates the context. Our effort is part of a
larger effort to create a disciplined software development environment. We
are assembling a test bed in which to develop a prototype of the rapid
prototyping environment. The rapid prototyping environment is intended to
augment the c31 system software development environment which is part of the
general software development environment. All of these reside in the larger
context of system development.

This context is important to remember because in planning the rapid
prototyping environment we must plaa to integrate our tools with other tools
designed to improve the software development discipline.

jpic B L ARAOMMEE Bl SRR

Pretotype C3I Rapid \
Prototyping Environmen

C3;7Rapid

Prototyping Environment

-
~ .
b
’
\‘ "
~\

CaI System

Software Development
Environment

Software Development
Environment

System Development Environment

Figure 8.1-1 The Context of Our Effort

8.2 Prototyping's Relationship to Other Software Development Tools

In section three we discussed the specific problem of developing c3r
systems. Our conclusion is that most problems arise from inadequate
definition of requirements for those aspects of the system directly supporting
the site user’'s cognitive processes. In section four we advance rapid
prototyping as a solution. 1In section five we outline the various approaches
taken to rapid prototyping. The preceding section establishes a view of rapid
prototyping as one aspect of the maturation of the software development
discipline, From this basis we can now discuss the relationship of
prototyping tools and concepts to other software development tools. To
describe the relationship we need to talk about the issues addressed by
software tools, the spectrum of available tools and prototyping's place in

that spectrum. Then we can isolate common aspects of prototyping and other
tools.

The software life cycle is generally understood and agreed upon. It
provides a conceptual outline of the issues to which software tools have been

applied. Figure 8.2-1 shows Denver Aerospace's view of the life cycle and
layout of the issues relevant to phases of the cycle.

69

s e BB

)

-

LRV S '

e a0 0y

e
L R T TN I

LT LT N b MOMES !

I YO TR S |

e

.-

SR A

Software Life Cycle

J S
Software| Software Software Software [Software ' System ystem
Planning| Requirements| Design Code & Qualification|Test & Operations
& Checkout (Test Integration] Maintenance

Bookkeping - Preservation, Traceability, Configuration Management

[

ol 1

3

(]

w0

-

o Adequate Optimal

5 |Definition ofl I Code l

g Requirements

3

[}

5 Effective

a lEfficientl

v Design

3 Activity

&

s

e Documentation S
! 1

Pigure 8.2-1 Software Development Issues Addressed by Software Tools

Software Development Issues

Bookkeeping is a practical issue that spans the entire life cycle. As
a system progresses from its conceptual phases into detailed design and
eventual operation, we learn a great deal about the system. The information
might be in diagram and drawings, electronic storage media, paper
documentation or in the engineer's mental conceptualizations., The problem is
to preserve this accumulation of information because it is, literally, the
system at any given time.

Along with preservation of information, there are the parallel concerns
of traceability and configuration management. Traceability ties individual,
detailed bits of information to higher level concerns; for instance, "What
information about design relates to a particular requirement?" At a lower
level, "What data implements a design?" We have to trace these kinds of
information in order to understand how the system needs are being answered.
Also, we must know what parts of the growing system are affected by change in
another part. Configuration management is concerned with the present state of
the system and its description. Keeping track of these types of questions is
essentially a bookkeeping problem.

The problem of adequate definition of requirements was discussed in
Section 3. The general issue in software development is how to apply
discipline to the requirements analysis process, thereby ensuring the
correctness of the results. Given stable requirements, what is the proper
design process that will resolve the requirements? First of all, the activity
must produce effective designs that satisfy completely the requirements. Then
we need to concentrate on making the design activity efficient in terms of
optimizing resources used. The concern in the code checkout phase is that the
resultant code is optimized for several factors. Code must be easily

70

.-

P
Ll

’??ﬁf‘f"'-}‘f

L

%
A

Ot

‘u‘:

L 3 :b‘

:).

X

D YA
N

"h\:-‘.ﬁ\‘n
R,
IGAC S
et
.$\‘\ ~
. A,

2

P
Tt)

modifiable, maintainable and easy to construct. Documentation is the tangible
aspect of a software system. It allows us to understand, use, maintain, and
modify the system at any time. The issues for a rapid prototyping system are
how to produce documentation in a timely and efficient manner and how to
ensure agreement between the actual system and the documentation.

Spectrum of Available Tools

Figure 8.2-2 illustrates the relationship of some software tools to the
life cycle and required document milestones. Figure 8.2-3 relates these same
tools to the software development issues enumerated earlier. The relationship
of each tool to each issue is rated one, two or three. A rating of three
indicates that an issue is the primary concern being addressed by the tool;

two means that the issue is an important concern; and one means that an issue
is only of indirect concern.

Programming Environments

In Section 6.6 we developed the concept of programming environments
which are particularly applicable to rapid prototyping. These type of
environments are a few of many different environments. The primary concern of
programming environments is optimal coding. But these environments also
address design and documentation issues. The system semantics and data
structures of language in an environment can be designed to support modular
malntainable designs. Programming languages syntax can contribute to self
documentation of code.

Environment is not strictly limited to language. The tools to develop
code and process it also form the environment. Editors, Linkers, Debuggers,
Dynamic Program Interpreters, and others are refinements that increase the
overall efficiency of a programming environment.

Graphic Interpretation of Program Structure (GRIPS)

GRIPS represents a class of tools used to graphically portray the
control structure of program source code. GRIPS is based on a type of control
diagram known as 'Visual Control Logic Diagram" in Denver Aerospace
terminology. Another name for this representation is Naisse-Schneidermann
type charts.

This tool operates on pseudo-code description of actual code. It
processes the pseudo~code producing diagrams of the coantrol structure. The
result is a more understandable representation of the sequence, decision,
iteration and procedures in a unit of code.

Tools of this type are primarily concerned with documentation. The
diagrams are required for most DOD projects. GRIPS gives an automated means
of maintaining diagrams of code. More importantly, it helps keep code and
diagram in agreement. 1In the absence of an automated tool, the documentation
often does not keep pace with changes in the code because preparation of the
diagram consumes too much time. With GRIPS a simple editing of the pseudo~
code is all that is required to update the diagram.

RIS] -
e '..‘-:"f:\::\\'_u.":

-
.

ST
3‘_‘:: :.‘:E {.
.l?“)""x

k F
58

LY s

1 [ty SN |
: el Ve Sy
mﬂJ&H&shuv IV .

. ' A b 4k fh\ RN
n immmwwnﬂw nﬂfnmemmmm\ AR

L. SRR S B 4

82U08] Y] FUBUMDOg puv 910A)-3f1T Y3 03 87005 davmyfos fo diysuoizviay
g-g°'g danbiq

(s00s) wa3sdg

.HO.HUG.OO Nﬂoo 30Ino0g

]
[T

urmueIgoxg

(sd149) @2an3jonijyg weaSolg jo uopielaidiajur ofydeasy

19pTol IusmdoTaaaQ 3IFu OFIeWOINY

(dvsy) 98edoeq STsATeRUY]

pa2an3ioniig pajeuwolny

(KTYS) %wo.ﬁovonumz]
8utaosurluy

sjuswaafnbay 2aeM]1JOS

(VSd/1sd) *ez4Teuy 3juswale3s wo(qoid/aSen3up] Jjuswdiels WATqO0d

(dMQ) youeqiioM s,19udTsa(Q

9OUBUSIUTEN |uoTieaBajuT 3s89]] In0d9Y)
suor3ieaado 2 |uoraeorzzren| = opod u3Tsaq |sjuswaainbay | Suyuuerq

3724 3371
21en330S | 3501 wo3sAg axemyjog | @aemyzos|31EMIIOS 91eM31jOS|a1em3zos oxEM370S

o9adsg

293ds 6D (o0}
oads ¢D tesodoxd
wdﬂamem ITING~SV 0T @PoD

FEL

S9U03ISATTIH
S0 33exld L3

juaundoq

Issues

Bookkeping |Adequate Effective, Optimal Documentation

Definition Efficient Code

of Design

Requirements |Activity
SCCS 3 1 1 1 2
Programming 1 1 2 3 2
Environments
GRIPS 1 1 1 2 3

2| AUTO-UDF 2 1 1 1 3

o

<]

& LASAP 2 1 3 2 2
SREM 2 3 1 1 2
PSL/PSA 3 2 2 2 3
DWB 3 1 1 1 2

Rating: 3 Primary Concern; 2 Important Concern; 1 Indirect Concern

Figure 8.2-3 Software tools relate to software development issues.

Optimal code is also an important concern with these types of tools.
Graphic representations aid the programmer in understanding the abstract
processes being developed. A picture is worth many words.

Automatic Unit Development Folder (Auto-UDF)

This tool was developed at Denver Aerospace using the Unix environment
and elements of the Source Code Control System (SCCS). It implements internal
standards for documentation of units of code. An individual programmer using
the tool is provided a template which she/he must complete. The template aids
the programmer in documenting schedule, test, design and the actual
implementation of coding units. The tool provides the services on-line,
thereby reducing the effort of storing, producing and communicating this
information.

Software Requirements Engineering Methodology (SREM)

SREM is a methodology and support environment for refining software
requirements from system requirement documents and expressing and validating
these requirements. The tool was developed for the Air Force by TRW. It was
evaluated over a twenty-month period by Denver Aerospace under contract to the
Air Force. The evaluation team's conclusion was that the methodology was
valuable and the support tool very helpful in expressing and storing
requirements analysis information. However, they found it difficult to
express certain real-time and near-real-time constraints.

Part of the support environment of SREM was designed to generate
functional simulations of the system based on the requirements analysis
results. It was found that this aspect of the SREM was cumbersome to use and

73

that the simulations produced were not of very great value. The primary
concern of the tool is adequate definition of requirements. In this regard,
the data base and the associated methodology do provide significant help to
the activity. The language of the data base is well suited to C3I in
particular. SREM also provides help for documentation and bookkeeping. This
is simply a function of SREM's data base.

Problem Statement Language/Problem Statement Analyzer (PSL/PSA)

This is a very ambitious tool that concerns itself with each of the
issues. Its possible usage extends over the entire life cycle. It is
centered around a data base which accumulates information. The information is
expressed in the PSL part of the tool. The PSL is designed to be processed by
an analyzer. Bookkeeping is addressed through the expression and storing of
information in the data base. Documentation is provided through formatted
reports derived from the data base. The other issue we addressed through the
analysis of the stored expression. In a limited way the analysis indicates
the logical completeness and consistency of the specification (Problem
Statement) at any time. It is limited in that it does not tell the developer,
"yes you have stated the problem correctly', but rather "yes you have stated a
well-defined problem".

Automated Structured Analysis Package (ASAP)

ASAP primarily supports the design activity. It is essentially an
automated Yourdon data-flow analysis support tool. It allows the expression
and storing of process descriptions and data definition. Requirements may
also be expressed and stored for the purpose of linking them to detailed
process designs and data definitions. ASAP will examine the described
processes and data to determine how complete and consistent the design is in
terms of data usage between processes.

Designer's Work Bench (DWB)

Designer's Work Bench is a Martin Marietta tool which is centered
around a data base and language generating tool for the data base. The
approach taken by DWB represents a coalition of lessons learned on other
comprehensive life cycle tools. PSL/PSA, SREM and ASAP are all centered on
data bases also. However, these tools have attempted to provide a measure of
expression encompassing all possible needs. In addition, they have a built-in
world view of how to support the lifecycle activities. DWB's approach is to
provide a meta-language in which to instantiate various syntaxes used to
express requirements, design, pseudo-code, data-definition or whatever is
necessary. Having done this, analysis and documentation are supported through
the use of the data-base query facilities. Where simple data base query falls
short, one may simply extract the information from DWB in the proper form to
be processed by a specific tool. For instance, ASAP process description might
be stored in DWB. This would allow automated YOURDON analysis to be performed
on data stored by a comprehensive life cycle tool. Pseudo-code for GRIPS
could be stored and linked in the data base to the relevant code units,

The possibilities are numerous. That is the point. By focusing on the
bookkeeping activities of the life cycle at a meta-language level, DWB in
effect addresses nearly all the life cycle issues. What it does not itself do

74

o LR S L T S T I L S » -.o._--h- -
DA - -ﬁ":\.“:-".: O ."‘:".PX::‘}: -:::q_ g :_": -_:..‘ o

* = .P .- “l...b' "h Hh ’ . -...I - .-n

XA N ST s YN TR Chea

™ gl

ST

! ‘- afl.

N can be provided by other tools without changing all of the bookkeeping

practices.
1
' Prototyping in the Spectrum of Software Tools
So far, we have related the life cycle to software development issues,
the life cycle to software tools and software tools to issues. Figure 8.2-4

relates rapid prototyping to the life cycle. It applies to the time from

N before the life cycle even begins to the end of the software design phase.

Dy Early on in the cycle it would be used to validate high level requirements.

In the design stage, prototyping would be used to develop detailed performance
information about design.

L R

Proposal
- Software |Software System System
Software] Software Software
2 Code & Qualification|Test & Operations
: Planning| Requirements| Design Checkout |Test Integration]| Maintenance
N % Rapid Prototyping J1

Figure 8.2-4
Rapid prototyping relates to the life cycle.

We are constrained to apply rapid prototyping to critical high payoff
aspects of embedded computer functions in C3I systems. We have concluded
from our studies that the greatest payoff results from the stabilization of
requirements at the highest levels. Therefore, we will not focus on applying
prototyping to the design phase. To place rapid prototyping in the spectrum
of software development tools we put aside for the moment prototyping at the
system level. This leaves the Software Requirement phase and the adequate
\ requirements definition issue as the intersection of prototyping and other
tools.

a s @ a8, 8

LTSS

. Referring back to section 4.1 and Figure 4.1-2, we subdivide
requirements definition activity into subactivities. The three subactivities
form a cycle which results in validated requirements. The three subactivities
are identity, express/represent and evaluate. In Figure 8.2-5 DWB, SREM,
PSL/PSA and ASAP are related to the cycle. DWB applies only to the expression
of requirements. The other three tools contribute to both the expression and
evaluation. Rapid prototyping applies to the entire process. It applies to
identification in the sense that it exposes requirements; expression in the
sense that it gives tangible forwm to the requirements; and evaluation in the
sense that it provides a means of measuring the requirements being prototyped
against real world scenarios.

LOE R oL b ab REA

3
x|
<

Common Aspects

K drd
S
*

D Rapid prototyping and other software tools have two apparent aspects in
common:

rd

", '
B,

~- Application to adequate requirements definition,
. ~-- Interaction with system information data base.

75

Another aspect contributes to the relationship. 1In Section 5 we talked

> about the various approaches to prototyping. One approach was the "build it

;} twice" philosophy. It we view prototyping approaches on a scale ranging from
those that implement the system completely to those that mimic only the high

v level functions, we can see prototyping as a microcosm of the system

. development environment. It has its own requirements, implementation schemes
and life cycle. Software tools apply to this cycle much as they do the larger

-; life cycle.

¥

4

4

»

v

Identify

Pl it
ol

Evaluate Express/
Represent

_/

[}

#
Py

LaNYy

Figure 8.2-5
Adequate Requirements Definition, Software Tools, and Rapid Prototyping

Nl

5 76
o«
¢

W W e T W W I W I WV W e v -
"-r'r-(r.—xs-:"
-

r."-"n".ﬂ' OAYA LA AR SESE S SLRE ARSI OO IO L A AT Ul gth e Mgl 240 Nl s i o & sicie o
3 -

Figure 8.2-6 pictures the interrelationships between prototyping,
software tools and software development issues.

Support

Adequate
Requirements
Definition

Software
Development
Issues

Software
Tools

Support

System
Information
Data Base

Bookkeeping jue—

Interaction

Rapid Prototyping

Figure 8.2-6
Interrelation of Software Development Issues, Software Tools, and Rapid
Prototyping

8.3 RAPID PROTOTYPING SYSTEM (RPS) CONCEPT
8.3.1 Overview

The RPS will be a tool to prototype key functions of Air Force
c31 systems. The RPS must provide means to characterize the user-system
interface aspects of a C3I systems, its data base content and conceptual
design, its structure at varying levels of detail, and its expected
performance. The RPS must support documentation of the results as well as
storage and retrieval of the prototypes themselves. At some future time,
links to other systems and models may be required.

8.3.2 RPS System Elements

The RPS should be a hardware/software system designed to aid
stabilizing and exploring C3I systems' requirements and preliminary design
concepts. It must aid the government in passing from a generalized Statement
of Need (SON) understanding of C31 systems to specific statement of work
and/or to preliminary systems specifications for that c31 system. It must
be flexible and easy to use by a variety of players involved in the
acquisition of command and control systems. Each possesses varying skill
levels. There are three classes of users envisioned for the RPS: The
prototype builder (who is also referred to as "software engineer"), the
acquisition engineer, and the mission user. Each should be able to perform
useful work with the RPS, both individually and in concert with other user
types.

77

A e 2T AT AT L . s eT e o N YR W P

L A S D

v N & ¥
s £

»

e = st A g0 g0 U AL TR AENE R A

Pl

Sl

L R

The RPS must emphasize the use of menu and icon accessed
interfaces, multiple mode operation, and context sensitive system software.
It must include high quality bit-mapped color terminals with sufficient
display memory to allow the representation of motion as part of the definition
of the user system interface. It should have high quality monochrome
bit-mapped multi-window interfaces to support specification and functional
analysis of proposed systems. The RPS can make use of the logic programming
tool Prolog as a central part of its modeling and prototype specification

abilities. Prolog can, in certain environments, run slowly. It would be
wise, therefore, to include in the RPS hardware a dedicated system to process

Prolog which features significant quantities of peripheral disk memory. The

RPS can include a gate-way machine to link between Prolog processor, graphics
processor, monochrome processor, and a VAX 11/780. The VAX can be used to
support extensive system performance prediction modeling as well as to host
supporting data bases. Additionally, there could be, within the RPS, several
small individual user terminals on the order of an Apple Macintosh or IBM
Personal Computer. These terminals could function as monochrome workstations

processing a subset of the capabilities of the monochrome workstations
specified herein.

8.3.3 User Types

The rapid prototyping system must be accessible by mission
users, acquisition engineers, and prototype builders.

The mission user should be able to perform useful work with the
RPS. He should access the system and perform interface modeling with an
interface modeling component. The tools of this component should provide
interactive, user friendly access. Software should be extremely, context
sensitive so as to provide as "modeless" an interface as is feasible for him.
It should be the goal of the RPS to provide tools as easy to use as the
LISA-DRAWR paradigm developed by Apple Computers. The mission user should

be able to draw screens and define required data base support in a transparent
and friendly fashion. He should also be able to prototype knowledge based

systems and to develop elements of a rule base as well as screens.

Menu based iconic and mouse accessed inputs should be the
norm. Any data base functions necessary to support this should be transparent
to the mission user, and access should be handled without his having to know
any special query languages. The mission user further should access
performance models. An operational model would allow the mission user to
characterize the operational concept that he has in mind or has de facto
prototyped with the interface modeler. This model could provide the mission
user again with a menu and icon based friendly way to define the total set of
procedures available to the analyst and his work station. The system should
prompt the mission user for information necessary to define the run time
requirements for an experiment. Certain inputs from the mission user may be
appropriate initializations of a structured dats base model. In particular,
the mission user should find valuable contributions he can make to the data
base model input templates. Complete exercise of the data base model
component of the RPS would fall to the prototype builder.

The acquisition engineer must access and perform all the
functions accessible by the mission user. Further, the acquisition engineer

78

% a A

#!;J;E A
= b '
AL By’ s

AT 1YYy,
o | SO
o XX

5
-

o0 I 2
EA a4
‘:'

%

‘fEdd

55

<

.

14
1%

.: 5

L
v
A
¢
.
«
!
[
&
.
»
’
.
»
v
>

r,

T
o
Y ,:‘.)

oy 5y

.& .\‘“ '
X %\-5-547
R

&
P
.5

should use the specification based prototyping capabilities of the RPS. This
component should allow the acquisition engineer to easily define pictures and
descriptions of structural subelements or functional subelements of the
desired system. The RPS system must prompt the system engineer to make
appropriate characterizations in test, structured language, and/or structured
symbology in association with a functional element defined with this
component. Further, he should be able to tie the elements of a connected
graph type description to entry points within the interface modeler defined

: screens through the tooling component (in particular, the icon based
executive). The acquisition engineer should use a logical modeling capability
provided by the Performance Modeling component. This model should allow the
acquisition engineer to capture logical descriptions of the system being
prototyped in a manner so as to exercise them by scenarios developed by
himself or mission users using the scenario generation component of the RPS.

Once again, menu based or iconic based input means should be placed at his
S disposal,

r
7
P
>

&
POy
T

The prototype builder is considered as the most technically
sophisticated with respect to system and software design among the user
types. The prototype builder must perform all the tool access discussed for
the acquisition engineer and the mission user. Additionally, the prototype
builder can make extensive use of the structured data base model so as to
perform object-oriented analysis on the overall data structure required to
support the system being prototyped. He should use the model through

. accessing Prolog based high level constructs that provide a friendly
: environment for this work. The prototype builder further could add to the
descriptions or the detailed analysis of the system as captured in the
connected graph descriptions. He should add PDL descriptions or pointers to
PDL data bases to these descriptions. The prototype builder can make use of
detailed ADP models so as to project performance of the defined
hardware/software system. He should be able to supplement the interface
modeling performed by the mission user with dynamic graphic elements (rotating
3 globes and trajectory displays, for example). He should use the KBS
- prototyper to complement the work performed by the mission user so as to
generate a first cut representation of KBS elements of the system being
prototyped.

Jra o 0,

Significant functional aggregates involving screens, screen

sequences, connected graph entities, performance prediction model exercising,
. and information content modeler queries and execution must be orchestrated by

the prototype builder through use of the RPS executive. The prototype builder

should make use of the icon accessed executive so as to quickly interconnect

the capabilities provided by the different RPS components to make a dense

functional prototype element. Generally, this would represent a c3r

component. Several Component System Elements (CSEs) may be joined by the

prototype builder so as to aggregate a total c31 prototype. The mission

ugser or acquisition engineer should be able to make use of a top down

: specification capability to enforce a coherent specification of the system

‘ being prototyped. The prototype builder, on the other hand, would be able to
prototype components "bottom-up."

L N R N

The following scenario will demonstrate how each of these three
user types may access the system.

8.3.4 Prototype Development

The RPS should provide the functions necessary to apply
prototyping as an integral part of ¢ system development, with a
well-defined strategy for its use. The strategy for the RPS in particular
should be accomplished in the following phases:

1. Problem/Experiment Selection

2. Definition of Experiment

3. Specification of the Scenario
4. Development of the Prototype

5. Demonstration of Prototype

6. Evaluation

The strategy for accomplishing Item 4, the development of the
prototype, would proceed according to the timeline pictured in Figure
8.3.4~1. The figure shows a relative scheduling of ditferent types of
prototyping which correspond to a top-down analysis of cd1 Support
Environment,

First, high level modeling of the observables (i.e., the C31
user system interface) would take place. Interface Modeling consists of
creating mock-ups of the final system's screens, sequences of screens, and
operator control events.

This is a means to make the system's gross observable states
tangible and communicate an operational concept to the users of the system.
In adaition, database requirements, functional requirements, and performance
requirements can be implied based on the screen sequencing and contents.

As interface modeling continues, database requirement issues
accumulate. After a time, modeling of these database requirements can begin
to resolve issues. Using the database modeling tools of the RPS, the
consistency and adequacy of the database requirements can be determined. Also,
relative cost for query and update of data can be determined.

After User System Interface and database modeling have
progressed, an understanding of the functional requirements emerges. Modeling
of the allocation of function to system components can then reveal problems in
the functional requirements such as contradictions, deadlock situations,
unacceptable resource contention and utilizaton, bottlenecks and other
problems.

Early modeling will define single operator procedures well
enough to begin to study the effect of several operators using finite
resources. Modeling of Operator Procedures uses the single operator DA
procedures and adds resource contention and functional performance estimates. AN
Application of a scenario to the operator model will reveal contention and
utilization problems resulting from the definition of the operator procedures.

3 el
¢ t
8.4 SUMMARY }.,;:t :'.%-”. L-
At :_
The lessons we have learned in the Denver Aerospzce testbed have begun e ,

to define the role of rapid prototyping in the context of the maturing

80 YRS

PR AN St A W MR Bl T i U AR D SRR e g i Jr i et it S St I Tl ik 4

B AR W W N T LY R e Y W W T L VW TR T wWEY

LTt e T

’.
f - Ko,
; el
L
-
; il adlm i
-’Tr
S
. ~
- o’ S
i
albs v
=)
)
L+ o g %
. [[« o
ol c o~
Q C a) (1}
> =} o aQ o o 8’
g€ 3 £ 5 g g 2 3 1
: g © —~ Q o - A o~ N
by [+7] « e~ —t v Q LY
=] o o o O Q c O -~ Q
& § 2 & % § 3 3§ % 8
8 bt ~ a ’6’ T ‘(é by (31 QE
o o o 0] c L. 3 a !
3 - O 0 o o 3] - 7 o
, o ' ot fvs] et =1 o c]
1 [&] 1] = Q +) [1+] Q QU
3 c a © o i Q N Q
| Q © +) g 8_ o g
, 4 Q bt 1] | &

16

0

e tale) 4,

»
»

Por e A

B
A a"aTs Al

NN

A

B v
RS

.
.

bal e

a4 %% %%

software development discipline. Examination of this context revealed the
interrelationship of rapid prototyping and other tools developed to meet the

issues ot successful development.

82

N L g T T T T U T PR S = e = A

L

@

bR

|

redd
f .‘-':‘-.‘v‘\v

A
L

| “e el

2ot 0 A0

Pl A

"‘.
-8 f

ol b

;- "l_'i.".'."

TS T Ly e
s RS(EN .(.-‘.-.
-

.,

9.0 TESTBED ELEMENTS

In section 5.4 we discussed and rated the available prototyping
approaches. To assemble and test a collection of instances of these
approaches, we have to derive a representative set of capabilities. The
capabilities selected must be available, and they must be feasible to
implement and use within the constraints of our resources and staffing. With
these constraints we have identified the following set of testbed components:

an inventory of computer resources
application software

interface prototype

a methodology

- scenario library

This list will no doubt evolve. These components are required to begin
the process of defining and demonstrating a rapid prototyping capability.

9.1 Inventory of Application Software

The most visible part of the rapid prototyping environment will be the
software. Software needed for the testbed falls into several categories:

Moael bullding tools,
Software development tools,
Data base tools,

Existing databases.

Tools to build models are necessary to provide the core prototyping
capability. This software must be reconfigurable and apply to one of the
three aspects of concern in c31 systems: Function, performance or user
interface. Development tools must be included to perform three functions:
The development of new models and simulations, the integration of prototyping
activities with system development, and the modification of the rapid
prototyping environment itself. Data base tools are necessary for developing
databases to support models and manage project information. Existing
databases store scenarios and descriptions of logical models.

9.2 Computer Resources

Adequacy is measured against the needs of software to be hosted, the
state of computer system architecture, and the needs of the ultimate end-users
of the prototyping environment. A major trend in architecture toward
distributed networks of computers and peripheral devices deserves some
mention. The trend is driven by a number of factors. Advances in the
development and production of hardware has brought down cost, allowed for
increased specialization of hardware and concentrated processing power in
smaller, cheaper packages. At the same time users need and desire the sharing
of information and resources. Tying these two factors together is a growing
legacy of software and industry standards which support network compatibility
across a wide range of machines. Hardware and software advances are making
users' demands technically feasible and affordable. The centerpiece of this
trend is the local area network (LAN). 1In a LAN, several computers and
peripherals may be tied together and accessed by many users operating from

83

o

o’ .

R

- o

. e b e L

LRl N A AR A

"

ate e«

e e A AL AA

intelligent workstations. This scheme allows users to exploit a variety of
machines in a manner efficient from the user's perspective and the system
designer's perspective. One machine could never achieve the generality,
response, and efficiency of LAN interconnected special purpose processors.
Thrse advantages will be as apparent to the end user of a rapid prototyping
env. -onment as any other user.

Certain specific needs of the rapid prototype user population emphasize
the need for a distributed network of workstations. We can call these needs
multiplicity, segmentation, and heterogeneity. Multiplicity is the need for
many copies of the environment. This can be achieved by simply plugging as
many workstations as necessary into a LAN, Segmentation refers to the need to
segregate groups of users working on separate projects or phases of projects.
This can be achieved by isolating groups of workstations and resources in the
network physically and/or logically. Heterogeneity means that these same
capabilities may be implemented by different machines in different instances
with the same interface provided. On a LAN, the intelligent workstation would
serve as a logical buffer, hiding implementation details of a given capability
from the user, providing a common interface for all users regardless of their
implementation. In another sense, heterogeneity refers to the users. Users
of the prototyping environment will be differentiated by technical expertise
and motivation for using the tool. In response to this, workstations can be
customized to meet the different needs. All of these concepts must be
incorporated in the testbed's computer resources. This requires a distributed
computer system architecture accessed by an intelligent workstation.

9.3 Interface Prototype

We require a fluent method of accessing the testbed software. This
access is required both for informal testing of the environment as it is being
assembled and for customer interaction for requirement and design validation.
The best way to provide this access is as a prototype interface. At this
stage the prototype must be reconfigurable and provide a general enough

framework to house the known components of the testbed as well as those
components not yet known,

9.4 Methodology Requirements

A methodology is required to bind the components together into a usable
package and to integrate these capabilities with the system development life
cycle. An ideal automated design support system (for computer aided software
engineering/system design) would be at the same time general in application,
aid the design process, support test and integration, and cut across design
disciplines. It would also complement code generation and programming
environment tools.

A methodology for the RPS will consist cf a process for using its tool
components. This process can be seen as a plan for sequential use of the
tools as shown in Figure 9.4-1. Of course, the sequence of tool use can vary
depending on the prototyping problem under consideration. Figure 9.4-2 shows
that there can be several paths through the tools, each one valid.

To support the expression and validation of system requirements, the
RPS methodology would emphasize structure prototyping, interface prototyping,

84

h 2l

S
- Nl

L

L B
AV,

PRRE .

As

‘f{ﬁ
- %

—
N
-
.

v 2002,
j " \"\.‘;.l. ’
PN

f “ab B ¢ n)a iy Rt e ks & s B A “yd gl AnY hY A M it Yad $ad Yot it £ ada e i 9 WD OV AT YR Y AT AU ML Y

- uu o

and performance prediction (especially gross data flow analysis via COMS and
GOM). As system requirements stabilize, the expression and validation of
software requirements would be important. Although derivation of software

" requirements from system requirements is possible, it becomes more important
to understand the proposed system in depth rather than formally deriving
specifications. The RPS users would move to more detailed structural analyses
using a diagram constructor and the FAM. They would extend the functionality
of the interface prototype through characterizing the dynamic graphics

portions. Any knowledge based system components of the c31 system under
' consideration would be investigated at this time. Its data base system would
' be characterized to some level of detail which could later be extended. Later
. still, as preliminary or conceptual design becomes important, the RPS users
: would use the GPM to support identifcation and flowdown of performance
requirements.

Further, all previous models of the system would be detailed and
extended.

P The general plan for prototyping is "analyze-model-demonstrate"

i iterated many times. Analysis should be unconstrained by the prototyping
tool. Modeling must allow several types of representations of the system to
exist simultaneously. The human development process is a group activity.
Consequently, the RPS must allow several users simultaneous access and provide

support tools that aid each separate view of the system as shown in Figure
9.4-3,

- 9.5 Scenario Library

Testbed components, together with a methodology, comprise a workable
prototype environment, To drive that environment requires operational
scenarios. The scenarios must be realistic, and we must have measures for the
performance of the environment. To then measure the performance of the
environment in use, we need a record of the rgsults using conventional
developments methods. In sum, a history of C’ system development is
required. This history may take the form of written documentation, computer
. storage media, and people involved in the projects. Figure 9.5-1 illustrates
how scenarios are derived from CoI systems development history to drive
measurable results from the testbed.

e v ala s

, ,..
bR - R AN

»
.y @,
.

.

85

3 A it 4 ‘. talve §Y B'e 4 el ARl A A ' tin dva e b gat ‘p gt el A A Y

L v fF
Sy W g by

START

& Y
<

’

—— >

»

: Figure 8.4—1 Definition Of Method—a Plan For Tool Use Method Is Too! Sequence.

:. :IIIIIII’IIII’ ﬁ

5 STARTH I//r FESS S Ila{IIII:J E o :r: ;rj'// - : _J—

) E—— . Y —1

" ’ 4 :f/ y /

o500 ’ ’

-~ STOP > ey ,IIIIfIf] P / ’

: Zz AR My N ART

: ’ o’ .

’ 5 ’ /]

N Yt rrrrrrrsrssd / ’

N ’

N ‘sz

o Figure 9.4—2 Our Tools Can Be Used With Different Methods.
o
L

\

PERFORMANCE

_'-j PREDICTION

. MM STRUCTURE

PROTO PROTO
\ _
.

2 -_:

o Figure 9.4—3 Tools Can Be Used Simultanecusly And Emphasized Or Deemphasized.

- 86
-
-
~
R S TN, WO e s P SN A - e N el -
TR : . ,
L L SN AN .

TR ASREA SRR AV S5 S RS e L e N T T L T T T T

History of C3I System Development

* f
1 System Development Environment TN

i

L, Interface

Prototype Computer

Resources

Scenarios

Inventory of
. Application
Software /

Measurable Results

Figure 9.5-1] -
The history of C°I system development produces scenarios to drive the test bed.

2o

. ..s"¥
A’y
.: ..D &

‘)II

« et s a4 s

" 5 %
Ay 4y 'v.
LAY
.
‘o
J;b

e

10.0 CURRENT TESTBED

10.1 Inventory of Application Software

We currently have representative software for each of the required
categories: Existing model building tools, software development tools, data

base tools and existing data bases. In Figure 10.1-1 the software we have
available is pictured.

UNIX
Development
Tools -
LEX, YACC
SCCS

SREM

c2sam

3
C7ss D3M ASAP

Existing Data-Base Software %fiSting
Simulations Tools Development Data Bases
Tools

Figure 10.1-1 Inventory of Application Software

Existing Model Building Tools

We have focused closely on certain of these simulation languages that
appear to be the most usable candidates. Among them are these three
simulations (which we have acquired and studied): The Functional Allocation
Model (FAM), the General Operator Model (GOM), and the General Processor Model
(GPM). 1In addition, we have available the extensive software in Martin
Marietta's ¢3 System laboratory.

y vv. v
LI

'_4.“»"-

FAM is a high level functional model. It characterizes a system by
using stimuli, threads, functions and resources as shown in Figure 10.1-2. It
drives the modeled system with scenarios and events. These parts are related
in the following ways: Scenarios are lists of events; events give rise to
certain stimuli; stimuli invoke processing threads; threads are made up of
sequences of functions; functions contend with other functions for resources,
The model is instantiated by analyzing operational threads, available
resources, etc,, of the system; representing that analysis in the model's data
base; and then constructing scenarios, also stored in the database, to drive
simulations. Measurements, taken during runs, on resource contention and

88

T r
2

LR ¢

A

Al

NN NA

Ciasts
* &

e

PRNEAD)

PRI B

oo LTS

!

“0s

other performance aspects of the system are a means of evaluating the
functional allocations made in the system.

System Resources Scenario
Resources Driver
-~ o~ N
Scenario
Cvent System Model System System
Table Stimulus Threads Functions Configuration
L Event External No. DESC Operator
t} Space Sys AT imsg 22 -] 2201 Routine - CS0
Status : Message - STO
2202 Nonroutine
Operational Message Hardware
O - CPU
LT CSO
° - Core
. - Disk
Internal - 1/Q0 Cntrl
AT Journal Software

Figure 10.1-2

FAM uses a series of data bases to deseribe the

of a system.

GOM models a system in much the same way

CPGON

- Message Proc

‘~:.E§E\\~//~._,J

logieal structure

as FAM.

To set up the model,

the system is described by specifying the number of operators, what tasks they
perform, how long it takes them to do tasks, what resources they require for

tasks, and what resources are available.

events that stimulates operators to perform certain tasks,
run, statistics on time in system and resource contention are collected.
Using empirical data describing the way operators use different equipment, the
modeler can run simulations to compare alternative operational systems.

GPM models in detail a computer system.

and the I/0 of a computer system.

The model is driven by a scenario of
From a simulation

Generally, it is a discrete
event model of the processors, memories, certain operating system functions

tasks to be submitted to the hypothetical system.

database.

Scenarios consist of lists of processing

Scenarios are stored in a

Each of these three was developed using FORTRAN within the SLAM

modeling framework.

As a result, they are able to be combined.

FAM or GOM

could be combined with GPM to move from a highly abstract model to a more

detailed model.

This would essentially be a nesting process, where the system

is first modeled using FAM or GOM alone, and then GPM is substituted for the
simple characterizations of processing resources to achieve a greater level of

detail in the

The C3
C3 lab. This
workstations.

simulation.

laboratory system software runs the suite of devices in the

includes a large scale graphic display and graphic

Like the other models, the ¢3 models are configured and
driven from a database.

89

s Ak i S e i il W si SRl e B S e AT

Sortware Development Tools

We have been interested in software development tools for some time.
We used, evaluated, and developed new tools. In pursuit of this interest,
4 several packages have been evaluated. PSL/PSA (Problem Statement Language,

Problem Statement Analyzer) was studied and used on projects in the company.

Denver Aerospace also conducted a lengthy evaluation of TRW's SREM (Software
Requirements Engineering Methodology) for the Air Force (RADC/CO). Tools such
as ASAP and DWB have been developed by Martin Marietta. ASAP (Automated
Structured Analysis Package) is a design aid that has been used and is being
used. It is based on Yourdon data flow structured analysis techniques. The
tool can be used in storing and managing design information and provides
completeness and consistency measures on data flow aspects of a system being
designed. This tool is applicable to the system development life cycle from
early requirements definition through implementation. It can be used to
manage project information, including such concerns as project organization
and schedule, as well as requirements, decisions, detailed design, and even
source code.

DWB features flexibility. The structure of the project data base is
flexible; the specification languages used can be tailored to suit unique
needs; and hooks are provided into the host operating system to interface DWB
with other tools. Unlike ASAP, DWB does not support a specific design
technique but rather focuses on the management and expression of project
information in such a way that users are facilitated in using any development
techniques they choose. For instance, ASAP might be used along side DWB in
the design phase of a project.

(it
[
'.

Of these tools we are most interested in SREM, ASAP and DWB. Wes have
all three available to us and have studied them. We have hands-on experience
with ASAP and DWB. Right now we are in the process of setting up a DWB data
base to support this project. Appendix Al presents an example of a
description of our methodology, described using a SREM-like syntax, stored in
DWB. ASAP was used in the development of our interface prototype, and we
expect to use it in our design efforts for other parts of this project.

Some other tools we have available are parsing code generators that can
be used in the rapid implementation of application front ends--in our case,
prototype applications. On the UNIX operating system we have available LEX
and YACC. LEX is a tool that generates source code for Lexical Analyzers from
descriptive source code of its own. This not only allows the rapid generation
of a Lexical analyzer, but also promotes easy modifiability. YACC (Yet
Another Compiler Compiler) generates source code for parsers. It can be
easlly teamed with LEX generated code. Lang Pak 1s another parser generator
available to any system with a FORTRAN compiler. It has a descriptive
language in which to describe a grammar. Then the grammar description is
translated into Fortran source for compilation and use. In addition it
provides an interactive environment for developing a grammar.

’ .l P
gk
."

»
.
,'v .
v
Tak

)
NI

Data Base Tools

':"
o, A
[l

A ANORY

"l'
2ELrPY
o

b

(3

L.

We currently have in the testbed a data base generating tool based on
the Codasyl data base standard with a relational access language. Under this
standard a data base scheme is constructed from a description of the data m

MR

LA
o
2
s o
P
o

90

o oy
]
"‘
o,
1]
Pl

v
.
.
4
'y

types to be stored and the relationships between the data types included in
the data base. The scheme is a translation of the data descriptions into an
access structure which can be used to populate and query the data base. The
particular tool we have is called D3M for Domain Distributed Data Management.
It is hosted on the Apollo DN300 workstation, which will be described later.
In addition to generating a scheme for a data base, D3M also will generate
subschemes for restricted access and has a built-in interface to the high
level languages Pascal, FORTRAN and C.

Existinggpata Bases

A notable data base is the C2SAM, or Command and Control System
Analysis Model. The information in C2SAM and the underlying model for
organizing that information comprise a generic logical model of any command
and control structure.

Five groups of elements make up the model;

Missions,

Levels,

Hierarchical Breakdown of Generic Tasks,
~ Information Units,

~ Organizations.,

All coumand and control is exercised in the support of some mission.
Each level of command and control performs certain tasks to accomplish a
mission, Different levels may perfc:m the same tasks. Tasks are generic
activities that must be carried out by any C2 system in pursuit of its
mission. Certain tasks require or produce information units., Organizationms
perform certain tasks.

The C2SAM is Air Force specific. The organizations themselves reflect
current structure in the Air Force. Some, although not all, of the
information products are standardized Air Force products. The missions used
in the model are all air missions. This apparent lack of generality reflects
the current degree of instantiation of the data base. C2SAM currently
represents the TAC, MAC and USAFE (CENTCOM) organizations. To extend the
model, the data base must be populated with specific information relevant to
other organizations. Figure 10.1-3 is a high-level diagram of the generic
intormation exchange model as it exists in the current instantiation of
c3saM. The following paragraphs expand somewhat on the fundamental elements
of the model.

Five missions are enumerated;

Offensive Counterair,
Defensive Counterair,
Close Air Support,

- Interdiction,

- Reconnaissance.

Certain tasks are associated with each mission. The missions may also
be combined, and some tasks support all missions.

“MD-R167 423 C31 RAPID PROTOTYPE INVESTIGRTION(U) IIRRTIII MARIETTA 272
. EROSPﬁCE DENVER CO P C DALEY JAN 86 MRC-85-616
RADC-TR-83-216 F30692-83-C-0067
UNCLASSIFIED F/G 1772

ey

o W e m B e b,

LS L SRR N

LW S e W Al By

PR A p P A P e e dte e

b

W A 0 Wt B A Sl

¢era

13 3 =]
HEEE
«Hm—mmummum
2
=
"

%, % ey

MICROCOPY RESOLUTION TESTRCHART

A A

STANDA#S.

NATILNAL HEIREAL OF

} Four levels describe the command and control structure;
9
! - Theater,

- Component,

- Force,

- Unit .

Theater responsibilities are very broad, component responsibilities
less so, and so on. Each lower level generally deals with more implementation
detail. However, exceptions may crop up where higher levels of command and
control are involved closely in planned execution.

TR

X,
l‘".‘
A A

."

v

o

“e ¥ 2
FAN
fnn
iy ey
.(,"'

I
Directing : Controlling
i |
3 9 | 9
|
Information Feedback |
Guidance - ——————_Requests
Theater Theater Theater
Plan Plan
-~ Orders - Orders
- Approvals/ - Adjustment | - Approvals/
Disapprovals Requests | Disapprovals
Information Feedback I Adjustment
Guidance Requests
Requests
Component Component Component
omp Plan Plan
-Orders Ad - Orders
-Approvals/ Rejustment | - Approvals/
Disapprovals quests Disapprovals
Information Feedback -
G
Force uidance Force Requ‘ests Force
Plan Plan
Orders
—Adjustment | 8gprovals/1
sapprovals
Information Requests Feedback i Adjustment
Unit < Requests
Unit Guidance Unit l Unit
Plan Plan
' Orders
Orders |
|
@ Mission
I
Requests :
Planning Period 1 Operations Period

Figure 10.1-3

~ : -

93

Seneris Tnicrmation Izencmge for Tactical Air Missions

l""'l .
vy v

v
R

)

L
Y
P
.
.
o
4

rr
% {»

i 7,
t4

COL L YA LY

PPN
a, .8 - a 4

R L

e

Osrecy

| Py

-

[A
Yl e e,

s '.\:’l." e

’ PRl N,

ARG

P O Y

The hierarchy of tasks includes five levels of detail as follows;

Function,
Subfunction,
- Activity,
Subactivity,
Job.

Planning, directing, controlling, and executing make up the list of
functions. Lower level tasks quickly proliferate. Subfunctions number 65,
activities 221, sub activities 831 and jobs 1575. The lowest levels,
subactivity and job, are directly associated with the transfer of
inforwation. Organizations are structured hierarchically, also. Each
organization is related to particular tasks. Tasks may be shared by
organizations. Information products are categorized as formal and informal.
They describe groups of items of information that are necessary for the
execution ot tasks. A user queries the data base to use the model. By
querying in an investigative fashion, a general functional model of a
prospective C2 system can be constructed.

10.2 Computer Resources

Hosting the software inventory and satisfying the other constraints on
computer resources was accomplished by using the Martin Marietta Central
Software Laboratories (CSL) and an Apollo Domain System.

The Central Software Engineering Facility (CSEF) consists of a network
ot six mini and super-mini computers including Vax 11/780, PDP 11/70, IDM 350,
and IBM 4341. A wide variety of peripherals connects to this network,
including printers, plotters, graphic terminals, graphic terminal hardcopy
devices, and a microfiche peripheral. We used two VAX 11/780s, one running
VMS operating system and one running UNIX. Also, we have used the IDM 350
machine which is connected to the VMS VAX and supports Designer's Work Bench.
CSEF hosts all of the software except D3M and the interface prototype software.

We chose the Apollo DN300 computational node as our workstation for

several reasons. Specifically, we were impressed by the processing power, the
operating system and the network capabilities of the ncde.

The node's processing is done by two Motorola MC68010 microprocessors.
These microprocessors are state-of-the-art 16-bit processors. They have
built-in memory management hardware. The instruction set for the MC68010

directly supports structured high-level languages and current operating
systems.

Apollo's Aegis operating system successfully exploits the hardware.
Aegis interfaces with the user through a high-resolution bit-mapped graphic
monitor. The interface features a multiwindow display similar to systems such
as Xerox Smalltalk, the LM-1 or Apple's Lisa. These other systems, however,
are 1solated to comparatively narrow applications. Aegis uses the innovative
interface to facilitate conventional application software development. This

approach brings along the advantages of the new concepts while not isolating
the user from mainstream production methods.

94

Cognizant of the trend to distributed systems, the Apollo designers
have built network capabilities into the workstation. The node can be tied
into a LAN in three ways. It may be plugged directly into an Apollo Domain
Network; it can be connected to computer hosts or modems via two RS232 ports;
or it can be gated onto an industry standard network, such as Ethermet, by use
of a peripheral server node.

Apollo Domain Network is restricted to Apollo products, but this LAN
interfaces through the Apollo DSP80 gateway node to other LANs. The Domain
network architecture is based on a ring topology utilizing a token passing
protocol. This architecture is extremely fast--rated at 10 Mbytes/sec. In
addition, all of the products offered for the network are completely
compatible. The operating software in all the available nodes includes
network administration functions. All of the features in combination form a
virtual network, one in which any user, anywhere on the Domain network, may
use any resource on the network as if the user were connected directly to that
resource. No appreciable response delay occurs as a result of network
communication, and the drawbacks of Ethernet load management are avoided.
Resources available within this virtual network run the gamut of commonly-used
engineering tools. Special packages are available for CAD/CAM application,
database system, scientific engineering, large secondary storage, specialized
peripheral devices, and more. The Domain network is sufficient for a great
many applications in and of itself.

The network provides a gateway to other networks. This gateway is in
the DSP80 peripheral server node. A DSP80 node was included in the network to
interface the network with special peripheral devices or other networks. In
particular, Apollo offers software for the DSP80 to directly link Domain
network to an Ethernet or HYPERchannel. This capability allows the user to
enjoy the extremely high performance Domain network and at the same time does
not isolate the network trom standards which are developing in industry.

Directly linking the DN300 to a host or modem using the Serial 1I/0
lines allows it to be used in a terminal emulation mode. Software included in
the operating system emulates an ANSI standard terminal and can be configured
for various operating system conventions. The software also transfers files
to and from a host. These lines may also be tied to a peripheral device such
as a printer.

We used the Serial I/0 ports to connect the workstation to the CSEF
network. One port was tied directly to a VAX host running under VMS. The
other port was connected to a modem, Figure 10.2-1 diagrams the demonstration
configuration. This configuration is a minimal example of the LAN
architecture we have described. The LAN in this case is the DECNET of six
computers in CSEF. With the Apollo in terminal emulation mode we are directly
connected into the CSEF network. From our workstation we ran software on two
separate VAX machines, one running VMS, the other running Unix, Software
hosted by the workstation provided a framework within which to control
simulation running on one of the VAXs.

95

. e T .
- ‘-4:“‘-_"-\."1.

-~ - ’ ’
TRIA
b

=
-
i.
s

v N
‘%

&
-
.«‘
23
A
-

‘:&«MJ b

-

Sy
¥

st

AL
S
2P
PEE

2

e
~
-
3
-
gr

..:
LG
*'
)

4
%

0 L ik had s CagValite f1o 8 g g d ot Lf ol b i S Soley ok

——‘I} “ vrioo VT100 VT100 ;
-
el ' | : '
| VAX 11/780 | DECNET 1 lyax 11/780 :
| (VMS) 1 |nx)]
| 1 1
' 0 |
] A ' |
il e __..:.___..._r'_..'____J
1 ']
! | Evans & RS-232 RS-232 '
: Sutherland | j ——]Apollo Modem
|| EsS) J !
| | Picture | :
(System { i "
| | Controller : 1
) |
| : Bit-Mapped |
| E&S Display !
: D‘ Dispaly :‘ ------------- -
! E&S !
: D-‘ Display :
I [>>-Zytron \
| Large-Screen
L--- ‘Display"’

Current C3 Laboratory
Displays

Figure 10.2-1 Minimal LAN Configuration

10.3 Interface Prototype

Our minimal network/workstation configuration brings together the
individual capabilities to define and demonstrate a rapid prototyping
environment. To begin defining the environment in terms of the user
interface, we developed prototype software on the Apollo. ‘The prototype was

designed to represent a framework into wh

ich the prototyping tools could be

placed. A user would use this framework for guidance and access to the

tools. 1t was also designed to be flexib

le and reconfigurable, Figure 10.3-1

is a diagram of the software running the prototype. The drawing is
partitioned into the user's view, Apollo hosted processes, and VAX hosted

processes.

96

40 %
i 4;0.‘ ‘-"'
»('.
L A\ N £ 3
s
fedhh e

';_ "

SRR
PO L
\A“.‘f"\A j

L &

T)
TEOH XVA At oy
Teusts doag N A
[eUsyS 3aeas ! 4 §313IN014 sdey
N
0°¢ 2 \ nuay
T0x13U0) @ sa3essay dI3H
{eujuiaj snuay
§9fIBUWNG

UOTIETNWES

uoy3eTIWES

llilllll

0/1 ssado01q

0 72027 ‘sovfasjzuy adhAzozodd [-g£°0I aanbig

97

112u9y

§95522013 Suj3ieaadoo)

A puewo
andang mu:mEEJW\\\ \\
£ SO sisanbay

eleq aey * sniels
A\
deT4 uotriEdTUNUMO) SsIdoadiajug

Teurwiag
Xva
Ten3aIA

0,

e
F

Le1ds1q or1ody

anding saseonbay \\
\\\usmu:o snjels
§32
Sessado1g 3PON Q0ENG oTTody
— ‘/
TeuS1s uoradayas % |
UoTITSOd 1081n) |
3114 /
@ | uotIeINgjuo)
asnop | saTtd S$9901d
ASTA 5,d9s) _ pueunioo

T Ty

3

Essentially, the prototype consists of an executive process and several
cooperating processes configured by several files. The executive process
functions quite simply as depicted in Figure 10.3-2. It begins execution by
reading a configuration file into a table. Then it maps into its address
space a small area, called an Interprocess Communication (IPC) flag, used for
communication with the other processes. After initialization the executive
simply monitors the interprocess communication flag for events. Upon the
detection, "flagging" of an event, the executive examines the contents of the
communication space and takes appropriate action. If the flag is set to a
positive integer, then this integer is used as an index into the configuration
table. Information indexed by the flag tells the executive what process to
initiate. In the case of a negative flag, the executive terminates a
process. While the executive monitors events it also keeps track of what
processes are already active and how many processes are remaining. The flag
is set to reflect these conditions. That way, if a request is made to begin a
process that is already running, then the requesting process can determine
that fact from the flag after it has made the request. Similarly, if so many
processes are running that no more may do so, then the flag is set to so
indicate.

The executive is the means for the prototype's other processes to
cooperate. A process may request the initiation of another process or inform
the executive of its own termination. After each request, the process then
waits for an acknowledgment from the executive indicating the status of the
request.

This structure can be used to implement a menu system., Figure 10.3-3
is a diagram of the generic menu process used, The menus in this system
presented the user with a choice of functions in the prototyping environment.
Selection from the menus was made by simply positioning the cursor over text
on the screen and clicking a button. Positioning was done using a '‘mouse"
pointing device. The user selects activities from a menu, activities which
might be from another menu, or one of several other types of processes.
Included in the demonstration were processes for configuring and running the
FAM, displaying graphics, and editing graphics.

98

AT I v .
B GRS

ORI Y
P 1
TaVar atds

R N

Configuration| Process Descriptions -4
File o
nitializ
Process
Table

Process Descriptions

Process Table

Process Descriptions

Status 0S Commands t
Process gxecute *
Index rocess
Requestg .
Monitor
Raw Data
s Ya
Process Index %
IPC Flag A
Status Requests :f
ﬁ\ w

Cooperating Processes

Figure 10.3-2 Prototype Interface Executive

In the menu system itself, we provided two means of access to the
user: a hierarchical method and a direct method. The hierarchical method
begins by listing the highest level activities first. Selection of a
top-level activity then results in the presentation of a menu of lower-level
activities and so on, until the user has selected a core prototyping
activity. This hierarchical method of access was designed to guide the user
through the methodology. As users become more familiar with a system, the
hierarchical method becomes cumbersome rather than helpful. Therefore, we
also provided a direct method of access. The direct method consists simply of
an exhaustive menu from which the user may select any of the processes
available.

10.4 MethodoloEX

The methodology must define when to prototype, what to prototype, the
means to use, and what to do with the results. The methodology we have

developed thus tar answers all of these questions to some level of detail, but

??‘f:
DAOASLE,
e
¢ s _‘:‘If.

99

-

it focuses most clearly on the question of when to prototype. This question
. must be answered because it addresses the most deeply rooted problems in the
development of software for C3I systems.,

e

The upper level of Figure 10.4~1 helps to explain why the 'when' of
prototyping so critically concerns the development of software. The diagram
depicts three phases proceeding in time from left to right. The first phase
activities identify, express and validate requirements for the system. From
the system requirements, Phase 2 identifies, expresses and validates the
resulting requirements for software in the system. Phase 3 activities result
in a software design.

Phase 2
Phase I Express & Phase 3
Express & Validate ——ﬂ Validate *1 Software
System Requirements Software Design
Requirements

Idealized Sequence

Detail System Requirements

Level 1

B WEC RN IRINANEY. AP REN ey S~ I RN N B 3 J

o

Software Requirements

Software Design

s ava « UERT T T A
N
.

AP
-

Time

Figure 10.4~1 Realistie Model of Activities

T T LY .

.

This sequence of activity reveals the dependence of design on software
requirements and software requirement on system requirements, which is the
hallmark of modern software engineering. Each succeeding phase is dependent,
for its own validation, on the validation of the previous phase's results.
Prototyping facilitates validation. To effectively build good software,
prototyping should be applied in the system requirement process. The top half
of Figure 10.4-1 may be considered an idealized sequence of activities,
idealized because the flow of activities in each phase is not truly
sequential. The dependencies are sequential, the processes are not.

The lower half of Figure 10.4-1 illustrates a more realistic model of
the development process. The phases are now pictured as levels or planes of
activities. The position of the left edge in relation to the timeline
indicates the sequence of initiation of the phases. As you can see in the
diagram, the durations ot the phases overlap. The analogy says that

ATAE SE S NG S S AR AR A Sl ta Ay

NP

RS RAS Y
DONOES
* ’ -’ * .

R

’, A
v e

P :'.t'n;l

I
"
LA
(] :
ae
7, p"':,'v “ u“ -

"
’ e
X
'y

»
s

Rl h S dhion gh A Shn e e S Ahs U S0 b S

activities in all of the phases can take place at the same time, some in
parallel, others asynchronously. Activity proceeds in an opportunistic

fashion as the necessary inputs become available and management constraints
are satisfied.

As a result, requirements are validated in an ongoing way at all
levels. A validated baseline of requirements, however, must be arrived at as
quickly as possible. We consider it critical in our development of a
methodology to facilitate validation in a manner that recognizes the
overlapping in time of essential activities and, at the same time, the need to
quickly formulate a baseline.

The three phases pictured in Figure 10.4-1 partition our methodology.
Figures 10.4-2 through 10.4-11 show detailed activities within the phases.
Phase 1, Express and Validate System Requirements, is detailed in Figures
16.4-2 through 10.4-6; Phase 2, Express and Validate Software Requirements, in
Figures 10.4-7 through 10.4-10; Phase 3, Software Design, in Figure 10.4-11.
In the diagrams, activities are represented by circles, products of activities
by rectangles, and on-line storage by cylinders. Arrows indicate the flow of
information in the methodology.

101

[

B S SR R R

¥
-

o

(A M e N

s

- Threat Assessment
- Mission State....at
- SON

Prefunctional
Definition
1.0

Preliminary
System
Specifi~-
cation

Structrual

Database
Like CZSAM

Reformatte
Inputs

System
Assessment

L |

Scenarios

Figure 10.4-2 Express and Validate System Requirements

102

Feedback

Modeling
1.2

)

Results
of Assessment

Next-~Phase Activity

St Ty T

v

-

»
r.
»
&

Nyl

>

L ga as an

Vet
A
.
2’
Can')
s
v
.

> .
Lt

RACRLERY

SR

!'v1r -

AT

Phase 1: Express and Validate System Requirements ;gigféﬁj

NSRS

~ '.‘."‘4. ~'-

More specifically, the activities we are referring to in the o \iq*xg

Prefunctional Definition process include various types of high level VLN R

operational analysis. Battle management, force allocation and assessment of !;;i S

threat are the kinds of activities involved. Experts in operations combine uﬁk{{' o
with researchers and consultants to do these analyses. The upper left~hand :5:$::&

corner of Figure 10.4-2 is expanded in Figure 10.4-3 to show two activities . :xhgh,

taking place within Prefunctional Definition. Modeling and Scenario 3 -'}hw‘

Development are the work of the operational experts. The translation activity pm—

takes their raw output to produce a Preliminary System Specification. Ew‘;\,“"

Figure 10.4-2 shows our highest level of division within the phase. 1’}‘ A

Proceeding left to right, the Prefunctional Definition activity produces a
preliminary system specification. This specification feeds the Analysis and
Definition process, producing a more detailed and formatted specification.
The formatted specifications are then used to model the system and assess it
against scenarios.

Preliminary System Specification resulting from Prefunctional
Definition drives the Analysis and Definition activity. Formatted
specifications are a result. The Scenario Development by these same experts
proceeds down the left side of the diagram. Detail in these scenarios
increases with time, Arrows from the Scenarios back into the main diagram
indicate that the Scenarios feed into all of the activities.

Scenarios provide a reference model for the state of the evolving
system at any time. Figure 10.4-4 shows how Scenario development is a
continuing process paralleling both the growth of detail in the actual system
and the developing model of the system. As time goes on, all these increase
in detail. Diagram 10.4-2 also shows a database such as the C2SAM as input to
the functional analysis and definition activity. We are using the C2SAM here
to represent a generalized functional model of c3 systems. C2SAM itself
contains both generic and specific information. Its data bases are validated
for TAC, MAC, and USAFE (CENTCOM). The generic structure of C° systems has
been examined and judged adequate for SAC and NORAD; therefore, the C2SAM
paradigm can be extended to cover the necessary range of structures. Figure
10.4-3 expands the Analysis and Definition Activity to show the activities
substructure and the categories of formatted specifications produced. These
specifications are then reformatted to be input to the System Assessment
modeling activity.

103

o tulid Tob Sk g

f ket s

i A

oy
-

(i

< 7a

foghi ot Ju T

ST

. oI«

W4y

AN
Yele s

.w-.\.- 4

e
LSRR

sinduy paijieuxrojay

AR

AR R R R N

PR | 30Yy) £—pyl mblo

Burapon
Buyrepol S@ANnpasoay
£3118373u] waysig

UPUNH 3uy1apoW 34QV

z°

BuTT2pOH
ususSsaIsSSsy
wa1sk

S$3U2WSSISSY
jo
s1Tnsay

0T 1PrUuadg

3
[
l
!
|
{
s3uowairnbayl I syuswsarnbay |
adejiajujg TeuoTIdUN] s3doouo) BT19371) |
PoATIa(21 3123ds| [{ruoTIRIad) uorienyeay u
] S
7
NN /
7
/7
1\ 4
UOTITUT Jag NOS
21T s1dasuon Juawalels UOTSSTH -

[
|
|
|
_
]
_
|
|
|
|
|
|
L

T
|

\

uor3ITUT 300
% stsAieuy
Teuorouny

1euoriexadg

|
|
|
|
Fe——==T
/
|

uot et yyoadg
wa1sg
Larutwy 91y

JUBWSSISSY 1eAIY

-sue1j

uoljey

Aoeqpaad

07T\
JuaudoTaaaq

oyaeuass f]
g 8uilapoi

SoTaBuasg palrelag STdursesaaduy

104

Again, referring to Figure 10.4-3, it shows that System assessment
modeling is achieved through the GPM, GOM, and FAM tools. The GPM provides
ADPE modeling, the GOM allows modeling of human analyst procedures, and the
FAM provides modeling of a system's logical structure.

- Evolution/Detailin -
Scenarios/) 4.: \7 /Deta g (' by -
Reference Model = -
[}
: System : Requirements l Design [Implement J Integrate J
. |)
. | l
' [}
. ' -
)| - Simulation -~ Documentation - Documentation - Documentation
Models of System || - Analyses o] - Simulation F_ ~ Analyses | o] - Working Models 3
4 1| - Prototypes - Prototypes - Components .
1| - Documentation - Analyses S
. ' .» {,-
X 4

PRI
AN

.' Time >
4

Figure 10.4-4
There are three continuing processes within a system development:
coming-into-being of the product, development of paper and computer-

based models, and evolution of the reference scenarios.

m—s

X

Figure 10.4-5 isolates the subactivities of functional analysis and
definition. It shows the use of a generalized c3 system functional model to
arrive at specific functional requirements. The specific functional
requirements are checked for consistency and completeness, and revisions are
identified. Also, interface requirements are derived from the Specific
Functional Requirements. The two products, Specific Functional Requirements
and Derived Interface Requirements, are input to the Operational Concepts
Definition. Operational Concepts Definition breaks down into the two
activities depicted in Figure 10.4-6. First, operational concepts are
developed from analysis. This set of concepts then yields a set of evaluation
X criteria for the system.

Phase 2: Express and Validate Software Requirements

Refer to Figure 10.4~7. Here we see the relationship of the project
data bases to the methodology. They provide a repository into which the
growing mass of detail in the system may be deposited. Their filling is done
by the Software Requirements Analysis activity. The analysis takes
- preliminary software requirements and seeks to refine and clarify them. More
detailed requirements are produced. The more refined requirements are modeled
and the results of modeling used as input to further iteration of the analysis
activity. Eventually, requirements are refined to the point that they may be
prototyped. After prototypes are constructed and rum, the results are fed
into an activity which determines the best way to feed them back into the
development process.

. 0,

. 105

o)
o
y Preliminary
< System Check
Specification Use Generalized for
c3 System Consistency
- Functional Model and
- 1.12.1 Completeness
- 1.12.2
K4
Specific
. Functional
1 Requirements
i~ Operational | J
J Concepts
LY
\
P Extract
Interface Format
& Requirements for 1,13
: 1.12.3 Modeling
E Derived
N Interface >
‘ Requirements R
Operational Concepts Definition SN
A
NN
Figure 10.4-5 Functional Analysis and Definition Q}}j}}}
fiiﬂ;i;{
Specific Derived A
> Functional Interface
- Requirements Requirements
;: Analyze
L Operational
Concepts Functional
" 1.111 Analysis & |1.12
-i Definition
-
-
-
A
’ Operational —
-~ Concepts Format 1.13
: | for
f Modeling
. Set Up
. Timing &
‘: Performance Evaluation
. Criteria Criteria
N 1.112
- Figure 10.4-6 Operational Concepts Definition R

)
t.te
(4

106

Preliminary

Software
ASAP Requirement
Analysis
2.0
o

DWB Software
Requirement
Modeling

2.1

Prototype
Software

Requirements
2.2

Software
Requirements

Results
of
Model
Runs

Feedback

Results
of
Prototype
Runs

Next-Phase Activity

Figure 10.4~7 Express and Validate Software Requirements

Figure 10.4-8 expands on the Software requirements analysis activity.
Preliminary Software Requirements initially feed the Site Dependent Analysis

activity.

organization is responsible for these activities.
tailored Yourdon analysis used by Denver Aerospace would be site dependent

analysis.
results of analysis.
of these is Domain Dependent Analysis.

Site dependent refers to methods of analysis peculiar to whatever
For instance, the method of

A DWB-derived data base is pictured as a storage place for the
Two activities augment the site dependent analysis,
Domain Dependent Analysis implies a

One

collection of techniques developed specifically for the analysis of c3

requirements, independent of site specific considerations.

For instance, SREM

and its supporting software specifically facilitate the isolation of

statements of software requirements in the c31 system developments.

Again,

we show a DWB defined data base as the repository of the results of such

analysis.
activity.

Also augmenting the analysis process is the structural analysis
We represent this type of analysis by the use of the ASAP tool.
ASAP, a Denver Aerospace tool, supports a structured analysis technique.

The

technique consists of expressing the requirements in input-process-output

terms and verifying that the logical flow is consistent and complete.

107

L

.

LA A L T, e
D AT T W L
PP WP PO Y ey P GPay W T

The

NN

. e L
GRS OO

PRV

L.

i

s

.
o
Sl el

v 7
VL
5908

RS AL

e e
PP P W, W |

A

requirements are considered consistent if subrequirements trace to higher

{ level requirements in terms of specific inputs and outputs. Completeness

l implies that all inputs and outputs are defined, each required process has
some input, and all output has an origin. The results of this analysis feed
back into the analysis activity. The end results of all types of analysis are
formatted requirements stored in a DWB-derived data base.

1
| Results Preliminary
; of Software Consistency
Model Requirements Completeness
‘ Runs Reports
)
) 1
Domain- Structured
Site- Dependent Analysis
Dependent Analysis 2.03
Analysis 2.02
2.01
DWB
2.1

Software Requirement
Modeling
Figure 10.4-8 Software Requirement Analysis

Refer now to Figure 10.4-9. The next activity, Software Requirement
Modeling, shows that the requirements are obtained from the data base.
Technicians translate the requirements into descriptions suitable for such
models as FAM, GOM and GPM. A test scenario is selected and the models are

run. The software requirements analysis activity then considers the results.

108

St .o
AP -

e e . . E . O
M S A IS *a N L . - ety L. .. RS

..’- ™, ~ \ /~'- PTG S) 'J "4 “-\ LR - " e .-"'-'-'-'. Te e te" .
5§ﬁﬁhhﬁhbﬂh&$ﬁﬁhﬁ¢&hbhh%ﬁﬂ&gr4m N PRI PPy PP RO N PR RSO AT AT AT AR

g NI S N e R g

DWB

Data
Processes
Requirements

Refined
Requirements

Prototype
Software
Requirements

Software Select
Requirement Scenario
Analysis

Instantiate
and Scenario
Results Run Models
of
Model
Runs

Figure 10.4-9 Software Requirement Modeling

The analysis and modeling activities accumulate a set of refined
requirements in the DWB. When sufficient refined requirements have
accumulated and the situation warrants, prototyping of the requirements begin.

Figure 10.4-10 expands the Prototype Software Requirement Activity. As
the diagram shows, prototyping activities draw on the set of refined
requirements stored in DWB. These activities utilize currently used methods,
These methods consist of prototyping environments which require derivations of
initial requirements. In this case, the initial requirements are the refined
requirements stored in DWB. From these, subrequirements necessary to
instantiate prototypes must be derived. Two branches emerge from the
subrequirement derivation. One branch leads to the implementation of c3r
MMI prototypes. The other branch implements unspecified types of functional
and performance prototypes.

At the end of the high and low risk paths, the prototypes are run using
our appropriate scenario. Results of the runs are fed into a feedback

109

LA v s

LI o P

——
e e e)

[O NN A »

L4 »

Ly

L
Cd
L4
<

2

selection activity to determine the best point or points in the process to
send results to.

Phase 3; Software Design

We have not focused a great deal on this final phase. To begin with,
much effort has already addressed this level of activity. Methodology exists
and is well known for getting from well-defined and detailed requirements to
software designs and then to executable code. We can achieve the highest
payoffs by focusing on producing good inputs for this phase. By good inputs
we mean well-defined, validated requirements.

110

Mol A

T

>

)

oy

&

-+ v o,
T
"

5

¥

LN Y

(MY

.. P
» e S I

N . % i] ¢ . - e 3 0 v
: h g - o . . -

Y B TRy R

squawsainbay aavmgfos adfzozoad (OI-5 0L 2anb1g

£ITATIOV ,mucwawuazwmm
aseyd T Hmu
—-3IXIAIN &UM&@ON.&
| '
suny ad£3030ag sTo0]
ad4£30301g 1.0 Burd4L30301g g
30 Juswa Tduy x03 £
s3nsay sjuawa 1TInbay z
aAaT13Q 3
ad£j0301g ~
—d
pajusud Tdu] sjuawaiTnbay

ad£y0101yg
I3Y30

Sjuawr 11 nbay
pauT jay

sadf3010ag
uny
% ?23INd9XY

ad£3030a1g
TEejuUaW3IdUT

OTaIBUdDG

NHQ{ CU:Z
SuoT1®BIT JT10adg
31qeINdaAX] 03

sjuawaxinbay
a1eTsueril

As1d 431y

(e} $8:11 CRIY
319971238

sSuoT31edTJroadg
3Tqeandaxy

oM. B A Pl S A e T Y (N ' s T . e o 0 . .t sLetoe e P . .

Figure 10.4-11 details Phase 3. A DWB derived database again serves as
the main repository of specifications. Here we have partitioned the database
into several layers. The top layer holds validated software requirements.

The first activity expands the required process description in text producing
the next lower level of specification. Then the expanded descriptions are

translated into some form of PDL (Program Design Language). Finally, the PDL
descriptions are translated to executable form,

The executable forms are prototypes. Selected scenarios drive the
prototypes, producing results which are evaluated against high level design
criteria accumulated throughout the development cycle. Analysis of the
results reveals the state of the system in relation to the established
criteria. A selection activity decides where in the cycle to direct the
evaluations.

10.5 Scenario Library

In terms of the c31 Rapid Prototype Investigation's own methodology,
it is at a point which allows filling in enough details of a system prototype
to make some 'runs' and validate some system requirements. Scenarios must be
developed to drive the prototype. To do so, we can draw on the extensive
record of C31I system development and the knowledge of operationally
experienced people. Prime candidates for these scenarios were identified
early on in the project and remain viable, the OASIS and SPADOC efforts in
particular. There is detailed history of these efforts, encompassing all
levels of development to some extent. Formal documentation, developed
software, and participants in the efforts all contribute to the legacy and can
be used to derive scenarios.

112

- " = Ve Tle ea

Agtd
4
.

PR
.
D

r

w5

(3

4

f

'
A
. £

Y

ool

.f.."
o i
PRI

,'v#‘ l"‘l“') '.'\""i] 4

’
¥

{

o
o -
- LAL)
- ' Y
o :'h". P
= r

X)

xx

»

WY T

r

T TTY R Y VY

T

"

Software

Requirements
(Validated)
Expanded Process

Description

Requirements

in PDL

Requirements
in

Executable Form

Validated

High-Level Design

Select
Scenario

Run
Prototypes

Scenario

Figure 10.4-11

Expand
Process
Descriptions

Translate
Structured

Descriptions

in
Text

to

PDL

Translate
to

Executable
Form

Select
Entry
Points

Analyze

Results

of R:sults
Prototype o
ototyp Prototype

Runs

Runs

3.0 Software Design

113

AT VY P D PR 5.

4 S T L X

I e

P A

B M

.

AP e

o 1. A 080 T Y L LY. N

o s 1

o THERE & § % A A

11.0 PROTOTYPE ENVIRONMENT DESCRIPTION

The Rapid Prototyging System (RPS) will be a tool to prototype key
functions of Air Force C’I systems. The RPS development will be primarily

of software. Figure 11-1 shows the major CPC components and their
interconnection. The RPS consists of 6 CPCs: four modeling CPCs and two
tools/support CPCs. The user will access the system through the master
control CPC and, generally, next work with the interface modeling CPC. The
master tools CPC allows coordination of the other modeling CPCs and their
packages. At any point, the user may direct text or data to the support tools
CPC to support documentation. The RPS will provide means to characterize the
user-system interface aspects of a c31 system, its data base content and
conceptual design, its structure at varying levels of detail, and its expected
performance. The RPS will support documentation of the results as well as
storage and retrieval of the prototypes themselves. At some future time,
links to other systems and models may be required.

Figure 11-1 shows an equipment environment of the RPS. It consists of
a Digital Equipment VAX 11/780 computer with two disk drives, line printer,
system terminal, at least 2 MBYTES main memory, tape drive and at least two
VT100 terminals. There will also be a workstation network interfaced to the
VAX 11/780 unibus through a gateway processor (Apollo DSP 80 or functional
equivalent). There will be a machine to process Prolog which has at least 2
MBYTES main memory and approximately 1 GBYTES of peripheral storage. System
engineering terminals on the order of IBM PC or Apple MacIntosh's will furnish
database query response and text editing capabilities. There should be
included color workstations such as the Apollo DN 550. This workstation
should have at least 2 MBYTES main memory and several MBYTES of display
memory. Each monochrome workstation (DN 320) will have its own Winchester
storage of at least seventy magabytes. The DSP 80 will be connected to a dual
drive removable cartridge Winchester system of at least 10 MBYTES per
cartridge capacity. There will be a screen hardcopy device interfaced to the

Domain network. The VAX 11/780 will be interfaced to the RADC fiber optics
network.

The VAX 11/780 shall host the VMS operating system, FORTRAN, Prolog,
PASCAL and C compilers. The Apollo DN 320S should be provided with the Aegis
operating system, FORTRAN, Prolog, PASCAL, and C compilers. The Distributed

Software Eggineering Environment (DSEE) and Domain Distributed Data Management
package (DSH) should be provided for the Apollo computers. Further details
of the software functions may be found in the RPS Functional,
System/Subsystem, and Program Specifications.

114

1

P) ¢ e '

YR R - .
P AP ASATS S
IR AL IS YA A A S S T

Yotk kal
A A ¢
x
et

)

gy
[
',

J!
)

v
Ay

e e e e e e — A # R s e . s s . _ " .y SN . "aPa x4 . y® e " TR e s 3" AR 2 I " . " WEREa‘m A S A % 8 SN .. & - "

A SWXRAZ | i

IR g > ’
2y SEFE LY T A !
e RAALAASET S . .
hF l‘

YRR =y M
IR Y. AR A A I < QO

l-LL 8inbty

1 -
Butreuttul \} UOTIRISHION & 0L
EAR iy
D 1 fdospIey
w. N 10703
0BL/LL XUA Aenen N
_] _ - o EISHUION &4 00€
10109
TOUTMID) 00114 u g 00s I08S30014 I
¥NSAS SI0M N @& 005 poroxd " &
% @ M| en
ab1en
A10301qe JunIbRURY ITNEE n
— — SRS — — — — — —— —— — — —— l1 — — — S— — ——— —— — =1
ATIQ £10181qe7 OuTI3UTOU3 SI8Mm 3OS
IS0 j
NIOMIN STeuUTMIa} _
0/4 SutIeaUTiu]

A_uﬂbﬁm_

|| vonnsuon Adoop ey

1

QBL/LL XUA

yd
5 uoTAIEASHION ﬁ u
vy aAtg _ RN SAS m WOIYOOUY & 0L
£ 4]
0014A _.. S
=

10700 d

S nu—n: ™ 00 uommru&
8»”._ Sﬁm dn Treg ﬁlll boog [Lf° g E
! i | - <

alempieH wolsAS BuidAyojoid4 pidey

2-11 31nbry

1.
3
2
A
w IoyeTsuert J
. v
3 WREIEY ST001
w. OTIBURIS [~ woos.n -__GS = 3200dng B
: A X z1
3
A
B
, RUMN0LY iy Durtapns | | e TN oRUN
3 sl WOTMIOH] 9104134 PR o0 H msey |
2 L9 b's Ly Le 12 bl
P
2 ‘
2 Gurdfiozd puTdhmazy WRIeL LR TS ouTTPON SnIRA
2 g&iﬁ aseg ey 0UBY103I3g amonns TeoTydery uRNSAS
A 09 0's 0y 0t 0z o't
: [[1 1 []
1
g
1 Sod
; 0’0
I
sjueuodwio) aiemijos SdH aul

116

ke

AT B Y

- .~.> s ..
.!_-L-!}.'}):‘-E

P

12.0 DEMONSTRATION SCENARIO

12.1 Introduction

We held three demonstrations at Martin Marietta Denver Aerospace to
examine the suitability of our prototyping tools. The key demonstration was
focused on a C3I center that emphasized displays and databases. The Ground
Attack Control Center (GACC) is a concept for an improved element of the
Tactical Air Control Center (TACC). It was our intention to pick a
demonstration problem representative of those requiring rapid prototyping. We
chose the GACC because it is currently under definition, it will be a system

capable of development within the next five years, and it includes elements
such as displays and databases.

The intention was to present an element of a GACC as an example of
prototyping--not to define or solve a GACC problem, The exact scenario we
used was incidental. We assigned a prototypical mission user the job of
creating the GACC prototype. He had virtually no software experience. He
developed a scenario and used our prototype tools to construct a
demonstration. This activity was supposed to validate the ease of using rapid
prototyping tools as well as validating different types of prototyping. We
used interface prototyping and structure prototyping to create the TACC
demonstration.

12.2 Demonstration Results

The GACC demonstration proved the utility of our prototype rapid
prototyping tool and approach. Key to any software system designed to support
human cognitive processing is the user interface. User satisfaction is vested
in this interface's functionality. We had hypothesized that maximal
reconfigurability of the USI would be useful. Major steps were taken toward
that goal. The GACC prototype USI was assembled quickly (two-three week
period) and was easily reconfigured to allow a one day turnaround of changes.
It should be emphasized that this was accomplished with a partial and
incomplete interface modeling tool. Definition, placement, and selectivity of
pop-up menus and icons took place. The level of detail in the definition of
the GACC USI was sufficient to have provided valuable support at a system
requirements review, operational concept review, or preliminary design
review. Issues such as concerned the type of data needed to be included in
the database for a GACC were exposed. Operational procedures enabling the
prototype analyst to perform the experiment mission were apparent. The
prototype analyst with no programming experience was able to build the GACC
USI himself with minimal aid from technical specialists. This aid was of an
advisory nature. The USI states could be captured in hardcopy and would have
been available for inclusion in specifications if they were to be built.

This demonstration provided conclusive evidence of the utility of a

rapig prototyping system based on modeling to support a key and crucial aspect
1 system development.

of C

117

. [AATIR P T
Deale Lo as g o st

gy e
\-»iﬁfa§"

N\

:"\ "')'\
s
S

e 1N
“~ -

s vy
A
v

o
Wt
185 - =, .

‘ Ly

rd
Al

o

»
Fo

: Y R " y A e .
.. PR A !ll’l(ln._.

*- 5-. X ‘ Ugr .vlu..riwi!.
,ﬂ. O o RN

%".
o

PO RE

N
'
N
A8 S

s L
AT h AR A/

>4
[
2
=2
[
Py
<

ATV TN SR T NI . . ~ DRI e . .
R PP ITTS O AR A A AL AR AT R A T DRI 4

RSl Nal

ATTRIBUTES

INPUT DATA

OUTPUT DATA

INITIALIZES

MODIFIES

ACTIVATES

CONSISTS OF

TITLE

DESCRIPTION

MODULE EXPR VAL SYSTEM REQS IS

COMPUTERIZED, MANUAL:

C2SAMDB, MISSION STATEMENT, THREAT ASSESSMENT,
A-SPEC,
SON:

SPECIFIC FUNCTIONAL REQUIREMENTS,
DERIVED PERFORMANCE REQUIREMENTS,
PRELIMINARY SYSTEM SPECIFICATION,
DERIVED INTERFACE REQUIREMENTS,
OPS CONCEPTS,

REFORMATTED INPUTS,

SCENARIOS ,

SYSTEM ASSESSMENT:

REFORMATTED INPUTS,
SCENARIOS,
SYSTEM ASSESSMENT:

OPS CONCEPTS,

SPECIFIC FUNCTIONAL REQUIREMENTS,
DERIVED PERFORMANCE REQUIREMENTS,
REFORMATTED INPUTS:

EXPR VAL SOFTWARE REQS:

MODELING SCENARIO DEVELOPMENT,
PRELIM SYS SPECIFICATION
DERIVE FUNCTIONAL REQS,
CHECK CONSISTENT COMPLETE,
OPS CONCEPT ANALYSIS,
EXTRACT INTERFACE REQS,
BUILD EVALUATION CRITERIA,
FORMAT FOR MODELING,

SYSTEM ASSESSMENT MODELING,
HUMAN PROCEDURES MODELLING,
SYSTEM INTEGRITY MODELING:

EXPRESS AND VALIDATE SYSTEM REQUIREMENTS:

THIS IS THE FIRST PHASE OF DEVELOPMENT IN THE
RAPID PROTOTYPING CYCLE. IT BEGINS THE PROCESS OF
ITERATING OVER ALTERNATIVE PROTOTYPES OF THE
SYSTEM BY DERIVING MODELLABLE SPECIFICATIONS FROM
THE INITIAL SYSTEM DOCUMENTATION, SON, MISSION
STATEMENT, ETC., TRANSLATING THE MODELLABLE
SPECIFICATIONS INTO A PROTOTYPE, EXERCISING THE
PROTOTYPE AND ITERATING OVER PREVIOUS STEPS AS
NECESSARY AND AS INDICATED BY RESULTS OF PROTOTYPE
RUNS.

OUTPUTS FROM THIS PHASE ARE FED BACK INTO VARIOUS
COMPONENTS OF THE PHASE AND INTO THE MORE DETALED
PHASE 'EXPRESS AND VALIDATE SOFT ARE
REQUIREMENTS ' .;

SPECIFICATION

INPUT :

e

2SAMUB, MISSION STATEMENT, THREAT ASSESSMENT,
A SPEC,
SON

REPEAT

e T A B 4

DO MODELLING SCENARIO DEVELOPMENT
USING :
MISSION STATEMENT, THREAT ASSESSMENT AND
STATEMENT OF NEED

PRODUCING :
SCENARIOS

PAF R At B e

DO PRELIM SYSTEM SPECIFICATION
USING:
MISSION STATEMENT, THREAT ASSESSMENT AND
STATEMENT OF NEED
PRODUCING :
PRELIMINARY SYSTEM SPECIFICATION

DO IN PARALLEL
. * These parallel processes are to proceed *
" * as the necessary inputs become available *

A DERIVE FUNCTIONAL REQS

& USING:

PRELIMINARY SYSTEM SPECIFICATION,
C2SAMDH,

X CONSISTENCY AND COMPLETENESS CHECKS AND
~ OPS CONCEPTS

) PRODUCING:
SPECIFIC FUNCTIONAL REQUIREMENTS

- AND

OPS CONCEPT ANALYSIS
USING:
SPECIFIC FUNCTIONAL REQUIREMENTS AND
DERIVED INTERFACE REQUIREMENTS
PRODUCING:
OPS CONCEPTS

O

AND

CHECK CONSISTENT COMPLETE
USING:

SPECIFIC FUNCTIONAL REQUIREMENTS
PRODUCING:

¥
3 CONSISTENCY AND COMPLETENESS CHECKS

Ny

n

2
> Al-2
L

oL
',

' . - . . .t w- e me - - .
» e LR . at o .o . Ao A .
N . RPN . R o P S P e X
FANI AL ST Sl . . SRR R CRA L - S
» . S I I .t ot . . . AT RS IS ORI . R . -
? " . M

--’ ------

L

"o

\:‘v-,: \-.

ped

4g 8 g Ag t st g 8"

a3 ek Mt 0 a6 Hat el B Bad $2f B2l 0t 8. P pat ot 82 Bet B2t Da% Bat Buv

AND

EXTRACT INTERFACE REQS
USING:

SPECIFIC FUNCTIONAL REQUIREMENTS
PRODUCING:

DERIVED INTERFACE REQUIREMENTS
AND

BUILD EVALUATION CRITERIA
USING :
OPS CONCEPTS

PRODUCING:

PERFORMANCE AND TIMING EVALUATION
CRITERIA

AND

FORMAT FOR MODELLING
USING :

DERIVED INTERFACE REQUIREMENTS AND OPS
CONCEPTS

PRODUCING :
REFORMATTED INPUTS

AND

SYSTEM ASSESSMENT
USING :
PREFORMATTED INPUTS,

PERFORMANCE AND TIMING EVALUATION
CRITERIA,

AND MODEL RESULTS
PRODUCING :

FEEDBACK

AND

ADPE MODELLING
USING:
REFORMATTED INPUTS,

PERFORMANCE AND TIMING EVALUATION
CRITERIA

AND MODEL RESULTS
PRODUCING :

MODEL RESULTS

AND

HUMAN PROCEDURES MODELLING
USING :

REFORMATTED INPUTS,

PERFORMANCE AND TIMING EVALUATION
CRITERIA,

_ 4

AR
o

.o e .

o

v

BN
 *p s et

(
#
)
.

AND MODEL RESULTS
’ PRODUCING :
N MODEL RESULTS

AND

o M]

SYSTEM INTEGRITY MODELLING

USING:
REFORMATTED INPUTS,
PERFORMANCE AND TIMING EVALUATION
CRITERIA,
AND MODEL RESULTS

PRODUCING:
MODEL RESULTS

LT

END IN PARALLEL
UNTIL CRITERIA SATISFIED

A K

OUTPUT :

SPECIFIC FUNCTIONAL REQUIREMENTS,
- DERIVED PERFORMANCE REQUIREMENTS,
. PRELIMINARY SYSTEM SPECIFICATION,
- DERIVED INTERFACE REQUIREMENTS,
N OPS CONCEPTS,

REFORMATTED INPUTS,
K SCENARIOS ,

SYSTEM ASSESSMENT

END EXPR VAL SYSTEM REQS;

MODULE EXPR VAL SOFTWARE RENS IS

l’!
o8

R R R
.

NN
S

W P A
v

ATTRIBUTES CONPUTERIZED, MANUAL;

Sy,
o

Sl o
by
LA
B

INPUT DATA PRELIMINARY SOFTWARE REQS;

.~

OUTPUT DATA ASAP DATABASE, DWB DATABASE,
CONSISTENCY COMPLETENESS CHECKS
TRANSLATED RESULTS AND NEW REQUIREMENTS;

w'e'sla Al

INITIALIZES ASAP DATABASE, DWB DATABASE,
CONSISTENCY COMPLETENESS CHECKS,
TRANSLATED RESULTS AND NEW REQUIREMENTS;

N MODIFIES ASAP DATABASE, DWB DATABASE,
2 CONSISTENCY COMPLETENESS CHECKS,
: TRANSLATED RESULTS AND NEW REQUIREMENTS;

N

ACTIVATES SOFTWARE DESIGN;

[N R

!

'

Al-4

.
L]
 Je
[N
F) ". 4
’l
7

CONSISTS OF SITE DEPENDENT ANALYSIS,
DOMAIN DEPENDENT ANALYSIS,
BUILD DATABASES,

CHECK CONSISTENT COMPLETE,
ASSESS SW REQS,

GENERATE NEW REQS,

PROTO NO NEW REQS,

GEN MMI PROTOS,

GEN OTHER PROTOS,

EXECUTE ASSESS PROTOS,
SELECT SCENARIOS;

TITLE EXPRESS AND VALIDATA SOFTWARE REQUIREMENTS;

DE SCRIPTION THIS PHASE OF THE RAPID PROTOTYPING PROCESS BEGINS
AFTER THE INITIAL PHASE 'EXPRESS AND VALIDATE
SYSTEM REQUIREMENTS' HAS PRODUCED TENTATIVE
SOFTWARE ALLOCATIONS IN THE FORM OF PRELIMINARY
SOFTWARE REQUIREMENTS. IN THIS PHASE DETAILED
SOFTWARE MODELLING IS PERFORMED AND THE RESULTS

USED TO VALIDATE AND DIRECT THE SOFTWARE DESIGN
PROCESS.

SPECIFICATION INPUT :
PRELIMINARY SOFTWARE REQUIREMENTS

DO IN PARALLEL

*

*
*

These parallel processes are to be *

initiated as necessary inputs become *
available and schedule permits.

SITE DEPENDENT ANALYSIS
USING:

PROTOTYPE RESULTS,
PRELIMINARY SOFTWARE REQUIREMENTS AND

CONSISTENCY COMPLETENESS CHECKS
PRODUCING :

SITE ANALYSIS

AND

DOMAIN DEPENDENT ANALYSIS
USING :

SITE ANALYSIS AND SNy h
SOFTWARE REQ ASSESSMENT ERTTIA
PRODUCING : .
DATA BASE INPUTS

AND e

BUILD DATABASES AN
USING : oy
DATABASE INPUTS AND I “i

PO N

g e gu gt nt gt ¢ gt pan at gat 9.t Rue g0t §on e ANl 00t Bat ot Dok Bat it fu Aat el Aatile” Aa"od gl tatle™ oiat Ryt ote ptatate' iy Lgtalala Vg gt ‘l"’”""""‘.'
’ o d !
]

)

A
t.'!h"?-".l)‘

PROTOTYPE ASSESSMENT
PRODUCING :

ASAP DATABASE AND
DWB DATABASE

AND

ASSESS SW REQS

USING .
ASAP DATABASE,

SWB DATABASE AND

MODEL RESULTS
PRODUCING :

MODEL CONFIGURATIONS AND
SOFTWARE REQ ASSESSMENT

AND

E;

RUN MODELS
USING :

MODEL CONFIGURATIONS
PRODUCING :

MODEL RESULTS

AND

PROTO NO NEW REQS
USING :
ASAP DATABASE,

DWB DATABASE
PRODUCING

TRANSLATED RESULTS

AND

GENERATE REQS
USING : : A
ASAP DATABASE AND NENAD

DWB DATABASE EARAEAEA

PRODUCING: o ’
NEW REQUIREMENTS AND IO
TRANSLATED RESULTS ;.-';‘;.-';'.;j;:—;

' ;,_ . 'r"»'.f

AND ~ 3

GEN MMI PROTOS
USING :
NEW REQUIREMENTS
PRODUCING :
MMI PROTOTYPE

< AN LIPS
" ‘x!.zi_-... TSSO ST I N ST S et e

gl gl g

TGN
SaRLNANRY

RATER

GEN OTHER PROTOS - AP

USING 5{ ey

TRANSLATED RESULTS E$ S
PRODUCING : g*

FUNCTIONAL PROTOTYPE AND 3 tﬂ a\$q

PERFORMANCE PROTOTYPE 'M;ff--ﬁi

AND

EXECUTE ASSESS PROTOS
USING :
SCENARIO SELECTION,
MMI PROTOTYPE,
FUNCTIONAL PROTOTYPE AND

PERFORMANCE PROTOTYPE
PRODUCING :

PROTOTYPE ASSESSEMENT

AND

SELECT SCENARIO
USING :
SCENARIOS
PRODUCING :
SCENARIO SELECTION

END IN PARALLEL

OUTPUT :

ASAP DATABASE, DWB DATABASE,
CONSISTENCY COMPLETENESS CHECKS, X
TRANSLATED RESULTS AND NEW REQUIREMENTS: IS

END EXPR VAL SOFTWARE REQS

MODEL. SOFTWARE DESIGN IS

ATTRIBUTES COMPUTERIZES, MANUAL;

INPUT DATA DWB DATABASE;

INITIALIZES PROCESS DESCRIPTED REQS,
PDL REQS,

EXECUTABLE REQS,
VALIDATED HIGH LEVEL DESIGN;

MODIFIES PROCESS DESCRIPTED REQS,
PDL REQS,
EXECUTABLE REQS,

VALIDATED HIGH LEVEL DESIGN:

DESCRIPTION THIS PHASE BEGINS WITH VALIDATED SOFTWARE
REQUIREMENTS, TRANSLATES THOSE REQUIREMENTS INTO

ANEXECUTABLE FORM (MODEL CONFIGURATION), EXECUTES
PROTOTYPES AND ANALYZES THE RESULTS.:

Al-7

LR A S
ST TN A

e DR PO
f‘—.A‘-\L’\ aMatan

" Pt
: AREN
N ..‘i. X e 2
SPECIFICATION: INPUT: AT
DWB DATABASE NN
AN
r“f“."'?‘.'
4 REPEAT N
: 750g2e¢
4 DO EXPAND PROCESS DESCRIPTORS LAz
USING :
b, - VALIDATED SW REQS
4 PRODUCING :
N PROCESS DESCRIPTED REQUIREMENTS
]
DO TRANS TO PDL
USING :
\ PROCESS DESCRIPTED REQUIREMENTS
-. PRODUCING :
28 PDL REQUIREMENTS
N
.
3 DO TRANS TO EXECUTABLE
USING :
_ PDL REQUIREMENTS
. PRODUCING:
: EXECUTABLE REQUIREMENTS
R DO SELECT SCENARIO
USING :
5 SCENARIOS
. PRODUCING :
: SCENARIO SELECTION
. DO RUN PROTOTYPES V)
USING : % &
" SCENARIO SELECTION AND NN
- EXECUTABLE REQUIREMENTS ANy
> PRODUCING : RN
" PROTOTYPE RESULTS iy
. ﬂ.;:\
* T WL
DO ANALYZE RESULTS
y USING : Sl
- PROTOTYPE RESULTS AN
N PRODUCING : hARESLHS
RESULTS ANALYSIS ;.‘-}_{;::..:
::’:‘;'.:'-‘::',
UNIIL CRITERIA MET; > s
o M R
M END SOFTWARE DESIGN:)
NRSSRDY
ey
£} h * \‘.‘ -

Al-8

REFERENCES

The references are in alphabetical order by title, and the numbers
which occur are the C31 Rapid Prototype Investigation library index numbers.

23. A3 - Affordable, Acquisition, Approach (attach C); Ltg. Stewart
10. AFCEA - C2 System Acquisition Study - Final Briefing 16 July 1976
11. AFCEA - C2 System Acquisition Study - Final Report 0l Sept. 1982

9. AFR 57-4 Operational Requirements Modification Program
Approval 15 Dec. 1977

8. AFR 80-14 Research and Development - Test and Evaluation
19 July 1976

31. AFR 300-2 Data Automation, Managing the USAF Automated Data Processing
Program 24 April 1980

30. AFR 800-2 Acquisitior Management, Program Management; Department of the
Air Force 13 Aug. 1902

AFR 800-14

Vol. I - Management ot Computer Resources in Systems

Vol. 1I - Acquisition and Support Procedures for Computer Resources in
Systems 12 Sept. 1975

"Ace: A System Which Analyses Complex Explanations"; International

Journal of Man-Machine Studies, Jan. 1979, Volume 11 #l, pg 125
"Ada Software Development Tools Up"; Electronics, May 1983, pg 157

“An Adaptable Software Environment to Support Methodologies'; IEEE
Softtair Proceedings, July 25-28, 1983, pg 363

"Advanced Parallel Architectures Get Attention as Way to Faster
Computing'; Electronics, June 1983, pg 105

e %% T,

"Another Program for Drawing Diagram'; Software-Practice and
Experience, May 1982, Volume 12, Issue #5, pg 397

8,

APL as a Software Design Specification Language; The Computer Journal,
August 1980, Volume 23 #3, pg 230

"Application Methodology and Discussions' (Research Directions in
Sottware Technology) 1980; R.O. buda, R. Schank, M. Hammer

"Applications of Mathematical System Theory to System Design, Modeling
and Simulation"; A. Wayne Wymore, Ph.D. (1981 Winter Simulation
Conference Proceedings)

.E— l‘ !-ll.lE ‘{"L!‘.!'.!!!.’". ‘.Tl. oot R Pl S i e W ot &S S el s e I At M0 S0 LY T RNEUR AL HE 4 " X A AL oAt

; PN
' o
3 AN,
! 2 ¥
AT
) 66. “The Art of Natural Graphic Man-Machine Conversation"; :&3&5:
p James D. Foley April 1974 ﬁgw 2 v
D é* "l
s 109. "Artificial Intelligence-~Applied to C3I"; N ‘::#:’
' David A. Brown and Harvey S. Goodman ~f“-“f
s
75. "Automated Documentation System User's Manual" 6& \&h
g H. Sayani, B. Kahn, and M. Zenn ISDOS Project July 1975 2 A
ALY
100. "Axioms for User-Defined Operators"; H\ﬂ
Falsat
1.C. Pyle July 1979 NG LN
éﬁgF,.i
36. Bill Batz Martin Marietta Aerospace Memo 9 May 1983 45\5 N
v ‘o o 05 L,
) . PANHRNS:
& 33. "Breaking The Systems Development Bottleneck'; Lee L. Gremillion and gﬂf{h -+
: Philip Pyburn March/April 1983 i;i:ﬁ;ﬁ
Y - :
I 345. "Building Control Structures in the Smalltalk-80 Systems'"; L. Peter P -
. Deutsch, Smalltalk-80 System~-Byte Magazine August 1981 EAANTORS
I‘ .‘.‘--';‘\ -\
" RSO
" 342. “Building Data Structures in the Smalltalk-80 Systems"; James C. ;Tﬁt} -2
é Althoff Jr., Smalltalk-80 System-Byte Magazine August 1981 :i zﬁ,@;
i 21, C2 Software Acquisition and Development Working Group (Final Report); = s
’ Chairman, Mr. Victor E. Jones July 1980 T
. 20. C2 Software Development and Acquisition Study - Status Report; Af;&f
- Harry Kottcamp (W/28) a0

36l. C3CM Structural Design--Appendix A: Battle Management Processor
Software Requirements; Appendix B: Par System Development Methodology,
Dec. 1982, (Technical Proposal)

L

19. C31 Lecture Series (Command, Control, Communications and
Intelligence) (Mire) March 1983

18. "c31 Recommendations"; Alan J. Roberts (Mitre) July 1982

16. c31 Systems Research and Evaluation Library - Vol. I (Mitre) Nov.
1982

17. ¢ Systems Research and Evaluation Library - Vol. II (Mitre) Nov,
1982

166. A Case Study in Rapid Prototyping'; Software-Practice and Experience,

1980, Volume 10, pg 1037

215. "Case Study: SLQ-32 Design-to-Price EW Software Poses Expensive
Challenge"; Defense Electronics, January 1983, pg 84.

99. "A Centralized Design Support Center"; Bruce Duncan March 1979

226. "The Challenge of Software Engineering Project Management"; Computer,
August 1980, Volume 13, pg 51

e (T T.TeTe 2 B S AW W W B W e ermem—— % = = = = =

* ¥ & Ve -

[het R S AR TR PRUEL £ 8 Ghy 3 DA A R A T B A A AN N it piakl g i e R A A o

193.
12.

351.

81.

199.

133.

71.

186.

227.

259.

185.

254‘

322.

141.

167.

170'

279.

“Challenges in Software Development"; Computer, March 1983, pg 60
Comments Arising From Lt. Col. Herndon; Harry Kottcamp

"Command Centers Have a Whole New Look (Command and Control)'; Military
Electronics, April 1983, pg 22

"lhe Command Language Grammar: A Representation for the User Interface
of Interactive Computer Systems'"; Thomas P. Moran March 1981

"Comuunications Sequential Processes"; Communications of the ACM, Jan.
1983, vVolume 25 #1, pg 100

"Compilation ot Nonprocedural Specification Into Computer Programs";
IEEE Transactions on Software Engineering, May 1983, Volume SE-9 #3, pg
267

"Computer-Aided Software Development'; Daniel Teichroew,
Hershey III, and Yamamoto May 1977

"Computer-Aided Production of Language Implementation Systems";
Software-Practice and Experience, Sept. 1982, Volume 12, Issue #9, pg
785

"Computer Aided Programming (Part 1)"; IEEE Softfair Proceedings,
July 25-28, 1983, pg 9

"Computer Information Systems and Organization Structures';

Communications of the ACM, Aug. 1981, Volume 24 #8, pg $79

"Computer System Simulation in Pascal’; Software~Practice and
Experience, Aug. 1982, Volume 12, Issue #8, pg 777

"Concepts and Criteria to Assess Acceptability of Simulation Studies:
A Frame of Reference'; Communications of the ACM; April 1981, Volume 24
#4, pg 180

"Contemporary Software Development Environment"; Communications of the
ACM, Jan. 1982, Volume 25 #l1, pg 318

"Contexts and Data Dependencies: A Synthesis'; IEEE Transactions on
Pattern Analysis and Machine Intelligence, May 1983, Volume PAMI-5 #3,

pg 237

“A Comparison of Programming Languages for Software Engineering";
Software-Practice and Experience, 1981, Volume 11, Issue-52, pg 3

“A Comparative Study of Task Communication in Ada"; Software-Practice
and Experience, March 1981, Volume 11, Issue-3, pg 257

A Computer Aid for the Analysis of Complex Systems"; The Computer
Journal, March 1980, Volume 23 #2, pg 98

B WO WA e
‘LR
AT
L)
L

.
~
N

A
0
L)

LY
AN

SIS IRV VS

PR

3l1.

265.

147.

258.

237.

250.

362 L

305.

195.

37.

41.

40.

39.

38.

223.

179.

87.

46.

313.

. WLTETTN P hre iY s Wa e . 3 b . Aurube o tg ke S8 GHh a\g ot - Pa¥®y S 4

“A Contextual Analysis of Pascal Programs"; Software-Practice and
Experience, Feb. 1982, Volume 12, Issue #2, pg 195

"Control Flow and Data Structure Documentation: Two Experiments";
Communications of the ACM, Jan. 1982, Volume 25 #l, pg 55

"Controlling the Complexity of Menu Networks'; Communications of the
ACM, Volume 25 #7, pg 4l2

"The Cornell Program Synthesizer: A Syntax-Directed Programming
Environment"; Communications of the ACM, Aug. 1981, Volume 24 #8, pg 563

"Critical Event Modeling: A Step Beyond System Level Testing"; IEEE
Software Proceedings, July 25-28, 1983, pg 207

"The Cue Project'"; IEEE Softfair Proceedings, July 25-28, 1983, pg 383

Program Listings; Martin Marietta IR&D D16S Project Report; Deborah
Sinay, August 1983

"Data Abstraction, Structured Programming, and the Practicing

Programmer"; Software-Practice and Experience, July 1981, Volume 11,
Issue #7, pg 607

"Data Processing in Blue Jeans"; Computer, March 1983, pg 66

"Decision Aids for Battle Management" (Battle Staff) Final Report
Arthur D. Garmington (for USAF) Nov. 1982

"Decision Aids for Target Aggregation: Decision Situation
Characteristics"; Michael L. Donnell April 1982

"Decision Aids for Target Aggregation: Decision Situation
Characteristics Appendices'"; Michael L. Donnell May 1982

"Decision Aids for Target Aggregation: Technology Review and Decision
and Selection"; A. Joseph Rockmore May 1982

"Decision Analysis and Artificial Intelligence: Applications to Senior
Battlestaff Decisions"; Paul E. Lehner (for USAF) Sept. 1981

"Decision Tables"; Software-Practice and Experience, 1983, Volume 13,
pg 523

"Decomposition of Flowchart Schemata'"; The Computer Journal, Aug 1981,
Volume 24 #3, pg 258

"Definition of the Command Language Interface in ithe Tactical Fusion
Center (TFC)"; OASIS program document

"Dimensions of Representation"; Daniel G. Bobrow
Xerox, Palo Alto Research Center July 1975

"Description of a Menu Creation and Interpretation System'; Software-

Practice and Experience, March 1982, Volume 12, Issue #3, pg 269

. l-“ \ .‘
L g]
“’,‘Q “H"qf
r.Y 4! Y
. 'n';_i’..)';"

v
Y
.
L
r.e

.....

ror
<«
.)
€ 7,

l"'u

a
.

v 2y
»

e n

2,

3

LR
'l
’
.‘l
1) ‘. !
' 4 A0
o

')
¥

5%
NN,
NN}
" L

TR
R
:.\ ARLYEN
)‘.'\ R
.. "
R
VORI
o L 4
RSN A

A gl U i A A A A Sk 34t i M e Sa AN S e v Yoo B B at A e i ARl o . it e, B0
301. "A Design Language for the Definition of a Retrieval System Interface &bﬂ%} w
for Casual Users of a Relational Database'"; Software-Practice and ﬂ}ﬁx_&~ '
Experience, May 1981, Volume 11, Issue #5, pg 521 pgé:‘:t‘u
R ACEAYR &
s ety »
318. "A Design Medium for Software"; Software-Practice and Experience, June RIS A
3 P ARV
1980, Volume 12, Issue #6, pg 497 b AN
PSS
115. "The Design of a Family of Applications~Oriented Requirements ?:¢}¢}t}}
Languages"; Alan M. Davis (from W. Rzepka) ?}ﬁ(ﬁi&{t
AR,
DA
62. "Design of a Separable Transition~Diagram Compiler"; Melvin E. Conway }'¢§ 3 .
July 1963 (Communications of the ACM) LAl
343. "Design Principles Behind Smalltalk"; Daniel H. H. Ingalls,
Smalltalk-80 System; Byte Magazine August 1981
206. "Design Rules Based on Analyses of Human Error"; Communications of the
ACM, Volume 26 #4, pg 254
44, "Design Specification Validation," Final Technical Report RADC June 1981
221. "A Device-Independent Network Graphics System"; Computer Graphics, July
1983, volume 17 #3, pg 167
108. "Devising a Laboratory to Simulate C3I Operations"; Douglas B. Dahnn
187. "Development Methodologies for Scientific Software'; Software~Practice
and Experience, Dec. 1982, Volume 12, Issue #12, pg 1085
92. "The Development of an Intelligent, Trainable Graphic Display Assistant
for the Decisionmaker"; A. Morse, R. Kohler, and M. Sutherlant July e _L
1982 AN,
§-~~'::-"\\t-
264. "Diagram: A Grammar for Dialogues"; Communications of the ACM, Jan. {2#{-?$*$
1982, Volume 25 #1, pg 27 NSRS
AN
134. "A Diagrammatic Notation for Abstract Syntax and Abstract Structured
Objects"; IEEE Transactions on Software Engineering, May 1983, Volume
SE-9 #3, pg 280
l68. "Dialog: A Schema for the Quick and Effective Production of
Interactive Applications Software'"; Software-Practice and Experience,
March 1981, Volume 11, Issue-3, pg 205
183. "A Dialogue Generator"; Software-Practice and Experience, Aug. 1982,
volume 12, Issue #8, pg 693
94. "A Dialogue Simulation Tool for Use in the Design of Interactive
Computer Systems"; D.R. Lenorovitz and H.R. Ramsey
196. “Direct Manipulation: A Step Beyond Programming Languages'; Computer,

August 1983, pg 57

A2-5

I

NI

2
s, s A

LT

290.

102.

184.

77.

78.

260.

32.

306.

207.

252.

203.

251.

55.

47.

82.

113.

175.

"Direct Implementations of Algebraic Specification of Abstract
Data-Types"; IEEE Transactions on Software Engineering, Jan. 1982,
Volume SE-8 #5, pg 12

"Display Applications in Command, Control and Communications Systems';
D.N. Grover and D.R. Lenorovitz

"The Distributed Programming Language SR-Mechanisms, Design and
Implementation'; Software-Practice and Experience, Aug. 1982, Volume
12, Issue #8, pg 719

"Distributea Software Engineering Control Process,' Volume I, Technical
Proposal; Martin Marietta February 1983

"Distributed Software Engineering Control Process,'" Volume II (Volume I
- See #77), Management and Resource Plan; Martin Marietta February
1983

"Documentation for Model: A Hierarchical Approach"; Communications of
the ACM, Aug. 1981, Volume 24 #8, pg 728

DOD 7935.1~8 Automated Data Systems Documentation Standards
13 Sept. 1977

"Dynamic Program Building"; Software-Practice and Experience, Aug.
1981, Volume 11, Issue #8, pg 853

"The Dynamics of Software Project Scheduling'; Communications of the
ACM, May 1983, Volume 26 #5, pg 340

“"The Effect of Programming Team Structures on Programming Task'";
Communications of the ACM, Feb. 1981, Volume 24 #2, pg 106

"An Effective Graphic Vocabulary"; IEEE Computer Graphics and
Applications, March/April 1983, pg 46

“"The Emperor's Old Clothes"; Communications of the ACM, Feb. 1981,
Volume 24 #2, pg 75

"EP-2: An Exemplary Programming System,'" Rand; W.S. Faught Feb. 1980

“"Empirical Estimates of Program Entropy'; Richard E. Sweet
Xerox, Palo Alto Research Center Sept. 1978

"Empirical and Formal Language Design Applied to a Unified Control
Construct for Interactive Computing'; David W. Embley Nov. 1977

"Enhancement of System Design and Simulation Via General System
Theories"; J. Talavage (1981 Winter Simulation Conference Proceedings)

"Entity Life Cycle Models and Their Applicability to Information
Systems Development Life Cycles: A Framework for Information Systems

Design and Implementation'; The Computer Journal, Aug. 1982, Volume 25
#3, pg 307

A2-6

_ﬂ{-

Rk

“
.
~
Y
~

JORN0S
v O"':
.a‘!'f(-cf".l
204. "“Error Messages: The Neglected Area of the Man/Machine Interface?"; i \-nr;
Coumunications of the ACM, April 1983, Volume 26 #4, pg 246 B
57. "The Evolution of Cognitive Structures and Process'; Barbara }V. Ziﬁ
Hayes-Roth October 1976 & h%ﬁz
1 A Er B
243. "The Evolutionary Approach to Building the Joseph Software Development ‘; ‘
Environment”; IEEE Softfair Proceedings, July 25-28, 1983, pg 317 A p'ﬁ';
S BN)
% .{a‘ri.-"'
53, “"Exemplary Programming in Rita"; D.A. Waterman, October 1977 kg%%hiﬁ
239. "“Experience With Tool-Kit Approach in SMEF Prototyping,” IEEE Softfair SR VLN
Proceedings, July 25-28, 1983, pg 223 %§~‘r~:
AN
229. "“Experiences With Smalltalk-80 For Application Development'; IEEE :ﬁﬁjﬁ$:£'
Softtair Proceedings, July 25-28, 1983, pg 61 :if:fé}¢7
,{-:"{3.‘&:;
26l. "An Experiment Study of the Human/Computer Interface"; Communication of N(ffsr"
the ACM, Aug. 1981, Volume 24 #8, pg 752 ki
)

328. “"An Experimental Program Transformation and Synthesis System";
Artificial Intelligence, 1981, Volume 16, pg 1

281. ‘"Extended Attribute Grammars"; The Computer Journal, May 1983, Volume
26 #2, pg 142

214. YFifth-Generation Hardware Takes Shape"; Electronics, July 1983, pg 1

132. "File Structures, Program Structures, and Attributed Grammars"; IEEE
Transactions on Software Engineering, May 1983, Volume SE-9 #3, pg 260

97. "Final Report of the GSPC State-of-the-Art Subcommittee"; Computer
Graphics, June 1978, Volume 12 #1-2, pg l4

104. "Flowcharts Versus Program Design Languages: An Experimental
Comparison'; H.R. Ramsey, M.E. Atwood, J.R. VanDoren, June 1983

59. "Formal Grammar and Human Factors Design of an Interactive Graphics
System'"; Phyllis Reisner; IEEE Transactions of Software Engineering,
March 1981

154. “"A Fortran Programming Methodology Based on Data Abstractionm,"

Communications of the ACM, Volume 25 #7, pg 686

111. "Foundations for an Information Technology"; Tuncer I. Oren
(1981 Winter Simulation Conference Proceedings)

309. A Framework for Modeling Graphic Interactions"; Software-Practice and
Experience, Feb 1982, Volume 12, Issue #2, pg 14l
321, "The Future of Programming'"; Communications of the ACM, Jan 1982, E:iﬁii:i
Volume 25 #1, pg 196 5$n:\;J:
‘f\ll“-’\q.
93. "General Technique for Communications Protocol Validation"” :ibi':f

C.H. West July 1978

R
e L.

. . .

nlie. .'\-" WIS

y R

2 : : ;ﬁ—.

A 139. “A Generalized Query-By-Example Data Manipulation Language Based on : o -.
. Data Logic"; IEEE Transactions on Software Engineering, January 1983, AR

s ol LRSS Y
o Volume SE-9 #l, pg 40 »\zﬁﬁﬁ

SN

262. "A Generalized User Interface for Application Programs"; Communication R

of the ACM, Aug 1981, Volume 24 #8, pg 796 - ;

69. "GPM Technical Volume and User's Guide (General Processor Model)"; D.
G. Glinos; Martin Marietta Aerospace Technical Report

95. A Graph-Theoretic Language Extension for an Interactive Computer
Graphics Environment"; James P. DelGrande May 1979

209. "Graphic Design for Computer Graphics'"; IEEE Computer Graphics and
Applications, July 1983, pg 63

\ nd PRt R Y

106. “Grasp: A Software Development System Using D-Charts"; D.A. Workman
December 1979, Software-Practice and Experience 1/83 W/105 ;5
N % "«
N
' 181. "Hades - A Command Environment That Supports Structure"; Software- _j.-:.-:f::i
. Practice and Experience, July 1982, Volume 12, Issue #7, pg 64l \':’:-_:
. PRy
" 275. "The Hearsay-I1 Speech-Understanding System: Integrating Knowledge to .‘-"'v"-,\" 2
Resolve Uncertainty"; ACM Computing Survey, March 1980, Volume 12 #1, R
pg 213 RN
’ 'Igltﬁ*}
2 188. "Hierarchically Structured Production Rules"; The Computer Journal, :.'}}_}::.g-\ -
& Feb 1983, Volume 26 #1, pg 1 {}.?\\::\:\
’ LIFES S Y R
. i
- 144, "Higher Level Programming and Data Abstractions - A Case Study Using i
" Enhanced C"; Software-Practice and Experience, 1983, Volume 13, pg 577 SIS
: 155. "HISDL - A Structured Description Language"; Communications of the ACM, YA .,,
- Volume 25 #7, pg 823 :t:::*\
‘)
300. "How a Computer Should Talk to People"; IBM Systems Journal, 1982, MM
Volume 21 #4, pg 424 PATAT
I"::"..’_tq'*
298. "How Data Flow Can Improve Application Development Productivity"; IBM C:-.}',:.:'_-.:,
A Systems Journal, 1982, Volume 21 #2, pg 162 :r-:\:}::'-;
K . " P
266. "A Human/Computer Interface to Accommodate User Learning Stages'; s
Communications of the ACM, Jan 1982, Volume 25 #l, pg 100 LT
X 152. "A Human Factors Study of Color Notation Systems for Computer
¥ Graphics"; Communications of the ACM, Volume 25 #7, pg 547
190. "Human Performance in Interactive Graphics Operations"; The Computer ,
Journal, Feb 1983, Volume 26 #1, pg 93 5 -
o
205. "The Humanization of Computer Interfaces'; Communications of the ACM, :-..’\ \::~,
Volume 26 #4, pg 252 :R:".-'.t::‘.“
: \i\'?\
: A2-8
. 552
e e e T R R
N : 3 1"._-('-‘ -\. -

‘a0’

PR

201.

114.

49.

56.

28.

150.

220.

178.

236.

189.

131.

241,

356.

50.

64.

96.

240,

LA A il ath 2D o L0 0} I Rarh, tan LT R

“Iconic Interfacing," IEEE Computer Graphics and Applicationms,
Applications, March/April 1983, pg 8

"Impact of General Systems Orientation: Present and Future"
Bernard P. Zeigler (198l Winter Simulation Conference Proceedings)

"The Impact of Rapid Prototyping on Specifying User Requirements-Rapid
Prototyping Continued"; ACM Sigsoft, April 1982

"Implications of Human Pattern Processing for the Design of Artificial
Knowledge Systems," Barbara Hayes-Roth April 1977

"Improved Approach to Procuring and Developing Enhancements to a
Baseline System Under the Evolutionary Systewm Development Approach';
Harry Kottcamp (W/21), Martin Marietta Aerospace memo

"Improving Computer Program Readability to Aid Modification";
Communications of the ACM, Volume 25 #7, pg 512

"Incense: A System for Displaying Data Structures"; Computer Graphics,
July 1983, Volume 17 #3, pg 115

"Increasing Computer System Productivity Software and Hardware
Methods: A Comparative Study"; The Computer Jourmal, Aug 1981, Volume
24 #3,

Peg 210

"The Index Development Environment Workbench'; IEEE Softfair
Proceedings, July 25-28, 1983, pg 200

"In Favour of System Prototypes and Their Integration Into the Systems
Development Cycle"; The Computer Journal, Feb 1983, volume 26 #l, pg 36

"Input-Output Tools: A Language Facility for Interactive and Real-
Time Systems"; IEEE Transactions on Software Engineering, May 1983,
Volume SE~9 #3, pg 247

“"An Integrated Interactive Design Environment for Taxis"; IEEE Softfair
Proceedings, July 25-28, 1983, pg 298

"The Integrated Requirements Implementation System (IRIS) as Applied to
C3 Systems," May 1983 (Larry Trometer) Martin Marietta Aerospace
Technical Report

“An Integrated Set of Tools to Automate the Software Life Cycle'"; GTE
Labs

"An Integrated System Analysis and Engineering (SAE) Toolkit,”
R. Newman May 26, 1983 Martin Marietta Aerospace Technical Report

"An Interactive System for the Construction Animation of Systems
Dynamics Models"; J.P. DelGrande and L. Mezei January 1979

"An Introduction to Editor Allan Poe'"; IEEE Softfair Proceedings, July
25-28, 1983, pg 245

A2-9

R T T B
LR RS

o, RN . e D S AP u M
' PRI PRSI AL A V- Y Sy e S

A

336.

143.

159.

357.

355.

307.

346.

65.

13 7.

271.

89.

79‘

6.

297.

"Introducing the Swalltalk-80 System'"; Adele Goldberg
Smalltalk-80 System—-Byte Magazine August 1981

"Introduction to Enhanced C (EC)'"; Software-Practice and Experience,
1983, Volume 13, pg 551

"An Investigation of Computer Coaching for Informal Learning
Activities'; International Journal of Man-Machine Studies, Jan 1979,
Volume 11 #1, pg 5

IRIS D-29R 1983, Ronald A. Bena, Martin Marietta Technical Report

IRIS Design Concept Document Project D-29R March 1983, Larry Trometer,
Martin Marietta Technical Report

“Is Block Structure Necessary?"; Software-Practice and Experience,
Aug. 1981, Volume 11, Issue #8, pg 853

"Is the Smalltalk-80 System for Children?"; Adele Goldberg and Joan
Ross, Smalltalk-80 System—--Byte Magazine August 1981

"Language Development Tools on the Unix System,"
Stephen C. Johnson (bell Laboratories) August 1980

"Language Features for Access Control"; IEEE Transactions on Software
Engineering, January 1983, Volume SE-9 #l, pg 16

"Leave and Recall: Primitives for Procedural Programming"; Software
Practical and Experience, 1980, Volume 10, pg 127

“LR Parsing"; A.V. Aho and S. C. Johnson, June 1974
"Medl-D User's Guide,'" Martin Marietta Technical Report
“"Medl-R User's Guide," Martin Marietta Technical Report
MIL-S-52779 S/W Q.A. Program Requirements 05 April 1964

MIL-STD-483 (USAF) Configuration Management Practices
21 March 1979

MIL-STD-490 Specification Practices 30 October 1968

MIL-STD-499A Military Standards Engineering Management
01 May 1974

MIL-STD-1679 (Navy) Weapon System S/W Development Ol Dec 1978

MIL-Q-9858A Quality Program Requirements 16 Dec 1963

"Macro Implementation of a Structured Assembly Language'; IEEE
Transactions on Software Engineering, May 1980, Volume SE-8 #3, pg 284

20
[} (4 "y
-

o
P A P]
AV LN L)
Awﬁ V’,.n,v:‘h

Sty

I

PR e

A A,

..

s B0 B

-t NN

228.

60'

222.

165.

319.

169.

317.

67'

120.

353.

135.

253.

162.

149.

13.

224,

68.

« LN AN . e W S NV T T T T W UNT

"The Message/Object Programming Model"; IEEE Softfair Proceedings, July
25-28, 1983, pg 51

"Military Message Systems: Current Status and Future Directions";
Constance L. Heitmeyer and Stanley H. Wilson Sept. 1980
IEEE Transactions on Communications

"Minimal GKS"; Computer Graphics, July 1983, Volume 17 #3, pg 183

“MM/1, A Man-Machine Interface"; Software-Practice and Experience,
1980, Volume 10, pg 751

"Modeling and Validating the Man-Machine Interface"; Software-Practice
and Experience, June 1980, Volume 12, Issue #6, pg 557

A Modula Based Language Supporting Hierarchical Development and
Verification"; Software-Practice and Experience, March 1981, Volume 11,
Issue~3, pg 237

A Multi-User Operating System for Transaction Processing, Written in
Concurrent Pascal"; Software~Practice and Experience; May 1982, Volume
12, Issue #5, pg 445

"Multiparty Grammar and Related Features for Defining Interactive
Systems'; Ben Shneiderman April 1982

"Mumps Language Standard;'" Mumps Development Committee System
Sept. 1977

""Navy Space Sensors Face Tough Requirements'"; Military Electronics,
April 1983, pg 37

"An Object-Oriented Command Language'; IEEE Transaction on Software
Engineering, January 1983, Volume SE-9 #1, pg 1

"On Approaches to the Study of Social Issues in Computing";
Communications of the ACM, Feb. 1981, Volume 24 #2, pg 146

"On Generation of Inductive Hypotheses"; International Journal of
Man-Machine Studies, July 1977, Volume 9 #4, pg 415

"On the Inevitable Intertwining of Specification and Implementation";
Communications of the ACM, Volume 25 #7, pg 438

YOn the Management of USAFE C3 System Acquisition"; Lieutenant Col.
Frank M. Hernon, 10 June 1982, Technical Note

"On the Realization of Extended Control Structure in Fortran";
Software-Practice and Experience, 1983, volume 13, pg 431

"On the Use of Transition Diagrams in the Design of a User Interface
for an Interactive Computer System, David L. Parnas 1969

A2-11

RRTIFAE] e

4 e
g

N

sV -
;Z‘-\:‘ D

sy

P oL P S

»

Ko

O O AN

1O A

295.

42.

43.

230.

210'

14.

103.

359.

358.

288.

142.

235.

247-

101.

148.

276.

48,

74.

le4.

197.

"An Operational Approach to Requirements Specification for Embedded
Systems"; IEEE Transactions on Software Engineering, May 1980, Volume
SE-8 #3, pg 250

"An Overview of Computer-Based Natural Language Processing"; William B.
Gevarter, April 1983

"An Overview of Expert Systems"; William B. Gevarter, May 1982

"Ovide: A Software Package for Application Development"; IEEE Softfair
Proceedings, July 25-28, 1983, pg 61

"p-System Infiltrates Multiuser World"; Electronics, Feb. 1983, pg 75

"p31 in the C¢31I Community - A Model and Implementation'; James W.
Youngberg, Major USAF

"PDL-Program Design Language Reference Guide," February 1977

“"Penetration Analysis Subsystem Data Sensitivity Analysis" ~ Final
Report, Sept. 1980, RADC Technical Report

"Penetration Evaluation Model Users Guide'; Martin Marietta Aerospace

"Perceptual Components of Computer Displays"; IEEE Computer Graphics
and Applications, May 1982, Volume 2 #3, pg 23

"Planning in Time: Windows and Durations for Activities and Goals";
Pattern Analysis and Machine Intelligence, May 1983, Volume PAMI-5 #3,
Pg 246

"Platine: A Software Engineering Environment'; IEEE Softfair
Proceedings, July 25-28, 1983, pg 193

"Pride-Automated System Design Methodology"; IEEE Softfair Proceedings,
July 25-28, 1983, pg 351

"A Primer on Relational Data Base Concepts,” G. Sandbery, 1981

"Principles of Package Design"; Communications of the ACM, Volume 25
#7, pg 419

"Probabilistic Languages: A Review and Some Open Questions"; Computing
Surveys, March 1980, Volume 12 #1, pg 361

Proceedings of the Workshop on Data Abstractions, Databases and
Conceptual Modeling; ACM, June 1980

Proceeding SCE/ISDOS User's Workshop, ISDOS Project October 1978

A Process Oriented Simulation Model Specification and Documentation
Language"; Software-Practice and Experience, 1980, Volume 10, pg 721

"Program Development"; Communications of the ACM, Jan. 1983, Volume 26
#1, pg 70

A2-12

293.

153.

191.

289.

283.

282.

174.

138.

352.

238.

119.

118.

208.

70.

98.

15.

284.

151.

"Program Specitication Applied to a Text Formatter'; 1EEE Transactions
on Software Engineering, Sept. 1982, Volume SE-8 #5, pg 490

"A Program Testing Assistant"; Communications of the ACM, Volume 25 #7,
pg 625

"The Programmable Compiler"; Computer, March 1983, pg 35

"The Programmer's Apprentice; Knowledge Based Program Editing"”; IEEE
Transactions on Software Engineering, Jan. 1982, Volume SE-8 #1, pgl

"Programmer-Defined Control Operations"; The Computer Journal, May
1983, volume 26 #2, pg 175

"Programming Denotational Semantics"; The Computer Journal, May 1983,
Volume 26 #2, pg l64

"The Programming Language BPL"; The Computer Journal, August 1982,
Volume 25 #3, pg 289

"Programming Language Constructs for Screen Definition"; IEEE
Transactions on Software Engineering, January 1983, Volume SE-9 #l, pg
31

"Protecting Stored Data Remains a Serious Problem (Computer Security)";
Military Electronics, April 1983, pg 26

"Proto-Cycling: A New Method for Application Development Using Fourth
Generation Languages"; IEEE Softfair Proceedings, July 25-28, 1983, pg
217

"A Prototyping and Simulation Approach to Interactive Computer System
Design'; Paul R. Hanau and David R. Lenorovitz

“Prototyping and Simulation Tools for User/Computer Dialogue Design";
Paul R. Hanau and David R. Lenorovitz

"Prototyping Interactive Information Systems," Communications of the
ACM, Volume 26 #4, pg 347

"PSL/PSA A Computer-Aided Technique for Structured Documentation and
Analysis of Information Processing Systems"; ISDOS Project, Daniel
Teichrowew and E.A. Hershey III August 1976

"Q Charts - A Method of Specification"; G. Duncan March 1979

RADC Computer S/W Development Specification - General Specifications
30 June 1977

"RCC - A User-Extensible Systems Implementation Language";
The Computer Journal, August 1980, Volume 23 #3, pg 213

“Relating Sentences and Semantic Networks With Procedural Logic";
Communications of the ACM, Volume 25 #7

A2-13

T e R Y

AR SRS
RSN :_}?Q
A AR

~

N Ve
d’\-‘-"\-

LTS
PR)

cq.\ !
AN,

i
ks

LY -
AN
.

et

A
|

201.

45.

270.

72.

117.

302.

249.

157.

136.

172,

140.

337.

338.

268.

339.

341.

344.

110.

QO oY T A S St A g T W T Wy Wy wos

“Relational Database: A Practical Foundation for Productivity";
Communications of the ACM, Jan 1982, Volume 25 #1, pg 109981,

“"Repair Theory: A Generative Theory of Bugs in Procedural Skill",;
Xerox Palo Alto Research Center Aug. 1980

“A Review and Evaluation of Software Science"; Computing Surveys, March
1978, Volume 10 #1, pg 3

Revs Users Manual (SREP Final Report, Volume II)
By: M.E. Dyer August 1977

"Research Directions and Discussions'" (Research Direction in Software
Technology) 1980 By: B. H. Luskov and V. Berzins

"Scenarios: An Event Management Package'; Software-Practice and
Experience, May 1981, Volume 11, Issue #5, pg 521

“SEA/I-Application Software Productivity System"; IEEE Softfair
Proceedings, July 25-28, 1983, pg 375

"self-Assessment Procedure X"; Communications of the ACM, Volume 25 #7,
peg 883

“"Simulation of Procedure Variables Using Ada Task"; IEEE Transactions
on Software Engineering, January 1983, Volume SE-~9 #l, pg 13

"Simulation Tools in Computer System Design Methodologies'; The
Computer Journal, Feb, 1981, Volume 24 #1, pg 25

"Skills, Rules, Knowledge; Signals, Signs, and Symbols, and Other
Distinctions in Human Performance Models"; IEEE Transactions on
Software Engineering, May/June 1983, Volume SMC-13 #3, pg 257

"The Smalltalk-80 System," Xerox Learning Research Group
Smalltalk-80 System--Byte Magazine August 1981

"Object-Oriented Software Systems", David Robson, Smalltalk-80
System~-Byte Magazine August 1981

"The Organization of the Living: A Theory of the Living
Organizations'; International Journal of Man-Machine Studies, May 1975,
Volume 7 #3, pg 313

"The Smalltalk Environment"; Larry Tesler, Smalltalk-80
System--Byte Magazine August 1981

“The Smalltalk Graphics Kernel"; Daniel H. H. Ingalls
Smalltalk-80 System--Byte Magazine August 1981

"Ihe Smalltalk~-80 Virtual Machine"; Glenn Krasner, Smalltalk-80
System~-Byte Magazine August 1981

"Snapshot Thoughts on Rapid Prototyping," Howie Dahl, July 1983, Martin
Marietta Aerospace Technical Note

L) -
NS Y Y
» ",

. 4\
~ 5
- .-.
e
M LN “‘Y‘
L3N 4

g
e
v'(.

274. “Social Analyses of Computing: Theoretical Perspectives in Recent

., Empirical Research"; ACM Computing Surveys, March 1980, Volume 12 #1,
! pg 61
7
? 278. "Social Aspects of Systems Analysis'; The Computer Journal, Feb. 1980, AN
Volume 23 #1, pg S5 =
n'\:'..'\}l
88. "The Software Designer Workbench (DWB)"; Paul A. Scheffer, Martin PO
Marietta Technical Report f\i*n}ﬂ
: PRI
303. "Sottware Engineering: An Example of Misuse"; Software-Practice and »»* LS
Experience, June 1981, Volume 11, Issue #6, pg 629 -2
3 156. "Sottware Engineering for the Cobol Environment"; Communications of the SZf}§@~?
& ACM, Volume 25 #7, pg 574 AT
[] ¥ }-"_ w . J‘\
0} ['.‘_" y
' 314. "The Software Engineering of a Micro Computer Application System"; 115t¢1’;
Software-Practice and Experience, April 1982, Volume 12, Issue #4, R
pg 309 'y
245, "A Sottware Development Database'"; IEEE Softfair Proceedings,
" July 25-28, 1983, pg 337
29. "Software Development Methodology," Al Florence, 3 May 1983, Martin
Marietta Aerospace Technical Report
» 232. M"ooftware Must Move! A Description of the Software Assembly Lines";
- IEEE Softfair Proceedings, July 25-28, 1983, pg 119
= 213. "Sottware Science Revisited: A Critical Analysis of the Theory and Its

Empirical Support"; IEEE Transactions on Software Engineering, March
& 1983, Volume SE-9 #2, pg 155

246. "Software Tools Archive (STAR)"; IEEE Softfair Proceedings, July 25-28,
* 1983, pg 343

91. "Software Quality Attribute Definitions," Martin Marietta Technical

R t K '.:.,: .-:’.I:
epor &‘}7§h"
AN SR SE
194. "Sottware Quality Improvement"; Computer, March 1983, pg 66 qb}}iff
e
263. "Some Practical Experience With a Software Quality Assurance Program"; 'f"“;_)
Communications of the ACM, Jan. 1982, Volume 25 #1, pg 4 ;’ ~
e
lel. "Sophie: A Step Toward Creating a Reactive Learning Environment"; o~
X International Journal of Man-Machine Studies, Sept. 1975, Volume 7 #5, f:{ o
N pg 675 SR
: AT
51. Special Issue on Rapid Prototyping; ACM Sigsoft, April 1982 ey
v A2
- 292, “Specification and Verification of Communication Protocols in Affirm SRS
X Using State of Transition Models"; IEEE Transactions on Software C’t‘:ft*
3 Engineering, Sept. 1982, Volume SE-8 #5, pg 460 i;‘zjij:‘
4 . v, & ”7

3 A2-15

o g SR e W ® e e DL B/ A P P)
PR CC A N SO : O e
ANNNONNIT I IS ; .

" S :

1 g

N (‘\’ o

|20
» »
27
44,

R

_ e o . &w —

; 86. Specification Languages: RSL, MSL, DSL, and ESL g%’z)ﬁg ‘

\ NN

' 291. "A Specification Method for Specifying Data and Procedural $§f:? %

, Abstractions”; IEEE Transactions on Software Engineering, Sept. 1982, ga#“ N

Volume SE-8 #5, pg 449 DO

294. "Specification of Forms Processing and Business Procedures for Office ot £

Automation"; IEEE Transactions of Software Engineering, Sept. 1982, A i 4

- Volume SE-8 #5, pg 499 I

’ 'Qzﬁ4§ﬁ

146. “A Specification Schema for Indenting Programs"; Software-Practice and T

Experience, 1983, Volume 13, pg 163 =, %

L A RN

316. "Specitications: Formal and Informal-A Case Study'; Software-Practice &j&;#ﬂv

and Experience, May 1982, Volume 12, Issue #5, pg 433 Al Ak

mfed

. . . ; : A AE TN

. 27. “SREM Evaluation - Final Report" - Volume 1 (Draft), Martin Marietta PSSR

I Aerospace, A. Stone, D. Hartschuh, B. Castor April 1983 Fod ,

. -_,'kb,_c,)

: 73. "SREM: Requirements Development Using SREM Technology," Volume 11, i;g}}}?

. TRW, June 1979 NN

- R
76. SREM-Software Requirements Engineering Methodology," TRW, TRW Class Fiﬁf:

October 1977 Volume II e

»

105. "stoic, An Interactive Programming System for Dedicated Computing," e
J.M. Sachs and S.S. Burns, December 1980, Software-Practice and >
Experience 1/83 W/106 L E

272. "Strategies For Information Requirements Determination'"; Systems ;i
Journal, 1982, Volume 21 #1, pg & .

176. "Structured System Analysis and Design Using Standard Flowcharting :[‘¢“%?3
Symbols"; The Computer Journal, Nov. 1981, Volume 24 #4, pg 295 \§¥\‘¥#X

287. A Style for Writing the Syntactic Portions of Complete Definitions of
Programming Languages’”; The Computer Journal,
May 1981, Volume 24 #2, pg 143 A

242. "super PDL-A Software Design Tool"; IEEE Softfair Proceedings, July LRt
&
25-28, 1983, pg 307 NS

»THEEREF o " SV Y VR .t b 2 40 RS e Ty Ty Y ST,
ot
"
2
S vi 4

349. "Superposition Provides an Intelligence Fusion'; Military Electronics, S
April 1983 X

350. "Surveillance is the Key Soviet Space Mission"; Military Electronics,
April 1983, pg 18

163. "A Survey of Information Requirements Analysis'; Computing Surveys, v
Dec. 1977, Volume 9 #4, pg 273 ~fh§x =

192. "strategy for a DOD Software Initiative"; Computer, March 1983, pg 52 S

218. "Syngraph: A Graphic User Interface Generator"; Computer Graphics,
July 1983, Volume 17 #3, pg 43 ‘r**‘i;i

Y T S & & MR ¢ 272"
T, e
A T
X XAARS ! [0 '
AR 0
s A
; .’J"J *

0
2

o

..

L'
[

ARSI) & T S A N NG T S A AN A SO AR N
.’;.‘_-.',\.‘_:}‘:\":\"}\.‘_\':‘.','.‘.‘.'_'.{'.'_'." .‘_'.*_‘." CALREN
e e e e e e e e S e e S
-N;-._"-'.\ ‘,\} 1) -“‘-_..‘

308. "The Syntax of Interactive Command Languages: A Framework for Design";
Software-Practice and Experience, Jan. 1982, Volume 12, Issue #2, pg 14l

280. "System Conventions for Nonprocedural Languages'; The Computer Journal,
March 1980, Volume 23 #2, pg 132

; 256. "System Design for Usability"; Communications of the ACM, Aug. 1981,
t Volume 24 #8, pg 494
22. YSystem Acquisition," Technical Report, AFCEA, for General Marsh

223. "System Operational Design for the TFC Users Interface Phase II
(TUI-11)," Oasis Program Specification

?

35. "Systems Software Support for the USAFE TFC," OASIS Specification

173. "Systematics: Its Syntax and Semantics as a Query Language (1)"; The
Computer Journal, Feb. 1981, Volume 24 #l, pg 56

286. '"systematics: Its Syntax and Semantics as a Query Language (2)"; The
Computer Journal, May 1981, Volume 24 #2, pg 125

171. YA Taxonomy of Current Approaches to Systems Analysis"; The Computer
Journal, Volume 25 #1, Feb. 1982

198. "s Technique for Software Module Specification With Example";
Communications of the ACM, Jan. 1983, Volume 26 #l, pg 75

299. “"Technique for Assessing External Design of Software'; IBM Systems
Journal, 1982, Volume 21 #2, pg 211

25. "IFC~-User Interface, Phase II Man-Machine Interface (MMI) Guidelines,"
15 Oct. 1982 Oasis Program

255. “The Time and State Relationships in Simulation Modeling";
Communications of the ACM, Feb. 1981, Volume 24 #2, pg 173

244, "The Toolpack/lst Programming Environment"; IEEE Softfair Proceedings,
July 25-28, 1983, pg 326

312. “A Tool to Aid in the Installation of Complex Software Systems";
Softwar e-Practice and Experience, March 1982, Volume 12, Issue #3, pg
251

23L. "Tools and Methodologies: The Perfect Match or the Odd Couple"; IEEE
Softfair Proceedings, July 25-28, 1983, pg 95

347. "Toolbox: A Smalltalk Illustration System"; William Bowman and \
Bob Flegal, Smalltalk-80 System--Byte Magazine August 1981 - e
PN
273. "Towards an Integrated Development Environment"; Systems Journal, :i:):::}
Volume 21 #1, pg 81 ?ixi\i\i
PRI
217. "Towards a Comprehensive User Interface Management System'; Computer » o]
Graphics, July 1983, Volume 17 #3, pg 35 .
v "-‘.‘Q‘. DN
; PR
o A2-17 RO,
: \!:._i.;- \-;
Aty
AT

e
ROASAASIA A
RARRERT. RERT
AL SR SR
IS NS .'} B B

158.

2717.

6l.

84.

360.

225.

296.

234.

182.

202.

24.

145,

257.

340.

310.

63'

177.

83.

CRAG A . BT e A R

"rowards a Theory of the Cognitive Processes in Computer Programming";
International Journal of Man-Machine Studies, Nov. 1977, Volume 9 #6,
pg 737

“fowards Comprehensive Specification'; The Computer Journal, Aug. 1979,
Volume 22 #3, pg 195

"Pransition Network Grammars for Natural Language Analysis'"; W.A. Woods
(Computational Linguistics)

"franslation of Decision Tables," Udo W. Pooch

"TSD Methodology Technical Report," Draft Final Report; Martin Marietta
Aerospace

“Tutorial: Data Structure, Types, and Abstraction"; Computer, April
1980, Volume 13, pg 67

"Understanding and Documenting Programs'; IEEE Transactions on Software
Engineering, May 1980, Volume SE-8 #3, pg 270

“"The Unifi>d Support Environment: Tool Support for the User Software
Engineering Methodology'"; IEEE Softfair Proceedings, July 25-28, 1983,
pg 145

A Unified Theory for Software Production'; Software-Practice and
Experience, Volume 12, Issue #7, pg 683

“The Use of a Sophisticated Graphic's Interface in Computer-Assisted
Instruction"; IEEE Computer Graphics and Applications, March/April
1983, pg 25

“"The Use of Prototype MMI to Resolve Requirement Issues With C2I Users"

"User Acceptance: Design Considerations for a Program Generator";
Software-Practice and Experience, 1983, Volume 13, pg 101

"A User-Friendly Algorithm"; Communications of the ACM, Aug. 1981,
Volume 24 #8, pg 556

"User-Oriented Descriptions of Smalltalk Systems"; Trygve M.H.
Reenskaug, Smalltalk-80 System-—-Byte Magazine August 1981

“"Uses of the Simula Process Concept'; Software - Practice and
Experience, Feb. 1982, Volume 12, Issue #2, pg 153

"Using Formal Specifications in the Design of Human-Computer
Interface"; Robert J. K. Jacob April 1963 (Communications of the ACM)

"validation of an Analytic Model of Computer Performance"; The Computer
Journal, Nov. 1981, Volume 24 #4, pg 347

"The Vienna Definition Language," Peter Wegner, Computer Surveys

(Rl R i)

LR

1~‘ l\%....»» 4.‘A.A. .. < .. u, - . ‘ ...
4 S PP, P . ke el e) 4 ..u..s..........x.z.....h»

Ted Kaehler

b

August 1981
The Argus Concept"; IEEE Softfair

]
20
)
3
)]
=
)
-
B
[
o
=]
[F]
o
[N
o
[}
e}
5
)
]
)
[
c
L
-
o]
Ut
>
1 9]
Q
=
v
=
-4
L]
3
4
-
o
>

Smalltalk-80 System—-Byte Magazine
"What About CAD/CAM for Software?
Proceedings, July 25-28, 1983, pg 129

348.
233.

TE

oa o e A b

LPUSN VOFATYINY

Pal

it g Baltatalel trl il

SRR LY

!

-
-

Y at YR 9, A

.

*hﬁﬁﬁﬁﬂf%ﬂ

.

IALALANS

[}
»
b

o
“

’

A
N
M

2
\~
'I.."i
Y
e

'S

-
-
L)

(el
L'_
:

sanoqe eaed
dgl ©3 Surpuodsaiiod sJUBWITD aand1j ppe

*@gl sIuad3luo)
cwsTueyd2W }OBQPADJ PIINIONIIE B SE
guid£3o3oid 3noqe ydea3eaed ay3 o3l BIFP PPF

. cueadoad 1a3ndwod 8yl Jo Jyad
ay3 103 siseq Y3 ‘43ITATIOE 8utd£3joj0ad jo
s3Insa21 3yl o3l uollIppe ut ‘owodaq pue*°*,,

:.Eoum»m ?y3j Jo uotrleaad
pre 03 3I1INng 29 Lew sodAjojoad jo aouanbas

weaxgoad
aajndwod e 103 a1o£ko 3311 2ul

wstueyddW }OBqpI3] pain3oniis
e Se wcwnhuOuoua aonpoijul

do © 103 ¥ad 103 siseq A{uo au3l
se pajels aie suor3ed13y103dg

1ewtido £11iESS3I2U JOU

o
e
)

!
-y,

L)
.

o« w0
LA RSt

.

<\
.

L

-'--:_-{“-‘:‘u

. u"":\ Bl
ChIC

ALPE L

.
A
NS

\-.ﬁl

b

.ﬂ._

e

i

3

- o e

' e

M <A

K

g

g o

1-z 2an314 8-¢ ol
L]

A

ol

a194AD 2311 o
[)

A9

uor3i1sinboy walsis
ay3 ut jusmdoyaaap
weifoig x23ndwo) 8-7

1y

" " (1] " mom|N

uotr3tutjap oseyd

10 adAjozoad e @seyd srty3 3urang, Ppe s1 [opow judwdoyaAdp ar8uts ® juawdo(aaap o1eds [Ind -2

.0 's9skjeue £31A1308 S9TITATIOE
pue .wcwmwu0uoum ‘ga1pnlys ‘sJJOapPERIIT ue se Suid4{ijojoxd apnidur aseyd yenjdasuod e°g-Z
uo1JTUIFOp MU B ppe 10 1 yoeiae
:...wcmnmuOuoua 10 uotje[nwis *{f, UOTIITUTII@P gutd£3joj0ad spniout uorjeInuIs jO °3I3P ‘1104

R

BuidL3030ad pue uollEInNUIS JO 1297 @2Y3i**°, UOIIBINWIS O3 8uid£3jojoad ajerazx uorle[nuls jo [3437 9°1°¢
FONVHD QdLSIADONS anssI 01401 *ON Vyvd

$1°008 ¥4V 40 MITATY 30 SITNSHY AYVNIRWITIEA

a8 e e e T A Y N I WEERY

W ¢ -3urdXjoj0ad pue ‘uorjeynurs ‘Suriapoq,,

*sjuau
-311nbax 8danosaa ia3ndwod Jo JuaWYSTITqEISD
103 siseq a1qera B SurdLj030ad ajew

03 uo1led0] (gl B ul 2oUdJuUaS (gl ¥ 2pniout

*3uidAjojoad pur ssavoad meradx 3uruiad
-uoo> 23uey> poau Aew eaed jo aduajuas 3Isej

£°000S saoa
oy co3eradoadde 2aaym Builurjep uoIBIO]

agl ® ur *eaed qgl ® saainbax mou aaoqe x13

o **@3e11doadde v.ym sadijojoad

duidaom pue ‘sSJieyd MOTJ [1BI®BP ‘°*°,

Wt tpauiogaad Fuirdk3
—0301d pue Sa1pn3s Jjoapell ‘saskBuec-c,

sas{jpue JrUOTIOUN]
3aoddns 03 3uid{jo3joad jo asn

2UOTE $2Ipnls paseq
1aded uo sasnooy ydeaBeaed siyy

uot3ionpoad adLjojoad yzim aseyd
u3disop jo sieo3 juswaiddns

L31A1308B
ue se 3urdf{jojoad apnisur

194y 2311

aa1309211q Jwdy weaSoag

sjuamaainbaa aoanosaa
133ndwod jo juamdoraasag

oseyd u3isap
a4y jo sd13ITATIO®

sisijeue jo S3T3TATIOL

s

JONVHD d3lLsadons

%1°008 ¥aV 40

dnssI

MIIAGY 40 SLINSTE AYVNIWITHIL

01dOL

.
o Can’ay

‘e ate

LN

8uid£30301d jo 2218ap

agl smos saunsaid ydealeaed styj A%A weaSoad aajndwo) 9-G
Wt
sa131aT3oe JutdAjojoxad Aue woij sj[nsaz sma1ADY
pue s3Ieyd MO[J PayIEIdP°**,, (§) 9pnyioul u31saq TEOIITID 103 STseq " P*6-%
W SOTITATIOR SMOTAIY
gurd43030ad Lue jo s3ynsa1 3yl (L), PNIOUT u8tsaqg Areutwiiaid 103 SIseq “ 2°6-4
w"S2T3TaT308E
8urd£{30301d Aue 3Jo s$3I[NSdI 3YI (8), °PRTOUT sSm3TAJY u81sag wa3sLs 10J SISEq “ q°6-Y
W S213TATIOE S2TITATIOR sMaTAY
3utd430301d Lue jo s3iynsai ayl (9), °opniout 3utd£joj0ad jo s3jInsax apnydut 1eoT1UYd3] jeWiOy B*6-¥
«"Sonbruysal asylo ss@d0ad Butaaautiduyg
pue sadf3030ad ‘suorjeinuis Aq pa3lioddns wa3lsAg 2yl ul VOIIdUNJ 3aoddns $§80014
aq Lew uoTIJBPITEA [243] YyoE® 2y, puaddy e se Burdfjojoad apnjout Butasauiduy walsig 2°C-%
,,°S¥se3 pue senbiuyoa3 surdL3ojoxd Butd£a uelq 3JuswdoldAasag
pue s)se3j pue sanbiuyosel uorirernulg,, -030ad 103 Butuueyd apnyout weiloaq aandwo)n 0°6-€
_ .t tisujo pue ‘uoly jaoddns 4) 103 ueid
Teagajur ‘Burdijojoad ‘uorjeinwis 103°°*,, ja0ddns £3111oe3 BuirdLjojoad july weaBoag A L-€
JONVHO QdLSIoINs Inss1 01401 "ON V¥vd

$1°008 ¥4V 40 MIIATY 40 SIINSHY AYVNIWITIEd

- o - - S - - g ’ - - Cpt, Tt

e (R EAT CRAP

MISSION
of
Rome Air Development Center

RADC plans and executes nesearch, development, test
and selected acquisition programs in support of
Command, Contrnof, Communications and Intelligence
(C31) activities. Technical and engineering
support within areas of§ competence 44 provided to
ESD Program Offices (PO0s) and othen ESD elements
to penform effective acquisition of C31 systems.
The arneas of technical competence Anclude
communications, command and contrnol, battle
management, Lingoamation processing, surveilllance
sensons, intelligence data collection and handling,
scldid state sciences, electromagnetics, and
propagation, and electrondic, maintainability,

and compatibility.

- I P . RO C T e P PP . A N A
el -A-__,L'_L1l_- R S SN WA Al A 2 B o P e P Wy L\L\\‘L AT A gy WY - at e o - al e 3 a4} -y

CTH TR RO TR TN TS TS W LT -t aARC aliC ol M R s il il R I e "._’I_".’f_w'-W-'i‘_'Y o

r

| Bl R

id 5 %o oan Al e Sy - ¢ aia gt e 0y “Béa Lhardvn Bie A GV RE BV iVl Ay AV M Fal i BT p A M B eyl e S v o a - an e R
D Y Y R Oy S T AT T A o ; =
wa g el R 5 CO
1 A o,
J:‘ J"' '3
it A
:
L]
i \g’
. : \ N

P
vy
oS

-

»

T W
T

-,
-

™

- e
- -
-

