
7A-ft6? 423 C31 RPID PROTOTYPE INVESTIGTION(U)
NRTIN NRIETTA V2

AEROSPACEDENVER CO P C OALEY JAN 86 NRC-85-616
RACT-9 -2 6 03662-83-C-9S6?

UNCLSSIFIED F/O 17/2 UL

U.6.
Wo 12.0

MICROCOPY RESOLUTION TESISCHAR -

N. ! NALA

7v-7-.7

9 N%

RADC-TR-85-2 16
Final Technical Report
January 1986

~ C3!RAPID PROTOTYPE INVESTIGA TION

Martin Marietta Denver Aerospace

WAYO0 5 E
Philip C. Daley

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
__ Air Force Systems Command
SGriffiss Air Force Base, NY 13441-5700

865 5 011

- -~.-"' - -" -. "* *.'- . "

.- "...- ..

mo - _Y--1

This report has been reviewed by the RADC Public Affairs Office (PA) and . ___,
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-35-216 has been reviewed and is approved for publication.

APPROVED: C'd4 L
WILLIAM E. RZEPKA
Project Engineer

APPROVED: 7 "-

RAYMOND P. URTZ, JR.
Technical Director
Command & Control Diyision

FOR THE CONMANDER: eQ AQ
RICHARM W. POULIOT

Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed bv your organization,
please notify RADC (COE) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS I .

UNCLASSIFIED N/A
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

N/A Approved for public release;
2b DECLASSIFCATION !DOWNGRADING SCHEDULE distribution unlimited %, .

N/A__ _ _ _ _ _ _ _ _ _ _ _

4 PERFORMING ORVNIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MCR-8 5-616 RADC-TR-8 5-216

6a NAME OF PERFORMING ORGANIZATION 1bOFF ICE SYMBOL 7a NAME OF MONITORING ORGANIZATION .

I6 (if applicable)Martin Marietta Denver Aerospace Rome Air Development Center (COEE)...

&c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
PO Box 179 Griffiss AFB NY 13441-5700
Denver CO 80201

Sa NME F FUDIN /SPNSOING b (FFIC SYBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
Roe ir Development Cente C0EE F30602-83-C-0067 4

Sc ADDRESS (Cty, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Griffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO NO. INO ACCESSION NO
62702F 5581 22 12

71TITLE (include Security Classification)
C3 1 RAPID PROTOTYPE INVESTIGATION

12 PERSONAL AUTHOR(S)

P.C. Daley
1
3a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final FRMI TOj 1n 8 January 198615
6 SUPPLEMENTARY NOTATION

N/A

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
FIELD GROUP SUB-GROUP Rapid Prototyping Development Methodology
15 07 C31 Systems Modeling
09 02 tRequirements Anialysis

ABSTRACT (Continue on reverse if necessary and identify by block number)
Rapid prototyping of C 3 I systems has high payoff for the Air Force. It can aid in identifica
tion and stabilization of requirements, thereby reducing the risk in developing these systems

Rapid prototyping provides a general tool and way to mock-up the functionality of software
intensive systems. The resulting prototype can be exercised before system development to
provide a tangile basis and media for presentation of system requirements and design.

Rapid prototyping at titmeis best achieved through the use of models of the proposed
'Ivstemi's human-computer interface, system performance, data-base structure, and system logica -.

SItructure. --..-

A rstew to aid rapid prototvping has been defined. Required attributes of the system are
that it be accessible and usable by at least three classes of user: mission user, system
acqiiisit Ion manager, and software specialists.

I%
20/ iIS1P,BIJlON A)AILABIL-Ty OF ABSTRACT 121 ASRC itITCLSSIFICATION *.,

I~C9 -%ASSIFETI.UNI IMT ED3 E SAME AS RPI T DTIC USERS UNCLASSI ZE
,12a NAME OF RESPONSiBIt E ND. IDUAL 22b TELEPHONE (include Area Code) 722c OFFICE SYMBOL %%.

WIllam E. Rzepka (315) 4330-2762 RADC (COEE)%

OD FORM 1473, 84 MA4 83 APR edition may be used urti exhaus~od SECURITY CLASSIFICATION OF THIS PAGE
All other editions are oosolete /UCASFE

N.
N

i) OUTLINE

1.0 EXECUTIVE SUMMARY

1.1 Activities
1.2 Results
1.3 Recommendations

2.0 INTRODUCTION !

2.1 Purpose
2.2 Scope

2.3 Tasks

3.0 PROBLEMS IN DEVELOPMENT OF C3 1 SYSTEMS

3.1 Overview
3.2 C3 1 Systems Definition tw
3.3 History
3.4 Problems ,.
3.5 Taxonomy of Errors

%

3.6 Conclusions

4.0 RAPID PROTOTYPING AS A SOLUTION

4.1 Solution Set
4.2 Definition of Rapid Prototypin
4.3 Role of Rapid Prototyping in C I System Development -

5.0 APPROACHES TO PROTOTYPING

5.1 Types of Rapid Prototyping %

5.2 Taxonomy of Approaches

5.3 Analysis Criteria _
5.4 Evaluation of Approaches Accesi....or

5.5 Two Mainstreams of Prototyping Systems NTIS CpA I
5.6 Conclusion DTIC TAB 13

Unannounced 1- "_. -
6.0 MATCHING PROTOTYPING APPROACHES TO C3I FUNCTIONS Justification-,

6.1 Overview

6.2 Functional Decomposition of C31 Systems By
6.3 Analysis Criteria Di-t ibatio.;.
6.4 Evaluation of Functions Avaiability Codes
6.5 Matching Functions to Prototyping Approaches

'-'--'-:-."

6.6 Programming Environments Ava. a _dior
6.7 object oriented Programming Dit

7.0 RELATIONSHIP OF PROTOTYPING TO MILITARY STANDARDS

8.0 LESSONS LEARNED IN THE PROTOTYPING TESTBED ,

8.1 Context of the Rapid Prototyping Testbed
8.2 Prototyping's Relationship to Other Software Development Tools
8.3 Rapid Prototyping System Concept
8.4 Summary ,.

., : ~.:?.
(-..: .:,-'-
,..,:., .--:

=" • , . • . . • =. . ' . %

9.0 TESTBED ELEMENTS

9.1 Inventory of Application Software
9.2 Computer Resources
9.3 Interface Prototype
9.4 Methodology Requirements
9.5 Scenario Library

10.0 CURRENT TESTEED (~~

10.1 Inventory of Application Software
10.2 Computer Resources
10.3 Interface Prototype "..-

10.4 Methodology
10.5 Scenario Library ..

11.0 PROTOTYPE ENVIRONMENT DESCRIPTION

12.0 DEMONSTRATION SCENARIO .

12.1 Introduction
12.2 Demonstration Results

APPENDICES

Al A Designer's Workbench Expression of the Methodology
A2 References
A3 Tables .~

9J.

.~~~~ .9.5.. .

1.0 EXECUTIVE SUMMARY

This study was undertaken to assess the feasibility of applying rapid K
prototyping techniques to Air Force C3 1 system developments. This report
presents the technical progress during the effort, which entailed studies of
problems in developing C3 1 systems, approaches to rapid prototyping,
relating C31 system elements to rapid prototyping approaches, and assessing
the adequacy of current military standards. During this study we also
conducted three demonstrations illustrating prototypical elements of a
prototyping system.

Prototyping is a process which has received much recent attention as a
way to improve the process of C31 system development. Rapid prototyping
refers to prototyping supported by generalized tools, thereby incurring less
eftort and time than custom prototyping. By improving the development process
through the use of these tools, we expect the system acquisition to be
smoother. As ai incidental fall-out, we expect the C31 system product to
contain fewer errors ano be more usable. Many problems in developing complex .'
C31 systems are associated with software. Studies have shown that many of
the problems of software are tied to requirements definition. This definition
process has three aspects (identification, expression, and evaluation) which ,
rapid prototyping must support. _A

When considering C31 systems as multi-function systems, we find the
portions for which it is most difficult to define requirements are those 0%

supporting the cognitive processes of the user. They are also the functions
most directly related to the mission of a C3, system. These are the
high-payoff candidates for prototyping. C3, systems are human systems
augmented by ADP.

1.1 Activities Summary

Task One: Investigation

Several large C3 1 systems were studied including NORAD and tactical %
systems. This study included analysis of the acquisition process. A library ";.
of over 200 articles and documents was prepared concerning rapid prototyping,
software development environments and structured requirements analysis. An
analysis of the problems facing C I system developers was undertaken to
identify problem drivers. At the same time a study was undertaken of the
structure and component functions of C3 1 systems and their difficulty of
specit ication.

Current approaches to rapid prototyping were investi ated to determine ''-.'-'-'

those prototyping approaches which are useful in modeling C I embedded
computer tunctions. The cost to use each in terms of hardware, software,
analysis, and needed further developments was assessed. Prototyping
approaches were investigated which focused on the empirical or visible actions V.'.

ot the software function (clearly important in user interface prototyping),
its predicted performance, and its functional structure representation.

A study was undertaken to determine which rapid prototyping techniques
are useful in C3 1 specitic applications. This study addressed the use of
parameterized models, reusable software, prefabrication methods, restricted .-

..

functionality, and reconfigurable test harnesses. This was performed through
review of literature describing the results of prototyping activity and
interviews with people who had conducted prototyping for C3 applications.

The impact which the use of rapid prototyping techniques may have on
the Air Force embedded computer acquisition process was studied. This
included consideration of what kind of prototyping was appropriate to each
phase of the software development life cycle. Modifications to the life cycle
were considerea as well as the potential schedule impacts of rapid prototyping
on the Air Force acquisition process.

An investigation was undertaken into procedures for preserving
information gained from prototyping and translating it into
requirements/design specifications or the actual implementation. This .
included cases where the prototype would serve as the program design language,
cases where the prototype behavior is examined by the user during the
requirements review process, and cases where the prototype is capable of
evolving into a final system product.

Task Two: Methodology Development ..

A method for utilizing rapid prototyping in the development of software
* for C3 1 systems was developed. The methodology was specifically designed

for rapid prototyping of high-payoff aspects of C31 systems to support ..s
identification and validation of requirements. The methodology emphasizes the

*- rapid construction, change, and discarding of prototypes instead of evolution
of prototypes into final system. Consideration was given to the need for
novel approaches to requirements specification, design reviews, and

configuration management when using rapid prototyping. The methodology was
developed with reference to AFRS00-14 and MIL-STD-490.

Task Three: Tool Environment Design .- *.

A set of software tools was specified and designed which implement the ' "
construction of rapid prototyping consistent with the methodology defined in

*: Task Two above. The tools will form an integrated software prototyping
environment with a specialized tool user's interface.

The prototyping system was designed to allow prototype development by
users with a variety of skill levels. The tools were designed to support the

*process of identifying and validating critical C31 software functions to
support the incorporation of the information gained into the decision-making
and specification processes which occur during the requirements and design

* phases of the software development life cycle. This software has been
documented in accordance with DOD Standard 7935.

Task Four: Feasibility Demonstration

Three demonstrations were held at Martin Marietta Denver Aerospace to
present the prototyping tools and select scenarios. The key demonstration- -
focused on the Ground Attack Control Center (GACC) with a Korean theatre \.

scenario. The intention was to present an element of a GACC as an example of ...W

prototyping--not to define or solve a GACC problem. The scenario was L'L

incidental. The aspect selected was a user interface prototype of an analyst

2

- '' .

- , .. '.,-..' .. s - . ..-. , '.' , ", ,. - -. -. - ' -, - ., - • ;...--....- ,..- ,. -, -.- _. . .- --.

pertorming planning/analysis for a C3CM mission. Feasibility of the

prototyping tools and concepts was demonstrated through identifying and

validating some potential user requirements.

1.2 Results Summary

Rapid Prototyping is Feasible with Current Technology. While

prototyping has been used for some time in the business world, its application
in the crucial arena of C3 systems has been limited by the complexity of
that arena. By applying some of the concepts and lessons from artificial
intelligence (specifically planning systems), and by mechanizing the tools

using an object oriented executive and tool set, these complexities can be met. .

Communication problems between user, acquirer, and developer are the ".

basis for problems in C3I system developments. These problems destabilize r-.
the requirements determination process and in turn leave requirements in a

state of flux. Requirements definition for C31 systems is difficult because

of the mission criticality of such systems and because the software of such",,.'.

systems (which provides the prime functionality) must be designed to support

human cognitive processing.

Structured analysis and modeling tools are the hsis for rapid

prototyping of CJI systems. Rapid prototyping for C3I systems can best be

achieved by binding together powerful modeling tools. The linquistic approach

to rapid prototyping is insufficiently mature for application to these '

systems. The binding process is complicated, and provision for further
currently unspecified models in the prototyping system induces a design
problem for the prototyping executive.

Prototyping may have an important role as a communications vehicle in

multisegment evolutionary acquisitions. While evolutionary acquisition may
help in acquiring C31 systems, organizing large projects is difficult. An
example could be taken from the Strategic Defense Initiative (SDI).. .1

Prototyping could help determine feasibility early and improve
contractor-to-contractor transfer of intentions.

Future C31 system acquisitions will require new management techniques

that must be founded upon tools which explore "what-if" aspects of the

problem. With the abandoning of intent to establish a complete requirements
set for a system a priori, management techniques must evolve to support a more %-7.

reactive style. This in turn will call more upon the leadership qualities of

program managers and less upon their contingency planning abilities. This

results in the need to supply program managers quick reaction tools to give a
look into problems at hand and quickly develop likely solutions. This fits
nicely into rapid prototyping methodology.

A rapid prototyping environment has major effect when focused on
support of requirements determination - not on design. Problems in software

intensive developments tend to appear during the software design phase and :.

during the system integration and test phases. These problems are founded in

unstable requirements which flow down to the software elements. System 4..- !

requirements determination must be stabilized. Therefore, the proper role for

rapid prototyping is in system requirements and high-level software
requirements definition. Emphasis should be placed on the integration and '

-

test phases in later stages of development.

3 - ..o . .o '

.-.- *.-."-.
, "°•.° ,- , .- o- . ° °.................. •. . . . •.,..••-.....

A rapid prototyping environment should provide that useful work can be

performed by a broad spectrum of users with varying skill levels. The proper

rapid prototyping environment should, within the tool design itself,

accommodate many different users. Each has a piece ot the "picture" of the

ultimate ano proper C3 1 system component. The tool should integrate these
views automatically to the maximum extent possible. This problem is related

to a key artificial intelligence area of research-"knowledge engineering.".

Complete solution of knowledge engineering problems is not necessary to profit ,

from rapid prototyping, however we must structure the knowledge domain of
C3 1 system components sufficiently to allow mapping of their specifications
to proven representations based in existing modeling systems.

Use of rapid prototyping can take place without disturbing AF800.14 or

MIL-STD-490. If we interpret rapid prototyping's main goal as adding to the

requirements definition process, then it becomes just another system

enbineering tool. No special life cycle steps are needed to accommodate use

of rapid prototyping.

1.3 Recommendations

A rapid prototyping environment for C
31 systems should be constructed -A

and made available to users, acquirers and developers. The technology is

mature and such an environment is feasible. The environment should reside in

conjunction with a major Air Force test and evaluation facility focused on

C31 battle management problems because the requirements definition for human I

cognitive processing aspects of C
3 1 systems is most intense in the battle '%1%

management arena.

Provision should be made to interface the rapid prototyping environment - -

to other support environments. These should include programming environments,

decision aid development environments, automated management support tools, -,

structured requirements aata bases, scenario generators, and further modeling

systems. Integration of support tools such as these will give government
program managers the capability to play extensive what-if games with the
entire gamut of programmatic issues.

4
.44

, e..

2.0 INTRODUCTION

2.1 Purpose ,.*..

This volume presents our report on the work and results of tasks 4.1.1

through 4.1.4 of contract F30602-83-C-0062.

2.2 Scope

In this volume, we describe our efforts to define, design, and
demonstrate a rapid prototyping capability. The capability is being tailored
specifically to C31 system embedded computer functions. This restriction of
the problem domain prompts us to use existing technology and reuse existing
prototype tool software. Our approach focuses on the rapid construction, use
and discarding of prototypes, rather than refining prototypes into final
products. We expect the users of the capability to span a range of computer
construct the prototypes which would be evaluated by the eventual user and

possibly modified by acquisition personnel. We discuss our effort to
integrate the capability into the Air Force acquisition process. The
integration will allow prototyping to improve the validation of C31 system
software early in the development process. Examples, procedures and
guidelines have been developed so that all levels of users can understand and
apply the capability.

2.3 Tasks .-'.

These technical tasks were identified in the contractual statement of

work:

2.3.1 Task Technology Investigation .

Study at least two large C3 1 systems for the purpose of
determining those embedded computer functions whose prototypes would have a
high payoff in terms of requirement or design information gained. Selected
functions should be common to several classes of C3 1 systems, critical to
system operation and especially difficult to specify and design. Candidate ,'*
functions include the man-machine interface, real-time interrupt handler,
communications processor and the data base management system.

Investigate rapid prototyping technology for the purpose of

determining those prototyping approaches which are useful in modeling C31
embedded computer functions. Hardware and software requirements for each kind ...:.,.

of prototyping approach shall be identified along with advantages (kind and
quality of information gained) and disadvantages (accuracy, realism and "'
scaling problems). At a minimum, the following three kinds of prototyping
shall be studied:

User Interface Prototyping--Captures the user interaction with the ,"

system at the expense of system performance and function.

Performance Prototyping--Predicts system time and space characteristics Pt. "

at the expense of user interface and system functionality. -

5

.,'., ~. .'.,'''..' o. .,..'.. . .. , ,,, . - -.% p •" .' " o
.
. , .,-*o' -.. ,

t ., L. _.,a_ ' '-. L.'. . ,,. ,,.
•
. • " '/ '''' "'" "''" '" " "" "'" "" " " " "' "'""" " '

°
.. .". .".-."".. . .".. ." ".".".. . . .'. .". .

Functional Prototyping--Perform data transformations of the final
system without necessarily using the final algorithms, commands or
displays.

Study existing rapid prototyping technology for the purpose
of determining which rapid prototyping techniques are useful in modeling C

3 ,

functions. At a minimum, the following techniques shall be studied.

Parameterized Models--A family of systems that differ by variations in :"

parameters or tables.

Reusable Software--Libraries of modules which can be quickly and
conveniently assembled. - -

Prefabrication Methods--Programs which accept parameterized inputs and

generate specialized functions (e.g., displays, reports) according to
some standard.

Restricted Functionality--Model only the functions and only as much of

each function as is required to obtain the necessary feedback.

Reconfigurable Test Harness--Simulates the environment of operation and
its interaction with the prototype to determine behavior.

Study the impact which the use of rapid prototyping
techniques may have on the Air Force embedded computer acquisition process.
The kind of prototyping appropriate to each phase of the software development
life cycle shall be identified. Additional life cycle steps required by the
use of rapid prototyping shall be identified, and a plan for integrating these
steps into the Air Force software acquisition process shall be developed. The
cost and schedule impacts of using rapid prototyping technology on the Air
Force acquisition process shall be investigated, and appropriate management
techniques for their assessment and control shall be identified.

Investigate procedures for preserving and translating -.
information gained from prototyping into requirements/design specifications or

the actual implementation. At a minimum the following coupling techniques
shall be studied:

Feeding Design--The prototype serves as a design specification for the

implementation, in effect, being used as the program design language.

Requirements Review and Testing--Prototype behavior is examined by the

user during the requirements review process.

Incremental Redevelopment--Under certain circumstances it may be
possible to refine selected parts of the prototype into a final system
product with the required functionality and performance. .-...-.

2.3.2 Task Methodology Development

Based on the results of the technology investigation
(reference paragraph 4.1.1), the contractor shall develop a methodology for
utilizing rapid prototyping technology in the development of software for

6

%Ai"" ,-

%i'. %w*.. •

C 31 embedded computer systems. The methodology shall incorporate the .'
following concepts, at a minimum:

The methodology shall be specifically designed for the rapid I

prototyping of critical, high payoff functions of C
3 1 embedded

computer systems. Its objective is to identify and validate these

functions during the requirements and design phases of software

development. The information gained from the rapid prototyping process

shall be used to facilitate the design decision making and \.

specification processes.

The methodology shall emphasize the rapid construction, change and

discarding of prototypes, as opposed to a more structured

implementation approach which could be refined into the final system.

The methodology shall consider that a different approach to ___

requirements specification, unspecified capabilities, design reviews .. -
and configuration management is required when rapid prototyping is

utilized.

The methodology shall present to its users a comprehensive set of

procedures and guidelines for using rapid prototyping as an integral

part of the software development life cycle as specified by Air Force

and DOD regulations and standards (reference AFR 800-14 and

MIL-STD-490) for acquiring C3 1 embedded computer systems.

The methodology shall be fully documented with examples to enhance its

understandability.

2.3.3 Task Tool Environment Design:

Design a set of software tools which implement the

construction of rapid prototyping consistent with the methodology defined in

paragraph 2.3.2. The tools shall form an integrated software prototyping

environment with a uniform tool user's interface and shall incorporate the

following concepts:

The tools shall be designed for prototyping the critical and high

payoff functions of C3 I embedded computer systems. Their design

shall be flexible to allow prototype development by technical analysts,
prototype modification by Air Force software acquisition specialists

and prototype execution by Air Force Mission personnel.

The tools shall be designed to support the process of identifying and

validating critical C3 1 embedded computer functions and of

incorporating the information gained into decision making and

specification processes which occur during the requirements and design

phases of the software development life cycle.

All newly generated software shall be provided in accordance with

paragraphs 5.3.1 and 5.3.3.1 of CP 0787796100e, entitled, "RADC

Computer Software Development Specification, General Specification

for", dated 30 May 1979. Software documentation will be in accordance

with DOD standard 7935.1-S, entitled "Automated Data Systems

Documentation Standards", dated 13 Sep 1977 (see CDRL).

7 -V.

::-; : ~ ~~. . , . , . , :

2.3.4 Task Feasibility Demonstration

Demonstrate at the contractor's facility the feasibility of
the rapid prototyping methodology and tools developed in paragraphs 4.1.2 and
4.1.3 by constructing a user interface prototype of a contractor-selected, *

Government-approved C I embedded computer function. Feasibility shall be
shown by using the prototype to assist in identifying and validating user %
requirements. The demonstration shall also show how information gained from
the prototype can be integrated into the decision-making and specification
processes.

Utilize existing technology in constructing the demonstration
system. Design and implementation of new software shall be held to a minimum
and used primarily to interconnect existing software capabilities.

2.3.5 Task Oral Presentations 4

The contractor shall conduct two oral presentations at his
* facility. The first, presenting the design of the rapid prototyping tools,
* shall be held in the twentieth (20th) month after the start of the effort.

The second oral presentation shall be held in the twenty-fourth (24th) month
after the start of the effort. %

PE4

7..

17- A% le

3.0 PROBLEMS IN DEVELOPMENT OF C3 1 SYSTEMS

3.1 Overview i

The development and acquisition of C31 systems has long been plagued |
by problems which have limited the effectiveness of those systems when finally

fielded. This lack of effectiveness has also broadened the gap between users .'
and developers which leads to an even more difficult development and

acquisition process. The purpose of this section is to identify and address :"
these evolving problems, providing the basis for a solution to this growing
concern. The following paragraphs provide a definition of C31 systems to
establish the context of the problem, a review of past development and

acquisition problems, and finally an analysis of how those problems have
evolved to date.

3.2 C3 1 System Definition

Before stating the problems involved in the development and acquisition . .

of C31 systems, it is critical that a definition of those systems be
provided. Within the context of this paper, and as defined in JCS Pub. 1, a
C I system enables the military commander to accomplish the basic functions
of command and control (planning, directing, and controlling) in the conduct
of military operations. The specific definition of a C 2 system is: "The
facilities, equipment, communications, procedures, and personnel essential to

a commander for planning, directing, and controlling operations of assigned

forces pursuant to the missions assigned". While the functions are
fundamental to any and all military environments, the C31 systems must be . .

structured appropriately for the particular conditions encountered within each
environment. Therefore, these types of systems can have numerous complex and
changing external and internal interactions, often of an inter-service or

multinational (as in NATO) nature. They involve operational requirements, use
acceptance criteria and measures of worth which often cannot adequately be

specified in advance. They are also highly dependent on the specific "
doctrine, procedures, threat, geographic constraints, mission scenarios and
management approaches of specific mission users. As a result of these
considerations, C3 1 systems are often subject to frequent change throughout -

their life cycle. Finally, these systems are normally dominated by software
which assists the decision making processes of mission commanders and their 4.-"

staffs at multiple organizational levels. ...

C 31 systems can be viewed from their component and subcomponent
make-up. C3 I systems can be defined in terms of communications, data

presentation/ analysis, data management and system management components.
Each component can then be further decomposed into subcomponents.
Communications incorporates message handling, local area networking, secure-.

communications and sanitization, while data presentation/analysis includes
user interface, decision aids, AI techniques and Tracking/Correlation/Fusion.
Data management is composed of data base management systems, data structure,
concurrency controls, and multi-level secure access. Finally, system
management includes resource management and fault tolerance. .

The preceding discussion of C31 systems points out characteristics
which lead to the search for improved development and acquisition techniques.
Existing techniques are more readily applicable to weapon systems which

9........................ .. .

generally have discrete, relatively predictable functions,
while in C31

systems changes in requirements are inevitable at some point in the

development cycle if the system is to fulfill its primary objective--

supp rting the human decision maker. In fact, an average of 60% of the cost

of C31 systems occurs post-deployment. This represents changes to the

system as the result of changed requirements.
N

3.3 History

The inadequacy of the traditional development and acquisition approach

has long been recognized. There are many examples of cost growth, program

delays, equipment deemed obsolete by the time it is fielded, and general user

dissatisfaction with systems when they finall are fielded. Figure 3.3-1

shows some of the recent Air Force specific C programs. The Army's ,.,.A,

Tactical Operations System/Operable Segment (TOS/OS) program, the original

version of the Navy's Tactical Flag Command Center (TFCC) and the Air Force

Tactical Air Control Center Automation (TACC AUTO) program are but three

examples of programs that evidenced these problems and were cancelled as a

result.

,.*
.,..41

4.. A .. " -..I

4

10

-- A..... .. . ---..,...* ,y.. .,

.

0 In

,-- -44 c: 1. 4 0
CL0) 0 41 Li CLi ..4 4.%

w .L .d 41. W 0 14ct

0.0 "'4 Wi0
4i) w dj 0 U 0- cc

rz <U) ra fn 410 444 $~ 41
'-4 14 -0 0)~ tol 4< u

Li -. 0) -A4 w 4 0 c(4 - i
bU-4 tn 41 4 j 0 coi $4 .4 i

() r QC: 1 Li4 411 M U0t
E9 -4 (00 c o r 0 $.)~ 4

0- 0 fn I zC-u E-4 C) I I zC) cc A. ill

U) a.0

U) to

Wn cn 0 0)

U)~" Q C-4 C4 -A)

r- c c co P,00-

0O 4umI)40) 9 v

cc 4) w a. k%0
c) ..4 00 0

Z) 0) F-4-4)

o ~ ~~~~ 0- U) U).

000

0-

U) w

E-4 41 .

U) ul C: M IAi< < "

w0 0 0O

).-%U 0< U-

W. 21 .1. or - - *. - aJ - - 71

As a result, the Air Force user community, under the direction of the Air
Staff, has taken on the acquisition role for several of their own C3 1
programs. Examples include PACAF's Constant Watch Program, TAC's Computer
Aided Force Management System (CAFMS) and USAPE's EIFEL I System. This
activity further complicates the problems with C3 , system development and
acquisition with the costly duplication of acquisition efforts at each of the
operating commands. *

In general, the many problems associated with C31 development and
acquisition stem from a long history of "force fitting" C31 systems into
weapon system molds. Although the fundamental problems have been recognized,

* few coordinated efforts have been made to improve the situation. Therefore, V~
* the problems of the past are the problems of the present.

*3.4 Problems

Primarily there are four areas of potential concern in approaching
acquisition and development problems associated with C31. These general
areas can be categorized as: Technical, Communications, Cost, and

*Scheduling. The last two areas, cost and scheduling, are normally driven by
technical and sociological factors in similar manners. in today's environment .

of rapid technical advances and capability improvements, technical problems

such as wrong ADP choice does not adversely impact C
3, system acquisition

and development as it has in the past. ..

Most of the major problems facing the C I community in today's
* environment fall into the communications category. C31 development and

acquisition requires complex, multi-faceted interactions that occur throughout
the life cycle of the development and acquisition phases within and among all

* members of the community including the user, the acquisition agencies and the

developers as shown in Figure 3.4-1. However, C I systems have been forced
into the mold of weapon system development and acquisition techniques which
have proved inefficient due to the one-of-a-kind nature of the systems. The '

"force fitting" has prevented many of the essential human interactions from
taking place. These interactions must occur at all stages and levels during
the development of any system designed to aid in decision making and
execution. All too often, this interaction has been lacking in past systems
designed for this purpose and the end results were systems that did not "do"
what the user expected. J,

121

-' .':

Acquirer

User Developer

"' " i" . .,

User Consultant 4.

.% %

Acquirer Developer

Figure 3.4-1

Comunications paths within current acquisition can be complex. -

Lack of communications between the user and the acquisition and
development agencies has resulted in systems which are not interoperable,
utilizing incompatible hardware and/or software designs. They also often lack
in their ability for growth and refinement. Therefore, C31 systems designed
and developed in isolation may not provide the capabilities required by the '..

user.

Escalating costs in system development and acquisition continues to be ,.(-*'

a major concern. Beside being driven by problems created by technology and
sociology, other factors such as funding strategy changes (both politically

based and internal to the DoD) have major impacts on the fielding of new
systems. Likewise, social and technical problems create problems in meeting
schedules. At present, the time required from the program start to the final
realization of a fielded C31 system can normally be measured in years. We , ..
define the program start as the initial activity for a specific program such
as creation of an SPO, directive of program start, or approval of an SON. A
study [Affordable Acquisition Approaches, A3, 19801 for Commander AFSC "
analyzing trends in Air Force system acquisition has projected 10 years as the
average development time for a C system when measured from program start '.,4

through start of full scale development (DSARC II, PMD directing FSD or
initial 6.4 funds expenditure) to first production delivery.

13

.. o

Large-Scale C3I Developments

C3, system developments cannot be viewed in isolation. The nation's
command and control system exists in what might be viewed as large chunks. A
problem facing program managers on both the part of government and industry is
planning within multi-segment upgrades. Consider the Space Defense Command
and Control System (SPADCCS). Elements of the SPADCCS upgrade include sensor
improvements, communications system improvements, combined Space Operations
Center (CSOC), SPADOC 4, IDHS upgrade, CSSR, and SPADCCS integration

contract. These are all occurring simultaneously and all are using the %
evolutionary acquisition approach. Two problem areas exist. The first is
functional prioritization within a segment. What are the desired "
functions/capabilities of the segment? Which of these are the core required
capabilities? How should the capability list be time-ordered to facilitate EA
block planning? By exposing some of the deeper areas in the requirements set
through prototyping, information necessary to answering the questions may be
obtained.

The second problem area is in aligning required performance across
segments to facilitate overall system integration and uniform performance
improvements as shown in Figure 3.4-2. When must a particular block be

finished? Are the block phasings across all segments consistent? We are
pointing out that in large multi-segment C31 system acquisitions, there is
an additional destabilizing factor provided by the existence of parallel

developments. While the evolutionary approach mitigates some of this " -'
influence, there remains a complex effort to provide the planning which allows
the evolutionary approach to realize its potential. Prototyping can aid in
resolving this problem through provision of a communications medium and basis
across segment participants.

Segment A Segment B Segment C

Block 1 Block I Coordination Block 1

,, ,,Required

Block 2 ,, Block 2 %. e d Block 2

Block N Block

Bo ,

Figure 3.4-2

Large-scale C3, system present further problems such as coordinating . ,''Bblock contents and deliveries across several sements.

3.5 Taxonomy of Errors

We have prepared a taxonomy of the types of errors which adversely

impact C31 development. This is not a usual tree structured taxonomy in -..
that all nodes separated by a plus sign may be active at the same time. That
is, t"'ere may be many different error types occurring on a program

simultaneously. This structure is shown below in Figure 3.5-1.

14 .%,, . .

X %". . .. - .. ,- ,. . -. -, ,, ,.,., .. ' .- .' '. - =. , . - ,. . . .- ... -. -. . . .-.e, .'.'.. .. , ,...- . .. '... '. -..'/ ... , .: ./ / ,-. :..'. .. '/ '. : ,........q .;. ".:-. - ..N.:. '

Rgrmtp NxeddU ees Not KoReurTechnology

-Incomplete What He Needs Unstable
-Unknown Completeness User Not Involved Technology Exceeded
-Unresolved Known -User Isolated

Issues -Surrogate User
Instability - User Not in Project

-TOO* s Present Organization
- Unresolved Known - User Representative

Issues Not Selectable
- Performtance - Surrogate Does Not

Parameter's flissing Understand User
Too Interpretable -Wrong User

- Wrong Site
- Wrong Level

Wzung organizational
Component

User Knows But Cannot Say

Figure 3.5-1 Probl~em Taxonomy

PROBLEM TAXONOMY

This taxonomy (Fig. 3.5-1) is the current perception of where problems
*arise in C 31 system developments.

Level 0 C31 Development Problems
*(Requirements Problems + User Needs Not Understood + Technology Problems)

Level 1 Requirements Problems=
(Program Scope Exceeded + Instability + Too Interpretable)

.

Level 2 Instability=
* (Incomplete + TBDs Present)

* Level 3 TBDs Present-
(Performance Parameters Missing + Unresolved Known Issues)

Level 3 Incomplete
(Unknown Incompleteness + Unresolved Known Issues)

15

* ~ ~~ ~ . .l*- .* * .-.....

Level 2 User Needs Not Understood =
(User Not Involved + User Does Not Know What He Needs + User Knows But Cannot
Say)

Level 3 User Not Involved -

(User Isolated + Wrong User)

Level 4 Wrong User.
(Wrong Site + Wrong Level + Wrong Organizational Component)

Level 4 User Isolated
(User Not In Project Organization, Surrogate User) ,.

Level 5 Surrogate User = .' :'4
(User Representative Not Selectable + Surrogate Does Not Understand User)

Level I Technology Problems
(Required Technology Unstable + Technology Exceeded)

Technology Problems

Some development problems run afoul of the state-of-the-art in
technology. The technology necessary to build a particular system may be
unstable. An example is memory-staging schemes for high speed parallel
processors such as the CDC 205. This error type occurs when state-of-the-artsolutions are being used in new applications.

The other branch under technology problems is labeled "technology
exceeded." This refers to a development necessitating a solution which is
beyond the state-of-the-art. An example is a computer with a sustained

-, throughput rate of 1 GFLOP/sec.

Requirements Problems

These error types appear on the left-hand side of the Figure. At the
first level is the node "program scope exceeded." This refers to a
requirements set which defines a set of solutions taking more time or money
than is available in allocated development funds. The requirements may be -
good in all other respects. .t

Another type of error is "unclear, too interpretable." This refers to .

a requirements set which does not adequately define the task or language which
is too loose. An example would be language which said "data base updates
shall occur instantaneously".

The third node at this decomposition level is instability of
requirements. This has a substructure containing incompleteness and TBDs (to A.-
be dones). The most usual TBDs seen in specifications are undetermined
performance parameters. It is conceivable that there would be TBDs which are .' .

not performance related, such as determining the number of workstations
necessary for a site. Incompleteness is in one case equivalent to "other
TBDs." This is where some portion of the specification has been overlooked as
to number, quality, or other attributes. In the other case, the specification
is incomplete and does not adequately define the work to be performed.

16

-.-.......;...........,... ..-. .-, , : . ' ' .I'. N' -- ,-. = ,-i :;. ' . , > .. , .. ,. ,. ,.,- ,-... : .\.,. .. . -. ,>,. ,..- ., -C,

User Needs Not Understood

The last major type source of error is under the heading "User needs
not understood." This is the classical way requirements analyses go astray.

The current acquisition plan in use by the Air Force can keep the
eventual user of the C3 , system insufficiently exposed to the development
process. This occurs through isolating the future site user or by involving a
wrong/inappropriate user representative. The wrong user representative can ---
occur three ways. The first is through selection of someone familiar with
another site in the same command. The second is through selecting someone at
the wrong command level. This occurs a great deal. Our studies have shown
that there are two user representatives, one at the analyst level and the
second at the staff or CO level. Selection of one of these users to the
exclusion of the other can bias the determination of user needs. The third
way to make an inappropriate selection is to select someone familiar with the
site but in the wrong organizational component. An example is found in one of :
the SAC command center upgrades. There a user representative was chosen from
SI, the ADP governing organization. The people whom the system was actually
to support were in DC, the command and control organization.

Isolation of the user can come about in two ways. The first is through
insufficient integration of the user (user representative) within the
developer's organization. The normal project review process is insufficient . -

to provide guidance on complex C31 systems. If the user is kept at arm's
length for the requirements and design phase, his insights, viewpoints, and
goals will likely go unheard.

The second way to isolate the user is through the surrogate user
system. Various acquiring authorities of the government or consulting
companies have been "tagged" as the user representative. While this has
worked in some cases, the system introduces further organizational and
communications problems. These occur, first, because a representative cannot
be found. This was the case on the original Navy TFCC program. No single
person or group could be found to integrate the needs of the many flag
commanders who would use the system. Their views were not "representable."

A more common occurrence is when the appointed user does not understand
the operational environment which the system is supposed to manage. A classic
example is on the OASIS program. There a site user desired "annotafion" data
to be included on displays by the operator. The surrogate user generalized
this to "amplification" data, using arbitrary data base sections. The
proposed solution went through several levels of project review by all
parties, but the disparity was not discovered until the system was delivered , " a

to the site user.

3.6 Summary of Problems in Developing C31 Systems

Organizational communication paths are complex. When we have an
acquisition that comprises a developer, an acquirer and a user, there are
difticulties of translation. When we add a consultant, the number of
communication paths proliferates and translation problems multiply. In multi-
segment acquisitions we have a very confusing mix of contractors, acquiring
authorities or authority, and one or more consultants.

17

p ., . -. - o. - .-- -

6

Requirements analysis is notoriously difficult for C3 1 systems. b...;,
Requirements analysis tends to be a well-defined process for systems which we

understand and have developed successfully in the past. The threat and its
countermeasures are becoming more sophisticated and more capable. The ability
of the threat to posture its forces ever closer to the shores of the United ____

States and to have at its disposal long-range aviation assets is challenging.

Clearly this results in a reduction of the time available to assess, decide
and respond correctly. This in turn drives us to make more demands for
accuracy, timeliness and precision on the part of our nation's command and
control systems. This forces a closer and more intimate integration of these
command and control systems with the user and his cognitive and inferencing
processes. This is a new field. We do not have paradigms. We do not have along, well-documented track record. We are exploring-new territory. The ..- ,-

problem is one of supporting identification of requirements, expressing andrepresenting those requirements accurately, and evaluating them in a manner so -- .-"

as to provide structured feedback to the identification process. Anything
which helps mitigate problems in identification of requirements would be a
great boon to our nation's command and control acquirers, developers, users,

and consultants.

Acquisition

Development strategies of C31 systems have proven inappropriate.
Standard acquisition strategy is serial and is focused on standard weapon
system acquisition descriptions and guiding documents. Such acquisitions
provide feedback to the user, basically through document such as those
delivered as requirements documents, design documents, and tept plans. The
validation of requirements at the system level and correspondingly at
subordinate levels occurs with the delivery of a system to the hands of the
user. There is well-documented lack of success for standard serial
acquisitions such as the Tactical Flag Command Center (TFCC) and the Tactical
Air Control Center Automation Program (TACCAUTO). The serial nature of this
acquisition strategy calls for requirements to be completed for the entire
program and then the contractor stops. Design for the entire program
commences and then stops. Development occurs, and then integration and test.
This presumes that we understand the goals of the program sufficiently when we -.

start to preplan. This does not work for command and control systems.

This has caused many contractors and acquiring personnel to look -
towards an evolutionary acquisition strategy. An evolutionary acquisition '.*.

strategy tends to be a block-structured serial acquisition emphasizing many
life cycles of requirements design, development, and test. There are mini
contracts issued at the beginning of the next block and there is some
preliminary analysis done to assure that a basic design is achieved with the
first delivery. This has been used successfully on some command and control
systems such as Operational Application of Special Intelligence System (OASIS)
and the Space Defense Operation Center (SPADOC). The feedback through the
user is through documents and the block deliverables. The final delivery is
broken up into a staggered set of deliveries of fully functional system
versions. There are several requirements validations occurring spread out in
time, and this provides the user the ability to feedback to the developer and
acquirer crucial data. That which has been left out or done incorrectly due
to misunderstanding can be corrected to some extent in the following .'
acquisitions. There is a well documented success for this from the OASIS
program, which was the first planned evolutionary acquisition by the Air Force.

18

-L i :- * ' .
-

. -. . p & - N :i: ,-. q = = ..: -L= .. r r.-w '- v ru . . . C . -, '- , '.' .i

The third approach is what we refer to as an experimental or
evolutionary approach. It tends to be a free form evolutionary acquisition "*-
stressing continuing development. It has been used extensively in the R&D ,. ' .O
world, and most are familiar with it. The experimental approach calls for
work and requirements to progress simultaneously in a continuous and

open-ended manner until 1) funds run out, 2) time of the program is exhausted,
3) the technical and/or contractor people give up because they are tired, or
4) they achieve an acceptable level of functionality and therefore success. , .

It tends to be used on well defined subproblems that have embedded kernels
whose solutions are unknown. The work on the Navy Secure Message Processor by
NRL is one example of the application of this experimental acquisition

strategy. Feedback is provided through an almost continuous hands-on access
to the system as it is brought into being by the user. Requirements,
therefore, are validated almost constantly. Some success in small programs
has been achieved. Drawbacks are that these acquisitions are hard to manage,
require specialized talent and support environments, and have yet to prove
themselves on large acquisitions.

The last acquisition strategy may be termed "opportunistic." It is a
combination of the serial and experimental life cycles. There has been some
use of it in R&D work. The opportunistic approach calls for simultaneous,
parallel progress of standard serial acquisition and experimental
acquisition. The experimental acquisition is a prototyping activity feeding *.

the requirements and design activities of the serial acquisition as well as,._...
being fed by them. The user has extensive involvement with the experimental .
acquisition component, and this insight is passed into the requirements
review, design review, and documentation processes of the serial program.
Therefore, there is feedback through both document preparation and hands on
activity. There are several requirements validations which can support an
almost constant process of requirements validation, and the acquisition
strategy of a standard or serial acquisition can remain in place. We believe
the opportunistic acquisition strategy has the correct approach to the
application and potential high-payoff for C3 I systems. It is basically a
prototyping life cycle which allows well definition of the government/contractor
business relationship.

Planning

Planning and management techniques tend to be ineffective as currently
applied to C31 systems. There is a limit to how finely we can decompose the
goals of the C3 1 program. We have no track record, no metamodel, of the
problem domain. The results of requirements analysis remain unclear. As
such, a priori planning at a very decomposed level doesn't make sense. We
must use management techniques much more akin to real-time command and
control, which tend to emphasize reactive strategies more than the approaches
currently in vogue. In order to support a reactive management style, risk ..A.-.C
management and prediction becomes important, and we must withhold a detailed a
priori commitment of resources so as to be able to meet risks as they become
realized. Therefore, the ability to integrate schedule and cost estimation
tools together with technical performance management tools is crucial. The
program manager must be given the tools necessary to evaluate immediately
where he is technically and drive out new schedules, new cost estimates and
technical approaches which are appropriate. This runs almost completely
counter to what is taught in management schools and what appears to have been
the foundation of management philosophy for past larger aerospace programs.

19

...................... .. d .*-,--,. .

Testability

The notion that we can design a system and then test it for the complex
distributed systems of today is inapplicable. The design of a complex system
capitalizing upon the distributed architectures that allow inclusion of I Al

special purpose processors may create an overly complex architecture. Such a
system can have hundreds of thousands of accessible states. Perhaps as many "*'+ f...

as fifty or sixty thousand are high probability states. With the advent of
fault tolerance as a design imperative, we are actually creating additional

states of the hardware and software system which may be accessed. Therefore,
we can only expect, especially with the increase in specialized small
computers bound through LANs which have fault tolerant aspects, a
proliferation of the number of accessible states. Current test philosophy is
based on a notion that one may enumerate the accessible states of a system and
create test procedures driving that system into the high probability
accessible states. At that point, the performance of the system as well as

whether or not it can be partitioned into required states can then be

assessed. This doesn't make sense for the systems of today. We cannot .
enumerate all the accessible states; we cannot identify the high probability
accessible states; we do not have the time nor the appropriate drivers to
place that system into all the states which we have identified. Therefore, we
are forced to consider "testability" as a requirements criteria and a design
criteria. We must choose to design testable systems and we must choose to

specify testable systems. But determination of design attributes resulting in
testability are not the subject of this study; similarly, neither is
determination of the qualities of a specification which lead to a constraining

of the design solution towards testabilitythe subject of this study.

Estimation

A further problem of C31 systems is that current software estimation
techniques cannot always be applied so as to yield usable results. It is well
known that software estimation techniques tend to rely on line of code
estimates. A line of code estimate has some relationship to the underlying
complexity of the problem when the problem domain is well understood and we

have developed significant similar programs. Real cost to a program is
founded in the complexity and scope of the requirements. Current software
estimation techniques do not rely on some structural model and/or
quantification attribute of the requirements. Perhaps at some point in the
future they will and the function point method of estimation has promise. A
further problem for C3 1 systems is that we do not understand the
requirements domain even as well as we do the weapon system domain. Within
the weapon system domain we have notorious failures of the lines of code
estimates. Therefore, applying current software estimation techniques to

*C31 systems will in all likelihood fail.

-*- 3.7 Conclusions ' -'

Our examination of the basis for error and problems on C31 system
development has shown that requirements definition for those aspects of the

system directly supporting the site user's cognitive processes is key. Any
process which serves to mitigate problems in the communications process V
between user-developer, acquirer-user, and acquirer-developer would be a major
help.

20

ft.. .. -ft -, *- .o-t-

.-% .. .

S , , - - "- " . . - • . - .

* *-. " *+ k It~.=_ + . t ,, +. +,

s.-... , ,,'
• .. .,4% ' ,

4.0 RAPID PROTOTYPING AS A SOLUTION

4.1 Solution Set .'

Given these general problem areas and types, what are the potential K IM
solutions and how does prototyping fit within the solution set? Basically, as _

shown in Figure 4.1-1, the kernel activity leading to better systems is

requirements validation. We have examined what this entails in order to
better define how to use prototyping to support C31 system development.

Goal:
Better C31
Systems -- k

I ystem Development im.

Process Improvements

Software Development 1
Process Improvements

Requirements "
Definition

Requirements
Validation

Figure 4.1-1 3
The kernal o' the problem of developing better C I systems is
requirements definition.

Problems in software development do not arise in software. The key

driver of software problems in development is the destabilizing effect of .'-i'
higher level requirements which are themselves unstable. The requirements

validation process has three components, as shown in Figure 4.1-2. These

parts are requirements identification, requirements representation/expression,

and requirements evaluation. Much work has been performed recently in the

area of requirements expression. Use of structural techniques is mature. The

role ot modeling and the use ot test beds to support requirements evaluation-... -

is mature in several areas, though its use is not widespread. It is in

requirements identification that the majority of work remains to be done. Few -'-

tools exist to aid a user/developer in deciding what is needed. Our analysis

has shown that there are three attributes or facets of the requirements

identification problem. ..

4 L

21

r-

.A .1, J& Oft.'

The three attributes of the requirements identification problem are X. *.\\.

Consistency (Will the system hang together? In other words, do the %, .6

requirements mutually agree, or do they contradict one another.); Completeness

(Do the requirements adequately define what is to be done? Have we defined a

C3 1 system or left anything out?); and Validit (Will the system satisfy its

intended users, or are we building the right C I system?).

Identify

--I:

Evaluate Express /Represent0 '" ."- ..,

Figure 4.1-2

The Three Aspects of Requirements Validation

These issues might be expressed as: Are we building a system, are we

building a C3, system, and are we building the appropriate C3, system. -

The ways to answer these questions and the tools to support the process

are lacking. Rapid prototyping offers a means to improve the process of

answering the questions by allowing construction of large portions of a

system's functionality early and cost effectively. The system so approximated

can be the subject of experimentation to determine its attributes. How to .-7 7-7

choose the approximation is key to the character of the prototyping activity. .-

There is no clear consensus of how this choice should be made, and it remains
-

in the realm of art. Software exists in several forms/dimensions:

- performance
- resource requirements
- functional description

- logical description
- algorithms
- actual code

22

S.. .

- Y. ~ ~ '*~.I*J~ T7 7r 7 2 7 . 7X 1 C-9 -. 4 V ..

Each aspect may be represented to the detriment of the ability to represent or kl-. %
evaluate the others. Given constant resources, the better prototyping -. ,-

approach would represent, exercise, or create software prototypes exercisable

in all of these aspects. Figure 4.1-3 shows a cartoon of how prototyping is
to do its job. The artfulness in the process is associated with what is '

included and left out in the skeleton functionality. .---

Documents
Prototyping ,

Skeleton
-71-ct io':.

Function

Study, Analysis -. -

Revision for a
Better Product \ ~~System " -

Developer 1=--

System . ,
Use r..'.

SDocument's'

Figure 4.1-3
Prototyping is a forward-looking activity within the development process.

Alternative Solutions

We perceive three alternatives to solving the problems of C31 system " .
development. They are not exclusive but represent general partitions of the

solution set:

- extending and deepening the requirements analysis process;
- vesting the using command with acquisition authority;

- automating the requirements process through, say, knowledge

based techniques..t 1 '

23 "

AN;K-.c..,

The first alternative involves increasing the time allocated to
requirements definition as a development phase as well as increasing the
effort/cost of such a phase. During this period, more and more extensive
activities of the type currently occurring during requirement analysis would
take place. Various degrees of automated support of a record keeping nature
may occur. This would involve such aspects as more use of project data base,
electronic media, and automated consistency checking.

There is evidence to suggest that the use of Ada as a target language , -
will extend the requirements process. This planned increase should occur if
Ada or a subset is used as a PDL. During this extended period there would
presumably be additional contact with users and more opportunity to consider
alternative solutions. The likely effect is to increase the program cost at
the early phases in order to minimize the high cost of integration and test as .. *J._ ._-

well as reducing risk*. Most proponents claim that this approach may reduce
total program cost over a complete system life cycle.

Use of evolutionary acquisition is a subcategory of this theme of
increased requirements lefinition effort. This process, as shown in Figure
4.1-4, consists of a sequence of carefully phased blocks. Its intention is tolimit development risk and to virtually increase the requirements analysis

period. The approach has had large success on OASIS recently.

In the second approach to reducing development problems, the using
authority would also be the acquiring authority. This in principle reduces
the number of intermediate translations of the requirements, reduces the
communications problems, speeds up the turnaround time of the feedbsk loop,
and costs less (by reducing the involvement of other organizations). The
trade- off and source of risk is the reduced technical sophistication of the
user and his reduced experience in program management. The recent TAC
experience in fielding CAFMS is a notable data point. CAFMS was an in-service
acquisition fielded in considerably less time than the average 10 years for a
C31 system deployment. The cost was also considerably less, even
discounting some cost and time reduction due to the heritage of TACC/AUTO used
by CAFMS.

" -." - ' ,

41~

%" % $"-",

24 .%y. .

24",..

. .

_ _ _ _ _ _ _ Ir- I-

4 Time

Block BRequirements

Begin after Block A PDR

Block C Ir ent s

Begin after Block A Development

Figure 4.1-4 Evol-utionary system acquisition is basic to C I systems.

A

25

EK4. %

The constant watch program for PACAF and the EIFEL I program for USAFE %
involve significant direct user control. While not a C3 , system but rather
a C I simulation system, the Warrior Preparation Center (WPC), a joint USAFE
and Army program, is also a data point. The WPC is a larger effort than CAFMS
and is early in its life cycle, so an evaluation is not possible. Taken
together with the other efforts, however, it points to a trend toward a
merging of the using and acquiring command authorities.

The third alternative is the automation of the requirements analysis
process through the use of techniques such as knowledge bases. Research
toward such a goal has been conducted by the Knowledge Based Software
Assistant (KBSA) effort funded by RADC through the University of Dayton. The
KBSA would require construction of various expert systems and meta-models, the
most notable of which would be a meta-model of the structure of the
application domain - C31 systems. An intermediate stage for such an
approach would use mixed- initiative knowledge based systems providing some
user interaction. The time necessary to develop such an approach is projected .

at 10-15 years by the above group. This is certainly far from maturity.

The most likely course for C 31 system development over the next few "
years is a combination of all four solution approaches. This would see "
evolutionary acquisitions characterized by increased and deepened requirements,'"
definitions using rapid prototyping and ever more increasingly automated
support environments. Finally, increasing sophistication and involvement of
the using authority in the acquisition can be expected.

4.2 Definition of Rapid Prototyping

Stating a definition for rapid prototyping is not an easy task. A
special edition (12/82) of the SIGSOFT Software Engineering Notes devoted to
rapid prototyping did not present a consensus. Most of the articles offered
their own definitions. Prototyping of hardware systems is well understood and
refers to construction of a scale model of the system. Prototyping of
software is different due to its abstract nature until it becomes code.
Prototyping of software in the stages before it assumes this concrete shape
has the highest payoff. This is due to the fact that the problems of software
are in its definition, not in the production of code. Rapid prototyping of .

hardware is clearly the quick/early production of a scale model. Rapid
prototyping of software refers to the quick and cheap production of an . .'.'%

approximation of the software in some stage of its development. ' ,"

Prototyping is a process. We believe that the term rapid prototyping

should be seen as a code word for modern tool-aided software development
practices which stabilize requirements and design quickly and completely.
This is counter to much of the work reported in the literature which takes the
view that software prototypes should be like hardware prototypes and be V
capable of evolution to the final product. - -

Rapid prototyping for systems as complex as C3 1 systems can only take
place within a special facility, laboratory, or test bed geared to the special .' J.

needs of C31 system definition. The tools and support environment of a -...
laboratory would make it possible for less experienced or sophisticated people
to define and build software. Similarly, it would allow experienced and
sophisticated personnel to build more complex systems. This is the general

26

• -. -

" .2".' . . - - -. . " .'-"""" -" " ." * ."" " '" ' ' """. . ' ."* % " .". . ' ..-'" '" . ". ". '" . -. . -" *. - -- ". " * "* -' ': ""2

..*v *z~ . *a.JZ -- '-hf..' .I - * ".ml *J**. - .i " -' "- " :* ' ' ' • "'%*. *- ' ' : - ' ' ''

lesson of programming environments and tools to support system development.
Without a specialized facility, rapid prototyping could still take place;
however one would need a permanent team of productive, creative software

engineers to quickly build their notion of a system on a custom basis.
Current trends towards system complexity and difficulties in retaining
creative personnel militate against the second solution.

4.3 Rapid Prototyping's Role in C31 System Development

The basic principle supporting the application of rapid prototyping is
that the earlier in the system life cycle problems are identified, the less
costly will be the solution. Prototyping is one major way effective
preplanning can be conducted. Our experience has shown the following:

1) Prototyping must be invoked at the earliest possible stage of :'.-
system design and development. -

2) Several cooperative (but distinct) types of prototyping are . *

required.

3) An effective procedure must be invoked to incorporate

prototyping results into the planning, design, and development
processes.

Careful formulation of requirements, specifications, and design are
important. But behavioral feedback from the intended user reveals information
that is difficult to discover by analysis of a static system description such
as a specification.

Prototyping provides a new, richer basis for discussion and statement
of intent that complements normal specifications. In short, the study of the
potential behavior of a system has a greater payoff in requirements and design
stability than study of static descriptive information. In the traditional
life cycle model, this behavioral feedback from the intended user becomes
available only at the end of a lengthy development, as shown in Figure 4.3-1.

PrevdSystem oet
peratonalRequirements]

Validity

It ively Validity

System~

] ," -.. -. -..-,,
DS .esign

, ~Validity -- _

Operationaidit CheckSytm' ,:' -" "OeainlDeveloped """•.

NeedsTie

Finire 4.3-1 Validation of Requirements

27

---- --- ---- --- ---- --- ---- -- *

- -, , V ,VKVN UU'V VWL'W i% , I% V 1I M". IrU .l-W -- - .. .

Prototyping can shorten the feedback loop in key risk areas before
large investments have been made in development. Prototyping can aid in these
areas: Definition of system requirements; establishment of criteria to
evaluate system performance for a given system concept; simulation of
operational concepts; operator-to-system interaction; system architecture and
operation procedures; capability to demonstrate system operation to provide a
common base of dialogue between designer, developer, and decision maker.

Just as the problems provided by C3I system development are varied,
the tool set and the approaches to creating an executable prototype are also
rich.

Prototyping Drivers - Schedule maintenance, technical compliance,
operational success, and maintenance of cost and performance milestones are ,.',.,-
drivers of prototyping activities. The results of prototyping activities
should aid in identifying and validating requirements soon enough to maintain
program schedule. In an evolutionary 4cquisition, this means that the L.
timestepping will force prototyping to start earlier in real time, which, in
turn, is the driving requirement for earlier existence of the prototyping

tools. This also points towards the need for a laboratory.

There is a cycle of requirements identification, expression, and
validation that returns to identification as was shown in Figure 4.1.2.
Prototyping can assist in each part of the process. A hierarchical -
description of C31 functions supplemented by a help file aids in requirement .
identification. A structured means of requirements statement, such as that
available in SREM and Designer's Workbench, aids in requirements expression.
Tools such as system performance models, structured problem statements based _.-

on state-transition diagrams or Denver Aerospace's C3 Systems Laboratory aid
in requirements validation. Certain high-level procedural languages, if they
are mature, such as Prolog (for data base and query systems) provide the -.-
capability to express requirements in an executable form. ..

'J.. .* k

! '.... ".-

28 ... 1.:.,

5.0 APPROACHES TO PROTOTYPING

5.1 Types of Rapid Prototyping Z

We studied all four present approaches to prototyping. An analysis of
each follows:

Very High-Level Languages (VHLL) - The first is through the use of

special-purpose high-level languages. These languages are either procedural
in nature, like PASCAL or Ada, or are data-type oriented like the graphics
tools GRASYS and XPL/G and the specification tool GIST. The ways these tools
are used to prototype are as follows:

1) Identify requirements (not part of the tool);, .

2) Express the requirements in the language;

3) Execute the resulting program.

Fundamentally, the requirements specification is a program that is
executable, and therefore, a prototype. Use of these tools for C3I system
applications is not yet mature. Use of the tools for any specific ' r. ..
application, e.g., message processing, is similarly not mature. Effective use
of such tools requires a robust application specific support environment to
aid in identification of requirements. Such tools linked to the existing
high-level languages do not exist. Further, these tools have only been proved
in extremely limited applications. Our work has categorized this high-level
executable specification approach as immature. There is one exception. The
language Prolog has been developed to support data base system development.
Data base management systems and general command language access mechanisms .*

can be constructed very easily in Prolog.

A Prolog-expressed set of requirements is immediately executable with
good performance. Prototyping of data base system components is a key to
intelligence system applications and is especially important in analyst
support environment applications.

h..-. ".*

Modular Algorithm Libraries - The second approach to prototyping is - "
through the use of modular algorithm libraries. This approach is highly
site-specific, depending on the algorithm heritage available. These systems ,- .,\

could be used as follows:

1) Identify requirements (not part of the tool);

2) Express requirements in an informal document;

3) Browse the library to select heritage;

4) Assemble a software package.

Such approaches require a fairly longstanding commitment to maintaining

a code heritage and support library. The function of the library is to
maintain documentation and aids to control the software interfacing between
the modules. Our study has not shown any major libraries that support such an
approach for any problem or generalized problem area.

29

*2%

2o - ,

Data-Base-Driven Tools - A third approach is to use data-base-driven '.
hardware and software tools that, when instantiated, provide varying degrees

of functionality. The area where these tools have success is in

characterizing the man-machine interface. For the man-machine interface (MMI)

application, a computer and display-device hardware suite host a picture

generator. The tools are used as follows:

1) Identify requirements (not part of the tool);

2) Express requirements in an informal form;

3) Initialize a scenario in the test bed;

4) Refine the scenario "hands-on." .

The test beds have most widely been used in the MMI areas. Examples

are TRW Corporation's FLAIR and Martin Marietta Denver Aerospace's C
3 A

Systems Laboratory. The world of MMI test beds has two components. The first V-.-

uses static display frames and static graphic entities to create a sequence of

fixed images that can be played back to give an illusion of movement. Online

modification of scenario dynamics is not possible because the dynamics are

provided through "flashcarding" the frames. TRW is currently extending the

picture building portion of FLAIR to include dynamic models of elements such
as ships. The second approach uses an object-oriented graphics builder and an

extremely elaborate data base to hold definition of pictures and overlays.

Either (1) a vector calligraphic-quality display device such as an Evans and

Sutherland, or (2) a bit-mapped device such as RAMTEK with special software is

necessary.

This second MMI test bed provides very dynamic "on-the-fly" picture
manipulation. Online scenario modification is possible. Denver Aerospace

uses this approach in its C3 SL. The data-driven test bed approach is mature .

and has been proved in application to intelligence systems. Drawbacks are

that there is no way the system will of itself identify requirements or the " '

system's cost, and there is little opportunity to directly migrate solutions

into development. Some identification of necessary workstation and display

components occurs by virtue of the tool's underlying meta-model of a class of
C31 displays. This provides a kind of completeness information through

offering subelements of an abstract workstation (maps, overlays, alarms,

menus, etc.). Significant investment must be made in either approach, and the

dynamic, online modifiable test bed is more costly. Clever implementations

could be made using modern technology and the heritage of our C3SL to

provide the same functionality for less cost than C 3SL's development cost. '.

Structured Problem Statement/Analysis Tools - The fourth major approach

to prototyping uses structured problem statement/analysis tools. These , -

methods characterize the system to be prototyped in terms of a graph, -,-i'-

procedure, state-transition diagram, or hierarchically structured data base.

Often, a large prototype constructor may interleave these techniques. They

are all equivalent to describing the problem to be prototyped as a
finite-automata problem. Certain extremely general discrete-event-based

model-building tools fall within this approach. These have been referred to

30

* , . ..-. .'.-.',- -.. -, * '..* .-. ...'.- •..-. ...- -. '.-*- .-41- % • . v.. , . w . .e3 .", te .e . >. . . ' . , . . .'* .- * .. a.' - ,. - ...- ... " , .:... #

4.. -7 1!. IF

*.=.

in the literature as application specific simulation languages. SAINT is one _
example. The tools are used to: ,

1) Identify requirements (some help provided by the tool);

2) Express a problem or requirement in the tool;

3) Run prototypes.

At times, a structured requirements expression language may be linked
with the tools. This is the case of the Software Requirements Engineering
Methodology (SREM) approach. We evaluated SREM under contract to RADC to
determine its applicability to Air Force C3I system developments. We
determined that generation of the "beta" system descriptions was
insufficiently automated, and the tools (model builders) to construct the
betas were not general enough.

The structured problem statement/analysis approach is mature and is
proved by application to C3, systems. Our investigation showed that it was
the most cost-effective for application to C3, problems.

5.2 Taxonomy of Approaches C. * .

The previous section provided a synopsis of the main portions of

prototyping approaches. We have prepared a detailed taxonomy of the world of
prototyping as shown in Table 5.2-1. Its purpose is to provide a means to
classify prototyping approaches in a fundamental manner and to supplement the
more empirical discussion of the previous section. There are six dimensions
or aspects to the field of prototyping.

.
Table 5.2-1 High-Level Prototyping Taxonomy

Level 0 Prototyping
(Evolution Dimension + Functionality Dimension + What Entities Addressed +
Automated Prototyping Dimension + Which Phase + Parent Specification)

Level 1 Evolution
(Refinable to The Product, Discardable)

Level 1 Parent Specification f

(Prototypical Specification, Normal Specification)

Level 1 Functionality Dimension =

(Non-restricted, Restricted)

Level 1 How Defined
(Separate Requirements Generation, No Separate Requirements Generation) ' "

Level 1 Which Phase
(Statement of Need, System Definition, Software Requirements, Software Design,
Other)

Level I Which Entity
(Operational + Functional + Logical + Algorithmic + Physical)

31

....-..............................

Table 5.2-1 (concl)

Level 2 Refinable To The Product
(Language Evolution + Host Evolution)

Level 2 Discardable =
(Effective Procedure To Obtain Output, No Such Effective Procedure) e .-.e

Level 2 Prototypical Specification = %"....:(SON*, System Spec*, Interface Control Document (ICD)*, Ops Concept*, Bl*,

B5*, Cl*, C5*, Other)

*Level 2 Normal Specification=
(SON, System Spec, ICD, Ops Concept, Bl, B5, Cl, C5)

Level 2 Separate Requirements Generation =

(Effective Procedure To Obtain Prototype, No Effective Procedure)

Level 2 No Separate Requirements Generation =

(Templating, Executable Specifications, Translation)

Level 2 Restricted =

(Restricted Functional Elaboration Scope Unrestricted, Complete Functional
Elaboration Scope Restricted, Restricted Functional Elaboration Scope
Restricted)

Level 3 Templating =

(Hierarchical, Non-Hierarchical) -

Level 3 Language Evolution f

(Language Change, No Language Change)

Level 3 Host Evolution -
fi

(Host Change, No Host Change)

Level 3 Executable Specifications

(Mathematical, Operational, Axiomatic)

Evolution Dimension - A prototype is refinable to the eventual product,
or it is discardable. If it is discardable then there is an effective .
procedure to obtain the results or insights from its use, or there is not. An
example of an approach where there is no such effective procedure would be an

MMI prototype developed on a test bed very different from the eventual target ,.*-.-

ADP environment. It may provide general information on the type of system
desired, e.g., a raster display vs. a vector display, but the tool itself does
not print out the words "raster display reconmended." This sort of approach ..
provides its information through users reacting to it and communicating their

impressions in an unstructured or free-form manner. An example of an approach
including an effective procedure would be the same test bed with a file in
which to collect user impressions, or a performance prototype which collects
data translatable into the resource requirements to run the software

represented.

32

" " ~~. .o.-... .. .-.... o. -.. .-. .-..... •.-...-. *... -,"..o-

~~~~~~~~~~.. . .. . . . . .................... "'"=.....m 
e

- -" ":" ' ' ;"" ''''"'-'"



If the prototype is refinable to the product, then there is a possible '
sequence of programming language changes to evolve the prototype to the . ..
product, and/or there is a possible change of host processor/ADP to the target

system. This is the case of the Naval Research Laboratory's (NRL) Secure I -lm
Message Processing system prototyped in FRANZLISP. Of course it is possible
that the original prototype is a major portion of the desired target system
requiring neither a language change nor an environment change.

Parent Specification - We can classify a prototyping approach by what W,

sort ol input it requires in terms of a specification. This refers to the
approximate level of detail in terms of normal life cycle documents necessary L
to use the approach. This parent specification is either a working .. e_-
specification/document (appearing in the taxonomy with asterisks under Level 2
prototypical specification), or it is a normal document. A key point is that
working documents can be available earlier in the life cycle than normal
documents. Additional differences involve rigor and format. One can see the
difference in comparing a working document containing some B5 together with A
and BI level data with a formal B5 document.

Phase - This dimension refers to the earliest or best phase of the
development cycle which the prototyping approach supports. The phases are
listed as statement of need (referring to early formative activities), system
definition, software requirements, software design, or other. This last
refers to later life cycle elements. An example of prototyping in the
statement of need phase might be supporting constraints analyses on the time
to process new reports by a tracker-correlator in a proposed
correlation/fusion center.

Which Entity - This aspect refers to what level of abstraction of the
software is being represented or manipulated. The subcategories are . .
operational, functional, logical, algorithmic, or physical (code) as shown in

Table 5.2-2. The earlier a software system can be represented and evaluated,
the more stable subsequent detailing will be. Most prototyping
tools/approaches currently discussed in the literature deal with representing
software in the algorithmic stage of its existence.

Functionality Dimension - This aspect of an approach should be fairly
intuitive as it refers to the portion of the overall system that is being
prototyped. The represented functionality is either restricted to a subset of
the total system or not. In general, prototyping of the total system
functionality as through a hardware mock-up is very unusual in the C

31
world. It is not at all unusual in the world of aircraft, simulators, cars,

or missiles. Non-restricted prototyping is equivalent to the "build it twice"
philosophy of system development.

IVol

33

- ~ ..- ...-



, f'tware takes shaje throujh severa,. leveZs of abstractions. .

Subcategory Entities Described Form ,'--.

Operational Operability Requirements Document .a

Functional Functional Requirements Document

Logical Data Flows Graphic .

Algorithmic PDL Document J-,,

Physical Code Tape

If the prototyping is restricted, there are three states of this

restriction depending on whether the scope or functionality of a system

component is being represented. Scope restricted refers to limiting the

number of functions represented, e.g., representing the message handling

aspects of a C3 1 system but not the track generation function of the
system. Restricted functional elaboration refers to the extent to which the

represented function is exercisable; or, similarly, the extent to which it is

approximated. Most prototyping currently falls into the restricted functional

elaboration/scope restricted category.

Automated Prototyping Dimension

Use Computer-Based
Tool

Use Computer-Based
Tool ,.

Requirements for
the C31 System

Requirements Analysis
for Using Tool

Figure 5.2- 1 %
Automated prototyping can occur only where a computer tool can directly
process the system's requirements.

34 . . -.

.. . . . .. .-.-

. . . . .. . . . . . . °° - o .. -°. .-. . . . ,° . ° . . -. .- °. .-



~1. % i. .

Figure 5.2-1 shows the two parts of this dimension. Details of
approaches to automated prototyping have received significant attention in the . .
literature. The level one decomposition considers whether or not, given a .
parent specification, the prototyping tool can directly process it. If not,
then there must be a new mini-requirements analysis process to define how the W
tool will be used. Until systems such as Dr. Balzer's GIST concept become
mature and are appropriately instantiated for C3 I systems, separate
requirements generation will be the normal course of prototyping. We discuss -".".*.-"

this distinction more fully in a discussion of our preliminary methodology .... 2..
later in this report.

If no separate requirements generation is required, then the
prototyping tool can be instantiated one of three ways: Templating,
executable specifications, or translation. Translation refers to the
existence of a front-end to the prototyping tool which can parse a
specification and translate it into an executable form automatically. This
might be a natural language processor. Templating refers to a human
augmented, totally guided procedure to instantiate the prototyping tool (from . .
a parent specification or quasi-specification). This templating is either
hierarchical or not. An excellent candidate for templating based prototyping
tool instantiation is the MMI. A great deal of analysis has been performed on
the structure of determining MMI requirements against the possible universe of
solutions. The Mitre work of Sidney Smith is foremost in the area.

Many workers in the field evidently believe the use of executable .'..-*.

specifications is the only way to perform rapid prototyping. The project
documents would be written in a format or language which was a high level
language. They would be human readable (after appropriate training) and
executable (code equivalent). We are far from realizing the potential of this
approach for C31 systems. Once an appropriate language has been selected, a
support environment and/or set of C3, system specific constructs must be
defined and built. There are four bases for executable specifications. They '..- .-
correspond to the syste.ms of defining the semantics of the languages. These

categories are mathematical semantics (also known as denotational),
operational semantics, the axiomatic approach (implicit semantics), and
informal (implied semantics).

5.3 Analysis Criteria

In order to evaluate the different approaches and instances of

prototyping, we developed some criteria as shown in Figure 5.3-1. For each
criterion the potential valuation is also shown. Note that there are three
subfactors associated with relevancy to requirements evaluation. We noted
what life cycle phase the approach supported, what aspect of requirements
analysis it supported, its maturity, and its immediate applicability to C3 ,
systems. Valuation judgments were made by reviewing critical literature and .
studies, tool and approach documentation, and interviewing task leader/program
manager/ IR&D principal investigator personnel at Denver Aerospace. In the
course of our literature search to support the program, we have collected and
reviewed over 350 documents.

Two approaches were not ranked. The first is the use of software
remaining from previous developments (heritage software) or algorithm
libraries. This is site specific and no evidence occurred in the literature

35
. ..-. ." .........%

':,.... .4....... .......-.. ....



where a company had made use of such an approach. The second approach was
reduced functionality quick build. This approach refers to creative and
productive teams of software engineers who, using a build-it-twice philosophy,
hypothesize a portion of a system's software. No doubt this occurs on a
relatively widespread basis but is insufficiently disciplined/structured to
value. An example might be NRL's Secure Message Processing System work.

- Applicability to C3 (0,1)

- Maturity as a Discipline (0,1)

- Relevant to Requirements Identification (0,1) .

- Relevant to Requirements Expression (0,1)

- Relevant to Requirements Evaluation (0,3)

- Consistency e, -

- Completeness It

- User Validation .

- Supports Study, Preliminary Design Phase (0,I)

- Supports Detailed Design, Test Phases (0,1)

Figure 5.3-1 Criteria for Evaluation 4.

5.4 Evaluation of Approaches 0'

The results of the valuation of the instances of the approaches for the .:%%N
criteria were collected in a table. This is shown in Figure 5.4-1. The
scores were collected into a raw score which was weighted by dropping out the-.
contribution of those scores related to support of the detailed design-test
phases. This was based on a determination that high payoff for prototyping's
use is early in the life cycle. We further weighted the scores by dropping
out the immature technologies. The weighted scores were then combined to give
an average by area for those technologies which were rated.

36'-'.
%4

~~. . . . . ...... " ...... ...'.-.-..-.-. .........'.'.,,. ,':,, ., :.; -,,, -. - .... . -, - -K fx.K• . . .... -.. ,, . -. **,-.* ~



r Formal Rapid Prototyping Languagea

We have broken the area of rapid prototyping languages into three

subareas: general, graphics related, and other. In the general category
tools are basically built around subsets of high level languages which are
procedure oriented. The approach consists of using a subset of Ada or PASCAL

* as a PDL. A notable example is the work by Taylor and Standish at UC Irvine.
* For application to C3, systems development, however, the concept requires

development of a special set of functions. This work has yet to be done.
Without this work, the approach is restricted to support of detailed design
and not preliminary phases. It is essentially a way to facilitate, to a
limited extent, the expression of requirements.

* ~Table 5.4-1 A Weighftingq of Approaches - - - -- -

0

00 a

W LI V

S. 0, a, 4

.. . 0 0 04 >-

4, . o 0 * ' .

Formal General Taylor's Use 0 0 0 10.51 0 0 0 10 1 15 4.75
Rapid of Ada Subset

Lrotoypin Graphics - Maligren's 1 0 0 11 0 0 0 0.5-2.
Lnuges Related XPLG/GRASYS

Data
Managemet -POO 1 1 0 1.1 0 0 10.5 1 0 4.5 4.5 -

Related

Other - Balzer's GIST0 0 0.5 0 01051111.
- SREM 1 10.511 1 0.510.5. 15.0%

Structured Hierarchical C 2SAM 1 1 1 1 1 1 1 1 0 8.0 7.0 6.0

Problem Models
SDefinitions Relational FAM, AUTOIDEF 1 1 0.5 1 1 1 0.511 0 7.0 6.0

Models

Graph Theory GOM, GPM, 1 1 '0.511 1 1 0.511 0 7.0 6.0

or State- PERCAM
Trans it ion
Models

Functional C 3SL, FLAIR, 1 1 1 1 0 0 1 1 0 6.0 i5.0
Test Red' GIDS.

Heritage By Area Note~j This is site-specific and tied to quick-

S/W (Application) build below. We do not quantify it here.

Scenario By Area -Denver 1 1 1 0 0 0 1 1 1 6.0 4.0 3.0 -

Generators & (Application) Aerospace's

Test Harnesses SMARTS

-TYC-16 1 1 0 0 0 0 1 0 1 4.0 2.0

Quick-Build Reduced Ad- oc Note: This is site- and individual-specific,

________Functionality Approaches so it is not quantified.

Full Func- Dart System 0 110 0a 0 2. 10 1.0

37

% %*



The logic programming tool Prolog is popular in Europe. Our version
was obtained from the University of Edinburgh. It has been shown to be
valuable in expressing data base system and command language requirements in
an executable form. The utility of Prolog is in the ease of using it to

express first and third normal form relational descriptions of a data base
system in the Horn clause subset of the first order predicate calculus. It is
up to the user to provide the C31 related constructs, however.

More work has been performed in the area of graphics specification
languages which are executable. Here, the work has proceeded to the level of
defining the data objects and operations to allow manipulation of picture
components at the level of CORE graphics primitives. Examples are Mallgren's
XPL/G work at the University of Washington and Ohlson's GRASYS at Texas A&M.
There is applicability of these to C3 1 systems. Maturity is lacking,
however. Also, there is no facility to support requirements identification.
Early phases of the life cycle can be supported through this work, but it is
restricted to preliminary design.

The category of "other" embraces approaches such as Balzer's GIST at
USC and the TRW SREM concept. Balzer's work falls into what may be a separate
subcategory of knowledge-base-supported rapid prototyping. GIST uses the

operational (lambda calculus) approach to defining semantics of the language.

This work is not currently applicable to C31 systems as, again, the analysis
of the application domain has not been done. It is far from maturity. It
supports expression of requirements and, when complete, will support the
formal validation of specifications.

The SREM approach is important and consists of a methodology and
several tools. It is applicable to C3 1 systems and is mature. In the sense
that it enforces a structure for expressing stimulus/response network
requirements (the R-NETS), it supports the identification of requirements to a 4.

limited extent. It provides consistency checks and, through development of
the simulations, allows a degree of uses validation. There is no "world
model" contained in the approach, so completeness checks are not possible.
The data structures of the support tools make it difficult to capture
concurrency and parallel operations - they enforce a sequential world view. .- . -

SREM scored well, however.

Quick Build

We have already discussed why reduced functionality quick builds were
not ranked. This approach is part of the build-it-twice or built-it-several

-.' times philosophy. An example of a full functionality prototype is found in
" the Naval Research Laboratory's (NRL) use of FRANZLISP to prototype a secure

message processing system. The NRL project chose a powerful object-oriented
system which hides the data manipulations to quickly construct the software.
They coupled it with a specification methodology (manual) using state
transition diagrams. Of more interest as a general tool is the General
Dynamics DART system and its extensions at General Motors Corp. The DART's
concept is to accept structured expression of presumably validated
requirements. Given an implementation of a design instantiating those
requirements, this code can then be refined and translated to another target
machine. It is mature in retargeting code and not mature in developing code.
The major drawback is in the presumption of validity of its inputs. It
achieves prototyping by quickly getting code for a full system or accelerating

38

. .. , .. . , . .... ........ . . -. ... .. .. ... . . ... -. .. . .. . ...

v 4 * . . - *. . ... * . ..- ,.. .. -... * - . * '-



the later life cycle phase. It is not specific for C31 systems. The idea
behind this approach is a notion of prototyping most widely held by
practitioners believing the problems of software development arise in
software. They do not. Figure 5.4-2 shows the quick-build view of
prototyping. If the cycle time tlt 2 t3 is small, there is a chance the -:

approach can influence the system development. This notion of small can be
further quantified. In order to "zero-in" on requirements the cycle must be )L - ,
run through several times, each cycle identifying misperceptions in the
requirements. The sum of these times, tp, must be smaller than or equal to
the time allotted for requirements definition. The problem is further
exacerbated by the quick-build approach's presumption of validity of the
majority of the input requirements. The general area of quick-build did not
score well.

Normal Life Cycle "Preliminary - ..

Requirements Definition Design : -

RD

Tool Functionality 1

I- -I
Develop .- [RqieetS/W

Requirements ,t
2

-! ~~Judgment & Change ._. . :

t k + n(tl+t 2+t 3)
pro to typing

Where n Is the Number of Iterations of Prototyping.

Note: tprototyping must be very small with respect to normal .-

life-cycle activity times, or Et -R D .p D

Figure 5.4-2 -- N ,

The time available to produce results is critical.

39

7"".'
....................................

t- _e, Ir.



Scenario Generators/Test Harnesses

Within this category we find forms generation systems or forms
management systems. These packages, such as DEC's FMS, are generally bundled
together with DBMS or office automation packages. They allow the user to
define a screen format or template which is usually restricted to
instantiation with alphanumeric data. Some systems also provide a way to
populate the defined forms from a file. These systems have limited utility in
supporting development of the more operationally oriented C31 systems as
they lack means of defining graphical form components. For message processing
or some intelligence applications, however, such forms generators have
utility. Once the set of forms corresponding to the set of displays has been

defined, they can be instantiated and sequences played back. This provides an
effective way of communicating to the user what he will see in the eventual
system. The utility of this approach has been proven on Denver Aerospace's
SPADOC 4 definition phase work and the OASIS program. In both cases special
graphics generators were built.

This approach is useful and it can improve the quality of user

interface developments. It tends to be very cost effective and fits well
within the object oriented approach to software development. " '"

In the category of Test Harnesses there has been a lack of success at
finding examples outside Denver Aerospace. The issue is not that they don't
exist, but that they are not widely discussed in the literature. The basic
approach makes use of extensive simulation software to create, for example, a
system's message environment. This role in rapid prototyping is limited, '
however, because of the enormous effort required to define the data bases for
a new application. The Simulation Monitoring Analysis Reduction and Test
System (SMARTS) is being developed for TAC at Langley. It is a system to
produce, at the packet level, message streams for a variety of TAC C

3 ,

sites. The use of the system will be in conducting and prototyping exercise
scenarios. Its strength as a prototyping tool is in user validation of
requirements. Rapidity, in the sense of other tools, is not obtained. rt' :
Another tool is the Denver Aerospace TYC-16 message formatting and processing
system. This provides a quick formatting and processing of certain JINTACCS

messages such as JANAP128. As a component of a larger testbed to prototype " '
message processing systems, it has merit. In the same vein as these tools is
the Offsite Test Facility (OTF) of NORAD for the 427M program built by Ford

Aerospace. This provides a training and system test replica of the NCMC
message processing system. It could be used in ways similar to Denver
Aerospace's SMARTS. The general category scored well but applications are

restricted due to the level of detail and difficulty of use.

Structured Problem Definition/Analysis

This area, as discussed in the overview section 5.1 above, is most

promising. Section 5.5 of this report discusses some details of the
approach's foundations. There are four subcategories: Hierarchical models, erelational models, graph theory or state transition approaches, and functional

testbeds. They can be considered crude languages whose only syntax is table

or menu population. Each encompasses a model of the C31 application area,
and, in fact, the tools may be grouped on the basis of their modeled
work-views. They have in common the fact that they all use an informal means

40

.....



of defining o i t s n s. T ar a ma of "IN

representing objects and operations, and all are built on top of programming
languages which similarly use an informal or implied semantic structure, such 

as FORTRAN.

Hierarchical Models

arranged in a top down hierarchy. The C2 System Analysis Model (C2SAM)

built by BETAC/LOGICON for TAC and RADC/CO is the single tool here. C2SAM

provides a data base of functional and operational requirements for TAC/CONUS,
MAC, and USAFE/CENTCOM. One uses C SAM by choosing a command level, site,
or function. The package shows what subfunctions are performed down to the
operator activity level. It keeps track of the informational input/output

requirements for the function as well as which other sites could provide the
necessary inputs. These inputs are referenced as specific JINTACCS formats.

The C2 SAM is a very strong tool to guide the user in identifying
requirements. Various consistency checks can be run on the defined systems.
The structure of the data base guarantees completeness to the extent that the
data base is complete. The data bases have been validated by the subject Air ." -

Force commands. C2 SAM does not provide facilities to generate code, and its ? r

principal use is in passing from SON to validated quasi-B5 data. Integration
and development of ICD's are well-known stumbling blocks in system

development, and this tool mitigates these problem areas. The C2SAM is ..
discussed in more detail in section 10 of this report.

Relational Models

This approach uses a very restricted underlying relational model of

requirements and design entities associated with system or C31 system
development. The tools allow instantiation of project data bases which can
then be used to exercise the system as a logical structure. .' 

e

Boeing Computer Services under contract to SOFTECH, Inc. is developing
a mechanization of the ICAM methodology called AUTO IDEF. The tool, while
originally designed to support definition and study of manufacturing
facilities, has utility for software development, provided that a structured
technique such as the YOURDON approach is in use to define requirements or
design. It permits the interactive definition or manipulation of graphical '. .. i

entities corresponding to project entities. The work has been extended by
Pritsker and Associates for Wright-Patterson AFB as IDEF III. This effort has
coupled the SLAM II simulation system to the graphical entities. This could
provide a capability for production of BETA elements like SREMs if the work
was modified to support software design. What is lacking is a support tool or

environment for AUTOIDEF or IDEF III focusing on C31 systems.

The Denver Aerospace Functional Allocation Model (FAM) is a tool to
support requirements definition using a YOURDON technique. There is no
graphics interface as in AUTOIDEF. The system allows definition of abstract
software functions in terms of data flows and then exercises them in . .
accordance with the defined concept of operations. The system was used on the
SPADOC definition phase contract. It properly can influence life cycle phases
from SON studies to preliminary design and can be initialized at varying

41. .......

*- . ....... . .. n--........ .... .- tmn ml... ... . ... .



levels of detail. The strong point of the tool is its ability to support
requirements expression and evaluation strongly linked to a system engineering
methodology. ~

The category of relational models also comprises the more elaborate
models of data base system requirements. The use of products like DEC's
DATATRIEVE is one example. DATATRIEVE is a dictionary/directory system
permitting generation of different views of a single physical store
corresponding to an instantiation of a more general normal form model. An ,

early version of data base simulation, Representation Independent Programming
System (RIPS) does the same in more detail but also with more effort. It vas

*used on the RADC/IR DIAMS-PACER contract to model and prototype a large C31
* data base. DATATRIEVE has been applied to prototyping of a joint Air Force ;.~~

*and Navy program. u

This category of relational models scored well in evaluation and is
especially useful in getting to better B5 level documents.

Graph Theory/State Transition Models

The underlying model used by these tools is a state transition view.
Their data bases can be populated once the states of a system have been
enumerated, the transition rules established, and a graphical representation
prepared. The Denver Aerospace General Operator Model (GOM) is an example.

* This tool represents the ways an analyst set will interact with a processor in ,...
performing their mission. It was used to support an RADC/IR contract
analyzing an FTD application. The tool aids definition of a site's internal

* operational concept as well as performance constraints and is best applied
during pre-B5 level definitional activities.

The Performance and Configuration Analysis Model (PERCAM) of TRW is '

another instance of this category. It is driven by event logic tree
representations of systems. These are graph models representing a system's ~'
operational logic such as sequence of events, time delays, and decision

*nodes. This system then allows construction of exercisable simulation
* elements and provides insight on performance and resource requirements. As i.

with the other instances of this class of tool, generation of design or code
* is not possible. Certain controlling or key algorithms may be checked out

*against the simulated environment, however.

The Denver Aerospace General Processor Model (GPM4) represents the
physical structure of a hardware/software environment. CPC or module
sequences are represented and run against a model of the processor and
operating system. Interleaving of operating system functions with application

* codes can be examined. Such things as CPU schedules, swapping, paging, and :N::.
*the physical and logical distribution of data can be represented. It takes a

large amount of knowledge of the system or proposed system to use. We have
applied it on a large classified program and on analysis of a Navy

* correlation/fusion problem. It is mature and supports preliminary and ~'
*detailed design issues. '%l

The category of graph theory/state transition models scores well in the
evaluation but basically finds application later in the life cycle than the
two previous categories.

42

-pf



Functional Testbeds

These systems are basically focused on the MMI/workstation elements of
C3 , systems. One of the predominant problems of C3 1 development is the
definition of the MMI. The tools in this category allow definition of
prototype MMI components which are exercisable. The purpose is to allow user

validation of the artfully defined graphics displays. Application is
throughout the pre-detailed design phases.

The TRW General Purpose Interactive Display System (GIDS) is a tool to
use display language and display drivers to develop transportable graphics
code. It allows definitions of graphical entities and scenarios. A variety
of post-processors exist to calculate distances, etc., in the modeled world.
This capability is applicable to C3, systems and is mature. It supports r
identification of requirements and user validation.

The TRW Functional Language Articulated Interactive Resource (FLAIR) is
a voice-accessed display builder. It functions by quickly building display
frames which can be "played back" to provide the illusion of dynamics. It
appears that FLAIR and GIDS can be used jointly to mockup 10(I and scenarios.
FLAIR provides the control and access mechanisms while GIDS provides the
software display builders. The utility of these two tools appears mature
within the early life cycle.

The Denver Aerospace C3 Systems Laboratory is an integrated facility
for definition of MMI and operational scenarios. It is controlled by an
event-driven simulator. Each unique simulation uses a custom defined ..

operational data base (ODB) that may be dynamically altered by'an operator
using one of the interactive function or processing algorithms within the C3

Software System (C3 SS). The C3 SS is built around an object-oriented
meta-model of C3 , system displays. As such, it provides strong requirements
identification capabilities. The picture components may be controlled through
a variety of access devices, but it currently does not include voice access.

The system has been used on many C31 system definitions/developments,
including the SPADOC 4 Definition contract and a SPADCCS study contract.

All of these tools offer strong prototyping approaches. Consistency
and completeness of requirements generally cannot be examined with them,
however. Used in conjunction with other tools, this drawback may be
eliminated.

As shown in the figure, the structured problem definition/analysis . -*...
tools scored highest among prototyping approaches. The next section discusses
how this approach relates to the current research activities in rapid
prototyping. .-

5.5 Two Mainstreams of Prototyping Systems

Prototyping certainly supports all aspects of the life cycle, but there
are varied tool requirements. Let us examine how a prototyping tool,
supporting early phase activities, and its structure as a software system,
needs to differ with another prototyping tool, supporting later phase
activities. The technology which supports the later phases, such as passing
to a preliminary design from the detailed, validated complete set of software

43

.".-...-. ... ... ..- •..-......-.-.. - ,....-..-..-. ........
, ', .. 0,.%- .__ 2k'.-: . :.- _= -:"--. *: . .. -"e . A . ". • , ,A *L".• ' -.. '; 2., K . ' . , ". - . . ,' . . " "' "



requirements or passing to a detailed design from a preliminary design which
had been validated and is complete, or certain applications generators is
relatively well understood.

5.5.1 Later Phase Prototyping Tool

Prototyping of this stage of the life cycle refers to
prototyping and production of a first cut of the code. What would be
necessary in such a prototyping environment would be tools to generate code
from a standard PDL. Executable PDL is a good example. When this problem has
been solved an additional package which allows the creation of a specification
language would make sense. This could be obtained by the process of
abstraction to define application specific macros for this PDL. Certainly S V.

these macros would correspond to functions which would have to occur in the
ultimate application.

The emphasis in such a tool system would be on the production
of a function's algorithms. Object-oriented programming systems as part of *

programming environments support such an emphasis. They hide the data
structure underlying the objects. Data bases containing information on -

requirements and design documents appropriately structured and encoded in the - -
form of one or more data dictionaries also makes sense. The ability to do : ,s'

traceability from these documents or their isomorphs, the structured data
dictionaries, would be necessary. Algorithms that would support the
construction of code from an appropriately well-defined design language or -
requirements language would have to be included. This points out that in '-f..
order for there to be any sort of automatic generation of code, a careful
analysis of the syntax and semantics of the requirements language and the
design language as contained in the requirements or design documents needs to
take place. Algorithms would then be sensitive to that language. Another
component of a later life cycle support tool might be a library of existing
algorithms or existing PDL from which one could "cut and paste" and assemble
to obtain a larger functionality. For advanced systems supporting the later
part of the life cycle, one could envision the inclusion of a package to do -'--
structural modeling of the developed code to support computer security
analysis in accordance with government requirements. Should such a package be ------
in place as an engineer produced the prototype code, and it passed a certain
level of functional test, it would then be submitted to the security analysis
package which would create a model and exercise that model and pass judgment

or provide output supporting human judgment on that code fragment's attainable - '
level of security. Another package that might be included would be a tool to i
analyze the produced software to determine its testability. This would have

to take place against a meta model of software testability. This means that °,
the software would be analyzed by some algorithm or algorithms which would -

check for certain attributes related to testability in a one- or two-pass "."
process. The algorithms would embody known knowledge on those local
constructs and more aggregate constructs which are known to cause difficulties
in testability. It would be very important to integrate such a later
lifecycle support tool with one or more programming environments featuring
debug, edit and compile support. .- -

Tool Structure The system structure for such a tool would
consist of a parent data dictionary supervising access to subordinate data 4 "
dictionaries and subordinate data bases. It further would contain an

. - .- . .

44 ,--"...

. . ...... . - . . . . .- - , . . . . , , . .



executive which would basically manage the data dictionary. Processes could
be invoked through any of the support packages to obtain the appropriate data

from the data dictionary to pass into the support packages where mainly

automated means would be used to construct a portion of the code, exercise it,
and judge its acceptability. An additional feature would have to be the
addition of some type of reconfigurable test harness that would be used to i

drive these pieces as they have been constructed. An open question is: To
what extent would this cause a difficulty in our ability to construct a module
at a time, elements of a large piece of software? It would seem that the
reconfigurable test harness would have to have some way of mimicking the
expected performance and expected data of the missing pieces of software.

The requirements for such a tool environment are driven by the need to
have a relatively stable paradigm or meta model of the application domain.
Certainly, should we possess one of these paradigms that was reasonably s.

acceptable, it could drive the construction of support packages that would
exercise or test-out the constructed pieces of software. Further, once an

* application is understood to a fairly deep level, it is quite feasible to
construct a type of menu-based system to parametrically build it. This would ~ e

allow a user to make selections from menus, fill in the blanks, much like is
done in current systems to support the development of business data bases.
This is often referred to as "fourth generation" or "fifth generation"
languages. Note, this whole discussion presumes that we have accepted the
notion that there is a need for separate prototyping tools to support
different components of the life cycle. Certainly a tool that supports
construction of code can be used to stabilize requirements through use of many
life cycles. An argument against this as a reasonable approach to developing
Air Force C3 1 systems is given elsewhere in this document.

5.5.2 Early Phase Prototyping Tool

A tool which supports the early portions of the life cycle %

(e.g., requirements analysis or preliminary design analysis) on a system-wide
basis oiffers from the previously discussed prototyping environment. The
structure of an early life cycle support tool would be as follows: The
fundamental job of such a tool would be to support the identification of
requirements as well as to support the identification of design components.
It would have to be a tool to support the structuring of the requirements and ,.. .
the decomposing of those requirements. How do we structure these early

requirements? They are derived from operational requirements, mission
structure and the functional requirements of the system. As we move towards a
complete set of operational mission, and functional requirements we can start
to drive out derived requirements for elements of the software system.
Pictorial representations of requirement sets have proven to be useful in the
past. Whichever way we choose to record them for this early phase tool, it
should be done in a manner that can be translated to the various major
pictorial representations (e.g., SADT and Yourdon). We would include
hierarchical decomposition in the list. This pictorial representation is
different from a structured requirements language. We should note that this
tool component supports an engineer's "quick and dirty" thinking about the

requirements set and is not a representation necessarily of the final set. . .

There should be a way to proceed from this pictorial representation to
data-bases containing requirements information, and published documents, or

45

Vi.. . . - -. - - --
'- ".*. ,,"., ,,'% • •" " .. "" . " . . " * ". ,, "" .. ".i*- ",* ",. ." ", * :"" *, . ", ".,"% " - . . .""""-"" '-""" "t,',

"""'" "" "" " . .' p ".." "" .".," ' .'- -".; ".'2 -% ' . ''.,% • -
%

% " "% . . '



data-bases containing structured requirements definition, or even design
information.

To support the identification of interface requirements (also

known as man-machine interface (MMI) requirements or operator system interface ....
(OSI) requirements) we need another tool. This tool should allow the rapid b S -, 's

construction of screens and control formats, yet allow the organization of .

these screens and control events in a very easy manner to build up complex
scenarios. The analyst should then be able to play back the scenario taking a
variety of paths through the screen set. This tool would support the

identification of operational requirements or empirical requirements.

The next element of the tool set would be a set if tools that
would allow one to encode the structure of the system and either the
performance requirements or the performance expectations of the components of
the system. This tool should then allow the aggregation of performance data
so as to predict the attainable performance of the system or its components.
Of course, this must take place with respect to a context defining scenario
and there should be components within this tool set to allow the encoding of
various scenarios. Some sort of scenario generation should be available for
the entire early phase tool set. Scenario generation will be supported by a
tool built on an application-by-application basis. For example, one would
need a tool to support the generation of Space Defense Initiative related
scenarios, another tool or data base to support construction of tactical
scenarios, and a third to support the construction of intelligence and
reconnaissance related scenarios. This tool or tool set should allow the
examination of the human system component, the ADP at various levels of
detail, the logical structure of the system, and the communications system
supporting these elements. It should predict, using statistics, the resource
requirements, throughput, queueing, and time to perform various functions as
defined by the analyst.

5.6 Conclusion

Our examination of the approaches to prototyping and the instances of
prototyping tools has resulted in selection of the category of Structured
Problem Definition/Analysis (SPDA) tools as the most promising for application %. .

to C31 systems. These types of tools and this approach do not appear to be .-*-'

areas of research in the literature. Most efforts are focused on development
of executable specification languages. The work on these language systems is

46.-.-'. .d'

.'w

... . . %... . . . . . .... ..... -.. o. o..... .



-~~~~~~y - -- -- -*

intimately tied to work in formal semantics definition. This is related to
the problem of proving correctness of programs written in the new language. . -.

Figure 5.6-1 shows the development of a prototyping system as a .. s'

sequence of translations. An analysis of the world of C3 , systems must be
made to identify the objects, operations, and control structures necessary to --.
best describe that world. This set is then captured in a new programming ..

language such that its code is reasonably human readable. This allows it to .f,..
function as a specification of the system in a normal sense. The ability to
execute the specification on a machine can occur thanks to a compiler which
maps the language constructs to register manipulations.

The World of ,.

. 1 I '

C Sy to Dein SytxadOertosn

.<-. .-A -.v

..... Model of Objects, -"--= -'
t f S xOperations, andL smanicsControl (0, L, C)

..- - :.::

Prototypingn e ....... a.t....a i..

Thereuare etwoiprols I and Machine Language e

Machine ...- "
Operations .-

FigurP -5 &-2 A view of prototyping language development as translation. ,, ... ..

There are two problems with this new language approach. The first is":'-z'"

that the life cycle of a new language is large - on the order of 10 years.
But, more importantly, the language cannot be "best" or "natural" for C31 ..

systems without an in-depth analysis and abstraction of the objects,
operations, and control structures of the world of C31 systems. This is
non-trivial, first, because of the complexity of C31 systems, and, second,
because the difficult structures to represent are those associated with human
cognitive processes - an open question in psychology. This field does not
possess models of human cognitive processes; further, most research work in
the field has been in the analysis of children's cognitive processes. This
problem of extracting extremely subjective information from diverse
individuals and groups of people and distilling abstract models is equivalent

47

...... ... .. . -....



to the knowledge engineering problem of artificial intelligence. Predictions"
have ranged from 5 to 10 years for solution of this class of problems within
the field. Therefore, we must consider the time to develop an adequate
specification language approach to prototyping of C31 systems to be anywhere
from 10-20 years away. Further problems are caused by the course of research
in this area today. All approaches to development of such a programming
language focus on a general use set of concepts. When developed and mature,
they will define and provide a set of objects, operations, and control
structures to which the C3I systems' objects, operations, and control must
be mapped. This is the same problem faced today in using high level
languages. One is constrained within, for example, FORTRAN's data-type
structure and control structure. The process of design is the process of
describing the application's objects, operations, and control in the limited
set provided. One of the advances offered by PASCAL or ADA is the ease of ..-.
defining data structures and the wide variety of data-types. In summary

concerning this approach, we have to report that there are many problems yet i.w,
to be overcome and few of them are currently being worked. - -

In comparison, consider the sequence of translations/mappings shown in
Figure 5.6-2. Again, there is a need to analyze the world of C I dystems to
abstract a set of objects, operations, and control. This is translated into

an application's world view through instantiation of the data base and perhaps
changing parameters in the algorithms. This application is written using the
objects, operations, and control structure of a modeling language such as
SIMSCRIPT, SIMULA, or SLAM. These, in turn, are built on top of base language

constructs such as FORTRAN (in the case of SIMSCRIPT IIF and SLAM), and then
mapped to a machine's register operations. The number of translations of the
abstracted objects, operations, and control is four compared to two in the
previous approach, or three compared to one if we disregard the machine

* dependent translation.

There are some advantages to this approach, however. First, these SPDA 4.
tools exist and have undergone a degree of evolution over the last five
years. Secondly, they contain a model or world view of C31 systems which,
though sometimes based on heuristics, has proven valuable within a structured
system engineering methodology on real C3 1 developments. This skirts the
problem of abstract analysis which is the fundamental base of defining new
prototyping languages. ." .'"*

.. .

48

"-.--', .., -.,;.-.'- . .. .... ,"..-&.... - .:...;.-.-. ..',--".-%.%F%.-%.. -

- . *.j



* The World
of C31

* Sys tems

,~- Analysis

AbstractN
Model of Objects,
Operations, &
Control (O,X,C)Q -

AHuman Controlled, Best-Fit Process

Modeled JM
View of C31
Elements in
Data Base

ByVirtue of How the C
Model Is Mechanized

Discrete
Event
Language Version
of (O,.CC)

By Virtue of How the
*--- ~ Programming System

Is Mechanized

Base-Language
Definition of

(0 11. C).

~~Through Compiler
and Machine Language

Figure 6.2-2 Thke E PDA zrroacn~ to I.-rototyping seen as translation.

49 .

0



By using intermediate steps, the SPDA approach approximates the
*translation of objects, operations, and control to an executable form which P.'
*could take place if a prototyping language were available. We consider use of

SPDA to be a prototype of the language approach. By putting in place a
*laboratory based on the SPDA approach, we would obtain the following benefits:

* o~ immediate prototyping support of C3 , system developments; P Jo
o a prototype of a prototyping language system;
o a basis for evolving and evaluating the abstraction of C3 ,

objects, operations, and control structures;
0 significant cost saving;
0 testbedding of the prototyping process/methodology.

In the future it may be possible to "tune" the translation steps or to
- ~ sequentially collapse the translation steps onto one another. This would be a

way to evolve a version of the executable specification approach.

%r,*

50.**%



6.0 MATCHING PROTOTYPING APPROACHES TO C31 FUNCTIONS 1

6.1 Overview %

In order to ascertain where rapid prototyping would have the most
impact in support of C31 system developments, we have analyzed the structure
of C3, systems. Our plan was to decompose the components of typical C

3I
systems, establish which were most important, and then map these functions to
the prototyping approaches/tools. We encountered some problems in this task.

The notion of "importance" of a function was difficult to establish.
Secondly, C3 , systems elements depend on one another to a large extent.
Isolation of functions was difficult. Thirdly, some of the different
functions were unable to be measured by a common standard. The qualities,
attributes, and sources of difficulty were alien to one another. We were able
to achieve a weighting, however, through appeal to the government's recent - .-

study activities.

6.2 Functional Decomposition of C3 1 Systems L

Figure 6.2-1 shows those embedded computer functions which are

considered to be the kernel, i.e., common to all C31 systems. This flow
represents the bidirectional transformation of event-related data to output
information. The three activities of data management, data presentation, and -
intelligence processing/analysis are really a cycle which may be traversed

many times. This breakout of functions is common and well supported by the
literature, practitioners in the field, and site users.

Figure 6.2-2 shows that these functions are made possible by other
functions, some of which are allocated to humans. This figure attempts to - *

communicate that the structure of C3 I systems functions is dense and highly
dependent. Each plane in the figure corresponds to a class of functions. -

Certainly the kernal functions cannot take place without the underlying system
management and support functions. Figure 6.2-3 shows that the kernel
functions support the mission areas of the particular site. To each of these
mission areas (air defense, for example) correspond specific supporting ..
computer functions. These mission areas functions are dependent upon the type

of C31 system under consideration. There is of course a spectrum of system ..

types ranging from weapon pointing systems to administrative decision support
systems. The four main system types are:

(1) weapon/platform control;
(2) intelligence information and exploitation;

(3) tactical battle management automation; and
(4) top-level strategic force management.

51

%.. %.'

.. ...... ...... *.. . . ........ . .. . . . . . . ... ,..... .... ...... ... . -.-.-..-- _



Cmeunicatin Pess eg Coca X...

Communicea 
tostr c 

u i g o 
a o o y 

o h e f f n t 
o s w i 

h

HandlingInOtHdlg

-Information Dt

Processing/nayi 
Presentatio

Figure 6.2-1 KerncZt-Imbedded Computer Functions

We prepared a structuring or taxonomy of the set of functions which is
shown in Figure 6.2-4. There are three mission categories which are
partitioned by functional areas, which, in turn, consist of several types of
embedded computer functions. Further decomposition is site specific. The
mission functions are organization, site, and mission specific. It was ,

against this set of functions and their organization that we began our .'-

52

eva *. lu ons 

-.

lf



People

7ZV.

Kernl Imedde Funtion

System.

Fiuee.-rheefnton amemde F osbeb te unctions.9.

53~

System



'

Kernal Imbedded Functions

Mission ..

Areas
.I.

Figure 6.2-3 These kernal functions support mission areas.

Mission Categories Functional Area Embedded Computer Functions

Mission SAC Specific

Functions NORAD Specific

TAC Specific -W
MAC Specific

Support Communications Message Handling; External I/F; Internal I/F Crypto/,
4 FuntionsSanitization

C I Data Management DEMS; Data Base; Access Utilities; Update Facilities

Data Presentation User Interface; Decision Aids

Intel/Analysis Tracking Fusion; Decision Aids
* -9

Utility System Management Resource Management; Performance Management
Functions '

Training Exercises; Scenarios
I%

Utility Support Data Reduction; Backup

Figure 6.2-4 A Taxonomy of Embedded Computer Functions

6.3 Analysis Criteria

Studies

In the course of establishing weighting criteria for these functions,
we reviewed some of the relevant recent studies and their recommendations.
The Defense Science Board report of July 1978 pointed out the need for C

2

54
6 '

- "- .--. °.-..... ," " ." •,. ,- '-'
. ." "'" --- .- ' "-""
. . . . . . ..-. ., - " ° •. ', % " o. . . " . . ,. • - , ' ° . , . -, . - - " - , , - ,- " . " . . .. • , ., .



system's focus on the users and the need for its ability to adapt to user
needs. It identified the costly nature of software development for C31
systems, and it pointed out the evolutionary nature of C2 systems. This P cK
last was due to the peculiarly difficult nature of requirements definition on
such systems.

Department of Defense Instruction 5000.2 dated March 1980 recognized *

the unique nature of C2 systems and recognized that the problem of
requirements definition was founded in the support role C31 systems play to
human cognitive processes. It recommended evolutionary acquisition for those W,
systems most tied to cognitive processes. It did not, however, mandate the
approach. %

The Software Acquisition and Development Working Group's July 1980
report for the Assistant Secretary of Defense for C31 called for prototyping ,
of C3I systems and revisions to management and contracting practices. They -
noted that 60% of the life cycle cost for software is spent after the system
is built, not in building it. Much of the 60% life cycle cost is attributable - ....
to requirements changes which were unanticipated during initial development.
This means that at least some of the cost is attributable to errors introduced
in the requirements, design, and development processes. The elements of
software development most requiring user input to the development process were
judged the most difficult.

The AFCEA C2 System Acquisition Study final report of September 1982
was an in-depth analysis of the problems/potential solutions of C3 systems. '
The study introduced the idea of a Rapid Requirements Definition Capability
(RRDC) under the control of the government. This laboratory would be a
prototyping and analysis facility to aid generation of better preliminary
requirements and better/more timely evaluation of contractors' products. The
study also recommended that a system architectural context be established for
C3 systems built around the seven-layer ISO model of local area networks "
(LAN). The study strongly supported evolutionary acquisition for these .
systems.

The National Security Industrial Association's Software Working Group's ' "

August 1983 report extended the recommendations of the AFCEA report. It
recommended discarding MILSTD 483-490 in favor of MILSTD 1679 or SDS. The
study identified user interface issues as the proper focus of an RRDC because '
they are the most visible examples of requirements related to user cognitive 4 .-',"
processes. The report also showed how evolutionary acquisition is a viable
approach based on the OASIS experience. OASIS successfully delivered 22
blocks of functionality and has been judged a management success by the Air
Force.

The conclusion of this examination of these recent studies is that user
interface and other cognitive process supportive system elements are strong
candidates for prototyping. N-' &

55 "'

kA .=

-. , .,'., ,.'.--,.- '- '- '-.'- .' ".:-' , .- .'-.'-.....-'..'-.,.. '-. " .:-: ." '-. .." .-- % - '-. .. •.."..'.'v' "."- "-." "."' "."-", q~ :.."



*C a..lk .-l X_ k- <. -. L. T-- 'u

Selection of Criteria

The potential criteria that were established to compare C31 functions
as subjects for prototyping are:

o degree of importance to final product;
" degree of importance within the life cycle;
o extent of existing tools which support the development of the

function;
o other - experience, personal choice, or literature;
" some combination of these.

Note that the importance of a particular function varies with the
system and its mission. Further, the importance of a function varies with the
context of a system's use. For example, a weighting of the importance of
functions for an IDHS during an exercise in CONUS versus a weighting of the
same system's function when deployed on the second day of conflict in central
Europe would be different.

'a There is also a problem with respect to the definition of importance of
a function. one definition would select that function as most important which
takes the most effort to properly develop with most risk of error. A second
definition would select that function as most important which, if removed from
the system or undefined during a given phase, would cause the most total
system failure.

Given all of these conditions, we evaluated the functions against a

combination of the criteria above. In evaluating the function's importance to 60%.
the product, the first definition of importance was used. To establish
importance within the life cycle the second was used. There were three
assumptions. The mission functions were discarded as they are not common

*kernel elements. Further, they are site specific. Training was discarded as
it is not a near-real-time critical function. Utility support was discarded
as it must be defined with respect to other functions which are therefore more
basic.

-,6.4 Evaluation of Functions

The first valuation was of the importance of the function within the
K. life cycle phases. This valuation was presented in a rank ordering of *

functions by phase. Figure 6.4-1 shows the results. Phases are ordered
across the top with some explanation at the bottom. If there was equality of
importance, then the numerical rankings were assigned equally. *

Figure 6.4-2 presents the scorings. Column one is an evaluation of the
* importance to the final product. Data presentation was most important as the

user's satisfaction with the system is founded on how he interacts with it.
The importance by phase is based on the previous figures' results. Figure
6.4-3 shows the way the next column was achieved. We removed the phase scores
for integration and test as we have already decided that prototyping will best
support the study, requirements, and preliminary design phases. The final
ordering has data presentation functions as the most important.

a. 56



$4 AA4

>1 P4 > 0J

041 1 14 U)14a

-g4

0 C

41 to EO D)c

w > 0 w (a~ *41o0 )
b44))lc w~ 0r44J4 00 e

> 1 C 0 ' - 4C 0 c 0 4 ( ) -
00 0) Clo X~ Co O 0 wC a0Awl.

E-4H U-4 rn1 P -4C. E-4 HUJJ-4 0 t& Co- 4

41 0

Co Co Ai

0 w4) *-4 0

PJ 0 c no 4 J ) Uc. 0."011

>1 0 0

-4 Co Coo4 a) -

-4 04 0- 00 m * , Cdo
410 :3 -H 4 C.4 4'4 4

9: u~$ 00 (A 00

0 cd 0

4 .4

00 0 14 -)0 4444faA 4

Im H.C IM 04L)044 ri 0-40 oP

(A mo 4J
4 0 ->1441

4) Co 41 totv- 4 0 
.

Ait (co0- O00.U 4

~C4 .045 4U2o4 0 4

.U0 (d " 0 : 4 0 Co2C C6 to

:54 1 )4 4 1 a

0~ 0 -

41 00E

57

d. .z %



* : -" %' ' -' .j- . . i.
- 

h -: "aTr & S -L dJ -.Ix . ; " . - J p. '3. '7 r. ' W -7.uJ' !"J- '. W J 1 w -,j tr ..r -- -7 W l .. .-,. ,%=- L-w~t,,-Y -' WY

V

., A.J, ,.4.,

Importance Importance by Have vs Literature Total Weighted Final
to Final Phase ___Needed Raw~ Total Order
Product S R D I T

Communications 3 1 1 5 4 5 4 3 26 15 2

Data Mgmt 5 3.2 2 1 5 2 1 4 22.2 15.2 3

Data 1 3.2 3 3 1 3 2 1.5 17.7 13.7 1
Presentation. %

Intel/Analysis 2 3.2 4 2 3 4 3 1.5 22.5 15.5 4

System Mgmt 4 3.2 5 4 2 1 5 5 29.2 26.2 5 /4
Figure 6.4-2 Numerical Ordering of Functions

Functional Area Means Weight

Communication Residue S/W 4
Data Management None 1

IData Presentation Test Beds 2
Intel/Analysis Residue (Some) 3
System Management Commercial 5

Fi'gure 6.4-3
What means currently exist to support prototyping in each area?

Therefore, we conclude that data presentation is the key embedded
computer function based on abstract reasoning. It is sensible to ask if this
conclusion will stand up under examination of real systems or if it is
validated by other data. In particular, does a real system show differences
between first presentations (ranked data) and communications (second ranked)?

We studied National Cheyenne Mountain Center (NCMC). Part A of Figure
6.4-4 shows the top level functional decomposition of NCMC. Part B of the
figure compares graphic display types required to support NCMC mission areas
to output message types required for the same support. The numbers occurring
in the columns of Part B are the number of different output display types
compared to the number of different message types. This data was obtained
from an ADCOM prepared functional description document. The figure makes the
case that in constructing the NCI4C system, there would be significantly less
software to support message preparation than to support display preparation -
software. Displays in this case are outputs to the user which inform him of
situational elements. Comparison of output message preparation difficulties

is to displays has some basis.

58

....................................................................................................................-..-..- "--"

@ , . .. :.. . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . ...-. .....-. ..-.._ •.-i . . ..- .... .. ,. ,".:-e,- - .-.. _-...



NCMC Mission Battle j4 .%.

Staff

Mission - Missile Warning Missile Space Air Support

Functions - Space Defense Warning Defense Defense Center
- Air Defense
- Battle Staff MMI Graphics Classi- 133 0 0

Support Center Displays fied

Support - Communications Hardcopy 104 8 12

Functions - M54I

- Intelligence Tabular 0 14 8

Displays
Utility - Verification
Functions - Performance Mgnt Alarms 55 5 1

- Resource Mgmt
- Historical Data Display 0 9 2

System Category
- System Exercises
- Recording Display 0 3 1 __

- Data Reduction Special j. f

(a)

Conmufli- output 89 4 6

cat ions M- sages

(b) '

Figure 6.4-4 Close Examination of a Particular System

The current prioritization of function types as candidates for
prototyping are:

- Data Presentation
- Communications
- Data Management
- Intelligence/Analysis
- System Management

In the course of evaluating these functions, several past or ongoing
C31 systems or their components were studied. These are listed in Figure

6.4-5. In all of these except 427M and CSSR, data presentation is either the
key concern or the number two concern.%

59

-~~19r CA T, 2F- - . - .. '' K



- SPADOC - Original TFCC

- SPADOC 4 - GACC

- CSSR - Constant Watch

- 427M - ITSS

- CCPDS Upgrade - OBU

- OASIS - Various Classified Efforts
(Sanitized Mode)

Figure 6.4-5 Systems We Have Exanined

6.5 Matching Functions to Prototyping Approaches

Prototyping approaches were evaluated with respect to C 31 systems and
their components, as were specific tools as instances of these approaches. We
have been able to select the most appropriate approaches to each of the top
three C3 1 functional areas. :-..-.

Data Presentation

In terms of formal description languages, Mallgren's XPL/G is the most

powerful and general. It has yet to be instantiated for C3 1 applications.
A few years' effort building up C31 specific constructs in the language '"

would be enough to judge its further suitability as a tool for C3 1 system
development.

In the area of SPDA approaches, hierarchical or guidebook type models
' exist. They are mechanized to a limited extent. Smith's MMI definition
, guidebook work at Mitre is extensive. This would have to be mechanized as a

large help file in conjunction with a carefully-thought-out template system.
Such a set of hierarchical templates or menus would guide a user in the
population of a data base which modeled MMI. This data base would then have ,*.
to be linked to a functional testbed system to allow exercising of the .
prototypes. This is a promising area. Section 6.7 discusses this further.
Functional testbeds have already had impact on C31 systems through
prototyping. Both Ford Aerospace and Martin Marietta Denver Aerospace teams
used prototyping during the SPADOC 4 definition phase to refine operational
requirements. No work needs to be done to apply those systems today with
effect. A system such as the Denver Aerospace C3 SL is more costly to
develop than TRW's GIDS/FLAIR. One can obtain more dynamics in the resultant
displays by expending more money. These systems would profit from coupling to
a hierarchical MMI model as described above. The improvement would be in a
higher confidence and more complete MMI definition as input to the testbed.
Use of forms or screen generation techniques are likewise mature for limited
application in C3 1 system developments. Effort must be made, however, to
provide complex graphics as a part of existing forms packages.

60 .7

. . .. . . . . . . . . . .--. "'--.

"- ..2 . .,'" ' -: " . ' : -," , -, ,.- . - . -.. .. . .' ' -' -. . : ... . . '. ' .- -- .' . 7 ' . ,' ' ' ''.X W' - . - .. " . . " .' ." . - V . :" -.



Figure 6.5-1 shows the timelines to exploit these different
approaches. The functional test bed approach can be used today, and most of .,
its drawbacks could be improved by coupling it with the guidebook work. .. ' -

Therefore, this combined approach is recommended.

Year 1 Year 2

I II
XPL/G Study ! ---Implement

MMI Guidebook Discard-
Help-File Generation:Discard

I I- - '
Link to Data Base

Screen I Screen
Generation Generation

(Limited) (Extensive)

Functional Test Beds . -
- Denver Aerospace C3SL
- TRW GIDS/FLAIR

,, Figure 6.5-1
Exploitation Timelines for OSI Prototyping Approaches -" "

Communications

Formal definition language based systems do not exist for- -
communications system elements of C31 systems. Within the SPDA approach
C2SAM by BETAC/LOGICON is an important tool. It models organizational
structure and informational requirements for existing C2 systems and will
tell a user what messages need be received for a newly defined system. "'"

Necessary extensions to C2SAM are in the area of improving its user access
and in coupling it to other packages/data bases. The Denver Aerospace SMARTS
is a large C2 message traffic generation system falling within the scenario
generation/test harness approach. When finished it would provide extremely -.
detailed operationally defined message system prototypes. Its use in rapid
prototyping would be very limited, however, by the size and complexity of the
system. The recommended approach is through use of the C2SAM.

Data Management

While much work has been performed in the area of data base system
(structure and management systems) development methodology, there has been
little work on prototyping of these systems. One approach is built around
DEC's DATATRIEVE. The use of DATATRIEVE to produce different logical views of
the same physical structure would support prototyping as follows:

A command language would map a set of user defined views to a DBMS.
This would invoke DATATRIEVE and map the logical view to applications
processes such as graphics displays and simulations. The applications
would be hidden from the "initial" existence of the data base system
they were using.

61

2......- v .



We have used DATATRIEVE at Denver Aerospace to prototype portions of a NAVY
C2 system. The use of Prolog has great potential. It is well known that ''>":.

any database structure (hierarchical, relational, or network) can be described ,."
with a relational model. This can be a first normal form expression of the
schemas. Both management systems, access schemes, and data structures can be
easily described in Prolog's (first order predicate calculus constructs).

6.6 Programming Environments

The concept of a programming environment (PE) has received much
attention since Winograd's 1974 paper. Basically, PE's are integrated sets of
software tools designed to support a software builder in constructing programs......
in a particular language. These tools act as an approximation of an assistant
standing over the builder's shoulder and aiding him in managing the complexity
of the software design task. Common examples of PE's are UNIX and INTERLISP.

This notion of a design support environment has some utility as a means
of rapid prototyping. The INTERLISP environment especially has been designed -

to support evolutionary or experimental programming. This notion is the
current way LISP-based programs are developed given the difficulty of
specifying requirements for artificial intelligence software.

Role of PE in Rapid Prototyping

Proponents of the PE as a rapid prototyping tool subscribe to the quick
build philosophy. By decreasing the time spent in detailed design, code, and
checkout, judgments may be made about requirements. Appealing to our earlier "
discussion (including Figure 4.1-3), this means the approximation of the
functionality of the software is not an approximation, but rather fully
functioning software. The constituents of these environments are shown in
Figure 6.6-1. Some programming environments are listed in Table 6.6-1.

There are two circumstances in which the PE approach has utility.

First, if the target language for the implementation is the focus of the PE
and if the PE is hosted on the target ADPE, then the required software may be
built in a friendly environment. We can expect to spend less time in detailed
design through checkout in such an instance. Further, requirements
instability can be expected to have less effect on these later life cycle -
phases due to the presence of tools to manage change. Major requirements
issues on the A or Bl level will still have a major destabilizing effect
however. The importance of using the PE hosted on the target ADPE relates to
the importance of MMI functions for the C3 1 systems. A major return of
using PEs is quick check-out. If intermediate steps are needed to port the

developed code to try it out on the target display suite, much of the
environment's utility may be lost.

" ' -.. . ..

- 62

..... 

. . . .... 
:

.-,, - :,. - . .. ,-.-,-,.-..................-......... ..-............ .-. .-.. ,-,, , -,.. .:,$..
* - -- ., t . -5., .. . , -. p..' ' .. " -. " "- ."-".. "-'.'-"... . . . . . .." ""'.. 2 ... •.- -. -3-...- ' ,, % ". -. .. ", . . .'



Tools Encouraging/Enforcing
Method-Oriented Environments Following Rules & Guidelines

Notations & Reasoning Aids

for Persons Other Than . eSupport Systems
Programmers, & Phases Other

Than Implementation

Description Storage &
Information Repositories Retrieval Capabilities

( Tools Aiding the Team

Tool Boxes Preparation of Programs

Basic Environments Basic Set of Programming Tool

Figure 6.6-1 '

Programming and software environments may possess

varied capabitities.

The second instance where use of a PE would be of aid is when

requirements are undetermined, yet software must still be constructed. This

can occur during the study portion of a C
3 1 acquisition, before full scale

development (FSD); or it can occur when artificial intelligence software is

being built. The PE would support experimental programming. This can take

place either when there is no particular software deliverable required of the

effort, or when there is no other choice. This means that we were forced to

accept the risk that a non-useable product was obtained.

Programming environments therefore have some ability as means for rapid

prototyping on C
3 1 developments. They support the quick-build approach to

prototyping by accelerating the later phases of software construction. They

aid in evaluating requirements through mini-lifecycle-based feedback and

really do nothing for expressing requirements in structured form. Rather,

they support the direct processing of English-language-based requirements.

Another drawback is the lack of C I specific information in the tool base of

these environments.

~.~..,.

63

.- A-~

, ° ,, -



-jw'i u, npr4 . .,-J yv-&vr - 11u dmF.-pn rj i'. wuv'xuv w -~-W J r r r r W %// LF~P - * %,~- i w * -/. r. - . -. . . . ..- JIF E WWW 
, '

Table 6.6-1 Some Programming Environments

Name Language Supplier/ Experimental Methodology Enforced
Supported Reference vs

Commercial

UNIX C, PASCAL Bell, C No
Berkeley

SMALLTALK 80 Xerox C None

INTERLISP-D LISP DARPA, C None
BDM,
Others

MENTOR PASCAL INRIA E None

TOOLPACK FORTRAN & L.J. E None
a Command Osterwell
Language

JOSEPH Reqmts W.E. E None
Language Riddle *.

Pharoh
Model
Language
- OASIS .,

DREAM Special W.E. E Top-Down
Notation Riddle

GANDALF ADA Carnegie- E Some
Mellon
University

6.7 Object Oriented Programming

Xerox Corporation's learning research group from Palo Alto, California
has done extensive work with children to investigate natural ways of
communicating with computers. Out of this research came the object oriented ;. -
programming language Smalltalk, that was developed in 1972 and has since
undergone numerous iterations. Smalltalk is a simple but powerful concept and

is more limited in scope than current dialects of LISP. Under the LISP
machine project begun in 1974 at the MIT AI laboratory, the Smalltalk concept
was altered and extended to become the FLAVORS system.

Although the system contains many Smalltalk constructs, it also permits
multiple inheritance, a characteristic that Smalltalk did not have. Multiple
inheritance is the ability to inherit characteristics from classes (similar

objects) that are hierarchically unrelated. Another major di.'ference is that
Flavors is a fully integrated extension of Lisp.

64

-.
......................................................................... **.



Object-oriented LISP programming is concerned with modeling the
behavior of real world or abstract objects. It depends upon four key
concepts: objects, instances, methods, and messages. An object is an %
encapsulation of data structures and of the functions or methods that operate
on them; an object can be sent a message requesting that it enact a method.

Early implementations of object oriented programming were designed so
that objects fell into strict hierarchical patterns with levels successively
more specialized than earlier ones. In Zeta LISP the generic object classes
are called Flavors, which along with the methods associated with them are

defined by the programmer. The Flavor system differs from the
earlier implementations because it allows non-hierarchical inheritance;

thereby providing the means for building arbitrarily complex Flavors while
retaining the advantages of modularity and maintainability.

Thus, some flavors are designated by convention as base flavors, others
as mix-ins. The latter add particular features to other flavors. Users may
define flavors by combining base and mix-in flavors as needed. Defining

methods for these new flavors can over-ride, augment or modify the methods
from the component flavors. This non-hierarchical definition facility
distinguishes flavors from hierarchically dependent systems like Smalltalk,

and gives Zeta LISP programmers additional power and flexibility. The RPS
system developers, especially the system programmers, may well find tremendous
advantage in the use of Flavors to build complex C3 I specific models. These
models would be executable because of being implemented in a Flavors-like

* system.

Flavors represents generic objects. For example, a generic ship with
its description could be a Flavor. An aircraft carrier with the addition of
its unique and non-generic descriptors would be an instance of the Flavor

'ship." The process of going from the generic to the specific is called
instantiation. Such instantiated Flavors are manipulated by sending messages
that request specific operations. Since the procedures are already contained
within the object, it responds by performing the operation requested.

There are two areas in the RPS where such object-oriented environments
allowing the sending of messages between objects having the ability to operate -:

may be useful. The first is in extensions to the RPS executive or to the RPS -

specification component. The object-oriented environment concepts,

specifically something like Flavors, could also be used as a means of
structuring macros in using the RPS system. For example, as prototypes were
developed, should they be stored in a Flavors environment, we could use a
particular prototype definition as if it were a function itself and therefore
build up in a modular fashion a prototype of a much more complex system--or be
able to make use of the prototype libraries--aggregating and de-aggregating

them on a very high level. This would support, after some use had been made
of the prototyping system, the ability to use these large detailed prototype -' •
definitions as functional components. This would in turn allow examination of
the system that we were studying at a level of detail closer to the detailed
design phases of the life cycle. Certainly this is not a replacement for code
generation systems and other methods of automatic generation of detail design

from preliminary design or preliminary design from validated requirements.
However, it would provide a way of exercising, in a fairly thorough manner,

part or all of unvalidated conceptual designs.

65

. * • *. . . . . . . . .

, . ., .. - -,- - - . . -. .... .. .. . . .. . .•..... ...-.. . . . . . ,- -. . --.--.. - -..' 'i'



PL-. %- T' ,rj I V -W M m.w
771.~- MWtT

7.0 RELATIONSHIP OF PROTOTYPING TO MILITARY STANDARDS

Our study thus far indicates that only minimal changes need be made to
relevant Air Force Standards. We believe this because the language of the
standards implicitly provides for the use of a rapid prototyping tool in
system acquisition. The word tool is used here in the sense of something used
to augment or facilitate our existing process. Rapid prototyping is a tool
augmenting the system analysis process. It does not imply any fundamental
addition to the process but rather an improvement of the validation and
analysis activities already embodied in the standards.

Another way to consider this is through a modular view of the acquisition
process. The standards MIL-STD-483 and AF-800-14 establish the high level,'
description of the process. Validation is a subfunction of the overall
process. By viewing rapid prototyping as one of many possible implementations
of the high-level concept of validation, it is clear that explicit language in
the high-level standard unduly restricts choice of mechanization in the
process. Rapid prototyping implements subfunctions of the validation portion
of the acquisition process.

Rapid prototyping, however, does implement a validation activity in a '.
significantly unique manner, so the standard should reference it to some .
extent. Reference should be limited to simple textual addition and need only
be included in AF 800-14. MIL-STD-483, which we also considered, and
MIL-STD-490 do not deal with issues truly relevant to prototyping.
MIL-STD-490 deals with program-peculiar item specifications and is much too
detailed and rigid to be applied to rapid prototyping. Conversely, rapid
prototyping in no way applies to specification practices in the sense that
NIL-STD-490 deals with them. Prototype software is not deliverable and, while
needing management by the developer, should not be subject to 483. We feel
that it detinitely should not be subject to 483. The organization directly
involved, contractor or acquirer, should control the configuration of a
prototype according to their internal standards for nondeliverable software.

In summary, prototyping is an adjunct to the normal analyses occurring
during system development. It happens that it may involve software
development. In general, prototype software does not migrate into the
deliverable software; rather, insights from the process of prototype software *r. .
development influence the process of deliverable software development.

The tables in Appendix A3 enumerate the changes we are considering
recommending to AFR 800-14 as a result of our current review of the standard.
Column one lists the specific section of the standard; column two, acquisition
process topic; column three, the issue in regards to that topic; and column
four, our preliminary recommendation.

iJI

6 6 " -2< ...-. ;

..

66

-- . ,-- A.. . . ... . . . . . . . . . . . ".*-.1-""."....



8.0 LESSONS LEARNED IN DENVER AEROSPACE TESTBED

Our investigation juxtaposed the desired rapid prototyping capability
and existing prototyping techniques. We have learned several lessons from
this side-by-side comparison. Four in particular have guided our study and
provide direction for future effort.

First, we learned about the nature of the rapid prototyping 'tool' to
be developed. The state of the art makes it clear that no single technique or
small group of techniques will satisfy the need, even within the restricted
domain we are addressing. Only the proper rapid prototyping environment can
provide the full complement of capabilities being sought. The environment
must tie together a range of tools, specialized and general purpose, in a
coherent package. ...

Second, we learned about the nature of this investigation. We seek to
develop a system to augment the development of other target systems. This
development system is based on the assumption that it is better to 'try before
you buy.' Although this effort is restricted to a particular set of target
systems, the prototyping concept itself has much greater generality. In fact,
the concepts to be embodied in the rapid prototyping environment apply to the
development of the environment itself. To validate these concepts, we must ,
use what knowledge we have of them now, even as we develop a system to exploit
them. To build a rapid prototyping system, one must prototype that system.

The third lesson is that prototype development is a microcosm of 6,
general system development. Usually the only distinguishing attribute of a ,.-
prototype system is that it is less complex than its counterpart production
system. In some cases, not even this is true.

Lesson four says that we should borrow as much as possible from the
general system development environment. This follows from lesson three V. .
because what is good for system development should be good for prototype
development. It also derives from another observation. Prototyping exists so
that results of exercising prototypes can influence the requirement and design
of production systems. Therefore, it is vital that communication be
established between prototyping activities and activities that use the results
of prototyping. By sharing the system development environment, formal and
informal flow of information can be established. "

With these ideas in mind we have investigated the various tools and
techniques that seem likely candidates to make up the rapid prototyping
environment. In the process of studying tools and techniques we are
identifying a set of testbed requirements. Also, in the process, we have
brought together many of the components of the testbed in true prototyping
fashion.

8.1 Context of the Rapid Prototyping Testbed

The process of developing software-dependent systems is part discipline
and part art. In this respect it is not unique in the world of system
development and engineering. The software dimension, however, shifts the
process further into the world of art. By discipline we mean structured
methodology that can be applied consistently to produce desired results. Art

67 V

........... ........ ..............
"" '4'.. " " o""," "*.. ."'.*"-**.. . .o.'. -. ." " . - " " - " " -' - . " ' - ... . . . " . P . = 4



4L-d.'- i.- - K- - - 4 -- K -- " -

4!

refers to the use of style and instinct to achieve results. The "artfulness"
in the development of software derives from software's inherent flexibility,
its abstract nature, and its relative infancy as a discipline.

Software exists at several levels; viewing it at the proper level
reveals the inherent flexibility. At the lowest level we can look at software

as a static bit pattern in some storage medium. Such a bit pattern in
execution on a computer can be thought of as a process. At a higher level,

software is seen as a description of processes. This process-description
level characterizes software in terms of language constructs. Here the
flexibility of software becomes apparent. Languages, even primitive ones like
programming languages, can express an infinite number of ideas. Almost any

conceivable process can be expressed. Furthermore, the same process may be
expressed in thousands of different ways. t".

The perspective of software as a description of processes also reveals,-
the abstract nature of software. A description is static. Processes are
dynamic. Understanding software requires mental abstraction between the
description and the process. We never really "see" the process. We interact . ' .

* with its software, we see its inputs and outputs, but we can only perceive in
:. our abstract and personal way the executing process. .-

The science for dealing with abstract software processes is relatively
young. In absolute terms, we have been developing software for less than
three decades. In that time, software has undergone a divergent evolution.
Software has been applied to a vast array of needs with an equally vast array
of techniques. Lagging behind the pressing need to apply software are efforts
to develop an encompassing view and supporting discipline. This is not to say
that we do not have any discipline in the software development world. The
life cycle of software is generally understood, and there are many techniques
to support it. However, we are far from consensus on many issues. In any
case, the mainstream of software development has not applied many of the
available solutions because they are not mature enough to be smoothly
integrated into the ongoing process of software development.

These factors paint an unsettling picture of software development. It
is one of a poorly mapped and hostile land we must cross to get from user's
needs to final solutions. To cross it we must rely on a collection of guides,
pundits and wizards. Understandably, the user, acquirer, and developer would

like to replace a few of the wizards with a good road map. They would like to
see the science of software development mature.

The purpose of the preceding discussion is to establish the context of
our efforts to create a testbed for rapid prototyping concepts and
techniques. Figure 8.1-1 illustrates the context. Our effort is part of a
larger effort to create a disciplined software development environment. We
are assembling a test bed in which to develop a prototype of the rapid
prototyping environment. The rapid prototyping environment is intended to
augment the C3 , system software development environment which is part of the
general software development environment. All of these reside in the larger
context of system development.

This context is important to remember because in planning the rapid
prototyping environment we must plan to integrate our tools with other tools
designed to improve the software development discipline. .,...

68



%

Prototype C I Rapid 
%

NX rototyping Environmen" -

P 

°rotot.-

, 3v
CEIRapid
Protot) ing Environment,

3
C3I System
Software Development

Environment a

\\Software Development "'";

Environment.

System Development Environment ...- --

Figure 8.1-1 The Context of Our Effort

8.2 Pro totyping's Relationship to Other Software Development Tools ,: '

In section three we discussed the specific problem of developing C3, ..
systems. Our conclusion is that most problems arise from inadequate '.€'

' , "a .* "

definition of requirements for those aspects of the system directly supporting ".i.,
the site user's cognitive processes. In section four we advance rapid"""'"

prototyping as a solution. In section five we outline the various approaches-- . .
taken to rapid prototyping. The preceding section establishes a view of rapid
prototyping as one aspect of the maturation of the software development
discipline. From this basis we can now discuss the relationship of '''.j'''
prototyping tools and concepts to other software development tools. To ,'....-
describe the relationship we need to talk about the issues addressed by ..
software tools, the spectrum of available tools and prototyping's place in"'
that spectrum. Then we can isolate comm~on aspects of prototyping and other
tools.

:"a .. - ..

The software life cycle is generally understood and agreed upon. It"..-'..
provides a conceptual outline of the issues to which software tools have been"..i,.M"' "
applied. Figure 8.2-1 shows Denver Aerospace's view of the life cycle and ".e ...layout of the issues relevant to phases of the cycle.

69 ' .: -...

.,,..-. Figure,, 8. ....' 1,,.. .-1 ,, The : Contex of- -. . .. ; .-.. ,.'Our.'...- ''V " -.-. '"'Effort.' .- "'..''" .,.-'-.%-,",-.-

8.2 •rtoypn 'RltositoOhrSfaeDvlpmn Tol "".
"" " " """ In" seto three..we, discussed th•secfi problem of. developing -C31 ,.;'.,systems.,, Our.; .cocuin. sta.ms.rblm.rsefo.naeut

defniionofreqirmets- orths aspects of.- the syste diecl supporting ". .
"w~~lhe ste userL,'L ,,' s cognitive processes. "" • " In"ecio fou we advanc rapid " " - " "

* rttpn saslto. I eto iew uln h vaiu prahs'



TlW. .7 . " @

Software Life Cycle

Software Software Sofwr Software (Software System (SystemPlanning Requirements Design Code & Qualification Test & Operations
P Checkout Test ITnteprationi Maintenance

Bookkeping- Preservation, Traceability, Configuration Management

Adequate Optimal
r Definition of Code

'Rqireentsl
0

> Effective
im iEfficient i

' Design%
Activity Jaw

,* 0 Documentation .*-*,.

"" Figure 8.2-1 Software Development Issues Addressed by Software Toos '*

Software Development Issues .6 .v--

Bookkeeping is a practical issue that spans the entire life cycle. As
a system progresses from its conceptual phases into detailed design and
eventual operation, we learn a great deal about the system. The information
might be in diagram and drawings, electronic storage media, paper 1A
documentation or in the engineer's mental conceptualizations. The problem is

to preserve this accumulation of information because it is, literally, the %
system at any given time.

Along with preservation of information, there are the parallel concerns
of traceability and configuration management. Traceability ties individual, . . .

detailed bits of information to higher level concerns; for instance, "What
information about design relates to a particular requirement?" At a lower ,.

level, "What data implements a design?" We have to trace these kinds of

information in order to understand how the system needs are being answered.

Also, we must know what parts of the growing system are affected by change in
another part. Configuration management is concerned with the present state of

the system and its description. Keeping track of these types of questions is

* essentially a bookkeeping problem.

The problem of adequate definition of requirements was discussed in
*i Section 3. The general issue in software development is how to apply

discipline to the requirements analysis process, thereby ensuring the

* correctness of the results. Given stable requirements, what is the proper'

design process that will resolve the requirements? First of all, the activity
* must produce effective designs that satisfy completely the requirements. Then "'

we need to concentrate on making the design activity efficient in terms of
optimizing resources used. The concern in the code checkout phase is that the
resultant code is optimized for several factors. Code must be easily

.70

%r
..........................



modifiable, maintainable and easy to construct. Documentation is the tangible
aspect of a software system. It allows us to understand, use, maintain, and
modify the system at any time. The issues for a rapid prototyping system are
how to produce documentation in a timely and efficient manner and how to
ensure agreement between the actual system and the documentation.

Spectrum of Available Tools

Figure 8.2-2 illustrates the relationship of some software tools to the
life cycle and required document milestones. Figure 8.2-3 relates these same
tools to the software development issues enumerated earlier. The relationship
of each tool to each issue is rated one, two or three. A rating of three
indicates that an issue is the primary concern being addressed by the tool;
two means that the issue is an important concern; and one means that an issue -
is only of indirect concern. '

Programming Environments

In Section 6.6 we developed the concept of programming environments
which are particularly applicable to rapid prototyping. These type of
environments are a few of many different environments. The primary concern of
programming environments is optimal coding. But these environments also
address design and documentation issues. The system semantics and data
structures of language in an environment can be designed to support modular
maintainable designs. Programming languages syntax can contribute to self
documentation of code.

Environment is not strictly limited to language. The tools to develop
code and process it also form the environment. Editors, Linkers, Debuggers,
Dynamic Program Interpreters, and others are refinements that increase the
overall efficiency of a programming environment.

Graphic Interpretation of Program Structure (GRIPS)

GRIPS represents a class of tools used to graphically portray the
control structure of program source code. GRIPS is based on a type of control
diagram known as "Visual Control Logic Diagram" in Denver Aerospace
terminology. Another name for this representation is Naisse-Schneidermann
type charts.

This tool operates on pseudo-code description of actual code. It
processes the pseudo-code producing diagrams of the control structure. The
result is a more understandable representation of the sequence, decision,
iteration and procedures in a unit of code.

Tools of this type are primarily concerned with documentation. The
diagrams are required for most DOD projects. GRIPS gives an automated means
of maintaining diagrams of code. More importantly, it helps keep code and ..
diagram in agreement. In the absence of an automated tool, the documentation
often does not keep pace with changes in the code because preparation of the
diagram consumes too much time. With GRIPS a simple editing of the pseudo-
code is all that is required to update the diagram. ,

71

. '' ' ° '" " '' " " * " % " " % "- •"''-" " " % % " -5-•. -- -" .%.- -- -



$4 PL4

41.

0 0 4

*~r 0C

4f 41
ul4 0

w 0 -4 Ig44

En -e $

0- 0 CD
* 4.) L4 C $4 % ?

1.)) En % ~4
CC1 4.0.J

U2~14

CO4 )0 , %
" 0- 41 P $4 41

41 0 U)t

0 z 0
4.o -a 44. 4En 0 -7: 4).40

04 0 )b - - 4C

<0~~1 UJC t),.
-Hj~ 00

00 0$4w- 00)cp w~$ $4 00 44
n P4 Cd 9)'0 w o4 a

0 0

-0 0) .i % %

42 .)u W 00)c ):3wA
03 0

04.0

0 0 1s.

-. ~ta $4*. *.* .. . . .

****CO4*4 *)

414
*** 1,,* *. % .*< 4o**1 . .. *****\. V * .~.. ~.* . -

0 .) co**.. ~ ~ ~



Issues.,_________

Bookkeping Adequate Effective, Optimal Documentation
Definition Efficient Code
of Design
Requirements Activity

SCCS 3 1 1 1 2

Programming 1 1 2 3 2
Environments

GRIPS 1 1 1 2 3

AUTO-UDF 2 1 1 1 3

0
~ASAP 2 1 3 2 2

SREM 2 3 1 1 2

PSL/PSA 3 2 2 2 3

DWB 3 1 1 1 2

Rating: 3 Primary Concern; 2 Important Concern; I Indirect Concern

Figure 8.2-3 Software tools relate to software development issues.

Optimal code is also an important concern with these types of tools.
Graphic representations aid the programmer in understanding the abstract *..

processes being developed. A picture is worth many words. A'o -&

Automatic Unit Development Folder (Auto-UDF)

This tool was developed at Denver Aerospace using the Unix environment
and elements of the Source Code Control System (SCCS). It implements internal
standards for documentation of units of code. An individual programmer using
the tool is provided a template which she/he must complete. The template aids
the programmer in documenting schedule, test, design and the actual
implementation of coding units. The tool provides the services on-line,
thereby reducing the effort of storing, producing and communicating this
information.

Software Requirements Engineering Methodology (SREM)

SREM is a methodology and support environment for refining software
requirements from system requirement documents and expressing and validating
these requirements. The tool was developed for the Air Force by TRW. It was
evaluated over a twenty-month period by Denver Aerospace under contract to the
Air Force. The evaluation team's conclusion was that the methodology was
valuable and the support tool very helpful in expressing and storing
requirements analysis information. However, they found it difficult to
express certain real-time and near-real-time constraints.

Part of the support environment of SREM was designed to generate
functional simulations of the system based on the requirements analysis
results. It was found that this aspect of the SREM was cumbersome to use and

73

...............................



that the simulations produced were not of very great value. The primary
concern of the tool is adequate definition of requirements. In this regard,
the data base and the associated methodology do provide significant help to
the activity. The language of the data base is well suited to C31 in
particular. SREM also provides help for documentation and bookkeeping. This ..

is simply a function of SREM's data base.

Problem Statement Language/Problem Statement Analyzer (PSL/PSA)

This is a very ambitious tool that concerns itself with each of the
issues. Its possible usage extends over the entire life cycle. It is
centered around a data base which accumulates information. The information is -
expressed in the PSL part of the tool. The PSL is designed to be processed by
an analyzer. Bookkeeping is addressed through the expression and storing of
information in the data base. Documentation is provided through formatted
reports derived from the data base. The other issue we addressed through the
analysis of the stored expression. In a limited way the analysis indicates
the logical completeness and consistency of the specification (Problem
Statement) at any time. It is limited in that it does not tell the developer,
"yes you have stated the problem correctly", but rather "yes you have stated awell-defined problem".

Automated Structured Analysis Package (ASAP)

ASAP primarily supports the design activity. It is essentially an
automated Yourdon data-flow analysis support tool. It allows the expression
and storing of process descriptions and data definition. Requirements may
also be expressed and stored for the purpose of linking them to detailed
process designs and data definitionb. ASAP will examine the described
processes and data to determine how complete and consistent the design is in
terms of data usage between processes.

Designer's Work Bench (DWB)

Designer's Work Bench is a Martin Marietta tool which is centered
around a data base and language generating tool for the data base. The
approach taken by DWB represents a coalition of lessons learned on other -.

comprehensive life cycle tools. PSL/PSA, SREM and ASAP are all centered on
data bases also. However, these tools have attempted to provide a measure of
expression encompassing all possible needs. In addition, they have a built-in
world view of how to support the lifecycle activities. DWB's approach is to
provide a meta-language in which to instantiate various syntaxes used to
express requirements, design, pseudo-code, data-definition or whatever is
necessary. Having done this, analysis and documentation are supported through
the use of the data-base query facilities. Where simple data base query falls -
short, one may simply extract the information from DWB in the proper form to
be processed by a specific tool. For instance, ASAP process description might
be stored in DWB. This would allow automated YOURDON analysis to be performed
on data stored by a comprehensive life cycle tool. Pseudo-code for GRIPS
could be stored and linked in the data base to the relevant code units. -"

The possibilities are numerous. That is the point. By focusing on the
bookkeeping activities of the life cycle at a meta-language level, DWB in
effect addresses nearly all the life cycle issues. What it does not itself do

74

--- J.



can be provided by other tools without changing all of the bookkeeping
practices.

Prototyping in the Spectrum of Software Tools

So far, we have related the life cycle to software development issues,
the life cycle to software tools and software tools to issues. Figure 8.2-4

relates rapid prototyping to the life cycle. It applies to the time from
before the life cycle even begins to the end of the software design phase.

Early on in the cycle it would be used to validate high level requirements.
In the design stage, prototyping would be used to develop detailed performance
information about design.

Planning Requirements Design Coeo & Qaft Inet Oains

Checkout Test ""tegrationmaintenanc e

Rapid Prototyping

Figure 8.2-4
Rapid prototyping relates to the life cycle.

We are constrained to apply rapid prototyping to critical high payoff
aspects of embedded computer functions in C31 systems. We have concluded
from our studies that the greatest payoff results from the stabilization of
requirements at the highest levels. Therefore, we will not focus on applying
prototyping to the design phase. To place rapid prototyping in the spectrum
of software development tools we put aside for the moment prototyping at the ..

system level. This leaves the Software Requirement phase and the adequate
requirements definition issue as the intersection of prototyping and other
tools.

Referring back to section 4.1 and Figure 4.1-2, we subdivide
requirements definition activity into subactivities. The three subactivities
form a cycle which results in validated requirements. The three subactivities
are identity, express/represent and evaluate. In Figure 8.2-5 DWB, SREM,
PSL/PSA and ASAP are related to the cycle. DWB applies only to the expression
of requirements. The other three tools contribute to both the expression and
evaluation. Rapid prototyping applies to the entire process. It applies to
identification in the sense that it exposes requirements; expression in the
sense that it gives tangible form to the requirements; and evaluation in the
sense that it provides a means of measuring the requirements being prototyped

against real world scenarios. N.'

Common Aspects

Rapid prototyping and other software tools have two apparent aspects in
common:

-- Application to adequate requirements definition,
-- Interaction with system information data base.

75

Z -.-. -.
",. -.'_ ',_{_"-i ,i" ",,., , ,i _. {. ,.- -".,'~ - ..; -'.-'. ..' -".'... -, .. -.;"..,.-,... -.. •.. -....- .-



Another aspect contributes to the relationship. In Section 5 we talked
about the various approaches to prototyping. One approach was the "build it
twice" philosophy. It we view prototyping approaches on a scale ranging from
those that implement the system completely to those that mimic only the high
level functions, we can see prototyping as a microcosm of the system

* development environment. It has its own requirements, implementation schemes
and lite cycle. Software tools apply to this cycle much as they do the larger
life cycle.

L:

J *00

4 4 00~

Identif

.. . . . .. .

Fiue .-

Adequate Requirements Definition, Software Tools, and Rapid Prototyping

76

* 5- .5



Figure 8.2-6 pictures the interrelationships between prototyping, %
software tools and software development issues.

Software Support
Development Software

D nsues Tools

. ^6 Y ,% Support ,: : ''

Bookeein ion Rapid'- ",ootyin

. ...o.- ,

Figure 8.2-6 ...w''''

Interrelation of Software Development Issues, Software Tools, and Rapid
Prototyping

8.3 RAPID PROTOTYPING SYSTEM (RPS) CONCEPT

8.3.1 Overview - -

The RPS will be a tool to prototype key functions of Air Force
C31 systems. The RPS must provide means to characterize the user-system
interface aspects of a C3, systems, its data base content and conceptual .
design, its structure at varying levels of detail, and its expected
performance. The RPS must support documentation of the results as well as
storage and retrieval of the prototypes themselves. At some future time,
links to other systems and models may be required.

8.3.2 RPS System Elements

The RPS should be a hardware/software system designed to aid
stabilizing and exploring C3, systems' requirements and preliminary design
concepts. It must aid the government in passing from a generalized Statement
of Need (SON) understanding of C31 systems to specific statement of work &'-A
and/or to preliminary systems specifications for that C31 system. It must
be flexible and easy to use by a variety of players involved in the J
acquisition of command and control systems. Each possesses varying skill .
levels. There are three classes of users envisioned for the RPS: The .-,
prototype builder (who is also referred to as "software engineer"), the
acquisition engineer, and the mission user. Each should be able to perform
useful work with the RPS, both individually and in concert with other user
types.

77 *.',

.i - 2,2; . i . -) -- ,; i- .- i .7.i.. -/ : ;! i: > ":11 2 7 ;; -- ;> q i " '- -;- -- ; i ?' -i---' --- a''--' - i -



The RPS must emphasize the use of menu and icon accessed
interfaces, mult-4ril mode operation, and context sensitive system software.
It must include high quality bit-mapped color terminals with sufficient ~
display memory to allow the representation of motion as part of the definition
of the user system interface. It should have high quality monochrome
bit-mapped multi-window interfaces to support specification and functional
analysis of proposed systems. The RPS can make use of the logic programming
tool Pro log as a central part of its modeling and prototype specification

abilities. Prolog can, in certain environments, run slowly. It would be

Proog hih fatuessignificant quantities of peripheral disk memory. The
RPScaninlud agate-way machine tlikbetween Prlgprocessor, graphics .
po extemnivre prstocessor, and a VAX 11/780. The VAX can be used to

support exesv ytmperformance prediction modeling as well as to host
supporting data bases. Additionally, there could be, within the RPS, several

*small individual user terminals on the order of an Apple Macintosh or IBM
Personal Computer. These terminals could function as monochrome workstations

*processing a subset of the capabilities of the monochrome workstations
specified herein.

-8.3.3 User Types

The rapid prototyping system must be accessible by missionI users, acquisition engineers, and prototype builders.

The mission user should be able to perform useful work with the
RPS. He should access the system and perform interface modeling with an
interface modeling component. The tools of this component should provide
interactive, user friendly access. Software should be extremely ,context
sensitive so as to provide as "modeless" an interface as is feasible for him.
It should be the goal of the RPS to provide tools as easy to use as the
LISA-DRAWR paradigm developed by Apple Computers. The mission user should
be able to draw screens and define required data base support in a transparent I. '3
and friendly fashion. He should also be able to prototype knowledge based
systems and to develop elements of a rule base as well as screens.

norm Anydataenu based iconic and mouse accessed inputs should be the
norm Anydatabase functions necessary to support this should be transparent

to the mission user, and access should be handled without his having to know -

any special query languages. The mission user further should access
performance models. An operational model would allow the mission user to -'-

characterize the operational concept that he has in mind or has de factop prototyped with the interface modeler. This model could provide the mission
user again with a menu and icon based friendly way to define the total set of ,;

procedures available to the analyst and his work station. The system should
prompt the mission user for information necessary to define the run time
requirements for an experiment. Certain inputs from the mission user may be
appropriate initiaiizations of a structured data base model. In particular,
the mission user should find valuable contributions he can make to the dbta
base model input templates. Complete exercise of the data base model
component of the RI'S would fall to the prototype builder.

The acquisition engineer must access and perform all the

functions accessible by the mission user. Further, the acquisition engineer

K 78



should use the specification based prototyping capabilities of the RPS. This
* component should allow the acquisition engineer to easily define pictures and

descriptions of structural subelements or functional subelements of the -

* desired system. The RPS system must prompt the system engineer to make
appropriate characterizations in test, structured language, and/or structured
symbology in association with a functional element defined with this A
component. Further, he should be able to tie the elements of a connected
graph type description to entry points within the interface modeler defined
screens through the tooling component (in particular, the icon based
executive). The acquisition engineer should use a logical modeling capability ~
provided by the Performance Modeling component. This model should allow the____
acquisition engineer to capture logical descriptions of the system being *

prototyped in a manner so as to exercise them by scenarios developed by
himself or mission users using the scenario generation component of the RPS.
Once again, menu based or iconic based input means should be placed at his
disposal.

The prototype builder is considered as the most technically
sophisticated with respect to system and software design among the user
types. The prototype builder must perform all the tool access discussed for ~
the acquisition engineer and the mission user. Additionally, the prototype
builder can make extensive use of the structured data base model so as to
perform object-oriented analysis on the overall data structure required to
support the system being prototyped. He should use the model through

* accessing Prolog based high level constructs that provide a friendly
environment for this work. The prototype builder further could add to the 0
descriptions or the detailed analysis of the system as captured in the8
connected graph descriptions. He should add PDL descriptions or pointers to
PDL data bases to these descriptions. The prototype builder can make use of
detailed ADP models so as to project performance of the defined

* hardware/software system. He should be able to supplement the interface
* ~modeling performed by the mission user with dynamic graphic elements (rotating *- -

globes and trajectory displays, for example). He should use the KBS
prototyper to complement the work performed by the mission user so as to
generate a first cut representation of KBS elements of the system being
prototyped.

Significant functional aggregates involving screens, screen

sequences, connected graph entities, performance prediction model exercising,
and information content modeler queries and execution must be orchestrated by
the prototype builder through use of the RPS executive. The prototype builder
should make use of the icon accessed executive so as to quickly interconnect
the capabilities provided by the different RPS components to make a dense

*functional prototype element. Generally, this would represent a C3,

A component. Several Component System Elements (CSEs) may be joined by the
prototype builder so as to aggregate a total C3I prototype. The mission
user or acquisition engineer should be able to make use of a top down
specification capability to enforce a coherent specification of the system

*being prototyped. The prototype builder, on the other hand, would be able to
prototype components 'bottom-up."

The following scenario will demonstrate how each of these three
user types may access the system. ?.

79



.7 Z7 7-17.....K.';7-.

8.3.4 Prototype Development

The RPS should provide the functions necessary to apply
prototyping as an integral part of C3 I system development, with a e
well-defined strategy for its use. The strategy for the RPS in particular
should be accomplished in the following phases:

1. Problem/Experiment Selection

2. Definition of Experiment
3. Specification of the Scenario
4. Development of the Prototype
5. Demonstration of Prototype , '
6. Evaluation

The strategy for accomplishing Item 4, the development of the
prototype, would proceed according to the timeline pictured in Figure
8.3.4-1. The figure shows a relative scheduling of different types of
prototyping which correspond to a top-down analysis of C3 1 Support

Environment.

First, high level modeling of the observables (i.e., the C31

user system interface) would take place. Interface Modeling consists of
creating mock-ups of the final system's screens, sequences of screens, and
operator control events.

This is a means to make the system's gross observable states
tangible and communicate an operational concept to the users of the system.
In adaition, database requirements, functional requirements, and performance
requirements can be implied based on the screen sequencing and contents.

As interface modeling continues, database requirement issues
accumulate. After a time, modeling of these database requirements can begin
to resolve issues. Using the database modeling tools of the RPS, the
consistency and adequacy of the database requirements can be determined. Also,
relative cost for query and update of data can be determined.

After User System Interface and database modeling have
progressed, an understanding of the functional requirements emerges. Modeling
of the allocation of function to system components can then reveal problems in
the functional requirements such as contradictions, deadlock situations,
unacceptable resource contention and utilizaton, bottlenecks and other " "
problems.

Early modeling will define single operator procedures well
enough to begin to study the effect of several operators using finite,. ""'
resources. Modeling of Operator Procedures uses the single operator '.

procedures and adds resource contention and functional performance estimates.
Application of a scenario to the operator model will reveal contention and
utilization problems resulting from the definition of the operator procedures.

8.4 SUMMARY

The lessons we have learned in the Denver Aerospace testbed have begun
to define the role of rapid prototyping in the context of the maturing

80

-._ te; -Z ,,:-'.:-'_-,--.-".-i, i'."-"."& - "-"i'-''-''.'. -'-'-''-." "" "- "-'- . .i . . . . .. : . . 1 . .



-. ~ ~ ~ ~ ~ ~ ~ ~ r T.-- -A7 -S.- -* . -- r ~ i .--- -,-. ........ ....

-ow

c~
CL~~ c b(

0 C31 L io C

+j c a
0 +j .4 +j c r.

m r-4 a H .I r-

r-4 a)

0~ m U)

:3 r4 m 0 0.
4,J~~~- r4 CDrI *

Q~~~~- (a z+ U%

3 a L m .) Qk--,N--L PZO
+j A

V)~~.. W o LL)J



.....- , -

~ ~

* software development discipline. Examiiaation of this context revealed the
* interrelationship of rapid prototyping and other tools developed to meet the

issues at successful development.

~ d
-S... ~

V.

jW% ~4.~d

I *
r *'

- I

.5.

A.

*'~

K-

a-. * -a, ~

-a '~

.1~ .

V.
a-,
a-.

* a~.Ii5

- - a,'
.. .

-a

St 5,

82

4

F
.5.. ~ .



9.0 TESTBED ELEMENTS

In section 5.4 we discussed and rated the available prototyping

approaches. To assemble and test a collection of instances of these

approaches, we have to derive a representative set of capabilities. The
capabilities selected must be available, and they must be feasible to

implement and use within the constraints of our resources and staffing. With

these constraints we have identified the following set of testbed components:

- an inventory of computer resources
- application software

- interface prototype
- a methodology
- scenario library

This list will no doubt evolve. These components are required to begin

the process of defining and demonstrating a rapid prototyping capability.

* 9.1 Inventory of Application Software

A, The most visible part of the rapid prototyping environment will be the

software. Software needed for the testbed falls into several categories:

- Moael building tools,
- Software development tools,

- Data base tools,
- Existing databases.

Tools to build models are necessary to provide the core prototyping

capability. This software must be reconfigurable and apply to one of the

three aspects of concern in C3 1 systems: Function, performance or user

interface. Development tools must be included to perform three functions:

The development of new models and simulations, the integration of prototyping

activities with system development, and the modification of the rapid

prototyping environment itself. Data base tools are necessary for developing

databases to support models and manage project information. Existing

databases store scenarios and descriptions of logical models.

9.2 Computer Resources

Adequacy is measured against the needs of software to be hosted, the

state of computer system architecture, and the needs of the ultimate end-users

*- of the prototyping environment. A major trend in architecture toward

distributed networks of computers and peripheral devices deserves some

- mention. The trend is driven by a number of factors. Advances in the

. development and production of hardware has brought down cost, allowed for

increased specialization of hardware and concentrated processing power in

*smaller, cheaper packages. At the same time users need and desire the sharing

of information and resources. Tying these two factors together is a growing

legacy of software and industry standards which support network compatibility

across a wide range of machines. Hardware and software advances are making

users' demands technically feasible and affordable. The centerpiece of this

trend is the local area network (LAN). In a LAN, several computers and

*" peripherals may be tied together and accessed by many users operating from

83
. h.

' . h,

-e :...• -. -...4 ,- .-.-,- ..% , "" " : ' ' '.'.'... -.'.• -.- .-. . ,-.. -" .- ..'.. -,. .,.-r



7W

intelligent workstations. This scheme allows users to exploit a variety of
machines in a manner efficient from the user's perspective and the system
designer's perspective. One machine could never achieve the generality,
response, and efficiency of LAN interconnected special purpose processors.
Tlhoe advantages will be as apparent to the end user of a rapid prototyping
env- onment as any other user.

Certain specific needs of the rapid prototype user population emphasize
the need for a distributed network of workstations. We can call these needs
multiplicity, segmentation, and heterogeneity. Multiplicity is the need for

many copies of the environment. This can be achieved by simply plugging as
many workstations as necessary into a LAN. Segmentation refers to the need to
segregate groups of users working on separate projects or phases of projects.
This can be achieved by isolating groups of workstations and resources in the
network physically and/or logically. Heterogeneity means that these same
capabilities may be implemented by different machines in different instances
with the same interface provided. On a LAN, the intelligent workstation would
serve as a logical buffer, hiding implementation details of a given capability
from the user, providing a common interface for all users regardless of their
implementation. In another sense, heterogeneity refers to the users. Users

of the prototyping environment will be differentiated by technical expertise
and motivation for using the tool. In response to this, workstatiolps can be
customized to meet the different needs. All of these concepts must' be
incorporated in the testbed's computer resources. This requires a distributed p

computer system architecture accessed by an intelligent workstation. *.*. '

9.3 Interface Prototype

We require a fluent method of accessing the testbed software. This

access is required both for informal testing of the environment as it is being ..-

assembled and for customer interaction for requirement and design validation.
The best way to provide this access is as a prototype interface. At this ,..-

stage the prototype must be reconfigurable and provide a general enough ,

framework to house the known components of the testbed as well as those .
"

components not yet known.

9.4 Methodology Requirements

A methodology is required to bind the components together into a usable
package and to integrate these capabilities with the system development life
cycle. An ideal automated design support system (for computer aided software

engineering/system design) would be at the same time general in application,
aid the design process, support test and integration, and cut across design
disciplines. It would also complement code generation and programming

environment tools.

A methodology for the RPS will consist cf a process for using its tool

components. This process can be seen as a plan for sequential use of the
tools as shown in Figure 9.4-1. Of course, the sequence of tool use can vary
depending on the prototyping problem under consideration. Figure 9.4-2 shows
that there can be several paths through the tools, each one valid.

To support the expression and validation of system requirements, the
RPS methodology would emphasize structure prototyping, interface prototyping,

84 S -*- -- ..-

-. " .".. -.' " .' ."5.' . '- '4'. .. , . .-. . . , -.- -. -• . . - - ' . - . - . --, ) - ..- . . .-. -* .% . - .*- % , ,, . -',,,' . _



and performance prediction (especially gross data flow analysis via COMS and j,

GOM). As system requirements stabilize, the expression and validation of %.k
software requirements would be important. Although derivation of software -
requirements from system requirements is possible, it becomes more important . '
to understand the proposed system in depth rather than formally deriving
specifications. The RPS users would move to more detailed structural analyses ..

using a diagram constructor and the FAM. They would extend the functionality
of the interface prototype through characterizing the dynamic graphics
portions. Any knowledge based system components of the C3 1 system under
consideration would be investigated at this time. Its data base system would
be characterized to some level of detail which could later be extended. Later
still, as preliminary or conceptual design becomes important, the RPS users
would use the GPM to support identifcation and flowdown of performance (a',
requirements.

Further, all previous models of the system would be detailed and
extended.

The general plan for prototyping is "analyze-model-demonstrate"
iterated many times. Analysis should be unconstrained by the prototyping
tool. Modeling must allow several types of representations of the system to
exist simultaneously. The human development process is a group activity.
Consequently, the RPS must allow several users simultaneous access and provide
support tools that aid each separate view of the system as shown in Figure

' " 9.4-3•. .. .'.

9.5 Scenario Library

Testbed components, together with a methodology, comprise a workable
prototype environment. To drive that environment requires operational 7 .

scenarios. The scenarios must be realistic, and we must have measures for the

performance of the environment. To then measure the performance of the
environment in use, we need a record of the r sults using conventional
developments methods. In sum, a history of C system development is
required. This history may take the form of written documentation, computer

storage media, and people involved in the projects. Figure 9.5-1 illustrates * -
how scenarios are derived from C3 , systems development history to drive ----

measurable results from the testbed.

5. -

85.. " " "-

' ' . . ,',.;, ',•- ," . .. ,,.. ,_ ,.' .. .j.j. /. "."_ ". .. , . ,. .-, ."... . - -" .. ,; ... '/ . .- .. . .-., ., .. , .."'..',



-. - -- - ----- 4-

1~ 71C

Figue 94-1Defiitin O Metod- Pln Fo Tol Ue MehodIs ool ecunce

to-
I 94PT oo

'o 00 0
101

0, 00.1 10 6

_______________+____.

OF 10

to 00 4

-00'

Figure 9.4-2 Our Tools Can Be Used With Different Methods.

PERFORMANCE
PREDICTION

N" Il STRUCTURE -

PROTOPOT

\ USER 2

USER 1 USER 3

* Figure 9.4-3 Tools Can Be Used Simultaneously And Emphasized Or Deemphasized.

86

.~~~ .. . . . . .



History of C 3 System Development

System Development Environment

/VV

~ Prootype Resources

Scenarios

Application ~,.**

Measurable Results

Figure 9.5-1
The history of C 3 system development produces scenarios to drive the test bed.

P. k

k.

-p.7



" -N-FIN

10.0 CURRENT TESTBED

10.1 Inventory of Application Software

We currently have representative software for each of the required
categories: Existing model building tools, software development tools, data
base tools and existing data bases. In Figure 10.1-1 the software we have
available is pictured.

UNIX

Development
P Tools

LEX, YACC
SccS

DW A.

S" ..'. .

Existing Data-Base Software Existing

Simulations Tools Development Data Bases
Tools

Figure 10.1-1 Inventory of Application Software

Existing Model Building Tools

We have focused closely on certain of these simulation languages that
appear to be the most usable candidates. Among them are these three
simulations (which we have acquired and studied): The Functional Allocation
Model (FAM), the General Operator Model (GOM), and the General Processor Model
(GPM). In addition, we have available the extensive software in Martin
Marietta's C3 System laboratory.

FAN is a high level functional model. It characterizes a system by
using stimuli, threads, functions and resources as shown in Figure 10.1-2. It
drives the modeled system with scenarios and events. These parts are related
in the following ways: Scenarios are lists of events; events give rise to
certain stimuli; stimuli invoke processing threads; threads are made up of
sequences of functions; functions contend with other functions for resources.
The model is instantiated by analyzing operational threads, available
resources, etc., of the system; representing that analysis in the model's data
base; and then constructing scenarios, also stored in the database, to drive
simulations. Measurements, taken during runs, on resource contention and

88

h A *



other performance aspects of the system are a means of evaluating the
functional allocations made in the system. %

System V~ourc.. . Scenario

Resourcuh Driver

Scenariof-- -

Event System Model System System

Table S t imu lus Threads Functions Configuration

t- Space Sys AT imsg 22 2201 Routine 2.2.3.1-B - CSO
Status Message 2.3.C - STO

FA a s o d b 2202 Nonroutine 2.2.3.1-D Hardware

GMmdl atin muc Message w a F T s u .

I4. o I I _. - C U- • . * '

[: I ' / W -"' I -, Core k , .

- Disk "" 
'  

'~Internal L - 1'0 Cntrl.".;..."" " '
pf , o o Ittakeso t hJournalah r re/~~~~~~~~~- Message Proc " ''"' ':"._ -"_

-- .BM ,-...

Figure t0.1-2 ""ein
FAM uses a series of data bases to describe the logical structure asimlaton.* .of a system. , . .. '

GOM models a system in much the same way as FAM To set up the model,
the system is described by specifying the number of operators, what tasks they
perform, how long it takes them to do tasks what resources they require for

Gtasks, and what resourcesa a cvailable. The model is driven by a scenario of
events that stimulates operators to perform certain tasks. From a simulation
run, statistics on time in system and resource contention are collected.
Using empirical data describing the way operators use different equipment, the
modeler can run simulations to compare alternative operational systemsmbi

GPM models in detail a computer system. Generally it is a discrete
event model of the processors, memories, certain operating system functions
and the c/0 of a computer system Scenarios consist of lists of processingtasks to be submitted to the hypothetical system. Scenarios are stored in a..k_-"

database. simulation.

Each of these three was developed using FORTRAN within the SLAM
modeling framework. As a result they are able to be combined. FAM or G M
could be combined with GPM to move from a highly abstract model to a moredetailed model. This would essentially be a nesting process, where the system

is first modeled using FAM or GOM alone, and then GPM is substituted for the "---i

simple characterizations of processing resources to achieve a greater level of ,-'.-"
detail in the simulation."'"-"

The C3 laboratory system software runs the suite of devices in the "'" .... ,

C3 lab. This includes a large scale graphic display and graphic __. -
workstations. Like the other models, the C3 models are configured and "q -

driven from a database..-...-.

-....-

89

. .7

8 9 ...* .'-.. . . .



Sottware Development Tools

We have been interested in software development tools for some time.
We used, evaluated, and developed new tools. In pursuit of this interest,
several packages have been evaluated. PSL/PSA (Problem Statement Language,
Problem Statement Analyzer) was studied and used on projects in the company.
Denver Aerospace also conducted a lengthy evaluation of TRW's SREH (Software
Requirements Engineering Methodology) for the Air Force (RADC/CO). Tools such
as ASAP and DWB have been developed by Martin Marietta. ASAP (Automated .....

Structured Analysis Package) is a design aid that has been used and is being 4
used. It is based on Yourdon data flow structured analysis techniques. The
tool can be used in storing and managing design information and provides
completeness and consistency measures on data flow aspects of a system being'-p
designed. This tool is applicable to the system development life cycle from J.)°I
early requirements definition through implementation. It can be used to
manage project information, including such concerns as project organization .
and schedule, as well as requirements, decisions, detailed design, and even
source code.

DWB features flexibility. The structure of the project data base is
flexible; the specification languages used can be tailored to suit unique
needs; and hooks are provided into the host operating system to interface DWB
with other tools. Unlike ASAP, DWB does not support a specific design
technique but rather focuses on the management and expression of project
information in such a way that users are facilitated in using any development." .,'...

techniques they choose. For instance, ASAP might be used along side DWB in
the design phase of a project.

Of these tools we are most interested in SREM, ASAP and DWB. We have
all three available to us and have studied them. We have hands-on experience
with ASAP and DWB. Right now we are in the process of setting up a DWB data
base to support this project. Appendix Al presents an example of a
description of our methodology, described using a SREM-like syntax, stored in
DWB. ASAP was used in the development of our interface prototype, and we
expect to use it in our design efforts for other parts of this project.

Some other tools we have available are parsing code generators that can
be used in the rapid implementation of application front ends--in our case,
prototype applications. On the UNIX operating system we have available LEX
and YACC. LEX is a tool that generates source code for Lexical Analyzers from
descriptive source code of its own. This not only allows the rapid generation

of a Lexical analyzer, but also promotes easy modifiability. YACC (Yet
Another Compiler Compiler) generates source code for parsers. It can be
easily teamed with LEX generated code. Lang Pak is another parser generator
available to any system with a FORTRAN compiler. It has a descriptive
language in which to describe a grammar. Then the grammar description is
translated into Fortran source for compilation and use. In addition it
provides an interactive environment for developing a grammar.

Data Base Tools

We currently have in the testbed a data base generating tool based on
the Codasyl data base standard with a relational access language. Under this
standard a data base scheme is constructed from a description of the data

90

... .... ........... ................ ...- .'



types to be stored and the relationships between the data types included in i
the data base. The scheme is a translation of the data descriptions into an
access structure which can be used to populate and query the data base. The

particular tool we have is called D3M for Domain Distributed Data Management.
It is hosted on the Apollo DN300 workstation, which will be described later.
In addition to generating a scheme for a data base, D3M also will generate

subschemes for restricted access and has a built-in interface to the high
level languages Pascal, FORTRAN and C.

Existing Data Bases

A notable data base is the C2SAM, or Command and Control System

Analysis Model. The information in C2SAM and the underlying model for
organizing that information comprise a generic logical model of any command
and control structure. . -

Five groups of elements make up the model;

- Missions,

- Levels,
- Hierarcnical Breakdown of Generic Tasks,

- Information Units,
- Organizations.

All command and control is exercised in the support of some mission.
Each level of command and control performs certain tasks to accomplish a
mission. Different levels may perfczm the same tasks. Tasks are generic
activities that must be carried out by any C2 system in pursuit of its
mission. Certain tasks require or produce information units. Organizations
perform certain tasks.

The C2SAM is Air Force specific. The organizations themselves reflect
current structure in the Air Force. Some, although not all, of the

information products are standardized Air Force products. The missions used
in the model are all air missions. This apparent lack of generality reflects

the current degree of instantiation of the data base. C2SAM currently
represents the TAC, MAC and USAFE (CENTCOM) organizations. To extend the
model, the data base must be populated with specific information relevant to
other organizations. Figure 10.1-3 is a high-level diagram of the generi*c

intormation exchange model as it exists in the current instantiation of
C3 SAN'. The following paragraphs expand somewhat on the fundamental elements
of the model.

Five missions are enumerated;

- Offensive Counterair,
- Defensive Counterair, -..

- Close Air Support,
- Interdiction,

- Reconnaissance.

Certain tasks are associated with each mission. The missions may also
be combined, and some tasks support all missions. \

91

%o %.,. .

-. S. . -..... °.. . . . .OS -°.*,

.. i" ° ".......



10l E? 23 CI 1 R PID PROTOTYPE INVESTI GTION(U) 
MRTIN MRIETTA 2122'ADRI6 42 .AEROSPACEDENVER CO P C ORLEY JAN 86 MRC-85-6±6- 21 RAD -T-8 -216 F3S662-83-C-SSE?

UNCLSSIFIED F/G 172 NL

MEEEEM ~

iiiiiiiiii



1661

1.4.

MICROCOPY RESOLUTION~ TESICHART

NA"NAL Hl AIOF l TAF-- 4



Four levels describe the command and control structure;

- Theater,
- Component,
- Force,

Theater responsibilities are very broad, component responsibilities
less so, and so on. Each lower level generally deals with more implementation
detail. However, exceptions may crop up where higher levels of command and
control are involved closely in planned execution.

*..J.'..',
-AP".

.% C

V, ~



Information Feedback

-Approvals/ -Adjustment --Approvals/
Disapprovals Requestis I Disapprovals

Information Feedback IAdjustment

Unitnc -RAdustet

Feed qukReqess

Plang PeidP prtinaeron4.~~

Fg rer -rde3
-Aprovls c~~~ ~rTciAju Aimes

Diapoas 
euss-Apoas

93aprvl

Information~ Fedbc

Gudac Requests '- ~.. .. .
Force%** Force.-*...*...-~:*.~...-



The hierarchy of tasks includes five levels of detail as follows;

- Function,

- Subtunction,
- Activity, .

* - Subactivity,
- Job. *'

Planning, directing, controlling, and executing make up the list of
functions. Lower level tasks quickly proliferate. Subfunctions number 65,
activities 221, sub activities 831 and jobs 1575. The lowest levels,
subactivity and job, are directly associated with the transfer of
information. Organizations are structured hierarchically, also. Each
organization is related to particular tasks. Tasks may be shared by
organizations. Information products are categorized as formal and informal.
They describe groups of items of information that are necessary for the
execution of tasks. A user queries the data base to use the model. By
querying in an investigative fashion, a general functional model of a

prospective C2 system can be constructed.

10.2 Computer Resources

Hosting the software inventory and satisfying the other constraints on
computer resources was accomplished by using the Martin Marietta Central
Software Laboratories (CSL) and an Apollo Domain System.

The Central Software Engineering Facility (CSEF) consists of a network ..\ *

ot six mini and super-mini computers including Vax 11/780, PDP 1X/70, IDM 350, .'

and IBM 4341. A wide variety of peripherals connects to this network,
including printers, plotters, graphic terminals, graphic terminal hardcopy
devices, and a microfiche peripheral. We used two VAX 11/780s, one running
VhS operating system and one running UNIX. Also, we have used the IDM 350
machine which is connected to the VMS VAX and supports Designer's Work Bench. .-

CSEF hosts all of the software except D3M and the interface prototype software. .

We chose the Apollo DN300 computational node as our workstation for

several reasons. Specifically, we were impressed by the processing power, the ,
operating system and the network capabilities of the node. .

The node's processing is done by two Motorola MC68010 microprocessors.
These microprocessors are state-of-the-art 16-bit processors. They have
built-in memory management hardware. The instruction set for the MC68010
directly supports structured high-level languages and current operating .

systems. . .

Apollo's Aegis operating system successfully exploits the hardware.
Aegis interfaces with the user through a high-resolution bit-mapped graphic
monitor. The interface features a multiwindow display similar to systems such

as Xerox Smalltalk, the LM-l or Apple's Lisa. These other systems, however,
are isolated to comparatively narrow applications. Aegis uses the innovative
interface to facilitate conventional application software development. This
approach brings along the advantages of the new concepts while not isolating
the user from mainstream production methods.

94

A. lm m. lt

• • -~~~~~. ............................ ... .... ..... . .. . . .. ...... ,..,.. , . . .- - .. . . . ,. . ,- , ,. . .,,- -.-. _-
'.°-0"--'-.'-4 "'-".4','.'.' :-"'.. - .-,,.-'r-."-.," -1 -..... ' 4 4 "



Cognizant of the trend to distributed systems, the Apollo designers
have built network capabilities into the workstation. The node can be tied
into a LAN in three ways. It may be plugged directly into an Apollo Domain
Network; it can be connected to computer hosts or modems via two RS232 ports;
or it can be gated onto an industry standard network, such as Ethernet, by use
of a peripheral server node.

Apollo Domain Network is restricted to Apollo products, but this LAN
interfaces through the Apollo DSP80 gateway node to other LANs. The Domain

network architecture is based on a ring topology utilizing a token passing
protocol. This architecture is extremely fast--rated at 10 Mbytes/sec. In

addition, all of the products offered for the network are completely
compatible. The operating software in all the available nodes includes .

network administration functions. All of the features in combination form a
virtual network, one in which any user, anywhere on the Domain network, may
use any resource on the network as if the user were connected directly to that
resource. No appreciable response delay occurs as a result of network

communication, and the drawbacks of Ethernet load management are avoided.
Resources available within this virtual network run the gamut of commonly-used
engineering tools. Special packages are available for CAD/CAM application,
database system, scientific engineering, large secondary storage, specialized

peripheral devices, and more. The Domain network is sufficient for a great
many applications in and of itself.

The network provides a gateway to other networks. This gateway is in
the DSP8O peripheral server node. A DSP80 node was included in the network to

interface the network with special peripheral devices or other networks. In
particular, Apollo offers software for the DSP8O to directly link Domain
network to an Ethernet or HYPERchannel. This capability allows the user to
enjoy the extremely high performance Domain network and at the same time does
not isolate the network trom standards which are developing in industry.

Directly linking the DN300 to a host or modem using the Serial I/O
lines allows it to be used in a terminal emulation mode. Software included in
the operating system emulates an ANSI standard terminal and can be configured
for various operating system conventions. The software also transfers files
to and from a host. These lines may also be tied to a peripheral device such ..

as a printer. ".,,* .

We used the Serial I/O ports to connect the workstation to the CSEF
network. One port was tied directly to a VAX host running under VMS. The
other port was connected to a modem. Figure 10.2-1 diagrams the demonstration
configuration. This configuration is a minimal example of the LAN

architecture we have described. The LAN in this case is the DECNET of six
computers in CSEF. With the Apollo in terminal emulation mode we are directly ""

connected into the CSEF network. From our workstation we ran software on two
separate VAX machines, one running VMS, the other running Unix. Software
hosted by the workstation provided a framework within which to control
simulation running on one of the VAXs. \.....-,

95 .:.

. . . . . .. . . . . . ,. . . . . . . . . ... . . . . . . . .. •=.. , ..



w~.. 'gw, u EU W w uwt w wiwLwu d -,.-, ~ * -WI .9.r Uj, 1u 'W TJW w .-x - j -r~ VW WVW .

1001

VTIO0 VTI00,,::J i 4v,
i~(VS JJ-"' "NIs __,

Evans & RS-232 RS-2 3 :.. > .Sutherland I Apollo Modem
(E&S) { , i .
Picture lI" :

I S y s t e m II' ' "%

Controller I •""

S Bit-Mapped I .. j, ,
E&S Display I T

S --Dispaly L_ . .. J . .7.

Display '
[-Zytron

Large-Screen
t=. Display ..-'-. '

3Current C Laboratory
Displays

Figure 10. 2-1 Minimzl LAN Configuration

10.3 Interface Prototype

Our minimal network/workstation configuration brings together the
individual capabilities to define and demonstrate a rapid prototyping -

environment. To begin defining the environment in terms of the user
interface, we developed prototype software on the Apollo. The prototype was -
designed to represent a framework into which the prototyping tools could be
placed. A user would use this framework for guidance and access to the
tools. It was also designed to be flexible and reconfigurable. Figure 10.3-1 -. "
is a diagram of the software running the prototype. The drawing is
partitioned into the user's view, Apollo hosted processes, and VAX hosted

processes. *:""".-.

96

-V... . .. -., .' ..... , - .... - -. . - - . .... ,.. ...-.. . .- ... . .- ,-,,-.- .. .-. ,.-. . -, .. -, - -%- ,,,-% . ,, --. j - , .-. ~ '...

"-.. "-;-. ".,,,, .. . .. ... ..-"..- ".-. .- ".". .- " - ". " . -,"" . ,',,. .,.,'" ¢ "" . •""'"""".,. "% V •"•"•"-"•".. '-',,"-•,"•.



00 m

000

III 0 111 -4ii J

0

0 > U -

0)a

0 14 w

w co

V) 0

0 '. . . a

00

00

to 0

oo U)
0 to 0 I4c

-44 u 4

0

I4 W u 1

o(. to q

.4

~~. ~ 0 -. . . . . . .

. . . . . . .. . . . . . . . . . . . .



Essentially, the prototype consists of an executive process and several
cooperating processes configured by several files. The executive process
functions quite simply as depicted in Figure 10.3-2. It begins execution by 4
reading a configuration file into a table. Then it maps into its address
space a small area, called an Interprocess Communication (IPC) flag, used for
communication with the other processes. After initialization the executive

simply monitors the interprocess communication flag for events. Upon the
detection, "flagging" of an event, the executive examines the contents of the
communication space and takes appropriate action. If the flag is set to a
positive integer, then this integer is used as an index into the configuration
table. Information indexed by the flag tells the executive what process to
initiate. In the case of a negative flag, the executive terminates a

process. While the executive monitors events it also keeps track of what
processes are already active and how many processes are remaining. The flag
is set to reflect these conditions. That way, if a request is made to begin a
process that is already running, then the requesting process can determine
that fact from the flag after it has made the request. Similarly, if so many
processes are running that no more may do so, then the flag is set to so N.%
indicate.

The executive is the means for the prototype's other processes to
cooperate. A process may request the initiation of another process or inform
the executive of its own termination. After each request, the process then
waits for an acknowledgment from the executive indicating the status of the
request.

This structure can be used to implement a menu system. Figure 10.3-3.
is a diagram of the generic menu process used. The menus in this system
presented the user with a choice of functions in the prototyping environment.
Selection from the menus was made by simply positioning the cursor over text
on the screen and clicking a button. Positioning was done using a "mouse"
pointing device. The user selects activities from a menu, activities which
might be from another menu, or one of several other types of processes.
Included in the demonstration were processes for configuring and running the
FAM, displaying graphics, and editing graphics.

,9-

98



i~zrjw 1ww P% .-. ZW." .."

Configuration Process Descriptions l1
File ,

nitlalizl

Process Descriptions

Process Table .'

Process Descriptions

Status OS CommandsProcess Exeut

Index Process Outut

.'%.'0-

*'j - .,.

Mon i tor , . o.

I User & %Y-
Processes , -

% %

Raw Data egi ,..-

Process 'Index-,%.. .

IPC Flag

*. Status Requests ',

n.0 '

Cooperating Processes

*. Figure 10.3-2 Prototype Interface Executive
V..

% In the menu system itself, we provided two means of access to the 4..-.'V'

S user: a hierarchical method and a direct method. The hierarchical method
begins by listing the highest level activities first. Selection of a
top-level activity then results in the presentation of a menu of lower-level
activities and so on, until the user has selected a core prototyping
activity. This hierarchical method of access was designed to guide the user
through the methodology. As users become more familiar with a system, the
hierarchical method becomes cumbersome rather than helpful. Therefore, we .
also provided a direct method of access. The direct method consists simply of '

an exhaustive menu from which the user may select any of the processes
* available.

10.4 Methodology 
.

The methodology must define when to prototype, what to prototype, the
means to use, and what to do with the results. The methodology we have
developed thus tar answers all of these questions to some level of detail, but

V. 99
Iat: 

J.

ir

-... .. a '., ...... ., ... .. . .. . .. .. .. -.. ..-.. , .. .,, ,.. ... ...V .,'a--" ., -" . -",t ,. . . . ,, d , ,



YS W" U OTC? ILI.- -.- . - . - - - -

it focuses most clearly on the question of when to prototype. This question
must be answered because it addresses the most deeply rooted problems in the P

development of software for C3, systems.

The upper level of Figure 10.4-1 helps to explain why the 'when' of
prototyping so critically concerns the development of software. The diagram
depicts three phases proceeding in time from left to right. The first phase
activities identify, express and validate requirements for the system. From
the system requirements, Phase 2 identifies, expresses and validates the
resulting requirements for software in the system. Phase 3 activities result
in a software design.

Phase 2Phase I Express & Phase 3.,- .
Express & Validate 0 Validate Software

System Requirements Software Design
Requirements •/ ' '

Idealized Sequence

System RequirementsDetail Sse

Level ISoftware Requirements

Software Design

Level/ 
d ,

.. r. . .
Time-

Figure 10.4-1 Realistic Model of Activities

This sequence of activity reveals the dependence of design on software r-..
requirements and software requirement on system requirements, which is the
hallmark of modern software engineering. Each succeeding phase is dependent,
for its own validation, on the validation of the previous phase's results.
Prototyping facilitates validation. To effectively build good software,
prototyping should be applied in the system requirement process. The top half
of Figure 10.4-1 may be considered an idealized sequence of activities,
idealized because the flow of activities in each phase is not truly
sequential. The dependencies are sequential, the processes are not.

The lower half of Figure 10.4-1 illustrates a more realistic model of
the development process. The phases are now pictured as levels or planes of
activities. The position of the left edge in relation to the timeline
indicates the sequence of initiation of the phases. As you can see in the
diagram, the durations ot the phases overlap. The analogy says that

100 q .'

/. .- ..-- -" .



1~ 40

activities in all of the phases can take place at the same time, some in
parallel, others asynchronously. Activity proceeds in an opportunistic
fashion as the necessary inputs become available and management constraints .".- V"#
are satisfied. 'p

As a result, requirements are validated in an ongoing way at all
levels. A validated baseline of requirements, however, must be arrived at as
quickly as possible. We consider it critical in our development of a
methodology to facilitate validation in a manner that recognizes the .. 4..
overlapping in time of essential activities and, at the same time, the need to
quickly formulate a baseline.

The three phases pictured in Figure 10.4-1 partition our methodology. .
Figures 10.4-2 through 10.4-11 show detailed activities within the phases. ,.-
Phase 1, Express and Validate System Requirements, is detailed in Figures
10.4-2 through 10.4-6; Phase 2, Express and Validate Software Requirements, in
Figures 10.4-7 through 10.4-10; Phase 3, Software Design, in Figure 10.4-11. Am-
In the diagrams, activities are represented by circles, products of activities .'..
by rectangles, and on-line storage by cylinders. Arrows indicate the flow of .'.-

information in the methodology.

'.- -% .' ,

101

-4 *..-. . . . - . . . . .* *. . . . . .....J. - .. . % . . * ,.. -. ..- . ' . . .*--*.-.. . .



- Thea Assessment 
*

-~~~~~ Misin.-,,,-

-~~ SO Strutru-

- ThreatDssessmen

Like C2 SAM .~--

Preliminar

Scenariosn

1.2.

Next-Phase Activity

Figure 10.4-2 Express and Validate System Requirements

%

4 102



Phase 1: Express and Validate System Requirements

More specifically, the activities we are referring to in the
Prefunctional Definition process include various types of high level
operational analysis. Battle management, force allocation and assessment of
threat are the kinds of activities involved. Experts in operations combine .-. ' " .

with researchers and consultants to do these analyses. The upper left-hand . .
corner of Figure 10.4-2 is expanded in Figure 10.4-3 to show two activities

taking place within Prefunctional Definition. Modeling and Scenario -
Development are the work of the operational experts. The translation activity
takes their raw output to produce a Preliminary System Specification.

Figure 10.4-2 shows our highest level of division within the phase.
Proceeding left to right, the Prefunctional Definition activity produces a
preliminary system specification. This specification feeds the Analysis and
Definition process, producing a more detailed and formatted specification.
The formatted specifications are then used to model the system and assess it
against scenarios.

Preliminary System Specification resulting from Prefunctional
Definition drives the Analysis and Definition activity. Formatted
specifications are a result. The Scenario Development by these same experts
proceeds down the left side of the diagram. Detail in these scenarios

increases with time. Arrows from the Scenarios back into the main diagram
indicate that the Scenarios feed into all of the activities.

Scenarios provide a reference model for the state of the evolving
system at any time. Figure 10.4-4 shows how Scenario development is a
continuing process paralleling both the growth of detail in the actual system
and the developing model of the system. As time goes on, all these increase
in detail. Diagram 10.4-2 also shows a database such as the C2SAM as input to
the functional analysis and definition activity. We are using the C2SAM here
to represent a generalized functional model of C3 systems. C2SAM itself
contains both generic and specific information. Its data base are validated
for TAC, MAC, and USAFE (CENTCOM). The generic structure of C5 systems has
been examined and judged adequate for SAC and NORAD; therefore, the C2SAM
paradigm can be extended to cover the necessary range of structures. Figure
10.4-3 expands the Analysis and Definition Activity to show the activities
substructure and the categories of formatted specifications produced. These
specifications are then reformatted to be input to the System Assessment
modeling activity.

• °. -.

%****

103

.° °* . w

. . . . . . . . . . . . . . . . . . . .- *. .. * . * * .. .•... * . *. *
"'

o  
' -V.

e . --e °



b%

0 0)

Cd -4 1

00

en4

Ci 0- -- 4-.

.,-1% 44...

..- ... w

j* * .-H -. -. 40

to.. . . . .. . . . . . . . . . . .~ w...,.. 0

41. ~ *



Again, referring to Figure 10.4-3, it shows that System assessment

modeling is achieved through the GPM, GOM, and FAM tools. The GPM provides

ADPE modeling, the GOM allows modeling of human analyst procedures, and the

FAM provides modeling of a system's logical structure.

Scenarios/ 0,Evolution/Detailing -

Reference Model

System I Requirements Design Implement Integrate

Simulation - Documentation - Documentation - Documentation -

- Analyses - Simulation - Analyses - Working Models
Models of System - Prototypes - Prototypes - Components

- Documentation - Analyses

Time , .

Figure 10.4-4 .?

There are three continuing processes within a system development:

coming-into-being of the product, development of paper and computer-

based models, and evolution of the reference scenarios.

Figure 10.4-5 isolates the subactivities of functional analysis and

definition. It shows the use of a generalized C
3 system functional model to

arrive at specific functional requirements. The specific functional

requirements are checked for consistency and completeness, and revisions are

identified. Also, interface requirements are derived from the Specific

Functional Requirements. The two products, Specific Functional Requirements

and Derived Interface Requirements, are input to the Operational Concepts

Definition. Operational Concepts Definition breaks down into the two

activities depicted in Figure 10.4-6. First, operational concepts are .- ',%:

developed from analysis. This set of concepts then yields a set of evaluation

criteria for the system. ,. Z

Phase 2: Express and Validate Software Requirements

Refer to Figure 10.4-7. Here we see the relationship of the project ,-6

data bases to the methodology. They provide a repository into which the

growing mass of detail in the system may be deposited. Their filling is done

by the Software Requirements Analysis activity. 
The analysis takes

preliminary software requirements and seeks to refine and clarify them. More

detailed requirements are produced. The more refined requirements are modeled

and the results of modeling used as input to further iteration of the analysis

activity. Eventually, requirements are refined to the point that they may be

prototyped. After prototypes are constructed and run, the results are fed

into an activity which determines the best way to feed them back into the

development process.

105

- ~. % . . . . .



Preliminary

*Specification Use Generalizedfo

Completeness

Operationall

Oprtopeainaaocetlefnto

Fiue 04- ni Ia nterfisand Definition

Requirementss

* Figre 1.4-6Operationa. Concepts Definition

Figre 0.45 Fnctona Anlyss ad Dfin0io

Speciic Drive

Funciona Intrfac

Requirement Requiement

Analyze**-.*' * ..- 4..

4. .. *operational



* - . .

Software Preliminary, -, -
ASAP Requirement Software £

Analysis Requirements .

: , .... 2

~~~~~~Results ,,"..-:.

oft

Runs

DWB SoftwareNx h Acti
Requirement . p.. .
Modeling. '

Pont

F~~~eedback "'[;?'

Prttp Results
Softwareof
Re u r m n sPrototype " ?

2. Runs. .--.

Next-Phase Act ivity

Figure 10.4-7 Express and Validate Software Requirements

Figure 10.4-8 expands on the Software requirements analysis activity. ,

Preliminary Software Requirements initially feed the Site Dependent Analysis¢

activity. Site dependent refers to methods of analysis peculiar to whatever .'.

organization is responsible for these activities. For instance, the method of
tailored Yourdon analysis used by Denver Aerospace would be site dependent
analysis. A DWB-derived data base is pictured as a storage place for the .

results of analysis. Two activities augment the site dependent analysis. One ...
of these is Domain Dependent Analysis. Domain Dependent Analysis implies a

collection of techniques developed specifically for the analysis of C31
requirements, independent of site specific considerations. For instance, SREM -

and its supporting software specifically facilitate the isolation of

statements of software requirements in the C3 1 system developments. Again,
we show a DWB defined data base as the repository of the results of such
analysis. Also augmenting the analysis process is the structural analysis
activity. We represent this type of analysis by the use of the ASAP tool. .

ASAP, a Denver Aerospace tool, supports a structured analysis technique. The -

technique consists of expressing the requirements in input-process-output

terms and verifying that the logical flow is consistent and complete. The

1-.

107 ":""-

~.....*................................

.. -_ .._ - ' .?i ?-- . -. ...- . 4. .".- " .- ,. .,..'' '.'.-'-

requirements are considered consistent if subrequirements trace to higher I

level requirements in terms of specific inputs and outputs. Completeness
implies that all inputs and outputs are defined, each required process has

s ome input, and all output has an origin. The results of this analysis feed.
back into the analysis activity. The end results of all types of analysis are
formatted requirements stored in a DWB-derived data base.

Domain-d~ Stutue

2.01

~. *%

2.1i
Software Requirement -

Modeling
Figure 10.4-8 Software Requirement Analysis

Refer now to Figure 10.4-9. The next activity, Software Requirement
Modeling, shows that the requirements are obtained from the data base.
Technicians translate the requirements into descriptions suitable for such
models as FAM, GOM and GPM. A test scenari.o is selected and the models are
run. The software requirements analysis activity then considers the results.

N . %p

108

% h * ~ t* . . . *

, -,. ,.U

1.

DWB

Data
Processes
Requirements

Refined

Requirements wrV

Prototype
2.2] Software %

wa,

2.2 Requirements

I ~~Software
" "'e

20 I Requirement
" ."'."'. --

"-- Anai y s i s. :, :'-.--:.

Figure 10.4-9 Software Requirement Modeiing
4

The analysis and modeling
activities accumulate a

set of refined
.•

requirements in the DWE. When sufficient refined requirements have
,:"" .

accumulated and the situation warrants, prototyping
of the requirements begin. ,',, ._

Figure 10.4-10 expands
the Prototype Software

Requirement Activity.
As

the diagram shows,
prototyping activities

draw on the et of refined

requirements stored in DWB These activities utilize
currently used methods.

These methods consist
of prototyping environments

which require derivations
of

initial requirements. In this case, the initial requirements are the refined '.".

requirements stored in DWB. From these, subrequirements
necessary to

instantiate prototypes must
be derived. Two branches emerge from the

subrequirement derivation. One branch leads to the implementation of C3

MMI prototypes. The other branch implements
unspecified types of functional

At the end of the high and low
risk paths, the prototypes are run using

our appropriate scenario.
Results of the runs are fed into a feedback re.:in.ed,...-

.....................................
:.. .. °.. •o... ,... ... •.. .•... . . .-".-..... -... . °°.. -. .°....... °

.. r... d.... , .q. '."-.es.y
t.o...

instantiate pooyemutbdrid. Two.b ge........

.i a t i ..on o f C 3

MM pr t t p s Th othr.ra ch.. . .m ntsunp.if.. .yps.o. .nc. .n l.01.. .- k%

..pefrac prototy.....

A th en f h ig n lwrikpthte.rtoye.aern.sn

our aprorit-senro.Reulsofth-un-ae-e--toafedbc

- -. -- - .109.

selection activity to determine the best point or points in the process to
send results to.

Phase 3; Software Design

We have not focused a great deal on this final phase. To begin with,

much effort has already addressed this level of activity. Methodology exists-%
and is well known for getting from well-defined and detailed requirements to

software designs and then to executable code. We can achieve the highest %- -'.
payoffs by focusing on producing good inputs for this phase. By good inputs .

we mean well-defined, validated requirements.

% %%

.".

% %110~

b...-p ,. ~

p.. *

,'. II0 ,'.. r..

.•...-. -.....-. .-* *

14.

41 w4

41'

Cl.' 4.4.

u 4... 44W-

7.., -. 7 %.s .

Figure 10.4-11 details Phase 3. A DWB derived database again serves as
the main repository of specifications. Here we have partitioned the database

The first activity expands the required process description in text producing

the next lower level of specification. Then the expanded descriptions are

translated into some form of PDL (Program Design Language). Finally, the PDL
descriptions are translated to executable form.

The executable forms are prototypes. Selected scenarios drive the
prototypes, producing results which are evaluated against high level design
criteria accumulated throughout the development cycle. Analysis of the
results reveals the state of the system in relation to the established

criteria. A selection activity decides where in the cycle to direct the
evaluations.

10.5 Scenario Library '"

In terms of the C3I Rapid Prototype Investigation's own methodology, .. *

it is at a point which allows filling in enough details of a system prototype
to make some 'runs' and validate some system requirements. Scenarios must be
developed to drive the prototype. To do so, we can draw on the extensive
record of C31 system development and the knowledge of operationally r e
experienced people. Prime candidates for these scenarios were identified
early on in the project and remain viable, the OASIS and SPADOC efforts in
particular. There is detailed history of these efforts, encompassing all
levels of development to some extent. Formal documentation, developed

software, and participants in the efforts all contribute to the legacy and can
be used to derive scenarios.

,%- . *.

,* . ,' , .

112

- -. -.. **~...******. -.. -. . . .,.:.....v - -

4~~~~~ .9-0.--. rvW .

-. - .4.

N~ %*

Expand % e

Proces

Descriptio.

in.-

Text.

PDL*
Expanded~~r PrcssDscitin

Descriptio

Deransptte t AM

Prioyp Prtoyp

Fiueqie t 10.-1 3.%otae Dsg

n~. Exectabl

Executablep Fomor

Select,

Validted Etry

High-Level~~ DeinPit

Select4

Scenario

Analyze,

Ru Result

Prootpe Result
Prototype o

Scenario

11.0 PROTOTYPE ENVIRONMENT DESCRIPTION 5

The Rapid Prototy ing System (RPS) will be a tool to prototype key

functions of Air Force C I systems. The RPS development will be primarily
of software. Figure 11-1 shows the major CPC components and their
interconnection. The RPS consists of 6 CPCs: four modeling CPCs and two
tools/support CPCs. The user will access the system through the master
control CPC and, generally, next work with the interface modeling CPC. The i., :
master tools CPC allows coordination of the other modeling CPCs and their
packages. At any point, the user may direct text or data to the support tools
CPC to support documentation. The RPS will provide means to characterize the
user-system interface aspects of a C3 1 system, its data base content and
conceptual design, its structure at varying levels of detail, and its expected
performance. The RPS will support documentation of the results as well as
storage and retrieval of the prototypes themselves. At some future time,
links to other systems and models may be required.

Figure 11-1 shows an equipment environment of the RPS. It consists of
a Digital Equipment VAX 11/780 computer with two disk drives, line printer, %.' ,"6

system terminal, at least 2 MBYTES main memory, tape drive and at least two
VT100 terminals. There will also be a workstation network interfaced to the
VAX 11/780 unibus through a gateway processor (Apollo DSP 80 or f~inctional
equivalent). There will be a machine to process Prolog which has at least 2
MBYTES main memory and approximately 1 GBYTES of peripheral storage. System
engineering terminals on the order of IBM PC or Apple MacIntosh's will furnish ..
database query response and text editing capabilities. There should be
included color workstations such as the Apollo DN 550. This workstation

should have at least 2 MBYTES main memory and several MBYTES of display
memory. Each monochrome workstation (DN 320) will have its own Winchester
storage of at least seventy magabytes. The DSP 80 will be connected to a dual
drive removable cartridge Winchester system of at least 10 MBYTES per
cartridge capacity. There will be a screen hardcopy device interfaced to theDomain network. The VAX 11/780 will be interfaced to the RADC fiber optics ..i

network. '.. -

The VAX 11/780 shall host the VMS operating system, FORTRAN, Prolog,
PASCAL and C compilers. The Apollo DN 320S should be provided with the Aegis
operating system, FORTRAN, Prolog, PASCAL, and C compilers. The Distributed
Software E gineering Environment (DSEE) and Domain Distributed Data Management

package (D'M) should be provided for the Apollo computers. Further details
of the software functions may be found in the RPS Functional,
System/Subsystem, and Program Specifications.

* - 4."=.

114

."" '" .':,V"/ ""."'."'" '..'' ''?/. "" "",-"::< ,,.

-- 'V

L'4.

Q C3 E *'1

LL

C flXUOM u Va aO~~O N)twe* ru~l Svmmm~

115.

C,

C*

(4~
CC

*11

... 7 _7

12.0 DEMONSTRATION SCENARIO

12.1 Introduction

We held three demonstrations at Martin Marietta Denver Aerospace to I .
examine the suitability of our prototyping tools. The key demonstration was
focused on a C31 center that emphasized displays and databases. The Ground
Attack Control Center (GACC) is a concept for an improved element of the
Tactical Air Control Center (TACC). It was our intention to pick a . . "

demonstration problem representative of those requiring rapid prototyping. We .
chose the GACC because it is currently under definition, it will be a system

capable of development within the next five years, and it includes elements
such as displays and databases.

.. .-. "

The intention was to present an element of a GACC as an example of

prototyping--not to define or solve a GACC problem. The exact scenario we . - '

used was incidental. We assigned a prototypical mission user the job of

creating the GACC prototype. He had virtually no software experience. He
developed a scenario and used our prototype tools to construct a
demonstration. This activity was supposed to validate the ease of using rapid
prototyping tools as well as validating different types of prototyping. We
used interface prototyping and structure prototyping to create the TACC
demonstration.

12.2 Demonstration Results

The GACC demonstration proved the utility of our prototype rapid
prototyping tool and approach. Key to any software system designed to support
human cognitive processing is the user interface. User satisfaction is vested
in this interface's functionality. We had hypothesized that maximal
reconfigurability of the USI would be useful. Major steps were taken toward
that goal. The GACC prototype USI was assembled quickly (two-three week
period) and was easily reconfigured to allow a one day turnaround of changes.
It should be emphasized that this was accomplished with a partial and
incomplete interface modeling tool. Definition, placement, and selectivity of

pop-up menus and icons took place. The level of detail in the definition of
the GACC USI was sufficient to have provided valuable support at a system
requirements review, operational concept review, or preliminary design
review. Issues such as concerned the type of data needed to be included in
the database for a GACC were exposed. Operational procedures enabling the
prototype analyst to perform the experiment mission were apparent. The
prototype analyst with no programming experience was able to build the GACC
USI himself with minimal aid from technical specialists. This aid was of an . .
advisory nature. The USI states could be captured in hardcopy and would have
been available for inclusion in specifications if they were to be built.

This demonstration provided conclusive evidence of the utility of a
rapi prototyping system based on modeling to support a key and crucial aspect
of C I system development. C-

117

......... .-, ... ,.. . ,.- . ., •. ., '. .. " ".". "" . "-.. .- "-. .".".. .":..""... ."-". .'- .""

.01 J.'

APPENDIX

S,

4b~

118 ~

,% %*'** 4.

MODULE EXPR VAL SYSTEM REQS IS
ATTRIBUTES COMPUTERIZED, MANUAL:

INPUT DATA C2SAMDB, MISSION STATEMENT, THREAT ASSESSMENT,
A-SPEC,
SON:

OUTPUT DATA SPECIFIC FUNCTIONAL REQUIREMENTS,
DERIVED PERFORMANCE REQUIREMENTS, ..-

PRELIMINARY SYSTEM SPECIFICATION,
DERIVED INTERFACE REQUIREMENTS,

OPS CONCEPTS,
REFORMATTED INPUTS,

SCENARIOS,
SYSTEM ASSESSMENT:

INITIALIZES REFORMATTED INPUTS,
SCENARIOS,
SYSTEM ASSESSMENT:

MODIFIES OPS CONCEPTS,
SPECIFIC FUNCTIONAL REQUIREMENTS,
DERIVED PERFORMANCE REQUIREMENTS,
REFORMATTED INPUTS:". ,"

ACTIVATES EXPR VAL SOFTWARE REQS:

CONSISTS OF MODELING SCENARIO DEVELOPMENT,
PRELIM SYS SPECIFICATION
DERIVE FUNCTIONAL REQS,
CHECK CONSISTENT COMPLETE,
OPS CONCEPT ANALYSIS,
EXTRACT INTERFACE REQS,
BUILD EVALUATION CRITERIA,
FORMAT FOR MODELING,

SYSTEM ASSESSMENT MODELING,
HUMAN PROCEDURES MODELLING,

SYSTEM INTEGRITY MODELING:

TITLE EXPRESS AND VALIDATE SYSTEM REQUIREMENTS:

DESCRIPTION THIS IS THE FIRST PHASE OF DEVELOPMENT IN THE
RAPID PROTOTYPING CYCLE. IT BEGINS THE PROCESS OF
ITERATING OVER ALTERNATIVE PROTOTYPES OF THE
SYSTEM BY DERIVING MODELLABLE SPECIFICATIONS FROM
THE INITIAL SYSTEM DOCUMENTATION, SON, MISSION
STATEMENT, ETC., TRANSLATING THE MODELLABLE
SPECIFICATIONS INTO A PROTOTYPE, EXERCISING THE
PROTOTYPE AND ITERATING OVER PREVIOUS STEPS AS - ,.--
NECESSARY AND AS INDICATED BY RESULTS OF PROTOTYPE
RUNS.

OUTPUTS FROM THIS PHASE ARE FED BACK INTO VARIOUS

COMPONENTS OF THE PHASE AND INTO THE MORE DETALED ,i,-*."-

PHASE 'EXPRESS AND VALIDATE SOFT ARE
REQUIREMENTS'.;

Al-I

• " o . - .-. -•° . . . 4 . * * - •° ' . ° *. " " * * , - . - *• . *. ° " ° - . ' . ° . " . -. •

. ,.. , ., ,".t.'.', '... %4 "o .
°

,." . ,",a ,•,'., W " ." . .-- *...I. ",, -"....,. ,"... . . - ..

SPECIFICATION

INPUT

2SAMUB, MISSION STATEMENT, THREAT ASSESSMENT,
A SPEC,
SON

REPEAT

DO MODELLING SCENARIO DEVELOPMENT
USING :
MISSION STATEMENT, THREAT ASSESSMENT AND
STATEMENT OF NEED

PRODUCING :
SCENARIOS

DO PRELIM SYSTEM SPECIFICATION
USING:
MISSION STATEMENT, THREAT ASSESSMENT AND ..
STATEMENT OF NEED

PRODUCING
PRELIMINARY SYSTEM SPECIFICATION

DO IN PARALLEL
* These parallel processes are to proceed *
* as the necessary inputs become available *

DERIVE FUNCTIONAL REQS
USING:

PRELIMINARY SYSTEM SPECIFICATION,
C 2SAMDH,
CONSISTENCY AND COMPLETENESS CHECKS AND
OPS CONCEPTS

PRODUCING:

SPECIFIC FUNCTIONAL REQUIREMENTS

AND V

OPS CONCEPT ANALYSIS '-f "
USING:

SPECIFIC FUNCTIONAL REQUIREMENTS AND
DERIVED INTERFACE REQUIREMENTS

PRODUCING:
OPS CONCEPTS

AND

CHECK CONSISTENT COMPLETE _______

USING:
SPECIFIC FUNCTIONAL REQUIREMENTS

PRODUCING: '

CONSISTENCY AND COMPLETENESS CHECKS

A~J 1- 2ke-.

Al-2 I. ... %

, .,-. .,;,,",:-","- . ". ,.'--." .'..;-,,, ',-•---"." .. , -".." #; F -,".',

AND

EXTRACT INTERFACE REQS
USING:

SPECIFIC FUNCTIONAL REQUIREMENTS
PRODUCING:

DERIVED INTERFACE REQUIREMENTS

AND

BUILD EVALUATION CRITERIA
USING:

OPS CONCEPTS

PRODUCING:
PERFORMANCE AND TIMING EVALUATION
CRITERIA

AND

FORMAT FOR MODELLING
USING:

DERIVED INTERFACE REQUIREMENTS AND OPS
CONCEPTS

PRODUCING
REFORMATTED INPUTS a

ANDk

SYSTEM ASSESSMENT
USING

PREFORMATTED INPUTS,

PERFORMANCE AND TIMING EVALUATION

CRITERIA,
AND MODEL RESULTS

PRODUCING

FEEDBACK '

AND

ADPE MODELLING
USING:

REFORMATTED INPUTS, -

PERFORMANCE AND TIMING EVALUATION
CRITERIA
AND MODEL RESULTS

PRODUCING

MODEL RESULTS

AND

HUMAN PROCEDURES MODELLING
USING

REFORMATTED INPUTS, ~a
PERFORMANCE AND TIMING EVALUATION
CRITERIA,

Al13 .

AND MODEL RESULTS
PRODUCING:
MODEL RESULTS

AND

SYSTEM INTEGRITY MODELLING

USING: -

REFORMATTED INPUTS,
PERFORMANCE AND TIMING EVALUATION
CRITERIA,
AND MODEL RESULTS

PRODUCING:

MODEL RESULTS ,

END IN PARALLEL

UNTIL CRITERIA SATISFIED .4." -

OUTPUT: f:, Jm
SPECIFIC FUNCTIONAL REQUIREMENTS,

DERIVED PERFORMANCE REQUIREMENTS, .

PRELIMINARY SYSTEM SPECIFICATION,
DERIVED INTERFACE REQUIREMENTS,
OPS CONCEPTS,
REFORMATTED INPUTS,
SCENARIOS,
SYSTEM ASSESSMENT .

,.- %.

END EXPR VAL SYSTEM REQS;

MODULE EXPR VAL SOFTWARE RENS IS

ATTRIBUTES CONPUTERIZED, MANUAL;

INPUT DATA PRELIMINARY SOFTWARE REQS;

OUTPUT DATA ASAP DATABASE, DWB DATABASE,
CONSISTENCY COMPLETENESS CHECKS ,.

TRANSLATED RESULTS AND NEW REQUIREMENTS;

INITIALIZES ASAP DATABASE, DWB DATABASE,

CONSISTENCY COMPLETENESS CHECKS,

TRANSLATED RESULTS AND NEW REQUIREMENTS;

MODIFIES ASAP DATABASE, DWB DATABASE,

CONSISTENCY COMPLETENESS CHECKS,
TRANSLATED RESULTS AND NEW REQUIREMENTS;

ACTIVATES SOFTWARE DESIGN; ,.

IL *

." ,* -h . -.

*- *.- -- ** * *.~. - * * . *-* *. . ,- . * -.-..- . - -'. , . , - - .- . .- -• . . - . -'"> .- '
F " "."

" o °
.' - " '. .,"- ' * *-'.",-", - *t-."-. ',e "- . .- "'

"
- ""- "* ." -*" ."-, ..* ' ." " "°.-*J . ', ." '." .".- '"' -,'" ",". ,

CONSISTS OF SITE DEPENDENT ANALYSIS,
DOMAIN DEPENDENT ANALYSIS,
BUILD DATABASES,
CHECK CONSISTENT COMPLETE,
ASSESS SW REQS, ' -.;.'
GENERATE NEW REQS,
PROTO NO NEW REQS,
GEN MMI PROTOS, % V"

GEN OTHER PROTOS,
EXECUTE ASSESS PROTOS,

SELECT SCENARIOS;

TITLE EXPRESS AND VALIDATA SOFTWARE REQUIREMENTS;

DESCRIPTION THIS PHASE OF THE RAPID PROTOTYPING PROCESS BEGINS
AFTER THE INITIAL PHASE 'EXPRESS AND VALIDATE
SYSTEM REQUIREMENTS' HAS PRODUCED TENTATIVE
SOFTWARE ALLOCATIONS IN THE FORM OF PRELIMINARY
SOFTWARE REQUIREMENTS. IN THIS PHASE DETAILED
SOFTWARE MODELLING IS PERFORMED AND THE RESULTS ..-.

USED TO VALIDATE AND DIRECT THE SOFTWARE DESIGN . -

PROCESS. - -

SPECIFICATION INPUT
PRELIMINARY SOFTWARE REQUIREMENTS

DO IN PARALLEL

These parallel processes are to be *

* initiated as necessary inputs become *
• available and schedule permits.

SITE DEPENDENT ANALYSIS .
USING: . .

PROTOTYPE RESULTS, ..

PRELIMINARY SOFTWARE REQUIREMENTS AND k-V.. -
CONSISTENCY COMPLETENESS CHECKS

PRODUCING: -

SITE ANALYSIS -

AND

DOMAIN DEPENDENT ANALYSIS
USING

SITE ANALYSIS AND
SOFTWARE REQ ASSESSMENT

PRODUCING:
DATA BASE INPUTS

AND

BUILD DATABASES
USING :

DATABASE INPUTS AND l,

.. ' "..
. . .- .. - "-.-..

.--......

S .. .S. - p..-.......'...'..

PROTOTYPE ASSESSMENT R
PRODUCING
ASAP DATABASE AND
DWB DATABASE

AND

ASSESS SW REQS
USING *

ASAP DATABASE,
SWB DATABASE AND
MODEL RESULTS

PRODUCING :
MODEL CONFIGURATIONS AND
SOFTWARE REQ ASSESSMENT

AND

RUN MODELS .W

USING:
MODEL CONFIGURATIONS ., .\

PRODUCING
MODEL RESULTS

AND

PROTO NO NEW REQS
USING:
ASAP DATABASE, -.'-

DWB DATABASE
PRODUCING
TRANSLATED RESULTS

GENERATE REQS
USING :

ASAP DATABASE AND
DWB DATABASE

PRODUCING:

NEW REQUIREMENTS AND
TRANSLATED RESULTS

AND

GEN MMI PROTOS
USING

NEW REQUIREMENTS
PRODUCING
MMI PROTOTYPE

AND

Al-6

S-'...'...',.-,...... '.....-...-. ... _. ,,..... -.......-... .. '..'.,' ,"/,

GEN OTHER PROTOS
USING :

TRANSLATED RESULTS
PRODUCING :

FUNCTIONAL PROTOTYPE AND
PERFORMANCE PROTOTYPE

AND,

EXECUTE ASSESS PROTOS
USING:

SCENARIO SELECTION,
MMI PROTOTYPE,

FUNCTIONAL PROTOTYPE AND
PERFORMANCE PROTOTYPE N:Z.

PRODUCING

PROTOTYPE ASSESSEMENT

AND

SELECT SCENARIO .%- ,- -

USING : - %"
SCENARIOS

PRODUCING

SCENARIO SELECT ION

END IN PARALLEL

OUTPUT
ASAP DATABASE, DWB DATABASE,
CONSISTENCY COMPLETENESS CHECKS,

TRANSLATED RESULTS AND NEW REQUIREMENTS:

END EXPR VAL SOFTWARE REQS

MODEL SOFTWARE DESIGN IS

ATTRIBUTES COMPUTERIZES, MANUAL;

INPUT DATA DWB DATABASE;

INITIALIZES PROCESS DESCRIPTED REQS, _.
PDL REQS,

EXECUTABLE REQS,
VALIDATED HIGH LEVEL DESIGN;

MODIFIES PROCESS DESCRIPTED REQS, ,'. ''
PDL REQS,
EXECUTABLE REQS,

VALIDATED HIGH LEVEL DESIGN:

DESCRIPTION THIS PHASE BEGINS WITH VALIDATED SOFTWARE
REQUIREMENTS, TRANSLATES THOSE REQUIREMENTS INTO
ANEXECUTABLE FORM (MODEL CONFIGURATION), EXECUTES
PROTOTYPES AND ANALYZES THE RESULTS.:

Al-7

" - -

.

SPECIFICATION: INPUT:
DWB DATABASE

REPEAT

DO EXPAND PROCESS DESCRIPTORS
USING :
VALIDATED SW REQS

PRODUCING:
PROCESS DESCRIPTED REQUIREMENTS

DO TRANS TO PDL
USING:

PROCESS DESCRIPTED REQUIREMENTS
PRODUCING:

PDL REQUIREMENTS

DO TRANS TO EXECUTABLE
USING :

PDL REQUIREMENTS
PRODUCING:
EXECUTABLE REQUIREMENTS

DO SELECT SCENARIO
USING

SCENARIOS
PRODUCING

SCENARIO SELECTION

DO RUN PROTOTYPES
USING

SCENARIO SELECTION AND
EXECUTABLE REQUIREMENTS

PRODUCING :
PROTOTYPE RESULTS

DO ANALYZE RESULTS
USING:

PROTOTYPE RESULTS
PRODUCING :

RESULTS ANALYSIS . -,
.- , - ,*

UNTIL CRITERIA MET;

END SOFTWARE DESIGN:

-.- .-'-.-.

AI-8-

.+ -..........,............_......
+,++ l+. t..

REFERENCE S

The references are in alphabetical order by title, and the numbers

which occur are the C3 1 Rapid Prototype Investigation library index numbers.

23. A3 - Affordable, Acquisition, Approach (attach C); Ltg. Stewart

10. AFCEA - C2 System Acquisition Study - Final Briefing 16 July 1976

11. AFCEA - C2 System Acquisition Study - Final Report 01 Sept. 1982

9. AFR 57-4 Qperational Requirements Modification Program
Approval 15 Dec. 1977 ~J

8. AFR 80-14 Research and Development - Test and Evaluation
19 July 1976

31. AFR 300-2 Data Automation, Managing the USAF Automated Data Processing
Program 24 April 1980

30. AFR 80U-2 Acquisitior Management, Program Management; Department of the

Air Force 13 Aug. 19b2

7. AFK 800-14
Vol. I - Management ot Computer Resources in Systems % %-*
Vol. II - Acquisition and Support Procedures for Computer Resources in

Systems 12 Sept. 1975

160. "Ace: A System Which Analyses Complex Explanations"; International
Journal of Man-Machine Studies, Jan. 1979, Volume 11 #1, pg 125

216. "Ada Software Development Tools Up"; Electronics, May 1983, pg 157 "

248. "An Adaptable Software Environment to Support Methodologies"; IEEE
Soittair Proceedings, July 25-28, 1983, pg 363

212. "Advanced Parallel Architectures Get Attention as Way to Faster
Computing"; Electronics, June 1983, pg 105 ..- .

315. "Another Program for Drawing Diagram"; Software-Practice and
Experience, May 1982, Volume 12, Issue #5, pg 397

285. APL as a Software Design Specification Language; The Computer Journal,
August 19b0, Volume 23 #3, pg 230

5 .. .

116. "Application Methodology and Discussions" (Research Directions in
Sottware Technology) 1980; R.O. Duda, R. Schank, M. Hammer

112. "Applications of Mathematical System Theory to System Design, Modelingc . .

and Simulation"; A. Wayne Wymore, Ph.D. (1981 Winter Simulation

Conference Proceedings) %. '.

A2-1 S \

%. .,.- 4-...
. m ,. -. . .. '. -. -. *o o . - -° . . - - o - . ., ' . .o' Oo -. - ° o..' '-° .°

'','".'- " . .""' '-. ---. '-i
- --

* *"" *'-"'" *.-'" ".". " .''," . -."""".'". "'". ' '" ", '' ' ,"."' ''' .. """" . - ,. " -l-l-'

15__ .7 17 t, -.; --

%p

66. "The Art of Natural Graphic Man-Machine Conversation";
James D. Foley April 1974

109. "Artificial Intelligence--Applied to C3I";
David A. Brown and Harvey S. Goodman F.l.

75. "Automated Documentation System User's Manual"

H. Sayani, B. Kahn, and M. Zenn ISDOS Project July 1975 %

100. "Axioms for User-Defined Operators";
I.C. Pyle July 1979

36. Bill Batz Martin Marietta Aerospace Memo 9 May 1983

33. "Breaking The Systems Development Bottleneck"; Lee L. Gremillion and

Philip Pyburn March/April 1983

345. "Building Control Structures in the Smalltalk-80 Systems"; L. Peter

Deutsch, Smalltalk-80 System--Byte Magazine August 1981

342. "Building Data Structures in the Smalltalk-80 Systems"; James C.

Althoff Jr., Smalltalk-80 System--Byte Magazine August 1981

21. C2 Software Acquisition and Development Working Group (Final Report);

Chairman, Mr. Victor E. Jones July 1980

" 20. C2 Software Development and Acquisition Study - Status Report;
Harry Kottcamp (W/28)

361. C3CM Structural Design--Appendix A: Battle Management Processor
Software Requirements; Appendix B: Par System Development Methodology, .$ -

Dec. 1982, (Technical Proposal)

19. C3 1 Lecture Series (Command, Control, Communications and

Intelligence) (Mire) March 1983 .

18. "C3 1 Recommendations"; Alan J. Roberts (Mitre) July 1982

16. C3 1 Systems Research and Evaluation Library - Vol. I (Mitre) Nov.
1982

17. C3, Systems Research and Evaluation Library - Vol. II (Mitre) Nov.
1982

166. "A Case Study in Rapid Prototyping"; Software-Practice and Experience,
1980, Volume 10, pg 1037

215. "Case Study: SLQ-32 Design-to-Price EW Software Poses Expensive

Challenge"; Defense Electronics, January 1983, pg 84.
' ~ ~.." .-,,

99. "A Centralized Design Support Center"; Bruce Duncan March 1979

226. "The Challenge of Software Engineering Project Management"; Computer, . .q
August 1980, Volume 13, pg 51

A2-2

:~~

-. ,:.,.-- -. ...-. .-....-. .-...-..-..- .: -. :.-.........-.., .-... ...-.

193. "challenges in software Development"; Computer, March 1983, pg 60

12. Comments Arising From Lt. Col. Herndon; Harry Kottcamp

351. "Command Centers Have a Whole New Look (Command and Control)"; Military N.
Electronics, April 1983, pg 22

81. "the Command Language Grammar: A Representation for the User Interface
of Interactive Computer Systems"; Thomas P. Moran March 1981

199. "Comuunications Sequential Processes"; Communications of the ACM, Jan.
1983, Volume 25 #1, pg 100

133. "Compilation ot Nonprocedural Specification Into Computer Programs";

IEEE Transactions on Software Engineering, May 1983, Volume SE-9 #3, pg
267

71. "Computer-Aided Software Development"; Daniel Teichroew,
Hershey III, and Yamamoto May 1977

186. "Computer-Aided Production of Language Implementation Systems";
Software-Practice and Experience, Sept. 1982, Volume 12, Issue #9, pg
785

227. "Computer Aided Programming (Part I)"; IEEE Softfair Proceedings,
July 25-28, 1983, pg 9 ..:z..

259. "Computer Information Systems and Organization Structures";

Communications of the ACM, Aug. 1981, Volume 24 #8, pg V79 olume2

185. "Computer System Simulation in Pascal"; Software-Practice and

Experience, Aug. 1982, Volume 12, Issue #8, pg 777

254. "Concepts and Criteria to Assess Acceptability of Simulation Studies:
A Frame of Reference"; Communications of the ACM; April 1981, Volume 24
#4, pg 180

322. "Contemporary Software Development Environment"; Communications of the
ACM, Jan. 1982, Volume 25 #1, pg 318

141. "Contexts and Data Dependencies: A Synthesis"; IEEE Transactions on
Pattern Analysis and Machine Intelligence, May 1983, Volume PAMI-5 #3, {'."

pg 237

167. "A Comparison of Programming Languages for Software Engineering"; *. .- '.

Software-Practice and Experience, 1981, Volume 11, Issue-52, pg 3,..-.

170. "A Comparative Study of Task Communication in Ada"; Software-Practice

and Experience, March 1981, Volume 11, Issue-3, pg 257

279. "A Computer Aid for the Analysis of Complex Systems"; The Computer
Journal, March 1980, Volume 23 #2, pg 98 ,

%'
A2- 3-" t.

" " " " " "" " """...

7,,'.,..,"' ',L. .7.: ..",,-' ,',:".'',:, . '.h : ,:,. .'? . ,'.''..'.'.:." " •.."," "" "'..''.''...., '. "-"' :" ".'."

..''i ,.--"-'; .' " . ' ','".. .,,t,'--,r --b " - ' ,". -'-" "'"-.''- ,'":'-' '-" -"-"'"-',?.< ? ? ,- ' :-,.<-."' -.,'N.'-

311. "A Contextual Analysis of Pascal Programs"; Software-Practice and -. ..
Experience, Feb. 1982, Volume 12, Issue #2, pg 195 '

265. "Control Flow and Data Structure Documentation: Two Experiments"; 'V "Communications of the ACM, Jan. 1982, Volume 25 #1, pg 55

147. "Controlling the Complexity of Menu Networks"; Communications of the
ACM, Volume 25 #7, pg 412

258. "The Cornell Program Synthesizer: A Syntax-Directed Programming
Environment"; Communications of the ACM, Aug. 1981, Volume 24 #8, pg 563

, 237. "Critical Event Modeling: A Step Beyond System Level Testing"; IEEE "

Software Proceedings, July 25-28, 1983, pg 207

250. "The Cue Project"; IEEE Softfair Proceedings, July 25-28, 1983, pg 383

i362. Program Listings; Martin Marietta IR&D D16S Project Report; Deborah
Sinay, August 1983 w--

305. "Data Abstraction, Structured Programming, and the Practicing -. '(

Programmer"; Software-Practice and Experience, July 1981, Volume 11,
Issue #7, pg 607

195. "Data Processing in Blue Jeans"; Computer, March 1983, pg 66 .

37. "Decision Aids for Battle Management" (Battle Staff) Final Report
Arthur D. Garmington (for USAF) Nov. 1982

41. "Decision Aids for Target Aggregation: Decision Situation

Characteristics"; Michael L. Donnell April 1982

40. "Decision Aids for Target Aggregation: Decision Situation %

Characteristics Appendices"; Michael L. Donnell May 1982 i.-.,

39. "Decision Aids for Target Aggregation: Technology Review and Decision

and Selection"; A. Joseph Rockmore May 1982

38. "Decision Analysis and Artificial Intelligence: Applications to Senior

Battlestaff Decisions"; Paul E. Lehner (for USAF) Sept. 1981

223. "Decision Tables"; Software-Practice and Experience, 1983, Volume 13,
pg 523

179. "Decomposition of Flowchart Schemata"; The Computer Journal, Aug 1981,
Volume 24 #3, pg 258

87. "Definition of the Command Language Interface in Lhe Tactical Fusion
Center TFC)"; OASIS program document .-,J. -

46. "Dimensions of Representation"; Daniel G. Bobrow r., '.
Xerox, Palo Alto Research Center July 1975 ,.."

313. "Description of a Menu Creation and Interpretation System"; Software-

Practice and Experience, March 1982, Volume 12, Issue #3, pg 269

A2-4

1%6,..--- .- :.
," "-" '-. -, -. -'..' .".'. ... ' .- ,- .'....' .'.._.-.. ,.." -.. '. 5 . -%'-..-...-........ -'.-.- ..-... - . -'% " '."

301. "A Design Language for the Definition of a Retrieval System Interface
for Casual Users of a Relational Database"; Software-Practice and
Experience, May 1981, Volume 11, Issue #5, pg 521

318. "A Design Medium for Software"; Software-Practice and Experience, June

1980, Volume 12, Issue #6, pg 497

115. "The Design of a Family of Applications-Oriented Requirements
Languages"; Alan M. Davis (from W. Rzepka)

62. "Design of a Separable Transition-Diagram Compiler"; Melvin E. Conway
July 1963 (Communications of the ACM)

343. "Design Principles Behind Smalltalk"; Daniel H. H. Ingalls, .
Smalltalk-80 System; Byte Magazine August 1981 ,

206. "Design Rules Based on Analyses of Human Error"; Communications of the
ACN, Volume 26 #4, pg 254

44. "Design Specification Validation," Final Technical Report RADC June 1981

221. "A Device-Independent Network Graphics System"; Computer Graphics, July
1983, Volume 17 #3, pg 167

108. "Devising a Laboratory to Simulate C3 1 Operations"; Douglas B. Dahnn

187. "Development Methodologies for Scientific Software"; Software-Practice
and Experience, Dec. 1982, Volume 12, Issue #12, pg 1085

92. "The Development of an Intelligent, Trainable Graphic Display Assistant
for the Decisionmaker"; A. Morse, R. Kohler, and M. Sutherlant July
1982

264. "Diagram: A Grammar for Dialogues"; Communications of the ACM, Jan.
1982, Volume 25 #1, pg 27

134. "A Diagrammatic Notation for Abstract Syntax and Abstract Structured
Objects"; IEEE Transactions on Software Engineering, May 1983, Volume
SE-9 #3, pg 280 .r: .- S.-"

168. "Dialog: A Schema for the Quick and Effective Production of
Interactive Applications Software"; Software-Practice and Experience,
March 1981, Volume 11, Issue-3, pg 205

183. "A Dialogue Generator"; Software-Practice and Experience, Aug. 1982,

volume 12, Issue #8, pg 693 :---"

94. "A Dialogue Simulation Tool for Use in the Design of Interactive

Computer Systems"; D.R. Lenorovitz and H.R. Ramsey

19b. "Direct Manipulation: A Step Beyond Programming Languages"; Computer,
August 1983, pg 57 "'

A2-5

..., -...- - - - - ..- -- . -..... - -. .-.. . .., -..,.. - ,,

F- 7.- 7 -F 1 T7777

290. "Direct Implementations of Algebraic Specification of Abstract
Data-Types"; IEEE Transactions on Software Engineering, Jan.

1982,

Volume SE-8 #5, pg 12 .

102. "Display Applications in Command, Control and Communications Systems";
D.N. Grover and D.R. Lenorovitz

184. "The Distributed Programming Language SR-Mechanisms, Design and
Implementation"; Software-Practice and Experience, Aug. 1982, Volume , J
12, Issue #8, pg 719

77. "Distributed Software Engineering Control Process," Volume I, Technical

Proposal; Martin Marietta February 1983

78. "Distributed Software Engineering Control Process," Volume II (Volume I
- See #77), Management and Resource Plan; Martin Marietta February
1983

260. "Documentation for Model: A Hierarchical Approach"; Communications of ,

the ACM, Aug. 1981, Volume 24 #8, pg 728

32. DOD 7935.1-S Automated Data Systems Documentation Standards
13 Sept. 1977

306. "Dynamic Program Building"; Software-Practice and Experience, Aug.
1981, Volume 11, Issue #8, pg 853

207. "Th e Dynamics of Software Project Scheduling"; Communications of the

ACM, May 1983, Volume 26 #5, pg 340 .

252. "The Effect of Programming Team Structures on Programming Task";
Communications of the ACM, Feb. 1981, Volume 24 #2, pg 106

203. "An Effective Graphic Vocabulary"; IEEE Computer Graphics andApplications, March/April 1983, pg 46

251. "The Emperor's Old Clothes"; Communications of the ACM, Feb. 1981,
Volume 24 #2, pg 75

55. "EP-2: An Exemplary Programming System," Rand; W.S. Faught Feb. 1980 '-

47. "Empirical Estimates of Program Entropy"; Richard E. Sweet

Xerox, Palo Alto Research Center Sept. 1978

82. "Empirical and Formal Language Design Applied to a Unified Control

Construct for Interactive Computing"; David W. Embley Nov. 1977

113. "Enhancement of System Design and Simulation Via General System '
Theories"; J. Talavage (1981 Winter Simulation Conference Proceedings)

175. "Entity Life Cycle Models and Their Applicability to Information .,"

Systems Development Life Cycles: A Framework for Information Systems, '
Design and Implementation"; The Computer Journal, Aug. 1982, Volume 25 *

#3, pg 307

A2-6

f9...-r
.

e

204. "Error Messages: The Neglected Area of the Man/Machine Interface?";
Communications of the ACM, April 1983, Volume 26 #4, pg 246

57. "the Evolution of Cognitive Structures and Process"; Barbara
Hayes-Roth October 1976

243. "The Evolutionary Approach to Building the Joseph Software Development
Environment"; IEEE Softfair Proceedings, July 25-28, 1983, pg 317

53. "Exemplary Programming in Rita"; D.A. Waterman, October 1977

239. "Experience With Tool-Kit Approach in SMEF Prototyping," IEEE Softfair
Proceedings, July 25-28, 1983, pg 223

229. "Experiences With Smalltalk-80 For Application Development"; IEEE
Softtair Proceedings, July 25-28, 1983, pg 61 "'z.

261. "An Experiment Study of the Human/Computer Interface"; Communication of
the ACM, Aug. 1981, Volume 24 #8, pg 752

328. "An Experimental Program Transformation and Synthesis System";

Artificial Intelligence, 1981, Volume 16, pg I

281. "Extended Attribute Grammars"; The Computer Journal, May 1983, Volume
26 #2, pg 142

214. "Fifth-Generation Hardware Takes Shape"; Electronics, July 1983, pg 1

132. "File Structures, Program Structures, and Attributed Grammars"; IEEE
Transactions on Software Engineering, May 1983, Volume SE-9 #3, pg 260

97. "Final Report of the GSPC State-of-the-Art Subcommittee"; Computer
Graphics, June 1978, Volume 12 #1-2, pg 14

104. "Flowcharts Versus Program Design Languages: An Experimental

Comparison"; H.R. Ramsey, M.E. Atwood, J.R. VanDoren, June 1983

59. "Formal Grammar and Human Factors Design of an Interactive Graphics

System"; Phyllis Reisner; IEEE Transactions of Software Engineering,
March 1981

154. "A Fortran Programming Methodology Based on Data Abstraction," . -
Communications of the ACM, Volume 25 #7, pg 686

111. "Foundations for an Information Technology"; Tuncer I. Oren
(1981 Winter Simulation Conference Proceedings)

309. "A Framework for Modeling Graphic Interactions"; Software-Practice and .,

Experience, Feb 1982, Volume 12, Issue #2, pg 141

321. "The Future of Programming"; Communications of the ACM, Jan 1982,
Volume 25 #1, pg 196

93. "General Technique for Communications Protocol Validation"

C.H. West July 1978

A2-7

. ". •° ° ' ;° ~o . °- ... o. . - - =..... ° .° .

-. ,

139. "A Generalized Query-By-Example Data Manipulation Language Based on
Data Logic"; IEEE Transactions on Software Engineering, January 1983,
Volume SE-9 #1, pg 40

262. "A Generalized User Interface for Application Programs"; Communication
of the ACM, Aug 1981, Volume 24 #8, pg 796

69. "GPM Technical Volume and User's Guide (General Processor Model)"; D.
G. Glinos; Martin Marietta Aerospace Technical Report

95. "A Graph-Theoretic Language Extension for an Interactive Computer
Graphics Environment"; James P. DelGrande May 1979

209. "Graphic Design for Computer Graphics"; IEEE Computer Graphics and
Applications, July 1983, pg 63

106. "Grasp: A Software Development System Using D-Charts"; D.A. Workman
December 1979, Software-Practice and Experience 1/83 W/105

181. "Hades - A Command Environment That Supports Structure"; Software-
Practice and Experience, July 1982, Volume 12, Issue #7, pg 641

275. "The Hearsay-Il Speech-Understanding System: Integrating Knowledge to
Resolve Uncertainty"; ACM Computing Survey, March 1980, Volume 12 #1,
pg 213

188. "Hierarchically Structured Production Rules"; The Computer Journal,
Feb 1983, Volume 26 #1, pg 1

144. "Higher Level Programming and Data Abstractions - A Case Study Using
Enhanced C"; Software-Practice and Experience, 1983, Volume 13, pg 577

155. "HISDL - A Structured Description Language"; Communications of the ACM,
Volume 25 #7, pg 823

300. "How a Computer Should Talk to People"; IBM Systems Journal, 1982,
Volume 21 #4, pg 424 d,

298. "How Data Flow Can Improve Application Development Productivity"; IBM
Systems Journal, 1982, Volume 21 #2, pg 162

266. "A Human/Computer Interface to Accommodate User Learning Stages";
Communications of the ACM, Jan 1982, Volume 25 #1, pg 100

152. "A Human Factors Study of Color Notation Systems for Computer

Graphics"; Communications of the ACM, Volume 25 #7, pg 547

190. "Human Performance in interactive Graphics Operations"; The Computer
Journal, Feb 1983, Volume 26 #1, pg 93

205. "The Humanization of Computer Interfaces"; Communications of the ACM,
Volume 26 #4, pg 252

A2-8

, . . i.

." . -' .-- "--"4 "- " " " "": "-"-" "-" " ' '-"-" ' " " " " """ " """ """"' -".. . 2""".i% . , ''" "".

201. "Iconic Interfacing," IEEE Computer Graphics and Applications,
Applications, March/April 1983, pg 8

114. "Impact of General Systems Orientation: Present and Future"

Bernard P. Zeigler (1981 Winter Simulation Conference Proceedings)

49. "The Impact of Rapid Prototyping on Specifying User Requirements-Rapid
Prototyping Continued"; ACM Sigsoft, April 1982

5b. "Implications of Human Pattern Processing for the Design of Artificial I
Knowledge Systems," Barbara Hayes-Roth April 1977

28. "Improved Approach to Procuring and Developing Enhancements to a
Baseline System Under the Evolutionary System Development Approach";
Harry Kottcamp (W/21), Martin Marietta Aerospace memo

150. "Improving Computer Program Readability to Aid Modification";
Communications of the ACM, Volume 25 #7, pg 512

220. "Incense: A System for Displaying Data Structures"; Computer Graphics, .'-

July 1983, Volume 17 #3, pg 115 ,...,-.

178. "Increasing Computer System Productivity Software and Hardware k
Methods: A Comparative Study"; The Computer Journal, Aug 1981, Volume
24 #3,

pg 210

236. "The Index Development Environment Workbench"; IEEE Softfair
Proceedings, July 25-28, 1983, pg 200

189. "In Favour of System Prototypes and Their Integration Into the Systems
Development Cycle"; The Computer Journal, Feb 1983, volume 26 #1, pg 36

131. "Input-Output Tools: A Language Facility for Interactive and Real- .i".

Time Systems"; IEEE Transactions on Software Engineering, May 1983,
Volume SE-9 #3, pg 247

241. "An Integrated Interactive Design Environment for Taxis"; IEEE Softfair .-..
Proceedings, July 25-28, 1983, pg 298 *'-.

356. "The Integrated Requirements Implementation System (IRIS) as Applied to
C3 Systems," May 1983 (Larry Trometer) Martin Marietta Aerospace
Technical Report

*50. "An Integrated Set of Tools to Automate the Software Life Cycle"; GTE
Labs

64. "An Integrated System Analysis and Engineering (SAE) Toolkit,"

R. Newman May 26, 1983 Martin Marietta Aerospace Technical Report

96. "An Interactive System for the Construction Animation of Systems

Dynamics Models"; J.P. DelGrande and L. Mezei January 1979

240. "An Introduction to Editor Allan Poe"; IEEE Softfair Proceedings, July

25-28, 1983, pg 245 -

A2-9

6:6L6L~~~~~~~~i ,W-' I ~~~..- , .. ,.. '.... .. ,, -.. ;...9........- .. ,-

336. "Introducing the Smalltalk-80 System"; Adele Goldberg
Smalltalk-80 System-Byte Magazine August 1981

143. "Introduction to Enhanced C (EC)"; Software-Practice and Experience,

1983, Volume 13, pg 551

159. "An Investigation of Computer Coaching for Informal Learning
Activities"; International Journal of Man-Machine Studies, Jan 1979,
Volume 11 #1, pg 5

357. IRIS D-29R 1983, Ronald A. Bena, Martin Marietta Technical Report

355. IRIS Design Concept Document Project D-29R March 1983, Larry Trometer,
Martin Marietta Technical Report

307. "Is Block Structure Necessary?"; Software-Practice and Experience,
Aug. 1981, Volume 11, Issue #8, pg 853

346. "Is the Smalltalk-80 System for Children?"; Adele Goldberg and Joan
Ross, Smalltalk-80 System--Byte Magazine August 1981

65. "Language Development Tools on the Unix System," .'*-

Stephen C. Johnson (bell Laboratories) August 1980

137. "Language Features for Access Control"; IEEE Transactions on Software

Engineering, January 1983, Volume SE-9 #1, pg 16

271. "Leave and Recall: Primitives for Procedural Programming"; Software
Practical and Experience, 1980, Volume 10, pg 127

89. "LR Parsing"; A.V. Aho and S. C. Johnson, June 1974

79. "hedl-D User's Guide," Martin Marietta Technical Report

80. "Medl-R User's Guide," Martin Marietta Technical Report

5. MIL-S-52779 S/W Q.A. Program Requirements 05 April 1964

3. MIL-STD-483 (USAF) Configuration Management Practices

21 March 1979

1. MIL-STD-490 Specification Practices 30 October 1968 -

4. MIL-STD-499A Military Standards Engineering Management
01 May 1974

2. MIL-STD-1b79 (Navy) Weapon System S/W Development 01 Dec 1978

6. MIL-Q-9858A Quality Program Requirements 16 Dec 1963 . 2

297. "Macro Implementation of a Structured Assembly Language"; IEEE -- '"

Transactions on Software Engineering, May 1980, Volume SE-8 #3, pg 284

A2-10

.
_ .: ? ". - ? '- ". --? ,. .. ., .., .,.N!.

228. "The Message/Object Programming Model"; IEEE Softfair Proceedings, July
25-28, 1983, pg 51

60. "Military Message Systems: Current Status and Future Directions";
Constance L. Heitmeyer and Stanley H. Wilson Sept. 1980
IEEE Transactions on Communications

222. "Minimal GKS"; Computer Graphics, July 1983, Volume 17 #3, pg 183

165. "MM/, A Man-Machine Interface"; Software-Practice and Experience,
1980, Volume 10, pg 751

319. "Modeling and Validating the Man-Machine Interface"; Software-Practice
and Experience, June 1980, Volume 12, Issue #6, pg 557 .-

1b9. "A Modula Based Language Supporting Hierarchical Development and
Verification"; Software-Practice and Experience, March 1981, Volume 11, .'.4-
Issue-3, pg 237

317. "A Multi-User Operating System for Transaction Processing, Written in
Concurrent Pascal"; Software-Practice and Experience; May 1982, Volume
12, Issue #5, pg 445

67. "Multiparty Grammar and Related Features for Defining Interactive
Systems"; Ben Shneiderman April 1982

120. "Mumps Language Standard;" Mumps Development Committee System

Sept. 1977

353. "Navy Space Sensors Face Tough Requirements"; Military Electronics,

April 1983, pg 37

135. "An Object-Oriented Command Language"; IEEE Transaction on Software

Engineering, January 1983, Volume SE-9 #1, pg 1

253. "On Approaches to the Study of Social Issues in Computing";
Communications of the ACM, Feb. 1981, Volume 24 #2, pg 146

162. "On Generation of Inductive Hypotheses"; International Journal of

Man-Machine Studies, July 1977, Volume 9 #4, pg 415

149. "On the Inevitable Intertwining of specification and Implementation";
Communications of the ACM, Volume 25 #7, pg 438

13. "On the Management of USAFE C3 System Acquisition"; Lieutenant Col.

Frank M. Hernon, 10 June 1982, Technical Note

224. "On the Realization of Extended Control Structure in Fortran";
Software-Practice and Experience, 1983, volume 13, pg 431

68. "On the Use of Transition Diagrams in the Design of a User Interface . .'.

for an Interactive Computer System, David L. Parnas 1969

A2-11
":-I." . i

;. , ,''

295. "An Operational Approach to Requirements Specification for Embedded
Systems"; IEEE Transactions on Software Engineering, May 1980, Volume
SE-8 #3, pg 250

42. "An Overview of Computer-Based Natural Language Processing"; William B.
Gevarter, April 1983

43. "An Overview of Expert Systems"; William B. Gevarter, May 1982

230. "Ovide: A Software Package for Application Development"; IEEE Softfair
Proceedings, July 25-28, 1983, pg 61

210. "P-System Infiltrates Multiuser World"; Electronics, Feb. 1983, pg 75

14. "P31 in the C31 Community - A Model and Implementation"; James W. '*

Youngberg, Major USAF

103. "PDL-Program Design Language Reference Guide," February 1977

359. "Penetration Analysis Subsystem Data Sensitivity Analysis" - Final
Report, Sept. 1980, RADC Technical Report

358. "Penetration Evaluation Model Users Guide"; Martin Marietta Aerospace

288. "Perceptual Components of Computer Displays"; IEEE Computer Graphics
and Applications, May 1982, Volume 2 #3, pg 23

142. "Planning in Time: Windows and Durations for Activities and Goals";
Pattern Analysis and Machine Intelligence, May 1983, Volume PAMI-5 #3,
pg 246

235. "Platine: A Software Engineering Environment"; IEEE Softfair
Proceedings, July 25-28, 1983, pg 193

247. "Pride-Automated System Design Methodology"; IEEE Softfair Proceedings,
July 25-28, 1983, pg 351

101. "A Primer on Relational Data Base Concepts," G. Sandbery, 1981
41

148. "Principles of Package Design"; Communications of the ACM, Volume 25

#7, pg 419 -' '"'".

276. "Probabilistic Languages: A Review and Some Open Questions"; Computing
Surveys, March 1980, Volume 12 #1, pg 361 "

48. Proceedings of the Workshop on Data Abstractions, Databases and

Conceptual Modeling; ACM, June 1980

74. Proceeding SCE/ISDOS User's Workshop, ISDOS Project October 1978

164. "A Process Oriented Simulation Model Specification and Documentation

Language"; Software-Practice and Experience, 1980, Volume 10, pg 721
197. "Program Development"; Communications of the ACM, Jan. 1983, Volume 26

#1, pg 70

A2-12

-.-.- .".-..-..

293. "Program Specification Applied to a Text Formatter"; IEEE Transactions
on Software Engineering, Sept. 1982, Volume SE-8 #5, pg 490

153. "A Program Testing Assistant"; Communications of the ACM, Volume 25 #7, , .
pg 625

191. "The Programmable Compiler"; Computer, March 1983, pg 35

289. "The Programmer's Apprentice; Knowledge Based Program Editing"; IEEE '
Transactions on Software Engineering, Jan. 1982, Volume SE-8 #1, pgl

283. "Programmer-Defined Control Operations"; The Computer Journal, May
1983, Volume 26 #2, pg 175 .

282. "Programming Denotational Semantics"; The Computer Journal, May 1983,
Volume 26 #2, pg 164 f...

174. "The Programming Language BPL"; The Computer Journal, August 1982, 1
Volume 25 #3, pg 289 "

138. "Programming Language Constructs for Screen Definition"; IEEE

Transactions on Software Engineering, January 1983, Volume §E-9 #1, pg .,
31

352. "Protecting Stored Data Remains a Serious Problem (Computer Security)";
Military Electronics, April 1983, pg 26

238. "Proto-Cycling: A New Method for Application Development Using Fourth
Generation Languages"; IEEE Softfair Proceedings, July 25-28, 1983, pg217

119. "A Prototyping and Simulation Approach to Interactive Computer System
Design"; Paul R. Hanau and David R. Lenorovitz

118. "Prototyping and Simulation Tools for User/Computer Dialogue Design";
Paul R. Hanau and David R. Lenorovitz

20U8. "Prototyping Interactive Information Systems," Communications of the
ACM, Volume 26 #4, pg 347 "- ,.- ,.

70. "PSL/PSA A Computer-Aided Technique for Structured Documentation and
Analysis of Information Processing Systems"; ISDOS Project, Daniel
Teichrowew and E.A. Hershey III August 1976

98. "Q Charts - A Method of Specification"; G. Duncan March 1979

15. RADC Computer S/W Development Specification - General Specifications
30 June 1977

284. "RCC - A User-Extensible Systems Implementation Language";
The Computer Journal, August 1980, Volume 23 #3, pg 213

151. "Relating Sentences and Semantic Networks With Procedural Logic";
Communications of the ACM, Volume 25 #7

A2-13

%."'

267. "Relational Database: A Practical Foundation for Productivity";
Communications of the ACM, Jan 1982, Volume 25 #1, pg 109981,

45. "Repair Theory: A Generative Theory of Bugs in Procedural Skill";

Xerox Palo Alto Research Center Aug. 1980 p

270. "A Review and Evaluation of Software Science"; Computing Surveys, March
1978, Volume 10 #1, pg 3

72. Revs Users Manual (SREP Final Report, Volume II)
By: M.E. Dyer August 1977

117. "Research Directions and Discussions" (Research Direction in Software
Technology) 1980 By: B. H. Luskov and V. Berzins .

302. "Scenarios: An Event Management Package"; Software-Practice and
Experience, May 1981, Volume 11, Issue #5, pg 521 - .;

249. "SEA/I-Application Software Productivity System"; IEEE Softfair
Proceedings, July 25-28, 1983, pg 375 ,- -

157. "Self-Assessment Procedure X"; Communications of the ACM, Volume 25 #7,

pg 883

136. "Simulation of Procedure Variables Using Ada Task"; IEEE Transactions _p.
on Software Engineering, January 1983, Volume SE-9 #1, pg 13

172. "Simulation Tools in Computer System Design Methodologies"; The

Computer Journal, Feb. 1981, Volume 24 #1, pg 25 .-. %'

140. "Skills, Rules, Knowledge; Signals, Signs, and Symbols, and Other
Distinctions in Human Performance Models"; IEEE Transactions on
Software Engineering, May/June 1983, Volume SMC-13 #3, pg 257

337. "The Smalltalk-80 System," Xerox Learning Research Group
Smalltalk-80 System--Byte Magazine August 1981

338. "Object-Oriented Software Systems", David Robson, Smalltalk-80
System--Byte Magazine August 1981

268. "The Organization of the Living: A Theory of the Living
Organizations"; international Journal of Man-Machine Studies, May 1975,
Volume 7 #3, pg 313

339. "The Smalltalk Environment"; Larry Tesler, Smalltalk-80
System--Byte Magazine August 1981 b.

341. "The Smalltalk Graphics Kernel"; Daniel H. H. Ingalls "
Smalltalk-80 System--Byte Magazine August 1981

344. "1he Smalltalk-80 Virtual Machine"; Glenn Krasner, Smalltalk-80

System--Byte Magazine August 1981 ...

110. "Snapshot Thoughts on Rapid Prototyping," Howie Dahl, July 1983, Martin

Marietta Aerospace Technical Note

A2- 14

%...... - * * ...

*..... -...- -.

274. "Social Analyses of Computing: Theoretical Perspectives in Recent
Empirical Research"; ACM Computing Surveys, March 1980, Volume 12 #1,
pg 61

278. "Social Aspects of Systems Analysis"; The Computer Journal, Feb. 1980,
Volume 23 #1, pg 5

88. "The Software Designer Workbench (DWB)"; Paul A. Scheffer, Martin e.
Marietta Technical Report

303. "Software Engineering: An Example of Misuse"; Software-Practice and
Experience, June 1981, Volume 11, Issue #6, pg 629

15b. "Sottware Engineering for the Cobol Environment"; Communications of the
ACM, Volume 25 #7, pg 574 . .

314. "The Software Engineering of a Micro Computer Application System"; -
Software-Practice and Experience, April 1982, Volume 12, Issue #4,

pg 309 / .

245. "A Software Development Database"; IEEE Softfair Proceedings,
July 25-28, 1983, pg 337

29. "Software Development Methodology," Al Florence, 3 May 1983, Martin
Marietta Aerospace Technical Report

232. "Software Must Move. A Description of the Software Assembly Lines";
IEEE Softfair Proceedings, July 25-28, 1983, pg 119

213. "Software Science Revisited: A Critical Analysis of the Theory and Its

Empirical Support"; IEEE Transactions on Software Engineering, March
1983, Volume SE-9 #2, pg 155 %

246. "Software Tools Archive (STAR)"; IEEE Softfair Proceedings, July 25-28,
1983, pg 343

91. "Software Quality Attribute Definitions," Martin Marietta Technical
Report

194. "Sottware Quality Improvement"; Computer, March 1983, pg 66

263. "Some Practical Experience With a Software Quality Assurance Program";
Communications of the ACM, Jan. 1982, Volume 25 #1, pg 4

ibl. "Sophie: A Step Toward Creating a Reactive Learning Environment";

International Journal of Man-Machine Studies, Sept. 1975, Volume 7 #5,
pg 675

51. Special Issue on Rapid Prototyping; ACM Sigsoft, April 1982

292. "Specification and Verification of Communication Protocols in Affirm .

Using State of Transition Models"; IEEE Transactions on Software
Engineering, Sept. 1982, Volume SE-8 #5, pg 460 %..'

A2-5 5

V. 4.%

%*~ *4,' * 4~ % ? 4.. . .. * :- ;

86. Specification Languages: RSL, MSL, DSL, and ESL

291. "A Specification Method for Specifying Data and Procedural /

Abstractions"; IEEE Transactions on Software Engineering, Sept. 1982,
Volume SE-8 #5, pg 449

294. "Specification of Forms Processing and Business Procedures for Office
Automation"; IEEE Transactions ot Software Engineering, Sept. 1982,
Volume SE-8 #5, pg 499

146. "A Specification Schema for Indenting Programs"; Software-Practice and
Experience, 1983, Volume 13, pg 163

316. "Specitications: Formal and Informal-A Case Study"; Software-Practice
and Experience, May 1982, Volume 12, Issue #5, pg 433

27. "SREM Evaluation - Final Report" - Volume 1 (Draft), Martin Marietta " ,

Aerospace, A. Stone, D. Hartschuh, B. Castor April 1983

73. "SREm: Requirements Development Using SREM Technology," Volume II,

TRW, June 1979 .',
, *-*.- .I,

76. SREM-Software Requirements Engineering Methodology," TRW, TRW Class 4.

October 1977 Volume II

105. "Stoic, An Interactive Programming System for Dedicated Computing,"
J.M. Sachs and S.S. Burns, December 1980, Software-Practice and

Experience 1/83 W/106

272. "Strategies For Information Requirements Determination"; Systems

Journal, 1982, Volume 21 #1, pg4

176. "Structured System Analysis and Design Using Standard Flowcharting
Symbols"; The Computer Journal, Nov. 1981, Volume 24 #4, pg 295

287. "A Style for Writing the Syntactic Portions of Complete Definitions of

Programming Languages"; The Computer Journal,
May 1981, Volume 24 #2, pg 143

242. "Super PDL-A Software Design Tool"; IEEE Softfair Proceedings, July

25-28, 1983, pg 307 "

349. "Superposition Provides an Intelligence Fusion"; Military Electronics,
April 1983

350. "Surveillance is the Key Soviet Space Mission"; Military Electronics,

April 1983, pg 18 '

163. "A Survey of Information Requirements Analysis"; Computing Surveys,
Dec. 1977, Volume 9 #4, pg 273 %'

192. "Strategy for a DOD Software Initiative"; Computer, March 1983, pg 52 .'.-

218. "Syngraph: A Graphic User Interface Generator"; Computer Graphics,
July 1983, Volume 17 #3, pg 43

A2-16

% V.
a-..

308. "The Syntax of Interactive Command Languages: A Framework for Design";

Software-Practice and Experience, Jan. 1982, Volume 12, Issue #2, pg 141

280. "System Conventions for Nonprocedural Languages"; The Computer Journal,
March 1980, Volume 23 #2, pg 132

256. "System Design for Usability"; Communications of the ACM, Aug. 1981,
Volume 24 #8, pg 494

22. "System Acquisition," Technical Report, AFCEA, for General Marsh

223. "System Operational Design for the TFC Users Interface Phase II
(TUI-II)," Oasis Program Specification

35. "Systems Software Support for the USAFE TFC," OASIS Specification

173. "Systematics: its Syntax and Semantics as a Query Language (1)"; The ?

Computer Journal, Feb. 1981, Volume 24 #1, pg 56

286. "Systematics: Its Syntax and Semantics as a Query Language (2)"; The 7
Computer Journal, May 1981, Volume 24 #2, pg 125

171. "A Taxonomy of Current Approaches to Systems Analysis"; The Computer
Journal, Volume 25 #1, Feb. 1982

198. "A Technique for Software Module Specification With Example";

Communications of the ACM, Jan. 1983, Volume 26 #1, pg 75

299. "Technique for Assessing External Design of Software"; IBM Systems -
Journal, 1982, Volume 21 #2, pg 211

25. "TFC-User Interface, Phase II Man-Machine Interface (MMI) Guidelines,"
15 Oct. 1982 Oasis Program

255. "The Time and State Relationships in Simulation Modeling";

Communications of the ACM, Feb. 1981, Volume 24 #2, pg 173

244. "The Toolpack/ist Programming Environment"; IEEE Softfair Proceedings,
July 25-28, 1983, pg 326 - ,.

312. "A Tool to Aid in the Installation of Complex Software Systems";

Software-Practice and Experience, March 1982, Volume 12, Issue #3, pg

251
251 "~...-" - t"

231. "Tools and Methodologies: The Perfect Match or the Odd Couple"; IEEE

Softfair Proceedings, July 25-28, 1983, pg 95

347. "Toolbox: A Smalltalk Illustration System"; William Bowman and

Bob Flegal, Smalltalk-80 System--Byte Magazine August 1981

273. "Towards an Integrated Development Environment"; Systems Journal,
Volume 21 #1, pg 81

217. "Towards a Comprehensive User Interface Management System; Computer

Graphics, July 1983, Volume 17 #3, pg 35

A2-17

44 e* % N .~~j ~

158. "Towards a Theory of the Cognitive Processes in Computer Programming";
International Journal of Man-Machine Studies, Nov. 1977, Volume 9 #6,
pg 737, %

277. "Towards Comprehensive Specification"; The Computer Journal, Aug. 1979,
Volume 22 #3, pg 195

61. "Transition Network Grammars for Natural Language Analysis"; W.A. Woods
(Computational Linguistics)

84. "Translation of Decision Tables," Udo W. Pooch

360. "TSD Methodology Technical Report," Draft Final Report; Martin Marietta -

Aerospace

225. "Tutorial: Data Structure, Types, and Abstraction"; Computer, April
1980, Volume 13, pg 67

296. "Understanding and Documenting Programs"; IEEE Transactions on Software .

Engineering, May 1980, Volume SE-8 #3, pg 270

234. "The Unifiezd Support Environment: Tool Support for the User Software - -

Engineering Methodology"; IEEE Softfair Proceedings, July 25-28, 1983,
pg 145

182. "A Unified Theory for Software Production"; Software-Practice and , 4.*

Experience, Volume 12, Issue #7, pg 683 .

202. "The Use of a Sophisticated Graphic's Intertace in Computer-Assisted
Instruction"; IEEE Computer Graphics and Applications, March/April
1983, pg 25

24. "The Use of Prototype MMI to Resolve Requirement Issues With C21 Users"

145. "User Acceptance: Design Considerations for a Program Generator";
Soitware-Practice and Experience, 1983, Volume 13, pg 101

257. "A User-Friendly Algorithm"; Communications of the ACM, Aug. 1981,
Volume 24 #8, pg 556

.. • o ' .

340. "User-Oriented Descriptions of Smalltalk Systems"; Trygve M.H.
Reenskaug, Smalltalk-80 System--Byte Magazine August 1981

310. "Uses of the Simula Process Concept"; Software - Practice and....

Experience, Feb. 1982, Volume 12, Issue #2, pg 153

63. "Using Formal Specifications in the Design of Human-Computer . .

Interface"; Robert J. K. Jacob April 1963 (Communications of the ACM)

177. "Validation of an Analytic Model of Computer Performance"; The Computer
journal, Nov. 1981, Volume 24 #4, pg 347 W., %

83. "The Vienna Definition Language," Peter Wegner, Computer Surveys ,P -.

A2 -18

,P , ,.* • ~.... ,.................... .--.-. .-.-. ,,..............-. , ,,%,- - . .. -.. , ,.• .- ,-... . .-.- -. ,' .% . .. ".....,°

0'">." '-/ ,.,G-,',., .'>,,% '.€.,'-' ,'.-.,€- ' ..-. .. .-. , ."- " -" ,," .. ,", ,"." .,. . . ,,.,,:,, -,",

348. "Virtual Memory for an object-Oriented Language"; Ted Kaehler
Smalltalk-80 System--Byte Magazine August 1981

233. "What About CAD/CAN for Software? The Argus Concept"; IEEE Softfair
Proceedings, July 25-28, 1983, pg 129

A..

..

%

A2-19

% % ,

.,4
-4 JJ.

C. Li 0. l

0 A- Q.)0 0

43C 44 41

0.(be4 41

CO A0 -4

00 .0 to '

limU 0 i 0. =

43 0 w . ~ O.JO 2a

- 4 to *r4 . .00

z 4 0 &O2 b. 0 0. a
to .,q >10 cO u

U 0 -. ((0)0) 0*~-, 00.0
V

-44- . CO'
.4 x0 >1.C 0)14 .0

00 41 (.h g:J.

J
410) Cc a)A

0 Ui 4 a,%

LW CJ~ WO 41 c
to 400) - 0'

0 0 0 0 41
-

4 *,-4 CO L0.I 20 .14
'I

J*

S > C 4-4 * 004.~4- OQ4 j go

0~ ~~ ~ cU 0 . 00 W.) JU-'))
4) - 4 Z w >.

.40 A..C 50.- 00)- 0(0 .-

00 a) u 0 '0 41 4 0-4 C

41 CO '00 1 v 40)4.4~ 00 0

0

Li

CO4 4. r.OCO0

*

-4 I ' 4OO)

o O -4 -4 L O

-4 cu L0 a0

44 00. 00 ca u

00 0 0 a) 0 aU 0-a TO u

00/ .4 -V" --4 20 b0 >.,O

M - 60-4 41~ '

-4 0 4 0 0- $4 0 to*,,
0 ~ ~ ~ &ij Li44 (0 14

Li (U 00 *.N 0-
0 1- A4 r4(0i. '0 4

Aj 0- 0- MI CO)0

40 - $ -4 (n A 0 .0 0 4

4) 41~ -40 A-
10' '-' 00 Q) ~ 44 -A O 46

v. "'0 -4 00 -. 0 040

A- CO --4C *" "4 .0
.

0 0.4 O1.0)0 1 00

$4 4 04 0 -00cd.1-
' -

0 04 .0
.j 0 4J0

41 -. 4 a(U 2 i4
cc CO Li CO 00CO L

-4 co > >-4 1-'-.
0- 0 .- 0). 00-'(

o 2 0 4 ~ . 0 -.

.4 214 41

CO W -4 .- O ~00 0 c

CO t CD %4 14-4 0) -4

'44 n" cW (.2. 0

0 U 4 41 -i 10 2 4)
'-M -)> 4 00

0) > 0") '4 0 -) i(

(U >) 00 60 0 >" .

-4

zX

'm .04 00 C

0- ~ >~ to J C'4 e'
A3-1

44

$4 4 0) r

04j to (0 4)

to to 41 -0 4.4 C) 4
4

cc W 0 0

CL L I 0 0 -4 0 0

0 4) &

cc Q) c 0. cc0
0 . - 0.

g .4 4 0

U4 0 . 0 &) m :

U) LW t0) 4 a) U .r w

al 4)r , c ,
rA3~~0 'a0.0Q 0 4 aU A

E -4 to m b'c
w 0 ~ 0.0 0 4 oU4 -

Ai0 04)r 0C 00
E. U 4 - 4 E 4

W.
004A.-

1;1.4. 00.0"c > W..

0.0 1 Q 0 0
.-

0D.0-i4) wc 41) 40

00 ..0 .1 00
totoA0r 00 p .0

U) 12 4 '

ILJJ

Ia.0

c 0 . 4 4). 0

c 0~ 04)w

E-4 -, 410 0 U

4) 41 -4

414

z.4 0 $ -. -

1. 4 .0 0 -4

> 004

0 .. .,4II
.

41 to -2

u Z ..

i -,4 .,o -,4

CLU

00 ~r Lj(1-I 4. 00 *.j ~
0) 0 0 0 'j-4

Ia . $4 1-h wI $4. >)

W 0) 0 0"

(30 bd 0. 0 u

41 00 00
020 Ai1- CU CC m w(Uv

0-' >(4 0 AU 41 (U W4
$4 ulI U) 0 4 4 0

(UW (U) 0)0 (

1*0 -4 -A Q)-4 2 w

-: C r. W 0) 0)0 0i
Cn * w-'- 0) : 1. . 14~-4 0. CC 4 .

to W 0)0) 0(fl0 E-4 E-4 F-4

0i .4 . ~) 0 00 0

~. U -4 r. (U a' rA L)

U, 0 C.OC'4 l< 1. I -0 F ..

co CO('-- 1o : 0
w ca o.1 41 4)0 *44 *-W

tu((U 0 0104 0)4 >). >). > 0Z0-
r0 - L4. 0)1. '(4 ..-4 -,4 -4 -4 -4

>4.4 w0. 0. -,4 CO - 0 to -r) *0H $ -

Cz~~~~ 00)td J

>- 0) C 0
* 1 41 .,4 -,4

0 0 >4 0)*.40
0 60

0n mx 0 III M
to 1A 1 p - -

ci, Ai 0. b).0 0 0) -)
(UL U). -. 4 44 -4 W 4 C

w - ~ 4 w. 0. cc P.'
.,4 0 C:u r ,41

0 C: ~ 0) 0(Ul
CC fl * 4 -4 4C--lUW) A 41 04 AC -41)

41 4 *"(A) 0 ** (U4 0.40

.4 .4 00 CL to0 b2 W W 0.1
)-440) 0)-

-41 C im. -4 $4 4) w w 4 ta 0

CL (0. '-4 1.,C 00) 0
>%-4 0.A W i 1. 4 M. 4.4 (UJ

-31* AiP 1 i w *4 01 0 1
9 i 0 -) z 04 0 0)4 > " * o w

4. 4 -4 -4 0.-4 4-4 -. 4 -4*.,4 -,4'..4 0)1-w
01. 0 w u0. 00 U~ 4 C 02 > 0 > -40

w.a -4 CC -o (U WU (,4 Cc0 .0 .'

1.4 00 w 4)00
CL4 0

20 *j-4 -2

to Aj~ 0 m) 041
w4 000 04w) to 0

to C: 0)w a Q Ea

Id.-4 00) >%1.w 0 0) 0e> t
M.. w0 fl. >4 U d

m 1-

V"..

0

MISSION
* Of

Rom Air Development Center
RAVC ptans and executeA tezeatch, devetopment, .te6zt
and zetfected acquizition p~Lo9/am6A inl ppout oj

*Command, Cont~ot, Communicaton6 and Intetigence
CC31) acviteA. TechniLcat and engZnee'Ling
4uappo'tt wi&thin a4ea6 o6 competence -&5 ptovided to
ESV Ptog94am Oj~ices (PO,6) and o-thet ESV etement4
to Pet~otLm e66ective acqu.L&Ltion o6 C3 1 Ay~-temA.
The a4ea6 o6 techniLcat competence incde
communicat-on.6, command and contviot, battte
managementt, indo4mation ptoce&6zing, Autveittance
.6en-6o'r, intetgence data cottection and handting,

* * .60Z-d .6tate 6cience4, etecttomagnetcA&, and
ptopagation, and etect'onic, maintaiLnab-&Litq,
and compatibiZ-&ty.

X

- ..K. V.-

.6
4 *1~

4 (I

*a.

U

4..

* a

S.

A
-S

I..

Jm -. j-. ~ *.***.**.**,**.>.*.~.*~ ~ . ..

