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INTRODUCTION

AThis report is presented in four sections. In Section 1 an analysis of
the effects of noise on associative memories 1s presented, Special emphasis

is given to generalized inverse memories.

In Section 2 of this report, several algorithms which are appropriate for
implementation on the NRL spatial light modulator were compiled. These
include nonlinear associative memory models and a pseudo inverse memory model

that is optimum for incomplete input patterns.

In Section 3 of this report an analysis of a memory model that is optimum
in the least squares sense for input patterns with missing components was
analyzed. This memory was shown to be derivable from a different optimization
principle. This optimization produces that memory which has a minimum average

noise output for a given error in recall.

In Section 4 of this report we discuss projection techniques and subspace
methods. These approaches will allow the design of dynamic memory and recall

schemes that are nonlinear, have local connectivity and can be robust against

distorted input patterns. tiﬁA;lch( Cc,\fﬁbcfz Do
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1. ANALYSIS OF THE EFFECTS OF NOISE ON GENERALIZED INVERSE AND CORRELATION -ig*
MATRIX ASSOCIATIVE MEMORIES ol
_¥
Agsociative memory matrices aré constructed from pairs of vectors. Each A ft
:"-“‘
palr consists of an input vector and an output vector, If the input and :Qﬁf
Koy
output vectors are the same the memory is auto associative. If they are s

different the memory to hetero assoclative. The input vectors have £
components the output vectors have p components., The number of pairs of
vectors, n, is typically less than the number of components. A correlation

' matrix memory is constructed as

the outer product of the n pairs, A generalized inverse associative memory is o
T
constructed as POTRY
B
‘;'.\\
n o

M o= Yxt = 7 ¥y, x,1!

{ i1

where X! is a generalized inverse of X. The memories have dimension pxZ%.

There are several properties of true inverses which carry over to
generalized inverses. Four have been used to define useful classes of

generalized 1nverses.1 ;;f

The four properties are: nn




Afa al = Al (2)
(a al)T = A Al (3)
(AIA)T = ala (4)

We use the notation a€1,3,k,1) to indicate which of the four properties are
satisfied ‘(for example, Al satisfies (1), Al»" satisfies 1 and 4). The

Moore Penrose pseudo inverse satisfies all four,

A+ - A1,2,3,4

Associative memories using the Moore Penrose pseudo inverse have been

proposed and studied by Kohonen. 2 Any inverse which satisfies (1) provides a
solution to AZ = b, 2, = Alb 15 a particular solution and Z = Alb + (1-A1A)y

for arbitrary y i1s a general solution.

Any inverse which satisfies (1) can be used to generate a memory matrix

with no crosstalk.

Let

YX1

M -
Then M operating on an exact copy of an input X produces a correct copy of
the output Yy. In correlation matrix memories the cross talk is a function
of the overlap of inputs. Since generalized inverse assoclative memories

generate no crosstalk the output Yk for an input Xk with additive noise is

1-2
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where

X, =X + N

and

Ng and Ni© are the input and output noise respectively., We analyze here

the role that the inputs and outputs have on the signal to noise ratios.
Without loss of genmerality we can assume that both input and output vectors
are normalized to unity. If inputs and outputs are all normalized to the same
length, then the ratio of the output noise to input noise is equal to the
ratios of input to output signal to noise for the generalized inverse
memories, For correlation matrix memories, crosstalk contributes to total
fnput noise. Since M (X + N) = Y + NO + C, the more telling ratio 1is

IN® + cu
Nt

for correlation memories. The strength of the output noise versus the Input

noise is given by

N2 Y Ik . NTMIM N

Ik Ik NTN

This ratio is bounded by the maximum and minimum eigenvalues of MTM that 1s

) v ¢ il ¢ ( )uuuz
umin umax

1-3 o
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The output noise will be largest along the direction of the eigenvector of
MTM associated with Umax and smallest along the direction of the

eigenvector associated with ppyn. If the input noise is white the average
output noise to input noise can be obtalned by averaging the £ eigenvalues of
MTM. This average 1s equal to the trace divided by the number of

components.

o2 1 2

T
Ny -ETR (M M) N1

If there are many zero eigenvalues, this average will be small. Indeed
typically the number of components in the input vectors, ¢, is large compared
with the number of pairs, n, and the rank of MTM will be less thanm or equal
to n, depending on the linear independence of the inputs. If the inputs are
linearly independent there will be n nonzero eigenvalues and the trace can be

-~

replaced by n times the average of these n largest eigenvalues, u

2

w2 = (2) 4wt .

=)

The n/f% reduction in noise has been derived before for pseudoinverse auto-
associative memories.?~> The n/¢ reduction is obtained by any correlation
matrix memory or generalized inverse memory. The memory need not be
auto-associative nor even square. The reduction depends on the number of
components in the Input vectors and is independent of the number of output
components., Increasing the number of components in the input vectors for the
sake of nolse reduction alone is not advised however, as the noise that {is
reduced is noise that 1is perpendicular to the space of the inputs and which
does not contribute to the confusion among inputs. The input noise 1is a

combination of perpendicular and parallel noise.

N = N” + Nl
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These contributions are the contributions in the subspace assoclated with the g
inputs, N;, and contributions which are in the complement subspace. The

noise in the complement subspace 1s orthogonal to the subspace associated with
l"..
the inputs. For correlation matrix memories XI Nl = () for all stored inputs. o

-~

For generalized inverse associative memories XI1 N_L = (0 for all stored inputs

and therefore

MN = MN 3

. :
h LA
h A
b s
= - .

» M| =0 e
PON
N
i

Ny can be expressed as a linear combination of the stored inputs since the

] inputs form a basis ‘_:E:f.
f i
(Sl
n 8.
N DXy 5
i <o
D
s
Increasing the number of input components (1) on the surface appears to be e
helpful in reducing output noise, However unless the added components change B
the eigenstructure of MTM and reduce the crosstalk, there is no reduction in A
ot
confusion, When the input noise is white it 1s partitioned equally in all ’}
“or
directions on the average with average total strength of 0%, The partitioned S
between the parallel and perpendicular subspace depends only on their relative B .
dimensions . i
2 n 2 e
IlN"lI = r g ol
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It is only parallel input noise that mixes inputs and causes confusion. The !!5

h Y

average output noise strength depends on the average nonzero eigenvalue of v

MTM and the average parallel input noise strength
o 2 s 2

N = N

The output noise strength in general is given by

iN°1% = o n2 T

i A
and the covariance matrix for the output noise can be found from the %ﬁ;
covariance matrix of the input noise Let Ry be the covariance matrix of the .
input noise. Then Ryo = MRNMT is the covariance matrix of the output 53-
noise, If the input noise is white, the output covariance is proportiomal to }fﬂ
the outer product of the memory with itself Ryo = o?mMT. The covariances “i
and strengths of the output noise is a function of the singular values of the }:T
memory matrix or equivalently the eigenstructure of MTM and MMT, The f:%
analysis that follows will show that the eigenstructure depends on the metrics ﬂfi
for the inputs and outputs. The metrics are inner product matrices of f"»
dimension nxn. Let A, = XTX and by = YTY. The efgenvalues and Sﬁk
elgenvectors of MTM can be found by solving: :{f?
049

T NN

MMy = pu )

If M is a generalized inverse memory, MIM = (XI)T 4yXl. Defining ¥ s
through $ = X¥ yields the following generalized eigenvalue problem iii
Ag¥ = A ¥u :j:::.

.':\‘:

“.‘.n
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If M is a correlation memory matrix the inner product is MIM =
XTAYx. Defining § through ¢ = XIg the eigenvalue problem 1is transformed

to the generalized eigenvalue problem
AXAYg = &u
or AYE = A;lau if the lnverse exists.

We consider a few special cases then solve the generalized eigenvalue

problem for the general case.

Case 1 Orthogonal Inputs 4y = 1

In this case, the generalized inverse and correlation matrix memories
have the same characteristics. The nonzero eigenvalues of MTM, u, are the

eigenvalues of Ay.

For high correlation in outputs, some eigenvalues can get large and there
will be large noise gain in those directions. The trace of Ay is n so there

will be no increase in average output noise strength.

Case 2 Orthogonal Outputs Ay = 1

For high correlation in inputs the u can get very large in some
directions. For the generalized inverse memory the eigenvalues are the
eigenvalues of AX'I. There will be large noise gains in the directions

1 will be greater than n and there

associated with large u. The trace of Ay~
will be a gain in the average nolse strength for generalized inverse
memories, For the correlation matrix memory the nonzero eigenvalues u of
MTM are the eigenvalues of Ayx. The trace of 4y is n. So no gaim In

average output noise will occur for correlation matrix memories.
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Case 3 Auto Associative Memory

Here the inputs are the same as the outputs Xy = Y;. The generalized
inverse memory M is a projection operator. All of the eigenvalues of MTy

are one and its trace is one. For the correlation matrix memory the

eigenvalues of MIM are the eigenvalues of (AX)Z. If there are inputs
which are highly correlated there will be large gains in output noise strength
in those directions. The trace of (AX)2 will be larger than n and a net

gain in average output nolse stremngth will result. be

Case 4 Heteroassociative But Ay = Ay

This 1is an interesting special case in which Y # X; and M need not be
square. The generalized inverse memory, M, is not a projection operator but )Lﬂ,

MTM is a projection operator with unit eigenvalues and a trace equal to n.

For the correlation matrix memory, MIM has eigenvalues again which are
equal to those of (Ax)z. The noise characteristics are identical to those
of the autoassociative memory, Case 3, for both the correlation and the

generalized inverse memorlies,

Nonspecial cases require solution of the generalized eigenvalue problem.
An analysis and a set of bounds on the generalized eignevalues can be obtained
by performing generalized singular value decomposition, For a pair of
matrices A and B which have the same number of columns the following
decomposition is possible and {s called the generalized singular value

decomposition of A and B,

A=YV aZT

B = VB bZ

1-8
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where V, and Vp are unitary matrices, a and b are matrices whose only

nonzero elements lie along the diagonal, and Z is a matrix with linearly
independent columns. Without loss of generality, these columns can be assumed
to be normalized to unity. For each column of Z, Z; there is a pair of

generalized singular values ajy and by where

T .T _ 2

Z1 A AZi = a, YA Aa Zi
and

T .T 2 _

Zi B BZi = b1 = ZiAbZi

T T
since xA VA and VB VB are unity.
Thus
2
T BT T
2y 2084 = 3 30 2y 4 2y = wgZy A2y
{

The ratio of the squares of the generalized singular values are the
generalized eigenvalues. The generalized singular values are bounded by the
minimum and maximum eigenvalues of ATB, Omin and apgy, and the minimum

and maximum eigenvalues of BTB 3min 204 Bpax»
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We can apply these results to the generalized inverse associative memory. A

generalized singular value decomposition of X and Y ylelds

T
X be v
T
Y=V a
y v

Substituting into Ay¥y = Axyyu ylelds the generalized eigenvalues, uy =
aiz/biz, which are the eigenvalues to the MIM., These are bounded by the
ratio of the eigenvalues of Ay and Ay, Ay and Ay respectively.

AY(min) AY(max)

Ax(max) < My < kx(mins

For the correlation matrix memory a generalized singular value
decomposition of Y and XIT is required. Similar analysis yield the

following bounds in terms of the eigenvalues of Ay and A4y.

XY(min) xx(min) < My < XY(max) Ax(max)

As these bounds indicate the output noise strength can be much greater or
much less that the input noise. In order to achieve the minimum or maximum
gain in noise in Generalized Inverse Memories there must be high negative

correlation in the output when there is high positive correlation in the

. e & "0t et - L R S T ST
o' . P D T O T NN U R PO R
LA Al S P R P, Y. A, W A P PRI Ok W PP SRR IO W) W P GPU WK e 3




. inputs and vice versa. For correlation matrix memories, high correlation of

: same sign in inputs and corresponding outputs will cause large gain in noise.
A simple two dimensional example will illustrate the role of the metric
matrices in this analyslis.

- In Figure 1.1 are shown two input vectors X) and X, and in another plane

[ are two output vectors Y; and Y,.

The metrics Ay and Ay are

: 14

: s = ()

. d1

: and

’ (1 e

- Al = )

2 ¥ el

. where

. -1<da<1

X and

- -1<{ell

\

l‘

N
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6, = cos d

8, = cos e

Figure 1.la. Two Input Vectors and Two Output Vectors that are Positively ﬁu\
Correlated d > 0 and F > 0 ‘{};

8 = cos d ,
X

[ A

0, = cos e

Figure 1.1b. Two Input Vectors that are Positive Corrclated and Two Output
Vectors that are Negatively correlated d > 0 and e < O
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The generalized elgenvalue problem for the case of the pseudo inverse

associative memory

by ¥y = 8x ¥y ¥y

yields eigenvectors

and

l + e
1 (1+d)
and
l -¢
uy = (=9

If the inputs are positively correlated and the outputs negatively correlated
then u; can become quite large. On the other hand if both inputs and output
are positively correlated and e > d then p; is less than 1 and a net reduction
in noise will result in the Y, direction. If d = e, both eigenvalue are 1

(case 4), and no net gain or reduction occurs.

For the correlation matrix memory

-1 o

A, B, =48, £, 0 M

Y 1 X 7171 e

ylelds eigenvectors %
"

1 (1 Yl

=z ) N

.
s
.

1]
et e
Tele N ey
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and

1 (1
=g )
with eigenvalues
up = (I +e) (1+4d)

and

b=-0a-a .

If both inputs and outputs are positively correlated uj; > 1, or if both inputs
and outputs are negatively correlated pu; > 1, and noise gain will occur in the

Y1 or Yy, directions respectively.

The example illustrates how both input and output metrics influence the
output noise to input noise ratios. The most dominating factor however is the
input metric. 1In application, the real issue is confusion, will the input
plus noise look like an incorrect input? If it does the output will be the
incorrect output. The key concern is the effects of noise in directions
causing confusion. These directions are those pointing along input

differences.

Noise that directly contributed to confusing inputs Xy and Xj lies
along Xy = Xj, Nyj = n(Xgy -~ X4). The role that the output metric

plays is thru the correlation between outputs.

For a generalized inverse memory the confusing output noise is

MN, =N, = n(Y, - ¥,)

5| 1]

]
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and thus

noise in confusing directions increases proportionally to the relative
separation of outputs. The example in Figure 1 illustrates this point. When
the inputs are positively correlated and the outputs negatively correlated
their i{s a large noisé increase in the ¥, direction which lies along

M(X, - X;). For this case (Y, - Y,) being negatively correlated is
corresponding large. If both inpﬁ?é and outputs are positively correlated and
the outputs more correlated than the inputs then a net decrease in noise
occurs in the Y; - Y, direction, but the distance between Y; and Y; decreases

correspondingly.

This analysis suggests the real concerns with noise are the magnitudes of
the input noise in confusing directions and the distance between two inputs.
If the magnitude of the noise in a confusing direction exceeds the magnitude
of the distance between the two input vectors, confusion will occur.

Otherwise it will not. The analysis for correlation matrix memories is
complicated by the cross talk. For input noise pointing along a confusing
direction, Nij the output noise no longer lies exactly along the confusing

direction in the output space.

[}
IN i lI(Yi-Yj)+ (¢, - cj)u
IlNile IIXi - lel

The difference in cross talk can be either positive or negative and the
component of this difference along Y; - Y, can also be either positive or

negative,

1-15
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2. ADAPTIVE ASSOCIATIVE MEMORY MODELS WITH POTENTIAL e

OPTICAL IMPLEMENTATION >

f

_¥

A pseudo inverse matrix memory model has been successfully implemented A

optically at NRL.3 The algorithm used there is adaptive. Recall is a single ;7‘
matrix multiplication. Let the input vectors, X, have % components and the i

output vectors Y have p components then the p x £ memory matrix, M, recalls Y !if

by matrix multiplying X ;ﬁ:

'.j_:;

Y = MX :i}

During the learning phase of operation M can be found from a solution to :jﬁ

XTMT = YT, This 1s a standard linear estimation problem. However if fﬁ;

the number of input output palrs 1s less than the number of components in the if;

input vectors, the system is undetermined and M is not uniquely determined. A '2#

s

unique solution that gives the memory matrix M minimum Frobenius norm IMig

:‘t' LA I
. S
LR A A )

1s obtained from the Moore Penrose pseudo inverse of X, xI,

.l
»,

This memory can be found through an iterative algorithm which uses one

hd
x
»

R
“y

row of XI and YT at a time, i.e., it uses only one input output pair, The

'l

algorithm was first introduced by Kacrmarz! and later used first in fﬁ&
associative memories by Widrow.2 ;;j
‘%"11

The key step in the algorithm is -?}i

T T T T T ;:::

W

M(k+l)-M(k)+/\X1(Yk-XkMk) NI

This algorithm {s currently implemented at NRL.3 With minor modifications the :j:
algorithm can be used to find the pseudo {nverse of X or to be a novelty ::}A
fi{lter for X, By choosing Y to be the n x n unit matrix the algorithm will 'f;

’

et
-----

. e v .. N et et e e . v - . i -
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yield the pseudo inverse of X. By initialized M(o) to the £ x £ unit matrix
and setting Y to zero M becomes a novelty filter. The method of Kaczmarz has
spawned a large variety of algorithms for large systems and their

“=7 since in a

applications. These methods are known as row action methods
single step only one row of the matrics are required. Some basic'algorithms

that may have use in implementation are included in the following section.

Row Action Methods

We outline here a few of the row action methods which may be applicable
to optical implementation of associative memory and recall. Since the
algorithms can be used for both purposes we describe them here in a generic

notation commonly used for systems of linear equations

A x=0D}

This system may be underdetermined, greatly overdetermined with
possibility of inconsistencies (self contradiction) and it can be 111~
conditioned. There may be reason to doubt that the exact algebraic solution
is the desired one, especially if the data contains measurement inaccuracies

and or noise, distortion, and missing data. These other approaches include;

(1) Constrained Minimization

Min HAx - bl

subject to x ¢ S. By x €S, we mean it may be required to satisfy some set of

constraints for example box constraints.
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(11) Regularization
Minimize

[£ (x) + X IAx = BI]

where f (x) is usually the square norm of x, ﬂxuz, and xeS

(111) Feasibility

For each row vector aiT of A

T
(bi - Yi) Laxg [b1 + 51) xe$S

The v; and ¢4 are picked so that the feasibility region is not empty.

(iv) Optimization

Minimize F(x) subject to

T
? (b1 - yi) Laxg (b1 51) xeS
The basic algorithm is the Kaczmarz algorithm, It solves Ax = b,

.
h
E In this notation the nth step is
-
!

where u, = Ak/uakuz and Ay called the relaxation parameter is bounded
by 0 < A < 2. 1In the field of Image reconstruction from projections this
algorithm is known as ART.®



B T OV, vy A Al

EikSa A il Sl finl sod bl Aull gl ra S s k- ol ~S il ey Sl S-S

The most similar algorithm is the relaxation method of Agmon9 and Motskin
and Sihoenberg10 for the linear feasibility problem. Collecting all

constraints and expressing them as

Ax < b

the basic step is

o+ 1 - + T G
X X a, G

where

k

g =2 T

Wb 2 %)

for the right hand side negative and

gk =0

otherwise.
The interval feasibility problem can be implemented by repeating the
rows, one positive to satisfy az
T
xS (b = vy )

x £ bi+ 51 and one negative to satisfy

A method for regularization has been developed by Herman et al.,11 The

procedure minimizes f(x) = ﬂxﬂ2 + Y2 TAX = bﬂ2 the nth step is

2" +1. 2"+ &8
k

xn + 1 - xn + T
Yay &y

where ey 1is the vector with elements zero except for the kth which is unity,

1.e., the kth column of the unit matrix. z° is arbitrary and x° =

valz®, gx is found from

2-4
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Each of these methods may be implemented optically. The feasibility method
however requires a thresholding step for gy. The regularization method may

require a second spatial light modulator to store z.

All of the above algorithms can be made nonlinear by requiring x to
l satisfy constraints x € S. To implement the box constraints for example the

output at the end of each step, x", can the threshold so that

n_ .n n
< x1 = Xy if ti < x1 £ pi
: n n
: X, Py if xi‘s Py
n n
xi ti if x1 S ti

and xP i{s used to compute xtl, Simple thresholding can be used to solve

I

these problems subject to the constraint conditions.
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3, ON OPTIMAL ASSOCIATIVE RECALL FROM AN INCOMPLETE INPUT VECTOR

An issue of concern in associative memory design is its robustness
against noisy input data, Without a noise model the problem is quite
formidable. A problem that is somewhat less difficult, that of recall from
input patterns that have been masked so that some components are missing
(i.e., equal zero), has been attacked more frequently. An interesting paper
by Marakami et. al,, found an optimal associative memory for recall of a
pattern from a input pattern that had a known fixed set of components equal to
zero, The memory is optimal is the sense of best linear unblased estimate
(i1.e., least squares)., If we let the input vectors have a total of n
components and let n - s of the components be masked, the optimal associative
memory for inputs with only s out of n components present fis

T I

SM=(o-1)¥vx [(s-1)x + {(n-s)R]

where R is the diagonal of xT
This result can be simplified if the rows of X are equilibrated so that
they have unit length. If we assume that this has been done then R = 1 and

s T 1. T

’ T e
M=(n=-1)¥YX [{s-1) xX)+ (n=-3s)1] X

This expression is valid for 0 < s { n. For s = 1, only l component
unmarked the memory reduces to a correlation matrix memory. For s = n it
reduces to the Moore Penrose pseudo inverse memory. For s # n the memory

resembles a regularization inverse. In fact this memory can be arrived at

from a constralined minimization problem. Minimize the average nolse output
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strength of the memory, keeping the total mean square error in memory

components equal to R, The problem takes the form
T
Min M MHF

subject to

IMX -« YI_ =R

where

Nl

is the Frobenius Norm.

When used in recall the memory also solves a minimization problem,

factor the solution into two steps. We write SM as

s -

Ma=vyly [xTx + I]Iir

where

s -1
and

- . (228

We can




Step (1) 1s solve

(xTx + D)t xTx = ¢ .

then step (2) multiply t by Y to get the output Y,

¢ Step (1) is equivalent to solving

X = Xt
using regularization techniques, that is it is equivalent to

Min fti

subject to #1Xt - Xt =R

By keeping the elements of t small we keep the memory outputs smooth, we
reduce the likelihood of large oscillatory mixing of output components. <= is
the reciprocal of the Lagrange multiplier which makes the solution satisfy the
constraints, In applications, one typically solves step 1 for a set of ='s
and then settles on a residual and norm which seems reasonable. The optimum
associative memory selects x to be large compared to typical regularization
values and hence excepts a rather large fesidual for minimum noise output,
Given that n - s components of the input are known to be wrong this is quite
reasonable. An algorithm which would allow optical implementation of this

memory is given in Section 2,

References for Section 3
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4. PROJECTION OPERATORS AND SUBSPACE METHODS OF PATTERN RECOGNITION

A standard classification problem is that of identifying an unknown input
as being a member of a previously learned class. This identification process
is typically hampered by corrupting noise as well as the event that a current
unknown input may be either totally new and not a member of any of the
previously learned classes, or may be a mixed signal which belongs to two or

more of the previously learned classes.

The basic concept of similarity among patterns is that the features of
similar patterns are similar, If these features are used to form a feature
space, each pattern can be represented by a vector in this space, Similar
patterns will have similar vectors, that is, vectors which are all in some
local region of the space and are close together in terms rf some metric. In
subspace methods the feature space is divided into subspaces, one subspace for
each class of patterns. Ideally these subspaces would have no intersectious.
The subspace would be mutually exclusive pattern vectors of a class would 1lie
totally within the subspace of that class, The distance of an input pattern
from a class subspace is a measure of its similarity to the patterns of the
class.,

1-% uhich use a different orthogonal

Orthogonal projection methods,
projector to represent the subspace spanned by a class have been developed and
extensively studied. For potential mixed patterns, the lengths of the
projections of an unknown onto each of the class subspaces can be related to
the amounts of the individual class that are present in the unknown. The
relation is not a simple one when the classes are not orthogonal to one
another. The use of oblique projectors rather than the more common orthogonal
projectors ylelds an attractive alternative. The major difficulty with
orthogonal projection Is that unless different class subspaces are orthogonal,

there can be a large projection of an unknown of one class onto the subspace
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of another class. This 1s a problem for both inputs which are mixtures and
pure inputs which are noisy. We show in Subsection 4.4 that for more than two
classes, nolsy inputs can cause misclassification in orthogonal projections
while the same inputs are correctly classified by the corresponding set of
oblique projections. For mixtures there is another complication due to lack
of orthogonality of subspaces. A possible identifier for a mixture of two
classes would be the length of the projection of the unknown onto the subspace
spanned by the union of the two class subspaces. However, for nonorthogonal
subspaces the projection onto the union is not the sum of the projections onto

each class.

The oblique projection techniques are robust against notse and will
correctly predict the input until the noise has a larger component in another
class subspace, Orthogonal projection can fail before the noise 1is this large

because of cross talk between classes.

The major advantage of oblique projection operators is that the feature
space can be divided into independent mutually exclusive subspaces by a set of
mutually exclusive oblique projection operators. These operators will give
zero projection for a pattern belonging to a different subspace or class.

The use of oblique projectors in pattern recognition has been somewhat

10 ll=ln

lim{ted to date”” although the mathematical theory has been developed.

To introduce the concepts of oblique projections the elementary
properties of idempotent operators are reviewed. The relation of these
projections to least square techniques and regression i{s illustrated. A
constructive scheme for the projections based on least squares analysis

presented is in Subsection 4.3.

In Subsection 4,4 a geometric interpretation of oblique projections is
presented and a comparison between orthogonal and oblique projection
classification schemes, A general method of construction of oblique
projection operators is presented in Subsection 4,5, The subspace methdd can
be generalized to include bounded regions or zones by the introduction of

constrained projections, These add nonlinearity and provide a means of adding
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additional information about a class when it is known. The implementation is -
-~

discussed in Subsection 4.6. The relation between generalized inverses and -1

. P

\ projections 1s discussed in Subsection 4.7. This introduction of weighted 5;
; RS
X features into subspace methods is discussed in Subsection 4.8. Q}w
3

y

4,1 Elementary Properties of ldempotent Operators and Projectors uﬁ

LA

The general properties of idempotent operators and the decomposition of Iii

spaces into linearly independent subspaces 1s reviewed. Such operators play a oo

natural role in pattern recognition. a5

. An operator P is idempotent if P2 = P, 1f P is idempotent then its :fﬁ
- f‘_'-‘,
complement I - P is also idempotent., ~4

o

T

(I -P) (I-P)=1I=2P+ P2 =21 -2P+P=]1~P . :?;

The major feature of idempotency and the use of idempotent operators in ff:z

. £

pattern recognition stems from the following. s

An idempotent operator P decomposes a space, ¢, into two linearly 1§:§

independent subspaces, ¢; and ¢, such that if V belongs to ¢; then PV =V :{

and {f V belongs to ¢, PV = 0, Every vector y in ¢ can be decomposed into S

y = y; + yo where

Py =y,

and

(1 -P)y= Yo o

y; belongs to ¢, and y; belongs to ¢,. It is useful to introduce a votation
change before generalizing to several subspaces. Let P; = P and P; = 1-P,

then Py = y; and Py = y,.
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The desired properties for an independent subspace method for pattern

recognition are provided by a set of mutually exclusive idempotent operators.

Given a set of K idempotent operators P;, Py, ... Py such that

Pr Py =358

where
611 is the Kronecker delta

and

then ¢ decomposes into k linearly independent subspaces ¢; 47 «.. ¢Kge Py
is the total projector. It projects a function into the space $. If p is the
entire space P¢ = I, the identity operator.

Each of the K subspaces are defined as the set of all vectors (patterns)
belonging to the particular ¢j. The subspaces are independent but not
required or assumed to be orthogonal in order for the mutual exclusive

property to hold., If the pattern V belongs to subspace ¢; (class J) then

PJV =V

and

PIV =0

for I # J.
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For such a classification scheme, patterns that are mixtures of two or

more classes can be identified, Let

V= VL + VM
then

RV=V. ;5 BV =V,
and

PIV = 0

for T # Lor 1 # M,

The key to the use of operator techniques is the determination of the
desired operators and finding representations for them. If the subspace ¢y
are orthogonal the idempotent operators will be symmetric., These operators
are called orthogonal projection operators. If the subspace ¢p are not
orthogonal, the idempotent operators will not be symmetric., These idempotent

operators are called oblique projection operators.

Characteristics and construction methods for oblique and orthogonal

projection operators is further developed below.

4.2 Orthogonal Subspaces and Orthogonal Projection Operators

Two subspaces are orthogonal if every vector belonging to subspace ¢; is
orthogonal to every vector belonging to subspace ¢,., Orthogonal subspaces are
special cases of linearly independent subspaces, and hence can be analyzed
using idempotent operators, The idempotent operators in turn will have
special characteristics, Let RO be divided Into two orthogonal subspaces.

¢ and ¢$,. There exist idempotent operators P; and P, = I - P; such that
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The special characteristic is that the idempotent operators assoclated with

orthogonal subspaces must be symmetric.

To show this we consider two vectors U and V and their decompositions

U = Ul + U2 = PIU + P2U

and

V=W1+W2=P1V+P2V .

Due to the orthogonality of the subspaces

Vv = d{ v. = Ul y

T
Y 1 1

as

U,y v, =0

and

u, v. =20

The scalar product UTV can be written as

1

) Ty = uTe, Ty .

(Pyu ]
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The scalar product UTV1 can be written as

that is P; is symmetric. Operators which are both idempotent and symmetric
are called orthogonal projection operators. The orthogonal projection of a
vector onto a subspace has a simple geometric interpretation. For PV = V,,
V = V; 1s clearly orthogonal to V. The key property is that the orthogonal
projection, V;, is that vector of ¢, which i{s closest in distance to V.

(V - V) 1s the shortest vector between V and the space ¢,. For any
nonorthogonal (oblique) projection, &1, v - Gl) is longer than (V -~ V,).

4.3 Projection Operators and Linear Estimation

Let ¢ be a subspace of RM and let {w¢} be a basis for ¢. Then the
orthogonal projection of a function f onto ¢ can be obtained through the least
squares procedure

f=WC+R

where the expansion coefficients are given by

c = (W)t wle = a7l T .

The desired projection operator is

-1 T
P, =WA W .
¢
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Note

and

pPPawal (Fu)stu=p .

Thus we have

y = Py and R = (1 -p)y .

The K dimensional subspace ¢ may be broken down into k one dimensional
subspaces associ: ted with each Wy. 1If these subspaces are orthogonal then A

is the unit matrix and

K T ?
P = ) W W = P .
¢ g DD o7 T

That is 1f the one dimensional subspaces are orthogonal P¢ can be written as

the sum of K one dimensional orthogonal projection operators.

It is always possible to generate orthogonal subspaces by using standard
orthogonalization procedures, Gam Schmidt for example. However, if the
nonorthogonal basis has a model interpretation associated with it, this

interpretation may be lost on orthogonalization.

When the subspaces are not orthogounal, the projection onto the subspaces
1 will not be orthogonal. The individual projections will be oblique, The
metric 3 and its inverse s~! can be partitioned such that the projection

operatore Py can be expressed as a sum of oblique projection operators

Py=1 O

I I

4-8
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The operatore O1 1is the oblique projection operator for subspace ¢1.

but

The oblique projection operators have the following properties

Op Wy = S1%;

(1-0)u =o0

Property a 1s key to the use of these operations for analysis of mixed

unknowns, unknowns with membership in more than one class. If unknown

U = WI CI + WJ CJ

then
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and

0,U =0

for all

K#IorlJ .

It is useful to compare this result with the predictfon of independent

orthogonal projections on a mixed unknown. The orthogonal projection

operation for subspace ¢; is

The projection of unknown U onto ¢; is

s
PyU =W, (C,+ 4, cz)

Since, in general,

Pr Wy = W 445

where

AIJ = W

is the overlap between the subspaces.

Thus

where
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The effect of orthogonal projection is to include some of the ¢, component
into the projection., This is an undesirable property, The oblique projection

approach is more appropriate for nonorthogonal subspaces.

We can conclude that the best linear unbiased approximation of a function
f by a basic set of functions {Wy} is the orthogonal projection of f onto
the subspace, 4, by the basic {WI}. This orthogonal projector, P, is the
sum of 1individual projectors, one for each of the component subspaces of ¢.
The individual component projectors will be orthogonal if the basis is
orthogonal, The component projections will be oblique 1f the basis is

nonorthogonal,

4,4 Geometric Interpretation of Oblique Projections

Geometric interpretations of oblique and orthogonal projection operators
are presented, The relationship between coefficients obtained for orthogonal
and oblique projections as compared for simple R? and R3 examples. We have
shown that the minimum distance classifiers defined in terms of oblique and
orthogonal projection methods agree only for the two class case in R%, A
simple example in R3 shows that orthogonal projections will not predict

correct classifications for nonorthogonal classes.

Oblique projections require two subspaces for their definition, the
subspace into which projection occurs and the subspace into which the adjoint

projection occurs., We label these subspaces ¢ and ¥, respectively,

Of 1s the projection of f onto ¢ which 1s along ?l. oTf 1s the
projection of f onto ¥ which Is along wl. For a function f and the oblique
projection operator O, Of lies along 4. See Figure 4,1, The projection is
along, ?l, the space orthogonal to V¥, ?l is the orthogonal complement of
¥. Ot is also the oblique complement of ». The adjoint operator, OI,
projects f onto ¥. This projection 1s along or parallel to, ¢l, the
orthogonal complement of ¢. yl is also the oblique complement of ¥. If ¢
and ¥ are equal, then the projection is orthogonal. One idempotent operator

generates two pairs of complementary projections (0, 1-0) and (0T, 1-0T)
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which projects onto complementary subspace pairs (¢, 1=¢) and (¥, 1=V¥)

respectively.,

We concentrate now on a complimentary pair and their relation to
orthogonal projections. Consider the projections Op and Oy =1 - 01 on
the independent but nonorthogonal subspaces ¢1 and ¢35 = (1-41). 1In
Figure 4.2 an R? example 1s given., Both oblique projections of a function f
onto ¢7 and ¢ are illustrated as well as independent orthogonal
projections P;f and Pjf. We illustrate that for the two class example in
R? 1f C1 > C; then By > Bj. This means that efther the orthogonal

projector or the oblique projector will lead to the same prediction if used as

A

Figure 4.1. Oblique Projectiouns

4-12 -




Figure 4.2,

Oblique and Orthogonal Projections of f onto the Nonor thogonal
Complimentary Subspaces $1 and ¢;
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4
¢
a minimum distance classifier for a two class problem. We will also show that
this does not generalize to a three class problem. If we let Wy be a basis
L for ¢1 and Wy be a basis for ¢y then
"
¥
y . Orf = Wil
" OJf = WJCJ
¥ . Pof o= WB,
Ej and
" PJf = WJBJ
:f The projections coefficlent B and C are related through the metric
B = AC
. 1 d
. For A equal to
> d 1
. where the W vectors are assumed to be normal vectors and d is the overlap
\: between classes 0 < d < 1,
‘ BI = CI +d CJ
BJ = CJ + d CI
4=14 o
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the difference By-By 1s proportional to Cy-Cjy. If class selection 1s

based on the larger projection, then for C; > Cj; By > By and both
oblique and orthogonal projection predict class I. These results do not

extend to the three class problem. Consider the metric 4

1 d e
A = d 1 f
e f 1
then
BI = CI + dCJ + eCK
BJ = CJ + dCI + fCK
and

By - By = (c;-¢;)(1-d) + (e-f]C,

The coefficients By = W f are unnormalized correlation coefficients.
I

The correlation between Wy and the input f is

B

I IIWIII (B3

The magnitude of By is the length of the orthogonal projection of f into the
subspace $1. The coefficients C; are related to signal strengths. 1If

both Wy and f are normalized to ome the square of the coefficient ’CIIZ

is the best unblased estimate of the strength of Wy in the function f. If
the functions f are mixtures of subspaces, then the deconvolution of these
into subspace components requires the oblique projectors, The strength of

the subspace contributions is given by 'CIIZ.
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The fact that the correlations By do not necessarily follow the C; in
relative magnitude raises concerns about the use of orthogonal projection as a
classification technique when inputs unknowns are noisy. If a pure input from
subspace ¢1 is corrupted by noise which has components in subspaces ¢j and
¢g, the relative magnitude of the correlation coefficients may not follow

the relative strengths of the signal and noise components.

4,5 General Method of Construction of Oblique Projectors

A general method for generation of oblique projections 1s presented.
This approach is independent of a least square model, An oblique projection
operator can be defined in term of a pair of subspaces ¢ and ¥ of equal

dimension. Given W as a basis for ¢ and Z as a basis for ¥ the projector O

0= w(sz)I 2T

is defined where (zZTw)l 1s a generalized inverse of (zTw). o0 is

idempotent and therefore a projector.
0? = w(sz)IzT (sz)I A

=wzZwt Zf =0
In applications the subspaces ¢, and ¢g of dimension n, and np
respectively will be known. The basis W for ¢, and Wp for ¢p can be
determined. To construct the desired projection operator 0y for which

OpWy = Wy

and

koB = 0
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A basis Zp 1s required. This basis will span the np dimensional subspace E
¥a. 2
A 3t
The subspace ¥4 must have an orthogonal projection into ¢, and must it
<
be orthogonal to ¢g. The desired basis Z, can be constructed by taking J!
the basls Wy and orthogonalizing it to the basis Wp, -
& »
TG
- i
= - ,L‘- ]
Zy =Wy TV R
where -4
; @ = (i)™ (WT,) = (o) @ i
- B'B B'A BB BA 2
s -f;‘w.’
i is the desired PR
[ g X 0, e
i orthogonalization matrix. S
Similarly c"
: - N
Zg = Wp " ¥\Q e
3 where ‘\:::-
T, \=1 ;T i
Qg = (WyW,) " (W,Wp) S
e
After a bit of algebraic manipulation it can be shown that O is the orthogonal oo
. projector for the space ¢ = ¢, + ¢g. This generation method 1is X
) independent of inftial basis selection for ¢, and ¢p and is independent of N
- the orthogonalization method for generation of Zy and Zg. This {s the :j:l.{
SRS
X consequence of the invariance of O to nonsingular transformation of the bases N
.
] ':
) Nt
ki t‘
BN
» - 'v‘r'.
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W and Z, Let X and Y be nonsingular. Then let
W=WX and Z = ZY then

o>
L}
=
~
>
3
>
Nt
~N

WX (YTZTWX)I ¥z

wx 7t (2T vzt =0

Therefore 0 = 0 and projection is independent of the bases W and Z.

4,6 Constrained Projection Operators

The representation of a class as a subspace of its features does not
always contain all of the information that in konown about the class, For
example with spectral classes, the absorbances are always positive, but the
subspaces spanned by a set of spectra include both positive and negative
absorbances. 1In order to avoid nonphysical spectral estimates as well as
incorrect classifications, it is ureful to constrain the absorbances to be
positive. We develop below the projection method for two types of
constraints, inequality constraints and equality constraints, The constraint
methods are developed in the framework of constrained least squares. The

result is a set of operators for constrained oblique projection.

The solution to the least square problem can be expressed as

minimize (b—Ax)T (b-Ax)
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with respect to x, The solution Ax is given by

ax = A(ATA) 1T = Bb

where P is the orthogonal projector. The inclusion of constraints can be

2]
i accomplished using Lagrangian techniques.15 Constraints of the form Gx = 0,
2 equality constraiunts and Gx > O inequality constraints will be considered.
The more general comnstraints relations Gx > h can be converted to the above by
- the transformation x = y + GIh where GI 1s the pseudoinverse of G.

‘% Equality Constraints

The least square method with equality coanstraints can be expressed as

X minimize (b-Ax]T (b-ax)

subject to Gx = 0,

& ll

The associated Lagrangian is W

o

L(x,}) = -12— xTa%ax - x*ATb - AGx

A saddlepoint solution of L(x,A) is obtained 1if

: ATAx + ATb - GTA = 0

Gx =0
and

A>0

A is the vector of Lagrange Multipliers.,
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The solution x of the constrained problem can be given in terms of the
: unconstrained problem as
x = x+ (aTa)"teTA
where X is given by
r = - [c(aTa) 6Tt 6x
The solution Ax can be expressed as

5 ax = & q(aTa)"tab = Pgb

where

Q=1 - (ATA)-IGT[G(ATA)-IGT]-IG

sTaa s ko a8

a A bit of algebra will reveal that Q is idempotent and hence a projector.
: Q2 = Q and further P2 = P
: Q Q

Q projects the unrestricted solution x onto the constraint subspace.

The residual includes the unrestricted residual as well as the residual

arising from projection onto the

Ry = a(1=q)(aTa) ATy

subspace that violates the constraints.
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Inequality Constraints

For inequality constraints the optimization problem 1is

Minimize (b-Ax)T(b-Ax)
Subject to Gx > O

Following the method outlined for equality constraints the solution for x and

A are obtained from the solution of

(ATA)X -aTs-c¢ti=o0

Gx > 0

AGx = 0
and
A 20

The major difference between equality and inequality constraints is that
the inequality constraints need not be active, If x satisfies the constraints

in that
Gx > 0

then

A = 0 is the solution. In general for every component xy of x that is

greater than zero, the corresponding Lagrange multiplier Aj; is zero. The

nonzero )y corresponds to active constraints x; = 0. These correspond to




TV Y

the unrestricted solutions xj violating the constraints, Gyxy < O. The
nonzero Ay are given as before for equality constraints and x, A and PQ

have the same properties. Q however depends on b, if for example

-1

ox = c(aTa)"1aTb > o

then
Q=1 .
Without loss of generality we can assume that the first k constraints are
inactive and the remaining constraints are active., Then G can be partitioned

into [Gle]'r where G, corresponds to the active constraints and the nonzero

Lagrangian components solved for from

T,\=1 .T-1 T
x = - [6,(a A) " Gl T 6y x

The projection operates Py for the constrained least square problem can be
considered as a sum of oblique projection operators, one for each class as in

the case of unconstrained least squares,

4.7 Relation Between Generalized Inverses and Projection Methods

A relationship between certain generalized inverses and constrained
oblique projection operators was identified. The variety of generalized
inverses suggests that a large variety of potentially useful projection

operators can be generated.

Oblique projectors and constraints can be considered in terms of
generalized inverses of matrices, A projection operator can be written as
Py = W Wl where W! 1s the generalized inverse of W. The selection of

the Moore Penrose inverse
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leads to the orthogonal projector Py = wa~wT, The Moore Penrose inverse
is identical to the true inverse for nonsingular matrices. The existence of
a~! is based on the linear independence of the columns of w., The Moore

Penrose inverse X satisfies the following four properties:

AXA = A (1)

XAX = X (2)

(ax)T = ax (3)
T

(xA) =xa (4)

An example of a generalized inverse that does not satisfy the four conditions

is
AI - (iTA)I ZT
This inverse satisfies conditions 1, 2 and 4 but not 3 as

0 = a(ZTa)T 2T 2 0T = z(aTz)T AT

Condition (3) is equivalent to requiring A Al to be an orthogonal
projection. The oblique projections themselves contain a generalized
inverse. The inverse Al = (ZTA)I ZT 1s called a 1, 2, 4 {nverse.!"

In this nomenclature the Moore Penrose inverse is a 1, 2, 3, 4 inverse.
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The coanstruction of Z as

z = a-3(8"8)7" (8Ta)

insures
are not independent.
columns
inverse
respectively.
this case.

inverse into 0 we have

0 = a(zTa)t 2T = a(vT2"a

of Z will be of zero length.

that zTA will be singular only if the subspaces spanned by A and B

If the subspaces are dependent then ome or more of the

(2TA)L can be replaced with the true inverse in Al and 0
The Moore Penrose Inverse 1is identical to the true inverse in
1f we let (ZTA)I = (YTzTa)I ¥T and substitute this

I,T,T

DR AR A S s e e iy 4

For nomsingular ZTA, the generalized

fader s A L g mg o S Rt B B Sy

Y'z
using the Identity

(2°a) (ZFa)™ =1 T
o
yields :3};
g

o = a(¥7zT)T (¥72%a) (2Ta)? 2T - aq(zTa)t T >
where f;&i
@ = (Y7Fa)T (v'2ha) 5;3;
.

i{s a projection operator.

This result is a special case of the following.

a nonsingular matrix X is equal to the product of an idempotent operator and

the true inverse

x! = (x1x)x7! = x7Ixx!
T
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The left and right idempotent operators are the projectors (xIx) and (xxI)

Yo

respectively, If the Moore Penrose inverse is used the idempotent operators

rr s v
et WA
[ 3

are the identity operators.

4

“

' The projection operators developed for constrained least squares

e

applications are also expressible in terms of 1, 2, 4 generalized inverses. Ry
4 The problem of minimizing AX = b subject to GX = 0 had the solution Pgb :if;
\-.4':

4 where e
P, = aq(aTa)™ 4T

and :\-
.:\-

_1 .‘,
- - e 1

Q=1-(aTa)} cTe(aTa)? 7] ¢
Substituting H = (ATA™!) GT and ST = G ytelds Q = 1 ~ u(sTH)~! sT
with the 1, 2, 4 generalized inverse (sTy~!) sT, }:E
BAG

4.8 Weighted Features and Subspace Methods :}f

RN
The incorporation of feature weighting into oblique projectors was :;%i‘
considered. Justification for its use is provided below from a standpoint of o
least squares theory. The weighting of features is based on the statistical e
description of the measurement errors. The assumptions are that the average ;{;
values of errors are zero and that the variances and covariances are known. ;ifi
If the model R = b-Ax is adequate, the errors, Ry, associated with each row -iyﬁ
or measurement will be unbiased. By this 1s meant that with an ensemble of N
repeated measurement of by the set of Ry will have zero mean, !© Using :*ﬁ:
this ensemble the covariance matrix of the errors, Ip, can be formed. For ifﬂ_
obvious reasons the covariance matrix i{s often not known. In any event the ';;
estimate of the errors in the solution vector x is related to the covariance 'ﬁ:'
matrix, Lg. The ensemble of solutfion vectors {X;} has a covariance matrix ;:j"
o

ata

e
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T
I, = Al zR(AI) (1)

where Al 1s the pseudoinverse of A, For unweighted least squares the
inverse is the Moore Penrose inverse, Al = (ATA)'IAT. For weighted
least squares the pseudoinverse can be written Al = (ATWA)'IATW, where W
is the weight matrix., The weight matrix must be positive definite. The

covariance matrix for the solution vector, Ly is given by

T, \=1 (,T T, -1 %
Iy = (ATua) (AW g WA) (A"waA) (2) j
el
[
e
It {s the diagonal elements of Iy, ozjj, that give the errors assoclated %:;
wi th on :\'_
Gauss' Theorem states an important criteria for selection of weights. ﬂiﬂ'
The theorem states that the weight which will give minimum variance is the :f?
R
inverse of the covariance of the measurement errors. That 1s if W = ZR‘I g
then the czjj will be a miaimum. This intuitively makes sense as f{:
measurements with large variances will have small weights and measurements j;?
with small variances will be weighted heavily. The minimum variance o2
covariance matrix for X is given by e
LAY
N e
T -1, T\~ IS
Iy = (A Zp ) (3) DR
,-:':?
2 i}
If Ig = 0“1 then o
2,,T, -1 o
I, = o (a"A) (4) w3
.
-y
&
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Ip 1is usually not known and the assumption of it being a constant
matrix o2l is ubiquitious since it shows no prejudice against any
measurements. The unweighted least squares procedure will give an unblased
estimate of X and if the error covariance is a constant matrix, the unweighted
least squares will give a minimum variance estimate of X. The penalty for
using the wrong weight (W # ZR'I) is the loss of minimum variance, A

critical question concerning minimum variance is how sensitive 1is the variance

to the wrong weight. (Note: no weight at all W =1 is the wrong weight 1if
Igr is not a constant matrix.) The selection of measurements or weighting of
measurements is a standard approach in pattern recognition, The weighting or
selection 1s based more on usefulness in distinguishing classes rather than on
concerns about measurement error. The general rather than accidental success
of such procedures would require that this type of measurement weighting does
not have a large effect on the covariance, A simple example lends support to
this idea. Consider a two class problem and a simple minimum distance
classifier based on b = Ax where A is m x 2 whose columns a; and a; are the
average vectors for class 1 and class 2 respectively. The m features are
measured with equal precision and the features are uncorrelated., The

covariance matrix of the errors can be expressed as I = 21,

1 -1
1 1
1 1
1 1
Let A = . . (5)
1 1

Even though the m measurements are of equal precision, only the first will be

useful in distinguishing between the two classes, For the minimum distance

classifier X; > X; if b belongs to class 1.
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For this example

m=2 m

ATa - ( n ""2) (6) i

J . the condition number Cond(ATA) = m~1 and the covariance can be calculated e

from (4) as v

~1 2 m 2-m

2,.T g
ZX = g (A A) - _I—-T“ =1 (7)
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and are independent of m for large m. The inclusion of a large number of X
precisely measured but unuseful measurements does not reduce oy; but does

contribute to an increase in the condition number and to the correlation e

a8 At @ A &
.

between class 1 and class 2. N

A welghting scheme 1s used which attempts to minimize the apparent
correlation between classes by minimizing the condition number, The following 732

diagonal weight matrix will cause the apparent correlation to be zero.
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w is a mxmn diagonal matrix. The model now uses a weighted least squares
calculation. The matrix (ATwa) is diagonal and class 1 appears uncorrelated
with class 2. The condition number Cond(ATWA) = 1, an absolute minimum, We

have
T 2 0 T -1 1/2 0
(A*wA) = (A'wA) =
0 2 0 1/2
and
X -1
Da (aTwa)  aTwy
X

Since these weights are not the inverse of the covariance of the measurement
errors, the covariance of X must be calculated from Eq. (2) rather than Eq.
(3) and in principle will not yield the minimum variances, However
substitution of the required quantities in Eq. (2) ylelds the same estimate
for Iy as was obtained in Eq. (7). The use of the incorrect weights in this
model has not had an adverse effect on the solution variances. The weighting
generates a numerically stable model with a well conditioned normal matrix
which is easily inverted. This example offers some hope for the use of
weighting schemes which minimize apparent correlation or minimize the

importance of measurements which are not useful for classification.

The use of weights in oblique projection techniques is attractive. The
weighted projection method can be formulated so that once the projector is
generated during a learning step, no additional burden will be incurred. The
classification step 1Is as simple as in the unweighted case, The form of the
oblique projection operator used here is 0y = A(ZTA)12T yhere Z 1s a
basis for the projection onto A which is orthogonal to ¢g. That 1is ZTg =

0 for any vector B that belongs to ¢g. When using weighted measurements a Z
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is sought which is W orthogonal to $5. In the unweighted case Z is

constructed from

z =a-8(8%8)7! 8Ta

For the weighted case the desired Z is

z = wa - wB(BWB)™! (aTwB)

78 = aATwB -~ (37wB) (8TwB)™! (aTWB) = 0

and the weighted projection is given by

6A = a(zTa)! 2T

OA works directly on unweighted vectors. Thus no additional burdem over

unweighted projections occurs once Z and 0 are formed.
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