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INTRODUCTION

This report is presented in four sections. In Section 1 an analysis of

the effects of noise on associative memories is presented. Special emphasis

is given to generalized inverse memories.

In Section 2 of this report, several algorithms which are appropriate for

implementation on the NRL spatial light modulator were compiled. These

include nonlinear associative memory models and a pseudo inverse memory model

that is optimum for incomplete input patterns.

In Section 3 of this report an analysis of a memory model that is optimum

in the least squares sense for input patterns with missing components was

analyzed. This memory was shown to be derivable from a different optimization

principle. This optimization produces that memory which has a minimum average

noise output for a given error in recall.

In Section 4 of this report we discuss projection techniques and subspace

methods. These approaches will allow the design of dynamic memory and recall

schemes that are nonlinear, have local connectivity and can be robust against

distorted input patterns. i.4 1 c.
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l'o

1. ANALYSIS OF THE EFFECTS OF NOISE ON GENERALIZED INVERSE AND CORRELATION

MATRIX ASSOCIATIVE MEMORIES

Associative memory matrices ar6 constructed from pairs of vectors. Each

pair consists of an input vector and an output vector. If the input and

output vectors are the same the memory is auto associative. If they are

different the memory to hetero associative. The input vectors have X

components the output vectors have p components. The number of pairs of

vectors, n, is typically less than the number of components. A correlation .:i", '
matrix memory is constructed as

H XT - [ Yt i::-

i T

the outer product of the n pairs. A generalized inverse associative memory is

constructed as

I nIM Y X Yi Xi

where XI is a generalized inverse of X. The memories have dimension pxk.

There are several properties of true inverses which carry over to

generalized inverses. Four have been used to define useful classes of t

generalized inverses. 1

The four properties are:

I
A AAA ()

..,.
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AIA A (2)

(A AI)T - A A1 (3)

(A IA) T = AIA (4)

We use the notation A(iJ,k,l) to indicate which of the four properties are

satisfied'(for example, Al satisfies (1), A1' 4 satisfies 1 and 4). The

Moore Penrose pseudo inverse satisfies all four.

A+ = A1,2,3,4

Associative memories using the Moore Penrose pseudo inverse have been

proposed and studied by Kohonen.2 Any inverse which satisfies (1) provides a

solution to AZ - b. Z0 - Alb is a particular solution and Z - A b + (1-A A)y

for arbitrary y is a general solution.

Any inverse which satisfies (1) can be used to generate a memory matrix

with no crosstalk.

Let

M YX.

Then M operating on an exact copy of an input Xi produces a correct copy of

the output Yj. In correlation matrix memories the cross talk is a function

of the overlap of inputs. Since generalized inverse associative memories

generate no crosstalk the output Yk for an input Xk with additive noise is

M Xk Y ~k

1-2
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whe re

Xk =Xk + Nk

and

T k ¥k +N

Nk and Nk0 are the input and output noise respectively. We analyze here

the role that the inputs and outputs have on the signal to noise ratios.

Without loss of generality we can assume that both input and output vectors

are normalized to unity. If inputs and outputs are all normalized to the same

length, then the ratio of the output noise to input noise is equal to the

ratios of input to output signal to noise for the generalized inverse

memories. For correlation matrix memories, crosstalk contributes to total

input noise. Since M (X + N) Y + NO + C, the more telling ratio is

IN0 + CIH
... NII Nil ° .."

for correlation memories. The strength of the output noise versus the input

noise is given by -

IN0o2 3M NNl2 NTMTM N

MU 2 INII 2 NTN

This ratio is bounded by the maximum and minimum eigenvalues of MTM that is

I 2 < MNI -< IN <

m(in - max

1-3
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The output noise will be largest along the direction of the eigenvector of

MTM associated with imax and smallest along the direction of the

elgenvector associated with Pmin. If the input noise is white the average

output noise to input noise can be obtained by averaging the I eigenvalues of
MTM. This average is equal to the trace divided by the number of

components.
e

IN O 2 1 MT M 2N - TR (MTM) INII2 -:

If there are many zero eigenvalues, this average will be small. Indeed

typically the number of components in the input vectors, X, is large compared

with the number of pairs, n, and the rank of MTM will be less than or equal

to n, depending on the linear independence of the inputs. If the inputs are

linearly independent there will be n nonzero eigenvalues and the trace can be

replaced by n times the average of these n largest eigenvalues, 1.1

INO 2 0 ~ 11ON 21,

The n/Z reduction in noise has been derived before for pseudoinverse auto-

associative memories. 2- 3 The n/ reduction is obtained by any correlation

matrix memory or generalized inverse memory. The memory need not be

auto-associative nor even square. The reduction depends on the number of

components in the input vectors and is independent of the number of output

components. Increasing the number of components in the input vectors for the *:

sake of noise reduction alone is not advised however, as the noise that is

reduced is noise that is perpendicular to the space of the inputs and which

does not contribute to the confusion among inputs. The input noise is a Ot

combination of perpendicular and parallel noise. 4"

N -N + N

1-4
r o
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These contributions are the contributions in the subspace associated with the
inputs, N1, and contributions which are in the complement subspace. The

noise in the complement subspace is orthogonal to the subspace associated with
T

the inputs. For correlation matrix memories X, N.1 - 0 for all stored inputs.

For generalized inverse associative memories X i N- 0 for all stored inputs

and therefore

MN =MN

" 0-.

N, can be expressed as a linear combination of the stored inputs since the

inputs form a basis

n it:N1 - [ XIy I

I i i

Increasing the number of input components (Z) on the surface appears to be

helpful in reducing output noise. However unless the added components change

the eigenstructure of MTM and reduce the crosstalk, there is no reduction in

confusion. When the input noise is white it is partitioned equally in all
2

directions on the average with average total strength of a . The partitioned

between the parallel and perpendicular subspace depends only on their relative

dimensions

IN 2 n 2

and

2 =-n 2

IN a

1 -.5 "V,



It is only parallel input noise. that mixes inputs and causes confusion. The

average output noise strength depends on the average nonzero elgenvalue of

MTM and the average parallel input noise strength %
'-.

N 1 2  2 N

The output noise strength in general is given by

10 2  IN 2
OIN° 2 ,, 11MN I2 - i.

and the covariance matrix for the output noise can be found from the

covariance matrix of the input noise Let RN be the covariance matrix of the

input noise. Then RNo - MRNMT is the covariance matrix of the output

noise. If the input noise is white, the output covariance is proportional to -

the outer product of the memory with itself RNo o2MT. The covariances

and strengths of the output noise is a function of the singular values of the

memory matrix or equivalently the eigenstructure of MTM and lIT The

analysis that follows will show that the eigenstructure depends on the metrics

for the inputs and outputs. The metrics are inner product matrices of

dimension nxn. Let Ax = XTX and Ay . yTy. The eigenvalues and

eigenvectors of MTM can be found by solving:

T
N M*

If M is a generalized inverse memory, MTM (XI)T AyX I. Defining .

through - XT yields the following generalized eigenvalue problem

- AX IJ

1-6
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If M is a correlation memory matrix the inner product is MTM MF

xTAyx. Defining E through 0 - XlE the eigenvalue problem is transformed

to the generalized eigenvalue problem

Axiy = -..

or AY = A i if the inverse exists.

We consider a few special cases then solve the generalized eigenvalue

problem for the general case.

Case 1 Orthogonal Inputs AX 1

In this case, the generalized inverse and correlation matrix memories .

have the same characteristics. The nonzero eigenvalues of MTM, 1j, are the

eigenvalues of Ay.

For high correlation in outputs, some eigenvalues can get large and there

will be large noise gain in those directions. The trace of Ay is n so there

will be no increase in average output noise strength.

Case 2 Orthogonal Outputs Ny =i

For high correlation in inputs the j can get very large in some

directions. For the generalized inverse memory the eigenvalues are the

eigenvalues of AX- 1. There will be large noise gains in the directions

associated with large p. The trace of AX will be greater than n and there

will be a gain in the average noise strength for generalized inverse

memories. For the correlation matrix memory the nonzero eigenvalues u of

MTM are the eigenvalues of AX. The trace of AX is n. So no gain in

average output noise will occur for correlation matrix memories.

1-7
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Case 3 Auto Associative Memory

Here the inputs are the same as the outputs Xi = Yi. The generalized

inverse memory M is a projection operator. All of the eigenvalues of MTM

are one and its trace is one. For the correlation matrix memory the

eigenvalues of MTM are the eigenvalues of (AX)2. If there are inputs

which are highly correlated there will be large gains in output noise strength

in those directions. The trace of (AX)2 will be larger than n and a net

gain in average output noise strength will result.

Case 4 Heteroassociative But Ay X ,

This is an interesting special case in which Y X; and M need not be

square. The generalized inverse memory, M, is not a projection operator but

,MTM is a projection operator with unit eigenvalues and a trace equal to n.

For the correlation matrix memory, MTM has eigenvalues again which are

equal to those of (AX) 2. The noise characteristics are identical to those

of the autoassociative memory, Case 3, for both the correlation and the P
generalized inverse memories.

Nonspecial cases require solution of the generalized eigenvalue problem.

An analysis and a set of bounds on the generalized eignevalues can be obtained

by performing generalized singular value decomposition. For a pair of

matrices A and B which have the same number of columns the following

decomposition is possible and is called the generalized singular value

decomposition of A and B.

A = V aZT
A

B V bZT
B

1-8
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where VA and VB are unitary matrices, a and b are matrices whose only

nonzero elements lie along the diagonal, and Z is a matrix with linearly

independent columns. Without loss of generality, these columns can be assumed

to be normalized to unity. For each column of Z, Zi there is a pair of

generalized singular values ai and bi where

T T 2 T
Zl A AZ, a i Z A a Zi

and

T T 2
Z BT BZ, b b Z iA b Z.'Zi I b i bi

since VT V and VT V are unity.
A A B B

Thus

2
T1Z ai T BZ iT ZEzf z E = ' ~ i lB zl iiZ A.z B zi '

I A bi .

The ratio of the squares of the generalized singular values are the

generalized eigenvalues. The generalized singular values are bounded by the

minimum and maximum eigenvalues of ATB, amin and cmax, and the minimum

and maximum eigenvalues of BTB 3min and 3max,

2 2
a < and 3 b < Bmin a- max min- i- max

1-9
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Thus the generalized eigenvalues of pi ai2/bi2 are bounded by

ami-n a < amax

max  bmi n

We can apply these results to the generalized inverse associative memory. A

generalized singular value decomposition of X and Y yields

X =V bx

Y Va 
T

y

Substituting into Ay P AXJu yields the generalized eigenvalues, 1i i "

ai 2/bi2 , which are the elgenvalues to the IMTM. These are bounded by the

ratio of the eigenvalues of AX and Ay, XX and Ly respectively.

y (min) A Y(max)

X(max) - ui - \x(min)

For the correlation matrix memory a generalized singular value

decomposition of Y and XIT is required. Similar analysis yield the

following bounds in terms of the eigenvalues of AX and Ay. Z

Xy(min) X (min) < y(max) Xx(max)

As these bounds indicate the output noise strength can be much greater or

much less that the input noise. In order to achieve the minimum or maximum

gain in noise in Generalized Inverse Memories there must be high negative

correlation in the output when there is high positive correlation in the

1-10.. . . . . . .. . . ... . . . . . . . . .
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inputs and vice versa. For correlation matrix memories, high correlation of

same sign in inputs and corresponding outputs will cause large gain in noise.

A simple two dimensional example will illustrate the role of the metric

matrices In this analysis.

In Figure 1.1 are shown two input vectors X, and X2 and in another plane

are two output vectors Y1 and Y2 o

The metrics Ax and Ay are

I d

d I

and

e1

el

where

-1 < d< 1

and 
. 6

-< e (1
..e

-i ! e _ i 
.;:.



ex -Cos d

e Cos e

Figure 1.1a. Two Input Vectors and Two Output Vectors that are Positively
Correla ted d > 0 and F > 0

Y 6,Y Cos e

Figure 1.1b. Two Input Vectors that are Positive Corr'lated and Two Output
Vectors that are Negatively correlated d > 0 and e < 0

1-12



The generalized elgenvalue problem for the case of the pseudo inverse

associative memory

'Y i - 'X i "i

yields eigenvectors

and

2  v2 I.J-i.

with eigenvalues= i+ e)

and L - +

If the inputs are positively correlated and the outputs negatively correlated

then U2 can become quite large. On the other hand if both inputs and output

are positively correlated and e > d then 42 is less than 1 and a net reduction

in noise will result in the '2 direction. If d e, both eigenvalue are 1

(case 4), and no net gain or reduction occurs.

For the correlation matrix memory

1-Ix " Li"

yields eigenvectors

1-13
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and
'%

t2 r , -1.

with eigenvalues

(1 + e) (I + d)

and

= (1 - e)(1 - d)

If both inputs and outputs are positively correlated ill > 1, or if both inputs

and outputs are negatively correlated P2 > 1, and noise gain will occur in the

i or c2 directions respectively.

The example illustrates how both input and output metrics influence the

output noise to input noise ratios. The most dominating factor however is the

input metric. In application, the real issue is confusion, will the input

plus noise look like an incorrect input? If it does the output will be the

incorrect output. The key concern is the effects of noise in directions

causing confusion. These directions are those pointing along input

differences.

Noise that directly contributed to confusing inputs Xi and Xj lies

along Xi - Xj, Nij - n(Xi - Xj). The role that the output metric

plays is thru the correlation between outputs.

For a generalized inverse memory the confusing output noise is

MNij N n(Y -Y

1-14
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and thus

IN 0 Y y Ya

i I

=1 N I I  - X -

noise in confusing directions increases proportionally to the relative

separation of outputs. The example in Figure 1 illustrates this point. When

the inputs are positively correlated and the outputs negatively correlated

their is a large noise increase in the 12 direction which lies along

(X1 - X2 )" For this case (YI - Y2) being negatively correlated is

corresponding large. If both inputs and outputs are positively correlated and

the outputs more correlated than the inputs then a net decrease in noise

occurs in the Y1 - Y2 direction, but the distance between Yj and Y2 decreases

correspondingly.

This analysis suggests the real concerns with noise are the magnitudes of

the input noise in confusing directions and the distance between two inputs.

If the magnitude of the noise in a confusing direction exceeds the magnitude

of the distance between the two input vectors, confusion will occur.

Otherwise it will not. The analysis for correlation matrix memories is

complicated by the cross talk. For input noise pointing along a confusing

direction, Nij the output noise no longer lies exactly along the confusing

direction in the output space.

JI 0 = 1 1(Yi - Y + (C -- )1

11N 11 fIX - Xj 1

The difference in cross talk can be either positive or negative and the

component of this difference along Y -Y2 can also be either positive or

negative. ..

1-15
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Reference for Section 1

1. Adi Ben-Israel and Thomas N.E. Greville, "Generalized Inverses: Theory
and of Applications," John Wiley (1974).

2. T. Kohonen, "Self Organization and Associative Memory," Springer-Verlag,
(1984).

3. G.S. Stiles and Dong-L.H. Denq, "On The Effect of Noise and Modle Penrose

Generalized Inverse Associative Memory," IEEE PAMI 7, 358 (1985).
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i ~2. ADAPTIVE ASSOCIATIVE MEMORY MODELS WITH POTENTIAL i_

OPTICAL IMPLEMENTATION

'.

A pseudo inverse matrix memory model has been successfully implemented

optically at NRL. 3 The algorithm used there is adaptive. Recall is a single

matrix multiplication. Let the input vectors, X, have Z components and the

output vectors Y have p components then the p x I memory matrix, M, recalls Y

by matrix multiplying X

Y - MX

During the learning phase of operation M can be found from a solution to

XTMT - yT. This is a standard linear estimation problem. However if

the number of input output pairs is less than the number of components in the

input vectors, the system is undetermined and M is not uniquely determined. A

unique solution that gives the memory matrix M minimum Frobenius norm I M1F

is obtained from the Moore Penrose pseudo inverse of X, X1 .

This memory can be found through an iterative algorithm which uses one

row of XT and yT at a time, i.e., it uses only one input output pair. The

algorithm was first introduced by Kacrmarz1 and later used first in

associative memories by Widrow.2

The key step in the algorithm is

T(k + ) MT (k) + A X1  k k M k)

This algorithm is currently implemented at NRL.3  With minor modifications the

algorithm can be used to find the pseudo inverse of X or to be a novelty

filter for X. By choosing Y to be the n x n unit matrix the algorithm will

2-1
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yield the pseudo inverse of X. By initialized M(o) to the Z x Z unit matrix

and setting Y to zero M becomes a novelty filter. The method of Kaczmarz has

spawned a large variety of algorithms for large systems and their

applications. These methods are known as row action methods -7 since in a

single step only one row of the dltrics are required. Some basicialgorithms

that may have use in implementation are included in the following section.

Row Action Methods

We outline here a few of the row action methods which may be applicable

to optical implementation of associative memory and recall. Since the

algorithms can be used for both purposes we describe them here in a generic

notation commonly used for systems of linear equations

A x= b
Ax-b°

This system may be underdetermined, greatly overdetermined with

possibility of inconsistencies (self contradiction) and it can be ill-

conditioned. There may be reason to doubt that the exact algebraic solution

is the desired one, especially if the data contains measurement inaccuracies

and or noise, distortion, and missing data. These other approaches include;

(i) Constrained Minimization

Min IlAx- bil

subject to x c S. By x cS, we mean it may be required to satisfy some set of

constraints for example box constraints.

2-2
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IA
(ii) Regularization

Minimize

[f (x) + X l1Ax -B11]

2
where f Wx is usually the square norm of X, ixil and xeS

(Ili) Feasibility

For each row vector aiT of A

(bi aX < (b~ + xes

The yiand eiare picked so that the feasibility region is not empty.

(iv) Optimization

Minimize F(x) subject to

(bi a Ti X <~ (bi -xtS

The basic algorithm Is the Kaczmarz algorithm. It solves Ax -b.

In this notation the nth step is

xn+ X + Wk ak(bk n)

*where wk - Ak/3lak1i2 and Ak called the relaxation parameter is bounded

by 0 < Ak ( 2. In the field of Image reconstruction from projections this

algorithm is known as ART.8

2-3
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The most similar algorithm is the relaxation method of Agmon 9 and Motskin

and Sihoenberg1 0 for the linear feasibility problem. Collecting all

constraints and expressing them as

Ax < b

the basic step is

n+l n T %
x -x + ak Gk -

where

g = x k(bk- ax)
k. k

for the right hand side negative and

k
g =0

otherwise.

The interval feasibility problem can be implemented by repeating the

T
rows, one positive to satisfy a x < bi+ i and one negative to satisfy

T
-ai x < (bi - Yi).

A method for regularization has been developed by Herman et al.," 1 The

procedure minimizes f(x) M I11x12 + 2 4Ax - bI 2 the nth step is

n + n
z z + ekg k

n + In T
x -x + yak gk-

where ek is the vector with elements zero except for the kth which is unity,

i.e., the kth column of the unit matrix. z ° is arbitrary and x°

yaTz. gk is found from Ito I

2-4



T n nPI F'

gk + [ (bk ak) x n]  zn

where

Xk
--

1 + yIlak '

Each of these methods may be implemented optically. The feasibility method

however requires a thresholding step for gk. The regularization method may

require a second spatial light modulator to store z.

All of the above algorithms can be made nonlinear by requiring x to

satisfy constraints x e S. To implement the box constraints for example the

output at the end of each step, xn , can the threshold so that

n x n if t n<i

n if

x, Pi  if tI <  < P

n if n
x, tI  if x i < t i-I[

and xn is used to compute xn+1 . Simple thresholding can be used to solve

these problems subject to the constraint conditions.

References for Section 2

1. S. Kaczmarz, Bull. Acad. Polon Sci. Lett. A, 35, 355 (1937).

2. B. Widrow, Self-Organizing Systems, M.C. Yarrts, et al., Eds. Spartan

Books, Washington, 435, (1962).
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3. A.D. Fisher and C.L. Giles. "Optical Adaptive Associative Computer w
Architecture." Proc. IEEE Compcon Meeting, Feb. 1985. -.

4. Yair Censor, Finite Series Expansion Reconstruction Method, Proc. IEEE,
71, 409 (1983).

5. Arnold Lent and Yair Censor. "Extenstions of Hildreth's Row Action
Method for Quadratic Programming", SIAM J. Control and Optimization, 18,
444 (1980).

6. Ronald Schafer, Russell Mersereau and Mark Richards. Constrained
Iterative Restoration Algorithms, Proc. IEEE 69, 432 (1981).

7. Tommy Elfving. On Some Methods of Entropy Maximization and Matrix
Scaling Lin. Algebra and its Applications, 34, 321 (1980).

8. R. Gordon P. Bender and G.T. Herman, "Algebraic Reconstruction Techniques ,
(ART) for Three Dimensional Electron Microscopy and X-ray Photography." " ""
J. Theoret, Biol. 29, 471 (1970).

9. S. Agmon, "The Relaxation Method for Linear Inequalities." Canad, J.
Math 6, 382 (1954).

10. T.S. Molzkin and I.J. Schoenberg, "The Relaxation Method for Linear - -

Inequalities," Canad. J. Math 6,, 393 (1954). OF
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3. ON OPTIMAL ASSOCIATIVE RECALL FROM AN INCOMPLETE INPUT VECTOR

An issue of concern in associative memory design is its robustness

against noisy input data. Without a noise model the problem is quite

formidable. A problem that is somewhat less difficult, that of recall from

input patterns that have been masked so that some components are missing

(i.e., equal zero), has been attacked more frequently. An interesting paper

by Marakaml et. al., found an optimal associative memory for recall of a

pattern from a input pattern that had a known fixed set of components equal to

zero. The memory is optimal is the sense of best linear unbiased estimate

(i.e., least squares). If we let the input vectors have a total of n

components and let n - s of the components be masked, the optimal associative

memory for inputs with only s out of n components present is

) '- I) + n- s) R]

where R is the diagonal of XXT

This result can be simplified if the rows of X are equilibrated so that

they have unit length. If we assume that this has been done then R I and

M n- i) YXT  - 1) (x X) + (n - IXT

This expression is valid for 0 < s < n. For s = 1, only I component

unmarked the memory reduces to a correlation matrix memory. For s = n it

reduces to the Moore Penrose pseudo inverse memory. For s * n the memory

resembles a regularization inverse. In fact this memory can be arrived at

from a constrained minimization problem. Minimize the average noise output

3-1
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strength of the memory, keeping the total mean square error in memory

[. components equal to R. The problem takes the form

Min IIMT a F

subject to

,hX YllF R

where

* F

". is the Frobenius Norm.

When used in recall the memory also solves a minimization problem. We can

factor the solution into two steps. We write sM as

M -1 Y XT I 11xTN= "f Y [xx + I] XT

where

and

n -s ). ..

3.

3-2 .i
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Step (1) is solve

T I T A(x x + -I) x x- t

then step (2) multiply t by Y to get the output Y.

Step (1) is equivalent to solving

X Xt

using regularization techniques, that is it is equivalent to

Min I til

subject to TIXt - XV = R

By keeping the elements of t small we keep the memory outputs smooth, we
reduce the likelihood of large oscillatory mixing of output components. = is .

the reciprocal of the Lagrange multiplier which makes the solution satisfy the

constraints. In applications, one typically solves step 1 for a set of -'s

and then settles on a residual and norm which seems reasonable. The optimum

associative memory selects - to be large compared to typical regularization

values and hence excepts a rather large residual for minimum noise output.

Given that n - s components of the input are known to be wrong this is quite

reasonable. An algorithm which would allow optical implementation of this

memory is given in Section 2.

References for Section 3

1. K. Murakami, S. Akaishi, and T. Aibara, "On Optimal Asociative Recall By
An Incomplete Key," Biol. Cybenetics 30, 95 (1978).
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4. PROJECTION OPERATORS AND SUBSPACE METHODS OF PATTERN RECOGNITION

A standard classification problem is that of identifying an unknown input

as being a member of a previously learned class. This identification process

is typically hampered by corrupting noise as well as the event that a current

unknown input may be either totally new and not a member of any of the

previously learned classes, or may be a mixed signal which belongs to two or

more of the previously learned classes.

The basic concept of similarity among patterns is that the features of

similar patterns are similar. If these features are used to form a feature

space, each pattern can be represented by a vector in this space. Similar

patterns will have similar vectors, that is, vectors which are all in some

local region of the space and are close together in terms rf some metric. In

subspace methods the feature space is divided into subspaces, one subspace for

each class of patterns. Ideally these subspaces would have no Intersections.

The subspace would be mutually exclusive pattern vectors of a class would lie

totally within the subspace of that class. The distance of an input pattern

from a class subspace is a measure of its similarity to the patterns of the

class.

Orthogonal projection methods, -9 which use a different orthogonal

projector to represent the subspace spanned by a class have been developed and

extensively studied. For potential mixed patterns, the lengths of the

projections of an unknown onto each of the class subspaces can be related to

the amounts of the individual class that are present in the unknown. The

relation is not a simple one when the classes are not orthogonal to one

another. The use of oblique projectors rather than the more common orthogonal

projectors yields an attractive alternative. The major difficulty with

orthogonal projection is that unless different class subspaces are orthogonal,

there can be a large projection of an unknown of one class onto the subspace

4-1
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of another class. This is a problem for both inputs which are mixtures and

pure inputs which are noisy. We show in Subsection 4.4 that for more than two

classes, noisy inputs can cause misclassification in orthogonal projections

while the same inputs are correctly classified by the corresponding set of %

oblique projections. For mixtures there is another complication due to lack WE

of orthogonality of subspaces. A possible identifier for a mixture of two

classes would be the length of the projection of the unknown onto the subspace

spanned by the union of the two class subspaces. However, for nonorthogonal

subspaces the projection onto the union is not the sum of the projections onto

each class.

The oblique projection techniques are robust against noise and will .

correctly predict the input until the noise has a larger component in another C

class subspace. Orthogonal projection can fail before the noise is this large

because of cross talk between classes.

The major advantage of oblique projection operators is that the feature

space can be divided into independent mutually exclusive subspaces by a set of

mutually exclusive oblique projection operators. These operators will give

zero projection for a pattern belonging to a different subspace or class.

The use of oblique projectors in pattern recognition has been somewhat

limited to date lO although the mathematical theory has been developed. 1l - l

To introduce the concepts of oblique projections the elementary

properties of idempotent operators are reviewed. The relation of these

projections to least square techniques and regression is illustrated. A

constructive scheme for the projections based on least squares analysis

presented is in Subsection 4.3.

In Subsection 4.4 a geometric interpretation of oblique projections is

presented and a comparison between orthogonal and oblique projection

classification schemes. A general method of construction of oblique

projection operators is presented in Subsection 4.5. The subspace method can

be generalized to include bounded regions or zones by the introduction of

constrained projections. These add nonlinearity and provide a means of adding

4-2
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additional information about a class when it is known. The implementation is

discussed in Subsection 4.6. The relation between generalized inverses and

projections is discussed in Subsection 4.7. This introduction of weighted

features into subspace methods is discussed in Subsection 4.8.

4.1 Elementary Properties of Idempotent Operators and Projectors

The general properties of idempotent operators and the decomposition of

spaces into linearly independent subspaces is reviewed. Such operators play a

natural role in pattern recognition.

An operator P is idempotent if P2  p. If P is idempotent then its

complement I - P is also idempotent. ' *,.

2(I -P) (I -P) =I -2P +p = I -2P + P =I -P

The major feature of idempotency and the use of idempotent operators in

pattern recognition stems from the following.

An idempotent operator P decomposes a space, 4, into two linearly

independent subspaces, 4l and 42 such that if V belongs to 41 then PV V

and if V belongs to 42, PV = 0. Every vector y in 0 can be decomposed into

Y Yl + Y2 where

Py Y,

and

(I -P) y Y2

Yl belongs to 4l and Y2 belongs to 42. It is useful to introduce a votation

change before generalizing to several subspaces. Let P1 = P and P2 = 1-P,

then Ply - Yl and P2Y Y2.
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The desired properties for an independent subspace method for pattern

recognition are provided by a set of mutually exclusive idempotent operators.

Given a set of K idempotent operators P1 , P2 2 .. PK such that

PI PJ 6 IJ PJ

where

d1J is the Kronecker delta

and

K

P, ~P

then decomposes into k linearly independent subspaces 1 *2 OK. PO

is the total projector. It projects a function into the space I If is the

entire space PO - I, the identity operator.

Each of the K subspaces are defined as the set of all vectors (patterns)

belonging to the particular i. The subspaces are independent but not "

required or assumed to be orthogonal in order for the mutual exclusive

property to hold. If the pattern V belongs to subspace Oj (class J) then

PV V V

and

P V 0

for I * J.
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For such a classification scheme, patterns that are mixtures of two or

more classes can be identified. Let

V V VL + VM

then

PV V L  ; P V =V M _.

L L PMV M

and

for I* L or I * M.

The key to the use of operator techniques is the determination of the

desired operators and finding representations for them. If the subspace OK

are orthogonal the idempotent operators will be symmetric. These operators

are called orthogonal projection operators. If the subspace OK are not

orthogonal, the idempotent operators will not be symmetric. These idempotent

operators are called oblique projection operators.

Characteristics and construction methods for oblique and orthogonal

projection operators is further developed below.

4.2 Orthogonal Subspaces and Orthogonal Projection Operators

Two subspaces are orthogonal if every vector belonging to subspace is

orthogonal to every vector belonging to subspace 02. Orthogonal subspaces are

special cases of linearly independent subspaces, and hence can be analyzed

using idempotent operators. The idempotent operators in turn will have

special characteristics. Let Rn be divided into two orthogonal subspaces.

0i and 02. There exist idempotent operators P, and P2 = I - P1 such that

4'..:
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T 4 a T c -

P2 U U2

and

TU U 0o1 2

The special characteristic is that the idempotent operators associated with W
orthogonal subspaces must be symmetric.

To show this we consider two vectors U and V and their decompositions

uU U1 + 1 U+P2

and

1 2 1 2

Due to the orthogonality of the subspaces

T Tv =TUV U VU V

* as

TU V 0o
1 2

* and

The scalar product U TV cam be written as
1

Tv T Tv

4-6
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The scalar product UTV, can be written as

l .- uTp 1 V .

Since the two scalar products are equal

TPl P

1,

that is PI is symmetric. Operators which are both idempotent and symmetric

are called orthogonal projection operators. The orthogonal projection of a

vector onto a subspace has a simple geometric interpretation. For P1V - VI,

V - V, is clearly orthogonal to V. The key property is that the orthogonal

projection, V1 , is that vector of 01 which is closest in distance to V.

(V - V) is the shortest vector between V and the space 0I. For any

nonorthogonal (oblique) projection, V1, (V - V 1) is longer than (V- V1 ).

4.3 Projection Operators and Linear Estimation

Let 4 be a subspace of Rn and let {W01 be a basis for 4. Then the

orthogonal projection of a function f onto 4 can be obtained through the least

squares procedure

f -WC + R

where the expansion coefficients are given by

c (wTw) - wTf A- wTf

The desired projection operator is

P0 W A 1 W T
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Note

and
an p2 W A-, (WT U) A- 1 

W =P

Thus we have

y " Py and R (1 - P)y

The K dimensional subspace * may be broken down into k one dimensional

subspaces associ ted with each WK. If these subspaces are orthogonal then A

is the unit matrix and <

K K
P i W 1 WI PI

That is if the one dimensional subspaces are orthogonal PO can be written as

the sum of K one dimensional orthogonal projection operators.

It is always possible to generate orthogonal subspaces by using standard

orthogonalization procedures, Gain Schmidt for example. However, if the

nonorthogonal basis has a model interpretation associated with it, this

interpretation may be lost on orthogonalization.

When the subspaces are not orthogonal, the projection onto the subspaces

*I will not be orthogonal. The individual projections will be oblique. The

metric . and Its inverse A- can be partitioned such that the projection

operatore P can be expressed as a sum of oblique projection operators

I

4-8 ""
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where

01 ~ - TW + ~ -

The operatore 01 is the oblique projection operator for subspace ~

2
0 =0

but

T0 1 0

The oblique projection operators have the following properties

0 W3 - W (a)

-1 01 W 0 (b)

0 0 06 0c

P t 0I (d)

Property a is key to the use of these operations for analysis of mixed

unknowns, unknowns with membership In more than one class. If unknown

U W C + W C

I I 33J

then

0I I CI

3 J J
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and

oKU -o

for all

K I or J

It is useful to compare this result with the prediction of independent

orthogonal projections on a mixed unknown. The orthogonal projection

operation for subspace 01 is

P I W 1 I'I

The projection of unknown U onto is

P1 u- 2  2 2)

Since, in general,

PI Wj ff I aij i••

where

A W j " '"

i -W I w"

is the overlap between the subspaces.

Thus

where
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The effect of orthogonal projection is to include some of the 02 component

into the projection. This is an undesirable property. The oblique projection

approach is more appropriate for nonorthogonal subspaces.

We can conclude that the best linear unbiased approximation of a function

f by a basic set of functions {WI} is the orthogonal projection of f onto

the subspace, , by the basic {WI}. This orthogonal projector, P, is the

sum of individual projectors, one for each of the component subspaces of t.

The individual component projectors will be orthogonal if the basis is

orthogonal. The component projections will be oblique if the basis is

hionorthogonal.

4.4 Geometric Interpretation of Oblique Projections

Geometric interpretations of oblique and orthogonal projection operators

are presented. The relationship between coefficients obtained for orthogonal

and oblique projections as compared for simple R2 and R3 examples. We have

shown that the minimum distance classifiers defined in terms of oblique and

orthogonal projection methods agree only for the two class case in R. A

simple example in R shows that orthogonal projections will not predict

correct classifications for nonorthogonal classes.

Oblique projections require two subspaces for their definition, the

subspace into which projection occurs and the subspace into which the adjoint

projection occurs. We label these subspaces and T, respectively.

Of is the projection of f onto q which is along A. oTf is the

projection of f onto 'T which is along 4. For a function f and the oblique

projection operator 0, Of lies along . See Figure 4.1. The projection is

along, 4, the space orthogonal to T. 4 is the orthogonal complement of

'. Ot is also the oblique complement of 4. The adjoint operator, 0 T,

projects f onto f. This projection is along or parallel to, 44, the

orthogonal complement of . is also the oblique complement of T. If .

and T are equal, then the projection is orthogonal. One idempotent operator

generates two pairs of complementary projections (0, 1-0) and (0T, I-OT)
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which projects onto complementary subspace pairs -, 1- ) and (T, 1-')

respectively.

We concentrate now on a complimentary pair and their relation to

orthogonal projections. Consider the projections 01 and Oj 1 1 - 01 on

the independent but nonorthogonal subspaces I and Oj = (1-01). In

Figure 4.2 an R example is given. Both oblique projections of a function f

onto 01 and j are illustrated as well as independent orthogonal

projections Plf and Pjf. We illustrate that for the two class example in . -

R2 if CI > Cj then BI > Bj. This means that either the orthogonal

projector or the oblique projector will lead to the same prediction if used as

'..9

-I

Figure 4.1. Oblique Projections .
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a miimu ditanc clssiierfor tw clss poblm. e wll aso howtha

atmimu disntagnerclasier for a thwo cass prblem. Ifwe wle alsoe sista

for 01 and Wj be a basis for *jthen

o f W CJ J JV1

P f W B

* and

P f= W B~

The projections coefficient B and C are related through the metric

B - AC

For A equal to(

where the W vectors are assumed to be normal vectors and d is the overlap

*between classes 0 < d < 1.

B I C, + d C

Bi C +d C
J J I
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the difference BI-Bj is proportional to CI-Cj. If class selection is

based on the larger projection, then for CI > Cj; BI > Bj and both

oblique and orthogonal projection predict class I. These results do not

extend to the three class problem. Consider the metric A

d I fe f I

then

B, C + dC3 + eCK

B = Cj + dCI + fCK

and

B B +(e-f)

The coefficients BI = w f are unnormalized correlation coefficients.
I

The correlation between W1 and the input f in

B1
r 1i W Ilff ,.1.

The magnitude of BI is the length of the orthogonal projection of f into the

subspace I. The coefficients CI are related to signal strengths. If

both W, and f are normalized to one the square of the coefficient Ic I
is the best unbiased estimate of the strength of W! in the function f. If

the functions f are mixtures of subspaces, then the deconvolution of these

into subspace components requires the oblique projectors. The strength of

the subspace contributions is given by CI

4-15
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The fact that the correlations BI do not necessarily follow the CI in

relative magnitude raises concerns about the use of orthogonal projection as a

classification technique when inputs unknowns are noisy. If a pure input from

subspace 01 is corrupted by noise which has components in subspaces Oj and

K, the relative magnitude of the correlation coefficients may not follow

the relative strengths of the signal and noise components. °.F!

4.5 General Method of Construction of Oblique Projectors

A general method for generation of oblique projections is presented.

This approach is independent of a least square model. An oblique projection

operator can be defined in term of a pair of subspaces and T of equal

dimension. Given W as a basis for and Z as a basis for T the projector 0 '.

I zT

Is defined where (ZTW)I is a generalized inverse of (ZTW). 0 is

Idempotent and therefore a projector.

02 w(zTw)IzT (zTw)I ZT

= w(zTw)I zT =0o:::'

In applications the subspaces OA and OB of dimension nA and nB

respectively will be known. The basis WA for OA and WB for B can be

determined. To construct the desired projection operator 0A for which

0AA A

and

4-16
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A basis ZA is required. This basis will span the nA dimensional subspace

TA.

The subspace TA must have an orthogonal projection into OA and must

be orthogonal to OB . The desired basis ZA can be constructed by taking

the basis WA and orthogonalizing it to the basis WB,

zp .

A A WBQA

where

Q = (WB) -  (WBWA) (BB)1 BA

is the desired

nB xnA

orthogonalization matrix.

Similarly C-

Z W -WQ
B B A B

where

- (WWA[- ( 'B)

After a bit of algebraic manipulation it can be shown that 0 is the orthogonal

projector for the space 0 = A + B. This generation method is

independent of initial basis selection for A and 4bB and is independent of

the orthogonalization method for generation of ZA and ZB. This is the

consequence of the invarlance of 0 to nonsingular transformation of the bases

4-17
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W and Z. Let X and Y be nonsingular. Then let

W- WX and Z ZY then

o-W (z w) z

-. WX (yTzTwx)I yT

= wXo- 1 (ZTw)yl YZT -

Therefore 0 - 0 and projection is independent of the bases W and Z.

4.6 Constrained Projection Operators

The representation of a class as a subspace of its features does not

always contain all of the information that in known about the class. For

example with spectral classes, the absorbances are always positive, but the

subspaces spanned by a set of spectra include both positive and negative

absorbances. In order to avoid nonphysical spectral estimates as well as

incorrect classifications, it is ureful to constrain the absorbances to be

positive. We develop below the projection method for two types of

constraints, inequality constraints and equality constraints. The constraint

methods are developed in the framework of constrained least squares. The

result is a set of operators for constrained oblique projection.

The solution to the least square problem can be expressed as

minimize (bAx)T (b-Ax)

,i.
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I.

with respect to x. The solution Ax is given by

Ax - A A) Ab - Pb

where P Is the orthogonal projector. The inclusion of constraints can be

accomplished using Lagrangian techniques. Constraints of the form Gx - 0,

equality constraints and Gx > 0 inequality constraints will be considered.

The more general constraints relations Gx > h can be converted to the above by

the transformation x - y + Glh where GI is the pseudoinverse of G.

Equality Constraints

The least square method with equality constraints can be expressed as

T
minimize (b-Ax) (b-Ax)

subject to Gx -0.

The associated Lagrangian 
is 

1 1

1 T T T T
L(x,X) = - x A Ax- x A b XGx

A saddlepoint solution of L(x,X) is obtained if

A TAx + A Tb - T X, 0

Gx= 0

and

A > 0

* X is the vector of Lagrange Multipliers.

4-19 
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The solution x of the constrained problem can be given in terms of the

unconstrained problem as

x - + (ATA) GTX

* where X is given by

T -1 T
X [G(A A) GJ Gx

The solution Ax can be expressed as

Ax A Q(ATA) Ab P b

where

Q =1 (A TAJ-G G(ATA) G T, G

A bit of algebra will reveal that Q is idempotent and hence a projector.

Q Q ad further P2  P
Q Q

*Q projects the unrestricted solution x onto the constraint subspace.

*The residual includes the unrestricted residual as well as the residual

arising from projection onto the

RQ A( ~)ATA A b

subspace that violates the constraints. 6
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Inequality Constraints

For inequality constraints the optimization problem is

Minimize (b-Ax)T( bAx)

Subject to Gx > 0

Following the method outlined for equality constraints the solution for x and

A are obtained from the solution of

(ATA)X Ab -G 0 ,-

Gx> 0

AGx 0

and

A>0

The major difference between equality and inequality constraints is that

the inequality constraints need not be active. If x satisfies the constraints

in that

Gx > 0

then

x- x

A - 0 is the solution. In general for every component x, of x that is

greater than zero, the corresponding Lagrange multiplier Xi is zero. The

nonzero Ai corresponds to active constraints xi 0. These correspond to
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the unrestricted solutions xi violating the constraints, Gix < 0. The

nonzero XI are given as before for equality constraints and x, X and PQ

have the same properties. Q however depends on b, if for example

Gx - G(ATA) -ATb > 0

then

Without loss of generality we can assume that the first k constraints are

inactive and the remaining constraints are active. Then G can be partitioned

into [G1G2 ]T where G2 corresponds to the active constraints and the nonzero

Lagrangian components solved for from

[G2 (ATA) -1 GG -.Gx

The projection operates PQ for the constrained least square problem can be

considered as a sum of oblique projection operators, one for each class as in

the case of unconstrained least squares.

4.7 Relation Between Generalized Inverses and Projection Methods

A relationship between certain generalized inverses and constrained

oblique projection operators was identified. The variety of generalized

inverses suggests that a large variety of potentially useful projection

operators can be generated.

Oblique projectors and constraints can be considered in terms of

generalized inverses of matrices. A projection operator can be written as

Pw W WI where WI is the generalized inverse of W. The selection of

the Moore Penrose inverse*-

4-22
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wl I (W TW)[ IwT (W (TW) -1 wT A- -w T

leads to the orthogonal projector PW = WA-IWT- The Moore Penrose inverse

is identical to the true Inverse for nonsingular matrices. The existence of

A- ' is based on the linear independence of the columns of w. The Moore

Penrose inverse X satisfies the following four properties:.%,

a...

AXA =A 16)''

XAX -X (2)"'

(AX )T -AX (3). =-"

(XA) -XA (4) ."

An example of a generalized Inverse that does not satisfy the four conditions '.

is.

A I (ZTA)IT Z T

This inverse satisfies conditions 1, 2 and 4 but not 3 as -. °

0 ~TA ZT  O T  Z z(A Tz) I A TCondition (3) is equivalent to requiring A AI to be an orthogonal

projection. The oblique projections themselves contain a generalized o

Inverse. The Inverse AI _ (zTA)I ZT is called a 1, 2, 4 inverse.
I 
14

In this nomenclature the Moore fo In is a 1, 2, 3 4 inverse.
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7 7 X -7 --

The construction of Z as -SL

T -1 T
Z - A - B(BTB)-' (BTA

insures that ZTA will be singular only if the subspaces spanned by A and B

are not independent. If the subspaces are dependent then one or more of the

columns of Z will be of zero length. For nonsingular ZTA, the generalized

inverse (ZTA)I can be replaced with the true inverse in Al and 0

respectively. The Moore Penrose inverse is identical to the true inverse in

this case. If we let (ZTA)I (yTZTA)I YT and substitute this

inverse into 0 we have

0 A(ZTA)
I ZT - A(YTZTA)I yTzT

using the Identity

(zTA) (zT1A) - 1

yields
0 A(YTTA) -IZ -1 ZT - AQ(ZTA)-1 ZT

where

Q - (yTZTA)I (YTzTA)

is a projection operator.

This result is a special case of the following. A generalized inverse of

a nonsingular matrix X is equal to the product of an idempotent operator and

the true inverse

x.(x'x)x - ' . x-lxx'
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The left and right idempotent operators are the projectors (XIX) and (XX')--[

respectively. If the Moore Penrose inverse is used the idempotent operators

are the identity operators.

The projection operators developed for constrained least squares

applications are also expressible in terms of 1, 2, 4 generalized inverses.

The problem of minimizing AX = b subject to GX = 0 had the solution PGb

where

P0  AQ(ATAJ AT

and

- T -1 -1

Q = 1 (A TA)-  GT[G(ATA)- 1 G G C

Substituting H = (ATA-l) GT and ST = G yields Q = 1 - H(STH)-  ST

with the 1, 2, 4 generalized inverse (STH-1) ST.

4.8 Weighted Features and Subspace Methods

The incorporation of feature weighting into oblique projectors was

considered. Justification for its use is provided below from a standpoint of

least squares theory. The weighting of features is based on the statistical

description of the measurement errors. The assumptions are that the average

values of errors are zero and that the variances and covariances are known.

If the model R - b-Ax is adequate, the errors, Ri, associated with each row

or measurement will be unbiased. By this is meant that with an ensemble of

repeated measurement of bi the set of Ri will have zero mean.1 6  Using

this ensemble the covariance matrix of the errors, ER, can be formed. For

obvious reasons the covariance matrix is often not known. In any event the

estimate of the errors in the solution vector x is related to the covariance

matrix, ER. The ensemble of solution vectors {Xil has a covariance matrix
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zX A A R (AI  )

where AI is the pseudoinverse of A. For unweighted least squares the

inverse is the Moore Penrose inverse, Al = (ATA)-IAT. For weighted

least squares the pseudoinverse can be written AI = (ATWA)-'IATW, where W

is the weight matrix. The weight matrix must be positive definite. The '

covariance matrix for the solution vector, Ex is given by

EX (AT ATw ER WA) (ATwA)I (2)

x2

It is the diagonal elements of EX, a jj, that give the errors associated

with Xj.

Gauss' Theorem states an important criteria for selection of weights.

The theorem states that the weight which will give minimum variance is the

inverse of the covariance of the measurement errors. That is if W =ER-

then the O2jj will be a minimum. This intuitively makes sense as

measurements with large variances will have small weights and measurements

with small variances will be weighted heavily. The minimum variance

covariance matrix for X is given by

,.-

*IfER aI te

Ex  A A) (4)
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ER is usually not known and the assumption of it being a constant

matrix a 21 is ubiquitious since it shows no prejudice against any

measurements. The unweighted least squares procedure will give an unbiased

estimate of X and if the error covariance is a constant matrix, the unweighted

least squares will give a minimum variance estimate of X. The penalty for

using the wrong weight (W * ER- 1) is the loss of minimum variance. A

critical question concerning minimum variance is how sensitive is the variance

to the wrong weight. (Note: no weight at all W = 1 is the wrong weight if

ER is not a constant matrix.) The selection of measurements or weighting of

measurements is a standard approach in pattern recognition. The weighting or

selection is based more on usefulness in distinguishing classes rather than on

concerns about measurement error. The general rather than accidental success

of such procedures would require that this type of measurement weighting does

not have a large effect on the covariance. A simple example lends support to

this idea. Consider a two class problem and a simple minimum distance

classifier based on b = Ax where A is m x 2 whose columns a, and a2 are the

average vectors for class 1 and class 2 respectively. The m features are

measured with equal precision and the features are uncorrelated. The

covariance matrix of the errors can be expressed as ER = 1.

LetA= • (5)

1 1

Even though the m measurements are of equal precision, only the first will be

useful in distinguishing between the two classes. For the minimum distance

classifier X, > X2 if b belongs to class 1.
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For this example

TA (m m-2)
AA (6)

Am-2 m

the condition number Cond(ATA) m-I and the covariance can be calculated

from (4) as

x  a 2(ATA) 7m-71 (7)

The uncertainties in X, and X 2 are obtained from the diagonal elements

2 2
a2  a M a
°ii -"- ) Z'

and are independent of m for large m. The inclusion of a large number of

precisely measured but unuseful measurements does not reduce aCl but does

contribute to an increase in the condition number and to the correlation

between class I and class 2.

A weighting scheme is used which attempts to minimize the apparent

correlation between classes by minimizing the condition number. The following

diagonal weight matrix will cause the apparent correlation to be zero.

1 0

M-1--

mn-i
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w is a mxm diagonal matrix. The model now uses a weighted least squares

calculation. The matrix (ATWA) is diagonal and class 1 appears uncorrelated

with class 2. The condition number Cond(ATWA) = 1, an absolute minimum. We

have

(ATWA) ( (ATWA) = 112

0 20 1 /2:i~

and

X1  (ATWA) ATWb

x2

Since these weights are not the inverse of the covariance of the measurement

errors, the covariance of X must be calculated from Eq. (2) rather than Eq.

(3) and in principle will not yield the minimum variances. However

substitution of the required quantities in Eq. (2) yields the same estimate

for Zx as was obtained in Eq. (7). The use of the incorrect weights in this

model has not had an adverse effect on the solution variances. The weighting

generates a numerically stable model with a well conditioned normal matrix

which is easily inverted. This example offers some hope for the use of

weighting schemes which minimize apparent correlation or minimize the

importance of measurements which are not useful for classification.

The use of weights in oblique projection techniques is attractive. The

weighted projection method can be formulated so that once the projector is

generated during a learning step, no additional burden will be incurred. The

classification step is as simple as in the unweighted case. The form of the

oblique projection operator used here is 0 A = A(ZTA)IZT where Z is a

basis for the projection onto A which is orthogonal to 4B. That is ZTB -

0 for any vector B that belongs to *B. When using weighted measurements a Z
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is sought which is W orthogonal to OB. In the unweighted case Z is

constructed from

Z = A - B(BTB)- 1 BTA

For the weighted case the desired Z is

Z WA - WB(BTWB)- 1 (ATWB)

Then

TB = ATw - BTwB) (BTwB)l (ATwB) 0

and the weighted projection is given by

0A A(zTA)I AT

OA works directly on unweighted vectors. Thus no additional burden over

unweighted projections occurs once Z and 0 are formed.
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