
7 AD-Rig.7 364 INTEGRATION OF HETEROGENEOUS
BIBLIOGRAPHIC INFORMATION

IL
THROUGH DATA ABSTRACTIONSCU) LAURENCE LIVERMORE
NATIONAL LAB CA J 0 BREAZEAL JAN 86 UCRL-53718

UNCLASSIFIED -745-ENG-48 F/G 52 NI

11 I.L 1322

(.11 11 U s.4 1 .

MICROCrOv .'-..':ON TEST CHART

J
~NATIONAL URIEAU OF STANDARDS$ -9ll63- A/

V, IJ " L

4*
jn1.5 111 1. _11 .

- -, -.

$1

UCRL-53710
*b

Integration of Heterogeneous
Bibliographic Information

(Through Data Abstractions

Juliette Ow Breazeal
(M.S. Thesis)

DTIC
S E LECTE

A PRi1 5 196j J

January 1986

_ P/. -,

DISCLAIMER

This document was prepared as an account of work sponsored b) an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes an)
warranty. express or implied, or assumes any legal liability or responsibility for the accuracy. completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial products, process, or service by trade name.
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring b, the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the Universit) of
California. and shall not be used for advertising or product endorsement purposes.

,i 'Work performed under the auspices of the U.S. Department of E.nergy by I.arence Iivermore National Iaboratory

~under Contract -7405-EnI-48.

4,Z.

% %

'P k. kd
.

' - - T- . Ta R .T-I Ttrtt.- - --T.-.TI ---. [.

SECURITY CLSIICATION OF TH15 PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified/Unlimited
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

UCRL-537 10
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Lawrence Livermore (If applicable)

National Laboratory I I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
University of California
Livermore, CA 94550

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Technical (If applicable)

Information Center DTIC

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Cameron Station ELEMENT NO. NO. NO. ACCESSION NO.

Alexandria, VA 22304-6145 65801s

11. TITLE (Include Security Classification)

Integration of Heterogeneous Bibliographic Information Through Data Abstractions

12. PERSONAL AUTHOR(S)
Breazeal, J."0.

13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT
Final I FROM TO 860100 73
16. SUPPLEMENTARY NOTATION

M.S. Thesis

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Intelligent Gateway, Post-Processing, Database

9 2 Reformatting, Downloading

'9. ABSTRACT (Continue on reverse if necessary and identify by block number)
In this study, heterogeneous bibliographic information resources from geographically
distributed locations are integrated in an automated, unified, and controlled way by
using abstract data types through the Message-Object Model as defined in Smalltalk-80.
A unit of modularity call a "class" is developed that defines operations to process the
data structures encapsulated in the class. The classes focus on processing bibliographic
citations obtained from heterogeneous on-line bibliographic databases into a meta-form
with the goal of developing information consistency to simplify further information analysis
Classes developed for the bibliographic citation application can speed program development
because the data abstractions can be used in processing generic information such as
dates regardless of the bibliographic database source. Prototype classes are developed
to show the ease in encapsulating data structures and behaviors for the bibliographic
citation application. Data abstractions provides a powerful integration technique that
allow the designer to work with bibliographic citation objects without being encumbered

wi h tip ~AlA f irrlm t.n+Q- n
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

INUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. [DTIC USERS UNCLASSIFIED/UNLIMITED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

GLADYS A. COTTER (202)27L-q367 I TC-.I

IDO FORM 1473.84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UCRL-53710
Distribution Category UC-32

Integration of Heterogeneous
Bibliographic Information
Through Data Abstractions

Juliette Ow Breazeal

(M.S. Thesis) .,

Manuscript date: January 1986

LAWRENCE LIVERMORE NATIONAL LABORATORY
University of California * Livermore, California * 94550 W

Available from: National Technical Information Service * U.S. Department of Commerce
5285 Port Royal Road 9 Springfield, VA 22161 * A03 * (Microfiche A01)

-. - .- ... , . - -N. .

Integration of Heterogeneous Bibliographic Information
Through Data Abstractions

By

JULIETTE OW BREAZEAL
A.B. (University of California, Los Angeles) 1960

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE
in

Computing Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in Charge

Deposited in the University Library_ ____ _____ ____
Date Librarian

-i-

~Z

I- L%

Abstract

In this study, heterogeneous bibliographic information resources from geographically distributed

locations are integrated in an automated, unified and controlled way by using abstract data types through

the Message-Object Model as defined in Smalltalk-80. A unit of modularityt¢co a "class:: is developed that

defines operations to process the data structures encapsulated in the class. The classes focus on processing

bibliographic citations obtained from heterogeneous on-line bibliographic databases into a meta-form with

the goal of developing information consistency to simplify further information analysis. Classes developed

for the bibliographic citation application can speed program development because the data abstractions can

be used in processing generic information such as dates regardless of the bibliographic database source.

Prototype classes are developed to show the ease in encapsulating data structures and behaviors for the

bibliographic citation application. Data abstractions provides a powerful integration technique that allow

the designer to work with bibliographic citation objects without being encumbered with the details of

implementation.

Keywords:

abstract data types, message-object model, class message, class methods, Smalltalk-80, Objective-C,

information consistency, database consistency, database reformatting,: database integration)
A ,.

1. 1.)" '.. ." ; t :' .. .

-T--

or "

Acknowledgements

I wish to gratefully acknowledge the encouragement, dedication and guidance by Professor Meera

Blattner, my thesis adviser, towards the success of this study. Both Dr. Hilary Burton and Professor

Lawrence Kou have my gratitude for their help in reviewing this study and providing excellent comments

and suggestions. My thanks are extended to the Technology Information System Group, the Computing

Research Group, and the Electronics Engineering Research Group at the Lawrence Livermore National

Laboratory for their support and their cooperation. Finally, I thank my husband, Norman and my children,

William and Cynthia for their devotion and patience during this academic endeavor.

Accesion For I
NTIS CRA&I
DTIC TAB 0
U ii¢ounced o

By
By.............................

Dist, ibutlon I
Availability Codes

Dist Avail and / or

-Special

tIi- tA r

1R~

Contents

Page %
Chapter 1: Introduction ..

Chapter 2: Previous Methods for Processing Heterogeneous ... 4
Bibliographic Information

2.1 Why use Heterogeneous Bibliographic Information Resources?9 4

2.2 Description of Bibliographic Citations... 6

2.3 Processing of Heterogeneous Bibliographic Information 7

Chapter 3: The Message-Object Model .. 14

3.1 Abstraction Mechanisms in Modern Programming ... 14

3.1.1 Software Abstractions .. 15

3.1.2 Structured Programming Methodology .. 16

3.1.3 Abstract Data Types .. 16

3.2 Object-Oriented Programming.. 17

a3.2.1 Objects... 18

3.2.2 Messages... 18

3.2.3 Classes ... 18

3.2.4 Methods .. 19

3.3 Benefits of Object-Oriented Software .. 19

Chapter 4: Prototype Development Environment ... 21

*4.1 Computer System... 21

4.2 Software Development Tool .. 21

4.2.1 Objective-C Compiler... 22

4.2.2 Unix Tool: Lex .. 26

Z v-

Page

4.2.3 Unix Tool: Yacc.. 26

>14.2.4 Unix Tool: Make.. 27

4.3 Summary ... 27

Chapter 5: Prototype Implementation... 28

5.1 Sources of Data .. 29

5.2 Reformatting the Detail Information for Consistency ... 29

5.3 Program Design Abstractions .. 30

5.4 The Prototype... 31

5.4.1 Lex Specification File... 31

5.4.2 Yacc Specification File..3

5.4.3 Date Class ... 36

5A4.4 Main Module .. 37

Chapter 6: Summary and Results .. 38

Chapter 7: Discussion and Future Directions ... 42

References:.. 45

Appendix A: Hierarchy of Objective-C Classes ... 47

Appendix B: Objective-C Base Tree - methods ... 50

Appendix C: Prototype Source Code ... 56

Appendix D: Merged File of Heterogeneous Bibliographic Citations.. 60
from Six Database Sources

Os7-

rl

Y -~;)'3

y,'law M.

Chapter 1:

Introduction

In recent years, the development of abstraction mechanisms in languages has focused on abstract

data types to "manage complexity by emphasizing what is significant to the user and suppressing what is

not"[Sha84]. This has lead to modem programming languages such as Smalltalk-80, Flavors, and Ada.

Software methodologies have been developed to address engineering concerns in requirements,

specification, design, implementation, correctness, and reliability to reduce cost during the software

development and maintenance phases. The use of abstractions to logically reduce the complexity of the

task is aided by modern language mechanisms in that they provide the language constructs to encapsulate a

logical data type and the operations associated with it. The language constructs of "Classes" or "Flavors"

help in the abstraction process. This project is based the use of abstractions to obtain data consistency in

heterogeneous databases. Our specific implementation was applied to bibliographic information. Similar

techniques may be appliea to other types of databases, as described in Chapter 7.

Bibliographic citation databases from heterogeneous information resources are used widely in

research and development work. These databases are often accessed to do a subject search or to prepare a

bibliography. The citations contained in the bibliographic databases may be large in number and collected

over a long period of time. This process was done manually before computers became readily available,

and was tedious and error prone. Today computers are used widely for this task. Modern computer

automated tools have been developed to assist in such bibliographic processing and are continually being

enhanced[Go185]. 7

A research task may consist of accessing several bibliographic systems such as DIALOG, INSPEC,

NASA/RECON, DOE/RECON, or DOD/DROLS.

-1-

n-4A.

-,~~~ % %.~ . F ' ~ a . . . w ~- - ~- .A

The respective retrieved citation lists are down-loaded into a user file for post-processing analysis. Each

database has its own form because of independent development programs and a lack of generally accepted

standards. Hence post-processing analysis on a database citation file requires an individualized software

* processing package for each citation database. Sometimes the user's files are merged if software is

available to translate the files into a common format.

To analyze data from the down-loaded and merged files requires data consistency. Hence a

prototype has been developed to provide the tool to make heterogeneous bibliographic citation databases

consistent. For example, the search for citations within a range of dates is encumbered by the problem that

dates may be represented in different formats in different databases. Searches on author names are also a

problem if different databases enter first, middle or last names in varying formats. The goal is to have one

r, tool process the heterogeneous bibliographic citations into a standard form to provide the basis for

convenient data analysis.

Significant improvements are made by conceptualizing the problem of data consistency by

abstractions in terms of Smalltalk classes. Since the information types in citations are broadly similar,

classes can be developed for each type of information such as "date" or "title". Careful specification of the

classes can simplify the programmers task since interfaces will be defined, and data and their behaviors

- 'I will be understood. Another improvement occurs when future enhancements are built on the classes

already developed and serve to reduce the amount of new software needed.

This study shows the ease in developing prototype classes for integrating heterogeneous

bibliographic citation databases and suggests the basis for the development of additional classes required

for the complete application. The modularity of software, the inheritance by classes, the encapsulation of

data structures and operations, and the use of dynamic binding reduce the task of the software designer and ~ ~ *

5, developer. Hence the Object-Message abstraction narrows the gap between the concepts and analysis of the

problem and the notation used in the computer software to solve the problem.

In the following chapters, we discuss the background, motivation, and development of abstract data

types via Smalltalk-8O classes to solve the problem of data consistency in heterogeneous bibliographic

citation databases.

-2-

FA

SV

"W-~-

~'~' -.

Chapter 2 discusses previous methods used. Chapter 3 gives the characteristics of the Message-Object

Model. Chapter 4 discusses the physical hardware and software methods used to create the Objective-C

classes for the prototype. Chapter 5 discusses the specifics of the prototype implementation, Chapter 6

discusses the results of the prototype implementation, and the last chapter discusses future directions.

rI

'-3

.1,i

% %-

-4 .% %

~ ~~yv*? __ _ a%.,

Chapter 2:

Previous Methods for Processing Heterogeneous

Bibliographic Information

This chapter gives some background information on bibliographic citation databases and discusses

previous methods for processing the information.
I.,

*2.1 Why Use Heterogeneous Bibliographic Information Resources?

e, Hall and Brown provide a statistical study of the on-line bibliographic databases that is the basis of

. this section[Hal83]. Online databases have been available since the 1960s but have mostly been in-house.

Since 1972, there has been a rapid growth of publicly accessible databases.

Table I

Number of Bibliographic References Available Online

in millions

1 1968 r1972 I1976 11980 I19821
1 1/4 3 20 58 77

The current rate of addition is 8.7 million references per year. With duplication accounted for, the

estimate is 50 million singular references available for use and six million additions to the reference pool

made per year.

-4-

7- .

Parallel to the four-fold increase from 1976 to 1982, the growth in on-line use is estimated to be six

fold as seen in Table 11.

Table HI

Bibliographic Searches on Public Systems in U.S.A. and Canada

in millions

11975 1 1977 I1979 19081
1 2 4 6

There are four particularly predominant database services. They are listed in Table 111. Each supplier

strives for uncommon databases in their service. Nearly 20 percent of the important databases are not

available from the four services.

Table III

Unique and Common Databases available from major suppliers

Supplier BRS DIALOG IRS ORBIT
Unique jjjj8 39 5 24

Cmo28 56 27 28
TtlNume -T6 95 ~ 52 -

Total Percent 21 55 J_18 30

The vast repertoire of information makes the access to heterogeneous bibliographic information an

important resource to a researcher. From Table III, we see that a password to DIALOG gives access to

fifty-five percent of the databases. An additional password to ORBIT gives a total access to seventy

percent of the databases.

Up to 1984, more than 2453 citation and numeric data files were available from 362 on-line

information vendors[Cua84]. Scientific disciplines are continually adding to the published set of abstracts

and citations. Most on-line bibliographic information is still obtained in printed form after an on-line

search. The vast amount of information needs a tool with a unified view to extract significant scientific

and technological intelligence.

2.2 Description of Bibliographic Citations

To understand the problems involved in heterogeneous bibliographic citations a simple MEDLINE

citation is described as it is mounted on BRS. Only six fields were selectively down-loaded.

Sample Bibliographic Citation

[AU] Bowry-T-R. Oywang-J. Lumba-M.

[IN] Department of Human Pathology, Faculty of Medicine, University of Nairobi, Kenya.

[TI] HBV infection: prevalence of core antibody and other markers in urban based black school

children in Kenya.

[SO] Ann-Trop-Paediatr. 1983 Dec. 3(4). P 197-200.

[LGI EN..

[IS] 0272-4939 k

-6-

g.

% .1-J

The AU represents author, with hyphens separating initials. LG represents language and IS is the

accession number for the citation in the particular database. IN represents the institutional affiliation of the

author, TI is the title, and SO is the source. The same bibliographic citation from a different database

source may be formatted in a completely different way. Inconsistency in the detail field hinders

information analysis[Gol85I.

2.3 Processing of Heterogeneous Bibliographic Information

With the appropriate administrative requirements fulfilled, a user can down-load bibliographic

records from a variety of on-line services such as BRS or DIALOG. Typically, an off-line printing

follows a search, and is arranged in reversed chronological order. The need for computer based editing

tools is a natural consequence. Rather than obtaining the down-loaded information in stacks of printout,

the bibliographic citations are down-loaded to a disk file so a computer can be used for automated

processing of the information. We observe two problems that exist in local processing of the file. The file .,
must be translated into a common form to handle the different database formats for data tags and to handle

the inconsistencies in the detail information associated with each data tag.

Tools to develop data consistency are available in most modern database management systems.

Information consistency within a specific bibliographic database may also be augmented by locally

developed software and procedures. The database administrator can use software tools to constrain data

entry to meet certain requirements. The user may be required to enter data strictly in integer format within

a certain range of values or character format within a certain string length. Furthermore, the user may be

required to enter strings that are pre-defined in a dictionary for that attribute, such as one of eight

acceptable colors. We can see at this point that information may be entered correctly into a particular

database in formats that are singularly defined by the local database administrator. However, there may be

4 inconsistent formats among the heterogeneous bibliographic databases because of a lack of standards and

autonomous database development and administration. For example, dates can be constrained in a local

database to be either May 1, 1985 or 1 May 1985 format.

-7-

There may be additional differences in upper/lower cases, abbreviations, spaces, or punctuation. These

inconsistencies hinder the automated processing of bibliographic citations in the down-loaded disk file.

Hence we find in processing a search based on date ranges, software must be written to handle the date

discrepancies, or the search will be incomplete. Author names also introduce problems because R. L.

Smith, Richard L. Smith, and Richard Lee Smith are the names of the same author. If one desires a list of

articles written by R*chard Lee Smith after a certain date, the tabulation would be inaccurate.

A recent study on popular 'front-end systems' available on the market for processing bibliographic

citations shows that the user has a limited choice of features such as down-loading and file creation.(i.e.,

SciMate, InSearch, CONIT)[Bol84]. Software is not available to address the problem of data consistency

among heterogeneous databases.

Goldstein and Prettyman have developed software to process down-loaded citations with the goal of

incorporating a specified reference format into manuscripts. In their work they encounter the typical _4

problems of processing heterogeneous bibliographic citations.

-

-8-

They propose transforming each citation into the following canonical format.

Field # Data Element Tag
1 TYPE TY
2 DATABASE DB
3 TITLE TI
4 AUTHOR AU
5 SOURCE SO
6 INSTITUTION IN
7 NO. & TYPE MTG NO
8 MEETING TITLE TM
9 VOLUME NO. VL
10 ISSUE IS
I I MONTH (JOURNAL) MO
12 DAY (JOURNAL) DY
13 YEAR (JOURNAL) YR
14 MONTH (MEETING) MM
15 DAY (MEETING) DM
16 YEAR (MEETING) YM
17 PAGES PG
18 TOTAL PAGES TP
19 PUBLISHER PU
20 PUBL. CITY PT
21 PUBL. STATE PS
22 PUBL. COUNTRY PC
23 PUBLICATION YR PY
24 MTG.CITY MT
25 MTG.STATE MS
26 MTG.COUNTRY MC
27 REPORT NO. RN
28 RETRIEVAL NO. RG
29 ISSN NO. SN
30 PART NUMBER PN
31 CODEN CD
32 NOTES NT
33 EDITOR TYPE ED
34 AVAILABILITY AV
35 COPYRIGHT YEAR CY
36 PUBL.AUTHOR AA

The process is divided into three stages.

Pre-Processing

Parsing

Post-Processing

-9-

.....

Steps for pre-processing records down-loaded from heterogeneous databases into separate local files

are:

*1. translate field labels in all files to a common set;

*2. include fields for, and add database and retrieval system names to all records;

3. merge all records into one file; '

4. reorder the records into a format that is optimized for further processing;

5. determine and add the type of publication;

6. standardize the format of the author's name.

The parsing stage is to separate the complex source field into discrete information. Further details

are found in Chapter 3.

* Post-processing is to further format the information for consistency in the end-product application

program. The end-product could be a statistical analysis based on certain keywords or a bibliography for a

publication.

The post-processing tasks are:

*1. conversion for case consistency;

2. standardize journal titles;

3. correct inconsistencies in format;

4. expand abbreviated titles;

5. add missing data;

6. make linkages between articles and proceedings; chapter and citations.

The Goldstein and Prettyman work involves knowing the database source and then writing specific

software for that bibliographic database source. Their proposal for a canonical form for bibliographic

-10-

N % ..

citation databases is an attempt to develop standardization regardless of the bibliographic citation sources.

A significant amount of work has been done in the processing of heterogeneous bibliographic

citation databases by the Technology Information System(TIS) of the Lawrence Livermore National

Laboratory(LLNL). They have been working on technology transfer through computer networks located

nationally and abroad since 1975 and have developed the Integrated Information System (IIS) that manages

information and resources on the TIS system. IIS supports the down-loading and analysis of bibliographic

citations from heterogeneous database services. A major goal is to provide the capability to extract

scientific and technological intelligence from the information contained in these databases. To accomplish

this, software has been developed to process bibliographic citations from the federal information centers of

the Department of Energy (DOE), the Department of Defense(DOD), and the National Aeronautics and

Space Administration(NASA) as well as the three major U. S. commercial services --- Lockheed-

DIALOG, SDC-ORBIT, and BRS. [Bol84]

The Integrated Information System (IIS) software package is menu-driven and provides for the

following bibliographic database options:

[TRANSLATE] translates citations to a standard format

[MERGE] combines translated files from different sources into one file

[STATJ creates a statistical profile of citations

[ANALYZE] analyzes bibliographical text

[REVIEW] permits on-line evaluation of citations for relevancy.

(CONCORD] creates indexes by author, subject, descriptors, etc. *6

[PERMUTE] issues multi-term statistics of the text in selected data fields

[CROSS] cross-correlates the contents of data fields

[PLOT] shows the number of citations by year in a graph

[DISPLAY] displays the contents of any file on the CRT screen

-Il-,li

II

TRANSLATE, MERGE, DISPLAY and REVIEW do the pre-processing steps 1-4 mentioned by

Goldstein and Prettyman. ANALYZE, CONCORD, PERMUTE, CROSS, PLOT, and STAT allow the

user to produce some trend analysis from the bibliographic citations that have gone through the

preprocessing steps. S.

Currently, the trend analysis is not entirely accurate since the detail information is not entirely

consistent. A closer examination of the pre-processed files shows dates in the following form:

1. 1 May 1985

2. May 1, 1985

3. 1985.

4. 5/1/1985

5. 1985

6. 5/1/85

7. May 1985

8. May, 1985

The job of producing a file that is consistent is time-consuming and difficult; duplicate bibliographic

citations are not easily detected. A particular citation usually contains only a subset from the set of data

tags and different databases may enter certain detail information under different data tags. An example is

the the following:

<DATABASE SOURCE> DIALOG NTIS FILE 6

<TITLE> Online Directory of Databases for Material Properties

<DATABASE SOURCE> DOE/recon

<TITLE(MONO)> Online directory of databases for material properties

-12-

% _il pro

The purpose of this project is to further extend the consistency of the detail information found in a

merged file that is the result of down-loading heterogenous bibliographic citation databases. It is through

the development of abstract data type Smalltalk-80 classes that similar types of information can be

standardized, regardless of source. The standardization of dates and authors and titles include accounting

for spaces, punctuation, capitalization, and ordering.

4,

-13-

4-6

% %

% % A.

P'' .l, .W.r - . .t'" " " . " ° "'. " .

Chapter 3:. ha

The Message-Object Model

We first establish the foundation for using abstractions in software development. Next, we discuss

the motivation for using abstract data types via Smalltalk 80 classes to solve the data consistency problem

in heterogeneous bibliographic citation databases. 0

3.1 Abstraction Mechanisms in Modern Programming

Recent work in programming methodology has led to the recognition of three kinds of abstractions:

control, procedural and data. A large effort has been expended in developing a modem programming

methodology so software is constructed that is easy to understand, modify, maintain, and is reliable. The

quality of a program depends on the programming methodology used. The effective utilization of the

methodology is strongly dependent on the programming language selected for the software development.

Certain concepts in the methodology may be difficult to put into place if the language does not provide the

constructs that make the process automatic. The language does influence the way a programmer thinks and

formulates ideas. A good match of the methodology and the language enhances the likehood that the

methodology will be followed. An example would be to attempt to introduce the concept of block structure

using Fortran 66. A better choice would be Pascal because the language supports block structured

constructs. While it is true that software can be written in Fortran to simulate the methodology, the job is

unnecessarily enlarged for the software implementer[Lis74][Lis77].

-14-

V~~~~~~ N~A'~M ~~W
- 1%*

- . i NN~l.A~AK ~) AI%

3.).) Software Abstract ions

What do we mean by software abstractions? We mean that the abstraction isolates the use from the

implementation. That is to say, that the abstraction can be used without the knowledge of how the

implementation was carried out, and the implementation can be done without the knowledge of how it is to

be used[Lis77I. In the early 1950s, we see the application of abstractions in terms of assembly language

rather than machine language in terms of octal numbers. Three letter acronyms were used instead of an

octal number that represented the operator. Operands were designated by symbolic labels rather than .

absolute addresses in memory. Early languages supported built-in data types like integer and reals. One

did not think in terms of binary bits in a computer word at a certain physical location in memory. Later

type checking aided in appropriate default conversions when a real number was added to an integer.

Hence, the programmer was relieved of low level detail. Procedural and control abstractions wereV

dominant. Sorting procedures and square root functions could be specified without requiring knowledge of

the implementation, and the implementation could be done without knowledge of how they were to be

used. Later, control abstractions such as do-loops were made available so the concept of iteration was

abstracted by the language construct. Abstractions were treated as a program organization technique.

Programmers could define macros and define new data types required by a specific problem. We note that

data structures such as stacks and linked lists were first treated systematically in 1968. The idea of

studying and formalizing programming activity dates back to this time[Sha84].

What was recognized in early 1970 was that programs were difficult to understand and maintain.

With the infamous gotos that spanned a large number of software lines indiscriminately, the term "spaghetti

code" evolved and was a familiar occurrence among programmers. Locality was advocated in terms of if-

then-else or do-while control constructs. For a while, extensible languages were promoted because they

allowed the programmer to add new control constructs and data types to the base language in an attempt to

U add clarity to the program and make the programmer's tasks easier. This idea became unpopular since it

was difficult to keep independent extensions compatible, to organize the definitions so related information

'U were grouped together, and to find a technique to describe the extensions accurately.

44

-rU~

A4

The need for more accurate specifications was recognized since programmers typically relied on

poeueheaders and parameter lis -ts with accompanying text to define the procedural abstraction. This

specedurtiechiu depended on individual styles, and some were well written and accurate, while

others were vague or out of date.

I 3.1.2 Structured Programming Methodology

The structured programming methodology was developed in the 1970s to address these problems: to

make programs reliable, easy to understand, develop and maintain. It detailed phases in softwareI development, specified tools needed to assist in the process, and established tests and criteria for program

correctness. Program development was to evolve top-down using the idea of abstractions. First the

statement of the problem was presented and then successive refinements were made until the problem was

finally solved. The idea is to start with a high level abstraction and then progress by problem

decomposition to recognizing subsidiary abstractions. This is where we find modem programming

languages as CLU, Aiphard, ADA, Concurrent Pascal, Euclid, Gypsy, Mesa and Modula being developed

to support the structured programming methodologytSha84).

3.1.3 Abstract Data Types

Procedural and control abstractions were available but the idea of abstract data types needed

promotion. Through abstract data types, the idea of locality would hence be further extended, making

programs easier to design, implement, and maintain. Specifications would be easier to write because of the

encapsulation of the data structures. Data behaviors could be defined only within the abstract data type.

The requirements of a language supporting data abstractions developed. Linguistic constructs were needed

that implemented data abstractions as a unit in terms of data representations and operations on the data.

The construct would provide a mechanism by which thle language would limit access to the representation

except by the operations defined. Smalltalk is such a language with abstract data types in terms of classes.

CLU has clusters; Ada has packages; Flay has flavors.I

-16- ~

%~ 14* - -% %

a A basic concept is that the operations defined for a class must include all operations needed in handling the

data structure. Usually the operations include create, modify, and access operations. The desirability of

classes is that the language takes care of all the interface specifications, the names for instantiations of the

-~~ classes, the assignment, argument passing and type correctness.

Essential to abstract data types is the primitive library that is provided with the compiler. Here

typical abstract data types as arrays, AVL trees, bags, and dictionaries are provided from which the

programmer can develop new abstract data types particular to the application. Inheritance is important in

that new abstract data types that are defined are based on the properties defined in a primitive abstract data

type. As a matter of fact the abstract data types are usually arranged in a hierarchical tree so that an
ea f*

abstract data type inherits all the properties defined between it and the root of the tree.

Abstract data types are the means by which the human can transform problem-domain concepts into

the computer-domain model. In other words, the separation of specification and implementation is the

desired result. The goal is that program correctness at the abstract level can be ascertained before the

implementation. The phrases "abstract data types" and "object-oriented programming have been used in

various contexts, from Simula and its derivatives such as Ada to powerful data description languages used

a in knowledge representation. The meaning we apply is in the Smalltalk-80 context. [Cox84]

3.2 Object-Oriented Programtnung

Object-Oriented Programming replaces the operator-operand concepts that are used in the traditional

computer-domain model. The idea is to introduce a coordination tool that supports change, reusability, and

enhancements. The goal is to transfer work from the human to the machine and to enhance consistency

from the human viewpoint.

Two major concepts of Object-Oriented programming are encapsulation and inheritance.

Encapsulation is an aid in using the system and isolates the objects from the environment except through a

carefully controlled interface. Inheritance is a aid to building the system. New classes are defined by first

inheriting the data and behaviors of older generic classes, then specifying only how the new ones differs.

The idea is to define the data abstractions so the programming task is made minimal.IF i

-17-

- -- ~ - ~ -
-- a-.--. a-.-~ . *. .~.%

% --- '. . - a ~ . ,

Ja1*% ~ ~ % a. % . a a ~ p.- - a . *- ~ ~ ~ '. , . * .* .

.'I

Now we will define some terms used in a Message-Object programming language such as

Smalltalk-80. The terms object, message, class, instance, and method are all defined in terms of each other.

We will relate the terms to the Objective-C compiler that is a derivative of Smalltalk-80, and will clarify

them by examples in Chapter 5.

3.2.1 Objects

Objects are virtual(computer-based) machines. They have some data (private part), a set of

operations(shared part), and a run-time mechanism for selecting operations on the data that are activated by

a message sent to the object. They exhibit one of their behaviors when they receive a message.

3.2.2 Messages

Messages are sent to objects and are requests to obtain a desired result. The message contains a

predefined operation(method) to be done on the data structure and are serviced one at a time by the object.

Objects representing numbers have arithmetic operations; objects representing data structures as AVL trees

create an empty tree, add, delete, modify, or count elements.

14

3.2.3 Classes

A class represents a description of a group of similar objects. A class is the abstract data type and anV1
object is an instantiation of it. For example the class rectangle deals with the generic group of rectangles,

but an instance of class rectangle will have specific dimensions for length and width. Binding is done at

run-time so there is no static type checking at compile time. An example would be the class Array in

Objective-C. The subclasses BytArray, IdArray, and IntArray inherit properties from class Array. Hence

an operation as printOn defined in class Array will work on any of the three subclasses mentioned,

although the data representations differ in terms of byte, Id, or integer. Also a new subclass defined later

will also be handled correctly, and class Array does not have to be revised to make considerations for the

new subclass data type. This is how reusability in data abstractions becomes a major asset in software

development.

-18-

3.2.4 Methods

A method is a description of how to do an operation and is specific to the class in which it has been

defined. It resembles procedures and could use class variables as parameters. Methods are written in a

high level language like Smalltalk-80, Lisp, or C. The set of methods should include all the operations

needed to work with the encapsulated data, either via inheritance or definition within the class.

3.3. Benefits of Object-Oriented Software

One basic caveat of object-oriented software is the concept of reliable reusable code. As a matter of

fact the classes are called IC's from the engineering concept of integrated circuits. To start with, one uses

a set of basic classes that form the root of the inheritance tree that can be systematically augmented by

defining new classes.

* To further understand the problem we are addressing, let us look at the Goldstein and

Prettyman[Go185] analysis of bibliographic sources from four different bibliographic citation databases:

MEDLINE, INSPEC, ISIC, and COMPENDEX.

[MEDLINE] Ann-Trop-Paediatr. 1983 Dec. 17-18. 3(4). P 197-200.

[INSPEC] LASER FOCUS (USA). VOL. 19, NO.8. 61-6.

[ISIC] COMPUTER 9(3): 11-12

[COMPENDEX]

a) Electronics v 56 n 7 Apr 7 1983 p 155-157.

b) IEEE Trans Magn v Mag-14 n 5 Sep 1978, INTERMAG (lnt Magn) Conf,

I Florence, Italy, May 9-12 1978 p 964-965.

The parsing of the citation source is a major task in arriving at the information in the canonical form

suggested. It cannot be automated fully, and is iterative due to inconsistency in the data, addition of new

words to the authority dictionaries, and new valid acronyms, entries and words.

-19-

'4%

Goldstein and Prettyman give an accompanying parsing structure for each of the above citation .

sources.

[MEDLINE] [title].* [year]*[month].* [day(s)].* [vol([issue]).*P*[pages].

[INSPEC] [title]([country]).*VOL.[volu me],*NO.[number] .*[pages].

[ISIC] [title]* [volume]([issuel): [pages]

[COMPENDEX]

a) [title] *v*[volume] *n* [issue] *[month]* [day(s)] *[year] *p*[pages]

b) [title] *v*[volume]*n* [issue]* [month]* [days]* [year],*

[conf. name],* [city],* [country],* [month]* [day(s)]*

[year] *p* [pages].

One observes there are classes that are common to the different sources. As a matter of fact, the

tasks involved in processing for data consistency of title, volume, and date, are similar regardless of the

database origin or the citation source. There may be variations in case, punctuation, abbreviations, and/or

format. We see date specified as Sep 1978 or May 9-12 1978 in the COMPENDEX sources. The goal of

this project is to develop some prototype classes that augment the set of generic classes to provide the

abstract data types needed to produce data consistency in citations from heterogeneous bibliographic

databases.

-20-

%I
%~ 4

- ... ~U U *~U

Chal)ter 4:

Prototype Development Environment

This chapter describes the physical hardware and software methods used to implement the prototype

classes to process heterogeneous bibliographic citation databases into a consistent form.

4.1 Computer System

The work was started on the LLNL Engineering Research Division (ERD) VAX 11/780 using the

VMS operating system since it was the only installation with the Objective-C compiler at LLNL at the

time. The parser development using the Unix tools LEX and YACC was done on the Tektronix 6205

workstation. The parser modules were sent over the network to the VAX to be compiled by Objective-C

along with the prototype class modules to minimize use of the resources on the VAX. With limited system

resources on the ERD VAX, the work was later completed on the LLNL Technology Information System

(TIS), which meanwhile acquired the Objective-C compiler. Their VAX 11/780 uses the UNIX operating

system BSD 4.2; certain VMS program lines needed for compatibility with Objective-C were removed. In

general the environment was simpler for development work since the VMS port for the Objective-C was

still in progress whereas the port for Unix BSD 4.2 was complete.

4.2 Software Development Tools

The Objective-C compiler from Productivity Products International in conjunction with the C

compiler was used to implement the Object/Message model prototype for bibliographic citation databases.

The Unix tools Lex and Yacc were used to develop the parser generator, and the tool Make aided in

software development. [PPI85]

-21-

%V

4.2.1 Objective-C Compiler

The Objective-C compiler is based on the Smalltalk-80 Message/Object Model. The syntax for

developing classes in Objective-C resembles the Smalltalk-80 language but differs significantly in that the

class methods are defined using the C-language. The Objective-C compiler is a preprocessor that produces

C source that is then compiled. The preprocessor produces Class and Phylum files that are information

repositories and form the basis for inheritance and encapsulation for the classes.

Smalltalk-80 is the result of 14 years of research and development by the Software Concepts Group

at Xerox PARC. It is based on a software environment contained entirely within a workstation with special

hardware to improve performance by orders of magnitude. The Smalltalk-80 environment solely uses the

Smalltalk-80 language and provides the software person with a repertoire of basic classes. The

environment includes utilities usually provided by the computer operating system, such as the text editor,

compiler, and debugger. The environment makes extensive use of graphics windows, pull down menus,

and a pointing device so the user can work on several views of his work in progress. To change text under

software development, the user points at the line, edits it, issues the compile command, removes syntax

errors, tests the software, and then compiles and links the new software into the system. All this is done

without changing "modes" for editing, compiling, filing or executing.

The Objective-C compiler is different in that it is one of the many tools the software developer can

add to the utilities offered by the operating system. It is available in the VAX VMS operating system

environment as well as computer systems with the Unix BSD 4.2 operating system. It is is a preprocessor

to the C compiler and adds the basic Smalltalk-80 concepts of classes, objects, messages, encapsulation and

inheritance. Objective-C is an object oriented programming language layered on top of C and allows one

to use it in addition to the existing software and hardware.

-22-

~~L%

Diagram of Compilation Units[PPI85J

Obeciu-

Sourc

C reroeso

-23'S

INNNa Wi

Objective-C Class Libraries

Included with the Objective-C compiler package are the Basic Class Library and the Foundation

Class library that establish the root of the hierarchy of reusable classes from which classes for the specific

application are developed. Classes developed for the application inherit properties of classes between the

root and itself. The hierarcl'y of classes provided with the Objective-C compiler are presented graphically

in appendix A.

The Basic Library contains the classes Nil, Object, Array, IdArray and String. The root of the

inheritance hierarchy is class Object that points to the Nil class. Every object inherits all the methods and

instance variable available in class Object. Class Array is detailed to give an idea of the methods this class

supports. Array is a superclass of several classes that support indexed instance variables. It has an

instance variable capacity that records the units of elements of the array. Methods are defined for instance

creation with n-elements that may be initialized from an argument list or not. Methods are also defined for

copying, inquiring on capacity, printing to an I/O device, comparing and hashing, and notifying on bounds

violations.

The Foundation Library contains the classes Assoc, AVLDict, AVLTree, Bag, BytArray, Cltn,

Dictionary, IntArray, Cltn, Dictionary, IntArray, OrdCltn, Point, Rectangle, Sequence, Sets, Stack and

Unknown.

-24-

9 I

Diagram of Hierarchy of Classes in Basic and Foundation Library[PPl85]

Ob''

in.

ASSOC

(i M .B 1' a r wi i t n . ,j t U I l t j i o C l a s s e O "h I t m G e m e r y

s Set. :89 El

Omtsis on inso at

-25-

.4'PS. U

E.1'

The implementer of an Object/Message application must be familiar with the available classes to

appropriately use the inheritance properties inherent in the class hierarchy. In the prototype

implementation, the class Object was used. In the discussion of future work in Chapter 7, the development

of other classes are described to support the task of creating consistency in the heterogeneous bibliographic

citation database.

4.2.2 Unix Tool: Lex %

The Unix tool, Lex, is a program or module generator. The basic model for Lex is based on the

theory of regular expressions[Aho74]. It generates a module that is a deterministic finite state automaton.

The input to Lex is based on user specified rules that are in the form of regular expressions. Regular

expressions are rules for specifying character strings to be matched and include operator characters to

account for repetition of strings, optional or required occurrences of strings, and the ordering of strings.

The user may associate a procedure with a rule so further processing is done when a rule is matched. For s

example, if a rule in the form of a regular expression expects a number, the associated procedure may

verify that the number is in an expected range and flag an error if it is not valid[Les5]. Lex generates the

module that does lexical analysis on the input character stream consisting of the detail information

associated with a data tag in a bibliographic citation. The tokens and optional values are passed to the

parser.

4.23 Unix Tool: Yacc I
Yacc is a tool that generates a program or module called the parser. Yacc is based on Context Free

Grammars using Backus-Naur Form(BNF) descriptors to specify the parser that accepts the language. The

formal discussion is found in [Aho74] and a user's manual in [Joh751. The input to Yacc are user specified I
grammar rules and optional procedures to be invoked when the grammar rule is recognized. The parser

includes a call to the lexical analyzer that passes tokens and optional values recognized from the input 77

character stream.

j -26-

AS I

The parser does a syntactic analysis and does the aissociated actions if the input satisfies the grammar rule.

For the prototype the grammar rules include all the legal variations in the detail information for a data tag

in a bibliographic citation.

4.2.4 Unix Tool: Make

The Unix tool Make is a software management tool that allows dependencies to be specified by the

user among software modules. Changes to a source file are automatically detected and trigger the

appropriate actions specified in the dependency rule. For example, modifications to a source file could

* brigger recompilations of other dependent source files.

4.3 Sumimary

The software prototype was developed in the Unix BSD 4.2 software environment, using the Unix

- tools Lex, Yacc, Make and the Objective-C comrpiler. The C compiler was used to develop the software.

The next chapter discusses implementation of the prototype and how the tools are used in the

implementation.

-27-

4 b

Chapter 5:

Prototype Implementation

This chapter introduces the basic data abstraction mechanism in Objective-C, the class. A prototype

for processing heterogeneous bibliographic information is described to show how the abstraction is used in

program design and how it is used and implemented in Objective-C. A system overview that details the

major steps in producing the prototype is diagramed.

Inout

inout Moin Progrm
Lex Saecification File

i DeteOlbj

Vocc Specificetion File vuperse

of A

Ymc gyperseCls

. System Overview of Prototype Implementation

-28-

; ' . , , , , . - ' - - --.- - , -- -- - " .

5.1 Sources of Data

The source of data could be the result of a session by a user at a terminal making queries of an on-

"4' line system such as the Dialog system that involve the search of bibliographic citations on a topic. The

output is usually in the form of a display of the retrieved citations and may be followed by a more complete

printout of the citations. In our case, the facilities at the LLNL Technology Information System (TIS) were

used to obtain bibliographic citations on the subject of "Computer Gateways and Networks" from the six

following on-line database services: DTIC/DROLS-TR, DIALOG NTIS FILE 6, BRS, DOE/RECON,

NASA/RECON, and SDC/LIBRARY and INFORMATION SCIENCE ABSTRACT. An on-line session

with each particular database service was used to capture the information into a local file. The citations in

the local file was translated into the TIS standard form for bibliographic citations. The six local files were

then merged into a single file so that post-processing analysis could be done on a single file. A sample of

the merged file is included in Appendix D.

Each bibliographic citation consists of an average of twenty fields of information. Each field begins

on a new line and consists of a data tag delimited by left and right angle brackets (<,>) and ending with the

descriptive information. In database terminology, one can consider the data tag as a field label and the

descriptive information as the field detail.

5.2 Reformatting the Detail Information for Consistency

On closer examination of the bibliographic citations in the merged file one finds similar types of

information may be represented in differing formats if they come from different database sources. There

may be varying formats within a database for items coming from different publication types. For example,

"<DATE> 1985." appears in a BRS/National Library of Medicine Database record, whereas, "<DATE>

Aug 1984" appears in a DIALOG NTIS FILE 6 citation. Another problem is that "<TITLE> PLURIBUS

SATELITE IMP DEVELOPMENT MOBILE ACCESS TERMINAL NETWORK" appears in upper-case

in the DTIC/DROLS-TR citation but "<TITLE> An on-line directory of databases for material properties"

appears in lower case except for the first word in the NASA/recon citation database. One can make the

observation, however, that similar "classes" of information occur in bibliographic citations.

-29-

%~ %

% %,Vp

The task of reformatting the detail information for consistency is a complex job. The detail

information from different database sources may appear with a different data tag. An example is

"<TITLE> Post-processing of Bibliographic Citations from DOE/RECON, NASA/RECON, and

DOD/DROLS. Revision 1." from the DIALOG NTIS FILE 6 whereas the same citation in the DOE/recon

database has "<TITLE(MONO)> Post-processing of Bibliographic Citations from DOE/RECON,

NASA/RECON, and DOD/DROLS. Revision I." The task of consistency may include a cross correlation

of information. If the title is not available with the <TITLE> data tag, the information may be available

with the <TITLE(MONO)> data tag. Hence a duplicate may be detected and removed. Typically, one

may request a yearly count of articles written on a subject to ascertain the emerging importance of research

in the area. We pointed out in Chapter 2, they estimate that thirty-five percent of the bibliographic citations

are duplicates[(Hal831 and so the accounting of duplicates is important.

5.3 Program Design Abstractions

Consider the merged file as a data abstraction called in-stream, and the data abstraction called out-

stream that will contain bibliographic citations in a consistent format. We will need procedural

abstractions that indicate when in-stream is empty, or determine the next data tag and data field pair. We

can consider each data tag and data field pair as an abstraction. Hence, we can arrive at abstract data types

for "date", "title", "author", and etc. that are based on the data tags found in the merged file.

The <DATE> abstraction is presented with details for its implementation. The bibliographic data

tags such as <DATE>, <AUTHOR>, or <TITLE> are handled as left context operators. They trigger

environments that are very dissimilar. On closer examination, the information associated with <TITLE> is

considered as a string, whereas the information as sociated with <DATE> is considered on a word basis, :

where a word is any nonempty sequence of alphanumeric characters. Adjacent words may be separated by I
non-alphanumeric characters as space, punctuation, or newline. Hence the lexical rules and actions must

be specified separately for these two different cnvironments. In looking at the <AUTHOR> and <DATE>

, detail information, the parser rules and actions must be specified individually also. An author June E.

Smith has a first name of "June", whereas June should be handled as the sixth month if it is a date.

-30-

%.

A discussion on handling of left context sensitivity is described in the Lex reference[Les75]. Once the data

tag has been identified, then separate lexical and parser routines associated with Lex and Yacc rules are

called to process the information. We can think of Lex and Yacc as procedural abstractions in the

development of our prototype class. The Unix tools Yacc and Lex produce C modules of advanced

algorithms in a convenient form that can be easily integrated into the prototype application program. These

program generators do special jobs based on user specifications that are easy to update. Yacc produces the

module "yyparse" and Lex produces the module "yylex". The user can insert C code before, within, and

after the call to either module to add a large amount of flexibility. The modules generated are special

purpose and have excellent performance in terms of time and space. They save the user from writing their

own C code and hence frees the programmer from details that are conceptualized is procedural

abstractions.

41

5.4 The Prototype

To show the ease in creating Objective-C classes, the prototype for the Date class is described. The

prototype consists of the Lex and Yacc specification files, the Date class data abstraction, and the main

program module. The tutorials on Lex and Yacc were helpful in developing the specification files[Bel78].

5.4.1 Lex Specification File

The general format of Lex input is:

{definitions}

%%.

{rules}

{ user routines }

-31-

%I

% %

The definition section is:

#include "objc.h"

#include "y.tab.h"

#define MON(x) { yylval.lex=x; return MONTH; }

=(N,Collection,Primitive)

The include file "objc.h" contains most of the standard definitions for the user of the Objective-C

compiler. The file contains various C types such as STR for string, SEL for selector, BOOL for boolean,

IOD for 1/0 descriptor and SHR for the shared part of an object. The include file y.tab.h is created by Yacc

and contains the tokens used for communication between the lexical analyzer and the parser. The macro

MON(x) is defined to assign a value to yylval.lex that is returned to the parser. Values returned by the

lexical analyzer and associated action procedures are integers by default. The rules to Yacc can define

other types that the parser tree handles so the stack properly carries out the reduce and shifts to determine

an accepting state for the statement being parsed. The Yacc discussion covers the union of types that

account for the suffix ".lex". The last statement is an Objective-C declaration for the Phyla files.

The rules section consisting of regular expressions is:

UJ]an("."uary)? MON(1);

[dD]ec("."Jember)? MON(12);

-32-

'Im

[0-9] {yylval.lex = yytext[0] - '0' return DIGIT;

[] { ; 1" delete blanks */}

\n" { return EOL; }

{ return EOL; }

In the regular expression 'UJ]an("."Iuary)?', the months are allowed in different forms, i. e. jan, jan.,

january,Jan, Jan., or January. The macro MON(x) is the action statement where the value returned is an

integer, that is 1 for January, 2 for February, and etc. The value is stored in yylval.lex, and MONTH is the

token returned. The characters 0 through 9 are recognized by the regular expression [0-9] and the action is

to return the integer value for the character representation and DIGIT for the token. The regular expression

[] deletes blanks since there is no action statement. The regular expression "\n' recognizes end-of-lines

and returns the EOL token. The regular expression "." recognizes any other character and the action

statement returns the single character.

The last section defines procedure "date(month,day,year)" for checking that the month is in the range

1-12, and the days for a month are correct. The leap year is taken into account on the days of a month.

Terse error warnings are included that could be changed to more sophisticated error recovery actions. See

Appendix C for the details. Hence the lexical analyzer module, yylex, should be able to recognize the

tokens in the eight variations for "date" that are tabulated in Chapter 2.

5.4.2 Yacc Specification File

We now describe the specification file that is input to Yacc to generate the module yyparse. The

general form looks like:

declarations

%%

rules

-33-

..... ... L\%,,jSN ?

ik ,. .: ; :I . . rr KK .- r,9 p - an an a;--a: - ST a,, an , rr w-
.

Mn ..
-

fl M T .
-

t .
-

- r.
-

,, - . n
-

r. ,., .. - , ,T,, ,WT,. m T .T'

S

programs

The declaration section is:

#include "objc.h"

= (N, Collection, Primitive)

extem id dateObj;

%union {

short lex;

id obj;o,

%Start prog

%token<lex> DIGIT MONTH

%token<lex> EOL

%type<lex> number year day

%type<obj> DateStmt

In the declaration section we have the include file objc.h and the phyla declaration that were

described in the previous section on Lex. The external declaration of the instantiation of the Date class.

dateObj, is required since dateObj is created in the main program. The union statement defines the two

data structures on the parser tree, the "lex" integer data structure and the Objective-C "obj" id data

structure. The goal symbol, prog, is defined by the %Start statement, and the legal lexical tokens that yylex ".
-- 34

I-

-34- ,

recognizes are DIGIT, MONTH, and EOL. Number, year, and day are parsed by yyparse and have the

"lex" integer data structure. The DateStmt has the "obj" id data structure.

The rules section is:

prog: DateStmt EOL { exit 0;1;

DateStmt: MONTH day ',' year

{

date ($1, $2, $4);

$$ = [dateObj mo: $1 da: $2 yr; $4 1;

[dateObj print];

day: number;

year: number;

number DIGIT I number DIGIT {$$ = 10 * $1 + $2; };

The rules section specifies the BNF grammar for parsing the legal forms of date. The date procedure

checks that the number of days is within the correct range for the month, with leap year taken into

consideration.

The following statement:

$$ = [dateObj mo: $1 da: $2 yr: $4];

stores the month, day, and year values in the object, dateObj. The Objective-C message expression is

contained between the pair of square brackets([...D. The message is sent to the receiver, dateObj. There

-35-

I3'.,';.,.; v., -"'' .v, " ' " "• " ""'"", .b ""'"",.o: ""\ "' " :""'""'" '''""" ",""''

are three keyword selectors, mo, da, and year, that consist of a string of characters ending in a colon

character. The arguments to the keyword selectors are $1, $2, and $4 that are obtained from the parse tree.

This is an invocation of a method defined in the Date class and is a behavior in addition to the instance

methods that Class Date inherits from the Object Class.

(dateObj print];

The print method is defined in the Date class and defines a behavior for printing the values stored in

the dateObj object for month, day and year. The user simply invokes the print method and is not

encumbered by the details of the data structures of month, day, or year to print the information correctly.

In contrast, the Fortran programmer must know whether the month, day, or year may be in ascii, octal, or

integer format to select the proper conversion specification in the "Format" statement. The proper

definition of the methods in a class should encompass the create, modify, or reply so that the user's

requirements in working with the class object is complete.

The program section is the last section and contains an error diagnostic that prints a warning to the

user if the input can not be parsed by the grammar rules contained in the input specification file for Yacc.

One may observe at this point how terse the software is to do all this work. The extraneous characters for

space, /, and variations in the date format are handled with a minimum amount of software. The values for

month, day, and year are stored as instance variables into the object, dateObj, through the method defined

within the class Date, and the print operation is easily invoked since the details are encapsulated as a

method in the class Date.

5.43 Date Class

The Date class is defined in the source code file, "date.m". The declaration section has the

Objective-C include file, objc.h, and the Yacc include file, y.tab.h. Next, the declaration for ascii

representations for month is included for the print method.

-36-

% %
LIM ~ .4 az "," %

The following statement:

= Date:Object (N,Collection,Primitive)

reflects that the Date class inherits properties from the Object Class, and the Date class will be included in

the writable phylum file "N". Also, the Date class may use the classes in the Objective-C librar "i

Collection, and Primitive. The instance variable are declared to be integer for month, day, and year, and

are called mon, da, and yr respectively. The first method prefaced with "-mo: ..." stores the values in the

instance object The next method denoted by "-print ..." prints the date to the terminal. The print method

will test for the default values of-1 and vary the printout. The three sample printout forms are:

I May 1985

May 1985

1985

5.4.4 Main Module

The main program contained in the file, "main.m", begins with the include file for the C compiler

standard I/O library, stdio.h, and the Objective-C include file, objc.h. The phyla declaration statement for

the main program follows. The externals are declared in addition to the instance object, dateObj. The

main program sets the output to be the terminal that is the Unix standard output device.

The statement:

dateObj = [Date new];

creates the object for the Date class. Since the method "new" is not defined in the Date Class, the method

is inherited from the Object Class. The prompt ">" is printed at the terminal and then the input is expected

from user at the terminal so that it can be parsed and have its values for month, day, and year stored into

the date object just created. The print method is then invoked to verify the proper values are stored in

dateObj for month, day, and year. The last two statements declare the classes and phyla that can be used in

this application program.

-37-

a..

Chapter 6

Summary and Results:

The intent of the prototype implementation is to provide a programming example of the Class data

abstraction mechanism of Objective-C as applied to the Date class to obtain data consistency in varying

forms of dates that are contained in bibliographic citations. Through a simple example, features of the

abstraction mechanism in Objective-C have been presented. The Unix tools, Lex and Yacc were used to

develop the procedural abstractions, yylex, and yyparse, that do the lexical analysis and syntactic analysis

on the varying date forms. Eight variations of dates consisting of month, day and year were established in

the dateObj object for the Date class. With the instance variables set to specific values, the print method

could be invoked to take care of the task. The private data and data access methods are encapsulated

within the Date class, and requires that the user communicate through messages to the object to elicit the

behaviors desired.

The Date class is an elementary example to show how other classes for the bibliographic citation

database can be developed for accomplishing data consistency in the numerous fields in a bibliographic

citation. The Date class can easily be extended to included more methods, categorized as setting, inquiring,

performing arithmetic and printing.

Setting:

1. -setmo: aMonth set the month

2. -setda: aDay set the day

3. -setyr: aYear set the year

-38-

- III P II

Inquiring:

1. -getmo: aMonth reply the month

2. -getda: aDay reply the day

3. -getyr: aYear reply the year

Performing Arithmetic:

1. -julian reply the Julian day

2. -dayofyear reply the nth day of year

Printing

1. -printmo reply the month

2. -printdy reply the day

3. -printyr reply the year

The goal is to develop a comprehensive Date class to simplify the task of constructing reliable

software that is easy to understand, modify, and maintain. This Date class will be part of the Class Library

that is accessed by application programmers who will rely on the skill of the designer who develops the

abstraction. The classes must be defined such that the behaviors of the class of information is fully defined.

These include the create, modify and reply operations. In the event that additional behaviors are necessary,

the concept of abstraction mechanisms in the programming language as Objective-C will guarantee that

software will not have to be re-examined or re-written because of the change.

We briefly describe how the <AUTHOR> and <TITLE> classes can be defined and used in the

application for data consistency in heterogeneous bibliographic citation databases. The main program is

expanded to examine the in-stream of data and look for the "<AUTHOR>" or "<TITLE>" data tag. This is

easily done since the data tags are enclosed in the left and right angle brackets. The characters following

the right angle bracket are saved in a buffer until a left angle bracket is detected. This buffer of characters

is then passed as data input to the parser developed for the particular data tag information.

-39-

In the TITLE data tag the Lex specification file will have the action statement convert the text to

upper-case for consistency, and then will store the title into the object

yylval.obj = [String str: yytext];

return STRING;

The Yacc specification file will contain the action statement:

$$ = [titleObj str: $1];

In the case of the AUTHOR data tag, the buffer of characters captured after detecting the Author tag

is passed to the Author parser that has BNF specifications to handle the variations in author names. The

author list could be saved in the Set class. The creation of an Author object could include an initialization

that would give a wild card character like "*" for the first or middle name in cases where the names are

missing from the input stream. The methods defined for the author class could treat the names as wild

cards when a match is required.

The next logical development is to define a citation object that contains the Author, Title, and Date

Objects as a related triple.

extern id String, Set; id citationObj;

citationObj = [self with: 3

[dateObj str]; 1%

[titleObj str];

* [authorOjb str];];

Methods could be defined to create, add, delete, or modify a citation, in addition to printing the citation in

"pretty" forms for easy user viewing.

-40-

-------- -------

The prime idea in defining classes for the heterogeneous bibliographic citation databases is to present the

application programmer with abstractions that handle the data types involved, and include all methods to

process the abstract data types. Hence the objects are the entities that are handled by the applicationU

programmer to reduce the details that must be remembered. The particular class should characterize the

behavior of the data entirely. If not, additional methods may be added to the class definition. Indeed, even

if this is done, software that has been written based on the former class definition may not have to be

rewritten unless it accesses the new features in the class. The underlying physical structure of the program

is taken care of by the physical interfaces used by the Objective-C compiler. The basic actions in

programming the application are assignment statements that create objects and invocations of class

methods through messages to the objects to exhibit behaviors.

I
-41-

I.--

Chapter 7

Discussion and Future Directions

MIn recent years a variety of powerful generic tools have been created. Database Management I

Systemns(DBMS) and Spreadsheets are examples. They gain their power from the ability to operate on

various data. They provide the generic operations of create, modify, and output. We have attempted to

create the tool for data conversion. This study was restricted to bibliographic citations to see how far the

idea of a generic library tool can be extended. The development of the generic library tool requires the

definition of classes which the application programmer incorporates into user software. The concept of

* abstract data types via classes can be extended to Database Management System. If one considers the

relational model, then the relations in the form of tables can be considered the data structure of the class.

The operations of retrieve, update, and append with qualifiers can be considered the class methods. This

abstraction is a convenient one for the application programmer since tables of information are a common

occurrence. But a detail look at the physical implementation of the data structure may be complex. The

storage and access mechanisms may be based on hashing algorithms if the data are sparse and have a

balanced distribution. B-trees may be used withi linked lists for fast searches. Here the user is relieved of

the complexities that are left to the Database Management System implementers. To access the relations

the user relies on the query language that allows operations on the relations. In this same regard, the person

developing the classes for an Object Oriented application must provide the application programmer with

the necessary classes to do a job. The classes must be general enough to handle application programs that
have not yet been defined. This is what a good Database Management System provides, and is what the

class library for the application should provide. Of course, Database Management Systems are always

being enhanced to do a better job for the user, and it is expected that the class library will be improved with

-42-

time. What is important is that the user will not have to rewrite any software that has been developed.

Even if the underlying physical structure is changed to improve speed or space, the user need not be

concerned, and all the benefits will be automatically gained. One can now readily understand the strength

in using abstractions. Through Object Oriented Programming the abstraction mechanism found in

Database Management Systems and Spreadsheets can now be extended to programming languages through

abstraction mechanisms provided in languages like Smailtalk-SO and Objective-C.

This project has demonstrated the feasibility of establishing data consistency in heterogeneous

bibliographic citation databases through data abstractions, called classes. Future work involves specifying

and implementing the full set of classes for this application. With the classes in place, the application

programs can be written to further the data consistency goal.

We have discussed the bilio-citation object consisting of the title, author, and date objects. The

objects associated within the citation object should be expanded to include the necessary elements for

identifying a bibliographic citation. This requires the establishment of a canonical form for a bibliographic

citation. A study of the bibliographic citation format from different sources shows that the data tag names

are diverse and many are singular. For example, the DOE/RECON database uses "<PAGE NO> 17",

whereas the DTIC/DROLS-TR has "<PAGINATION> 30P". Goldstein and Prettyman have proposed a set

of 36 fields for the citation canonical form and it appears in chapter 2. They propose two character data

tags, such as PG for the number of pages in the reference. Their canonical form is based on bibliography

preparation. The data fields for the general case needs to be studied and proposed. On a cursory glance,

the expanded canonical form should include "AB" for abstract, and "KW" for keyword descriptors. We

note singular data tags that probably are only meaningful to the local bibliographic database such as

"<LIMITATION CODES> I", can be excluded from the canonical form of the citation. With the data tag

and associated data elements defined for the canonical form of a bibliographic citation, the definition ofOl
classes for data consistency can proceed. The Date class can be re-used for the journal date, publication

year, copyright year, and the meeting date. The definition of a Location class is appropriate for the meeting

location, publication location, and author location. This class should access an abbreviation dictionary to
produce a consistent form of the location.

-43-

-I Il II .V

-...

If the location is listed as London, then London, England should be substituted. The location US, U.S.A.,

or United States should be made consistent in the same fashion. Warnings should be included for data not

found in the dictionary, so that it may be updated with new entries. The standardization of publication

titles can be added to a Source class. Certainly, the conversion for case consistency in a character strings,

and the expansion of abbreviations should be included in the class methods. Alternate names for people or %

institutions could be accessible from a dictionary to further aid in data consistency. We note that the

Dictionary class is available in Objective-C and can be incorporated into an class.

A future expansion should include the post-processing tasks in terms of the classes defined in the

application tool library. Methods could be included to "pretty-print a bibliographic citation", to analyze

bibliographic text, to display the citations on the CRT screen, to plot the statistical information on a graph,

and to do cross-correlations on the data fields. The convenient tools of Unix can be incorporated into the

classes since Objective-C is designed with the use of Unix tools in mind. We have seen how the Unix tools

Lex and Yacc were incorporated into the Objective-C program.

The procedure of establishing data consistency in a heterogeneous bibliographic citation database

through the definition of abstract data types can be extended to other heterogeneous databases. The

restriction is that the information in the heterogeneous databases derive from a common base, as in

bibliographic citations. Hence for a relational database where a relation is employee, a field in the relation

is name, and its detail information is John Jones, the data tag could be <employee.name>, and the detail

field would be John Jones. The existence of a data tag and and an associated detail field in the database

establishes the reuse of the data abstractions created for the bibliographic citation database.

"4", -44-

'.

..-.
"' N

~~.,nwwr~~~u~qws~~~nvw~~I. -7* IL- A N i -W A"r Irw~r~wr~ N-cd-U -U -41 a- ajs.w prrw 1 -J

References

[Aho74] Aho, A. V., Hopcroft J. E., The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, Massachusetts, 1974.

[Be178] The Bell System Technical Journal, July-August 1978, Vol. 57, No. 6, Part 2., American

Telephone and Telegraph Co., pages 2155-2176.

[Bol84] Bollinger, W. A., Hampel, V. E., Harrison, I., Murphy,T.P., Post-Processing of Bibliographic LA

Citations from DOEIRECON, NASA/RECON, and DODIDROLS, Lawrence Livermore

National Laboratory, UCRL-89995 Rev. 1, August 1984.

[Bur84] Burton, H. D., Integration of an Automated Library Support System with an Intelligent

Gateway, Lawrence Livermore National Laboratory, UCRL-91383, August 1984.

[BuH84] Burton, H. D. and Hampel, V. E., Integration of Common Command Languages with

Intelligent Gateways, Technology Information System, Lawrence Livermore National

Laboratory, 1984. 1%

[Cua84] Cuadra, R. N., Abels, D. M., Wagner, J, Directory of Online Databases, Cuadra Associates,

Inc., Santa Monica, Ca., 1984, Vol. 5, No. 3, Spring 1984.

[Cox84] Cox, B. J., "Message/Object Programming: An Evolutionary Change in Programming

Technology", IEEE Software, Vol. 1, Number 1, January 1984, pp50-61.

[Eag85] Eagles Project, Electronics Engineering, Engineering Research Division, Lawrence Livermore

National Laboratory, Livermore, Ca., 1985.

[Hal83] Hall, J. L. and Brown, M. J., Online Bibliographic Databases: A Directory and Sourcebook,

Third Edition, 1983., Aslib, London, 1983.

[Ham79] Hampel, V. E., McGrogan, S. K., Gallo, L. E., Swanson, 1. E., The LLNL "Meta-Machine",

Fourth Berkeley Conference on Distributed Data Management and Computer Networks, San

Francisco, California, August 28-30. 1979, Lawrence Livermore National Laboratory, UCRL-

-45-

e , . %r f r r,q W
%-u ". .

"'s.

83064, May, 1979.

[IHam85] Hampel, V. E., "TIS, The Intelligent Gateway Processor", Proceedings of the Eighteenth

Annual t1awaii International Conference on System Sciences, 1985. "

[Go183] Goldberg, A. and Robson, D., Smalltalk-80, The Language and its Implementation, Addison-

Wesley, New York, 1983.

[Go1841 Goldberg, A. Smalltalk-80, The Interactive Programming Environment, Addison-Wesley,

New York, 1984.

[Go185] Goldstein, C. M. and Prettyman, M., Processing Downloaded Citations", Lister Hill National

Center for Biomedical Communications, National Library of Medicine, Bethesda, Md., 1985. ell.

[KeP84] Kernighan, B. W., Pike, R., The Unix Programming Environment, Prentice-Hall Software .

Series, Englewood Cliffs, N.J., 1984.
oti

[Joh75] Johnson, S. C., Yacc: Yet Another Compiler Compiler, Computing Science Technical Report

No. 32, 1975, Bell Laboratories, Murray Hill, New Jersey, 1975.

* [LesT5] Lesk, M. E. and Schmidt, E., Lex- A Lexical Analyzer Generator, Computing Science

Technical Report No. 32, 1975, Bell Laboratories, Murray Hill, New Jersey, 1975.

, [Lis74] Liskov, Barbara, Zilles, Stephen, Programming with Abstract Data Types, Proc. ACM

SIGPLAN Conf. on Very High Level Language., SIGPLAN Notice 9,4 (April 1974) 50-59.

[Lis77] Liskov, Barbara, Snyder, A., Atkinson, R., and Schaffert, C., Abstraction Mechanisms in CLU,

Comm ACM, 20, 8, August 1977, 564-576. 'A

[PP185] Objective-C Reference Manual, Productivity Products International, Sandy Hook, CT, 1985.

[Sha84] Shaw, Mary, Abstraction Techniques in Modern Programming Languages, IEEE Software,

Oct. 1984.

-46-

%~ 4$

Appendix A

Hierarchy of Objective-C Classes - @class, @phyla [PP185][Eag85]

AVLTree
aphyla.

Collection

Primitive

AVLDIct

ALVDict
TdArray
Sequenceaphyla

Collection
Primitive

OrdCltni
acl-.OrdCltn

IdArray
Sequence

Ophyla '"collection

Primitive
Object

clas, Dictionary
Object Cltn ocit,

Ophyla aclass Dicitionary
Primitive Cltn ldArray

IdArray __ Sequence
Sequence Set Assoc

ophyla oclas aphyla
Collection Set Collect ion
Primitive -- dArray Primitive

Sequence Bag
[aphyla aclassCollection

Primitive Bag
[dArray
Sequence
lntArray

aphyls
Collection
Prim itive

oclas
Stack

L_ IdArray
Sequence

Ophyla
SCollec tion

Primitive

-47- 1

-

"%2

............ ,

Hierarchy of Objective-C Classes (continued)

Assoc
@class

Assoc
Ophyla

Colection
Primitive

BytArray
Ociais

BytAmy
Ophyla

Primitive

Array IdArray
Oclus Ociase

Array IdArray
Ophyla Ophyla

Object Primitive Primitive
Oclau

Object -ntArray
Ophyla Oclass

Primitive IntArray
Ophyla

Primitive

Point
aclass

Point
Ophyla

Geometry
Primitive

Rectangle
Oclas.

Rectangle
Point

@phyla
Geometry

Primitive

-48-

% %

Hierarchy of Objective-C Classes (continued)

W.

Sequence
Oclan

Sequence
IdArray

Ophyta.

CoUection
Primitive

Object
*clase String

Object Oclae
Ophyla String

Primitive Ophyla
Primitive

Unknown
Cclass

Unknown
Ophyla

Primitive

-49-

V V1

% I*%

Appendix B

Objective-C Base Tree - methods [PP185][Eag85]

Object
free
Initialise,
ndi VarSise
now
poseAs:
readFrom:

awake
capacity

compare:
copy
deepCopy
describe
doesNotRecoguize: AV re
error. V ~ e
free key:
hash
idOfSTR: addContentsTo:
jeCopyOf:- addKeysTo:
isEqual: a___ fnd:
aslCind~f. fre.
isMembtr~f:. innertInto:
issame: leCopyof:
name key
notEqual: key:
motlmplemented print~n:
notsame:
perform:
perform. with:
perform: with: with:
print
print~n:
printString:
respondsTo:
seif

should Notlmp lement
show
Ose
storeon:
str
subclassRosponsibility
superClass

4-.

Objective-C Base Tree (continued)

AVlDict
add:
addContents~o:
asldArray
&tiKey:
&tKey: put:
contains:
fInd:
is~opyof:

Object ky
tr" prrntcontentsOnt:

Initlalise remove:
ad V~aise sin5
ROW values

reaZrm: OrdCltn
ascnaph: addContentsTo:
awake at:
capacity CHUi bouadsEnror.

alaenw Aind:
compare: now: findMatching-
copy with: findSTR.
deepCopy adist~opy~n:
describead soyf
doesNotflecogtise: addContents~f: lastElement

ero.addConteuttsTo: lastlndox
freeasBag remove:

hash asldArray,
IdOWSTR. aa~rdCltn
isCopyof: contis Dictionary
isEqual:cotis
I~nd~f: eackElte.nt with:

isMember~f. expand ascaint
jsSame: Aind: Set asation t
name frsadd: at~ey:. put:
aotEquak- hash addCoatentsTo: includesAssociation:
notlmplemeated lsCopyOf- contains: includesKey:

notsame: ispydifference: keys
perform: IsEqual: expand Values
perform: with: offaetOf: flter:
perform: with: with:. priatContentsOn: Aind: Bag
print prlntOn: LandElemensOrtfill: now:
print~rn: retnove*otnsf intersection:
rsntotin: eioCnntf occurrences~f: add:

Mpnso ieremove:. add: withOccurrences:"Ift replace: expand
ehallowCopy size free
shouldNotlmplement union: includes:
show occurrences~f;
sit* printContentson:
storeon: remove:
str size
subclassResponsibility
superClass Stack

add:
depth
emptyErr
isCopyOf:
InstElement

push:
size
swap

-51-

Objective-C Base Tree (continued)

BytArray 1
u2dxVarSis.ndxVarType
new:
sprintf:

saIntsFloatObject asLong
free charAt:
Iitialize CharAt: put:
adiVarSixe compare:
now compareSTR.
poseAs: concat:
readFrom: concatSTFL-

describe
WM~rph: hash
awake leCopy~f:
class isEqualSTR.-
compare: priaiContsOn:
copy sort
doesNotRecognase: Array str
deepcopy flew: str:
describe UdxVarS is. V

erordixVarTyp* IdArray
* --- with: ndi VarSix*

* hash ndx VarType
idOfSTR: a~drywith:
isCopyof: boundsViolation:
IsEqual; capacity add:
Is1ind~f: Capacity: adotnsf
isMember~f: copy addContento:
issame: describe at:
name hash at: put:
notEqual; isCopy: contains:
flotlmpleaaented IsEqual: describe
nol1Samo: PtifltConterits~a: eachElement
perform: prifltOn: Aind:
perform: with: siefindMatchinpg
perform: with: with: sort freContt
print hash
printon: is~qual:
printString- offeetOf:
ruspondsTo: offetMatching:
"ilf offaetMatchingSTP,
show priniContenisOn:
shallowCopy remove:
shouldNotlmplement st
cIse sort
storeOn:
tr IntArray
sclasslkegponsibility ndxvarsige

superClass dea~p

describe
hash
intAt:
intAt; put:
ilitAt: -dd:
isCopyf:

isEqual:
priniContenisOn:
sortt

-52-

Objective-C Base Tree (cont~inued)

Object

adx VazSls Assoc
.12W key:
parnM: hey: value:

compete:
aeraph: hash
awae leFqual:
capacity key
cumn key:
compare. printon:
copy air
doesNotRecognis.: value
deepCopy value:
describe

errorPoint
five fromuser

* hash y
* idOISTR.

INCopyof: dint:
isEqual: dot:
laKindOf:- ieAbove:
isMembor~f. leflelow-
dsame: ISCopyof:

name isEquak
motEqual: !sLeft:
notlImenttd !@Right:
notSame: hash
perform: length
perform: with: minus:
perform: with: with: mov*By:
print movely: x:
printO,: moveTo:
printstring. plus:
respondaTo: print~n:
self times:
show x
Shallowcopy X:

shouldNotlmploment X: y:
size y
storeOrt:
sir
subclussResponsibility
superClass

-53-

Objective-C Base Tree (continued)

Rectangle
fromUser

Object orn: ore
freeorgncon.
initialize origin:: corner:
ndxVarSize origin: extent:

now origin:: extent::-
poseAs:
readlrom: ae

bottom
aeGraph: bottom:

awakebottomCenter
capacitybottomLeft

clas bottomitight

copl centerx

deepcopy conteins
describecotis
doesNotRecognise: corner

error.cormer:
free extent

hash extent:
idOISTR: hash
iscopyOt: height
isalI height:
isl~nd~f: lnmetBy::
s&MemberOf: Intersection:
assame: intersects:
name soyf

notEqual: lseta
notlmplemented left:
notSame: left:ete
perform: lfCn~
perform: with: moveBy:
perform: with: with: MOveBY:
print origin
print~n: origin:
printStriar. origin: corner.

,s.respondsTo: origin: extent:
@*If printon:

thallowcopy -right
should Not Implement right:
show rightConter
six* top
store~n: top:
str topCenter
subclasoResponsibility topLeft
superClass topRight

union:
width
width:

-54-

N N 4z

Objective-C Base Tree (continued)

Sequence

Object ove.

Ini1tillISe fr"
A mdiVarSia iscopyof:

now next
pceeAs: over
readEroi: rewind

n aph . String
&wake ndxVarSise
capacity ndx VarType
clan now
compare: now:
copy spriatf:
deepCopy etr.
describe

IesNotRecognuae: asloa
4error. aslat

free asLong
hash capacity
idfSTR. capacity:
isCopyOf: charAt:
IsEqual: charMt: put:
IsXindOf: compare:
isMembeIf corn resi'R
aSsame. coacat:

ln&Me conasIR
no~U al copy

~ .L'notImplernented describe
notSame: hubh
perform: IsCopyOf:
perform: with: Is~qual:
perform: with: with: lnEqualSTR-
print prlatOn:
print~n: else
printStnrar stY
rospomdI:stct

shallowCopy Unknown
shouldNotlmplement zdxVarSlz
show ndxVarType
se newClnss: Vanv: onlOD: Text:

storeOn: print~n:
atr
subclassResponsibility Capacity

4superclass describe
doesNotRecognits:
iVarCapacity:

-55.

C'. Ms 5' Pi

Appendix C

Prototype Source Code

LEX Specification File

#include "objc.h"
*include "y.tab.h"
*define MON(x) (yylval.lex - x return MONTH
- (N, Collection, Primitive)
%

CJJ]an("."Iuary)? MON(l) ;
[fF]eb("."Iruary)? MON(2) ;
ImM] ar ("."Ich) ? MON (3 ;
iahdprt" ."))i? MON[4)
[mMlay MON(5)[JJ]un("."Ie)? MON6

CjJ]ul("."fy)? MON(7)
[aA]ug("."lust)? MON(S ;
[sS]ep("."Itember)? MON(9)
(oO]ct("."lober)? MON(10)
[nN]ov("."lember)? MON(11)
[dD]ec("."Iember)? MON(12)

d

[0-9] { yylval.lex - yytext[0] - '0'
return DIGIT ;
; /* delete blanks */ }

.\n. {return EOL
(return EOL

return (yytext[0]) ;) /* return single characters #/

include "stdio.h"
int noleap [- (

0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,int leap [] -{
0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,

date (month, day, year

int *daysin
daysin - isleap (year I ? leap - noleap
if (month < I It month > 12)

{ printf ("month out of range \n"
return

if (day < 1 11 day > daysin(month]
(printf ("day of the month out of range\n" ;
return

isleap (year)
if (year % 4 0) return (0) ;
if (year % 100 0) return (1)
if (year i 400 !- 0) return (0) ;

return (1)

int yywrap (}
(return(1); }

-56-

YACC Specificaton File

:Include obec.h*
- IN, Collection, Primitive) /* phyla '1
atern Id dateObj i

%union I /* stack type *1
ahort lax IP lexical code */
id obj a /I on ob)ect 0/

%Start prog
%token<lex> DIGIT MONTH
%token<lex> EOL
ttype<lex> number year day
%type<obj> DateStot
't

prog: DateStmt EOL exitO(1
DateStmt: MONTH day *,' year

date ($1, $2, $4
$$- dateObJ mo: $1 do: $2 yr: $4 ;

I dateObj print

I day MONTH year

date 1 $2, $1, $3)
s$ - I dateObj mo: $2 da: $2 yr: $3 1 ;

1 dateObj print I

I number '1/ number 'I number

if ($5 < 100) $5 - $5 + 1900;

date 1 $1, $3, $5) ;
5$ - [dateObj mo: $1 da: $3 yr: $5 2

[dateObj print I

l number .'

date 1 1, 1, 51)
S5 - C dateObj mo: -1 da: -1 yr: $1 j ;

[dateObj print]

r' I numb e r

date (1, 1, $1;
$$ - dateObj ma: -1 da: -1 yr: $)

C dateObj print

I MONTH number

date 1 $1, -1, $2)
S5 - C dateObj mo: $1 da: -2 yr: $22

I dateObj print ;

I MONTH ' number

date 1 $1, -1, $3 ;
55 - C dateObj no: $1 da: -1 yr: $3)

I dateObj print .

day: number

year: number

number: DIGIT

I number DIGIT
, 55 " 10 * $1 * 52 ;)

tCinclude "3tdio.h'
yyerror (a) /* called for yacc syntax error ./

char .a;

warning(s, (char "1 0):

char *progname-'stdin";
warning(s, tI, t2, t3, t4, tS, t6, t7, tS, t9) /* print warning message *I

char *3a, .ti, *t2, *t3, *t4, *t5, *t6, t0, -t8, *t;J

extern int yylineno:
/* fprintf(atderr, "file to: ", progname): */

fprintf(stderr, 8, tl, t2, t3, t4, t5, t6, t?, t, t9);
fprintf(stderr, - near line %d\n', yylineno);

-57-

* - .,
V .

N V .

Date Class Source File

#include "objc.h"
#include "y.tab.h"
char * MON[] = { " ","Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec",) ;
= Date:Object (N, Collection, Primitive
Sint mon, dy, year ; I

- mo:(int) aMonth da:(int) aDay yr:(int) aYear
{ mon= aMonth ;

dy = aDay ;
year = aYear ;
return self ;

- print

if (dy>0 && mon>O
printf("<DATE> %d %s %d\n", dy, MON(mon], year) ;

if (dy < 0 && mon<O
printf("<DATE> %d\n", year) ;

if (dy < 0 && mon >0
printf ("<DATE> %s %d\n", MON[mon], year) ;

/* insert code for different type of prints to account for defaults*/

-58-

-w

% % * "

Main Programn Source File 4.

#include "stdio .h"
#include "objc.h"

(N, Collection, Primitive
.3 extern BOOL msgFlag;

extern IOD yyin, yyout, rnsgIOD;
id dateObj

main (

extern id Date, Set 4

msgIOD =stdout;

msgFlag =NO;

dateObj = Date new,

printf V'>")

yyparse()

printf ("end yyparse\n");

@class (Date, Set,Cltn, IdArray, Sequence
@phyla (N, Collection, Primitive)

-59,.

1 m,.

Appendix D

Merged File of Heterogeneous Bibliographic Citations from Six

Database Sources

<ACCESS ION NO.> 85129e2: 8506.
ODATAEASE S OURCE> BRS/Not,o nai Library of Meadicine Database
<AUTHIOR> Ei0s'n- J-M Whoff- E-A;
.cPAA> .omorioqe aosot.!. .". cutts.
<TITLE> More tha n a 'aeay he role of the emergency psychiatry service

in the communitty mental health network,
<PUB DESC> Hosp-Community-Psycniotry. 1985 Feb. 36(2). P 180-5.
<LANGUAGE> EN.
<MAJOR CATEGORY> COMMUNITY-MENTAL-HEALTH-CENTERS: og. EMERGENCY-SERVICE-HOSPITAL.

EMERGENCY-SERVICES-PSYCHIATRIC og- INTERINSTITUTIONAL-RELATIONS. MENTAL-HEALTH-SERVICES

<MINOR CATEGORY> ADULT. BOSTON CASE-REPORT. CATCHMENT-AREA-HEALTH
C RISIS-INTERVENTION. FEMALE. HOSPITAL-BED-CAPACITY-300-TO-499. HUMAN.
MALE MIDDLE-AGE. ROLE SOCIAL-WORK or in helop.ng the emrffgency uni t
build close eiins p withl communsity agencies is its contract with

nh .tt to:07 prform evluatons of all admi9sons to the $tote hospital
psychiatric unit serving the CatChment area. The emergency unit performs
triage and Provides backup for the agencies. coordinates the management
of cult.-agency cags, and holds Weekly educational conferences for agency
$tat!. Using case examples. the authors ifllustrate how unit and agency
Sltf collaborate to ensure continuity of patient care. Author.

<Se> M
<DATE> 1985.
<ISSN> 0022-1597.
<ZN> Z, l17.567.875..
<,M> 8506.
<ED0> 850404 .I

<NO> MH11182.

<WCESS ON-MO. t75 I
<DATABASE S OURCE> DTIC/drots-tr

4 <TRANSLATION DATE> Mon Jul 1 13:33:43 POT 1985 (489098023) v

<DOWNLOAD DATE> Man Jul 1 10:18:29 POT 1985 (489086309)
<DOWNLOAD FILE NAME> gate
<FIELDS AND GROUPS> 17/2
<ENTRY CLASSI FICAT ION> UNCLASSIFIED
<CORPORATE AUTHOR> BOLT BERANEK AND NEWMAN INC CAMBRIDGE MA
<TITLE> PLURIBUS SATELITE IMP DEVELOPMENT MOBiLE ACCESS TERMINAL NETWORK.
<TITLE CLASSIFICATION> UNCLASSIFIED
<DESCRIPTIVE NOTE> QUARTERLY TECHNICAL REPT. NO. 33. 1 FEB-36 APR 84.
<DATE> MAY . 1984

J.<PAGINATI1ON> 30F
<REPOR T NUMBER> BBN-5774
<CONTRACT NUMBER> MDA903-80-C-0353. N0039-81-C-808
<REPORT CLASSIFICATION> UNCLASSIFIED
<DESCRIPTORS> -SATELLITE COMMUNICATIONS; -TERMINALS; NETWORKS: SHIPBOARD;

ACCESS. MOBI1LE: WORK
<DESCRIPTOR CLASS I FICAT ION> UNCLASSIFIED
<IDENTIFIERS> PLURIBUS SATELLITE. PACKET NETWORKS. ARPANET. GATEWAYS
<IDENTIFIER CLASSIFICATION> UNCLASSIFIED
<ABSTRACT> THIS QUARTERLY TECHNICAL REPORT DESCRIBES WORK ON THE DEVELOPMENT

OF PLURIBUS SATELLITE IMPS: AND ON SHIPBOARD SATELLITE COMMUNICATIONS.
(AUTHOR)

<ABSTRACT CLASSI FICATION> UNCLASSI FIED
<INITIAL !NVENTORY> 12
<LIMITATION CODES> 1
<SOURCE CODE> 068 100
<DOCUMENT LOCATION> NTIS
<GEOPOLITICAiL CODE> 2508
<TYPE COCE> 4

<ACCESSION NO.> l1e35e8

<DATABASE SOURCE> DIALOG NTIS FILE 6I
< REPORT NO.> <NTIS> 0E85000617/XAB
<TITLE> Post-Processing of Bibliographic Citations from DOE/RECON. NASA/RECON.

and D00/OROLS.
RevisionI

<AUTHORS> Ballinge r. W . A .Hampel V E HaMrrison, I Murphy, T.
* P

<PUB OESC> Lawrence Livermore Notional Lab.. CA. ;<Code> 068147600: 9513035 Department
DC. ; UCRL-89995-REV.1. CONF-841243-1-REV.1

<DATE> Aug 1984
< PG> 17p
<LANGUAGE> English
<DOCUMENT TYPE> Conference proceeding
<PC> PC Ae2/MF A91
<JA> GRA18507; NSA100e
<CO OF PUBL> United States
<NY> International antine information meeting. London, UK, 4 Doc 1984.
<CN> W-7405-ENG-48
<ABSTRACT> we have developed an inteiract ice. 5etf-guidea program for the

-60-

Merged File of Heterogeneous Bibliographic Citations (continued)

lon bsp~einno bbl'1.ogrqphic _-lOtos rn thedfederolonformot~or

centes the poratme" of Eergy (DoE~ tnt Deoteto Dfne(Oand h Nondt Aeronautics and Space Aditnitt on (NASA). This program

s currontly itol ed on the Intel ligent Gatewoy Processor of the Technology

,normaon Syte Tin/ IGP)hot the uLawrenCeUL1vermor,,e NotifomOl Laboratory
and is uner e aluationb h TIS user comn t forom emote tminals
by teebrine dial-up, over tTYMNET an theARPA computer ne tork Usr
are individually outnaionZd for aIoae aces tsecfc normatio
Centers. Oo us. Stndard commands far the downlooing.cmuoin

post-orocessingv copobli toe nave been further expanded, prmiting (1
online citation review. categoriration, and addition of newi data elements:
(2) di:Ossmbly dn r-assembly of citations; (3) statistical analysis
of data 7ild :.tet: ()crO~S-trrel'ateiontof datfield contnts

d(5) Concordance generation. In addition the ne to-ps iterp reter
for the0 pot-proacess ig program permi tsa: the transformation of abbrviated
dat a f ield namess into English names preferred by each agency, the statist ical
analysis o f the densi ty and completeness of data fields in selected sets

0 f bibliographic citations, the elimination of redundant citations (using

user-specified criteria), and trend analysis. The latter isoa powerful
It 'i.toolfr the expDlorat1ion of time-dependent characteristics in, a particulor

fildo reserh,. of an organizatiot, or for an author. G roph.Ia displ a
of publication rates as a function of time and the normalized statistics

fterms used in the descript ion o f the cork. can boe usdt signal flee
directin of ooin rsearch and the itenst t tsupport. (ERA
citation 1e:0el705)

<DESCRIPTORS> "Information: eCamputer Netwarks; Information Retrieval;

(Indeing~Terms> EROA12903ee: AfTISDE
(SN> 513 (Behavioral and Social SCiences--Documeritatioh and Information Technology):

98 (Electronics and Electrical Engineering--Computers): 889 (Library
and Inormation Sciences--Information Systems). 628 (Computers. Control.

a n nformaIon. T hory--Computer Software)
SACCESSIO NO ;1.3.4C80-885*
<DATABASE SOURCE) 0 DE /recon
<TRANSLATION DATE> Mon Jul 1 13a34 P 95 (489098023)
<DOWNLOAD DATE> Man .ll 11:8:29 POT 1985 (489886309)
<DOWNLOAD FILE NAME> gate
<REPORT NO.PAGE> UCRL -899 S-Rov.1 P. t7:DE850087
<(,ITLECUMONO) > Pos t-processng o f bibtliograph'ic086t citat iono DOE/RECON.

N ASA /R ECON . and DOD/DROLS. RevisionI
<ED ITOR OR COMP> Botllinger. W.A.; Hampel. V.E.; Morrison, I.; Murphy, T.P.
(CORPORATE AUTH, Lawrence Livermore National Lab..* CA (USA)
(cCORPORATE CODE> 9 51 3035
<TYPE> A
<SEC REPi' NO> CONF-841243--l-Rov.1
<PAGE NO> 1 7
(AVAILABI LITY> NTIS. PC A02/MF A81.
<ORDER NUMBER> DE85000617
<CONTRACT NO> ContractW-7465-ENG-4a
(CONF TITLE> 8. intrnaionofaloline information meeting
(CONF PLACE> Londo. UK
(CONF DATE> 4 De c 1984
<DATE> Aug 1984
(CO OF AUTH> US
(CO OF PUBI> US
(ANN 4> E RA- ,@:001786;E08-194:188555
<OISTRIBleUTION> MN-32
<DOCUMENT OR I GIN> P

<B IS> 71IC
(CATEGORIES> ED90-293!88
<PRIMARY CAT> ED8-9g0 O0GEAIERAL AND MISCELLANEOUS: INFORMATION HANDLING)
(ABSTRACT> *We hoave developed an interactive, self-guided program for the

joint piost-processing of bibliographic Citations from the federal
information centers of the Deportment of Energy (DOE), the Deportment Of
Defes (DOD). and the Notional Aeronautics and Space Administration
(NASA) This program is currently installed an the Intelligent Gateway

v, Processor of the Technology Information System (TIS/IGP) at the Lawrence
Livermore NotiWonalI Laboratory and is under evaluation by the TIS user
Comm unity tram remote terminals by telephone dial-up, over TYMNET, and the

V.17 7ARPA computer network. Users ore individually authorified for automated
accss o secfic Information centers, and use standard commfanas far the

daenoa~ ,comilain, an onine reie f Cttion s ifnac omeon
ormat.- Pren ously repted ps- processing capblte oebe further

ri? iiiieopandfnd. permitting: (I) oin cttio reiw:trlTi::n., ad
addition of new data elemenots: (2) disassembly and re-assembly of

Citations: (3) statistical analysis of data field contents: (4)
tross-carrelot ion of data field contetts: and (5) concordance generatiow

* -61.

*~ ~ .iim ll 6A2r~ . N.nrl~ it ~-
'5 V1. "

*701

Merged File of Heterogoeneous Bibliographic Citations (continued)

In addition, the new twO-oaSS interpreter for the oost-Process.nq pirogror
permits: the transformation of abbreviated data field names into engi 13r
names prf:errnIiby each agency, the.st.ti:tic.;3analisb1of the Censit.

pn oplteneof d at fields ian cltiC sets fbbiogrophnic
citations th I minotio n ofrdunn ciaf ns(sn user'pcfe
crtraadtedanal ysis. Th latter is a powerful tool for th

exploratieon of timbe-depenldent cliaroctertics in a particular field of W
research, of on organ I ot ion. Or for an author. Graphical displays of

pbi atin raIte s a. ucion of time and the normaliized stotist ics of,
terms used in the desciption of th ok. ca be used to signal new

directions of ongoing research and the intensity of its support.

<DESCRIPTORS> *INFORMATION--computer netwOrks;INFORMATION RETRIEVAL.
SPECIFICATIONS.-

<ISSUE> 8 423
<DOCIUENT NO> 84:188555

<TRANSLATION DATE) Pon Jul 1 13:33:43 POT 18 49903
<DOWNLOAD DATE> Moan "ut 1 10:18:29 POT 195(489088309)I<DOWNLOAD FILE NAME;- late33P 0D8014<RPORT NOPAGE> UCRL--9133P eDeele

N <T7ITLE(ONO)> Inertion of on automated library support system with an
intelligent gateway

<EDITOR OR COIJP> Burton. N.D.
<CORPORATE AUTH> Lawrence Livermore National Lab.. CA (USA)

LI <CORPORATE CODE> 9513035
<TYPE> R
<SEC REP? NO> CONF-84e9138--1
<PAGE NO> 18
<AVAILABILITY> NTIS. PC A02/4F~ Ae11.
<ORDER NUMBER> DE850E117417
<CONTRACT NO> Contract w-7405-ENG-48
<CONF TITLE> Integrated online library systems conference
<CONF PLACE> Atlanta. GA, USA
CCONF DATE> 13 Sep 1984
<DATE> Aug 1984
<CO OF AUTH> US
<CO OF PUOL, US
<ANN J > EDB-84 173691
<DIST RIBUTION> UN-32
<DOCUMENTI ORI G IN, P
<01I5> 7ICr
<CAITEGORI ES> EDS-9963ef)

<PRIMARY CAT> EOB-990300(GENERAL AND MISCELLANEOUS: INFORMATION HANDLING)I
<ABSTRACT,> A new project of the Technology Information System (TIS) at the

Lawrence Livermre NtiOnal Laboratory (LLNL) Calls for the evaluation of
commercialy available library support packages and the extension and
integration of thaotdsrbesse with the TIS gateway to provide a
Comprehensi.ve p-ototype for libraries nd informat ion centers. This,
prototyp asystem is planned to facilitate access to and management If
nf-house activities such as cataloging, serials control. and acguisitions.

aswelast itrfcet efrntsystmsan services for data%
downoadng nd schngw rerie~l.an poet-processing. Cooperative

Cataloging, distributed database processing, electronic inter-library

loan an cutomizedobibliography production are some of the features
planned f.r the proItotype, Develapment of a user-friendly front-end

rocesor ill allow the user to negotiate his search query ina

sm - autoa t d m n e using a sinlie. English-like command language. The

715t Lwrece Livermore National Laboratory (LLNL) has developed a

g0eograph.Cally distributed information systems as DOE/PECaN. DOD/OROLS.
NASA/RECON. CAS On-Line. OARC (France) and DECHEMA (West Germany). among
many otners. New information resources centers are being added as required

anduses Cn Cnnet smutaneously to more than one host to Compare
their ~ ~ m daa TeTooln atr directory pl:v,~ th srwthua

single,0integrta vimof avi l nd reean rources Te automated
aces roedrS .:ioIc sr tcoenreonthe InformationN

OSOCI o hs orkrahe tanbetburdenndfwith various fog-on
pr:odures, databaserformas and protocls The m aqro t he Ibrary

por with the TIS gateway should provide users wihacop tiso
access ona utiliZe the full spectrum of textual, numeric and graphics data L

<DESCNI'PTOR S> *INFORmATION SYSTEMS--computer networks;DATA BASE MANAGEMENT;
LAWRENCE LIVERMORE LABORATORYN

<ISSUE, 5421%N
<UPPOSTED DESC> MANAGEMENTNATIONAL ORGANIZATIONS:US AEC.US DOC~US EROA;US

ORG.ANIZ~AT IONS

-62-

Merged File of Heterogeneous Bibliographic Citations (continued)

<ACCESSION NO > 84N338990
<DATABASE SOURCE> NASA/reco.
<TRANSLATION DATE> Mon Jul 1 13:33:43 POT 1985 (489098023)
-DOWNLOAD DATE> Mon Jul 1 10:18:29 PDT 1985 (489886309)
<DOWNLOAD FILE NAME> gate
<ISSUE> 22
<PAGE> 3643
<CATEGORY> 62
<RPTE> DE8a-013216 UCRL-90276 CONF-8406139-1
<CNTo> w-74e5-ENG-46
<DATE> 198'
<PAGES> 122
<DOC. CLASSIF.> UNCLASSIFIED
<TITLE> An online directory of databases for material properties
<AUTHORS> HAMPEL. V. E.; BOLLINGER. W. A.; GAYNOR. C. A.; OLDANI. J. J.
<PAA> C/(Control Data Corp.)
<PUB DESC> California Univ.. Livermore. Lawrence Livermore Lab. CSS:

(Technology Information System.) AVAIL.NTIS SAP: HC A06/MF A81 Presented
at the 9th Intern. CODATA Conf.. Jerusalem. 24-28 Jun. 1984

<DESCRIPTORS> DATA BASE MANAGEMENT SYSTEMS:DATA BASES:DIRECTORIES;INFORMATION
DISSEMINATION:INFORMATION SYSTEMS

<MINS> / COMPUTER NETWORKS/ COMPUTER TECHNIQUES/ DATA PROCESSING/ ON-LINE
SYSTEMS / STATISTICAL ANALYSIS

<ABA> DOE
<ABSTRACT> An online directory of databases of material properties on the

Technology Information System at Lawrence Livermore National Laboratory
(LLNL/TIS) is described. This directory is intended to provide interactive
access to scientific and technical databases avoilable to tie public that
contain information pertaining to nuclear, atomic, molecular, physical.
chemical, and mechanical properties of substances. In addition tl the 101
data files previously are reported. The information is updated with more
than 38 numeric databases and predictive systems in these fields. Ih
addition to describing the contents of the databases, updated information
is provided on the availability of the databases and their online access
over public telephone and data networks. Some of the numeric databases are
directly accessible by authorized users via the TIS Intelligent *. Gateway
.e Processor at LLNL (TIS/IGP). with self-guiding procedures for the
downloading, merging, post-processing, and graphical/statistical analysis
of data.

<DATABASE SOURCE> DIALOG NTIS FILE 6
<REPORT NO.> <NTIS> OE841321e
< TITLE> Online Directory of Databoses for Material Properties
<AUTHORS> Hompel. V. E. : Bollinger. W. A. : Gaynor. C. A. Oldoni. J.

J.
<PUB OESC> Lawrence Livermore National Lab.. CA. ; <Code> 668147666: 9513035 ; Deportment

DC. ; UCRL-g0276; CONF-8406139-1
<DATE> May 1984
<PG> 122p
<AV> Portions are Illegible in microfiche products.
<LANGUAGE> English
<DOCUMENT TYPE, Conference proceeding
(PC> PC AeS/MF ASl
(JA> GFA18423; NSA09e
<CO OF PUSL> United States
4NT> International CODATA conference. Jerusalem. Israel. 24 Jun 1984.
<CN> W-7405-ENG-48
<ABSTRACT> We have created an online directory of databases of material

properties on the Technology Informotion System at Lawrence Livermore
Ppt iO nol Laboratory (LLNL/TIS). This directory is intended to provide
interactive access to scientific and technical databases available to
the puolic that contain information pertaining to nuclear, atomic, molecular. -
physical, chemical, and mechanical properties of substances, The directory
is based on work done earlier by Joseph Hilsenrath of the Notional Bureau
of Standards (NBS/OSRD) and Jack H Westbrook of General Electric Corporation.
In odition to the 101 data files previously reported, we have updated
the information and identified more than 38 new numeric databases and
predictive systems in these fields. We have included, where applicable.

jentries contained in the directories published by Cuadro Associates.
CODATA. and UNESCO. In addition to describing the contents of the databases,
we have provided updated information on the availability of the databases
and their online access over public telephone and data networks. The
online directory is prepared for use by scientists and engineers and
shOuld enhance In sharing of S and T resources over communication networks.
This directory is expected to become Particularly important to the national

and international magnetic- and laser-energy fusion projects, nuclear
criticality safety, and computer aided engineering programs. Some oI
the numeric databases are directly accessible by authorized users via

-63-

Merged file of Heterogeneous Bibliographic Citations (continued)

IPage 3a

describes the applications which hove benefited from ARPANET during the
reporting period. Finolly, it discusses on investigation of the teenniques
for focsimile transmission between different devices over the network.

Earlier work in attacking hosts by front-end techniques ho been broadened
to provide ee gateway as facilities between computer networks. Here.
pursued were two lines. An interne twork Transmission Control Protocol TCP
has been implemented which is designed to be opplicable to o host-host
protocol between hosts on different networks. Experiments to test the
properties of this protocol nave been started between UCL. Stanford U and
Bolt. Beranek and Newman BBN. More effort hos been out into designing and
implementing il gateway es functions when a specific node octs as a .e

gateway *a between two networks and performs a mapping between the
standard protocols of each. Investigated was the applicability of this
approach to several networks, including the connection a ARPANET and the
UK Post Office Experimental Packet Switched Service EPSS. Preliminary
results show that the technique should be feasible, but since the other
networks ore not yet operational, the technique was not demonstrated.

<DATABASE SOURCE> SDC/Librafy and Info
<TRANSLATION DATE> Mon Jul 1 13:46:56 POT 1985 (489698a45)

<DOWNLOAD DATE> Mon Jul 1 16:56:48 PDT 1985 (489088240)
<DOWNLOAD FILE NAME> adcgate
<DATE> 1976
<TITLE> The reference deportment: gateway to the National Library

<AUTHORS> Umo. M.G.
<PUB DESC> Nigerbiblios. 1 (1) Jon 1976. 19-26. 22
<CO OF PUBL> English
<Category Code> RuNju
<DESCRIPTORS> Reference Work: Departments: National libraries: National

Library of Nigeria; Reference Department
<Supplementary terms> Reference departments; Nigeria
<ABSTRACT> Outlines the basic responsibilities of the reference department.

which offers a 12 hour a day service to users. The spread of material on
various floors and the constont shifting around of stock pose problems.
Briefly describes such routine tasks as: maintaining the public catalogue;
shelf-reading: stocktoking; compiling the picture file of important

events; and maintaining the mop file. Reference desk duties ore
enumerated. A policy of maximum courtesy and minimum delay is adopted in
attending to oih enquires.

.jACCESSION NO.>.A932248
<DATABASE SOURCE> DTIC/drols-tr
<TRANSLATION DATE> Mon Jul 1 13:33:43 POT 1915 (489698623)
<DOWNLOAD DATE> Mon Jul 1 10:18:29 PDT 1985 (489686369)

<DOWNLOAD FILE NAME> gate
<FIELDS AND GROUPS> 15/5. 5/11

<ENTRY CLASSIFICATION> UNCLASSIFIED
<CORPORATE AUTHOR> RAND CORP SANTA MONICA CALIF
<TITLE> GETTING PEOPLE TO PARKS.
<TITLE CLASSIFICATION> UNCLASSIFIED

<AUTHORS> VAUGHAN.ROGER J.

<DATE> APR , 1976
<PAGINATION> 25P
<REPORT NUMBEF> P-5654
<REPORT CLASSIrICATION> UNCLASSIFIED

<DESCRIPTORS> -TRANSPORTATION; *PASSENGERS; -RECREATION; NEW YORK CITY(NEW
YORK); NEW JERSEY; PASSENGER VEHICLES: PARKING FACILITIES; ACCESS:

ECONOMIC ANALYSIS
<DESCRIPTOR CLASSIFICATION> UNCLASSIFIED
<IDENTIFIERS> *GATEWAY NATIONAL RECREATION AREA

<IDENTIFIER CLASSIFICATION> UNCLASSIFIED
<ABSTRACT> THE PURPOSE OF THIS PAPER IS TO PROVIDE AN ECONOMIC PERSPECTIVE ON

THE PROBLEM OF TRANSPORTING PEOPLE TO GATEWAY NATIONAL RECREATION AREA
LOCATED IN NEW YORK CITY AND NORTHEASTERN NEW JERSEY. WHILE IT DOES NOT
CONTAIN ANY DETAILED EMPIRICAL CALCULATIONS FOR THE SOLUTION TO THIS
COMPLEX ISSUE. IT IS HOPED THAT SOME OF THE SUGGESTIONS MIGHT BE USEFUL
INPUT INTO THE PLANNING PROCESS. AND MIGHT OPEN THE WAY TO MORE DETAILED

RESEARCH AND ANALYSIS.
<ABSTRACT CLASSIFICATION> UNCLASSIFIED

<INITIAL INVENTORY> 2
<LIMITATION CODES> I

<SOURCE CODE> 296666
<DOCUMENT LOCATION> NTIS

(GEOPOLITICAL CODE) 6628
(TYPE CODE> m
<ACeESSION -o-1-12-3e
<DATABASE SOURCE> SOC/Liorory and Info
<TRANSLATION DATE> Mon Jul 1 13:40:50 POT 1985 (489698456)
<DOWNLOAD DATE> Mon Jul 1 10:56:46 PDT 1985 (489688240)

-64-

-~il % %Ii~ ~ -. v x p P -4 %

map

