AD-R167 364 INTEGRRTION OF HETERDGENEOUS BIBLIOGRRPH!C INFORNRT!DN
HROUGH DRTR ABSTRACTIONS{U) LAMRENCE LIVERNM E
NATIONAL LAB CA J O BREAZEAL JAN 86 UCRL- 5

UNCLRSSIFIED W-7485-ENG-48 F/G

Ky AR . LT 1 L LA SRS LY o X 4 3. & b gn prg g A N R R I R e O T TV T T T T Y T U DU TS T U W Wy

: 3
:i: l"|| I,

. s s m

EFEEEEEEEE
==
N
N

A
A

-1,

S A ' MlCROCf"°" mIJus ON TEST CHART

] " NATIONAL BUREAU OF STANDARDS —1963 -4
~—

e zmmmmm

Attl‘-‘

Integration of Heterogeneous
Bibliographic Information

e

v ®

© Through Data Abstractions

N~

2 Juliette Ow Breazeal

$ (M.S. Thesis)

Q

< DTIC
ELECTE

s APR 1 5 1986

D

January 1986

”

N L s e o e MLk et NV WA WA bk WAt WA A At dan B $20 $ud Fub e dus o S Pd 40 . ~a @ WX U *, 1 Wi "W)% W
«‘% ..h“
0, O
L N s
b [

[
r'. " {4
i %
i‘z DISCLAIMER E.\. ,
3" SCL Sy
Fu This document was prepared as an account of work sponsored by an agency of the United States Government. b il

Neither the United States Government nor the University of California nor any of their employees, makes any
warranty. express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein ta any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

e\ favoring b, the United States Government or the University of California. The views and opinions of authors
. ’ expressed herein do not necessarily state or reflect those of the United States Government or the University of
:‘s California, and shall not be used for advertising or product endorsement purposes.

V! ey
o [) "' i
A e
0

'0.' l’:'
\ {3
= 04

g A

l >

" e
LE

1Y
4 { o
q ll:"
W -4
» “;
’h]
N v
t A)

R
] [t
» F ;
; S
\ " s
: ;i
by !q..
Y 'i:
> r
N

L .
-
- ¢
s

- e
& o
sl

- -
o~ L

)
[Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
) : under Contract W-7405-Fng-48.

\«‘d‘

S'Cu'” .Ahjfd_ M&Lﬁ;

-w'»,\ \ '\)\'\ oW }\\‘n Y
"~
Fa

SR TR RN

< R)

-
el

N) QQ;Q:

s e a K

-
Y

P
--'EU-1-‘

e |

A
L\
)
]
k)

A ST N B A YR

L4 v
REPORT DOCUMENTATION PAGE
1a. REPCRT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
| Unclassified/Unlimited — e —————
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
UCRL-53710
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Lawrence Livermore (if applicable)
National Laboratory
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

University of California
Livermore, CA 94550

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Technical (if applicable)
Information Center DI'IC
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
. PROGRAM PROJECT TASK WORK UNIT
Cameron Station ELEMENT NO. |NO. NO. ACCESSION NO.

Alexandria, VA 22304-6145

658018

11. TITLE (Include Security Classification)
Integration of Heterogeneous Bibliographic Information Through Data Abstractions

12. PERSONAL AUTHOR(S)
Breazeal, J, 0.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [S. PAGE COUNT
Final FROM TO B60100 73
—_—

16. SUPPLEMENTARY NOTATION

M.S. Thesis

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

Intelligent Gateway, Post-Processing, Database

g g Reformatting, Downloading

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In this study, heterogeneous bibliographic information resources from geographically
distributed locations are integrated in an automated, unified, and controlled way by
using abstract data types through the Message-Object Model as defined in Smalltalk-80,

A unit of modularity call a "class" is developed that defines operations to process the
data structures encapsulated in the class. The classes focus on processing bibliographic
citations obtained from heterogeneous on-line bibliographic databases into a meta-form
with the goal of developing information consistency to simplify further information analysi
Classes developed for the bibliographic citation application can speed program development
because the data abstractions can be used in processing generic information such as

dates regardless of the bibliographic database source. Prototype classes are developed

to show the ease in encapsulating data structures and behaviors for the bibliographic
citation application. Data abstractions provides a powerful integration technique that
allow the designer to work with bibliographic citation objects without being encumbered

il

PO ¥ WIS Y N Ll y { o >
L R T R s S A R R R A ey G e

+40n
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
I UNCLASSIFIEDAUNUMITED [SAME AS RPT. () OTIC USERS UNCLASSIFIED[UNLD’IITED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL
GLADYS A. Cﬂg@ —~ | JTIC-ER
DD FORM 1473, 8a MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

" ALY & N e e

LA LRSS
UCRL-53710 RO
Distribution Category UC-32 fetibrithyg?

- | &
-

e S P,
f,
X
e
L -
Ol]

s
I
PR

Integration of Heterogeneous ' T
Bibliographic Information LR
Through Data Abstractions e

DALY i"' 'g

AL AN

Juliette Ow Breazeal . Y ;{
[%
(M.S. Thesis) NSO

’ ‘ LA AN
RN
Manuscript date: January 1986 33:::!:?::'::::323:‘
RN R
SN

‘ WS
f"l‘&";t'dozg;t;.';\:(
9 'u{;s:?:';ﬁ' f
SRR \

ot

(N

XA

i}

2
S

.l
-y
T

-

.‘
o
eals

-
*

AEEear;

L

-
o
X

‘I

LAWRENCE LIVERMORE NATIONAL LABORATORY
University of California « Livermore, California « 94550 f

{J \‘ v " ‘.;
Available from: National Technical Information Service ¢ U.S. Department of Commerce ’ :!
5285 Port Royal Road e Springfield, VA 22161 ¢ A03 e (Microfiche A01)

o y
rd - 3
PR v r.(l B 1
. A - LN % " e N e B T S YRR SO N TR I FNLE .2 RIS LIS S ILN TN IR S S AN SRR I S R PR TR LA .
A R L TR A S S (s 1 it o eI
AN AN 7 B O O O A LM QIR EINEAN ‘
b X QA DA A S o LA O OWOUCOT T) RACHSNCNSATAS ; P HASHS) r X

'y

Integration of Heterogeneous Bibliographic Information
Through Data Abstractions

By

JULIETTE OW BREAZEAL
A.B. (University of California, Los Angeles) 1960
THESIS
Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE
in

Computing Science
in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA

DAVIS

Approved: Me_m N\ . «&&m 1/{
D Bud

Committee in Charge

Deposited in the University Library

Date Librarian

o
i
s
R
.. B &%
N h et

IRAeEN
!-J:i‘ i ?
D N Ry i’.
o ‘?}t
20 ¥ 1 AENT
-y ﬁ’ it
ﬁ(,v;o.i‘i
el

diteht,
OO
(]
OO
[R
o
I‘Q:Oh:&:Q:i:!:?:;
el g
N
2R '::‘ .
KR
Rainenthy
e .

4

AN P

-

X

T i an o

~

.I

>l

-

®

\.:‘ ."l\".i

-, ‘b -y g v K ‘o tht e 3
ol N Wi’ Pata b 4 } hy A h g’ &, L ha pP b &% '

Abstract

// : I !";» ,\) v s
)< . .

In this study, heterogeneous bibliographic information resources from geographically distributed
locations are integrated in an automated, unified and controlled way by using abstract data types through
the Message-Object Model as defined in Smalltalk-80. A unit of moduladtyM & "class" is developed that
defines operations to process the data structures encapsulated in the class. The classes focus on processing
bibliographic citations obtained from heterogeneous on-line bibliographic databases into a meta-form with
the goal of developing information consistency to simplify further information analysis. Classes developed
for the bibliographic citation application can speed program development because the data abstractions can
be used in processing generic information such as dates regardless of the bibliographic database source.
Prototype classes are developed to show the ease in encapsulating data structures and behaviors for the
bibliographic citation application. Data abstractions provides a powerful integration technique that allow
the designer to work with bibliographic citation objects without being encumbered with the details of

implementation.

* Keywords:
_abstract data types, message-object model, class message, class methods, Smalitalk-80, Objective-C,

mformauon consistency, database consistency, database reformattmg, database xntegratlon)

| ATy Ly X - ~ L U e I T L T T T T
R e e e e e e e
.t’l.nlu, YN, .‘ ‘.'o. n.t' WAL Y e L L S e Ay .

=
TeTATA Y

4

iy

)
e
o
4, ¢
\'"}
'I‘
RS
!."
q:,‘
Acknowledgements
's
~
&y
: I wish to gratefully acknowledge the encouragement, dedication and guidance by Professor Meera
e Blattner, my thesis adviser, towards the success of this study. Both Dr. Hilary Burton and Professor
\‘Q|
:‘. Lawrence Kou have my gratitude for their help in reviewing this study and providing excellent comments
4
‘:" and suggestions. My thanks are extended to the Technology Information System Group, the Computing
':‘.‘
-4 Research Group, and the Electronics Engineering Research Group at the Lawrence Livermore National
B
39 Laboratory for their support and their cooperation. Finally, I thank my husband, Norman and my children,
ct
3 William and Cynthia for their devotion and patience during this academic endeavor.
e
R
;]
&
L)

N

2 Accesion For

o NTIS CRA&I

s DTIC TAB 0

>, Un%ounced 0

) i 3 d

,. | J ,‘ é’ .U"‘Q'K‘- E

: i

By v

« Dist. ibution/ l 3.'5

) : .

e Availability Codes oy

‘ . b [

y . Avail and|or

“ Dist Special :
¥

t -iii- l g
=

-y
1~'f

Jal
I"J" NN ‘J” SOt p")'\ 'A*'."'& Lot _:)‘ ‘ﬁ'. e ‘.-' R LR j'*' \.r,(,'.}.'
-1‘)'"(o2 ~. e s -." ~
i‘. % |. .. '] l— I. &.l"} 1, - ' R ~N\ ‘V £ «l O.'%'.“%Q..l 0'0 y ‘.‘l‘nl’"".

Contents

Chapter 1: Introduction
Chapter 2: Previous Methods for Processing Heterogeneous
Bibliographic Information
2.1 Why use Heterogeneous Bibliographic Information Resources?
2.2 Description of Bibliographic Citations

2.3 Processing of Heterogeneous Bibliographic Information

Chapter 3: The Message-Object Model

3.1 Abstraction Mechanisms in Modern Programming
3.1.1 Software Abstractions

3.1.2 Structured Programming Methodology ..

3.1.3 Abstract Data Types
3.2 Object-Oriented Programming
3.2.1 Objects

3.2.2 Messages

3.2.3 Classes

%

X AL XN A

o

Chapter 4: Prototype Development Environment

A

4.1 Computer System

4.2 Software Development Tool

4.2.1 Objective-C Compiler

st

4.2.2 Unix Tool: Lex

o
-,
L

Ay St K

LA

vw‘.
. ‘-

R S B R S

"u N *’ la'

et .:".:01 8 .i t t‘l '\' t ‘ : 0. ‘ Wi 2) c ’0“!‘“"“*"' W

W s 2dd stk a2k aik adl adile atd oih ath aid o:f 238 ph abh avh pagh gt aniaid RSA SCNR AS LT Rl el e

at
g
!
ol
A
'i;:
ki
‘2:13 Page
0.: 4.2.3 UNiX TOOL: YACC c.ureecrieserreiioninnsncsssssssssissisesssnosesssossossassssassnssassssssssesssesessassesses 26
N 4 424 UREX TOOL MKE «.cvvvrecees s eneeesessesesssssesssssseesesssesesssesasreressseessssssssesssosereeon 27
5" i
1:: (4.3 SUIMINATY «..covurecerrericsiscsssssesaestissssssssss s srsssss s ssssssssesssssssbussssessesesssassssssssessasssssassssssessnss 27
o Chapter S: Prototype IMPIEMENLAtion...........cv..sescesscsiusecmsssssseneesssessueessssssssssssssenssssssssmssasssssessssssesmsssssosssss 28
[Y]
i 5.1 Sources of Data.... , e e e s s e e 29
O. ‘l
fut! 5.2 Reformatting the Detail Information for CONSiStenCy.......ceuvereeeercesssonanne 29
5.3 Program Design Abstractions...........cce.. 30
N
98 5.8 THE PIOLOLYPE..rerereererervrcsssesssssns s sssosns s s ssso .31
A
32'._ 54.1 Lex Specification File............... . 31
(- ' 5.4.2 Yacc Specification File......cceererrerereene 33
)
v,‘% 5.4.3 Date Classcocervvucncnnsnsressesesisrenssnssesessessosssessssossssassens 36
" 5.4.4 Main MOGUIE.....oueverersrvrenrcerssssesserssesserasssssessassasssssaaseanessssesssassnssessessress sussrsansesace 37
L M
R Chapter 6: Summary and Resultsccocecevvvrvnnrenicerensrennens - - 38
1
N Chapter 7: Discussion and FULUTE DITECHONScccuusesumereesssssensssessssnsssosssssmssesessessmmssssssssssssasssssssssssssssens 42
" \
.h; RELETENCES: «.ccvererereerarreensssnssnesesseessrsnssrsssersesessasssanssrsessersarassassesssessessessessessesasesassss srestasssnsessestasssssnssnssssssnsasness 45
]
) - Appendix A: Hierarchy of ObJECtive-C CLASSES.....uuuruersmemsremsessesmmssssssmnsisesssisansssrssessssrassssssonsassssssssssssses 47
! h
'“ Appendix B: Objective-C Base TIEE - MELNOMS.cccuewrsnresesmmseusersessmsneesmssssssssnesssssssssssssssssssssssssssnssssossesses 50
%
b ! Appendix C: Prototype SOUICE COME......curerierertsnninesernnsinssasassissessasssessarsssssasanet ssesessssssesssassssssesssonsrsases 56
n
. Appendix D: Merged File of Heterogeneous Bibliographic Citations........cee eueeersiermrrnrescrcsaniennescseccecsnnas 60
;::; from Six Database Sources
:‘0
W
"
2y
: -
N
,:'2
b 14
»‘
b ¥ o0 ERLARE L 9,5 OB <
A I} 4,__ Lo KAy i 0 S ::.: :,'.. e u,.\u ". 2 ~’.“}.x

SO Mo Y R e".:' "&\. I’l K

F o GRRNHERCN Y l.‘n': |'= t"‘t' .‘« " 1'.'\1.‘1‘ Kth ci.

WA

-

REEARE S

4

-

2 ARy

‘;.'é [} _j AT

=

Chapter 1:

Introduction

In recent years, the development of abstraction mechanisms in languages has focused on abstract
data types to "manage complexity by emphasizing what is significant to the user and suppressing what is
not"[Sha84). This has lead to modem programming languages such as Smalltalk-80, Flavors, and Ada.
Software methodologies have been developed to address engineering concerns in requirements,
specification, design, implementation, correctness, and reliability to reduce cost during the software
development and maintenance phases. The use of abstractions to logically reduce the complexity of the
task is aided by modern language mechanisms in that they provide the language constructs to encapsulate a
logical data type and the operations associated with it. The language constructs of "Classes" or "Flavors”
help in the abstraction process. This project is based the use of abstractions to obtain data consistency in
heterogeneous databases. Our specific implementation was applied to bibliographic information. Similar

techniques may be appliea to other types of databases, as described in Chapter 7.

Bibliographic citation databases from heterogeneous information resources are used widely in
research and development work. These databases are often accessed to do a subject search or to prepare a
bibliography. The citations contained in the bibliographic databases may be large in number and collected
over a long period of time. This process was done manually before computers became readily available,
and was tedious and error prone. Today computers are used widely for this task. Modern computer

automated tools have been developed to assist in such bibliographic processing and are continually being

enhanced{Gol85].

A research task may consist of accessing several bibliographic systems such as DIALOG, INSPEC,

NASA/RECON, DOE/RECON, or DOD/DROLS.

-1-

o7 TnlaRedy ity
A J'._-(' f\q -f\
.n a./-" o

o o

e i)

o2

’"l\.;l..

L4 3
[N
P ""'l H

3 e
(PRI
-

$15¢
:
2

AR

»

= Ay
P b

“x

Y

T M T

[W
Y"l

<y Yy

3

R UL N S
. OSSR
NI

A w0 .

P

&

T "‘— .
=% "
a2

KA

e

-
!

.<n‘-.’«-<
- o 8 N oa s

ity 7 LW

P 2 # 2

'y

.

ey

A A,

(X "-(
Py D B o

g M

-

s
-l"‘\

3

NN

L

The respective retrieved citation lists are down-loaded into a user file for post-processing analysis. Each
database has its own form because of independent development programs and a lack of generally accepted
standards. Hence post-processing analysis on a database citation file requires an individualized software
processing package for each citation database. Sometimes the user’'s files are merged if software is

available to translate the files into a common format.

To analyze data from the down-loaded and merged files requires data consistency. Hence a
prototype has been developed to provide the tool to make heterogeneous bibliographic citation databases
consistent. For example, the search for citations within a range of dates is encumbered by the problem that
dates may be represented in different formats in different databases. Searches on author names are also a
problem if different databases enter first, middle or last names in varying formats. The goal is to have one
tool process the heterogeneous bibliographic citations into a standard form to provide the basis for

convenient data analysis.

Significant improvements are made by conceptualizing the problem of data consistency by
abstractions in terms of Smalltalk classes. Since the information types in citations are broadly similar,
classes can be developed for each type of information such as "date" or "title". Careful specification of the
classes can simplify the programmers task since interfaces will be defined, and data and their behaviors
will be understood. Another improvement occurs when future enhancements are built on the classes

already developed and serve to reduce the amount of new software needed.

This study shows the ease in developing prototype classes for integrating heterogeneous
bibliographic citation databases and suggests the basis for the development of additional classes required
for the complete application. The modularity of software, the inheritance by classes, the encapsulation of
data structures and operations, and the use of dynamic binding reduce the task of the software designer and
developer. Hence the Object-Message abstraction narrows the gap between the concepts and analysis of the

problem and the notation used in the computer software to solve the problem.

In the following chapters, we discuss the background, motivation, and development of abstract data
types via Smalltalk-80 classes to solve the problem of data consistency in heterogeneous bibliographic

citation databases.

2.

e T N
q“.?.\‘..‘.:-t.-_ <. <u, '.:-\': X “ -'~ !] ARTRAL AN L RN
AR A AN A Ve il PR AT P

R TS RN A G
\'-_\1-.},-.' 3t

l’-.

"-

z e -
L3k S
LR
&
o

b

T

v

¥
e cw

FyTa 'y

xoncs
e e

v

(i)
P
i

PRy
()

A T Lasd

K] R

~
e

A

. .. -
e
e A 0,

.
L 1y
1 "l
i

.

Ly
L

Ay

NN

'

[0
r
r
’
¢
)
<.
l.‘
4

Chapter 2 discusses previous methods used. Chapter 3 gives the characteristics of the Message-Object

Model. Chapter 4 discusses the physical hardware and software methods used to create the Objective-C

classes for the prototype. Chapter 5 discusses the specifics of the prototype implementation, Chapter 6

. discusses the results of the prototype implementation, and the last chapter discusses future directions.

3 s 8 al
-.-‘4‘.’."0

x

>
A

s Chapter 2:

Previous Methods for Processing Heterogeneous

Y X X X
MRS

[

Bibliographic Information

T
23
-

e
ol A A

This chapter gives some background information on bibliographic citation databases and discusses

previous methods for processing the information.

AN

2.1 Why Use Heterogeneous Bibliographic Information Resources?

Hall and Brown provide a statistical study of the on-line bibliographic databases that is the basis of

this section[Hal83]. Online databases have been available since the 1960s but have mostly been in-house.

g AL },._‘. -‘<'F'

r/

Since 1972, there has been a rapid growth of publicly accessible databases.

o Table I
Number of Bibliographic References Available Online

in millions

0
“1
fa 1968 | 1972 | 1976 | 1980 | 1982
% 1/4 3 20 58 77
’
g
g
gy
§ The current rate of addition is 8.7 million references per year. With duplication accounted for, the
9

estimate is 50 million singular references available for use and six million additions to the reference pool

-

}
$ made per year.
L~
)
t
“H 4- '.\
\‘\
f“ .‘f
[{\\
A ™
) 2]
3]
¥ ¢ N NNy R R A N R PN NI RN N I NI, W\ S ~. ST VIR
v.“; i :"3 53 A PN IR i \ Sty n'(SRR oy n3 0
"“"-. lnL:' Y NN "\.\"" o W ARG M S b .s!: S5 Tob T .-'l‘ 30N a)uh.h"n.hq%"' b LGN

O

s e 48

P o ol

- oo

-

*‘rzug-:}«

AL

Parallel to the four-fold increase from 1976 to 1982, the growth in on-line use is estimated to be six

fold as seen in Table II.

Table II
Bibliographic Searches on Public Systems in U.S.A. and Canada

in millions

1975 | 1977 | 1979 | 1981

There are four particularly predominant database services. They are listed in Table III. Each supplier
strives for uncommon databases in their service. Nearly 20 percent of the important databases are not

available from the four services.

Table III

Unique and Common Databases available from major suppliers

Supplier BRS | DIALOG | IRS | ORBIT
Unique 8 39 5 24
Common 28 56 27 28
Total Number | 36 93 32 52
Total Percent 21 55 18 30

The vast repertoire of information makes the access to heterogeneous bibliographic information an
important resource to a researcher. From Table III, we see that a password to DIALOG gives access to
fifty-five percent of the databases. An additional password to ORBIT gives a total access to seventy

percent of the databases.

-5-

x o
:.1. "' AN AL 4 A 'I'!’\ f’ S TANA 0'00. v"h “C‘- l. b Xt .'i "" oL n“t‘-" "" o‘l

. o) R AR AL T .. - NN % W o -, ~ ‘!
,‘1").;(5* . "- jh Ea '(i !"-C'f t'f- yg“ RS « l, { \,'r"{ $ $“p * 'ﬂ ‘1 ~ -‘“:: LS
L]

P
o
o I X

e

> ():J‘.}‘\"w— .
A AT 3
N m e R

"
o

-
2

'.‘l X
8, -
P

%
s

AR

.
%

ek
r I8
-

ol
-

4 SR

1) oy -.—y.
R
L

et

5'...

Up to 1984, more than 2453 citation and numeric data files were available from 362 on-line
information vendors[Cua84). Scientific disciplines are continually adding to the published set of abstracts
and citations. Most on-line bibliographic information is still obtained in printed form after an on-line
search. The vast amount of information needs a tool with a unified view to extract significant scientific

and technological intelligence.

2.2 Description of Bibliographic Citations

To understand the problems involved in heterogeneous bibliographic citations a simple MEDLINE

citation is described as it is mounted on BRS. Only six fields were selectively down-loaded.

Sample Bibliographic Citation

Bowry-T-R. Oywang-J. Lumba-M

Department of Human Pathology, Faculty of Medicine, University of Nairobi, Kenya.

b ¥

AL

S
¥ o

HBYV infection: prevalence of core antibody and other markers in urban based black school

el eust it ar %

children in Kenya.

Ann-Trop-Paediatr, 1983 Dec. 3(4). P 197-200.

e (

ok

Py o«

EN..

T Tk

Y‘l
e

0272-4939

L)
" n- -.\._ A‘ - q_j-'." -"\&‘.1 -_',. ‘_(1 .'-'.-'. « . 5 oLt \'r.‘ \ \'(‘-'('.:n" ! \; o,

~b
ARC A AT gy D0 ALY s &

N a S e \ -\\ t.-l . * Y L . . - !’\. \1~ 1
)' ('.).”)"’ SI " he 'b Lh R '. k .)‘ R l.u ly'e

The AU represents author, with hyphens separating initials. LG represents language and IS is the

accession number for the citation in the particular database. IN represents the institutional affiliation of the

- N Nl ®. -
A B

author, TI is the title, and SO is the source. The same bibliographic citation from a different database

-

source may be formatted in a completely different way. Inconsistency in the detail field hinders

-
o
E_]

information analysis[Gol85].

et

2.3 Processing of Heterogeneous Bibliographic Information

R

o
R e

o

With the appropriate administrative requirements fulfilled, a user can down-load bibliographic
records from a variety of on-line services such as BRS or DIALOG. Typically, an off-line printing
follows a search, and is arranged in reversed chronological order. The need for computer based editing
tools is a natural consequence. Rather than obtaining the down-loaded information in stacks of printout,
the bibliographic citations are down-loaded to a disk file so a computer can be used for automated
processing of the information. We observe two problems that exist in local processing of the file. The file
must be translated into a common form to handle the different database formats for data tags and to handle

the inconsistencies in the detail information associated with each data tag.

Tools to develop data consistency are available in most modern database management systems.
Information consistency within a specific bibliographic database may also be augmented by locally
developed software and procedures. The database administrator can use software tools to constrain data
entry to méet certain requirements. The user may be required to enter data strictly in integer format within
a certain range of values or character format within a certain string length, Furthermore, the user may be
required to enter strings that are pre-defined in a dictionary for that attribute, such as one of eight

acceptable colors. We can see at this point that information may be entered correctly into a particular

F X2

database in formats that are singularly defined by the local database administrator. However, there may be
inconsistent formats among the heterogeneous bibliographic databases because of a lack of standards and

autonomous database development and administration. For example, dates can be constrained in a local

P

database to be either May 1, 1985 or 1 May 1985 format.

-y
ata & 2 8a 4l

14 B

-‘i: ST LT

-

ﬂ

\a' \ ¢

r""“‘ o.' olk H’h‘ o O‘I"l‘t W l‘:‘i‘o ‘a.t‘-.l .al n"*‘;‘u‘ e, i’ s l'lt.' K

PR ‘p! ey .\ }. \ o h; LTI ‘Cn -w\ DR E L L '-r‘“\n, I‘P oty
% 4‘ ;§

“ ‘& i_‘,

NN O
e \ ,..!" Al

There may be additional differences in upper/lower cases, abbreviations, spaces, or punctuation. These
inconsistencies hinder the automated processing of bibliographic citations in the down-loaded disk file.
Hence we find in processing a search based on date ranges, software must be written to handle the date
discrepancies, or the search will be incomplete. Author names also introduce problems because R. L.
Smith, Richard L. Smith, and Richard Lee Smith are the names of the same author. If one desires a list of

articles written by R'chard Lee Smith after a certain date, the tabulation would be inaccurate.

A recent study on popular 'front-end systems’ available on the market for processing bibliographic
citations shows that the user has a limited choice of features such as down-loading and file creation.(i.e.,
SciMate, InSearch, CONIT)[Bol84]. Software is not available to address the problem of data consistency

among heterogeneous databases.

Goldstein and Prettyman have developed software to process down-loaded citations with the goal of
incorporating a specified reference format into manuscripts. In their work they encounter the typical

problems of processing heterogeneous bibliographic citations.

8-

S VOIS SIS IS 5 39 SRR T A I R
L5 09TR0Y -.';-.'f_-.';«‘-’ APrtadatatin o

) <
1) > P '4' ".- }
. 9 A AR N A" e A By 3 LS -‘) [P A I A »'-
QIR PR e 5 RS, o 00 ol N 35 RO N SV OVAACA S g

AN

P2y
A

24

- - w e
-

-

- -

-

i =

(%] - ",
" X
:‘:' ; c:
»

o ,
‘c‘el £
M J‘. \.“.
B A
:,:; They propose transforming each citation into the following canonical format. :{\
e LA

z
4 g
b Field # Data Element Tag o
@ 1 TYPE TY %
o 2 DATABASE DB (53
i 3 TITLE TI 2
4 AUTHOR AU 3
g 5 SOURCE SO s
PN 6 INSTITUTION IN ot
4 7 NO.& TYPEMTG NO R
g 8 MEETING TITLE ™ !
ey 9 VOLUME NO. VL hd,
10 ISSUE IS T
" 11 MONTH (JOURNAL) MO o
4y 12 DAY (JOURNAL) DY !
o 13 YEAR JOURNAL) YR W
1o 14 MONTH (MEETING) MM N
o 15 DAY (MEETING) DM e
1t} 16 YEAR (MEETING) YM -t
£ 17 PAGES PG 1
o 18 TOTAL PAGES TP N?
k- 19 PUBLISHER PU N
o, 20 PUBL. CITY PT v
R 21 PUBL. STATE PS &
22 PUBL. COUNTRY PC 0
23 PUBLICATION YR PY
o 24 MTG.CITY MT ol
- 25 MTG.STATE MS 0
e 26 MTG.COUNTRY MC W,
B 27 REPORT NO. RN e
4 28 RETRIEVAL NO. RG it

o 29 ISSN NO. SN .

. 30 PART NUMBER PN =
4 ‘ 31 CODEN cD B
y 32 NOTES NT .
K 33 EDITOR TYPE ED s
a9 34 AVAILABILITY AV 3
i 35 COPYRIGHT YEAR CY M
. 36 PUBL.AUTHOR AA 5
o
:3:’; The process is divided into three stages.

K0

{ * Pre-Processing
B
3 * .

b Parsing

R $

;) * Post-Processing

o

i -
e

o

wh

o ;uu AP LT ‘s S e A R -(i*“ -.,a.,.n(
'n‘t‘a ALt DDA LI Al - T DJ NS 'l .o ! '(‘ AR ."’P-’:‘:‘. W, "\0”'

RSB S AL ARON R ATt
, &i‘i };» ‘$\ N

GQ v R lt

.,,.
PR
;

-

C

o £
SR

HoLTANED

QoY
..Q

O 0] L] & v \J Ly \ 6y gt ey L3 \]

By

o
‘.i‘

|

Kt

)

Steps for pre-processing records down-loaded from heterogeneous databases into separate local files :

i

are: B
o

1. translate field labels in all files to a common set; .:;
‘ 1

()

2. include fields for, and add database and retrieval system names to all records; :}
at

3. merge all records into one file; _
4. reorder the records into a format that is optimized for further processing; "
Y,

5. determine and add the type of publication; v,
-

6. standardize the format of the author’s name. G
4 ’(

v

The parsing stage is to separate the complex source field into discrete information. Further details f:

i

are found in Chapter 3. 4
R

i

Post-processing is to further format the information for consistency in the end-product application t
program. The end-product could be a statistical analysis based on certain keywords or a bibliography for a :'
publication. o
ot

The post-processing tasks are: ‘

4

3

1. conversion for case consistency; ':
_ '3;

2. standardize journal titles; :'.
%

3. correct inconsistencies in format; L
v

4, expand abbreviated titles; :i
.\

5. add missing data;
13

6. make linkages between articles and proceedings; chapter and citations. _'
I

The Goldstein and Prettyman work involves knowing the database source and then writing specific '
software for that bibliographic database source. Their proposal for a canonical form for bibliographic my
i

-10- 0

L W ST L
S
q o '*'\- 'e L% \). \
St R ALY

eIt

s: S
N -
& bR
»
a7 g 1
9 T
'y 4
ol 23
4‘ "
‘f:; citation databases is an attempt to develop standardization regardless of the bibliographic citation sources.).
‘s_‘.' A\
A significant amount of work has been done in the processing of heterogeneous bibliographic ¥,
M)
* N
:: citation databases by the Technology Information System(TIS) of the Lawrence Livermore National '»
0
.
-,“ Laboratory(LLNL). They have been working on technology transfer through computer networks located
K B
nationally and abroad since 1975 and have developed the Integrated Information System (IIS) that manages
.' '
5.' information and resources on the TIS system. IIS supports the down-loading and analysis of bibliographic
(M)
::5‘, citations from heterogeneous database services. A major goal is to provide the capability to extract
)
B scientific and technological intelligence from the information contained in these databases. To accomplish
;' this, software has been developed to process bibliographic citations from the federal information centers of
[}
)
% the Department of Energy (DOE), the Department of Defense(DOD), and the National Aeronautics and
"-. Space Administration(NASA) as well as the three major U. S. commercial services --- Lockheed-
4
) DIALOG, SDC-ORBIT, and BRS. [Bol84]
N
(W)
;!'.' The Integrated Information System (IIS) sofiware package is menu-driven and provides for the
1
R}
o following bibliographic database options:
Sy
"
o
:: [TRANSLATE] translates citations to a standard format
N ™
)
. [MERGE] combines translated files from different sources into one file
:{: {STAT] creates a statistical profile of citations
L,
)
¥,
';:s [(ANALYZE] analyzes bibliographical text
(!
< (REVIEW] permits on-line evaluation of citations for relevancy.
[
) ;{ (CONCORD] creates indexes by author, subject, descriptors, etc.
i
j [PERMUTE] issues multi-term statistics of the text in selected data fields
._, [CROSS] cross-correlates the contents of data fields
X
4
is [PLOT] shows the number of citations by year in a graph

[DISPLAY] displays the contents of any file on the CRT screen

d -

),

RN <

N

R

o ¥
- ’!

“H
{

ARt
"‘.u“ l‘:'\‘ "‘I‘. 13 AV

- -

LE //(;t,-l .{. i "- ‘i‘??{:ﬂ.&*\"'" ARhRNAS 'C-\. \1'\ 2 (‘{\"1" -;'*{‘ AN I‘*‘\\\"{ "-?.-"
" Y X ,‘ .&l'.:\" .|.50l R Q"\". .O‘ﬁl pd"'t.c AN ‘\ (1) et *‘w Wk 't" e,

£

ol

~ oLt

-
-

"t
i)
7]
'
i

i)

TRANSLATE, MERGE, DISPLAY and REVIEW do the pre-processing steps 1-4 mentioned by
Goldstein and Prettyman. ANALYZE, CONCORD, PERMUTE, CROSS, PLOT, and STAT allow the
user to produce some trend analysis from the bibliographic citations that have gone through the

preprocessing steps.

Currently, the trend analysis is not entirely accurate since the detail information is not entirely

consistent. A closer examination of the pre-processed files shows dates in the following form:

1. 1May 1985
2. May]l, 1985
3. 1985

4. 5/1/1985

5. 1985

6. 5/1/85

7. May 1985
8. May, 1985

The job of producing a file that is consistent is time-consuming and difficult; duplicate bibliographic

citations are not easily detected. A particular citation usually contains only a subset from the set of data

T

tags and different databases may enter certain detail information under different data tags. An example is

the the following:

<DATABASE SOURCE> DIALOG NTIS FILE 6

.y

7’

<TITLE> Online Directory of Databases for Material Properties

<DATABASE SOURCE> DOE/recon)

P

I
-

<TITLE(MONO)> Online directory of databases for material properties Los)
.
-12-
v h AT ta s TR
NI NOIRI DT WA S NI AL B OO RN XN LR O ATN TR G N L O R O SAR AR 3
\)",:'* .-(‘.)‘;I\-('} ’ -f\(.nf .J’)\- .‘:.4\4" ":..‘:.:. '.1 .t -f":'..} (1' . J

N %
o Y]
1 .Y
"' The
b o'y,
L) ‘ l h
%
%] The purpose of this project is to further extend the consistency of the detail information found in a ' 3*
!,"-! e
) merged file that is the result of down-loading heterogenous bibliographic citation databases. It is through "a
W K%
::é the development of abstract data type Smalltalk-80 classes that similar types of information can be :*«'
| o
:':; standardized, regardless of source. The standardization of dates and authors and titles include accounting :"' N
.. 'I‘!‘
for spaces, punctuation, capitalization, and ordering. 3
ol
: 24
g:D . ’\
W : '
) nt
. e
" s WX
k] ¥ Q‘
% "8
~‘ L% ¢
» “It
) oy
£ 5" 3
& A 2
""‘. :'v
:
~ S
: 3
- V¢
N o
N]
~) ‘!
X 2
(S
0
':!u'
8 i
| .
1 Ly
1Y z_n) \
:’ x 1Y
r: :
E
b) .
3 A
4 W
k) !
bx N
4 r
i “‘ "
(Y il
X'y e
¢ ’
) I8
X
[Wy
T‘ \2
e
L -13- Nt
[] \!. 4
iy Y
1! -
"\

IR S I
AR OgN TR e

LA ;
Pt Pl bt A sadata L Y, o4 4?1

LR K

-l

S Al

Chapter 3:

The Message-Object Model

We first establish the foundation for using abstractions in software development. Next, we discuss
the motivation for using abstract data types via Smalltalk 80 classes to solve the data consistency problem

in heterogeneous bibliographic citation databases.

3.1 Abstraction Mechanisms in Modern Programming

Recent work in programming methodology has led to the recognition of three kinds of abstractions:
control, procedural and data. A large effort has been expended in developing a modern programming
methodology so software is constructed that is easy to understand, modify, maintain, and is reliable. The
quality of a program depends on the programming methodology used. The effective utilization of the
methodology is strongly dependent on the programming language selected for the software development.
Certain concepts in the methodology may be difficult to put into place if the language does not provide the
constructs that make the process automatic. The language does influence the way a programmer thinks and
formulates ideas. A good match of the methodology and the language enhances the likehood that the
methodology will be followed. An example would be to attempt to introduce the concept of block structure
using Fortran 66. A better choice would be Pascal because the language supports block structured
constructs. While it is true that software can be written in Fortran to simulate the methodology, the job is

unnecessarily enlarged for the software implementer{Lis74}[Lis77].

-14-

L 4 1

A
e
Pl ot

u'-‘
¥

) L
k7,

A Lanl LR
‘ 'ﬁ%’."“. ¥

FL
e

o
-
-

A

TR LA
= PR

.

-~
RV

!

N

L, 2o L W, n‘d‘ff#\;f‘ W -\,‘ *'\«. ARSI) ‘d'\v_,.'r‘-';\.\p,- ',-\-
s S B el S b R St oyt

a Ao e

!T- "“ - "S’- w . "J"n N "' A A“" &b‘ [y ...". ?i‘.l" .~ -. o 3 ‘ 'v— ' »*’ -. !

q’
“ -,.*\)-y “~ '-{

l‘ __, !‘ 'l'
*y

-
D -
! =
::: Et y
' ,.: 3.1.1 Software Abstractions Ny E
‘; What do we mean by software abstractions? We mean that the abstraction isolates the use from the v
‘:.3 implementation. That is to say, that the abstruction can be used without the knowledge of how the :ﬁ
L g
{5 implementation was carried out, and the implementation can be done without the knowledge of how it is to ‘-'{'; y
\ | be used[Lis77]. In the early 1950s, we see the application of abstractions in terms of assembly language
j rather than machine language in terms of octal numbers. Three letter acronyms were used instead of an :’:,'
:‘; octal number that represented the operator. Operands were designated by symbolic labels rather than '-:i
" absolute addresses in memory. Early languages supported built-in data types like integer and reals. One ;‘
? did not think in terms of binary bits in a computer word at a certain physical location in memory. Later :‘5
type checking aided in appropriate default conversions when a real number was added to an integer. :
‘§ Hence, the programmer was relieved of low level detail. Procedural and control abstractions were
= dominant. Sorting procedures and square root functions could be specified without requiring knowledge of -\.
the implementation, and the implementation could be done without knowledge of how they were to be g
{ :: used. Later, control abstractions such as do-loops were made available so the concept of iteration was '
“r abstracted by the language construct. Abstractions were treated as a program organization technique. "
4 2;2 Programmers could define macros and define new data types required by a specific problem. We note that ::
B >, >
11‘ data structures such as stacks and linked lists were first treated systematically in 1968. The idea of -‘
" studying and formalizing programming activity dates back to this time[Sha84]. ‘
" rﬂ"t
What was recognized in early 1970 was that programs were difficult to understand and maintain. .&
: With the infamous gotos that spanned a large number of software lines indiscriminately, the term "spaghetti :gf
?‘. code” evolved and was a familiar occurrence among programmers. Locality was advocated in terms of if- ;_' '
LN i
‘ S then-else or do-while control constructs. For a while, extensible languages were promoted because they E'_:"
: allowed the programmer to add new control constructs and data types to the base language in an attempt to ? ‘
; add clarity to the program and make the programmer’s tasks easier. This idea became unpopular since it }
41 _\' was difficult to keep independent extensions compatible, to organize the definitions so related information
;\ N were grouped together, and to find a technique to describe the extensions accurately.
L
: N
g -15- (,-
5 3
) fa
v

O LR R It
3 }"".-"‘.J-"r";“-'{:.-".-\ et
*hg w¥

%

.“‘r‘.‘T

o
o

ey

%

FLDS,

;fi

pL S

PN ‘.x'(

g e i ath e A el ol aftic pi QAR AR EL SRS A RS R T S AN

The need for more accurate specifications was recognized since programmers typically relied on
procedure headers and parameter lists with accompanying text to define the procedural abstraction. This
specification technique depended on individual styles, and some were well written and accurate, while

others were vague or out of date.

3.1.2 Structured Programming Methodology

The structured programming methodology was developed in the 1970s to address these problems: to
make programs reliable, easy to understand, develop and maintain. It detailed phases in software
development, specified tools needed to assist in the process, and established tests and criteria for program
correctness. Program development was to evolve top-down using the idea of abstractions. First the
statement of the problem was presented and then successive refinements were made until the problem was
finally solved. The idea is to start with a high level abstraction and then progress by problem
decomposition to recognizing subsidiary abstractions. This is where we find modem programming
languages as CLU, Alphard, ADA, Concurrent Pascal, Euclid, Gypsy, Mesa and Modula being developed

to support the structured programming methodology{Sha34].

3.1.3 Abstract Data Types

Procedural and control abstractions were available but the idea of abstract data types needed
promotion. Through abstract data types, the idea of locality would hence be further extended, making
programs easier to design, implement, and maintain. Specifications would be easier to write because of the
encapsulation of the data structures. Data behaviors could be defined only within the abstract data type.
The requirements of a language supporting data abstractions developed. Linguistic constructs were needed
that implemented data abstractions as a unit in terms of data representations and operations on the data.
The construct would provide a mechanism by which the language would limit access to the representation
except by the operations defined. Smalltalk is such a language with abstract data types in terms of classes.

CLU has clusters; Ada has packages; Flav has flavors.

-16-

-\ d ¢ .\n S \v\ T .~-"\¢‘-‘.' _‘—"‘-' s ‘-“' “(’ :-‘ -q
AN A A A
. A& 1 "

v-. N -. YA
N ‘ U, «:\" "\,:..

..xm o

L 4
e |
'.“;{.'-
Sx Sy Sy

Ay

o
B

},

e

P

PR R g v

s

LA

A basic concept is that the operations defined for a class must include all operations needed in handling the
data structure. Usually the operations include create, modify, and access operations. The desirability of
classes is that the language takes care of all the interface specifications, the names for instantiations of the

classes, the assignment, argument passing and type correctness.

Essential to abstract data types is the primitive library that is provided with the compiler. Here
typical abstract data types as arrays, AVL trees, bags, and dictionaries are provided from which the
programmer can develop new abstract data types particular to the application. Inheritance is important in
that new abstract data types that are defined are based on the properties defined in a primitive abstract data
type. As a matter of fact the abstract data types are usually arranged in a hierarchical tree so that an

abstract data type inherits all the properties defined between it and the root of the tree.

Abstract data types are the means by wﬁich the human can transform problem-domain concepts into
the computer-domain model. In other words, the separation of specification and implementation is the
desired result. The goal is that program correctness at the abstract level can be ascertained before the
implementation. The phrases "abstract data types” and "object-oriented programming have been used in
various contexts, from Simula and its derivatives such as Ada to powerful data description languages used

in knowledge representation. The meaning we apply is in the Smalltalk-80 context.[Cox84]

3.2 Object-QOriented Programming

Object-Oriented Programming replaces the operator-operand concepts that are used in the traditional
computer-domain model. The idea is to introduce a coordination tool that supports change, reusability, and
enhancements. The goal is to transfer work from the human to the machine and to enhance consistency

from the human viewpoint.

Two major concepts of Object-Oriented programming are encapsulation and inheritance.
Encapsulation is an aid in using the system and isolates the objects from the environment except through a
carefully controlled interface. Inheritance is a aid to building the system. New classes are defined by first
inheriting the data and behaviors of older generic classes, then specifying only how the new ones differs.
The idea is to define the data abstractions so the programming task is made minimal.

-17-

RN

1

S Ll S P I N i

T T
ML P -

-
1

-

R A
P

o

PRy

s

N

e S

&t

Now we will define some terms used in a Message-Object programming language such as

P

Smalltalk-80. The terms object, message, class, instance, and method are all defined in terms of each other,
We will relate the terms to the Objective-C compiler that is a derivative of Smalltalk-80, and will clarify

them by examples in Chapter 5.

3.2.1 Objects

Objects are virtual(computer-based) machines. They have some data (private part), a set of
operations(shared part), and a run-time mechanism for selecting operations on the data that are activated by

a message sent to the object. They exhibit one of their behaviors when they receive a message.

3.2.2 Messages

Messages are sent to objects and are requests to obtain a desired result. The message contains a
predefined operation(method) to be done on the data structure and are serviced one at a time by the object.
Objects representing numbers have arithmetic operations; objects representing data structures as AVL trees

create an empty tree, add, delete, modify, or count elements.

3.2.3 Classes

A class represents a description of a group of similar objects. A class is the abstract data type and an
object is an instantiation of it. For example the class rectangle deals with the generic group of rectangles,
but an instance of class rectangle will have specific dimensions for length and width. Binding is done at
run-time so there is no static type checking at compile time. An example would be the class Array in

Objective-C. The subclasses BytArray, IdArray, and IntArray inherit properties from class Array. Hence

(A R

an operation as printOn defined in class Array will work on any of the three subclasses mentioned,

although the data representations differ in terms of byte, Id, or integer. Also a new subclass defined later

'. SRV

will also be handled correctly, and class Array does not have to be revised to make considerations for the
new subclass data type. This is how reusability in data abstractions becomes a major asset in software

development.

Mgt ' TS TN TN T

i,‘.. ¢ J\ (St J o . y 3 .t w _(» o et
BN & LS e RERTR LY T4 Lo
’\a'»‘\";'l" “.'0‘! ".h A \q.é. \l!‘\\\‘:.. B 2 A) % T 2 n Y A (X X '5‘_ b P'\‘

o PP W - TR TG A, SN R Y - Le e .-,_s:"-\‘a‘--\'..‘-\.._-'..-‘«‘ AN TS
:’ AL DT S S e T W NN R S AN NN AV
¢)

'

gt
T
'.;".5':6?,
100
g
s 3.24 Methods
‘::' .:# X e

1.%97%.
. A method is a description of how to do an operation and is specific to the class in which it has been
W
»ﬁ: defined. It resembles procedures and could use class variables as parameters. Methods are written in a
t&:' high level language like Smalltalk-80, Lisp, or C. The set of methods should include all the operations
SN
o needed to work with the encapsulated data, either via inheritance or definition within the class.
N
"(.‘
:.:'l'al
i
h N 3.3. Benefus of Object-Oriented Software
ki

One basic caveat of object-oriented software is the concept of reliable reusable code. As a matter of

1%) "‘
B %i: fact the classes are called IC’s from the engineering concept of integrated circuits. To start with, one uses
b
: "'ﬁu: a set of basic classes that form the root of the inheritance tree that can be systematically augmented by
0
oy
g defining new classes.
Lz

To further understand the problem we are addressing, let us look at the Goldstein and

,_‘ 4
>

T

Prettyman([Gol85] analysis of bibliographic sources from four different bibliographic citation databases:

- .
-

MEDLINE, INSPEC, ISIC, and COMPENDEX.

[MEDLINE] Ann-Trop-Paediatr. 1983 Dec. 17-18. 3(4). P 197-200.

{.‘;"E"o:g

N,
D) [INSPEC] LASER FOCUS (USA). VOL.19, NO.8. 61-6.
PN A
;:.;‘g" (1SIC] COMPUTER 9(3):11-12
:".. |
| ‘;‘:: [COMPENDEX]
)
; a) Electronics v 56 n 7 Apr 7 1983 p 155-157.
; ':_: b) IEEE Trans Magn v Mag-14 n 5 Sep 1978, INTERMAG (Int Magn) Conf,

Florence, Italy, May 9-12 1978 p 964-965.

ol The parsing of the citation source is a major task in arriving at the information in the canonical form
;.. suggested. It cannot be automated fully, and is iterative due to inconsistency in the data, addition of new

words to the authority dictionaries, and new valid acronyms, entries and words.

-19-

e
i s Py

s,
MMN

ta

N B e T e e g .;‘*.»‘-r".&"' ? 20T SO BRI .w; ‘.».‘- ‘

3: e "'3""3'~ '\-q) -(*’& ~.'0‘3 0.92

o
{
..A;:a',.u‘o:'fu'!!m?u" fretiad SRR ALR ‘ p $ o "‘“‘ K :' ARl “\"' ‘. XN 'l "a"‘ ey .'u“ E’a‘. -

'
J

N.\il

Goldstein and Prettyman give an accompanying parsing structure for each of the above citation

sources.

[MEDLINE] [title].*[year]*[month].*[day(s)].*[vol]([issue]).*P*[pages].
[INSPEC] [title]([country]).* VOL.[volume],*NO.[number].*[pages].
{ISIC] ftitle] *[volume]([issue]):[pages]
[COMPENDEX]
a) [title]*v*[volume]*n*[issue] *[month]*[day(s)]*[year]*p*[pages]
b) [title]*v*[volume]*n*[issue}*[month]*[days]*[year],*
[conf. name],*{city],*[country],*[month]*[day(s)]*

[year)*p*[pages].

One observes there are classes that are common to the different sources. As a matter of fact, the
tasks involved in processing for data consistency of title, volume, and date, are similar regardless of the
database origin or the citation source. There may be variations in case, punctuation, abbreviations, and/or

format. We see date specified as Sep 1978 or May 9-12 1978 in the COMPENDEX sources. The goal of

this project is to develop some prototype classes that augment the set of generic classes to provide the

abstract data types needed to produce data consistency in citations from heterogeneous bibliographic

databases.

e

-

Chapter 4:

-

P L ol
A &

Prototype Development Environment

L

o

This chapter describes the physical hardware and software methods used to implement the prototype

classes to process heterogeneous bibliographic citation databases into a consistent form.

4.1 Computer System

The work was started on the LLNL Engineering Research Division (ERD) VAX 11/780 using the
VMS operating system since it was the only installation with the Objective-C compiler at LLNL at the
time. The parser development using the Unix tools LEX and YACC was done on the Tektronix 6205
workstation. The parser modules were sent over the network to the VAX to be compiled by Objective-C
along with the prototype class modules to minimize use of the resources on the VAX. With limited system
resources on the ERD VAX, the work was later completed on the LLNL Technology Information System
(T1S), which meanwhile acquired the Objective-C compiler. Their VAX 11/780 uses the UNIX operating
system BSD 4.2; certain VMS program lines needed for compatibility with Objective-C were removed. In
general the environment was simpler for development work since the VMS port for the Objective-C was

still in progress whereas the port for Unix BSD 4.2 was complete.

4.2 Software Development Tools

The Objective-C compiler from Productivity Products Intemational in conjunction with the C
compiler was used to implement the Object/Message model prototype for bibliographic citation databases.
The Unix tools Lex and Yacc were used to develop the parser generator, and the tool Make aided in

software development. [PPI85]

[r #\j:-\.jx «."' ALy :;'_.,._- -$<_ e .;5._ S _\»-..,-,‘3: 0ot

o -..\
.iﬂ'\. 2,97, V9 1 1% 2%, AR)\ Y v... .'.0..1.%.

o

ﬁr-‘ .‘\- i .‘

4.2.1 Objective-C Compiler

The Objective-C compiler is based on the Smalltalk-80 Message/Object Model. The syntax for
developing classes in Objective-C resembles the Smalltalk-80 language but differs significantly in that the
class methods are defined using the C-language. The Objective-C compiler is a preprocessor that produces
C source that is then compiled, The preprocessor produces Class and Phylum files that are information

repositories and form the basis for inheritance and encapsulation for the classes.

Smalltalk-80 is the result of 14 years of research and development by the Software Concepts Group
at Xerox PARC. Itis based on a software environment contained entirely within a workstation with special
hardware to improve performance by orders of magnitude. The Smalltalk-80 environment solely uses the
Smalltalk-80 language and provides the software person with a repertoire of basic classes. The
environment includes utilities usually provided by the computer operating system, such as the text editor,
compiler, and debugger. The environment makes extensive use of graphics windows, pull down menus,
and a pointing devicg: so the user can work on several views of his work in progress. To change text under
software development, the user points at the line, edits it, issues the compile command, removes syntax
errors, tests the software, and then compiles and links the new software into the system. All this is done

without changing "modes" for editing, compiling, filing or executing,

The Objective-C compiler is different in that it is one of the many tools the software developer can
add to the utilities offered by the operating system. It is available in the VAX VMS operating system
environment as well as computer systems with the Unix BSD 4.2 operating system. It is is a preprocessor
to the C compiler and adds the basic Smalitalk-80 concepts of classes, objects, messages, encapsulation and
inheritance. Objective-C is an object oriented programming language layered on top of C and allows one

to use it in addition to the existing software and hardware.

)
&N
)

g

3 &Iﬁ?&vk*‘{'c%@“Z%?w\?:}-‘}:"?‘i‘l;12'-%231413*‘-'?\'&*
AT ”&G&& Q%t%ﬁﬁi'}ﬂi}m&mm

Yy
1] ,‘:

~
! ~]
— E]
YO ¥
:,ku :::
'1:?" '.:,
N h' "
:: ' Diagram of Compilation Units[PPI85] ; s,
. .
0 5
) & » ...-)
b L% ._‘-
R,)
&] o)
"‘ A - t
»
N

P P
&

3o

LA

?"o :'if
7 \ ‘\
4%
: .
A " -) N
¥ Objective-C
a 1.
'S Source ¥
J N 'I$
; C Preprocessor A
’ -
LA [W
Xy o
o Objective-C g
-’1 Class o
o Library” W
- - o
w C Compiler g
‘;:'

4 n
A

...ll< ,
A A

5 ,

U ﬁ, A
~ i
(A -:;

)

\ 0

N ."

W 0

l. .&

e
b a\
-23. !
!4 N
I’ e
L)

‘>‘ f’b‘ RICh ! ;@ 3 E QO " 'uQ \ VJ'-_,.\ A n’*: ~':- ;'-P' ‘\P e .¢\ PN V\~*- > \.*: _)n-_). %
l J ¥ l" 'y) ’ A .' l l. % ’ ¢ l' 8) \J\& ‘7. LS -\ -." \ A -._". \
LA g '.! (A ,' ‘0 LR & ¢, ‘l".) t‘g il \' 'b‘I' ". .l’o { 34 |'..l. ‘n.\. { R .. a) I o Wy .I‘...‘ 1R L \J ‘F ().t AW

Objective-C Class Libraries

Included with the Objective-C compiler package are the Basic Class Library and the Foundation
Class library that establish the root of the hierarchy of reusable classes from which classes for the specific
application are developed. Classes developed for the application inherit properties of classes between the
root and itself. The hierarchy of classes provided with the Objective-C compiler are presented graphically

in appendix A.

The Basic Library contains the classes Nil, Object, Array, IdArray and String. The root of the
inheritance hierarchy is class Object that points to the Nil class. Every object inherits all the methods and
instance variable available in class Object. Class Array is detailed to give an idea of the methods this class
supports. Array is a superclass of several classes that support indexed instance variables. It has an
instance variable capacity that records the units of elements of the array. Methods are defined for instance
creation with n-elements that may be initialized from an argument list or not. Methods are also defined for
copying, inquiring on capacity, printing to an 1/0 device, comparing and hashing, and notifying on bounds

violations.

The Foundation Library contains the classes Assoc, AVLDict, AVLTree, Bag, BytArray, Cltn,

Dictionary, IntArray, Cltn, Dictionary, IntArray, OrdClts, Point, Rectangle, Sequence, Sets, Stack and

Unknown.

24-

: 20 .E;.«Et..w« L D
o) ¢ W"E‘R --’1’{‘“ AL ~S'\J‘- _" '&, ﬁ 1‘ A

EE 2SN aE L TR KR E 6

X -

2 2 DA

P

o -
L 44..,o,0.{ l hRe

[t

7 ok o R OV k'
"

»

g

.

W T Y YT UNEAENETT T W W T wsw =

,-.-

Diagram of Hierarchy of Classes in Basic and Foundation Library[PPI85]

nit
N
ol

) /
N //}}}7/ Z,

NN Sita \\
it *‘t"\s @t.;:s.,\

; 77 N T
P 77 R '

: \\\ \\ \ OrdCitn
:_ R

NN

RN

o

MW
& Y

L \\\\\\\,\‘-\'\\\k

* i

M

_‘: D Mstrect Spercless Pasic Litwwry (Phylum = Primitive)
1} N .
: O &\ Founantian Clesses (PFIylun =Collection)
Essily Comvetible
i (m ldrTey, as OrdCltn, i »
. o St. as bag) Foundation Classes (Phylun = Georetry)
i
contains m instance of
s i varis vith
t
)
4
[
y
'
Y
Kl
N -25-
I‘
‘
’
)
" --\
e WAL Tl
G TN, m.-. -',f {::C)-, 0 WA T *-i\. '-"\\ -.. '\5'»‘,.‘.'(Y“r‘.‘k "'55 ‘\’\ \\Q.\'J"_ “' "ﬁq‘.' : \ - f: :\5-:‘\'- - Q:"
o o O L
‘i\t L c‘."\' ‘n‘ ’a.“.“ , ‘%‘n ‘n:"n. OO 'n."l.' o.‘ﬁl-' i " Whahahat, .\ 2 .h‘?ﬂ RSS! ‘ A2

nnnnnnn

] The implementer of an Object/Message application must be familiar with the available classes to

appropriately use the inheritance properties inherent in the class hierarchy. In the prototype

: implementation, the class Object was used. In the discussion of future work in Chapter 7, the development
i of other classes are described to support the task of creating consistency in the heterogeneous bibliographic
'_: citation database.
[
:
. 4.22 Unix Tool: Lex
f The Unix tool, Lex, is a program or module generator. The basic model for Lex is based on the
y theory of regular expressions[Aho74]. It generates a module that is a deterministic finite state automaton.
.1 The input to Lex is based on user specified rules that are in the form of regular expressions. Regular
E expressions are rules for specifying character strings to be matched and include operator characters to
) account for repetition of strings, optional or required occurrences of strings, and the ordering of strings.
X The user may associate a procedure with a rule so further processing is done when a rule is matched. For
' example, if a rule in the form of a regular expression expects a number, the associated procedure may

verify that the number is in an expected range and flag an error if it is not valid{Les75]. Lex generates the
E module that does lexical analysis on the input character stream consisting of the detail information
E associated with a data tag in a bibliographic citation. The tokens and optional values are passed to the
: parser.
]
-: 4.2.3 Unix Tool: Yacc
y

Yacc is a tool that generates a program or module called the parser. Yacc is based on Context Free

: Grammars using Backus-Naur Form(BNF) descriptors to specify the parser that accepts the language. The
l‘: formal discussion is found in [Aho74] and a user’s manual in [Joh75]. The input to Yacc are user specified
: grammar rules and optional procedures to be invoked when the grammar rule is recognized. The parser
‘ includes a call to the lexical analyzer that passes tokens and optional values recognized from the input
L character stream.
b
» -26- "
. "
; 'y
: i R
b ~.|. VLY o L "-,;tk\n} -.‘-"f .~ gg’::-n Fadoo ﬁr s:' : ;{“‘ 3 i ‘,;' --if g :'. 8 o
‘.'.‘.h‘,"‘.'o‘*'- WP -?. L3 .'\.c.'o ho 8, IR R N ATEAE) ‘s DD \‘V NN ,'l"‘\"‘"-‘l

v
-
-
-

-
s
272

4
'.'~
N Ryt
R 3
X H
" {
o 3
::A:.- The parser does a syntactic analysis and does the associated actions if the input satisfies the grammar rule. (
Aty 1,
For the prototype the grammar rules include all the legal variations in the detail information for a data tag f-
o 3
_,,’ in a bibliographic citation. h
i‘ " :
A
ot

4.2.4 Unix Tool: Make

The Unix tool Make is a software management tool that allows dependencies to be specified by the
:,: user among software modules. Changes to a source file are automatically detected and trigger the)
appropriate actions specified in the dependency rule. For example, modifications to a source file could

ln trigger recompilations of other dependent source files.

M 4.3 Summary

e The software prototype was developed in the Unix BSD 4.2 software environment, using the Unix "
Loy tools Lex, Yacc, Make and the Objective-C compiler. The C compiler was used to develop the software. -
.‘ The next chapter discusses implementation of the prototype and how the tools are used in the -

implementation. »

AR

pF
- rey

.:‘ &,
| L ol SLELENTS I

¥

L]

:,r\.ﬂ,). "\- N \."\6?.

:':' "’} e «'" "')'"’ 25 N‘:r YA ‘G- i:.) -)',‘.r .h*'-‘-"‘.-"' bﬁw .H“ "',(I'r)r:\
(AT LR A .\".':‘.k

‘.' 'I n'l 3 .l’ﬁ.a‘-'l .‘\ '0.6.:. .' ~ » l..'l “..t'...' 0"!‘!’0 - :... .0 '. 'ta" N I“.O. v l.l": “ ,'

*‘.'-V -

oy

P s an g te iy b ’ RS Bl Sod Gt 2280 8 0l g 4es “ghe U Qe Aa Aen'RlacRia-aua st Rl tad tyg Sa K a i el G Ba i 2.0 Ol BB 0 PR T

.0
1h)
)
i
e Chapter §:
'-0
W
;: Prototype Implementation
!.)
&)
,’ This chapter introduces the basic data abstraction mechanism in Objective-C, the class. A prototype
b for processing heterogeneous bibliographic information is described to show how the abstraction is used in
.-
: program design and how it is used and implemented in Objective-C. A system overview that details the
¥
o major steps in producing the prototype is diagramed.
Le
1 §
< .
n '&':1"5' Main Progrem
Lex Specification File y
< Len —’I yylen
-
Yecc Specificetion file | yyperse
' 4
Ca
: Yacc yyperse
; 4
b (Datelb i' :
\
) ¢
3 :
\
i
: [
e System Overview of Prototype Implementation N
" =
) \..}
3 -28- :
. <.
: N

AL L SRS LRANE

o
B L
‘s*s}:-’ A -»}-."' =
LA T LT .

N ~"'.\1
5 o
) .
s 4
> ;]
o 5.1 Sources of Data t
;:' > .1 Sources e
) The source of data could be the result of a session by a user at a terminal making queries of an on- —;
KA1 3
I’_q line system such as the Dialog system that involve the search of bibliographic citations on a topic. The t
& N
f,‘ output is usually in the form of a display of the retrieved citations and may be followed by a more complete .‘:
KN i
a - printout of the citations. In our case, the facilities at the LLNL Technology Information System (TIS) were ".
O -
.85
3\- used to obtain bibliographic citations on the subject of "Computer Gateways and Networks" from the six i
i, ;
; following on-line database services: DTIC/DROLS-TR, DIALOG NTIS FILE 6, BRS, DOE/RECON, :
! (= %
NASA/RECON, and SDC/LIBRARY and INFORMATION SCIENCE ABSTRACT. An on-line session A
28 with each particular database service was used to capture the information into a local file. The citations in :: /
iy N
7' . oy g L . Y
:;\ﬂ% the local file was translated into the TIS standard form for bibliographic citations. The six local files were
I". . A
- then merged into a single file so that post-processing analysis could be done on a single file. A sample of 1'
’."“' the merged file is included in Appendix D. o
Al .
vy Each bibliographic citation consists of an average of twenty fields of information. Each field begins o
< on a new line and consists of a data tag delimited by left and right angle brackets (<,>) and ending with the *
‘-; descriptive information. In database terminology, one can consider the data tag as a field label and the :
(%!
'\:{ descriptive information as the field detail. .
b A
"
N -j 5.2 Reformatting the Detail Information for Consistency \
;. & R‘
'\ On closer examination of the bibliographic citations in the merged file one finds similar types of ,$
| i
) information may be represented in differing formats if they come from different database sources. There X
f%" may be varying formats within a database for items coming from different publication types. For example, :
k
: d "<DATE> 1985." appears in a BRS/National Library of Medicine Database record, whereas, "<DATE> E
O
) .
: Aug 1984" appears in a DIALOG NTIS FILE 6 citation. Another problem is that "<TITLE> PLURIBUS)
,;‘ SATELITE IMP DEVELOPMENT MOBILE ACCESS TERMINAL NETWORK" appears in upper-case
o -
’ -
::,' in the DTIC/DROLS-TR citation but "<TITLE> An on-line directory of databases for material properties” -
L *
D o
:o appears in lower case except for the first word in the NASA/recon citation database. One can make the -.
'!,'-
. observation, however, that similar "classes” of information occur in bibliographic citations.
n)
|... '29' ! .1
ig¥ J
b
;o‘ ; Rt
‘:'.)
b
%5 3
it oo A gl e RNRIRR S (RGN IR RO
X %\' -.'j',sj 3'_-.:; .;\ \\ 5S¢ § * . $. R .: :.“ .‘_;-. ,_,,-, 4 \.’\. NN ‘ \' A bt ‘5‘,.&)\

AR AR - Rt ..‘LQ. Wt LM e

> ';'?1::"_

The task of reformatting the detail information for consistency is a complex job. The detail

"-f' ' et

information from different database sources may appear with a different data tag. An example is

\‘. "<TITLE> Post-processing of Bibliographic Citations from DOE/RECON, NASA/RECON, and

| ﬁ's DOD/DROLS. Revision 1." from the DIALOG NTIS FILE 6 whereas the same citation in the DOE/recon

'k A database has "<TITLE(MONO)> Post-processing of Bibliographic Citations from DOE/RECON,
" NASA/RECON, and DOD/DROLS. Revision 1." The task of consistency may include a cross correlation

_;-‘-: of information. If the title is not available with the <TITLE> data tag, the information may be available

.. with the <TITLE(MONO)> data tag. Hence a duplicate may be detected and removed. Typically, one

20 may request a yearly count of articles written on a subject to ascertain the emerging importance of research
3 in the area. We pointed out in Chapter 2, they estimate that thirty-five percent of the bibliographic citations

: are dupiicates[Hal83] and so the accounting of duplicates is important.

,

.:.::. 5.3 Program Design Abstractions

N

.« Consider the merged file as a data abstraction called in-stream, and the data abstraction called out-

) stream that will contain bibliographic citations in a consistent format. We will need procedural
_; abstractions that indicate when in-stream is empty, or determine the next data tag and data field pair. We
can consider each data tag and data field pair as an abstraction. Hence, we can arrive at abstract data types
for "date”, "title”, "author", and etc. that are based on the data tags found in the merged file.

The <DATE> abstraction is presented with details for its implementation. The bibliographic data

tags such as <DATE>, <AUTHOR>, or <TITLE> are handled as left context operators. They trigger

AN A

Eoa e

environments that are very dissimilar. On closer examination, the information associated with <TITLE> is

. .
..$ - - . . -
S considered as a string, whereas the information associated with <DATE> is considered on a word basis,
A
1\\ . - . .
) where a word is any nonempty sequence of alphanumeric characters. Adjacent words may be separated by
o Y
3 .
=R non-alphanumeric characters as space, punctuation, or newline. Hence the lexical rules and actions must =
‘ -
. i . . _ oy
\1 be specified separately for these two different environments. In looking at the <AUTHOR> and <DATE> '.'t,‘

[

-
> A

detail information, the parser rules and actions must be specified individually also. An author June E.

Smith has a first name of "June”, whereas June should be handled as the sixth month if it is a date.

e

"

&

&
ke .
l_'_ﬁ;’;b_p >l

» -30-

fax)

-
)
1]
P
< rrum
Jrfﬁ_'l.! -

s
KoY

nred e é‘n s '1"‘\:!‘-0

'\. . ‘-'\ ~ c. e v
._wln:.f_ "-J'"-".“).V
I -

‘\r O \“‘-’ AN ""\'-.'i" <

-'-r .'-J')‘f'.'-.‘.

P

»
X s,

A discussion on handling of left context sensitivity is described in the Lex reference(Les75]. Once the data

tag has been identified, then separate lexical and parser routines associated with Lex and Yacc rules are

~
7
3
Pl

called to process the information. We can think of Lex and Yacc as procedural abstractions in the

development of our prototype class. The Unix tools Yacc and Lex produce C modules of advanced

E_w_e_ s w
x

algorithms in a convenient form that can be easily integrated into the prototype application program. These

program generators do special jobs based on user specifications that are easy to update. Yacc produces the

0y

SO

module "yyparse" and Lex produces the module "yylex". The user can insert C code before, within, and

K ‘5‘:.‘-{v.“'.".‘

. D

L Fogf

after the call to either module to add a large amount of flexibility. The modules generated are special

purpose and have excellent performance in terms of time and space. They save the user from writing their

. .
D)
b

own C code and hence frees the programmer from details that are conceptualized as procedural

abstractions.

b L e e

i LAY

L
4

5.4 The Prototype

y "y _x_¢
S

To show the ease in creating Objective-C classes, the prototype for the Date class is described. The

K

.

prototype consists of the Lex and Yacc specification files, the Date class data abstraction, and the main

79

oF

program module. The tutorials on Lex and Yacc were helpful in developing the specification files[Bel78].

5.4.1 Lex Specification File

A
P

The general format of Lex input is:

xR

-

“y

P RIS r.] b

{definitions}

-~
g

% %

Lo A3
'k
ot

r
1
L]

{rules}

I
e s

T

% %

{user routines}

P R B B

YTy
g .

Tt :; .‘;\-1'.;-(_\-5.-::;.:

LSRR LR N
\" < (') 24

d

|]
N ol s

n” "\

R

R\

The definition section is:
%{
#include "objc.h"
#include "y.tab.h"
#define MON(x) { yylval.lex=x; return MONTH; }
=(N,Collection,Primitive)

%}

The include file "objc.h" contains most of the standard definitions for the user of the Objective-C
compiler. The file contains various C types such as STR for string, SEL for selector, BOOL for boolean,
10D for I/O descriptor and SHR for the shared part of an object. The include file y.tab.h is created by Yacc
and contains the tokens used for communication between the lexical analyzer and the parser. The macro
MON(x) is defined to assign a value to yylval.lex that is returned to the parser. Values returned by the
lexical analyzer and associated action procedures are integers by default. The rules to Yacc can define
other types that the parser tree handles so the stack properly carries out the reduce and shifts to determine
an accepting state for the statement being parsed. The Yacc discussion covers the union of types that

account for the suffix ".lex". The last statement is an Objective-C declaration for the Phyla files.

The rules section consisting of regular expressions is:
%%

(7)an("."luary)? MON(1);

[dD]ec("."lember)? MON(12);

n"J‘J"\P e
YRS v‘w.«._.-s.

[)
\‘q.t W heheh o.!- W ;.!’ Y, s

s A
. d

|

ol

4 -
Fxa r x xx x

LA Bh
N

¥ XS

"~

RN
o i iyl L 4 - -

{yylval.lex = yytext[0] - 'O’ ; return DIGIT;}

(] { ; /* delete blanks */ }

\n" { return EOL; }
.t {return EOL ; }

In the regular expression ’[jJ]an("."juary)?’, the months are allowed in different forms, i. e. jan, jan.,
january,Jan, Jan., or January. The macro MON(X) is the action statement where the value returned is an
integer, that is 1 for January, 2 for February, and etc. The value is stored in yylval.lex, and MONTH is the
token returned. The characters 0 through 9 are recognized by the regular expression [0-9] and the action is
to return the integer value for the character representation and DIGIT for the token. The regular expression
{] deletes blanks since there is no action statement. The regular expression "\n" recognizes end-of-lines

nw

and returns the EOL token. The regular expression "." recognizes any other character and the action

statement returns the single character.

The last section defines procedure "date(month,day,year)" for checking that the month is in the range
1-12, and the days for a month are correct. The leap year is taken into account on the days of a month.
Terse error wamings are included that could be changed to more sophisticated error recovery actions. See
Appendix C for the details. Hence the lexical analyzer module, yylex, should be able to recognize the

tokens in the eight variations for "date” that are tabulated in Chapter 2.

5.4.2 Yacc Specification File

We now describe the specification file that is input to Yacc to generate the module yyparse. The

general form looks like:
declarations
%%

rules

-{”J ‘C."'%I -(' Pl q

; ~ N"‘

TR

>
-
L 2,
s
’v

X, 2
P o)

s

-
‘,I
3
"
s
.i

e

e R

I AR A f.')'.
.

. J" J.‘- '\.
"\ “(-." N

I
v

%%

programs

The declaration section is:

%{
#include "objc.h"

= (N, Collection, Primitive)

extern id dateObj;

%}

%union {
short lex;
id obj;

}

%Start prog

%token<lex> DIGIT MONTH
%token<lex> EQL
%type<lex> number year day

%type<obj> DateStmt

In the declaration section we have the include file objc.h and the phyla declaration that were

data structures on the parser tree, the "lex"

&S
\
‘.

A)

described in the previous section on Lex. The external declaration of the instantiation of the Date class,
dateObj, is required since dateObj is created in the main program. The union statement defines the two
integer data structure and the Objective-C "obj" id data

structure. The goal symbol, prog, is defined by the % Start statement, and the legal lexical tokens that yylex

.34.

ta.w:
L)

.-

)

*¢

™

*a

=

%7

PR -5 o ",
3 i S

A Ky Ay S]

b LA

S g NP ao fas gan aad Aol Aak Sl Aak Sl Rt TR RwRE T PR W RV E RIS TV R TTRE TR TR ST A T T e h e e e

DA% N
-}""‘ N
ha
™
Ve
i :' ‘%
'v‘ "{_‘ recognizes are DIGIT, MONTH, and EOL. Number, year, and day are parsed by yyparse and have the
. "lex" integer data structure. The DateStmt has the "obj" id data structure.
[\
.i!
¥
:" 2 The rules section is:
Q.‘"(\
:.l' N)
%%
A
KR rog: DateStmt EOL { exit ();} ;
2 . prog: i
ke
:::, ; DateStmt: MONTH day ’,’ year
alr
{
R
N date ($1, $2, $4);
::: 3 $$ = [dateObj mo: $1 da: $2 yr; $4 ;
P
S {dateObj print);
e
?"' *: }
™ .
) day: number;
:s year: number;
)
‘;g number: DIGIT | number DIGIT {$$ = 10 * $1 + $2; };
G
A
R
:.? The rules section specifies the BNF grammar for parsing the legal forms of date. The date procedure
%)
:. -rf checks that the number of days is within the correct range for the month, with leap year taken into

consideration.

The following statement:

$$ = [dateObj mo: $1 da: $2 yr: $4];

o

ol Yo

stores the month, day, and year values in the object, dateObj. The Objective-C message expression is

2
o

contained between the pair of square brackets((...]). The message is sent to the receiver, dateObj. There

a'.
}

:.:g' -35-

-
O
“ -’

- e ———— e W W TR W X T A B A M n? SN W e S e 2 2 TR

) \ LRIV)t
‘} h)} :’ f‘)\\) ‘v J-‘ \ . RO B '(P*q' *! q.". - * $.‘F G !- \
‘Q' < w4 n s 1% SO TN ' 1_". L LA L%
u,’nu WUt S W o o s ! X - .

A

SRR T U R T A -. AN AL .\-. - (- - < \"" "\'r'\
')".}.}":{:“. i e A }*} % I v. v J ‘\.:LFV } \ - '\-* \

L) ﬂ
atetal

<
{)03) ('l

are three keyword selectors, mo, da, and year, that consist of a string of characters ending in a colon
character. The arguments to the keyword selectors are $1, $2, and $4 that are obtained from the parse tree,
This is an invocation of a method defined in the Date class and is a behavior in addition to the instance

methods that Class Date inherits from the Object Class.
{dateObj print];

The print method is defined in the Date class and defines a behavior for printing the values stored in
the dateObj object for month, day and year. The user simply invokes the print method and is not
encumbered by the details of the data structures of month, day, or year to print the information correctly,
In contrast, the Fortran programmer must know whether the month, day, or year may be in ascii, octal, or
integer format to select the proper conversion specification in the "Format" statement. The proper
definition of the methods in a class should encompass the create, modify, or reply so that the user’s

requirements in working with the class object is complete.

The program section is the last section and contains an ermror diagnostic that prints a warning to the
user if the input can not be parsed by the grammar rules contained in the input specification file for Yacc.
One may observe at this point how terse the software is to do all this work. The extraneous characters for
space, /, and variations in the date format are handled with a minimum amount of software. The values for
month, day, and year are stored as instance variables into the object, dateObj, through the method defined
within the class Date, and the print operation is easily invoked since the details are encapsulated as a

method in the class Date.

5.4.3 Date Class

The Date class is defined in the source code file, "date.m". The declaration section has the
Objective-C include file, objc.h, and the Yacc include file, y.tab.h. Next, the declaration for ascii

representations for month is included for the print method.

-36-

o

B

i:é' ey '~§n IR R IIR
\ e -." R
“ 'i‘: u".\‘ol 5’: * X "~ Ut i’c ‘ %

LA AN LW, N) N 1-‘(5-."-

-’.ff(*

\} ’.‘*"¢E$. 'Kg P:); *T'(‘a\' r(i 1 « ". }'(}'
NN NES S

T TN W WY W Y

-
-
-

o
e,

e e

F; STy

- e

The following statement:

= Date:Object (N,Collection,Primitive)

-
o
-

-

reflects that the Date class inherits properties from the Object Class, and the Date class will be included in

o,

Zy

Py
-

%
‘ the writable phylum file "N". Also, the Date cluss may use the classes in the Objective-C librar s
v’,}j Collection, and Primitive. The instance variable are declared to be integer for month, day, and year, and
N '
?: are called mon, da, and yr respectively. The first method prefaced with “-mo: ..." stores the values in the
¢ instance object. The next method denoted by "-print ..." prints the date to the terminal. The print method
‘Y
: A will test for the default values of -1 and vary the printout. The three sample printout forms are:
0y
D 1 May 1985
-‘ 4
i)
4 May 1985
3 \ :
Ve 1985
-

‘P
Ea

544 Main Module

The main program contained in the file, “main.m", begins with the include file for the C compiler

e enar
e e g

standard /O library, stdio.h, and the Objective-C include file, objc.h. The phyla declaration statement for

-»
-

the main program follows. The externals are declared in addition to the instance object, dateObj. The

-

main program sets the output to be the terminal that is the Unix standard output device.

-

g

-
-

C K

:::: The statement:
.;, dateObj = [Date new] ;
3
[]
{.:! creates the object for the Date class. Since the method "new” is not defined in the Date Class, the method
&

is inherited from the Object Class. The prompt ">" is printed at the terminal and then the input is expected

i
ol

from user at the terminal so that it can be parsed and have its values for month, day, and year stored into

the date object just created. The print method is then invoked to verify the proper values are stored in

o dateObj for month, day, and year. The last two statements declare the classes and phyla that can be used in
N this application program.,
»
‘ -37-
:‘l
¥

LR .. L% ;' .“ Ny A
,..'-,.,-,.-.‘,-. B RS SRR WOy NANAE R

AT P TR SIS AL NI Aty
s" a" ['0‘ 'M "‘ '\'n [.&.:.:' 0" o:':' () oH'I I N&Mﬂm& E‘k{iﬁ&i’ %ﬁ%

T T - <
L A -". ‘, .-;d' P ad

-2

Chapter 6

Summary and Results:

The intent of the prototype implementation is to provide a programming example of the Class data
abstraction mechanism of Objective-C as applied to the Date class to obtain data consistency in varying
forms of dates that are contained in bibliographic citations. Through a simple example, features of the
abstraction mechanism in Objective-C have been presented. The Unix tools, Lex and Yacc were used to
develop the procedural abstractions, yylex, and yyparse, that do the lexical analysis and syntactic analysis
on the varying date forms. Eight variations of dates consisting of month, day and year were established in
the dateObj object for the Date class. With the instance variables set to specific values, the print method
could be invoked to take care of the task. The private data and data access methods are encapsulated
within the Date class, and requires that the user communicate through messages to the object to elicit the

behaviors desired.

The Date class is an elementary example to show how other classes for the bibliographic citation
database can be developed for accomplishing data consistency in the numerous fields in a bibliographic
citation. The Date class can easily be extended to included more methods, categorized as setting, inquiring,

performing arithmetic and printing.

Setting:
1. -setmo: aMonth set the month
2. -setda: aDay set the day

3. -setyr: aYear set the year

\.M%’

e

Wiy Te. -Jg . -. g
" -«"t\‘-ﬁ n"'l."n‘

}. 3 .;,","w"\." St Ry J ‘.r'\r"'af .
= qf “ ". ! \ 0 l
hYt : ' "' Mot .' A ')c' 'n'«‘\.‘t A, 'l'. " ANH .'t"‘t‘ (]

} f“#‘\:"‘l‘ X ...

.‘0 l‘ ‘I .‘l‘ ‘0
I .“‘Ai' “:‘q.“ ¢ 0“0"‘ L)

Inquiring:
1. -getmo: aMonth reply the month
2. -getda: aDay reply the day

3. -getyr: aYear reply the year

Performing Arithmetic:
1. -julian reply the Julian day

2, -dayofyear reply the nth day of year

Printing
1. -printmo reply the month
2. -printdy reply the day
3. -printyr reply the year

The goal is to develop a comprehensive Date class to simplify the task of constructing reliable
software that is easy to understand, modify, and maintain. This Date class will be part of the Class Library
that is accessed by application programmers who will rely on the skill of the designer who develops the
abstraction. The classes must be defined such that the behaviors of the class of information is fully defined.
These include the create, modify and reply operations. In the event that additional behaviors are necessary,
the concept of abstraction mechanisms in the programming language as Objective-C will guarantee that

software will not have to be re-examined or re-written because of the change.

We briefly describe how the <AUTHOR> and <TITLE> classes can be defined and used in the

application for data consistency in heterogeneous bibliographic citation databases. The main program is

8 expanded to examine the in-stream of data and look for the "<AUTHOR>" or "<TITLE>" data tag. This is

!‘.

:: easily done since the data tags are enclosed in the left and right angle brackets. The characters following

i

i)

:: the right angle bracket are saved in a buffer until a left angle bracket is detected. This buffer of characters

L]

~ is then passed as data input to the parser developed for the particular data tag information.

LN %’
" 30 \
h \
L :‘
" D
- "'
,:! Al

GO P M N O A T A AR W 2 WA ”’-“Q‘ ') ' DAL IC AN T P8 P ALt
‘yl) l" 'Q."O‘ (INeTS .'l ..I .'-l Ve e Lt ’.')ﬁa‘p . Y)) 5,
B R it fQeadtand! ARARCR TR

)

L2 SARL
¥
'
v
0
¥
r
v
Ay Sy
3]

X,
A

(2 .-:
oy In the TITLE data tag the Lex specification (ile will have the action statement convert the text to iy
';"' i
A upper-case for consistency, and then will store the title into the object
. 50
.;) (.
: i
-4' yylval.obj = [String str: yytext]; it
: :'.':
return STRING; ord
' '. I‘.,
(s e
!" "'
n The Yacc specification file will contain the action statement: ,‘-aﬁ
::: 'x‘.i‘
$$ = [titleObj str: $1] ; th
|;0‘ M
k’ ;»5
B e,
:" In the case of the AUTHOR data tag, the buffer of characters captured after detecting the Author tag ,‘ v
.". L W
'Y is passed to the Author parser that has BNF specifications to handle the variations in author names. The 5
3 g
2, author list could be saved in the Set class. The creation of an Author object could include an initialization t ;S
:“ 4. .
: that would give a wild card character like "" for the first or middle name in cases where the names are :,.
) 2%
'x'
missing from the input stream. The methods delined for the author class could treat the names as wild ’}:
et
, cards when a match is required. é?:
-, 0
. s
! The next logical development is to define a citation object that contains the Author, Title, and Date ',Ea
Do) l.!'l
N Objects as a related triple. e
; "
M [
0)
™ o)
0 extem id String, Set; id citationObj; &,::
'.0 !{!{'
citationObj = [self with: 3 K.
L
2 [dateObj str);
3' [titleObj str];
W)
7" .
E. {authorCjb str]; 1;
4
1
:
; Methods could be defined to create, add, delete, or modify a citation, in addition to printing the citation in
Y
b "pretty” forms for easy user viewing.
| -40- A
~ ’
y N,
.) b z
3 :

BRI AN Y

R O

The prime idea in defining classes for the heterogeneous bibliographic citation databases is to present the

application programmer with abstractions that handle the data types involved, and include all methods to

: process the abstract data types. Hence the objects are the entities that are handled by the application
3
\ programmer to reduce the details that must be remembered. The particular class should characterize the
!
behavior of the data entirely. If not, additional methods may be added to the class definition. Indeed, even
)
: if this is done, software that has been written based on the former class definition may not have to be
3 rewritten unless it accesses the new features in the class. The underlying physical structure of the program
! is taken care of by the physical interfaces used by the Objective-C compiler. The basic actions in
; programming the application are assignment statements that create objects and invocations of class
)
) methods through messages to the objects to exhibit behaviors.
;
'
)
¥
1
D
(.
.
1,
‘
v
4
1
!
b
)
£]
|
+
)
)
)
]
i RN
X -41-)
Y Sl
. N
ﬂ:z,
N
,-.",‘
: v\' It P o g L% ’5~~\V‘\$\‘*".$ “» S 39 A ¥ .,'V'h* :'k‘
.),ul‘n.l, .3.‘ ¢ “ N ,t.‘ ..' Jn“ﬂ- pert ‘»1: i .',").::._: MO\ _-f e }' "F(“r f"lﬁ*" ; \}. '?;;, -Lf |
‘- * .,c -Nl.i.ko.,. :'5"'0 (e 'a"'s' X

. i)O
"EU ‘n"ﬁ ‘l‘v ¥

0\) ' '
l" " '0' () l'.' AP R KN 'i o'l

Chapter 7

Discussion and Future Directions

In recent years a variety of powerful generic tools have been created. Database Management
Systems(DBMS) and Spreadsheets are examples. They gain their power from the ability to operate on
various data. They provide the generic operations of create, modify, and output. We have attempted to
create the tool for data conversion. This study was restricted to bibliographic citations to see how far the
idea of a generic library tool can be extended. The development of the generic library tool requires the
definition of classes which the application programmer incorporates into user software. The concept of
abstract data types via classes can be extended to Database Management Systems. If one considers the
relational model, then the relations in the form of tables can be considered the data structure of the class.
The operations of retrieve, update, and append with qualifiers can be considered the class methods. This
abstraction is a convenient one for the application programmer since tables of information are a common
occurrence. But a detail look at the physical implementation of the data structure may be complex. The
storage and access mechanisms may be based on hashing algorithms if the data are sparse and have a
balanced distribution. B-trees may be used with linked lists for fast searches. Here the user is relieved of
the complexities that are left to the Database Management System implementers. To access the relations
the user relies on the query language that allows operations on the relations. In this same regard, the person
developing the classes for an Object Oriented application must provide the application programmer with

the necessary classes to do a job. The classes must be general enough to handle application programs that

2

have not yet been defined. This is what a good Database Management System provides, and is what the
class library for the application should provide. Of course, Database Management Systems are always

being enhanced to do a better job for the user, and it is expected that the class library will be improved with

N O

Y
a2 a2 2 & A

.

K .‘, (3 k {. ‘l " -‘ " Q. s .w . "‘?).t:Q iu“.t‘ { A 0% ..l‘ X A.N'.‘ ...'.‘ e, : ,~ .!. et 182 'l"ﬂ. . .‘Q

33-."\?."’-. sj. '5.'.::1 ={s ~,:" Tyt "{S‘ﬂ-}\ Rl *- %&»Sk‘ R Y's-"‘h,xn T } RS ""' o _\',’ el J'-'».'*Q-

time. What is important is that the user will not have to rewrite any software that has been developed.
Even if the underlying physical structure is chiinged to improve speed or space, the user need not be
concerned, and all the benefits will be automatically gained. One can now readily understand the strength
in using abstractions. Through Object Oriented Programming the abstraction mechanism found in
Database Management Systems and Spreadsheets can now be extended to programming languages through

abstraction mechanisms provided in languages like Smalltalk-80 and Objective-C.

This project has demonstrated the feasibility of establishing data consistency in heterogeneous

bibliographic citation databases through data abstractions, called classes. Future work involves specifying

and implementing the full set of classes for this application. With the classes in place, the application

programs can be written to further the data consistency goal.

We have discussed the bilio-citation object consisting of the title, author, and date objects. The
objects associated within the citation object should be expanded to include the necessary elements for
identifying a bibliographic citation. This requires the establishment of a canonical form for a bibliographic
citation. A study of the bibliographic citation format from different sources shows that the data tag names
are diverse and many are singular. For example, the DOE/RECON database uses "<PAGE NO> 17",
whereas the DTIC/DROLS-TR has "<PAGINATION> 30P". Goldstein and Prettyman have proposed a set
of 36 fields for the citation canonical form and it appears in chapter 2. They propose two character data
tags, such as PG for the number of pages in the reference. Their canonical form is based on bibliography
preparation. The data fields for the general case needs to be studied and proposed. On a cursory glance,
the expanded canonical form should include "AB" for abstract, and "KW" for keyword descriptors. We
note singular data tags that probably are only meaningful to the local bibliographic database such as
"<LIMITATION CODES> 1", can be excluded from the canonical form of the citation. With the data tag
and associated data elements defined for the canonical form of a bibliographic citation, the definition of
classes for data consistency can proceed. The Date class can be re-used for the journal date, publication
year, copyright year, and the meeting date. The definition of a Location class is appropriate for the meeting
location, publication location, and author location. This class should access an abbreviation dictionary to

produce a consistent form of the location.

-43-

25200 DU Saau Ry GREL TS S
x.k ¢)\ v" IS SRS At S0Py x(\
\‘ “ -’ s x ‘(t]\-. (i

*
i

",
\::' $,
Y :
- .') *

“ s ..:
o 2
ot .
:. If the location is listed as London, then London, England should be substituted. The location US, US.A., ::_
el or United States should be made consistent in the same fashion. Warnings should be included for data not -
) ::C' found in the dictionary, so that it may be updated with new entries. The standardization of publication :
".S’ titles can be added to a Source class. Certainly, the conversion for case consistency in a character strings, -_:
o
Sl and the expansion of abbreviations should be included in the class methods. Alternate names for people or 1
t‘:s institutions could be accessible from a dictionary to further aid in data consistency. We note that the :_
i?:::c Dictionary class is available in Objective-C and can be incorporated into an class. i_
:l:::: A future expansion should include the post-processing tasks in terms of the classes defined in the ’t
Y -).- application tool library. Methods could be inciuded to "pretty-print a bibliographic citation”, to analyze ;
:?;j bibliographic text, to display the citations on the CRT screen, to plot the statistical information on a graph, E
f:‘. and to do cross-correlations on the data fields. The convenient tools of Unix can be incorporated into the E
‘ ‘_’ _ classes since Objective-C is designed with the use of Unix tools in mind. We have seen how the Unix tools ’ \
E' N Lex and Yacc were incorporated into the Objective-C program,
E : The procedure of establishing data consistency in a heterogeneous bibliographic citation database :T,
! through the definition of abstract data types can be extended to other heterogeneous databases. The »
:“:,).E restriction is that the information in the heterogeneous databases derive from a common base, as in ¥
:‘ ? bibliographic citations. Hence for a relational database where a relation is employee, a field in the relation
| 5
;J' is name, and its detail information is John Jones, the data tag could be <employee.name>, and the detail }‘
E',% field would be John Jones. The existence of a data tag and and an associated detail field in the database :.
E:%: establishes the reuse of the data abstractions created for the bibliographic citation database. E
(%) hy:
q
5 .
‘\‘)

4P

D

"

{3

.‘
AN

L)
-44. 4

-<
AAs
rY VA S

-! i"

]
y‘g SESAE &,:.;.'.u» -,.-.;-.v IS RO ;w' . ‘. Z j.«. 'xw-\:._'.?v-'-.;,'

- #'.\‘y oS 3
. y . ra N
b S " ')"‘ oot et }o'.'t' ‘\ " "“::‘ LY n‘ (R "0 "o"'o"'u X :“' Vf ! !"0‘ %

S e LAt TN

-

d

<
~.J$,

-

-.’_”-.A

e
-

-“.
o e

: _'.f.f_i.mv

FLARLSTC

¥

LS

J,\ J.t.""-,"_w"'\. Y _,.s

er

e " n.."o

[Aho74]

[Bel78]

[Bol84]

{Bur84]

[BuH84]

[Cua84]

[Cox84]

[Eag85]

(Hal83]

[Ham79]

References

Aho, A. V,, Hopcroft J. E., The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, Massachusetts, 1974,

The Bell System Technical Journal, July-August 1978, Vol. 57, No. 6, Part 2., American

Telephone and Telegraph Co., pages 2155-2176.

Bollinger, W. A, Hampel, V. E., Harrison, 1., Murphy,T.P., Post-Processing of Bibliographic
Citations from DOEI/RECON, NASA/IRECON, and DODIDROLS, Lawrence Livermore

National Laboratory, UCRL-89995 Rev. 1, August 1984,

Burton, H. D., Integration of an Automated Library Support System with an Intelligent

Gateway, Lawrence Livermore National Laboratory, UCRL-91383, August 1984.

Burton, H. D. and Hampel, V. E., Intcgration of Common Command Languages with
Intelligent Gateways, Technology Information System, Lawrence Livermore National

Laboratory, 1984.

Cuadra, R. N,, Abels, D. M., Wagner, J, Directory of Online Databases, Cuadra Associates,

Inc., Santa Monica, Ca., 1984, Vol. §, No. 3, Spring 1984.

Cox, B. J., "Message/Object Programming: An Evolutionary Change in Programming

Technology", IEEE Software, Vol. 1, Number 1, January 1984, pp50-61.

Eagles Project, Electronics Engineering, Engineering Research Division, Lawrence Livermore

National Laboratory, Livermore, Ca., 1985.

Hall, J. L. and Brown, M. J., Onlinc Bibliographic Databases: A Directory and Sourcebook,

Third Edition, 1983., Aslib, London, 1983,

Hampel, V. E,, McGrogan, S. K., Gullo, L. E., Swanson, J. E., The LLNL "Meta-Machine",
Fourth Berkeley Conference on Distributed Data Management and Computer Networks, San
Francisco, California, August 28-30, 1979, Lawrence Livermore National Laboratory, UCRL-

-45-

-, ™ - - » o]
RN _':\"\)

\-:‘

Vg Sogat il pan g s pas g pas (@ aias - pas diac Sew gt Pas o onr pac gas Bgr v ¥ A LAY
R/ '-1. o«
i :::. Y
N Y,
bt
= byttt
! Z:’jt '
A
n 83064, May, 1979. o
1 1"l
X \
i [Ham85] Hampel, V. E,, "TIS, The Intelligent Gateway Processor”, Proceedings of the Eighteenth -
v J n":.“
\ , Annual Hawaii International Conference on System Sciences, 198S. ey
; N0
, [Gol83] Goldberg, A. and Robson, D., Smallialk-80, The Language and its Implementation, Addison- f:-;}
D! S
Wesley, New York, 1983, E
L} ‘ ‘h. ‘qi
: [Gol84] Goldberg, A. Smalltalk-80, The Interactive Programming Environment, Addison-Wesley,)?_t '
! J5)
¥ New York, 1984. -$)
e’y
s Wt
[Gol85] Goldstein, C. M. and Prettyman, M., Processing Downloaded Citations", Lister Hill National .
M 2N 25
: Center for Biomedical Communications, National Library of Medicine, Bethesda, Md., 1985. Qtik
LY ':&\k
?, [KeP84] Kernighan, B. W., Pike, R., The Unix Programming Environment, Prentice-Hall Software :;._‘
E Series, Englewood Cliffs, N.J., 1984, g
A :.ﬁ. :
b (Joh75] Johnson, S. C., Yacc: Yet Another Compiler Compiler, Computing Science Technical Report t:: y
A e
X . . "
W No. 32, 1975, Bell Laboratories, Murray Hill, New Jersey, 1975. NN
0 Yot
[Les75) Lesk, M. E. and Schmidt, E., Lex- A Lexical Analyzer Generator, Computing Science
f : Technical Report No. 32, 1975, Bell Laboratories, Murray Hill, New Jersey, 1975. i
- 'y
y
P, [Lis74] Liskov, Barbara, Zilles, Stephen, Programming with Abstract Data Types, Proc. ACM %M}j
. SIGPLAN Conf. on Very High Level Language., SIGPLAN Notice 9,4 (April 1974) 50-59.
X [Lis77] Liskov, Barbara, Snyder, A., Atkinson, R., and Schaffert, C., Abstraction Mechanisms in CLU, ;;:§4
i AL
, R
:; Comm ACM, 20, 8, August 1977, 564-576. Y
P [PPI8S] Objective-C Reference Manual, Productivity Products International, Sandy Hook, CT, 1985. f:%
. \\-\‘
- [Sha84] Shaw, Mary, Abstraction Techniques in Modern Programming Languages, IEEE Software, '_;_:fi
. e
Oct. 1984. X
Y
"
)
9
4
P\ -46-
%
¥,
a
L}
PRIl S0 O a2 i (7 AL L MDD OO A NN *' N SIS ? 3’-"7'3"-
ﬂ:’“ st OIS ¢, E " 0'. '.'Q‘“ v :"I'k: % Sﬁhg (“".'_;1'8& Y N k%‘ " w& o “
Bl EXNOTRA AN AL f"‘\ (X W A L% .l (} a.‘.a, c‘l\ "o e, C."l) .|‘ &) .l {i%’t M

T

RS

Hierarchy of Objective-C Classes - @class, @phyla [PPI85](Eag85)

-

Object
Qclass
Object 1
Qphyla
Primitive

AV1Tree
Qclass
AVLTree
Qphyla
Collection
Primitive

Cltn

Qclase
Cltn
IdArray __|]
Sequence

Qphyla
Collection
Primitive

L

.).1 e

A x'u”-."‘ < \ -

‘gi%i if; 3 { tA,{;C

Appendix A .

AVLDict

Qclase
ALVDict
IdArray
Sequence

Qpbyla
Collection
Primitive

OrdCltn

Qclass
OrdCltn
IdArray
Sequence

Ophyla
Collection
Primitive

Set

Oclass
Set
IdArmay ___|
Sequence

Ophyla
Collection
Primitive

Stack

Oclass
Stack
IdArray
Sequence

Qphyla
Collection
Primitive

47-

N g’.
RN

Dictionary

Qclass
Dicitionary
1dArray
Sequence
Assoc

Qphyla
Collection
Primitive

Bag

Qclass
Bag
IdArray
Sequence
IntArray

Qphyla
Collection
Primitive

"l

VAT

R
e 2) Pty
A ST OGN

Hierarchy of Objective-C Classes (continued)

Object
Qclass
Object
Qphyla
Primitive

—

Assoc
Qclass
. Assoc
Qphyla

Primitive

Array
Qclass
Array
Qphyla
Primitive

Point
Qclass

L Point

Qphyla
Geometry
Primitive

Rectangle
Qclass
Rectangle

— Point

Qphyla
Geometry
Primitive

-48-

Collection

L

BytArray
Qclass
BytArray
Qphyla
Primitive

IdArray
Qclass
IdArray
Qphyla
Primitive
IntArray
Qclass
IntAeray
Qphyla
Primitive

e A N e A e 7 2
Tnhireh

4
5
s
r

T v
oS ",

= 8y

4

J»

[,

*
b
$

' I |'|."l.'.0."l' ’

';')

Nt

-
v w e -
- -
e

Hierarchy of Objective-C Classes (continued)

-
:r"“.".
-

Sequence
Qclass
Sequence
— I1dArray
Qphyla
Collection
. Primitive
Object .
Qclass String
Object Oclass
Ophyla . — String
Primitive Qphyla
Primitive
Unknown
Qclass
Unknown
Qphyla
Primitive

e

-)

) 1 . . LSRR
‘4& j ™ ";"‘\.' S "..',,7“- Sl , -4;"'\(& ~.\t" <

.
‘l‘.’-i'.’ AR

..n',‘\", \ ‘,.l‘g.l ¢‘

. .

Appendix B

Objective-C Base Tree - methods [PPI85][Eag85)

Object
free
initialize
ndxVarSise
new

poseAs:
readFrom:

asGraph:
awake
capacity
class

compare:

copy

deepCopy

describe

doesNotRecognise:

error: @ AVLTree
free key:

hash

dOfSTR: addContentsTo:
isCopyOf: addKeysTo:
isEqual: fnd:
isKindOf: free
isMemberOf: insertinto:
isSame: isCopyOf:
name key
notEqual: key:
aotlmplemented printOn:
notSame:

perform:

perform: with:

perform: with: with:

print

printOn:

printString:

respondsTo:

self

shallowCopy

shouldNotImplement

show

size

storeOn:

atr

subclassResponsibility

superClass

20 L OO G
[AP

e
vl

-
s 4 8 &

RO ["_;.‘:
SAMNY -

R

Q I
R

& qt-}vq,-.-, oo 4.'-, }s}-.'v‘- ' AN A -.«.N '\-_,. z}.‘m j" (] 0.. ‘..“l":l .- 3-*‘}".(,\' $.’

‘h‘z\. .’t‘.h Wa 'l o ! 0 "‘t‘: :::'U‘.'l'w 0. ‘ﬁ ¢.‘.‘..‘q‘t."0 « 0..' ‘. 'r.“ “' "'l ‘C WY u'l o'l‘.o" [X3 ‘."0. '0' u.:

Object
free

initialize
adxVarSise
new
poseAs:
readFrom:

asGraph:
awake
capacity
class

compare:

copy

deepCopy
describe
doesNotRecognise:
error:

free

hash

dOfSTR:
18CopyOf:
isEqual:

isKindOf:
isMemberOf:
isSame:

name

notEqual:
sotlmplemented
notSame:

perform:

perform: with:
perform: with: with:
print

printOn:
printString:
respondsTo:

self

shallowCopy
shouldNotlmplement
show

sise

storeOn:

str
subclassResponsibility
superClass

o ,‘)_‘(,C‘.- : (ML
m&m

W W T N N T T TN RN N TN AN O TE F U T YT Y U WYY IworwTrw

Objective-C Base Tree (continued)

Cltn
aew
new:
with:

add
addContentsOf:
addContentsTo:
asBag
asldArray
3s0rdClta
asSet

contains:
eachElement
expand

find:

free

hash

isCopyOf:
isEmpty
isEqual:
offsetOf:
printContentsOn:
printOn:
remove:
removeContentsOf:
sise

-51-

3058 -.j

i‘ ‘-i r&'&

AN "' "'-&. RO N
SRR

AVLDict
add:

addContentsTo:
asldArray
atKey:

atKey: put:
contains:

fnd:

isCopyOf:

keys
printContentsOn:
remove:

size

values

OrdCitn
add:

addContentsTo:
at:
boundsError:
Gnd:
findMatching:
findSTR:
firstElement
isCopyOf:
lastElement
lastIndex
remove:

size

Set
add:
addContentsTo:
contains:
difference:
expand
filter:
find:
fndElementOrNil:
intersection:
occurrencesOf:
remove:
repiace:
sise
union:

Stack
add:
depth
emptyErr
ieCopyOf:
JastElement
pop
push:
size
swap

—

e

W W W TR T

Dictionary
with:

associationAt:
atKey:

atKey: put:
includesAssociation:
includesKey:

keys

values

Bag

add:

add: withOccurrences:
expand

free

includes:
occurrencesOf;
printContentsOn:
remove:

size

g

-

‘;.',o..'u‘ %

s

- e

Al

f Y ‘:
- e
.

-
-

"

(

- s
-

PSP

-
o,

Objective-C Base Tree (continued)

wd
1

) C R)
L5

gty -ty

-

7
- X

b "'_(h
K -
S
sc BytArray T4
p ndxVarSise o
3 ndxVarType .
new: e
sprintf: o
v atr: ? %
]]
U aslnt ‘ 'i:,
: asFloat X
I Object asLong .
! free charAt: 0
‘ay Initialize charAt: put: A0
ndxVarSize [~ compare: :
new compareSTR: d
poseAs: concat: P
N readFrom: concatSTR: e
' describe oo
. Graph: hash Ry,
'y awake isCopyOf: A
- capacity isEqual: AN
' class isEqualSTR: Ko
L) compare: printContentsOn: -
£ copy sort F3
o doesNotRecognize: Array str (R
[deepCopy Rew: tr: L
e describe BdxVarSise v J)
3 .
). ettor: adxVarType 1dArray <
s free with: ndxVarSize Y
. hash ndxVarType 3
dOfSTR: MldArray with: ik
X sCopyOf: boundsViolation: Ny
isEqual; capacity add: i
isKindOf: capacity: addContentsOf: 0
B X isMemberOf: copy addContentsTo: ~ l‘a
>l isSame: describe at: o
& name hash at: put: 3
4 potEqual: isCopy: contains: .
3 notlmpiemented ilE_qul: describe b,
X notSame: printContentsOn: eachElement . #
Dy perform: priatOn: find: b)
b perform: with: size findMatching: N
perform: with: with: sort {reeContents 2
3 print huh ; p,
) printOn: isEqual: L
’ printString: offsetOf: iy :
respondsTo: offsetMatching: ‘e
self offsetMatchingSTR: N
show printContentsOn: kY ‘
L) shallowCopy remove: 4
LI shouldNotImplement size e
. sise sort >, |
p storeOn: .
”r IntArray X
subciassResponsibility ndxVarSize Ol
) superClass ndxVarType . §
)
": describe N
s hash Yy,
\ intAt:)
. intAt: put: F
intAt: add: "W
, isCopy Of: ‘|'
L isEqual: ...0
> ptintContentsOn: !.“
A sort .Q'
X 3 Q:
b !
s
N \)
i
N -52. .vﬁ
0 N
ey \
! !
k! W
¢ Al
e
l‘ ":“'
W) q o SOGOSD . u.o by by Gty \ X M3 tnid gt yaty
A OUOY) A
Wt 5 il "o'ﬁ 94.) 33 PO 5 .0. -,\'of.s,"' a, ”i' .l,n‘t W ,.! !'o g‘b‘ " 'g. :: .?‘ . \ S
o l‘t“"‘ AR hxt AR . . . ‘ X ! 'l. "_i'ﬂ n" ‘ ‘ Y 'Q.‘ . DANAAN

Objective-C Base Tree (continued)

T O
N o ol
A - > |

’%

Object
free

initialise
ndxVarSize
-new
poseAs:
readFrom:

2sGraph:
awake
capacity
class

compars:
copy
doesNotRecognise:
deepCopy

describe

ervor:

free

hash

WdOfSTR:
isCopyOf:

isEqual:

sKindOf:
isMemberOf:
isSame:

name

notEqual:
notlmplemented
notSame:

perform:

perform: with:
perform: with: with:
print

printOn:
printString:
respondsTo:

oelf

show

shallowCopy
shouldNotImplement
size

storeOn:

sr
subclassResponsibility
superClass

. .
) 2

- -

[

s A

: e My ** I '.'

|‘.:: .$

C'Q" : "

L) :

)‘{,. L

-

s N

g 1 "

B 3

§ :

; . « . '

h‘: Objective-C Base Tree (continued) .:::

o Wt

e . ‘

W g

s“‘l ’ $

A s

B ‘v‘

-::.:l) |

B} . !

—

‘ *

.

£\ o

{“t Rectangle ‘:,'

‘:‘. fromUser '.‘

. Object new '

9':: t'rju origin: corner: :.:(

d initialize origin:: corner:: "

o ndxVarSise origin: extent: A
ew origin:: extent:: &y

9 A.: P

T f:ad..!‘rom: ares .“'

bottom “' .
h: bottom: 4

4 :I*G‘;:p bottomCenter %

: capacity . bottomLeft . ‘»

: class bottomRight o

1" compars: center X

% copy centerX '

. deepCopy conm:Y 2

% describe contains: o,

% doesNotRecognize: corner o

i’\ error: corner: 2

b7 free extent)

.- hash extent:

- dOfSTR: hl'lh ’."
¢, isCopyOf: height »5“
) isEqual: height: '

sKindOf: insetBy:: -

; isMemberOf: intersection: i
isSame: intersects: "%
na::. isCopyOf: ;

§ potEqual: isEqual: o]
notImplemented lm.

\ notSame: left: A

"} perform: leftCenter t

’ perform: with: m°"BYf. 3

perform: with: with: moveBy:: i
et print origin =

b printOn: origin:

Ly, printString: origin: corner: \

' ". respondsTo: origin: extent:

28 self p‘rintOn: :t

’ :' shallowCopy right N

K shouldNotlmplement right: A

K A.' show rightCenter ‘

. size '-Op. X

. storeOn: top: ‘

s ”nr topCenter 'r'

:‘ subclassResponsibility topLeft !

ﬂ' superClass topRight

| union:
' width X
: width: %
: 71‘!
":
.
t;;

’ ()

[} “"

: 4

X\ i

i‘ 9.“

"i b £

- s

RE) ..‘l

B U

3 -54- %

LS ‘ ‘:

b

3 tx}

. W

k W)

I.g'

.
f} ! q

. 0 U 0

,,v,t. e A o

DTN
sﬁ lg‘
I .‘: \H.

v‘ D

\ ,,' .
’ 'l‘.g:‘:'o :':‘fl:' WALAEMN

e SN hTa e

e ' i,“i ‘. ’0 st

0
d~ 30 *‘\:' o

VIS BTV T TRy T T N T Y T O T T T T R T S T PV Y T Y U

g: .: Objective-C Base Tree (continued)
K

R\
’I"\ Sequence
d over:
) } Object
~ :"- free first
agy initialise — free
Ay ndxVarSize 1#CopyOf:
Bl 7L new aext
poseAs: over:
readFrom: rewind
ey
f:.:lh: asGraph: - String
" 'ﬂ' awake adxVarSize
1 " O capacity ndxVarType
Wi class new
'.1". compare: new:
el copy sprintf:
s deepCopy str:
W describe
oy ' esNotRecognize: asFloat
4 error: aslnt
“" " free asLong
& bash capacity
! ’J:"'l idOfSTR: capacity:
"' 1sCopyOf: charAt:
o ﬁ isEqual: —™ charAt: put:
L isKindOf: compars:
isMemberOf: compareSTR:
sSame: concat:
28N S name concatSTR:
D <5 notEqual: copy
Al notlmpiemented describe
: t\ notSame: hash
KAL) perform: 1sCopyOf:
‘gl perform: with: isEqual:
A perform: with: with: isEqualSTR:
print printOn:
A printOn: sise
RO printString: str .
'.'l"“ respondsTo: streat:
!.'.."' self
D) shallowCopy Unknown
13 shouldNotimplement adxVarSis
! \?
Ay show ndxVarType
DAY sise newClass: Vars: onlOD: Text:
"".!." storeOn: L printOn:
. atr
’:“"- subclassResponsibility :lP‘Ei;Y
superClass escribe
,‘l' o P doesNotRecognize:
;'.' : iiVarCapacity:
"'le
§ N]
R
>

;'l‘q -55-

M

..\

LARICRE YT 5 b p ALAdn . .n. i .n) ' »"nl.
¥ " ' - () ‘(' 0 U “
i B t oty L I *521";“’ ¥, " ‘ .'t

‘ ;
wle \“‘ "w YRy ,‘1' ‘l’ "‘a SEAAY 'A it v o, ¥ s, i‘ q’i“

\,a R \..h.: n',- e 52N 3 a,‘
pl.. l“' 1 'l‘ ‘i‘g l"‘l‘). A.)‘&‘go‘p ’ ‘Ig

[t

g gt -ag - ad. CRE SRy tar ‘aP_tal L booak -4 - VAN TE-TANS T AWM TaRsd FENE TR ETAMELA4TET VR @™

v
;
&
l‘;
K]
k)
D) .
o Appendix C
e
W
Prototype Source Code
a
l“
B e
] LEX Specification File
'e:
A
1
v.:
‘!"
A
[
1:: .
:0. #include "objc.h”
. t#include “"y.tab.h"
#define MON(X) { yylval.lex = x ; return MONTH ; }
o = (N, Collection, Primitive)
:o' ::
"t: {3J1an("."|uary)? MON(1) ;
l. [fF)eb("."|ruary)? MON(2) ;
‘.\ {mM)ar("."|ch)?" MON(3) ;
Ry {ah)pr(™."111)? MON(4) ;
» [mM]ay MON(5) ;
n [jJ]un("."|e)? MON(6) ;
l,.f. (§jTJul("."jy)? MON(7) :
. g {aAlug(®."{ust)? MON(8) ;
‘l [sS]ep(”."|tember)? MON(9) ;
.\ {aOlct ("." |ober)? MON(10) ;
[nN]ov{(".” |ember)? MON(11) ;
3 (dD]ec(™."|ember)? MON(12) ;
R [0-9] { yylval.lex = yytext{0} - 70’ ;
.l' return DIGIT ; }
N [{ ; /* delete blanks */ }
"\n" { return EOL ; }
r." { return EOL ; }
@ * .
: " return (yytext([0}) ; } /* return single characters */
o4 # include "stdio.h"
,I int noleap [] = {
‘:' o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, } ;
f int leap (] = {
b i o, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, } ;
date (month, day, year)
- {
A< int *daysin ;
. daysin = isleap (year) ? leap : noleap ;
‘l if (month < 1 j| month > 12)
,!' { printf ("month out of range \n") ;
,: , return ;
:.' if (day < 1 || day > daysin([month])
o { printf ("day of the month out of range\n")} ;
N return ;
: }
s‘% }
,l. isleap (year)
{ if (year % 4 t= 0) return (0) :
) if (year % 100 != 0) return (1) ;
e if (year % 400 != 0) return (0) ;
K return (1) ;
W }
int yywrap ()
{ {return(l); }
"‘
l‘:
x‘.
l‘.
l“
0
1M
" -56-
&
N4
&
o,
14

- pl'!
g

;‘5 » ‘ﬁla

i § ‘ A IL P I SL TN
A\.‘M.‘! \l." qwg. q.l‘g) 93:..', 2 ..u ‘ s o e ﬁ S %
’i'».‘""n:‘p'_e:“ 2 '-"?.":‘::ﬁ' i :!t'l't";':' ¢ .\'& t& G CR 6N Y

s
!"
‘fy‘
"
;"
Ay 3
My h,
) e e Wl
! Y ACC Specification File]
G !!:'\
M [
L Y] g
#include "objc.h” =
K = (N, Collection, Primitive) /* phyla */ l";
3 extern id dateOb) N :,
s))
Sunion | /* stack type 8/ v
I short lex 7 /% lexical code */ &3
& id ob) /* an object */ l (1
y))
tStert prog “'v
Stoken<lex> DIGIT MONTH -
«t Stoken<lex> EOL E’
3 Stype<lex> number year day =
A“{" \type<ob)> DateStmt Y :.'1
) (1)
W prog: DateStmt EOL { exit()s } s o
¥ DatesStmt: P:ONTH day ’,’ year i
| d
~ date (81, $2, $4) i ot
Py $$ = [dateObj mo: $1 da: $2 yr: S$4) % R
- [dateObj print) ¢ l’
) "l
. I t‘hy MONTH year -
:.. date ($2, $§1, $3) Wiy
,l. $§ = (dateObj mo: $2 da: 81 yr: $3) ; Kby
’\. [dateObj print) ; i
) } L%,
o | number '/’ number ‘/’ number \?.,
) t W
"W if ($5 < 100) $5 = $5 + 1900; b‘ X
v date ($1, 53, §5) ;)
4 $$ = [dateObj mo: sx’d-: $3 yr: $5) X
v [dateObj print H E
§ } E
| number *.* N
{ N
S date (1, 1, $1) ; @
>) $§5 = { dateOb) mo: -1 da: ~1 yr: $1) ; [-
e u [dateObj print] ,".
:) t
g | number 3
< { -*l .i
date (1, 1, §1) ; i
- $$ = [dateObj mo: -1 da: ~) yr: $1) ; s
{ dateObj print) : —:-.'
} ‘ 4
| MONTH number ::.:
{ (
: date { $1, -1, §2) ; :’h,‘
! $$ = [dateObj mo: $1 da: ~1 yr: $2) ; ".t
ra | dateObj print) 'v.‘
] ¥
! | MONTH /,° number .‘:;.
‘ v
~ date (S1, -1, $3) ; e
n $§ = | dateObj mo: $1 da: ~1 yr: $3) ; s
o [dateObj print } : WA ¥
~‘ } %:'0
J : !
‘ ‘:v
,‘ day: . number ot
:ei year: " number :“;
number:) DIGIT 2“
Y, | number DIGIT L
{ $5 = 10 * $1 + 82 ;) b
I * U
; ! .\-,
1 R,
|/ v
)
W b A .
% #include "stdio.h® o,
K yyerror (s} /* called for yacc syntax error */ o
: char *s; %"
{ LA
warning(s, {(char *) 0): ?
») 4
W char *progname="atdin®; 585
0 warning(s, t1, t2, t3, td4, t5, t6, t7, t8, t9) /* print warning message */ ‘~'$
: char s, *tl, *t2, *t3, *té, *tS, *t6, st7, *t8, ot§;)
; { b L
1" extern int yylineno: e
) /" fprintf(stderr, "file 8a: ", progname); */ 5 ¢
3 fprintf (stderr, 8, tl, t2, t3, t4, t5, t6, t7, tB, t9); U
fprintf (stderzr, * near line Vd\n", yylineno); te
L} (N
) |
D =
2 %yl
v i
)
Ry -57- *
0 ‘ e
[l'l'
‘ |’|‘
-]
ad
5
t K SOL "J'(Y] > N 2R PPN IO . PR RO . . .‘:
St bl bbb, bl SIS ‘ﬂ v ﬂ@‘qﬁ 13‘ ‘CN' o '..Q) "'s‘;ﬂ-»xT-,'\" ﬁ‘l'
m o) hieas ’ 5\ St (F XL TP O I T Ll o Y
) L0 Rt O DO B A XA I R T L A T S Sy e

AL R AL A

Date Class Source File

e
nel
M
.l'!n
(WX
"

W . .
o #include "objc.h"
oy #include "y.tab.h"
KR char * MON[]}] = { " ","Jan", "Feb", "Mar", "Apr", "May", "Jun",

”Jul"' "Aug'l' "Sep“, "oct", 'lNov"’ "Dec",) ’.

" = Date:0Object (N, Collection, Primitive)
“\:: { int mon, dy, year ; }
ér - mo: (int) aMonth da: (int) aDay yr:(int) aYear
e { mon = aMonth ;
?‘ dy = aDay ;
) year = aYear ;

- return self ;

}

4 - print
£34 {
o if (dy>0 && mon>0)

-~ printf ("<DATE> %d %s %d\n", dy, MON(mon], year) ;
L0, if (dy < 0 && mon<0)

printf (“<DATE> %d\n™, year) ;

&
4
:i# if (dy < 0 && mon >0)
ﬁ printf ("<DATE> %s %d\n", MON{mon], year) :
U
\ /* insert code for different type of prints to account for defaults*/
*)
_J
K
g
Y
K
.."’ ol
~ A
!‘li
:’l‘ ¢

'1 AW OO Do o

Ay & e . ‘o T
s 3. O 1l. :, W , q‘ "% ’-.‘\C"-&" LA o -.‘\,... Wil ,\ﬁ"v r‘ \ -. A ,ﬂ :‘#‘; .»," 3" ".}_ ‘\)‘ &-r\
.t,nﬁu'n \.| ~¥ b S ah heSCh \\%} AR ~aian J, gk

< * ’«' s ,,a‘. 40 q’ DT AN |N\ A% *-. AR %,

rw VT PP T VR TR Ganha il Al gl ol b ey uad sk b ein cok vl TUTUY Ty
" » hoEai il Sl Mads £aB Salh Sl A Sl S8 20 2 h 4 o i 8 4 wswuv.-vﬂcmﬂ
*

‘l
L™
(W™ |
o«
t
A
Y i ¢
i Main Program Source File Akt
A r :
S !
<o ‘
'y '
2 3
- ' v 3
.» - 9
Y
y oy
X w0
i

(.
[
#include "stdio.h" -
o #include "objc.h" YT
0 = (N, Collection, Primitive) ¥ :
: extern BOOL msgFlag ; '
D extern IOD yyin, yyout, msgIOD &_-,
b id dateObj ; !
! 3
"W
1 S main () e,
," { .ﬁt
! o
: extern id Date, Set ; e
p A4y
- Ry
il
msgIOD = stdout: N
Y msgFlag = NO ;
[dateObj = [Date new] ; ::.
L} o
R
§‘ printf (">") -‘
I yyparse() ; ?:
‘; printf ("end yyparse\n"); | ok
l: ! ‘;;::
L
> @class (Date, Set,Cltn, IdArray, Sequence) ,f_:
:, @phyla (N, Collection, Primitive) : A
z)
" DA
S
" b2,
‘ %Y.
r
X
oY
1 N
‘)
5
\ B
¥ Y
; 59-
q ‘lﬁ‘&
i “'e
a (hh
’i.‘
~nbe

o

-y
-ﬂ- c£)

; [P g T 7 u
o ': '{:, .0,4, &6 4. { C ‘{ i? fl, e ¥ % Lo “-'\ 09 *\;g{*’ﬁ&"x NN 'Cx. RARACIAN -cx 0 ‘*{-‘.:{‘ ‘-b g
N A S {CiX ¥ "
Lot Wl DA% "‘ ARA a' Y " a.,‘i L ‘) “ ’A‘J“ » ‘l}‘ala ‘.e“"\'c. ’,l» . a‘ s, 0’\‘.‘0 -.I‘.‘l Rl KR ‘. W, i‘.\‘ J ‘t'a l“".'a' " ' ¥

-
P

o

.
-

w.’

My Appendix D

w Merged File of Heterogeneous Bibliographic Citations from Six
k4
¥
iy
Al Database Sources
U <ACCESSION NO.> 85129027 85086,

<DATAEASE SOURCE> BRS/Notiona! Library of Mearcine Dotobcse
<AUTHORE> Ellison-J-M; Whartf-E=A;
lq <PAA> Caompriaqge HospDita!, Massachusetts.
<T]TLE> More thon 0 gatewoy: the role of the emergency psychiaotry service

in the commun:ity mental heal!th network
<PUB DESC> Hosp-Community=-Psychiotry. 1985 feb. 36(2). P 180-5.
() <LANGUAGE> EN.
‘\ <MAJOR CATEGORY> COMMUNITY~MENTAL-MHEALTH=-CENTERS: o0g. EMERGENCY-SERVICE-HOSPITAL.
L EMERGENCY-SERVICES-PSYCHIATRIC o0g. INTERINSTITUTJONAL-RELATIONS. MENTAL-HEALTH-SERVICES

0g.
1. <MINOR CATEGORY> ADULT. BOSTON CASE~REPORT. CATCHMENT-AREA-HEALTH
CRISIS-INTERVENTION. FEMALE. HOSPITAL-BED-CAPACITY-320-T0~499. HUMAN.
MALE MIDDLE-AGE. ROLE SOCIAL-WORK .or in heip.ng the emergency unit
build closer relationsnips witn community cgencies s i1ts contract with

\ the state to perform evoluotions of gll admissions to the stote hospitol
'N psychiotraic unit serving the cotchment area. The emergency un:t pertorms
4%, triocge ang provides backup for the ocgencies, coordinctes the monogement
W) of muiti—-acgency cases, and holds weekly educqgtional conterences for aggency
3 stot!. Using case exampies, the cuthors illustraote how unit aond agency

¥ Yy stott colloborote to ensure continuity of patient care. Author.

8 <S@> ™

% <DATE> 1985

<ISSN> 0022-1597.
<IN> Z' 107.567.B75..

r 5

(L <!M> 8506.
183 <ED> 850404
‘g ¥ <NO> MH17582.
. CACCESSION -NO:> At147675 -/

e

<DATABASE SOURCE> DTIC/drols—tr

<TRANSLATION DATE> Mon Jul 1 13:33:43 PDT 1985 (4890$8023)

<DOWNLOAD DATE> Mon Juil 1 10:18:29 PDT 1985 (489086309)

<DOWNLOAD FILE NAME> gate

<FIELDS AND GROUPS> 17/2

<ENTRY CLASSIFICATIOND> UNCLASSIFIED

<CORPORATE AUTHOR> BOLT BERANEK AND NEWMAN INC CAMBRIDGE MA

<TITLE> PLURIBUS SATELITE IMP DEVELOPMENT MOBitLE ACCESS TERMINAL NETWORK.
<TITLE CLASSIFICATION> UNCLASSIFIED

<DESCKIPTIVE NOTE> QUARTERLY TECHNICAL REPT. NO. 33, t FEB-3© APR 84,
i <DATE> MAY | 1984

d <PAGINATION> 30QF

» A"

S

A

>
[<REPORT NUMBER> BBN-5774
et} <CONTRACT NUMBER> MDA903-80-C-0353, NOOQ3I9-81-C-0408
P <REPORT CLASSIFJCATION> UNCLASSIFIED
<DESCRIPTORS> oSATELLITE COMMUNICATIONS: ¢TERMINALS: NETWORKS: SHIPBOARD;
ACCESS. MOBILE: WORK
-~ <DESCRIPTOR CLASSIFICATION> UNCLASSIFIED
n <IDENTIFIERS> PLURIBUS SATELLITE. PACKET NETWORKS, ARPANET, GATEWAYS
“I <IDENTIFIER CLASSIFICATION> UNCLASSIFIED
<ABSTRACT> THIS QUARTERLY TECHNICAL REPORT DESCRIBES WORK ON THE DEVELOPMENT
%\ ?r PLURIBUS SATELLITE IMPS: AND ON SHIPBOARD SATELLITE COMMUNICATIONS.
AUTHOR) -
& <ABSTRACT CLASSIFICATION> UNCLASSIFIED
3 <INITIAL !NVENTORY> 12
’~ <LIMITATION CODES> 1
' <SOURCE CODE> 260109
<DOCUMENT LOCATION> NTIS
<GEOPOLITICAL CODE> 2508

. <TYPE COCE> 4
15 <ACCESSION NO.> 1103508
L} <DATABASE SOURCE> DIALOG NT1S FILE 6
K> <REPORT NO > <NTIS> DEB5000617/XAB
. <TITLE> Post-Processing of B'bliogrophic Citationy from DOE/RECON, NASA/RECON,
>, ong DOD/OROLS. Revisrion 9
A <AgTHoRS> Bollinger, W, A | Hompe), V. [; Horrison, | . Murphy, T.
<PUB DESC> Lawrence Livermore Nationo! Lab., CA. ; <Code> 268147000; 9513035 ; Deportment
DC. : UCRL-89995-REV.1, CONF-B841243-1-REV.1
<DATE> Aug 1984
<PG> 17p
J <LANGUAGE> English
o) <DOCUMENT TYPE> Conterence proceeding
.1 <PC> PC AB2/MF AQ)
1 <JA> GRAIB507. NSA1000
| <CO OF PUBL> United States
By <NT> Internctionol online information meeting, Londen, UK, 4 Dec 1984.
!L <CN> W~7405-ENG-~48
3 <ABSTRACT> we have developed on interoctive, self-quided progrom for the
¥
\ -60-
i..
|"
B\
i
N
L
-
%‘ \
Y 2-.)\ N T A IS A e A e 3 y ';.:t.‘_:{:.:‘ LR SRIRAR RSO LR C RSN LY

SATALNIA

¥

W WL e L Y] B C M o W A e M T
B, } '%E C y%: 5;&$$TQ1ﬁJ
i:ﬁ'f:'!}&;i;&?. Z::*:‘- N .-\.w\‘.‘h.-{“‘l'}:‘-‘:‘

~

[N}
o

LA

Merged File of Heterogeneous Bibliographic Citations (continued)

d =

joint post-processing of bidlrographic z:1atsons from the federai informotior
centers of the Oeportiment of Energy (DOE). tne Cepartment of Detense (DOD),
ong the Notional Aeronocutics onc Spoce Agministration (NASA). This program
is currentiy instolied on the Inteiligent Gatewoy Processor of the Technology
Intormotion System (T1S/1GP) ot the Lowrence Livermore Notiono! Loborotory
and is unger evaluation by the TIS uaer community from remote terminois
by televhone ciol-up, over TYMNET, ond the ARPA computer network. Users
are individually oquthorized for putomated access to specific information
centers, gno use stonaord commonds for the downloaoing. compifation,
ang oniine review of citations in o common format. Freviousiy reported
post-process i ng copabilities nove been further expanded. permitting: (1)
onfine citation review, categorization, and cddition ot new COoto ejements;
(2) disossemdiy dna re-gssembly of citotions;: (3) stotisticol ancliys:s
of data tield contents: (4) cross-correiation of datg tield contents:
ond {5) concordance generction. In oddition, the new two-pass interpreter
for the post-processing program permits: the {ransformation of obbrevioted
daoto tield nomes into English nomes preferred by eoch ogency, the stotisticat
onoiysis of the cenaity aond completenessy of dato fieids 1n selected sets
of bidbliogrophic citotions, the eliminotion of redundont citations (using
uyser—specitied criterio), ond trend anolysis. The latter is o powerful
too) for the explioration of time-dependent charccteristics in o particutor
field of research, ot an orgonization, or for an author. Grophicol disploys
of publication rotes os o function of time ond the normaolized stotistics
of terms used in the description of the work, can be used to signal new
directions of ongoing ressarch ond the intensity of its support. (ERA
citotion 10:001706)

<DESCRIPTORS> elnformation; sComputer Networks; Informotion Retrievo);
Spacificotions

<Iindexing Terms> EROA/990300: NTISDE

<SH> S8 (Behavioral ond Sociol Sciences—-Documentotion ond Intormotion Technoliogy):
98 (Electronics and Electrical Engineering——Computers); 880 (Librory
ang)nformotion Sciences--Intormation Systems), 628 (Computers, Controi,
and Informotion Theory--Computer Software)

SACCESSION, NO.> .84C0 188558

<DATABASE SOQURCE> OOE/recon

CTRANSLATION DATE> Mon Jul 1 13:33:43 PDT 1985 (489098023)

<DOWNLOAD DATE> Mon Jul 1 10:18:29 PDY 1985 (4890686309)

<DOWNLOAD FILE NAME> gote

<REPORT NO.PAGE> UCRL--89995~Rev.t P. 17;DE85000617

<TITLE(MONO)> Post-~processing of bibliographic citations from DOE/RECON,
NASA/RECON, ond DOD/DROLS. Revision

<EDITOR OR COMP> Bol)inger, W.A.; Hompel, V.E.; Horrison,].; Murpnhy, T.P.

<CORPORATE AUTH> Lowrence Livermore Naotional Lab., CA (USA)

<CORPORATE CODE> 9513035

<TYPE> R

<SEC REPT NO> CONF~841243~-1~Rev.1

<PAGE NO> 17

<AVAJLABILITY> NTIS, PC AQ2/MF AOY.

<OROER NUMBER> OEBS0@0617

<CONTRACT NO> Controct W-7405-ENG~48

<CONF TITLE> 8. internationo! online informotion meeting

<CONF PLACE> London, UK

<CONF DATE> 4 Dec 1984

<DATE> Aug 1984

<CO OF AUTH> US

<CO OF PUBL> US

<€ANN > ERA-10:0017056.EDD-84:188555

<DISTRIBUTION> MN-32

<DOCUMENT ORIGIN> P

<B1IS> TiC

<CATEGORIES> EDB-990300

<PRIMARY CAT> EDB-9903@0(GENERAL AND MISCELLANEOUS, INFORMATYION MANDLING)

<ABSTRACT> We have deveioped on interoctive, selt-guided Program for the
joint post-processing of bibiiogrophic citations from the federal
informagtion centers of the Deportment of Energy (DOE). the Department of
Detense (DOD), and the Notiono! Aeroncutics and Spoce Administration
(NASA) Th:s progrom ta currentliy rnstalled on the Inteltigent Gateway
Processor of the Technology Informotion System (TIS/IGP) ot the Lawrence
Livermare Nat(ono! Laboralaory ond i» under evoluotion by the 1!S user
community from remote terminois by telephone dial-up, over TYMNET, and the
ARPA computer networh. Users are individuaily ocuthorized tor gutomgted
occess to specific information centers, and usSe stondord commands for the
downiogring, compilation, and online review of citotions 1n 0 common
format . Previousiy reported posti-processing copobilities ngve been further
e¢upanded, permitting: (1) online citation review, coteqgorization, ond
0ddition of new dota elements; (2) disasvembiy ong re-assembl(y of
Citations; (3) stotistical anolysis of doto field contents; (4)
¢ross-correiation of doto fielid contents. and (5) concoradance generatliom

AR |54 SX A

e

-

o AR P S AN

y.\vvw-'s v-'.v‘ :‘J"(.)"-F\. > ".} v | '-' ' -
\. “‘;.. 0 “' ..("\:"r4" ' - {-r\d. :’v-}\ * } .k\..g

S,

oo

Merged File of Heterogeneous Bibliographic Citations {continued)

1n 0ddition, the new two~Doss iNterpreter for the posSt—~processing progror
permits: the tronstormotion of obbrevicotea dato fie10 nomes 1n10 eng1Isr
names preferred by each agency, the statistica: anaiys:s of the ocensity
ono compieteness of dato fields in seilecteoc sets of bibliographic

\ citotions, the eliminotion of redungant citotions (using user~specitied
criteria). and trend onolysis. The iaotter is o powerful tool for the
exploration of time—dependent chorocteristics :n ¢ porticular tield of
research, of an organizotion, of for on author. Graphical dispiloys of
pubiication rates os o function of time and the normolized stotistics of

S terms used in the description of the work, con be used to signoi new
\ directions of ongoing resedrch and the intensity of its support.

h <DESCRIPTORS> ¢ INFORMATION-=~computer networks; INFORMATION RETRJEVAL.
‘r) SPECIFICATIONS

3 <1SSUE> 8423

. <DOCUMENT NO> B4:18B5ES

& SAGCESSION.INO -»84C0 173891

<DATABASE SOURCE> DOE/recor

CTRANSLATION DATE> Mon Jul 1 13:33:43 PDT 1985 (489098023)

<DOWNLOAD DATE> Mon Ju! 1 10:1B:29 PDT 1985 (48908B6309)

<DOWNLOAD FILE NAME> qote

<REPORT NO,PAGE> UCRL--91383 P. 10:DEB50801741

<TITLE(MONQ)> integrotion of on gutomated librory support system with on
intelligent goteway

<EDITOR OR COMP> Burton, H.D. .

<CORPORATE AUTH> Lawrence Livermore Notional tab.. CA (USA)

<CORPORATE CODE> 9513035

<TYPE> R

<SEC REPT NO> CONF-8409138~~1

<PAGE NO> 19

<AVAILABILITY> NTIS, PC AQ2/MF AQ1.

<ORDER NUMBER> DE85Q81741

<CONTRACT NO> Contraoct W-7405-ENG-48

<CONF TITLE> Integroted oniine library systems conference

<CONF PLACE> Atianta, GA, USA

<CONF DATE> 13 Sep 15B4

<DATE> Aug 1984

<CO OF AUTH> US

<CQ OF PuBL> US

<ANN J> EDB-84 173691

<DISTRIBUTION> MN-32

<DOCUMENT ORIGIN> P

<81S> T1C

<CATEGORIES> EDB-990300

<PRIMARY CAT> EDB-990320(GENERAL AND MISCELLANEOUS: INFORMATION HANDLING)

<ABSTRACT> A new project of the Technoiogy Information System (T1S) ot the
Laowrence Livermore Nationgl Laborotory (LLNL) calts tor tne evoluation of
commercially availoble librory support pockoges and the extension ond
integration of the most desiroble system with the TIS gotewoay to provide o
comprehensive p-ototype for libraries and information centears. This
prototype system is planned to facilitaote access to ond maonogement of
in-nouse octivities such as cataloging, seriols control, ond ocquisitions,
as well as to intertoce to external systems gnd sorvices for dato
downloagding and sxchonge, retrisval, ane post—processing. Cooperotive
cataloging, distributed dotobese processing, electronic inter—tibrary
toon. and customized bibliogrophy production are some of the feotures
planned for the prototype. Development of o user—friendly front-end
processor will allow the user to negotiate his search query in o
semi~outomoted monner using o sinyle, Engltish~iikne command tanguage. The
T1S ot Lowrence Livermore Notiono! Laboratory (LULNL) hos developed o
computer-posed 1ntelligent gateway for automgted access to 3uch diverse,
geographically distributed information systems os DOE/RECON, DOD/DROLS,
NASA/RECON. CAS On-Line. DARC (Fronce) onc DECHEMA (Wwest Germany)., omong
many others. New informotion resources centers ore being added os required
and users caon connect asmultaoneousiy to more than one host to compare
their date The TIS onirne mogater directory provides lhe user with o
single, 1nlegrotea view ol gvoiloble and reievant resources. The automoated
0occess procedures perm:t the user to concentrote on the ‘ntarmgtion
aspects of his work rather thon be burdened with vorious log-on
procecdures, dotobaose formats ond protoceois. The merger of the librory
support with the TIS goteway should provide users with o capadilities to

| gccess ang utilize the tull spectrum of textyo!l, numeric aonod graphsics doto
fesources

<DESCRIPTQRS> ¢ [NFORMATION SYSTEMS-=~computer networks DATA BASE MANAGEMENT:
LAWRENCE LIVERMORE LABORATORY

<1SSUE> Ba2

<UPPOSTED DESC> MANAGEMENT NATIONAL ORGANIZATIONS:US AEC.US DOE.uS ERDA;US
CRGANTZATIONS

<DOCUMENT NO> 84173691

-62-

= S LA -. =
b A s

@ T [P IPY SLYTPLYY O K P Cal Al - " TR & s -g¥ ‘Al "ARA- Ve ANa A9

Merged File of Heterogeneous Bibliographic Citations (continued)

<ACCESSION NO.> 84N33099)

<DATABASE SQURCE> NASA/recon

<TRANSLATION DATE> Mon Jul ' 13:33:43 PDT 1985 (489098023)

<DOWNLOAD DATE> Mon uul 3 10:18:29 PDT 1985 (489086309)

<DOWNLOAD FILE NAME> gote

<1SSUE> 22

<PAGE> 3643

<CATEGORY> 62

<RPT#> DEB4-013210 UCRL-90276 CONF-B8406139-1

<CNT#> W-T7405-ENG-48

<DATE> 1984

<PAGES> 122

<DOC. CLASSIF.> UNCLASSIFIED

<TITLE> An ontine directory of dotabases for material properties

<AUTHORS> HAMPEL, V. E.; BOLLINGER, W. A.; GAYNOR, C. A.; OLDANI, J. J.

<PAA> C/(Contro! Date Corp.)

<PUB DESC> Californic Univ., Livermore. Lawrence Livermore Lab. CSS:
(Technology Informotion System.) AVAIL.NTIS SAP: HC AQ6/MF A®) Presented
ot the 9th jntern. CODATA Cont., Jerusalem, 24-28 Jun. 1984

<DESCRIPTORS> DATA BASE MANAGEMENT SYSTEMS:DATA BASES:DIRECTORIES; INFORMATION
DISSEMINATION: INFORMATION SYSTEMS

<MINS> / COMPUTER NETWORKS/ COMPUTER TECHNIQUES/ DATA PROCESSING/ ON-LINE
SYSTEMS / STATISTICAL ANALYSIS

<ABA> DOE

<ABSTRACT> An online directory of dotobases of materiol propertiss on the
Technoltogy Information System ot Lowrence Livermore Notional Loborotory
(LLNL/TIS) is described. This directory is intended to provide interoctive
Qccess to scientific ona technicol dotabases ovoiloble to the pudblic thot
contair information pertoining to nuclear, atomic, moleculor, physicol,
chemical, ond mechonical properties of substances. In oddition to the 101
dotg files previousiy are reported. The information is updoted with more
than 38 numeric datoboses ond predictive asystems in these fietds. In
gddition to describing the contents of the dotcboses, updated informotion
is provided on the avoilobility of the dotobases and their online occess
over public telephone and dota networks. Some of the numeric dotobases are
directiy accessible by authorized users vio the TIS Intelligent ee Goteway
ee Processor ot LLNL (TIS/IGP), with seif-guiding procedures for the
downlooding, merging, post-processing, ond graphical/statistical onolysis
of do!a

10N RO ™53 1080 Sl

< ATABASE SOURCE> DIALOG NTIS FILE 6

<REPORT NO.> «<NTI1S> DEB4Q13219

<TITLE> Online Directory of Datoboses for Materiol Properties

<AUTHORS> Hampel, V. E. : Bollinger, W. A. ; Gaynor, C. A. ; Oldoni, J.
J.

<PUB DESC> Lowrence Livermore Notiono! Lab., CA. ; <Code> 868147000: 9513035 ; Deportment
OC. : UCRL-90276; CONF~8406139-1

<DATE> Moy 1984

<PG> 122p

<AV> Portions are illegitle in microfiche products.

<LANGUAGE> Engiish

<DOCUMENT TYPE> Conference proceeding

<PC> PC ARG/MF AQ1

<JA> GFALIBA42): NSAQ900

<CO OF PUBL> United States

<NT> Internotionat CODATA conference, Jerusalem, laroel, 24 Jun 1984,

CCN> W-7405-ENG-48

<ABSTRACT> We hove crected an online directory of dotoboses of moteriol
properties on the Technoiogy Informotion System ot Lowrence Livermore
Nationol Loborotory (LLNL/TIS). This directory is intended to provide
interoctive occess to scientific ond technicol databoses available to
the puplic thot contaoin informotion pertoining to nucleor, otomic, moleculor,
physical, chemical, ond mechonico!l properties of substances. The directory
is bosed on work done eorlier by Joseph Hiltsenrath of the Notionaol Bureau
of Standards (NBS/OSRD) and Jock H Westbrook of Genero! Electric Corporation.
In ocdition to the 10t dato files previously reported, we have updoted
the intormation ono identified more thom 38 new numeric dotaobases ond
predictive systems in these f{ieids. We have inciuded, where applicable,
entries contained in the directories published by Cuodro Associates,
CODATA, anda UNESCO. In oddition to describing the contents of the databoses,
we have provided wupdated information on the ovailobility of the databoses
ond their online access over public telephone ond dotao networks. The
online directory is prepared for use by scientists ond engineers ond
should enhance tne shoring of S and T resources over communication networks.
This directory is expectsd to become porticulariy importont to the nationol
and internotional magnetic— ond laser~energy fusion projects, nauclear
criticolity sofety, ond compyter aided engineering programs. Some of
the numeric dotadboses orfe directly accessible by outhorized users vio

RO T TSR 24030 I O R

_:"“ﬁ‘,,!l‘.}p. [@I g ‘\

A R A S R s AR Senbetyt:

.‘tﬁ@,l ! | r Ve

Merged file of Heterogeneous Bibliographic Citations (continued)

Fcge 338

describes the cpplications which hove benefited ftrom ARPANET during the
reporting period. Finolly, it discusses an investigotion of the tecnniques
tor focsimile tranamission between difterent devices over the network
Eorlier work in attocking hosts by front-end techniques hos been brogdeneo
to provide es gateway ee focilities between computer networks. Here.
pursued were two lines. An interne twork Transmission Control Protoco! TCP
hos been implemented which is designed to be applicable to o0 host=host
protocol between hosts on ditferent networks. Experiments to test the
properties of this protocol have been started dbetween UCL, Stanford U ana
Bolt, Beranek ond Newman BBN. More effort has been put into designing and
impiementing se gotewosy e+ functions when a specific node acts os Q se
gateway ee between two Networks ond performs o maopping between the
stondard protocoils of each. lnvestigoted was tne opplicobility of this
approach to several networks, including the connection oo ARPANET ond the
UK Post Office Experimental Pocket Switched Service EPSS. Preliminory
resutts show thot the technigque should be feasible, but since the other
nct-ork: ore not yet operotionol, the technique was not demonstraoted.
22 i ?

<DATABASE SOURCE> SDC/Library and Info

<TRANSLATION DATE> Mon Jul 1 13:40:50 PDT 1985 (489098450)

<DOWNLOAD DATE> Mon Jul 1 19:50:40 PDT 1985 (489088240)

<DOWNLOAD FILE NAME> sdcgate

<DATE> 1976

<TITLE> The reference deportment: goteway to the Notional Librory

<AUTHORS> Umo, M.G.

<PUB DESC> Nigerdbiblios, v (1) Jon 1976, 19-28, 22

<CO OF PUBL> English

<Cotegory Code> RuNju

<DESCRIPTORS> Reference Work: Departments: National libraries;: National
Library of Nigeria, Reference Department

<Suppiementary terms> Reference departments; Nigeric

<ABSTRACT> Outlines the bosic ronponsibili!ieu of the reference department,.
which offers o 12 hour o day service to users. The spreod of materiol on
various floors and the constant shifting oround of stock pose problems.
Briefty describes such routine taosks os: maintaining the pudiic catalogue;
shelf-reading: stocktoking; compiling the picture file of important
events; ond marntaining the mop file. Reference desk duties are

enumercted. A policy of maximum courtesy and minimum delay is adopted in
ottending to @) enguires.

QACCESSION NO.>.A032248

<DATABASE SOURCE> DTIC/drols—tr

<TRANSLATION DATE> Mon Jul 1 13:33:43 POT 1985 (489098023)

<DOWNLOAD DATE> Mon Jul 1 10:18:29 PDT 1985 (489086309)

<DOWNLOAD FILE NAME> goate

<FIELDS AND GROUPS> 15/5, 5/11

<ENTRY CLASSIFICATION> UNCLASSIFIED

<CORPORATE AUTHOR> RAND CORP SANTA MONICA CALIF

<VITLE> GETTING PEOPLE TO PARKS,

<TITLE CLASSIFICATION> UNCLASSIFIED

CAUTHORS> VAUGHAN,ROGER J.

<DATE> APR , 1976

<PAGINATION> 25F

<REPORT NUMBEF> P-5654

<REPORT CLASSIFICATION> UNCLASSIFIED

<DESCRIPTORS> eTRANSPORTATION; sPASSENGERS:; eRECREATION; NEW YORK CITY(NEW
YORK): NEW JERSEY. PASSENGER VEHICLES: PARKING FACILITIES: ACCESS:
ECONOMIC ANALYSIS

<DESCRIPTOR CLASS]FICATION> UNCLASSIFIED

<]JDENTIFIERS> »GATEWAY NATIONAL RECREATION AREA

<IDENTIFIER CLASSIFICATION> UNCLASSIFIED

<ABSTRACT> THE PURPOSE OF THIS PAPER IS TO PROVIDE AN ECONOMIC PERSPECTIVE ON
THE PROBLEM OF TRANSPORTING PEOPLE TO GATEWAY NATIONAL RECREATION AREA
LOCATED IN NEW YORK CITY AND NORTHEASTERN NEwW JERSEY. WMILE T DOES NOT
CONTAIN ANY DETAILED EMPIRICAL CALCULATIONS FOR THE SOLUTION TO THIS
COMPLEX ISSUE, IT 1S HOPED THAT SOME OF THE SUGGESTIONS MIGHT BE USEFUL
INPUT INTO THE PLANNING PROCESS, AND MIGHT OPEN THE WAY TO MORE DETAILED
RESEARCH AND ANALYSIS.

<ABSTRACT CLASSIFICATION> UNCLASSIFIED

<INITIAL INVENTORY> 2

<LIMITATION CCDES> 1

<SOURCE CODE> 296600

<DOCUMENT LOCATION> NTIS

<GEOPOLITICAL CODE> 0628

<TYPE CODE> W

<ACCESSTION NO=>»PR-35¢0

<DATABASE SOURCE> SDC/Liorary ond [nfo

<TRANSLATION DATE> Mon Jul 1 13:40:50 PDT 1985 (489098450)

<DOWNLOAD OATE> Mon Jul 1 10:50:40 PDT 1985 (489088240)

o
PP

-:;;f'i %ﬂf.'

.’, ,&. o ..a’\‘a ., "f’u ‘:\

“DI"

M 'hq'l.’l h W \ I‘i '.
il At W15 L AN L i Ty N0

