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CHAPTER I

INTRODUCTION

Passive Sonar Detection and the associated problems of

doppler and time delay estimation are problems of continuing
research interest in the underwater acoustics community
[1,2,3,4]. While passive systems have the disadvantage that
they can not control signal energy, their anonymity and
overall cost dictate their feasibility especially in
surveillance systems [2].

A passive sonar system utilizes an array of two or more
receivers (hydrophones). Two receivers are sufficient to
estimate the bearing angle of the source in the plane of the
receivers (2]. However if more information is required
about the source, such as localization in three dimensions
and estimation of nource velocity, more receiyers are

required. The accuracy of the estimates is a function of

4 the receiver geometry in three dimensions as well as

measurement accuracy. Throughout this thesis we will assume

that we have two receivers. This is a common assumption

made by several authors (1,2,5]. It is not too difficult to

extend the analysis to more than two receivers if the

receivers are considered in pairs.

We assume a multipath channel for sound propagation to

each of the receivers. This is in contrast to the

assumption usually madet i.e. there is only one path to

each receiver (2,63. Associated with each path in the

channel is a complex attenuation (or gain) coefficient, a

doppler parameter due to source motion and time delay in

propagation from the 6ource to the receiver. The details of

the multipath channel are given in Chapter III. The
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implications of the multipath channel assumption will become

clear as we proceed.
We will use the Bivariate Normalized Crosscorrelation

(BNC) function as the observable for our detector.

Bivariate refers to the presence of two search variables.
We define the BNC function, denoted by yT($,T), as follows

I2

YT(,T) 
f T fT yI(Ot)y*(t - T)dt

11 1

(j fT lyi(t)Ijdt)1/2.(4 fT Iy 2(t)1dt)' / 2

where y1 (t) and y2 (t) denote the receptions at the two

receive-, fT signifies an integral over an interval of

].ngth T. We will be interested in the intervals [0,T) and

[-T/2,T/2). In general YT(8,T) is complex. A simple

rppication of the Schwarz inequality shows that

SITT(BT)I < 1. We will also need to consider the ambiguity

function *T(B,) defined as

2
,)(1.2)

The properties of the "NC function and the ambigutiy
function are extensively documented in the literature [7].

We will also have occesion to consider tha BNC and the

ambiguity functions in the limit T w .. We define

y(Ot) - lim YT(B, ) (1.3a)
T~w

%(er)--.lim 4T(8,T) (1.3b)
T~w

The search variablos 8, r seek to watch differential

doppler and differential delay between paths to the two
receivers. Two input coirelators, univariate and

multvariate, have been used extensively in the detection
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theory literature to form the observation statistic [1,8,9].
A detector that is based on the assumption that there

is a single path to each receiver seeks to identify a single
maximum in the ambiguity diagram. The maximum is related to
the mean differential delay and the mean differential
doppler. For detection purposes the height of the maxmimum
is compared to a pre-selected threshold. Detection is
indicated if the height of the maximum is greater than the
threshold. However a detector that is based on a multipath
channel model seeks to identify all the resolvable path
pairs. So, if there are M paths to one receiver and N paths
to the other receiver and all the path pairs are resolvable,
the detector based on the multipath channel model will
identify MN peaks (local maxima) in the ambiguity plane. To
resolve the peaks (path pairs), we need integration times
that are long (10,11,12]. More is said about integration
times in Chapter III.

From the above it follows that if the sound propagation
is by a multipath channel, then a detector based on the

multipath channel model has more apriori information
available to it as compared to a detector based on the
single path channel model. When sound propagation is by a
multipath channel, we expect the performance of the

Omultipath channel detector" to be superior to the
performance of the "single path channel detector." In

making a decision an optimum detector utilizes all the
information available about the signal (or source) in the

observation. The primary goal of this thesis is not to find
exact analytical solutions but to establish guidelines and

rules of thumb about how best to unify the information

available in the ambiguity plane as a detection statistic.

Outline of the Thesis

Chapter II is a brief review of fixed time detection

theory, it is included for completeness and for establishing
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notation and convention.

Chapter III starts off with a description of the
multipath channel model. After that the problem is

formulated and developed analytically. It is found that

analytical solutions are non-trivial and perhaps not

possible. This lays the foundation for the abstract
problems considered in Chapters IV and V.

The object of formulating abstract problems is to study
problems that aro sufficiently related to reality and yet
are solvable. The information gained from the study of the
abstract problems is then utilized to form guidelines and
rules of thumb for the exact problem.

In Chapter IV we study the first of two abstractions.
Here we assume a discrete ambiguity plane and use the
"Extended M-Orthogonal Signals" approach to

1) Unify the information in the ambiguity plane
2) Find how many peaks (path pairs) need to be matched

for good or acceptable performance.

The MN peaks in the ambiguity diagram are generated by

M+N independent sets of doppler and delay parameters.

Chapter V uses the notion of *Periodic Random Sequences" to

address the following questions

1) Should the detector treat the MN peaks as

independent entities or as being generated from M+N

independent parameter sets, i.e. should the detector have

MN degrees of freedom or M+N degrees of freedom?

2) Does one approach offer a significant improvement in

performance over the other?

In Chapter VI we summarize and highlight the findings

of the study. Some suggestions for future work are also

made.

Some liberty has been taken with the notations, however
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the notations are consistent and the author hopes they are
clear from the context.

I"
t
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CHAPTER II

REVIEW OF DETECTION THEORY

The purpose of this chapter is to review some of the
results of detection theory that will be used in later
chapters. This will also serve to establish notation and
convention. Since most of the results presented here are
well known [13,14,15,16,17] detailed derivations are not
emphasized. For the most part, we will follow a Bayesian
approach throughout the thesis. By this we mean that signal
and noise parameters that are not known exactly can be
modelled as random variables with known probability density
functions (p~d.f.'s). The p.d.f.'s are chosen to reflect
the observer's state of objective and subjective knowledge

about the unknown parameters*

2.1 The Basic Detection Problem

A block diagram of the basic problem in fixed time

detection theory is given in fig. 2.1. The observation y(t)

belongs either to the noise alone hypothesis denoted Ho or

to the signal+noise hypothesis denoted H1.

Ho : y(t) - n(t) (2.1a)

H, : y(t) w n(t) + s(t) (2.1b)

0<t <T

Where s(t) is a known signal or a random process. It is

assumed that the hypothesis in effect does not change over

7
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the observation interval. In other words the hypotheses Ho

and H, are mutually exclusive.

Often for analytical convenience random processes are

expressed as random vectors. The elements of the random
vector may be obtained using the Shannon sampling theorem

[16, pp. 29-301 or by using a truncated form of some series

expansion such as the Karhunen-Loeve expansion [16, pp. 54-

74]. With vector notation the observation is written as

H0 : -an (2.2a)

H, : Y - r + s (2.2b)

where , n and s are column vectors with a fixed number of

elements, say L. The observation under each hypothesis is
then characterized by the joint p.d.f.'s fo(y) and fl(y)
where

fi(y) A f(xIHi) * f(yo,y,.o..,YL-1lHi) , i-0,1 (2.3)

and if given H1  the elements of y are independent and

identically distributed (i.i.d.) we have

fi (Y" k=O f(yklHi) (2.4)

2.2 Optimum Receivers Detection Criteria ani Decision Rules

Based on the observation and a detection criterion the

processor computes a detection statistic a(y). The decision

device makes a binary decision Do or D1, according to a

decision rule g(y) and the value of a(y). Do implies a

decision by the receiver that y is from H0; D, implies a

decision by the receiver that y is from H1 . There are four

possible hypothesis-decision pairs
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1) Decide Do when Ho is true : Correct Rejection (CR)

2) Decide D, when Ho is true : False Alarm (FA)

3) Decide Do when H, is true : Miss (M) (2.5)

4) Decide D, when H, is true : Detection (D)

The conditional probabilities associated with the
hypothesis-decision pairs are

1) Probability of Correct Rejection P PCR = P(DolHo)

2) Probability of False Alarm P PFA a P(D1 IH0 )
3) Probability of Miss A PM " P(DOIH1 ) (2.6)

4) Probability of Detection PD - P(DIIHI)

The design of the optimum receiver is based on the
conditional probabilites associated with the hypothesis-

decision pairs.

Commonly used detection criteria are the Bayes

criterion, the Minimax criterion and the Neyman-Pearson
criterion. Based on available knowledge all criteria seek
to minimize the cost associated with making a decision. It

has been shown by Birdsall [18] that for the above criteria

and any other criteria that consider correct decisions
"good" and incorrect decisions "bad" an optimum detection

statistic is the likelihood ratio A(y)

£(Y) A f,(.)/fo(z) (2.7)

Upon making an observation the optimum receiver

computes the likelihood ratio X(y). The decision device

then compares £(y) with a pre-assigned threshold c (O<c<)

and decides D, if A(y) > c and Do if A(Z) < c. If £(y) a c

then with probability B decision D, is made, this is called

the randomized decision rule. The decision rule g(z) can be

summarized as follows
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g(y) Prob.{DliZ} (2.8)

1 if L(z) > C

if k(z) - c

0 if £(Y) < c

The operating values of c and B are chosen to satisfy the

requirements of the detection criterion being used. If
Prob.{£(y)-c} x 0 the value of B is of no significance.
From now on we will not consider randomized decision rules

and will assume B a 1. Any monotone increasing function of
the likelihood ratio is an equivalent detection statistic.
We will frequently use the log-likelihood ratio z(z) defined

below

z(y) A ln(k(y)) (2.9)

2.3 Simple and Composite Signal Hypotheses

4 When both fl(y) and fo(X) are completely known the

hypotheses, HO and H1, are termed simple. In this case the

optimum detection statistic X(z) or z(y) may readily be

computed. However when the signal has some unknown
parameters 0, the H, hypothesis is termed composite

(15, p. 861. If the noise has no unknown parameters the HO

hypothesis remains simple. We will be interseted in the

situation where the H, hypothesis is composite and the H0
hypothesis is simple. When H, is composite it is assumed

that the observer knows the conditional p.d.f. f1 (yjj). A

Bayesian observer based on the state of his knowledge about

e, assigns 0 a prior p.d.f. f(O). The marginal p.d.f. may

now be computed

f f f :(x.I)f(&)dG (2.10)
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This reduces the composite signal hypothesis problem to a

simple signal hypothesis problem. The optimum detection
statistic 1(y) is nov obtained as follows

fi(£)

A(X) TT1T fj ((z0)/fo(y)).f()d& (2.11)

-f9 £(zI&)f(ft)d

where

A (I A f 1(Y.1) /fo(Y.) (2.12)

A(Qle) is the conditional likelihood ratio. I(X) in this

case is the average of the conditional likelihood ratios.
Sq. 2.11 may be obtained in a different way, fi(Zj) can be
written as

fI(Y g) fIz)f(PIz)/f(Q.) (2.13)

Substituting eq. 2.13 in eq. 2.12 gives

A(Y - (2.14a)

or

1(yiI)f(&) A £(y)f(AIY) (2.14b)

Rewriting eq. 2.14b gives

A(*) a M(zl)_0)/f('11) (2.15)

Eq. 2.15 is the statement of the Bayes-Birdsall theorem.

Integrating both sides of eq. 2.14b with respect to 9 gives
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(Y) =.fe (ye)f(e)de (2.16)

In certain situations, even for a Bayesian observer it might

be unrealistic to assign a distribution to the unknown
parameter vector 0. In such situations an approach that is

often used is to fix some detector and then analyze the

performance of the detector for various values of _e. The .

detector may or may not be based on the knowledge of the

actual value of 0. In Chapter IV we will use this approach

extensively.

2.4 Performance Evaluation

Given the decision rule g(X) the probabilities of

detection P. and false alarm PFA can be determined as

follows

PD = E(g(y) IHI) "Prob.{(My) > clj} ,?,;

-(,)>c

ffz(y)d, (2.17).A(,y) >.c i

ff f(LIH 1 )dt

and

PrA "(gl(y)Ho) " Prob.{1(y) > cjHO} -II

f fo(y)dy(.8
I( ) >c

f(IlHoWdIc
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where f(kIHi) is the conditional p.d.f. of the likelihood
ratio under hypothesis Hi. Since given a hypothesis the
decisions Do and D, are mutually exclusive and collecdively
exhaustive, we have the following

PD + PM (2.19a)

PFA + PCR 1 (2.19b)

It follows that PD and PFA are sufficient to characterize
receiver performance. From eqs. 2.17 & 2.18 we see that P.
and PFA are parametarized by the single parameter c. A plot
of D vs. P for all possible operating values of c is-D FA
called .he Receiver Operating Characteristic (R.O.C.)
curve. The R.O.C. curves completely determine performance
for all operating values of c. R.O.C. curves have been
extensively studied by Birdsall [18].

2.5 Two Examples

We briefly consider two examples of detection. The
first, known signal in Gaussian noise, introduces the
important family of normal R.O.C. curves and also.itrduesthe concept of normal detectabilty. The second,

Gaussian signal in Gausslan noise, is important because it

occurs frequently in the later chapters.

2.5.1 Known Scalar Signal in Gaussian Noise

The observation under H0 and H, is

H0 : Y - n N(O,o ) (2.20a)

H, : y - n + s , s a known constant (2.20b)
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Both hypotheses are simple; the p.d.f. of y under Ho and
H, is

= 2..-1/2e2x2

f(ylHo) = (2VO ) exp(- y 2/(202)) (2.21a)

f(yIHI) = (27c 1) 1/2exp(-(y-s) 2/(202)) (2.21b)

the likelihood ratio and the log-likelihood ratio are

X(y) = exp((2ys - s2 )/(202)) (2.22a)
2 2

z(y) - (2ys - s )/(2) (2.22b)

We define d, the normal detectability, as follows

d A EE(zjH1 ) - E(zIHo)] (2.23)
varo( z)

where var0(z) is the variance of z under Ho. For simple
Gaussian hypotheses the expression for normal detectability
simplifies to

d A E(zIHi) - E(zIHo) (2.24)

We also define d' as follows

d' A d1/ 2  (2.25)

Physically d is related to the output signal to noise ratio
(SNR) and is used as a performance index. For a fixed value
of PFA larger values of d result in larger values of P.,

For the above problem d - s / a  and the statistics of z
under Ho and H, are

I

* * t~' ~ & *~t, a*. a S S
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H0 : z - N(-d/2,d) (2.26a)

Hi : z - N(d/2,d) (2.26b)

The probabilities of detection and false alarm are given by

PD - 0(1+d') (2.27a)

and

PFA - () (2.27b)

where

O(x) * (210)1/2 fx. exp(-t2 /2)dt (2.28)

and X is a function of the threshold. The R.O.C. curves so
obtained are called the normal R.O.C. curves. They are
usually plotted on normal-normal probability paper where
they plot as straight lines with a slope of 1. Normal R.O.C
curves are obtained when the hypotheses are simple and the

log-likelihood ratio has a normal' distribution under both

hypotheses. For comparison purposes other R.O.C. curves

are also plotted on normal-normal probability paper. In

fig. 2.2 a family of normal R.O.C. curves is plotted for
several d' values. In later chapters we will use d and d'
to compare the performance of various detectors.

2.5.2 Gaussian Signal in Gaussian Noise

Now assume that the observation is a vector y of length

L

H0 : n (2.29a)

H, : v n s s, & independent (2.29b)

t. 161N1 V. S*. 4% M. -N r. k r.AA r .V%
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where bot' n and s are zero mean Gaussian random vectors of
length L. Let Rn and Rsdenote the noise and signal

autocorrelation matrices respectively

Rn = E(n.n) (2.30a)

and

R- E(s.sT) (2.30b)

The density functions of the observation under the two
hypotheses are

f(yIHO) - (2f)L/2IRn 1/2exp(_yTR-1/2 (2.31a)

and

f(yIHj) - (21r)-L/21R +R .j l/2exp( _T(R +R ) 1l/2 (2.31b)

Where IRI - determinant of R. We have assumed that the
appropriate inverses exist. The likelihood ratio and the
log-likelihood ratio are

9(y) w IRnI1/ 2 iR +R .1-/2exp(yT(R-l (1+R) )Z)y (2.32a)

Z(Z) - .2Ty(R -.(R 4Rs -1Y- lf(IRn+RI/n) (2.32b)

Since the second term in eq. 2.32b does not depend on the

reception an equivalent detection statistic is

T1(y) - XT(RI-1 RR ( )_ I5))y (2.33)

the above may be written as follows

A V .A 'is Ak ',A T .It4 *. A 0 . "1 A-,, _, N- d A.1
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n(y) = XTRnlR (Rn+Rs) -1Y (2.34)

but R (Rn+Rs) I is the linear minimum mean squared error
a n e

(m.m.s.e.) estimate [15] of the signal vector, denote this
A

by s, then

= 1(2.35)

This result will be used extensively in Chapter V.

A commonly used sub-optimum detector for the Gaussian

signal in Gaussian noise case is the Energy Detector. The

energy detector usen the total energy in the observation as

the detection statistic. Let e(y) denote the detection

statistic for the energy detector then

e(y) _ XT- . (2.36)

Note that the optimum detector simplifies to the energy

detector when both signal and noise are white. In Chapter V
we will often compare the performance of the optimum

detector with that of the energy detector.

4%



CHAPTER III

PROBLEM FORMULATION

In this chapter we first describe the underwater
acoustic channel and the acoustic propagation model. This
is followed by a description of the receiver geometry.
Finally we discuss the analytic development of the detection
problem. The analytic development is carried far enough to
allow the formulation of the abstract problems discussed in
Chapters IV and V,

3.1 The Underwater Acoustic Channel

Models similar to the model developed here for the
underwater acoustic channel have been used by several
authors [5,10,19,21]. The model incorporates a uniformly
moving acoustic source, a fixed receiver and multipath
propagation. The nth path in the channel is assumed to
exhibit a real or complex gain cn, where the path gain
magnitudes, Icn1, are assumed to be normalized. We assume a
slowly varying ocean so that the cnIs and the number of

paths, N, with significant gain remain essentially constant
over the observation interval. The propagation delay of the
nth path is denoted Tn (t), where

Tn(t) - Tn + 1t (3.1)

Tn is the path delay at t-0, either the start or the middle

of the observation interval. T; is the path delay

derivative or the doppler shift ratio. For receding sources

;>0 and for approaching sources TA<O. T; is of the order

21
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of v/c where v is the radial component of the source
velocity and c is the speed of sound. The spread in Tn and
TV is of the order of 0.5% to 1% of max Tn and max TVn n n

respectively [10]. We can view eq 3.1 as the truncated
Taylor series expansion of Tn(t). This models uniform
source motion, to model more complicated source motion
eq 3.1 would have to be augmented by including higher order
terms from the Taylor series. Putting the above information
together the underwater acoustic channel can be viewed as a
linear filter with impulse response h(t), where

N
h(t) = / Cn6(t - 1n(t)) (3.2)

N

c nt r

where

an  -(3.3)

According to the above model, if a source transmits a signal
s(t), the receiver will receive a signal r(t) given by

N

r(t) a Cns(ant - n) (3.3)

To complete the description of the acoustic channel we

incorporate additive noise n(t) in the reception, so that

N
r(t) • cnS(ant - Tn) + n(t) (3.4)

n. n

p-n 
-7
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We assume that the noise is independent of the signal. We
also assume that the noise is a zero mean, stationary,
Gaussian process. The Gaussian assumption is widely used in
the underwater acoustics literature [2,6,111.

3.2 Receiver Geometry and Hypothesis Formulation

The receiver geometry used is given in fig. 3.1. Two
receivers RCVR1 and RCVR2 are placed a distance d apart. In
a more general setting, where the interest is in localizing
the acoustic source in three dimensions and estimating its
velocity, more than two receivers are used. We will assume
that the distance between the acoustic source and the
receivers is of the order of 150 kilometers. Assuming that
the speed of sound in the ocean is of the order of 1500
meters/second, the propagation delay from the source to the

receiver will be of the order of 100 seconds and the
differential path delays will be of the order of tenths of a
second. We define Td as the mean travel time of sound
between the two receivers

T d  d/-c (3.5)

where is the mean group speed of sound in the ocean. The

difference in mean time delays to RCVR1 and RCVR2 is

approximately Td.
We assume that both the receivers have a finite

observation interval of T seconds. We will assume that
baseband signals are available to both the receivers. The
complex demodulation that might be necessary to obtain the

baseband signals will not be discussed. The receptions at

RCVR1 and RCVR2 under HO are

HO : y1(t) * n(t) , -T/2<t<T/2 (3.6a)
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SOURCE

RCVRI

RCVR2

Fig. 3.1 Receiver geometry.

Ho : y2 (t) a n2 (t) , -T/2<t<T/2 (3.6b)

the ni(t) are stationary, complex, Gaussian and zero-mean

processes. We assume that the receiver separation d is

large enough so that n1(t) and n2 (t) are independent, we

also assume that n1 (t) and n2 (t) are identically

distributed. The noise power in general is not known.

Under the signal+noise hypothesis, HI, we have the following

situation
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N

H1 : y1(t) = n(t) + ' S(aln t - Tn),-T/2<t<T/2 (3.7a)

M

HI : y2(t) = n2(t) + mC2mS(a2Mt - T2m),-T/2<t<T/2 (3.7b)

N and M are the number of paths to RCVR1 and RCVR2

respectively. c'n and c2m are the complex path gain

coefficients, a n and a2m are the doppler parameters (as

defined in eq. 3.3). The signal s(t) is a zero mean,

complex and stationary Gaussian random process on the

infinite time interval. The autocorrelation of s(t) is

denoted Rs(T), where

R S(T) - aR(T) (3,8a)

and

IR(T)I < 1 (3.8b)

We assume R(T) is known, however "a" in general is unknown.

We also assume that the stochastic signal and noise are

independent and are individually and jointly ergodic [22].

The ergodic assumption allows us to approximate sample

averages by long time averages and vice-versa. we assume

the signal process is broadband, so that the signal

autocorrelation is relatively narrow compared to the

differential path delays. For our purposes a signal with a

bandwidth of the order of 10 Hz or more is considered

broadband.

3.3 Post Reception Processing for Detection

The usefulness of a correlator detector has already
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been pointed out in the introduction. To reiterate; the
correlation allows us the freedom to introduce independent
delay and doppler search parameters. In our study we seek
to match the differential dopplers and the differential path
delays. As pointed out in the introduction we will use the
Bivariate Normalized Crosscorrelation (BNC) functions

YT(B,T) as the observable for the detector.

1 y1 (t)y*(t - T)dt
T/, 2Y(t (3.9)
/ 12 1/2( T/2 1/2

T T2ly (t)dt T Y2(ldt

A plot of the magnitude of the BNC function for various

values of B and T is termed the ambiguity diagram. Peaks

are obtained in the ambiguity diagram when the search values
of 0 and T match the actual values of differential doppler

and delay for a path pair. Our goal is to combine the
information contained in the peaks in a manner that allows
us to make inferences about the presence or absence of the
source. A block diagram of the post rqception processing is

given in fig. 3.2.
We now look at the BNC function in more detail. As in

[110] we assume that the integration or observation times T
are long enough for the denominator of YT(BT) to stabilize.
That is, we assume T is long enough for the individual power
measurements to stabilize. Once the power measurements

stabilize it is enough to consider the numerator of YT(OT),

denoted by YunT (B,T), as being representative of YT(0,1).

We first examine the denominator terms of yT(O, ).

Under HO we obtain

T/2 T/2

f J i~'(t)I dt ayf Ini(t)I dt (3.10)



27

0 'c:5

0)
C

0 C.)

00
0'

U)
U)

0
0
'.4
0.

0
"4
JJF 04

I LI
I 41
I '.4

km

2 61.~jcn. 2 1
0) 4~

4.I

-~ -% C 0'

4- 4-
~bq~ 0

'0

U
4- 0
*0 -m

-~ "I

ii 4 ifS0'0i 0 -Ii-'- .44
-~ ba

0



28

using the ergodic assumption we obtain

T/2T2Iitldt-- Rn (0) , T large (3.11)

Under H, we obtain

T/2 2T/2 1
I T/2 IYi(t)j dt if ! T/2 I n i ( t ) ' d t

T/2 n(~(it- nd

+ 2 Re Din T T/2 itsan Tdt

n

+ ZD c~j, T/2 Is(int -Tin)I dt (3.12)
n !T/2

n n /2
2+... 4  Cincim~f T2sint Tns~it"'md

Since the source speeds are very small compared to the speed

of sound, it is reasonable to approximate the aij by. unity

'in the denominator integrals. This allows us to use the

ergodic assumption in eq. 3.12. For large T consider the

terms of eq. 3.12 individually

!T/21) ( T2Iitld Ri0 3.1 3a1

147/) 2 T/

2 e Cin Itf T/2 it)slGin t  tin)dt 0 (3.13b)
n
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12 T/2 2

3) cin2 -T/2 Is(aint - Tin)Idt (3.13c)
n

n

~T/

41 T/2 inIs*r_ 'rcinCim T T/2 s(cint - Ti n ) ( it - Tim)dt (3.13d)

-- c! (Tim T in)
L- /nCm Rs(i - n
n mn

From the broadband assumption we have min JTim - Tin >Ts,mOnihere Ts  is the signal correlation time, so that

Rs(Tim - Tin)=O. Also given the different phases for the

cij s the terms in eq. 3.13d add up incoherently. Given the

above it is reasonable to use the approximation

__ incimRs (Tim - Tin) = 0 (3.14)
n m

Putting the approximations of eqs. 3.13 and 3.14 together we

obtain

H, = f / Yi(t)1 2dt a Rn (0) + Icinl2R (0) (3.15)
if-T/2 ZIcin's(0

For the approximation to be valid we require the integration

time T to be much larger than max(Tn,Ts), where Tn and Ts
are the noise and signal correlation times respectively. In

general T >Tn , so we require T >> Ts . For large but finite

*: * l i- i.i € ¢' i II" - I•i" * I( i *S
4

$ ~ llll I
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T the right hand side of eq. 3.15 is the mean value of the
integral on the left hand side. we expect a fluctuation
about the mean, we assume that T is long enough so that the
standard deviation is much smaller than the mean.

We nwconsider th.ie numerator ofthe BCfunction,

Yun (0T).In general YunT (0,T) is a function of the

integration time T, the time delay correction T, and the
doppler correction 3.

u T) .1 f/ yi(Ot)y2(t -T)dt (3.16)

Under HO we obtain

1 T/2

H0: u(0,T) ir~ n1(Ot)n2(t - r)dt (3. 17a)I140 YunT-T/2

since n1 (t) and n2 (t) are independent and zero mean we

obtain

HO t Yun(BT) 0 (3. 17b)

Under HI eq. 3.16 has four terms, listed below individually

fT/2 2

2 ) c f n1 (ottSn2 (t t T2)dtd (3.18Ib)
-TT/2

N T/2 
31b

3) In f n2(t -T)S(Octn T)dt (3.18c)
C -T/2nal

' 5 , 
.

.4 .%
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N M T/2
4)Z*n2 T -T/2 S( ant Ti'(.ld

.8(aM - T2M -T)dt

Long time integration, T >> max(T n ,TS), results in
eqs. 3.18a, 3.18b and 3.18c approaching zero in the mean
squared sense. All three terms (3.18a, 3.18b & 3.18c) may
be considered as additive "noise" in the observation,
although the "noise" is no longer independent of the
"signal." we need to examine the behavior of eq. 3.18d
under long time integration. Consider the following value
of 0:

0 O ij A X2j/ali (.9

with this value of 0 eq. 3.18d can be written as follows

T 1T/2-

+ .c'* T/2*

N 4~icM 2 IfT/2 ) TI) *at am t T2Mdt~

n ;.CLjnc~m 1 fT/2 i~rt-Tns(at- -Td

CSo Ci 2C j R5 ( IJ -Taj)) (3.20)

M 1T/2

Sf-7/2 Tlj)S* (amt -T2m- T)dt

+ m f/2 S012(
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N M T/2

__/_~ mc InC2m fT/2 s(ijlt - tn)S(mt - - t)dt

When T =T i - T2j the ci'c~jRs(T - (Til - T2)) term peaks.
Similarly we can define a total of MN 0 values for which
expression like eq. 3.20 are obtained. Since we know the
functional form of Rs (T), terms similar to the first term in
eq. 3.20 can be considered the "signal term" and the rest
can be considered a part of the additive noise. Here we
again use the broadband assumption, that is, the range of T
for which Rs(T - (Tji - T2j)) is significant, the other
terms in eq. 3.20 are small. The problem then becomes
similar to the set of problems called "signal known exactly
except for specified parameters plus additive noise" [16].
The observation is two dimensional in that there are two
search parameters, $ & T. This is a non-trivial problem to
solve, to begin with we would have to determine the
distribution function of the terms lumped together as noise.

Work has been done by several authors (23,24,25,26] in
the area of determining the density function of the output
of an analog crosscorrelator when the inputs are stochastic.
However our formulation is complicated in that the received
signal is the sum of several delayed and doppler shifted
versions of the source signal. At this stage the custom is
to remove the multipath assumption and solve a problem based
on a single-path assumption. We choose to keep the
multipath assumption intact and select solvable abstract
problems, derived from the above problem, for further study.
The results obtained from the study of the abstract problems

*will allow us to form rules of thumb and guidelines for an
experimenter faced with the general problem formulated in
this chapter.



CHAPTER IV

EXTENDED M-ORTHOGONAL SIGNALS AND THE FIRST ABSTRACTION

In Chapter III we saw that a solution to the exact
problem as formulated was non-trivial and perhaps not
possible. in this chapter we study the first of two
abstractions of the problem formulated in Chapter III. The
object of the abstraction in this chapter is to find out how
many of the unknown 0,T parameter values have to be matched
for good or acceptable performance.

4.1 Abstraction Formulation

In practise the ambiguity surface is usually quantized;
being evaluated at discrete values of 0 and T. The
quantization is usually "fine", that is the steps in T and 0
are chosen small enough to yield a continuous appearing
surface, but large enough to make the computing job
possible. For the purposes of analysis we will make the
usual simplification that the quantization is coarser than
used in practise and that the quantizations are "matched" in
the sense that the response of a path-pair falls on one and
only one point, and the value there is due to perfect
alignment in time and frequency. We call the grid point a
"cell" and the computed ambiguity value the "cell value".
For simplicity the cells are integer indexed, j=I,2,...,L
and the cell values ate denoted by yj. The total
observation is thus a list or vector Z*yl,...,YL of length
L.

Tht observation model will be intentionally
oversimplified at the cell statistics level. Specifically

33
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under Ho, the cell values are i.i.d. N(0,1). Under H1, C
of the cells are i.i.d. N(s,1) and the rest of the cells
are i.i.d. N(O,1). C is the number of path pairs and in
the notation of Chapter III C=M.N.

The complications arise from the composite nature of
H1. Let e be the set of cells whose mean is s under HI; e
is the "signal parameter", a set of cell indices. The
number of possible 9 is n-LI/CI(L-C)I. We refer to e as a
"pattern" or "signal" and n9  as the number of possible
patterns or signals.

Following the Bayesian philosophy we put a prior
distribution on the signal parameter. If the prior is p(ei)
where i-l,2,...,n0, then the likelihood ratio is

n

x(y) exp(z(ylei))p(ei) )

where

z(yle i) S. yj - .5Cs (4.2)

note z(yle i) has a normal distribution and exp(z(ylei)) has
a log-normal distribution [29].

The first difficulty one would encounter if one were to
try to base a receiver on 1(y) as given in eq. 4.1 is the
size of the parameter space. For a well localized signal

the ambiguity plane might be modelled by as small as a 100by 100 square i.e. L-10,000. For a 4 path by 4 path

propagation the value of C is 16; there are n0 1050 .67

possible signals and as such 1050 .67 z(yI i) have to be

evaluated before the likelihood ratio can be calculated.
The primary difficulty lies in the enormity of the number of

V 0 %
&L 4'
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possible signals coupled with the fact that we lack a simple

structure to reduce this to a sequence of smaller sub-

hypotheses. Of course we do not want to build such a

receiver, we only want to evaluate its performance. We

immediately encounter the second type -f difficulty; namely

that the determination of the distribution of (y) is

seemingly hopeless because the z(yle i ) are not independent

over i.

Since we have no simple way of determining the I
performance of the optimum receiver we must consider an

alternative approach that will allow us to make statements

about the problem posed at the beginning of this chapter,

i.e. how many of the $,i parameter values have to be

matched for good or acceptable performance. Now, out of the

n, possible signal patterns, we could select at most L/C

that do not have a cell in common. For the simple numerical

example of the 100 by 100 square and a 4 path by 4 path

propagation, such a partition of the ambiguity plane

contains only 625 patterns. It is worthwhile to note that

there are more than I027334 su,;h partitions.
In the following we consider a receiver based on such a

partition, i.e. based on orthogonal signals. This is done

primarily for mathematical convenience; however, it is

realistic in that the receiver designer is also faced with

the enormity of n and is forced to simplify. For example a

receiver design, r may falsely believe that the doppler is

the same on all the paths to a given receiver, in other

words the designer o-erlooks differential doppler. This

means that the source will affect only one narrow a band of
the ambiguity plane (in our simplified ambiguity grid this
band Corresponds to one 0 index, that is, the doppler is

centered and the frequency resolution sharp enough). To

match our evaluation model exactly the designer would have

to know all of the differential delays well enough to

specify the C patterns without overlap. This is

J.'
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unrealistic, so the following evaluation is optimistic and
can be considered an upper bound on performance.

This chapter will consider a receiver based on
orthogonal signals and examine its performance under several
conditions; under the assumption that the partition was
correctly chosen and the true signal is one of the patterns
in the partition, and under two conditions where the true
signal is not one of the patterns in the partition. These
latter conditions are the ones of interest, for they may
shed some light on how well one must match the true pattern
to perform well.

4.2 The Orthogonal-Signal-Based Receiver

In this section we examine the orthogonal-signal-based
receiver, introduced in the previous section, in more
detail. Given a partition, we first reconfigure the
observation y into a matrix so that each ei in the partition
is one row of C columns. Without loss of generality we can
re-index the patterns so that the receiver is based on the
first L/C patterns (for simplicity in analysis we will
assume that R-L/C is an integer). C is a mnemonic for both
the number of cells in the signal pattern and for the number
of columns in the reconfigured ambiguity diagram. R is the
mnemonic for the number of rows in that reconfiguration. we
also restrict ourselves to the simple case, where the

receiver is based on the traditional worst case assumption
that the R signals are equally likely. Formally we base the
receiver on the following prior distribution

* 1/R , iff 1-1,2,...,R

0 # iff i-R+1,...,n0

with the reminder that

?V
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7ie j is empty for 1<i<j<R (4.4)

The true signal pattern will be denoted by ej or simply by

J. Also for the rest of this chapter H, will mean H, ,ej

4.2.1 The M-Orthogonal Signals Evaluation

Here we evaluate the above receiver under the
assumption that the true signal is one of the patterns in
the partition; that is, J<R. This case is known as "signal
one of M-Orthogonal Signals" or simply M-Orthogonal Signals,
abbreviated as MOS [13,18,27,28]. M is numerically equal to
R here. The usual but optimistic normal detectability
approximation is

dMoS  Cs ln(R) (4.5)

4.2.2 The Extended M-Orthogonal Signals Evaluation

Here we evaluate the orthogonal-signal-based receiver
under two conditions where the true signal is not one of the
patterns in the partition. We call this Extended M-
Orthogonal Signals (EMOS) as the receiver is designed for
MOS, but the true signal is not one of the design signals.
The true signal does have cells in common with the design
signals. Let the number of cells that the true signal hasin common with the ith design signal be denoted by Ki, then

Ki - card{ojn i}  (4.6)

where card{ I is notation for the cardinality of the set.

For further analysis we make the following assumptions
and restrictions

L= 2b (4.7a)

-L IL -AL<t Z<' ' 4. AZ -
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C = 2a (4.7b)

b > 2a (4.7c)

R
l, C (4.7d)

Later, we will be interested in the situation where L=8192,
C=64 and R=128 (this corresponds to an 8 path by 8 path
propagation model).

Consider positive integers R and C, R>C, and any set K
R

of R non-negative integers Ki such that . -C. Let #{}

denote the number of decompositions of C into integer
summands without regard to order 135 pg. 825]. For C-64 we
obtain

#[K] = 1,741,630 (4.8)

The receiver design was based on R orthogonal signals,

each signal affecting C cells. For each signal strength, s,
there are #[K} possible conditional R.O.C. curves, one for

each set K. It is unrealistic to consider a distribution on
{K) and seek an average R.O.C. An upper bound on these
R.O.C.'s is given by the MOS evaluation, where K-(K,...,KR )
is specified by

3tC i-1
K - (4.9)

0 , i=2,3,.,R

A lower bound on these R.O.C.'s is given by the sparse

condition

K i 1 , i-1,2,...,C (4.10)
0 , i=C+I,...,R
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To shed light on the central question "how well does

the receiver have to come to matching the actual signal?"

two types of intersecting sets were selected and performance

evaluated for C=64 and R-128. The first type which we call

standard EMOS is given by the condition

Ki= 2c i=1,2,,2 6 -c (4.11)0 , O .W .

The second type which we call modified EMOS is given by the

condition

K i =  1 , i 2,3 ..., 65-K , (4.12)

0 ,O.W.

Intuitively performance for standard EMOS should be better
than the performance for modified EMOS. We are also
interested in determining how much the performances differ.
That is, how much does it help performance if the largest Ki
occurs several times?

4.3 Receiver Performance Evaluation

In the following we will discuss performance evaluation
techniques for the standard EMOS in detail. Later when we

discuss Monte-Carlo methods for performance evaluation we
will also consider modified EMOS. Unless otherwisespecified by EMOS we will mean standard EMOS.

Let S denote the number of rows that intersect the true
signal 93 and 'et K denote the value of K in the S rows.
We can now write down the likelihood ratio for the EMOS

evaluation

Its

6 -4. -f . .
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SR

MY) " exp(zWi)) + i=Sil(4.13)

where the subscripts K and 0 are used to denote the number

of cells the ith row has in common with the true signal.

Now

ZK(yli) s.7 yj - .5Cs , i-1,...,S (4.14a)

and

z0 (y16 i) s. yj - .5Cs , i-S+1,...,R (4.14b)

3ci

we are interested in the statistics of yj under Ho and

HI

Ho y L Yj a i
5

~ N(0,C) i.i.d. , isl,...,R (4.15a)-

3cO i  i, i + ,. . ,

The distribution of zo(yjO i) and zk(YIO i) easily follow fr:om

the above

z0(y10) N(- a(416a)

,'Cs ~V ) (4.16o

-% *
" - ** ,t J. b4
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Ho : ZK(yj0i) - N(- Cs2 Cs (4.16b)

HI : zK(yje i ) - N((K - )s2,Cs 24.16c)

Since z0 (yjs i) and zK(yIei) have a normal distribution

exp(zo(yloi)) and exp(zK(ylei)) have a log-normal

distribution and X(y) has the distribution of the sum of
independent log-normals. Before proceeding further we state

a few pertinent facts about the log-normal distribution. A
detailed discussion and further facts may be found in [29].
Let random variables X and Y be related as follows

x lnY (4.17)

with

a2

x ~ N(, o (4.18)

then Y is said to be log-normally distributed. We denote
S2 I

this as Y A(U,o ).The density function of Y, f(y) is

W/2.(oy) 1.exp() , y>0h

f(y) 0 (4.19)

The kth moment of Y, E(Yk) is given by

2 2

E(Yk ) a exp(ku + k (4.20)

2

and the variance of Y, ay is

2 o) ( 2

y- exp(2U + a .(exp() (4.21)

9.



42

To evaluate the receiver performance we need to find
the distribution of the sum of independent log-normal random
variables. Since no closed form expression exists for the
density function of the sum of independent log-normal random

variables we must resort to other techniques, i.e.

numerical or series approximation methods. We will discuss
several ways for evaluating receiver performance.

4.3.1 Approximation to the Detectability Index

The normal detectability d or its square root d' are

accurate measures of receiver performance when the R.O.C.

is normal. In this case the R.O.C. is clearly not normal,

however we will use normal detectability as an approximate

measure of performance [16].

s

R

+ E(1olylei)lH,)) (4.22)

8"1

Where IK(.)-exp(zK(.)) and IO(.)mexp(zo(.)), When the

R.O.C. is normal we have 130]

E(IlH 1 ) exp(d) (4.23a)

E(LjHo- I (4.23b)

So assuming 1(y) results in a normal R.O.C. we obtain for

eq 4.22

exp(dMS1,) 5 .exp(d1 (K)) + R (4.24) i
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Where

dEMOS detect, for Extended M-Orthog. signals (4.25a)

d1(K) detect. for one row with K signal cells (4.25b)

eq. 4.24 simplifies to

exp(dE ) - 1 = !.(exp(d,(K)) - 1) (4.26)exEMoS)R

We will consider two cases:

1) Both dj(K) and dEMOS are large.
2) Both dj(K) and dEMOS are small.

With both dj(K) and dEMOS large we obtain

exp(dEMoS) =.exp(d1 (K)) (4.27a)

or taking the logarithm, we obtain

dEMOS d1 (K) - ln(R/S) (4.27b)

When both dEMOS and d1(K) are small we can expanid exp(d1 (K))

and exp(dEMOS) in Taylor series and ignore the higher order

terms. Thus we obtain

d = .dj(K) (4.28)

The results in eq. 4.27b and eq. 4.28 are similar to the

results obtained for the M-Orthogonal signals case (30].

Now dj(K) may easily be calculated from the expression for d

and the statistics for zK(yjO i) given in eq. 4.16
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d1 (K) E(z K(Ylei)IHI) - E(z K(ylei)IHO)

=(K - P)2  S ) (4.29)

2
Ks

So for large d we have

dM ks ln (4.30)

We are interested in the situation where L=8192, Cu64
and R=128. For the MOS evaluation (K-C) we desire that the
detection be almost sure; we will use this to dictate our
choice for s. From experience a d' = 8 results in high
detection probabilities for very small false alarm
probabilities (also see fig. 2.2). Substituting in eq. 4.30

we obtain

2 64 + 7.1n2
s - 64

or

s = 1.03 (4.31)

In the following, for convenience we let s-l. With the

above choice of variables we can find d .MOS for several K.

These values are tabulated in table 4.1.

4.3.2 Formal Evaluation of the p.df. of A)

Our interest is in deriving the density function for
A(y) (eq. 4.13) under both the siqnal+noise hypothesis and
the noise alone hypothesis. Jnder the noise alone
hypothesis eq. 4.13 simplifies to

..
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K di(K) dOS d-

1 1 .5 .707

2 2 5 .707

4 4 1.92 1.39

8 8 5.23 2.29

16 16 12.53 3.54

32 32 27.84 5.28

64 64 59.15 7.69

Table 4.1 Table of normal detectability for several
K values, for signal power sul.

Rx(y) -* exp(zo(yjei)) (4.32)

Define .1]

Wk g.exp(zKyjl ) ) (4.33)

then

a.f(lnPRx) ,a > 0
a k

t(a) 0.W (4.34)

k 0 , O..

I'.
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(2Ca )1/2.exp( - r(ln-(K - - lnR)) ) , o>0
fwk( )= 10- we(4.35)

0k *, O.

for C=64 and R=128 the above reduces to

11/2 1 -1 ( - (K-36.852) )2  a>0(TI) '9a exp( -1~ 8

fwk() 0 (4.36)

Since the Wk'S are independent and identically distributed
for fixed K, the density function for the likelihood ratio
I(y) is the convolution of the density functions of the
Wk's. Or if we let wk (v) be the characteristic function of

fwk () and k (v) be the characteristic function of fk (a)

we have

(v) a f k (a).exp(jva)da (4.37)

k (V) , ( wk)S.( wo(v))R S (4.38)

. 1 f. Olk(v).exp(-jvct)dv

flk(a) o (4.39)0 , OW

01 0 (v) a (OWO(v))R (4.40)

and

I f *m1 (v).exp(-jva)dv

f o(a) -(4.41)

0 1 OW

Now if we choose I as the threshold value for the purposes

.5'

I A q 1
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of decision making, the probabilities of detection PD(XIK)

and false alarm PFA(U) may be calculated as follows

PD(XIK) = / fl k ad

= 1 - fX f1  )d (4.42)
01k

PFA f ()d

= 1 - f fo()da (4.43)

Formally the problem is solved. However to get the R.O.C.

curves we need to do more because no closed form solutions
to the above integrals(4.37 to 4.43) exist. We need to find

suitable numerical or Monte-Carlo procedures for evaluating
the R.O.C.'s. In the following, three procedures that were
considered for evaluating the R.O.C. curves are described.

4.3.3 Discrete Fourier Transform Approach

The DFT approach for evaluating the density function
for the sun of log-normal random variables is fairly
natural. The procedure for evaluating the density function

and the R.O.C. is briefly discussed.
First to calculate the characteristic functions Ow (v)kI

we need to find a value of a, say n such that for all K

f w da < c (4.44)

Where c is chosen in accordance with how much error can be
tolerated in the calculation. The next step is to sample

Vk (a) and fw (x) in the region (O,n). The sampled

kI
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sequences are then padded with a sufficient number of zeros
to avoid the wrap around effect in later calculation. This
is followed by evaluating the DFT of the two sequences. The
DFT of the sampled versions of fwk (a) and fw0(a) are raised

to the Sth power and the (R-S)th power respectively. The
sequences so obtained are then multiplied and the inverse
DFT operation is performed; this results in a sampled
version of fk (a). A similar procedure yields the sampled

version of fl0(a). A suitable numerical integration

procedure (say Simpson's rule) then yields the probabilities
of detection and false alarm.

In our problem, for the values selected for L, C, R and
s, this procedure breaks down. From the values given in

Table 4.2 for E(wk), E(w2), maxfw (a) and the value of a at

which the maximum occurs we see that the fwk (a)'s are not

well behaved. A suitable common sampling period can not be
found. It is also not appropriate to model the densities as
6 functions due to their long tails as evidenced by the huge
variance.

4.3.4 Numerical InteQration Methods for Evaluatlng the R.O.C.

This section is based on, and is an extension of the
techniques developed by Nolte and Jaarsma [28] for
evaluating the R.O.C. curves for the detection of one of M-

Orthogonal signals.
We will only describe the calculation for PD (IK). The

techniques for calculating PFA(W) are the same except that S
and K are both set to zero.

We can write the 41 (V) the characteristic function for

the density function of the likelihood ratio in terms of its

real and imaginary parts

.A > q 7''/ ' ''%.\,''V'.. I '""'>'. . '.' ' . ' :. . I. . '% -'-.
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k (v )  k k(v )  :+ j ~k(v) 
(4.45)

Substituting the above in eq. 4.39 gives

fco [ R(V)+j (v)][cos(va)+jsin(va)]dv ,a>0
flk (a) 0 ~w (4.46)

Since fk (a) is real eq. 4.46 reduces to

1 f-* [¢R(v)cos(va)+ I(v)sin(va)]dv ,a>0Wr-W k "k

flk() 0 (4.47)

Also since f lk(a) is the convolution of densities that are

zero for a < 0, fl (a) must also be zero for a : 0 i.e. for
a > 0, fl (-a) - 0. This implies thatk

-: R(vcos(va)dv *M(v)sin(va)dv , a>0 (4.48)

k k

So

! f R (v)cos(va)dv , a > 0

flk(a) 0 # o~v. (4.49)

and since *Rk(v) is even

2 f R (v)cos(v(%)dv ,a > 0

fl (a) I (4.50)k 0 , O.0.

Now substituting eq. 4.50 in eq. 4.42 we obtain

p
.~I* 

** *~ T%
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PD(XIK) = 1 - '* f Rk (v)cos(va)dvda (4.51)

Changing the order of integration in eq. 4.51 gives

PD(I1K) a 1 - f ak (v) fl cos(va)dadv (4.52a)

= 1 - (4.52b)

S(v)sin(va),Xv (4.52c)
-r -o ORk v 0

For the time being assume that Rk(v) is available, then the

integral in eq. 4.52c can be calculated using Simpson's rule
sin (vX)between the zeros of the function vX The number of

points chosen between the zeros depends on how fast vRk(v)

varies. The integration is carried out until successive

approximations to the integral differ by less than 10-7.
Now we develop the procedure for evaluating ORk(v) at

the selected v values. We can write the characteristic
functions owo(v), owk(v), and lk (v) as follows

Owo(v) - o(v)l.exp(jeo(s)) (4.53a)

ok (v) = low (v)l.exp(JOk(s)) (4.53b)
k k

o(v) - 1, (v)I.exp(j 01 (s)) (4.53c)
k k ~ .

Where lo(v)l, 00(v), low lV)I, ek(v), and 10(V) , 01(v)
k kc

are the magnitude and phase of ow0(v), w (v) and l (v)
ki i

respectively. Substituting the above in eq. 4.38 gives
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i k (v)l.exp(jol(V) = [ wk(V)IIS, lw I(V)' S  (4.54)

.exp(j(SeR(v) + (R-S)eo(v)))

It follows that

(Rk(V) = k (v)lcos(e l(v)

4 lwk (V) I.wO(v)IR-S.cos(Sek(v)+(R-S)eo(v)) (4.55)

We need to calculate the magnitude and phase of *w (v) and

wo(V) at the required v values. We will describe the

procedure for obtaining w k(v); *w0(v) is obtained using an

identical procedure with K=O. Now *w (v) is given by
k

*wk (v) u(2CF- 1/2 fD i.exp(- c(ln* (KjIllR)))

.exp(jva)da (4.56)

Define

A K- C- lnR (4.57a)

and I
a2 c (4.57b) K

Substituting the above in eq. 4.56 gives

Z

'11. <. - i-l ' " ,_i . , >, . % .,,. '
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w(v) = (21)-
1/ 2 f= (0a)- .exp(- 1 2

k0

.exp(jva)da (4.58)

Using the substitution B = lna gives

*wk (v) = (20)
2 1/2 fL exp(- 1( lk)2)

.exp(jveo)d (4.59)

Since we need to start the numerical integration at a finite

lower limit a suitable lower limit which results in

negligible error must be found. Let X be the desired lower

limit then

,(v) - (270)-1/2 1 _k

S(2,) f exp(-.( 8 )'exp(jveO)do (4.60)

Then the error E is

E 1 2, )1/2 fX exp(- 0 2 ).exp(jveB)do (4.61)

and

.4%Izl< 2=') 1/2 1 exp( 2( ""k'
JEJ 2vo)- ep(-)do(4.62)

if we let x = -6a + Uk' we obtain

JE J (20 2)" 1/2 f_ exp(- ( .. 2 . ) (4.63a)

j

S'- , .P>% :, '-:.','. v .- ' A ' .,' ,,., , ,, ,' .,- ,..% ' ,'""

, ' ' ", %*', , - " - , . ' '" '. " ", ., ,' "- -" - , " '' ." ." ,,' . ', , . '* * , Y* . ;', ' ' ' ," V. % r , "
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using the substitution x a - Ilk we get
a

-E 2)12 6 X2 0 4.3b

IEI~~~ __4r)/ f. 0 exp(- x/2)dx =10(.6b

This error is smaller than the quantization error introduced
on the machine that was used for the calculation.

Let *~(v) and (v) be the real and imaginary parts
wkR fkI

of fwvfrom eq. 4.59 with X substituted for -w, we obtain
k

fwk (v) - (2r 2 )1/2 f:6a~ exp(- 1(Lk )2 )

.cos(veO)dS (4.64a)

wk (v) -(2w 0o2 1/2 fwo~ exp(- 1(Bk ) 2)

.Bin(veo)do (4.64b)

Eqs. 4.64a & 4.64b were evaluated using a 5 point Gaussian
integration procedure (35]. From _6+kto the first zero

of CostveO) the 5 point gauss-quadrature procedure wassin
applied over steps of a/4. Thereafter the integration was

performed between successive zeros of cos{veO). The
integration was continued until the difference betweeen
successive approximations to the integral became less than

10 * The R.O.C. curves so obtained are plotted in
fig. 4.1.

4.3.5 Monte-Carlo Methods for Evaluating the R.O.C.

Monte Carlo simulation methods were used to confirm the

4 1 JF
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Fig. 4.1 R.O.C. curves for the Extended 1-Orthogonal
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results obtained in fig. 4.1. The procedure is breifly

discussed here. Basically a decision making device is

simulated. The device sees random variables with the
distribution of either z(yJH 0) or z(y[HI). According to a

predefined threshold the device either accepts or rejects

the HI hypothesis. The probability of false alarm for a

given threshold level is then estimated by dividing the

number of z(yJH0) r.v.'s for which HI is accepted by the

total number of z(yJHo) r.v.'s generated. A similar

procedure using z(y[HI) r.v.'s gives the probability of

detection. The procedure is repeated for as many threshold

levels as points are desired on the R.O.C. curve. Our

simulation evaluated 31 points on the R.O.C. curve based on

10,000 trials each.

The analysis in the previous was restricted to what we

had termed standard EMOS. This was done primarily for
analytic and computational simplicity. Monte-Carlo methods

allow us to evaluate the R.O.C. curves for the modified

EMOS. This was done for the following parameter values

L=8192, C=64, R=128, s=1 and for K1=1,2,4,8,16,32. TheR.O.C. curves so obtained are given in fig. 4.2,

4.4 Summary

The R.O.C. curves obtained in figs. 4.1 & 4.2 suggest
that when the design signals are such that the number of

signal cells/row that are common to the true signal is

small, the quality of detection is poor. The R.O.C. curves

in fig. 4.2 in some sense provide a lower bound to

perfomance in that we assume that localizing some of the

signal bearing cells does not provide any information about

the other signal bearing cells in the ambiguity plane. We

see that in this case it is necessary to localize

approximately half the signal bearing cells to obtain

performance that is substantially better than chance. The

R.O.C. curves in fig. 4.1 assume that localized signal

1
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cells provide some information about the other signal cells
in the ambiguity plane. We see that performance
substantially better than chance is obtained when a quarter
to a half of the signal cells have been localized. The
above conclusions are based on the fact that no single
signal bearing cell dominates the ambiguity diagram. The
EMOS method also provides us with a technique for combining
the information in the ambiguity diagram for detection
purposes.

.o4.
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CHAPTER V

PERIODIC RAN"OM SEQUENCES AND THE SECOND ABSTRACTION

As stated earlier, the MN peaks in the ambiguity
diagram are generated by M+N independent sets of doppler and
delay parameters. Two of the questions addressed in this
chapter are

1) Should the receiver treat the MN peaks as
independent entities or as being generated from M+N
independent parameter sets? In other words should the
receiver have MN degrees of freedom or M+N degrees of
freedom?

2) Does one approach offer a significant improvement in

performance over the other?

There is no simple or direct way of answering these

questions. Our technique is to study a solvable abstraction

that captures the essence of the above problem. To

construct the abstraction we use the notion of Periodic

Random Sequences. In Sect. 5.1 Periodic Random Sequences

[PRS] are introduced and a framework for the abstract

problem is established. The following sections deal with

the theory of detection of Periodic Random Sequences in some

detail. After this digression, the abstract problem is

considerd in Sect. 5.4.

5.1 Periodic Random Sequences

We define a sequence p(n) to be periodic random with

59
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period P if it satisfies the following two properties

2
1. p(n) " N(0,a ) i.i.d. 0 < n < P-1 (5.1)

2. p(n) = p((n)modP) all n. (5.2)

Of course in general a PRS need not have independent or
gaussian samples and the samples may not necessarily be zero
mean. However, unless otherwise stated, by a PRS we will
mean a sequence that satisfies the above properties. The
autocorrelation function R p(k)-Efp(n)p(n+k)} of a PRS with
period P is also periodic with period P

2

R(k)=a 2 w(k)modP = 0 (5.3)
pt0 o*w.

Consider a signal s(n) made up of two independent
PRS's, p1 (n) and p2(n) with periods P, and P2 respectively,

that is s(n)-p 1 (n)+p 2 (n). Assume that P, and P2 are

relatively prime and that our observation consists of
L-PI.P 2 samples and consider the detection problem in which

s(n) is received in additive noise. Now the P1.P2 samples

in the observation are really generated by P1+P2 independent

samples. This situation is analogous to that of the M.N
peaks in the ambiguity diagram being generated from M+N
independent parameter sets. In Sect. 5.3 we will study the

detection of s(n) (as described above) in noise based on two
design hypotheses, one based on P,.P 2 independent samples
and the other based on P1+P2 independent samples. Now we
study the detection of Periodic Random Sequences in noise.

5.2 Detection of one PRS of Known Period in Gaussian Noise

Let the observation be a vector y of length L,

The statistics of y under H0 and the

.
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H, hypotheses are

H0 : yi - n(i) , n(i) - N(O,1) i.i.d. (5.4a)

H, : Yi = p,(i) + n(i) , R and n independent (5.4b)

where p1(i) is a PRS with period P, and pl(i)-N(O,A,). We
assume P, divides L, i.e. L,.PI-L, where L, is the number
of periods of pl(i) it the observation. Let R be the
autocorrelation matrix of the observation under the

signal+noise hypothesis, R-E(Z.x THI). For now assume that
R-1 exists, so we may write down the probability density

function of the observation under the two hypotheses

f(yIH4)- Jr)'IL/2.exp(-XTX/2) (5.5a) f

(_IL/2. ~1)1 /2 II-

Xi-i) ( . *exp(-XTR'I/2) (5.5b)

where IRI is the determinant of R. From eq. 5.5 it follows

that the likelihood ratio X(X) and the loy-likelihhod ratio
z(X) of the observation are given by

( )- ( )l/2.exp(Xr(I-R' )X/2) (5.6a)

z(ylO) .T(I.'R' )X - n(IRI) (5.6b)

where B - {A,,P 1 }. The likelihood and log-likelihood ratios

are conditional to the period and the signal power.
Before proceeding further we need to take a closer look

at the autocorrelation matrix R

R - E(z.XTIHI) (5.7)
-Rn +R P

'I

-, , *~ . .. . '* -:-.-... :, .: . . . . ... .. .. . . . . . : ,.. . - .. :..•J
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Where Rn is the noise autocorrelation matrix and R is the

autocorrelation matrix of PRS Pl, the above decomposition
follows from the independence of noise and PRS Pl. Now

Rn I L , the LL identity (508a)

R = Ai{6(Ii-jlntodPi)} ij-0,1,...,L-1 (5.8b)

Of course R is Hermitian symmetric, and, as such is similar
to a diagonal matrix [31 pp. 201-202]. Due to PRS pl, R
also has the interesting property that each row of R is a
right circular shift by 1 of the row immediately above It.

Matrices with this property are called circulant or cyclic
matrices E32,33 pp. 133-139].

5.2.1 Properties of Circulant Matrices

Since the theory developed in this chapter relies

heavily on the properties of circulant matrices, some of the

useful properties are summarized here. Let Cn be a nxn

circulant matrix, then

C c c c2.•c n_ 1  (5.9)

c CO C
Cn-1 co c ~n- 2

Cn-2 Cn- 1 co .cn-3

A .

c1  C 2  C 3 *0,co

Circulant matrices are a special case of Toeplitz

matrices. The matrix may easily be diagonalized. Let *r be

the rth eigenvalue and ur the rth eigenvector, then *r and

Rr are the solutions of

Cn.*!r . *r.r (5.10a)
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or equivalently of the following system of difference
equations

m-1 n-1

-Cnm+kurk + Ck-mUrk s *rurn , m - 0,1,...,n-1(5.10b)
.;c ~~r 0,,,,,-

where *r is the rth eigenvalue and Urk is the kth element of
the rth eigenvector. It is easily verified [32,33 pp. 133-

139] that

n-1

*r " kck.exp(-j2wrk/n) r 0,I...,n-I (5.11a)
:1c

Rr (n)I/ 2.(1,exp(j2vr/n),...,exp(-j2(n-1)r/n))T (5.11b)
r - 0,1,,.,n-1

The sequence of eigenvalues %0,,....i is the Discrete

Fourier Transform of the first row of the matrix Cn and the
eigenvectors are independent of the elements of Cn* Now

define the matrices

Un (11 { ol I... I n- 1} (5.12a)

Yn diag(*°'#*"'n-1) (5.12b)n*n-

The matrix Un is a unitary matrix, so Un - conj[UT] * U-i.

And Cn is unitarily similar to the diagonal matrix Yn that

is Cn is a normal matrix [31 pp. 201-202].

C UnnU (5.13a)

-1I -1C - Un' n Un (5.13b)
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Cn 1will exist if and only if all the eigenvalues are non-n
zero.

5.2.2 Eigenvalue Eigenvector Decomposition of R

Let R(n) be the first row of the matrix R ,then

R(n) - 6(n) + Ala((n)modP,) , n = OI,...,L-1 (5.14)

L1-1

- (n) + A,'F8(n-1P,) , L

The sequence of eigenvalues *(m) of R is given by

L-1
*(m) I R(n).exp(-j2wnm/L) (5.15)

nu

-(n).exp(-j2wnm/L) +

L1LI-1

Anl 6(n-P,).exp(-j2nnm/L)

I1 + AILI m - O,L1 2L,*...,(P1 -I)L! 1 t O W

Let I dia9(*(0),*(1),....,*(L-1)), be the diagonalL
mtrix of the eigenvalues of R and UL the unitary matrix of
eigenvectors of R. Then

Ua U 11 (5.16)

and since all elgenvalues are non zero

*,1 ' ' ' .. : , '' . :.. ... , ..... ;. :.. .. ,. ,.., .,.... ., .• • ,- . . .



R-1 U- 1U (5.17)

5.2.3 The Optimum Detector

We had derived the log-likelihhod ratio z(zIl) in

eq. 5.6b. Substituting for IRI and R-  in eq. 5.6b and

using the fact that ULU*=I we obtain

z(Y.10) - tVUL(I..TL)* -fln'VLI(51a

where ITLI x Det TL a Det R - (I + A1L1 )P l  (5.18b)

Denote the diagonal matrix I-1L by eL and let 0(m)
denote the sequence of the diagonal entries of 9, 6(m) is
then simply given by

1O(m) m)

A1L1 /(I+A 1 L1 ) , m 0,L1 ,...,(P1 -1)L1  (5.19)
0 OeW.

For brevity define cl A A1LI/(I+AILI)

So now z(zXi) is given by

Z( iT - 1n (6.20)
.(10) - ly UOLULY.71 IT1

Now there are two options available to us 1) Calculate

the vectors zTUL and U* first or 2) Calculate the matrix

UtL U first. We will consider both options, the first

option gives us better insight and the second leads to a
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practical detector structure.

5.2.3.1 Optimum Detector in the Frequency Domain

Define the row vector Y as follows

(.)1/Y T L(.21a)

it follows that

(1/2Y* (5.21b)

L ULY.

The row vector Y is simply the DFT of y and with y real, Y

is the conjugate transpose of Y. So z(ylo) is equivalent to

the statisitc z(Y18) given by

Z(YJI) * 1 i (5.22)
IL- .I Z 'ILI

If we assume that the period P, and the power level A,

are known an equivalent detection statistic is 0(1)

*(IIB) .*ieLi (5.23)

Since 9L is a diagonal matrix, we may simplify the above

equation as follows, let Y(m) be the mth element of Y then

EL1yr (5.24a)
m.

L-1

. y(m)Y(m) I (5.24b)
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where y(m) 1 (81m))1/2 (5.24c)

Detection based on C(YI0) is similar to an energy

detector, we will call it a frequency selective energy

detector " or FSED. In fact y(m) defines a digital comb

filter [34 p. 241]. A block diagram of the above detector

is given in fig. 5.1. We now examine the sequence Y(m)

under both the noise alone and the signal + noise

hypotheses.

Ho : y(i) - n(i) , i = 0,1,...,L-1 (5.26a)

& Y(m) = N(m) , ui - 0,1,...,L-1

H, : y(i) - p,(i) + n(i) , i - 0,1,...L-I (5.26b)

& Y(m) * PI(m) + N(m) , m * 0,1,...,L-1

Where N(m) is the L point DFT of the observed noise sequence

and P,(m) is the L point DFT of the PRS p,(i). Define p1 (i)

to be one period 
of PRS p,(i).

p i ) = p,(i) ,i - 0,1,...,P,-1 (5.27)

0 ,O.W.

then

L-1

P,(M) - jpa(i).exp(-J2vim/L) 
(5.28)

L1-1 (n+1)P 
-1

- p,(i-nPj).exp(-j2vim/L)

n, f-iP,

and using the substitution s - i-nP, we get

4.
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Ll P1 l
=n s '  T I(s' .,exp(-j2wls+nPI)m/L)
n- s--

Pi.-I .- I

: ~p~ls(S).exp(-j2sm/L).nKexp(-,2nm/L, )

now exp(-j2wnm/Ll) LI , m = 0 , #*..,(P,-l)L,
0 , O.W.

So

P1 -1

LiTpi(s).exp(-j.z2sm/L) , ma0,Ll,..4,(PI-I)LI

P1 (m) - (5.29)
0 ,OW.

The above shows that under HI, Y(W) has signal

components only for , This is

intuitively pleasing because 0(m) non-zero for precisely

the above m's. So the fPequency selective energy detector

rejects the 'out of band ne..

.2.3.12 Optimum Detector in the Time Domain

Now we first calculate the matrix ULOLUL This will
lead to a tinie 6omain solution for the detector. Let

Q L L ;' then because eL is diagonal Q is circulant. So
the matrix Q may be determined in terms of its first row

Q(n), in fact, the first row is just the inverse DFT of the

sequence 9(m).

i)
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Q(n) = 1 i(m).exp(j21rnm/L) (5.30)

L-L

. (c,/L).Z a6(m-rL:).ejp( j21rnmiL)

PI-1

(c/L).--exp(j22nr/L1 )

- f j/, n - cP 1 ,...,(L1 -1)Pj

0 , o~w.

So z(y1f) is given by

z(XIO) IX Q - riTL] (5.31a)

PI-LI-1

If we assume that the signal power and period are known
then an equivalent detection statistic is *(y) giver by

PI-1LI-1

Sy(j+kP) (5.32)

We call the detector that uses *(yI) as the detection

statistic the circulating average energy detector (CAED) or
the periodic aver3ging energy detector. Fig. 5.2a is a
block diagram of the generic signal processor that produces

*(yjo) wkth the parameters P1, L, and A,. The *analog shift
register' is initially set to zero, once the desired number
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of periods (LI) have been measured the switch feeds the
output of the "analog shift registor" into the squarer. In

future we will call this signal processor the CAEDSP with

the appropriate parameter values denoted in brackets.
Fig. 5.2b is a block diagram of the above CAED.

5.2.4 Performance Evaluation of the Optimum Detector

First of all note that 0(yI1) and O(YI$) are the same
random variable, hence decisions based on O(zIJ) are

equivalent to decisions based on O(YI$) and they result in
identical performance. In this section we derive the
probability density function for 4(yIj) and z(xI1) and
compare the performance of the optimum detector with that of
the total energy detector.

5.2.4.1 Derivation of the p.d.f. of J(y) and z(y B)

L,-1

Let at(j) = +(c )/2.* y(j+kP,), then a(j) is

normal. The statistics of u(j) are derived below

E[a(j)lHk] * 0 , k - 0,1 (5.33a)

Lj-ILj-I

S((E[y(j+kP,)y(j+sP,)lHo] (5.33b)

L1-1L1 -1

" (CPIJ)/ 6((k-s)P)

c1P1L1/2L *cj/2 ao
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CAEDSP(P,,A,,L.)-()__ decision decision

I Fig. 5.2b Block diagram of the Circulating

Average Energy Detector.

E~(j~j(i)HJ (cIrl)*) )E(+kP)y(j+sP1 )H,J (5.33c)

==1S

L1I1L1-1

- (Z~±). En(j+kP,)n(j+sP,) Pi 3~j

-(c1P').(L, + AILI

(cj/2).(I + A1LI) *AILI/2 4 2



So we have

f(a(j)IHk) = ( 1i)l/2 .(-).exp(- (1 ) , k=O,1 (5.34)

2

Now let y(j) = 2 (j), then it follows that

( 1 z)/2exp(_ Y), (j)>0
2wy(j~o 2o

f(y(j)IHk) = (5.35)

0 , o.w.

which is a gamma density function with one degree of

freedom. Now the y(j)'s are independent and identically
P1-1

distributed under both hypotheses. Since O(yjo) 7(J),

*(yIj) also has a gamma density but with P, degrees of
freedom.

6 (P,/2)-1 .exp(- - 7), >0

f(-lH P 20k (5.36)

0 , O W .

Where r(.) is the gamma function [35 pp. 255-263]. Now

Z(xls) " ¢(xlI) - .,lnlLI, substituting for I LI gives

z(xI8) - p(jIa) - (P,/2).ln(1+AL,). If we let

b,4(P1 /2).ln(1+AiL) then it follows that

(z+bl)(l/2)-I z+bl
S.exp(- ---7) , z>-b,

f(zjHk) = (20k)P,/2or(P1/2) 20k  (5.37)

0 ,O.W.

If u is a threshold level for z, the probabilities of
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detection and false alarm are. given by

PD = fuf(z lH l)dz

(z+b_)(P_/2)-_ z+bl
= f.CO exp(- ---T)dz (5.38a)
-u (2o')P,/2 .r(P,/2) 2o

using the substitution w - z+bl, we obtain

w(P1/2)-1
.. .exp(- --!.)dw (5.38b)

PD fu+b, (2o' ).p/2 r(P,/2) 2a,

- r(PT, u+b l)/r(Pc/2) (5.38c)

_1 _P u+b, )/r(PI/2 ) (5.38d)
2a,

Similarly

PFA - r(P, u+bl)/r(P,/2 ) (5.39a)

2co

-1 - y(P" ' -u~b1)/r(P1 /2) (5.39b)

r(.,.) and Y(.,.) are the incomplete gamma functions

defined as [35 pp. 255-2633

r(ax) - f ta .exp(-t)dt (5.40a)

y(a,x) a A ta-1.exp(-t)dt (5.40b)
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5.2.4.2 R.O.C. Curves and Comparison with Energy Detector

The energy detector is a sub-optimum detector, it would

be optimum if the signal samples were independent. That is,
it ignores the signal periodicity. So the energy detector

is based on the following observation statistics

Ho = yi - N(0,1) i.i.d. (5.41a)

HI = Yi - N(0,1+Al) i.i.d. (5.41b)

and

f(,IHO) 1,L/2 exp/2) (5.42a)
f(I~) ( %-) .exp(- T/

1 IL/2, 1 L/2 1 Tf(XIH ) =i7' .(( + -,7 .exp(- 2(I+A)"I .) (5.42b)

The likelihood ratio Ied(y) and the log-likelihood

ratio Zed(Z) are given by

£ed(XIAI) - exp( 2(IA (5.43a)

A, L-1
Zed(XIAI) - 2(1+A y i) - (L/2).ln(I+Al) (5.43b)

L-1

yyM(i) is the total energy in the observation. Assuming

signal power is known an equivalent detection statistic is

I(y) given by

L-1

( )= 2 IA, ) 2 M (5.44)
TI 1) TT -A- , U
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A block diagram for the energy detector is given in

fig. 5.3. Under Ho, ')(x) and Zed(y) have gamma density
2

functions. If we let b2A(L/2).ln(1+AO), and with a0=1 we
have

)L/2 exp(- --7) , -n > 0

f(rilHo) f (2pL2 2a0 (5.45a)

0 , O.W.

f(Zed Ho) easil (5.45b)

0 ,O.w.

If eq. 5.41b were true, then under H , ( ) and ze() would
also have density functions similar to es. 5.45a and 5.45b

2 2
respectively; with cs replaced by ondl+Al. If we assume
that eq. 5.4b is true, then the density function of (y) and
Zed(y) cannot easily be found because the terms in the
summations of eq. 5.43b and 5.44 are not independent.
However, it is still possible to compute some relevant
statistics of n(y) and zed(y) under H, and the assumption
that eq. 5.4b is true.

In fig. 5.4a the R.O.C. curves for the CAED are given
for several signal power levels. Noise is assumed N(0,1).
We assume L=1000, the signal periods range from 21 to 30
inclusive. The number of periods measured in an observation
is the number of integer periods in a sample size of 1000.
We have plotted the average probability of detection vs.
the probability of false alarm. The average detection
probability is obtained by finding the detection probability

for each signal period for a given false alarm probability
and then calculating the average of the detection
probabilities. For comparison purposes in fig. 5.4b the

R.O.C. curves for the ED are also qiven. The R.O.C.
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Fig. 5.4b R.O.C. curves for the ED) with the same signal
and noise statistics as in fig. 5.4a.
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curves are obtained using Monte Carlo simulation methods.
The details of the simulation are given in Appendix A.

Analytically we can compare the performance of the two
detectors using the concept of normal detectability. As
given in Chapter II the definition of normal detectability
is valid for simple gaussian hypotheses. Here we assume the
gamma densities of eqs. 5.36 and 5.44 are approximately

gaussian. This will allow us to obtain approximate
performance figures. The expression for normal detectabilty
'd' is repeated below

d Q [ E(zjHj) - E(zjHo) ] 2 (5.46)

vat(z)

As defined d is a measure of the output SNR. We will

look at both d and d' - (d)1/2. For simple gaussian
hypotheses var(z) is the same under each hypothesis. This
is clearly not the case here. However if we assume that
signal power is small then we can use the approximation
var(zjH1 ) a var(zjH 0 ) 116]. Because 0 differs from z by a

constant we need only calculate E[OIHk] , k a 0,1 and
var(O), similarly with the energy detector. For the

normalized gamma density function f(x) the first and second

moments are given by

xp-1
f(x) - p .exp(-x) , 0cx< (5.47a)

xp
E(x) - f r-.exp(-x)dx a P (5.47b)

E(x) fO x' exp (-x )dx a p2 p (5.47c)

The first and second moments of the CAED detection statistic

are now easily obtained.
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E(,H) = fc *.f( JHk)d4 (5.48a)k 0 k

S1 exp(--%)d
P20k/27 20k

using the substitution x -A, we obtain2 k

2 P1 /2
E(fIHk) = 2Ok. r( 7 2y.exp(-x)dx (5.48b)

2
= kPI

E(2IHk) f C f(fIHk)d4 (5.48c)

20 (PI/2)+i 12'OkJo0 MP . m-n.exp(- d
*20 20k~d '

2ok

using the same substitution as above we obtain

Z( 2 2 x(PI/2)+l
E( k) = (2a ) "fam f'P/) exp(-%)dx (5.48d)

2

*(20k~) 1 ~ +

and var(INk) (2o PI/2

From the above we can easily write the statistics under Ho

and H,

2

E(,lHo) a oo.PI (5.49a)

0 c1 1/2
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2
E( JHI) a 0J.P 1  (5.49b)

= cIPI.(I+AILI)/2

2 2

var(fJHo) = (2oo) PI/2 (5.49c)

2
=Cl .P1/2

2 2
var(flHI) =(2od) *P1/2 (5.*49d)

a Cl.PI(I+AILI /2

We can now obtain an expression for d by substituting the

above in eq. 5.46
2

d * [C1P1(1 A1L1 ) C1Pa] (5.50)
2c1P1

a
a A, L.L1/2

Going through a similar set of calculations for the energy

detector, we find

E(IIHI) - AIL/2 (5.51a)

E(IHo) - AIL. 1 (5.51b)

var(-IIHO) a AIL. 1 (5.5lc)

2

d - A1 .L/2 (5.52)

Por fixed performance , i.e. d - d and with
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A * input SNR for the ED and A = input SNR for the CAED we
have

:X2

A .L = A CL.L1  (5.53)

or

A *1/2_I LI (5.54)
A

Comparing d for the CAED and the ED for fixed input SNR we
obtain

. L, (5.55)

The CAED outperforms the ED by 10logLI dB.; for our case L,
ranges from 33 for Pj30 to 47 for P1-21 so the CAED

performance is approximately 15.2 dB to 16.8 dB better than

the ED performance. For fixed input SNR the CAED
performance goes up linearly with LI. This approximate
result is in reasonable agreement with the simulation
results. (Reminder t L, is the number of periods *looked

at* in one observation.)
4

5.2,5 Detection of PRS's With Unknown Period ..

A related problem of interest and in some sense

analogous to the classical "Der;.tion of one of M Orthogonal
signals' problem is the problem of detecting a PRS in noise
where the period is one of M possible periods. The
observation under the two hypotheses Ho and H, is

Ho y(i) -n(l) ~N(0,0) i.i.d. (5.56a)
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H1 : y(i) = p(i) + n(i) , & n independent (5.56b)

where p(i) is a PRS as described in Sect. 5.1 with period P

and where P is an element of the set Q{P1,P2,...,PM). We

assume that P=Pk with probability Pr(Pk). We let the number

of samples in the observation equal L. We define Lk as

follows

Lk L/Pk (5.57)

where L_xij -.largest integer no larger than x. So that Lk

is the number of integer periods of PRS with period Pk in an

observation L samples lcng. We assume for simplicity that

all sequences have the same power level A. We define the

log-likelihood ratio given PRS with period Pk as follows

Pk 1 Lk-1

z(YPk Y(j+rPk) - (5.58)

ALk
where ck  L

In all cases the optimum detection statistic is the 'average

likelihood ratio* Following from the Bayes-Birdsall Theorem,

let I be a vector of signal parameters with known joint

distribution and density f(g), let y be the observation and

f(filj) be the a-posteriori density of f, then

(Y.) a I (Y a) .f )  (5.59a)

it follows that

I(Y."(Aly.) V £YA f() (5.59b)
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Integrating both sides with respect to

My)= f (!l)f()d (5.60)

For one of M periods we obtain

M

£(x) - ii(AIPk).Pr(Pk) (5.61)

If we assume Pk equally likely to be any member of i we
obtain

-(xl~ k) (5.62a)R k1

M

exp(z(X1Pk)) (5.62b)

M

z(-) lin( exp(z( ) lam (5.62c)

A block diagram of the optimum detector is given in
fig. 5.5. The R.O.C. curves are given in fig. 5.6., for a

(21,22,...,301 and L-1000. Noise as usual is assumed

N(0,1) 6.i.d.

Next we compare the performance of the above detector
with that of the estimator-detector. The estimator-detector

calculates z(yIP i) for all P1 c n and bases its decision on
max z(YjIpi). The block diagram for the estimator-detector
Pica

is given in fig. 5.7 and the R.O.C. curves in fig. 5.8.
For comparison purposes the R.O.C. curves for the energy
detector are also given in fig 5.9. From the R.O.C. curves
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Fig. 5.8 Averaged R.O.C. curves for the estimator-detector
of fig. 5.7 with n-10 and signal powers of .002,
.004, .008, .016, .032 and .064.



91

.95

.90

.80

'.70

.60

PD .50
0

.30

.20,

.10

.05

.01 .05 .10 .20 .30 .40 .50 .60 .70 .80 .90 .5 .99
PFA

Fig. 5.9 R.O.C. curves for the energy detector with signal
powers of .002, .004, .008, .016, .032 and .064.
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for the optimum detector and the estimator-detector we see

that the optimum (average likelihood ratio) detector and the
estimator detector have essentially the same performance.
Monte Carlo methods were used for generating the R.O.C.

curves.

Note that the P. for which z(yIP.) is maximum, is the
maximum likelihood estimate of the period of the PRS. Plots
of Pr( Error in Estimation of period) vs. signal power are
given in fig. 5.10. We now look at z(lP) in more detail.

Pi- 1 L1-1
. . 1. ( yl kPil))

z(zIPi) 1 A 2

i1

- Pi.ln(1 + ALi) (5.63a)

P 1-Li- 1  Li-1

lo A a ie_ y(j+kPi). Y(j+mPi)

- Pi.ln(1 + AL1 ) (5.63b)

i-1

but A .*. Y(J+i is the m.m.s.e. estimate ofpi(J)
A + I1ULi

[15 pp. 58-591, the Jth sequence sample under the assumption
that the sequence period is Pi; and where 0 j Pi-I. We

define pi(j) as

Li-1

p-(j) A _.. ay(j+mP) (5.64)
A ; L.

ppi
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Fig. 5.10 Average Probability of Error in estimlating
signal period vs. S/ti ratio.
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Then it follows that

P-i1Li-1

z(YIP i) -- Pin( + AL.)(5.65a)

or

z( 1 P .T An + AL)
£1i l - 2~ i jl~ (5.65b)

where Ri is the estimated PRS waveform under the assumption
that the PRS period is Pi" The detection statistic may now

be written as

T Pi.max zIlP) max { .T.2i - .ln(1 + A.L1  (5.66)

P P

Because of the simplicity of the structure of the

estimator-detector ( no exponential non-linearity) and no
loss of performance compared to the optimum detector, the

estimator-detector is the preferred realization of the

optimum detector in this case. The advantage of theIestimator-detector over the energy detector are I) Better

performance 2) The ability to simultaneously estimate the
signal period.

The problem of estimating signal period (or frequency)

is an interesting problem in its own right [36,371. The

above development focused on a periodic randcn sequence. we

now outline the development for deterministic but unknown

periodic sequences. This development differs from the
previous in that it is non-Bayesian; the signals are
*unknown*, not random vectors.

Assume the observation consists of L samples. The
statistics of the observation are
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H0 : y(i) - n(i) - N(0,1) i.i.d. (5.67a)

H, : y(i) - n(i) + Pk(i) (5.67b)

where Pk(i) is a periodic sequence of period Pk' Pk -
[P1,P2,...,PMI. We assume that the period Pk is unknown.

Let L. I=.L/PkI and define POO as follows

kp Pk 0 "k-1 (5.68)
0 , O.W9

If the sequence 2,. is known then the optimum estimate
of the period follows from forming the M log-likelihood
ratios z(Zypk), k-l,2,...,M and choosing the largest.

'~lk - (IT- kkexp"- (X2k )T . (112) (5.69a)f(ZIPk) " lkk) • t(I

" PkLk ")- I IT (5.69b)
f(YiHo) a -rl .1)J.e

and

Z(Ip)I 2)Tk (5.70).

However as the sequences 2 k are not known we follow

custom and first form a maximu- likelihood estimate of the M
possible sequences based on the observation, and then use
these estimates in eq. 5.70 and then choose the maximum. We

can rewrite z(ylPk) as follows

LkPk-I

-- (Y() - 2Pk(i))Pk(i) (5.71a)
-i
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P-1 L -1

. 3 (' (y(j+rPk) - .pk(j))).pk(j) (5.71b)

Differentiating eq. 5.71b with respect to each (J) and

setting the result to zero we obtain

Lk-1

az(ylPk) ) - pkP )- 0 (5.72)

a.i~rk (- Lr *

for j U01,...,Pk-1

or

k(J) . T (j~rP )  (5.73)
kLkk

(j) is the maximum-likelihood estimate of (j) The

sequence Pk extends Pk periodically

Lk-!"
Pk(i-rPk) iO, . ., -

POW) = = (5.74)

0 O.W,

Based on the estimated sequences we form the 14 statistics

Z(£1Pk) defined as

z(TIPk) A (Y. is -e ek (5.75)

The estimated period is then the one that corresponds to
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A

max z(yIPk). The block diagram of the estimator-estimator
Pk

is given in fig. 5.11.

5.3 Detection of two or more PRS's in Noise

In this section we generalize the results obtained in
Sect. 5.2. we first examine the problem of detecting 2 or
more PRS's with known periods. Next we examine the problem
of the detection of k of M PRS's in noise. Finally we
develop the equations for the most general problem that fits
into the framework established here, in this case we allow
signal and noise to be complex with the noise not
necessarily white and successive signal samples not
necessarily independent.

5.3.1. Detection of 2 or more PRS's of Known Periods.

In this case the signal consists of the sum of N PRS's
(N>2) of known periods P1,P2,.*.PN* The number of samples

.in the observation is chosen so that L-L.C.M. {P1,P2,...,PN}

or some integer multiple of the L.C.M. This insures that

each PRS has an integer number of periods in the
observation. We define Lk as the number of periods in the
observation of PRS with period Pk i.e. Lk a L/Pk

The observation under the two hypotheses HO and H, is

H0 : y(i) * n(i) ~ N(O,1) i.i.d. , i.0,1,...,L-1 (5.76a)

N
H, : y(i) n(i) + k (i) t i-0,1,...,L-1 (5.76b)

Where POO has period Pk and Pk(lt)N(O,Ak). Noise is

assumed independent of the PRS's and the PRS's are assumed

Tindependent of each other. We let R=E(y. TIH) and write

O,
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the density function of the observation under the hypotheses

H0 and H, as follows

f(XIHo) = )L/2.exp(- 1T (5.77a)

f(ZjH,) N exp(- +.yTR y) (5.77b)

The likelihood and the log-likelihood ratios follow

e ()1/2o )) (5.78a)

Z(Y) -2. .j(-R )y -j..lnIRj (5.78b)

As before the key to the simplification of the

equations for t(y) and z(y) lies in the eigenvalue-

eigenvector decomposition of R. First we write R as

R a E(y. TIHI) (5.79)

N
a Rn +7R

Where R is the noise autocorrelation and is the LxL

identity matrix, Rk is the autocorrelatlon matrix of PRS Pk

and is circulant. The above decomposition follows from the

independence of the noise and the PRS's. It follows that R

is also circulant. In fact

R IL + ;Ak[6(ji-jlmodPk)} iuj-O,1,...,L-1 (5.80)

The first row of R, R(n) is given by
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N Lk-1

R(n) - S(n) + Ak 6(n-lPk) , n-0,1,...,L-1 (5.81)

(0), the eigenvalue sequence of R is given by

L-1

(m) - R(n).exp(-j2rnm/L) (5.82a)

N

1 + ;AkLk , mmo

- 1 AkLk , mmLk,2Lk,...,(Pk-1)Lk (5.82b)

oIwkuI1,2,...,N1 81 O .w .

LeL ' u diag($(0),*(1),...,(-1) be the diagonal matrix of

eigenvaluos of R and UL  be the unitary matrix of

eigenvectors of R, then

Ra U L* U (5.83)

and since all eigenvalues are non-zero

R 1 -  -U -U (5.84)

also

IRI- IWI (5.85a)

* + N N kk 1k A . It(14AkLk)Pk
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N

( + AkLk) N P

_ .__ _ _ _ 11 (1 + AkLk) (5.85b)
N k-111(1 + AkLk)

ka l

Substituting for R- and IRI from eq. 5.84 and eq. 5.85 in

eq. 5.78b, we obtain

N
Z(X) lU(I--1 )U P k.ln(1 + AkLk)

i( y = *UL(I u -y k. ...

N

(1 + AkLk)

-In (5.86)N
n (1 + AkLk)

kal

We define 0 A i-7- 1. 0 is a diagonal matrix and the

elements along the diagonal are given by 9(m) 1 - , so

N

NA kLk

1 + NAkLk

G(m) AL (5.87)

1 + k ... k k Fl 2 , ..., N ( P k - ) L

0 , O .W .

Now define co and ck as follows
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N NL N

-co -  A7Ak Lk (5.88)N 1 + A kLk'

1 + \AkLk

Ck AkLk (5.89)
1 + AkLk

We may now rewrite 9(m) as follows

N

O(m) Ok(m) (5.90)

where

-Co(m) , k=0

GOPk'l (5.91)

ck* 6(m-rLk , kul,2,...N

Now let QOUL U_ and decompose 0 as done for O(m) so thatNowL

N

0 f lk.  The diagonal elements of Ok are given by Ok(m).

N

Define k U so that Q k By definition the

matrices Qk and hence Q are circulant, so we may obtain Q in

terms of its first row. Let the first row of Q be Q(n),

then

Q(r, a Qo(n) + Q1(n) + ... + QN(n) (5.92)
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and

Qo(n) * - co all n (5.93a)
L

- ckP n=O,Pk,2Pk' * (Lk-').P k

Qk(n) 0 (5.93b)

It follows that

N N
Z(x) 1 1TO Q )y - Pk.ln(l + A Lk

N
(I + AkLk)

1n (594a)
N
R (1 + AkLk)

k 1L

L-1 N Pk " Lk'
.- . (n))' + ck . ( (j+rPk))'

N

N (+ AkLk)

k.ln(1 + AkL k ) - f1n N_ _ (5.94b)

1 (1 + AkLk)
km1

The above reduces to
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N L-1

z(Yj) = (Z(!IPk -O7y~)

N
(1 + AkLk)

ln 7(5.95)

N
11 (1 + AkLk)

k=1

The last term in eq. 5.95 does not depend on the reception,
*in fact it is a constant and maybe ignored if we assume we

know the power levels Ak's. The second term in eq. 5.95 is
a D.C. correction term. It is at D.C. (zero frequency)
that all the PRS's interact. The R.O.C. curves for
detectors based on z(y) are given in fig. 5.12, for N-2,
Pj-21, P2-29 and L=609. Experimentally we have shown that

N
decisions based on z(YIPk) are essentially equivalnt to

decisions based on z(y). We call the detector that bases
N

its decisions on z(1Pk) the sum-detector. R.O.C.

curves for the sum-detector are given in fig. 5.13, the
signal and noise statistics used in generating fig. 5.13 are
the same as those used for generating fig. 5.12. For
comparison purposes the R.O.C. curves obtained using an
energy detector are given in fig. 5.14. Since the
conditional log-likelihood ratios z(yIPk) are not
independent, it is not easy to derive the density function
for z(y). However, we can calculate the statistics of z(y)
necessary to obtain an approximate expression for the normal
detectability d. The details of the calculation are tedious
and are given in Appendix B. In calculating the statistics
we assume that N-2 and that both the PRS's have the same

power A/2 and that Pz1CP2 . We obtain the following
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Fig. 5.12 R.O.C. curves for the optimum detector for 2
PRS's of known period in noise with Pja2l, Plu29*

and Lu609. Each PRS has identical power levels
of .001, .002p .0041 .008t .016 and .032.
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Pig. 5.13 R.Q.C. curves for the sum-detector with the
same signal and noise statistics as in fig. 5.12.
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Fig. 5.14 R.O.C. curves for the energy detector with the
same signal periods as in figs. 5.12 & 5.13 and
signal power levels of .002, .004, .008, .016
and .032.



108

expression for d

d u A 2(1 + L, + L2)/2 (5.96)

In the preceding development the observation size was

fixed at some integer multiple of the L.C.M. of

{Px,...,PN}. This places a restriction on the observer. In

the following this restriction is relaxed. The number of

samples in the observation, L , is now arbitrary. It

follows that there are Lk - IL/PkI integer periods, of PRS

with period Pk in the observation. The observation under

the two hypotheses is

H0 : y(i) - n(i) (0,1) i.i.d. (5.97a)

N

H1 : y(li) - n(i) + M (5.97b)

The LxL autocorelation matrix RuZy..T JH) is no longer

circulant. The key to obtaining the equations for the

optimum detector was the eigenvalue-eigenvector

decomposition of the circulant matrix R and R For the

present situation where the number of samples in the

observation is not divisible by all the perids, we will

call R the expunged circulant matrix. A simple well defined

procedure for the eigenvalue-eigenvector decomposition of

the expunged circulant matrix does not exist. Also a

straight forward procedure for finding the inverse of the

expunged circulant matrix (if the inverse exists) does not

exist. Using the optimum detector of eq. 5.94 as a
,'. guideline we hypothesize that the following detector will

have near optimum performance. We base our decisions on

z(y) where
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N

€(z) ~~z(zjPk) C( -(n)2

N

(1 + AkIL/PkI)

- ln N5.98)

1I (1 + Aki L/PkI)
k-1

where

4zk-_1 .IL/Pk-1l

Sz(£ " ak. - -1  . (,. y(j+rPk))'

-Pkln( + A _  (5.99a)

N~k j-//Pk- I

N

Ak I-./Pk! N
_;O . AkAL/Pk. (5.99b)

I I k+ l _/Pk _I.l

k A AkIL/PkI (5.99c)1 + -AkI'L/Pk-I

For each PRS, the above detector utilizes the maximum number
of integer periods available, this is in contrast to the
optimum detector which would also utilize the "left over"
samples. We will soon show that when L is large the
performance of the above sub-optimum detector is nearly the
same as that of the optimum detector.

if we write Lk for IL/PkI the form for z(y) reduces to
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8iii

.70

.60
P .50,

.4

.20

.. 4.

.05

,.01"

.01 .05 .10 .20 .0 .40 .50 .60 .70 .80 .90 .95 .99

FF.,
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that obtained in eq. 5.94. We call the detector that bases

its decisions on z(y) the quasi optimum detector. R.O.C.

curves for the quasi optimum detector, for N=2, are given in

fig. 5.15. We let L=1000, P, is fixed at 21 P2 is allowed

to vary from 22 to 30 and the R.O.C. is the average R.O.C.

N

We call the detector that bases its decision on z(IPk)

the quasi sum detector. The R.O.C. curves for the quasi

sum detector are given in fig. 5.16. It is seen that the

performance of the quasi sum detector is essentially

equivalent to that of the quasi optimum detector. For
comparison purposes the R.O.C. curves obtained using an

energy detector are given in fig. 5.17.
An approximate expression for the normal detectability,

d, for the quasi-optimum detector is given in eq. 5.100. It
is assumed that N-2 and that both the PRS's have the same
power level A/2 and that P,=P2.

d A2L(1 + L, + L2 ) (5.100)-T

The normal detectability, dopt, for the optimum detector is

then approximately upper bounded by

d AL(1 + L, + 1 + L2 + 1) (5.101)opt <

So we have

d (1 + L, + L2 )/(3 + L, + L2 ) (5.102a)
3opt

in the limit L and hence L, and L2 become large

~ .Y N,
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d (5.102b)
aopt

For the energy detector we had (eq. 5.52) d edA L/2. We

compare the input SNRs for fixed performance and obtain

= (1 + L, +L2)1/2  (5.103a)

Comparing the output SNR for fixed input SNR we obtain

d I + L, + L2  (5.103b)

ed

The above results are analogous to the results obtained in

eq 5.54 and eq. 5.55 and are in good agreement with the

simulation results.

5.3.2 Detection of k of M PRS's in Noise

This is a generalization of the detection of one of M

PRS's problem considered in Sect. 5.2.5. Now we consider

the signal to be the sum of k independent PRS's, where the k

PRS's belong to a set of M independent PRS's. We assume

that it is not known a priori which k of the M PRS's make up

the signal. This implies there are N k () possible sets of
signals. Even for moderate M and k the signal set becomes

quite large. As we will show the optimum detector for this

situation has a fairly elaborate and complex structure.
This fact will provide us with the motivation for searching
for detectors which have performance close to that of the
optimum detector and yet have much simpler structure.

As usual we will assume there are L samples in the
observation, where L is large and arbitrary. The
observation under the hypotheses H0 and H, is
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Ho : y(i) = n(i) - N(0,1) i.i.d. (5.104a)

H1 : y(i) = n(i) + Sr (i) , s & n independent (5.105b)

Where sr C S = {SlS2,*..SN}* Each of the elements of S is

the sum of k PRS's belonging to Q = 1PR2,...1P.M}. The

optimum detection statistic, as in Sect. 5.2.5 is the
average likelihood ratio. Since L is not necessarily

composite we will instead use the average of the conditional

quasi-likelihood ratios as the "optimum" detecton statistic.
Assuming that each of the elements of S is equally likely to

be the signal we obtain

N

( Y exp(z(xls) (5.105a)

r-]

N
z(y) " ln('--exp( (Xis )) -lnN (5.105b)

To develop the structure of the quasi-optimum detector we

need to expand z(zlsr). Assume sr consists of PRS's ofnee toexan

periods PrP r2,.'*#Prk' where the PRS with period Prl has

power Arl* Now we can write '(Y-Ir) in the style of

eq. 5.97
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z(X.I~r a Z(XIprl'pr2D-*@tprk)

a = -pl Cor(7 y**,(f))'
7 MEIriLn

k
(1 + 'ArlLrl)

- 4.n (5.106)

n (1 + AriLrl

where

k

or IN 1 ZAir - k'r (5.108)

I+ ALr

Z(~I~r) .. rl11 Lrjl 2

.- rrl1( C .rL(519
rri

and

Cr1 ArLrlr (5.110)

The detector first calculates the M conditional quasi log-
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likelihood ratios ;;(XlPM). Then it forms (M)

sums of z(xIP i) in groups of k and finally adds the
previously calculated terms to the sums to obtain

The terms z(xlsi),..., Z(XISN) are exponentiated and

averaged to obtain 9().
The estimator-detector bases its decisions on

max z(ZYsr). The structure of this detector is not much
ArES

Msimpler. In fact it also caculates N = (k) terms and bases
its decision on them.

In Sect. 5.3.1 we had seen that basing decisions on
N

z(YlP ) was essentially equivalent to basing decisions on

z(Y). The next detector we try bases its decisions on
k

max -z(vip .). But this is the same as basing the
r , , -' L-L

decision on the sum of the k largest ;(x2Pi), i=1,...,M.
This detector has a much simpler structure than the previous
two. We call this detector the max-detector. Choosing the

elargest z(IP ) also immediately forms an estimate of the
periods of the k PRS's in the signal.

The R.O.C. curves for the quasi-optimum detector, the
estimator-detector and the max-detector are given in
figs. 5.18, 5.19 & 5.20 respectively. We let MalO, k-2 and
9-(21,22,...,30). We see that the performance of the max-
detector is nearly identical to the performance of the
estimator-detector but slightly poorer than the performance

of the quasi-optimum detector.

.4

,'I
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pig. 5.18 Averaged R.O.C. curves for the quasi optimum

detector for M=10 and k*2, each PRS has

identical power levels of .001, .002, .004

.008, .016 and .032.
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Fig 5.19 Averaged R.O.C. curves for the estimator
detector for M-1O and k-2 with the same
signal and noise statistics as in fig. 5.18.
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5.3.3 Detection of Arbitrary PRS in non White Gaussian Noise

To complete the discussion on the detection of PRS's,

we examine the situation where the signal is complex and

successive signal samples are not independent, we also

assume that the additive noise is not necessarily white. We

assume that the signal is at least wide sense stationary and

that its autocorrelation matrix is circulant. Signal and

noise are still assumed to be mutually independent. We will

derive the equations and give conditions under which they

are valid without going in great detail. We assume there

are L samples in the observation, where L is some integer
multiple of the signal period. Let Rn be the noise

autocorrelation matrix and R be the signal autocorrelation1s
matrix. The observation statistics under hypotheses H0  and

H, are

f(yIHo) 1 -L/ 2 -IRn1RI/2  .exp(- (RI) (5.llla)

, IL/2.I +R-I/2. 1 (n+s - 1 ( 1b
fzHI) = ( I~+s exp(- ly( +s )  (.11b

From the above we may write down the likelihood ratio and

the log-likelihood ratio

~(y) - IRn l/2.R l~+R si-1/2.exp( 1(R 1 -n+s-1)Z ( . 1 a

1 *-i R -1 1 lnIRn+Rslz(Y) .Z n (Rn+Rs) )z n (5.112b)
n Rn I

In the above equations we have assumed that the appropriate

inverses exist. Rs  is circulant due to the signal being

periodic. If the noise is white Rn will be the identity

matrix and hence trivially circulant and also invertible.

If the noise is not white Rn will be circulant if the

associated autocorrelatlon sequence Rn(k) satisfies the
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following condition

Rn (n) - R* (L-n) (5.113a)

or
Rn(n) - R n(L+n) (5.113b)

In other words, if the noise is not white we require that

the noise and the noise autocorrelation be periodic, and the

number of samples in the observation L either be the noise

period or some integer multiple of the noise period. With

Rn and R circulant we have

*

Rn - UL nUL (5.114a)

R U TsU (5.114b)

R_+R- U.U(+_)O? (5.114c)

Rn ULV-1 U (5.114d)n L n L

(Rn+R)I- U (Tn+Ts'u U15.114e)1
n S L n 5w

where 'n and s are diagonal matrices and the diagonal

elements are given by *n(m) and *s(m) respectively

*n(m) a * Rnlkl.exp(- j2tkm/L) (5.115a)

L-1

slm) - jsRs(k).exp(- j2vkm/L) (5.115b)

- - - - - - - - -
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Now for Rn to exist we require that *n(m) > 0 for allnn
m, this means that Rn (k) can not have a period smaller than

L. Whenever *n(m) > 0 for all m both RnI and (Rn+Rs) will

exist. Substituting for R I and (Rn +R s -1 in eq. 5.112b we
obtain

z( ; UL( n - (n )-) )U - 1nI~n+Ts I  (5.116)

now

L 1/2.((O),Y( 1),...,Y(-L+I)) (5.117a)

where Y is the complex conjugate of Y also

U* - L- 1/2. (¥(O),Y(-I),..,Y(-L+I))T  (5.117b)

Now let yT1 ( (+) F A, ( is a diagonal matrix and letn n 5
the diagonal entries be 0(m) then z(y) is given by

L-1
Z(Y.) " ;=je(m)IY(-M)l= - lnn+sl (5.118a)

L-I
-ZOWJVL-m)l2 - lnln's,, (5.118b)

The above detector may easily be generalized for all the
cases discussed in the earlier sections using procedures
similar to the ones used earlier. The above analysis holds

for white noise if we replace Rn# R-1, Tn and 11 by the LxL
identity matrix.
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5.4 The Abstract Problem Revisited

In Sect. 5.1 we had developed the analogy between the
exact problem developed in Chapter III and the detection of
two independent PRS's p1(n) and p2(n) with relatively prime
periods P1  and P2 respectively and an observation interval
of L-PI.P 2 samples. Using this analogy and the results
established in Sects. 5.2 & 5.3 we will answer the questions

asked at the begining of this chapter and establish some

guidelines for the exact problem.

For the two PRS problem we considered two detection

philosophies 1) Consider the L*P3.P2  samples to be

independent. 2) Consider the L samples as having been

generated from P1 +P2 independent samples. According to the

first philosophy the optimum detector was the energy

detector, the second philosophy led to the circular

averaging energy detector (frequency selective energy

detector) as the optimum detector. The performance of the

CAED/FSED was shown to be considerably better than that of

tne ED (igs. 5. i4 5.i5 and equ. 6.102 & 5.IG3). T,

suggests that the detector for the original problem have +N

degrees of freedom; that is, it should consider the MN

peaks in the ambiguity diagram as having been generated from

M+N independent sets of doppler and delay parameters. As an

example let Mu9 and N-7, i.e. we have 9 paths to one

receiver and 7 paths to the other receiver. The

crosscorrelation of the receptions at the two receivers will

have 63 peaks. Treating the 63 peaks as being generated

from 16 independent parameter sets rather than as 63

independent entities results in a performance improvement of

the order of 12dB (obtained by substituting for L, and L2 in

eq. 5.103b).

The near optimum performance of the estimator-detector

and the max-detector (figs. 5.18, 5.19 & 5.20) suggests that

the estimates of the path parameters (differential Joppler

and delay) be used to locate the the 1N peaks in the
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crosscorrelation or the ambiguity diagram. Differential
doppler and delay estimation is a topic of on-going research

interest and is outside the scope of this thesis.

4 %
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The object of this thesis was to form guidelines and
rules of thumb for an experimenter faced with the problem of
detecting a moving acoustic source, where sound is assumed
to propagate over a multipath channel. Source signals were
received at two remote receivers; the Bivariate Normalized
Crosscorrelation (BNC) function (and the associated
ambiguity function) of the receptions at the two receivers
was used as the observation for the detector. It was

assumed that there were M paths to one receiver and N paths
to the other receiver and that the observation times were
long enough for the path pairs to be resolved.

The exact multipath channel problem is difficult to

solve, as was shown in Chapter III, so most researchers
asssume that the propagation is by a single path channel.

Detectors based on the single path channel model, when the

propagation is by multipath, are by definition sub-optimum

because they do not utilize all the information available

about the source in the receptions. Our approach was novel

in the sense that we chose to retain the multipath channel

assumption. Based on this we formulated two solvable

abstract problems for further study. The abstract problems
were chosen to be sufficiently close to reality so that

their study would provide useful information about the real

problem. This also provided a framework for maximizing the

information available to the detector about the source.

In Chapter IV we studied the "Extended M-Orthogonal

Signals" problem. This provided us a method for combining

127
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the information, available in the ambiguity plane, for
detection purposes. We also showed that it was necessary to
localize a quarter to a half of the peaks in the ambiguity
plane for acceptable detection performance.

The ambiguity diagram consists of MN peaks due to the
signal. The MN peaks are generated by M+N independent sets
of doppler and delay parameters. In Chapter V we addressed
the question; Should the detector treat the MN peaks as
independent entities or as being generated from M+N
independent parameter sets? In other words, should the
detector have MN degrees of freedom or M+N degrees of
freedom? To answer this question we used Periodic Random
Sequences (PRS's). It was shown that a detector with M+N
degrees of freedom had better detection performance than a
detector with MN degrees of freedom. Also the results of
Chapter V suggest that the M+N sets of doppler and delay
parameters be estimated and the estimates be used to
localize the peaks in the ambiguity diagram.

Putting the results of Chapter IV and Chapter V
together we can form the following guidelines:

ft

1) Use observation (or integration) times that are long
enough so that when the BNC function is formed path pairs

can be resolved.

*4 2) Estimate the M+N sets of doppler and delay

paramters.
3) Use the estimates to form the differential doppler

and differential delay values, and use these values to
localize the peaks on the ambiguity diagram.

4) Use the Extended M-Orthogonal Signals technique to

combine the peak values in the ambiguity diagram.

4! Acceptable detection performance is obtained if at
least a quarter to a half of the peaks have been correctly

localized.
The Extended M-Orthogonal signals formulation is based

,!
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on the classical M-Orthogonal signals problem, however it is

a new formulation. The theory developed for the detection

and estimation of Periodic Random Sequences is based on well

known results of detection and estimation theory but this

formulation is believed to be new. This has application

wherever the signals exhibit periodic or cyclic behavior

(engine noise, cyclic codes etc.).

Further work is needed in passive estimation of doppler

and delay parameters assuming multipath propagation. This

could form the basis for a Doctoral Thesis. Given the

estimates of the doppler and delay parameters, localization

of the peaks in the ambiguity plane could form the basis for

a masters project. To test the validity of the guidelines

established in the thesis (and their refinement)

experimental work needs to be done.

- A
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APPENDIX A

MONTE CARLO SIMULATION METHODS

The R.O.C. curves and the scatter plots in Chapter V
were generated using Monte Carlo simulations. In this

Appendix we use the example of one PRS in noise to briefly
outline the simulation methods.

Assume that the observation interval is L samples long.
Let the PRS period be P, and the PRS power level be A,. For

convenience we let L=L1P1 , where L, is the number of integer
periods of the PRS in the observation. We repeat the
equation for z(X), the detection statistic, in modified form
below

P1-1L1-1
- - K2  (Al)

K, and K2 are constants that do not depend on the reception
and can be pre-calculated.

The probabilities of detection and false alarm were
calculated on the basis of 2,000 independent trials under
both H, and Ho. Let us assume that the vectors v0  and v,

each contain 2,000 independent outcomes of z(z) under H0 and
H, respectively. Two 25 bin histograms HGo and HGI were
formed using the data from vo and v, respectively. The 25

bins for both the histograms were "uniformly spaced" between
mn iv and max vo. Data points from vo smaller than min v,
were put in the first bin of HG0 . Data points from v,

larger than max vo were put in the last bin of HG1. With
the 25 bin histograms available it is fairly straightforward

to calculate 25 points on the R.O.C. curve.
Now we describe the generation of the vectors vo and

VI. A uniform random number generator that generated

independent variates in the range (0,1) (U - (0,1)) with a

PREVIOUSPAc
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23
period of 2 -1 was available. The Box-Muller method. [38]
was used to generate zero mean unit variance gaussian
(N(0,1)) random variates. Given M i.i.d. U - (0,1) random
variates the Box-Muller method gives a simple and efficient
procedure for generating M i.i.d. N - (0,1) random variates
(where M is even). The elements of v0 were generated as
follows

Step 1 : Generate L uniform random variates if L is
even L+1 if L is odd.

Step 2 : Use the Box-Muller method -o get L N (0,1)
random variates.

Step 3 : Perform the signal processing indicated in
eq. Al to get an element of vo.

Step 4 : Repeat steps 1 through 3 until vo contains
2,000 elements.

The elements of v, were generated as follows:

Step 1 : Generate L uniform random variates if L is
even, L+I if L is odd.

Step 2 : Use the Box-Mule method to get L N (0,1)
random variates and store in a vector.

Step 3 : Generate P, uniform random variates if P1  is
even, P1+1 if P, is odd.

Step 4 : Use the Box-Muller mothod'to get P1 N - (0,1)
random variates.

Step 5 : Multiply the P, N (0,1) random variates by
1/2(A,)
Step 6 P Periodically extend the P, random variates in

Step 5 L, times and store in a vector.
Step 7 : i dd the vectors of Step 2 and Step 6 element

by element. I

Step 8 : Perform the signal processing indicated in
eq. Al to get an element of v,.

N 4' 0
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Step 9 : Repeat steps 1 through 8 until v, contains
2,000 elements.

The above procedures give an idea of the simulation
methods used for the more complicated problems.

o', N
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APPENDIX B

DERIVATION OF THE NORMAL DETECTABILITY OF THE FSED

In this appendix an expression for the normal

detectability of the FSED (CAED) is derived. We assume that

the signal consisists of two PRS's with periods P1 and P2.
We let the observation be L samples long, where L=Pj.P 2. We

define Lk=L/P to be the number of periods in the

obsesrvation of the PRS with period Pke We further assume

that PI=P 2. The normal detectability is defined as

U 2

d a [El(z) - Eo(] (BI)
var(z)

We will use the variance of z under Ho in eq. B1.

Expresssions for z(x) for the situation described above are

given in eqs. 5.78b, 5.86, 5.94 and 5.95. Using eqs. 5.87,

5.88, 5.89, 5.90 and 5.91 an alternative expression for z(z)

is obtained

L-1

z(y) " (2L)' 1  e(m)IY(m)I "2 lnvl (02)

The last term in eq. B2 does not affect the value of d and

will be carried through as a constant, "K". Y(m) is the L

point DFT of the observation

Ho : Y(m) - N(m) (B3a)

H, : Y(m) = N(m) + P,(m) 4 P2 (m) (03b)

where N(m), P,(m) and PI(m) are the DFT's of the noise, PRS

with period P, and PRS with period P, respectively. 9(m) is

defined as (see eqs. 5.90 and 5.91)
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O(m) =-c 06(M) , (-rLI) + 2 8(m-rL2 ) (34)

Now

ta-I

E0() (2LY-l 0 (mEo (M1 (B5)

Expanding Y(m) we obtain

= )j En(k)n(l).exp(j2wm(l-k)/L) (B6a)

Lt (37)

L- 1

E0() (2L)-' L.O(m) - K (38)

but

0()=-O+CP +1 C22 (B9)

it follows that

EO(z) a -C + CIPI + CIP2) -K (310)
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Now we calculate the expectation of z(y) under Hs.

L-1
E1 (Z) - (2L)- 1 - e(m)E1 (IY(m)12) - K (Bli)

the expectation within the summation can be written as

2 2
Ei(IY(m)I l E(IN(m) + PI(m) +P2(M)I)

=E(IN(m)I 2 + IPI(M)1 2 + jP(M)12 (B12)

+ 2Re(N(m)PT(m) + N(m)P (m) + P1(m)P (m)))

Since the PRS's and noise are mutually independent and zero
mean the above reduces to

j( lY(m)I 2) E(IN(m)l) + V(P11 ) + E(1P2(M)1) (B13)
2

We already know E(lN(m)l ), we only need to find

E(IPi(m) 12), s(IPa(m)12 ) will have a similar expression.

Now

P1 (m) p1ll).exp(-j2vlm/L)

L1-1P1-1

u pl(s).exp(-j2wsm/L).exp(-j2vkm/Ls) (B14)

where pi(s) is one period of ps(l). Eq. B14 simplifies to
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PI-1

PI(m) aLi pj(s).exp(-j2irsv/P1 ) (B15)

m a vt1 , v

It follows that

~IP1(m)I2 *
3P()1 p(s)p(k).exp(j2iv(k-s/ 1

m vL, -v 11101Ii B6

Alt.1  6(k-s).exp(j2irv(k-s)/Pl) (B17)

m *vt. 1 , V

The above simplifies to

P,-1
2 2

E(jP1(m)j) AILIP, 6(m-vL,) (BIB)

similarly we have

P2-1

E(1P(m)) A2L2P2  6(m-vL2) (B19)

.9,
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So

P1 -1

2 V

A2L2P2  6(MV 1 (B20)

Nov

L-1 L'-1 L-1 P-

9(M)E(IY(M)I2) L OL(M) + AILIP ~(M)(M-VLI)

A2L2P2  0(m)6(m-vL2) (B21)

we will consider each of the terms in eq. B21 separately

L- 1

1) Le(m) - L(-co + c 1 P1 +C 2 P2) (B22)

L-I P11I

2) AIL1 PI T (m)6(m-vL,)

*A 1L1 PI G(vL1) (B23)

v-. r-e*~*4
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p1-1 P1-1

a AL 2P, 7 (-CoS(VL1 ) + cl 6((v-r)L1 )

+ c2  6(vL,-rL2))

2
aA1 L1P1(-C0 + CIPI + C2)

Similarly

C~~~3 A202 Mu4,0lml6(m-vL2)Aiico+CP+ )(2)

a 2 L2(-c + C+ + 2 ) COO (B24)

Iztalos tfha nert 1 ad I

+* , 4 A2a.(C + C COO (B25),
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1
E1(z) - Eo(z) ~.(AILI(C2-CO) + A2L2 (Cl-CO)

+ c1A1L + c2A2L) (B26)

Now we find the variance of z under HO

22
varo(z) = E0() (Ez )2 (B27)

2
For z we have the following expression

L-1 L-1

2 e-m 2n

KC e(m) IY(M)I2 + 2 (B28)

Eo(z) 2is then given by

L-1 'L-1
BW (2L) L G)~EY() 2 IY(n)

2 2

and (Ez )2 is given by
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S(Eoz) 2 "(2L)- 2 ( O (m)EoIY(m) 12)2
L-1

va z (20--2 el (m)e IY(m 2
-(2L- 2 2 2 (B301

So

var(z)= (L)'L-1 L-1 I~)

I;M.

L-1
-(2L)'2 (m-Om&J~mJ) B3 1)

The above expression for the variance simplifies to

Svar1) 2 ( (.+CoCC+C2)2 2
=+ I(L2-1) + c2(L-1)) (B32)

Now using the approximations that AI-A 2-A/2, P1ZP2 and Lj=L 2

we obtain the desired expression for d

d ALO1 + L, + L2 )/2 (B33)

N
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