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CHAPTER I
INTRODUCTION

Pasgive Sonar Detection and the associated problems of
doppler and time delay estimation are problems of continuing
research interest in the underwater acoustics community
{1,2,3,4). While passive systems have the disadvantage that
they can not control signal energy, their anonymity and
overall cost dictate their feasibility especially in
surveillance systems [2], ' '

A passive sonar system utilizes an array of two or more
- receivers (hydrophones). Two receivers are sufficient to
estimate the bearing angle of the source in the plane of the
receivers [2]. However if more information is required
about the source, such as localization in three dimensions
and estimation of source velocity, more receivers are
required, The accuracy of the estimates is a function of
the receiver geometry in three dimensions as well as
measurement accuracy. Throughout this thesis we will assume
that we have two receivers, This is a common assumption
made by several authors [1,2,5]. It is not too difficult to
extend the analysis to more than two receivers if the
receivers are considered in pairs. - |

We assume a multipath channel for sound propagation to
each of the receivers, This is in contrast to the
agsumption usually made; i.e. there is only one path to
each receiver [2,6). Associated with each path in the
channel is a complex attenuation (or gsin) coefficient, a
doppler parameter due toc source moction and time delay in
propagation from the wource to the receiver., The details of
the multipath channel are aiven in Chapter 111, The




implications of the multipath channel assumption will become
clear as we proceed.

We will use the Bivariate Normalized Crosscorrelation
(BNC) function as the observable for our detector.
Bivariate refers to the presence of two search variables.,
We define the BNC function, denoted by YT(B,T), as follows

x [o 1(BE)Y3(E - D)at

Yp (B, 1) 8 (1.1)

2 2
(% I lyate)%ae) 20 1o (yate)] Pae) /2

where y,(t) and y,(t) denote the receptions at the two
veceive.s, [qn signifies an integral over an interval of
length T. We will be interested in the intervals [0,T) and
(-1/2,T/2). In general v,(B,t) is complex. A simple
rop.ication of the Schwarz inequality shows that
|yp(B:7)| < 1. We will also need to consider the ambiguity
function Y (B, 1) defined as

b (8,00 & Jygle, ) (1.2)

The properties of the "NC function and the ambigutiy
function are extensively documented in the literature (7],
We will also have occesion to consider tha BNC and the
‘ambiquity functione in the limit T . =, We define

A  7(6.1)‘- liﬁ Yp(8,1) (1.3a)
_ ’ o T i
o b(B,1) = Lim g8, 1) (1.3b)
_ . Tex )
The search variables B, t seek to watch differential
doppler and differential delay between paths to the two

receivers. Two input correlators, univariate and
multvariate, have been used extensively in the detection




theory literature to form the observation statistic [1,8,9].

A detector that is based on the assumption that there
is a single path to each receiver seeks to identify a single
maximum in the ambiguity diagram. The maximum is related to
the mean differential delay and the mean differential
doppler. For detection purposes the height of the maxmimum
is compared to a pre-selected threshold. Detection is
indicated if the height of the maximum is greater than the
threshold. However a detector that is based on a multipath
channel model seeks to identify 2ll the resolvable path
pairs. So, if there are M paths to one receiver and N paths
to the other receiver and all the path pairs are resolvable,
the detector based on the multipath channel model will
identify MN peaks (local maxima) in the ambiguity plane. To
resolve the peaks (path pairs), we need integration times
that are long [10,11,12]., More is said about integration
times in Chapter III.

From the above it follows that if the sound propagation
is by a multipath channel, then a detector based on the
multipath channel model has more apriori information
available to it as compared to a detector based on the
single path channel model. When sound propagation is by a
multipath channel, we expect the performance of the
"multipath channel detector™ to be superior to the
performance of the "single path channel detector."” 1In
making a decision an optimun detector utilizes all the
information available about the signal {(or source) in the
observation, The primary gcal of this thesis is not to find
exact analytical solutions but to establish guidelines and
rules of thumb about how best to unify the information
available in the ambiguity plane as a detection statistic.

Qutline of the Thesis

Chapter II is a brief review of fixed time detection
theory, it is included for completeness and for establishing




notation and convention.

Chapter III starts off with a description of the
multipath channel model. After that the problem is
formulated and developed analytically. It is found that
analytical solutions are non-trivial and perhaps not
possible. This lays the foundation for the abstract
problems considered in Chapters IV and V.

The object of formulating abstract problems is to study
problems that ars sufficiently related to reality and yet
are solvable. The information gained from the study of the
abstract problems is then utilized to form guidelines and
rules of thumb for the exact problem.

In Chapter IV we study the first of two abstractions.
Here we assume a discrete ambiguity plane and use the
"Extended M-Orthogonal Signals" approach to

1) Unify the information in the ambiguity plane
2) Find how many peaks (path pairs) need to be matched
for good or acceptable performance.

The MN peaks in the ambiguity diagram are generated by
M+N independent sets of doppler and delay parameters.
Chapter V uses the notion of "Periodic Randem Sequences"™ to
address the following questions

1) Should the detector treat the MN peaks as
independent entities or as being generated from M+N
independent parameter sets, i.e. should the detector have
MN degrees of freedom or M+N degrees of freedom?

2) Does one approach offer a significant improvement in
performance over the other?

In Chapter VI we summarize and highlight the findings
of the study. Some suggestions for future work are also
made,

Some liberty has been taken with the notations, however

M RIS N R R I R R R R R L Y IV Y. B I . . A O R N N I I LI o A P T A T . O BV S P T UL T N VR L L " P "R T B



the notations are consistent and the author hopes they are
clear from the context.
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CHAPTER 11
REVIEW OF DETECTION THEORY

The purpose of this chapter is to review some of the
results of detection theory that will be wused in later
chapters. This will also serve to establish notation and
convention. Since most of the results presented here are
well known [13,14,15,16,17] detailed derivations are not
emphasized. For the most part, we will follow a Bayesian
approach throughout the thesis., By this we mean that signal
and noise parameters that are not known exactly can be
modelled as random variables with known probability density
functions (p.d.f.'s). The p.d.f.'s are chosen to reflect
the observer's state of objective and subjective knowledge
about the unknown parameters.

2.1 The Basic Detection Problem

A block diagram of the basic problem in fixed time
detection theory is given in fig., 2.1, The observation y(t)
belongs either to the noise alone hypothesis denoted H, or
to the signal+noise hypothesis denoted H,.

Hy : y(t) = n(t) | (2.1a)
Hy ¢ y(t) = n(t) + s(t) (2.1b)
0<t<T

Where s(t) is a known signal or a random proucess. It is
assumed that the hypothesis in effect does not change over

. PR B E e W
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the observation interval. In other words the hypotheses H,
and H, are mutually exclusive.

Often for analytical convenience random processes are
expressed as random vectors. The elements of the random
vector may be obtained using the Shannon sampling theorem
[16, pp. 29-30] or by using a truncated form of some series
expansion such as the Karhunen-Loeve expansion [16, pp. 54-
74]. With vector notation the obsetvation is written as

Ho t y=n (2.2a)

(2]

vhere y, n and s are column vectors with a fixed number of
elements, say L. The observation under each hypothesis is
then characterized by the joint p.d.f.'s £,(y) and £,(y)
where

fi(X) A f(x‘Hi) » f(yo,y“n..yn_‘lﬁi) ’ i‘o,‘ (2,3)

and if given H; the elements of y are independent and
identically distributed (i.i.d.) we have

L-1
fyly) = Ty lHy) (2.4)

2,2 Optimum Receivers Detection Criteria and Decision Rules

Based on the observation and a detection criterion the
processor computes a detection statistic a(y). The decision
device makes a binary decision Dy or D,, according to a
decision rule g(y) and the value of aly). Do implies a
decision by the receiver that y is from Hy; D; implies a
decision by the receiver that y is from H,. There are four
possible hypothesis-decision pairs
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1) Decide D, when H, is true : Correct Rejection (CR)

2) Decide D, when H, is true : False Alarm (FA)

3) Decide D, when H, is true : Miss (M) (2.5)
4) Decide D; when H,; is true : Detection (D)

The conditional probabilities associated with the
hypothesis-decision pairs are '

1) Probability of Correct Rejection e Per = P(Dy |Ho)

2) Probability of False Alarm & P, = P(D,|H,)

3) Probability of Miss 4 Py = P(Dg |H,) (2.6)
4) Probability of Detection & Py = B(D,|H,)

The design of the optimum receiver is based on the
conditional probabilites associated with the hypothesis-
decision pairs.

Commonly used detection criteria are the Bayes
criterion, the Minimax criterion and the Neyman-Pearson
criterion, Based on available knowledge all criteria seek
to minimize the cost associated with making a decision. It
has been shown by Birdsall [18] that for the above criteria
and any other criteria that consider correct decisions
"good" and incorrect decisions "bad"™ an optimum detection
statistic is the likelihood ratio 2(y)

2(y) & £,(y)/E0(y) | (2.7)

Upon making an observation the optimum receiver
computes the likelihood ratio £(y). The decision device
then compares g£(y) with a pre-assigned threshold ¢ (0<c<ew)
and decides D, if R(y) > ¢ and Dy if 2(y) < c. If A(y) =c
then with probability g decision D, is made, this is called

the randomized decision rule. The decision rule g(y) can be

sumnarized as follows
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g(y) A Prob.{D,; |y}  (2.8)

1if a(y) > ¢
LI Bif 2(y) =¢
0 if &(y) < c

The operating values of c and B are chosen to satisfy the
requirements of the detection criterion being wused., If
Prob,{2(y)=c} = 0 the value of B is of no significance.
From now on we will not consider randomized decision rules
and will assume g = 1. Any mcnotone increasing function of
the likelihood ratio is an equivalent detection statistic.
We will frequently use the log-likelihood ratio z(y) defined
below

z(y) & 1n(2(y)) (2.9)

2,3 Simple and Composite Signal Hypotheses

When both £,(y) and £,(y) are completely known the
" hypotheses, H, and H,, are termed simple. In this case the
optimum detection statistic 2(y) or =z(y) may readily be
computed. However when the signal has some unknown
parameters 8, the H; hypothesis is termed composite
(15, p. 86). If the noise has no unknown parameters the H,
hypothesis remains simple. We will be interseted in the
situation where the H, hypothesis is composite and the H,
hypothesis is simple, When H, is composite it is assumed
that the observer knows the conditional p.d.f. £;(y|8). A
Bayesian observer based on the state of his knowledge about
9, assigns @ a prior p.d.f. £(8). The marginal p.d.f. may
now be computed

£.(y) = fe fx(x_lﬁ)f(&)dﬁ_ (2.10)
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This reduces the composite signal hypothesis problem to a
simple signal hypothesis problem. The optimum detection
statistic f(y) is now obtained as follows

£,(y)
2(y) = z%m = [g (£1(z]@)/20(y)) . £(8)d (2.11)

= [, 2(x|8)E(8)de

where

2(yle) & £,(y]8)/E0(y) (2.12)
2(y|8) is the conditional likelihood ratio. &(y) in this
case is the average of the conditional likelihood ratios,
Eq. 2.11 may be obtained in a different way, £,(y}8) can be
vritten as ’ ‘

£.(x18) = £,(y)E(0ly)/E(9) (2.13)
Substituting eq. 2.13 in eq. 2.12 gives

£,(x)(8]y)

1(1'&) - LT ’ B : , R (2.142)
or | |
R(gIB)E(R) = 2(pIE(a]y) o (2.14b)

Rewriting eq. 2.14b gives
aly) = a(y]0)E(0)/(8]y) (2.15)

Eq. 2.15 s -the statement of the Bayes-Birdsall theorenm.
Integrating both sides of eg. 2.14b with respect to 8§ gives
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2(y) = f, a(yle)E(g)ag (2.16)

In certain situations, even for a Bayesian observer it might
be unrealistic to assign a distribution to the unknown
parameter vector §. In such situations an approach that is
often used is to fix some detector and then analyze the
performance of the detector for various values of @. The
detector may or may not be based on the knowledge of the
actual value of §. In Chapter IV we will use this approach
extensively.

2.4 Performance Evaluation

Given the decision rule g(y), the probabilities of
detection PD and false alarm pFA can be determined as
follows

Py = E(g(y)|H,) = Prob.{a(y) > s|H,]
) {(1)3c 9(!)f§(2)52
T {(2)39 filzldg | | o '(2"?{
- fe £(2]H,)ae
and

Pea = E(g(y) [He) = Prob.{aly) > ¢|He)

- gly)fe(y)a
£(1)3F glyltoelyldy

s f foly)dy {2.18)
2{y)>c _

b f: f(ﬁl“o)dg
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where f(&|H;) 1is the conditional p.d.f. of the likelihood
ratio under hypothesis K. Since given a hypothesis the
decisions Dy, and D; are mutually exclusive and collectively
exhaustive, we have the following

Py + Py = 1 (2.19a)

P., + P._ =1 ‘ (2.19b)

FA CR

It follows that P and Py, are sufficient to characterize
receiver performance. From egs. 2.17 & 2,18 we see that Pp
and Ppy are parameterized by the single parameter c. A plot
of Pp vs. Pp, for all possible operating values of ¢ is
called :he Receiver Operating Characteristic (R.0.C.)
curve. The R.0.C, curves completely determine performance
for all operating values of c, R.O.C. curves have been
extensively studied by Birdsall [18].

2.5 Two Examples

We briefly consider two examples of detection. The
first, known signal in Gaussian noise, introduces the
important family of normal R.O0.C, <curves and also
introduces the concept of normal detectabilty. The second,
Gaussian signal in Gaussiar noise, is important because it
occurs frequently in the later chapters.

2,5.1 Known Scalar Signal in Gaussian Noise

The ohservation under Hy and H, is

Ho ¢t y=n~ N(O,az) (2.20a)

H, : y=n+s , s a known constant (2.20b)

‘N IR e I e T S R R A S A R L e A AL S TR R L N R I I B AMEGERAN ~
.\&i}“n‘ AN _\\h o )\_‘\4\ ERCA _\\ A ‘n?‘.\ )'-. ‘\."‘L"‘\-‘-'_“\.-'}-“.-: ‘n‘_"n:‘":_a*,‘- N ';“.v&‘.. '.-.“- ot .-.“: M “.'\‘.“ .“.\ B YA Y
3 . 2 . - 2 1] L N L
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Both hypotheses are simple; the p.d.f. of y under H, and

H, is
E(y[Ho) = (210 )" 2exp(- v /(267)) (2.21a).
E(y|H) = (21 ) 2exp(-(y-8) 2/ (267)) (2.21b)

the likelihood ratio and the log-likelihood ratio are
2 2
2(y) = exp((2ys - s )/(2¢ )) (2.22a)

2(y) = (298 - s°)/(26") (2.22b)

We define d, the normal detectability, as follows

4 é [E(Z'Hl) = E(ZlHo)]z (2.23)
varog(z)

where varg(z) 1is the variance of z under Ho. For simple
Gaussian hypotheses the expression for normal detectability
simplifies to

d & E(z|H,) - B(z|H,) (2.24)

We also define d4' as follows

a & g'/2 (2.25)

Physically d is related to the output signal to noise ratio
(SNR) and is used as a performance index. For a fixed value
of Ppp, larger values of d result in larger values of Py.

2 2
For the above problem d = s /o0 and the statistics of =z
under Hq and H; are

RN, o Pl o’ o BFl ik R e i gt Mt

A R R AL LR UL R AR RN X » ¢ L TR .,z 'L 15'4 DA '-' St e AP
N L e G A T e Ry
F, /e ”y ; ‘l- ™ o A A A i 32 i
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He ¢ 2 ~ N(-d/2,4d) (2.26a)

R, : z ~ N(d/2,4d) (2.26b)

.0

The probabilities of detection and false alarm are given by

Pp = #(x+d') (2.27a)
and

Poy = 0(2) (2.27b)
where

o(x) = (2007172 X exp(-t®/2)dt (2.28)

and A is a function of the threshold. The R,0.C. curves so
obtained are called the normal R.0.C. curves. They are
usually plotted on normal-normal probability paper where
they plot as straight lines with a slope of 1, Normal R.0.C
curves are obtained when the hypotheses are simple and the
log-likelihood ratio has a normal distribution under both
hypotheses. For comparison purposes other R.0.C. curves
are also plotted on normal-normal probability paper. 1In
‘ fig. 2.2 a family of normal R.0.C. curves is plotted for
several d' values. In later chapters we will use d and 4'
to compare the performance of various detectors.

O R RS R

S

> T

:

2,5,2 Gaussian Signal in Gaussian Noise

Nov assume that the observation is a vector y of length

Ho ¢t g =n (2.29a)

Hy s ¥y=n+38 , n & s independent (2.29b)
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where bot. n and s are zero mean Gaussian random vectors of
length L. Let R, and Rg denote the noise and signal
autocorrelation matrices respectively

R_ = E(n.nT) (2.30a)

R, = E(s.57) (2.30b)

The density functions of the observation under the two
hypotheses are

E(y|Ho) = (2m"%/2|R_| "/ 2exp(-y"R  'y/2) (2.31a)
and
E(gH) = (20 %/2|R +r " Zexp(-yT (R +R) " y/2)  (2.310)

Where |R| = determinant of R. We have assumed that the

appropriate inverses exist, The likelihood ratio and the -

log-likelihood ratio are
2(g) = IR |"/2r 4Ry | " Zexp(yT (R, - (R #R) T Ny/2)  (2.322)

z(y) = 5 yT(RT'-(R+R )Ny - 3 (IR *R I/IR ) (2.32b)

Since the second term in eq. 2.32b does not depend on the
reception an equivalent detection statistic is

n(y) = gT(R:' - (4R Dy (2.33)

the above may be written as follows

N R AR AR Y L A A TR AT S A A AR T A TR A S S R LA A LA N L MCSAR TSI S % A
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n(y) = g"R_'R (R +R )y (2.34)

but RS(Rn+Rs)"1 is the linear minimum mean squared error
(m.m.s.e.) estimate [15] of the signal vector, denote this

by S, then

n(g) = ¥R 's (2.35)

This result will be used extensively in Chapter V.

A commonly used sub-optimum detector for the Gaussian
signal in Gaussian noise case is the Energy Detector. The
energy detector uses the total energy in the observation as
the detection statistic. Let e(y) denote the detection
statistic for the energy detector then

e(y) = yT.y | . (2.36)

Note that the optimum detector simplifies to the energy
detector when both signal and noise are white. 1In Chapter V
we will often compare the performance of the optimum
detector with that of the energy detector.
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CHAPTER I1I
PROBLEM FORMULATION

In this chapter we first describe the underwater
acoustic channel and the acoustic propagation model. This
is followed by a description of the receiver geometry.
Finally we discuss the analytic development of the detection
problem. The analytic development is carried far enough to
allow the formulation of the abstract problems discussed in
Chapters IV and V.

3.1 The Underwater Acoustic Channel

Models similar to the model developed here for the
underwater acoustic channel have been used by several
authors [5,10,19,21]. The model incorporates a uniformly
moving acoustic source, a fixed receiver and multipath
propagation. The nth path in the channel is agssumed to
exhibit a real or complex gain c,» Wwhere the path gain
magnitudes, 'cnl' are assumed to be normalized. We assume a
slowly varying ocean so that the cn's and the number of
paths, N, with significant gain remain essentially constant
over the observation interval. The propagation delay of the
nth path is denoted t,(t), where

rn(t) =1, * Tt (3.1)

Tn is the path delay at t=0, either the start or the middle
of the observation interval, T is the path delay
derivative or the doppler shift ratio, For receding sources

1,>0 and for approaching sources Ta<0. Ty, is of the order
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of v/c where v ‘is the radial component of the source
velocity and ¢ is the speed of sound. The spread in T, and

T, is of the order of 0.5% to 1% of max 1, and max L
n n
respectively [10). We can view eq 3.1 as the truncated

Taylor series expansion of Tn(t). This models uniform
source motion, to model more complicated source motion
eq 3.1 would have to be augmented by including higher order
terms from the Taylor series. Putting the above information
together the underwater acoustic channel can be viewed as a
linear filter with impulse response h(t), where

N
h(e) = ) cpdle = 1, (t)) ©(3.2)
o
N
= cp8lapt = 1,)
n=
vhere
o 81 - 1) (3.3)

According to the above model, if a source transmits a signal
s(t), the receiver will receive a signal r(t) given by

N

e(t) = z:; ¢ 8lagt = 1) (3.3)
N=

To complete the description of the acoustic channel ve
incorporate additive noise n{(t) in the reception, so that

-

X
)
h

T

N
r(t) = }:; cns(ant - Tn) + n(t) (3.4)
N=

'y v W v s .
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We assume that the noise is independent of the signal., We
also assume that the noise is a zero mean, stationary,
Gaussian process. The Gaussian assumption is widely used in
the underwater acoustics literature (2,6,11].

3.2 Receiver Geometry and Hypothesis Formulation

The receiver geometry used is given in fig. 3.1, Two
receivers RCVR1 and RCVR2 are placed a distance d apart. In
a more general setting, where the interest is in localizing
the acoustic source in three dimensions and estimating its
velocity, more than two receivers are used, We will assume
that the distance between the acoustic source and the
receivers 1is of the order of 150 kilometers. Assuming that
the speed of sound in the ocean is of the order of 1500
meters/second, the propagation delay from the source to the
receiver will be of the order of 100 seconds and the
differential path delays will be of the order of tenths of a
second. We define Tq 88 the mean travel time of sound
between the two receivers

Ty & a/8 | (3.5)

where ¢ is the mean group speed of sound in the ocean, The
difference in mean time delays to RCVR1 and RCVRZ is
approximately Tqe

We assume that both the receivers have a finite
observation interval of T seconds., We will assume that
baseband signals are available to both the receivers. The
complex demodulation that might be necessary to obtain the
baseband signals will not be discussed., The receptions at
RCVR1 and RCVR2 under H, are
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SOURCE
RCVRI
d
RCVR2
Fig. 3.1 Receiver geometry.
Hy ¢ ya(t) = ny(t) , -T/2<t<T/2 (3.6b)

the ni(t) are stationary, complex, Gaussian and zero-mean
processes, We assume that the receiver separation d is
large enough so that n,(t) and n,(t) are independent, we
also assume that n,;(t) and n,(t) are identically
distributed. The noise power in general is not known.
Under the signal+noise hypothesis, H,, we have the following
situation
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e o
1=

yi{t) = n;(t) + anS(dxnt - r;n),-T/2§t<T/2 (3.7a)

N=

M

Hy ¢ ya(t) = ny(t) + Zczms(azmt - 15,),~T/25t<T/2  (3.7b)
m=

N and M are the number of paths to RCVR1 and RCVR2
respectively. Cip and Czp, are the complex path gain
coefficients, a1p and az, are the doppler parameters (as
defined in eqg. 3.3). The signal s(t) is a zero mean,
complex and stationary Gaussian random process on the
infinite time interval. The autocorrelation of s(t) is
denoted R (1), where

Rg(1) = ar(1) (3.8a)

and

IR(T)| < 1 (3.8b)

We assume R(t) is known, however "a" in general is unknown,
We also assume that the stochastic signal and noise are
independent and are individually and jointly ergodic [22].
The ergodic assumption allows us to approximate sample
averages by long time averages and vice-versa. We assume
the signal process 1is broadband, so that the signal
autocorrelation is relatively narrow compared to the
differential path delays. For our purposes a signal with a
bandwidth of the order of 10 Hz or more is considered
broadband.

3,3 Post Reception Processing for Detection

The usefulness of a correlator detector has already
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been pointed out in the introduction. To reiterate; the
correlation allows us the freedom to introduce independent
delay and doppler search parameters. In our study we seek
to match the differential dopplers and the differential path
delays. As pointed ocut in the introduction we will use the
Bivariate Normalized Crosscorrelation (BNC) functions
Yp(B,1) as the observable for the detector.

T/2
% IT/Z y1(pt)y3(t - v)dt

YT(B'T) = (309)

1 T 2. 1/2,1 /2 2 .1/2
o (t)] 4t = (t)| 4t
(T £T/2 lya(t)| ) ('I‘ {’I‘/Z |y2(t)| )

A plot of the magnitude of the BNC function for wvarious
values of g and t is termed the ambiguity diagram. Peaks
are obtained in the ambiguity diagram when the search values
of B and t match the actual values of differential doppler
and delay for a path pair. Our goal is to combine the
information contained in the peaks in a manner that allows
us to make inferences about the presence or absence of the
source. A block diagram of the post reception processing is
given in fig. 3.2, '

We now look at the BNC function in more detail., As in
{10] we assume that the integration or observation times T
are long enough for the denominator of YT(B.T) to stabilize,
That is, we assume T is long enough for the individual power
measurements to stabilize. Once the power measurements
stabilize it is enough to consider the numerator of YplB.1),
denoted by yunT(B,r), as being representative of yu(8,1).

We first examine the denominator terms of yn,(8,t).
Under H, we obtain

/2 /2
%Iwz IAGIKIEE. /2 Ing(e)] ae (3.10)
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using the ergodic assumption we obtain

1 2 -
T {T/z [ng(t)] &t = Rni(O) , T large (3.11)

Under H, we obtain

3]
[

'I‘/2 2 1 T/z 2
(t)| dt = 5 n.(t)] dt
, e =g [ Ingte)]

+ 2R .l }/2 n(t)sla; .t - 1, )dt
¢/ %n ¥ PR %in Tin
n

: T/2 _
Y et AT Istagt - 1y4)] at (3.12)
int 7T ~1/2 in in .
n

Z Zcin im ? .r S(Q t B in)ﬁ‘(dimt - tm)dc

Since the source speeds are very émall compared to the speed
of sound, it is reasonable to approximate the a;. by  unity

‘in the denominator integrals. This allows us to use the

ergodic assumption in eg, 3.12. For large T consider the
terms of eq. 3.12 individually ' B

) A }/2 In,(t)]’at = R_ (0) (3 {3 )
X a « 158
Tlpg 47 ngttl o
| 7] | |
2) 2 Re > Cip ¥ I nj(t)slagt - r5,0dt = 0 (3.13b)
n
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2

\un i R _ ' _

4)1;_ CinCim T {T/z slajat = 15,08 (ajut rim)dt (3,134d)
. mM#En

L. VN . .F -

=) L’{_cincim Re(Tim = Tin)
n mgEn

From the brcadband assumption we have g;: |Tim - Tin'>Ts'
vhere Ts is the signal <correlation time, so that

Rs(Tim - rin)zo. Also given the diiferent phases for the
c::'s the terms in eq. 3.13d add up incoherentiy. Given the

1]
above it is reasonable to use the approximation

Y * -
Z- CincimRs(Tim Tin) & 0 (3014)
n  mzn

Putting the approximations of egs. 3.13 and 3.14 together we
obtain

T/2 2 2
SRR N EAOTIC R MU Y leial'Rgt0)  (3.18)
n

For the apprcximation to be valid we require the integration
time T to be much larger than max(Tn,Ts), where T, and T,
are the noise and signal correlation times respectively. In
general T >T , so we require T >> Tg. For large but finite
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T the right hand side of eq. 3.15 is the mean value of the
integral on the left hand side. We expect a fluctuation
about the mean, we assume that T is long encugh so that the
standard deviation is much smaller than the mean.

We now consider the numerator of the BNC function,

Yun (B,t). In general Yun (B,t) 1is a function of the
T T

integration time T, the time delay correction t, and the
doppler correction 3.

Yung (B0 6 1 f Yl(Bt)Y:(t - 1)at (3.16)

Under H, we obtain

T/2
Hy ¢ Yun.r(a'” - ‘-r'r/z n, (Bt)n3(t - 7)dt (3.17a)

since n,(t) and n,(t) are independent and zero mean we
obtain

Under H; eq. 3.16 has four terms, listed below individually

1) ?/2 (Bt)n3( )d (3.18a)
n;(gt)n;(t - t .18a
T /2 1igting T
M 2
2) ) e X nigt)s*las t - - v)dt (3.18b)
T lpyp Gapt T Ty T 7 y
M=
N2,
3) €1y T f ng(t - T)S(Bmxnt - Tigldt (3.18¢c)
Nsl

by % *
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8) Yo, et ] }'/2 s(Bai t ) (3.184)
ClnC2m T J aln = T]n .
n= égT 2

.S*(dzmt = Teg T 1)dt

Long time integration, T >> max(Tn,Ts), results in
eqgs. 3.18a, 3.18b and 3.18c approaching 2ero in the mean
squared sense. All three terms (3.18a, 3.18b & 3.18c) may
be considered as additive "noise" in the observation,
although the "noise™ 1is no 1longer independent of the
"signal." We need to examine the behavior of eg. 3.184
under long time integration. Consider the following value
of Rg:

4
B =By ° “2j/a‘i ‘ (3.19)

with this value of B eq. 3.18d can be written as follows

1 T/2 »
i T J’T/Z S(szt - 1’11)5 (dzjt - ‘l’zj - 1)dt

- T/2
+L;udm%%nB“ﬁt‘“ﬁ““mt'um'ﬂﬂ
m

N M
T/2
+ E E C;nCQN ? f /2 S(Sijaxnt - Txn)S‘(dzmt - sz - 1)dt
n M=

a C;iC:j RS(T - (Tli - Taj)) (3.20)

M

1/2 .
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e . V! . -
+ Z?, Z_Tclnczm T £T/ 5(813“1n - T1)8 (azmt " Tep - t)dt
n¥l m=
When 1 = Ty - T2 the cliC:sz(T = {11y = T24)) term peaks.
Similarly we can define a total of MN 8 values for which
expression like eq. 3.20 are obtained. Since we know the
functional form of Rs(t), terms similar to the first term in
eqg. 3.20 can be considered the "signal term"™ and the rest
can be considered a part of the additive noise. Here we
again use the broadband assumption, that is, the range of =t
for which Rg(r - (Tli - sz)) is significant, the other
terms in eq. 3.20 are small, The problem then becomes
similar to the set of problems called "signal known exactly
except for specified parameters plus additive noise" [16].
The observation is two dimensional in that there are two
search parameters, f§ & t. This is a non-trivial problem to
solve, to begin with we would have to determine the
distribution function of the terms lumped together as noise.
Work has been done by several authors [23,24,25,26] in
the area of determining the density function of the output
of an analog crosscorrelator when the inputs are stochastic.
However our formulation is complicated in that the received
signal is the sum of several delayed and doppler shifted
versions of the source signal., At this stage the custom is
to remove the multipath assumption and solve a problem based
on a single-path assumption, We choose to keep the
multipath assumption intact and select solvable abstract
problems, derived from the above problem, for further study.
The results obtained from the study of the abstract problems
will allow us to form rules of thumb and guidelines for an
experimenter faced with the general problem formulated in
this chapter.
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CHAPTER IV
EXTENDED M-ORTHOGONAL SIGNALS AND THE FIRST ABSTRACTION

In Chapter III we saw that a solution to the exact
problem as formulated was non-trivial and perhaps not
possible. In this chapter we study the first of two
abstractions of the problem formulated in Chapter III. The
object of the abstraction in this chapter is to f£ind out how
many of the unknown g,t parameter values have to be matched
for good or acceptable performance.

4,1 Abstraction Formulation

In practise the ambiguity surface is usually quantized;
being evaluated at discrete values of g and 1. The
guantization is usually "fine", that is the steps in 1 and B
are chosen small enough to yield a continuous appearing
surface, Dbut large enough to make the computing job
possible. For the purposes of analysis we will make the
usual simplification that the quantization is coarser than
used in practise and that the quantizations are "matched" in
the sense that the response of a path-pair falls on one and
only one point, and the value there is due to perfect
alignment in time and frequency. We call the grid point a
"cell" and the computed ambiguity value the "cell value",
For simplicity the cells are integer indexed, j=1,2,...,L
and the cell values aire denoted by yj. The total
observation is thus a list or vector I=Y1,0e0,¥y Of length
L.

The observation model will be intentionally
oversimplified at the cell statistics level. Specifically
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 under H,, the cell values are i.i.d. N(0,1). Under H,, C
of the cells are i.i.d. N(s,1) and the rest of the cells
are i.i.d. N(0,1)., C is the number of path pairs and in
the notation of Chapter III C=M.N.

The complications arise from the composite nature of
H;. Let 6 be the set of cells whose mean is s under H,;; 0
is the "signal parameter", z set of cell indices. The
number of possible ¢ is neaL!/CI(L~Cil. We refer to ¢ as a
"pattern" or "signal" and ng as the number of possible
patterns or signals.,

Following the Bayesian philosophy we put a prior
distribution on the signal parameter. If the prior is p(e;)
where ia!,z,...,ne, then the likelihood ratio is

n
i)
2(y) = Zexp(z(ylei))p(ei) (4.1)
I= '
where
z(y|e;) = s.; ¥§ - .5Cs" (4.2)
Gei

note z(y|6;) has a normal distribution and exp(z(y|6;)) has
a log-normal distribution [28],

The first difficulty one would encounter if one were to
try to base a receiver on 2(y) as given in eq. 4.1 is the
size of the parameter space. For a well localized signal
the ambiguity plane might be modelled by as small as a 100
by 100 square i.e. L=10,000, For a 4 path by 4 path

propagation the value of C is 16; there are ne-105°'67

possible signals and as such 1050.67 z(ylei) have to be

evaluated before the likelihood ratio can be calculated.
The primary difficulty lies in the encrmity of the number of
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possible signals coupled with the fact that we lack a simple
structure to reduce this to a sequence of smaller sub-
hypotheses. Of course we do not want to build such a
receiver, we only want to evaluate its performance. We
immediately encounter the second type +f difficulty; namely
that the determination of the distribution of &(y) is
seemingly hopeless because the z(y|6;) are not independent
over i,

Since we have no simple way of determining the
performance of the optimum receiver we must consider an
alternative approach that will allow us to make statements
about the problem posed at the beginning of this chapter,
i.e. how many of the 8,1 parameter values have to be
matched for good or acceptable performance. Now, out of the
ng possible signal patterns, we could select at most L/C
that do not have a cell in c¢ommon., For the simple numerical
example of the 100 by 100 square and a 4 path by 4 path
propagation, such a partition of the ambiguity plane
contains only 625 patterns., It is worthwhile to note that
there are more than 1027334 such partitions.

In the following we consider a receiver based on such a
partition, i.e. based on orthogonal signals. This is done
primarily for mathematical convenience; however, it is
realistic in that the receiver designer is also faced with
the enormity of ne'and is forced to simplify. For example a
receiver design:r may falsely believe that the doppler is
the same on all the pathsé to a given receiver, in other
words ‘the designer_'overlooks' differential doppler. This
means that the source will affect only one narrow g band of
the ambiguity plane (in our simplified ambiguity grid this
band corresponds to one B index, that 1is, the dJdoppler |is
centered and :the frequency resolution sharp enough). To
match our evaiuation model exactly the designer would have
to know ali of the differential delays well enough to
specify the C patterns without overlap. This is
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unrealistic, so the following evaluation is optimistic and
can be considered an upper bound on performance.

This chapter will consider a receiver based on
5 orthogonal signals and examine its performance under several
f conditions; under the assumption that the partition was
' correctly chosen and the true signal is one of the patterns
in the partition, and under two conditions where the true
signal is not one of the patterns in the partition., These
k latter conditions are the ones of interest, for they may
; shed some light on how well one must match the true pattern
to perform well,

4,2 The Orthogonal-Signal-Based Receiver

PR - SO e

In this section we examine the orthogonal-signal-based
receiver, introduced in the previous section, in more
detail. Given a partition, we first reconfigure the
: observation y into a matrix so that each ¢; in the partition
! is one row of C columns. Without loss of generality we can

re-index the patterns so that the receiver is based on the

first L/C patterns (for simplicity in analysis we will
4 assume that RaL/C is an integer). C is a mnemonic for both
! the number of cells in the signal pattern and for the number
of columns in the reconfigured ambiguity diagram. R is the
mnemonic for the number of rows in that reconfiguration. We
also restrict ourselves to the simple case, where the
receiver is based on the traditional worst case assumption
that the R signals are equally likely. PFormally we base the
. receiver on the following prior distribution

1/R ’ iff i"pZ,ooo,R
plo;) = (¢.3)
0 , iff i-R+1,...,ne

with the reminder that
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8300, is empty for 1<i<j<R (4.4)

The true signal pattern will be denoted by 8y or simply by

J. &lso for the rest of this chapter H, will mean H, 0
rvg

4,2.1 The M-Orthogonal Signals Evaluation

Here we evaluate the above receiver under the
assumption that the true signal is one of the patterns in
the partition; that is, J<R. This case is known as "signal
one of M-Orthogonal Signals"™ or simply M-Orthogonal Signals,
abbreviated as MOS [13,18,27,28). M is numerically equal to
R here. The wusual but optimistic normal detectability
approximation is

T

dvos = cs’ - n(R) | (4.5)

ittt
e

wal St

4,2.2 The Extended M-Orthogonal Signals Evaluation

Here we evaluate the orthogonal-signal-based receiver
under two conditions where the true signal is not one of the
patterns in the partition, We call this Extended M-
Orthogonal Signals (EMOS) as the receiver is designed for
MOS, but the true signal is not one of the design signals.
The true signal does have cells in common with the design
signals., Let the number of cells that the true signal has
in common with the ith design signal be denoted by Kyo then

Ky = card{eanei} (4.6)

where card{ } is notation for the cardinality of the set.
For further analysis we make the following assumptions

< and restrictions B
’ oy
3
b %,
L =2 (4.7a) i!
. o';"n
: ~
’ ’.:
a ...
‘ x
Y, ﬁi
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c = 2% (4.7b)
b > 2a | _ (4.7¢c)
R ,

\ "k =

4__“1 C (4,74)
1=1 '

Later, we will be interested in the situation where L=8192,
C=64 and R=i28 (this corresponds to an 8 path by 8 path
propagation model).
. Consider positive integers R and C, R>C, and any set «
R
of R non-negative integers K; such that E:;K

1=
denote the number of decompositions of C into integer

summands without regard to order [35 pg. 825]. For C=64 we

{ = C. Let #ix}

obtain
#{c} = 1,741,630 (4.8)
i .
? The receiver design was based on R orthogonal signals,

each signal affecting C cells. For each signal strength, s,
, there are #{x} possible conditional R.0.C. curves, one for
K, each set k. It is unrealistic to consider a distribution on
{k} and seek an average R.0.C. An upper bound on these
R.0.C.'s is given by the MOS evaluation, where k=(K;,...,Kp)
is specified by

Ky = i ¢, i1 (4.9)
0 ? i.2'3'oo.'R

A lower bound on these R.0.C.'s 1is given by the sparse
condition

’ i-l,Z,....C (4.10)
0 ’ i'C*1,....R
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To shed light on the central question "how well does
o the receiver have to come to matching the actual signal?"”
two types of intersecting sets were selected and performance

P d
g evaluated for C=64 and R=128., The first type which we call
gﬂ standard EMOS is given by the condition.
a
)
c s 6-¢c
5: Ki= 2", i=1,2,..4,2 (4.11)
) 0 , o.w.
]!
) The second type which we call modified EMOS is given by the
3 condition
2° , i=t
' Ki= 1 ? i=2,3,...,65"l‘(1 (4.12)
’ 0 , o.w.

Intuitively performance for standard EMOS should be better
N than the performance for modified EMOS, We are also
;' interested in determining how much the performances differ,
' That is, how much does it help performance if the largest Ky
occurs several times?

L 4.3 Receiver Performance Evaluation

In the following we will discuss performance evaluation
techniques for the standard EMOS in detail, Later when we
discuss Monte-Carlo methods for performance evaluation we
will also consider modified EMOS, Unless otherwise
specified by EMOS we will mean standard EMOS.

Let S denote the number of rows that intersect the true
signal 03 and iet K denote the value of Ky in the S rows,
We can now write down the likelihood ratio for the EMOS
evaluation
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1y) = 3 explzglyley)) + ) explzoly[o;) (4.13)
- T= 4:§+1

where the subscripts K and 0 are used to denote the number
of cells the ith row has in common with the true signal.
Now

2
zK(Y|ei) = s.z:: ¥j - .5Cs , i=1,...,S (4.14a)
J€9i
and
2 .
zg(yle;) = s.z:: ¥y - .5Cs , i=S+1,...,R (4.14b)
Jeb '

i

We are interested in the statistics of }:: yj under H, and

jeei
H)y
Ho ¢ Yj = Si ~ N(0,C) i.i.d., , i=1,,...,R (8.15a)
Jeby .
H { sx + Bi ’ i- 'ooo,s (4 ‘__"\J )
: y - BB
1 g , i=S+1,,..,R R

Jcei

The distribution of zo(Ylei) and z,(y|6;) easily follow f:om
the above

zo(ylei) ~ N{- gsa,Csa) (4.16a)
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Ho ¢ z(y|0;) = N(- §s°,¢s") (4.16b)

*0

e

Hy ¢ zg(yleg) ~ NO(K - $s”,cs) (4.16c)
Since zy(y|6;) and zx(y|8;) have a normal distribution
exp(zy(y|6;)) and  exp(zg(y|[6;)) have a log-normal
distribution and 2(y) has the distribution of the sum of
independent log-normals. Before proceeding further we state
a few pertinent facts about the log~normal distribution. A
detailed discussion and further facts may be found in [29].
Let random variables X and Y be related as follows

X = 1ny (4.17)
with
X = Niy,o) (4.18)

then Y is said to be log-normally distributed, We denote
. 2. )
this as ¥ ~ A(y,c ).The density function of ¥, f(y) is

(52) /2. (0y) "V exp(- §.(ARLZH)%) | >0
£(y) = . (4.19)
o, y20

The kth moment of Y, E(Yk) is given by

2 2
E(Y*) = explky + 25%) (4.20)

2
and the variance of Y, Oy is

o; = exp(2y + oa).(exp(oz) - 1) (4.21)
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To evaluate the receiver performance we need to find
the distribution of the sum of independent log-normal random
variables. Since no closed form expression exists for the
density function of the sum of independent log-normal random
variables we must resort to other techniques, i.g.
numerical or series approximation methods. We will discuss
several ways for evaluating receiver performance.

4.3.1 Approximation to the Detectability Index

The normal detectability d or its square root d' are
accurate measures of receiver performance when the R.O.C.
is normal. 1In this case the R.0.C. 1is clearly not normal,
howvever we will use normal detectability as an approximate
measure of performance [16].

S
E(2(y) [H,) = %(2:;8(1K(y|ei)|u,)
R

' R
. }:; Bloglyley) i) (4.22)
fag+1 |

Where 'QK(.)eexp(zK(.)) and zo(.)vexp(zo(.)), When the
R.0.C. is normal we have [30)

E(R|H,) = exp(d) (4.23a)
E(L|Hy) = 1 (4.23b)

So assuming R(y) results in a normal R.0.C. we obtain for
eq 4.22

expldgng) = 5oexpld, (k) + RS (4.24)
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Where
dEMOS & detect. for Extended M-Orthog. signals (4.25a)
d,(K) 8 getect. for one row with K signal cells (4.25b)

eq. 4.24 simplifies to

exp(dg,ag) = 1 = 5. (exp(d, (X)) - 1) (4.26)
We will consider two cases:

1) Both 4,(K) and dpvog 8T large.
2) Both 4,(K) and dpmog 2T small.

With both d,(K) and dgy,c large we obtain

exp(dgyog) = 5-xp(d;(K)) (¢.27a)
or taking the logarithm, we obtain

d = d,(K) ~ 1n(R/S) (4.27b)

EMOS

When both dpmog 8N4 d,(K) are small we can expaud exp(d,(K))
and expldpyng) in Taylor series and ignore the higher order
terms. Thus we obtain

d = 2.4, (K) (4.28)

EMOS ~

e T AL

=
A

The results in eq. 4.27b and eqg. 4.28 are similar to the
results obtained for the M-Orthogonal signals case [30].
Now 4,;(K) may easily be calculated from the expression for d
and the statistics fer z,(y[6;) given in eq. 4.16
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a,(K) & B(zg(y|o;) [H)) - Elzg(y|e;)|Ho)
-k -5Hs" - (- s’ | (4.29)
2
= Ks

So for large d we have

dgyos = Ks - 1nf (4.30)

We are interested in the situation where L=8192, C=64
and R=128. For the MOS evaluation (K=C) we desire that the
detection be almost sure; we will use this to dictate our
choice for s, From experience a d' = 8 results in high
detection probabilities for wvery small false alarm
probabilities (also see fig, 2.2). Substituting in aqg. 4.30
we obtain

2 _ 64 + 7.1n2

or

s = 1,03 (4.31)
In the following, for convenience we 1let s=1, With the
above choice 9f variables we can find danos for several K.

These values are tabulated in table ¢.1,

4.3.2 Formal Evaluation of the p.d.f. of ¢(y)

Wmagriavn

Our interest is in deriving the density function for
2(y) (eq. 4.13) under both the signal+noise hypothesis and
the noise alone hypothesis. Jnder the noise alone
hypothesis eq. 4.13 esimplifies to

. .
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K| d1i{R)| dpuog | 9EMOS
1 1 .5 .707
2 2 .5 .707
4 4 1.92 | 1.39
8 8 5.23 | 2.29
16 16 12,53 | 3.54
32 | 32 27.84 | 5.28
64 | 64 59.15 | 7.69

Table 4.1 Table of normal detectability for several
K values, for signal power s=1,

R
2y) = 4 Zexp(zo(y{ei)) (4.32)
im _
Define
"k - %oexp(zK(Ylei)) ) (‘033)
then
1
arfz{inRa) , o > 0
£ (a) = (4.34)
% 0 , 0.V,
~
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:,' 2 - 2
% (21€0”") "2, exp(- 5(1na-(k - § - 1ar))") | >0
" £, (a)= (4.35)
53 k 0 -, o.w.
b
)
N for C=64 and R=128 the above reduces to
- (K- 2
%iQ (T:‘,)1/2"8?1!"exp(- %.(lna (18( 36-852)) ) , a>0
X ,
fﬁ £, (a) = (4.36)
kol k 0 ) OW,
- Since the w,'s are independent and identically distributed
P for fixed K, the density function for the 1likelihood ratio
bt
¥ 2{(y) is the convolution of the density functions of the
R v 's. Or if wve let ¢wk(v) be the characteristic function of
.
. f“k(a) and ¢lk(v) be the characteristic function of flk(a)
i we have
e
% w .
B ¢wk(v) . !0 fwk(a).exp(Jva)da (4,37)
&
) s R-S
Y ¢1k(v) = (¢wk) .(¢w°(v)) (4.38)
\"'
o
2 3% Ifm ¢1k(v).exp(-jva)dv
'J‘i" k O ’ O.VW.
A
R .
5 éln(v) - (°w°(")) (4.40)
)
g% and 1
3 3 oo b1, (V) exp(-jvalav
P o
“ 0 O ’ O.W, kN
f Now if we choose A as the threshold value for the purposes E
LY \J
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of decision making, the probabilities of detection Pp()]K)
and false alarm Pp, (1) may be calculated as follows ‘

Pp(r|K) = [T flk(a)da
=1 - fé flk(a)da (4.42)
Ppa = f; flo(a)da

1= f§ £y, (a)da (4.43)

Formally the problem is solved. However to get the R.O.C.
curves we need to do more because no closed form solutions
to the above integrals(4.37 to 4.43) exist., We need to find
suitable numerical or Monte-Carlo procedures for evaluating
the R.0.C.'s. In the following, three procedures that were
considered for evaluating the R.0.C. curves are described.

4.3.3 Discrete Fourier Transform Approach

The DFT approach for evaluating the density function
for the sum of log~normal random variables is fairly
natural. The procedure for evaluating the density function
and the R.0.C. 1is briefly discussed,

First to calculate the characteristic functions ¢"k(V)

we need to find a value of a, say n such that for all K
In wk(a)da. < g (4.44)

Where ¢ is chosen in accordance with how much error can be
tolerated in the calculation. The next step is to sample
f"k(a) and fwo(“) in the region (0,n). The sampled
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& sequences are then padded with a sufficient number of zeros
K to avoid the wrap around effect in later calculation. This
is followed by evaluating the DFT of the two sequences. The

ik
$ DFT of the sampled versions of fwk(a) and £, (a) are raised
%. to the Sth power and the (R-S)th power respectively. The
L sequences so obtained are then multiplied and the inverse

;ﬁ DFT operation is performed; this results in a sampled
;4 version of flk(a). A similar procedure yields the sampled
A0
ii version of flo(a). A suitable numerical integration
.

_ procedure (say Simpson's rule) then yields the probabilities

b of detection and false alarm.
% In our problem, for the values selected for L, C, R and
%{ s, this procedure breaks down. From the values given in
i 2

. Table 4.2 for E(w,), E(w.), maxfwk(a) and the value of a at
RN
ﬁ- which the maximum occurs we see that the fwk(a)'s are not
Bk
& well behaved. A suitable common sampling period can not be
L found. It is also not appropriate to model the densities as
o § functions due to their long tails as evidenced by the huge
?, variance,

%
e
b 4.3.4 Numerical Integration Methods for Evaluating the R.0.C.

) This section is based on, and is an extension of the
*ﬁ techniques developed by Nolte and Jaarsma [28] for
W evaluating the R.0.C. curves for the detection of one of M-

. Orthogonal signals, .
-l We will only describe the calculation for Py(A|K). The E
ﬁ techniques for calculating Ppa(A) are the same except that S 5
q and K are both set to zero, W
_i We can write the ¢1k(v) the characteristic function for g
5; the density function of the likelihood ratio in terms of its g
b real and imaginary parts @
) i
b ;
3 2
: 3
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o, (v) & 6o (v) + 3o, (v) (4.45)
1, ¢Rk ¢Ik ‘
Substituting the above in eq. 4.39 gives

7% [ [¢R£v)+j¢1£v)][cos(va)*jsin(va)]dv ,0>0

£, (a) = (4.46)
k 0 ’ O.W.,

Since flk(a) is real eq. 4.46 reduces to

f% ff; [¢R£v)cos(va)+¢1év)sin(va)]dv ,a>0

k 0 ; OV,

Also since flk(a) is the convolution of densities that are
zero for a < 0, flk(a) must also be zero for a < 0 i.e, for

a >0, flk(-a) = 0, This implies that

12, ¢R£v)cos(va)dv = ffw ¢I£v)sin(va)dv » a>0 (4.48)
So
% ffm ¢Rk(v)cos(va)dv , a>0 | |
£y (a) = (4.49)
k 0 r OuW,

and since ¢Rk(v) is even

% jg QRk(v)cos(va)dv ra>0

£1 (a) = (4.50)
k 0 y OV,

Now substituting eq. 4.50 in eq. 4.42 we obtain
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. By(a[R) = 1 - 2 g} g% op, (V)cos(va)dvdn (4.51)

Changing the order of integration in eq. 4.51 gives

Py(A|K) = 1 - 27 0g, (V) [§ cos(va)dadv (4.52a)

1-272 g, (¥)- Linlva) |4 4y (4.52b)

al>

f: ¢Rk(v)sinézx)dv (4.52¢c)

For the time being assume that ¢Rk(v) is available, then the

integral in eq. 4.52c can be calculated using Simpson's rule

between the zeros of the function §iﬂé§ll. The number 6f

points chosen between the zeros depends on how fast ¢Rk(v)

varies. The integration is carried out until successive

approximations to the integral differ by less than 107/,
Now we develop the procedure for evaluating ¢Rk(v) at

the selected v values, We can write the characteristic .
functions owo(v). ¢wk(v). and ¢1k(v) as follows
¢VO(V) @ |¢w°(v)|.exp(jeo(s)) ' (4.53a)
¢wk(v) = |¢wk(v)|.exp(jek(s)) (4.53b)

¢1k(v) = |¢1k(v)|.exp(jel(s)) (4.53¢c)

Where |¢w°(v)|, 8o(v), |¢wk(v)|. 8, (v), and l@lk(v)l, 8y (v)
are the magnitude and phase of ¢wo(v), ka(v) and ¢1k(v)
respectively. Substituting the above in eq. 4.38 gives



o

B |67, (v) ] exp(iey (v) = |¢wk‘V)|s'|¢wo(V’|R-s (4.54)
) .exp(j(Sap(v) + (R-8)g,(v)))

%

- 1t follows that

¢Rk(v) = |¢lk(v)|cos(el(v)

R-S
l

= l¢gk(v)ls.|¢wo(v) .cos(88, (v)+(R-S)8,(v))  (4.55)

We need to calculate the magnitude and phase of ¢wk(v) and
a by (v) at the required v values., We will describe the
! pxocedure for obtaining ¢w (v); ¢w°(v) is obtained using an

5 identical procedure with K-O. Now ¢wk(v) is given by

g by, (V) = (210)7"/2 j7 Liexp(- fe(ing = (K-§-10R))")

e .exp(jva)da (¢.56)
’ Define

%

4

: uk ﬁ K - % - 1nR (40575’
&

and
Eﬁ 28
2

Substituting the above in eq. 4.56 gives

1o .l k) .‘. -
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- o - lng -
by (v) = (20712 [2 (a) " exp(- J(——=£)")
.exp(jva)da (4.58)

Using the substitution B = lna gives

B'l-lkz
o =) )

¢wk(v) = (210”172 JZ, exp(- %(

.exp(jveP)ap (4.59)

Since we need to start the numerical integration at a finite
lower limit a suitable 1lower 1limit which results in
negligible error must be found. Let x be the desired lower
limit then '

. B -
by, (V) = (216")71/2 [X_ exp(-3(——%)") .exp(jveP)ap

2 .exp(jvea)da (4.60)

Then the error E is

ky? .exp(jves)da (4.61)

E = (2106 )72 [X_ exp(- % :

and

k)%)ap (4.62)

- g -
Bl < (200072 [X exp(- §(—
if we let y = -60 + Uy, we obtain

- 6 i
| < (2m6) V2 5 __ k)?)ap (¢.63a)

B-
exp(- %( .
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using the substitution x = P~ ¥k we get
o

B] < (2172 (26 exp(- x"/2)ax = 107 © (4.63b)

This error is smaller than the quantization error introduced
on the machine that was used for the calculation.
Let ¢“k(V) and ¢wk(v) be the real and imaginary parts
R I

of ¢w£V)’ from eq. 4.59 with x substituted for -«, we obtain

B'uk

by, (V) = (20712 Fggry, X0 Fl—5—51")

.cos(veB)ds (4.64a)

z - B = w2
¢'kI(V) = (2n0°)"1/2 ff50*uk exp(- %( 5 k) )

.sin(vef)ds (4.64b)

Egs. 4.64a L 4.64b were evaluated using a 5 point Gaussian
integration procedure [35]. From =60+yy to the first zero

of gg:{ves} the 5 point gauss-quadrature procedure vas

applied over steps of ¢/4. Thereafter the integration was

performed between successive zeros of g?g{ves}. The
integration was continued until the difference betweeen

succesaive approximations to the integral became less than

-?
10 . The R.0.C. curves so obtained are plotted in
fig. ¢.1.

4.3.5 Monte-Carlo Methods for Evaluating the R.0.C.

Monte Carlo simulation methods were used to confirm the
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results obtained in fig. 4.1. The procedure is breifly
discussed here, Basically a decisisn making device is
simulated. The device sees random variables with the
distribution of either z{yl|H,) or z(y|H;). According to a
predefined threshold the device either accepts or rejects
the H,; hypothesis. The probability of false alarm for a
given threshold level is then estimated by dividing the
number of z(y|Hy,) r.v.'s for which H, is accepted by the
total number of z(y|H,) r.v.'s generated. A similar
procedure using z(y|H,) r.v.'s gives the probability of
detection. The procedure is repeated for as many threshold
levels as points are desired on the R.,0.C. curve, Our
simulation evaluated 31 points on the R.0.C. curve based on
10,000 trials each.

The analysis in the previous was restricted to what we
had termed standard EMOS. This was done primarily for
analytic and computational simplicity. Monte-Carlo methods
allow us to evaluate the R.0.C. <curves for the modified
EMOS. This was done for the following parameter values
L=8192, C=64, R=128, s=1 and for K,;=1,2,4,8,16,32, The
R.0.C. curves so obtained are given in fig. 4.2.

4.4 Summary

The R.0.C. curves obtained in figs. 4.1 & 4.2 suggest
that when the design signals are such that the number of
signal cells/row that are common to the true signal is
small, the quality of detection is poor. The R,0.C. curves
in fig. 4.2 in some sense provide a lower bound to
perfomance in that we assume that localizing some of the
signal bearing cells does not provide any information about
the other signal bearing cells in the ambiguity plane. We
see that in this case it is necessary to localize
approximately half the signal bearing cells to obtain
performance that 1is substantially better than chance. The
R.0.C. curves in fig. 4.1 assume that 1localized signal
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cells provide some information about the other signal cells
in the ambiguity plane. We see that performance
substantially better than chance is obtained when a quarter
to a half of the signal cells have been localized. The
above conclusions are based on the fact that no single
signal bearing cell dominates the ambiguity diagram. The
EMOS method also provides us with a technique for combining
the information in the ambiguity diagram for detection
purposes.
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CHAPTER V
PERIODIC RANNOM SEQUENCES AND THE SECOND ABSTRACTION

As stated earlier, the MN peaks 1in the ambiguity
diagram are generated by M+N independent sets of doppler and
delay parameters. Two of the questions addressed in this
chapter are

1) Should the receiver treat the MN peaks as
independent entities or as being generated from M+N
independent parameter sets? In other words should the
receiver have MN degrees of freedom or M+N degrees of
freedom?

2) Does one approach offer a significant improvement in
performance over the other?

There is5 no simple or direct way of answering these
questions. Our technigue is to study a solvable abstraction
that captures the essence of the above problem. To
consiruct the abstraction we use the notion of Periodic
Random Sequences. In Sect. 5.1 Periodic Random Sequences
(PR3] are introduced and a framework for the abstract
problem is established. The following sections deal with
the theory of detection of Periodic Random Sequences in some
detail. After this digression, the abstract problem is
considerd in Sect. 5.4.

5.1 Periodic Random Sequences

We define a seyuence p(n) to be periodi¢ random with

59
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period P if it satisfies the following two properties

1. p(n) ~ N(O,oz) i.i.d. 0 < n < P-1 (5.1)
2. p{n) = p((n)modP) all n. (5.2)

Of course in general a PRS need not have independent or
gaussian samples and the samples may not necessarily be zero
mean. However, unless otherwise stated, by a PRS we will
mean a sequence that satisfies the above properties. The
autocorrelation function Rp(k)=E{p(n)p(n+k)} of a PRS with
period P is also periodic with period P

2
Ry(k)=fg  (KimodP = O (5.3)
Consider a signal s(n) made up of two independert
PRS's, pi{n) and p,(n) with periods P, and P, respectively,
that is s(n)=p;(n)+pa(n), Assume that P, and P, are
relatively prime and that our observation consists of
L=P,.P, samples and consider the detection problem in which
s(n) is received in additive noise. Now the P,,P, samples
in the observation are really generated by P,+P; independent
samples. This situation is analogous to that of the M.N
peaks in the ambiguity diagram being generated from M+N
independent parameter sets. In Sect. 5.3 we will study the
detection of s(n) (as described above) in noise based on two
design hypotheses, one based on P,.P; independent samples
and the other based on P,+P; independent samples. Now we
study the detection of Periodic Random Sequences in noise.

5.2 Detection of one PRS of Known Period in Gaussian Neoise

Let the observation be a vector y of length L,

x-(yo,yl....,yn_,)w. The statistics of y under H, and the
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H; hypotheses are
Ho 3 y; = n(i) , n(i) ~ N(0,1) i.i.d. (5.4a)
Hy ¢ y; = pi(i) + n(i) , p; and n independent (5.4b)

vhere p;{(i) 1is a PRS with period P, and p,;(i)~N(0,A;). We
assume P; divides L, i.e. L,;.P;=L, vhere L; is the number
of periods of p;(i) iu the observation, Let R be the
autocorrelation matrix of the observation wunder the

signal+noise hypothesis, R-E(x.lenl). For now assume that

R1 exists, so we may write down the probability density
function of the observation under the two hypotheses

E(g|H,) = (52)*2.exp(-yTy/2) (5.5a)

'%)L/z-(T%T)1/2-exp(-xTR'1x/2) (5.5b)

i\llﬁx) = {‘

where |R| is the determinant of R, From eq. 5.5 it follows
that the likelihood ratio 2(y) and the log-likelihhod ratio
z(y) of the observation are given by

2(g|8) = (T%T)1/2.exp(xT(I-R")1/2) (5.6a)
z(y|8) = 597 (1-R" ")y - Jin(|R|) (5.6b)

vhere g = {A;,P,}. The likelihood and log-likelihood ratios
are conditional to the period and the signal power,

Before proceeding further we need to taka a closer look
at the autocorrelation matrix R

R = E(y.yT|H)) (5.7)

- +
R, Rpx
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Where Rn is the noise autocorrelation matrix and Rpl is the

autocorrelation matrix of PRS p,, the above decomposition
follows from the independence of noise and PRS p,. Now

R, = I, , the L:.L identity - (5.8a)

Rpx = A {8(|i-j|modP,)} i,3=0,1,...,L~1 (5.8b)

Of course R is Hermitian symmetric, and, as such is similar
to a diagonal matrix [31 pp. 201-202]. Due to PRS p;, R
also has the interesting property that each row of R is a
right circular shift by 1 of the row immediately above it.
Matrices with this property are called circulant or cyclic
matrices (32,33 pp. 133-139].

5.2.1 Properties of Circulant Matrices

Since the theory developed in this chapter relies
heavily on the properties of circulant matrices, some of the
useful properties are summarized here, Let Ch be a nxn
circulant matrix, then

Ch ™ |c0 €1 Caevecp_y (5.9)
Cn_1 co Cx . nocn_z

c C Co...c

.n-z n-1 n-3

4

.
.
C) Cg C;g..Co

Circulant matrices are a special case of Toeplitz
matrices. The matrix may easily be diagonalized. Let vy, be
the rth eigenvalue and u. the rth eigenvector, then {. and
u,. are the solutions of

Coelp = Vool (5.10a)
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or equivalently of the following system of difference
equations

m-1 n-1

Y -
2:;?n-m+kurk * é__?k-m“rk = Velep o ? - 8'}""':_}(5'1°b)
= am rPtyesey

vhere {, is the rth eigenvalue and Uex is the kth element of
the rth eigenvector. It is easily verified [32,33 pp. 133~
139] that

n-1
*r = gcknexp(-jZNrk/n) I = 0,1...,0'1 (50113)

. = ()12, (1,exp(-3202/n), ... ,exp(-32u(n-1)£/n))T (5.11b)
r = 0.1,;40,“"1

The sequence of eigenvalues Vorbireess¥pog is the Discrete
Pourier Transform of the first row of the matrix C, and the
eigenvectors are independent of the elements of Cn. Now
define the matrices

Uy & {volusleeelyy yl) ) (5.12a)

‘Pn A diag(‘lo;‘“,..-'*n_q) (5.12b)

The matrix U, is a unitary matrix, so U; - conj[Uﬁ] . UR‘.
And Cn is unitarily similar to the diagonal matrix ¥ that

is €, is a normal matrix [31 pp. 201-202].

s
C, = U,¥,U, (5.13a)

-1 -1, &

C, =U,¥, U, (5.13b)
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C;1 will exist if and only if all the eigenvalues are non-
zero.

5.2.2 Eigenvalue Eigenvector Decomposition of R

Let R(n) be the first row of the matrix R ,then

R(n) = §(n) + A,8((n)modP,) , n = 0,1,...,L-1 (5.14)
L1‘1

= G(n) + A;Z:;6(n-lpl) s Ly = %l
The sequence of eigenvalues Yy(m) of R is given by

-1
vim) = R(n).exp(~j2wnm/L) (5.15)

o)

]
i

-1
§(n) .exp(=j2unm/L) +

o

]
.

1 -t

EE; Z:;&(n-lpg).exp( j2anm/L)

- t 1+ ML, , M = O,L;,ZL,,....(P;-l)L;
1 ¢ O.W

Let ¥, = diag{(y(0),9v(1),...,4(L-1}}, be the diagonal
matrix of the eigenvalues of R and Uy, the unitary matrix of
eigenvectors of R, Then

»
R= UL?LUL (5.16)

|
K
!
',
i
?
t
E
’
)
)
'
y
;
|
!
!
q
{
i

and since all eigenvalues ate non zero

- »® -'n LIPS IRSCIY T -'-:’. T Lt ete T e ety ", LA ATt T IR VL I S ST S S S ¥ PRI R T SR T S TR
i‘.t‘,-f, ‘,,n ) \0,0“h,ﬁ,t.' A A A o"c.d‘.t.t‘ﬂ‘v‘-'.‘,—.,‘_l"l"n"-". R R AL ey S L SRR S N A AN
. Y N N -t . . . N

A, AR N 1‘“‘\ ORI TSRS PRI LI e Sttt e A e e I B P A ORISR
ey VAR AV AN WA N g e et e T e e e e e T e e T e e Tt e




-1 -1,.%
R =10U¥ U (5.17)

5.2.3 The Optimum Detector

We had derived "the log-likelihhod ratio z(y|B) in

1

eq. 5.6b. Substituting for |R| and R ' in eq. 5.6b and

using the fact that U UT=I we obtain
z(y|) = 3370, (1-¥; 0Ty - $in|¥,| (5.18a)
where |¥ | = Det ¥, = Det R = (1 + A;L;)F! (5.18b)

Denote the diagonal matrix I-?;1 by 8, and let 6(m)
denote the sequence of the diagonal entries of 6, o(m) is
then simply given by

1
o(m) = 1 "m)

AML/(1HA L) , mo= 0,Ly, ..., (By=1)L, (5.19)
0 0¥, ' ‘

For brevity define c, e ML /(1+A;L5,)

So now z(y|s) is given by

z(y|8) = $y"U, 0 ULy - $1n|¥, | (5.20)

Now there are tvo options available to us 1) Calculate

the vectors zTUL and 021 first or 2) Calculate the matrix

U8, U first. We will consider both options, the first

option gives us better insight and the second leads to a
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practical detector structure,

5.2.3.1 Optimum Detector in the Frequency Domain

Define the row vector Y as follows

(3)1/2%g & yTu, (5.21a)

it follows that
1,1/2,% %
(g) 7°Y = Uy (5.21b)

The row vector Y is simply the DFT of y and with y real, g*
is the conjugate transpose of Y. So z(y|B8) is equivalent to
the statisitc z(Y|8) given by

2(2]8) = 3p.20,7" - 3ln|¥y | (5.22)

1f we assume that the period P; and the power level A,
are known an equivalent detection statistic is @(Y¥)

o(zlp) & 5l.v0, 8" | (5.23)

Since is a diagonal matrix, we may simplify the above
equation as follows, let Y(m) be the mth element of ¥ then

L-1
$(X|p) = 7% 2:;0(m)lY(m)|2 (5.24a)
M=
L-1 \
= ) y(m)¥(m)| (5.24b)
o=



where y(m) & (E%G(m))1/2 (5.24¢)

Detection based on ¢(Y|g8) 1is similar to an energy
detector, we will call it a " frequency selective energy
detector " or FSED. In fact y(m) defines a digital comb
filter [34 p. 241]. A block diagram of the above detector
is given in fig. 5.1. We now examine the sequence Y(m)
under both the noise alone and the signal + noise
hypotheses.

Ho H Y(i) a n(i) ’ i= 0,1,000,L‘1 (5.258)
& Y(m) = N(m) s WM = O'T,OQQ'L-I

Hy : y(i) = p, (i) + n(i) , i = 0,1,,..L-1 (5.26b)
& ¥(m) = Py{m) + N(m) , m=0,1,...,,L=1

Where N(m) is the L point DFT of the observed noise sequence

and P,(m) is the L point DFT of the PRS p,;(i). Define ﬁxéi)
to be one period of PRS p;(i).

Bl(i) = ‘ pl(i) ’ i = 091'500'91-1 (5.27)
0 ; 0.V,
then
L-1
Py(m) = pi{i).exp(-j2nin/L) (5.28)
1=

L~ (n*i)P,-1

.Z; Z pr(i-nP,) .exp(~j2nim/L)
Ni= 3“?;

and using the substitution s = i-nP;,, wve get
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P L

L1'1 91‘1

=y ‘““51(53,exp(~j2w(s+nP1)m/L)

Pl" ' A L1‘1
2 E;En (s).exp(-j2wsm/L) ‘rexp(-qunm/L, )
g= ézU

L1'1“

now 5-exp(*32unmlnl) = t Ly » m=0,Ly,eee,(Py=1)1y
n=0 0 , oww,
So
pl“l
Lxsw-Pz(S) exp(- JZusm/L) , me0 gl,,,‘,( 1= 1)y
§=0 ' , |
P;(m) = : (5.29)
: 0 ¥ 0-“9 a

The above shows that under H;, ¥(m) has signal
components only for m=0,Lj,...,{Py=1)L,. This is
intuitively pleasing becszuse 6{w) 13 non~zero for precisely
the above m's, So the fregquancy selective energy detector
rejects the "out of hand ncise.” '

5.2.3.2 Optimum Detector in the Time Domain

Now we first calculate the matrix ULGLUE. This will
lead to a time domain solution for the detector. Let

Q & ULGLUE’ then because 9y, is diagonal Q is circulant., So
the matrix Q may be determined in terms of its first row
Qi{n), in fact, the first row is just the inverse DFT of the

seguence 9(m).

A L”\ et \P‘ v
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L-1
% 8(m) .exp(j2anm/L) . (5.30)
m= - ”

]

Q(ny

(c;/L).}E; ‘f_K(m-rL;).exp(jzﬁnm/L)
m= é:ﬁ

P"1

(c;/L).z:;exp(jznnr/Lx)
r=

= f c,P;/L , D @ G,Px,..o,(Ll'l)Px
0 ., o.w.

“

So z(y|B) is given by

z(y|8) = %xTQx - %lni?nl (5.31a)
P;“‘L; 1

- (S5, 2:; 2:;y<3+xP,)) - *1n|vn| (5.31b)

1f we assume that the signal power and period are known
then an equivalent detection statistic is ¢{y) giver by

Py=-10L,~1
H
s(gle) = (°*?').§:;(2:;y(j+up,)) (5.32)
A BT

We call the detector that uses ¢(y|B) as the detection

statistic the circulating average energy datector (CAED) or
the periodic averaging energy detector. fig. 5.2a is a
block diagram of the generic signal processor that produces
¢{y|8) with the parameters P,, L, and A;. The "analog shift
register™ is initially set to zero, once the desired number
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of periods (L,) have been measured the switch feeds the
output of the "analog shift registor” into the squarer; In
future we will call this signal processor the CAEDSP with
the appropriate parameter values denoted in brackets.
Fig. 5.2b is a block diagram of the above CAED.

5.2.4 Performance Evaluation of the Optimum Detector

First of all note that ¢(y|B) and ¢(¥|g) are the same
random variable, hence decisions based on ¢(y|B) are
equivalent to decisions based on ¢(¥|g) and they result in
identical performance, In this section we derive the
probability density function for ¢(y|g) and =z(y|g8) and
compare the performance of the optimum detector with that of
the total energy detector.

5.2.4.1 Derivation of the p.d.f. of ¢(y) and z(y|R)
L1‘1

Let a(j) = +(°‘p‘)1/2.<_~y(j+kP1), then  a(j) is

normal, The statistics of q(j) are derived below

Ela(3)|H ] = 0, k = 0,1 (5.33a)
L1“1L1"1
Bla’ (§) |Hod = (C1P1).Y Y Elg(§+kp,)y(i+spy)[Ho] (5.33b)
!E =() 8=
L1‘1L1‘1

= (clpl).Z:; z:;ﬁ((k-s)Pl)
2L ={) S§=

2
= ¢;PL,/2L = ¢,/2 4 Co
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——y-(l)—eqCAEDsp(p,’A,'L,) g(y) ddegisgzn decision

Fig., 5.2b Block diagram of the Circulating

Average Energy Detector.

L1‘1L1"1
(_E_C‘P‘)-g Z;E[y(j+k1=x>y<j+sm)|all (5.33¢)
L = =
L,~1L,~1

(°1PI).Z:; }:;s[n(j+kp,>n<j+sp,> + piii]
= s-

(ié_;l_].(r., + AL, )

Ela (§) |H,]

(€1/2). (1 + ALy) = AL, /2 & o
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So we have

£a(3) [H) = (g7) "2 (G1) exnt- 2§§il) , k=0,1  (5.34)
k

\ .
Now let y(j) = a (j), then it follows that

(-——J———7)1/2.exp(— xiil) . v(3)>0
ZWY(j)Ok Zok

E(y(§) |H,) = (5.35)

0 r O.W,

which is a gamma density function with one degree of

freedom. Now the y(j)'s are independent and identically
91'1

distributed under both hypotheses. Since ¢(y|B) = X—_y(j),

¢(y|8) also has a gamma density but with P, degrees of
freedom.

(Pl/Z)“1

b .exp(- =27) , ¢ > 0

f(¢|Hk) = (ZOE)PI;:.T(P;/Z) 20k (5.36)
0 1 OV,

Where TI(.) 1is the gamma function [35 pp. 255-263). Now
z(y|g) = %¢(XIB) - %.lnl?hl, substituting for |¥,| gives
z(y|g) = %¢(Z|B) - (Py/2).1n(1+A,L,). If we let
blé(Pl/Z).ln(1+A1L1) then it follows that

(P,/2)-1 z+b
f(ZIHk) = (Zok)9172or(P;/2) Zok (5.37)
0 ) QW

If u is a threshold level for z, the probabilities of

4
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detection and false alarm are.given by

Py = [LE(z|H))dz

(Py/2)-1 z+b
- (z+by) ! .exp(- —)dz
U (201)P1/2,1(p,/2) 201

using the substitution w = z+b,, we obtain

(P,/2)-1
P, = [ v .exp(- -2r)dw
D u+b -
' (260)P1/2 1(p,/2) 201

= P u+b,
r(ii, ;;7_)/r(91/2)
1

= 1 = y(B1, WPy /r(p,/2)
T 20,

Similarly

Pea = T(L :*1b*)/r(p,/z>
Oo

=1 - (B, Yh1yp(p,/2)
z 20¢

r<.,.) and y(.,.) are the incomplete
defined as [35 pp. 255-263])

Fa,x) = f: t“'1.exp(-t)dt

vl(a,x) = fg %1, exp(~t)at

(5.38a)

(5.38b)
(5.38¢)

(5.384)

(5.39a)

(5.39Db)

gamma functions

(5.40a)

(5.40b)
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5.2.4.2 R.0.C. Curves and Comparison with Energy Detector

The energy detector is a sub-optimum detector, it would
be optimum if the signal samples were independent. That is,
it ignores the signal periodicity. So the energy detector
is based on the following observation statistics

Ho = y; ~ N(0,1) i.i.d. (5.41a)

Hi = y; = N(O,1+a;) i.i.d. (5.41b)
and

E(y|Ho) = (51)%/2.exp(- yTy/2) (5.42a)

t(ylH1) = ()2 ()™ 2 exp(- gty aTy) (5.42b)

The likelihood ratio £,4(y) and the log-likelihood
ratio zed(x) are given by

Ay
fegfllA1) = (T%KT)L/Z.exp(- 7TTTXTT‘1TX) (5.43a)

L-1
A
2oq(zlA1) = m—:,-ﬂ-)-.;yz(i) - (L/2).1n(1+A;)  (5.43b)

L-1
2
z:;y (i) is the total energy in the observation, Assuming

1=
signal power is known an equivalent detection statistic is

n(y) given by

L-1
A
n(y) = T(T,;x—l-y. yz(i) (5.44)

i=
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A block diagram for the energy detector 1is given in
fig. 5.3, Under Ho, n(y) and 2z 4(y) have gamma density

2
functions. If we let bzé(L/Z).ln(1+A1), and with gy=1 we
have

n({E/2)"1 cexp(- 2y) , 1 >0

f(ano) = (20§71/2.T(L/2) 200 (5.453)
0 r OeW.
(L/2)-1 Z_.+b
(zeg+§;; .exp(- —23—13) r 2oq > ~b2
o]
f(zedlﬂu) = (200) .I‘(L/z) 0 (5.45b)
0 ;r OuW,

If eq. 5.41b were true, then under H}, n(y) and zed(z) would
also have density functions similar to eqgs. 5.45a and 5.45b

respectively; with o: replaced by of=1+A1. If we assume
that eq. 5.4b is true, then the density function of n(y) and
Zoq(2) cannot easily be found because the terms in the
summations of eqg. 5.43b and 5.44 are not independent.
However, it is still possible to compute some relevant
statistics of n(y) and z,4(y) under H, and the assumption
that eq. 5.4b is true.

In fig. 5.4a the R,0.C. curves for the CAED are given
for several signal power levels, Noise is assumed N(0,1).
We assume L=1000, the signal periods range from 21 to 30
inclusive. The number of periods measured in an observation
is the number of integer periods in a sample size of 1000.
We have plotted the average probability of detection vs.
the probability of false alarm. The average detection
probability is obtained by finding the detection probability
for each signal period for a given false alarm probability
and then calculating the average of the detection
probabilities. For comparison purposes in fig., 5.4b the
R.0.C. curves for the ED are also given., The R.O.C.
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curves are obtained using Monte Carlo simulation methods.
The details of the simulation are given in Appendix A,

Analytically we can compare the performance of the two
detectors using the concept of normal detectability. As
given in Chapter II the definition of normal detectability
is valid for simple gaussian hypotheses. Here we assume the
gamma densities of egs. 5.36 and 5.44 are approximately
gaussian. This will allow us to obtain approximate
performance figures. The expression for normal detectabilty
'd' is repeated below

a b [ Blz|H,) - E(z|Ho) 1 (5.46)
var(z)

As defined 4 is a measure of the output SNR, We will

look at both 4 and 4' = (d)i/z. For simple gaussian
hypotheses var(z) is the same under each hypothesis. This
is clearly not the case here. However if we assume that
signal power 1is small then we can use the approximation
var(z|H,) = var(z|Hy) [16]. Because ¢ differs fromz by a
constant we need only calculate E[¢|H,] , k = 0,1 and
var(¢), similarly with the energy detector, For the
normalized gamma density function f£(x) the first and second
moments are given by

p-
X -

f(x) = -I-.-(-ﬂ.exp( Xx) , 0<x<w (5.47a)
B(x) = [© X0 (-x)dx = (5.47b)
X o F(pr-exp(-x)dx = p .

2 o xP*! 2
E(x ) = fo frsy.exp(~x)dx = p +p (5.47¢c)

The first and second moments of the CAED detection statistic
¢ are now easily obtained.
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E(¢|H,) = 5 ¢.E(¢[H )¢ (5.48a)

= f ("'91' P1/2 —(W exp(- —t[)dd;

20y
using the substitution x = -97, we obtain
Zok
P,/2
E(MHk) = 20k IO —(m.exp('x)dx (5.48b)
2
bd Okpx
2 o 2

B(¢ |HL) = [y & £(o|H,)a¢ (5.48¢)

2.0 .
- zokjo(giz)(Px/2)+1.fT%T777.exp(- ;ﬁ:)d¢

using the same substitution as above we obtain

2 2.2 £ (P1/2)+1 |
E(¢ ’Hk) - (de) .fo IV exp(-x')dx (5.48d)

1.2 p, . P
- (o) (0L e 71

and vaz(¢[H,) = (20,)".P\/2

From the above we can easily write the statistics under H,
and H,

E($|Ho) = 0p.P, (5.49a)

- 0191/2
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E($|H;) = 01.P, . (5.49b)

= C191.(1+A1L1)/2

var(¢|H,) = (Zoz)z.Pl/z (5.49¢)
=C:.Pl/2
2.2 . '
var{¢|H,) = (20,) -Px/z (5.494)

2 2
= ¢ P (1+A,L,) /2

Ye can now obtain an expression for d by substituting the
above in eq. 5.46

]
7 2c, P,

e
- A; L.L;/z

Going through a similar set of calculations for thevenergy
detector, we find

E{n|H;) = A,L/2 | (5.51a)
E(n|Ho) = A\L. 1 | (5.51h)
nl 0 l? TT7KTT | .
var(n|Ho) = AjL._ 1 . (5.51c)
' (1+4,)
e

For fixed performance , 1i.e. d“ = d¢ and with
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A= input SNR for the ED and A, = input SNR for the CAED we

¢
have
A? L Az L.L (5.53)
noi ¢o§e 1 .
or
Ay = L}/ (5.54)
)

Comparing d for the CAED and the BD for fixed input SNR we
obtain

) |
=1, (5.55)
. |

The CAED outperforms the ED by 10logL, dB.; for our case L;
ranges from 33 for P,;«30 to &7 for P;=21 so the CAED
performance is approximately 15,2 dB ty i6.8 dB better than
- the ED performance., For fixed input SNR the CAED
performance goes up linearly with L,. This approximate
result is in reasonable agreement with the simulation
results. (Reminder : L, is the number of pericds "looked
at®™ in one observation.)

5.2,5 Detection of PRS's With Unknown Period
A related problem of interast and in some sense
analogous to the classical "Der¢stion of one of M Orthogonal
signals® problem is the problem of detecting a PRS in noise
vhere the period is one of M possible periods. The
observation under the two hypotheses H; and H, is

Ho ¢ y(i) = n{i) ~ N(D,1) i.i.d. (5.56a)

:
f&
K
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H; ¢ y(i) = p(i) + n(i) , p & n independent (5.56b)

where p(i) is a PRS as described in Sect. 5.1 with period P
and where P is an element of the set Qa{P,,Pz,...,PM}. We
assume that P=P, with probability Pr(P,). We let the number
of samples in the observation equal L. We define L, as
follows

L & | b/py | (5.57)

where |_x_| = largest integef_no iarger than x. So that Ly
is the number of integer periods of PRS with.period P, in an
observation L samgles lcng. We assume for simplicity that
ali sequences have the same power level A, wévdefing the
log-likelihood ratio given PRS with period P, as follows

Pyt Ly~
; L
2(yp,) = 55%.}:; (2:;y(j+r9k))z - Bentiean,)  (5.50)

‘ 3 ALk

vhere Cy T?XE;

In all ¢ases the optimum detection statistic is the “average
likelihood ratio" Following from the Bayes-Birdsall Theorem,
let § be a vector of signal parameters with known joint

distribution and density £(8), lst y be the observation and
£(gly) be the a-posteriori density of g, then

£(g)
2(y) = 2{y]|B). (5.59)
4935

it follows that

B(y)Eiply) = &lg|B)E(R) (5.59b)
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Integrating both sides with respect to g
2(y) = [ 2(y|B)E(B)AB (5.60)
For one of M periods we obtain

M
8(y) = Z_'umk).pr(pk) (5.61)
=1

I1f we assume Py equally likely to be any member of 'ﬁe
obtain ‘ o

M

) e g Z;lew . (5.62a)
M
-égexp(z(ﬁ?k)) o (5.62b)
M -
z(y) - 1n(Zexp(z(1|pkn) - 1M (5.62¢)

A block diagram of the optimum detector is given in
fig. 5.5. The R.0.C. curves are given in fig. 5.6., for @
= {21,22,...,30} and L=1000. Noise as usual is assumed
N{(0,1) i.i.d,

Next we compare the performance of the above detector
with that of the estimator-detector. The estimator-detector
caiculates z(y|P;) for all P; ¢ Q and bases its decision on
gatg z(y|Py). The block diagram for the estimator-detector
i; given in fig. 5.7 and the R.0.C. curves in fig. 5.8.
For comparison purposes the R.0.C. curves for the energy
detector are also given in fig 5.9. From the R,0.(C. curves
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Pig. 5.6 Averaged R.0.C. curves for the optimum detector
- of fig. 5.5 with M«10 and signal powers of ,002,

.004, .008, .016, .032 and ,064.
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Fig, 5.8 Averaged R.0.C. curves for the estimator-detector
of fig. 5.7 with M=10 and signal powers of .002,
.004, .008, .016, .032 and .064.
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for the optimum detector and the estimator-detector we see
that the optimum (average likelihood ratio) detector and the
estimator detector have essentially the same performance.
Monte Carlo methods were used for generating the R.O.C.
curves.

Note that the P, for which z(y|P;) is maximum, is the
maximum likelihood estimate of the period of the PRS, Plots
of Pr( Error in Estimation of period) vs. signal power are
given in fig. 5.10. We now look at z(lei) in more detail,

Pi‘1 Li-1
AL, s 2
aley) = g e (Z;;y(3+k9i))
- E%.ln(! + ALy) (5.63a)
21_1Li 1 Li'
- . 2 .E%. 2:;y(3+kpi E:;y(j+mpi)
K ri-l i= M=
_P
_%.ln(l + ALi) (5.63b)
Li-I
but t E:;y(j+mp } is the m,m.s.e. estimate of pi(J)

{15 pp. 58 59], the jth sequence sample under the assumption
that the sequence period is P.i and where 0 < j < Pi-1. We

define p,{j) as

Li-1
0. () 8 A .1 .Y y(i+mp:) (5.64)
p; (3 TL 2;;y j+mPy
L
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10

Ps {Error)

S/N rotio

Fig. 5.10 Average Probability of Error in estimating
signal period vs. S/N ratio.
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Then it follows that

Pi"1Li-1

e

2(g]Py) = 3.y ) v(3+kB;).py(3) - Pi.la(1 + AL;)(5.65a)
b fop K '
Jt =

or
L 1,7 2 P,
;{ Z(xlpi) = 71 .Ei - _%.ln(‘ + ALi) (5.65b)
g vhere éi is the estimated PRS waveform under the assumption
f that the PRS period is P;. The detection statistic may now
& be written as
g T A P,
~ max z(y|P;) = max { 1.y".p; = _i.ln{1 + A.L; } (5.68)
P; P, 2 2

Because of the simplicity of the structure of the
estimator-detector ( no exponential non-linearity) and no
loss of performance compared to the optimum detector, the
estimator-detector is the preferred realization of the
optimumn detector in this case., The advantage of the
estimator-detector over the energy dstector are 1) Better
performance 2) The ability to simultaneously estimate the
signal period.

' The problem of estimating signal period (or frequency)
is an interesting problem in its own right [36,37). The
above development focused on a pericdic randcn sequence, We
now outline the development for deterministic¢ but unknown
periodic sequences. This development differs from the
previous in that it is non-Bayesian; the signals are
"unkpown®, not random vectors,

Assuime the observation consists of L samples. The
statistics of the observation are

R

o
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Ho

.o

y(i) = n(i) ~ N(0,1) i.i.d. (5.67a)

H,

e

y(i) = n(i) + p, (i) (5.67b)

where p, (i) is a periodic sequence of period Pes Py e 0 =
{P1,P2,...,Py}. We assume that the period P, is unknown.

Let L, = |_L/P,_| and define Bk(i) as follows

Ek - pk(i) v i‘O,‘....,Pkﬂ (5.68)
0 v QaW,

If the sequence p, is known then the optimum estimate
of the period follows from forming the M log-likelihood
ratios z(y|p,), k=1,2,...,M and choosing the largest.

£( 1 P65 oyn(- Lig-p)T. iy-
2Ipg) = (33) -exp(- z(y-p, ) "« (x-py)) ({5.69a)
1, Pkl 1,7
f(y|Ho) = (33) -exp(~ 31" .¥) (5f69b)
and
| RS | | - | |

Hovever as the sequences p, are not known we follow
custom and first form a maximu™ likelihood estimate of the M
possible seguences based on the observacion, and then use
these estimates in eq. 5.70 and then choose the maximum, We
can rewrite z(y|p,) as follows

L P -1
k k
2(ylp,) = E (y(i) = 3p, (i)).p, (i) | (5.71a)
1.
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pk-1 Lk-1

=Y () (rGerp) - 1B ) B (5.71B)
o &

Differentiating eg. 5.71b with respect to each ﬁk(j) and’
setting the result to zero we obtain '

L -1
k
22lpy) o N (y(eemy) - By (3)) = 0 (5.72)
3Pk(j) L= R

fOt j - 0,1,...,Pk'1
or

Ly~!

P () = z':: y(j+rp,) (5.73)
s

F .3

ik(j) is the maximum-likelihood estimate of ﬁk(j). The

”~

seguence sk extends ﬁk periodically

L S
pk(i‘th) ¥ i'O,‘,...,L“l
pli) = | ° (5.74)
0 r O.W, ' _

Based on the estimated sequences we form the M statistics

z(ylp,) defined as

z(glp,) & (g - 3.p,07.B, (5.75)

The estimated period is then the one that corresponds to




97

max ;(xlpk). The block diagram of the estimator-estimator
Py
is given in fig. 5.11.

e SN A  —— S ———— Cta——

In this section we generalize the results obtained in
Sect, 5.2. We first examine the problem of detecting 2 or
more PRS's with known periods. Next we examine the problem
of the detection of k of M PRS's in noise. Finally we
develop the equations for the most general problem that fits
into the framework established here, in this case we allow
signal and noise to be complex with the noise not
necessarily white and successive signal samples not
necessarily independent.

5.3.1. Detection of 2 or more PRS's of Known Periods.

In this case the signal consists of the sum of N PRS's

(N>2) of known periods P;,Py,...,Py. The number of samples

.in the observation is chosen so that L=L.C.M, {P;,Pz,...,Py]

or some integer multiple of the L.C.M. This insures that

each PRS has an integer number of periods in the

observation. We define L, as the number of periods in the

observation of PRS with period P, i.e. L, = L/P,

The observation under the two hypotheses H, and H; is

HO : Y(i) = n(i) ~ N(O,‘) ioiod- ’ i-0'1'000'L-1 (5.768)
N
Hy ¢ y(i) = n(i) + é:pk(i) , 120,1,0.0,L-1 (5.76b) e

4
-
£ .

e

o

Where p, (i) has period P, and p,{i)°N(0,A,). Noise is e
assumed independent of the PRS's and the PRS's are assumed N
3
independent of each other, We let R-E(x.xTIH;) and write
K%
:&‘ .

3 %t

1E

-
-
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the density function of the observation under the hypotheses
Ho and H; as follows

L/2

E(g[Ho) = (52)™2.exp(- $.3Ty) (5.77a)

E(y|H,) = [}%)L/z.(-l%r)vz.exp(- 3.3 y) (5.77b)

The likelihood and the log-likelihood ratios follow

2y) = (T§T)‘/2.exp(%.x?(x-n")13' R (5.78a)

z2(y) = 5.3 (I-R" g - 4.1n|R| - (5.78b)

As before the key to the sgimplification of ‘the
equations for 2(y) and 2(y) lies in the eigenvalue-

eigenvector decomposition of R. First we write R as

R = E(y.y’|H;) (5.79)

N
—

.Rn +£__[Rk

Where Rn is the noise autocorrelation and is the LxL

identity matrix, R, is the autocorrelation matrix of PRS p,

and is circulant. The above decomposition follows from the
independence of the noise and the PRS's., It follows that R
is also circulant. In fact o

. |
Rwi + Z:;Akic(li-jlmodpk)} 1,420,1,..0,L1  (5.80)

The first row of R, Ri{n) is given by
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I
R(n) = §(n) + Z:;Akz:;s(n-lPk) , n=0,1,...,L~1 (5.81)

v(n), the eigenvalue sequence of R is given by

L-1 )
v(m) = E:;R(n).exp(-jZnnm/L) (5.82a)
n=
N
e 1+ Z:;AkLk , =0
-4 . -
Pl AL o, om L r2hpreee (P =1L, (5.82b)
k'1'2'.oo'N
E 1 r 0.V,

 Leu ¥ = diag(¢(0),¥(1),...,9(L=1}) be the diagonal matrix of
eigenvalucs of R and U, be the unitary matrix of
eigenvectors of R, then

ok -
Rs ULWJL v (5083)
- and since all eigenvalues are non-zero
-1

' v ow” y®

...ULw UL . . (5084)
also

CIRp s ¥ (5.858)

N N Pk“1
« (14 Z:“knk)'kl-‘\““*n*)




101

N

(1 + <—~A L,)
k7 k
= . I + AL
N k=1 k™k
J‘5";1(1 + Akbk)

(5.85b)

Substituting for R~ and |R| from eg. 5.84 and eqg. 5.85 in
eq. 5.78b, we obtain

N
z(y) = %XTUL(I-W-l)U;z - Z:; f%.ln(1 + AL,)

N
(1 + 2:;Akbk)

N
k111(1 + AkLk)

- %1n (5086)

We define o & 1-y"', ¢ is a diagonal matrix and the

elements along the diagonal are given by 6(m) = 1 - 1 , so
v{m)
N
n
= , m=0
N
) ke
1 a
o) = b A, Ly 2L (P -1)L (8.87)
L v i U SRR AL SRy
¥ Ay k=1,2,...,N
E 0 ’ o.w,

Now define ¢4, and Cy as follows
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‘E_
é_TAkLk N
~Co é - - Y_- AkLk
& 1 TR,
Cx 4 Akr‘k’
T+ ALy

We may now rewrite 6(m) as follows

N
o(m) = Z_;ek(m)
where
"CoG(ﬂl) I3 k-o
P -1
oy (m) = X

ck.z:s(m-rbk) ’ k-l,z,_...N
r's

Now let QAULGU; and decompose 6 as done for 6(m)
N

(5.88)

(5.89)

(5.90)

(5.91)

so that

o & 2:;ek. The diagonal elements of 6, are given by 6,(m).

N

Define Qy ! ULGkU; 80 that Q = 2:;9k' By definition the

matrices Qk and hence Q are circulant, so we may obtain Q in
terms of its first row., Let the first row of Q be Q(n),

then

Q(P) - Qﬂ(n) + Ql(n) + L + QN(D)

(5.92)
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and
Qol(n) = - °_I°‘_ all n (5.93a)
c. P
k™ k » n=0 Pk,ZPk,..o,(Lk 1) Pk
Qy (n) = (5.93b)
O.W,
It follows that
e g -
z(y) = 2y7(} Q)y - Pr.in(1 + a,L,)
= Z;; 2 i
N
(1 + Ei;}knk)
- %ln N = (50943)
n(1+ AyLy)

k=1

Pk 1 L= 1

T CxPy, ( (§+rp )’
T 2:;, n Z‘T S
) . (5.94b)

- p -
é k.ln(1 + AkLk) Iln
k§1(1 + AkLk)

The above reduces to
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N L-1
2(y) = ;z(zlPk) - ;%(Zymn’
= n=
N

(1 + 2:;AkLk)
* (5.95)

1 ( )
n{(1t+AL
ke 1 k*k

- %ln

The last term in eq. 5.95 does not depend on the reception,
in fact it is a constant and maybe ignored if we assume we
know the power levels A, 's. The second term in eg. 5,95 is
a D.C. correction term. It is at D.C. (zero frequency)
that all the PRS's interact. The R.0.C. curves for
detectors based on z(y) are given in fig., 5.12, for N=2,
P;=21, P,=29 and L=609. Experimentally we have shown that
N .
decisions based on 2:;z(z|9k) are essentially equivalent to

decisions based on z(y). We call the detector that bases
N
its decisions on 2:;3(1|Pk) the sum-detector. R.0.C.

curves for the sum-detector are given in fig. 5.13, the
signal and noise statistics used in generating fig. 5.13 are
the same as those used for generating f£fig. 5.12. PFor
comparison purposes the R,0.C. curves obtained using an
energy detector .are given in fig. 5.14. Since the
conditional log-likelihood ratios z(y|P ) are not
independent, it 1is not easy to derive the density function
for z(y). However, we can calculate the statistics of z(y)
necessary to obtain an approximate expression for the normal
detectability 4. The details of the calculation are tedious
and are given in Appendix B. In calculating the statistics
we assume that N=2 and that both the PRS's have the sanme
power A/2 and that P,;aP,., We obtain the following




105

.99

«35

30

70
60

0
30

+201

10

05 ;

0l

0l

05 .10 .20 .30 .u‘op.s‘o 80 .70 .80 .90 .95 739
FA

Fig. 5.12 R.0.C, curves for the optimum detector for 2

PRS's of known period in noise with P =21, P,=29

and L=609, Each PRS has identical power levels
of .001, .002, .004, .008, .016 and .032.
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Fig. 5.13 R.0.C, curves for the sum~-detector with the
same signal and noise statistics as in fig. 5.12,
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expression for d

d=AL(1 + L, +Ly)/2 (5.96)

In the preceding development the observation size was
fixed at some integer multiple of the L.C.M. of
{P1,...,Py}. This places a restriction on the observer. In
the following this restriction is relaxed. The number of
samples in the observation, L , is now arbitrary. It
follows that there are L, = |_L/P,_| integer periods, of PRS
with period Py in the observation. The observation under
the two hypotheses is

Ho : y(i) = n() ~ N(0,1) i.i.d. (5.97a)
N
Hy t (i) = n(i) + 2:;pk(i) (5.97b)

The LxL autocorelation matrix R-B(x.x?[ﬂx) is no longer
circulant, The key to obtaining the equations for the
optimum ~ detector vas the eigenvalue-eigenvector

decomposition of the circulant matrix R and 8'1. For the .

present situation where the number of samples in the
observation is not divisible by all the perisds, we will
call R the expunged circulant matrix., A simple well defined
procedure for the eigenvalue~eigenvector decomposition of
the expunged circulant matrix does not exist., Also a
straight forward procedure for finding the inverse of the
expunged circulant matrix (if the inverse exists) does not
exist, Using the optimum detector of eq. 5.9¢4 as a
guideline we hypothesize that the following detector will
have near optimum performance. We base our decisions on

2(1) vhere

;
i
N

- a® lr

T T

B e e E Ry L R B R ¥ e ey - TauT
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N . L1
2 &Y zeglpy) - S0 yan)?
N
(1 + ;Ak[_n/pk_n
- 3ln . - (5.98)
n(1t+a| L//P _|)
k=1 kl- k-l
where
i P -1 |_L/B_|-1
= 2
2(g1p,) = ko1 Z_—U (Zy(j*-r?k))
I &
- f.',“,-ln(‘ + A | L/P ) (5.99a)
N
LMl |
g, &K= - Z; Al LRy (5.99b)
N - s hkl.mk..l
1+ 2:;Ak|_n/9k_| ‘
¢ & Ml LA | | (5.99¢)

T+ AT L7P ]

For each PRS, the above detector utilizes the maximum number

of integer periods available, this is in contrast to the
optimum detector which would also utilize the "left over"
samples, We will soon show that when L is large the
performance of the above sub-optimum detector is nearly the
same as that of the optimum detector.

if we write L, for |_L/P,_| the form for 2(y) reduces to
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rig. 5.:5 Averaged R.0.C. curves for the quasi optimum
detector for N=2, each PRS has. identical pover
levels of .001, .002, .004, .008 and .016.
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that obtained in eq. 5.94. We call the detector that bases

its decisions on ;(x) the quasi optimum detector. R.0.C.

curves for the quasi optimum detector, for N=2, are given in

fig. 5.15. We 1let L=1000, P, is fixed at 21 P, is allowed

to vary from 22 to 30 and the R.0.C. 1is the average R.O.C.
_ N

We call the detector that bases its decision on Z:ZE(XIPk)

=1
the quasi sum detector. The R.0.C. curves for the quasi

sum detector are given in fig. 5.16. It is seen that the
performance of the quasi sum detector is essentially
equivalent to that of the gquasi optimum detector. For
comparison purposes the R.0.C. curves obtained using an
energy detector are given in fig., 5.17.

An approximate expression for the normal detectability,

-

d, for the quasi-optimum detector is given in eq. 5.100. It
is assumed that N=2 and that both the PRS's have the same
power level A/2 and that P,=P,.

~ 2
d =AL(1 +L, +L) (5.100)
2

The normal detectability, dopt' for the optimum detector is
then approximately upper bounded by

dopt < 5;&(1 + L+ 1+ Ly + 1) (5.101)
So we have
g . e (1 +L; +L3)/(3 +L; +L;) (5.102a)
op

in the limit L and hence L; and L, become large

e Rl e 3% .- . Cas B
) ‘."\ &Y '_a.‘-‘,:"\\ WAt e T .h"‘h."n-“i""n,'°‘q. ".-"‘.',
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g = 1 (5.102b)
opt

2
For the energy detector we had (eq. 5.52) dg=A L/2. We
compare the input SNRs for fixed performance and obtain

= (1 + 1L, +Lp) /2 (5.103a)

e

Comparing the output SNR for fixed input SNR we obtain
g =1 +L; +L, (5.103b)
ed

The above results are analogous to the results obtained in
eq 5.5¢ and eq. 5.55 and are in good agreement with the
simulation results.

5.3.2 Detection of k of M PRS's in Noise

This is a generalization of the detection of one of M
PRS's problem considered in Sect. 5.2.5. Now we consider
the signal to be the sum of k independent PRS's, where the k
PRS's belong to a set of M independent PRS's., We agsume
that it is not known a priori which k of the M PRS's make up

the signal, This implies there are N = (f) possible sets of
signals., Even for moderate M and k the signal set becomes
quite large. As we will show the optimum detector for this
situation has a fairly elaborate and complex structure.
This fact will provide us with the motivation for searching
for detectors which have performance close to that of the
optimum detector and yet have much simpler structure.

As usual we will assume there are L samples in the
observation, where L 1is large and arbitrary. The
observation under the hypotheses H, and H, is

-
!.:“ "A-!L’k-'-"nﬂ'-"-Vm&L’x"-_lniqF.J'L*,;"'._‘i-'g".'.~.~.'.'.'1‘.‘.!.A“_’-'.'.‘n"n_'1'*.",'\"\'\",“; Y '-“\x"n-\.‘h"ﬂ".'\iif
P N P W T DRI a
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He ¢ y(i) = n(i) ~ N(0,1) i.i.d. (5.104a)

Hy @ Y(i)

n(i) + s.(i) , s & n independent (5.105b)

Where s. € S = {§1,§2,...,§N}. Each of the elements of S is
the sum of k PRS's belonging to @ = {p;,pas+..,By}. The
optimum detection statistic, as in Sect. 5.2.5 is the
average likelihood ratio. Since L is not necessarily
composite we will instead use the average of the conditional
quasi-likelihood ratios as the "optimum" detecton statistic.,
Assuming that each of the elements of $§ is equally likely to

be the signal we obtain

N

i(z) = % 2:;exp(§(z|§r) (5.105a)
r=

~ N -~ '

2(g) = In() exp(z(y|s,)) - lnN (5.105b)
=1

To develop the structure of the gquasi-optimum detector we

need to expand E(xlgr). Assume s, consists of PRS's of
periods P.,,P.5,¢0e,P, where the PRS with period P., has

pover A.,. Now we can write ;(xlgr) in the style of
eq. 5.97
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z(y]5.) = 2(2|B 1,P gsesssPyy)
k ; o %:l 2
- 2:;z(z|9rl) - Sor.() y(n))
= R

k
(1 + 2:;“:1Lr1)
- %ln : =

121(1 + ArlLrl)

z(glp,,) = cri. () y(g+sp )
rl = g=

_ P
%olﬂ(‘ + ArlLrl)

and

é ArlLrl

or f g
rli®rl

The detector first calculates the M conditional

(5.106)

(5.107)

(%.108)

(5.109)

(5.110)

quasi log-
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likelihood ratios z({y|P,),..., E(XIPM). Then it forms (f)
sums of =z(y|P;) in groups of k .and finally adds the
previously calculated terms to the sums to obtain E(zjgr).
The terms ;(zlgl),..., ;(xlgN) are exponentiated and

averaged to obtain 2(y).

The estimator-detector bases its decisions on
max E(xlgr). The structure of this detector is not much
§reS
simpler. In fact it also caculates N = (ﬁ) terms and bases
its decision on them.

In Sect. 5.3.1 we had seen that basing decisions on

N

E E(zlPk) was essentially equivalent to basing decisions on
;(z). The next detector we try bases its decisions on

k
max S—-;(glp.,). But this is the same as basing the
r=1,...,N = Ld

decision on the sum of the k largest ;(lei), i=1,..,,M.
This detector has a much simpler structure than the previous
two. We call this detector the max-detector. Choosing the

k largest Q(lei) also immediately forms an estimate of the
periods of the k PRS's in the signal.

The R.0.C. curves for the quasi-optimum detector, the
estimator-detector and the max-detector are given in
figs, 5.18, 5.19 & 5,20 respectively. We let M=10, k=2 and
Q={21,22,,..,30}. We see that the performance of the max-
detector is nearly identical to the performance of the
estimator-detector but slightly pcorer than the performance
of the quasi-optimum detector.




118

.33

.95

30

801

701
40
P, 50
A0 1
30

«201
110 1 /
05

0 . A X
g 0T .05 .0 .20 .30 4050 .60 O .80 .0 .95 9
!

Pea

Pig. 5.18 Averaged R.0.C. curves for the quasi optimum
detector for M=10 and k=2, each PRS has
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Fig 5.19 Averaged R.0.C. curves for the estimator
detector for M=10 and k=2 with the same
signal and noise statistics as in fig. 5.i8.
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Fig 5.20 Averaged R.0,C. curves for the max detector
for M=10 and k=2 with the same signal and
noise statistics as in figs. 5.18 & 5.19,
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5.3.3 Detection of Arbitrary PRS in non White Gaussian Noise

To complete the discussion on the detection of PRS's,
we examine the situation where the signal is complex and
successive signal samples are not independent, we also
assume that the additive noise is not necessarily white. We
assume that the signal is at least wide sense stationary and
that 1its autocorrelation matrix is circulant. Signal and
noise are still assumed to be mutually independent. We will
derive the equations and give conditions under which they
are valid without going in great detail. We assume there
are L samples in the observation, where L is some integer
multiple of the signal period. Let R, be the noise
autocorrelation matrix and R. be the signal autocorrelation
matrix. The observation statistics under hypetheses H, and
H, are

E(y|Ho) = (52)%/2. 1R "2 exp(- $3*R"y) (5.111a)

E(yH)) = (5222, R +rg| "/ 2iexp(- Jy* (R +R ) 'y)  (5.111b)

From the above we may write down the likelihood ratio and
the log-likelihood ratio

a(p) = (R 2R R T 2 exp gyt (R - (R *RG) T y) (5. 112a)

2(g) = 3.3 (R - (R +R()" )y - %ln'R?;Rsl | (5.112b)
n

In the above equations we have assumed that the appropriate
inverses exist, Rg is circulant due to the signal being
periodic. 1If the noise is white R, will be the identity
matrix and hence trivially circulant and also invertible.
I1f the noise is not white R, will be circulant if the

. associated autocorrelation sequence R, (k) satisfies the
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following condition

. ,
Rn(n) = Rn(L-n) (5.113a)

or
Rn(n) = Rn(L+n) (5.,113b)

In other words, if the noise is not white we require that
the noise and the noise autocorrelation be periodic, and the
nunber of samples in the observation L either be the noise
period or some integer multiple of the noise period. With
R, and R, circulant we have

.
R, = U YUy (5.114a)
*
Rg = U ¥ Uy : (5.114b)
R_+R_ = U, (y_+v_)u¥ (5.114c)
83 -3 E¥) E 1) [~ &
-1 -1 8 o |
R, = Up¥, Up (5,11443)
(R+R )™V = U (v +y. )" ! o (5.114e)
n°s L''n 's L e

vhere ¥, and ¥, are diagonal matrices and the diagonal
elements are given by y,(m) and y /m) respectively

- 1
Vo (m) = R_(k).exp(- j2nkm/L) (5.115a)

Lo

n

| L-1
¥gim) = ) R (k).exp(~ j2nkm/L) (5.115b)




123

Now for R;1 to exist we require that ¥ (m) > 0 for all

m, this means that R, (k) can not have a period smaller than
L. Whenever y_(m) > 0 for all m both R_' and (R +R)™' will

exist. Substituting for R;1 and (Rn-l-R&.’)'1 in eq. 5.112b we
obtain

1.¥ -1 “tye % o 1, ¥ +Y_|
z(y) = sy U (¥ ~ - (¥ +¥.) ")Ury In'*n ’s (5.116)
2 L*'*n n-'s L 2 —rm—
now
y'up = LT20300), 7= 1), 00 F(-Le 1)) (5.117a)

vhere Y is the complex conjugate of Y also
ufy = 1200000, ¥(-1), . 0 2L )T (5.117b)

Now let Y;‘ - (?n*?s)'1 0o, 0isa diagonal matrix and let
the diagonal entries be 6(m) then 2(y) is given by

L-1
1 TIPS
z(y) = »¢ E:;e(m)lf( m)| = xlnl’n s (5.118a)
m= ¥,
L-1
1N PRSI PO L 202 N
- 0(m)|¥(L-m) In!'n 's (5.118b)
= l | L A

The above detector may easily be generalized for all the
cases discussed in the earlier sections using procedures
similar to the ones used earlier. The above analysis holds

-1

-1
n o+ Yo and ¥, by the LxL

for white noise if we replace R,, R
identity matrix.
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5.4 The Abstract Problem Revisited

In Sect. 5.1 we had developed the analogy between the
exact problem developed in Chapter III and the detection of
two independent PRS's p;(n) and p,(n) with relatively prime
periods P; and P, respectively and an observation interval
of L=P, P, samples. Using this analogy and the results
established in Sects, 5.2 & 5.3 we will answer the questions
asked at the begining of this chapter and establish some
guidelines for the exact problem.

For the two PRS problem we considered two detection
philosophies 1) Consider the L=P;.P, samples to be
independent. 2) Consider the L samples as having been
generated from P,+P, independent samples. According to the
first philosophy the optimum detector was the energy
detector, the second philosophy led to the circular
averaging energy detector (frequency selective energy
detector) as the optimum detector. The performance of the
CAED/FSED was shown to be considerably better than that of
the D (figs. 5.4 & 5.i5 and eys. 5.10¢ & 5.103), This
suggests that the detector for the original problem have N+N
degrees of freedom; that is, it should consider the MN
peaks in the ambiquity diagram as having been generated from
M+N independent sets of doppler and delay parameters. As an
example let Ms9 and Ne7, i.e. we have 9 paths to one
receiver and . 7 paths to the other vreceiver. The
crosscorrelation of the receptions at the two receivers will
- have 63 peaks. Treating the 63 peaks as being generated
from 16 independent parameter sets rather than as 63
independent entities results in a performance improvement of
the order of 12dB (obtained by substituting for L; and L, in
eg. 5.103b). '

The near optimum periormance of the estimator-detector
and the max-detector (figs. 5.18, 5.19 & 5.20) suggests that
the estimates of the path parameters (differential Joppler
and delay) be used to locate the the MN peaks in the
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crosscorrelation or the ambiquity diagram. Differential
doppler and delay estimation is a topic of on-going research
interest and is outside the scope of this thesis.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

L}

§ The object of this thesis was to form guidelines and
’ rules of thumb for an experimenter faced with the problem of
| detecting a moving acoustic source, where sound is assumed
d to propagate over a multipath channel. Source signals were
, received at two remcte receivers; the Bivariate Normalized
Crosscorrelation (BNC) function (and the associated
ambiguity function) of the receptions at the two receivers
vas used as the observation for the detector. It was
: assumed that there were M paths to one receiver and N paths
L to the other receiver and that the observation times were
" long enough for the path pairs to be resolved.

The exact multipath channel problem is difficult to
solve, as was shown in Chapter 111, S0 most researchers
asssume that the propagation is by a single path channel,.
Detectors based on the single path channel model, wvhen the
b propagation is by multipath, are by definition sub-optimum

because they do not utilize gll the information available

about the source in the receptions. Our approach vas novel
) in the sense that we chose to retain the multipath channel
g assumption., Based on this we formulated two solvable
! abstract problems for further study, The abstract problems

vere chosen to be sufficiently close to reality so that
’ thelr study would provide useful information about the real
problem. This also provided a framework for maximizing the
information available to the detector about the source,

In Chapter IV we studied the "Extended M-Orthogonal
Signals" problem. This provided us a method for combining

‘
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the information, available in the ambiguity plane, for
detection purposes. We also showed that it was necessary to

- localize a quarter to a half of the peaks in the ambiguity
plane for acceptable detection performance.

The ambiguity diagram consists of MN peaks due to the
signal. The MN peaks are generated by M+N independent sets
of doppler and delay parameters. In Chapter V we addressed
the question; Should the detector treat the MN peaks as
independent entities or as being generated from M+N
independent parameter sets? In other words, should the
detector have MN degrees of freedom or M+N degrees of
freedom? To answer this question we used Periodic Random
Sequences (PRS's). It was shown that a detector with M+N
degrees of freedom had better detection performance than a
detector with MN degrees of freedom. Also the results of
Chapter V suggest that the M+N sets of doppler and delay
parameters be estimated and the estimates be used to
localize the peaks in the ambiguity diagram.

Putting the results of Chapter IV and Chapter V
together we can form the following guidelines:

1) Use observation (or integration) times that are long
enough so that when the BNC function is formed path pairs
can be resolved.

2) Estimate the M+N sets of doppler and delay
paramters.,

3) Use the estimates to form the differential doppler
and differential delay values, and use these values to
localize the peaks on the ambiguity diagram,

4) Use the Extended M-Orthogonal Signals technique to
combine the peak values in the ambiguity diagram.

Acceptable detection performance is obtained if at
least a quarter to a half of the peaks have been correctly
localized.

The Extended M-Orthogonal signals formulation is based

0
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on the classical M-Orthogonal signals problem, however it is
a new formulation. The theory developed for the detection
and estimation of Periodic Random Sequences is based on well
known results of detection and estimation theory but this
formulation is believed to be new. This has application
wherever the signals exhibit periodic or cyclic behavior
(engine ncise, cyclic codes etc.).

Further work is needed in passive estimation of doppler
and delay parameters assuming multipath propagation. This
could form the basis for a Doctoral Thesis. Given the
estimates of the doppler and delay parameters, localization
of the peaks in the ambiguity plane could forin the basis for
a masters project. To test the validity of the guidelines
established in the thesis (and their refinement)
experimental work needs to be done.
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APPENDIX A

Fo OO

MONTE CARLO SIMULATION METHODS

LA A

(2

The R.0.C. curves and the scatter plots in Chapter V
vere generated using Monte Carlo simulations. 1In this
Appendix we use the example of one PRS in noise to briefly
e outline the simulation methods.

Assume that the observation interval is L samples long.
Let the PRS period be P, and the PRS power level be A,. For
convenience we let L=L;P;, where L; is the number of integer
periods of the PRS in the observation. We repeat the
equation for z(y), the detection statistic, ir modified form
below

e T

- X S

P1”1L1‘1

2(y) = K, Z(Zﬁy(jm,))z - K, | (A1)
Ja =

K, and K, are constants that do not depend on the reception
and can be pre-calculated.

The probabilities of detection and false alarm were
calculated on the basis of 2,000 independent trials under
both H,; and Hy. Let us assume that the vectors v, and v,
each contain 2,000 independent outcomes of z(y) under H; and
H,; respectively. Two 25 bin histograms HG, and HG, were
formed using the data from v, and v, respectively. The 25
bins for both the histograms were "uniformly spaced" between
min v, and max v,. Data points from v, smaller than min v,
vere put in the first bin of HG,. Data points from v,
larger than max v, were put in the last bin of HG,. With
the 25 bin histograms available it is fairly straightforwvard
to calculate 25 points on the R.0.C. curve,

Now we describe the generation of the vectors v, and
vi. A uniform random number generator that generated
independent variates in the range [0,1) (U ~ (0,1)) with a
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'j Step 3 : Perform the signal proceSalng indicated in
) eq. Al to get an element of v,.
| Step 4 : Repeat steps 1 through 3 until v, contains
3 2,000 elements, .
; The elements of v, were generated as follpws:
R Step 1 : Generate L uniform random variates if L is
k even, L+1 if L ig odd. N
? Step 2 : Use the Box-Muller method to get L N ~ (0,1)
' random variates and store in a vector.
, Step 3 : Generate P, uniform random variates if P, |is
! even, P,+1 if P, is odd.
f Step 4 : Use the Box-Muller ‘mothod to get P; N ~ (0,1)
random variates,
Step 5 Multiply the P, N ~ (0,1) rgndom variates by
? (a2, | o
: Step 6 : Periodically extend the P; random variates in
! Step 5 L, times and store in a vector.
Step 7 : Add the veutors of Step 2 and Step 6 element
by element.
Step 8 : Perform the signal processing indicated in
eq. Al to get an element of v,.
é\i}gy{ﬁ?ﬁrﬁ: i{%Y»t A .:4:.,\ 2.::. r -:\’.t:“;:'.: \ S - ‘ * f :: -:) i?:. .-. :': : :-:::_ . :‘; :2::'.
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period of 223-1 was available. The Box-Mullsr method. [38]
was used to generate zero mean unit variance gaussian
(N~(0,1)) random variates. Given M i.,i.d. U ~ (0,1) random
variates the Box-Muller method gives a simple and efficient
procedure for generating M i.i.d. N ~ (0,1) random variates
(where M is even). The elements of v, were generated as
follows '

Step 1 : Generate L uniform random variates if L is
even L+1 if L is odd.

Step 2 : Use the Box-Muller method :o get L N.~ (0,1)
random variates,

fe
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Step 9 : Repeat steps 1 through 8 wuntil v; contains
2,000 elements.

The above procedurss give an idea of the simulation
methods used for the more complicated problems.
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APPENDIX B
™ DERIVATION OF THE NORMAL DETECTABILITY OF THE FSED

In this appendix an expression for the normal
2 detectability of the FSED (CAED) is derived. We assume that
. the signal consisists of two PRS's with periods P, and P,.
& We let the observation be L samples long, where L=P;.,P,. We
: define L,=L/P, to be the number of periods in the
' obsesrvation of the PRS with period Pp. We further assume
that P;=P,. The normal detectability is defined as

§ g = [B1(2) - Eo(z)]2
var(z)

(B1)

We will wuse the variance of 2z wunder H, in eq. Bfi.
Expresssions for z(y) for the situation described above are
given 1in egs. 5.78b, 5.86, 5.94 and 5.95. Using egs. 5.87,
5.88, 5.89, 5.90 and 5.91 an alternative expression for z(y)
is obtained

RO

a s a4, ¥

L=1
2(y) = (20)"" }:; otm) [¥(@|” - § 1n]y¥| (82)
M=

s et & B &

5 The last term in eq. B2 does not affect the value of 4 and
v will be carried through as a constant, "K". Y(m) is the L
point DFT of the observation

; Ho ¢ ¥(m) = N(m) (B3a)

>

i H,

*e

Y(m) = N(m) + P, (m) ¢+ Pp(m) 7 (B3b) {

K vhere N(m), P,(m) and P;(m) are the DFT's of the noise, PRS
4 vith period P, and PRS with period P, respectively. 6(m) is
defined as (see eqs. 5.9C and 5.91)
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Py-1 Py-1

8(m) = =coé(m) + ¢, N §(m-rL;) + ¢, Y §(m-rL,) (B4)
e by

Now

L-1
Eolz) = (20)7 1Y o(mEo(|¥(m)|® - K | (B5)
mz=

Expanding Y(m) we obtain

L-1 L-1
Eo(]T(m|") = ; ; En(k)n(1).exp(j2m(1-k)/L)  (B6a)

L-1 L-1 '
- ; {_: §(k-1) .exp(§2um(1-k) /L) (B6b)
= L (B7)
So
L=1
Eo(z) = (20)"" Z; L.o(m) - K (88)
m=
but
L-1
g(m) = =Co * C,P; + c,P, (B9)
M=
it follows that
Eo(z) = % (-co + ¢,P;, + c3P,) - K (B10)
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Now we calculate the expectation of z(y) under H;.

L-1
By (z) = (20)°1 )  e(mE, (J¥(m)|") - K (B11)
o

the expectation within the summation can be written as
2 2
E;(|¥(m)| ) = E(|N(m) + P;(m) +P,(m)]| )
2 2 2
= E(|N(m)| + [Py(m)| + |Pa(m)] (B12)

+ 2Re(N(m)P}(m) + N(m)P3(m) + P,(m)Pi(m)))

Since the PRS's and noise are mutually independent and zero
mean the above reduces to

Ex(]¥(m|") = E([N@m)|°) + B(|P,|") + E([Pa(m)|)  (B13)

2
We already know E(|N(m)| ), we only need to f£ind

E(IPl(m)lz), E(IP,(m)lz) will have a similar expression,
Now

L=1
P1(m) = p;(l).exp(*qulm/L)

L1‘1p1'1
- ; Z 5\(5)-exP(-qusm/L).exp(-qukm/Lx) (B14)
=) g=

where p,(s) is one period of p;(1). Eq. B14 simplifies to
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P1“1
P,(m) = L, z:; D1 (s).exp(-j2usv/P,) (B15)

mEVLI y V'0'1,000'P1-1
It follows that
Pl-1pl-1
IPy(m)|° = L1 }:; 2:; b1 (8)p: (k) .exp(j2nv(k-8)/P;)
» S= = :
m= VLl ? vV = 0,1,...,?‘-1 : (B‘G)
and
P‘“191‘1

P, (m)|° = L E:; 2:; Ep, (5)p; (k) .exp(j2nv(k-5)/P;)
g= =

91'1P1‘1

- A,Lf }Z; Z:; §(k-s) .exp(j2av(k=-8)/P;) (B17)
gm = ' :

me VL; » V= 0,1'009,91'1

The above simplifies to

E(_lP;(m)Iz) - A,pr, Z §(m=-vL,) (B18) -
- . . R
similarly we have
92'1
E(|Py(m)| ") = As3P, 2:; §(m-vLy) (819)
. ‘ v.
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So

P;‘]
E(IY(M)lz) =L + A,pr, Z(; §(m-vL,)
v=

Pg“‘
2
+ A,L,P, 2 §(m=vL,) (B20)
U=

Now

L-1 L-1
Y o(miE, (jr(m) ") = ZJLe(m) + aLip, Z; Zem)s(m-u,
6176 m= V=
, Lo P21
+ AgL?Pg E:; }:; O(N)G(m-ng) (B21)
= V..

We will consider each of the terms in eq. B21 separately

o
]

1) ) 1o{m) = Ll-co + c,P; * GaP2) . (B22)

L~1

2) AL.P, 8(m)§(m-vL,)

™M

P;‘T

2
- ALIP, Z; 8(vL,)  (B23)
Ve - :
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91‘1 Px‘1
2
= A\LPy ' (-co8(vLl,) + ¢, 2:; §((v-r)L,)
é;U r=
92*1

+cy Zy §(VLy~rL;))
r=

2

= AILIPX('CO + ¢c,P, + Cz)
Similarly
\ L-l P2-1
3) AsL,P, Z- Z; G(m)s(m-sz)
m=U v=

2 ) -

= AsLa(~co + ¢, + C3P;3) : (B24)

It follows that

. - 2 i
By(2) = %.(“CQ*C;P;*CQPQ) + {2L) ‘.k)L;p;('Cg*ClP|*Ca)

W AT i ok,

. . |
+ (20) VA LaPa (~cove, *csPy) - K

.',,.,
P

- % (~co + C,P; + caPy *_l]L;(*Cg + ¢,P) + ta)
+ Ajbal=co + c; + c3P3)) - K | (B25)

We can now write an expression for the difference in the
expectations of 2 under H, and H, -
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Ei(2) - Eolz) = 3 (ALilca=co) + AzLy(ci=co)
+ ¢ AL + C,A,L) - (B26)
Now we find the variance of z under H,

vare(z) = Ep(z). - (Boz). (B27)

2
For z we have the following expression

L-1 L-1
-2y Y ametn) v | e’
BE

L-1
K }:; o(m) [¥(m)|” + K | (B28)
m=

2
Eo(z) 1is then given by

L-1 L-1
By(z) = (21)"2 }:; 2:; 8(m)6(n)E, |¥(m) | |¥(n)|
m= n=
L-1 2
-— L_ e(m)EQIY(m)l (B29)
m=0

2 [ ’
and (E,z) 1is given by
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(Boz)” = (2072 () o(m)E,|¥(m)| )"
L

vare(z) = 3 ((-covertea)” * c3(La=1) + e3(Ly=1))  (B32)

L-1
2 2
KN amEo[zm) | + K (B30) °
&o
% 5 ¥
) ;
% oy
?S',' L-1 L' 3
-2 2 bt
Q vare(z) = (2L) z:; }Z; 6(m)6(n)Eo |¥(m) | |¥(n) | g
N )
ii:z Lo 2 2 ::
§ ~(21)"2 (E:; o(mig, [T(m) ") (B31) i
¥ m= :
3 | ;
fy The above expression for the variance simplifies to E

Now using the approximations that Aj%A,=A/2, P;aP, and L;=L,
‘we cbtain the desired expression for a .

2 7 . .

d e AL(1 + L, +Ly)/2 : (B33) y
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