
AD-R167 344	CONNECTU FIELD-ST	CUT ELI Rength Center	EXT MEASU	REMELY REMENT	LON I S AUG.	REQUE	NCY) NAVAL ON LAR	UNDERI	INTER	1/	2
UNCLASSIFIED	P R BANN	ISTER	15 HAR	86 NU	SC-TR-	-7357		F/G 2	8/14	HL	
	2										
							Ĩ				

MICROCOPY

1.1

CHART

NUSC Technical Report 7357 5 March 1986

COPY

Connecticut ELF Field-Strength Measurements, August to December 1977 and July to September 1978

Peter R. Bannister Submarine Electromagnetic Systems Department

1

022

<u>୯୦ 5</u>

Preface

This report was prepared under NUSC Project No. A59007, "ELF Propagation RDT&E" (U), Principal Investigator, P. R. Bannister (Code 3411), Navy Program Element No. 1140IN and Project No. XD792, Space and Naval Warfare Systems Command (SPAWARSYSCOM), Capt. R. Koontz (Code PDW 110-3), Program Manager ELF Communications.

The Technical Reviewer for this report was Raymond F. Ingram, (Code 3411).

Reviewed and Approved: 5 March 1986

7 Dence

D. F. Dence Head, Submarine Electromagnetic Systems Department

UNCLASSIFIED		
SECURITY CLASSIFICATION	OF THIS	PAGE

AD-A167344

Ĭ.

	REPORT DOCU	MENTATION F	PAGE				
14. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE	MARKINGS				
2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION / AVAILABILITY OF REPORT					
25. DECLASSIFICATION / DOWNGRADING SCHEDU		for public 1		se;			
28. DECLASSIFICATION / DOWINGRADING SCHEDU		distribut	ion unlimite	ed.	,,		
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING C	ORGANIZATION RE	PORT N	UMBER(S)		
TR 7357							
6. NAME OF PERFORMING ORGANIZATION	66. OFFICE SYMBOL	74. NAME OF MO	NITORING ORGAN	IZATIO	N		
Naval Underwater	(if applicable)						
Systems Center 6c. ADDRESS (City, State, and ZIP Code).	L	7b. ADDRESS (Cin	, State, and ZIP C	(ode)			
New London Laboratory							
New London, CT 06320							
BA NAME OF FUNDING / SPONSORING	BD. OFFICE SYMBOL	9 PROCUREMENT	INSTRUMENT IDE	NTIFICA	TION NUMBER		
ORGANIZATION	(If applicable)	S. PROCONDINICITY					
	<u> </u>						
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF F	UNDING NUMBER	s Task	WORK UNIT		
		ELEMENT NO.	NO	NO.	ACCESSION NO.		
		11401	A59007				
11 TITLE (include Security Classification)	TU MEACUDEMENTO		NECEMBER 10	77 AN			
CONNECTICUT ELF FIELD-STRENG TO SEPTEMBER 1978	IN MEASUREMENTS	, AUGUST IU	DECEMBER 19	// All.	DJULI		
12. PERSONAL AUTHOR(S)							
Peter R. Bannister							
13a. TYPE OF REPORT 13b. TIME C FROM	OVERED TO	14. DATE OF REPO 86/3/		Day) [5. PAGE COUNT		
16. SUPPLEMENTARY NOTATION							
17 COSATI CODES	18. SUBJECT TERMS		if necessary and	l identif	v by block number)		
FIELD GROUP SUB-GROUP		tion Measure					
	Connecticut						
19 ABSTRACT (Continue on reverse if necessary	Nighttime H						
· · · ·							
From August 1976 to Sep							
strength measurements were t measurements taken from Augu							
are discussed in this report							
period of August 1976 to Sep				varia	tions of		
5 dB, or greater, were obser	ved 25 percent	of the time.					
				-			
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT			CURITY CLASSIFIC	ATION			
228 NAME OF RESPONSIBLE INDIVIDUAL			Include Area Code) 22c.	OFFICE SYMBOL		
L			•				
DD FORM 1473, 84 MAR 83 A	PR edition may be used u All other editions are		SECURITY		ICATION OF THIS PAGE		
		~~~~~		UNCL	ASSIFIED		

# TABLE OF CONTENTS

rage
LIST OF ILLUSTRATIONS
LIST OF TABLES
GLOSSARY OF ABBREVIATIONS
INTRODUCTION
AUGUST 1977 MEASUREMENTS
SEPTEMBER 1977 MEASUREMENTS
OCTOBER 1977 MEASUREMENTS
NOVEMBER 1977 MEASUREMENTS
DECEMBER 1977 MEASUREMENTS
JULY 1978 MEASUREMENTS
AUGUST AND SEPTEMBER 1978 MEASUREMENTS
DISCUSSION
CONCLUSIONS
REFERENCES
APPENDIX A - AUGUST 1977 DAILY PLOTS
APPENDIX B - SEPTEMBER 1977 DAILY PLOTS
APPENDIX C - NOVEMBER 1977 DAILY PLOTS
APPENDIX D - DECEMBER 1977 DAILY PLOTS
APPENDIX E - AUGUST 1978 DAILY PLOTS
APPENDIX F - SEPTEMBER 1978 DAILY PLOTS

i

Figure

and the second

#### LIST OF ILLUSTRATIONS

Page

1 Connecticut Field Strength Versus GMT, 7 Through 9 August 1977 . . . . 17 2 Connecticut Field Strength Versus GMT, 18 3 Connecticut Field Strength Versus GMT, 19 Connecticut Field Strength Versus GMT, 4 20 5 Connecticut Daytime Field Strength Versus 21 6 Connecticut Average Field Strengths Versus GMT, 22 7 Percent of Measurement Days (August 1976 to September 1978) Where the Daily Amplitude Peak-to-Trough Variation Was > 5 dB . . . . . 23 A-1 Connecticut Field Strength Versus GMT, 1 and 4 August 1977 ( $\psi = 291 \text{ deg}$ ) . . . . . . . A-2 A-2 Connecticut Field Strength Versus GMT, 5 and 9 August 1977 ( $\psi$  = 291 deg) . . . . . . . A = 3A-3 Connecticut Field Strength Versus GMT, 7 and 8 August 1977 ( $\psi$  = 291 deg) . . . . . . . A - 4A-4 Connecticut Field Strength Versus GMT, 11 and 12 August 1977 ( $\psi$  = 291 deg) . . . . . . A-5 A-5 Connecticut Field Strength Versus GMT, 13 and 14 August 1977 ( $\psi$  = 21 deg) . . . . . . . A-6 A-6 Connecticut Field Strength Versus GMT, . . . . . . . 15 and 16 August 1977 ( $\psi$  = 21 deg) A-7 A-7 Connecticut Field Strength Versus GMT, 17 ( $\psi$  = 21 deg) and 28 ( $\psi$  = 291 deg) August 1977 . . . . A-8 A-8 Connecticut Field Strength Versus GMT, 29 and 30 August 1977 ( $\psi$  = 291 deg) . . . . . . . . . . . . A-9 B-1 Connecticut Field Strength Versus GMT, . . . . . . . . B-2 2 and 3 September 1977 ( $\psi$  = 291 deg) B-2 Connecticut Field Strength Versus GMT, 7 and 8 September 1977 ( $\psi$  = 291 deg) . . . . . B-3 B-3 Connecticut Field Strength Versus GMT, 9 and 14 September 1977 ( $\psi$  = 291 deg) . . . . . B-4 Connecticut Field Strength Versus GMT, B-4 15 and 16 September 1977 ( $\psi = 291 \text{ deg}$ ) . . . B-5B-5 Connecticut Field Strength Versus GMT, 17 and 21 September 1977 ( $\psi$  = 291 deg) B-6 B-6 Connecticut Field Strength Versus GMT, 22, 23, and 24 September 1977 ( $\psi$  = 291 deg) . . . . B-7 B-7 Connecticut Field Strength Versus GMT, 25 and 26 September 1977 ( $\psi$  = 291 deg) B-8 . . . . . . . . . .

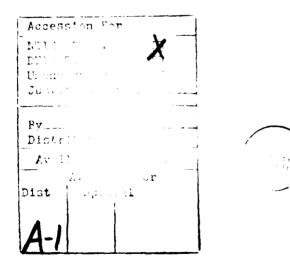
# LIST OF ILLUSTRATIONS (Cont'd)

Figure		Page
C-1	Connecticut Field Strength Versus GMT, 1 and 2 November 1977 ( $\psi$ = 291 deg)	C-2
C-2	Connecticut Field Strength Versus GMT, 3 and 4 November 1977 ( $\psi$ = 291 deg)	
C-3	Connecticut Field Strength Versus GMT, 5, 6, and 7 November 1977 ( $\psi$ = 291 deg)	C-4
C-4	Connecticut Field Strength Versus GMT,	C-4
C-5	8 and 9 November 1977 ( $\psi$ = 291 deg)	
C-6	11 and 12 November 1977 ( $\psi$ = 21 deg)	C-6
C-7	13 and 14 November 1977 ( $\psi = 21 \text{ deg}$ )	C-7
C-8	15 and 16 November 1977 ( $\psi$ = 21 deg)	
C-9	17, 19, and 20 November 1977 ( $\psi$ = 21 deg) Connecticut Field Strength Versus GMT,	C-9
C-10	21 and 22 November 1977 ( $\psi$ = 21 deg)	C-10
C-11	23 and 24 November 1977 ( $\psi$ = 21 deg)	C-11
	25 and 26 November 1977 ( $\psi$ = 21 deg)	C-12
C-12	Connecticut Field Strength Versus GMT, 27 and 28 November 1977 ( $\psi = 21 \text{ deg}$ )	C-13
C-13	Connecticut Field Strength Versus GMT, 29 and 30 November 1977 ( $\psi$ = 21 deg)	C-14
D-1	Connecticut Field Strength Versus GMT, 1 and 2 December 1977 ( $\psi$ = 291 deg)	D-2
D-2	Connecticut Field Strength Versus GMT, 3 and 4 December 1977 ( $\psi$ = 291 deg)	D-3
D-3	Connecticut Field Strength Versus GMT, 5 and 6 December 1977 ( $\psi$ = 291 deg)	D-4
D-4	Connecticut Field Strength Versus GMT, 7 and 8 December 1977 ( $\psi$ = 291 deg)	D-5
D-5	Connecticut Field Strength Versus GMT,	D-6
D-6	Connecticut Field Strength Versus GMT,	
D-7	11 and 12 December 1977 ( $\psi$ = 291 deg)	D~7
D-8	13 and 14 December 1977 ( $\psi$ = 291 deg)	
D-9	15 and 16 December 1977 ( $\psi$ = 291 deg)	D-9
D-10	17 and 18 December 1977 ( $\psi$ = 291 deg)	D-10
D-11	19 and 20 December 1977 ( $\psi$ = 291 deg)	D-11
U-11	21 and 22 December 1977 ( $\psi$ = 291 deg)	D-12

iii

LIST OF ILLUSTRATIONS (Cont'd)

Figure


È

÷

D-12	Connecticut Field Strength Versus GMT,
	23 and 24 December 1977 ( $\psi$ = 291 deg) D-13
D-13	Connecticut Field Strength Versus GMT,
	25, 29, and 30 December 1977 ( $\psi$ = 291 deg) D-14
E-1	Connecticut Field Strength Versus GMT,
	21 and 22 August 1978 ( $\psi$ = 291 deg)
E-2	Connecticut Field Strength Versus GMT,
	23, 24, and 25 August 1978 ( $\psi$ = 291 deg) E-3
E-3	Connecticut Field Strength Versus GMT,
	26, 28, and 29 August 1978 ( $\psi$ = 291 deg)
E-4	Connecticut Field Strength Versus GMT.
	30 and 31 August 1978 ( $\psi$ = 291 deg)
F-1	Connecticut Field Strength Versus GMT,
	1 ( $\psi$ = 290 deg) and 2 ( $\psi$ = 20 deg) September 1978 F-2
F-2	Connecticut Field Strength Versus GMT,
	3 and 4 September 1978 ( $\psi$ = 20 deg)
F-3	Connecticut Field Strength Versus GMT.
	5 and 6 September 1978 ( $\psi$ = 20 deg)
F-4	Connecticut Field Strength Versus GMT,
	7 and 8 September 1978 ( $\psi$ = 20 and 110 deg)
F-5	Connecticut Field Strength Versus GMT.
	9 and 10 September 1978 ( $\psi$ = 110 deg)
F-6	Connecticut Field Strength Versus GMT,
	11 and 13 September 1978 ( $\psi = 110 \text{ deg}$ )
F-7	Connecticut Field Strength Versus GMT,
	14 and 15 September 1978 ( $\psi = 110 \text{ deg}$ )
F-8	Connecticut Field Strength Versus GMT,
	16, 17, and 18 September 1978 ( $\psi$ = 110 deg)
F-9	Connecticut Field Strength Versus GMT,
	19 and 20 September 1978 ( $\psi = 110 \text{ deg}$ )

# LIST OF TABLES

Table		Pa	ge
1	August 1977 Connecticut Daily Field-Strength Averages	•	8
2	September 1977 Connecticut Daily Field-Strength Averages ( $\psi$ = 291 deg)	•	9
3	November 1977 Connecticut Daily Field-Strength Averages	•	10
4	December 1977 Connecticut Daily Field-Strength Averages ( $\psi$ = 291 deg)	•	12
5	July 1978 Connecticut Daily Field-Strength Averages ( $\psi$ = 291 deg)	•	13
6	August 1978 Connecticut Daily Field-Strength Averages ( $\psi$ = 291 deg)	•	14
7	September 1978 Connecticut Daily Field-Strength Averages	•	15
8	Number of 1976 to 1978 Connecticut Measurement Days (That Included a Nighttime Measurement Period) Where the Daily Amplitude Peak-to-Trough Variation Was ≥ 5 dB		16



ν

## GLOSSARY OF ABBREVIATIONS

- ELF Extremely low frequency
- EW East-west
- GMT Greenwich Mean Time
- NS North-south
- NUSC Naval Underwater Systems Center
- SRTP Sunrise transition period
- SSTP Sunset transition period
- STIU Signal timing and interface unit
- TEM Transverse electromagnetic
- VLF Very low frequency
- WTF Wisconsin Test Facility

### CONNECTICUT ELF FIELD-STRENGTH MEASUREMENTS, AUGUST TO DECEMBER 1977 AND JULY TO SEPTEMBER 1978

#### INTRODUCTION

Since June 1970, we have made extremely low frequency (ELF) measurements of the transverse horizontal magnetic field strength,  $H_{\phi}$ , received in Connecticut.¹⁻¹⁵ The local measurement site from June 1970 to October 1971 was in the Nehantic State Forest, East Lyme, CT. From October 1971 through November 1975, it was located in Hammonassett State Park, Madison, CT. Since July 1976, the ELF receiver has been located at the Naval Underwater Systems Center (NUSC), at New London, CT. The loop receiving antenna is now located at Fishers Island, NY, about 10 km from New London. The receiver and receiving antenna are connected by means of a microwave link from Fishers Island to New London. The AN/BSR-1 receiver is composed of an AN/UYK-20 minicomputer, a signal-timing and interface unit (STIU), a rubidium frequency time standard, two magnetic-tape recorders, and a preamplifier.

The transmission source for these farfield (1.6-Mm range) measurements is the U.S. Navy's ELF Wisconsin Test Facility (WTF), located in the Chequamegon National Forest in north-central Wisconsin, about 8 km south of the village of Clam Lake. The WTF consists of two 22.5-km antennas. One antenna is located approximately in the north-south (NS) direction and one antenna is located approximately in the east-west (EW) direction. Each antenna is grounded at both ends. At 76 Hz, the electrical axis of the NS antenna is 14 deg east of north, while the electrical axis of the EW antenna is 114 deg east of north. The WTF array can be steered electrically toward any particular location and its radiated power is approximately 1 W.

This report is the last in a series⁸⁻¹⁴ dealing with Connecticut H_{$\phi$} measurements during 1977 and 1978. Here, we will discuss the results of the August to December 1977 and July to September 1978 measurements, which were taken to investigate further the diurnal and seasonal ELF propagation variations. Future reports will discuss Connecticut H_{$\phi$} measurements taken from 1982 to 1984 as well as selected vertical electric field, E_V, and radial magnetic field, H_{$\rho$}, measurements.

#### AUGUST 1977 MEASUREMENTS

During August 1977, data were obtained on 16 days at the Connecticut site. The daily plots of signal strength (both amplitude and relative phase) versus Greenwich Mean Time (GMT), in 30-min increments, are presented in appendix A. The data are broken into four time periods that are representative of nighttime, sunrise transition period (SRTP), daytime, and sunset transition period (SSTP) propagation conditions. From 13 to 17 August, the WTF antenna array-phasing angle,  $\psi$ , was 21 deg. During the rest of the month,  $\psi$  was 291 deg. The transmitting frequency was 76 ±4 Hz.

Listed in table 1* are the August 1977 Connecticut daily field-strength averages. For a WTF antenna array-phasing angle of 291 deg, the <u>average</u> Connecticut field strength should equal -143.3 dBA/m during the day, -144.4 dBA/m during the transition periods, and -145.5 dBA/m at night.⁷ For  $\psi = 21$ deg, the values should be 0.7 dB lower. Referring to table 1 and to the figures in appendix A, we see that, with the exception of levels for the minimum nighttime field-strength period, the average field-strength levels are about as expected.

The average August night-to-day relative-phase variation,  $\Delta\phi$ , was 23.3 deg, which corresponds to an average difference in the night-to-day relativephase velocity ratio,  $\Delta(c/v)$ , of 0.16 (i.e., if the daytime value of c/v was 1.25, the nighttime value should equal 1.09). Amplitude peak-to-trough variations of 5 dB, or greater, occurred during 6 of the 16 measurement days (7, 8, 9, 11, 28, and 30 August). The largest variations (7.5 to 8.5 dB) occurred on 7 and 8 August. These variations are illustrated in figure 1* and appendix A.

Referring to figure 1, we see that, on both 7 and 8 August, the field strength steadily decreased 7.5 to 8.5 dB from the beginning of the SSTP to 0730, then steadily increased 6 to 7 dB from 0730 to the beginning of the daytime measurement period (~1200). On 9 August, the SSTP field strength decreased 2 dB, then increased 3 dB. The field strength, then, rapidly decreased 6 dB during the nighttime period of 0200 to 0600 and steadily increased 6 dB from 0600 to 1200.

#### SEPTEMBER 1977 MEASUREMENTS

During September 1977, data were obtained on 16 days at the Connecticut site. The daily plots of signal strength (both amplitude and relative phase) versus GMT, in 30-min increments, are presented in appendix B. During September, the WTF antenna array-phasing angle was 291 deg and the transmitting frequency was 76  $\pm$ 4 Hz.

Listed in table 2 are the September 1977 daily field-strength averages. For a WTF antenna array-phasing angle of 291 deg, the <u>average</u> Connecticut field strength should equal -143.3 dBA/m during the day, -144.4 dBA/m during the transition periods, and -145.5 dBA/m at night.⁷ Referring to table 2 and to the figures in appendix B, we see that, with the exception of levels for the nighttime minimum field-strength period, the average field-strength levels are about as expected.

The average September night-to-day relative-phase variation was 22.3 deg, which corresponds to a  $\Delta(c/v)$  value of approximately 0.15. Amplitude peak-to-trough variations of 5 dB, or greater, occurred during 10 of the 16 days that included a nighttime measurement period (2, 3, 4, 7, 8, 9, 14, 17, 25, and 26 September). The largest variations (8 to 9 dB) occurred on 2 and 3 September. These variations are illustrated in figure 2 and in appendix B.

^{*}All tables have been placed together, followed by all'figures, at the end of this report or in the applicable appendix.

As was mentioned in a previous report,  13  for the 1-yr period of August 1976 to July 1977, 5 dB, or greater, signal-strength fades occurred during 26 percent of the measurement days that included a nighttime measurement period. The most frequent nighttime fading (45 to 50 percent) occurred during March and September. During March 1978, 5 dB, or greater, signal-strength fades again occurred during 45 to 50 percent of the measurement days.¹⁴ Referring to table 2, we see that, during September 1977, the percentage of deep-fade occurrence was even greater (62.5 percent).

Presented in figure 2 is a comparison of the 2, 3, and 16 September field strengths. Here, we see that, on 16 September, the nighttime field strength varied by only about 1 dB. However, during both 2 and 3 September, the field strengths steadily decreased by 7 to 8 dB during the SSTP and nighttime measurement periods (with the exception of a 2 to 3 dB increase, and subsequent decrease, around 0500 to 0700). The field strength then rapidly increased by approximately 8 dB during the SRTP.

#### OCTOBER 1977 MEASUREMENTS

During October 1977, data were obtained for 29 days at the Connecticut site. The daily plots of signal strength (both amplitude and relative phase) versus GMT are presented in appendix B of NUSC TR 6773.¹¹ The WTF antenna array-phasing angle was 291 deg from 2 through 17 October and 21 deg from 18 through 30 October. The transmitting frequency was 76  $\pm$ 4 Hz.

Amplitude peak-to-trough variations of 5 dB, or greater, occurred during 7 of the first 11 October measurement days (2, 3, 4, 8, 9, 10, and 12 October). The largest variation (approximately 9 dB) occurred on 12 October. However, from 13 October until the end of October, there were zero days where the amplitude peak-to-trough variation was 5 dB or greater.¹¹

The late-October measurement period is highlighted by the "Halloween effect." This effect has been observed for the past 7 consecutive years (1970 to 1976) during the period of 27 October to 1 November.^{6,7} It is marked by an average drop in the ELF nighttime field strengths of 2 to 6 dB relative to the preceding or following nights.

Since the 26 to 28 October 1977 period was characterized by the greatest amount of magnetic-storm activity during October, we expected that the "Halloween effect" would be substantial. However, this year the effect reversed itself. During 26, 28, 29, and 30 October and 1 November, the average nighttime field strength was 1 to 1.5 dB higher than normal, and the average nightto-day relative-phase variation was  $\frac{5}{5}$  to 10 deg lower than normal.¹¹

These two factors imply a decrease in the 26 October to 1 November 1977 nighttime reflection height of roughly 10 km. Because particle precipitation into the D region tends to increase ionization, making the ionosphere more "daylike" by lowering the effective reflection height and improving excitation, the 26 October to 1 November nighttime field-strength increases are as expected.

#### NOVEMBER 1977 MEASUREMENTS

During November 1977, data were obtained on 28 days at the Connecticut site. The daily plots of signal strength (both amplitude and relative phase) versus GMT, in 30-min increments, are presented in appendix C. From 1 to 9 November, the WTF antenna array-phasing angle,  $\psi$ , was 291 deg. During the rest of the month,  $\psi$  was 21 deg. The transmitting frequency was 76 ±4 Hz.

Listed in table 3 are the November 1977 Connecticut daily field-strength averages. For a WTF antenna array-phasing angle of 291 deg, the <u>average</u> Connecticut field strength should equal -143.3 dBA/m during the day, -144.4 dBA/m during the transition periods, and -145.5 dBA/m at night.⁷ For  $\psi = 21$ deg, the values should be 0.7 dB lower. Referring to table 3, we see that the average-daytime field strengths are about as expected, while the average transition-period and nighttime field strengths are about 0.5 dB higher.

The average November night-to-day relative-phase variation was 22.9 deg, which corresponds to a  $\Delta(c/v)$  value of approximately 0.16. Amplitude peak-totrough variations of 5 dB, or greater, occurred during zero of the 28 measurement days that included a nighttime measurement period. In fact, from 13 October until the end of November, there were zero days (out of the 47 measured) where the amplitude peak-to-trough variation was 5 dB or greater.

The largest amplitude peak-to-trough variation during this time period (-4.5 dB) occurred on 9 November. Presented in figure 3 is a comparison of the 1 and 9 November field strengths (both amplitude and relative phase). Here, we see that, during 1 November, the nighttime field strength was 1 to 1.5 dB higher than expected while the nighttime relative-phase variation was approximately 10 deg.

During 9 November, the field strength steadily decreased by 4 dB during the nighttime period of 0200 to 0700, then increased 4 to 4.5 dB from 0700 to the beginning of the daytime measurement period (1300). Meanwhile, the nighttime relative phase increased 15 deg from 0100 to 0530, decreased 20 deg from 0530 to 0800, increased 10 deg by 0900, then leveled off. The relative phase then decreased to its normal daytime level by the end of the SRTP (1300).

#### DECEMBER 1977 MEASUREMENTS

During December 1977, data were obtained on 27 days at the Connecticut site. The daily plots of signal strength (both amplitude and relative phase) versus GMT, in 30-min increments, are presented in appendix D. During December, the WTF antenna array-phasing angle was 291 deg and the transmitting frequency was 76  $\pm 4$  Hz.

Listed in table 4 are the December 1977 daily field-strength averages. Referring to table 4 and to the figures in appendix D, we see that, with the exception of levels for the nighttime minimum field-strength period, the average field-strength levels are about as expected.

The average December night-to-day relative-phase variation was 23.2 deg, which corresponds to a  $\Delta(c/v)$  value of approximately 0.16. Amplitude peak-totrough variations of 5 dB, or greater, occurred during 6 of the 27 days that included a nighttime measurement period (2, 3, 11, 12, 14, and 22 December). The largest variation (6 dB) occurred on 22 December. These variations are illustrated in figure 4 and appendix D.

Presented in figure 4 is a comparison of the 9, 12, and 22 December field strengths. During 9 December, the nighttime field strength was 1 to 3 dB lower than expected throughout the nighttime measurement period. During 12 December, the nighttime field strength steadily increased 2 dB from midnight to 0330, rapidly decreased 5 dB from 0330 to 0500, and steadily increased 4 dB by the end of the nighttime measurement period (1100).

During 22 December, the nighttime field strength rapidly decreased 4 dB from 0230 to 0400, then rapidly increased 4 dB from 0400 to 0630. Then, it decreased 1 dB from 0630 to 0700 and steadily increased 3 dB from 0700 to 1100.

#### JULY 1978 MEASUREMENTS

During July 1978, the WTF transmitted only during the daytime period of 1100 to 1500. Signal-strength data were obtained on 17 days at the Connecticut site. The WTF antenna array-phasing angle was 291 deg and the transmitting frequency was 76  $\pm$ 4 Hz.

The daily plots of signal strength versus GMT, in 30-min increments, are presented in figure 5, while the daily field-strength averages are listed in table 5. From these, we see that the July 1978 daytime field-strength levels are about as expected.

#### AUGUST AND SEPTEMBER 1978 MEASUREMENTS

During the period of 21 August to 20 September 1978, data were obtained on 27 days at the Connecticut site. The daily plots of signal strength (both amplitude and relative phase) versus GMT, in 30-min increments, are presented in appendix E for August and in appendix F for September. From 21 August to 1 September, the WTF antenna array-phasing angle,  $\psi$ , was 291 deg. From 2 to 7 September,  $\psi$  was 20 deg and, during the rest of September, it was 110 deg. The transmitting frequency was 76 ±4 Hz.

Listed in tables 6 and 7 are the August and September 1978, respectively, Connecticut daily field-strength averages. For a WTF antenna array-phasing angle of 291 deg, the <u>average</u> Connecticut field strength should equal -143.3 dBA/m during the day, -144.4 dBA/m during the transition periods, and -145.5 dBA/m at night.⁷ For  $\psi = 20$  deg, the values should be 0.7 dB lower while, for  $\psi = 110$  deg, the values should be 1.8 dB lower. Referring to tables 6 and 7, we see that the August and September daytime and August transition-period and nighttime field strengths are about as expected. However, the September transition-period and nighttime field strengths are 0.5 to 1.0 dB higher.

The average night-to-day relative-phase variation,  $\Delta\phi$ , was 21.4 deg from 21 to 31 August, 12.7 deg from 1 to 6 September, and 21.7 deg from 7 to 20 September. The corresponding  $\Delta(c/v)$  values are 0.15, 0.09, and 0.15, respectively.

Amplitude peak-to-trough variations of 5 dB, or greater, occurred during only 1 of the 27 measurement days that included a nighttime measurement period, 13 September (see appendix F). This is in direct contrast to the 1973 to 1977 results where 5 dB, or greater, amplitude peak-to-trough variations occurred during 35 out of the 63 September measurement days (i.e., 56 percent of the time). 7,13 

The late August and early September 1978 period was characterized by substantial magnetic-storm activity. In the past, several ELF nighttime disturbances (both increases and decreases) have occurred during the several days following magnetic storms, when similar but less-pronounced behavior is found to coincide with phase disturbances on very low frequency (VLF) paths across the northern United States.¹⁶

Presented in figure 6 is a comparison of the 21 to 31 August and 1 to 6 September 1978 average field strengths (both amplitude and relative phase). Here, we see that the 1 to 6 September average-nighttime field strengths were about 1 dB higher and the average night-to-day relative-phase variation was approximately 10 deg lower.

These two factors imply a decrease in the 1 to 6 September nighttime reflection height of roughly 10 km. Because particle precipitation into the D region tends to increase ionization, making the ionosphere more "daylike" by lowering the effective reflection height and improving excitation, the 1 to 6 September 1978 nighttime field-strength increases are as expected.

#### DISCUSSION

During the last several years, we have made a substantial number of horizontal magnetic field-strength measurements in Connecticut. We definitely noticed that ELF nighttime propagation is much more variable than ELF daytime propagation. Two prime candidates for the cause of these nighttime variations are particle precipitation and the presence of a nocturnal sporadic E layer. $^{15-17}$  An alternative explanation is standing-wave or diffraction patterns caused by the interaction of the transverse electromagnetic (TEM) mode with the polar-cap boundary. 18 

Listed in table 8 are the number of August 1976 to September 1978 Connecticut measurement days that included a nighttime measurement period where the daily amplitude peak-to-trough variation was 5 dB, or greater. The monthly percentage of these days, relative to the total number of measurement days, also is shown in table 8 and plotted in figure 7.

Referring to table 8 and figure 7, we see that, for the 2-yr period of August 1976 to September 1977, 5 dB, or greater, signal-strength fades occurred during 25 percent of the measurement days. The most-frequent nighttime fading occurred during the late-winter/early-spring (January through

April) and late-summer/early-fall (August through October) periods. The least-frequent nighttime fading occurred during June and November.

#### CONCLUSIONS

The horizontal magnetic field-strength measurements taken in Connecticut from August to December 1977 and July to September 1978 have demonstrated, again, that the short-term sample-to-sample variability of ELF nighttime propagation is much greater than the short-term sample-to-sample variability of ELF daytime propagation.

For the 2-yr period of August 1976 to September 1978, amplitude peak-totrough variations of 5 dB, or, greater, were observed 25 percent of the time. The most-frequent nighttime fading occurred during the late-winter/early-spring (January through April) and late-summer/early-fall (August through October) periods. The least-frequent nighttime fading occurred during June and November.

AND NEEDED TAXABLE CONSISTS SAVED TAXABLE SAVED

6

Sec. Sec.

F.

Date	ψ (deg)	Day H _¢ (dBA/m)	SSTP H _¢ (dBA/m)	Night H _q (dBA/m)	SRTP H _φ (dBA/m)	Δφ (deg)	Peak/ Trough <u>&gt;</u> 5 dB
8/1	291	-143.2	-143.8	-145.0	-143.3	23.5	No
8/4	291	-143.1	-144.2	-144.8	-143.4	23.1	No
8/5	291	-143.4	-144.7	-145.7	-143.8	22.0	No
8/7*	291	-142.5	-143.1	-146.4	-145.1	25.4	Yes
8/8*	291	-143.8	-143.4	-147.8	-146.4	27.9	Yes
8/9	291	-145.3	-145.8	-147.5	-146.9	19.4	Yes
8/11	291	-143.3	-145.1	-146.6	-145.1	26.9	Yes
8/12	291	-143.7	-145.7	-146.3	-145.7	24.7	No
8/13	21	-144.0	-144.2	-145.7	-145.4	27.4	No
8/14	21	-144.4	-145.2	-146.4	-144.9	18.9	No
8/15	21	-144.5	-145.6	-145.9	-146.0	≈22	No
8/16	21	-144.2	-144.8	-146.8	-145.2	22.5	No
8/17	21	-143.9	-144.7	-145.8	-144.8	19.9	No
8/28	291	-143.2	-144.5	-146.0	-144.6	≈25	Yes
8/29	291	-142.8	-143.4	-145.0	-144.0	27.2	No
8/30	291	-143.3	-143.9	-144.7	-144.4	28.4	Yes
Average	291	-143.4	-144.3	-145.9	-144.7	24.5	
Average	21	-144.2	-144.9	-146.1	-145.2	22.1	6/16 (37.5%)
Average	291†	-143.4	-144.3	-145.7	-144.6	23.3	]`´´

Table 1. August 1977 Connecticut Daily Field-Strength Averages

*Vertical electric field measurements. +Normalized to 291 deg.

Date	Day H _q (dBA/m)	SSTP H _o (dBA/m)	Night H _φ (dBA/m)	SRTP H _φ (dBA/m)	Δφ (deg)	Peak/ Trough <u>&gt;</u> 5 dB
9/2	-143,1	-144.5	-147.9	-146.1	29.3	Yes
9/3	-143.8	-144.3	-147.5	-149.0	25.9	Yes
9/4	-	-145.6	-147.4(7)	-	-	Yes
9/7	-143.1	-143.7	-145.5	-143.9	24.8	Yes
9/8	-143.0	-143.9	-145.3	-143.8	17.5	Yes
9/9	-143.1	-143.6	-145.4	-144.8	24.3	Yes
9/14	-143.2	-143.8	-145.2	-143.7	18.9	Yes
9/15	-143.0	-143.5	-145.0	-143.8	22.1	No
9/16	-142.7	-143.0	-144.3	-143.5	21.1	No
9/17	-142.6	-143.5	-145.3	-143.7	25.6	Yes
9/21	-143.5	-145.0	-145.0	-142.8	24.1	No
9/22	-142.9	-143.7	-144.8	-143.4	-	No
9/23	-142.1	-142.5	-144.3	-143.6	-	No
9/24	-142.8	-143.7	-144.3	-144.4	19.2	No
9/25	-143.0	-144.6	-145.5	-144.4	18.2	Yes
9/26	-142.7	-143.4	-145.1	-144.0	18.8	Yes
Average	-143.0	-143.8	-145.5	-144.3	22.3	10/16 (62.5%)

Table 2. September 1977 Connecticut Daily Field-Strength Averages ( $\psi$  = 291 deg)

į

Date	SSTP H _φ (dBA/m)	Night H _ф (dBA/m)	SRTP H _o (dBA/m)	Day H _φ (dBA/m)	Δφ (deg)	ψ (deg)	Peak/ Trough > 5 dB
11/1	-	-144.3	-144.0	-143.3	23.4	291	No
11/2	-143.6	-145.4	-144.0	-143.8	20.8	291	No
11/3	-143.2	-145.3	-143.5	-143.5	19.3	291	No
11/4	-	-145.2	-144.5	-143.5	16.7	291	No
11/5	-143.5	-144.7	-143.8	-143.6	24.9	291	No
11/6	-143.8	-145.2	-144.1	-143.0	24.2	291	No
11/7	-143.2	-145.3	-144.4	-143.2	29.8	291	No
11/8	-144.3	-145.6	-143.9	-143.2	24.1	291	No
11/9	-144.3	-146.1	-144.8	-143.5	28.9	291	No
Average	-143.7	-145.2	-144.1	-143.4	23.6	291	
11/11	-145.2	-145.8	-145.0	-143.7	21.6	21	No
11/12	-145.1	-145.6	-145.6	-143.7	19.0	21	No
11/13	-144.5	-146.0	-145.1	-144.0	21.7	21	No
11/14	-144.0	-146.0	-145.0	-143.9	17.0	21	No
11/15	-144.4	-145.5	-144.8	-144.1	16.7	21	No
11/16	-144.3	-145.4	-144.6	-144.0	15.4	21	No

Table	3.	November	1977	Connecticut	Daily
		Field-Stre	ength	Averages	

Date	SSTP H _φ (dBA/m)	Night H _φ (dBA/m)	SRTP H _φ (dBA/m)	Day H _φ (dBA/m)	Δ¢ (d <b>e</b> g)	ψ (deg)	Peak/ Trough <u>&gt;</u> 5 dB
11/17	-144.3	-145.4	-	-	-	21	No
11/19	-144.4	-145.4	-144.8	-143.8	21.0	21	No
11/20	-144.4	-145.1	-145.0	-143.8	22.0	21	No
11/21	-144.2	-145.9	-144.9	-143.8	19.1	21	No
11/22	-144.1	-145.5	-145.5	-144.2	31.3	21	No
11/23	-144.5	-145.7	-145.0	-143.6	26.4	21	No
11/24	-144.4	-145.4	-144.5	-142.9	27.2	21	No
11/25	-144.0	-145.3	-144.2	-143.8	26.3	21	No
11/26	-144.3	-145.5	-144.4	-143.4	28.3	21	No
11/27	-143.4	-144.7	-144.6	-143.2	24.2	21	No
11/28	-144.7	-145.5	-144.5	-143.5	20.8	21	No
11/29	-145.1	-145.1	-145.1	-143.4	23.2	21	No
11/30	-144.4	-145.3	-144.8	-143.4	18.5	21	No
Average	-144.4	-145.5	-144.8	-143.7	22.2	21	0/28
Average	-143.7	-145.0	-144.1	-143.2	22.9	291*	(0.00%)

Table 3. (Cont'd) November 1977 Connecticut Daily Field-Strength Averages

*Normalized to 291 deg.

Date	SSTP H _φ (dBA/m)	Night H _φ (dBA/m)	SRTP H _φ (dBA/m)	Day H _φ (dBA/m)	Δφ (deg)	Peak/ Trough <u>&gt;</u> 5 dB
12/1	-144.6	-145.4	-145.0	-143.6	25.5	No
12/2	-	-146.1	-143.9	-142.8	25.0	Yes
12/3	-	-145.3	-142.3	-142.5	15.0	Yes
12/4	-	-144.0	-143.4	-142.9	16.7	No
12/5	-	-144.2	-143.3	-142.6	20.8	No
12/6	-	-144.5	-144.2	-143.5	20.1	No
12/7	-	-144.9	-144.3	-143.6	20.9	No
12/8	-145.5	-144.8	-144.0	-143.6(15)	-	No
12/9	-	-147.2	-	-	-	No
12/10	-143.9	-145.3	-144.5	-143.4	24.9	No
12/11	-143.9	-145.5	-143.4	-142.8	22.3	Yes
12/12	-144.5	-144.7	-143.2	-143.1	18.8	Yes
12/13	-143.6	-144.8	-143.8	-143.2(13)	. 18.1	No
12/14	-143.6	-145.6	-144.2	-143.2	22.9	Yes
12/15	-144.1	-145.3	-145.0	-143.5(15)	23.7	No
12/16	-145.0	-146.1	-144.8	-143.3	24.5	No
12/17	-144.0	-146.2	-145.1	-143.7	27.5	No
12/18	-144.4	-145.6	-144.3	-142.9	22.5	No
12/19	-144.4	-145.6	-144.3	-143.0	25.4	No
12/20	-144.5	-145.6	-144.1	-143.3	28.5	No
12/21	-143.6	-145.3	-144.2	-143.4	32.3	No
12/22	-144.4	-146.1	-144.9	-143.8	27.5	Yes
12/23	-143.9	-145.3	-144.3	-143.6	23.7	No
12/24	-144.5	-145.8	-144.9	-143.6	26.6	No
12/25	-144.3	-145.6	-	-	22.5	No
12/29	-144.2	-145.7	-145.3	-143.9	18.7	No
12/30	-144.5	-146.1	-144.9	-143.8	24.9	No
Average	-144.2	-145.4	-144.2	-143.3	23.2	6/27 (22.2%)

Table 4. December 1977 Connecticut Daily Field-Strength Averages ( $\psi$  = 291 deg)

Averages	$(\psi = 291 \text{ deg})$
Date	H _¢ (dBA/m)
7/8	-143.6
7/9	-143.4
7/10	-143.3
7/11	-143.3
7/12	-143.4
7/13	-143.1
7/14	-142.8
7/15	-143.3
7/16	-143.6
7/17	-143.5
7/18	-143.2
7/19	-143.1
7/20	-143.0
7/21	-143.0
7/25	-143.7
7/27	-143.6
7/28	-143.0
Average	-143.3

Table 5.	July 3	1978 (	Connecticut	Daily	Field-Strength
		Avera	$lges (\psi = 29)$	l deg)	

Date	SSTP H _φ (dBA/m)	Night H _¢ (dBA/m)	SRTP H _¢ (dBA/m)	Day H _φ (dBA/m)	Δφ (deg)	Peak/ Trough ≥ 5 dB
8/21	-145.1	-145.9	-145.0	-143.3	26.4	No
8/22	-144.5	-145.5	-144.9	-143.3	26.5	No
8/23	-	-	-	-143.4	31.9	-
8/24	-144.5	-145.4	-144.8	-143.4	26.0	No
8/25	-144.3	-146.0	-	-	28.7	No
8/26	-144.3	-145.5	-144.5	-144.3(7)	20.9	No
8/28	-	-	-	-142.9	15.4	-
8/29	-143.6	-144.8	-143.8	-143.2	11.8	No
8/30	-144.1	-144.7	-144.0	-143.1	14.5	No
8/31	-144.3	-145.0	-143.9	-143.3	12.1	No
Average	-144.3	-145.3	-144.4	-143.3	21.4	0/8 (0.00%)

Table 6. August 1978 Connecticut Daily Field-Strength Averages ( $\psi$  = 291 deg)

Field-Strength Averages							
Date	ψ (deg)	SSTP H _φ (dBA/m)	Night H _φ (dBA/m)	SRTP H _φ (dBA/m)	Day H _φ (dBA/m)	∆¢ (deg)	Peak/ Trough <u>&gt;</u> 5 dB
9/1	291	-145.0	-144.8	-144.4	-143.6	8.8	No
9/2	20	-144.4	-145.1	-144.4	-144.0	14.0	No
9/3	20	-144.3	-145.4	-144.8	-143.8	10.1	No
9/4	20	-144.5	-144.8	-144.3	-143.6	12.1	No
9/5	20	-144.8	-144.9	-144.6	-144.0	10.7	No
9/6	20	-144.6	-145.2	-144.6	-143.8	12.0	No
9/7	20	-144.9	-145.2	-	-	17.5	-
9/7	110	-	-146.0	-145.8	-145.3	22.7	No
9/8	110	-145.7	-146.7	-146.5	-145.3	17.9	No
9/9	110	-145.9	-146.5	-146.0	-146.0	18.1	No
9/10	110	-146.0	-146.3	-145.0	-145.2	22.2	No
9/11	110	-146.0	-146.2	-146.1	-145.5	19.3	No
9/13	110	-145.4	-146.9	-146.0	-145.2	-	Yes
9/14	110	-145.5	-146.8	-146.0	-145.1	22.8	No.
9/15	110	-145.6	-146.2	-145.9	-145.0	17.3	No
9/16	110	-145.6	-146.0	-145.1	-144.7	18.8	No
9/17	110	-146.1	-146.7	-145.4	-144.9	-	No
9/18	110	-145.7	-146.6	-145.8	-145.1	29.1	No
9/19	110	-146.0	-146.9	-145.9	-145.0	29.2	No
9/20	110	-146.3	-146.9	-145.1	-144.8	21.0	No
Average	20	-144.6	-145.1	-144.5	-143.8	12.7	
Average	110	-145.8	-146.5	-145.7	-145.1	21.7	1/19 (5.3%)
Average	291*	-144.0	-144.6	-143.9	-143.2	18.0	

Table 7. September 1978 Connecticut Daily Field-Strength Averages

*Normalized to 291 deg.

٠.

Month	Number of Days	Total Number of Measurement Days	Percent
January	13	42	31
February	16	47	34
March	25	53	47
April	15	52	29
May	11	54	20
June	1	34	3
July	4	19	21
August	9	35	26
September	20	55	36
October	13	54	24
November	0	53	0
December	8	54	15
Total*	135	542	25

# Table 8. Number of 1976 to 1978 Connecticut Measurement Days (That Included a Nighttime Measurement Period) Where the Daily Amplitude Peak-to-Trough Variation Was $\geq$ 5 dB

*Total for 2-yr period of August 1976 through September 1978.

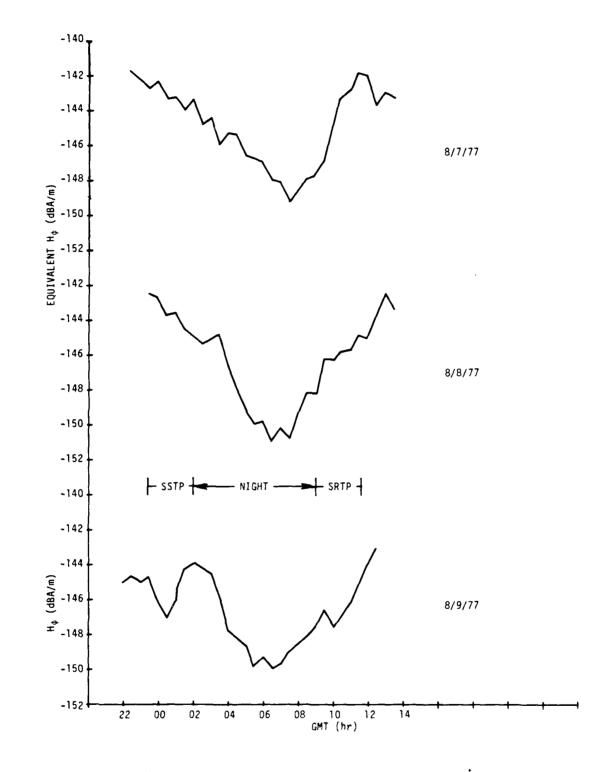



Figure 1. Connecticut Field Strength Versus GMT, 7 Through 9 August 1977

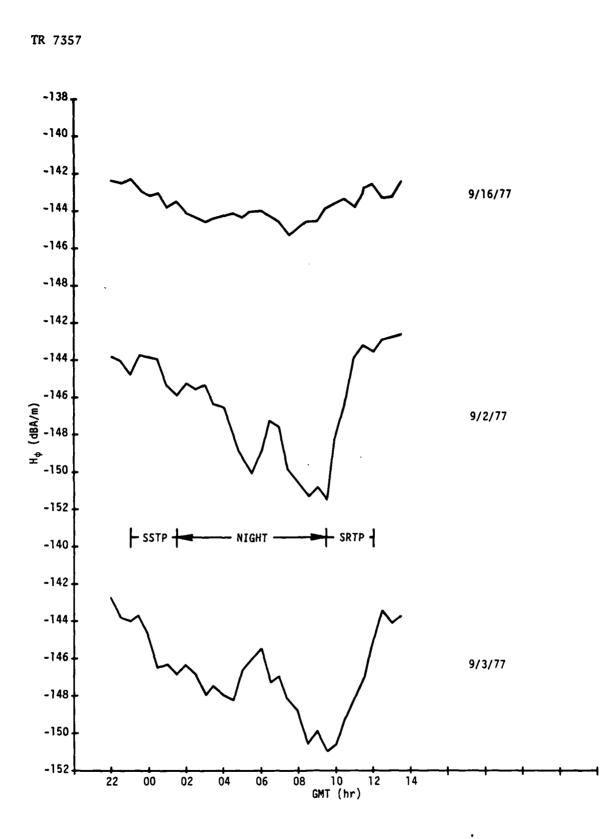
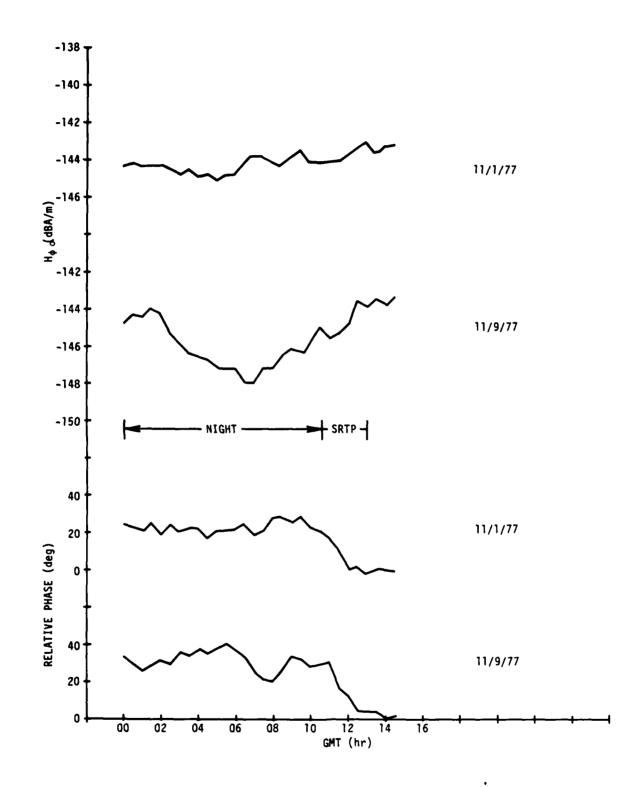
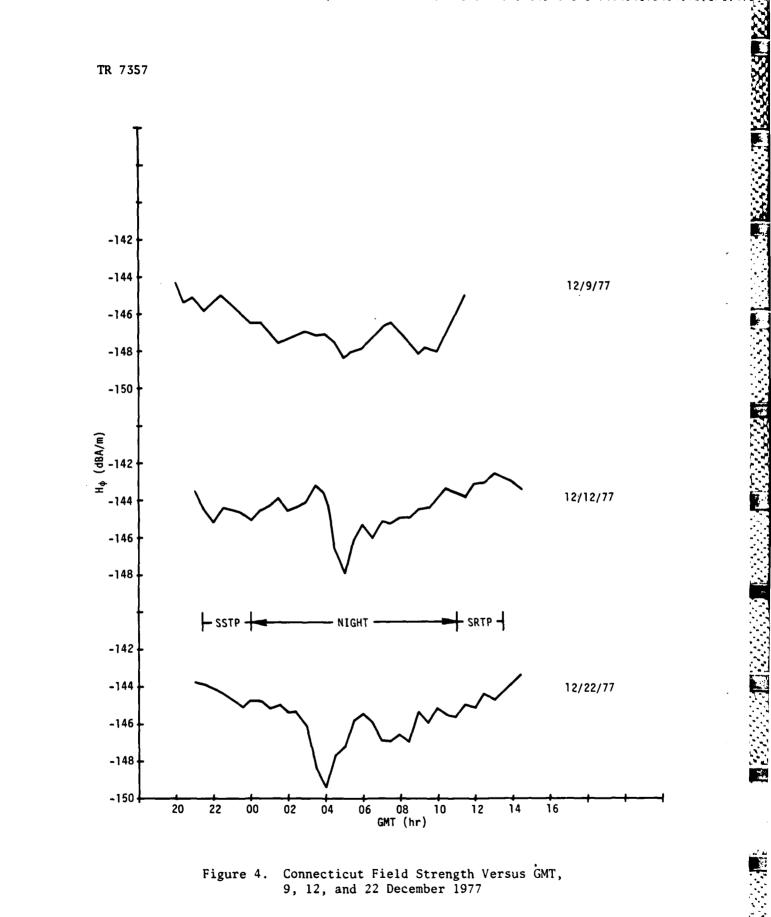



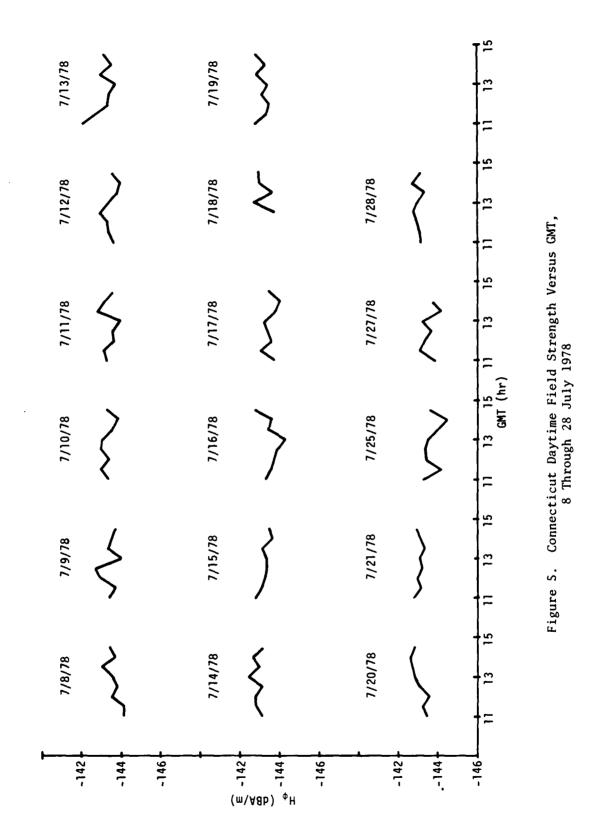

Figure 2. Connecticut Field Strength Versus GMT, 2, 3, and 16 September 1977


18





でいたことであると


Figure 3. Connecticut Field Strength Versus GMT, 1 and 9 November 1977



Connecticut Field Strength Versus GMT, Figure 4. 9, 12, and 22 December 1977

20

terrester and the fight to the second states and



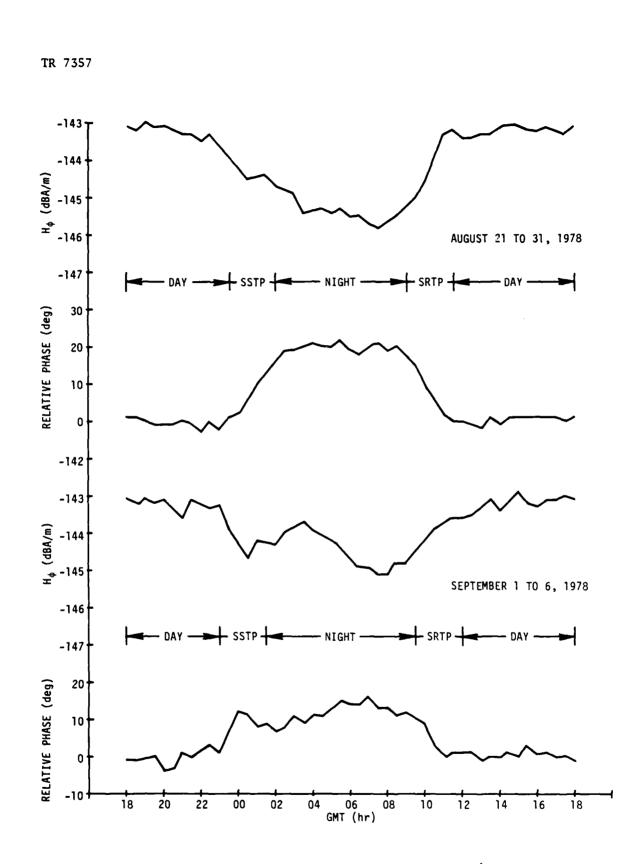



Figure 6. Connecticut Average Field Strengths Versus GMT, 21 August Through 6 September 1978

22

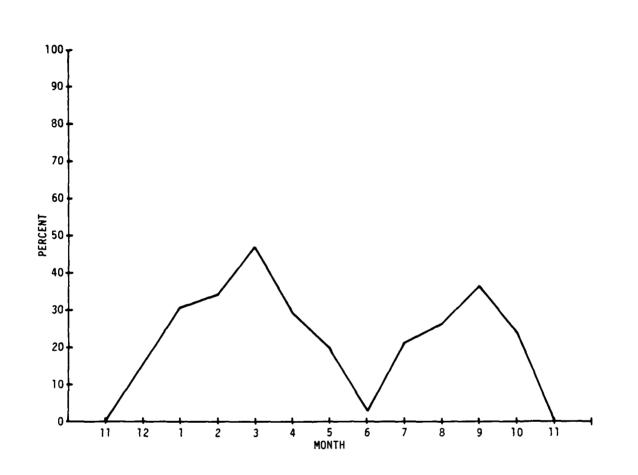
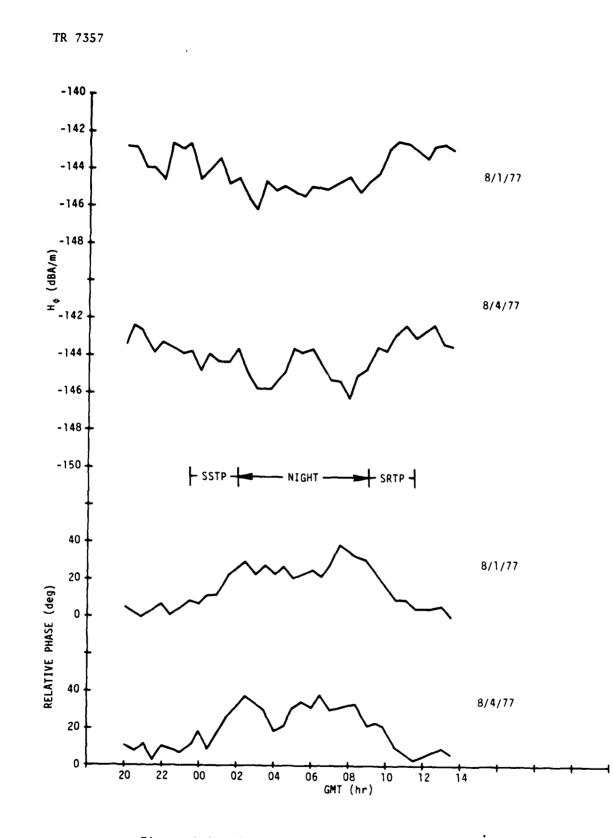
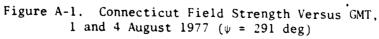



Figure 7. Percent of Measurement Days (August 1976 to September 1978) Where the Daily Amplitude Peak-to-Trough Variation Was <u>></u> 5 dB

#### REFERENCES

- P. R. Bannister, F. J. Williams, J. R. Katan, and R. F. Ingram, <u>Results</u> of <u>ELF</u> Farfield Measurements <u>Made in Connecticut</u>, <u>June 1970 - May 1973</u>, <u>NUSC Technical Report 4617</u>, <u>Naval Underwater Systems Center</u>, <u>New London</u>, CT, 17 October 1973.
- P. R. Bannister and F. J. Williams, <u>ELF Field Strength Measurements Made</u> in Connecticut from September 1973 through January 1974, NUSC Technical Report 4791, Naval Underwater Systems Center, New London, CT, 6 May 1974.
- P. R. Bannister and F. J. Williams, <u>ELF Field Strength Measurements Made</u> in Connecticut During 1974, NUSC Technical Report 4927, Naval Underwater Systems Center, New London, CT, 1 October 1975.
- P. R. Bannister, <u>ELF Effective Noise Measurements Taken in Connecticut</u> <u>During 1976</u>, NUSC Technical Report 5681, Naval Underwater Systems Center, New London, CT, 5 August 1977.
- 5. P. R. Bannister and F. J. Williams, <u>ELF Field Strength Measurements Made</u> in <u>Connecticut During 1975</u>, NUSC Technical Report 5695, Naval Underwater Systems Center, New London, CT, 15 August 1977.
- P. R. Bannister, <u>ELF Field Strength Measurements Made in Connecticut</u> <u>During 1976</u>, NUSC Technical Report 5853, Naval Underwater Systems Center, <u>New London</u>, CT, 11 September 1978.
- P. R. Bannister et al., "Extremely Low Frequency (ELF) Propagation," NUSC Scientific and Engineering Studies, Naval Underwater Systems Center, New London, CT, February 1980, 550 pp.
- P. R. Bannister, <u>ELF PVS Field Strength Measurements</u>, January 1977, NUSC Technical Report 6879, Naval Underwater Systems Center, New London, CT, 1 March 1983.
- P. R. Bannister, <u>ELF PVS Field Strength Measurements</u>, March 1977, NUSC Technical Report 6769, Naval Underwater Systems Center, New London, CT, February 1983.
- P. R. Bannister, <u>ELF PVS Field Strength Measurements</u>, April 1977, NUSC Technical Report 6771, Naval Underwater Systems Center, New London, CT, February 1983.
- P. R. Bannister, ELF PVS Field Strength Measurements, October 1977, NUSC Technical Report 6773, Naval Underwater Systems Center, New London, CT, February 1983.
- P. R. Bannister, ELF PVS Field Strength Measurements, January/February 1978, NUSC Technical Report 6775, Naval Underwater Systems Center, New London, CT, 3 February 1983.


#### REFERENCES (Cont'd)


- P. R. Bannister, <u>Connecticut ELF Field Strength Measurements</u>, <u>May to July</u> <u>1977</u>, NUSC Technical Report 6887, Naval Underwater Systems Center, New London, CT, 11 January 1984.
- P. R. Bannister, Connecticut ELF Field Strength Measurements, March to May 1978, NUSC Technical Report 7079, Naval Underwater Systems Center, New London, CT, 11 January 1984.
- P. R. Bannister, "Summary of ELF Propagation Validation System Field Strength Measurements, 1976 to 1978," IEEE Journal of Oceanic Engineering, vol. OE-9, no. 3, 1984, pp. 189-195.
- J. R. Davis, "Localized Nighttime D-Region Disturbances and ELF Propagation," Journal of Atmospheric and Terrestrial Physics, vol. 38, no. 12, 1976, pp. 1309-1317.
- P. R. Bannister, "Localized ELF Nocturnal Propagation Anomalies," <u>Radio</u> Science, vol. 17, no. 3, 1982, pp. 627-634.
- E. C. Field, Jr., and C. R. Warber, <u>Localized ELF Propagation Anomalies</u>, PSR Report 1441, Pacific-Sierra Research Corp., Los Angeles, CA, December 1984.

# Appendix A

#### AUGUST 1977 DAILY PLOTS

Daily plots of field strength at the Connecticut site (both amplitude and relative phase) versus GMT, in 30-min increments, for August 1977 are presented in this appendix as figures A-1 through A-8.





A-2

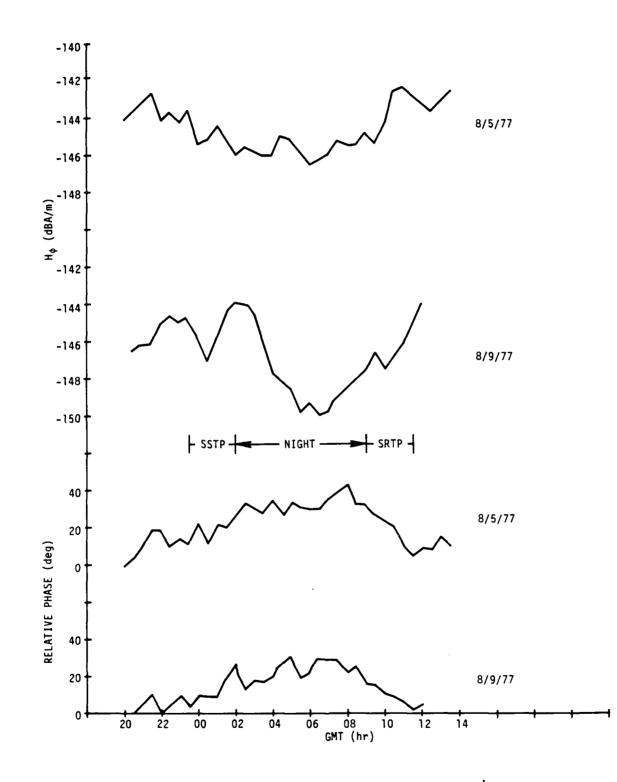
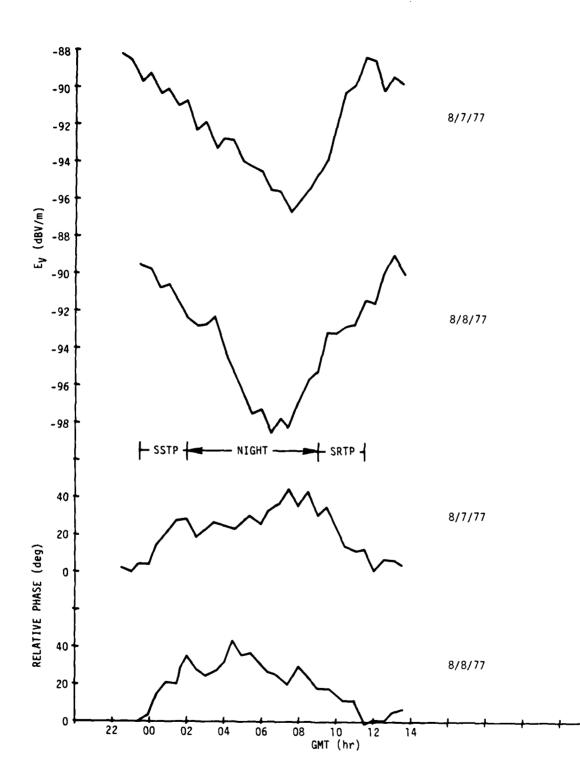
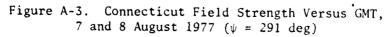





Figure A-2. Connecticut Field Strength Versus GMT, 5 and 9 August 1977 ( $\psi$  = 291 deg)

A-3





A-4

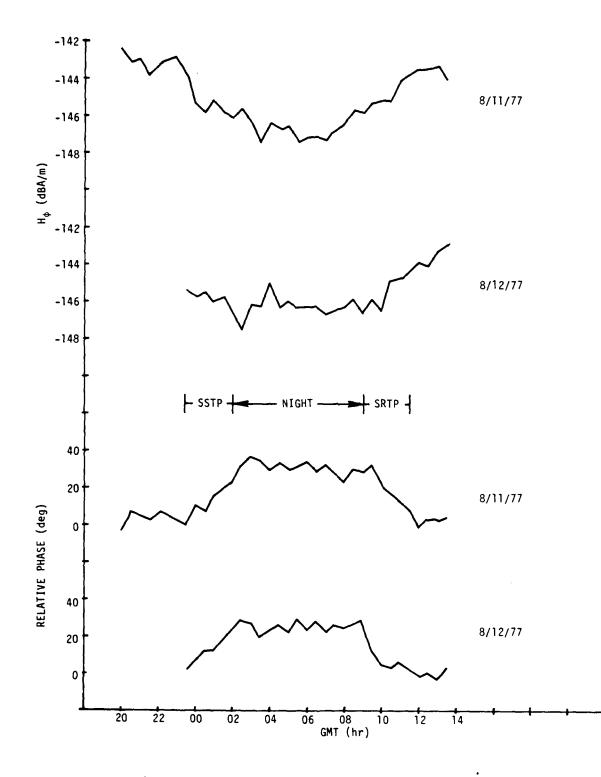
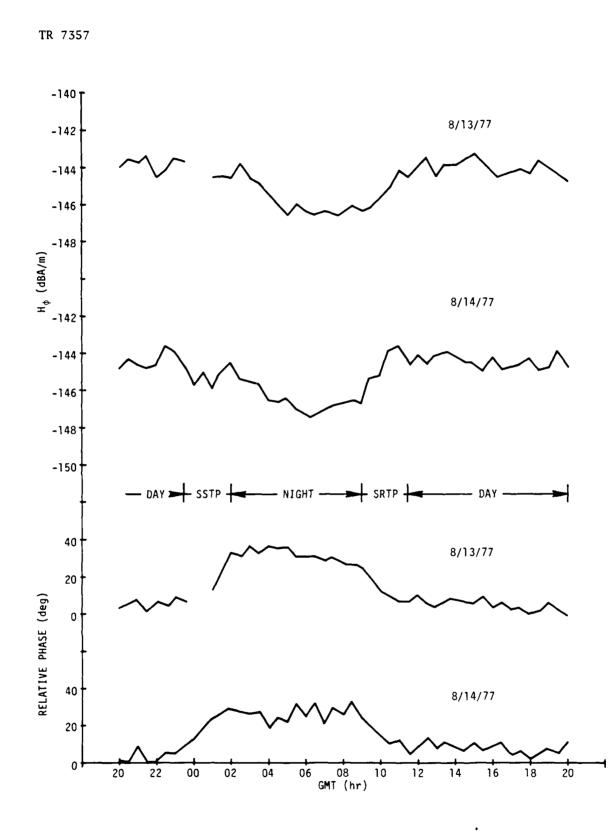
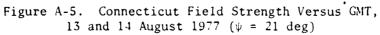





Figure A-4. Connecticut Field Strength Versus GMT, 11 and 12 August 1977 ( $\psi$  = 291 deg)







A-6

-

Same and

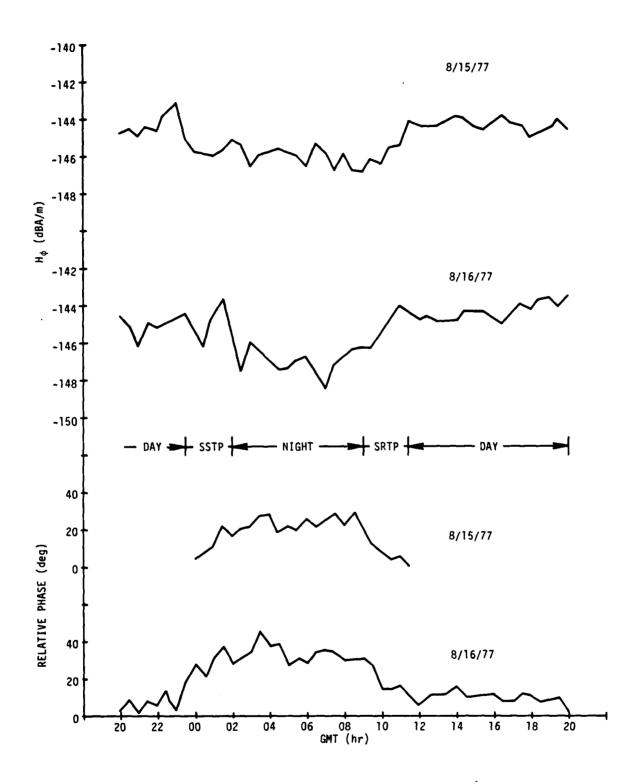
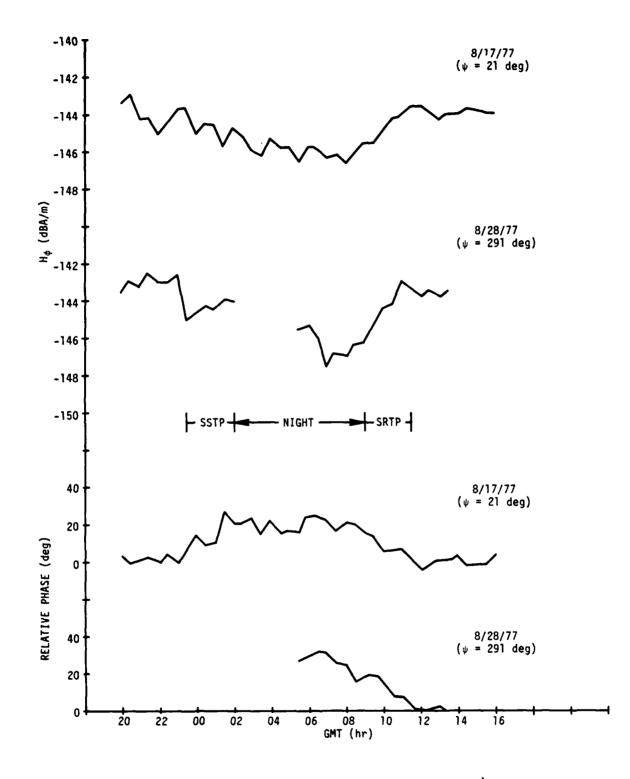
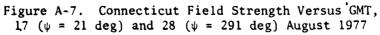





Figure A-6. Connecticut Field Strength Versus GMT, 15 and 16 August 1977 ( $\psi = 21 \text{ deg}$ )





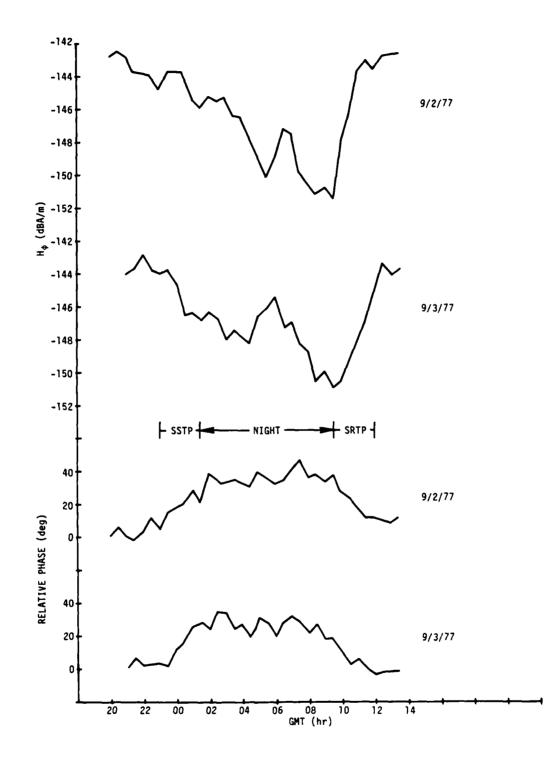


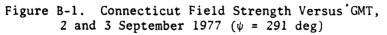
A-8



Figure A-8. Connecticut Field Strength Versus GMT, 29 and 30 August 1977 ( $\psi$  = 291 deg)

A-9/A-10 Reverse Blank


# Appendix B


#### SEPTEMBER 1977 DAILY PLOTS

Daily plots of field strength at the Connecticut site (both amplitude and relative phase) versus GMT, in 30-min increments, for September 1977 are presented in this appendix as figures B-1 through B-7.

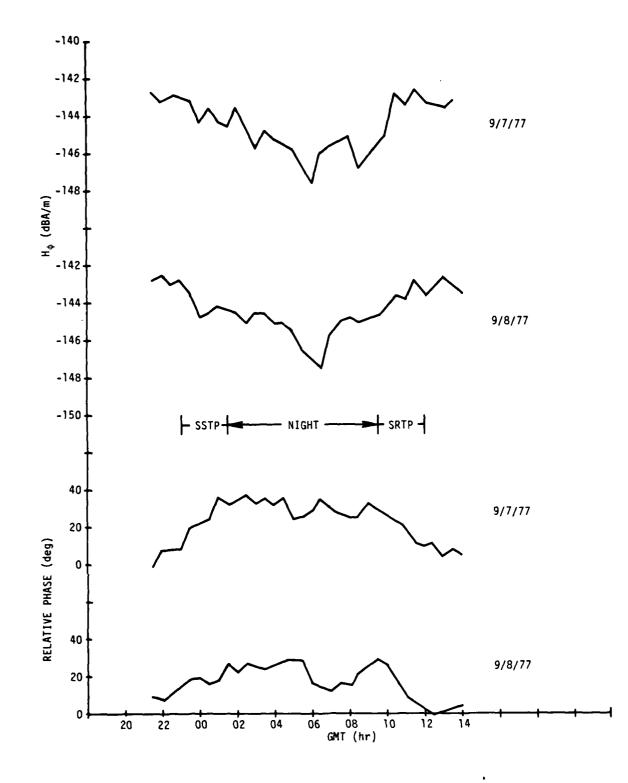


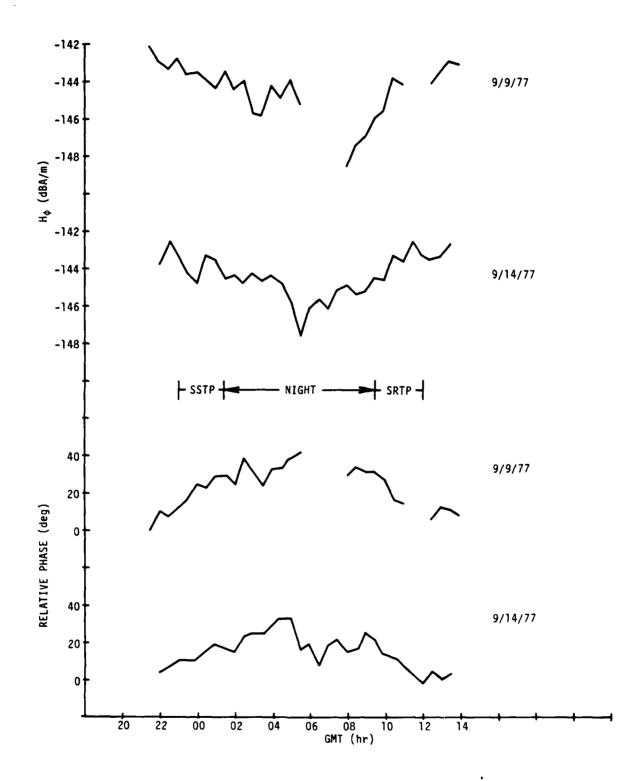
ALL NUMBER REPORT REPORT NO

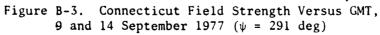




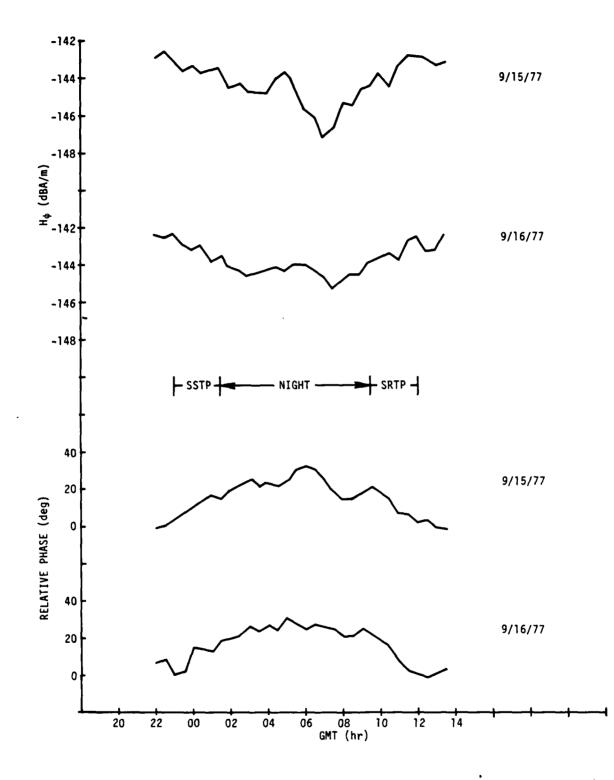
**B-**2

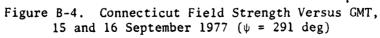




Figure B-2. Connecticut Field Strength Versus GMT, 7 and 8 September 1977 ( $\psi$  = 291 deg)

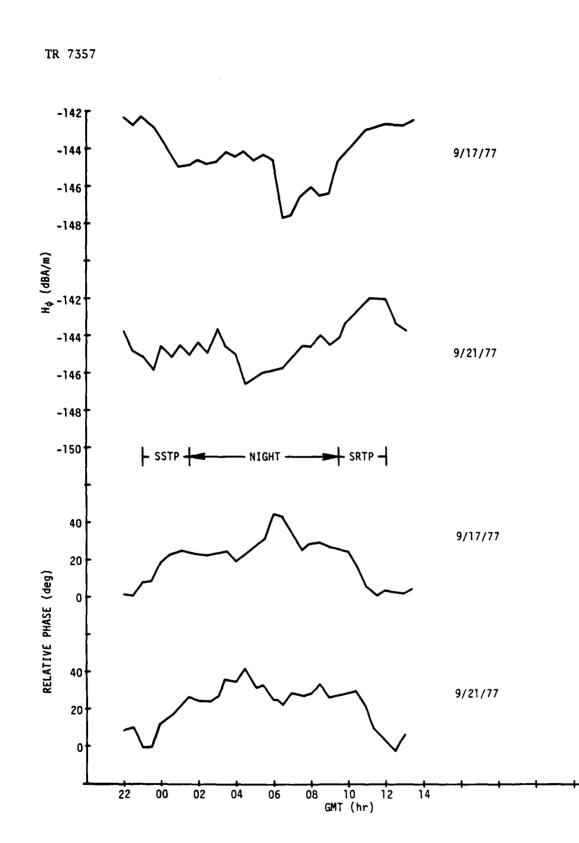


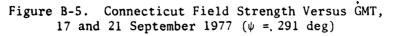




Ľ


Rainia







**B-4** 





B-5





B-6



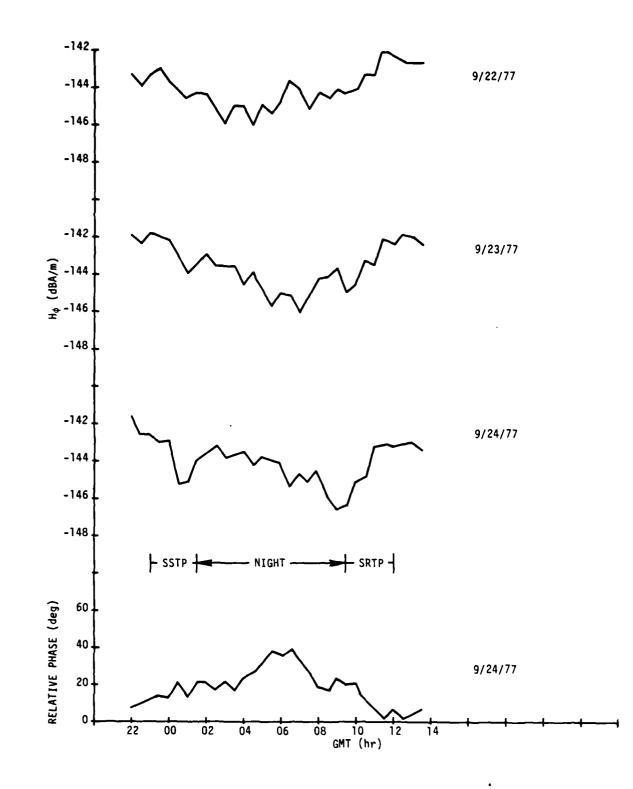
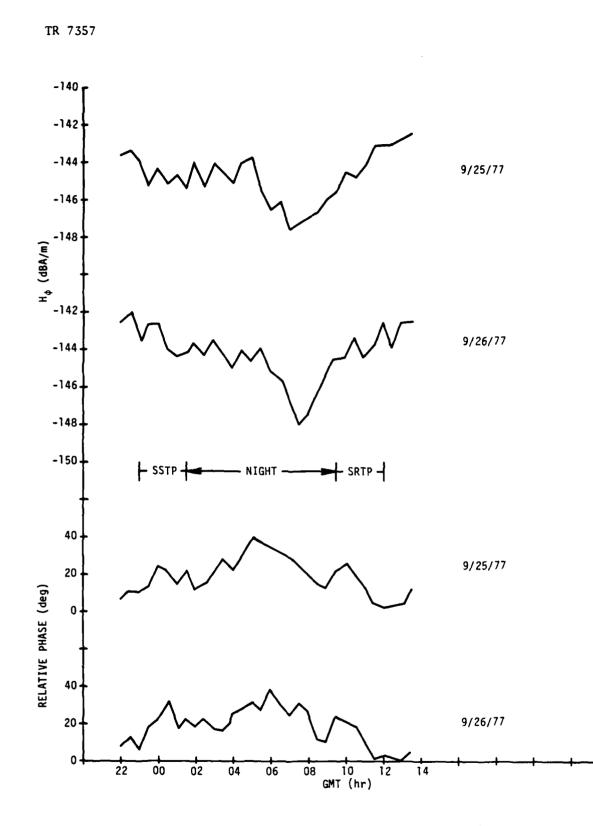
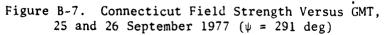
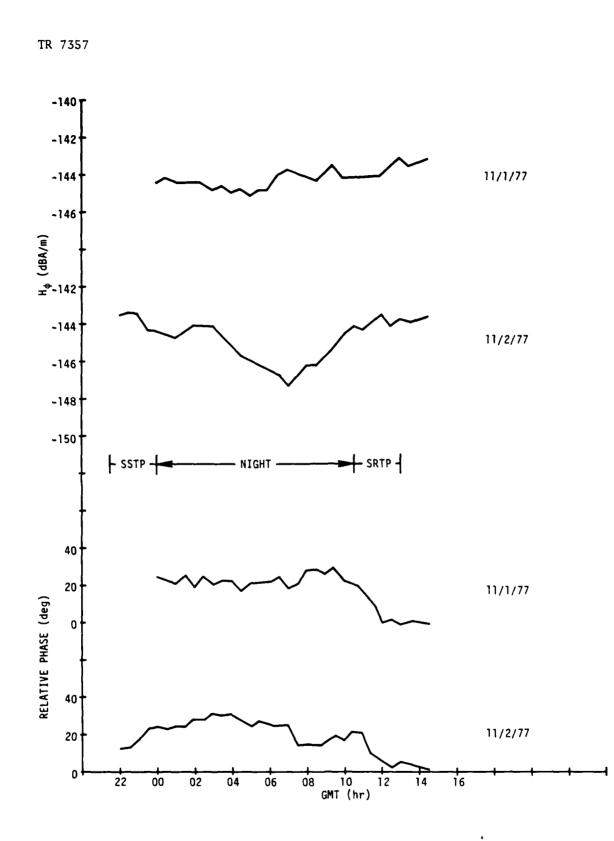




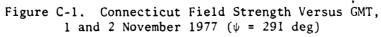

Figure B-6. Connecticut Field Strength Versus GMT, 22, 23, and 24 September 1977 ( $\psi$  = 291 deg)

**B-**7

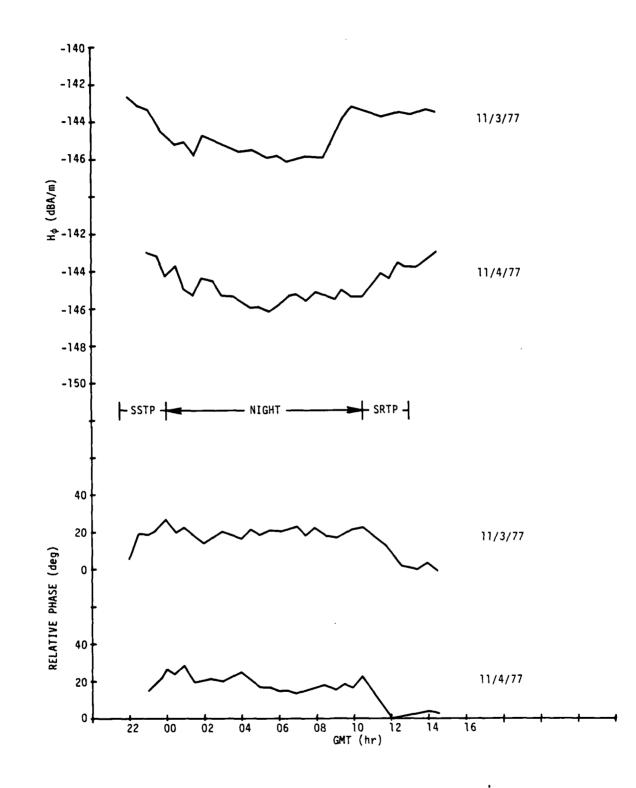


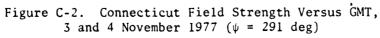



B-8

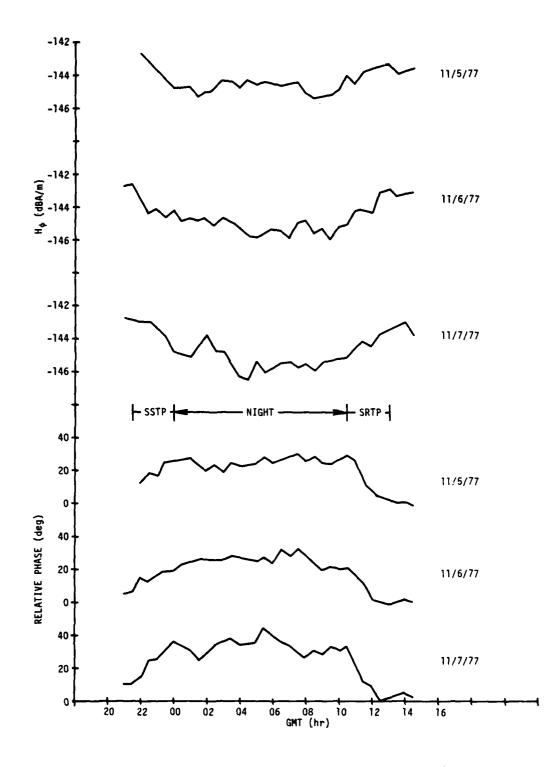

# Appendix C

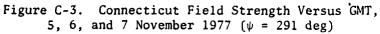
# NOVEMBER 1977 DAILY PLOTS


Daily plots of field strength at the Connecticut site (both amplitude and relative phase) versus GMT, in 30-min increments, for November 1977 are presented in this appendix as figures C-1 through C-13.


ž.







C-2





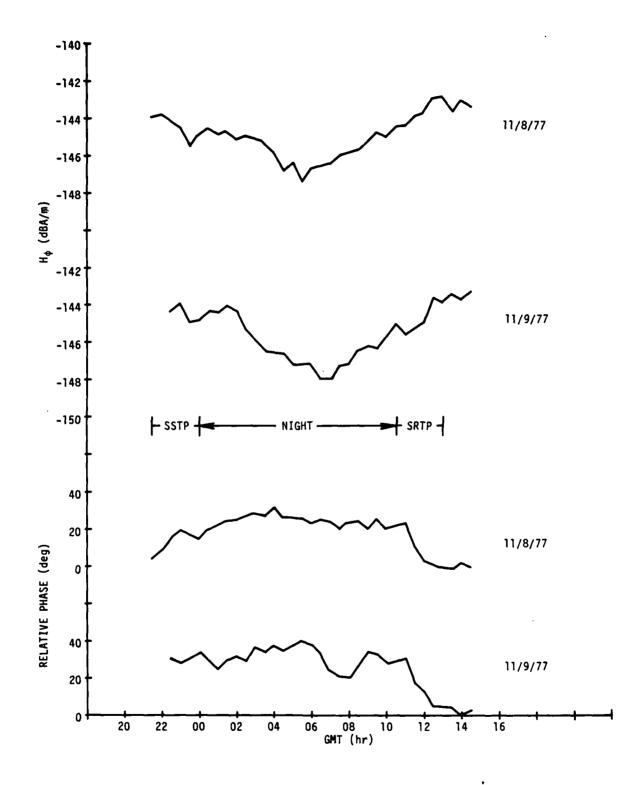
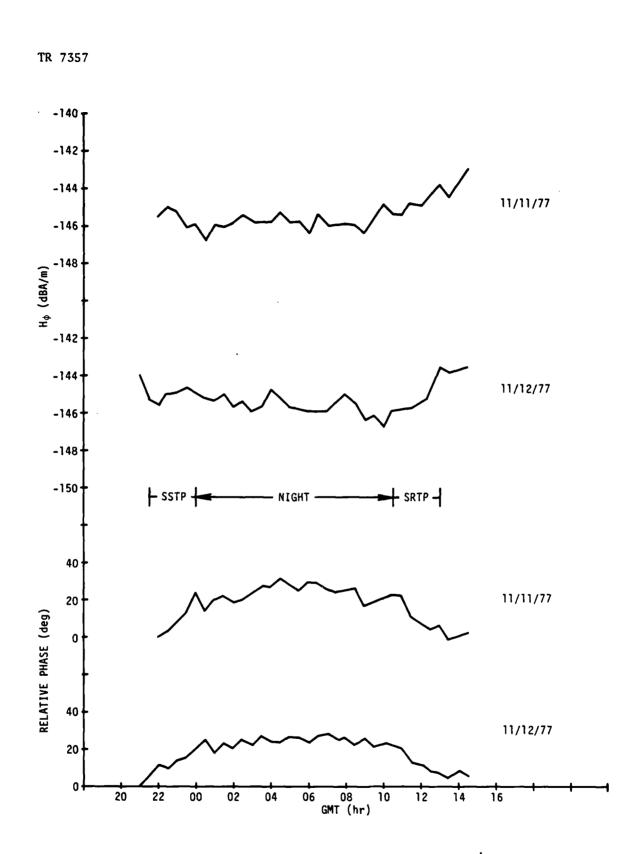
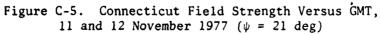
Ť

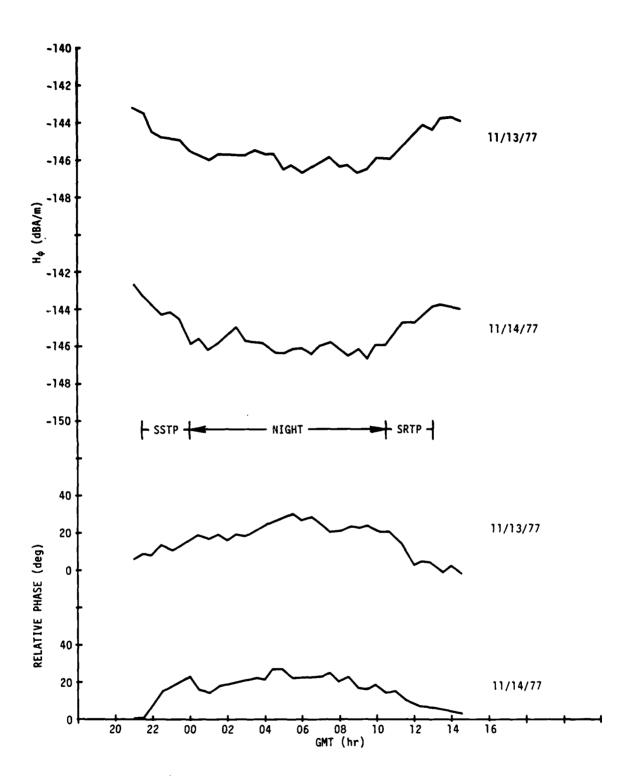




C-4

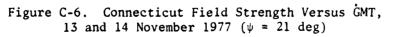
J-4

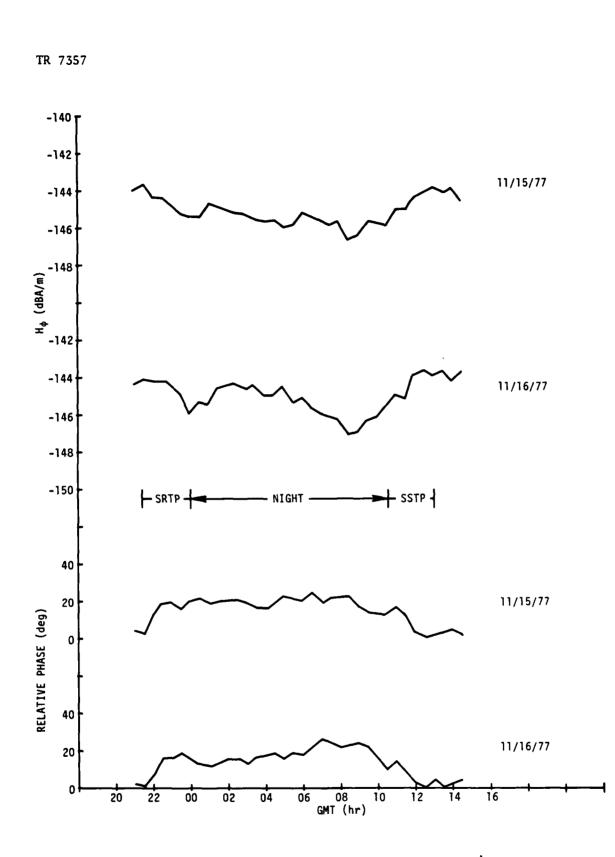


Figure C-4. Connecticut Field Strength Versus GMT, 8 and 9 November 1977 ( $\psi$  = 291 deg)

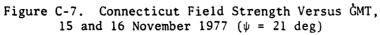




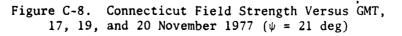

7

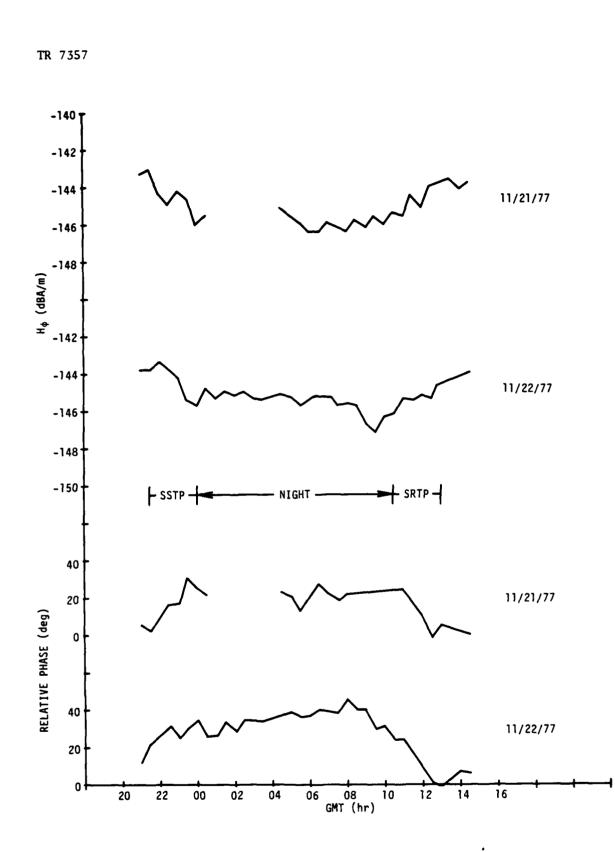
Ē.

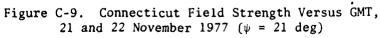




Ì

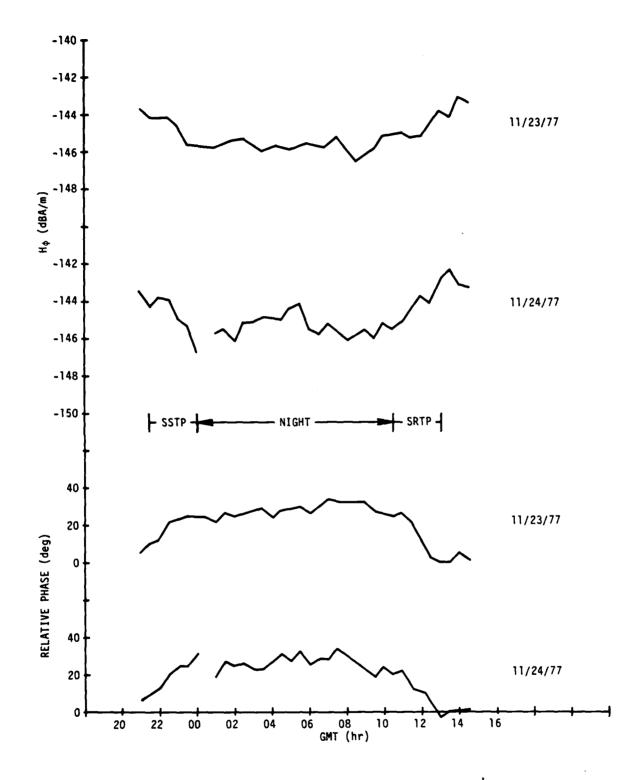

تحددنا والمراجع

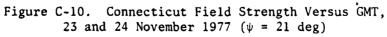




TR 7357

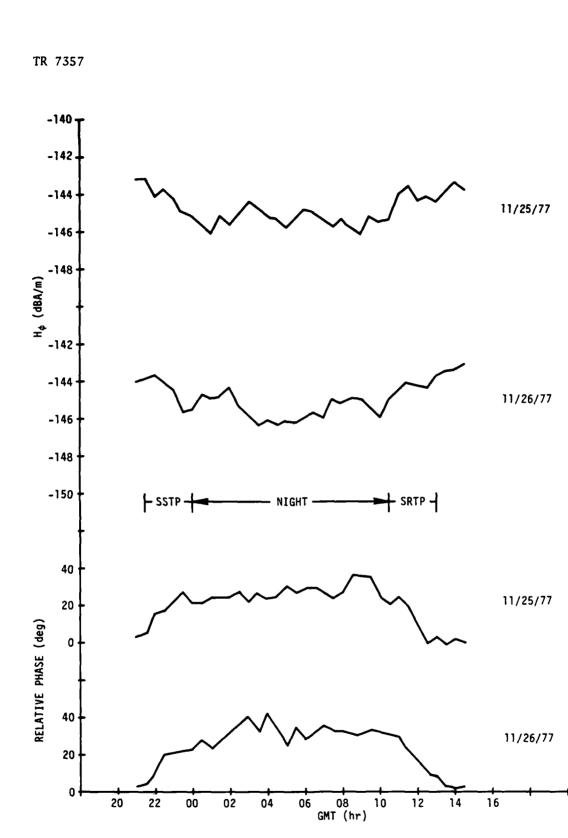


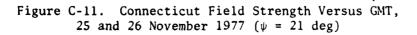


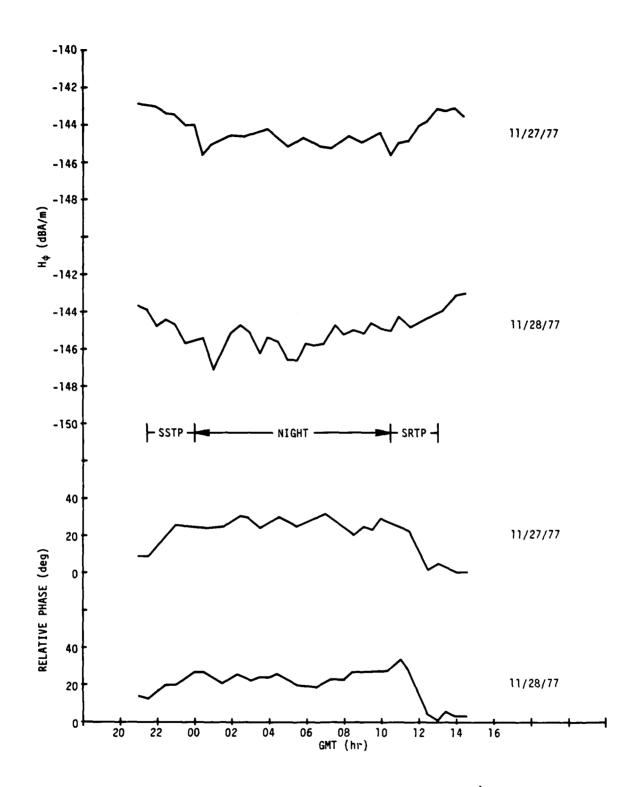


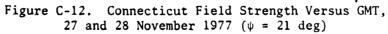



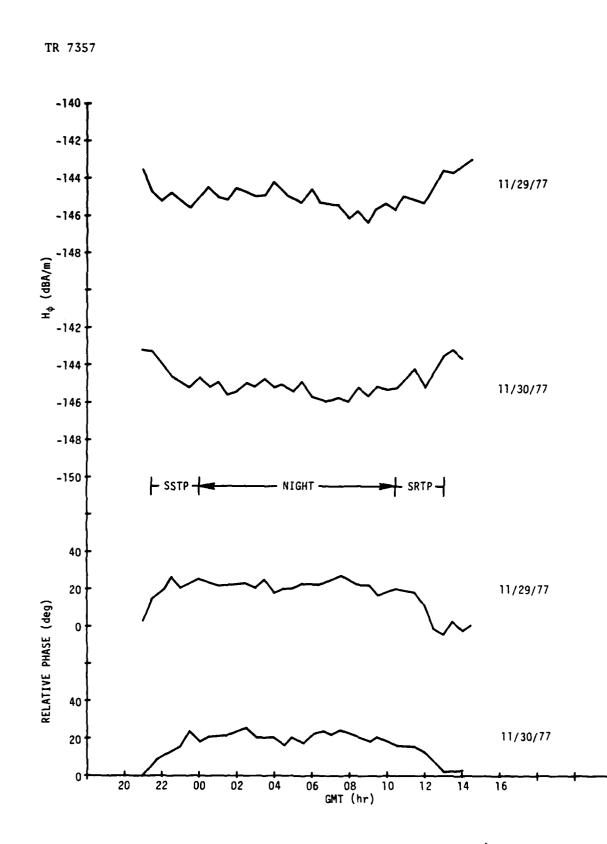


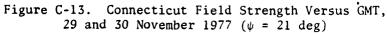






C-12

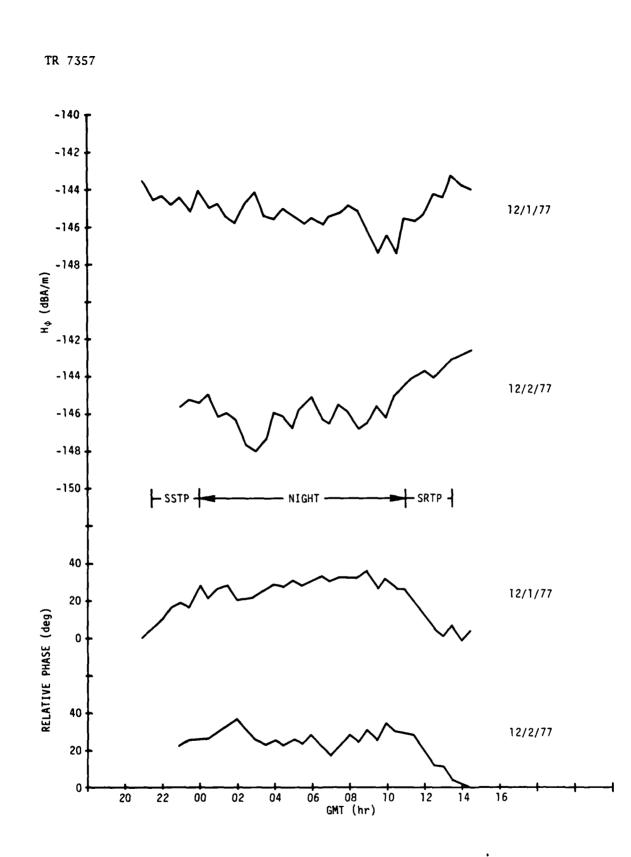


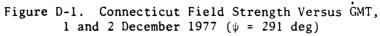










C-14

### Appendix D

### DECEMBER 1977 DAILY PLOTS

Daily plots of field strength at the Connecticut site (both amplitude and relative phase) versus GMT, in 30-min increments, for December 1977 are presented in this appendix as figures D-1 through D-13.





D-2

Ĺ

N2222223



Figure D-2. Connecticut Field Strength Versus GMT, 3 and 4 December 1977 ( $\psi$  = 291 deg)

D-3

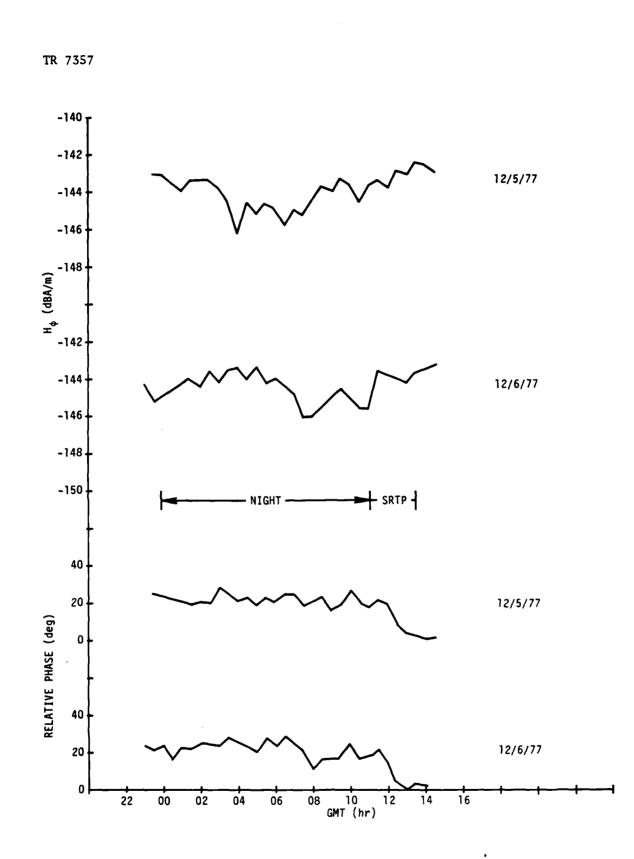
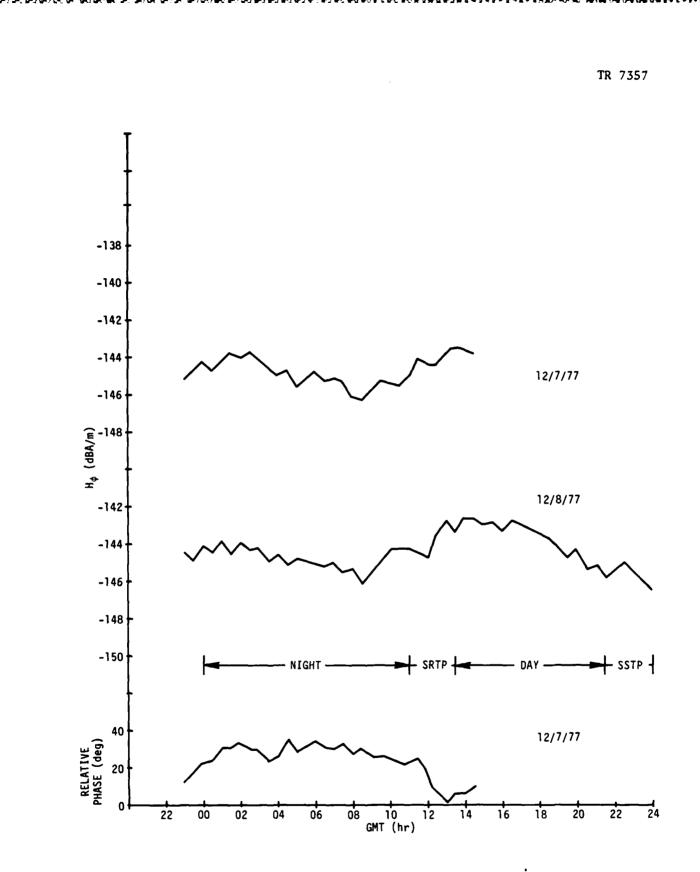
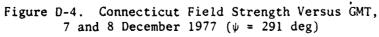
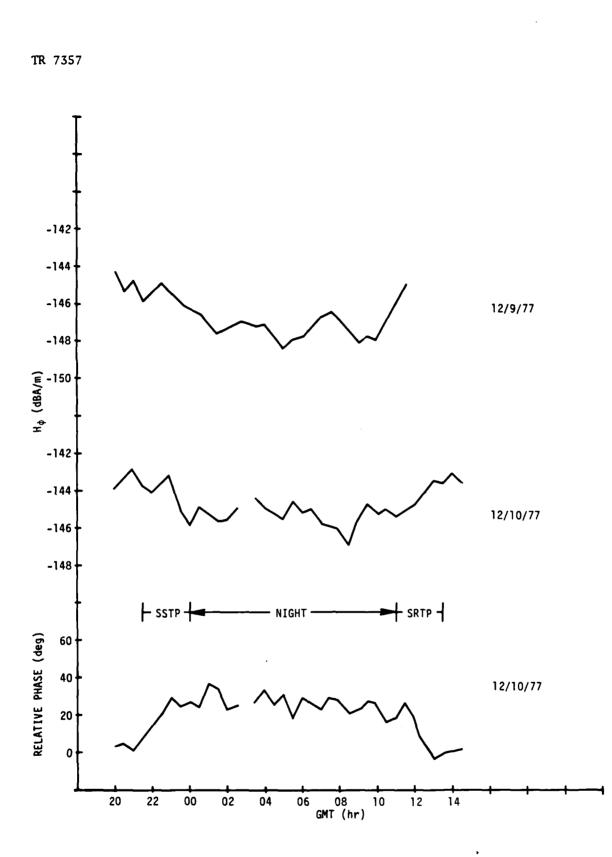
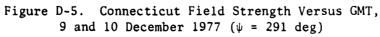





Figure D-3. Connecticut Field Strength Versus GMT, 5 and 6 December 1977 ( $\psi$  = 291 deg)

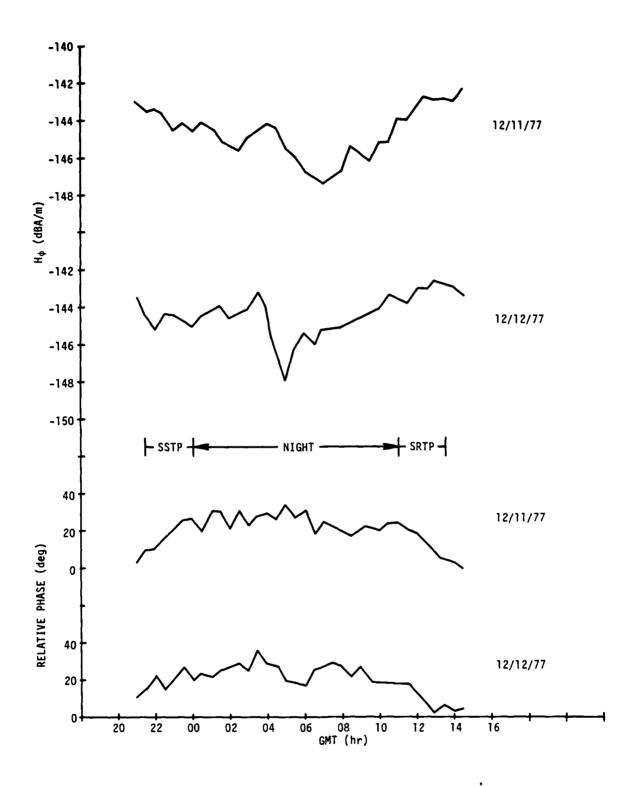

D-4

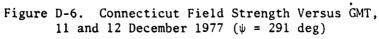

)



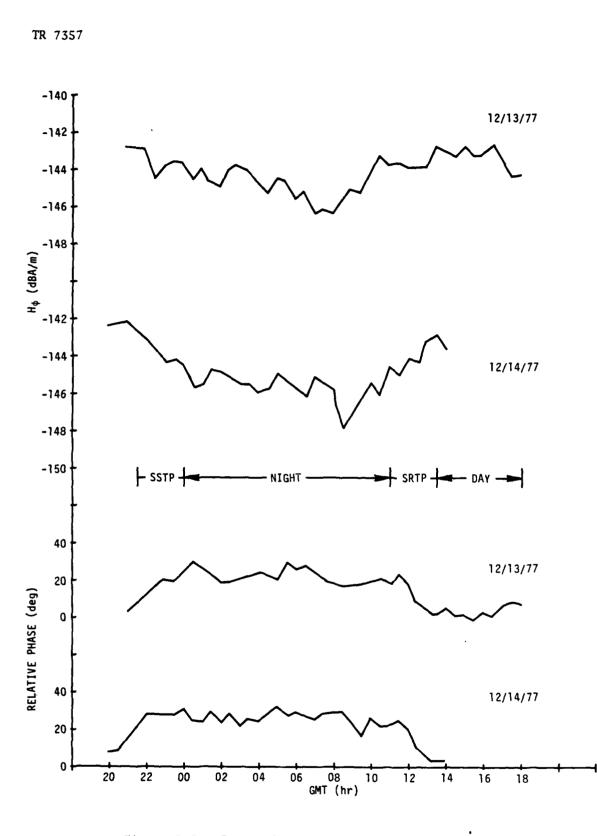


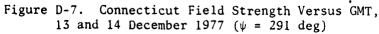
D-5




D-6


·


and the second second





D-7





D-8

1212123

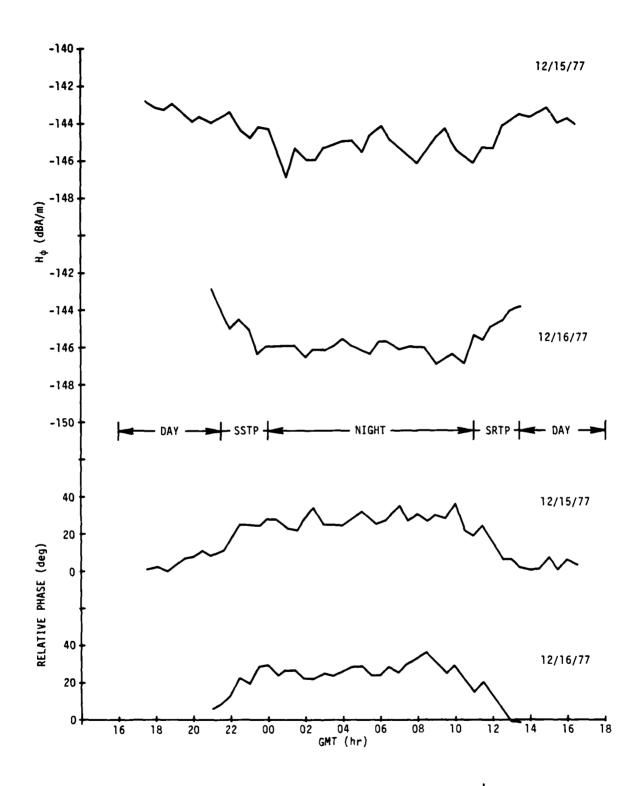
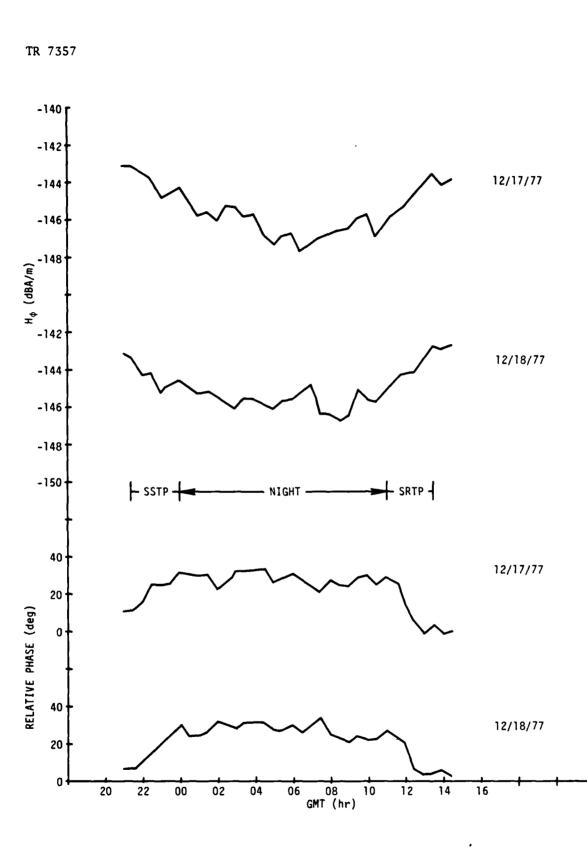
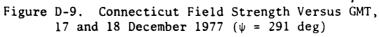





Figure D-8. Connecticut Field Strength Versus GMT, 15 and 16 December 1977 ( $\psi$  = 291 deg)





D-10

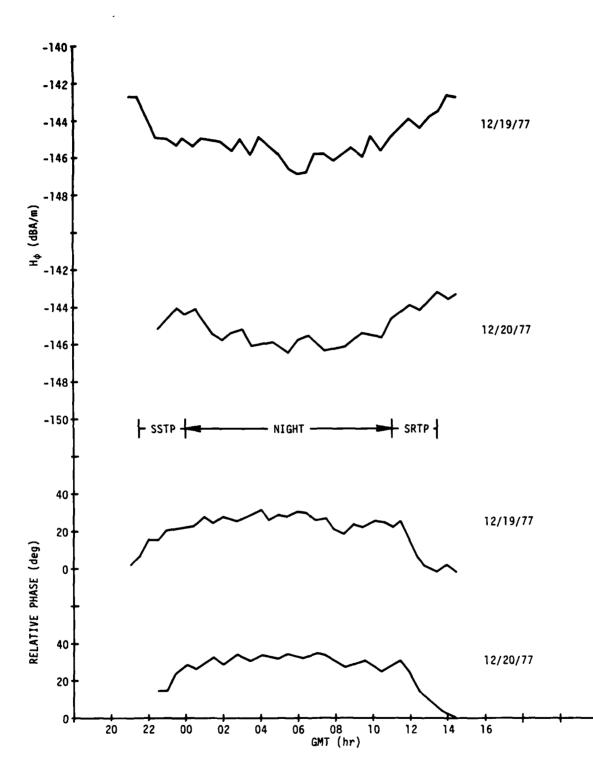
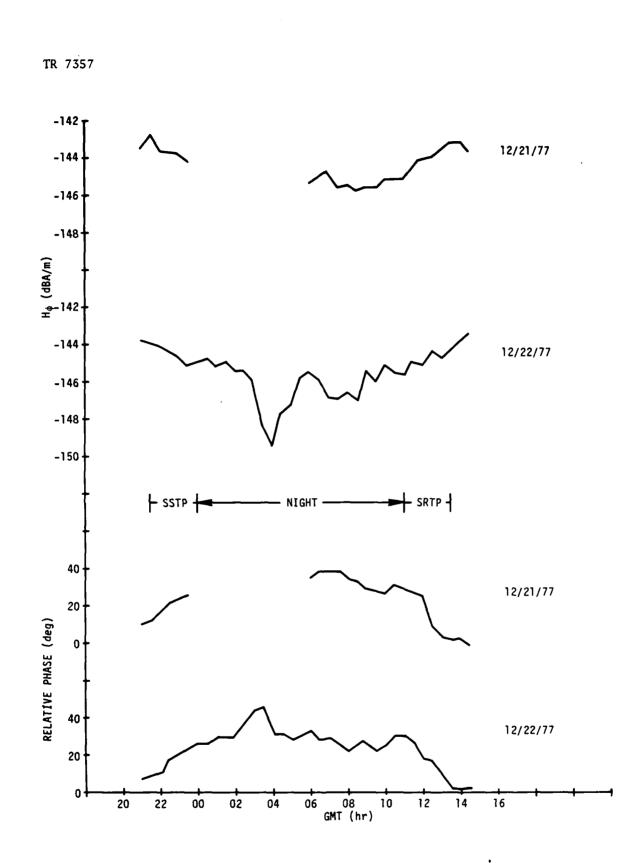
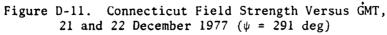
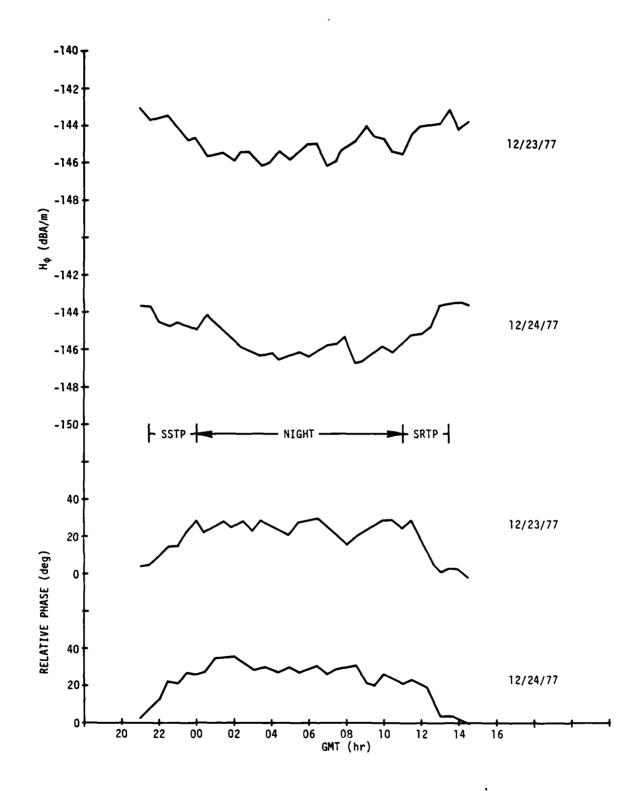





Figure D-10. Connecticut Field Strength Versus  $\vec{GMT}$ , 19 and 20 December 1977 ( $\psi$  = 291 deg)

TR 7357


D-11

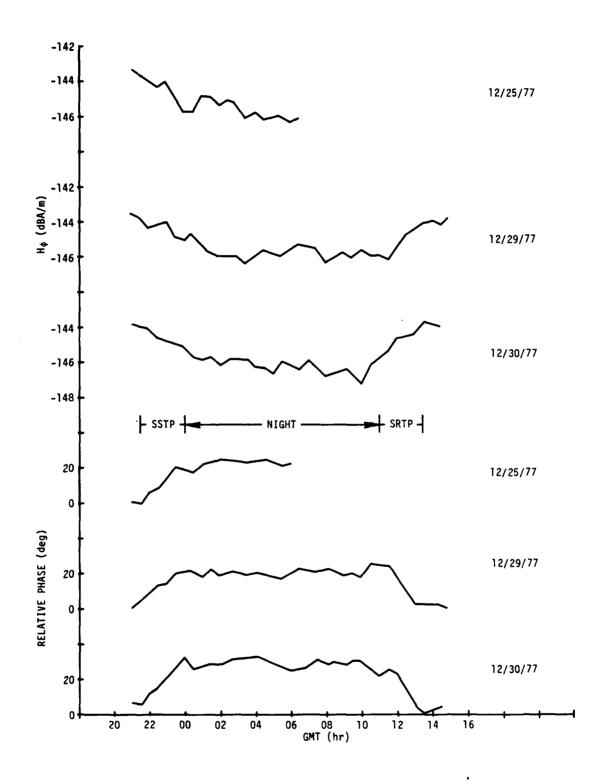




D-12

0-12




Ĺ

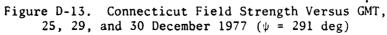
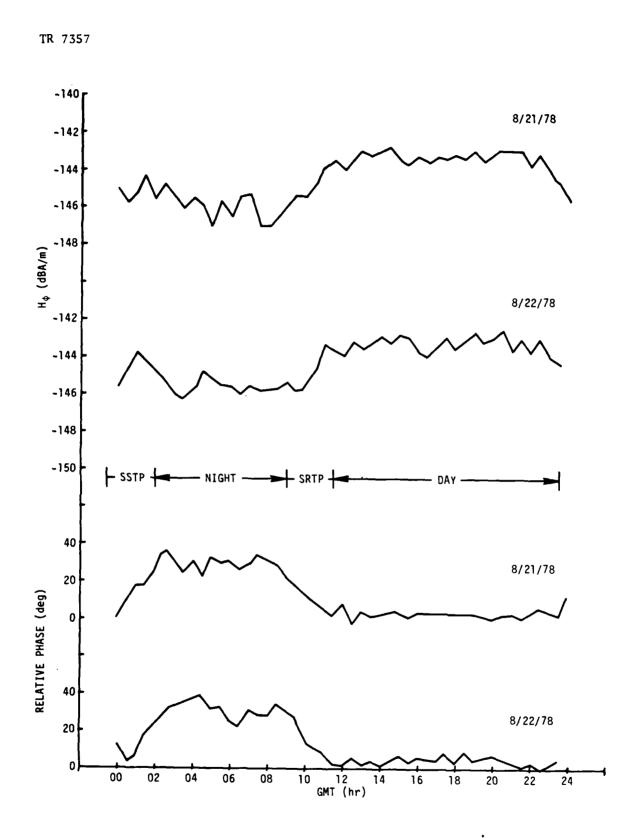

1.1.1.1.1.A.A.A

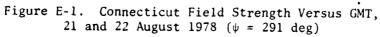
Figure D-12. Connecticut Field Strength Versus GMT, 23 and 24 December 1977 ( $\psi$  = 291 deg)



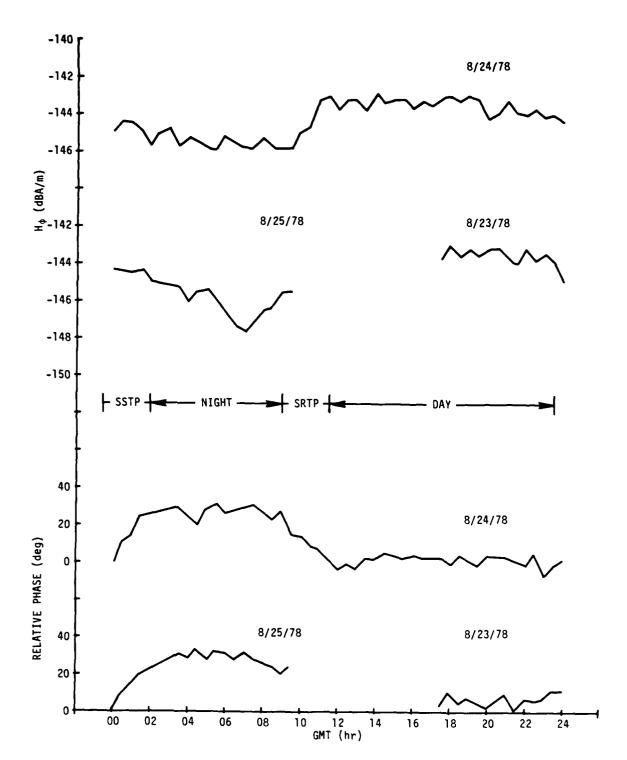


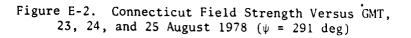






D-14

#### Appendix E


#### AUGUST 1978 DAILY PLOTS


Daily plots of field strength at the Connecticut site (both amplitude and relative phase) versus GMT, in 30-min increments, for August 1978 are presented in this appendix as figures E-1 through E-4.





E-2





TR 7357

E-3

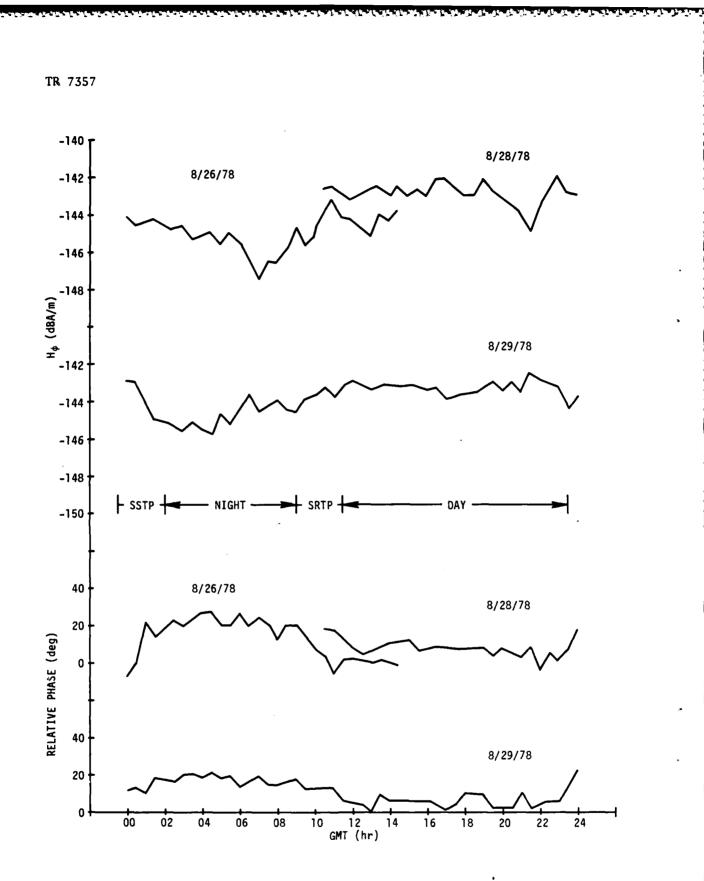
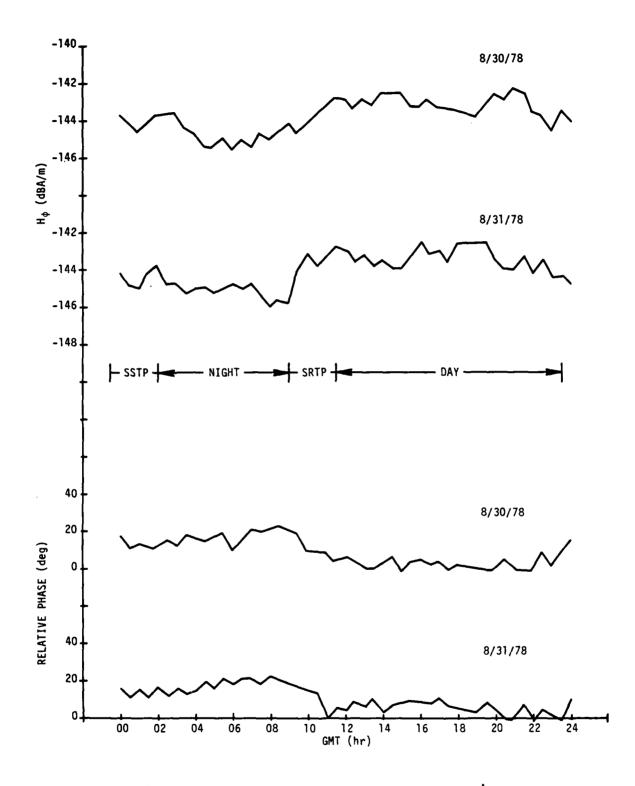
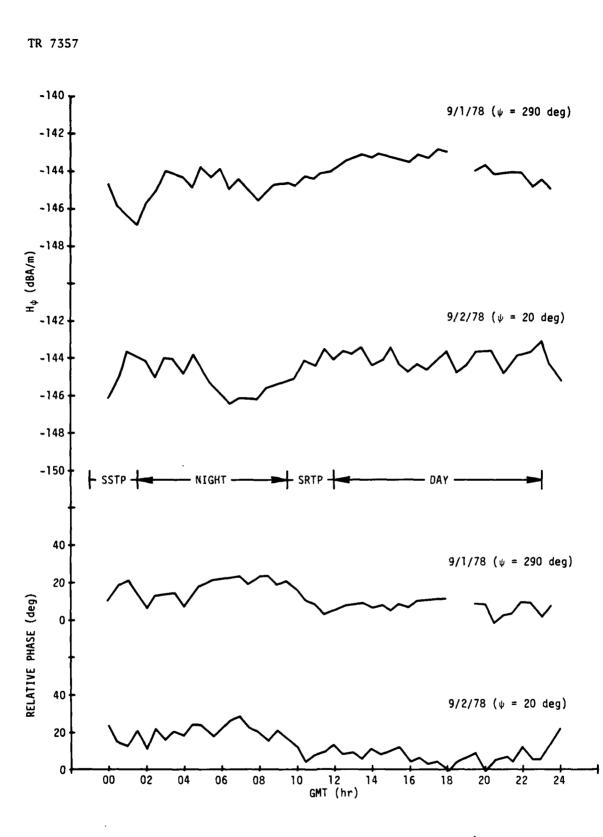
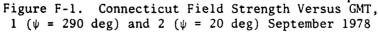



Figure E-3. Connecticut Field Strength Versus GMT, 26, 28, and 29 August 1978 ( $\psi$  = 291 deg)

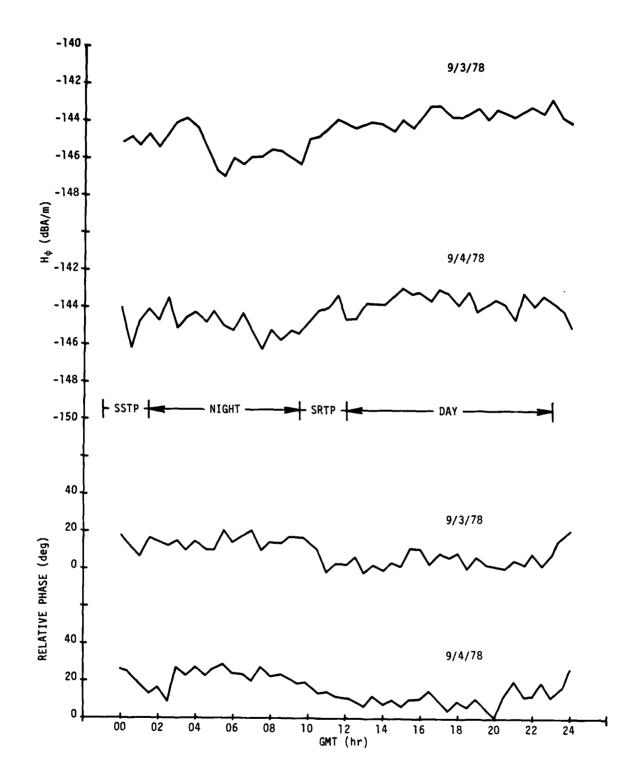
E-4

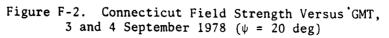




Figure E-4. Connecticut Field Strength Versus GMT, 30 and 31 August 1978 ( $\psi$  = 291 deg)


E-5/E-6 Reverse Blank

#### Appendix F


#### SEPTEMBER 1978 DAILY PLOTS


Daily plots of field strength at the Connecticut site (both amplitude and relative phase) versus GMT, in 30-min increments, for September 1978 are presented in this appendix as figures F-1 through F-9.





F-2





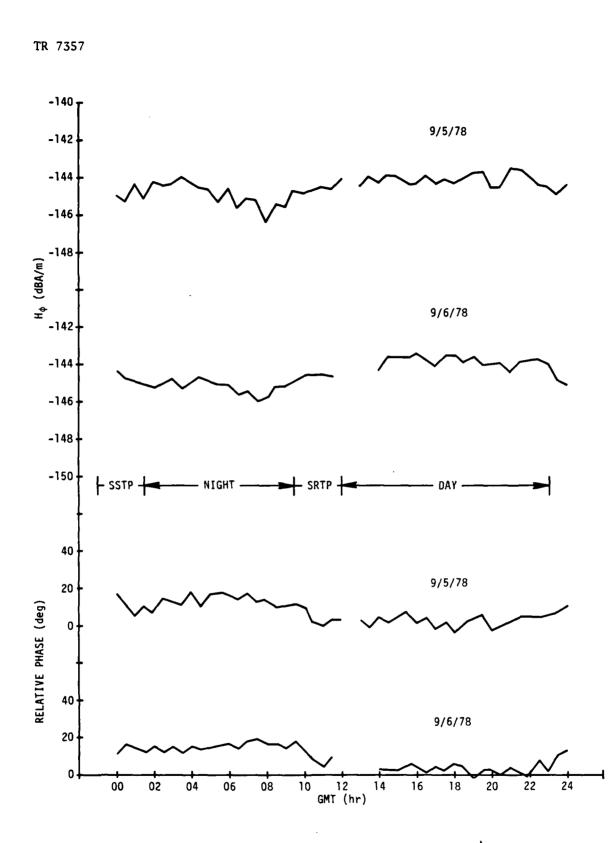
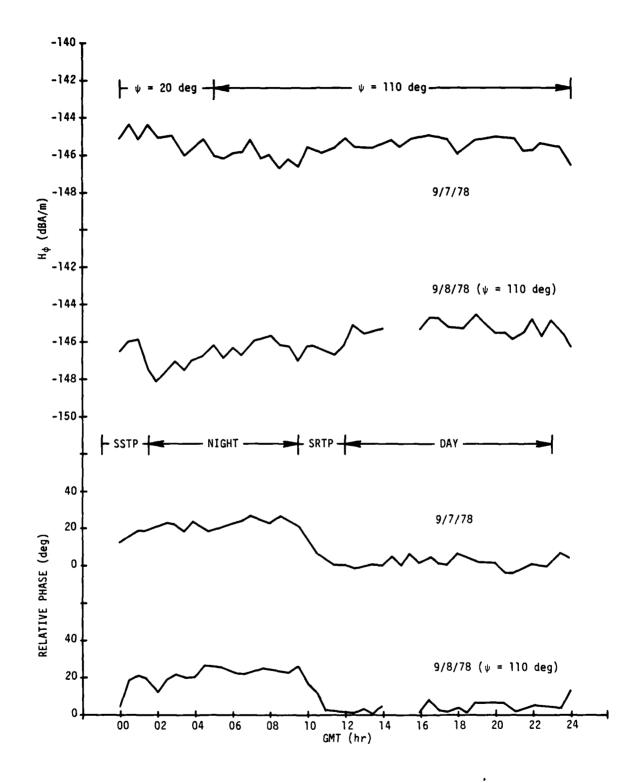
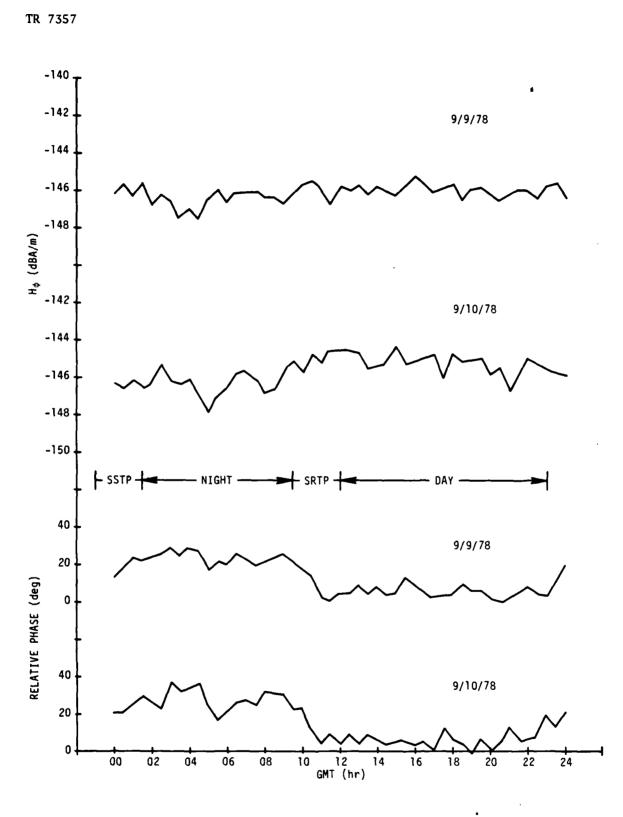




Figure F-3. Connecticut Field Strength Versus GMT, 5 and 6 September 1978 ( $\psi$  = 20 deg)

F-4

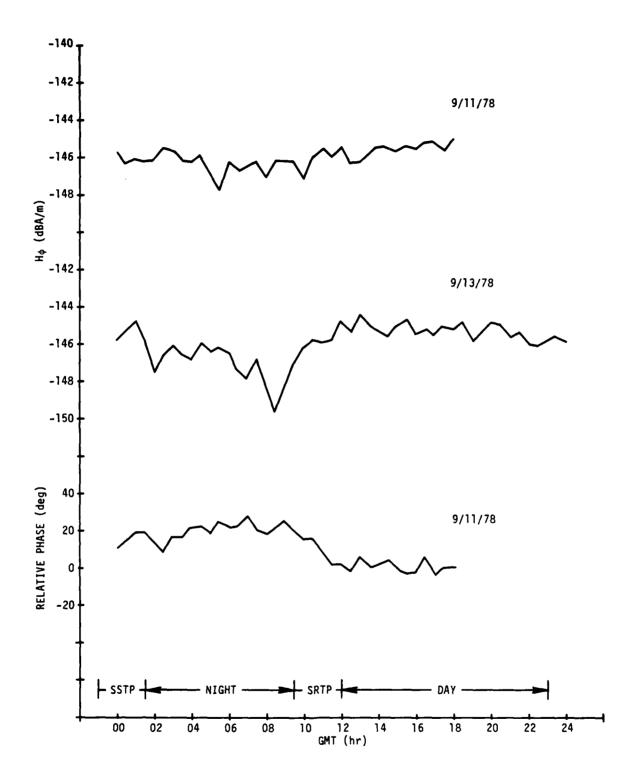
L -.




Ē

والمعالمة والمراجعة والمراجعة

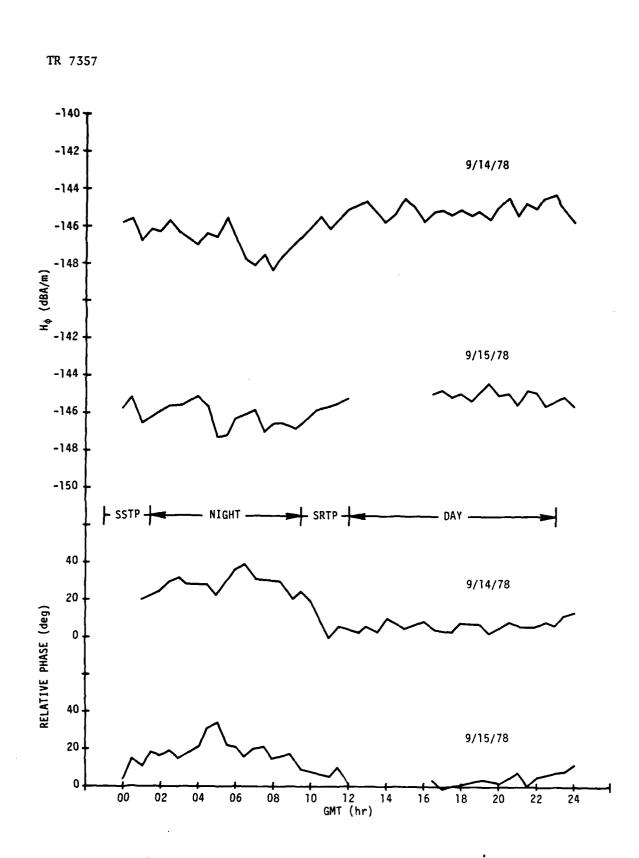
Figure F-4. Connecticut Field Strength Versus GMT, 7 and 8 September 1978 ( $\psi$  = 20 and 110 deg)

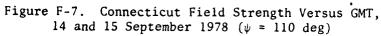

F**-5** 





F-6


. .




The second second

Figure F-6. Connecticut Field Strength Versus GMT, 11 and 13 September 1978 ( $\psi = 110 \text{ deg}$ )

F-7





F-8

BANNAR BARRES

. .

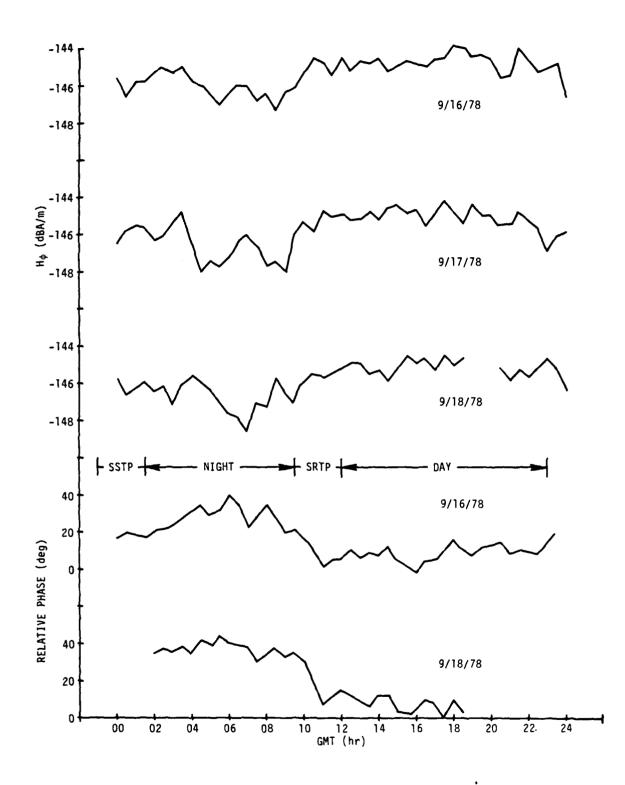
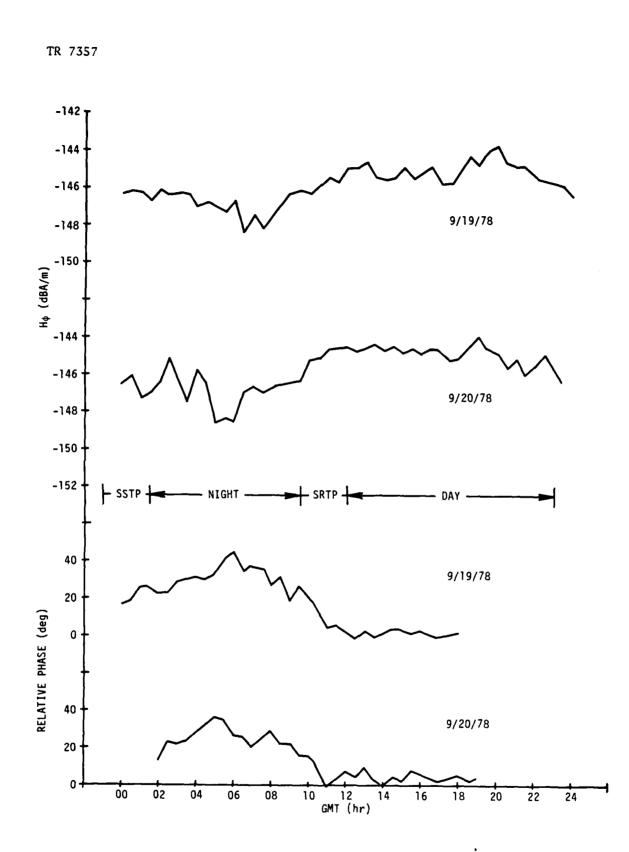
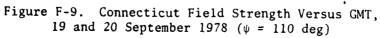





Figure F-8. Connecticut Field Strength Versus GMT, 16, 17, and 18 September 1978 ( $\psi$  = 110 deg)

. . . . . .

F-9





)Â

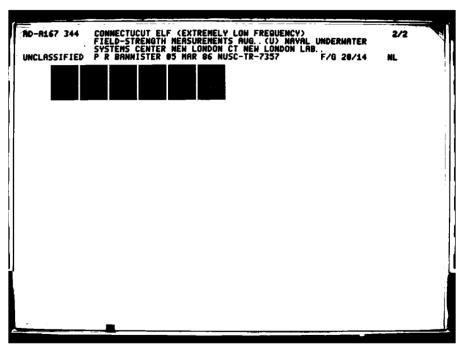
F-10

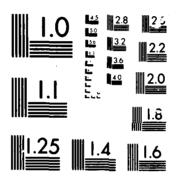
### INITIAL DISTRIBUTION LIST

a de si de si de si de si

20002222

in the constant is a second the second


Addressee	No. of Copies
DARPA	3
DTIC	15
ONR (Code 425GG (J. Heacock), 42810 (R. G. Joiner)	2
ASN (T. P. Quinn (for $C^3$ ), H. Hull (Rm SE 779)	2
NRL (Library, Dr. J. R. Davis (Code 7550), Dr. Frank Kelly)	3
NOSC (Library, R. A. Pappart, D. G. Morfitt,	
J. A. Ferguson, J. Bickel, F. P. Snyder,	
C. F. Ramstedt, P. Jansen, K. Grauer, W. Hart)	10
NAVELECSYSCOM (PME 110-11 (Dr. G. Brunhart),	
PME 110-X1 (Dr. Bodo Kruger), PME 110)	3
NAVAL SURFACE WEAPONS CENTER, WHITE OAK LAB.	
(J. J. Holmes, P. Wessel, K. Bishop, R. Brown,	
J. Cunningham, B. DeSavage, Library)	7
DWTNSRDC ANNA (W. Andahazy, F. E. Baker, P. Field,	•
D. Everstine, B. Hood, D. Nixon)	6
NAVPGSCOL, MONTEREY (O. Heinz, P. Moose,	Ū
A. Ochadlik, M. Thomas, W. M. Tolles, Library)	6
NCSC (K. R. Allen, R. H. Clark, M. J. Wynn,	U
	5
M. Cooper, E. Moritz, Library)	3
DIRECTOR, DEFENSE NUCLEAR AGENCY, RAAE, DDST, RAEV	3
R&D Associates, P. O. Box 9695, Marina del Rey,	•
CA 90291 (C. Greifinger, P. Greifinger)	2
Pacific-Sierra Research Corp., 12340 Santa Monica	_
Blvd. Los Angeles, CA 90025 (E. C. Field)	1
Johns Hopkins University, Applied Physics	
Laboratory, Laurel, MD 20810 (L. Hart,	
J. Giannini, H. Ko, I. Sugai)	4
University of California, Scripps Institute of	
Oceanography (C. S. Cox (Code A-030),	
H. G. Booker, J. Filloux, P. Young)	5
Lockheed Palo Alto Research Laboratory (W. Imhof,	
J. B. Reagan, E. E. Gaines, R. C. Gunton,	
R. E. Meyerott)	5
University of Texas, Geomagnetics and Electrical	
Geoscience Laboratory (F. X. Bostick, Jr.)	1
COMMANDER, AIR FORCE GEOPHYSICS LABORATORY	1
(J. Aarons)	1
COMMANDER ROME AIR DEVELOPMENT CENTER (J.P. Turtle,	-
J. E. Rasmussen, W. I. Klemetti, P. A. Kossey,	
E. F. Altschuler)	5
Applied Science Associates, Inc., (Dr. Gary S. Brown)	5
105 E. Chatham St., Apex, NC 27502	1
	1
Computer Sciences Corp., Falls Church, VA 22046	
(D. Blumberg, Senator R. Mellenberg, R. Heppe,	4
F. L. Eisenbarth)	4
MIT Lincoln Labs. (M. L. Burrows, D. P. White,	<i>c</i>
D. K. Willim, S. L. Bernstein, I. Richer)	5


J.

2

Addressee	No of copies
Electromagnetic Sciences Lab. SRI International, Menio Park, CA 94015 (Dr. David M. Bubenik)	1
Communications Research Centre (Dr. John S. Belrose) P.O. Box 11490, Station "H" Shirley Bay,	
Ottawa, Onstario, Canada K2H8S2	1
Dr. Joseph P. deBettencourt, 18 Sterling St., West Newton, MA 02165	1
Dr. Marty Abromavage, IITRE, Div. E., 10W 35th	1
St., Chicago, IL 60616	1
NORE, Division for Electronics (Dr. Trygve Larson)	_
P. O. Box 25, Kjeller, Norway	1
Belden Corp., Technical Research Center	
Mr. Douglas O'Brien) Geneva, Illinois	1
University of Pennsylvania (Dr. Ralph Showers)	1
Moore School of Elec. Eng., Philadelphia, PA 19174 University of Houston, Director, Dept. of Elec. Eng.	1
(Prog. Liang C. Shen)	1
The University of Connecticut, Physics Dept.,	•
(Prof. O. R. Gilliam) Storrs, CT 06268	1
Dr. David J. Thomson, Defence Research Establishment	
Pacific, F.M.O., Victoria, B.C., Canada	1
Dr. Robert Hansen, Box 215, Tarzana, CA 91356	1
The University of Kansas, Remote Sensing	
Laboratory (Prof. R. K. Moore) Center for	
Research, Inc., Lawrence, Kansas OT/ITS U.S. Dept. of Commerce (Dr. David A. Hill),	1
Boulder, CO	1
Office of Telecommunications, Inst. for	-
Telecommunications Services (Dr. Douglas D.	
Crombie, Director), Boulder, CO	1
University of Colorado, Dept. of Electrical Eng.	_
(Prof. David C. Chang)	1
Dr. K. P. Spies, ITS/NTIA, U.S. Dept. of Commerce	1
The University of Connecticut, Dept. of Electrical Eng. & Computer Sci., Storrs, CT	
(Prof. Clarence Schultz, Prof. Mahmond A.	
Melehy)	2
Dr. Richard G. Geyer, 670 S.Estes St., Lakewood, CO	1
University of California, Lawrence Livermore Lab.,	
(E. K. Miller, R. J. King)	3
Kings College, Radiophysics Group (Prof.	
D. Llanwyn-Jones) Strand, London WC2R 2LS,	-
England Institute di Floottestestestes di	1
Instituto di Electtrotechnica, Facotta di Ingegneria (Prof. Giorgio Tacconi) Viale	
Combiaso 6, 16145 Genova, Italy	1
Universite des Sciences de Lille (Prof.	•
R. Gabillard), B. P. 36–59650 Villeneuve	
D'Ascq, Lille, France	1
Arthur D. Little, Inc., (Dr. A. G. Emslie,	
Dr. R. L. Lagace, R&D Div., Acorn Park,	• 2
Cambridge, MA 02140	

-2--





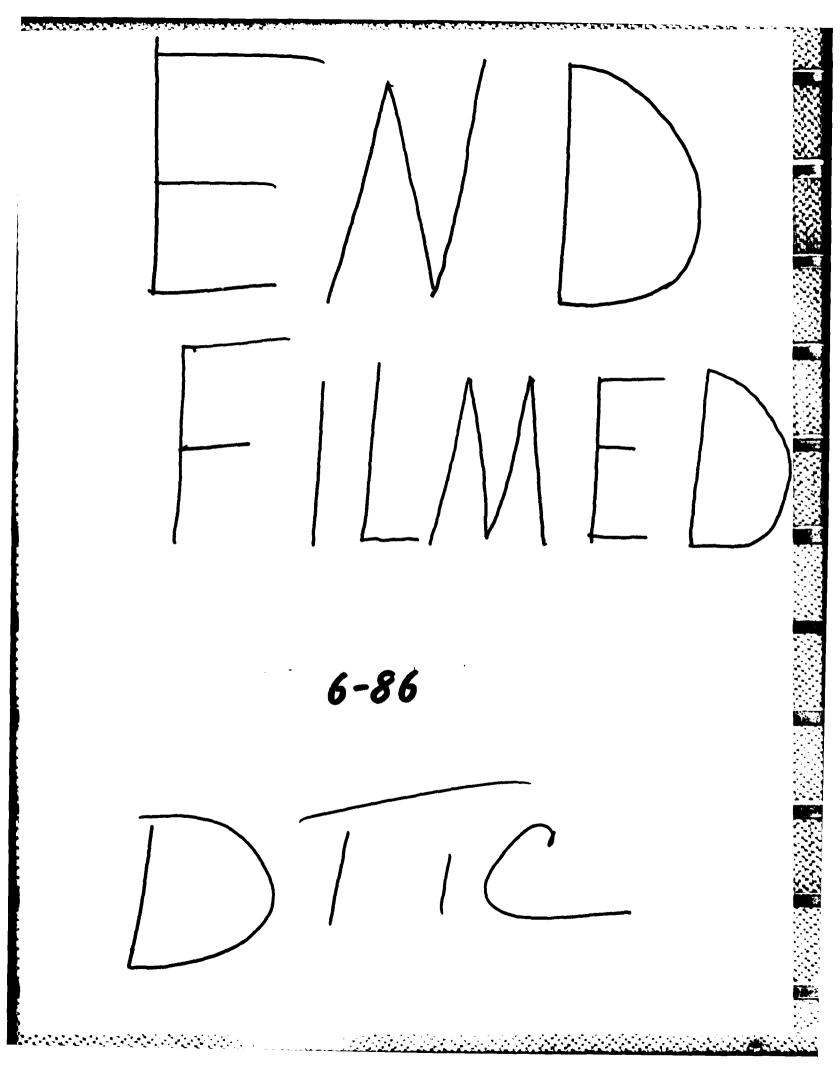
MICROCOP

CHART

Addressee	No of copies
University of Colorado, Dept. of Electrical Eng.	
(Prof. S. W. Maley)	1
University of Washington, EE Dept. (Prof.	-
A. Ishimaru) Seattle	1
Dr. Svante Westland, Kiruna Geofysiska Institute, S981 01 Kiruna 1, Sweden	1
Dr. Harry C. Koons, The Aerospace Corp.	*
P.O. Box 92957, Los Angeles, CA 90009	1
Dr. Albert Essmann, Hoogewinkel 46, 23 Kiel 1,	•
West Germany	1
Glenn S. Smith, School of Elec. Eng. Georgia	
Tech. Atlanta, GA	1
Dr. T. Lee, CIRES, Campus Box 449, University	
of Colorado	1
Dr. Jack Williams, RCA Camden, Mail Stop 1-2,	
Camden, NJ 08102	1
Mr. Arnie Farstad, 390 S. 69th St., Boulder,	1
CO 80303	1 1
NATO SACLANT ASW CENTER (Library) USGS, Branch of Electromagnetism and	1
Geomagnetism (Dr. James Towle) Denver, CO	1
NOAA, Pacific Maine Environ. Lab. (Dr. Jim Larsen)	i
University of Texas at Dallas, Geosciences Div.	-
(Dr. Mark Landisman)	1
University of Wisconain, Lewis G. Weeks Hall,	
Dept. of Geology and Geophysics (Dr. C. S. Clay)	1
Argonne National Laboratory, Bldg. 12	
(Dr. Tony Vallentino)	1
IITRE, Div. E, Chicago (Dr. Marty Abromavage)	1
The University of Manitoba, Elec. Eng. Dept.	-
(Prof. A. Mohsen)	1
Mr. Jerry Pucillo, Analytical Systems, Engineering	1
Corp., Newport, RI 02840	1
Dr. Misac N. Nabighian, Newmont Exploration Ltd., Tuscon, AZ	1
Dr. Fred Raab, Green Mountain Radio Research Co.,	1
50 Vermont Ave., Winooski, VT 05404	1
Dr. Louis H. Rorden, President, Develco, Inc.,	•
404 Tasman Dr., Sunnyvale, CA 94086	1
Dr. Eivind Trane, NDRE, P.O. Box 25, 2007	
Kjeller, Norway	1
RCA David Sarnoff Research Center (K. Powers,	
J. Zennel, H. Staras)	4
University of Illinois, Aeronomy Laboratory	
(Prof C. F. Sechrist)	1
Dr. Cullen M. Crain, Rand Corp., Santa Monica, CA	1
Radioastronomisches Institute der Universitat Bonn	
(Dr. H. Volland), 5300 Bonn-Endenich, Auf dem Hiigel 71, West Germany	1
Dr. John P. Wikswo, Jr., P.O. Box 120062 Acklen	1
Station, Nashville, TN	· 1
managast sammes the s	•

(

F


Addressee	No of copies
Mr. Lars Brock-Nannestad, DDRB Osterbrogades Kaserne, 2100 Copenhagen O, Denmark	1
Institut de Physique du Globe (Dr. Edonard Selzer) 11 Quai St., Bernard, Tour 24	
Paris Ve, France	1
Elektrophysikalisches Institut (Dr. Herbvert	
Konig) Technische Hochschule, Arcisstrasse	
21, 8 Munich 2, West Germany	1
Raytheon Company (Dr. Mario Grossi) Portsmouth, RI	1
NISC, Code OOW (Mr. M. A. Koontz) Washington, DC	1
Polytechnic Institute of Brooklyn (Prof. Leo Felsen)	1
NOAA/ERL (Dr. Earl E. Gossard) R45X7, Boulder, CO 80302	
Dr. George H. Hagn, SRI-Washington, Rosslyn Plaza,	
Arlington, VA	1
NOAA/ERL (Dr. C. Gordon Little) R45	1
Goddard Space Flight Ctr. (Dr. S. J. Durrani)	
Code 800.1	1
ITS, Office of Telecon (Dr. Ken Steele)	
Boulder, CO 80302	1
NTIA/ITS, U.S. Dept. of Commerce (Dr. A. D.	
Spaulding)	1
Stanford University, Elec. Eng. Dept.	_
Dr. O. G. Villard, Jr.)	1
Dr. D. Middleton, 127 East 91st St.,	
New York, NY 10028	1
University of California, Elec. Eng. &	1
Computer Sci. Dept., Prof. K. K. Mei)	1
California Inst. of Technology, Jet Propulsion	1
Lab., (Dr. Yahya Rahmat-Samii) Mr. Larry Ball, U.S. Dept. of Energy NURE	1
Project Office, P.O. Box 2567, Grand	
Junction, CO 81502	1
STATE DEPARTMENT ACDA MA-AT, Rm. 5499,	*
Washington, DC 20451 (ADM T. Davies,	
R. Booth, N. Carrera)	3
GTE Sylvania, (R. Row, D. Boots, D. Esten)	-
189 Broad St., Needham, MA 02194	3
HARVARD UNIVERSITY, Gordon McKay Lab. (Prof.	
R. W. P. King, Prof. T. T. Wu)	2
University of Rhode Island, Dept. of Electrical	
Engineering (Prof. C. Polk)	1
University of Nebraska, Electrical Engineering	
Dept., (Prof. E. Bahar)	1
University of Toronto, EE Dept. (Prof.	
Keith Balmain)	1
NOAA/ERL (Dr. Donald E. Barrick	1
University of Colorado, EE Dept. (Prof.	
Peter Beckmann)	1
Geophysical Observatory, Physics & Eng. Lab.DSIR	
Christchurch, New Zealand (Dr. Richard Barr)	• 1

Addressee	No of copie
General Electric Co., (C. Zierdt, A. Steinmayer)	
3198 Chestnut St., Philadelphia, PA 19101	2
University of Arizona, Elec. Eng. Dept., Bldg. 20	
(Prof. J. R. Wait) Tuscon, AZ 85721	1
U.S. NAVAL ACADEMY, Dept. of Applied Science	•
(Dr. Frank K. Chi)	1
Stanford University, Radioscience Laboratory (Dr. Anthony Fraser–Smith) Durand Bldg. Rm. 205	1
Stanford University, Stanford Electronics	+
Laboratory (Prof. Bob Helliwell)	1
Colorado School of Mines, Department of Geophysics	•
(Prof. A. Kaufman)	1
Prof. George V. Keller, Chairman, Group Seven, Inc.,	•
Irongate II, Executive Plaza, 777 So. Wadsworth	
Blvd, Lakewood, CO 80226	1
MIT, Dept. of Earth/Planetary Sciences,	_
Bldg. 54-314 (Prof. Gene Simmons)	1
Colorado School of Mines (Dr. C. Stoyer)	1
University of Victoria, (Prof. J. Weaver)	
Victoria, B.C. V8W 2Y2 Canada	1
Mr. Donald Clark, c/o Naval Security Group	
Command, 3801 Nebraska Ave., NW,	_
Washington, DC 20390	1
Prof. R. L. Dube, 13 Fairview Rd.,	-
Wilbraham, MA 01095	1
U.S. Geological Survey, Rm. 1244 (Dr. Frank	1
C.Frischknecht) Denver, CO 80225	1
Mr. Larry Ginsberg, Mitre Corp., 1820 Dolly Madison Bldg. McLean, VA 22102	1
Dr. Robert Morgan, Rt. 1, Box 187, Cedaredge,	1
CO 81413	1
Mr. A. D. Watt, Rt 1, Box 183 1/2,	•
Delaredge, CO 81413	1
Dr. E. L. Maxwell, Atmospheric Sciences Dept.,	-
Colorado State University, Fort Collins, CO	1
Mr. Al Morrison, Purvis Systems, 3530 Camino	-
Del Rio North, Suite 200, San Diego, CA 92108	1
Raytheon Service Co. (Dr. M. Soyda) Mt. Laurel	
NJ 08054	1
MITRE M/S W761 (Dr. W. Foster) McLean, VA	1
Max-Planck-Institut fur Aeromomie (Prof. P. Stubbe)	
3400 Katlenburg-Lindau 3 FRG	1
University of Otago, Physics Dept. (Prof.	-
R. L. Dowden) Dunedin, New Zealand	1
University of Leicester, Physics Dept.	
(Prof. T. B. Jones) Leicester, England	1
Naval Weapons Center, China Lake, Code 3814	•
(Dr. R. J. Dinger) Dr. Claudia D. Tesche, Lutech, Inc.,	1
P.O. Box 1263, Berkeley	1
National Aeronautical Est., National Research	, *
Council, Flight Research Lab., (Dr. C. D. Harwick)	
Ottawa, KIAOR6. Canada	1

-5-

Addressee	No of copies
Colorado Research and Prediction Laboratory, Inc. (Dr. R. H. Doherty, Dr. J. R. Johler) Boulder, CO Arizona State University, School of Engineering,	2
Dept. of Electrical and Computer Engineering (Prof. Constantine A. Balanis), Tempe, AZ 85287	1
University of Massachusetts, Dept. of Electrical and Computer Engineering, (Prof. Robert E.	
McIntosh), Amherst, MA 01003 Cairo University, Faculty of Engineering Electronics	1
& Comm. Dept., (Dr. Samir F. Mahmond) Giza, Egypt Virginia Polytechnic Institute and State University,	1
Dept. of Electrical Engineering, (R. Clark Robertson), Blacksburg, VA 24061	1
NISC 52, (B. Blackburn), 4301 Smithland Road, Washington, DC 20390	1
University of Michigan Radiation Laoratory, Dept. of Electrical and Computer Engineering (Prof.	
Dikpa Sengupta), 4072 East Engineering Bldg., Ann Arbor, MI 48109	1
U-157, Elec. Eng. and Computer Sci. Dept., (Prof. Rajeer Bansal), UCONN, Storrs, CT 06268 Helsinki University of Technology, Dept. of	1
Electrical Engineering, (I.V. Lindell & E. Alanen), Otakaari 5A, SF-021150 Espoo, Finland	1

-6-

