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. SUMMARY o

l A new mixed finite element formulation is developed based on the

v Hellinger-Reissner principle with independent strain. By dividing the assumed

strain into the lower order part and the higher order part, the new formulation

5 can be made much more efficient than the standard mixed formulation. In addi-
‘

, tion the present new approach provides an alternative way of introducing stabi-
& lization matrix to suppress undesirable kinematic modes.
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1. INTRODUCTION

Hybrid and mixed finite element formulations based on the

k¢

Hellinger-Reissner principle or related variational principles have been

available since the early days in the history of finite element method [1]. In

v, =

' these formulations an independent stress or strain is assumed within an element
- in addition to the usual assumed displacement expressed in terms of nodal
(' displacement. The independent stress or strain is eliminated at element level,

resulting in an element stiffness matrix corresponding to nodal displacement
vector. Note that in this paper we are not interested in the type of mixed for-
mulation used in reference 9 where both nodal displacements and nodal stress
variables remain in the assembled global model. For an element with a given
number of nodes there is a degree of flexibility in the choice of assumed stress
or strain, For example in the case of Pian's original assumed scress hybrid

model [2], the assumed stress is chosen to satisfy equilibrium within an ele-

ment. Of course, the property of the stiffness matrix depends very much on the
b assumed stress or strain., Thus with a proper choice of assumed stress or strain
!'I it is possible to develop a finite element model which is superior to the con-
ventional finite element model based purely on the assumed displacement

i approach, For example, for thin plates and shells, a mixed formulation based on

the Hellinger-Reissner principle or the modified Hellinger-Reissner principle

can be used to alleviate the undesirable locking effect associated with the con-
dition of zero inplane strain and zero transverse shear strain imposed on a IROREE
finite element mode! [3,4|. The role of hybrid and mixed formulations in con- g!!!!§
junction with nearly incompressible materials has also been studied [5]. S
Moreover a mixed formulation provides a rational mathematical basis for the

poputar reduced and selective integration scheme [6-8].

However, in hybrid and mixed formulations it is necessary to invert a
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matrix in order to generate an element stiffness matrix. Therefore, in com-
parison with the assumed displacement model based on the principle of virtual
work, hybrid and mixed formulations require usually more time to compute element
stiffness matrix of the same size. This fact has been regarded as the major
drawback of the conventional hybrid and mixed formulations.

With this in mind, we present in this paper a new mixed formulation which
requires much less computing time than the conventional mixed formulation for
the generation of element stiffness matrix., The new formulation is based on the
Hellinger-Reissner principle with independent strain. The new formulation can
be applied to any type of problems in solid and structural mechanics. However,
for simplicity, two dimensional plane problems will be used to demonstrate the
effectiveness of the approach. Initially nine node element will be used for the
purpose of illustration. A short discussion on four node element will follow.
In order to contrast the new formulation with the conventional formulation, we

will start off with the conventional formulation.

2. CONVENTIONAL MIXED FORMULATION

2.1 Finite Element Formulation

For two dimensional plane problem, the functional L for the

Hellinger-Reissner principle can be written as

= (g CE-3¢ Cg) dh - (1)
A
where Eyx
€= €yy : independent strain vector
exy
2

-----------

.........................
.....................
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u, v: displacement in x and y direction respectively
: area

A
W: external load term
¢

: 3 x 3 matrix of elastic constants integrated through thickness

Note that in eg. (1) instead of stress, strain e appears as independent

variables in addition to displacement field u and v.

For finite element approximation, the displacement vector u is assumed

in terms of nodal displacement vector as

b3
n
——
< <
N e
n
=

where

=

shape function matrix

Qe element nodal displacement vector

Then the strain vector g can be written symbolically as

1 m|
]
®

e

~ o~

where B is the matrix relating ¢ to Qa-

£ a'a ath ot gAe giiC i o)

PR X S AR

strain vector in
terms of displace-
ment field

’

AR

(2)

(3)

-
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In addition, within each element the independent strain ¢ is assumed in terms of

unknown coefficients as

—— —_—— T g

£=Pa (4)
where P: strain shape function matrices

vector of unknown coefficients in an element

-
R

Introducing eq. (3) and (4) into eq. (1).

w = 12’8 g, - 32t - 410, ()
with G=1 PTCBadA (5a)
A
e
e o
He=! B CP A (%)
A
e
We=yqlg, (5¢)

and Ae is the element area.

The summation sign indicates summation or assembly over all elements.

Taking &mp = O with respect g in each element,

8% -4g =0 (6)
or solving for g
@ s M8 g, 7
for each element.
4
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6

E? Substituting eq. (7) into eq. (5), g is written as
g1 T T
i = % Ke % - %o Q) (8)
E; T -1
. where Ke =G H'G (9)

=8

is the element stiffness matrix.

N
P

~
.

Assembling over all elements,

w=3q Ka-4'Q (10)

where

IR

global stiffness matrix

g: global nodal displacement vector

-
w

global load vector

Setting mp 0 with respect to g leads to

TN

1
AR
w

n
WO

(11)

ey
AR

which can be solved for q. With g thus e known, the independent strain

E: vector ¢ in an element is determined by substituting eq. (7) to eq. (9)

: such that

& c=PHlsg, (12)
%

t and,for isotropic materials,stress g is determined as follows:

§ g=$Cs (13)
l;' where t is the thickness.
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2.2 Nine Node Element

The present nine node element is important in that it constitutes
inplane part of the nine node shell element described in reference 4. This
particular shell element has been found to be free of locking and any com-
patible or commutable kinematic mode., Of course a good nine node ele-
ment is useful for plane stress and plane strain analysis itself. For the
assumed displacement, the element shown in fig. 1 adopts the isoparametric
representation. As for the coordinate system, global and local cartesian
coordinate systems are used. The strains 5,'§ and displacement u,v in eq.
(1) are defined with respect to the global coordinate system. Local coor-
dinate system is introduced to allow an assumed strain field with nonsymmetric
polynomial terms. Local coordinate system is defined first by

determining two unit vectors Y1 and Yo at £ = n = 0 point such that

85/ 2 D

X1 7% ?él PR
_ azs/ ax

~2  an an (14)

where x is the position vector with components in the global coordinate

&S system. The angle 8 between these two unit vectors is calculated from the

following equation:

............................................
..................
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Eg Then, if 6, is less than or equal to 90%, unit vector 2, in the x direction
) of local coordinate system is defined as
i
a, = — —_—
2 Moees e (16)

Otherwise 2 is defined as

. 2 X 3%

~1 an an (17)
Iy Unit vector a, in the y direction of local coordinate system is orthogonal
- to a,. Note that, while y, and vy, are determined at £ = n = 0 point, 3
E; and 3, can be computed at any point in the element. Especially a, and 3,
v, are needed at integration points to establish a local orthogonal coordinate

system. Now, for the present nine node element, we may assume the indepen-

dent strain in local coordinate system as follows;

—~— vy
[yl

*
[

xx - @1t apf *oagn + azEn + agqf,

0
'
"‘ll

= as + 066 + 077‘ + aagn + u14fy (18)

m
<
«<

Exy = %9 * 81pf * apn + ajobn

- In eq. (18), fx = gn? and f.y = £24 for 3 defined as in eq. (16). For 21 de- li;;;
5 fined as in eq. (17), f, and fy are chosen as f = gZn and f.y = gn?. Note {:;fﬂ
N that, due to the a;; and a;, terms, the assumed strains are not symmetric in ¢ Ry
£ and n. However with the use of local coordinate system as defined here, the !5553
; resulting stiffness matrix will not be dependent upon the choice of global coor- Ei&;i&
. dinate system. Symbolically eq. (18) can be written as Sg;gz

E* = B* a (19)
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5 and a = ey ay . . .oag, | (19b)

*
is the column vector of unknown strain coefficients, and P is the 3 x 14
. matrix containing polynomial terms in £ and n coordinates. The strain vec-
- tor ¢ in global coordinate system is obtained from 5* through strain trans-

formation matrix T as follows:

* *

=Teg =TP a=Pa (20)

M
)

* :'._. ‘.
i where (20a) m

P=1F

h_\'_:',\
, A
- -"\‘-__ - '-
[J As shown in eq. (9), for the generation of element stiffness matrix, it is :}:i:;ﬂ
-1 . ) AN
necessary to compute G and H °. For the present nine node element the size illllﬂ
RS
'| of G and H matrices are 14 x 18 and 14 x 14 respectively and G and H matrices BN
RIS
E: are evaluated using 3 x 3 point Gaussian quadrature. As far as computung ST
time is concerned the need to evaluate G, H and ﬂ'l makes the conventional Eiiﬁé:

[, mixed formulation less attractive than the assumed displacement formulation i B

L_ based on the principle of virtual work. X

At this point, it is well to mention that the a3 and ajy terms in eq.
F (18) were chosen carefully to suppress undesirable kinematic modes.

Without the %3 and ajy terms, the assumed strain field is symmetric in ¢

ii and n. Moreover, for an element of rectangular shape, 2 x 2 point rule is

sufficient enough for exact integration of G and H. Then the resulting
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stiffness matrix will be equivalent to the conventional assumed displace-
ment model with 2 x 2 reduced integration. The equivalence between mixed
formulation element and reduced or selective integration element can be

proved by establishing
€= g’ (21)

at integration points. This can be done if the number of integration
points is the same as the number of strain parameters or coefficients in
each component of assumed strain |3,6,7]. The element without the @4 and
@14 terms exhibits three kinematic modes or spurious zero strain enery
modes. For a square element with sides along x = +1 and y = +1 lines,

these spurious modes are as follows [10,11];

(1) u=Cyx(1 - 3y%)

v =-Coy(l - 3x%) A (22)
(2) u = Cy(x? +y* - x%y¥)
(3) v = Cylx* +y% - 3x%¥)

where Cl, C2 and C3 are arbitrary constants. Among these three modes, the
first mode is incompatible or non-commutable as it disappears for an
assembly of only two elements. The second and third modes are compatible
or commutable and may persist even after assembly of elements, resulting in ffg;ixj
an unstable finite element model. The a3 and ayy terms in the assumed
strain are introduced to suppress these two compatible modes. The first
mode is left in the element since it is harmless., It is to be noted that
the same assumed strain was used in the shell element described in
reference 4 where it was found to be very effective in alleviating locking

effect associated with the condition of zero inplane strain,

...........................................
.........................
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E 3. NEW FORMULATION

The proposed new formulation is also based on the Hellinger-Reissner

Il principle with the functional given in eq. (1). However in the new for-
™ mulation, the independent strain is written as
D
E £=8 *tgy (23)
Y
where EL is the independent strain vector with lower order polynomial terms
t: in £ and n. On the other hand 4> the higher order strain vector, contains
F: higher order terms in g and n. More discussion on g, and gy will be given

later, Inserting eq. (23) into eq. (1), the functional mp becomes

- T
i "R Z '(E-I Ce- %EL ¢ eL) dA
h +EhCEdh - [ g€ g aA
: 1 T
(: -7 g4 Cgydh - W (24)
P To help illustrate the new formulation, we will consider again nine node
| element. For nine node element of rectangular shape, the highest order ;- E::
tf terms in the g matrix are quadratic in either g or n direction, Thus if the AR
g Matrix is bilinear, then the first integral can be integrated exactly fszf
K? using 2 x 2 point Gaussian quadrature. For g, we start by assuming gy, ;:" -
E the higher order strain vector in the local coordinate system, as i;fjiﬁi
* RAR ."g.!
% (exx)n = a1fy T
": e 3 e
(e* ), = a,f (25) AN
ﬁ €yy’H = 32Ty s il
*
(Exy)H 0

10
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Or in matrix form,

* .
ep=Lta (26)
where _ .
f, 0
P = o f (26a)
~ y
0 0

) “?
. =
~ ay (26b)

Note that 4 contains the higher order a3 and a14 terms of the conventional
formulation given in the previous section. Using the strain transformation

matrix T, the g, vector in the global coordinate system is expressed as

* *
h=legg=IRa=TFg (27)
.
where P=1°P (27a)

Of course, for rectangular element, P is equal to Ef However, for an ele-
ment of arbitrary shape, strain transformation in eq. (27) is used. Again,
for rectangular element, the third integrals in eq. (24) require 2 x 2
point rule. On the other hand the second and fourth integrals require 3 x
3 point rule. For an element with arbitrary shape the argument regarding
the number of integration points for exact integration does not hold.

However even in this case the same integration rules will be adopted.
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In addition, for the first and third integrals, we may write gL 2s

([ I
[

g° N, (£.n)e; (28)

where ﬁ} are bilinear shape function such that N} = 1 at the point i of the

_ - _-.."\ ‘.

2 x 2 point integration and zero otherwise, and ¢. is the strain g evaluated NENOWE
at integration point i. In another word, we can set -:f"f
— L

gL ° & (29) ::__:"\':"‘

e

at 2 x 2 integration points. OGN

‘l

Introducing eq. (29) to eq. (24),

Cgydh - W (30)

In eq. (30), letters L and H under the integral signs indicate lower order
integration (2 x 2 point rule) and higher order integration (3 x 3 point
rule) respectively. Introducing eqs. (3) and (26) into eq. (30) and noting

eq. (29), g can be written as

LT T~ 17 T
TR= (7% KL % * 289 -7 Fa-gQ) (31)
where
K, = [ B'CB|J|de dn (31a)
L~~~ ~
G=6-8 (31b)

12
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Gy = JPCB|J]|dedn (31c)
FREEIY

6 = [PcB|Jdean (31d)
[RLBld

- TCT|4]dean (39€)

and | J | is the determinant of Jacobian matrix J. Note that, although the
same symbol B appears in K,, G, and G,, B in G, is evaluated at 3 x 3
Gaussian integration points while B in 5L and QL is evaluated at 2 x 2
Gaussian integration points. However to save computing time, the B matrix
at 2 x 2 integration points can be interpolated from the B matrix evaluated

at 3 x 3 integration points. That is, we evaluate B at 2 x 2 points from the

following expression:

9
8= L N (£.n)B, (32)
1=

where Ei is the B matrix at the integration point i and Ni is the shape
function such that Ni = 1 at point i of the 3 x 3 integration points and
zero at other points. In addition the determinant | g] at 2 x 2 integration

points is also interpolated from | J| at 3 x 3 integration points.
Taking Smp with respect to g of each element

]

R

- gge =0 (33)
or solving for a

(34)

bee]
"
o= ]
L
|

for each element.

13
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E Substituting eq. (34) into eq. (31),

= 17 % Ke fe - g Q) (35)

where

T =
Ke= K +8E7 G (36)
is the element stiffness matrix, Assembling over all elements
m=3aKg-q (37)

where K is the global stiffness matrix corresponding to the global displa-
cement vector g and Q is the global load vector. Taking émp = 0 with

respect to g results in

Ka=4 (38)

which can be solved for q. With q and thus q, known strain ¢ is determined

from eqs. (23), (27), (28) and (34) as follows:

o
Il
O
iy
+
(V]
n
i
+
g

"
N~ &

N B g+ EH7G, (39)

- Then stress g is determined by eq. (13).

It should be pointed out that the element stiffness matrix in eq. (36)

\ — et ] o

“ has two components, K, and QT 5"g. For an element of rectangular shape the
K_ matrix is the same as the stiffness matrix of the conventional assumed
displacement model with 2 x 2 reduced integration. Again the equivalence is

established through eq. (29). Then the 5L matrix has the same three kinematic

14
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modes given in eq. (22). With the addition of ET'E'I'Q matrix, the compatible
kinematic modes are suppressed, leaving only the incompatible mode. Therefore,
as far as kinematic modes are concerned, both the conventional formulation and
the new formulation result in the same incompatible mode. However element
stiffness matrix from the new formulation is not exactly the same as that from
the conventional formulation. The size of G and H matrices in the new for-
mulation are 2 x 18 and 2 x 2 respectively. Therefore, computation of the

EI H~! G matrix in the new formulation can be carried out without much effort.
Recall that in the conventional formulation, the sizes of G and H matrices are
14 x 18 and 14 x 14 respectively. Note also that the present element passes the

patch test.

4, COMPARATIVE NUMERICAL TEST

(a) Comparison of Computing Time

In order to evaluate computing efficiency of the new formulation, a
test was run in which stiffness matrix of single nine node element was com-
puted 40 times consecutively., Table 1 shows relative computing time for
different element types. Clearly the new mixed formulation element (NM)
requires much less computing time than the conventional mixed formulation ele-
ment (CM). Surprisingly the new mixed formulation takes less computing
time than the conventional assumed displacement element with 3 x 3 point
rule (DISP3)., Of course the assumed displacement element with 2 x 2 point
rule (DISP2) takes the least time. However, as mentioned before, this element
has compatible kinematic modes and thus cannot be used in general stress
analysis,
(b) A Panel under a Horizontal Point Load

Figure 2 shows a rectangular panel subjected to a horizontal point load P.
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The panel is modeled by 2 x 12 mesh as shown in the figure. Two boundary con-

\ ditions are considered. In case 1, the left end is completely fixed. In case

! 2, the vertical displacements of the first, second, fourth and fifth nodes

Q along the left end are left unconstrained. The first case has been used in

' references 13 and 14 to demonstrate the undesirable effect of spurious kinematic
! modes on numerical solution. The pertinent data are as follows;

|

: Tength L = 12m

depth b = 2m

Poissons ratio v = 0.2

P/AE = '4'913'6

where E is the Young's modulus and A is the cross-sectional area. Table 2 lists
the nondimensional horizontal displacement calculated at the load point for the

NM, CM, DISP2 aqd DISP3 elements. Numerical solutions are nondimensionalized by
dividing the computed values by the tip displacement PL/AE of a panel under total

load P distributed uniformly over the cross-sectional area. The solution for the

DISP2 element is very large compared with those obtained by the other three ele- i::c;gﬁ

ment types, especially in case 2, This is due to the spurious compatible kine- ii@;gt
matic modes in the DISP2 element triggered by the point load. The NM, CM ele- ;}5§;é3
ments are free of compatible kinematic modes and the DISP3 element has no 1 ﬁ}{ii

e

kinematic mode. Therefore they provide stable solutions,
(¢) A Cantilever Beam e
A cantilever beam subjected to a tip load P is used to evaluate the
performance of the present new element as compared to the conventional mixed
formulation element and the assumed displacement model element, Note again that
the same problem has been used as a numerical example in reference 13, As
illustrated in fig, 3, the cantilever beam is modelled by three different
16
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finite element meshes. Two different length to depth ratios of 10 and 20

A

are considered., Table 3 lists computed vertical displacement of point A in

fig. 3 and stress o _ evaluated at point B. The point B is one of the

XX
Gaussian points in the 2 x 2 integration rule. Numerical solutions were

»

normalized by the following solutions obtained from the Bernoulli-Euler

.

beam theory:

= 3
vy = PL3/3EI

il.' ;‘.' R

(Uxx)B = M yB/I (41)
[; where
1 = sectional area moment of inertia
M = bending moment
yg =y coordinate of point B

Numerical results in Table 3 indicates that NM, CM and DISP2 elements perform
much better than the DISP3 element especially for meshes with non-rectangular
elements. For this particular example, the NM element seems to be better than
the CM element., It is interesting to note that, for the present problem under
vertical tip load, the spurious kinematic modes of the DISP2 elements remain
untriggered as indicated by the stable solution, This is in sharp contrast to

the previous example under horzontal point load.

5. FOUR NODE ELEMENT

For four node element, a finite element model based on the conventional _—
A0S

mixed formulation may be developed by assuming independent strain vector "3:53
.

g* defined with respect to the local coordinate system as follows:
* . ?!E!E
€xx T %1 T 349 NGRS

* NN

eyy = 02 + ngy (42)

°;y = ay KRS
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In eq. (42), g, = n and 9, = & for a, defined as in eq. (16). For 2, defined as
in eq. (17), 9, and g.y are chosen as 9, = € and gy = n. Again strain ¢ in the
global coordinate system is obtained from ¢* through strain transformation as
shown in eq. (20). As for numerical integration, the G and H matrices in the
conventional formulation are evaluated by 2 x 2 point rule. For a finite ele-

ment model based on the new formulation, the higher order strain EH in the local

coordinate system is assumed as
*
(exxly = 219

—
xﬂ
<
~—
x
1]
o

Again €4 in the global coordinate system is determined from 5; through
strain transformation, As for numerical integration, the 5L and

QL matrices are evaluated by one point integration rule whereas 2 x 2 point
rule is used for integration of gH and'E in the new formulation, Of course
in computing EL and G, B matrices and| g| at the integration point can be
interpolated from B matrix and | J | evaluated at 2 x 2 initegration points =
following the similar procedure used for the nine node element, For an element of i?;%
rectangular geometry, the ﬁL matrix is the same as the stiffness matrix of four iiéé}
node assumed displacement element based on the principle of virtual work with sf}:”

one point integration. The 5L matrix has two compatible spurious kinematic

modes. However addition of the QIE'*E matrix as shown in eq. (36) suppresses A
these kinematic modes and thus element stiffness matrix 5e is stable and has ;ﬂ;ﬁ?i

T
correct rank. For an element of rectangular shape, the new formulation element is 'ﬁ*ﬂﬁ

equivalent to the element based on the conventional formulation, Furthermore,
it is found that for an element with square geometry, the present element is

equal to the Belytschko's four node element with a properly chosen stabilization

18

......




. '..A‘
RN

|

Fon s anl
Ve,

p———
(]
s

.
]
’

¢

matrix [12]. The element stiffness matrix of Belytschko's four node element

described in reference 12 may be expressed as
!.(.e = ~L + L(.s (43)

where

T
c 0
Et2 11111 (44)

.
0 CoxaXs

= —

is the stabilization matrix introduced to suppress kinematic modes in EL‘
The constants C1 and C2 are control parameters and the expression
for y, and y, are given in reference 12. If we set C; = C, = 1/12, then

for a square element, the resulting stiffness matrix is exactly the same as

that of the present four node element,

6. DISCUSSION AND CONCLUSION

Numerical test with nine node element indicates that the proposed new
formulation needs less than half of the computing time required for the
conventional mixed formulation to generate element stiffness matrix., Also for
nine node element the computing time for new element is slightly less than
that required for the conventional assumed displacement model with 3 x 3
point integration. The nine node element based on the new formulation is
not exactly the same as that based on the conventional mixed formulation.

However they are very close to each other, For four node element, the

19
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ﬁ\: conventional and new formulation result in the same stiffness matrix for rec-
“»

tangular element geometry. Also equivalence to Belytschko's four node ele-

'. ment with properly adjusted stabilization control parameters has been
E? observed. It is to be noted that the EI H"*E matrix in eq. (36) associated with
\

higher order assumed independent strain plays the role of stabilization matrix.

o

As such the present new approach can be viewed as an alternative way of intro-

ducing stabilization matrix into the finite element formulation. The pre-

L

sent formulation can be easily extended to two and three dimensional

~ problems, as well as thin plate and shell problems. In fact a new approach
o applied to shell element formulation will be the subject of a forthcoming paper.
Eg Also extension to nonlinear problems seems to be straightforward.
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3 Table 1. Relative Computing Time to Generate the Stiffness Matrix
of Nine Node Element

"
tF Element Type Relative Time

DISP3 1.0

...

DISP2 0.53

F_ cM 1.95

' NM 0.89
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Nondimensional Vertical Deflection and
Flexural Stress for a Cantiiever Beam
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Mesh Type

L/b Type

A

%

A

8

<|

qu

NM
CM

10

DISP3
DISP2

.9950
.9900
9541
1.0058

1.0223
1.0000
1,1407
1,0000

1.0141
.9748
7913

1.1085

1.0848
9140
.6957

1.1253

.9875
.9603
7370
.9549

.9805
9228
1745
.9584

NM

CM
DISP3
DISP2

.9902
.9850

.9362
1.0014

1.0223
1.0000
1,1931
1.0000

.9905
49672
.1584
1.1036

1.0045
.9003
.6833

1.1253

.9833
.9556
.4406
.9506

.9933
.9228
4871
9584
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