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ABSTRACT

Seban, Robert R. PhD. Purdue University. December  1985.
TOPOLOGICAL PROPERTIES OF INTERCONNECTION NETWORKS
FOR PARALLEL PROCESSORS - A UNIFIED APPROACH. Major
Professor: Howard Jay Siegel.

Two methods are used to speed up the execution of a computational task.
One is new technology development and the other is the exploitation of paral-
lelism in the computation. To take an advantage of the parallelism in a task
requires the utilization of parallel computer architectures. At a certain high
level of abstraction a parallel computer system is represented as a graph where
the nodes represent processors, memories, or other devices, and the edges

represent the communication links.

In this research the following problems of parallel processing are studied.
First is a theoretical study of topological properties of interconnection net-
works. Second is a case study of a network design for a real-time system.

L stty, the use of SIMD networks for performing ‘‘shuffles.”

A general model that can be used to describe networks and systems with
arbitrary topologies is developed. Based upon the of morphism of groups, the

concept of morphism of systems is developed. The morphism of systems is

called quasimorphism and allows a method of comparison between topologically

arbitrary parallel computer systems. The quasimorphism is used to study the

emulation of one system by another.

The composition, decomposition, and partitionability of single stage net-

works are studied. Informally, the partitionability property means that the
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network can be divided into several parts each with a degree of independence.
The synthesis of single stage partitionable interconnection networks is exam-

ined. The applications of the model to multistage networks is discussed.

A case study of the design of a network for a real-time signal processing
system is performed. A network and network interfaces are designed for a dis-

tributed digital signal processing system subject to high throughput, extendibil-

ity, fault tolerance, and other constraints.

The data permuting ability of single stage SIMD networks are studied.
Specifically, algorithms for the PM2I and Illiac networks to perform the

“shuffle” data permutations are developed.
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Two methods are used to speed up the execution of a computational task.
One is new technology development and the other is the exploitation of
parallelism in the computation. To take advantage of the parailelism in the
task requires the utilization of parallel computer architecture [KuL78, ThW75).
There are two major classes of parallel computer system architectures, loosely
coupled, where the information transfer is infrequent, and tightly coupled,
where information transfer is frequent, perhaps every operation cycle. In this
research the primary concern is the class of tightly coupled parallel computer

systems.

At a certain high level of abstraction a parallel computer system is
represented as a graph where the nodes represent processors, memories, or
other devices and the edges represent the communication links. This
representation is frequently used by researchers and is based upon the belief
that one of the salient features of a parallel computer system is the topology of
the interconnection network and the way the processors and other devices are
connected to it. Although the graph depiction of the system contains large
amount of information, it does not convey the dynamic structure of a
reconfigurable network. Our model developed in this research embodies that

information.

Much research has been devoted to study several topologically regular
interconnection networks. Amongst the -best known networks are Illiac
[BoD72], Shuffle [LaS76], Omega [Law75], multistage Cube [AdS82b], STARAN
(Bat76], ADM [McS82], k-connected mesh [NaS80], and PM2I [SeS84b]. The

researcher usually pro.ceeded as follows: he devised a model for the network of

interest and derived analytical results based on that model. This approach has

3

bR R

’
-

¥ 4
S

e
3

-
e
™,
L.

IR
2 SR
o o vy W P |




" - Oy O i et ‘R > ‘Qal 2V B Ret B Ll Jbe' ) Ldel A fus n' e v Bt Na-gia o Re of p & ¢ ety

N the drawback that the results are network specific since the model is network

specific and sometimes implementation dependent.

. Our research differs from the past work in several aspects. First, a unified
“ approach to the analysis of interconnection networks that is valid for large
¥ classes of interconnection networks was developed. Second, several algorithms
: that allow systematic analysis and design of networks with the desired property
. of partitionability will be developed. In more detail, the following related
N topics of topological properties of parallel computer systems will be studied.
. \ In Chapter 3, the background of parallel computer architecture is
e presented. Numerous parallel computer systems have been discussed in the
1:: literature and proposed, and several have been built. Parallel systems are
i divided into two major classes, tightly coupled and loosely coupled. The
2 subject of analysis here is the tightly coupled parallel systems group which can
:: be divided into several categories.
N I. is shown that each type of parallel computer architecture requires one or
N

more interconnection networks. Some systems use networks dedicated to the

communication between particular subsystems, some other systems use a single

et

> network multiplexed for communication among different parts of the system.

In an ensemble parallel system the network is used by the control unit to
broadcast instructions and data [ThW75]. In a pipelined system the
‘ interconnection network is used to provide data communication among the

computational units (segments) of the pipeline [Bae80]. In vector and array

parallel system one network is used for interprocessor communication and a

avVetalats’s

usually separate network is used by the control unit to broadcast data,

instructions, and control information to the processors [BaB68]. In a systolic

system the network is used to propagate the wave of partial results from a set

assrted?
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of processors to the next set of processors [KuL78]. In an associative system
the control unit uses the network to broadcast selected data fields to the
processors for comparison, and in some cases another network is used for
interprocessor communications [Bat74]. Reconfigurable systems have a
network that allows the system to be statically or dynamically restructured
into multiple machines of different sizes [SiS84). A data flow system consisting
of multiple rings needs a communication network to move data among rings

[WaG82].

In Chapter 4 a general model of single stage interconnection networks is
developed [SeS84a]. This model is sufficiently general so that it can be used to
model networks with an arbitrary topology, including both regular and
irregular topologies. The model is independent of the method of
implementation of the network. This is necessary because properties of
networks such as similarity relationships, emulation, and partitionability of

networks are implementation independent.

The model together with additional information is then used to construct
a model for parallel computer systems. A system, informally, consists of a set
of devices, an interconnection network, and a method for use of the network.
Each device is assumed to have two logical ports, an input port and an output
port, possibly implemented physically as the same set of I/O pins. Some
examples of devices are processors, memories, or processor/memory pairs.
Based upon the use of the network, three types of systems, recirculating,
nonrecirculating, and partially recirculating, are defined. Relationships
between systems such as equality and three types of subsystems are rigidly

defined and their properties explored.
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In Chapter 5 a technique is developed to measure the similarity of two
systems. This generalizes the past work on similarity used by many researchers
which classifies the relationships between two networks into two kinds only, (a)
the networks are isomorphic or (b) the networks are not isomorphic. The
measure has a number of uses and is applied in this chapter to the analysis of
emulation. Our definition of emulation is a generalized case of the one

described in [FiF82|.

Previous work, related to our research developed here, can be found in the
classification of groups in the field of abstract algebra and group theory [Han68,
Her75). The theory of group classification is based upon the concept of
morphism. Morphism measures the similarity of behavior between group
operations of two groups. This measure ignores the labeling of the elements of
the groups and is concerned strictly with the structure which is determined by

the group operation.

Based upon the idea of morphism of groups, the concept of morphism of
systems is developed [SeS84a]. In the domain of parallel computer systems the
structure of interest is the structure of the correspondences of the system's
network in the graph theoretical sense. The morphism of systems is called
quasimorphism and allows a method of comparison between topologically
arbitrary parallel computer systems. The quasimorphism facilitates the
analysis of following problems in parallel processing: system emulation,
multiple mapping of a problem into a system for increased reliability, and
partitioning of systems. The quasimorphism is analyzed with respect to

properties similar to the properties of reflexivity, symmetry, and transitivity.

Also in this chapter the problem of emulation of one system by another is

discussed. Three different types of emulation are considered. Several efficiency
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measures of the emulation were defined and the three types of emulation were
evaluated using these criteria.

In Chapter 6 the composition, decomposition, and partitionability of single
stage networks are studied [SeS85]. Informally, the partitionability property
means that the network can be divided into several parts each of which has
certain degree of independence. The type of partitionability analyzed in this
chapter has three subtypes.

The partitionability property of interconnection networks in the context of
parallel computer systems has the following advantages, besides being
interesting from the theoretical point of view.

(1) If the network is partitionable then the resource allocation of only a subset
of the total resources is possible. This can be used as follows.

(a) A user can utilize only a small part of the machine for program

development phase.

(b) In a multiple user environment the partitioning provides a natural

protection among users.

(¢) In a multitasking environment the partitioning provides a protection

among independent tasks.
(2) If the network is partitionable, the fault tolerance of the system increases
as follows.

(a) A method of graceful degradation is possible by separating the faulty

section from the correctly operating ones.

(b) If in addition to being a partitionable network, the sections are

isomorphic, then an increase of reliability may be realized by multiple

mappings of the same task onto the multiple sections and tandem
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cross checking of partial results.

(¢) It is possible to construct a link and switching element fault tolerant

network using a partitionable network as a core.

(3) If the network is partitionable, then there is an efficient implementation in
terms of hardware and control. The network can be implemented as a set
of network components each with its own set of inputs and outputs.
Consequently the data path layout and in some instances the control lines
layout on VLSI chip or on a printed circuit board can be simplified.

An algorithm to classify partitionability of interconnection networks is

developed which will output one of the following:
(1) The network is not partitionable.

(2) The network is partitionable into subnetworks with common control
signals and the combination of the of the subnetworks will exactly

generate all interconnection patterns of the original network.

(3) The network is partitionable into subnetworks with separate control
signals and the combination of the subnetworks will exactly generate all

interconnection patterns of the original network.

(4) The network is partitionable into subnetworks with separate control
signals and the combination of the subnetworks will generate a superset of
interconnection patterns of the original network.

The algorithm is general in the sense that it will accept as an input a

topologically arbitrary interconnection network.

In Chapter 7 the synthesis of single stage interconnection networks with

the partitionability property is studied. Several different techniques are

developed, each of which can be used to construct a large class of single stage
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partitionable networks. The algorithms are presented for a simplified case, but

they can be easily generalized in a number of different ways.

In the first part, of this chapter an algorithm to generate a large class of
partitionable networks is developed and proven correct. This algorithm is

based upon the results of the analysis presented in Chapter 6.

The second part of this chapter discusses the problem of synthesis of a
special case of partitionable networks. This special class of networks consists
of those networks that are isomorphic to a direct product of groups [Han68,
Her75]. Since these groups have been studied in the abstract algebra
extensively, techniques are known to determine the possibility of decomposition

of a given group into a direct product of groups.

In Chapter 8 the analysis of multistage networks will be addressed. This
extends the work done in Chapter 6 into the domain of multistage

interconnection networks.

First a method of composition of single stage networks is presented and its
properties studied. Using the composition of single stage networks, the
multistage model is defined. This approach has the advantage that some
results of analysis of single stage networks can be applied to the study of the
multistage networks. The model is very general since each stage consists of the
general single stage model presented earlier. Several examples of an application

of the multistage model are presented.

In Chapter 9 a case study of a communication system for a real-time,
distributed digital signal processing system. Network and network interfaces
are designed subject to number of system constraints such as very high

throughput, system extendibility, and fault tolerance requirements. For this
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application, and given the current and near future technology, a crossbar based z <
interconnection network was selected for the task under consideration. Two
different fault tolerant chip architectures are presented. Four network RO
architectures are designed and their characteristics are discussed. Several fault

detection and recovery techniques on the system level are developed. N,
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In Chapter 10, a study of shuffle interconnection function emulation by

v
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PM2I and Illiac SIMD networks is performed. It was previously shown that a

lower bound on the number of transfers needed for the PM2I network to '.':
20N
=
perform the shuffle is logoN. The algorithm described here is near optimal and ,-'::'
requires only (logsN)+1 transfers. Also, an algorithm for the case where there oty
is a machine with a PM2I network and it is desired to emulate a shuffle that is \
of smaller size than the host network is presented. Using the PM2I algorithm :l';ﬁ'.
r..l. .~
as a basis, an algorithm for the Illiac to emulate the shuffle is given. It requires &
2N = 1 transfers, which is only three transfers more than lower bound of Z‘.'.:}::t
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In Chapter 3 an overview of several classes of tightly coupled parallel
computer architectures will be given. First the defining features of each class
will be presented, and then an example of the class will be discussed in detail.
All the examples consist of existing systems or systems in research or design

stages which have been described in the literature.

In Chapter 4 the network model is presented. The model together with
additional information is then used to define the model of a parallel computer
system. Three types of systems based upon the method of use of the network

are defined and examples of each category given.

In Chapter 5 a measure of similarity of systems with arbitrary labeling
and topology is introduced. The measure is called quasimorphism and is used

in this chapter to analyze emulation of one system by another.

In Chapter 6 the horizontal composition and decomposition of
interconnection networks are formally defined and analyzed. Using the
compositions, three types of partitionable single stage networks are recognized.
An algorithm is presented that accepts as an input a topologically arbitrary
interconnection network and outputs one of following four outcomes: the
network is not partitionable, or the network is partitionable in one of the three
types.

In Chapter 7 the synthesis of single stage partitionable networks is
studied. An algorithm is presented to syn’tixesize a large class of partitionable
networks. In addition, a special class of partitionable interconnection networks

that are isomorphic to a direct product of groups is described.
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In Chapter 8 the analysis of multistage networks is discussed. Basic
definitions such as vertical composition of networks is presented and its
properties analyzed. Using composition of single stage networks, the multistage

network model is defined and some applications are shown.

In Chapter 9 a network and network interfaces are designed for a real-
time, distributed digital signal processing system. The design is subject to
number of system constraints such as very high throughput, system
extendibility, and fault tolerance requirements. Several fault detection and

recovery techniques on the system level are studied, since fault tolerance is a

salient issue of this system.

In Chapter 10 the ability of the PM2I and llliac type single stage SIMD
machine interconnection networks to perform the shuffle interconnection was
examined. Two algorithms were developed, one for the case of a PM2I of same
size as the shuffle and one for the case of a PM2I of a larger size than the
shuffie. Both algorithms are near optimal in the number of network transfers.

In addition, using the PM2I algorithm as a basis, an algorithm for the Iiliac to

emulate the shuffle is developed.
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3 PARALLEL COMPUTER ARCHITECTURES




14

3.1 Introduction

One method of speeding up the execution of computational tasks is to use
parallel computer architectures which exploit the parallelism in the execution
phase of the task. Numerous parallel computer systems have been discussed in
the literature and proposed, and several have been built. Parallel systems are
divided into two major classes, tightly coupled and loosely coupled. The
subject of analysis here is the tightly coupled parallel systems group which can

be divided into several categories.

As will be shown, each type of parallel computer architecture requires one
or more interconnection networks. Some systems use networks dedicated to
the communication between particular subsystems, some other systems use a
single network multiplexed for communication among different parts of the
system. In an ensemble parallel system the network is used by the control unit
to broadcast instructions and data. In a pipelined system the interconnection
network is used to provide data communication among the computational units
(segments) of the pipeline. In vector and array parallel system one network is
used for interprocessor communication and a usually separate network is used
by the control unit to broadcast data, instructions, and control information to
the processors. In a systolic system the network is used to propagate the wave
of the partial results from a set of processors to the next set of processors. In
an associative system the control unit uses the network to broadcast the
selected data fields to the processors for comparison, and in some cases another
network is used for the interprocessor communications. Reconfigurable systems

use a network for interprocessor communication and perhaps a different
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network for fetching/storing data in the memories. Data flow system
consisting of multiple rings needs a communication network to move data

among rings.

3.2 Overview

In this chapter an overview of different classes of tightly coupled parallel
computer architectures will be given. Each class will be presented as follows.
First the defining features of the class will be presented, and then a
representative system of the class will be discussed. All the examples consist of
existing systems or systems in research or design stages described in the
literature. For a good survey of systems see [HaL.82] and of interconnection

networks see [Sie85).

3.3 Problem Statement

Several categories of parallel computer architectures will be defined. This

will be followed by a detailed description of an example of architecture in each

category. The description of the system will demonstrate that each category of

parallel computer architecture described uses one or more interconnection
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network as well as show the different ways the networks are used by the

L B o g

system.

3.4 Parallel Computer Architecture Classes

The Ensemble Processors achieve the speedup of execution of
computational task by utilizing many processing elements each of which is
operating on an independent data stream. The system does not use an
interprocessor interconnection network, however, the control unit uses an

interconnection network to transfer data and instructions to the processors.

A representative of this group is the Parallel Element Processing Ensemble
(PEPE) |ThW75, ViC78], whose design can support up to 288 processors.
PEPE was developed to handle the tracking of multiple targets and as such it
must compute identical operations on large number of independent data
streams. These data streams are radar signal returns of possibly multiple
objects entering the radar's surveillance volume. PEPE also uses an associative
operation to locate the file of a target given its new data coordinates. This
operation is implemented by broadcasting of the new data from the control
unit to the processors using the interconnection network. If a correlation is
found between new data and a file in a processor then the new information is

added to the file, otherwise an idle processor will be allocated for a new target.
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The pipelined processors (MISD mode) achieve speedup of computation by
(a) breaking the instruction into a sequence of smaller operations and (b)
executing concurrently the smaller operations using several computational
units. The flow of data is such that unit u; executes its subtask and passes the
data to unit u;4,;, hence the term pipeline. Some systems that fall into this
category are TI ASC [Bae80, Sto80, The74], CRAY 1 [KoT80], and CYBER
205 [Bae80, KoT80].

The TI Advanced Scientific Computer (ASC) consists of an instruction

unit and from one to four processing units. The instruction unit is constructed

as a four stage pipeline and the stages are: instruction fetch, instruction
decode, effective address calculation, and register operand fetch. All processing
units are identical and each consists of eight stages, however, using a dynamic
reconfiguration (via a network) a custom pipeline can be constructed from the
basic eight elements. The stages of the processing unit are: input, exponent
subtractor, prenormalizer, multiplier, adder, normalizer, accumulator, and

output.

The vector and array processors (SIMD Mode) achieve speedup of
computation by using a large number of computational elements. Examples of
their applications include the image processing, such as filtering and
convolution, and in matrix operations for the weather prediction or simulation.
Some examples of these systems are Illiac IV [BaB68, BoD72], MPP [Bat80),
Cartesian Moment Computer (CMC) [ReS82, Seb82], and BSP [KoT80]. Two
examples will be discussed, the MPP and the BSP.

The Massive Parallel Processor (MPP) consists of 128 x 128 = 16384
simple processing elements. Each element processes data one bit wide (bit

serial). Each processor communicates with other processors in the array using

........................................................
......................................................
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the four nearest neighbor interconnection network. The processing array uses
staging memories to reorder the data received from a satellite into a form
where each processor receives all the bits of the grey value of one pixel in the
image.

Burroughs Scientific Processor (BSP) consists of 16 arithmetic units, each

capable of operating on 48 bit words. There is an input alignment network to

move data from the 17 memory units to the 16 arithmetic units and an output
alignment network to move the data from the 16 arithmetic units to the 17
memory units. The alignment network allows a 16x16 matrix to be stored in
the 17 memories in such manner that row, column, diagonal, and many other
substructures of the matrix can be fetched/stored without an accessing conflict

[BuK71].

The systolic arrays or wavefront processors [KuL78, Kun82] receive the
name from their mode of operation which can be described as follows. The
systolic arrays are usually organized as one or two dimensional arrays of simple
processors, each connected to its neighbors in some regular way (two, three,
four, or six nearest neighbors). Each processor repeatedly executes the same
operation on data as it is pipelined through the systolic array, creating partial
results. Each partial result is passed to a neighboring processor which will use
the partial result and additional (partial) results to create a more complete

result until finally at the output edge of the array the final result is outputted.

The associative processors achieve the speedup by operating in parallel on
a large number of records that are selected based on the value of a field in the
record. Examples in this category are STARAN [Bat74, FeF74, RoP77|,
OMEN [Hig72], and ALAP [YaF77]. The ALAP will be described here.




The Associative Linear Array Processor (ALAP) consists of a linearly

connected array of processors that receive common data and commands from
the control unit. Their matching line outputs are ‘‘or”ed together to notify the
control unit if there is a match to the input data. A VLSI system consisting of
13 processors was constructed and tested. A bus is used to input individual as
well as common data into the processors, therefore it would become a

bottleneck if a large number of processors were used.

The reconfigurable systems consist of a large number of processors which
communicate through a reconfigurable interconnection network. Some
examples of this category are PASM [SiS79, SiS81, SiS84], TRAC [KaP80,
SeU80], and CHIP [Sny82]. The PASM system will be described here.

The partitionable SIMD/MIMD (PASM) system is currently under
development in Purdue University, School of Electrical Engineering. The
system includes Q = 29 Micro Controllers (MCs), and the Parallel Computation
Unit (PCU) which is comprised of N = 2" processors, N memory modules, and

an interconnection network.

The system’s strength lies in its ability to allocate a subset of its N
processors to a particular task. For details on the allocation strategies see
[TuS83]. It is intended to be used in image processing and pattern recognition
applications. The collection of resources consisting of RN/Q processors,
(R = 27,0 < r £ q) together with R Micro Controllers and RN/Q memories is
called a virtual machine. The actual processors selected for a given virtual
machine depend upon the type of partitionability of the system and the
partition selected. The type of partitionability is a function of the inter-

processor interconnection network. The virtual machines are independent of

each other, consequently different machines can execute different jobs
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concurrently. The current status of PASM is the logic design pbase and
building of a small prototype of 16 processors and four MC's using off shelf

logic devices.

Data flow system achieves computational speedup by exploiting the
parallelism at the instruction level [WaG82]. Conceptually, each instruction is
translated into a template consisting of an operation and data slots. An

instruction gets executed if its data are available and a processor is available.

Data flow computers are usually implemented as rings, each ring consisting
of at least the following blocks: a token queue, a matching store, and a
processing unit. The ‘‘token queue” saves results generated by the processing
unit. The ‘“matching store” tries to match incoming tokens from the token
queue with the slots of templates currently residing in the matching store. The
‘‘processing unit” accepts the instruction template with all its fields resolved
and executes the operation, passing the results to the token queue. Since
multiple rings each consisting of a token queue, a matching store, and a
processing unit are used for speedup of the execution, a token generated in one
ring may be needed as a data in a template residing in the matching store of
another ring. In order for the token to move from one ring to another an

interconnection network must be used to connect the data paths of different

rings.
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3.5 Conclusions

-

In this chapter an overview of several major classes of tightly coupled
parallel computer systems was presented. Each category of parallel computer
system was described in sufficient details to show that an essential part of each
system is one or more interconnection network. The usage of the
interconnection network varies from system to system. Some systems use
' networks dedicated to the communication between particular subsystems, some
. other systems use a single network multiplexed for communication among
: different parts of the system. In an ensemble parallel system the network is
2 used by the control unit to broadcast instructions and data. In a pipelined
system the interconnection network is used to provide data communication
among the computational units (segments) of the pipeline. In a vector and
array parallel system one network is used for interprocessor communication and
a usually separate network is used by the control unit to broadcast data,
instructions, and control information to the processors. In a systolic system the
network is used to propagate the wave of the partial results from a set of
processors to the next set of processors. In an associative system the control
unit uses the network to broadcast the selected data fields to the processors for
comparison, and in some cases another network is used for interprocessor
communications. Reconﬁgurable system uses a network for interprocessor
communication and perhaps a different network for fetching/storing data in the
memories. Data flow system consisting of multiple rings needs a

communication network to move data among rings.
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When a designer is facing the problem of selecting a parallel computer
system for a particular task or a class of tasks, then several properties of the
network becomes of interest. These properties are heavily dependent upon the
topology of the network and therefore the study of the topological properties of
networks is an important method of evaluation and classification of parallel

computer systems.
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4 MODELING OF NETWORKS AND SYSTEMS
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4.1 Introduction

Most current analytical techniques for interconnection networks and
modeling techniques of networks are concentrated on the analysis of
topologically regular interconnection networks. Examples of such networks are
Illiac {BoD72}, Shuffle [LaS76, SeS84b], multistage Cube [AdS82b], STARAN
[Bat74], ADM [McS82], k-connected mesh [NaS80], and PM2I [SeS84b]. The
past research usually proceeded on the following lines. A network specific
model is defined and then analytical results are derived using this model. The
problem with this approach is that the results developed are problem specific,
that is to say, the results are valid only for the small class of networks that the
model represents. One way to generalize the results of the analysis is to

develop a general model describing the topology of the network.

In this chapter, the following problems are discussed. A general problem
of modeling networks with arbitrary topology is developed [SeS84a). This
model is sufficiently general so that it can be used to model networks with
arbitrary including regular and irregular topology. The model is independent
of the method of implementation of the network. This is necessary because
properties of networks such as similarity measures, emulation and
partitionability of networks are implementation independent. The similarity
measures between two n.tworks is classified into several classes, This is a
refinment of the old system which classified the similarity measure between two
networks into two classes only, isomorphic and nonisomorphic. The model of
network together with additional information is then used to construct a model

for parallel computer systems. A system, informally, consists of a set of
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devices, interconnection network, and a method of use of the network. Each
. device is assumed to have two logical ports, an input port and an output port,
possibly implemented as the physically same set of I/O pins. Some examples of
devices are processors, memories, or processor/memory pairs. Based upon the
use of the network, three types of systems, recirculating, nonrecirculating, and
partially recirculating are defined. Relationships between systems such as
equality and three types of subsystems are rigidly defined and their properties

explored.

4.2 Overview

This chapter is organized as follows. In section 4.3 definitions of the *
problems addressed in this chapter are given. In section 4.4 the previous
related work is briefly described. In section 4.5 the basic concepts are defined.
In section 4.6 the network model is presented, several major relationships
between networks described, their properties given and some examples of
applications presented. In section 4.7 the concept of a parallel computer
system is formally introduced. Three types of systems based upon the method

of use of the network are defined and examples of each category given. Several

3 LN
- similarity measures between two systems are defined and examples presented. RN
o ’\Q‘.‘
; In section 4.8 the conclusion and summary of the chapter is given. ;:E;
‘ o
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4.3 Problem Statement

In this section, an informal description of the work presented in this
chapter is given. The descriptions will be informal only, as the basic
mathematical concepts have not been defined yet and will be introduced later
in this chapter. The following problems of analysis of interconnection networks
are addressed in this chapter. In order to analyze the topological properties of
interconnection networks a model must be developed. In this chapter, a
general model of topologically arbitrary interconnection networks is presented
which will be used through most of this research [SeS84b]. This model is
implementation independent, which is desired since the topological properties
of networks are implementation independent, moreover if the model were
implementation dependent that would reduce its scope of applicability to the
class of networks having that implementation. Next, several important
relationships between networks such as equality and two types of subnetworks
are defined and their properties shown. In the next section the model for a
parallel computer system is defined. A system, informally consists of a set of
devices, an interconnection network, and a use of the network. Each device
(processor, memory or processor/memory pair) is assumed to have two logical
ports, one input port and one output port. Based upon the method of use of
the network, three types of systems, recirculating, nonrecirculating, and
partially recirculating are defined. Relationships between systems such as
equality and three types of subsystems are rigidly defined and their properties

explored.
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4.4 Previous Work

In this section, the previous work is briefly described. Previous work on
modeling of interconnection networks in [Gok76, GoL73, LiM82, Upp81] was
used to describe the class of SW Banyans networks. The model is based on
graph theory and is sufficiently general to describe the class of SW Banyans,
however it is implementation dependent, which narrows down the the scope of
its applicability. Some issues discussed using the model were mapping methods
of simple regular interconnection networks such as ring or a tree onto the
Banyan networks. Additional work on modeling of regular networks, such as
mesh, shuffle, Cube and PM2I was done in [FiF82], and was network specific.
In [FiF82] a specific class of networks called quotient networks was discussed.
Informally, a quotient network is a network that is homomorphic to the same
type of network of a smaller size in terms of processors. ' A class specific model
was developed in [RaF83] for the evaluation of a class of linear array-processor
systems for VLSI implementation. A general model was developed for the P
analysis of time space tradeoff ¢. interconnection network in [MaM81b]. A

good overview of interconnection networks can be found in [Sie85, WuF84].
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4.5 Basic Concepts

In this section, basic definitions and notation needed as the background for
the rest of the paper are introduced. Some of the definitions can be found in

books on basic abstract algebra [Han68, Her75] and graph theory [BoMT86,

Har69|, however are included here for completeness. The purpose of these
definitions is to develop a formal notation that will be used to discuss more
complex concepts such as networks and systems. To relate these definitions to

the subject at hand, some examples are given in the end of this section.

Let the set of input labels of a graph/algebraic structure be denoted by
V, and the set of output labels of the structure be denoted by V,. All
graph/algebraic structures defined in this paper over Vi x Vg will assume that
ViNVo =0,V #0,Vo #0, where O is the empty set and
Vi x Vo = {<v,Vp>| v, €V}, Vv, € Vo}.

The following notation will be used throughout this paper. The symbols
are enclosed in a pair of double quotation marks.
“{"*}” - delimiters for set. ‘“‘(",")” - function application and grouping of
operations. “‘<”,">" - delimiters for n-tuple.

“[*,*]” - used as defined in context.
Definition {.5.1:
Let A be a set, then P[A] 4 {B| B g A} is the power set of A.
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Definstion 4.5.2:
Let C,, € P[V| x V], then C,, is an I/ O correspondence over V; x V,,
Definition 4.5.3:
Let C, € P[V] x V| such that <v,,vy>, <v,v4> € C, = v, # v,
then the C, is a nondestructive I/O correspondence over V; x V.

(Physically, C,, represents one state of a reconfigurable network).
Definition 4.5.4:

Let C[Vy x Vo] & {C_ € P[Vi x Vo] | Cp is nondestructive}. Then

C[Vi x V] is called the C-set over V; x V.

The definitions 4.5.5 to 4.5.8 discuss the connectivity or accessibility aspects of

the 1/O correspondences.
Definition 4.5.5:

Let C, € C[V] x Vo], then s(C.) a {vi] <vavy> €C,} is the

source set of C,,.

Definstion 4.5.6:

Let Cy, € C[Vyx Vo], then d(Cp) 2 {v,| <v,vy> €Cp} is the

destination set of C,,.

v v,

Definition 4.5.7:

Let C = {C,,| m=12,..0} C C[V; x Vo), then s(C) & U s(C,) is the

source set of C.
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Definition 4.5.8:
Let C = {C, | m=1,2,..0} C C[V; x Vo, then d(C) & U d(C,) is the
m
destination set of C.

Ezample 4.5.9:
Let Vi ={v,v,}, and set V= {ugu;uzuz}. Consider the set
A = {<vgup>, <vg,va>,<V;u3>}. What type of correspondence it
is.

Solution:
(a): Clearly A C P[Vy x Vg), therefore A is an 1/O correspondence

over V| x Vo

(b):  <vgue>,<Veuy> €A, and up#u;.  <ve,ue>, <V u3> €A,
and up#uy. <vo,ue>,<vy,uz> € A, and ug#us. Therefore A is
a nondestructive I/O correspondence over Vi x Vg.

(¢): The source set of A is {vqy,v,} = V.

(d): The destination set of A is {ug,u,,u3} C V.

Ezample 4.5.10:
Let V; and Vg be two sets, Vi = {v,,v,},Vo = {ug,u;,uz,us}. Consider
the set B = {<voue>, <vguy>, <viup>}.  What type of

correspondence it is.
Solution:

(a): Clearly B C P[V| x V(| therefore B is an I/O correspondence

over V; x V.
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D (b): <vgu>,<vyu> €EB and uy; =u;.  Therefore B is not S

}:: nondestructive I/O correspondence over Vy x V5, and B could 'ﬁ

3,

z: not represent a state of a reconfigurable network. % "
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4.6 Interconnection Network Model __

2 S

In this section, a formal graph/algebraic model of an interconnection .

..: ‘:

v network is presented. Graph models for analyzing networks have been used by A
. K
. other researchers. For example, in [Gok78, GoL73, LiM82, Upp8l] they are e
used to analyze regular SW Banyan networks, and in [FiF82] they are used to -

.:l: study the partitioning of regular networks. The model presented here differs "

: from [Gok76, GoL73, LiM82, Upp81] and [FiF82] by being completely general ’S
_ so that it can be used to describe an arbitrary, topologically regular and
S irregular, interconnection network. ‘f{

n-, '( ,:Q
l:l Certain relationships between networks that are of interest to the N
5 computer system designer are presented here in a rigid mathematical fashion. SEA
In particular, the relationships subnetworks and equality are defined and their

£
- properties described. In the end of the section, some examples of applications }1;11
; are presented and an example is generalized'into a theorem. b
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Definition 4.6.1:
Let K = €C> be such that:
(1) C CC[Vpx Vgl

P R

2) Vi =s(C).
(3) Vo = d(C).

a's e a4 a I

3 Jc| 22
Then K = <C> is an [fO representation of a reconfigurable network

over V; x Vo

Physical implications: <v,,v,> € C,, C, € C represents the network moving
data from input v, to output v, when the state of the network is C,. C
represents the set of all possible states of the reconfigurable network. For an
example of a topologically arbitrary interconnection network see Figure 4.1.

The example has the following parameters:

Vi = {u,up, 0.}, Vo = {vo,v1},
' Co = {<u,, Vo> <u,,v;>},
2 C1 = {<u,,vo>, <uy, vi>},
' Cz = {<u, V>, <u,vo>},
' C = {Cy,Cy, Ca}. K = <{Cp,Cy, C}>.

Definition 4.6.2:
Let K[V; x Vo] 2 {K | K=<C> is a network over Vi x Vp}. Then
K[V} x Vo is called the K-set over V, x Vo

The Definitions 4.6.3 to 4.6.5 are used to classify formally the measure of
' similarity between two networks. The classes are presented here in the order of

increasing strictness. Note that these relationships provide a refined scale of
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Figure 4.1:
An example of a topologically arbitrary network.




the measure of similarity between two networks compared to the more

customary classification of isomorphic/nonisomorphic which was used in the

past. Several examples illustrating the application of these measures are given

after the definitions are presented. The examples are generalized into a

theorem relating the PM2I and k-dimensional Illiac networks.

Definition 4.6.3:

Let K[Vi! x Vo!], K! = <C'>, and K[V{? x V3, K2 = <C?>, be

two networks such that:

(1) VICVAVSCVE

() vclec'!3acZec?s:ClcCccl

Then K! is subnetwork of type b of K*. Notation: K! Cb K2.

Definition 4.6.4:

Let K! € K[V{xV3], K! = <C!>, and K2 € K[V#xVJ], K? = <C?>,
be two networks such that:

(1) V§CVAVECVE

() vClec! 3cCclecC?a:Cl=CL

Then K! is subnetwork of type ¢ of K%. Notation: K! Ce K2.

Note: The reason for referring to these subnetworks as types b and ¢ is to make

this notation consistent with the definitions of subsystems in Section 4.7, where

the three types of subsystems type a, b, and ¢ are described.

Definition 4.6.5:

Let K! € K[V x VJ], K! = <C!'>, and K? € K[V} x V§], K® =
<C2>, be two networks such that:

-------------------




(1) V=V VE=V3
2y cC'=c2
Then K" is equal to K. Notation: K! = K2.
The Theorems 4.6.6 to 4.6.8 describe the sufficient conditions for the
relationships of the different types to exist.
Theorem 4.6.6:
Let K! e K[V{{xV{], K! = <C!>, and K2? € K[V?x V3], K? = <C2>,
be two networks. If VYCLeC! 3C2e€C? >: Cl C C2 then
K! Cb K2
Proof:
(1): Show V} C V{2
(VCa€C!), 3CIeC?) = (CaCC
= (YClecC!, cCLcC C:(m))
= (YCp €C', s(Cp) C s(Cgm))
= (U $C1) C U s(CZn))
= (Us(Ch) CUsC) = Vi CVE.

(2): Show V{§ C V§.

Similar to (1) except replace the s set by the d set.
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Theorem 4.6.7:
Let K! € K[V!'xV{], K! = <C'>, and K? € K[V#xV}], K? = <C?>,
be two networks. If YCLeC' 3C%2eC® 3: Cl =C2 then
K! Ce K32
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Proof:
Show V! C V# and VJ} C V3.
The proofs are similar to proof of Theorem 4.6.8.

Theorem 4.6.8:
Let K! € K[Vi'xV{], K! = <C'>, and K? € K[V#x V3], K? = <C?>,
be two networks. If C! = C? then K! = K2
Proof:
(1):  Show V! =V{
C! =C2 =+ 5(C') =5(C?% = V! = VL&
(2): Show V§ = V3.
C! = C? = d(C') = d(C?Y) = V{§ =V3.

a

The following examples show an application of the similarity measure
between two networks. Note the increasing similarity between the PM2I and
k-dimensional Illiac as the dimension k increases. The examples are generalized
into a theorem showing what happens at the limit of k as k increases to

maximum.
Ezample 4.6.9:

Consider the Illiac network with N = 64 processors. The network can

be modeled as follows.

Vi = {y]j=0,1,..63}, Vo' = {v,|k=0,1,...63}.
Cl = (G',Cy!, C;L.Gy'}
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Let @ denote addition modulo 64 and © subtraction modulo 64.
Co! = {<uj,vj®,>|j =0,1,..63},

b C!= {<uj,ng|>|j =0,1,...63},

C! = {<y;v;pe>|i =0,1,..63},

Cs! = {<u;vjg>]|j =0,1,...63}.

1 Then K! = <C!> describes the network.

Consider the single stage PM2I network with N = 64 processors. The
network can be described as follows.

, V2 = {y]j=0,1,..63}, Vo? = {v|k=0,1,...63}.

C? = {C’.C/4--Cn®},

C% = {<uvi@p> |5 =0,1,..5;j =0,1,..63}.

Cl+y = {<upv;qp> |t =0,1,.5; j =0,1,..63}.

‘ Then K2 = <C?> describes the network. i
What is the relationship between the networks. :
Solution: ..-\.- ,

by

(a:  Vi' C VP Vo' CVoh

(b: WVvClec' 3Cl2ec?: C!=C,2 By Theorem 46.7 K' is
a subnetwork of type ¢ of K2, denoted by K! Cc K2 Since
C,2 ¢ C!, therefore K! # K2 In the special case of N = 4 the
Illiac is equal to the PM2l.

Ezample 4.6.10:

Consider the generalized three dimensional Illiac system with 64
processors, arranged as a 4 x 4 x 4 matrix. This network can be
modeled as follows.

Vi' = {4;]j=0,1,..83}, Vo' = {v,| k=0,1,..63}.
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c! = {c},c,,Cly,, CY4,CL,,Cls).
Let @ denote addition modulo 64 and © subtraction modulo 64.
C,! = {<y;vpp>| 3 =0,1,2;j =0,1,..63},
i Clysp = {<y;¥;0p>| b=0,1,2;j =0,1,.63}.
Then K! = <C!'> describes the network.
Let K2 = <C2?> be the PM2I network with N = 64 as in Example
4.06.9.

What is the relationship between the networks.

Solution:
(a: VI C VP Vo' C Vo4
(b VCl'eC' 3ClreC?s: C;! =C.% By Theorem 4.6.7 K! is
a subnetwork of type ¢ of K2, denoted by K! Cc K2 Since
C,% ¢ C!, therefore K! # K2.
Ezample 4.6.11:
Consider the generalized six dimensional Illiac system with 64
3 processors, arranged as a2 2 x 2 x 2 x 2 x 2 x 2 matrix. This network
can be modeled as follows.
Vit = {y;]j=0,1,..63}, Vo! = {v\| k=0,1,...83}.
C,! = {C!,C\,...C',,}.
Let @ denote addition modulo 64 and O subtraction modulo 64.
C.! = {<uyv;epr>| 8 =0,1,2,345 ) =0,1,..63},
Cla+p = {<u;v;ep>| b =0,1,2345;j =0,1,..63}.
Then K! = <C!> describes the network.

: Let K2 = <C2> be the PM2I network with N = 64 as in Example
4.6.9.
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What is the relationship between the networks.

Solution:
C! = C?, and Theorem 4.8.8 imply K! = K2.

Theorem 4.6.12:
Let there be K! = <C!'> a PM2I network with N = 2™ processors,
then there exist K2 = <C?> a generalized Illiac network in k
dimensions, such that K! Cc K2 moreover there exists k = m

dimension such that K! = K2. Consequently PM2I can be viewed as a

limiting case of a k-dimensional Illiac network.

Proof:

(1) Consider the generalized k-dimensional Illiac system with 64

processors, arranged as 2 x2x 2 x 2 x 2 x 2 matrix. This

s

network can be modeled as follows.
Vll = {uj|j=0,l,...63}, Vol = {"kl k=0,1,...63}.
C.l — {Clo,Cll, e Cl"}.
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Let @ denote addition modulo 64 and © subtraction modulo 64.

Let d=N%,

Cl! = {<uvpp>| 8 =01,k -1;j =0,1,.N-1},
Cls+p = {<upv;ep>| b =01,k =1;j =0,1,.N~1}.
Then K! = <C!> describes the network.

)
r

Consider the single stage PM2I network with N processors. The

s *s
ottt

network can be described as follows.
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Ve = {y]j=01,.N -1}, Vo? = {v,|k=0,1,..N - 1}.
C? = {C?%, C3,,..C%,,).




»

C? = {<u;vgp> [s =01,..2m - L;j =0,1,.N-1}.
C 4 = {<vu;, v;cp>

|t. =mm + 1,.2m-1;j =0,1,..N - 1}.

Then K2 = <C2> describes the network.

m

(2 N=2mand N=dk —om=gt —d=2k,

m
-o%‘— =12,.m =+d =2k

3): (1), (2)= C; CCl
Clcc? and ClCC? =vClecC' 3(ClecCs:
C,! = C,2
By Theorem 4.6.7 K! Cc K2
(4: (1),(2),andd =2 =»Cl=C2
Cl=C2andCl =C2 = C!'=C2
C! = C? and Theorem 4.6.8 imply K' = K2

4.7 Systems and Subsystems

In this section the problem of modeling systems and subsystems and
analysis of different relationships between systems is being discussed. A
system, informally, consists of a set of devices, an interconnection network, and
a method of use of the network. A typical device can be a processor, memory,

or a processor/memory pair. Each device has two logical ports, input and
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output, possibly physically implemented as the same set of physical I/O pins.

Three types of systems are recognized based upon the method of use.
Broadly speaking, a device can use the network in two basically different ways.
A device can have its output connected to the input of the network and its
input port connected to the output of the network. If this holds for all the
- devices in the system then this method will result in a recirculating system.

ﬁ From a communication point of view, these paths from the output of the

network through the devices back to the input of the network can be used to

d generate different connection patterns using multiple passes through the
network. Alternatively, a system could be constructed where there is a device
such that a device where only the device's output is connected to the network,
but its input is from outside of the system. If this holds for all the devices in
the system than this configuration will result in a nonrecirculating system.
: This can be used to model systems such as a real time digital signal processing
systems. A real time digital signal processing systems typically consist of
several functional sets of (one or more) processors, each set optimized to
perform a class of operations, together with an interconnection network
between each pair of functional sets. From the communication point of view,
these systems can not generate different connection patterns using multiple
passes, because the paths from the outputs of the network to the network
inputs through the devices are missing. Hybrid systems consisting of some (but
not all) devices having return paths are also possible, for example a binary tree
type networks, where the links are unidirectional and one of the leaves is

. connected to the root device.

Several relationships between two systems can hold, the systems can be

completely different, they can be equal or they can have some degree of
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similarity. The relationship of subsystems is discussed here. Informally, if
there is a system over Vi! x V!, and another system over Vi x Vo?, and
Vi C Vi3, Vo! C Vo3, then it is possible that the systems can be ordered in
some sense. The ordering considered here is the subsystem relationship defined
later. The idea is this. If both systems have the same method of use of the
network, and additionally the network of one system contains some or all the
states of the network of the other system, then the second system is in some
sense a similar to the first. Using this concept, three different types of

subsystems are defined and some examples presented.
Definition 4.7.1:
Let K € K[V] x Vo], K = <C> be a network. If the usage of the

network is such that data outputted at v EV( can be fed back in v,€V),

then <v,,v,>€Cp. Cp is called feedback correspondence.

Physical implications: This describes the situation where a processor or any
other device is connected to both v, and v,. The device inputs data into v,EV]
and receives data at v,€Vy. Thus if <v,,v,>€Cp then the same device is
attached to v, and v,. If <v,,v,>¢&Cp then a separate device is attached to
each of v, and v,. Since it is assumed that each device has only one input and
one output, and that a vertex can have at most one device connected to it, the

Cr has the following properties:

(a) if <vyvy>, <V,,v,>€Ck then Vy = Vs

(b) if <vgvy>, <V, v, >€ECp then v, = v,;

(C) CF C VIXVO'
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Theorem 4.7.2:
Cr is a map, 1:1, onto from X to Y, where XC V| and YCV,,.
Proof :

Obvious by definition of Cp and properties (a), (b), (¢).

Definition 4.7.9:
Let K € K[V] x Vg], K = <C> = <{C_,}> be a network, and let Cp
be a feedback correspondence, CrCVixVy, then
S = <C,Cy> = <{C,}, Cp> is called the system over V; x V).

Physical smplications: The Cp precisely describes the usage of a network in a
system. If s(Cg) = V| and d(Cf) =V, then the system is fully recirculating.
If Cp # O and either s(Cp) # V| or d(Cp) # Vg (or both), then the system is
partially recirculating. If Cp = @ then the system is nonrecirculating. An
example of a system is given in Figure 4.2. The properties of Cp have
implications on whether the system can generate different correspondences by
using multiple passes through the network. Multiple passes require that
Cr # O, that is the system must be partially or fully recirculating. At the end

of this section examples of each type of the system are presented in detail.

Definition 4.7.4:

The set {S| S = <C, Cg> is a system over V| x Vo} is called the S-

set over V; x V, denoted by S[V| x V.
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Definition 4.7.5:
Let S' = <C!, C}> and S? = <C2% C§> be two systems. If (1)
Vi =VE, Vi =VE; (2) Cf =C# and (3) C' = C?, then S* is equal to
S%. Notation: S! = S2.

Physical implication: S! and S? are completely interchangeable.

Theorem 4.7.6:

Sufficiency condition for equality of systems. If (3) holds in Definition
4.7.5 then (1) holds.

Proof:

(a):  Show: (3) = V! = V{.
Vi =5(C!) =5(C?) = V{.
(b):  Show: (3) = V} = V3.
V4 = d(C') =d(C? = V.

0

The implication of this theorem is that to check two systems for equality it is

only necessary to examine Cp and C.

In the following part, the definitions of different categories of relationship
between two systems are formally given. Note that the similarity relationship
here is an extensions of the relationship between networks (Section 4.8) that
include the comparison of the feedback correspondences. To facilitate the
understanding of the material, it is presented as follows. The categories of the

similarity relationship are presented in the order of increasing strictness.

Immediately after each formal definition, an example is presented.
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Definition 4.7.7:
Let 8! = <Cl, C}> and $%2 = <C?, C#> be two systems. If
(1) Vi CViand V§ CV§;

@ O =Cfl v vy U vt « vy

(3) VYCLeC!' 3CleC® = CrCC? UCE

then S' is subsystem type a of S*. (“>" means “‘such that”) Notation:
! Cast

Example of subsystem type a.

Let Let

§2 = <C? C#> be a system. Vit = {vq, v,},

Vi = {vo, V1, va}, V4 = {ug, y},

V& = {ug, uy, w5}, Cf = {<vpy 4>, <vy, 4 >}
C# = {<vo, 1o>,<vy, u>,<vp u;>},  C' ={C{, C}},

¢? = {C§, Cf, C3}, Cq = {<ve, u>,<vy, 4>},

C(? = {<v°? u°>1<v01 ul>,<V2, U2>}, (3‘l = {<vo’ “l>}'
C} = {<vp, uy>,<vy, u>},
sz = {<v2! u]>1<v2) u2>}.

Then
(1) <C!, C2> is a system (denoted S!).
(2 (a) VICVE VEICVE

(b) CF = Cg l (Vi x Vo) U (Vi* « vol);
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) cdcciccd UCH, clcecicced UG
3 = Sl Ca S2,
Definition §.7.8:

Let S! = <C!, C}> and $2 = <C2, C#> be two systems. If

(1) VHCVHVE CVE

@) O} =G | vp vy v « vy
(3) VClecC! 3ckec? xCclcC?
then S' is subsystem type b of . Notation: S' Cb S°.

Example of subsystem type b.

Let Let

S? = <C?, CE> be a system. Vi = {vq, 1},

Vi = {vo Vi, V2}, V4 = {ug uy},

V3 = {ug, uy, w5}, Cf = {<Vp, 4>, <vy, 4>},
C# = {<vg, Wp>,<vy, u>,<vy 1>}, C! ={C4, Cj},

C? = (C§, C}, C3}, Co = {<vo, u>},

Cg - {<v°’ u°>,<Vo, ul>,<V2, u2>}, C[l = {<Vo, uo>,<Vo, ul>}'
Clz = {<vl9 ul>’<Yl9 ll2>},
sz = {<V21 ) >,<Vy, u2>}'

Then

(1) <C!, C#> is a system (denoted S!).
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Definition 4.7.9:

(®) Cl'! = C;l (Vi x Vo) U (V Vol
() C§CC§, CfCCq=rs'ChbSE

Let S' = <C!, C}> and §% = <C? C#> be two systems. If
() VICVHLVICVE;
=2 :
@ O =CFl vy vy u v« voy
(3 vClec! 3clectxcl=C?
then S! is subsystem type c of . Notation: S! Cec S2.

Example of subsystem type ec.

Then

Let Let

S? = <C?%, CZ> be a system. Vi = {v,, va},

VE = {vo ¥y, Va}, V4 = {uy, v},

V3 = {ug uy, 13}, Cf = {<v, u >},

C# = {<vo, ug>,<vy, 4>}, C! = {Cg, G},

c? = {c§, Cf, C3), Ce = {<vy, 4, >,<vy, u>},

Cé¢ = {<vo, 1>,<Vg, 41>, <V, US>}, Cl = {<vy u;>,<vy, up>}
cl2 = {<vly ul>’<vlv 02>},
sz = {<V2, ul>,<V2, 02>}.

(1) <C!, C> is a system (denoted S').
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) G = Ol v vey U v « Vo

(¢ Cd=cC}, Cl=C}=S!CecSs%
The Theorems 4.7.10 to 4.7.14 discuss the sufficiency conditions for the
different relationships between systems to hold.
Theorem 4.7.10:

Sufficiency condition for subsystem type a.

If (2) and (3) hold in Definition 4.7.7 then (1) holds.
Proof:
(a):  Show: (2), (3) = V{ C V{.
S! CaS?=yCleC! 3 C2C?=> ClC CZU CE
= Vi =5(C!) = U Cg) C (U (CFUCH)
= (U(CTU Cl) CsU (CTUCH) vh = CieC
= s(U(CIU Cf) = (U CHU s(Ch =Vf
- VICVE
(b):  Show: (2) and (3) = V§C V3.

Similar to (a), with s(C!) and s{(C?) replaced by d(C!') and d(C?

respectively.

Theorem 4.7.11:

Sufficiency condition for subsystem type b.

If (3) holds in Definition 4.7.8 then (1) holds.
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Proof:

Analogous to proof of Theorem 4.7.10 (note that (2) is not needed since
Cp is not part of (3)).

Theorem 4.7.12:

Sufficiency condition for subsystem type c.

If (3) holds in Definition 4.7.9 then (1) holds.
Proof:

Analogous to proof of Theorem 4.7.11.

Theorem 4.7.13:
Let S! = <C!, C¢#> and S%2 = <C?, CE> be two systems.
(1) U S!=S?then S! Cc S2
(2) HS! CeS? then S! Cb S2.
(3) IfS' Cb S?then S! Ca S2.
Proof:

Obvious, follows from definitions of subsystems.
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;
t Theorem 4.7.14:
. Let S! = <C!, C}> and $% = <C?%, C#> be two systems. If
: (1) S'CeS%and
(2) S®CcS! then S! =82
‘.1: Proof:
Show:
. (1 VY =VE, Vg =V,
.- (2: Cf =Cf and
- (3: C'=cCz
: (8): Show: Vll = Vel, vlo = vzo. :‘::.-
From Theorem 4.7.12 it is known that (3) = (1), so only 'E*
(2) and (3) have to be shown. B
g (b):  Show: C} = CF. 3
S'CeS?=C} CCE  S*CeS'=CE CC} §§
= C# = C4 L
: (c):  Show: C! = C2, &5
:. .’b\'{
N VCleC' 3 uniqueC2eC? =xCl =C2 ot
s 2 = 2 : 1 1 2 - ol
5 Similarly Y Cq € C* 3 unique C; €C' = C7 =C, \.\
; —cl=c2. Bt
3 (d): C'f =C%, C' = C?= <C,Cy> = <CAC%>. o
. .
o 3
> R
In the following part, detail examples of the three types of systems: fully (;-\\__
recirculating, partially recirculating, and nonrecirculating are given. ‘ f_
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Ezample 4.7.15: S
B
Consider the following system:
=
\}
‘: vl = {llo, Uy, Uz, 113}, vO = {V‘, Vi Ves vd}v w«:&:
; Cl = {<u0' V.>, <ll|,Vb>, <“2’ Vc>; <l13, vd>}v ,:?"'::‘
CZ = {<u01vc>, <ulrvd>’ <u2’va>t<u3’vb>}, ‘
a0
J Cr = {<ug, vg>, <uy, v, >, <uy, V>, <ug, v >}, '.ft:
. S € S [{“o, ug, Uy, 03} b4 {Va, Vi Ve Vd}], E:'P::
S = <C,,Cp> = <{C,;,Cy}, Cp>. —_—
Find the type of the system. _:
Solution: ;::'-
Based on the Cp, the system is a fully recirculating system. In =
T
particular, the system is isomorphic to a bidirectional ring T
S = <{R4+;,R_,}, identity map >. See Figure 4.3. iy
Ezample 4.7.16: (
Consider the following system: ~"
R
3 vl = {"o,“v‘lz, 03}, vO = {V‘, Vi Ve vd}’ sy
C, = {<ug, V>, <up, vp>, <ug, v .>, <uy v4>}, ~"\
Cp = {<ug, V>, <uy, v4>, <ug,v,>, <u3,vp>}, e
CF = {<ul'vl>v <U2,Vb>, <u37vc>}, X
. Se€S ““09 Uy, Uy, u3} X {V‘, Vb Ve vd}]’ :::::::
. \\_‘.
: S =<C,Cp> = <{Cy, Ca}, CF>"' ‘i;:i.:
Find the type of the system. o2
ey
o
S
- =
¢ \‘.\:
':_.:5. \




Figure 4.3:
Example of a fully recirculating system.
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Solution:

Based on the Cp, the system is a partially recirculating system. In
particular, the system is isomorphic to a reconfigurable pipeline with C,

for algorithm 1 and C, for algorithm 2. See Figure 4.4.

Ezample 4.7.17:

Consider the following system:

Vi = {ug,uy,u3,u3}, Vo = {v,, Vi Ves Va}

Cy = {<ug, v,>, <uy, vp>, <ty v, >, <ug, v4>},
C, = {<uy, v, >, <y, vg>, <Uy, v, >, <uy, vy >},
Cr =0,

S € S [{ug, uy, uz,ug} x {Vy Vi Ver Vall,

§ = <C,Cp> = <{C},Ca}, Cp>.

Find the type of the system.

Solution:

Based on the Cp, the system is a nonrecirculating system. In particular,
the system is isomorphic to a distributed signal processing system. See

Figure 4.5.

Ezample 4.7.18:

Consider a system with three processor/memory pairs, where each
processor has a single physical port. The processors communicate via a
shared bus. The physical port can reconfigured as esther a logical input
or a logical output port.

Construct a model of this system.
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Figure 4.4:
Example of a partially recirculating system.
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Figure 4.5:
Example of a nonrecirculating system.




Solution:

(1): Denote the input and output label sets by Vi = {ug,u,;,u,} and

Vo = {v¢,v1,v2}. Each device d; has its output port connected to

PSPl K

the input label u; and has its input port connected to the output
label v;, i=0,1,2.

>
(2): Based upon the given information, the feedback correspondence is
- Cr = {<w;,v;>]|i=0,1,2}.
(3):  The states of the network are as follows.
A(k) = {<u,v;>, |ik =0,1,2; k# j}.
- Let A = {A(k) | k = 0,1,2}, (set of all 1:1 connections).
X B,j(k) = {<u,vi>,<uv;> | ijk =0,1,2 k # i; ks#j; ij).
;" Let B = {B;;(k) | k = 0,1,2}, (set of all two way broadcasts).
(4):  The model then will be as follows.
C =AUB, Cf = {<ui,vi>| i=0,1,2}, and S = <C,Cp>.
Ezample 4.7.19:
N Consider a system consisting of the Illiac network with N = 64
processors as in Example 4.6.9. The network is used in a fully

recirculating system. The system can be modeled as follows.
- Vi = {y;]j=0,1,..83}, Vo' = {v,|k=0,1,...63}.
Cl = {Col,Cll, 021,03'}

A Let @ denote addition modulo 64 and © subtraction modulo 64.
; CO‘ = {<“jv"j®l>lj = 0,1,...63},

Cy! = {<uv;a>[j =0,1,..63},

Czl = {<uj’vj®8>|j = 0,1,...63},
3 -_;J‘:
. Cs! = {<y;v;g>|j =0,1,..63}. i
L '::‘;.\
\d :wf
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Cr = {<wv;>|i=01,.N-1}.

Then S! = <C!, Clp> describes the system.

Consider the single stage PM2I network with N = 64 processors as in
Example 4.6.9. The network is used in a nonrecirculating system. The
system can be described as follows.

Vi = {y;]j=0,1,..63}, Vo? = {v| k=0,1,...63}.

C% = {Cy,Cy,--Cpi},

C? = {<uj,vj®2.> |s =0,1,..5; j =0,1,...83}.

Cly4y = {<yjviep> [t =0,1,...5; j = 0,1,..63}.

C%h = 0.

Then S? = <C?, C%> describes the system.

What is the relationship between the two systems.
Solution:

From Example 4.6.9 it was found that the Illiac is a subnetwork of type
¢ of PM2I, but it would not be correct to conclude that S! Cc S? since
(C# # C§| (Vi x Vo) U (Vi x Vo‘)') For example, the S! is capable of
executing the interconnection function Ay =
{<u,v,g;>]i =0,1,.N-1} using multiple passes through the
network. S? is not capable of executing the function A; because it is a

nonrecirculating system and therefore not capable of multiple passes

0
¢

3
PR

through the network.

‘;.‘: X
It is important therefore, to consider the feedback connections when -
.':~.
evaluating the relationships between systems. Therefore one must conclude, ;I:::-_
-
that the comparison between systems is not possible and does not make sense if R0

AL

the systems use their respective networks differently.




4.8 Conclusions

In this chapter the following problems were addressed. A general model,

implementation independent, for modeling of topologically arbitrary

interconnection networks was developed. Several important relationships

between networks were rigidly formulated such as equality and subnetworks.
A similarity relationship between networks was defined. The relationship has
the following categories in the order of increasing strictness: (a) networks are
equal, (b) K! is subnetwork of type ¢ of K2, (c) K! is subnetwork of type b of
K2, and (d) none of the above. Note that this is an extension of the previously
used method which categorizes networks into two classes only: isomorphic and

nonisomorphie.

A system and different types of subsystems were defined. A system

informally, consists of a set of devices, an interconnection network and the

method of use of the network by the devices. Three different types of systems

were defined, based upon the method of use of the network and several

relationships between two systems were analyzed. The systems types

recognized are recirculating, nonrecirculating, and partially recirculating. In a
recirculating system each device d; has its logical output port connected to an

input label of the interconnection network and its input port connected to an

output label of the interconnection network. For a fully recirculating system
| Vi| =|Vo|. A partially recirculating system contains some, but not all,
devices each of which has its output port connected to the network input label
and its input port connected to an output label of the network. If

[Vif #|Vo|, than the system cannot be recirculating and can be only

o® " ..‘-. .-. - .I.‘.:‘ A
C Y Tal e
- s” L]

L] 0 N et
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partially recirculating or nonrecirculating, because each device has only one

input port and one output port. In a fully or partially recirculating it is
possible to generate different connection patterns using multiple passes through
the network. In a nonrecirculating system, each device is connected only to the
network input or (exclusive) to a network output. This type of configuration
appears frequently in real time digital signal processing systems. The result of
this configuration is that no new connection patterns can be achieved by
multiple passes, since it is not possible to move the data from the output of the

network back to its input.

A similarity relationship between systems was defined. It is an extension

of classification of networks which takes into the consideration the Cp
properties. The relationship has the following categories in the order of
increasing strictness: (a) systems are equal, (b) S! is subsystem of type ¢ of S,
(c) S! is subsystem of type b of S?, (d) S! is subsystem of type a of S?, and (e}
none of the above. Note that this is an extension of the previously used
method which categorizes systems into two classes only: isomorphic and

nonisomorphic.
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5 QUASIMORPHISM AND EMULATION
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5.1 Introduction

In Chapter 4 a restricted problem of a measure of similarity between two
systems was studied. It was assumed that given a system S! over V|! x Vy!
and S? over V{? x V2, the labeling is such that V! C V# and V§ C V3. If
above does not hold that does not mean that the two systems are dissimilar, it

just could mean that the V| and V labeling is not helpful.

To study the problem of comparison of randomly labeled systems the
concept of quasimorphism of systems was developed [SeS84a]. This concept is
related to the classification of groups in the field of abstract algebra and group
theory. The theory of group classification is based upon the concept of
morphism. Morphism is a measure of similarity of behaviors of group
operations of two groups. This measure ignores the labeling of the elements of
the groups and is concerned strictly with the structure which is determined by

the group operation.

In the domain of parallel computer systems the structure of interest is the
structure of the correspondences of the system's network in the graph
theoretical sense. The quasimorphism of systems allows a method of
comparison of randomly labeled, topologically arbitrary parallel computer
systems. The quasimorphism facilitates the analysis of following problems in

parallel processing:

(a8) system A emulating system B (three different degrees of strictness of

emulation are discussed);

G
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(b) fault tolerance/reliability (achieved by multiple mapping of same
g problem into a system);
* (¢)  partitioning of a system.
s The quasimorphism is analyzed with respect to properties similar to the
properties of reflexivity, symmetry, and transitivity. Several examples of
2 quasimorphism of different types are presented.
B Also in this chapter the problem of emulation of one system by another is
: discussed. Three different types of emulation are considered. Several measures
" of efficiency of emulation are defined and the three types of emulation are
evaluated using these criteria. Two examples of emulation of arbitrary systems
are presented.
i ~
g 6.2 Overview
In Section 5.3 the problems discussed in this chapter are defined. In
Section 5.4, the previous related work is described. In Section 5.5 the basic
" definitions and concepts are given. In Section 5.8 the measure of similarity of
: systems called quasimorphism is developed. In Section 5.7 an application of
_ quasimorphism in emulation of one system’l;y another is researched. In Section
5.8 the conclusions of this chapter are given.
N
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§.3 Problem Statement

It is intuitively obvious that some systems have different topologies than
others, yet not much has been done in the past research to quantify the
differences. In the past, researchers used omly two wide categories, two
networks are isomorphic or two networks are not isomorphic. In this chapter a
refinment of the measure of similarity between two systems is explored. In the
domain of parallel computer systems the structure of interest is the structure of
the correspondences of the system's network in the graph theoretical sense.
The dynamic behavior of the system's reconfigurable network which generate a

set of correspondences as a function of the control strategy, must be taken into

the consideration. Based upon the idea of morphism of groups, the concept of

morphism of parallel computer system topology is developed. This measure is
called quasimorphism and is based upon the concept of morphism of groups in
group theory. It allows a comparison of topologically arbitrary parallel
computer systems. The measure is used in the analysis of emulation of one
system by another. Three different types emulation are defined and their

properties are explored.
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5.4 Previous Work

The following are the three research areas related to the topics explored in
this chapter. The simple (two class only) similarity measure between two
networks was used to show that multi-stage Shuffle-Exchange network is
isomorphic to the n-Cube [Law75]. The emulation definition here is a
generalized form of the definition used in [FiF82] to study quotient networks.
Another work, related to our research developed here, can be found in the
classification of groups in the field of the abstract algebra and group theory
[Han68, Her75]). The theory of group classification is based upon the concept of
morphism. Morphism is a measure of similarity between behaviors of two
groups. This measure ignores the labeling of the elements of the groups and is
concerned strictly with the structure, which is determined by the group

operation.

5.6 Basic Concepts

The analysis of relationships between systems can be described
mathematically as finding correspondences between two sets of systems, or S-
sets. This problem is very complex to handle directly and therefore it will be
broken into two major parts. Note that each system is defined over an

underlying V; x V. A structure called T-element will be defined over the

* %
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same underlying Vj x Vg set. The T-element has less constraints than a

system and therefore is easier analyze.

The first major part, presented in this section, will then be the analysis of
relationships between T-elements. The major part will in turn be broken into
finding relationships between the underlying substructures of the T-elements.

The set of all T-elements over particular V| x Vg is called the T-set.

The second major part, presented in Section 5.8, will consist of analysis of
relationships between two S-sets. Section 5.6 will use the relationships derived
in this section to discuss the relationships between S-sets. As intended some
relationships between two T-sets will be directly applicable to the relationships
between *wo S-sets, and some others will be applicable in somewhat weakened

form.

To resolve the ambiguity in the notation {<u,,u,>}, assume that it will
indicate a set of pairs unless specifically described as a singleton. Definition

5.5.1 identifies the universe of discourse for this section.
Definstion 5.5.1:

Let TV, x Vol & {<{En | m=1.2,.0}, Ep>|E, € P[V; x Vg,
Efp € P[V] x Vg|}. Then T[V; x Vo] is called the T-set over V; x V.

The maps ¢; and ¢o are the basic elements in the discussion of the
relationship between two T-elements. Since the analysis is very complex, some
auxiliary intermediate maps and correspondences are defined in Definitions
5.5.3 to 5.5.5. For a pictorial representat'ion of the genealogy of these maps

and correspondences see Figure 5.1.
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Definition 5.5.2:
Define ¢, -map ¢; and ¢ -map ¢ as follows:
¢1: Vi = &(V}), map; and ¢g : V4 — 6o(V4), map.
Definition 5.5.3:
Let ¢;: V{ = ¢(V{), be a map and ¢¢: V4 — ¢o(V4), be a map.
Define a ¢, o-map from V; x Vo to $/(V;) x ¢o(Vo') to be any
map such that:
$1.0 : Vi x Vo! = ¢(V1') x ¢o(Vo'), ¥ <v,,¥p> € Vi' x Vo',
b0 (<Vavs>) & <hi(v,), $o(ve)>-
Note that ¢;, ¢ is generated by ¢; and ¢, which given ¢ o are clearly

7 7

r
rl
.
(A
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\“J o

unique by definition. Clearly the ¢; ¢ is an onto map.
Definition 5.5.4:
Let 41, o be a ¢; o-map from V! x V! to ¢(V}') x ¢o(Vo!). Define a
p-map from P[V;! x V] to Pl¢(V;') x é0(Vo')] to be any map
such that:
p: PIVi! x Vo'l = Plgy(Vi') x ¢o(Vo')l,
VE = {<v,vp>} € P[V}! x Vi),
WE) = w{<vis>}) 8 (bro (<vavi>)).
Note that p is generated by ¢, o. Clearly the p is an onto map.
Definition 5.5.5:
Let T! = T[V{' x Vo!] and T2 = T{¢(V{') x ¢o(Vo')] be two T-sets.
Let s be a p-map from P[V{! x Vo!] to P[#(V') x ¢0(Vo!')]- Define a
Y-map from T! to T2 to be any map such that:
¢:T!' = T, ¥ <{E, | m=1.2,..n}, Ez> € T,
W<{En | m=12,..0}, Eg>) & <{u(E,) | m=12,..0}, p(Ep)>.




Note that ¢ is generated by p. Clearly the ¢ is an onto map.

Unless otherwise noted for the rest of this chapter this notation will be used:
P! = P[Vi! x Vo'|, P2 = Pl$(V}') x #o(Vo').

C! = C[Vy! x Vo], C* = Clg(Vy) x 60(Vo')l-

K! = K[V{! x V'), K? = Klg(V}") x ¢0(Vo')l-

S' = S[Vi! x Vo], 8* = S[g{(Vf) x o(Vo')l-

T! = T[Vi' x Vo'], T? = Tl$y(Vy') x d0(Vo')l-

The Lemmas and Theorems 5.5.8 to 5.5.10 discuss the heritage of some
properties between the auxiliary maps and correspondences. Alone these
results are not of practical importance, however, the results will be used in
Section 5.7 to discuss the properties of quasimorphism, which is the main goal

of these two sections.

Lemma 5.5.6:
Let ¢; and ¢¢ be the ¢r-map and ¢o-map generating ¢, o- L8 3
" 'hi,:-
¢; and ¢q are 1:1 maps iff ¢y ¢ is 1:1 map. O
ey
Proof: .
RS
AR
Let ¢1,0 : V1! x Vo' — (V') x 40(Vo') be the ¢y, o-map. P
T

Case 1: Show : Y<u,,u,>, <v,v,> € Vi! x V!,

$1.0(<UyUp>) = p,0(<Vavp>) = <uy,u,> = <V, V>,

(1) dr0(<uguy>) = <difu,), dolup)>, dr,0(<Vavp>) =
<éi(Va)ido(ve)>, and 8y, 0(<uyup)> = dp,0( <y >)
= <#(u)do(up)> = <oi{va)ido(ve)> = 4i(u,) = (vy),
doluy) = do(ve)-

(2): (1) and ¢,00 111 =y, = v, u, = v,

- Ju,up> = <VyVp>. '\ ‘




Case 2: Show: YV u,,v, € Vy, #(u,) = #(v,) =* u, = v,;

and Y u,,vy, € Vo, do(up) = do(vy) = up = vy,

(1):

(2):

AL A, ¢, K Ny T,

Proof:

o TLTTD

$1(u,) = ¢1(va), dolup) = do(vy) = <di(u,),do(uy)> =
<¢l(va)1¢0(vb)> - ¢lx0(<ua)ub>) = ¢lx0(<vvvb>)'
¢Ixo I:1 a'nd (l) -t <umub> = <v;)vb>

-, u, =V, U =V

Lemma 5.5.7;

Let ¢, 0 be the ¢; o-map generating p.

®1.0 is 1:1 map iff p is 1:1 map.

Let u : P! — P2 be the yu-map.

Case 1: Show: VEE, € P!, u(E_) = u(E,) = E_, =E,.

(1):

(2):
(2a):

(2b):

Let E,, = {<u,uy;>} and E, = {<v,,v;,>}.

BEgR) = u({<u,u,>}) = {d0(<uyuy>)},

B(E,) = s({<vaVs>}) = {d1,0(<Vy¥p>)} and p(Ey) = p(E,)
= {d1.0(<u,u,>)} = {B1,.0(<V,vp>)}

Show E,, C E,.

<u,up> €EEn = 41,0(<u,,uy>) € p(E,)
= 61,0(<u,0,>) € {Br,0(<u,up>)}.

WEm) = p(E,) and (23) =  do(<u,u>) € pE,
= 3 <v, > €E, 3: dp,0(<u,,u5>) = b,0(<VaVp>).
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(2¢): (2b) and .0 11 = <uluy> = <v;,v{,> - <u;,u;,>
€E, = E_ CE,.

(3):
(4):

Similarly E, C E,,.

(2), 3) = E, =E,

Case 2: Show: ¥V <u,up>, <v,,vp> € Vi! x V!, 4y, 0(<uy,uy>) =

Pl <Vavp>) = <u,u> = <v,vp>.

(1):

(2):

Let EyE, € P, E,, = {<u,u,> | singleton}, E, = {<v,vp> |
singleton}.  ¢1,0(<uu>) = Gpo(<vyvy>) =
{41,0(<u,,uy>) | singleton} = {@,o(<V,,vy>)| singleton} =+
MErp) = #(Ey).

plland(l) = E, =E, = {<uy,u> I singleton} =
{<v,vp> | singleton} = <u,up> = <v,vp>.

Lemma 5.5.8:

Let p be the u-map generating .

# is 1:1 map iff ¢ is 1:1 map.

Proof:

Let ¢ : T! — T2 be the y-map.
Case 1: Show: Y Th, TH € T!, ¢(T") = ¢(T") =+ TN = T,

(1):

Let TV = <{EL' | m=1.2,..p}, E}>
and T = <{EM | n=1,2,..q}, E}M>.
YTY) = Y(<{EL | m=12,..p}, E>) =
<{W(Egx)) | m=1.2,..p}, n(E})>,

YTH) = Y(<{E | n=12,..q}, E}>) =
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(2):

(2a):

(3):

(3a):

(3b):

(3c¢):

(4):
(5):
(8):

<{WEY) | n=12,..q}, HEM)> and

Y(TY) = Y(T) = <{u(EL) | m=12,.p}, u(EH)>

= <{pEM) | n=1.2,..q}, p(EH)>.

(1) = p(EM) = y(EM).

(2) and p 1:1 =+ E} = EM,

Show {ELi | m=1.2,..p} C {E} | n=1,2,..q}.

ELi € (B4 | m=12,.p} = W(EL) €WEL) | m=12,.p}.

(3a), (1) = p(EL) € {p(E}) | n=1.2,..q}
= 3 Eli € (EM | n=1.2,..q} D: p(EL}) = p(E}).

(3b) and p 1:1 = ELI=EL =Eli€{(ElN|n=12,..q}
= (E} | m=12,..p} C {E} | n=12,..q}.

Similarly {E}¥ | n=1,2,..q} C {E}' | m=12,..p}.

(3¢), (4) = {EL'| m=1.2,..p} = {(EM | n=1.2,..q}.

(1), (5) = <{EL'| m=12,.p}, E}> =
<{El}d I n=1’2,.._q}’ EF!'j> — Tl,i — Tl’j.

Case 2: Show: VE,E, € P!, u(E,) = p(E,) =~ E, =E,.

(1):

(2):

Consider {EL | m=1,2,...p} and {E}M | n=1,2,...q}

3: {EL | m=12,..p} = {E}M | n=1.2,..q} and E}}\, E}M € PL.
Consider E,.E, € P! 5: y(E,) = u(E,). Then

<{EY | m=12,.p}, E,> € T[V,' x Vo!] and

<{EM | n=12,..q}, E;> € T[Vi! x Vo], denoted T and T

respectively.

<{WEL)}, BE)> = ¢(TY), <{u(EM)}, p(Ey)> = ¢(T") and
(1) = {s(EL)| m=12,.p} = {uE}) | n=12,.q}.
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(3):  (2) snd (E,) = p(Ey) = (TY) = y(TH).

(4: (@)andy1:1 =Tl =Tl =E =E,.

Theorem 5.5.9:

Let ¢; and ¢ be the grmap and $o-map generating ¢ : T! — T2,

¢ and @ are 1:1 maps iff ¢ is 1:1 map.
Proof:

Follow directly from Lemmas 5.5.6, 5.5.7, and 5.5.8.

Theorem 5.5.10:

Let ¢ : T! — T2 be a ¢-map generated by u. -

p is 1:1 map iff T! and T? are isomorphic T-sets.
Proof:

Let y : P! — P2,

Case 1: Show 9 is 1:1 and onto and ¢ is morphism.

(1): Show ¢ is 1:1.

(1.1): Lemma 5.5.8 and p 1:1 == ¢ is 1:1.

(2): Show o is onto.

(2.1): 9 clearly onto.

(3): Show % is morphism.

(3.1): By definition of ¥ it is a morphism.

Case 2: Show y is 1:1 and onto.
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& s
- R
: (1): Show pis 1:1. %EE
' (1.1): Lemma5.58and ¢ 1:1 = pis L:1. -
K e
(2): Show p is onto. !
hY
p (2.1): p clearly onto. 3
Re D ‘r‘.
: 533
) The following two examples and Theorem 5.5.13 illustrate some properties of '{“
the T-sets. ]
Ezample 5.5.11: E,’,:
et
Consider the structure with the input and output label sets V| = {u,}, ?.:‘\ 3
Vo = {vo1}- R
Describe the T-set over V| x V. ::.x
Solution.:
: (1 TIVix Vo] = {<E, Ep>} = %
) {<{Em| m = 1,2,..n}, Eg> IEmeP[vl x Vo|, Er€P[V] x Vol}. ::-}.;‘
i A
(2): | VixVo| =|Vi| x|Vo| =2 -
‘ (3 |PVix Vo] =22 =4 NS
Y
(4): The number of different E is equal to the number of subsets of o3
’ P[vl X VO] = 2‘. '-::
‘ (5):  The number of different Ef is | P[Vy x V)] . \
8): |TIVix Vol =2*x4=2"=64 P
oy
o_;.-
P
AR
)
o
o
RO
Y S
] .-.\-
\d .l‘\‘.




Ezample 5.5.12:
Consider the structure with the input and output label sets
Vl = {UO,ul}, Vo = {Vo,VI,V2}.
Describe the T-set over V| x V.

Solution:

(1):  T[Vi x Vo] = {<E, Ep>} = {<{Epn|m =1,2,..0}, Eg>
| En€P[Vi x Vo], Er€P[V x V(l}.
(2: |VixVo| =|Vi| x|Vo| =6.
(3): |P[Vix Vol =2° =64
(4): The number of different E is equal to the number of subsets of
P[V; x Vo] =25
(5): The number of different E is | P[Vy x V| .
(6): |T[Vix V]| =28 x64= 270,
Although T[V| x V] includes all possible systems over V| x Vg, there are
many structures included that are not systems. An instance of such structure
is any structure that contains the correspondence { <ug,vo>,<u;,vo>} which
is a destructive correspondence. Because the T-set has less restrictions on valid
structure members, it is easier to work with. Also for the same reasons it will o

contain a superset of the S-set S[V; x V). From above the following theorem N

is derived. R}

B
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Theorem 5.5.13:

Let S[V] x Vo] and T[V; x Vg] be the S-set over Vi x Vo and.T-set
over V| x Vg respectively. Then the cardinality of the T-set is
(2 exp(2 exp(| V1| x | Vo])) x (2 exp(] V1| x | Vo])), which is also an
upper bound on the cardinality of the S-set.

Proof:

(1 |T[Vix Vol| = ( number of different E) x ( number of
different Ep ) = = (2 exp| P[Vy x Vg]|) x (2 exp| Vj x Vo))
= (2 exp(2 exp| Vi x Vo|)) x (2 exp| Vi x Vo|)
= (2 exp(2 ex_p|V|| x | Vo|)) x (2exp(]Vi| x |Vo|))-

(2):  S[Vix Vo] C T[Vi x Vo] = |S[Vy x Vol| | T[Vy x V|

= | T[V; x Vo” is an upper bound of the cardinality of
S[Vi x Vg).

0

The properties of T-sets will be used in the next section to discuss the S-
sets which is our primary goal. The mappings ¢y, ¢¢, 91,0, #, and ¥ will have

their counter part in the domain of S-sets and some properties derived in the

domain of T-sets will carry into the domain of S-sets.

The results of the preceding discussion can be summarized as follows.
Given T! = T[V{' x Vo'| and T2 = T[¢{(V}') x 60(Vo")] two T-sets, where ¢;
is a ¢r-map and @g is a 4o-map. Then the ¢; and ¢ maps uniquely determine
3 $1.0-map d1,0, 1.0 Vi' x Vo! = (Vi') x ¢o(Vo'). The 4y, 0-map 4,0,
then uniquely determines a p-map g, p : P[V{! x Vo!] = P[$(V{)) x éo(Vol)l-

The p-map u, then  uniquely determines a  ¢-map ¢,

WX
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v : TIVi' x Vo!| = T[8(Vi") x d0(Vo')l-

Conversely, given a y-map ¢, it uniquely determines a y-map py. The p-
map g, then uniquely determines a8 ¢y, o-map ¢;,0. The ¢ o-map ¢, o, then
uniquely determines a ¢; and ¢ maps. To summarize, the ¥~map ¢ uniquely
determines ¢; and ¢ maps and ¢; and ¢ maps uniquely determine a y-map
Y.

Another important result of this section is that certain properties of ¢; and
o maps are inherited by the y-map v and vice versa. Specifically proven here
was the important fact that the diagram (4, o) « (d1.0) « (8) «~ (V)
commutes when each map is 1:1 (Figure 5.1.) That means that not only ¢y, 4o

1:1 maps induce a ¢ 1:1, but also if ¥ is 1:1 then it induces ¢, ¢o 1:1 maps.

5.6 Quasimorphism

In this section, based upon the concept of morphism of groups, a new
similarity measure between systems is defined that allows a comparison
between arbitrary (regular and irregular) systems. This measure is called
quasimorphism and is completely specified by two mappings called ¢; and ¢o.
The quasimorphism will facilitate the analysis of following problems in parallel
processing:

(a) system A emulating system B (three different degrees of strictness of

emulation are discussed);
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(b)  fault tolerance/reliability (achieved by multiple mapping of same
problem into a system);
(¢) partitioning of a system.

In this section the relationships among systems will be explored. Since
S[Vi x Vg] C T[Vy x Vg] or the S-set over V] x Vg is a subset of the T-set
over Vi x Vg, it will be shown that most relationships among systems treated
as elements of T-set carry from the T-set domain to the S-set domain, while
other relationships carry over in a somewhat weakened form. All the maps
o1, 90s P1.0/ #, and ¢ from T-sets will have their counterpart in the context of
S-sets. Since the S-set S[V] x V) and the T-set T[V; x V(] are both defined
over the same underlying set V; x Vg the following maps defined based on
VL, V) and V2, V3 are directly applicable for analysis of relationships between
systems.

Definition 5.6.1:

These maps have identical meaning in the context of S-sets as in the
context of T-sets. The maps are:
¢1: Vi = ¢(V), onto.
b0 : V& — $o(V3), onto.
$1.0: Vi' x Vo' = &i(V') x 6o(Vo"), onto.
u: PVi! x Vo!] = Plgy(Vy!) x #0(Vo')], onto.
¥ : TVi! x Vo'| = Tl¢((V1') x #0(Vo')], onto.
The Definitions 5.6.2 and 5.6.3 are intérmediate steps used to define the

quasimorphism formally.
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Definition 5.6.2:

Let p : P! — P2 be a y-map, generated by ¢; and ¢g. Let C! and C2 be
two C-sets. Define a ji-correspondence from C' to C? to be any
correspondence such that:
B:C'—C% i ylgcn
Note that if <CL,C2> € & then f(Cl) = u(C)). Clearly if p is
generated by a ¢y, o then /i is generated by the same ¢y q.

Definition 5.6.3:

Let v : T'—T? be a y-map, generated by ¢1 and ¢, T! =
T[Vi! x Vo!l, T? = Tig(Vy!) x o(Vo!)]- Let S* = S[Vy! x V,!] and S?
= S[e(Vi') x #0(Vo')] be two S-sets. Define a § -correspondence from
S! to S? to be the correspondence such that:
¥:8' = 8% §Qy|ge
Note that if <S",S%i> € ¢ then §(S'%) = ¢(SV). Clearly if ¢ is
generated by a u then 1 is generated by the same pu.
Definition 5.6.4:
Let ¢ : S! — S? be a Y-correspondence. Let <S',S%i> € %. Then ¥ is
called a quasimorphism from SV to S27 .
The Lemmas 5.8.5 to 5.8.7 describe the heritage of properties between the
auxiliary correspondences. These results will be used in the Theorems 5.6.8
and 5.6.9 to describe the heritage of properties between the elementary maps ¢;

and ¢g and the y-correspondence which is the basis of quasimorphism.

.......
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Lemma 5.6.5:

Let i : C! — C? be a ji-correspondence generated by ¢y and ¢y, C! =
CIVi'! x Vo!l, C® = Cl#(Vy') x 80(Vo'). Then 7 is an onto

correspondence.
Proof:
Show V¥ C2iecC? 3 Chi el p(Ccly) =2,
(1): Let C% = {<v,,vy>,..} and CM = {<u,,u,>,...}.
(2 CxecC?® = C2igP2

(3):  (2), Definition 5.5.4 =+ 3 Elie P!, y(E}) = C2i.

(4): Construct CH C EM, Cli € C!, B(CH) = CZi.

(4.1): If EM nondestructive then go to (5) else: 3 <u,up>, <u,up>
€ EM = ¢o(<u,up>), dol<u,u,>) € CH =
<ér{u,)d0(up)>, <<ﬁ|(“¢),¢o(“b)> € Ca.

(4.2): C2i nondestructive ‘-‘ o1(u,) = o4(u,).

Let Cli = E} - {<u,,u,> | singleton}.

(4.3): Let EM = Cli and go to (4.1).

(5 CM =EM CMgC!and f#CH) = C2i.

Lemma 5.6.6:

Let ¢;,.0 be the ¢;,o-map generatiné B.

Y

" I‘ ls

#1.0 is 1:1 map iff 77 is 1:1 correspondence
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Let i : C! — C? be the fi-correspondence.

Case 1: Show: i is 1:1 correspondence.

(1):
(2):

#1,0 1:1 map and Lemma 5.5.7 ==+ pis 1:1 map.

(1) and 7 restriction correspondence of g =+ g is 1:1

correspondence.

Case 2: Show: YV <u,up>, <v,,v;> € Vi! x Vo, d1.0(<u,up>) =

$o(<Vavp>) = <y up> = <v,,vp>.

(1):

(2):

Let C,, C, € C!, C,, = {<u,up> | singleton}, C, = {<v,,v;,>
| singleton}.  dp.o(<u,u,>) = dol<vyve>) =
{$1.0(<u,up>) | singleton} = {¢,0(<V,vy>)] singleton} =
B(Cq) = B(C,)-

B lland (1) = C,=C, = {<u,u,> | singleton} =
{<v,vp> | singleton} =+ <u,up> = <v,vp>.

Lemma 5.6.7:

Let g : P! — P2 be a p-map. Let & be the restriction fi-correspondence

of the u.

p is 1:1 map iff & is 1:1 correspondence.

Proof:

Let i : C! — C? be the f-correspondence.

Case 1: Show: j is 1:1 correspondence.

(1):

# 1:1 map and 7 restriction of 4 =+ g is 1:1 correspondence.
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Case 2: Show p is 1:1 map.
(1): 5 1:1 and Lemma 5.8.6 = ¢ ¢ is 1:1 map.
(2): (1) and Lemma 5.5.7 ==+ g is 1:1 map.

a

The next two theorems relate the properties of ¢; and ¢ and the y-
correspondence. The significance of these properties is described at the end of

this section in details.
Theorem 5.6.8:

Let ¢ : S! — S2 be the y-correspondence, generated by ¢; and ¢g. If ¢;

and ¢¢ are 1:1 maps then ¢ is 1:1 correspondence.

Proof:

(1): Theorem 5.5.9 ==+ % is 1:1 map.
(2): ¢ restriction correspondence of y =+ ¥ is 1:1 correspondence.

o

Theorem 5.6.9:

Let ¢ : S! — S? be the y-correspondence generated by ¢; and ¢,.
If ¢ is 1:1 correspondence then ¢; and ¢ are 1:1 maps.
Proof:

The procedure will be done using contradiction. Let ¢ be 1:1
correspondence and assume that ¢; or ¢q (or both) is (are) not 1:1. For
each case construct SY, Shi g S! = (S1) = (S") € S? and S' # SM

therefore implying ¥ is not 1:1 correspondence which is a contradiction.

Case 1: ¢; not 1:1 map. Let V! = {u,uy..un}, V§ = {vyva..vo},




H1(VH) = {wy,Wa,..w,}, 90(VE) = {x1,X5,-.X,}.

(1):
(2):

(2-1):

(2.2):

(2.3):

(3):

(3.1):
(3.2):

(3.3):

(4):

(5):

(8):

(7):
(8):

(8.1):
(8.1.1):

(8.1.1.1):

¢root 11 = 3 u,uy € VY, 4i(u,) = ¢y(u,).

Construct S* € S! as follows:

CY = (CY | p=12,.m} U {8} = {{<u,v.> | v, € V&)
| v, € V!, p=1,2,..m} U {©.}.

C' = {<u,,v;> | singleton}.

S = < QM Cli>.

Construct S1 € S! as follows:

Cli = oM,

Cpl = {<uy,v,> | singleton}.

Shi = <CUM,Cli>.

(1), (2), and (3) = {u(D.), #(Cp") | p=1,2,..m} = {u(D,),
p(Cl)| p=1,2,..,m}.

#(C#) = p({<u,v,>|singleton}) =
{<¢1(u,),90(v1)>]singleton} = {<¢(uy),do(v4)> |
singleton} = p({<uy,v,> | singleton}) = p(Cg).

(4), (5) = ¥(s") = ¥(s") € T

(2.2), (3.2) = Cl # Cl =a Shizgli,
Show y(S") = y(<CM,CHi>) € 8%

Show < {u(9,), u(Cl) | p=12,..m} >€ K2
Show {u(D.), s(C}) | p=12,..m} C C%

wo.) = 9. € C>

....
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(8.1.1.2):

(8.1.1.3):

(8.1.2):

(8.1.2.1):

(8.1.3):

(8.1.3.1):

(8.1.4):

(8.1.4.1):

(8.1.5):

(8.2):

(8.2.1):

...................
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p(CY) = p{<u,v> | v. € VD = {<éy(uy).80(ve)> |
v. € Vg} € C2

(8.L.11), (8.1.1.2) = {u(D,), s(C}Y)| p=12,..m} C C2
Show #i(V{) = s({u(D.), #(Cp") | p=1,2,..m}).

s({#(@.), u(Cp") | p=1,2,..m}) = s({u(C,}) | p=1,2,...m}) =
s({p({<wpve> | v.€ VO | v, € V) =
s({{<éilu,)dolve)> | v. € V4 | v, € V'}) = {g4(u,)| v, €
Vit = a(Vi).

Show ¢o(V4) = d({u(D.), #(C,") | p=1,2,...m}).

d({p(92.), H(Cp") | p=12,..m}) = d({#(C})| p=1,2,..m}) =
d({p({<upv.> | ve € Vo}) | v, € VI = d({{<e(uy),
$o(ve)> | ve € V§}) | u, € Vi) = {bo(ve) | v € V&) =
$o(V3)-

Show |{u(D.),s(C}) = p=1,2,..m}| > 2.

uo,) = 9O, wCy) # O, = [{uD) wu(Cp) >
p=12,.m}| > 2.

(8.1.1), (8.1.2), (8.1.3), and (8.1.4) = <{p(D.), u(C}") |
p=12,..m}> € K2

Show u(Cd') is a feedback correspondence over
$1(V1') x do(V6)-

”(CP!") = l‘({<umvl> l Singleton}) = {<¢l(ua)v¢0(vl)> l
singleton} = p(C;‘vi) is a feedback correspondence over

$i(Vih) x do(V4).
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(8.3): (8.1), (8.2) =+ y(Sh) = s2k e S2,

(9): (8) = <SY,S%k> € ¢ and <SY S2k> € ¢
(10): (6), (8) =+ ¥(S") = g(sh).
(11): (7), (10) = ¢ not 1:1 =+ contradiction =+ ¢;is 1:1 map.

Case 2: ¢o not 1:1 map. Let V}' = {u,,u,,..u.}, V4 = {v,,v,,...v,},
¢1(V|1) = {wl,wz,...w,}, ¢0(V(|)) = {xl,X2,...x'}.

(1): $omot 1:1 = 3 v,,vy € V{, 6o(va) = do(vs)-

(2): Steps (2) to (11) are same as Case 1 except (2.2) and (3.2).
(2.2): Chi = {<uy,v,> I singleton}.

(3.2): Cf = {<uy,vy> | singleton).

O

The theoretical work presented in this section has the following physical
implications. Given two systems S! and S? with arbitrary vertex descriptions,
if there exist ¢ that is, a ¢1 and ¢ with the proper constraints from S! to S2,
then S! and S? are similar in some sense. If the ¥ quasimorphism is 1:1, then
in fact the systems are isomorphic, that is identical up to the naming of the
vertices. The ¢ = <¢p, 90> will be used in the following problems: (1)
emulation of systems; (2) identifying equivalent systems; and (3) partitioning of
a network.

The following two theorems discuss some basic properties of
quasimorphism ¢. In the study of mathematical relations, three properties are
of utmost importance. The properties are: reflexive, symmetric, and transitive
which, if they hold, say that the relation is an equivalence relation. Although

\-l;-correspondence is not a relation, properties similar to the three above can be
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G : 3 L
: defined. They do have physical significance concerning quasimorphism between '
systems as described in the end of this section. ?;_
Theorem 5.6.10:
Let S!, S? and S® be three systems. The quasimorphism has the c:.‘;‘::.»;__’
’ following properties. s
(1) 3 ¥ such that § (S") = S ¥
: (2) 7' (S") = S+ 3 7% such that ¥? (S?) = S\ M
\ (3 ¥'(s) = FPad P =8 =3 F(©) = 5
: Proof: :E:'
(1):  Need to show 3 ¢ such that ¢ (S') = S!. Let ¥ = <ép00>
be such that ¢;,¢¢ are identity maps. The rest is straightforward. ’.
(2 Must show ' (S') = S2 = 3 ¥ such that ¥? (59 = S 25
Construct an example of S! and S? such that <S',S%2> € ¢ and RS
there does not exist * = ¥°(S?) = SL Sﬁ:
i
Let Let 3
st = <CLGE>, §? = <C? C>, R
Vi = {vyveh V8 = {usug}, VP = {w.}, V§ = {x.xg},
C} = {<vyuc>, <vpua>)  CF = {<wx>), £
ct = (c4, i, | ¢ = (c}ch, g
Cs = {<vpug>}, | C§ = {<wpX.>}, :\_.\
Cl = {<Vu>,<v,u4>)  Cf = {<wx. >, <wxg>}. :13
Then ¥ = <¢60> With 4i(v,) = w,, $(vs) = w,, dolu.) = xg, 2

do(ug) = x. is a quasimorphism v, ¥ (S') = S!. but there does




...........

KR,

[ f‘.';v
not exist a quasimorphism from S to S!. o

(3): Must show: $' (S!) = %, y2(S?) = S® = 3§, $(SY) = ?E’ 3
! S3. This will be shown by exhibiting quasimorphism ¥, ¥ (S!) ::
= s ’.:..

l,;f

(1 LetS' = <C\C}>; §? = <C%CE>; and S* = <C3CE> i

be three systems. E;é
2: $'(sY) =82 -

= 3¢V} = 9}(V]), and 3 9§ : V§ — s§(VY). 2

(B (2) =3 dlo: Vi x V& = ¢}(V]) x #4(V3) and -

3 ' : PV} x V§] = Plef(V{) x ¢4(VI)]. e

\‘:{‘:

4: ¥*(@Y) =8 Yo

= 3 ¢F: ¢{(V) — #f(&/(V}), and Sl
3 08 : 64(V8) — 43(48(V)), | '

(6): (9 =3 ¢¢o: #{(V]) x $4(VY) S

— SESVE)) x S3(48(VS)), and i
3 u?: Plo(V]) x ¢4(VS)] x_i‘
~ PGSV x S3(8(VE. I{

e

(8): Define: ¢; = 6f 0 ¢ : Vi — S (VH)). (“o” is ~
composition of maps) \}_

Clearly: ¢ is map. I:-E::::

(7):  Define: g5 = ¢ 0 64 : V4 — #3(s4(V4)). e
Clearly: ¢ is map. EE:E

(8):  Define: ¢1,0 = ¢fo 0 #ko : SH(V) x #4(VY) RS

— #(#1 (V1)) x $3(88(VE)). A
R

~ BN
LI




Clearly: ¢,o is map. o
(9): Define: p = p? 0 u' : Plg}(V}) x 84(VY)] —
— Plgf(# (V1)) x 63(64(Vo), o
Clearly: p is map.
(10): Claim: ¥ = <é;,90> is quasimorphism, ¢ (S') = S3. N
) (11): Show: p(C{) = C&.
' ¥ (s = s = al(ch =G
V(%) = 88 = u¥CH =Ch
" - p3(p!(C)) = C} = (u? o u")(CP) = u(C{}) = CR
| (12): Show: VClecC! 3 C: €C¥a:p(Cl) = C:.

PPN
4 4y &

£,
»

-“'o < & 7,
3

(g

NI

(3 9'(s) = ¢?
—\yClecC 3C2eC?>:pul(Cl) =C2.

‘.’&’ " ""’.- *
T o

L".l

(b): ¥*(s?) = s )

~YC2eC? 3CIeCP>:%C) =Cl e

: (¢ (a)(b) = VCLeC' 3CYeC? A
3: ¥ (u(Ch) = p¥CI). o

(13): (11) and (12) = P = <¢y,Po> is quasimorphism ¢ (S')

- 83 &k Jl'!

Theorem 5.6.11: - e

Let S!, S2, and S? be three systems. The quasimorphism 1:1 has the Ot
following properties. F:e

(1) 3 ¢, 1:1 such that ¢ (S!) = S\




.
89 "1'!‘
i '
: (2) 9'(S"Y) = S% 11 =+ 3 ¥? 1:1 such that ¥*(S?) = S e
(3 ¥'(sY) = 8% Lland V(S = S% k1 =311, ¥
h () = s NS
Proof: -
- - - v
(1: Need to show 3 ¥ such that § (S') = S'. Let ¥ = <¢1,60> 3
- 33
i be such that ¢;,é¢ are identity maps. The rest is straightforward. :“'-.
| (2): Must show ¢! (S!) = S? =+ 3 y? such that ¢* (S?) = S __
(1) <SLS?> €y, i1 = I ¢ : VI — (V) 11 and ~.~
_' 3 ¢ : V§ — 9o(VY), L:L. PR
(2: (1) = I g2: (V) = VA 1L, 6f = ¢, and -l
: 3 ¢3: do(V8) = V4, 111, 43 = 45" %
‘ (3 () = 36%0:  #(Vi') x #o(Vo') = Vi x Vo!, L,
el
E ~— #f.0 = dilo- ,:E
(] o
3 (4 (3) = 3 p?: Plg(Vi!) x 6o(Vo')] = P[Vi! x Vol], L1, :37-2;
* p? =y, .
The rest is straightforward. :;i?-
-.::,“.
(3):  The proof is similar to the proof of (3) of Theorem 5.6.10 except ‘:E.,
the maps are 1:1.
o
. X
Following are two examples of quasimorphism between systems, one where the _
e
quasimorphism is not 1:1 and the other where it is 1:1. ::ﬁ:';'
2o
o
X
b
- G
oA,
'. ‘:.




Ezample 5.6.12:

Consider the following two systems S' = <Ci, Ci>, §i = <Cj, Ci>
see Figure 5.2.

st = <Ci, C}>, Si = <Ci, Ci>,

Vi = {uy, uy, uy}, Vi = {w,, w,},

Vb = {vy, va, v3}, Vh = {xy, X2, X3},

Ci =0, Cl =0,

C' = {C}, C3, Cj}, ¢ = {Cj, Cj, Cj},

Ci = {<uy, v{>,<uy, v>}, C{ = {<wy, x;>,<wy, x>},
Ci = {<uy, v3>,<uy, v>}, Cj = {<Wg, x>,< Wy, X35>},
C} = {<uy, v1>,<uy v>}. Cf = {<wy, x>, <wy, x>}
Find a quasimorphism from S to Si.

Solution:

Let ¥ = <¢y, $0>, Siu)=w;, S{u)=ws, Sy{us)=wy, do(vi)=xy,
Po(v2) =Xz, do(v3)=xs.

¥(S) = <{E(Cl) | m=1,2,3}, B(Ci)> =$. Therefore ¢ is a
quasimorphism. Since ¢j(uy) = #(uj), therefore ¥ is not 1:1.

Ezample 5.6.13:

Consider the following two systems S' = <Ci, Ci>, §i = <Ci, Ci>

see Figure 5.3.
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Systems S

Figure 5.2

<C}, Ci>, Si-= <Ci, C}> for Example 5.6.12.
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Figure 5.3: .
Systems St = <Ci, Cb>, Si_ = <C}, C4> for Example 5.8.13.
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=l i

st = <Ci, C}>,

Vi = {uy, ug, ug},

Vb = {vy, va 3},

G} =0,

C' = {C}, Gz Ci, C}},

Ci = {<uy, vi>,<uy, v2>},
Ci = {<uy, vo>,<uy, v;>},
Cj = {<uy, v3>},

Cl = {<u,, v3>,<u;, vo>}.

Find a quasimorphism from Si to Si.

Solution:

Let ¢ = <4, 60>, oi(u))=wq, Sug)=wy, oi(ug)=ws, @o(vy)=xs,

do(va)=xy, dolv3)=xs.

¥(S) = <{@(Cl) | m=1,23,4},

quasimorphism. Since ¢i(u,) # ¢\(uy), do(v,) # do(Vs), therefore ¢ is

1:1.

The genealogy of maps and correspondences discussed in this and

LGS
N
S = <Cj, Cj>, ‘}

. 2%
Vf = {wh W, Ws}' :C("
Vi = {xy, Xo, X3}, ‘

Q'S {x1, x2, X3} .55‘
Ct =9, w
ci = {cj, ¢}, ci, cj, R
Cf = {<w, x,>,<wg, X3}, o
C) = {<wy, x.>,<wy, x>}, -.-c:.

v o,
2
7,
(]

e 0

4]
»

Cj = {<ws, x3>},

A
v
iy
L
'..l

5

Ci = {<wlv x3>,<w31 xl>}-

Y '}

i)

A ."..‘;,."‘

h
.
»
b

K
-’

-
v

»
»

B(CE)> =S. Therefore ¢ is a

preceding sections can be seen in the diagram in Figure 5.1. The diagram
shows how the maps and correspondences defined in this and previous sections i‘
e
._.\‘\
are related. The line with arrow represents that the map (correspondence) at e

the head of the arrow was defined by using the correspondence at the tail of

the arrow. For example, the u-map pg was used to define the fi-correspondence :‘E
B. In Section 5.5 the left side and the root of the tree were explored. Ia this .Ei

section the right side of the tree was explored. It was shown that ¢rmap ¢;
and ¢o-map ¢¢ uniquely determine a ¢; o-map ¢;,o. The é; o-map ¢; o then ,

..................

_______
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uniquely determines a p-map p. The p-map p uniquely determines a -
correspondence i and the y~map ¢. The y~map ¢ uniquely determines a -

: correspondence ¥. Therefore the ¢-map ¢; and go-map @, uniquely determine
a J-correspondence ¥. Similarly the reverse of the procedure can be used to
show that y-correspondence ¥ uniquely determines a ¢r-map ¢; and @o-map
®o-

Several properties are also inherited from some maps by others. In
particular, if ¢rmap ¢; and ¢g-map ¢¢ are both 1:1 then y-correspondence ¢ is
also 1:1 correspondence. It is more surprising though that the converse hold as
well, that is if y-correspondence ¢ is 1:1 correspondence, then ¢rmap ¢; and

o-map @ are both 1:1 maps.

5.7 Emulation of Systems

In this chapter we apply some of the theoretical developments from the
previous sections. The emulation will be defined and can be viewed as an
application of quasimorphism. The definition of emulation here is similar to
the one used in [FiF82] in analysis of quotient networks. Examples of arbitrary

system emulation are given in details in the end of the section.
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Definstion 5.7.1:
Let S'€S[V)! x Vo!] and S € S[Vj? x Vo7 be two systems. The
emulation of §' € S[Vi! x Vo] by S} € S[Vi? x Vo?| can be viewed as a
two step procedure
N (1) Find a relabeling and reduction ( that preserves the basic structure)
of S' using quasimorphism.
(2) Find the subsystem type of the quasimorphism of St ¥(SY) in S
Definition 5.7.2:
Let S' € S[V,! x V'] and Si € S[V;? x V7] be two systems.
It %(S') C a S, then it is called emulation type a.
It %(SY) C b S), then it is called emulation type b.
It %(S') C ¢ S, then it is called emulation type c.
Physical implications: Let S' = <C!, C}> = <{C} | m=12,.p}, Cf> and
§? = <C% CE> =<{CI| n=12,q},C&> be two systems. If
#(S') € 2 S? then the system S? can emulate system S!' as follows. The
movement of the data is accomplished (a) by wusing the network

{CEI n=1,2,..q} correspondences, and (b) by using the feedback or internal

Cla’ i Wit DAL

connection of the device connected to both input and output of the network.
This type of emulation always exists if the S% system is partially or fully
recirculating. If the system S2 is partially or fully recirculating then
3 <v,,v,> € CA. Then using maps ¢i(v;) = v,, Vv, E V], do(vj) =v,, V
v; € V§ will satisfy the necessary conditions for an emulation of the type a.

This however will result in a very poor computational load balance. Great

-

. improvement in the computational load balancing optimality will result if the

quasimorphism is 1:1. Then each device in ¥(S!) (the image of S! under ¥) will

................................................
...................................
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have same amount of computation (data) as the corresponding device in S!.
Physical implication: If $(S') C b S? then the system S? can emulate system
S!. The movement of the data is accomplished by using the network
correspondences {C2 | n=1,2,..q}. This type of emulation is harder to achieve
than the type a since the C,? contribution cannot be used to move the data.
Again, as in type a, the load balancing optimality will greatly increase if the
quasimorphism is 1:1. If the quasimorphism is 1:1 then the load balancing as
well as utilization in the image of S! in S2 will be identical to that in S.
Physical implications: Emulation type ¢. Since it is required in type b that
vClecCl 3C2 = Cl C C?there may be some side effects caused by CZ
emulating the correspondence Cl. Moreover, these uncontrolled side effects
will not allow partitions to operate independently. That is, connections that
are part of C2, but not part of C1, may be established when CZ is used to
emulate Cl. This may or may not be a problem. To analyze this potential
problem, the type ¢ was created. With a type ¢ emulation, when the system S?
emulates system S!, the movement of the data is accomplished by a subset of
C?. The difference between type b and type ¢ is that in type ¢, Y CJ € C!
3 C2e C?® xCl =C2 This requirement will eliminate the side effects that
type b has. More importantly it means that ¥(S!) is actually an autonomous
subsystem of S2. The autonomous property will be exploited further in later

chapters studying partitionability.

The following two examples illustrate two types of emulation where in the

first the quasimorphism is not 1:1 and the second has quasimorphism 1:1.
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R
: Ezxample 5.7.3:
b - | Consider the following two systems S' = <Ci, Ci>, sk = <C¥k, Cl,'-‘>
see Figure 5.2 for S' and Figure 5.4 for S.
3 s = <Ci, Cj>,
é Vi = {uy, ug, w3}, Vb = {vy, v, 3},
| Ci =0, C' = {C}, C}, Cj),
v

Ci = {<“l’ v >, <Yy, V2>}, Czl = {<“37 ve>,<Ug, V3>}y
: C:; = {<ul’ Vl>,<llz, V2>}.
sk = <Ck, Ck>,

N VE = {wy, wy, w3}, V§ = {xy, X5, X3},
3 C¥ = 0, Ck = {Ck, C¥, C¥,
: Cf = {<wy, X1>,<wy, X2>}, OF = {<wy, 1,>,<wy, X35>},
o4 e Ck = {<wy, X1>,<Wy, X2, <wz W35}
v Find an emulation from S' to Sk.
Solution:

- Let ¢ = <¢;, 60>, llu)=w), ifuz)=wy, ilug)=wy, @o(vy)=x,
. Po(va)=x3, do(v3)=x3, as in Example 5.6.12.

(S = <{E(CL) | m=1,2,3}, B(CE)> =S (see Figure 5.4 for Si).
Therefore ¢ is a quasimorphism from S' to Si. Since ¢;(uy) = ¢;(uy),

therefore ¢ is not 1:1. .
- Since C;i=C,¥, C,i=Cp¥, Ca"Ccak‘therefore ¥(S') C b Sk, and this is o
'E emulation of type b, not 1:1.
it
z
.~ AR




] o Figure 5.4:
Systems §) = <CJ, C>, sk = <C¥, Ct> for Example 5.7.3.
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Ezample 5.7.4:
Consider the following two systems S' = <Ci, C}>, S* = <C¥, Cf>
:. see Figure 5.3 for S' and Figure 5.5 for S&.
;- S = <Ci, Ci>,
Vi = {uy, ug, w3}, V = {vy, va, v3},
N Ci =0, C = (C}, ¢}, Cj, Ci,
J Ci = {<uy, v;>,<uy, v>},
: Cji = {<uy, va>,<uy, v >}, C5 = {<u, v3> ).
‘ C} = {<uy, v3>,<ug, v,>}.
7 sk = <Ck, C¥>,
3 VE = {wy, wa, w3, W}, VE = {xy, Xg, X3, X4},
C# = @, Ck = {Cf, C§, C¥},
e CE = {<wy, X,>,<wy, Xp> , <y, X3>,<W,, x>},
;‘ C{ = (<KW, X9, < Wy, X1}, <Wg, x>, <wy, x3>},
) Cs = {<wy, X3>,<Wy, X> , <W3, X1>,<Wy, x>}
Find an emulation from S' to Sk.
Solution:
. Let ¢ = <¢y 60>, ¢flu))=wy, o(ug)=w), ¢i{ug)=wy, Bo(v,)=x,,
'.E d0(va)=xy, do(vs)=x; as in Example 5.6.13:
3, ¥(S) = <{@(Cl) | m=1,2,3,4}, B(CE)> =Si (see Figure 5.5 for Si).
Therefore ¢ is a quasimorphism frorﬁ Si to SI.
: Since Vu,u, € Vi #i(u) # o) and Vv €VE 4i(v,) # gi(vy)

therefore ¢ is 1:1. Since CJCC¥, CHCC,%, CjiCCk, and CJiCCyk
therefore $(S) C b S¥, and this is emulation of type b, 1:1.

d.
4
/
«
»
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' o
3 R
) ) _ Figure 5.5: R

Systems S} = <Cl, Ci>, Sk = <Ck, CE> for Example 5.7.4.
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Suppose there is a quasimorphism ' such that ¢'(S!) =S? and
9'(S%) = S? and ¢' is 1:1. First, this means that S' =S® since ¢' is L:l.
Second, and more important from an engineering point of view, the 1:1
guarantees an efficient emulation of S! by S2. That is, if all V; were connected
to processors and Vg to memories, the emulation would be such that the
processing work of one processor in S! would be exactly equal to the processing
work of one processor in the image of S! in S2. Also, the amount of data stored
in a single memory unit in S! would be exactly equal to the amount of data
stored in memory unit in the image of S! in S2. In other words, the mapping is
regular in some sense. Analogously, the load balancing and utilization in the
image of S! in S? will be identical to that in S'. The quasimorphism can be
used to map multiple copies of system S! into S2, where p'(S!) N ¥*(S!) = D is
a necessary additional constraint. This will allow tandem cross checking of

partial results of a computation and therefore can be used as an error detection

mechanism for fault tolerance.
In order to evaluate the efficiency and uniformity of the emulation the
following criteria will be used.

Definition 5.7.5:

Let S € S[V{! x V,!] and S% € S[V{® x Vo be two systems. Let ¢
be a quasimorphism such that $(S') C(a,b,c) S**. Define:

input node factor: inf & max{| ¢; '(u,) | >y, € ¢(V{)}.

output node factor: onf & max{| #o"u,) | = u, € ¢o(V§)}.

side effect: s & yes if 3 ClieCli x Y C2i pHCM) C C2i.

For the detail meaning of these factors see the conclusion of this chapter.
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Let SY € S[V{! x Vo!] and S% € S[Vi? x Vo?] be two systems. Let ¢ be
a quasimorphism such that (S C(a,b,c) S** or ¥(S") = 82k, The

comparison of efficiency of different types of emulation is shown in Table 5.1.

5.8 Conclusions

In this chapter several problems have been discussed. The problem of
comparison of topologically arbitrary systems was rigidly formulated and
analyzed using a new concept called quasimorphism. Each system is defined
over an underlying set Vi x Vo. The set of all systems over the underlying
over the underlying V| x Vg is called the S-set over V; x V. Then the the
problem of comparison of systems can be formulated as finding relationships
between two S-sets. The problem is very complex and therefore was broken
down into two major steps. First the T-set over V{ x V, was defined. T-set
has less constraints than the S-set over the same V| x Vg and therefore it is
easier to analyze relationships between T-sets than between S-sets. Auxiliary
maps ¢y, 4o, 1.0, 4, and ¢ were defined and it was shown that ¢rmap ¢; and
¢o-map ¢@o uniquely determine y-map y. Conversely, y-map ¢ uniquely
determines ¢rmap ¢; and §o-map ¢. lﬁformally, Y-map ¢ is measure of
similarity between T-elements. It was shown that certain properties of ¢r-map
¢; and §o-map ¢q are inherited by ¢-map ¢. In particular if ¢rmap ¢; and
do-map ¢ are 1:1 maps then so is {-map ¢. Conversely if y-map ¢ is 1:1
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Table 5.1:
Comparison of efficiency of different types of emulation.

A. Yot 1:1; St g2k

Ca,notb
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then also ¢rmap ¢; and ¢o-map ¢ are 1:1 maps.

In the next section, the relationships between two S-sets were studied.
Using the maps ¢y, éo, 41,0, # and ¢ in the T-set domain, new
correspondences 7§ and ¥ were defined in the S-set domain. Informally, ¥ is a
measure of similarity between two S-sets. As expected and intended, some
behavior of ¢y, g, ¢1,0, #, 8nd t was inherited by f-correspondence i and V-
correspondence ¥. For example if érmap ¢;, and ¢o-map ¢ are 1:1 maps

then y-correspondence ¥ is 1:1 correspondence. Conversely if E-correspondence

A

¢ is 1:1 then érmap ¢; and ¢o-map ¢o are 1:1 maps. Properties of -

3 correspondence ¥ similar to the reflexive, symmetric, and transitive properties
of relations were discussed, in particular the following were shown.
Let S!, S, and S2 be three systems. The quasimorphism has the follo;ning
properties.
(1) 3 ¥ such that  (S') = S
(2) ¢'(SY) = S? = 3 ¢ such that ¢* (S?) = S.
(3 ¢'(S") = S?and ¥*(SH) =S* = 3y, y(s) =St
Let S!, S%, and S® be three systems. The quasimorphism 1:1 has the
following properties.
(1) 3 ¢, 1:1 such that % (S') = S.
(2) 9'(SY) = S% 1:1 =+ 3 % 1:1such that y*(S?) = SL
; 3 ¢'(sY) = 8% nrland ¢*(SH).= S 11 = 3G 11, Y(S)
= s’
: The quasimorphism measure provides the necessary theoretical background
' for studying the following problems of parallel processing.
IO A B L e e e T A T e e e e e e ST T e PN e
e N B O G S A A BN N



(a) Emulation of system S! by system S2.

(b)  Fault tolerance method achieved by a concurrent execution of multiple

copies of the same problem.
(¢)  Partitioning of a system.

Three types of emulation were defined based upon the subsystem
relationship between the image of the emulated system and the host system.
Several measures of efficiency of the emulation based upon the preservation of
the computational loading and other factors were defined and the emulation
types were evaluated on that basis. Suppose the system S! consists of
processors connected to the V{! and memory units connected to V§. If the
input node factor = 1, than the amount of computation performed in the host
system node #(u,) € V¢ is the same as the amount of computation performed
in the node u, € V{!. If inf > 1, that means 3 u,u, € V{! and w, € V{ such
that ¢y (u,) = w, and ¢(u,) = w,. That implies the processor connected to w,
in ¥(S') must perform the computation of the processors connected to the
nodes u, and u, in S!. If the output node factor = 1, than the amount of data
stored in the memory unit connected to ¢g(v,) € V3 is the same as in the
memory unit connected to v, € V§ in S!. If onf > 1, than 3 v,,v, € V§ and
X, € V3 such that @o(v,) = do(vy) = X,. That implies the memory unit
connected to x, in ¥(S'), must contain the data contained in both memory
units connected to v, and v, in S'. Side effects exist if the correspondence
C2i € C? that is used to emulate the- correspondence Cli g C! has the
property #(Cl¥) C C2i. This causes C2i to move some additional data that

the Cli did not move.
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6 SINGLE STAGE NETWORKS - ANALYSIS
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6.1 Introduction

In this chapter, the horizontal composition and decomposition of single
stage interconnection networks will be analyzed [SeS85]. The general model of

interconnection networks, defined in earlier, will be used in the analysis.

Using the horizontal composition/decomposition the partitionability
property of interconnection networks will be defined. Informally the
partitionability property means that the network can be divided into several
parts each of which has certain degree of independence. The type of
partitionability analyzed in this chapter uses all the states for consideration of

partitionability and has three subtypes.
An algorithm is developed which will output one of the following:
(1)  The network is not partitionable.

(2) The network is partitionable into subnetworks with common control
signals and the combination of the of the subnetworks will exactly

generate all interconnection patterns of the original network.

(3) The network is partitionable into subnetworks with separate control
signals and the combination of the subnetworks will exactly generate all

interconnection patterns of the original network.

(4)  The network is partitionable into subnetworks with separate control
signals and the combination of the subnetworks will generate a superset

of interconnection patterns of the original network.

The algorithm is network topology independent and can be used to

analyze topologically regular and irregular single stage networks.
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The partitionability property of interconnection networks for parallel

computer systems is important for the following reasons.

(1)  If the network is partitionable than the system can on demand easily
allocate only a subset of total resources. This can be used in several

different ways as shown below.

(a) A user can use only a small part of the machine for program
development.

(b) In a multiple user environment the partitioning provides a
natural protection among users.

(¢) Im a multitasking environment the partitioning provides a

protection among independent tasks.

(2)  If the network is partitionable the fault tolerance of the system increases

as follows.

(a) A method of graceful degradation is possible by separating the

faulty section from the correctly operating ones.

(b) If in addition to being a partitionable network, the sections are
isomorphic, then an increase of reliability may be realized by S
multiple mappings of the same task onto the multiple sections

and tandem cross checking of partial results. S

...........................

(¢) It is possible to construct a fault tolerant network using a _-Zh-
partitionable network as a core. v

(3)  If the network is partitionable, then there is an efficient implementation __
in terms of hardware and control. The network can be implemented as .:;Zj'.'.
NS

a set of network components each with its own set of inputs and
outputs. The data path layout and under some conditions also the :'.EQQTE:
R

N

..’...']

-

. -
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controls layout is simplified on VLSI substrate or on a printed circuit

board (PCB).

8.2 Overview

In Section 6.3 the problem discussed in this chapter is informally defined.
In Section 6.4 the previous work on partitionability is briefly described. In
Section 6.5 some basic concepts are defined. In Section 6.6 the horizontal
composition and decomposition of single stage interconnection networks are
formally defined and analyzed. In Section 6.7 an algorithm is presented and
proven for correctness that accepts as an input a topologically arbitrary
interconnection network and outputs one of following four outcomes. The
network is not partitionable, or the network is partitionable in one of the three

types.

6.3 Problem Statement

In this section the problem of partitionability of single stage
interconnection networks will be analyzed [SeS85]. There is a large amount of

work done on this subject for certain class of interconnection networks, namely
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topologically regular networks [Gok76, GoL73, Sie80, Upp81]. The work here
is different in two respects from the previous studies. First, the topology under
discussion here is completely unrestricted and the results apply to the regular
as well as irregular interconnection networks. Second, the set of states used in
the consideration of partitionability here includes all the states of the networks,
whereas the previous work used only a subset of the states (this will be
discussed more in the future chapters.) In our work the partitionability will be
defined and three different types of partitionability will be recognized. Then an
algorithm which accepts as an input a topologically arbitrary interconnection
network and outputs one of the four possible outputs will be presented. The
g outputs are as follows: (a) the network is not partitionable, (b) the network is
' partitionable into two networks with dependent controls, (c) the network is

partitionable into two networks with independent controls where the

combination produces the original network exactly, and (d) the network is
partitionable into two networks with independent controls where the

combination produces a superset of states of the original network.

6.4 Previous Work

The partitionability of topologically regular network has been studied
extensively in the literature. It was shown in [Sie80] that single stage and

multistage Cube networks are partitionable, as are PM2] and ADM. It was

also shown in [Sie80] that the Illiac and Shuffle-Exchange are not partitionable.




The analysis in [Sie80] was based upon the cycle structure of the permutations
admissible by the network under analysis. In [Upp81] the partitionability of
regular SW banyans was discussed, and in {Gok768, GoL73] the partitionability
of banyans networks was shown. All these networks are topologically regular
and partitionability of arbitrary networks was not studied in the literature.
The partitionability discussed in this chapter is different from the type
discussed in the previous work in two respects: it considers the participation of
all the states of the network, where the type studied previously considered only
a subset of the states of the network, and it is applicable to networks with

arbitrary, regular and irregular topology.

8.6 Basic Concepts

In this section the basic concepts are presented. These definition can be

found in a text on graph theory [BoM76] and are included here for

completeness only.

Definition 6.5.1:

Let V be a set of labels. Let EC V x V, then G = <V,E> is called a
graph.
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6.6 Composition and Decomposition of Networks

This section describes a ‘‘horizontal” composition and decomposition of
single stage networks. The discussion here is presented for the composition of
two networks into one and the decomposition of one network into two.
However, it can be generalized into the composition of n networks into one and
decomposition of one network into n, n > 2. What is meant by the horszontal

composition of two networks K! and K? is that V} NVZ =0 and

V4 N V3 = @. Similarly, the horizontal decomposition of K into two networks
K! and K? will result in VNV =0 and VN V3 = 0. Two types of
composition (decomposition) are described. One, the o-composition

(decomposstion) corresponds to the physical situation where the controls of the

individual subnetworks of the network are independent. The other type is the
r-composition (decomposition), which corresponds to the physical situation

where the controls of the individual subnetworks of the network are dependent

DR
upon one another. R
S LS
Nl
This section conceptually consists of two parts. In part one the definition ;::::::-
of the o-composition is given and some of its basic properties are presented. In ’
part two the definition of the rcomposition is given and its properties are o
described. £
TR
Definition 6.6.1: e
el
Let K'€ K[VffxV{y, K!'=<C'>, and K2e K[V x V@), R
A
K2 = <C®>, be two networks such that: (ViU V4§ N :%I‘ ,
(VZ U V3) = 0. Define g-map as follows: K! ¢ K2 = <C'> o <C?>
SN
~ R
BN
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& <{cluc?| clect, ctecy>.
This describes the composition of two networks where the controls of the two

networks are independent from one another. The Lemmas and Theorems 6.6.2

to 6.6.4 discuss the properties of the o-map composition of networks.

Lemma 6.6.2:
Let K! € K[V{! x V{§] and K2 € K[V} x V§] be two networks such that:
VU VHIN (VPUVE =0. Then K!' 0 K? = K20 K.

Proof:
Obvious from the definition of o-map and commutativity property of set

union.

Theorem 6.6.3:
Let K'eK[V{ x V}], K! = <C!'>, and K2eK[V{ x V§], K? = <C?>,
‘be two networks such that: (VU VSN (VEUVE) = 0. Then
K'eK?€ K|V U V) x (V§ U V).
Proof:
(1): Let {C!UC?| CleC!, C?eC? =C3 let C3 €C> Let
Cl(ViU VP x (ViU V3 =c.
(2): Show C3 C C°.
(2.1  Clearly C3€P[ViUVE) xa (VAU VE)]. Must show
nondestructivity.

(2.1.1):  <u,u,>, <u,ug> €C3 = three cases.
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i

(2.1.2): <uy,up>, <u,u4> € C:, C,} €C! = up, # ug. ::'.:::.

| (2.1.3):  <u,up>, <u,uy> €EC? C2eC? =y, #u, 3
4 (2.1.4)  <uu,>€C), CleC and <u,u>€C? CleCl };'é:
- VIUVHN  (VFUVE) = o =Vinv3 5
) =0 =y, #u, _
(2.15): (2.1.2), (2.1.3), and (2.14) =+ C3e€C* = C*C C".

(3): Show s(C%) = V{ U V3. : :

31: sCY) = s({clUcC? | clec!, clec?}) =
{s(Co)Us(CH| CpecCl, CtecC? ={s(CY|Crec U :.';.

{s(C?)| C?eC? =s(C)Us(CH) =V U VS p ;“

(4): Show d(C%) = V4 U V3. it

- (4.1): Similar to (3.1) except replace the s set by the d set. R
5 — (5): Show |C?| > 2.

(5.1} |CY =[{cfuct=cl ec, ctecy. \,

(5.2): CoUCGCE# ClUCEp#sorr#t = all C3 are distinct.

(5.3):  (5.1),(5.2) = |CY =|CY|c I >2-2=4

o
Lemma 6.6.4:

Let K' €KV} x V], K2€ K[VZ x V3], and K®€ K[V} x V3] be o

three networks such that (VR U V) N (VP U V8) =0,a #b,ab = -

" %

1,2,3, then (K! 0 K?) ¢ K3 = K! o (K2 ¢ K3). RN

PO

I\.
, o
. E
: o
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Proof:

Obvious from the definition of o-map and the associativity property of

set union.

o

The next three definitions are introducing the technical nomenclature used in

this chapter.
Definition 6.6.5:
Let K€ K[V] x Vg be a network. Let {K',K2...K"| K'€K[V{x Vi}}
be a set of networks such that: K=K!'¢K2%¢---K" Then
(1) K!o K?0 - - - K" is called a g-decomposition of K.
(2) {K!, K3,... K"} is called a o-decomposition set of K.
(3) Kiis called a o-decomposition element of K.
(4) K is the o -compositionof K! 0 K2 - - - K"
Definition 6.6.6:
Let K € K[V| x V(| be a network. If the only possible
o-decomposition is K = K! then K is called a o-prime network.
Definition 6.6.7:
Let K € K[V| x V(| be a network and let K = K!. Then K! is called
the trivial o -decomposition of K.

Lemma 6.6.8:

Let K € K[V] x V] be a network. Then K has a o-decomposition.

; ".". """ ‘.- ‘;
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Proof:

Let K = K! be the trivial o-decomposition of K.

Definition 6.6.9:
Let K € K[V| x Vo] be a network. Let K =K! 0 K?0 - - - K be a o-
composition, where V), Ki is a o-prime network. Then
K! o K20 - - - K"is called a 0-composition prime of K.
n - n .
Notice that this implies V; = _UlVl' and Vg = _UIV(',.
i= i=
Theorems 6.6.10 to 6.8.12 discuss some properties of the o-decomposition of
networks.

Theorem 6.6.10:
Let KeEK[VixVy, K = <C>, be a network. Let K =
K!¢K?0 - -+ K" be any o-decomposition. Then: n < logz| C|.
Proof:
Let Ki = <Ci>.
(1 Kiis a network = |C}| > 2.
@ |c| =TI |cl| =2
=t
(3: n =logz 2" < logz | C|.

0

This can be used as an upper bound on number of networks in a o-

decomposition set.
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Theorem 6.6.11:

Proof:

Let K € K[V} x Vg, K = <C>, be a network.

(1) If K has a nontrivial o-decomposition then |C| is not a prime

number.

2 If ]CI is a prime number then K does not have a nontrivial o-

decomposition.

Follows from proof of Theorem 6.6.10.

a

This counting principle introduced above can be used as a necessary condition

on a o-decomposition of a network.

Theorem 6.6.12:

Let K!'eK[VlxV}], K!'=<C'>, and K2eK[V}x V{,
K2=<C?>, be two networks such that: (VU V§)N
(VR U V3) = 0. Let K? = K! 6 K? be a o-composition.

(1) If @c€C? then K! CcK® where @g is the correspondence
consisting of no edges, i.e., no connections between the set of
inputs and the set of outputs.

(2) IfOc ¢ C?then K! Cb K3, but not K! Ce K3.

(3) UOc€eC then K2CcK3 -

(4) IfO¢ ¢ C! then K2 Cb K3, but not K2 Cc K3.
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¢ Proof: o
. Case 1: Show K! Cec K3. f'"
L) ¥
\ v\.‘
. (1) K¥=K!'oK? = vCleC, vCieC* 3ClecC? P
‘ 3:C¥= CLUCE
’_
(2: (1) snd Pc€C? = YCLeC' 3C}eC® 3:Cl=c? N
o .'".b
E = K! Cc K3 ;,f'{
- Case 2: Show K! Cb K3 but not K! Ce K3. -
T8
‘ (1): Same as Case 1. z
» e
N (2: (1) and Oc g C* = (VCpeC' 3C) € C* 3:CL CCY) e
and (VCL€C! BC} € C® 2:CL =C}) =K!CbK?and RS
D
not K! Ce K3. vt
Case 3 and 4: Same as Case 1 and 2 by the commutativity of the o- 'p
j composition (Lemma 6.6.2).
~ e
4 D ;"-;
N ::r::-r_'
- In this second part of this section, the ~composition and decomposition of 00
. two networks will be discussed. This differs from the o-composition '\
(decomposition) as follows. In the o-composition, the two networks keep .‘
independent controls, that is if C) is selected in K! an arbitrary o
Jeh
correspondence C2 can be selected in K2. In the rcomposition, the two S
networks have joint control, that is if CJ, is selected in K!, the corresponding _-;:j“_
; C2 must be selected in K3. 2 b




Definition 6.6.13:

Let K!eK[V¢xV{], K!'=<C'>, and K2eK[V? x V], K2=<C2>,

be two networks such that:

(3 (Vi U VEH N (VEU VE) =0, and (b) |C!| =|C?.

Define 7, -map as follows:

(1)  Define a: C!'—C?, map 1:1 and onto.

(2) K'KI= <C'>7,<C>8 <{ClU C?|aCch=C?

Clect, CleC?>.

This describes the composition of two networks where the controls are
dependent in the sense that choosing a C; in C! means a(C]) must be selected
in C2. Thus, the & map exactly specifies how the controls are dependent. The
basic difference between the o-map and 7,-map is as follows. Suppose K! =
<C'> and K? = <C?>. It K® = K'oK? K? = <C3>, then (a) |C?| =
|C*| +|C?| and (b) C! is a subset of |C?| correspondences in C3. If
K3 = K! r, K? then (a) |C?| =|C!| =|C?| and (b) C! is a subset of one
correspondence in C3, specifically C}! U o(C}).
This describes the composition of two networks where the controls are
dependent in the sense that choosing a C; in C! means a(Cp') must be selected
in C2. Thus, the o map exactly specifies how the controls are dependent. The
basic difference between the o-map and 7,-map is as follows. Suppose K! =
<C!'> and K? = <C2%>.
K} =K!'eo K2 K? = <C3>, then
(a) |C% =|C'*|C? and

(b)  C.is a subset of | C?| correspondences in C?.

It K} = K! 7, K? then




(a)
(b)
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| = [0 =|c?) and

C, is a subset of one correspondence in C3, specifically C; U o(Cp).

The definitions 6.6.14 to 6.6.16 are providing some nomenclature involving the

r-composition and decomposition of networks.

Definition 6.6.14:

Let KEK[V| x Vo] be a network. Let {K! KZ,...K"| KI€K[V{x V}]}
be a set of networks such that: K=K'!'r,K2r,---K® Then
(1) K'r, K27, - - K"is called a ~decomposition of K.

(2) {K! K3,..,K"} is called a r-decomposition set of K.

(3) Kiis called a ~~decomposition element of K.

. (4) K is the r-compositionof K! 7, K% 7, - - - K™

Definition 6.6.15:

Let K € K[V x Vg], K = <C>, be a network. K is a prime network
iff K cannot be decomposed as K D¢ K! o K2.

Definition 6.6.16:

Let KEK[Vix Vg, K = <C>, be a network. If there exist
K! e K[V{ x V{}], K! = <C'>, and K2 € K[V} x V§}, K? = <C?>,
two prime networks such that: (1) V}UVE=V, and (2)
Vi UV§ = V,, then:

(1) K K!7, K2 =K, then K is a 7-partitionable network.

(2) IK'6K?=K,thenKisa ét;’ictly o-parlitionable network.

3) It K'oK2#K and K! 0 K2 DcK, then K is a o-partitionable

network.
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Note that strictly o-partitionable implies: [C| = |C!'[+|C?| and
c={clU C?] CleC!, C2eC?. In contrast o-partitionable implies:
|C| <|cY °|Cz| and C C { C,‘UC,'[ clecl, ctec?.

If K is a rpartitionable network then it is also a o-partitionable. It is not
strictly o-partitionable because it is strictly o-partitionable only if
|C!| <] C? =|C| and it is ~partitionable only if | C'| =|C?| =|C|, which
implies | C!| =| C? =] C| =1; however, |C!|, | C?|, | C| >2, by Definition
4.6.1. Also note that if there exists a o-prime composition of K, then K is a

strictly o-partitionable network.

6.7 Partitionability Algorithm

In this section an algorithm is presented that has an input any general
network (with an arbitrary topological structure) and which produces one of

four possible outputs.

(1)  The network is not partitionable.

(2)  The network is rpartitionable.

(3)  The network is strictly o-partitionable.

(4) The network is o-partitionable . |

The engineering interpretation of the four outputs is as follows:

(1)  The network is not partitionable into disjoint subnetworks.
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(2) The network is partitionable into subnetworks with common control
signals that are dependent upon one another and the combination of the
subnetworks will exactly generate all interconnection patterns of the

original network.

(3) The network is partitionable into subnetworks with independent control

signals and the combination of the subnetworks will exactly generate all

e A me o 4

interconnection patterns of the original network.

(4) The network is partitionable into subnetworks with independent control

{ signals and the combination of the subnetworks will generate a superset

of interconnection patterns of the original network.

The algorithm can be programmed on a computer and if the output of the
algorithm is (2) or (3) then it will produce a more efficient implementation of
the network in terms of data path hardware and possibly control
implementation. In case (4), even though a superset of the states of the
original network is obtained, the implementation produced by the algorithm

will be efficient in most instances. The following definitions are needed to

discuss the algorithm and prove its correctness.
Definition 6.7.1:

Let K € K[V] x Vg], K = <C>. Let C, € C and <v,,v;> € C_, be
an edge (directed). Denote the undirected arc associated with the
directed edge of <v,v,> by <vovp>. Let G[Vyx Vol &
{<Vavs> | <vauvp> €Cn, VCn €C). Then G[Vy x Vo] is the
underlying undirected graph of K.
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Definition 6.7.2:
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Let G[Vy x Vg| be the underlying undirected graph of K € K[V| x V).

<3
G
-‘.-
%

.

Then the connected subgraphs of G[V; x Vg] are called components of
G|V, x Vo).
Notation: Components are denoted by B! B2..,B". Denote the vertices
associated with B" by V{ and V§, Vf C V|, V§ C V. In a component B there
exists a path from each node to every other node and there is no path between

any two nodes from different components. Clearly G[V| x Vo] = B,
r

W VI =Vy, and IJ V§ =V,

r r

Definition 6.7.3:

Let G[Vy x Vo] be the underlying graph of K € K[V} x Vg], K =
<C>. Let C, € C and let B be a component of G[V| x Vg]. Define

the projection p of C,, onto B" as follows:

PCmB) & {<Vu¥y> € Cn| <Vo¥y> EBY). 5
Lemma 6.7.4: E:::E-;'
Let G[V; x Vp| be the underlying graph of K € K[Vy x Vg], K = ,

<C>. Let C, € C and let {B!,B%...,.B"} be the set of all components
of G[Vy x Vo]. Then C,, = p(C,,,B") Up(C,,,B?>) U - p(CL,B").
Proof:
(1): Show p(C,,,B) N p(C,,Bl) 0 =+ B! =Bi,
(1.1): p(C,,B) N p(C,,Bl) # O =~
<Vy¥,> € P(Cm,B), <Vyvy> € p(Cp,Bi).

(12): <V‘,Vb> E p(Cm’Bi) ad <V3,Vb> E Cm’ <v37vb> e Bi-




124

(1.3): <V Vp> EP(CrB) = <v,vy> €C,, <v,vy> €BL

(L4):  <v,vpy>€EB, <v,,v;>€B and G[V;x Vg = l;J B
—B'=B.

(2): Show C,,, = u p(Co,BY).

(2.1 Show C, C U p(C,,B).

(21.1):  <V,vp> € Cp = <V,v;> € G[V x Vo] =
' 3 B, <v,.v,> € Bl = <v,,v,> € p(C,,Bl) =
, <v,,vp> € Up(Cpp,BY).

(2.2): Show C,, 2 U p(C,,,B)).

(2.2.1):  <v,vp> €U p(C,,B) =

3 B, <v,,v,> € p(C,,,B) = <v,v,> €C,.

S : i
(3): (1) and (2) = C, = U p(Cp,B). DA

! RS

o ;- a”

I::;Z:EE

Definstion 6.7.5: ;::,::::

Let G[V; x V] be the underlying undirected graph of K € K[V} x V),
K = <C>. Let B' be a component of G[V| x V|. Define the residue e
set modulo B’ as follows: r(B) 2 {p(Cy,B) | ¥C,€C}. \
The Theorems and Lemmas 6.7.6 to 6.7.13 are essential components of the [l
proof of the algorithm presented later. They discuss the conditions of existence

and properties of the component networks, which are the parts into which a

network is decomposed if a decomposition exist.




Theorem 6.7.6:

Let Bf be a component of the underlying graph G[V| x Vq] of
K € K[V} x Vg, K = <C>. Let r(B") be the residue set modulo B*, B

over Vf x V§. If | r(B")| > 2 then <r(B)> € K[V x V§]. <r(B)>

is called a component network of K denoted by K(B').

Proof:

(1):
(1.1):

(2):

(2.1):

(2.2):

(2.3):

(3):

(4):

(5):

Show C, € r(B") = C, € C[Vf x V§].

C, € x(B") = {p(C,B") > C,€C} =

3¢, eC, C, =p(C,,B) = C,€CVf x V§].

Show s(r(B')) = VY.

Show s({p(C,,B) > C,&€C}) C V.

u, € s({p(C,,B") > C,€C}) = 3 C el <uy,u,> €C,,
<u,u,> €B' =+ u, € V}.

Show s({p(C,,B") = C, € C}) D V.

u, EVf = <u,u,>€B = I C,eC <yu>€EC, =
<u,,u,> € p(Cy,B*) =

u, €s({p(C,B) > C, € C}) = s(x(B)).

(2.1), (2.2) =+ s(r(B")) = V}.

Show d(r(B")) = V§,.

Same as (2) except replace the s set by the d set.

Show | r(B)| > 2. |

By Theorem hypothesis.

(1), (2), (3) and (4) = <r(B")> € K[Vf x V{).
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. a

- Given an arbitrary network it is possible that |r(B’)| = 1 for some B'; that is,
p(C,,B") = p(Cp,B’), VC,Cp, € C. Then r(B‘) does not constitute a
reconfigurable network as defined. To handle this case from an engineering
point of view, do the following. If a network contains a such B’, that part of
the network is constant, that is, it has a single state only. So to remove this
constant part from the network K = <C> do the following. (1) Construct
’ separately the constant part r(Bf), VB' > |r(B)| =1, as a set of

.~‘\
A
LN
..".-
CRY
"
S
N
L

nonreconfigurable links. (2) K' & <{C, - <v,v,> | Cm € C,

¥V <v,vp,> EB, VB = [r(B)| =1}>. K' then contains only the block
(blocks) where | r(B*)] > 1. In the following it is assumed that the constant
; blocks of the network have been removed already.

It G[Vix Vg =B!, then K=<r(B')>. In this case, K is a o-prime
network and is not partitionable. The following Lemmas and Theorems are
shown for the case of G[V| x Vo] having two components, B! and B2, for
reasons of simplicity. They are all applicable to the case of B!,B%,....B®, n > 2.

Lemma 6.7.7;

Let {B'!, B?} be the set of components of the underlying graph
G[V x Vo| of KEK[Vyx V], K= <C>. Let | (BY)| =|C|, Vi. Then
3 7, such that if <C®> = K(B!) r, K(B?) then C C C3.
Proof:
() [nB)| =|c], Vi.
This is necessary and sufficient condition for the existence of a.

p(C,,B") # p(Cy,B"), VG, C,eC,x#y, Vr.




(2):

(3):

(4):
(5):
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<C¥> =K(B') 7, K(B?) = C*= {p(C,B') U p(Cy,B%)
| a(p(C,BY) = p(Cy,B?), C, €C,C, €C}.

Let a: {p(C,B")] C, €C} — {p(CyB?)|C, € C},

o(p(C,,B") = p(C,,B?).

C,eC = C,=p(C,B") Wp(C,B?.

(2), (3) and (4) = C,€C® = CCC3

Lemma 6.7.8;

Let {B!, B?} be the set of components of the underlying graph
G[V; x Vo] of KEK[Vyx Vo], K=<C>. Let | (BY)] =|C|, Vi. Then

3 r, such that if <C¥> = K(B!) r, K(B?) then C3 C C.

Proof:
(1)
(2):
(3):

(1), (2), and (3) from proof of Lemma 6.7.7.
C,eC* = C, = p(C,,B") U p(C,,B?).

(1) and (2) = C,€C3 = C3CC.

Theorem 6.7.9:

Let {B!, B?} be the set of components of the underlying graph
G[V; x Vo] of KEK[V]x Vo], K=<C>. Let |r(B)| =|C|, Vi. Then
3 r, such that K(B") 7, K(B*) =K.
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Proof:
(1): . Let a: {p(Cn,B")| C, € C} — {p(C,B?)|C, € C},
a(p(Cp,B')) = p(C,,B?). Let K(B!) 7, K(B?) = <C3>.
(2): Lemma$.7.7 = C C C3.
(3 Lemma6.7.8 = C3C C.
(4 (2), and (3) = C®=C.

(5): Theorem 4.6.8 = C3 =C =+ K(B!) 7, K(B%) =K.

Lemma 6.7.10:

Let {B'!, B?} be the set of components of the underlying graph
G[Vi x Vo] of KeK[Vyx V), K=<C>. Let
K(B) o K(B?) = <C*>. Then C C C.

Proof:

(1 Cnr€C = C, =p(CpnB') Up(CpnpB?).
(2 <C>= KBY)o KB) = <{p(C,B) | C,eC}> o
<{p(Cy,B?) | CL,EC}> = C,€C* = CCC

Theorem 6.7.11:

Let {B!,B?} be the set of components of the underlying graph
G[V] x Vo] of K€K[V; x Vo], K = <C>. Let K(B!) ¢ K(B?) =
<C*>. Let |r(B")| * |r(B%| =|C|. Then K(B') o K(B? =K.
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&‘ Proof: ::;:-';'
(1) By Lemma 6.7.10 C C C5. TN
S
By Theorem hypothesis | r(B')| * [r(B%)| = [C}| =|C| = C N
:i = C3. :Et
(2): By Theorem 4.6.8 and (1) = K(B') ¢ K(B?) =K. NN
IS
o RN
r::-‘.\’
Theorem 6.7.12: ',-’.‘;w.
Let {B'B%} be the set of components of the underlying graph ._‘
G[Vy x Vo] of K € K[V x Vo], K = <C>. Let K(B") ¢ K(B?) = e
<C*>. Let [r(B")| * [r(B?)| > [C|. Then K(B') o0 K(B?) Dc K and £
K(BY) o K(B?) #K. o
Proof: et
(1 By Lemma 6.7.10 C C C%. =
" Theorem hypothesis |r(B')] - |¢(B%})] = |C*| > |C| = C g:
c ct. i
(2): By Theorem 4.6.7 and (1) = K(B!) ¢ K(B% D¢ K, and
Theorem 4.6.8 and (1) = K(B!) ¢ K(B?) # K. o
. 8] naa
Definition 6.7.13:

It B!,B?,...B" are the components of G[V| x Vg, where G[V] x V] is the
underlying graph of K, then K(B!), K(B?),.,K(B” is a prime

.f#‘.;-.l‘_;" ""; .
- - e .
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decomposition of K.
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The algorithm is presented below. The input is an arbitrary network

K € K[V} x Vo], K = <C>, with the constant part removed. The output is
one of (1) K is not partitionable, (2) K is rpartitionable, (3) K is strictly o-
partitionable, (4) K is o-partitionable. In cases (2), (3), and (4) the algorithm
also produces the component networks K(B!), K(B?),...,.K(B"), in step (7).

Algorithm :

Input: K € K[V; x Vg], K = <C>.

Output: (1): K is not partitionable,
or (2): K is rpartitionable,
or (3): K is strictly o-partitionable,

or (4): K is o-partitionable.
(1)  Construct the underlying graph G[V; x V| of K.
— (2) Find components B!, B%,....B" of G[V| x V).
(3) If (n=1) return (1).
(4) Find p(C,,BY), VC,h€C,i=12,..,n.
(5) Find r(BY) = {p(C,,B})] VCnr€C},i=12,..
(6)  Construct K(B') = <r(B)>,i = 1,2,...,n.

(7) 1 (jrBY =|C|,r=12,...n)
then return (2).

® I (f[l| w87 |) =|C]

then return (3).

(9) Else return (4).

............................................................................
................................

.....



Proof:

The proof of correctness is directly implied by Theorems 6.7.9, 6.7.11,
and 8.7.12.

0

The outputs of the algorithm can be used in the following ways. If the
output is “1” (not partitionable), then the system designer will know that the
network cannot be divided into individual subnetworks. If the output is ““3”
(strictly o-partitionable), then the network can be partitioned and the
composition of the component networks will produce a set of correspondences
identical to that of the original network. Note that if a network is strictly o-
partitionable it is not rpartitionable nor o-partitionable. If the output is *‘2”,
the network is rpartitionable. Any network that is r-partitionable is also o-
partitionable. However, if a network is rpartitionable then |r(B‘)| =
|®(B)] =|C|, 1 <i,j < n, which is not true in general for a o-partitionable
network. Since |r(BY)| =|r(B)| =|C|, 1<i, j<n, the number of
correspondences in each component network <r(Bi)> is the same (| C|) for i,
1<i<n. This property means that the same control decoders can be used in
all network components in a r-partitionable network. If the output is “4” (o-
partitionable), then the network can be partitioned and the composition of the
component networks will produce a set of correspondences that is a superset of

that of the original network.

The output of the algorithm applies ohly to the reconfigurable part of the

network because partitionability is defined in terms of a decomposition into
“reconfigurable” network components (| r(Bi)| > 1). If the original network

had some B such that |r(Bi)| = 1, then those constant component(s) should be
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added to the network component(s) generated by the algorithm in order to
reproduce the original network.

There are different types of partitionability than the discussed here. For
example, study of the partitionability of networks where some of the network

correspondences are not used, e.g., as can be done with the cube network was

discussed in [Sie80, Sie85).

6.8 Conclusions

In this chapter the interconnection network properties of composition,
decomposition, and partitionability were analyzed. The general model of
interconnection networks, defined in Chapter 4, was used to describe
composition, decomposition, and partitionability properties of networks. The 7
and o-composition and the 7 and o-decomposition discussed here are of

horizontal type and they are described in detail in the text.

The importance of the partitionability property is described in the
introduction. It was found that there actually are many different types of
partitionability and the type that uses all states for consideration of
partitionability, was discussed in detail here. This type of partitionability
consisting of three subtypes, is analyzed in this chapter. The three subtypes
the rpartitionability, o-partitionability, and strict o-partitionability were

defined and analyzed. An algorithm to determine whether a network is

partitionable and if it is which subtype of the three was presented and proven
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correct. The algorithm is network topology independent and can be used to
analyze topologically regular and irregular interconnection networks.
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7 SINGLE STAGE PARTITIONABLE NETWORKS - SYNTHESIS
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7.1 Introduction

In this chapter the problem of synthesis of single stage partitionable
interconnection networks is analyzed, consequently this chapter may be viewed
as an application section of the chapter on analysis. For a designer, the
analysis allows an evaluation of networks and their properties [AdS82b, Gok78,
Law75, McS82, SeS85), in contrast to the synthesis which provides a
construction method for partitionable networks. The body of this chapter
consists of two major parts, each of which containing some examples to

illuminate the issues.

In the first part, an example of a single stage partitionable network will be
presented. Then, an algorithm to generate a large class of single stage
partitionable networks will be developed and proven correct. This algorithm is
based upon the results presented in the chapter on analysis. For ease of
presentation the discussion will presented for the case of networks with
|V,| = | Vo| and with two network components only, however it can easily be
generalized to networks where | Vj| # | Vo| and to networks with more than

two components.

The second part of the body of this chapter discusses the problem of
synthesis of a special case of partitionable networks. The special class of
networks consists of those networks that are isomorphic to a direct product of
groups [Han68, Her75]. Since groups have been studied in abstract algebra
extensively, techniques are known to determine the possibility of d .composition
of a given group into a direct product of groups. Again, for ease of

presentation, the discussion is shown for the direct product of two groups only,
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but can be generalized to a product of multiple groups.
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In Section 7.3 the problem is defined. In Section 7.4 the previous work
done is outlined. In Section 7.5 the basic concepts are presented. In Section
7.6 some examples and algorithms to synthesize a large classes of single stage
partitionable networks are presented. In addition, a special case of
partitionable interconnection networks that are isomorphic to s direct product
of groups is described. In Section 7.7 the conclusions for this chapter are

— presented.

7.3 Problem Statement

In this chapter, the results presented in the chapter on analysis are used to
synthesize partitionable networks. Based upon the examples and the work in
the previous chapter, an algorithm is developed that allows the synthesis of a
large class of partitionable networks. An interesting, special class of networks
which is isomorphic to a direct product of groups is analyzed. Since the

problem of decomposition of groups into a direct product of groups is well

................................
.............
...................
..........................................
.............................
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known in abstract algebra [Han68, Her75], it can be used to evaluate the

partitionability of these networks.

7.4 Previous Work

The material in this chapter, the synthesis of a partitionable
interconnection networks, is directly based on the material in the chapter on
the analysis of partitionable interconnection networks. The synthesis
procedure is based on the chapter on analysis, consequently this chapter can be

viewed as an application section of the material discussed there.

7.6 Basic Concepts

In this section the basic concepts are presented. Some definitions can be
found in a text on abstract algebra and are included here for completeness only

(Han68, Her75].
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Definition 7.5.1:

Let G be a set with # a binary operation with closure. Let # be
associative.
(1) 31€EG> 1+.g=g°1=g, VYgE€G. (1 is the identity

element.)

(20 3g'eG >xggl= gl-g=1 VgEG. (Each element

z
%
!
|

has an inverse.)
Then <G, 0> is called a group.
Definition 7.5.2:
Let C[Vix Vo] be a C-set. Let V= ({uguy,..u,;} and Vo =
{vo:¥1)--Vm-1}-
Define a binary operation v on C[V} x V] as follows:
7 : C[Vy x Vo] x C[V} x Vo] = €[V x Vg,
C,7C, & {<yv> | <uwv;> €C,, <u,v,> €Cy, j=k}.

7.8 Synthesis of Single Stage Partitionable Networks

This section consists of two major parts. In the first part, an example of a

.
-
.

single stage partitionable network will be presented. Based upon the example
and the material in the chapter on analysis an algorithm will be developed
which allows the synthesis of a large class of partitionable networks. The

discussion will be restricted to the case of |Vj| =|Vg| for the ease of
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presentation, however the results are applicable to the case | Vi| # |Vg|. The

construction is given in terms of constraints on the structure of the 1/O

PR
correspondences of the network. In the second part an interesting special case g:.:i ‘
of single stage partitionable interconnection networks will be discussed. It will t.'r" 5
be shown that this class is isomorphic to a class of groups. For that special '\‘ d
class of networks, it will be shown that a network is strictly o-partitionable if
: and only if it is isomorphic to a direct product of two groups. Since groups .
have been studied extensively in abstract algebra, analytical methods are .
: known to find a (possible) decomposition into a direct product. R
X Ezample 1.6.1: 5
Let KeK[VixVg), K=<C> be a network. Let RN
|Vi| =|Vo|] =m. Denote Vi= {upuy..up,} and Vo= f:
3 {vo,V1,-Vm-1}. Let 1,0 <r < m-1. Let C={C, C}, and &, be .

addition modulo r. Let a, b, ¢, d be arbitrary integers such that
a#cmodrand b # d mod m—r.
C, = {<uyv;> | j=1i®,s 0<i<r} U

{<ui'vj> I J = l’+(i ®m-r b)r I'Si<m}, :.:\._

C, = {<yv> | §=i8®,c 0<i<r} U {3;}355

{<uyv;> | j =r+(i By, d), r<i<m}. 2%

Show that the network is partitionable. \

Solution:

N

(1: Denote V{ = {uo,ul,...ur|}, V= {vgVy-Veq} and VP = «.

i {(upursppat, V8= {ViVet41-Vm-1}- Intuitively the ;EE:
: network can be partitioned into one metwork over V! x V§ and :Ei'-
second network over V# x V§&.

&
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(2): Although the components of the underlying graph of K, B! and
B2 could be finer than described below, it is guaranteed that there
are at least two components B' and B? as follows. C,, C, =

there are at least two components B! and B2.

B'= {<u, vi> | j=i®,s0<i<r} U
{<u, v;> | i =i®,c 0<ir}.

Bz = {<uiv V’> I J = l"*-(l em—r b)’ l'Si<"l"l’} U
{<u, v;> | j =r+(i Dy, d), r<i<m-r}.

(3): Let K(B') €K[V{! x Vo], K(B!) =<C'>. C'= ({C]},Cl},

Cj =p(C,B") = {<u;, vj> | j=i®,as, 0<i<r},
Cl=p(C,B)= {<wy,v>| j=i®,c,0<i<r}. Let
K(B? e K[V]> x Vo3, K(B) =<C?*>. C?= (C%cC},

CZ=p(C,BY = ({<uy,v,>| j=r+{i®,,b) r<i<m},
C2 =p(C B = {<u, v;> | j =r+(i ®p, d), r<i<m}.
(4): Then K(B') ¢ K(B?) D¢ K, therefore K is o-partitionable.

The example can be generalized into the following algorithm to generate a

large class of partitionable interconnection networks.
Algorithm 7.6.2:
Let K € K[V] x Vp], K = <C> be a network.
(1) Let Vi = {ugu,,..up} and Vo = {vq,v,..v01 )}
(2) LetC,C,,.C,€C,andr, 0<r<m-1.
C, = {<yyv;> | j=1(i) mod r, 0<i<r} U
{<upv;> | j = r+(gy(i) mod (m-r)), r<i<m},
Cy = {<u;,v;> | j =1(i) mod r, 0<i<r} U
{<u,v;> | j = r+(gy(i) mod (m-1)), r<i<m}, - - *
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. Co = {<wv;> | j =fo(i) mod r, 0<i<r} U

{<uyv;> | j = r+(g,(i) mod (m-r)), r<i<m}.
The functions fi (i), g,(i) are arbitrary integer functions such that:
If 0<x,y<r then (fi(x) modr) = (fi(y) modr) iffx=y. If
r<x,y<m then (gy(x) mod (m-1)) = (g(y) mod (m-r))
iff x=y. The above is necessary to insure that the constructed

correspondences are nondestructive.

Theorem 7.6.8:

Every network constructed using the Algorithm 7.6.2 is a o-partitionable

network.

X Proof:

Similar to solution of Example 7.6.1.

o

The following algorithm will generate a large class of r-way partitionable
networks, where r is the number of components. It is easier to use than the
Algorithm 7.6.2 and the class is smaller than the one generated by Algorithm
7.6.2. In addition the component networks of the partitionable networks

/ generated by Algorithm 7.6.4 are isomorphic to each other.
Algorithm 7.6.4:

Let r be any integer, le¢ N =r™ Construct a network K over

Vi x Vo, K = <C> as follows.

(1)  Let Vi = {pp-1Pm-2" - Po| Pi=0,1,..r-1}, and

9 — P Y=
: vo = {Qm—IQm-2 qo I ql o,l,...l'"l}.
\
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(2)  Construct C; € C as follows: Y
3 Ci = {<Pu-1Pm-2'""Por Pm-1%j(Pm-2 " ° * Po)>}, Where x; is RN
LG
] any permutation of letters py,_s *  * po. o
’ ‘v‘.‘,‘:'.
= Theorem 7.6.5: e
! bt
3 Every network constructed using Algorithm 7.8.4 is a o-partitionable s
network. 'C:_:‘I'
i Proof:
- A
P‘b A
i Intuitively, there will be r subnetworks, where the kth subnetwork has ri;?_'
> oA
S input labels of form kp,— ‘- p;po and output labels of the form 2;.'.‘
kQm-2 * * * 9499 Using similar steps as in Example 7.6.1, it can be shown
that the component networks are {K* = <C*> | K*e K[V} x V§], .;
X k=0,1,..-1} With Vf = {kpp— - po}, s0d VE = (kqu" " g}, o
o k=0,1,..r-1. i
N ~— P
(N S
N a a2
8 e
) f“.a-
Y ™l

Ezample 7.6.6:

LS

: Let r = 2, le¢ m = 4 N=16. Construct a network
8 K € K[V] x Vg, K = <C> as follows. NN
Let Vi = {pspap1Po | P;=0,1}, and
Vo = {a39201% | 4=0,1}. Let C = {Co,C,,C5}.
Co = {<PsPsP1Po PaP2PoP1>]| P; = 0,1}, NS
2 Cy = {(<PsPzP1Pos PsPoPzP1>| Pi = 0,1},
. Cz = {<P3PsP1Po PsP1PoP2>| Pi = 0,1 }. -

Show that the network is partitionable. 2

Ab .'l'

'y

GO
5{. <.
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Solution:

Although there may be more then two components, it is guaranteed that
there are at least two component networks. The kth subnetwork has
z input labels of form kp, - ‘ ‘- p;ps and output labels of the form
) KQn-2°'°qq, k = 0,1. The component networks are {K¥ =
<Ck> | K*€eK[V¥ x V§, k=0,1}.
Now consider a special network K € K[V| x Vg], K = <C> such that
C, 7 is a group. It is possible to view the correspondence C, = {<p;,, q;> |

P; € V}, q; € Vp} as the permutation m, = {<i, j> | i, } € A}. For example
‘ let C, = {<p;,qj>| PiEV,qGEVy j=i®kmodm} be a
correspondence, the induced permutation is ) =
{<i,j> | j=iD kmodm, i j€EA}. The partitionability of this class of
networks is related to the direct product composition of groups in abstract

algebra as will be shown by the following theorems.
Theorem 7.6.7:

Let K € K[V x V], K = <C> be a strictly o-partitionable network.
Let C, v be a group, where 4 is the composition of maps (see definition

7.5.2). Then C, 4 is isomorphic to a direct product of two groups.

Proof:

(1): As stated previously, it is assumed for simplicity of presentation
that the network has only two components, call them
K(B!) = <C!> anci K(B?) = <C?>. Let
C! = {p(C;B") | Ci € C} and C? = {p(C;,B?) | C; € C} be the
two sets of correspondences. It will be shown that <C!, 4>

and <C2, 7> are groups and their direct product is isomorphic

v -
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to <C, 7>.

(2): Show <C!, 1> is a group.

(2.1 Show <C! 9> has closuree Show 3IC,€C 3:
p(C;, B') 7 p(C;B") = p(Cy, BY).

(211): Let C, =C;4C;. = p(C,B)= p(Ci1C;,B)=
{<uy, vp> | <u,v.> € G, <u,vp> € G, <u,vp> € B}

(21.2): <u,v.> €C;, <u,v,> €EB! = T v.>S€B' =
<u,v.> € p(C; BY).

(213): <u,v,> €C; <u,vy> EB' = Ju,v,>EB' =
<u,vy> € p(C; BY).

(2.14): p(C, B) = {<uuvy>]| <u,v>€C, <u,v,>€C,
<y vy> €EBY} = {<y,w>| <uv.>€p(C;,BY,

D <u,vy> € p(C;, B')} = p(C; B') 1 p(C;,B"). a
:: (2.2): Show 4 is associative: E,_
5 By definition of the operation. ‘_. ‘
(23): Let C,€C, C,7C;=C;4C,=C; then p(C,B') is the \

identity in C. 3

(24): Show C!' contains inverses. Let C;4C;=C, then ; ‘

p(C;B") 7 p(C;;BY) = p(C\BY).
(3): Similarly can show <C?2, v> is a group. ’s

(4): Construct direct product group <C! x G, ® >. ;

(4.1):  Define ®: \'

Wl

<p(C;, Bl)v p(ij Bz)> ® <p(Cy, B!), p(Cy, Bz)> =
<p(Ci' Bl) g} P(Ck, Bl)y P(Cj, Bz) e} p(C,, Bz)>

- L T e
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.................................
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From algebra it is known that the direct product of groups is a

Pk A
k‘\*’\

»*,

group.
(5): Define : C — C! x C?, 4C;) = <p(C;, BY), p(C;, BY)>.
(5.1):  Show @ is group homomorphism.
Show: 6(C; 7 C;) = §C;) ® «C;).
(5.1.1 #C;1C)) = #Cy) => C, =C;1C;
(5.1.2): 6C,) = <p(Cy, B!), p(C\, BY)>.
(5.1.3): (2) and (3) = p(C,B")7p(C;B') = p(Cy B'), and
p(C;, B?) 7 p(C;B?) = p(Cy, B?)
= <p(Cy, B'), p(Cy, BY)>
= <p(C; BY) 7 p(C;,B"), p(C;, B?) 7 p(C;B?)>
= <p(C; B'), p(C;, BY)> @ <p(C;, BY), p(C;, B?)>

#C;) ® 6(C;). Therefore § is a group homomorphism.

(52  <p(C;BY), p(C;B})> € C!'xC? and K is strictly o-
partitionable =+ I C, = p(C,B')= p(C,,B') and
p(C;, B?) = p(C,, B?) therefore @ is onto.

(5.3):  Show #is 1:1.
Kernel of 6= {C,}, where C, is identity of
<C,7> =+ 0 is 1.

2 e
'y 40 ‘e
..

(8): (5) =+ <C, 7> isomorphic to <C! x C?, ® >.
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Theorem 7.6.8:

Let <C, 7> be a group that is isomorphic to a direct product of two
groups <C!, 4> and <C? 4>. Then K = <C> is a strictly o-

partitionable network.

Proof:

(1: Let <C,q9> be the group. Let <C,7v> R
<C, 1> ® <C, 4> where ® is the direct product and the sets
C! and C? are as in the proof of Theorem 7.6.7.

(2): Then the rest of the proof consists of reversing the steps of proof

of Theorem 7.6.7.

The next two examples show an application of Theorem 7.6.8.
Ezample 7.6.9:

Let K€eK[Vix Vo, K=<C> be a network. Let V=
{ug,uy,uzugugus} and Vo = {vo,v,¥3,v3,v4,Vs}-
Let C = {C,,C,,C;,C,},
C, = {<wv;> | i=0,1,...5},
Cy = {<ugv >, <upve>, <u,vi> | i=2,3,..5},
C; = {<ug,vp>, <up,vi>, <uyvy>, <uyve>,
<uyvs>, <ugvy>},
Cy = {<upi>, <u¥e>, <uyvs>, <ugvy>,
<ugvs>, <ugvy>}.

Show that the network is strictly o-partitionable.

RN
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Solution:

(1):

(2):

(3):

(4):

(5):

(8):
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Show that C, ~ is a group.
From the multiplication table, Table 7.1, it can be seen that

<C, 7> is a group.

Consider <Clr>. Let C! = {c},cy, c!
{<ug,vo>, <uy,vy>}), and CF = {<up,v;>, <u,,vo>}. Then
<C!, > is a group.

Consider <C%q>. Let C? = {CicH, ci

{<uv;i> | i=2,3,.5}, and C$=  {<uyvy>, <uyvy>,
<uyvs>, <ugvy>}. Then <C? 4> is a group.

Let the direct product group be <C!x C%2, ® > where
<ClL, C> @ <ClL,C¥> = <ClqCY, CEyCE>.

Given 0:C—» C! x C? a map, §C;) = <p(C;B"), p(Ci,Bz)>.,
and C; = C! LCE, C, = C$ LICE, C; = CllUCE, C, = C} LUC?,
then it is easy to show that @ is homomorphism, onto and 1:1.

Consequently K is a strictly o-partitionable network.

Ezample 7.6.10:

Let

KeK[Vix Vo], K=<C> be a network. Let V;=

{UO,Ul,uz,ua,u‘} and VO = {VO,vl,V2,V3,V‘}.

Let C = {ChCz,C:syCv CS’CB}v Cl = {<ui’vi> l i‘:o)l;---4}’

{<ug,ve>, <uypve>, <uyvy>, <ugvy>, <uyv,>},
{<ugve>, <uyvy>, <ugvy>, <ugve>, <uyvy>}
{<ug,vy>, <ugve>, <upvi> | i=1,2,3},

{<ugv>, <upve>, <upvy>, <ugvi>, <uyvo>}

LA A A

L
&
20,0,



Table 7.1:
The multiplication table for <C, 4>, Example 7.6.9.
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{<ug,v>, <upvs>, <ugvy>, <uy,ve>, <uyvo>}).

Show that the network is strictly o-partitionable.

Solution:
(1): Show that <C, 7> is a group.
Constructing multiplication table, Table 7.2 <C, 7> is a group.
(2): Consider <Cly>. Let ct = {c}chy, Ccl=
{<ug,ve>, <ugy,v >}, and Cf = {<ug,v>, <uyvo>}. Then
<C}, 4> is a group.
(3): Consider <C%y>. Le¢ C?®={C}cC3cC}}, Ci-=
{<uvi> | 11,23}, CF = {<u,vp>, <upvs>, <ugv >},
C} = {<u,vs>, <ugv;>, <uzvy>}. Then <C% 4> is a
group.
(4: Let the direct product group be <C!x C?% ® > where
<CHC}> ® <ClLCE> = <ClqCf, CF1CE>.
(5): Same as Example 7.6.9. 6 is homomorphism, onto and 1:1.
(6): Consequently K is a strictly o-partitionable network.
7.7 Conclusions
.:: In this chapter the problem of synthesis of single stage partitionable
" networks was studied. This chapter can also be viewed as an application
4
v
-
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Table 7.2
The multiplication table for <C, 4>, Example 7.6.10.
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section of the chapter on analysis. This chapter contains two algorithms and a
theorem describing the construction of o-partitionable networks. The first
algorithm is the most general and produces a large class of o-partitionable
networks. The second algorithm is easier to use but it generates a smaller class
of o-partitionable networks. The theorem describes the existence of a class of
strictly o-partitionable networks and it can be used in bidirectional sense, that
is (a) can be used to decide whether a certain class of networks is strictly o-
partitionable and (b) can be used to construct a class of strictly o-partitionable

networks. The theorem says the following. Let K = <C> be a network. If

C, v is a group and K is strictly o-partitionable, then C, 4 must be isomorphic

to a direct product of groups. The problem of decomposing groups into direct
products has been studied extensively in the group theory so the results derived

in abstract algebra can be directly applied here.
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8 MULTISTAGE NETWORKS - ANALYSIS
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8.1 Introduction

e

& In this chapter the analysis of multistage networks will be addressed ot

[AdS82b, Bat74, Ben74, BoD72, Fen81, McS82]. This extends the work done o

on single stage networks in previous chapters into the domain of multistage .-.;

’ interconnection networks. Although parts of the work done on single stage ':I:‘E

” | networks are transferable to the domain of multistage networks, the concepts "-'.

- are more complicated.
- The material in this chapter will be presented as follows. A vertical ~
: composition of networks will be defined and its properties shown. Using A

; vertical composition and the model of single stage networks, multistage

: networks will be defined. By using the single stage model, which was analyzed ;:il;::

earlier, as a building block for multistage networks, some results from the

study of single stage networks can be applied to multistage networks. The \~.

multistage network model is very general since each stage can be a completely \_.::

general single stage network. This model differs from some of the previous s

models of regular multistage networks by being completely general and f

therefore applicable to all multistage networks. Several examples of ;;:::

applications of the model are discussed. S

=
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8.2 Overview

The organization of the chapter is as follows. In Section 8.3 the problem
will be informally defined. In Section 8.4 the previous work will be reviewed.
In Section 8.5 the basic definitions such as vertical composition of networks will
be presented and its properties analyzed. In Section §.6 the formal definition of
multistage network is developed and several examples of applications of the

model are given. The chapter is summarized in Section 8.7.

i S R T

8.3 Problem Statement

In this chapter a formal definition of multistage networks will be

: developed. First a vertical composition of single stage networks is defined.

Some properties of the composition are exhibited. Then multistage networks

are defined by the vertical composition of single stage networks where V of

the ith network is equal to the Vj of the i+1st network. The multistage ~.~I

NS

y network model is very general since each stage consists of a completely general :E;j:
single stage network. e

R

!'\-:\

53
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8.4 Previous Work

Multistage networks have been modeled by researchers using different
techniques. Examples of such networks are ADM, IADM [McS82], indirect
binary n-cube [Pea77], Generalized Cube [SiM81], STARAN [Bat77], Omega
[Law75], baseline [WuF80], ShuffleExchange [ThN81], binary tree [BeK79),
Benes [Ben65], and Banyan [GoL73, Upp8l]. Modeling methods used are
graph-theoretic [McS82, GoL73, Upp8l|, algebraic [Ben85|, and others. Our
method is based on the general model of single stage networks, presented
earlier as well as the vertical composition of single stage networks using
algebraic operations. This approach allows the analysis of multistage networks

to draw on some results valid for single stage networks.

8.5 Basic Concepts

In this section the basic definitions and concepts are presented as well as
some of their properties. These basic concepts will be used in this chapter as

well in the chapter on synthesis of multistage networks.

s Yy
AL "f: o g
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Definition 8.5.1:

Let CleC[Vi'x Vo!] and C2€C[Vi?x Vol Let V§ =V{.
ClvC28 {<uyv>| <u,w>€C), <w,v,> €C3}. Then 7is

called a 4y composition of I/ O correspondences.

LNy

The Theorems, Lemmas and Definitions 8.5.2 to 8.5.11 discuss the
properties of the 4 composition of I/O correspondences which will be used to
define the p-ma.p. The #-map is the network composition used to comstruct
multistage networks and its properties are determined by the properties of the

~ composition of I/O correspondences.

The following theorem shows that the 4 composition of two nondestructive

1/O correspondences is a nondestructive I/O correspondence.

Theorem 8.5.2:

Let C} € C[Vy! x Vo'| and C2 € C[V{? x V. Let V§ = VE.
Then C} v C? € C[V}! x V).

Proof: o

J (1):  Clearly C; v C2 € P[V{ x V§], that is C! yC2is an 1/O '
: correspondence over V{! x V3. :":
(2):  Show C!+C2 € C[V} x V3], that is C} vCZis a .

nondestructive I/O correspondence over V! x V3.
4 Assume G} v C2 ¢ C[V{ x V3] \
= <u,wy>, <u,wp> € ClyCl that is Cp 7 Clisnot a 0

: nondestructive [/O correspondence over V! x V3. »
(2.1): Case I: <u,v,>, <u,v,> € C, and <v,,w,> € C? 2:.

= contradiction since C} € C[V{' x Vo!), (that is <u,,v,>, oo

B AT .
TV YA, VoW Py}
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<u,v,> € C; =+ C]is not nondestructive).

DLRSELN
i T B

|

(2.2): Case 2: <u,v,>, <u,v,> € C/land
<V WS>, <v,w,> € C?

o
i

5

=+ contradiction since Cg € C[V{? x Vo7, (that is, <v,,wp>,

<v,,wp> € C: - qu is not nondestructive).

o

The following theorem shows that the 4 composition of 1/O correspondences is

associative.
Theorem 8.5.3:
Let C} € C[V{! x V'], CZ€ C[V{® x VoF, and C} € C[V{ x V§].
Let V) =V and V§ = V.
Then C} 7 (C2 7 C}) = (C!~C2) 4C3.
Proof:
(1): Show C}7(C2 7C}) C (CJ4CH ~C.
(L1): <u,x> € Clq(C2 7C))
- <u,v.> € C}, <v.xp> € CI4C}
- <v,wy> € C2, <wyxp,> € CR.
(1.2): <u,v.> € C}, <v,wy> € C?
- <uy,ws>€ Cly ci.
(L3): <u,wy> € CJl4CE <wyxy> € C}
= <y,x> € (Cl4CH 1C?
= Cl7(C¢ 7C}) C (ClCY vC




.......

158

(2):  Similarly can show C} 4 (C? 7C}) 2 (C!~C?) 4C3 N

3: (and(2) = Cp(C 1C}) = (CyvCP) C3 R

o 4! Aid:

The following theorem shows that the 4 composition of I/O correspondences is
not commutative. AN
Theorem 8.5.4:
Let C) €C[V;!' x Vo!] and C2eC[V¥ x Vo?. Let V3 =V? and :;'i;;-'f:'

V3 = V{'. Then Cpl 2] qu # qu o C.} in general. ;Z-." .
Proof: 3

\*..'
For example, if C} = {<u,,w,>} and CZ = {<w,v.>}, then C L ~ J,:
C} = {<u,v.>},andC? v C! = 0.

R
Definition 8.5.5: e,
Let C) € C[Vi! x Vol and Cc?= {Cf | 9=1,2,...n}, :-:"e-.
A
qu € C[vlz b4 V02]. Let V} = Vlz. '\::'
L¢’.'»"-
CavC? 2 {ClyC2| C2ecY.

The following theorem says that the ~ composition of a nondestructive

correspondence with a set of nondestructive correspondences produces a set of

nondestructive correspondences. _ N




; Theorem 8.5.6:

v Let Cl e CVi! x Vo] and Cc? = {C?| q=1,2,..n},
. C? € C[Vf? x Vo¥. Let V4 = V{. Then C} 4 C?* C C[V} x V3]

X Proof:

. From Theorem' 8.5.2, VC} €c? , Cg v C,f € CIVf xVE =

Cy1C* C C[V{ x V3.

a

The following theorem shows that the 4 composition of I/O correspondence

with a set of [/O correspondences is not commutative.

Theorem 8.5.7:
Let Cp € C[V{! x Vo] and ct= {C?| q=1.2,..n},
CZ € C[Vi? x Vo¥. Let V4 =V and V§ = V|
Then C}l v C? # C%4 C in general.

Proof:

Similar to the proof of Theorem 8.5.4.

Definition 8.5.8:
Let C!' ={Cj | p=1,2,..m}, C,j € C[Vi' x Vy!] and
C? = {C?| q=1.2,..n}, C2 € C[V{? x Vo7 Let V§ = V{.
ClyC? & (ClyC2| ClEC!, C2€C?. Then 7 is called a 7
composition of sets of I/ O correspondences.

' The following theorem says that the 4 composition of two a sets of I/O

correspondences produces a set of I/O correspondences.
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Theorem 8.5.9:

Let c! ={C} | p=1,2,..m}, C) € C[Vi! x Vo] and

C? = {C?| q=1,2,..n}, C? € C[V;? x Vo?]. Let V§ = V{,

Then C! 4y C* C C[V} x V3.
Proof:

Theorem 8.5.2 =+ CJ] yC? € C[V{ x V§]

= C'4C?* C C[V{ x V3.
a

The following theorem shows that the ~ composition of sets of I/O
correspondences is associative.
Theorem 8.5.10:

Let C! ={C, | p=12,..m}, C} € C[Vi! x Vol

~ C? = {C?| q=1,2,..n}, CZ € C[V¢? x Vo3, and

C*={C}| r=12,..0}, C3€ C[VPxV3. Let V§J=V{ and

Vg = V.

Then C! 4 (C%2 7C%) = (C'4C% 4 C3
Proof:

Theorem 8.5.3 =+ Cl 4 (C? 7C} = (ClvCh ~CR

= Clq(C* 7CY = (C'1C) A C°.
a
The following theorem shows that the ~ composition of sets of I/O
correspondences is not commutative.
T e L L e e e e
N 3, G S A T R R O e B R TR S o S, R P SO LV Wty v YA




Theorem 8.5.11:
Let C! ={C} | p=12,..m}, Cy € CIVi! x Vo] and
C? ={C?| q=1,2,.n}, CZ€C[Vf x Voi. Let V§=V{ and
vé = VL.
Then C! 4y C? # C? 4 C!in general.

Proof:
Apply Theorem 8.5.7.

a

In the following part the /-map will be defined and its properties studied.
The f-map is used to define multistage networks and its properties are based

on the properties of the 4-composition of I/O correspondences discussed earlier.
Definition 8.5.12:
Let K'eK[Vi'x Vol, K!=<C!> and K?ZeK[Vx Vy?,
K3 = <C?>. Let V§ = V{.
Define A-map as follows: K!AK:= <C'> g8 <C*> &
<{C}~C?| C}eC!, C?eC>.
The §-map describes the composition of networks where all outputs of the first
network K! are connected into (all) inputs of the second network (V§ = V).
This is referred to as vertical composition of networks. This situation arises in

the construction of multistage and is motivated by existing multistage

networks such as ADM, Cube or STARAN network, where each stage may be

considered a network.

The following theorem shows that the 8 composition of two networks

results in a network over V|' x V3.




162

Theorem 8.5.13:
Let K'€K[V/!xVol], K!'=<C'> ad KeK[V2 x Vo,
K2 = <C?*>. Let V§ = V2
Lee K'AK?= <C'> g <C> = <{C}yC?| clecC,
CZ €C*>. Then <{C} 7CZ| C}eC!, C2eC’> eK[V{ x V3.
Proof:
(1> Theorem8.59 =+ C!~C? C C[V} x V3]
(2):  Show s(C! 4 C?) = VL.
Yu, €V} 3 v, €V§andCl€C = <y,v,>€C]
Vv, €VS 3 w, €V3and C? € C? = <v,,wp,> €C2
= Yy, €Vl 3 CleCland CZ€C? > <y, w,> €
CgaCE = s(C'y4CH =V
(3):  Show d(C! 4 C%) = V3,
Vw, €VE 3 v, €Vand Cf € C? = <v,,w,> €CZ,
Vv; €V} 3 u, € Vf and C} € C! = <u,v,> € C}
= Yw,eV3 3 CleC'and CZ€C? = <up,w,> €
ClyC? = d(C'4C% =V3
(4):  Show [C'yC} >2.
(41): |CY} 22 = 3C),CleC,C)#cC]
= 3 <y,vy> €C), <u,vy> ¢ C,.
(42): vpEVY = v, EVE = '3 Cle C? <vpw,> €C?
C2ECVZ x Vo] = <v,,w.> ¢ C2 v, # v,
(43): (41),(42) = <u,w,>€ C)7CY <uyw>¢ ClqC?
= ClqCl # ClqyCt = |CtyC? >2




a

The analysis of the partitionability of multistage networks will necessitate
the analysis of a network with a stage fixed at a given correspondence.
Consequently, the fixed stage no longer qualifies as a reconfigurable network as
originally defined. Therefore one cannot use the S-map to describe the vertical
composition of the reconfigurable stages and the fixed stage of the network.
To handle the problem, one could either define a new map, or use the F-map
with the understanding that the fixed stage is not a reconfigurable network.

The latter approach will be used here.
The following corollary shows that the @ composition of a network and a
fixed network stage results in a network over V{! x V3.
Corollary 8.5.14:
Let¢ K'eK[Vi!x V!, K'=<C'> and Cle CIV x Vo3,
s(C%) = V{, d(C2) = V3. Let V4 = VL.
Then K!3 Cf = <C'> 8 qu = <{c} quz | C; eCcl}>
€ K[V{ x V@I
Proof:

Similar to proof of Theorems 8.5.6 and 8.5.13.
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8.6 Multistage Network Model and Applications

In this section multistage networks will be formally defined. The
definition is based upon the examples of widely known multistage networks

such as ADM, Cube, STARAN, and others.

Definition 8.6.1:
Let K€ K[Vfx Vg, K=<C>, r=01,.t-1 be a set of
interconnection networks. Let V§ = Vf*! r =0,1,..t~2." Then K =
K°BK! g - - K'! is a multistage network over VP x V§&!. Note that
K can also be represented as K = <C>,C = C?q4Cl 4 --.C¥,

Intuitively K’ describes the rth stage of the multistage network.

In this part some applications of the model of multistage networks will be
presented. Although parts of the research done on single stage networks are
transferable to the domain of the multistage networks, the concepts are more
complicated. Examples of some artificially constructed networks will be given
in details. The examples of the networks are constructed in such way as to
illuminate the different types of partitionability of multistage networks.
Informally partitionability in multistage networks is achieved by selecting
specific controls in some stages and letting all other stages dynamically select
their correspondences. Hereafter, the former stages will be referred to as fixed
and the latter as free stages. Although the material is presented for the case of
partitionability into two component networks, it is easily generalized into r >

2 component networks.




165

: Ezample 8.6.2:

-

Consider the following multistage network (Figure 8.1.)

The network has the following functionality.

w - - o

(1)  There are two stages denoted by G°, G!.

- ere are two switcning eiements , 1=0,1 1n each stage r.
2) Th t itching elements Ef, i=0,1 in each stag

a

(3) Each switching element Ef, i=0,1 has the following functionality.
Vi = {ab}, Vo = {e,d}, C = {GCy,Ci}, Cp = {<a,e>, <b,d>},
C, = {<a,d>, <b,e>}. (This is the same as the straight and
exchange settings, respectively, of a multistage Cube type
network [Law?75].)

It can be shown that if in stage GO, in E?, i=0,1 the C, is selected, then

the network can be partitioned into

K° € Kl[{uguz} x {wg,wz}] and K'€ K{u)uz} x {w;,wg}].

Ezample 8.6.3:

Consider the following multistage network (Figure 8.2.)

The network has the following functionality.
(1)  There are two stages denoted by G° G!.
(2)  There is one switching element E' in each stage r.
3 (3) Each switching element has the following functionality.
Vi = {a,b,e,d}, Vo = {e,(f,gh}, C = {C,,C,},
Co = {<ae>, <bf>, <c,{;>, <d,h>},
C, = {<a,f>, <be>, <¢,h>, <dg>}).

It can be shown that if in stage GO, the Cy is selected, then the network

can be partitioned into
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Figure 8.2
Multistage network for Example 8.8.3.
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K’ € Kl{{uguz} x {wo,wz}] and K' € K[{u,ug} x {w;,ws}].
Ezample 8.6.4:

Consider the following multistage network (Figure 8.3.)

The network has the following functionality.
(1)  There are two stages denoted by G°, G'.

(2)  There are two switching elements in EJ, E? in stage G® and one
switching element E{ in stage G.

(3) Each switching element in stage G° has the following
functionality. V; = {a,b}, Vg = {¢,d}, C = {Cy,C;}, Co =
{<ac>, <bd>}, C; = {<a,d>, <bc>}.

(4)  The switching element in stage G! has the following functionality.
Vi = {a,b,c,d}, Vg = {ef,g,h}, C = {Cy,C,},

Co = {<a,e>, <bf>, <c,g>, <d,b>},
C, = {<af>, <be>, <c,g>, <d,h>}.

It can be shown that if in stage G!, in the switching element EJ the C,

is selected, then the network can be partitioned into K°¢

Kl[{up,u;} x {wow;}] and K' € K[{uzus} x {wp,ws}].

Ezample 8.6.5:

Consider the following multistage network (Figure 8.4.)

(1)  There are two stages denoted by G?, G\

(2)  There is one switching element EQ in stage G° and two switching
elements EJ, E} in stage G.

(3) The switching element EJ has the following functionality.
Vi = {a,b}, Vg = {¢,d}, C = {Cy,C;}, Cp = {<a,e>, <b,d>},
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C, = {<a,d>, <b,e>}.

The switching elements E{, E! have the following functionality.

Vi ={a}, Vo ={be}, C={Co,Cy}, Co= {<abh>}, C, =

{<a,c>}.
It can be shown that if in stage G, the C, is selected, then the network
can be partitioned into K°€ K[{up} x {wow,}] and K!e
K{{u;} x {wa,w3}]. Instead of fixing the G° setting, consider the setting
of the switches in stage G!. If in stage G! in switching elements EJ, E}
either the Cy or C, is selected, then the network is not partitionable due
to the following. If C, is selected then w, and w; are not accessible and

if C; is selected then wy and w, are not accessible in any state.

To summarize the information from the examples, the following is
essential for a multistage network to be partitionable. The network must have
more than one stage. There must be at least one stage such that if one state in
that stage is selected, two data path independent (and possibly control

independent) networks are generated. The two subnetworks must have V, V|

and V§, V§ such that VP WUV} = V| and V LUV = V. 1t is not essential

that the controls of the generated subnetworks are independent of each other.
It is not essential that each subnetwork will be again partitionable although it

is an interesting subclass.
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9 DATA COMMUNICATION IN A REAL-TIME SYSTEM
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9.1 Introduction

This is a study of a network design to support interprocessor data
communications in a proposed real-time distributed, digital signal processing
system structure [SeS84c]). The system is general nature in that it may be used
in a wide variety of signal processing applications, such as Finite Impulse
Response (FIR) filters, FFT and beamforming. Fault tolerance is a significant
design issue for this system. In particular, the ability to reallocate distributed
processing resources with minimal human intervention is important in order to
maintain a functioning system, although possibly somewhat degraded in
performance. The overall design of the system reflects its fault tolerance and

generality.

Figure 9.1 shows the signal data transfer parameters for three iterations of
the evolutionary distributed signal processing system. These parameters are
based on expectations for this type of system and are used as guidelines for the
design work in this study. Three phases, A, B, and C, are indicated in the
figure. Phase A is the 1985 time-frame, Phase B is the 1990 time-frame, and
Phase C is the 1095 time-frame. Seven functional sets of devices are shown:
preprocessor, signal conditioner, signal processor, general purpose processor,
tape storage, disk storage, and operator console.

The top three rows of parameters in the figure indicate the number of PEs
(processing elements) in each functional set for each phase of development
(note that for tape and disk storage the “PEs” refers to storage devices). The

notation “‘x(@y)” means ‘“‘x” devices, each with ‘‘y” times the capability of the

similar device used in the previous phase (as a result of technology insertion).
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Number of ‘;_;2 5
Processing I o4
Elements (PEs) B ;

PhaseA 8 8 (3 18 2 3 18
Phase B 18 18 12 24 ‘ 6(02) 18
Phase C  48(Q16) 48(02) 80(02)  36(02) 8(08) 12(2) 18

[Sjgml Signal General Tape Opento1 o

Disk
Storage

- Ii'epmm' |Conditioner[~|Processor] |Purpose Storage Console
Processor

..........................}........... ........E...'.......{........5 Eﬂ:\-'

18 2 1 1 2 2 2
32 4 2 2 4 3 3
192 20 4 4 2 4 4

Phase A
Phase B
Phase C 3

~N 0
= NN
L 3 N

“Vala 8 8 2 @
»

Total Bandwidth
per Functional Group -
(megabytes/sec.)
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-
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) Figure 9.1:
: Signal data transfer parameters for three iterations
of an evolutionary distributed processing system.

z
LY

-y ¥
r "'
DA
‘l:l

DA

“y e
w
a

oo
Ay
i o

"
7

- - - - L N gN E ] ) !l.- . - -
,'.'h 's)' -.f-. .',s"‘,"-."'-,’ 47
”

S AL
A0S, SIS ';35‘."\1 Y



‘ 176 RS0
R
There are two classes of data communication paths. The solid lines are IS
i' o
used for data processing. The dotted lines are used for the preprocessor to
s
send the input data signals to: (1) tape storage to create history files for a“
possible later off-line processing, and (2) the operator console for monitc;ring 3~,f7f§;
purposes.
' s
The parameters in rows four through six indicate the expected average {:;.
“total bandwidth per functional set” for each of the three phases. The :EI:}:T;Z
numbers correspond to the connection above them represented by an arrow in .-.
the figure. The average bandwidth per PE in a functional set is calculated by l_'::IE
dividing the total average bandwidth by the number of PEs. For example, the .'--Z;-:
v
preprocessor to signal conditioner bandwidth is 2 Mbytes/sec per PE for both ‘ ’
Phases A and B. The peak bandwidth is approximated by two times the
average bandwidth. For example, the preprocessor to signal conditioner
bandwidth is 4 Mbytes/sec per PE for both Phases A and B. A
e
Our study of the data transfer network for this system will focus on the AN
s
preprocesscr to signal conditioner to signal processor communications. The Ny
distance between the preprocessor and signal conditioner, as well as between RN
NOA
S,
the signal conditioner and signal processor, is expected to be on the order of e
el
five feet. These functional sets will most likely share a single cabinet. The :t'%
entire system will most likely fit in a rectangular area of approximately 40 feet
RN
by 60 feet. Z'{\-::;:Z
The following are assumptions used in later sections about the expected i
data communications between the preprocessor and signal conditioner, and ;:;._-;l
e
between the signal conditioner and signal processor. Note that for this study T
e
the network is not required to provide communications among the PEs within a 't
functional set. :jiy;f
SN
s..\'.'
EANA,
Lot
-".u::‘."éh....- ................ o




The communication patterns between the PEs in adjacent functional sets
is predetermined before execution begins. Thus, each PE in a functional set
knows to which PE(s) to send data in the next functional set. In case of faults
in the system, once the fault is detected the system control program reallocates
tasks to the PEs and modifies the associated connection requirements. Each
relevant PE’s program is updated, appropriate program rollback and restart

procedures are performed, and execution continues.

Communications between functional sets will be from a fixed group of four
PEs in the sending set to a fixed group of four PEs in the receiving set. This is
demonstrated in Figure 9.2. The communication between a group of four
sending PEs and a group of four receiving PEs can be one-to-one, many-to-one,
or one-to-many. The one-to-one implies each sending PE is connected to only
one receiving PE (and so each receiving PE is connected to only one sending
PE). Note that the pairing of a sending PE to a receiving PE is arbitrary.
This one-to-one pairing is expected to be the predominant mode of operation.
The many-to-one connection implies that more than one PE in the sending
group transmits data to the same PE in the receiving group, i.e., two-to-one,
three-to-one, or four-to-one. This mode would be used in case there are one or
more faulty PEs in the receiving group, or if the computational task being done
by the sending PEs required the use of multiple PEs in order to prepare data
for a single PE in the next functional set. This mode is expected to occur
infrequently. The one-to-many connection implies that one PE in the sending
group transmits data to multiple PEs in the receiving group, i.e., one-to-two,
one-to-three, or one-to-four. This mode would be used in case there are one or
more faulty PEs in the sending group, or if the computational task being done

by the receiving PEs required the use of multiple PEs in order to process data
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from a single sending PE. This mode is also expected to occur infrequently.
The modes can be combined, e.g., a two-to-one connection, a one-to-two
connection, and a one-to-one connection (between one pair of PEs) can be
established simultaneously if no PEs are faulty. To summarize the connection
patterns between functional groups: the most common mode of operation
expected is the one-to-one pattern among four sending PEs and four receiving
PEs (arbitrarily paired), but the network should also be capable of efficiently
supporting one-to-many and many-to-one connections, as well as combinations

of all three patterns.

Data transfer between PEs in different functional sets will be overlapped
with computation. Consider the example shown in Figure 9.3, where each PE
is connected to one PE in the next functional group. Shown below each PE is
its three bank swinging buffer memory: one bank for data currently being
operated upon, one bank for storing data previously generated by that PE (and
currently being sent to the next PE), and one bank to receive data currently
being sent by the previous PE (for processing after the current data set has
been processed) [Dem83]. Each bank is a physically separate memory of 64K
words. Thus, each PE is effectively sending a data set, processing a data set,
and receiving a data set simultaneously. For example, consider the data sets in
the figure using the signal conditioner PE’s swinging buffers. Data set E is
being sent by the preprocessor PE (which previously generated it) to the signal
conditioner (which will process it after it finishes processing data set D). Data
set D is currently being processed by the signal conditioner PE. Data set C is
being sent from the signal conditioner PE (which previously generated it) to
the signal processor PE (which will process it after it finishes processing data

set B). The transmission of data sets A, C, E, and G, and the processing of
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data sets F, D, and B, are all occurring simultaneously. The time to perform
these simultaneous transmissions and computations is called an snterval. In the
next interval, data sets B, D, and F will be transmitted, and data sets A, C,
and G will be processed. Similarly, in the interval prior to the one shown in
the figure, data sets A, C, and E were processed, and data sets B, D, and F
were transmitted. In summary, data sending, receiving, and processing occurs
simultaneously for the PEs, as shown in Figure 9.3, through the use of three-
way swinging buffers, and an interval is the time required for a PE to
simultaneously receive a data set, transmit a data set, and process a data set
(such as the signal conditioner PE does with data sets E, C, and D,
respectively, in the figure.) It is assumed that, in general, the time to process a
data set is longer than the time to transmit or receive a data set, and therefore

determines the length of the interval.

The amount of data sent by a single PE is expected to be a block of a
minimum of 1K words and a maximum of 64K words. A number of source
PEs can send data to any of the destination PEs (as specified by the
connectivity); each destination PE, however, receives data from at most one
source at any given time. Multiple sources send data to a common destination
in a multiplexed fashion (in a predetermined static way) so that each source

can send its data without contention.

In summary, the data communications will be between the ‘‘swinging
memory buffers” associated with the PEs in the system. The requirements are
that communications will be among groups of four source PEs and four
destination PEs. Four approaches were considered: multistage based networks,
ring based networks, shared bus, and crossbar based networks. As a result of

the analyses presented in [SiM84], crossbar based networks were selected as the
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method of choice for data communications in the system. Multistage
(logyN stage) networks, such as the cube [AdS82b, SiM81], were not chosen
because to establish connections between just four (or eight) source PEs and
four (or eight) destination PEs the crossbar is more flexible, and, given current
technology, cost-effective. Ring based networks were eliminated because if
most communications are 1:1 (one source PE to one destination PE) and occur
simultaneously, the parallel paths provided by the crossbar make it more
suitable. Shared bus networks were eliminated because the PE's swinging
buffers could not load data onto them fast enough for them to operate at the

desired Phase B bandwidth. In this work, the characteristics of a crossbar

'chip, the organization of these chips for fault tolerance, and the way in which

the crossbar based network can be interfaced to the processors are described.
An 8-by-8 design is proposed instead of a 4-by-4 design to provide extra load

balancing capabilities when faults occur.

9.2 Overview

In Section 9.3 the problem is informally defined. In Section 9.4 the basic
terms are defined. In Section 9.5 the buffer to network interface is discussed.
Several architectures at the chip level are analyzed in Section 9.8. Section 9.7
evaluates four network architectures. Finally, in Section 9.8, various fault
detection and recovery methods (at the system level) are presented. In Section

9.9 the conclusions are presented.
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: 9.3 Problem Definition o
. y
; Y
; 3
‘: The network design presented is based on the preprocessor/signal LAl
4 conditioner communication requirements. These requirements are greater than \
those for the signal conditioner/signal processor, both in terms of throughput EE:E‘
. and number of processors. However, they are similar enough that it appears ‘
J best to wuse the same network design in both cases. Since the :
preprocessor/signal conditioner requirements are stricter, these will be used to :3;

3 guide the network design. Any capabilities included for the preprocessor/signal
: conditioner communications but not needed for the signal conditioner/signal {
‘~ processor communications can be adapted to provide additional fault tolerance. :\:.:E-
The problem is to design an interconnection network for a distributed '
~ signal processing system satisfying the following specifications. The
specifications here are based on the expectations of the way in which such a \
system may operate. e
In this section, the requirement of network extendibility to a larger \\‘
r number of PEs is described. The data communication is between a set of J
source processors and a set of destinations processors. The set corresponds to a “
- common functional specifications, such as the set of processors used as ::
preprocessors. The data movement is unidirectional from a source processor to :

a subset of destinations processors. The processors are addressed by distinct T‘
consecutive integers in each set separately. The communication requirements :':_::'::
E specify that a fixed group of four source PEs in one set be allowed to send data -';;:
| to a fixed group of four destination PEs in another set. The subset of four ’. '
processors addressed by a, where r\
. = '/-?_'.'_.
R S T A e e e



a=4i+j 0<j<3

will be called group i.

In Phase A (1985) the system will have two groups in the source set and
two groups in the destination set. In Phase B (1990) the system will have four
groups in the source set and four groups in the destination set. Phase C (1995)
of the system will not be discussed here since we feel that technology will have
changed so much by then that it is better to concentrate our efforts in this

section on phases A and B. It is desirable for a single conceptual design to be

ol

b..':'

applicable to both phases A and B. ‘;:E:;f.

N

In this paragraph the throughput requirements of the network are atel

' specified. o
L) p ’:: ."'.:
) (‘_'J\
: For phase A: g
) ’-.‘.':

’
" l'

(a) Average: 2 Mbyte/sec/PE with 8 PEs active

(b) Peak: 4 Mbyte/sec/PE with 8 PEs active
For phase B:

(a) Average: 2 Mbyte/sec/PE with 16 PEs active

(b) Peak: 4 Mbyte/sec/PE with 168 PEs active

Since the physical distance between the set of sources and the set of
destinations is expected to be on the order of five feet, it will be assumed that
throughput of a single wire is 1 Mbyte/sec/wire. Using a crossbar based

network, a 4-bit network word is sufficient’ to handle the peak load of each PE
(4 Mbyte/sec) for both Phases A and B.

The following are the interconnection function requirements. The required

data communication is only from group i of a set of source PEs to group i of a
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; set of destination PEs (four source PEs and four destination PEs). The
. ; functions are as follows within each group. PE k can send data to any subset
of the destination group. Any number of source PEs can send data to any of
the destination PEs as long as each destination PE is getting data from at most
one source at the same time. (Note that when multiple sources send data to

the same destination time division multiplexing is used so that each source can

l,.,

send its data without contention.) The amount of data sent by a single
processor is expected to be a minimum 1K words and a maximum of 64K

~ words.

. The fault detection and recovery is a salient issue of the design. Soft
faults are transient and temporary. An important requirement is that soft
faults occurring in control messages (e.g., message header, chip control signals)
will be detected. It is not as important to protect data information from soft
errors, as they can normally be treated as additive noise. If desired, parity bits
or error-detection/error-corrections bits could be added. Hard faults are
permanent. Therefore, hard faults occurring in control and data
communications must be detected as early as possible. In summary, the system
should be able to recover from as many soft and hard errors as possible,

perhaps with some loss functionality or throughput.

Another important requirement is that the cost of the implementation will
be low. The cost categories are: (a) number of chips; (b) number of distinct

types of chips; and (c) wiring complexity between the chips of the network.
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¥ 9.4 Basic Concepts .
‘ n_c P ‘w’%
A
’ 23
s (3 .(i‘:
X In this section some terminology that is used throughout this work is e
presented. )

bt
.
.

Transmission dialog. the action of a processor transmitting all the data R
t contents of its buffer to perhaps multiple destinations. A transmission dialog E:
consists of a number of transmission blocks. .
: Transmission block. an uninterrupted transmission of (=~ 128 to 1K bytes), a \‘Ts‘
! component of a transmission dialog. .;{.\
Data interconnection network: the hardware dedicated to the transmission of e
data from sources to destinations. ::E
Report interconnection network: the hardware dedicated to the transmission of :.-:
] status and error reports from destinations to sources. :
A PE: processing element or processor. 'E:E
: DMA: direct memory access hardware — the hardware that controls the state :S.'-;
| of the network and is responsible for the details of the transmission dialog. :._;
f Source PE: processor designated so by being the source of data transmitted "E:'
; through the data network. .’.s::.
Destination PE: processor designated so by being the destination of the data o~
transmitted through the data network. .:‘_
SDMA: the DMA interfacing the source PE to the input of the data network. ;E
DDMA: the DMA interfacing the output of the data network to the '
destination PE. :\;
Network port: the input (output) pins of the network dedicated to a single E;.Si
processor.
]
R
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Network path: the reconfigurable hardware between the source DMA of a single
processor to the destination DMA of a single processor.

Network bit path: a single one-bit wide component of the network path.
Network word: the word consisting of the functioning bit paths (per network
path).

System word: 16-bit word also called “‘word.”

Input wire: is a wire connection from output of the source DMA to the I/O pin
at the input of a chip of the network.

Output wire: is a wire connection from the I/O pin at the output of a chip of
the network to the input of the destination DMA.

Middle wire: is a wire connection between the chips of the network.

Chip data line: is the path that data uses inside a network chip.

Chip control: is the path and logic the control uses inside a network chip.

9.5 DMA - Direct Memory Access

This section describes the specialized DMA chips or logic needed to

interface the the swinging buffers to the network.

Here the source DMA functions (see Figures 9.4 and 9.5) will be described.
(1) Buffer interface: The logic that interfaces to the swinging output buffer.
(2) Data formatter: The conversion of 16 bit words into the network word.

Network word width is determined by the number of nonfaulty bit paths per

network port.
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Figure 9.4

PESTINATION DESTINATION
BUFFER | | ",
D- DATA
C- CONTROL
R - REPORT (STATE, ERROR)
AS - FE SUURCY. ADDRESS
AD . PE DESTINATION ADDRESS

The architecture of the communication 'system: D - data, C - control,
R - report, AS - PE source address, AD - PE destination address.
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Figure 9.5:
Source DMA architecture.




(3) Block counter: The block counter is loaded by the source PE. It is
pormally initialized to the number of transmission blocks per dialog, and
decremented each time a block is transferred. For diagnostic purposes the PE
has read/write capabilities.

(4) PE status: The hardware contains a PE status table. The table consists of
K registers. Register i contains the status of the destination processor i,
0 <i < K (where K is the number of processors in the group (see Section
9.3)). This table is used as follows. Every time a destination PE receives a
block of data, it will return a status report. The system monitor can read the
status table and monitor the correctness of the operations.

(5) Header generation: The header generation logic will construct a header as a
triple (i,j,k), where i is the logical source address, j is the logical destination PE
address, and k is the number of remaining blocks in the current transmission
dialog. The fault tolerant extension of this minimal header is discussed in
Section 9.8.

(6) Header encoder: The header encoder logic will encode the header using
some error correction code (e.g., CRC) to protect against soft errors.

(7) Diagnostica: The diagnostic logic is used for diagnosis of the network. The
SDMA periodically will try to test the network and all the destination
processors for faults. The diagnostic logic will also report to the system

monitor any destination PE that does not function properly.

(8) Parity generator: The parity generator will generate parity bits for each

network word.
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(9) Data network interface: The data network interface logic will send the

network word (with optional parity) to the network input port.

Here the destination DMA functions (see Figures 9.4 and 9.8) will be
discussed.
(1) Data network sinterface: This logic accepts data from the network output
port.
(2) Parity check: This logic checks for correct parity of the network word.
(8) Data deformatter: This logic converts the data format from the network
word format to the 16-bit word format.
(5) Header decoder: This logic decodes the header which was encoded by the
error correction code at the source PE.
(6) Header check: This logic will check the source, destination, and block count
fields for inconsistencies (this is discussed further in the Section 9.8).
(7) Soft/hard error: This logic will make the determination whether a soft or
hard error occurred in the network. It will do so by counting parity errors and
using information about header errors. If it is a hard error, the DDMA will
notify the SDMA which will then reconfigure the bus or run some diagnostics
to identify the exact error. The system monitor will be notified.

(9) Buffer interface: This logic sends the data which is now in the 16-bit word

format to the destination buffer (see Figure 9.4.)
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9.8 Architecture of the Fault Tolerant Crossbar

In this section two architectures of a fault tolerant crossbar will be
presented, type I and type II. There are many ways to partition s nxmxk (n-
input, m-output, k-bit wide) crossbar network into chips subject to available
I/O pins and other constraints. One way to partition the network is to use bst
aslicing. Here the desired network is implemented using a number of network
planes. Each plane would have the same number of interconnection ports but
would have a smaller bit path. For example, a3 4x4x8 crossbar can be
implemented using this approach with four 4x4x2 crossbar chips as illustrated

in Figure 9.7. A second approach is to build the larger network with a set of

smaller networks. Here the desired network is obtained by essentially
cascading a set of subnetworks. An example of how a 4x4x8 crossbar can be
implemented using this approach with four 2x2x8 crossbar chips is illustrated

in Figure 9.8.

Here the partition selected is based upon the important reliability criteria.
The type I and type II chips are implemented as bit slices since that minimizes
the number of chip-to-chip connections compared to the cascading approach.
These connections slow down the signal and more importantly force the bit

path through many soldering joints (an unreliable element).

Different chip architectures for nxm crossbars are discussed in [MaM8la,
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Implementation of a 4x4x8 crossbar using bit slicing.
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control bits (since the overhead is negligible compared to the length of the

transmission block).

In this section the architecture of the 4x4(l) type I crossbar crossbar chip
is described. The chip must satisfy the interconnection requirements described

in Section 9.3. Also, it must be highly fault tolerant; for example:

(a) A faulty section can be localized and disconnected from the rest of the
properly functioning chip.

(b) The pins available allow different methods of controlling the chip. It is up
to the logic designer to decide which method satisfies any specific set of

requirements.

(c) There are two paths for all data lines on the substrate.

In this system the interconnection functions are restricted to functions
from a single group i of four source PEs to a single group i of four destination
PEs, thus the pin limitation based design methodology discussed in [FrW8l1,
FrWs82] is not relevant since it applies to networks of size 64x64 or larger.
Also, because here the concern is with 4x4 crossbars, the finite state automata
type implementations as discussed in [WaF83] will not be applicable, especially
since the fault tolerance of the implementation is the most important aspect of

the design.

Figure 9.9 shows a block diagram of a type I chip. The pin functionality

is as follows:

(1) 4x4 is described here for pedagogical reasons, however the design is applicable to rxr
crossbhars as well.
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Dlo A

|
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CTK2 CTRG2

DI3 o u

CTI3
——

CTK3 CTRG3

RES

TO ALL CTRGs ! y ‘ ‘
DOo DO1 DO2 DO3

Figure 9.9:
Block diagram of a type I chip.
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DI j: Data input for input port j

CTIl j: Control register input for input port j

CTK j: Control clock input for input port j

DO j: Data output for output port )

RES: Reset input, will reset all CTRGs (control registers) to zero

V..  Power supply, two physically distinct pins (not shown on figure)

G: Ground, two physically distinct pins (not shown on figure)

The number of functional pins in a type I chip is as follows: input port i :
three pins (DI i, CTI i, and CTK i); Output port j : one pin (DO j); and reset :
one pin (RES). For a 4x4x1 crossbar the total number of signal (control and
data) lines, which does not include RES, is 4x4 =16 {4xN for an NxNx1
crossbar). For an 8x8x1 crossbar the total number of signal lines is 8x4 =32.
Assuming there can be up to 80 signal pins or 8 VLSI chip using VHSIC
technology, four 4x4x1 crossbars, each with its own control and reset for fault

tolerance purposes, can e implemented on a single chip, yielding a 4x4x4

crossbar. Similarly, an 8x8x2 crossbar chip could be constructed.
There are several methods of controlling the port.

(a) The processor that sends the data to an input port can be the same
one that sets up the controls for that port (better from a reliability

point of view).

(b) The chip control is given to the system control unit.

We will assume the processor sending the data controls the input port (i.e., sets

the port's CTRG).

.....................
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The port functionality of a type I chip is as follows. The CTRG j must be
loaded with control information. Port j can be in one of the two states, the
enabled state or the disabled state. If input port j is enabled, and b; =1 in
CTRG j, for some fixed i, 0 < i < 3, then the data from DI j will propagate to
DO i. It is possible to have any subset of bits set in CTRG j. If input port j is
disabled, then input port j data will not get propagated to any output port. A
special control bit b, is in each CTRG for fault tolerance reasons. If by =1 in
CTRG j then input port j + 1 modulo 4 is disabled. This allows a PE to

‘“‘disconnect” another PE which is faulty. The usage of the b, bit is discussed

o, A

Y .

VBT e e .
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later. There is no need for contention logic since the SDMA will know which
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destination processors are available (as discussed in Section 9.1).
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In Figure 9.10 the data path for the output port i (DO i) is shown. For

reliability reasons each gate is duplicated by a parallel gate with the same logic
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function. This method will protect the chip from an open gate fault (stuck
low) since its parallel gate can carry the function alone. If a gate output is
stuck on high it will cause loss of functionality of only part of the chip; the
closer to the chip output that the gate is, the larger the part of the chip that

will lose its functionality.

Although the possibilities to recover from faults are many, only a few will

be discussed here to illustrate the main strong points of the design.

(1) Suppose a single gate in the crossbar chip is stuck at low in the data path,
then the error will not exhibit itself because of the gate parallel to the

faulty one.

(2) Suppose it is known that the input data path (external to the chip) is

stuck on high, then the control of that port will load CTRG appropriately
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Figure 9.10:
The data path for output port i (DO i).
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and disconnect the data path. (Stuck on high means that the path is
stuck in such way that the DO i connected to this input would be forced
high.)

Suppose it is known that input data path of input port j is stuck on high
and also the contro} logic of that port is not functioning. Then the

processor attached to input port j—1 modulo 4 can use its disable logic
(by) to disable the faulty port j.

If the input path is stuck at low, the functionality of the rest of the chip

will not be impaired.

If the combined delay from the output of the SDMA to the input of the
DDMA (see Figure 9.4) exceeds the desired clock cycle time, then the path has
to be broken by a set of registers, one per port, allowing data to be pipelined
through with shorter delays. When the crossbar chip is located physically near
the source processors, then buffers should be placed at the output of the
crossbar chip (on the chip itself). The decision to place the buffers at the
outputs of the crossbar is based on the assumption that the delay from an
output of the SDMA to an output of the crossbar chip is one half of the
combined delay from the output of the SDMA to the input of the DDMA. In
this system the combined delay is short therefore there is no need to break the

path.

In this section the architecture of type II crossbar will be described. The

type I crossbar (see Figure 9.11) is very similar to the type I implementation
with exception of the following. The CTI i and DI i inputs are merged into a
single pin. This results in a savings of Nxb pins for an NxNxb crossbar. The

reliability has been compromised somewhat, however, because if DI i is stuck




CTKR3

RES

TO ALL CTRGs }
DOo DO1

Figure 9.11:
Block diagram of a type I chip.
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on one, the CTRG i cannot be loaded to get the DI i off the output bus DO j
(if DI i is connected to DO j). However, it is still possible to get DI i off the
output bus DO j by using the b, bit of CTRG i—1 modulo 4.

The number of functional pins in a type II chip is as follows. Input port i:
two pins (DI i and CTK i). Output port j: one pin (DO j). Reset one pin
(RES). For a 4x4x1 crossbar the total number of signal (control and data)
lines (not including RES) is 3x4 =12 (3xN for an NxNx1 crossbar). For an
] 8x8x1 crossbar the total mumber of signal lines is 3x8 =24.. Similar to the
: analysis for a type I crossbar design, assuming there can be up to 80 signal pins

on a chip, a 4x4x6 or 8x8x3 crossbar can be constructed.

—_ 9.7 Network Architectures

s Several different network architectures and their implementations using
type I or type II crossbar chips will be presented in this section. Each scheme

has sufficient throughput.
Each scheme will be evaluated using the following criteria.
(1) Types of interconnection functions admissible.

(2) Number of chips.

(3) Cost of connections between the chips of the network.

(4) Fault detection (hard faults).

................
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(5) Fault recovery.

(6) Extendibility to a larger number of processors.

(7) Extendibility to larger bandwidth.

Although the required interconnection functions demand only a 4x4
crossbar, for the following reliability reasons an 8x8 crossbar will be used.
Suppose two PEs fail or the paths to them fail in a single group j (of size four).
This would cause the load on the two remaining PEs to double. Using an 8x8
crossbar it is possible to allocate one PE from group j + 1 and thereby balance

the load over two groups (and their associated PEs).

The DMA network port consists of four bits which provides sufficient
bandwidth (4 Mbyte/sec/PE) to meet the specifications in Section 9.3. This
can be calculated as follows. Each PE has four-bit wide bus. Based upon the
longest distance of the connections between source and destination PEs (~~ 5-10
ft.) a single wire can transfer approximately 1 Mbyte/sec. A bus width of four
bits allows 4 Mbytes/sec. Now, consider the swinging buffer memory
bandwidth. Since the output memories are capable of reading 2 bytes/100 ns
(~ 20 Mbyte/sec.) the memories, too, have sufficient bandwidth. The above
calculation shows that each PE has available a network (and memory)
bandwidth of up to 4 Mbyte/sec/PE, which satisfies the requirements for both
Phases A and B.

Consider scheme 1 shown in Figure 9.12.

(1) Interconnection functions admissible; The functions admissible are the

full crossbar functions.

(2) Number of chips required: Using chip type I or type II two chips are

required.
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Network architecturé scheme 1.
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! (3) Cost of connections between chips of the network: Not applicable.

(4) Fault detection: The header method and diagnostics will detect multiple
: faults of the data path and also faults in the control, e.g., routing.to an
l incorrect destination processor. (For more details see Section 9.8 on fault

detection and recovery.)
(5) Fault recovery:

(a) If a bit path is broken either in the wires or on the chip, then the
SDMA will reformat the network word and send it over the other
correctly working bit paths. The DDMA will then deformat the

network word into the system 16-bit word.

(b) If the control of a single bit path is not functioning, the fault will be
handled as if the bit path is broken.

(6) Extendibility to a larger number of processors: Since the required
interconnection functions can be partitioned (restricted) to groups of four
processors, the scheme is easily extendible. Extension of the network can
be accomplished by adding a complete interconnection network for each
additional two source and destination groups (eight source processors and

eight destination processors).

(7) Extendibility to a larger bandwidth: Since the bandwidth is limited by
the number of wires per port, the extension simply involves increasing the
number of wires per port and also the number of bit slices of the

network. (This can be done up to the limit imposed by the swinging

buffer bandwidth.)

Consider scheme 2, shown in Figure 9.13. This system consists of two

complete networks in parallel. If there are no faults, only one of these
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Figure 9.13:
Network architecturé scheme 2.
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networks is used. The outputs from the two networks are either selected by a
multiplexer (with each bit path controlled independently) or by the tri-state
logic inside the chips themselves. It is assumed that faults in either chip can be

contained and will not affect the other chip.
(1) Types of interconnection functions admissible: Same as scheme 1.

(2) Number of chips required: Using chip type I or type Il four chips are

required.

(3) Cost of connections between the chips of the network: Connections are
simple.

(4) Fault detection: Same as scheme 1.

(5) Fault recovery:
(a) Same as 5(a) for scheme I.

(b) If a bit path is broken inside one of the chips, then using the
multiplexer (or tri-state control) the corresponding functioning bit

path from the other network will be substituted.
(¢) If the control for a single bit path is not functioning, use the
substitution as in (b).
(8) Extendibility to a larger number of processors: Same as scheme 1.

(7) Extendibility to larger bandwidth: Within a single network the same

arguments as for scheme 1 hold.

Consider scheme 3, shown in Figure 9.14. The first (closest to the SDMA)
part of the total network will be referred to as the front network. The second
(closest to the DDMA) part of the network will be referred to as the rear

network. The output port i of the front network and input port i of the rear

network will be referred to as intermediate port i. If the assumption that long
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wires are more susceptible to faults than short wires holds, then this scheme

has some advantages.

(1) Types of interconnection functions admissible: Same as scheme 1.

o

(2) Number of chips: Using chip type I or type I four chips are required.

(3) Cost of connections between the chips of the network: Connections are
simple. |

(4) Fault detection: Same as scheme 1.

(5) Fault recovery: All techniques presented for scheme 1 can be used in
addition to the following. Suppose source PE i wants to transmit to
destination PE j. If a bit path is broken in the middle wire of port j it is

possible to send data over the middle wires of intermediate port k #j

[ R

and then use the rear network crossbar to move the data from port k to
output port j. Depending on the percent utilization of the paths, this

b may make system degradation negligible.

In this paragraph the scheme 4 will be described. It is possible to combine
schemes 2 and 3 and get the benefits of both schemes. It will however involve
four times more hardware than absolutely necessary from a connectivity and

throughput point of view.

In this paragraph the network architecture for phase B will be presented.
To construct the network for a system consisting of 168 source PEs and 16
destination PEs, the schemes | through 4 can be used as follows. For each set
of eight source PEs together with eiéht destination PEs construet an
independent network. That means that for phase B (16 source PEs, 16
destination PEs), there is one 8x8 network for source PEs 0-7 communicating

with destination PEs 0-7 and there is another independent 8x8 network for
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source PEs 8-15 communicating with destination PEs 8-15.

9.8 Fault Detection and Recovery

Three techniques for fault detection can be used: (1) parity generation and
checking, (2) system run diagnostics, and (3) block header generation and

checking during the normal mode of operation. Consider the latter two in

more detail.

For system run diagnostics, the SDMA of processor i will either generate
(or use prestored) test patterns to test all the bit paths of the network. It will
send the patterns to all the destinations within the group and thereby test the
data paths and controls of the network. The message will have the following
format. At the beginning and the end of the block there will be a header
containing the source field, destination field, opcode field, and block count.
Some header formats and dialog techniques are discussed in [ThC83]. The
scheme presented here is an augmented version of these formats for increased
ease of fault detection. The opcode will say which diagnostic is being run.
That will notify the DDMA for what it should specifically test. Some test
patterns may follow the header, depending-upon the particular diagnostic. The
DDMA will analyze the header’s destination field to check the control of the
network. The DDMA will then send the error report to the SDMA. This is
done through the report network (see Figure 9.4.)
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The report network is an independent network used by the destination
PEs to return status and error reports, or any information that the diagnostic
routine requests. While the necessary bandwidth is low, for reliability reasons
o it should consist of at least four one-bit slices. Architecturally it is identical to

the data network (that is, an 8x8 crossbar). It is important that the SDMA
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. originating the diagnostic gets the error report even if the report network is not

’
L2
"4

LR ]

completely operational. This will be accomplished by trading throughput for
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redundancy in the information. Basically the error report will be sent serially

over each of the bit paths belonging to the particular port being tested. For
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’ the error report to get back to the testing SDMA it is then sufficient if only one
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bit path in the report network is non-faulty. (The SDMA will analyze the
header of the report message sent by the DDMA and check it for correctness in
a way similar to that used by the DDMA to check the header of the data
message.) The error report itself should be encoded by multiple error correcting
code, because soft errors in the error report could have catastrophic
consequences. The reason why it is important for the testing SDMA to receive
the error report is that it can then make the best decision about which
bardware is faulty and should not be used. The more information that is
available to the testing SDMA the less, but sufficient, amount of hardware will
have to be reconfigured. The major philosophy here is that the detection of
faults in the network as well as subsequent reconfiguration (discussed in the
'. next section) is done locally, independent of the system monitor. The exact
description of the error will be assembled and broadcasted to all the source PEs
by the DDMA. For example, if destination j has bit path k broken, all the
source PEs when sending data to the destination j will format their data in

such a way as not to use bit path k. This describes only the flavor of possible
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diagnostics and many more are possible. Further research is required in this

area.

Block header generation and checking during normal mode of operation
can be implemented as follows. Each block during a8 normal transmission
dialog will contain a header of form (i,j,k,l,m), where

i is the source PE address,

j is the destination PE address,

k is the number of this block within the current transmission dialog,

1 is the operation to be performed by the destination PE on the data,

m is the multiple error correction code on the header.

First, the SDMA sets up the path in the network to the proper destination.
Then the header will be sent on each of the bit paths at the source port to the
DDMA. The DDMA will receive the header (actually multiple headers, one on
each bit path). Trivially, the DDMA will discover any broken bit path. It will
also discover any faulty network controls by examining the destination field. If
the network is implemented as independent slices, it is possible that only some
of the bit paths have bad control which will be discovered by the destination
field. The block number can be used as follows. The DDMA maintains the
last received block count in a register. By comparing the register with the
incoming block number, it will discover faults such as lost blocks. The headers
have to be soft error protected since they carry important information. The
headers will be resent at the end of the blo;k. If received correctly then, it will
be assumed that data was transmitted correctly with the exception of soft

errors on the data which will be ignored and treated as additive noise.




In this section several fault recovery techniques will be discussed. Some of
the techniques may be applicable to only some network architectures and/or

implementations. The possible hard faults can be classified as follows.
(1) Bit path in an input or output wire breaks.

, (2) Bit paths inside the network chip breaks.

(3) Bit path in a middle wire breaks

(4) Bit path inside the network chip is stuck on high or low.

(5) The control of some but not all bit lines (of a single path) are faulty and

the destination port is not receiving all of its bits.

(8) The control of all the bit lines (of a single path) are faulty and the
destination port is (a) not receiving any data or (b) receiving data

destined for another processor.
(7) PE fault.

It can be seen in the section on fault detection (Section 9.8) that any of these
faults are detectable by the header and status report during normal operation.
The question of how to reconfigure the network will depend upon the network
architecture. For more details, see the section on network architectures

(Section 9.7).

When a fault occurs, it will be discovered by the DDMA at the next block
transmission. The DDMA will then send an error report to the SDMA. The
SDMA will start diagnostic routines to evaluate the exact nature of the fault
(for example, a faulty bit path). The source and DDMA will then reconfigure
their hardware (for example, format the network word to skip the faulty bit

path). At this time the SDMA will also notify the system monitor about the

new reconfiguration. The system monitor does not have to be involved in the
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. network reconfiguration, it will just notify the operator that it occurred.
E 9.9 Conclusions

For this application, and given current and near future technology, a
crossbar based interconnection network is very well-suited to the task under
consideration. Two different fault tolerant chip architectures were presented.
Four network architectures were designed and their characteristics described.
Several fault detection and recovery techniques on the system level were shown,

since the fault tolerance is a salient issue of this system.
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10 SHUFFLING WITH THE ILLIAC AND PM2I SIMD NETWORKS
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10.1 Introduction

Parallel computation is one way to take advantage of the low-cost
processing power made possible by VLSI technology. The SIMD mode of
parallelism has been successfully exploited in a number of problem domains. A
critical architectural feature of a large-scale SIMD system is the interconnection
network. A variety of networks have been proposed and analyzed [Sie79a].
The choice of which network to implement in a system is a function of factors
such as the intended computational environment (i.e., task domain) for the
system, construction time and cost constraints for building the system, and the
capabilities of the interconnection networks. One of the ways in which to
measure the capabilities of a network is to examine its ability to do different
data permutations. Here, the abilities of two single stage networks to perform

the ‘‘shuffle” data movement are evaluated.

This paper extends SIMD interconnection network studies presented in
[Sie77, Sie79b). In particular, the ability of the PM2I and Illiac single stage
SIMD machine interconnection networks to perform the shuffle interconnection
is examined. Two algorithms for an SIMD or multiple-SIMD machine with the
PM2] network to perform the shuffie are given. One algorithm is used in the
event that the SIMD machine is of the same size (in terms of number of
processors) as the shuffle to be emulated.. ‘The other algorithm is used when
the shuffle to be performed is of smaller size than the given machine with the
PM2l network. It is proven that both algorithms require only one more

network transfer than the previously published lower bound (which is log,S for

a shuffle on S elements [Sie77]). The PM2I algorithm is used as basis for an
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algorithm to do the shuffie with the Illiac network in (2vN)}-1 transfers. A
lower bound of 2vN - 4 on tke emulation of the shuffie using the Illiac

network (and a different algorithm to perform the emulation) is presented in

[NaS80].

10.2 Overview

In Section 10.3 the basic concepts are presented. In Section 10.4 an
overview of the interconnection networks Illiac, PM2I and, Shuffle-Exchange is .

given. In Section 10.5 two algorithms of PM2I performing the shuffle are

_ g developed as well as proven correct. This is used as a basis for the algorithm
::'. for performing the shuffle with the Illiac network which is presented in Section x
# 10.6. In Section 10.7 the conclusions are presented. .
'_' h'::f
<t
o
3]
10.3 SIMD Machines il
2 L
) e
*
Typically, an SIMD (single instruction stream - multiple data stream)
o
<«

machine [Fly66] is a computer system consisting of a control unit, N processors,

N memory modules, and an interconnection network (e.g. Illiac IV [BoD72)).

The control unit broadcasts instructions to the processors, and all active
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processors execute the same instruction at the same time. Each active
processor executes the instruction on data in its own memory module. The
interconnection network provides for communications among the processors
and memory modules. A multsiple SIMD system is a parallel processing system
which can be structured as ore or more independent SIMD machines, each with

its own control unit (e.g. MAP [Nut77]).

One way to configure an SIMD machine is as a set of N processing
elements (PEs) interconnected by a network, where each PE consists of a
processor with its own memory. This is shown in Figure 10.1 and is called the
PE-to-PE organization. An alternative organization is to position the network
between the processors and the memories. The PE-to-PE paradigm will be
assumed, however, the results presented will be applicable to the other

organization also.

The model of an SIMD machine presented in [Sie79b] is used here. The
assumptions made about the SIMD machine to be used as the model are
intentionally minimal so that the material presented is applicable to a wide

range of machines.

There are N PEs, addressed (numbered) from 0 to N-1, where N = 2™. It
is assumed that the processor contains a fast access general purpose register A
and a data transfer register (DTR). When data transfers among PEs occur, it
is the DTR contents of each PE that are transferred. The notation
“A « DTR” means the contents of the DTR are copied into the A register.

The notation ‘A — DTR ” means the two registers exchange their contents.

The PE address masking scheme uses an m-position mask to specify which

PEs are to be activated [Sie77]. Each position of the mask will contain either a

0, 1, or X (““don’'t care”). The only PEs that will be active are those that
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match the mask in each position: 0 matches 0, 1 matches 1, and X matches 0
or 1. For example, if N = 8 and the mask is 1X0, then only PEs 6 = 110 and
4 = 100 are active. Superscripts are used as repetition factors, e.g., X3012 is
XXX011. Square brackets will be used to denote a mask. Each PE instruction
and interconnection function (defined below) will be accompanied by a mask

specifying which PEs will execute that command.

An interconnection network can be described by a set of interconnection
functions, where each inferconnection function is a bijection (permutation) on
the set of PE addresses [Sie77]. When an interconnection function f is applied,
PE i sends the contents of its DTR to the DTR of PE f(i). This occurs for all i
simultaneously, for 0 < i < N and PE i active. Saying that an interconnection
function is a bijection means that every PE sends data to exactly one PE, and
every PE receives data from exactly one PE (assuming all PEs are active). In
this model, it is assumed that an inactive PE can receive data, but cannot send
data. To pass data from one PE to another PE a programmed sequence of one
or more interconnection functions must be executed, moving the data by a
single transfer or by passing the data through intermediary PEs. Since there is
a single instruction stream in an SIMD machine, all active PEs must use the

same interconnection function (connection) at the same time.

........
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The following notation will be used: le¢ N =2™ let the binary Lt
representation of an arbitrary PE address P be p,,_1py—2...p 190, 80d let p; be .
% the complement of p;. It is assumed that —j mod N = N—j mod N, for j > 0.
i The flliac network consists of the four interconnection functions: =
oy
b llliac 4,(P) = P+1 mod N x}
. Illiac_,(P) =P-1mod N 3
Mliac 4 ,(P) = P+n mod N =
Nliac_,(P) = P-n mod N +E)
) where n = VN is assumed to be an integer. For example, if N = 186, -,,,
X o3
Nliac,,(0) = 4. The network is shown for N =18 in Figure 10.2. This Fars
s network was implemented in the Illiac IV SIMD machine [BoD72], and is ‘.f
3 W
included in the MPP [Bat80] and DAP [Hun81] SIMD systems. Illiac network E:E

¢ﬁ

capabilities are discussed in [BoD72, Orc76, Sie77, Sie70b, Sie80]. 2.
- The Plus-Minus 2° (PM2I) network consists the 2m interconnection .’:{i:
functions: ﬁs
PM2 "'i(P) = P+2' mod N —_—
PM2_(P) =P-2 mod N RN
for 0 < i < m. For example, PM2,,(2) = 4 if N > 4. Figure 10.3 shows the \
D,

PM2,, interconnections for N = 8. Diagrammatically, PM2_; is the same as >
PM2,; except the direction is reversed. A network similar to the PM2I is used f- f

hONK

in the “Novel Multiprocessor Array” [OkT82] and is included in the network of -~

1\1
the Omen computer [Hig72]. The PM2I connection pattern forms the basis for '

; the data manipulator [Fen74], ADM [AdS82a, McS82], and gamma {PaR82) ’~
~— '-':'.-’_
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multistage networks. Various properties of the PM2I are discussed in [FiF82,
PrK80, Sie77, Sie79b, Sies0].
The Shuffle-Exzchange network consists of the shuffle interconnection
function and the ezchange interconnection function:
shuffle(py—1Pm-2---P1P0) = Pm-2Pm-3---P1PoPm-1

exchange(pm-1Pm-2--P1Po) = Pm-1Pm-2---P1Po-
For example, shuffle(3) = 6 and exchange(6) = 7, for N > 8. This network is

shown in Figure 10.4 for N = 8. The shuffle is also included in the networks of
the Omen [Hig72] and RAP [CoG74] systems. The multistage omega network
is a series of m Shuffle-Exchanges [Law75]. Features of the Shuffle-Exchange
are discussed in [ChL81, FiF82, Lan76, LaS76, NaS81, NaS82, PrK80, Sie77,
Sie79b, Sie80, Sto71, WuF8l|.

The ability of each of the PM2I and Illiac networks to perform the
exchange function in just two transfers was presented in [Sie79b]. Thus, the
algorithms given here for performing the shuffle can be used to allow either the

PM2I or llliac network to emulate the Shuffie-Exchange network.

10.6 Shuffling with the PM2I Network

In this section the use of the PM2I network to perform the shuffle will be
examined. Two algorithms for an SIMD or multiple-SIMD machine with the

PM2I network to perform the shuffle are given. One algorithm, presented in

this section, is used in the event that the SIMD machine is of the same size (in
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terms of number of PEs) as the shuffle to be emulated. The other algorithm
described is used when the shuffle to be performed is of smaller size than the
given machine with the PM2I network. If the shuffle is of size S (in terms of
number of PEs) then it was shown previously in [Sie77] that the lower bound of
the algorithm for the PM2I to emulate the shuffle requires log,S network
transfers. It is proven here that both algorithms require only log,S + 1

network transfers.

In this section an algorithm to perform the shuffle with a PM2I of the
same size will be developed. This algorithm applies to the case where the
machine with the PM2I network is of the same size in terms of the number of
processors as the shuffle to be emulated. The following ground rules will be

used in the design and analysis of the algorithm.

(1) The model and definitions presented in Sections 10.3 and 10.4 will be the

formal basis for the results.

(2) When simulating the shuffle, the data that is originally the DTR of PE P
must be transferred to the DTR of PE shuffle(P), for all P, 0 < P < N.

(3) The time for each algorithm is in terms of the number of executions of

interconnection functions required to perform the simulation.

The reason for (3) can be seen by considering the way in which various
instructions can be implemented. The instructions in the algorithm can be
divided into three categories: control unit operations (in C), register to register
operations (in I), and inter-PE data transfers (in F). Control unit operations,
such as incrementing a count register in the control unit for a ‘‘for loop,” can,

in general, be done in parallel (overlapped) with the previously broadcast PE

instruction, thus taking no additional time. Register to register operations
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)
; : within a PE will probably involve a single chip or, at worst, physically adjacent
.. N chips. The inter-PE data transfers will involve setting the controls of the
_3 interconnection network and passing data among the PEs, involving board to
Q board, and probably rack to rack, distances. Thus, unless the number of
. register to register operations is much greater than the number of inter-PE
: data transfers, the time for the inter-PE transfers will be the dominating factor
in determining the execution time of the algorithm.
- In the algorithm below *:” indicates a comment. When discussing the
: algorithm, “Li” is used as an abbreviation for “statement i of the algorithm.”
For j = 0, X! = X°® where "X?" is the null string, i.e., no "X”s.
To understand the concept underlying the algorithm to perform the
L shuffle, consider the "distance” the shuffie moves a data item. The data item
. originally in the DTR of PE P, 0 < P <N/2, is moved to shuffle(P) = 2P, a
- distance of shuffle(P) ~ P = P. The data item originally in the DTR of PE P,
‘_;f N/2 <P <N, is moved to shuffieP) =2P+1 mod N, a distance of
shufle(P) - P = P+1. This is shown in Table 10.1 for N = 8.
Specifically, data originally in PE P, 0 < P < N, with p; =1 is moved by
, PM2,;(i=0,1,..,m-1) to PE 2P mod N. If N/2< P <N then in
: addition to the previous move the data will be moved +1 by PM2,, to 2P +
1. This is also shown for N = 8 in Table 10.1.
4 The difficulty in designing a parallel algorithm for this task arises from the
: need to keep track of the flow of N data items among the N PEs. Note that
Table 10.1 does not show the intermediate PEs through which the data is
: passed. For example, for N = 8 after executing PM2,, the data originally in

PEs 4 and 5 will both be in PE 5.
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Table 10.1:
The idea underlying the algorithm for the PM2I

to perform the shuffle, shown for N = 8.

origin distance distance
PE moved moved
oumber by shuffle by PM2I
0 = 000 +0 - - - - +0
1 = 001 +1 +1 - - - +1
2 = 010 +2 - +2 - - +2
3 =011 +3 +1 +2 - - +3
4 =100 +5 - - +4 +1 +$
5=101 +6 +1 - +4 +1 +6
= 110 +7 - +2 +4 +1 +7
7=11 +0 +1 +2 +4 +1 +0
PM2,, PM2,;, PM2,, PM2,, Total
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In the algorithm below, during steps L3 to L5, for 1 < j < m—1, all of the
data of interest are in even numbered PEs. After L5 has been executed for
j = m~1, the data from PE P, 0 < P < N, has been moved to PE 2P mod N
by using a subset of PM2,4, PM2,,, .., PM2,,,, in that order. For
N/2 € P < N, L6 executes PM2,, to move data from PE 2P to 2P +1.

Algorithm to perform the shuffie with a PM2I network of the same size:

(L1) A+~ DTR X™ g}
:even PEs save DTR contents in A register
(L2) PM2,, X"
:odd PEs send DTR data *‘ +1” to even PEs
(L3) for j =1 until m—1 do
begin
(L4) A — DTR [X™ i 11Xi"1g]
:e;'en PEs, j-th bit=1, switch A and DTR
(L5) PM2,; [X™ 0]
:even PEs send DTR data ** +21"
end
(L)  PM2o [X™0)
:half of data sent from even PEs to odd PEs
(L7) DTR ~ A [X™ !}

:reload DTR from A register in even PEs
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This algorithm used m+1 inter-PE data transfers and m+1 register to

register moves. The operation of this algorithm for N = 8 (m = 3) is shown in
Table 10.2.
For example, consider the data item initially in the DTR of PE 5 (= 101). PE
5 does not match the mask in L1 ([XX0]). PE 5 does match the mask in L2
((XX1]) and the data is moved to PE PM2 ,4(5) = 6 (= 110). PE 6 does match
the mask in L4 when j = 1 ([X10]) and the data is moved to the A register of
PE 6. The data is unaffected by L5 when j = 1 (since it is not in the DTR).
PE 8 does match the mask in L4 when j = 2 ([1X0]) and the data is moved to
the DTR of PE 8. PE 6 does match the mask in L5 when j = 2 ([XX0]) and
the data is moved to the DTR of PE PM2,,(6) = 2. PE 2 does match the
mask in L8 ([XXO0]) and the data is moved to the DTR of PE PM2,,4(2) = 3.
PE 3 does not match the mask in L7 ([XXO0]). Thus, the data originally from
PE 5 is moved to PE 3 = shuffle(5). This is shown by the dotted line in Table
10.2.

Proof that the algorithm is correct:
Assume all arithmetic is mod N.

The induction hypothesis (proven correct below) is that after executing
PM2,;in L1 (for j = 0) or L5 (for 1 < j < m) the data originally in the DTR
of PE Q =qu-1.99 Will currently be in PE P =p, ,..ppp =
(Gm-1---G+29+1) * 2*! + (gj---919) * 2. (When i =0,
P = (qp-1--92q)) * 2 + (qo) * 2.) The data ‘will be in the A register if q; =0
and in the DTR if q; = 1.

Thus, when j = m—1, the data originally from PE Q is in PE
(Qm-1---190) * 2. The data item in the DTR of PE (qy,-;...q;9) * 2 is moved to

PE (qpq-1---91Gg) * 2 + 1 by L6; which is correct since this data item is from a
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Example of the algorithm for performing the shuffle =
) using the PM2] when N = 8. R
“ It is assumed that initially the DTR of PE P ‘,‘%‘;
contains the integer P, 0 < P < 8. .,:
The dotted line shows the movement of the data originally *::
) in the DTR of PE 5 (= 101). R,
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PE where q; = qpy = 1, so shuffle(Q) = 2+ Q + 1. The data item in the A
register of PE (qg_;...q;99) * 2 is moved to the DTR of that PE by L7; which is
correct since this data item is from a PE where q; = q,-, = 0, so shuffle(Q) =
2+ Q.

To complete the correctness proof it must be shown that the induction

RS "'f B

hypothesis is true. Basis: j = 0.

4

LY Il’}l !
\

Case 1. Consider the data item originally in the DTR of PE

»

Q = qp-1---929,0. This data item is moved to the A register of
that PE by L1. Since ¢y =0, Q =(qp----9q)*2 +
(q9) * 2 = P. This data is not moved by L2. It remains in the A
X register and q9 = 0. Thus, the induction hypothesis is true for
j = 0 for this case.
Case 2: Consider the data item originally in the DTR of PE
Q = Qqp-1.--92q;1. This data item is not moved by L1. It is moved
to the DTR of PE P =Q + 1 by PM2,, in L2. Since q4 =1,
Q+1 = qpg@@l+1l1 = (qpg-Qq)*2+2 =
(Qm-1---929;) * 2 + (gp) * 2 = P. The data item is in the DTR and
qo = 1. Thus, the induction hypothesis is true for j = 0 for this
case.
Induction Step: Assume true for j = k — 1 and show true for j = k.
q Case 1: Consider the data item <_)riginally in the DTR of PE
Q = qu-1---92919p, Where g,y = 0.
From the induction hypothesis when j = k—1, this data item is in
the A register of PE P = ppy..PiPo = (qm-1--Gu+1) * 2* +
(Qk-1--919) * 2.
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Subcase la: Px = 1. The A register data is moved to the DTR of PE P
by L4 and then to the DTR of PE P + 2% by L5. Recall
P = puer-PPo = (Qn-1-%+1%) * 2* + (Qu-1--Qs%) * 2-
Since qy—; =0, (0q_5...q;q0) * 2 < 2% Thus, if p = 1, it
must be that q, =1 Since q =1, P+ 2k =

(Qmr--Q+11) * 25 + (Qp--Qyq0) * 2 + 2* =
(Qme1---Ge+1) * 2+ 2+ (Qgqu) *2 + 22X =
(Qm-1--Qu+1) * 2541 + (1Gy-1.--9,90) * 2 =

(Im-1--Q+1) * 25+ (QQe-1-91%) * 2
Furthermore, the data is in the DTR and q = 1. Thus,

the induction hypothesis is true for j = k for this subcase.

Subcase 1b:  p, = 0. The A register data is kept in the A register of PE
P and not moved by L4 or L5. As in Subcase la, since
~ Q-1 =0, (0q-2...q;qp) * 2 < 25. Thus, if p, =0, it must
be that q = 0. Since q =0, P=
(9m-1--Gc+10) * 25 + (qu-1---q1 Q) * 2 =
(Gm-1-Qc+1) * 2571 + (qe-q190) * 2-
Furthermore, the data is in the A register and q = 0.

Thus, the induction hypothesis is true for j =k for this

subcase.
Case 2: Consider the data item originally in the DTR of PE
Q = qp-1---Q;qp, Where q_; = 1.
From the induction hypothesis when j = k—1, this data item is in

the DTR of PE

P = pp-1--P1Po = (Aot Qe +19k) * 25 + (9193 Q) * 2.
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Subcase 2a:  py = 1. The DTR data is moved to the A register of PE P
by L4 and is not moved by L5. Recall pyy...p1pg =
(Gm-1-Q+19) * 2+ (Q-1-q1G) * 2. Since gy =1,
(Qu-1--919) * 2 = 25 + (q2---Q1Qp) * 2. Thus, if p, =1, it
must be that q = 0. Since g =0, P = (qp-1---Gx+0) * 2

+ (qx-1---91%) * 2
= (@m-1-Qet1) * 27+ (Q-01%) * 2.
Furthermore, the data is in the A register and q = 0.

Thus, the induction hypothesis is true for j =k for this

subcase.

Subcase 2b:  p, =0. The DTR data is kept in the DTR of PE P (not
moved by L4). It is then moved to the DTR of PE P + 2k
by LS. Since q3 =1,  (Qg-1---Q190) * 2 =
ok + (qg-2---919) * 2. Thus, if p, =0, it must be that
q =1 Since g =1, P+ 2 = (qu_;...Qu+;) * 2¢*! +
(QxQx-1---Q190) * 2 as in Subcase la. Furthermore, the data
is in the DTR and q = 1. Thus the induction hypothesis is

true for j = k for this subcase.
This comp.ctes the proof that the induction hypothesis is true.

No data of interest is destroyed by the inter-PE data transfers. The
transfer in L2 overwrites no relevant data since such data is saved in the A
registers in L1. The transfers in LS, for'i < j < m, move data among the

even numbered PEs (i.e., all even numbered PEs transfer data simultaneously)

so no data is overwritten. Finally, the transfer in L8 overwrites data in the

DTRs of the odd numbered PEs, however, all data of interest are in even
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numbered PEs at that point.

This completes the correctness proof. All the data items have been moved

as the shuffle would have moved them.

In this section an algorithm for PM2I emulating shuffle of smaller size will
be developed. This algorithm is applicable when the machine with the PM2I
network is larger (in terms of number of PEs) then the shuffle to be emulated.

To solve this problem it will be decomposed into several subproblems.

It was shown in [Sie80] that the PM2I network can be partitioned into
independent subnetworks. There are some constraints on how this can be
done. Suppose there is a PM2I network of size N = 2™ and it is desired to
partition the network into groups of size 2" (0 < r < m). Recall that the PEs
are addressed as p;,_;Pm-2...Pp- To form a group of size 2F all PEs in the group
must have the same m—r least significant bits. That means that for each group
the value of address bit positions py,—r—1Pm-r~2...Po i8 fixed and unique. Denote
Pw-r1Pm-r—2...Po by B.

This group (identified uniquely by its value of B) then constitutes a logical
PM2I network of size 2f, with the PEs logically pumbered from 0 to 2°-1 by
the r high order bits of their physical address. Each logical function PM2;
will be executed by the physical function PM24; 4 ().

The previous algorithm for the PM2I network to emulate the shuffle will
be mapped into the logical PM2I network of size 2°. This can be implemented

as follows.

(a) Let the logical PE addresses in a set of size 2" be denoted as

{Q} = {qr19r-2.-%] @ = 0,1}.

Let the physical PE addresses in a set of size 2™ be denoted as
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"
¥ {P} = {Pm-1Pm-2.--Po| Pi = 0,1}.
Define a map from the logical PE address set {Q} into the group B of
the physical PE address set {P} as follows:
‘ ¢: {Q} — {P}
: $(r-19r-2---9%) — Gr-19r-2--9B -
: (b) Map the logical function set PM2 +j into the physical function set as
follows:
¥: {PM2,;} — {PM24,}
Y(PM24;) = PM24;4(ny) Where0 <j<r.
Algorithm for a PM2I of size 2™ to emulate a shuffle of size 2° (1 < r < m):
(L1) A~ DTR [X"'0B]
\ :logical even PEs save DTR data in A register.
(L2) PM24yy XB]
:logical odd PEs send DTR data logical ” +1” to logical even
PEs
(L3) for j =1 untilr1 do
begin
; (L4) A « DTR [X—i"1Xi"10B]
:logical even PEs, logic'a.l j-th bit = 1, switch A and DTR
(LS) PM2,j+(m-r) [X™'0B]
:logical even PEs send DTR data logical ” + 2i”

..............................
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end
(L6) PM2.4(y- [X"'0B

:logical even PEs send data to logical odd PEs
(L7) DTR «~ A [X™'0B]

:logical even PEs reload DTR from A register

The proof of correctness of this algorithm is directly based upon the
theory of partitionability [Sie80] and the algorithm for performing the shuffle
with PM2I of the same size. Performance evaluation of this algorithm follows.
The general lower bound result in [Sie77| is applicable with r replaced by m,
yielding lower bound of r transfers. Thus, this algorithm with a performance of
r + 1 transfers compares favorably with the lower bound. This algorithm is
applicable in the following situations. Suppose there is an SIMD machine with
a PM2I network, then it is possible to select a group of PEs (with certain
constraints) and let the group perform a shuffle (while the other PEs are
disabled). Alternatively it is possible to ‘‘partition” the network into equal size
groups and let any or all of the groups perform the shuffle concurrently, using
appropriate masking. The groups which will perform the shuffie will be
determined by the value of “B” in the algorithm. Suppose there is an
multiple-SIMD machine with a PM2I network, then the algorithm can be used
so that each SIMD submachine can emulalfe shuffle independently. Since the

submachines are independent, they can be of different sizes.
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10.6 Shuffling with the Illiac Network

In this section the use of the Illiac network to perform the shuffle will be
examined. A lower bound of 2(n—2) transfers can be derived from [NaS80]. In
[NaS80] there is also a procedure for constructing an algorithm for a mesh-
connected computer to perform the shuffle in 2n transfers (a mesh network is
the same as an Illiac network without the ‘‘wrap around” edge links). In this
section, an explicit algorithm for the Illiac to perform the shuffle in 2n-1
transfers is given. It is based upon the algorithm for the PM2I to perform the
shuffle. Since Illiac cannot be partitioned into independent subnetworks
[Sie80], consideration of performing the shuffie on a subset of PEs is

inappropriate.

In this section an algorithm to perform the shuffie with the Illiac will be
developed. Consider an algorithm for performing a size N shuffle
interconnection function on a size N Illiac network, where r = VN = 2™/2 js an
integer (i.e. m is even). The three ground rules listed in Section 10.5 are also

used in this section.

The algorithm to perform the shuffle using the Illiac network will be
constructed by replacing each PM2l interconnection function in the above
algorithm with Illiac interconnection functions. For L2, use “Illiac 4, X™ 1],
since Illiac 4, = PM2 4, by definition. Similarly, for L8, use “Illiac + , [X™ '0}.”
To do LS, first recall that only the even numbered PEs contain the data of
concern (after L2 is executed and before L8 is executed). Therefore, it is
acceptable to use “PM2,; [X™]” in LS, since any data movement among the

odd numbered PEs is ignored (and overwritten by L6). To perform
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“PM24; [X™," for 1 <j<m, with the Illiac network the algorithms
presented in [Sie70b] can be used. Specifically, to perform “PM2,4; [X™]” for
1 <j< m/2use
Jor i =1 until 21 do Nliac 4, [X™
since 2/ execution of Illiac,, is equivalent to +2i = PM2 +j- Anslogously, to
perform “PM2,4; [X™]” for m/2 < j < m use:
Jor i =1 until 2i/n do Nliac ., [X™]
since 21/n executions of Illiac,, is equivalent to +2i = PM2,;. The total

number of Illiac transfers needed is:

for L2: 1
for L6: 1

(m/2)-1 .
for L5, 1 < j < m/2: 2i =om/2-9 = -2

=
-1 . -1, (m/2)-1

forL5, m/2 <j < m: mz 2/n = nﬁ: 9i-(m/2) = mg‘ 9l = p—1

ji=m/2 j=m/f2 i=0

Thus, the grand total is 2n—1 transfers. The number of register to register

moves is still m+1.

In summary, an algorithm to perform the shuffle data permutation using
the Illiac interconnection network has been constructed based on the algorithm
to perform the shuffle using the PM2I network. The algorithm developed for

the Illiac required 2n—1 inter-PE transfers.
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10.7 Conclusions

The ability of the PM2I and Illiac type single stage SIMD machine
interconnection networks to perform the shuffle interconnection was examined.
It was previously shown that a lower bound on the number of transfers needed
for the PM2I network to perform the shuffle is logsN. The algorithm described
here and proven correct required only (log,N)+1 transfers. Also, an algorithm
for the case where there is a machine with a PM2I network and it is desired to
emulate a shuffle that is of smaller size than the host network was presented.
Using the PM2I algorithm as a basis, an algorithm for the Illiac to emulate the
shuffle is given. Its performance is 2VIN — 1 transfers, which is only three

transfers more than the previously shown lower bound of VN - 4.

These results are of both theoretical and practical value. Theoretically,
they add to the body of knowledge about the properties of the PM2I and llliac
networks. Practically, the algorithms presented could actually be used to

perform the shuffle interconnection on a system that has implemented the

PM2I or Illiac type of interconnection network.
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b 11 CONCLUSIONS
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The two major methods used to speed up the execution phase of a
computational task are (a) utilization of new materials to construct faster
devices and (b) exploitation of parallel execution of subtasks of the task. This
research was concerned with the second method of speeding up the execution
phase of a task. The exploitation of time parallel execution of subtasks of the
task requires parallel computer architectures. In general a parallel computer
system consists of a set of devices such as processors, memories, and I/O

devices that communicate through one or more interconnection networks.

Different computer systems use their networks differently, as can be seen
in the following few examples. Some systems use networks dedicated to the
communication between particular subsystems, some other systems use a single
network multiplexed for communication among different parts of the system.
In an ensemble parallel system the network is used by the control unit to
broadcast instructions and data. In a pipelined system the interconnection
network is used to provide data communication among the computational units
(segments) of the pipeline. In vector and array parallel system one
interconnection network is used for interprocessor communication and a usually
separate network is used by the control unit to broadcast data, imstructions,
and control information to the processors. In a systolic system the
interconnection network is used to propagate the wave of the partial results
from a set of processors to the next set of processors. In an associative system
the control unit uses the interconnection network to broadcast the selected
data flelds to the processors for comparison', and in some cases another network
is used for interprocessor communications. Reconfigurable systems have a

network that allows the system to be statically or dynamically restructured

into multiple machines of different sizes in terms of processors. Data flow
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system consisting of multiple rings needs a communication network to move

data among rings.

The computer system designer is faced with two basic tasks: the analysis

s AL I,

and evaluation of existing interconnection networks and the synthesis of
desired interconnection networks. Much research has been done on several
topologically regular interconnection networks. Amongst the best known
networks are Ilhac [BoD72], Shuffle [LaS76], Omega [Law75], multistage Cube
[AdS82b], STARAN (Bat76], ADM [McS82], k-connected mesh [NaS80], and
PM2[ [SeS84b]. The researcher usually proceeded as follows: he selected a
network of interest, devised a model for that network and derived analytical
results based on that network. This approach has the drawback that the
results are network specific since the model is network specific and sometimes
implementation dependent. In addition, most work was concentrating on the
analysis of properties of networks and only a little has been done on the

synthesis of networks with desired properties.

Our research differs from the past work in following aspects. First, a
unified approach to the analysis of interconnection networks that is valid for

large of classes interconnection networks was developed. The approach is

unified in the sense that it does not assume a particular network or an

implementation but considers networks as a set. Second, two algorithms that

allow systematic design of networks with the desired property of ::f::\:.
partitionability were developed. In more detail, the following related topics of e
topological properties of parallel computer systems were studied. -.f;.

In Chapter 4 a general, implementation independent model for single stage E.E

interconnection networks was developed. The model can be used to analyze

both topologically regular and irregular single stage interconnection networks.
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The network model was extended to the modeling of parallel computer
systems. A system informally consists of a set of devices, an interconnection
network, and the method of use of the network by the devices. Three different
types of systems were defined, based upon the method of use of the network,
and several relationships between systems were analyzed. The systems types
recognized are recirculating, nonrecirculating, and partially recirculating. In a
recirculating system each device d; has its logical output port connected to an
input label of the interconnection network and its input port connected to an
output label of the interconnection network. One result of this configuration is
that the system can generate different connection patterns using multiple
passes through the network. Also, for a recirculating system | V{| =|Vo|. In
a nonrecirculating system, each device is connected only to network input or
(exclusively) to a network output. This type of configuration appears
frequently in real time digital signal processing systems. The result of this
configuration is that no new connection patterns can be achieved by multiple

passes, since it is not possible to move the data from the output of the network

back to its input. A partially recirculating system contains some, but not all,

devices each of which has its output port connected to the network input label

and its input port connected to an output label of the network. If T
| Vil #|Vo| than the system cannot be recirculating and can be only either M
partially recirculating or nonrecirculating. I;-i-‘l

The previous method of classification of the relationship between two
networks K' and K2 used only two categ;)ries: (a) K! and K? are isomorphic
and (b) K! and K? are not isomorphic. Our method refined the classification of
the relationship between two networks into the following categories presented

in the order of decreasing similarity: (a) K! is isomorphic to K2, (b) K! is
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subnetwork of type ¢ of K2, (c) K! is subnetwork of type b of K2, (d) none of
the above. The method was expanded to classify relationship between two
systems S' and S2. The categories are similar except in addition to above,

another category is possible after ‘‘type b” and that is “type a.”

In Chapter 5 the measure of similarity between two systems was expanded
to include arbitrary labeling. Recall that in Chapter 4 the comparison between
system S! over V{! x Vo! and system S? over Vj? x V2 assumed the labeling
was such that Vi' x Vo! C V{? x Vo2 If this condition does not hold that
does not mean that the two systems are necessarily dissimilar. It could be that
the labeling of of the two systems is different. To handle this problem, the
concept of quasimorphism of systems was developed. Quasimorphism allows
comparison of randomly labeled systems with arbitrary topologies. The
problem. of comparison of systems can be formulated as finding relationships
between two S-sets. The problem is very complex and therefore was broken
down into two major steps. First the T-set over Vj x V was defined. The
T-set has less constraints than the S-set over the same V| x Vg and therefore
it is easier to analyze relationships between T-sets than between S-sets. The
quasimorphism, denoted by ¥, is uniquely determined by two maps ¢ and ¢g.
Some behavior of ¢, §o was inherited by y-correspondence ¥. For example if
¢rmap &, and ¢o-map ¢ are 1:1 maps then y-correspondence ¢ is a 1:1
correspondence., Conversely if a E—correspondence ¥ is 1:1 then the érmap ¢;
and the ¢o-map @g are 1:1 maps. Properties of the E—correspondence ¥ similar
to the reflexive, symmetric, and transitive properties of relations were
discussed, in particular the following were shown. Let S!, S2, and S® be three

systems. A quasimorphism has the following properties.
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-. (1) 3 ¥ such that ¥ (S') = S 'Eﬁ‘
(2) ¥'(SY) = S 3 ¢?such that $*(S?) = S =
3 ¥'(s) =S*and ¢*(s?) =S° = 3y P = S o
Let S!, S? and S3 be three systems. A 1:1 quasimorphism has the following :

properties.

(1) 3 ¢, L:1 such that ¢ (S!) = ':"_-:._;
(2) $'(S") = S% 1:1 = 3 ¢% 1:1such that 9 (S%) = SL o
3 9'(s) = 8% ntrad $*(SH =S 11 = 3Pl P(SY R
= s it
S

The quasimorphism measure provides a theoretical background for ‘
studying the following problems of parallel processing. B
(a) Emulation of system S! by system S2.
{b) Fault tolerance method achieved by concurrent execution of multiple

copies of the same problem.

(¢) Partitioning of a system. ,‘
Three types of emulation were defined based upon the subsystem ‘:::,::
relationship between the image of the emulated system and the host system. __
Several measures of efficiency of the emulation based upon the preservation of »-:
the computational loading and other factors were defined and the emulation e
types were evaluated on that basis. For example in a system where the input -,
nodes are connected to processors and the output nodes to memories, the s.
factors have the following physical meaning. If the input node factor = 1, then ::-';
the computational load of each processor in the emulated system is same as the EE'
computational load in the image of the emulated system in the host system. If :.. .;

the output node factor = 1, then the amount of data stored in each of
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memories of the emulated system is same as the amount of the data stored in
the image of the emulated system in the host system. Factors greater than 1
imply a heavier load in terms of computation or amount of data stored per

memory unit than in the host system.

In Chapter 6 operations on single stage networks such as composition and
decomposition were defined. Using these primitives, the partitionability of
single stage networks was studied. Partitionability informally means that the

network can be divided into several parts with certain amount of independence.

A AN  (AEARRRIREE. Bage o e g g SLPLY B g A SR A
.

The partitionability property is important for the reasons detailed in the

chapter.

Three types of partitionability were recognized and an algorithm was

developed which will output one of the following:
(1)  The network is not partitionable.

(2) The network is partitionable into subnetworks with common control
signals and the combination of the of the subnetworks will exactly

generate all interconnection patterns of the original network.

(3) The network is partitionable into subnetworks with separate control
signals and the combination of the subnetworks will exactly generate all

interconnection patterns of the original network.

(4) The network is partitionable into subnetworks with separate control
signals and the combination of the subnetworks will generate a superset

of interconnection patterns of the original network.

The algorithm is network topology independent and can be used to

analyze topologically regular and irregular interconnection networks.
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In Chapter 7 two techniques of synthesis of single stage partitionable
networks were developed. Each of these techniques allow the design of a large
class of partitionable single stage interconnection networks. The specification
of the construction is given in terms of properties of the individual I/O

correspondences.

In Chapter 8 multistage networks were studied. A composition of single
stage networks was defined and its properties studied. Using the model of
single stage network and composition above, the multistage network was
defined. The model is very general since each stage of the multistage network
is topologically general single stage network. Several examples of the

application of the model were presented.

In Chapter 9 a network and network interfaces were designed for a real-
time, distributed digital signal processing system. The design was subject to
number of system constraints such as very high throughput, system
extendibility, and fault tolerance requirements. For this application, and given
the current and near future technology, a crossbar based interconnection
network was very well-suited to the task under consideration. Two different
fault tolerant chip architectures were presented. Four network architectures
were designed and their characteristics described. Several fault detection and
recovery techniques on the system level were shown, since the fault tolerance is

a salient issue of this system.

In Chapter 10 the ability of the PM2I and Illiac type single stage SIMD
machine interconnection networks to perform the shuffle interconnection was
examined. It was previously shown that a lower bound on the number of

transfers needed for the PM2I network to perform the shuffle is logyN. The

algorithm described here and proven correct required only (logoN)+1 transfers.
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Also, an algorithm for the case where there is a machine with a PM2I network
and it is desired to emulate a shuffle that is of smaller size than the host
network was presented. Using the PM2I algorithm as a basis, an algorithm for
the Illiac to emulate the shuffle was developed. Its performance is 2v'N — 1

transfers, which is only three transfers more than the previously shown lower

bound of 2vN - 4.
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