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ABSTRACT

Research in the area of distributed computing systems for digital signal processing
applications is described. The work involves the modeling of asynchroncus parallel
processes and computer systems for executing these processes. The objective of the
work is to develop techniques by which the compatibility of an architecture and an
algorithm can be evaluated. The three part effort addresses:

1. Modeling of asynchronous parallel computer system architectures;

2. Modeling of asynchronous parallel computational processes;

3. Evaluation of alternative architectures relative to classes of computa-

tional processes.

The approach to the modeling of parallel processes and architectures is to examine the
parallelism in a variety of one- and two-dimensional signal processing tasks. This
includes a study of the ways in which different types of digital signal processing tasks
can be executed on different types of architectures. The goal is to develop one set of
features by which processes can be characterized, and another set of features by which
parallel architectures can be characterized; and to use these features to chtain measures
for the evaluation of process/architecture compatibility.

This research will contribute to the understanding both of Low ditribcted com-
puter systems can be designed for the execution of a class of taskssand of 1o Gpnsl
processing tasks can be decomposed for execution on a distributed computing <v-term
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Evolving digital technology has made it possible to upgrade substantially the com-
putational power available for solving complex data processing problems. Improve-
ments in electronic device speed and central processing unit (CPU) architecture have
brought about significant enhancements in system throughput. Largely untapped, how-
ever, is the potential for further gains offered by distributed processing. ‘This potential
has been demonstrated by the parallel processing systems which have appeared, such as
Illiac IV [BaB68,Bou72], STARAN [Bat74,Dav74|, and PEPE [Bla77 Wel77], but these
represent only a very restricted class of multiprocessor systems. The “microprocessor
revolution” has made feasible more general distributed system architectures which have
recently begun to come under study [e.g. Lie79 Nut?7 Pea?7 SiM78S1581a,SuB77,
SwF77).

“A distributed processing system is one in which the computing functions are
dispersed among several physical computing elements™ {Lie79]. Given this definition,
distributed processing can be further subdivided using terminology and definitions com-
monly accepted but nowhere formally standardized. The first subdivision is into
“Jooscly coupled™ and *‘tightly coupled.” In tightly coupled systems. there is generally a
higher degree of interaction and sharing among the processors to accomplish some
specific task. In contrast to these tightly coupled systems, the nationwide ARPANET
can be considered a loosely coupled system. The category of tightly coupled distributed
processing can be further subdivided into synchronous processing and asynchronous
processing. The synchronous subdivision includes SIMD systems, such as the Hiae IV

[Bou72]. The asynchronous subdivision includes MIMD systems, such as the C.mmp
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[WuB72]. The use of asynchronous distributed systems is the focus of the research
described in this report.

One application area which stands to benefit greatly from the development of dis-
tributed processing is digital signal processing. One- and two-dimensional signal pro-
cessing methods typically involve large amounts of computation, often required in real-
time, and are generally of a character amenable to parallel processing.

To illustrate, consider the hypothetical missile detection and tracking system
shown in Figure 1.1. In this highly simplified example, the system is composed of a
large number of signal processing operations applied to both one- and two-dimensional
inputs. Pictured are inputs from a variety of sources including seismic sensors used to
detect missile launches and temporal sequences of satellite imagery which might be used
to track suspected missiles. Both sets of signals are assumed noisy and are subjected to
filtering before attempts are made to extract characteristic features and apply pattern
recognition techniques to classify objects detected by the system. The figure suggests
that once a suspected missile is detected, it is continuously tracked and the tracking
information is analyzed to reinforce (or to quench) the identification of the object as a
missile. Of course, it is entirely possible that many such objects will have to be tracked
simultancously. The ultimate output of the system might be a listing and/or a real-
time display of suspected missiles detected, their locations, trajectories, and possible
targets. or the system output might act as input to the control of a radar and/or
defense system.

The performance of such a system, which must operate very reliably and in real-
time, can be greatly enhanced through use of distributed processing. Many of the com-
ponent operations can be implemented independently, some using special purpose pro-
cessors, most themselves employing parallel or pipeline operations internally (e.g., MAP
[C'sp00], ASAP [Esl00], AP-120B [F1000], FDP [GoL71], SPS-4 [Sig00]). System reliabil-

ity can be enhanced through deliberate incorporation of redundancy in the form of
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Figure 1.1 Hypothetical Missile Detection and Tracking Sy<tem
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additional parallel processing.

Effective implementation of complex high-performance signal processing tasks
using distributed processing involves numerous difficult design choices. Each of the
component signal processing operations could be carried out by a variety of alternative
algorithms requiring different amounts of computation and producing results of differing
quality. Each of the candidate algorithms could be implemented using any of a number
of different uni- or multiprocessor architectures. Whatever the choices, the component
subsystems will have to communicate with each other and be coordinated so that data
and intermediate results continue to stream through the system without encountering
bottlenecks.

Some rather specialized architectures have been developed for specific problems or
narrow classes of computational processes [e.g.,Bat79,DuW74,Kru73,Mcc73]. Somewhat
more general studies have been made of the capabilities of particular parallel architec-
tures [e.g. . Bau74,0rc76,RoP77,RuF76]. The use of parallelism based on consideration
of the task alone, independent of a particular architecture, has been examined in the
Hearsay Il speech understanding project [Fel.77,Les75). Some initial work has been
done in the study of the relationships between algorithms and architectures
[e.g.,Fos76,Gon78 KuP79]. However, much more work is needed in the area of deriving
a fundamental understanding of the ways in which tasks can be structured as parallel
processes and the ways in which to match parallel processes to parallel architectures.
The analysis of the relationships between the problem domain of digital signal process-
ing and the solution domain of special purpose distributed computing is the technologi-

cal gap on which this research focuses.
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1.2 Research Objectives

The general objective of this research is to identify the parameters which best
characterize distributed processing architectures and asynchronous parallel processes as
they apply to tasks from the signal processing problem domain so that the most suit-
able architecture for any given task can be determined. More specifically, a three part
effort is being pursued:

1. Modeling of parallel processing architectures. Based on evolving technology, a
wide variety of system architectures can be envisioned. What parameters best charac-
terize distributed processing architectures? Examples of possible parameters include
processor instruction set and interprocessor communications capabilities.

2. Modeling of asynchronous parallel computational processes. A computational
task can be solved by a varicty of algorithms. What parameters capture the salient
features of these alternative algorithms? Candidates include parameters such as data
dependencies between component processes and sizes of data bases required by the pro-
cess.

3. Evaluation of alternative architectures relative to classes of computational
processes. How can the relationship between an architecture and an algorithm be
measured? In particular, how can the parameters from (1) and (2) be used to evaluate
the compatibility of an algorithm and an architecture?

The approach to the modeling of parallel processes and architectures is through
examination of the parallelism in a variety of one- and two-dimensional signal process-
ing tasks. This includes a study of the ways in which different tyvpes of digital signal
processing tasks can be executed on different types of architectures. These studies aim
to develop one set of features by which processes can be characterized. to develop
another set of features by which parallel architectures can be characterized. and to use
these features to obtain measures for the evaluation of process/architecture eompatihil-

ity
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1.3 Approach

1.3.1 Modeling Asynchronous Parallel Computer System Architectures

The two basic classes of multiple processor systems are SIMD and MIMD (see Sec-
tion 2.1). In the SIMD mode all processors operate synchronously using the same
instructions, while in the MIMD mode all processors operate asynchronously, each using
its own independent instructions. The types of asynchronous distributed processing
systems of interest here come under the MIMD category, which is more general and
flexible than the SIMD mode. In order to study the parallel/distributed implementa-
tion of a ‘“‘total task,” as opposed to component algorithms such as the FFT, the
MIMD mode is more applicable than SIMD. Most real-time total tasks involve compu-
tations not suitable for the SIMD mode, although an MIMD system designed to process
a total task may include SIMD machines as component processors. With the generality
that the MIMD mode provides come the problems of task decomposition and system
control, whict will be examined in the problem domain of signal processing.

Our approach involves developing modeling tools for constructing large-scale distri-
buted multiprocessor systems for signal processing tasks. These systems may be for a
single task or a class of tasks. Depending on computational speed requirements and
volume of data to be processed, some tasks will justify the construction of special pur-
pose distributed systems for their execution. In other cases, one special purpose system
which can be used for a set of tasks will be appropriate. In either case, each processor
in the system will operate independently except for the sharing of data and results.
Furthermore, each processor may be different. For example, a distributed system
might contain several 8-bit microprocessors, pipelined array processors, SIMD machines,
and 16-bit microprocessors with special floating point hardware, all cooperating to solve

a particular problem. The microprocessors and other components may include off-the-

shelf and/or custom designed VLS chips; the design of large-scale distributed systems




provides an excellent vehicle for exploiting the predicted low cost and high complexity
of VLSI hardware.

To illustrate the design of a special purpose distributed system with heterogeneous
processors, consider again the simple hypothetical missile detection and tracking system
shown in Figure 1.1. Assume that the principal system performance criterion requires
that subtasks be executed as quickly as possible. Furthermore, assume that new
seismic signals and multisensor imagery are real-time inputs to the system. Given these
assumptions, in order to maximize execution speed, it would be appropriate to design a
special-purpose distributed processing system for this task. IZach subtask in the figure
would be executed by a different processor or set of processors. For example, the FFTs
could be done by pipelined array processors, the edge enhancement by an SIMD
machine, and the object identification by a set of cooperating microprocessors. In addi-
tion, by designing the system so that each subtask takes approximately the same
amount of time, the data could be pipelined through the system, i.e., each subtask pro-
cessor (or processors) could contain data from a different input data set. In this simple
example the design choices are fairly obvious. For more complex (and realistic) tasks,
it is much more difficult to identify the component subtasks and match them with suit-
able architectures in such a way as to meet performance requirements.

Distributed computer systems can be characterized in different ways. To describe
the computational capabilities of a system, the types of features which might be con-
sidered include:

interprocessor connection network

instruction set of each processor

shared memory method and size

individual processor memory sizes

number of processors

processor speed
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- processor precision

Each of the types of architectural features may be divided into subcategories for
analysis.

The approach taken in this research is to study the ways in which specific types of
digital signal processing tasks can be executed on different types of architectures. From
this, the salient architectural features should be identifiable. Existing computer system
classification schemes and notational methods for describing computer systems are the
starting point of this investigation. Our initial work in this area is presented in

Chapters 2 and 3 of this report.

1.3.2 Modeling of Asynchronous Parallel Processes

One broad method of characterizing the parallelism in a process is by identifying
the degree of parallelism. A process can be classified as being in one of three categories:
it may be inherently parallel, it may possess limited parallelism, or it may be inherently
serial. An example of an inherently parallel process is the task of detecting the appear-
ance of a blip on a display screen. This task can be accomplished by a large number of
subprocesses executing in parallel, with each subprocess examining only a portion of the
screen. The parallelism in this task is limited only by the size of the screen and by the
amount of the screen which must be available to a process in order for it to detect a
blip. An example of a process which can be characterized as having limited parallelism
is the task of summing N numbers, given that only pairwise additions can be per-
formed. Initially N/2 pairwise additions can be performed simultaneously, producing
N/2 intermediate sums. At the next step, N/4 pairwise additions can be performed in
parallel. N/1 of the processors (adders) employed in the first step are no longer of use.
The summation can be performed in at best logoN addition steps, with only N/2! pair-

wise additions performed in parallel in the i-th step, 1 < i < log,N. Inherently serial

R TRy W Vs T e weTe




processes arise from time dependencies among portions of the process. For example, in
the missile detection and tracking scenario, the edge enhancement cannot be performed
until the two dimensional filtering of the image has been completed.

Although the ‘‘degree of parallelism” measure provides some insight into the
characteristics of a task being considered for parallel implementation, it does not ade-
quately describe all of the factors which will enter into a parallel implementation. Con-
sider the task of finding a tank in an image. One portion of the process may involve
multiple feature analysis, e.g., the detection of both straight line and curved line scg-
ments. These two subtasks may be performed in parallel, but in order to do so, prob-
lems such as the sharing of data and communication of results must be considered. For
this reason, a more detailed means of describing the processes is needed. Examples of
the types of features which may be included in such a description are:

- representation of the data dependencies between component processes

- maximum number of independent subprocesses

inter-process communication requirements
- specification of the ways in which subprocesses may be generated

- number and sizes of data bases required by the process

type and precision of data

As seen in Chapter 4 of this report, high-level parallel programming languages have
begun to appear which, to a greater or lesser extent, have facilities for deseribing such
features. Also in Chapter 4, it is noted that data dependency relations can be
expressed in terms of Petri nets [PeB74), S-nets [Kry81], and related graphical methods.
It is our aim to consider the suitability of these and other schemes for representing the
data dependencies so that process characteristics may be compared to architecture
characteristics. Further considerations along these lines are discussed in Chapter 5 of

this report.
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1.3.3 Evaluation

The final aspect of this work will be to integrate the information provided by the
models of parallel processes and parallel architectures. The following examples of the
interaction of algorithm and architecture communication features from the SIMD
domain illustrate the type of analyses to be performed.

In the 2-D FFT algorithm in [SiM79b}], in order to transpose an array, processor i
must be able to send a data word to processor i+k, for all i, 0 < i1 < N, simultane-
ously, and for a fixed k, 1 < k < N. This can be modeled at the process level as single
word transfers using “shift™ connections, where shift{x) = x+kmod N, 0 < x < N.
From an architectural point of view, this corresponds to packet switching [ThM79] with
single word packet size and a ‘“‘uniform shift” permutation capability. Multistage cube

networks [SiM&1] can perform uniform shifts efficiently and can be implemented in a

packet switch mode [McS80b).

Parallel image smoothing [SiS81a], where each processor is assigned a square
subimage to smooth, requires connections [rom each processor to its neighbors to
transmit subimage edge data. This can be modeled at the process level as multiword
Whifts for k = +1, =1, N2 =NV2 (for the edge data on the right, left, bottom, and top
edges of the subimage), and single word shifts for k = -NVY2-p -NV24), +NV2-j

and +NY24 1 (for data at the four corners of the subimage). From an architectural

point of view, this corresponds to the eight nearest neighbor connection scheme, and
either circuit switching or packet switching with variable size packets [ThM79]. A sin-
gle stage network, as in the llliac IV [Bou72,Sie79) but with an eight neighbor mesh :'~-::~
connection pattern, would be most efficient, implemented so that network settings can -
remain unchanged for multiword transfers.

Other investigators have discussed, to a limited extent, the relationships between

architectural features and algorithms. Foster [Fos76] has examined the particular LB

architectural features needed by an associative processing system in order to execute
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efficiently particular fundamental algorithm constructions. He defines algorithmic

features such as mode of address, depth of nest, interpass coupling, and number of

internal operands. He then uses these features to show which associative processor

instructions are needed to support different types of algorithms.

Gonzales [Gon78] discusses the need for techniques that permit an evaluation of

distributed computing systems. He suggests that the following elements are required: a

set of attributes, a measure of the extent to which a distributed structure possesses
each attribute, and a measure of the relative importance of each attribute to the task
being computed. He then discusses, in a general sense, what the components of such a

quantitative approach should be.

Kuck and Padua [KuP79] have used measurements on programs to describe the
performance characteristics of some general architecture schemes on different types of
programs. Their goal is to use the measurements in programs from a particular appli-
cation area to guide the design of special purpose multiprocessor systems for that area.
The approach is based on decomposing serial programs into blocks based on data

dependencies.

The algorithm characterization which we have been working on for the Defense
Mapping Agency (DMA) [SwS80] is aimed at providing information towards matching

image processing algorithms to SIMD architectures.

This work that has been done provides us with a basis for our architecture and B
algorithm modeling, but there are significant differences from this previous work in
both our approach and objectives. For example, Foster's study is limited to associative
parallel processors. Gonzales suggests types of information that would be useful in o
obtaining a quantitative evaluation of an architecture, but does not explore the specific .
features which would enable an architecture and an algorithm to be compared. Kuck S
and Padua base their program measurements on automatic transformations on serial

FORTRAN programs, rather than examining tasks at the subtask and algorithm level
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as we propose to do. Our DMA work is limited to the analysis of specific image pro-
cessing algorithms rather than tasks, and is limited to SIMD parallelism rather than the
more general MIMD mode.

Our approach here is to develop techniques by which the parameters which charac-
terize a system architecture and the parameters which characterize a computational
process can be objectively compared. The effect will be to define a measure or meas-
ures by which the suitability of a particular architecture for a particular algorithm or
set of algorithms can be evaluated. There are three ways in which this measure could
be used:

(1) Given a set of algorithms, evaluate a variety of architectures. Used in this way,
the measure provides a design tool for the development of special purpose systems.

(2) Given an architecture, evaluate alternative algorithms for a particular processing
task. This provides a design tool for the development of software for a computer
system.

(3) Given an architecture and algorithm, assess the performance of the algorithm on
that system. The perforinance measures used would be determined by the specific

requirements of the intended application.

Numerous techniques exist for evaluating the complexity of serial algorithms
‘AbHT76,Knu73]. Although measures of complexity of a serial algorithm include implicit
assumptions about the model of computation, the asymptotic time complexity of an
algorithm will be the same for any canonic serial computer model [AhH76]. These tech-
niques for evaluating the complexity of a serial algorithm are therefore not directly
applicable to parallel algorithms, where the architecture must be considered as a vari-
able affecting the execution of the algorithm. We shall investigate techniques for
obtaining theoretical lower bounds on the asymptotic time complexity of asynchronous
processes, given specified architectures. These techniques will be based on the parame-

ters derived in the models for parallel processes and architectures.
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In order to evaluate the suitability of an architecture for a task or set of tasks,
measures of ‘‘goodness” are required. Two possibilities are raw computational speed
and cost-effectiveness. Maximum speed with which a task can be processed would be of
interest for determining a lower bound on execution time. This is especially important
for real-time tasks. By adding considerations such as the monetary implementation
cost of the computer system, measures of cost-effectiveness can be obtained. However,
factors such as reliability, maintainability, and accuracy must also be considered. We
have studied such measures for SIMD parallelism [SiS82]. Our future work will include
examining ways in which to incorporate such performance measures into an evaluation

scheme based on the models of processes and architectures.

1.3.4 Signal Processing Task Analysis

A key aspect of our approach to the modeling process is to examine the parallelism
in a variety of typical one- and two-dimensional signal processing tasks for the purposes
of identifying what features can best be used to relate parallel processes to parallel
architectures. The types of tasks to be studied include problems from the areas of
radar processing, image processing, statistical and syntactic pattern recognition, speech
understanding, and speech coding. Figure 1.2 outlines the analysis process for a task.
The subtasks represent the major computational units into which the task can be
decomposed. Some of the subtasks may be executable in parallel; some may have data
dependencies that dictate sequential execution. For each of the subtasks, sets of alter-
native algorithms for performing the subtask are identified, and for each algorithm,
alternative implementations are considered. At each level in the analysis structure,
features which characterize the components and interrelations among components at
that level are abstracted.

Chapter 6 of this report contains an initial look at three prototypical signal pro-

cessing tasks from the image processing domain.
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1.4 Progress Summary

Our approach to date has combined both *“top down™ and ‘‘bottom up” strategies
to the modeling problem. From a ‘“top down” point of view, we have surveyed and
analyzed high level representations of concurrency and existing architecture
classification schemes. Starting with these known modeling tools, we are examining
their applicability to problems of interest. From a ‘‘bottom up” perspective, we have
considered the structuring of specific signal processing tasks for distributed execution in
order to identify the salient attributes of the tasks and the corresponding architectures.
From both approaches, we intend to extract features which characterize various aspects

of distributed processes and architectures.

1.4.1 Modeling Architectures (Chapters 2,3)

Existing architectural classification schemes have been surveyed. These include
general schemes, based on major system characteristics, and more detailed system
description notations such as the processor-memory-switch (PMS) notation. Based on
this survey, our approach to developing a comprehensive classification scheme will be to
create a hierarchical classification system. A high level characterization will be followed
by a more detailed description of the system’s functional units and their organization.
This scheme will involve combining and augmenting existing methods. Preliminary
work has been done on the specification of this hierarchical system.

An extensive survey of multistage interconnection networks has been completed.
From this, characteristic features of networks have been observed and a taxonomy of
interconnection networks has been developed. Four aspects of multistage networks
have been detailed: structural characteristics, distributed control schemes, implementa-

tion attributes, and fault tolerance.
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1.4.2 High Level Descriptions of Concurrency in Processes (Chapter 4)

Concurrent programming languages and graphical representations are being stu-
died for their usefulness in expressing the relevant characteristics of distributed
processes. l,anguages considered include Ada, CSP, Concurrent Pascal, Path Pascal,
Modula, and Edison. The languages have been examined with respect to their ability
| to represent some-of the attributes which appear to be critical in designing concurrent
E implementations of signal processing tasks. These include provisions for local and glo-
l bal data, support of concurrent processes and the dynamic creation and termination of
' processes, specification of communication paths, and support of synchronization primi-
tives.

Graphical representations are being studied for their ability to model various
aspects of process synchronization. In asynchronous computation, the need for syn-
chronization arises in various ways. A major process, after having spawned multiple
subtasks, must resynchronize to coordinate the bringing together of results for use by
the parent and/or subsequent processes. Our models must recognize data dependencies
and include the overhead incurred by the resynchronization mechanism. We wish to
develop models that take into account the different character of various synchronization
inethods, both in hardware and software. This is particularly relevant as it has been
found that syochronization overhead may vary greatly for similar tasks executed on
architectures that differ only in their synchronization mechanisms, so the software
model should be accurate with various architectures. Another circumstance in which
svnehronization overhead must be considered is in the competition of multiple tasks for
shared resources (peripherals, computation elements, shared data, etc.). Since the input
to the systems under consideration is often random in nature, our models must include
the stochastic behavior of this competition (the use of shared resources often cannot be

prescheduled).
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An extension of Synchronous Nets (which are themselves an extension of Petri
nets) is being investigated for its utility in the asynchronous environment. Markov

graphs or modifications thereof will be evaluated for use in stochastic modeling,.

1.4.3 Features for Describing Processes and Architectures (Chapter 5)
Preliminary work has been done on integrating the information derived from the
studies of concurrent languages, graph representations, architecture classification
schemes, and task scenarios. Algorithm properties have been enumerated and candi-
date features to provide a ‘‘run time profile” have been identified. The features charac-
terize such aspects of a task as uniformity of processing, global vs. local control, global
vs. local data access, degree of parallelism, data set sizes, data types, and frequency of
synchronization. Correspondences between algorithm/task features and architecture

attributes are being developed.

1.4.4 Applications Studies (Chapter 6)

Parallel implementations of digital signal processing tasks are being designed in
order to identify what features can best be used to relate parallel processes to parallel
architectures. Three tasks from the image processing problem domain have been stu-
died: contour extraction, shape recognition using Fourier descriptors, and computer
vision. The contour extraction scenario involves edge detection, edge-guided threshold-
ing, and contour tracing. It embraces both SIMD and MIMD subtasks, and is charac-
terized by both local and non-local communications. The shape recognition task
requires resampling, discrete Fourier transforms, global normalization operations, and __,j
library comparisons. It too can be implemented using a combination of SIMD and

MIMD subtasks and requires a number of markedly different communications patterns.

The computer vision task involves classification of the pixels of an image in order to

delineate objects, followed by calculation of a number of parameters for each object,
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including hole statistics, area, perimeter, and axis dimensions. A model of limited
MIMD operation has been defined for this task, and simulations of the parallel vision
algorithms have been performed. From these scenarios, significant attributes of the

tasks which affect the parallel implementations have been observed.
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CHAPTER 2
MODELING ARCHITECTURES: CLASSIFICATION SCHEMES

2.1 Introduction

Architectural classification and description schemes discussed in the literature vary
considerably in the level of detail in which they treat systems. Consequently, the dis-
cussion of the different schemes is divided into subsections according to the level of
detail. In Section 2.2, the general classification schemes of Feng [Fen72], Flynn [Fly66,
Fly72], Kuck [Kuc80] and Shore [Sho73] are described. In Secction 2.3, the more
detailed structural system level description notations of Bell and Newell [BeN71] (PMS
notation), Hockney and Jesshope [HoJg81], and Giloi [Gil81] are presented. In Section
2.4, some description and classification methods for computer subsystems are described.
Included is Hindler’s ECS notation [Han77b, Han81] for describing processors and
Ramamoorthy and Li’s pipeline classification scheme. Siegel, McMillen, and Mueller’s
[Sim79a) taxonomy and parameters for describing networks and McMillen and Siegel's
[McS80b] taxonomy for protocols are presented in Section 2.5. In Section 2.6, func-
tional descriptions of computers are addressed in terms of instruction sets and data
types supported directly. Bell and Newell's ISP notation [BeN71} and Giloi's Taxon-
omy [Gil81] are described. Finally, some recommendations toward combining a number
of the more effective schemes together to produce a comprehensive, hierarchical archi-

tectural classification and description methodology are made in Section 2.7.
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2.2 General Classification Schemes
2.2.1 Flynn's Classification

The oldest and most widely used scheme for classifying parallel computers has
been proposed by Flynn [Fly66]. He divides computers into four groups depending on
the number of concurrent instruction and data streams present. The simplest
configuration is that used in a conventional serial processor which is classified SISD for
single instruction stream - single data stream.

The first type of parallel system is classified as SIMD, single instruction stream -
multiple data stream. Typically, an SIMD machine consists of a control unit, P proces-
sors, M memory modules (M is usually > P), and an interconnection network. The
control unit broadcasts instructions to all of the processors, and all active processors
execute the same instruction at the same time. Thus there is a single instruction
stream. Each active processor executes the instruction on data in its own associated
memory module. Thus, there is a multiple data stream. The interconnection network
sometimes referred to as an alignment or permutation network or switch, provides a
communications facility for the processors and memory modules. A classic example of
the SIMD organization is the Illiac IV [BaB68].

The second classification for parallel computers is MISD for multiple instruction
stream - single data stream. In this type of an organization, a high bandwidth, dedi-
cated execution unit is shared by a number of virtual machines. The virtual machines,
operating independently on different programs, each have access to the execution
hardware once per cycle. Thus there are multiple instruction streams and a single,
interleaved data stream. An example of this is the peripheral processor units (PPM's)
in the Control Data Corporation (CDC) 6600 [Tho70].

The multiple instruction stream - multiple data stream or MIMD organization is the

last type defined by Flynn. An MIMD machine typically consists of P processors and

M memories (M > P), where each processor can follow an independent instruction
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stream. As with SIMD machines, there is a multiple data stream and an interconnec-
tion network. Thus, there are N independent processors that can communicate among
themselves. There may be a coordinator unit to oversee the activities of the processors.

Flynn allows pipelined computers to be placed in the SIND category [Fly72].
However, some researchers [Han77b, HolJ81] believe that pipelined computers should be
in a separate category and it has generally been the case that researchers using the
term SIMD exclude pipelined processors. Since Flynn's classification is very broad, it is

suitable for use only at the highest level in a hicrarchical classification.

2.2.2 Feng's Classification

Feng’s scheme for classifying computer architectures is based on the number of

bits in a word and the number of words that are processed in parallel [Fen72]. These
two simple measures of a system form a two dimensional feature plane in which a given

computer is represented by a point in the plane. If x is the number of bits per word

and y is the number of words operated upon in parallel, then (x.y) represents the com-
puter. For example, the Illiac IV that was actually built is represented by (64, 64). ;:. {
STARAN [Bat74] would be represented by (256,1). .

The intent of Feng's scheme is to distinguish among a variety of computer designs
using two, easy to evaluate, features. The scheme is not, however, designed to expose
the structure of a given computer. Thus, in the case of the STARAN, it could be con-
cluded that it is a serial processor with an enormous word size. The fact that it is a
powerful associative array computer is not readily apparent  Consequently, Feng's
classification scheme is not well suited for use at a high level in the hierarchical scheme
to be developed. On the other hand, the features of bits per word and words operated
on in parallel are useful at a lower level of system description and will be incorporated

there.
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2.2.3 Shore’s Classification

Shore divides computers into six classes or machines as illustrated in Figure 2.1
[Sho73]. His motivation in defining these machines is to refine Flynn's classification.
Machine I consists of instruction memory (IM), a control unit (CU), a processing unit
(PU), and a data memory (DM). The control unit fetches instructions from IM and the
processing unit fetches and operates on words from DM. This is the organization of a
conventional serial processor and corresponds to Flynn's SISD classification.

If the DM in machine 1 is rotated 90 °, machine II is obtained. In this case, the
processing unit accesses the same bit of all words in memory, i.e. a bit sice. STARAN
is a good example of this type.

When parallelism is considered with respect to bits, Shore observes that there is
little difference between machines of type I and II. If the data memories are square,
performance will be the same in either case. In practice, however, there are typically
many more words than there are bits per word. Consequently, machines of type II are
capable of very high performance. [t is partly for this reason that type Il machines are
considered “parallel” (since parallelism usually implies greater performance) whereas
type | machines are not. Technically type II's can be classified as SIMD machines (and
are considered as such by Hockney and Jesshope [HoJ81)) since there is one instruction
stream and multiple (albeit bit serial) data streams. Machine type Il is simply the

combination of types I and II and has been called an orthogonal computer [Sho70).

Although the STARAN is capable of accessing words or bit slices from its 256 by 256
data memory, it does not have separate processors for dealing with the two formats.
Thus it does not qualify as type III. The OMEN-60 series of computers do, however, g
belong to this class [Hig72]. R

Machine type IV is obtained by replicating PU-DM pairs. Each pair is connected

to a single control unit. Since there are no connections between PU’s, the only com-

munication that can take place between PU’s is through the CU. This configuration

.......
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has previously been called an ensemble. PEPE [ViC78] has an architecture very similar
to this except that there are three control units instead of one.

If near neighbor connections are added between the PU’s in a type IV machine, a
type V machine is obtained. The Illiac IV is such a machine. These computers are
often referred to as arrays as opposed to ensembles due to the processors’ ability to
communicate with one another.

Since Shore's paper was written, considerable research has been done on intercon-
nection networks that provide processor communication [cf. AnJ75, Fen81, Sim79a,
Thu74]. Some of the methods that have been proposed are considerably more sophisti-
cated than the linear near neighbor connections illustrated by Shore. Since the
intended structure of the type V class is not altered by a more sophisticated connection
scheme, it is considered appropriate to include array computers with interconnection
networks in this class.

Finally, an array of logic in memory defines the type VI machine. Processing logic
is associated with each bit of memory. Such machines are fully associative processors.

Hlustrating just how ‘“fuzzy” the line between serial and parallel processors is,
Shore places the line between machine types III and IV and Hockney and Jesshope
place it between I and II. The primary shortcoming of this scheme, as was the case
with Flynn's, is the lack of provisions for pipelined designs. In addition, there is no
provision for MIMD type organizations. The conclusion (as reached by Hockney and i
Jesshope [HoJ81]) is that Shore's machine types Il - V are useful subdivisions of Flynn's

SIMD category.

2.2.4 Kuck's Classification
Whereas Flynn categorized computers according to their instruction and data
streams, Kuck proposes to classify them according to snstruclion streams, instruction

type, erecution streams, and ezecution type [Kuc78]. The instruction and execution
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streams can be stngle or multiple and the instruction and execution types can be scalar
or array. The number of instruction streams is determined by the number of programs
that can be executed at once. It is assumed that each program requires a single register
in some control unit to point to the next instruction to be executed. There is no res-
triction on the interaction between programs in the sense that they may be cooperating
to achieve one final result. If the instructions used are essentially indistinguishable
from those of a conventional uniprocessor, then the instruction type is scalar. If
instructions explicitly refer to whole vectors or groups of operands (e.g. with base,
limit, and increment as in the Texas Instruments Advanced Scientific Processor (TI
ASC) [The74] or a vector register as in the CRAY-1 [Rus78]) then their type is array.

The number of ezecution streams is determined by the number of operation types
that can be issued collectively at one time by all of the control units in the system.
That is, regardless of the number of copies of an operation type issued, the number of
execution streams depends only on the number of different types that can be issued
simultaneously. Traditional operation types (usually specified by a single op-code in a
uniprocessor) include store, load, fixed-point add, floating-point multiply, etc. The eze-
cution lype is determined by the number of operands to which the instruction is
applied. For example, in the Illiac IV, scalar type instructions are fetched by one con-
trol unit and broadcast to 64 execution units. Since only one instruction type is broad-
cast, there is a single execution stream. However, 64 operands are acted upon, so the
execution type is array. The Illiac IV is thus classified as SISSEA or single instruction
stream, scalar instruction type - single execution stream, array execution type.

To recapitulate, to characterize a system using Kuck's proposed scheme four
parameters must be determined: the number of instruction streams (single or multiple),
the instruction type (scalar or array), the number of execution streams (single or multi-
ple), and the execution type (scalar or array). Since there are four parameters with two

possible attributes each, 16 categories are defined and each is physically meaningful.

PR L L AL VRS
s et At e
.

SN ST AR

AR ARSI A et AN SN e AR SN At i oG MM i Ca s




e e .
e, K
= -

..................................

- - S .
- T - . * . b . -
VPSR LA '1; A .'l“x i daialalaiat sz -“.‘h_h

2-8

However, not all categories necessarily lead to desirable architectures. Table 2.1 lists
the categories and many existing and proposed systems are shown as entries.

To a large extent, this classification scheme does a good job of separating different
architectures into different categories while those in the same category are very similar
in function if not in form. For example, in the SIAMEA category are the Burroughs
Scientific Processor (BSP) [Sto77], CRAY-1, Control Data Corporation (CDC) 7600,
and the TI ASC. The latter three all have multiple arithmetic pipelines whereas the
BSP has 16 non-pipelined arithmetic units. Despite the difference in architecture, all
machine's capabilities are approximately the same; in each case there can be 32
operands in some state of computation at one time (assuming dyadic computations are
performed, i.e., there are two operands).

In the SISSEA category both the STARAN and Illiac IV machines are included,
yet architecturally and functionally they are significantly different. Shore classifies the
STARAN as type II (since it can be viewed as having a single processing unit with 256
bit registers) and the Illiac IV as type V. The simplest way to further classify these
machines would be on the basis of the number of processor units they have: single and
multiple respectively.

The PASM [SiS81a] and TRAC [SeU80] machines are reconfigurable and thus are
listed in several categories. Their entries in categories not requiring all of their capabil-
ities are shown in parentheses. PASM'’s most powerful mode in MISMEA and TRAC’s
is MIAMEA (i.e. TRAC's instruction set allows for explicitly referencing and operating
on vectors [KaP80]).

Conceptually, data flow machines do not have instruction streams per se, only
data streams. However, proposed implementations (e.g. [DeB80]) generally have some
kind of instruction cells that receive operands, combine them with an instruction
opcode and distribute the packets of data and instructions to execution units (the

opcode may be simply the address of a single function arithmetic unit). Consequently
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Table 2.1 Kuck's 16 Categories of Computer Architectures

SINGLE EXECUTION MULTIPLE EXECUTION
TYPE SCALAR ARRAY SCALAR ARRAY
ILLIAC IV
SCALAR | PDP 11/45 | STARAN CDC 6600 OMEN.-60
(PASM) CPU
SINGLE (TRAC)
INSTRUCTION
CRAY-1
ARRAY | ZILOG Z80 CYBER NONE BSP
203/205 KNOWN CDC 7600
TIASC
BURROUGHS FMI’ | DENELCOR HEP
SCALAR | CDC 6600 NONE DATA FLOW PASM
PPU KNOWN (PASM) (TRAC)
MULTIPLE (TRAC)
INSTRUCTION
PEPE
ARRAY | UNDESIRABLE | NONE NONE CDC NASF
DESIGN KNOWN KNOWN TRAC
PUMPS




there are multiple instruction streams which coincide with the execution streams.

There are four categories for which t'iere are apparently no existing or proposed
machines: SIAMES, MIAMES, MISSEA, and MIASEA. The first two categories imply
an architecture in which single or multiple array type instructions are issued such that
many operation types, to be applied to one pair of operands each, are specified by oue
array instruction. This represents an unusual instruction set which would be most
likely found in a special purpose application, if it exists.

The MISSEA and MIASEA categories fall into the broader category of MISE
machines - multiple instruction stream, single execution stream. This architecture
implies that several instruction streams are interleaved on an instruction by instruction
basis. An example in the MISSES category is the peripheral processing units (PPU’s) in
the CDC 6600. There are no known examples where this is done for array type instruc-
tions or arrays of operands. Indeed, this type of architecture is only appropriate when
the execution units operate considerably faster than the rate at which instructions are
issued by one control unit. In the MIASES category, it is very unlikely that streams of
array instructions would need to be merged to keep a single execution unit busy.

In the SIASES category an architecture is implied in which array instructions are
issued but execution takes place one operand (pair) at a time. This is useful for
compressing the instruction set. An example is the Zilog Z80 microprocessor which has
block move instructions. An array of data is to be moved, but it is done one element
at a time. Such an instruction saves time since it only has to be fetched once.

Kuck’s scheme is the most powerful of the general classification schemes examined.
It is, however, more cumbersome to use. Thus, when no ambiguity will result, Flynn's
scheme will be used in general discussions. When clarification is needed or a discussion

is more detailed, Kueck's scheme will be used.
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2.3 System Description Notations

System description notations are designed to indicate explicitly the architectural
features of a given system. The three notations that are discussed here are (1) Giloi's
notation [Gil8l1]; (2) processor-memory-switch or PMS notation [BeN71]; and (3) Hock-
ney and Jesshope’s notation [Hol81] (which will be referred to as HOJ notation).
Giloi's notation for describing architectures is not as detailed as the other two. PMS
and HOJ notation are comparable in their descriptive power but there are important
differences that will be described. All three notations are hierarchically organized and

thus can be used to describe systems in varying levels of detail.

2.3.1 Giloi’s Taxonomy

According to Giloi, [Gil81] there are two major features of a computer architec-
ture: hardware structure and an operational principle. The latter deals with the instruc-
tion set implemented and data types that can be directly manipulated. This aspect of
the architecture will be discussed later (Subsection 2.6.2). The hardware structure is
defined by the type of hardware resources and their number, an interconnection system,
and a set of cooperation rules. Hardware resources include processors, memories, and
peripheral devices; the interconnection system is comprised of all physical means by
which hardware resources communicate; and cooperation rules govern communication
and synchronization among the resources.

The hardware structure is specifically subdivided into a processor struclure,
memory structure, and communication structure. The processor structure can contain a
single or multiple processing sites. A single processing site consists of a conventional
CPU, a multifunction processor, or a pipelined processor. Multiple processing sites can
be arranged as an array of processing elements, a multiprocessor system, or a multicom-
puter system. Typically, a multiprocessing system consists of an array of processors

which may each have some memory associated with them, whose primary purpose is
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task execution. A multicomputer system consists of a number of computers that are
linked together, where each computer contains a processor and its own memory. In
addition, each may have I/O facilities and/or disk storage.

The memory structure consists of private and/or shared memory. The communi-
cation structure consists of memory sharing, a message switching bus, a message buffer
memory, or a connection network. The cooperation rules used by multiple resources
can implement a Master-Slave relationship, data flow, or cooperative antonomy.

Giloi's taxonomy is a useful way to view the components of a system at different
levels of detail. However, there is no provision for explicitly indicating how the
resources are connected together. Furthermore, the level of detail to which a system

can be described is limited.

2.3.2 Bell and Newell’s PMS Notation
Processor, memory, switch or PMS notation has been proposed by Bell and Newell
[BeN71] for naming, describing, and interconnecting the parts of a computer system.
The name of the notation comes from three of the primitives or basic component types
used in the notation. There are a total of seven primitives:
M: Memory is a component used for storing information. It is not capable of
altering the information it is given to store.
L: Link is a component that transfers information from one place to another
without altering it.
S:  Swilch is a component that constructs links between other components. It has
an associated set of L’s that it enables or disables to make required connec-

tions.
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D: A component that performs dale operations. It can create and alter informa-
tion. A classic example of this is ar arithmetic unit.

K: Control is a component that evokes discrete operations of the other component
in the system. With the exception of a processor (P’). all the other primitives
are passive and require activation by a K component.

T:  Transducer is a component that transforms information without altering its
meaning. For example, it might convert data from bit parallel to bit serial
form.

P:  Processor is a component that is capable of interpreting a program in order to
execute a sequence of operations. Technically, it is not a primitive since it can
be constructed from M, L, S, D, K, and T's. However it is such a fundamen-
tal part of systems, it is treated as a primitive.

The external environment is denoted by the symbol X. Components are connected
with solid and broken lines (see Figure 2.2). Solid lines indicate flow of data and bro-
ken lines indicate transfer of control information. Lower case letters following a primi-
tive symbol are used to differentiate between different types of a given primitive. For
example, Pc is a central processor and Pio is an input/output processor. Mp is a pri-
mary memory and Ms is a secondary memory. A basic computer, C, is defined as:

C:= Mp-Pc-T-X.

This notation is not usually linear. For example, if Pc is expanded into its com-
ponents, the siructure shown in Figure 2.2 results.

A considerable level of detail can be achieved by describing the attributes of a
component in parentheses, adjacent to its symbol. For example, the processor m an
IBM 370/165 can be represented as [BeNT1]:

Pc (model: '165; cycle time: 80ns; data paths: 64 bits; cooling: water).

An attribute such as the type of cooling used is useful for documentation purposes; but
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is superfluous with regard to evaluating the architecture’s ability to execute an algo-
rithm.

A rigorous definition of PMS notation is given in the appendix in [BeN71]; it is too
lengthy to include here. As an example of the capabilities of this notation, a detailed
description of the Digital Equipment Corporation PDP-8 is shown in Figure 2.3. The
main drawback to this notation is readily apparent from the figure: it is two dimen-
sional. It does not lend itself to being embedded in text or stored in a computer (ie.
for analysis of the represented system’s capabilities)  The notation presented in the

next section solves this problem.

2.3.3 Hockney and Jesshope’s Notation

Hockney and Jesshope have developed a notation specifically designed to allow a
one-line or few-line description of an algebraic style amenable to printing and entry
into a computer [HolJ&1]. HOJ notation represents a computer as a number of func-
tional units that manipulate data, are connected by data paths, and are controlled by

instruction units. Using their notation, a simple serial computer is represented by:

¢ = IE- M.

This means that the computer, C, consists of a single instruction unit that controls the
units in brackets. Those units are an execution unit, I, that performs arithmetie, con-
nected to one memory unit, M, by a single path (the solid Jine). There are a total of 20
rule types that define symbols, govern their use, and how they are to he connected. A
summary of them is given below along with some exvamples,

B: Boolean, integer, or fixed-point execution nnit
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Npuo.7)'_sL.s_r¢i_s‘—___ K'———=T(Teletype; 10 char/s; 8 b/char; &4 char)~

(4

. <l'

O

—_— tape; (reader; 300 char/s nch:} -
‘Data Break; X paper tape; (reader; 300 c ) (o ]

100 char/s): B b/char

Koo 1 incrementa! point plot; 300 point/s; .Oﬂ -
[:inlpolnz

K—————Tlcard; reader: 200'800 card/min) e«

Direct

—

- v Access

K ——— T(card; punch; 100 card/min)—
Multiplexor; X line; printer; 300 line/min; 120 CO‘/“"Ga -
radial: ‘[eu char/col
— from: 7 P,K; K e T CRT: display; area: 10 x 10 inZ!S 5 inzﬂ*
to: Mp 30 ps/point; -01.005 in/point
- K ——— T{Vight; Den)._‘
: [3 T(Dataphone; 1,2 ~ 4.8 kb/s)-
R k(#1:10)—L (analog; output; O ~ -10 volts)—
".- K S—ee L (#0:63; aralog: input; 0 ~ -10 volts}e
. K—— §—— K(#0:63; Teletype; 110, 180 b/s)-
Ko— S—— Ms{ #0:7; DEC.2ape: addressable magnetic tape: -
,[)33 us/w; length: 260 fr; 350 char/in; 3 b/chuJ
K S Hn[lO:]; magnetic tape; 361451751125 in/5j~

B
. s{*ono) Dara
o

200,556,800 b/in; 618 b/char
K—— S—— M5 ¥0:3); fixed head disk: tdelay: 0 ~ 17 ms;
(66 1s/w; 32768 w)| (16 ws/w; 262144 w):
(12,1 parity) b/w
LL:F(display: '338) T(#0:3; CRT; display: area: 10 x 10 lnz)-'

AR

- ©T(#0:3; Vight; pen)s’
R T(#0:3; push buttons; console)e

T.console

Pcl 'Ladoratory }e—

- Instrument ' Ms! #0:1; LINC_tape: addressable magnetic tape:|-
[s.zs /s 27w

T(#0:15; knobs, analog; input)e

T(CRT; display; S x § Ind)=

. T{digital; input, output)-

Computer/LINC

L——7T('Data Terminal Panel; digital; Input, output)-

.. 'Molcore; 1.5 us/w; 4096 w: (12 + 1)b)

- 25 ('memory Bus)

PPl ~ 2 w/instruction: data: w, i,bv. 12 b/w: M processor nn.l;é ..3%) w. technnlooy: transistors;
antecedents: PDP-S. descendants; POP-85, POP-81, POP-L)

4S('1/0 Bus; from, Pc; to, 64 K)
'Kf1~ & instructions; M.buffer(l char ~Z w))

Figure 2.3.  PMS Diagram of Digital Equipment Corporation PDP-8 (from (BeN71])
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nX:

A computer containing at least one I unit.

An I/O channel that can operate independent of other units.

An I/O device (e.g. disk). Its type is specified in parentheses.

An execution unit (i.e. ALU). Can be specified as an F or B unit.

A floating-point execution unit.

A data highway or switching unit. It does not alter data other than to
possibly reorder it (e.g. the Flip network in STARAN [Bat76]).

An instruction unit. It decodes a single instruction stream and sends
commands to execution units within its scope of control. Instructions are
sequenced with a single instruction counter.

An interface to an [/O device.

A memory unit for storing data and/or instructions (e.g., registers, cache,
main memory).

An orthogonal memory (two dimensional).

A processor with at least one execution unit but no instruction units.

An unspecified unit. To be used when the unit to be described fits into
none of the above categories. A description is placed in parentheses adja-
cent to the U,

A pipelined unit (X is one of the above)

The I unit can interpret vector instructions. (v is the last symbol if the
unit is also pipelined, i.e. Ipv).

n is any integer, used to differentiate between multiple units of the same
type, e.g. Ipvl, Ipv2.

n is an integer indicating the number of units of the same type that may

operate simultaneously.
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nX: Indicates that multiple units of the same type are identical, e.g. 64P
represents 64 identical processors as in the Illiac IV [Bou72].

{expr): Indicates identical replication of a group of units defined by expr, e.g.
64{F.--M} represents 64P in expanded form.

{X,..,Y}: A group of units that can operate concurrently.

{X,Y,Z}p:Units or operations (e.g. memory read) X, Y, and Z that operate or are

executed in an overlapped (pipelined) fashion.

{X/.../Y}:A group of units that can only operate one at a time.

Example: {4F1/B1}; 4F1 = {F(+),F(*),F(1/x),F(sqrt)}; B1 = {B(+)/B(shift)}. This
illustrates four floating point units that operate concurrently relative to each other, but
sequentially with respect to a fixed-point unit. The floating point units consist of add,
multiply, reciprocal, and square root units. The fixed point unit can perform an add or

a shift but not both at the same time.

Xy Subscript b is the number of bits on which unit X operates, X # M or O.

nM,,,: 0 is the number of one dimensional memory banks, each of which con-
tains w words, b bits wide.

Oyep: An orthogonal memory w words by b bits in size. It either delivers a b
bit, word-slice or a w bit, bit-slice.

X\t t is the characteristic time of the unit in nanoseconds unless otherwise
noted. If X =1, t is the clock period, if X = E, t is the average execution
time, and if x = M, t is the access time.

- An unspecified connection.




->,<—: Unidirectional connections.
<—=>:  Full duplex connection.
<=/->: Half duplex connection.

m: t is the transfer rate of n identical buses with d data bits and a address

bits each.

Example: Complex communication structures can be defined in a nested fashion

using the highway type: H3 = {{Tg>,<~l€}/<-3—2-}. The bus denoted by H3 can

be operated with 16 bits travelling each direction or with 32 bits travelling to the

left. That is the direction of half of the bus can be reversed.

X-Y-12: Series connection.

—Xl: Connection on the left but not the right (| is optional if there is no
ambiguity).

,X - Connection on the right but not on the left.

—{-X-, =Y—}— Units X and Y are connected in parallel.
—-{X,Y}: Group of units that can operate concurrently, connected to a single
bus in an unspecified way.

—{—X- / =Y—}~:Two parallel paths that can be used only one at a time.

Example: Very complex structures can be specified using this notation. The struc-

ture illustrated in Figure 2.4 is represented by the expression:

X1-{-X2| -X3-{-X7/<-}- .~ {=X4=,-X5-X6-} - { -X®-/=>}-}-X9.

X-a: A unit can be attached to a connection point represented by a lower

case letter. This is used for connecting very complex structures.
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— X2
- — X7 —
3 — X3 -

A A )

X1—1X4 X8 —X9

: — X5 — X6 —

4,

Figure 2.4  Hypothetical Arrangement of Nine Functional Units
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E X-—{a,b,c}: Unit X is attached to connection points a, b, and c.
: nX!on; n units with first near neighbor connection, i.e. four nearest neighbors.
). CILLE Second nearest neighbor connection is used, i.e., to the eight nearest
i neighbors.
4 nX% "0 There is no connection.
! nX x mY: Cross connection between nX units and mY units via a crossbar or
E switching network.
(Comment): Comments are placed in parentheses and used to clarify descriptions or
how connections are to be made.
: Example: A memory hierarchy could be represented by:
M1'%(bipolar) — M2%9(CMOS) - D1™)(fixed head disk).
A system with the Generalized Cube multistage interconnection network [SiM81b)

could be represented as:

64F x (Generalized cube) x 64M .

Simplest form of a processor; there is no [ unit.

I[E - M]:  Simplest form of a computer. Since it contains an I unit, it can

control other units. For example, C[63P] represents a computer
with control over 64 identical processors.

Control is asynchronous; Xe{l,C'}.

Control is horizontal. One instruction controls several different
units at each cycle.

Control is lockstep or synchronous
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X[ )i “Issue when ready.” An instruction is issued when the execution

unit and required registers are available, e.g., the CRAY-1 [Rus78].

A complete formal specification of HOJ notation in Backus Normal Form (BNF) is
given in the appendix in [HoJ81].

This notation is very powerful and well suited to representing those features of an
architecture that determine how well an algorithm will execute on it. Table 2.2 illus-
trates HOJ notation's ability to represent a wide variety of systems and its compatibil-
ity with Kuck's classification scheme. Kuck’s 16 categories are listed and a representa-
tive structure is given for each in HOJ notation. Where an example system is included
for a particular category, the HOJ representation is given specifically for that system.

The correspondence between Kuck's four features and notational components of
HOJ notation is apparent from Table 2.2. The number of I units determines the
number of instruction streams. The presence or absence of a “v” on an [ unit deter-
mines whether the instruction type is array or scalar, respectively.

The number of I£ units determines whether the execution type is scalar or array.

If all E units in the system are identical (i.e. there is a single E, F,B, or P in the

’

I R L T
s ',',",',',

representation) then there is a single execution stream. If there are multiple, indepen-
dent execution units (e.g., one 1 unit and multiple E units or multiple identical C units)
then there are multiple execution streams. Because of this relationship between HOJ
notation and Kuck's taxonomy, once a system has been described in HOJ notation

{even at just a coarse level), it is very easy to classify.

2.4 Processor Description
Some research on classification methods has concentrated on specific portions of a
computer system.  Deseribed below is Hindler’s Erlangen Classification Scheme (ECS)

(Han?7b, Han®1] which concentrates on processors (computers according to HOJ




Table 2.2

Relationship Between Kuck's Taxonomy and Hockney and Jesshope's

Notation

CATEGORY

EXAMPLE SYSTEM

REPRESENTATIVE STRUCTURE

SISSES

IBM 7090

1F 36— M|

SIASES

ZILOG 780

lvs':ﬁull“! ; &1““81 -8. A\iﬁ,“\'.a

MISSES

DC 6600 PPU

101{E - M)

MIASES

HOIv]E - M]

SISSEA

LLIAC IV

CIF[6AP) ™% P=FI"- M3,

SIASEA

Cyber 205

Iv '.'0[‘"?[,“-—5 12\ r&.x:

MISSEA

51[30),

MIASEA

-r)lVI'; l_)h

SISMES

CDC 6600

1[{4F 50, 6B} — 32M - 10P),

SIAMES

Iv{10E ~ 20M]

MISMES

BURROUGHS FMP

C1 - C2= 51203 - (OMEGA NETWORK) » 521M;
C3=1p*{F B} - MR (ALSO 7 BIT SECDED)]

MIAMES

256Cv - (ADM NETWORK) « 256 M

SISMEA

OMEN-64

] 16[64§1‘0¢m m"Em]l

SIAMEA

CRAY-1

IVI[12Ep'™-16M*),; 12Ep={3F p¢,, 9B}

MISMEA

PASM

C1(HOST)-C2-16C3{ « (MULTISTAGE NETWORK), ~C4};
C3={C5[64P),/C5 - 64{N[P]} };
CS=12[B-{M(A)/M(B)}]; PP =E-{M(A)/M(B)}:
C4=64C (MSU)-5C(MEMORY MANAGEMENT);
C(MSU)=C6 ~ D(DISK)

MIAMEA

TRAC

16Cv1, - (SW-BANYAN, $=2, F=3)« (MIO});

(MIO)={64P, 1610, D(DISK)}; P=B~M .
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- terminology since I units are considered) and their structure, ignoring memory and e
! interconnection. The ECS takes all forms of pipelining explicitly into account. Also
. o
::- discussed is Ramamoorthy and Li's classification of pipelining methods [RaL.77]. ]
::: -.::::;
N 2
. - tety
. 2.4.1 Handler’s Erlangen Classification Scheme R
- 1._’...‘_1‘_:
. The main purpose of the ECS is to account for all forms of parallelism in the sys- e
: tem to be classified. As with the approach taken by Shore (see Subsection B.3), the

- basic unit of information considered is one bit. The processing hardware associated ﬁ
with one bit is called an Elementary Logic Circust (ELC). This is the lowest level of ]
5 processing that is distinguished. The next higher level of processing is that of the

] Arithmetic and Logical Unit (ALU) and the highest is that of the Program Control Unit g
- ',‘-:\.:
P (PCU). The PCU interprets program instructions (one at a time) and issues directives AR
. to one or more ALUs. Each ALU executes the directives or microinstructions. \

Microinstructions are made up of microoperations which initiate elementary switching
operations that are performed by ELCs. The number of PCUs, ALUs per PCU and
ELCs per ALU form a triple denoted by (k, d, w). A very simple early computer called
MINIMA [Han77b] is classified by the triple (1, 1, 1). A conventional serial computer

3
]
ks

such as the IBM 701 is classified as (1, 1, 36). The lliac IV is (1, 64, 64) and the

STARAN is (1, 256, 1). This information is directly imbedded in HOJ notation. The -~
.h: classification (k, d, w) corresponds to the HOJ structure: k('; C = I[dE,, ~ M]. (Note: N -
this specification is not the same as kI[dE, — M] because this implies that k I units

\ have control over d E units. To be equivalent, braces need to be inserted:
;'r_-. k{l[(ll_'lw— M]}.) The —M means that the E units are connected to memory of an -
‘- unspecified configuration. In the case of the llliac IV, for example, the computer would

:: be specified as: C = l[d{E, - M}].

Handler notes that each of the components in the triple can be pipelined. Pipelin-

ing at the ELC level corresponds to arithmetic pipelining as in a pipelined floating i
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point unit. Pipelining at the ALU level is instruction pipelining and at the PCU level
is called macro-pipelining. The number of units that operate concurrently in a pipe is
indicated by the variables w, d, and k', respectively. Incorporating these parameters
into the triple yields (k x k’, dxd, wx w'). This takes both horizontal (multiple
units) and vertical (pipelined units) forms of parallelism into account.

In HOJ notation, ELC level pipelining is indicated by a lower case p that immedi-
ately follows any execution unit symbol (e.g. Fp). It does not indicate the number of
stages in the pipe, though the number of bits is included. A useful addition to the
notation is to include this information in the form: X,,,, where Xc{I:F,B}, w is the
number of bits and w  is the number of stages in the pipe. If w' is undetermined or not
known, then the form Xp, should still be used.

Hindler measures the degree of instruction pipelining in terms of the number of
independent function units available to execute an instruction. Thus, the CDC 6600 is
classified as (1x1, 1x10, 60x1) since there are ten different arithmetic units. Instruc-
tion pipelining occurs because one instruction is decoded before the previous one is
finished. If the second instruction does not need the same function unit and is indepen-
dent of the first, it can begin execution immediately. Fetch, decode, and execute cycles
are thus overlapped. The d parameter measures the amount of hardware involved, but
it does not indicate the level of speed up potentially possible or typically obtainable. In
the case of the 6600, typical speed up is a factor of 2.6, not 10. For the purposes of
this report, it would be more useful if d’ measured the number of stages in an instruc-
tion pipe.

In HOJ notation, the parameters d and d as defined by Hindler are incorporated.
The d' measure is implied by multiple, non-identical execution units, e.g., d' E. whereas
d is implied by identical units, e.g., dE. HOJ notation can easily be extended to allow
the number of stages in an instruction pipe to be added as a subscript on an I unit in

the form I,,, where b is the number of bits and b is the number of stages in the pipe.
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Ip, is to be used when b is unknown or undetermined.

Macropipelining can be performed when a set of data is to be processed sequen-
tially by more than one task. Each task can reside in a different processor. As the first
task produces results, they are placed in a memory to which the second task also has
access. The second task can begin processing intermediate results before the first task
has finished, and so on. In the case where no results are available from a task until all
results are, if there are several independent sets of data to be processed (e.g. a sequence
of images) this method is still effective in speeding up the process time.

Macropipelining can be indicated explicitly or implicitly in HOJ notation. If the
macropipelining factor is k', then it can be represented explicitly as k' serially linked

computer/shared memory pairs. For example, for kK =3

Cl->M->C2->M->C3->M.

Macropipelining is represented implicitly by the structure:

k'C x (NETWORK) x kKM .

Depending on the implementation details, as long as the computers operate indepen-
dently, macropipelining can be achieved on this type of structure. This structure is
more flexible than the previous since it is not limited to macropipelining.

The last aspect of ECS is a method of indicating combinations of different comput-
ers and those whose structure is reconfigurable. Two operators are used for the former:
“+" (concurrence) and ‘“x” (pipelining). The operators are used to connect triples.
For example, (4, 1, 16) can also be represented as
(1, 1, 16) + (1, 1, 16) + (1, 1, 16) + (1, 1, 16). The concurrence operator is most use-
ful when the computers are different. A good example of the pipelining operator is
illustrated in the representation of the CDC 6600: (10, 1, 12) x (1, 1 x 10, 60) (pipelin-
ing terms are omitted from a triple when pipelining is not present). The term on the

left is for the peripheral processing units (PPUs) through which all programs must pass
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to be executed by the main processor.

The “\/” (logical OR) symbol is used to indicate different configurations of the
same hardware. For example, the C.mmp system [WuB72] is represented as
(16, 1, 16) \/ (1 x 16, 1, 16} \/ (1, 16, 16). For reconfigurable systems like PASM
(SiS81a), TRAC[SeU80|, and the Dynamic Computer [KaK78], this notation becomes
cumbersome because of the large number of possible configurations. For example, the
Dynamic Computer has a variable word width in multiples of 16, which is the number
of bits contained in the basic computer. In a size N dynamic computer group there are
2N"1 ways to configure the system into from one to N independent virtual computers of
varying word sizes. In addition, the independent virtual computers can be linked
together in a wide variety of combinations. Expressing all the possibilities in ECS
would be tedious and of questionable value.

The preferred approach is to represent reconfigurable systems in HOJ notation in
sufficient detail to expose the legal configurations. For example, the structure for
PASM in Table 2.2 shows two mutually exclusive configurations for a C3 computer.
Since there are 16 C3 computers, there are 2'® = 64K (K = 1024) possible
configurations. Thus the number of configurations can be derived from a sufficiently

detailed HOJ representation.

2.4.2 Ramamoorthy and Li’s Pipeline Classification Scheme

In [RaL77], Ramamoorthy and Li distinguish between two levels of pipelining that
correspond to Handler's level 2 (instruction) and level 3 (arithmetic). They further dis-
tinguish between unifunction and multifunction pipes. The former is capable of per-
forming only one kind of operation, e.g. multiplication. The latter can perform several
different operations, e.g., floating point addition and subtraction. Multifunction pipes
can be subdivided into static and dynamic categories. A static pipe can only perform

one operation at a given time. Thus all instructions wishing to use a pipe at the same
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time must use the same configuration. A unifunction pipe is static by definition. A o
dynamic multifunction pipe allows overlapped processing among instructions using 3

different configurations. The control of a dynamic pipe is much more complex than

that of a static pipe.

The last distinction is between scalar and veclor arithmetic pipes. Scalar pipes m‘
accept operand pairs as they become available from the instruction unit. Vector pipes

are augmented with hardware specifically designed to accommodate vectors or arrays of

numbers stored sequentially in memory. They are usually equipped with registers for 4
storing base addresses, offsets and vector length. The main advantage of a vector pipe : ;--‘
over a scalar pipe is simplified address generation which leads to faster overall execu-
tion.
These additional parameters can easily be incorporated into HOJ notation either

formally or informally. Informally they can be included as comments with the pipe-
lined unit. For example:

Iv[{Fp(+, —, *, <, dynamie, vector),Bp(+, —, ¥, static, scalar)} — M}, .

Whether the unit is uni- or multifunction is implicit in the list of functions it can per-
form. The specification can be made formal (and more compact) by replacing the “‘p”

with two lowercase letters. The first is a “‘d” or an *‘s” and the second is a ‘“‘v” or an

“s.” The previous example becomes:

Iv[{Fdv(+, =, *, =), Bss(+, —, *)} - M], . R

If any of the execution units are vector type, then the I unit has vector instruc- . \
tions. The converse, however is not true. For example, the structure Iv[10{F-M}] is g
possible. \#
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2.5 Interconnection Network Description
In this section, ways to characterize two different aspeets of interconnection net-
works are discussed. First, their structure is examined. A taxonomy used by Siegel,

McMillen, and Mueller [Sim79a] is described. Also, parameters they used to compare a

-
>

-,
v

variety of networks are discussed. The second aspect of interconnection networks
addressed is protocol. A taxonomy of network protocols proposed by McMillen and
Siegel [McS80b] is presented. In the chapter that follows, multistage interconnection

networks are surveyed extensively.

- 2.5.1 Siegel, McMillen, and Mueller’s Taxonomy and Parameters

In their survey of interconnection methods, Siegel, McMillen, and Mueller [Sim79a
organize the networks to be discussed according to the taxonomy shown in Figure 2.5
(the single stage category has been added for completeness). The classifications are
based on the differences between physical implementations. Before discussing the tax-
onomy, it is useful to define what is meant by ‘“path” and “‘switching element.” Ander-
son and Jensen [AnJ75] define a path as the ‘‘the medium by which a message is

transferred between the other system elements” (e.g., wires or buses), and a switching

element as ‘‘an entity which may be thought of as an ‘intervening intelligence’ between
the sender and receiver of a message.” Networks can be described by the type of
switching elements used and the paths between switching elements.
As shown in Figure 2.5, interconnection networks can be separated into staged and
direct path categories. In a staged network, a message tvpically passes through a
number of switching elements on its way to its destination. These networks can always e
3 be designed so that the path between switching elements is dedicated to the pair con-
E nected [McS&2b]. In a direct path network, aside from interfaces, a message typically
: traverses paths only in moving from one processor to another. In the case of a

hierarchical organization (which is discussed further below) a message may shift levels
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via a mapping element which is considered a switching element (e.g., the Cm* system
[SWF77]). In this case, however, many switching elements usually share one path. In a
direct path network, it is possible that a message would have to pass through inter-

' mediate processors on its way to its destination. Assume all the networks to be dis-

cussed have N inputs and N outputs.

Staged networks are subdivided into the single stage and multistage groups. A
single stage network consists of one column of switching elements. Paths are arranged,
connecting outputs to inputs, so that a message can be routed from any input to any
output by recirculating enough times through the network. Such networks usually

have a small upper bound on the number of passes required (e.g., logoN). In this type

of implementation, no intermediate processors are involved in handling a message

between source and destination. Examples of this are in [ChY32, L.aS786).

A multistage network consists of several columns of switching elements. Such net-

v o Lt
G
altata’a e

works usually have at least logy N stages or columns where b is the number of input or
output ports of one switching element. These networks can be further divided into
cube type and PM2I type. These types and many examples are discussed in detail in
the next chapter.

Direct path networks can be subdivided into dedicated path and shared path
groups. A dedicaled path network has direct links between pairs of processors. Typi-

cally, a message has to pass through several processors to reach its desired destination.

Only in the case where all processors have a direct link to all other processors (fully

connected) do messages totally avoid intermediate processors. An example of a system

with a dedicated path network is CHOPP [SuB77]. Control of such networks can be e
centralized or distributed via routing tags (as is done in CHOPP).
A shared path network is typified by a bus where several devices (e.g., processors)

share its use via time multiplexing. Shared path networks are subdivided into linear,

hierarchical and crossbar configurations. A single bus or multiple buses at the same
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When several buses are combined so that high level

level form linear shared paths.
buses carry traffic between low level buses the configuration is hierarchical. A switch-
ing element is usually required to switch traffic between levels. When there is a bus for
each input and each output, totaling 2N buses, with a crosspoint (on/off switch)
between every input and output bus, a erossbar structure results.

There are mathematical functions called interconnection functions (that will be
described in detail in Chapter 3) that can be used to describe the pattern of connec-
tions used in a network. Two such functions are the ‘‘cube” and “PM2I” (plus-minus
21). It should be noted that different classes of networks can be based on the same fam-
ily of functions (e.g., single stage, multistage, and linear direct path networks can all be
based on cube functions).

Parameters that can be used to describe or quantify a network as described in
[Sim79a] are summarized as follows. The communications setup method is the method
used to establish an interprocessor communications path. Delay is the time it takes a
network to transfer one data item from a source to the desired destination. The ease of
use of a network is the degree to which connections are automatically established. The
cost of a network is the asymptotic complexity of its implementation.

The partitionability of a network is its ability to divide the system into indepen-
dent subsystems of different sizes. Partitionable systems may be characterized by any
limitation on the subset of processors which may belong to a partition. Furthermore, a
system may be logically partitioned using software techniques or physically partitioned
using hardware switches within the network control structure. A network is homogene-
ous if it treats all processors similarly. Modularsty is the ability of a network to be con-
structed from a small set of basic modules. VLSI compatibslity is the suitability of a
module to be implemented as an LSI chip, i.e., high-circuit complexity and low external
connection requirements. The extensibility of a network is its ability to be extended to

a larger size, i.e., the amount of modification needed to make the network function for

..................




a larger number of inputs/outputs. Fault tolerance is measured in terms of a system’s

features which would allow the system to remain operational with faulty components
(with possible degradation).

Let m be the number of processors which can transfer data simultaneously using
the interconnection network. Then the degree of simultanesty supported by the inter-
connection network is S =m/N, 1 <m < N. Permutations are one-to-one connec-
tions in which all processors participate. For networks with N inputs, N outputs, and
S=1, let r be the number of permutations possible in a single pass through an intercon-
nection network. Then the connectivity of the network is C=r/(N!}, 1<r<N! The
ability of a processor attached to the network to broadcast a single data item to all
other processors can be measured by the broadcast scope. Let b be the maximum
number of other processors which can receive data simultaneously from a given proces-
sor after one pass through the interconnection network. Then the broadecast scope is
B=b/(N-1). The broadcast delay is the number of transfers required for a complete
broadcast. The range of a network can be measured by R=x/(N-1), where x is the
order of the set of processors (i.e., the number of processors) from which a single pro-
cessor can choose to send data to in one pass through the network. The range can be
further characterized by specifying the set of processors which can be sent data. Simi-
larly the domasin of a network can be measured by D=x/(N—1), where x is the order of
the set of processors a single processor can receive data from in one pass through the
network, and can be further characterized by specifying the set of processors which can
send the data.

The parameters likely to be the most useful in determining how well a computer
using a given interconnection network can perform a given algorithm are delay, ease of
use, partitionability, and simultaneously. Other parameters which may be useful are
connectivity, broadcast scope and delay, range, and domain. They may be more useful

in a different form, however. For example, a measure or characterization of the
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network’s ability to broadcast to a subset of all possible destinations may be more use-

ful than the broadcast scope measure.

2.5.2 McMillen and Siegel’s Protocols

There are two basic kinds of switching that can be used in an interconnection net-

work, circuit switching and packet switching. Circust switching is a mode of communi- ]
cation in which a complete path is established from an input port to an output port ,1‘
before any information is transmitted. Packet switching is a mode in which relatively E 1
small units of information called packets move from switching element to switching ele- -
ment as paths between switches become available. Packets do not require their entire , ~

path to be established prior to entering the network.

Some of the interconnection network types discussed in the last subsection are

-
inherently limited to one mode of switching or the other. Single stage networks are
packet switched due to the fact that several passes through the network may be !_1
required to reach the destination. Linear shared path networks are circuit switched w
since a circuit is always established between pairs of communicating devices. All of the *

remaining network types can be implemented either way. The following discussion of
circuit and packet switching protocols (as presented in [McS80b}) only applies to those
networks for which such an implementation is practical.

The options to be discussed are primarily concerned with packet switching. In cir-
cuit switching networks, the design of the switching elements is more straightforward.
Design options in the circuit switching case are primarily concerned with: (1) implemen-
tation of the interface between the network and the devices it serves; and (2) protocol
between sending device and receiving device upon establishment of the connecting cir-

cuit. Since the emphasis here is on switching element protocol, these issues are not dis-

cussed in detail. The options that will be discussed are shown in Figure 2.6. They

include packet versus circuit switching, synchronous versus asynchronous request/grant

~~~~~~
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(R/G) cycles, fixed versus variable message size, number of data items transferred per

P IR

R/G cycle (packet size) and two methods for implementing a variable message size.

Throughout the remainder of this section, the use of the routing tags is assumed

L

for networks with distributed control. In a packet switched network, the tags control

v/

the moving of packets from switch to switch. In a circuit switched network, the tags

)
v

establish paths through the network. Since moving the tags through a circuit switched
network (with distributed control) to establish paths is a special case of packet switch-
ing, the latter is discussed first. It is assumed that a packet switched network has dis-
tributed control.

. In the following, a message is defined as a unit that is to be sent from one network
user {device attached to a network input/output port) to another. It is composed of a
routing tag and some number of data words. The data words are assumed to be the
same width as the processors' data buses (i.e., the basic word width used by the proces-
sors). A packet is defined to be a unit that is transferred from one switching element to
another in the network. Packets are delineated by control sequences that are per-

formed by pairs of switches, in preparation for the transfer. If a message is larger than

the packet size, it will be separated into a sequence of packets (possibly only the first of
which contains the routing tag). This separation must either be performed by the net-

N work users (e.g., processors) or the network interface.

In a packet switched network, several functions the switching elements must per-

form can be identified. Consider a switching element labeled i. Let all other switching o :f.

clements to which it can send a packet be in group i+1 and all those from which it can

3 receive a packet be in group i—1. Switch i containing a packet must examine its rout- _— 3
-.I: ing tag and determine which switch in group i+1 is to receive the packet. (This ;
assumes the packet contains a routing tag; when passing multi-packet messages , if
there is only one copy of the routing information, it is stored in the switch.) Switch i

must then request of the group i+1 switch permission to transfer the packet to it. If




switch i contains multiple packets (due to having multiple inputs), multiple requests
may be sent to group i+1 switches from this switch. If two or more packets at switch i
need to use the same output port (of the switch), only one of the packets can be pro-
cessed at a time. If the packets in switch i use different output ports, multiple requests
will be made to switches in group i+1. Thus in each switch, during the request cycle,
routing tags are decoded, arbitration occurs if necessary, and requests are issued. Upon
receiving requests from switches in i—1, switch i determines if it has the storage capa-
city to accommodate any of the packets. If so, appropriate grant signals are issued.
This process occurs during the grant cyele. Finally, for those switches receiving grant
signals, the transfer cycle effects the actual movement of data from one switching ele-
ment to the next.

Given this scenario of the basic functions each switching element performs, the

options in Figure 2.6 can be discussed. It is assumed that there is a single nelwork

clock connected to every switching element and that in one clock period or cycle, any
one of request, grant, or transfer (of one data item no wider than the network data
path width) may occur.

The first implementation option considered is whether or not to make the

words, request, grant, transfer P words, etc., where a number of network clock cycles

request/grant (R/G) cycles occur simultaneously in all switching elements. If so, the
R/G cycles are called synchronous and, if not, they are called asynchronous. In the
synchronous mode, all switches follow a fixed sequence of request, grant, transfer P '-‘_‘ Z::;'

O

are required to perform the transfer. Furthermore, in this mode the packet size P is ";-."f‘.“-;.':
fixed. The exact number of cycles required to move a packet is determined by the
number of words in a packet, the word width relative to the network path width (e.g.. PG

a 16 bit word requires two cycles to traverse an 8 bit path), and some options to be dis-

cussed. If the total number of words to be transferred (e.g., the number of words in a ;i,.:_:\_-

message sent by a processor) is greater than I, one or more additional R/G cycles will
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occur in each switching element through which the packet passes. In a system contain-
ing a synchronous network, the messages to be transferred must be segmented into
packets of size P.

In the synchronous mode, when a device needs to send a message, it may have to
wait a number of network clock cycles for the next request phase before requesting to
enter the first packet. In the asynchronous mode, only one request and grant cycle is
executed per message per switching element (i.e., the message size is equal to the
packet size). On a given network clock cycle, any switching element may be executing
a request, grant, or transfer cycle. The obvious advantage to the asynchronous mode is
the smaller total number of network clock cycles reéuired to transfer a packet from
input to output. The advantage to the synchronous mode is that the number of con-
nections between switching elements can be reduced and their control logic is less com-
plex.

The next design choice concerns making the size of the message sent by the device
attached to the network fixed or variable. Being able to choose one over the other is
highly dependent on the expected communication transactions. A fixed message size is
easier to implement than one which is variable. There is more overhead associated
with a variable size message since information regarding the size must be included with
the data. Two schemes for conveying the information are to include the exact count or
to include an end of message marker. These schemes will be discussed later.

If the synchronous request/grant scheme is implemented, the packet size must be
chosen. The packet size determines the minimum amount of storage required in each
switching element. From a cost point of view, keeping storage requirements low is
desirable. Transferring one word or a small number of words at a time will accomplish
this. To minimize contention in the network, the storage capacity in each switch
should be as large as possible. As soon as switch i is filled to capacity, for example, it

will revoke the grant that correspond: to the switch that filled it in group i—1. If the
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group i-1 switch was receiving packets bound for the currently blocked link it will
begin storing them. When filled to capacity, it will in turn revoke any appropriate
grants. If each switching element contains a minimum amount of storage, one conflict
in a switch near the output can soon “tie-up” many links in the network. Thus overall
throughput is worse than if the conflict had been contained to just one switching ele-
ment. Simulation results reported in [DiJ81] for multistage networks verify that
throughput increases significantly as the buffer size is increased {until a plateau is
reached).

I the R/G cycle is synchronous but the message size is variable, an appropriate
packet size must be chosen. The larger the packet, the better the throughput for
lengthy messages, due to the lower ratio of R/G cycles to transfer cycles. On the other
hand, there is the larger buffer requirement and worse fragmentation. Fragmentation
results when the message size is not a multiple of the packet size. The last packet will
contain unused data slots that are routed through the network.

In an asynchronous R/G cycle network, the packet size is the message size (regard-

less of whether the message size is fixed or variable). Thus, the asynchronous mode is

the most efficient from a throughput point of view.
The last option represented in Figure 2.6 concerns how to implement variable mes- A

sage length. As mentioned earlier, this can be accomplished by including a word count

or an end-of-packet (EOP) marker. The word count has an overhead of one additional

word that immediately follows the routing tag.

In a circuit switched network, there are two approaches to establishing paths with

routing tags. In the unbuffered case, the routing tag must be placed on the input data

bus and held there until the path is complete. In the buffered case, establishing circuits

is a special case of packet switching one word packets, 1.e., routing tags only. Once a

path is established, all buffers are bypassed to form a direct circuit. A variation on this

form of circuit switching is called pipelining [SmS78]. In this case, data follows the tag
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through the buffers. Any of these methods can be synchronous or asynchronous, but

A Yy | AL

the difference in set-up time is negligible - two network clock cycles.
For a circuit switched network that is centrally controlled, all devices wishing ser-

vice must submit their desired destination address to the controller during a request

. ;N
RS

phase. For those requests granted, a request line must be held for the duration of the ‘

transmission.

A

The various options that have been discussed here can be incorporated into a net-

W he ot S0 o8 4
ra PP R

work description notation. The notation should distinguish between circuit and packet
switching, synchronous and asynchronous timing, fixed and variable packet size, and
buffered and unbuffered circuit switching. Parameters should indicate packet size,
amount of information transferred per cycle, and cycle time or delay for packet switch-

ing. Set-up time, switch node delay, and path width should be specified for circuit

switching.

2.6 Functional Description
The discussion of notations and classification schemes so far has concentrated on
the hardware structure of a computer system. In this section, operational characteris-
tics are examined. Specifically, the kinds of operations that can be performed by the

hardware and the data types that are supported directly. Bell and Newell's instruction

- set processor (ISP) notation [BeN71] is described first. It is designed to complement Y
their PMS notation that was described in Subsection 2.3.2. Then Giloi’s taxonomy
based on operational principles is explained. It is complementary to his hardware tax-

onomy that was presented in Subsection 2.3.1.

2.6.1 Bell and Newell’s ISP Notation

ISP notation is designed so that any set of operations can be defined along with

rules for interpreting a set of bits that represent a program. The program is a sequence




of operations. The set of operations can be divided into two groups. The first group
consists of those needed to operate other system components: links, switches, memories,
etc. (to use PMS terminology). The second group contains operations associated with D
or data-operation components. These components actually transform information.
Primitive forms of these components include add, subtract, multiply, divide, AND, OR,
EXCLUSIVE-OR, etc. The D components are specialized according to the kind of data
upon which they can operate, i.e., data-type. A data-type is defined by the referent of
the bit pattern (e.g., that the bits refer to an integer in a given range} and a format
(e.g., the most significant bit is the sign and the remaining bits are coefficients of
sequentially decreasing powers of two in the binary representation of the integer). One
processor may use several different data-types such as unsigned integer, signed integer,
floating point and double precision floating point. Different operations are required for
each data-type.

A processor is thus completely specified at the ISP level by its fnstruction set and
its interpreter. These are defined in terms of operations, dala-types and memories.

Each instruction in the instruction set is described by an snslruction-expression of
the form

condition — action-sequence.
The condition determines when the instruction is invoked. The action-sequence
describes the transformations of data that takes place between memories (e.g., regis-
ters). The right arrow (—) represents the control action of a K unit or controller. The
components of the action sequence eventually have the form
memory-ex pression « data-expression.

The memory-expression describes which memory location is affected. The left arrow
(«) corresponds to the transmission operation of a link and amounts to an assignment
operator. The data-expression describes the information that is to be transmitted to

the specified memory location. Data expressions generally are written in terms of
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E standard mathematical notation.

| Action sequences can be concurrent or sequential. If the components of the action
: sequence are separated by semicolons only, they occur simultaneously. For example, in
::} the sequence
Y = Xy Yo = Xy
x all Xs are assumed to have defined values prior to execution of the action-sequence and
* upon execution, the Xs are transferred to the Y memories simultaneously. If the com-
D ponents of the action-sequence are separated by the term ‘“‘next,” they are sequential.
For example, the sequence
Y —Z;next X — Y
where X, Y, and 7 are registers, causes the contents of Z to be copied into X and Y
» (this sequence is needed if there is no direct connection from Z to X).
» Memory in the system (including registers) is given mnemonic names followed by
the number of words in square brackets and the number of bits in angle brackets. The
words and bits are specified by address and number, respectively, of the form a:b. The
z tirst number is “*a” and the last is “b.” For example, a 64K main memory with 16 bits
/ is represented by
Mp(0:FFFF 5] <0:15>
where base 10 is the default. Where there is only one word of memory, as with a regis-
f?ﬁ ter, the square brackets and included information are omitted. For example, a 16 bit
; accumulator can be represented by
ACC<0:15>.
:

The bits can be named and enumerated, separated by commas, as with a status regis-
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STAT<EJF HINZV,C>.

These are the status flags used in the Motorola 6809 microprocessor (entire state on
stack, fast interrupt, half carry, irq interrupt mask, negative, zero, overflow, and carry-
borrow). Bits can also be concatenated using the 0" operator. For example, the
carry bit in the status register might be appended to the accumulator to form a new

register for use in an arithmetic action-sequence:

CAC<C0:15> .= COACC.

The *:=" is used to define a new entity.

If a2 memory is multidimensional, several start/end address pairs can be used. For
example, the Digital Equipment PDP-8 memory can be described as consisting of eight
memory fields of 32 pages each, with 128 words per page and 12 bits per word. This is

represented by

Mp|0:7]{0:31][0:127] <0:11>.

Finally, a set of bits can have several names. A good example of this is to define
fields within a register, such as an instruction register. In the PDP-8 the instruction

format is [BeN71]:

instruction <0:2>

Op<0:2> .

indirect_bit/ib : = instruction <3>

page 0 _bit/p := instruction <4>

page_address<0:6> := instruction <5:11>.

»

The /" in the above is used to indicate equivalent symbols and is read “or.
With the basic notation and the form of expressions defined, some examples of

instruction interpretation can be given. The following is a definition of the two's

e vTe s
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complement add operation:

two's complement add/tad — (COACC — COACC + Mp|Z))

tad : = {op = 1).
An abbreviation for the operation is defined along with the action that is to occur.
Then, the opcode associated with the operation is defined. By defining all registers and
action-sequences for each opcode, the functional characteristics for a given computer
can be completely specified. An example from [BeN71] of the complete specification of
the PDP-8 is shown in Figure 2.7, which illustrates how powerful the notation is. The
formal specification for ISP can be found in the appendix of [BeN71].

ISP notation appears to be flexible enough to describe the function of any of the
computers that have been discussed in this chapter. In the case of a computer like the
Cray-1, since concurrent events can be described, pipelined operations can be defined.
Also, vector registers are simply represented as multiword memories. For multiple

computer systems, a description is given in ISP for each computer type.

2.6.2 Giloi's Taxonomy

In [Gil81], Giloi points out that most architectural classification schemes (e.g.,
those discussed in sections 2.2 through 2.5) are concerned solely with structural

Jeatures. To remedy this situation, he has developed a scheme that takes into account

(1) how information is represented in the machine; (2) information access mechanisms;
(3) control structures; and (4) communication structures. These features are all based
on operational principles of the architecture.

A computer cannot be described by operational principles alone, so it is assumed
that the taxonomy to be described is taken together with the structural features dis-

cussed in Subsection 2.3.1. Giloi’s taxonomy is intended to be abstract and thus imple-

mentation independent. Therein lies the difference between his scheme and Bell and

Newell's ISP notation.
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Figure 2.7 ISP Notation Representation of Digital Equipment Corporation PDP-8
(from [BeN71]) (continued on page 2-46)
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At the highest level, Giloi’s taxonomy can be characterized as follows. The opera-
tional principle of a computer architecture defines its functional behavior in terms of an
information structure and a control structure. The tnformation structure consists of a
set of abstract data types which specify the type and structure of information in the
machine, its machine representation, and operations the machine can perform on it.
The control structure is defined by control algorithms which interpret and transform
information in the machine. This view of the function of a computer is very similar to

that taken by Bell and Newell as described in the previous subsection.
. A machine data (ype is defined by the triple (O,F,R), where O is a set of machine
data objects of some type, F is a set of machine operations applicable to the objects in

O, and R is a set of representations of the objects in O. Three major classes of object

‘l‘.‘-’l‘l‘ll

types that are distinguished are elementary types, set types, and structure types. [le
mentary data types can be characterized by such objects as instructions, descriptors,
capabilities, reals, integers, characters, and semaphores. Classes of operations or funec-
tions that can be performed on elementary data types include (1) binding (i.c., load a
.. data object with new information); (2) access (i.e., provide access to the contents of a
data object); (3) decoding (i.e., interpret a data object); (4) value production (i.c., pro-
. duce a value to become a data object); (5) test and set (i.e., test and/or change a sema-
j'- phore); and (6) conversion (i.e., change an object type and/or representation). In a con-
ventional computer, binding corresponds to assigning a value to a variable, access
corresponds to evaluating an address, decoding corresponds to initiating control
sequences, value production results from the usual arithmetic operations (add, subtract,

etc.), and conversion is a change in format (e.g., from integer to real).
Corresponding to major object types, there are three major classes of object
representations: (1) elementary; (2) set type; and (3) data structure. For elemcentary

data objects, existing architectures utilize three kinds of scalar representations. The

X first is generic in which the scalar machine data object is a bit vector that represents
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) the value of the data object. The machine determines from the kind of function

applied to the representation how to interpret it. The second is a self descriptive

(3

B RAE P 2D

representation in which some bits of a bit vector form a tag field which denotes the
object type. The remaining bits form a value representation of the data object. The
third type of scalar representation is self t.-ntifying. Some bits of a bit vector form a
key field which denotes a class of which the object is an element. The remaining bits
form a value representation.

The objects of a set type are linearly ordered sets of scalar data objects. All
objects in the set have at least one common attribute (e.g., element type or access con-
trol attributes). If all elements in a set have the same type, it is said to be homogene-
ous.

The objects of a structured machine data type are presented by the four-tuple

[ <object identifier >, <structure specification>, <data set>, <attributes>).

The <structure specification> and < attributes>> are represented by an object

descriptor at the hardware level. The <data set>> is represented by a set type object.

Data items of a structured object are not individually named and cannot be referenced
directly. Rather, they are accessed through the use of access functions. Examples of -
structured machine data types include a stack, tree (as used in reduction machines),

- and vector.

A complete and very detailed taxonomy based on these concepts is presented in 9.

[Gilx1]. Its length is too great to be included here. S

2.7 Conclusions
- This survey of architectural classification schemes and description notations has
shown that much work has been done, but at significantly different levels of detail. It e
is apparent that none of the schemes discussed is comprehensive. Hockney and

. Jesshope’s notation has the most breadth of any single scheme, yet it does not address
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interconnection networks in enough detail nor does it provide a functional specification
for the system described. The combination of Bell and Newell's PMS and ISP nota-
tions comes closest to completely describing a computer system. However, as pointed
b out in Section 2.3, PMS notation is not as well suited to representing architectural

features that determine an algorithm's performance as HOJ notation. The combination

of Giloi's structural and functional taxonomies is very broad, but too abstract for the
purpose at hand.

Taken as a whole, the elements of a comprehensive classification
scheme/descriptive notation are embodied in the schemes presented in this chapter.
Thus, the following approach to constructing a comprehensive scheme based on many
of the results described here is proposed. It will be referred to as the CHACAD scheme
for Comprehensive, Hierarchical Architectural Classification And Description scheme.
As the name implies, it is hierarchical, and four levels are defined. Levels I and Il are
classification oriented and levels Il and IV are description oriented. Level I is the most
coarse and consists of four categories, based on Kuck's classification scheme (cf. Subsec-
tion 2.2.4). They are (1) single instruction stream, single execution stream (SISE); (2)
single instruction stream, multiple execution stream (SIME); {3) multiple instruction
stream, single execution stream (MISE); and (4) multiple instruction stream, multiple
execution stream (MIME).

Level I has sixteen categories and is Kuck’s complete scheme. These categories
are derived from those at Level [ by distinguishing between scalar and array instruction
and execution types. Level Ill is an expanded version of Hockney and Jesshope's HOJ
notation. It was illustrated in Subsection 2.3.3 that there is a close relationship
between Kuck's categories and HOJ representations of systems in those categories.
Thus, the transition from Level 11 to Level HI is smooth, In Section 2.4 some addi-
tional notation was recommended for representing pipelined structures in more detail

which should be included.
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Level IV is the most detailed representation of a computer system. It is this level
upon which future research should concentrate. Notation needs to be developed, com-
patible with HOJ notation, that describes the salient features of the system intercon-
nection network and of system wide functionality. The structural taxonomy, parame-
ters, and protocol taxonomy described in Section 2.5 should form the basis of the inter-
connection network notation. The notation should consist of two parts: (1) structural,
describing how switching elements are connected; and (2) functional, describing how
each type of switching element functions.

Bell and Newell's ISP notation (cf. Subsection 2.6.1) is recommended as a basis for
the functional notation. However, it needs to be expanded to include, for example,
parallel data types (e.g., a skewed array) that are manipulated by multiple processors.

Systems that have been proposed but not implemented may have undefined or
only partially defined features (e.g., the instruction set). Thus the CHACAD scheme
needs to be able to describe a system at the level available. At Levels | and II, parame-
ters need to be identified that quantify system characteristics that can be determined at
the respective levels. Providing these parameters will facilitate the evaluation of an
algorithm’s compatability with the system, albeit with a lower degree of confidence. In
Chapter 5, some features or parameters that correspond to different levels of description

will be discussed.
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CHAPTER 3
MODELING ARCHITECTURES:
MULTISTAGE INTERCONNECTION NETWORKS
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3.1 Introduction

Many different approaches to providing a communication capability in parallel pro- '.;:«;;_.-T"-‘
: . NS
cessing systems have been proposed. These include the use of busses [Wid76], hierar- ]

chies of busses [SwF77|, direct links [DeP78], single stage networks [Sto71], multistage
networks [Bat76, Fen74, GoL73, Law75, Pea77, SiM81a, SiM81b, SiS78], and crossbars
[WuB72]. These approaches have been surveyed [AnJ75, Fen81, SiM78a, Thu74) and
were discussed in Chapter 2. In this chapter, multistage networks are examined in

detail. In Section 3.2, seventeen networks that have been proposed and/or built are

presented and discussed in the order in which they appeared in the literature. The net- .
.“..-\.
works are then placed into a family tree based on their structural relationship to one ::';.:;‘-
another. Two major classes of networks are identified. In Section 3.3, implementations :_‘-;'.';;:‘_-:
A
for switching nodes or switching elements are surveyed and compared. Methods for dis-
tributing the control of multistage interconnection networks are discussed in Section o ‘:f'-'_‘
3.4. Finally, in Section 3.5, fault tolerant designs for these networks are examined. R
IROR
ey
._.'.._-\.:
T ‘:‘.’:‘-"'-
This chapter was also supported in part by another research grant. ,{}'{::E
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3.2 History of Multistage Networks

3.2.1 Introduction

A considerable amount of research has been done on multistage interconnection
networks in recent years. The earliest efforts were in the context of telephone switch-
ing [Ben64,Clo53,J0e68,Wak68). It was then realized that some of that work might be
applicable, with suitable modifications, to computer communication [OpT71a,0pT71b).
Also, around that time, special purpose networks for number sorting called bstonic sort-
ers were investigated [Bat68]. With experimentation into parallel processing or multi-
ple computer systems such as Illiac IV [BaB68] and C.mmp [WuB72], interest in design-
ing interconnection networks tailored to that application began to grow. Early work
published in that vein was done by Lipovski on the SW-structure [Lip70]. That work
was later refined and generalized by Goke and Lipovski who introduced a class of net-
works called Banyans [GoL73]. In [GoL73] it is pointed out that SW-banyans (S=F=2)
(formerly SW-structures) are equivalent in topology to Batcher’s bitonic sorter. In
1971, Stone published an influential paper on the perfect shuffle network [Sto71).
Though presented as a single stage network, it was later extended by Lang and Stone
into a multistage version [LaS76]. Feng published work in 1974 on implementing net-
works for data manipulation [Fen74]. One such network has since come to be known
as the data manipulator. At that same time Batcher was doing work on the Flip net-
work used in STARAN [Bat74], but the details were not published until 1976 [Bat76).
Soon to follow was work by Lawrie on the Omega network [Law75] and by Pease on
the indirect binary n-cube network [Pea77).

In April of 1978 Siegel and Smith published a paper comparing the data manipula-
tor, Flip, Omega, and indirect binary n-cube networks [SiS78|. As a benchmark, they
introduced the Generalized Cube network and showed that the Flip, Omega, and
indirect binary n-cube networks were all topologically equivalent to it. They also

relaxed some restrictions on the implementation of the data manipulator, calling their

‘‘‘‘‘‘‘‘‘‘‘
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version the Augmented Data Manipulator (ADM), and proved that its capabilitics were
a superset of those of the Generalized Cube (and therefore all networks equivalent to
the Generalized Cube). At nearly the same time, in August of 1978, Wu and Feng also
published a comparison paper. They introduced the baseline network as a benchmark
and showed that the Flip, Omega, indirect binary n-cube, SW-banyan with spread and
fanout of two (a member of the Banyan class), and the reverse (or inverse) baseline
were all topologically equivalent. At the same conference where this work was
presented, the HEP system and network were introduced [Smi7g].

In the very recent past, the class of Delta networks has been introduced by Patel
[Pat79], the reverse-exchange network has been investigated by Wu and Feng
[WuF79a], and properties of the inverse ADM (IADM) network have been presented by
McMillen and Siegel [McS80a]. In September 1980, Pradhan and Kodandapani pub-
lished another comparison of multistage networks (also including single stage networks)
[PrK80b]. They defined an equivalence relation and showed that the Flip, Omega,
indirect binary n-cube, SW-banyan, and ali of their inverses were equivalent under the
defined relationship. The most recent introduction of a “new” multistage network is
called the Gamma network, presented by Parker and Raghavendra [PaR82]. It will be

shown later, however, that it is topologically equivalent to the IADM network.

3.2.2 Clos Networks

The early work on multistage interconnection networks was aimed at providing
economical telephone switching capability. The most important constraint imposed on
the network design is that any idle pair of input and output ports can be connected
regardless of the existing connections. This is called the non-blocking property. The
most obvious means for meeting this requirement is to build an NxN crossbar, shown in
Figure 3.1(a). A connection is made from an input to an output by closing the

crosspoint switch, illustrated in Figure 3.1(b), where the two busses intersect. The
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major drawback to this scheme is that N2 crosspoints are required. In 1953, Clos inves-
tigated a class of multistage networks with the non-blocking property but a lower cost
[Clo53]. An example of a 36x36 three stage network is shown in Figure 3.2. The first
and last stages have six 6x11 crossbars and the middle stage has eleven 6x6 crossbars.
The number of crosspoints required is 6N%/2 — 3N = 1188 for N=36. This compares
with 1296 for a 36x36 crossbar. For values of N less than 36 the crossbar is cheaper.
The larger N grows beyond 36, the greater the difference becomes. For N=1000, the
difference is 1,000,000 versus 186,737.

The general three stage Clos network is shown in Figure 3.3. The first and last
stages have r nxm crossbars and the middle stage has m rxr crossbars, where n=N!/2,
There are r'n inputs and outputs. A three stage Clos network is completely character-
ized by m, n, and r. Clos was able to show that for m > 2n—1, the network is strictly

non-blocking [Clo53].

3.2.3 The Benes Network

A network is called rearrangeable if any idle pair of input and output ports can be
connected after possibly rearranging some of the existing connections. Benes investi-
gated a special case of the Clos networks in which only 2x2 crossbars were used
[Ben65]. N is required to be a power of two. The Benes network is constructed recur-

sively as follows. First construct a three stage Clos network with n=m=2 and r=N/2.

Then, for each of the N/2 x N/2 middle stage crossbars repeat the procedure. This
process continues until there are N/2 middle stage 2x2 crossbars. A size N=8 Benes
network is shown in Figure 3.4. In general, an NxN Benes network has (2log,N)-1 o
stages of N/2 2x2 crossbars or switching elements. This is a rearrangeable network.
Since a 2x2 crossbar contains four crosspoints (see Figure 3.1(b)), a Benes network of

size N requires 4Nlog,N — 2N crosspoints. For N=1024, this is 38,912 versus 1,048,576

for the crossbar or 193,536 for a three stage Clos network, quite an improvement. The
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Figure 3.4  8x8 Benes Network |Ben65]

Figure 3.5 Benes Network as Modified by Waksman
[Waké8]
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Benes network was refined slightly by Waksman who showed that a few of the switch-
ing elements could always be set to one state and therefore be removed [Wak68]. This
is shown in Figure 3.5, where one possible connection of all inputs to all outputs is

illustrated.

3.2.4 The Bitonic Sorter

The bitonic sorter is a network designed by Batcher for efficiently sorting a bitonic
sequence of numbers into a monotonic sequence {Bat68]. A bitonic sequence is the jux-
taposition of two monotcnic sequences (i.e. in non-decreasing or non-increasing order),
one ascending, the other descending. Thus the bitonic sorter can be used to merge two
monotonic sequences (which can always be combined to form a bitonic sequence) into
one. This combined with other hardware can sort an arbitrary list of numbers. A sin-
gle comparator element is shown in Figure 3.6(a) and an eight input bitonic sorter is
shown in Figure 3.6(b). Notice how similar this network is to the first three stages of
the Benes network (see Figure 3.4) if the A,-Ag comparator is swapped with the Aj-A;
comparator (they are topologically identical). Batcher points out that one application

of this network is interconnecting multiple computers.

3.2.5 Banyan Networks

Banyan networks are defined in terms of their graphical representation [Gol.73]. A
banyan is a directed graph composed of vertices and edges or ares such that it is
irreflexive, asymmetric, and intransitive (a Hasse diagram of partial ordering [Ber62]).
A base in the graph is any vertex having no ares incident into it and an aper is any ver-
tex having no arcs incident out from it. The graph has the property that there is
exactly one path from any base to any apex (and vice versa). A regular banyan is one
in which the number of arcs incident into each vertex (fanout or F) and the number

incident out from ecach vertex (spread or S) are constants. A rectangular banyan is a

o
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Figure 3.6 (a) Two Input Sorting Element
(b) Eight Input Bitonic Sorter

[Bat68]
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regular banyan in which the spread and fanout are equal. The TRAC prototype

[SeU80] contains a regular banyan with spread = 2 and fanout = 3 as shown in Figure
3.7 (arcs shown undirected). In the figure there are four apexes and nine bases. Pro-
cessors are connected to apexes and memory and I/O to bases. A structure that is
equivalent to the bitonic sorter (Figure 3.6(b)} is the rectangular SW-banyan with
S=F =2 shown in Figure 3.8 (with undirected arcs). To see the equivalence, replace all
the sub-structures in Figure 3.8 that look like the banyan in Figure 3.9(a) with the
switching node shown in Figure 3.9(b). This relationship is discussed in detail in
[MeS82¢].

The SW-banyan can support the formation of data trees, shown in Figure 3.10(a)
and instruction trees, shown in Figure 3.10(b}). The data trees allow one processor to
have access to more memory than that contained in just one memory module. The
instruction tree allows several processors that have been linked together to form a
larger processor and/or several processors working on vectors in SIMD mode, to receive
the same instruction during their fetch cycle. The instruction tree structure is only
active in the network during that cycle. The combined configuration in Figure 3.10
results in a two processor SIMD machine where each processor has two memory
modules and one 1/O port.

Anothe: type of regular banyan is the CC-banyan, shown in Figure 3.11 for N=8&.
If apexes and bases are labeled from 0 to N~1, right to left and levels are labeled from
n—-1 to 0 from top to bottom, then vertex j, 0 <) < N, at level i, 0 < i < n, is con-

nected to vertices j and {j +2\) mod N at level i-1.
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3.2.6 The Data Manipulator Network

Feng's data manipulator is shown in Figure 3.12(a) with eight inputs and outputs.

The network's structure is such that if there are N=2" 1/O ports, then there are n

stages or columns labeled 2°! ..., 2'2% and an unlabeled output column. A cell

(Figure 3.12(b)) at level k, 0 < k < N, in column 2! is connected to cells k—2' mod N,

k, and k+2' mod N in column 2"}, If the —2! connections were removed from this net-

work, it would be structurally equivalent to the CC-banyan shown in Figure 3.11.

Each column of the data manipulator receives three pairs of control signals and

. . i i i i i i
each cell is connected to one signal from each pair: UZ, U, HZ, H?, D, D}. U?

enables “Up™ or —2 links in stage 2/, H enables “Horizontal” or straight links, and D?

enables “Down”™ or +2 links. Those cells whose i*h bit of their level, k, is a 0 are con-

nected to control lines with subscript 1 and those whose i'! bit is a 1 are connected to

-1 n-1
control lines with subscript 2. Note that U,zn and U are functionally identical to

In [Fen74] it is shown that the network with this control scheme is able to perform

the data manipulating functions of permuting, replicating, and spacing. Permuting is a

rearrangement of the data at the input such that all items appear at the output in a

new order and no two items go to the same output. Useful permutations include the

shift, flip, shuflle, transpose, merge, mix, and bit reverse functions [Fen74]. Replicating

is the copying of a group of elements. Spacing is any operation that moves the data

without reordering it. For example, spreading and compressing.

3.2.7 The Flip Network

An 838 Flip network is shown in Figure 3.13(a) [Bat76]. A size N network has n

stages labeled from input to output from 0 to n—1. At stage i, the inputs to that stage

which differ in their i*" bit can switch positions. The network is centrally controlled

and has two kinds of signals, one for flip permutations and one for shift permutations.
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Let F =f _; - - - Ify be the flip control vector such that stage igetsf;,, 0 <i < n. IfS
= Sp-1 ° * * 5159 is an input address, then the flip network moves data at that address to
output address S® F =s,_, ®f,_,,...,s; D, 59 D fp. Since every value of F
corresponds to a unique permutation, there are 2" flip permutations the network can
perform. When F=1 - - - 11, the data is flipped end for end (mirror permutation).

The shift control requires i+1 signals at stage i, 0 < i < n, and is illustrated in
Figure 3.13(b). The shift control allows data at input S, 0 < S < N, to move to out-
put S+2™ mod 2P, 0 < m < p < n. A shift of 2™ mod 2P divides the 2" data items
into groups of 2P items each and shifts each group down end-around 2™ places. For
example, to obtain a shift of +1 mod 8, in Figure 3.13(b) the control signals should be
0A=1, 1A=1, 1B=0, 2A=1, 2B=0, and 2C=0. There are (n®>+n+2)/2 different shift
permutations (including the identity).

Notice that if the flip network in Figure 3.13(a) is rotated counterclockwise 90 ° it
is structurally identical to the SW-banyan (S=F=2) in Figure 3.8. This is true in gen-
eral, thus it is possible to implement the capabilities described for each network in

either one.

3.2.8 The Omega Network

Lawrie's Omega network of size N=8 is shown in Figure 3.14(a) [Law75]. It has n
stages, in this case numbered from 1 to n from input to output. Each stage has an
identical structure; the links form a perfect shuffle permutation and connect to N/2
interchange boxes or switching elements. The perfect shuffle permutation [Sto71]
moves an item from location S to location (2S5 +[2S/N]) mod N. The interchange boxes
have four states as shown in Figure 3.14(b). Two items can pass straight through or be
exchanged, or an item on either input can be broadcast to both outputs. Due to the
way the stages are labeled, at stage i, inputs that differ in the n—i*h bit are compared

and can be exchanged {the addresses paired can be obtained by setting all boxes in
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Figure 3.14(a) to straight and moving the input addresses on the established path
throughout each stage). An Omega network can be controlled in a distributed fashion
using routing tags which will be described in Section 3.4.

In [Law75] the ability of the Omega network to access vectors for processors (con-
nected to the input) from matrices stored in memory (connected to the output) was
investigated. It was shown that if a matrix is stored in memory in a skewed fashion,

the Omega network provides conflict free access and alignment of rows, columns, diago-

nals, backward diagonals, and NY2xN!/2 partitions in either row or column major

order. It can also produce N'/Z.vector fanout and duplication functions.

3.2.9 The Extended Shuflle-Exchange Network

The extended shuffle-exchange network, shown for N=8 in Figure 3.15, and its
capabilities are discussed by Lang and Stone in [LaS76]. It is a multi-stage version of
the (single stage) shuffle-exchange network in [Sto71]. Structurally it is identical to the
Omega network just discussed. The only difference is that it does not include the
broadcast capability. In [LaS76|, a simplified distributed control scheme is proposed
that will be discussed in Section 3.4. This scheme is not quite a general as Lawrie’s,
however they show that it allows the network to perform some useful permutations.
These include the uniform shift (S connects to S+k mod N, 0 < k, S < N}, unscram-
bling p-ordered vectors, and interchange of elements 2" " apart (which is used in some
FFT algorithms). The network can also be used for partitioning 2" processors into

blocks of 27 (with slight modification of the control algorithm).




3.2.10 The Indirect Binary n-Cube Network

Pease’s indirect binary n-cube network is shown in Figure 3.16(a) for N=16 (n=4).
Inputs and outputs are labeled from 1 to n [Pea77). At stage i, input addresses that
differ in their i—1%* bit can be exchanged, as illustrated in the figure. This network also
supports only two states, straight and exchange, in its switching elements (shown in
Figure 3.16(b)). A hierarchical centralized control is proposed to set the switch states.

In [Pea77], it is shown that the network supports the communication requirements
of a large array of processors working on massive numerical problems with a high
degree of parallelism. Algorithms examined include those used in the solution of partial
differential equations in two and three dimensions, the radix-2 FFT and other signal
processing algorithms. Also, performing matrix operations, in particular matrix multi-

plication, is discussed.

3.2.11 The Generalized Cube Network

The Generalized Cube network is a multistage cube type network topology that
was introduced as a standard for comparing network topologies [SiS78]. The network
has N inputs and N outputs, in Figure 3.17, N=8. The Generalized Cube topology has
n stages, where each stage consists of a set of N lines connected to N/2 interchange
boxes. Each interchange box is a two-input, two-output crossbar. The labels of the
input/output lines entering the upper and lower inputs of an interchange box serve as
the labels for the upper and lower outputs, respectively. Each interchange box can be
set to one of the four legitimate states shown.

The connections in this network are based on the cube interconnection functions
[Sie77). Let P =p, , - -+ p,po be the binary representation of an arbitrary 1/O line
label. Then the n cube interconnection functions can be defined as:

cubep, " PtPo) = Pay " Pi+iPiPi-1  P1Po
where 0 < i< n, 0 <P <N, and p; denotes the complement of p;. This means
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that the cube; interconnection function connects P to cube(P), where cube,(P) is the
1/O line whose label differs from P in just the i*? bit position. Stage i of the General
ized Cube topology contains the cube interconnection function. That is, it pairs 1/O
lines that differ in the i*" bit position. The other networks that have been discussed so
far that are also based on the cube interconnection functions are the Benes, bitonic
sorter, SW-banyan (S=F =2), Flip, Omega, extended shuffle-exchange, and the indirect
binary n-cube. These networks are therefore referred to as cube type networks. Net-
works to be discussed that are also in this category are the baseline, reverse baseline,

certain HEP networks, some Delta networks, and the reverse-exchange network.

3.2.12 The ADM and IADM Networks

The augmented data manipulator (ADM) network [SiS78] is shown in Figure 3.18
for N=8. It has the same structure as Feng's data manipulator discussed in Section
3.2.6 [Fen74]. In the ADM network, a stage consists of N switching elements or nodes
and the 3N data paths that are connected to the inputs of a succeeding stage. At stage
i of the ADM network, 0 < i < n, the first output of node j is connected to the input
of node (j — 2') mod N of tF. next stage; the second output is connected to the input of
node j; and the third output is connected to the input of node (j + 2) mod N.
Because (j — 2"!) equals (j + 2""!) mod N, there are actually only two distinct data
paths instead of three from each node in stage n—1 (in the figure, stage 2). There is an
additional set of N nodes at the output stage. The Inverse ADM (IADM) network
shown in Figure 3.19 is identical in structure to the ADM except that the stages are
transversed from low order to high order (i.e. in the opposite order). The difference
between these networks and the data manipulator is that the switching elements are
controlled individually. This is done with routing tags that will be discussed in Section

3.4.
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Both of these networks are based on the PM2[ (Plus-Minus 2') interconnection
functions [Sie77]. There are 2n of these functions defined by PM2,.(j) =j + 2" mod N
and PM2 (j) =) - 2" mod N for 0 <)< N 0<i<n, where -x mod N =N —-«x
mod N. (Note PM24, ) = PM2., ).} The data manipulator and the Gamma (to be
discussed) networks are also based on the PM2I interconnection functions. Because
they are all so closely related to the data manipulator, they will all be referred to as

data manipulator type networks.

3.2.13 The Baseline Network

DOGEES _ Stnnnce

The baseline network was presented in [WuF78] by Wu and Feng as a standard

for comparing network topologies. Its topology is generated in a recursive fashion. A
column of N/2 2x2 switching elements form the first stage. The switching elements are
numberad from 0 to (N/2)-1 with binary addresses of the form p, o - - - p;py- The
upper input and output lines are labeled p, - - - p;pg0 and the lower lines are labeled
Pa-2 " PiPol. The first stage is connected to two N/2 x N/2 subnetworks, Cqy (upper
network) and C, (lower network). The upper outputs from the first stage are con-
nected to Cy, ordered by switching element number and the lower outputs are con-

nected to C; in the same order. For each of the subnetworks this process is repeated
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until the sub-subnetworks reach size 2x2. The result is shown in Figure 3.20 for N=16.

'

*

The number of iterations required is n—1 resulting in an n stage network. The stages

N £
BE S

'

are labeled 0 to n—1 from side 1 to side 2. The network is controlled using routing tags
that will be discussed in Section 3.4. The switching elements used here can assume
only the straight and exchange states.

A reverse baseline is just the inverse network, which is equivalent to traversing a
baseline from side 2 to side 1. The sides are not labeled as input or output because the
network is defined to be bidirectional. Paths through the network are allowed to ori-

ginate on either side and terminate on either side.
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3.2.14 HEP Networks

The HEP network is not defined according to any particular topology. Rather, the
function of a switching element is defined and the network consists of any desired
structure that can be obtained by interconnecting the switching elements. A switching
element is shown in Figure 3.21(a). The dashed lines in the figure show possible paths
through the switch. The switching element can be viewed as a three port, full duplex
switch. Since any input can be connected to any output, it can also be viewed as a 3x3
crossbar switch. Any network constructed from these switching elements would be of
the dual path bidirectional network type.

The HEP network is implemented as packet switched. The switch has the rather
unique property that when two or more packets contend for the same output, one of
them will be given access to it and the remainder will be intentionally mis-routed. This
eliminates the need for buffering packets inside the switch. To compensate for the
mis-route, a priority word that accompanies each packet is incremented. Packets with
the highest priority are given preference when conflicts occur. Packets whose priority
has reached the maximum (15) are handled specially. There is a path called an
Eulerian circuit that traverses every port exactly once in each direction [Smi8la].
Packets with this priority are sent on such an Eulerian circuit, independent of their
destination address. This guarantees (1) that the packet will reach its destination and
(2) that maximum priority packets will not conflict with one another. This path is not
necessarily optimal but it is guaranteed. To determine how a packet should be routed,
a routing table associated with each output port (stored in every node) indicates the
optimal path for all possible destination addresses. The table is written to the nodes
when the system is initialized.

The need for routing tables is a direct result of the arbitrary way in which switch

nodes can be connected. It is only the regular structure of the other networks that

allows them to be controlled without using routing tables.
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To facilitate comparison of the HEP network with the other multistage networks,
q the topology shown in Figure 3.21(b) is assumed. Note that the lincs in the figure are
actually bidirectional, consisting of a pair of unidirectional lines going opposite direc-

tions. Single lines are shown for clarity. Functionally, it is equivalent to the General-

ized Cube network shown in Figure 3.17. The four HEP switching elements within the
dashed lines in Figure 3.21(b) perform the same function as one interchange box in Fig-
ure 3.17, however, no broadcast capability is included. To see the structural
equivalence, notice that the same addresses are paired at a given interchange box and
its functional equivalent in the HEP network. For example, addresses 1 and 5 in stage

2.

3.2.15 Delta Networks

Delta networks are a class of networks introduced by Patel [Pat79]. They are con-
structed from bxb crossbars with outputs labeled from 0 to b—1. A b"xb" delta net-
work contains nb™ ! bxb crossbars. Any network that can be constructed using the fol-
lowing rules is a member of the class: (1) No more than b™ ! crossbars can be used in
one stage and no more than n stages are created; and (2) Each bxb crossbar that
receives inputs from other bxb crossbars must have all its inputs connected to identi-
cally labeled outputs. A 32x3? delta network is shown in Figure 3.22(a) and an 8x8 is
shown in Figure 3.22(b).

One property of delta networks is that there is exactly one path from any input to
any output. Another property {from which the name is derived) is that they are digit-
conlrollable. The setting of each crossbar is determined by a base b digit at each input.
This control scheme will be described in detail in Section 3.4.

The Delta class of networks includes the bitonic sorter, all rectangular SW-
banyans, the Flip, Omega, extended shuffle-exchange, indirect binary n-cube, General-

ized Cube, baseline, and reverse baseline networks when they are implemented with
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bxb crossbars (typically b=2). It does not include any of the data manipulator type

networks because they all have multiple paths from input to output. The data mani-

pulator type networks are, however, digit controllable, as will be shown in Section 3.4.

3.2.16 The Reverse-Exchange Network

The reverse-exchange network was introduced in [WulF79a]. It is designed to per-
form arbitrary permutations of its inputs in two passes. A size N=8 version of this
network is shown in Figure 3.23. Comparing it to the Omega network in Figure 3.14,
it is clear that the two networks are topologically identical. Consequently, it is topo-
logically equivalent to all the cube type networks (this was pointed out in [Wul'79a)).
The difference between this and the omega network is in how the inputs are labeled.
The different labeling gives the reverse-exchange network different permuting capabili-
ties.

The reverse-exchange network is related to the Benes network in the following way
(compare Figure 3.4 and 3.23). If the interchange boxes in Figure 3.23 are rearranged
so that they are in order by box number, then these three stages are identical to the
first three stages of the Benes network in Figure 3.4. If the shuffle-exchange network is
reversed so that the output becomes the input and vice versa, it is equivalent to the
last three stages of the Benes network. The algorithm used to control the reverse
exchange network is based on the work of Opferman and Tsao-Wu [OpT71a), Anderson

[And77], and Lenfant [Len78] for controlling the Benes network.

3.2.17 The Gamma Network
The Gamma network is shown in Figure 3.24 for N=&8 [PaR&2]. Its structure is
identical to that of the IADM network discussed in Section 3.2.12. The difference

between these networks is that the IADM switching clements connect one of their

inputs to one output at a given time (or to multiple outputs for broadcasting); the
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Gamma network switching elements are 3x3 crossbars. In [PaR82], it is shown that the
Gamma network can perform some permutation connections that the IADM cannot,

e.g. the perfect shuffle.

3.2.18 Conclusions

The number of interconnection networks that have been proposed since 1953
{which for all intents and purposes was the birth of the multistage network), when Clos
investigated cheaper ways to build a crossbar, is very large. Seventeen specific network
topologies and seven different classes of networks have been surveyed here. Many of
the networks discussed are very similar while others are quite different. To place all
these networks into perspective, a family tree for multistage interconnection networks
is shown in Figure 3.25. FEach network or class has a date next to it to indicate when it
was first presented in the literature. Four broad categories are defined: Permutation
Networks, Muitiple Path Networks, Single Path Networks and Fault Tolerant Net-
works. Fault tolerant networks will be discussed in Section 3.5, where the remainder of
that family tree will be filled in.

Permutation networks are those that can connect their inputs to their outputs in
any arbitrary way as long as no two inputs want the same output. For an N input, N
output network, there are N! possibilities. The only networks discussed that can do
this were those in the Clos class including the Benes and the Waksman modification of
the Benes. The Benes network is the least expensive network in the Clos class.

Multiple path networks are those that have more than one path between a given
input and output (with the possible exception that there is only one path when
input =output). This category includes all of the members of the Permutation Network
category listed and the data manipulator type networks. The former tend to have

many more paths per input/output pair than the latter.
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The data manipulator type networks all have topologies constructed from straight,
+2' and —2' type connections. Thus they are generically referred to as PM2I type net-
works. Included are the data manipulator, Augmented Data Manipulator (ADM),
inverse ADM (IADM) and Gamma networks. The ADM's capabilities are a superset of
the data manipulator’'s. The ADM and IADM are comparable, and the Gamma net-
work is the most powerful, having capabilities that are a superset of those of the IADM.

The single path networks have exactly one path between every arbitrary

b
- input/output pair. The two classes listed in this category are the Banyan class and the
Delta class. The Banyan class is extremely general since it is defined in terms of unla-

E"f beled graphs. Each node (switching element) in the graph can have a different number

of incoming and outgoing arcs (links) than the other nodes as long as some basic rules
are followed. Of practical interest are the somewhat more structured subclasses called
C'C-banyans and SW-banyans. The Delta class is shown at this level in the tree
because, in some qualitative sense, it is approximately as general as the CC-banyans

and SW-banyans. The dashed line between the CC-banyans and the data manipulator

type networks indicates that they are relatives. This is in the sense that some CC-

banyans are based on straight and +2' type connections.

Within the class of SW-banyans is the subclass of regular SW-banyans. Regular

implies that all the nodes (switching elements) are the same (i.e. have the same number

: of inputs and outputs as the other nodes). Within this class are the rectangular SW- s". ‘
banyans in which each node has the same number of inputs and outputs. Since the 1‘

Delta class has switching elements with equal numbers of inputs and outputs, rectangu-

lar SW-banyans are also a subclass of the Delta class. Connections between switching

elements in the Delta class are more general.

. The class of rectangular SW-banyans contains more specific instances that have
been discussed in the literature than any other class listed. Included (in historical

order) are the bitonic sorter, SW-structure, STARAN Flip, Omega, extended shuffle-




..........

e T, o~ PO P L A
Aetndnt oo in S'asds S aads 3098 - b P4

exchange, indirect binary n-cube, Generalized Cube, Baseline, Reverse Baseline, some
instances of HEP networks, and the reverse-exchange. HEP is shown in parentheses
because not all HEP type networks belong to this class.

Two observations can be made regarding the consequences of membership in the
rectangular SW-banyan class. First, when these networks are used in an MIMD mode,
where random requests for connection come in, their performance is the same. In
[Pat79] an analysis showed that all networks of the same size in the Delta class con-
structed from bxb crossbar type switching elements have the same performance. That
is they have the same bandwidth and probability of accepting a request for access.

The second observation is with regard to use in SIMD mode. As was pointed out
in (WuF79a], topological equivalence between two networks implies a one-to-one and
onto mapping between the components of the networks and does not necessarily imply
functional equivalence. Wu and Feng's proposed definition of functional equivalence is
that two networks must have the same set of realizable connection capabilities using
the same control information (with a possible mapping of the information to its proper
location) [WuF79a]. It has been shown, however, that with an appropriate renumber-
ing of inputs and outputs, it is possible to convert one network in this class into
another [SiS78 WuF 79a).

It can be concluded that any of the capabilities shown for one network can be
built into another with suitable modifications {often minimal). Hence there is a
significant body of literature describing a wide variety of things rectangular SW-banyan
class networks can do. The capabilities discussed in this section included sorting
bitonic sequences of numbers, partitioning resources, forming tree structures, accessing
various vectors from matrices, and duplicating and spacing data out. Permutations
that can be performed include flips, uniform shifts, and several useful to FFT algo-

rithms.
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3.3 Switching Element Implementations

3.3.1 Introduction

In most of the papers introducing the networks surveyed in the last section, the
switching elements used to construct the network were functionally specified but no
particular implementation was proposed. The simplest realizations of interchange
boxes specified have been designed for use in circuit switched networks. Levitt, et al.

proposed one of the first designs called a basic cell [LeG68]; Joel calls the same design a

J-element [Joe68]; Smith and Siegel use a simple externally controlled multiplexer
[SmS78, Smi81b); and Patel suggests a slightly more complex, fixed priority, 2x2
H crossbar implementation [Pat79]. Owing to advances in LSI technology, some
§ significantly more sophisticated designs have been proposed (and implemented)

recently. Ciminiera and Serra propose implementing whole subnetworks of circuit

switched 2x2 crossbars and their associated control logic on one LSI chip [CiS81].
Premkumar, et al. describe in considerable detail, the design and implementation of 2x3
switching nodes capable of “simultaneous” (in the same network clock cycle) circuit
and packet switching [PrKk&0a). In the following, these various implementations will be

discussed in more detail.

3.3.2 Early Switching Elements

The earliest suggested use of small crossbars for constructing large interconnection
networks is attributed to Clos [Clo53). His intended application, however, was for tele-
phone switching networks. At the time, connecting large numbers of processors was
unthinkable. The Benes network, a special case of the Clos networks is constructed
from 2x2 crossbars [Bent5). Benes' work is primarily concerned with the capabilities
and control of the network as a whole, not the design of the 2x2 crossbars. Given that

cireuit switching is performed and the switches are controlled externally, the actual

.....................
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implementation of the crossbars is understandably one of the less important aspects of
the network. A 2x2 crossbar simply consists of two small 2-to-1 multiplexers.

One of the first discussions suggesting that networks of 2x2 crossbars be used to
connect multiple computers is in [L.eG68]. The motivation behind the work is the
desire for ultra-reliable computer systems for aerospace applications. In these applica-
tions only a relatively small number of computers are involved. Levitt, et al. provide a
circuit diagram (shown in Figure 3.26) of a simple 2x2 crossbar, so they can analyze the
types of faults that could occur and how to circumvent them. The crosshars contain
flip-flops that store the state of the switch. Altogether, the crossbar requires two flip-
flops, five AND gates and two OR gates. One crossbar passes one bit of information, so
a number of them in parallel are required to pass bytes or words of information.

Though Waksman [Wak68] presents interesting results on controlling Benes net-
works, he apparently has little or no knowledge of hardware. There is a rather
humorous remark regarding the implementation of 2x2 crossbars in the introduction
which asserts, “Let the ‘elementary cell’ be the basic building block of such a network,

which ... presumably can be constructed using a single flip-flop.”

3.3.3 Omega and Indirect Binary n-Cube Switching Elements

The papers by Lawrie [Law75] and Pease [Pea77] each make recommendations
regarding the design of network components but neither presents a specific implementa-
tion. Lawrie notes that his omega network of size N can be partitioned to form two
identical subnetworks, which are themselves omega networks of size N/2. He recom-
mends implementing the size N=4 subnetworks as one module containing four 2x2
crossbars or as one 4x4 crossbar. These modules are then interconnected with 2x2
crossbars to form a larger omega network. An example of this configuration is shown
in Figure 3.27. He points out that a large network containing 4x4 crossbars has more

powerful capabilities than that containing the four 2x2 crossbars. Lawrie assumes the

¥

ot
AR
24
PR

R I g

PRI A

It T a'
.."t'v'
-~




Al i g te e B ve o d S AUR A A A ieede SANLACEA e i DI Sl A A\ B R S Al At At ol il Ik it Sk B to el foF i fint Sat Aato N Kot St e et .F_".'_:u'{ F.h
s

3-40

0,
(o)

Figure 3.26 2x2 Crossbar Implementation [LeG68]

Figure 3.27 An Omega Network with 4x4 and 2x2 Switching Elements [Law75]
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2x2 crossbars in an omega network have a broadcast capability. lmplementing this
capability increases the complexity of the control logic associated with each 2x2 or 4x4
crossbar [McA80]. The increase is not protibitive, however. Pease assumes no such
broadcast capability is present in the 2x2 crossbars which compose his indirect binary
n-cube network. His only recommendation with regard to implementation is that each

2x2 crossbar be placed on one LSI chip.
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3.3.4 Delta Network Switching Element

Patel has defined a class of deita networks which are used in a circuit switched
mode to connect processors to memories [Pat79]. The networks are constructed from
bxb crossbars. The only design presented is for 2x2 crossbars as shown in Figure 3.28.
The crossbars are controlled by routing tags. For a 2x2 crossbar, one bit from each
input, dy and d;, determines its state. Based on the equations in the figure, 18 gates
are required to implement the control logic and 6W gates for the INFO or path select
logic, where W is the path width. The design shown is unidirectional. The priority
scheme for each node is fixed; the upper input always has priority over the lower input.
The result of this for an Omega network (a member of the class) is that one processor
{(at input 0) connected to the network will never be blocked while another (at input
N-1) will only be able to establish a path consisting of links no other processor wants.
All other processors will have non-equal probabilities of establishing their desired paths.
The priority among processors can be randomized by connecting the two outputs of
each 2x2 module to two different priority input ports at the next stage. Doing this,
however, changes the permuting ability of the network in SIMD mode. It is better if
the priority in each node alternates to assure all processors equal access to memories, on

the average.

3.3.5 An Optimal Switching Element Size Study

Ciminiera and Serra performed a study whose goal was to determine an optimal
packaging of some number of 2x2 crossbars onto one LSI chip [CiS80,CiS81]. They
estimated logic and pin requirements for various size Omega networks. Shown in Fig-
ure 3.29 is a block diagram of a size four implementation. The block labeled ‘C’ con-
tains four 2x2 crossbars. Routing tags control the switch setting. If an NxN omega
network is implemented on one chip, the control unit will examine logoN bits of each

2 tag. Details of this procedure can be found in Section 3.4.
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In [CiS81), asynchronous circuit switching is assumed. When a tag is presented to
the input of a chip, the control unit checks to see if the desired connection can be esta-
blished. If connections existing in the chip do not block the new path, the states of the
appropriate 2x2 crossbar; are set and the ‘‘busy-out” signal corresponding to the
“request-in” is turned ofl. The tag is then forwarded to the next chip via the newly
established connection. Their analysis shows that if the maximum number of pins per
chip is 60, an optimal configuration contains one 4x4 omega network, 6 bits wide. The
network can be unidirectional or bidirectional. If the pin limit is doubled, an 88
omega network can be accommodated. If it is unidirectional, the optimal path width is
7 bits, or if bidirectional, 6 bits. Optimality is defined in terms of maximizing the logic

per pin ratio without exceeding logic or pin limitations.

3.3.6 Banyan Switching Elements

One result noted in [CiS81] is that the pin limit is always exceeded before the logic
limit. Aware of this fact, Tripathi and Lipovski [TrL79] suggest including a packet
switching capability with nodes that also circuit switch. Doing so increases the logic in
a node without a substantial increase in the pin count. This has been implemented in
an SW-banyan network. Since the SW-banyan connects processors to memories, and
because of memory access timing, they found that packet switching could be over-
lapped with circuit switching with a negligible time penalty. A circuit is only used in
the latter part of a memory cycle, thus packets can be moved during the first part.
Conversely, packets require time to negotiate a movement from one node to another, so
this can be done while the circuit is in use. Though no design is presented in [TrL79),
design issues for packet switched implementations are enumerated. Included are node-
to-node protocols, buffering at the nodes, packet assembly/disassembly, error correction

coding, acknowledgment, time-out, and retransmissions.
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A detailed discussion of the design of nodes in an SW-banyan network is presented
by Premkumar, et al, [PrK&0a]. Two parameters determine the topology of the net-
work, spread and fanout (S and F). An SW-banyan with S=2 and F=3 is shown in
Figure 3.30. An N input SW-banyan has log;N levels. It is important to note that one
node in the figure is not a 2x3 crossbar. One node can connect one of the incoming
lines to one of the outgoing lines. Five nodes and the lines connecting them form the
equivalent of one 2x3 crossbar as shown by the heavy lines in the figure. Interpretation
of these graphs is discussed in detail in [McS82¢].

The functional components in one 2x3 node are: (1) clock decode logic - a single
network clock is converted into a six phase clock which determines all internal event
sequences; (2) bus control logic - determines the current direction of the bidirectional
circuit bus: (3) link control logic - establishes a path from one input to one output and
arbitrates conflicts; (4) packet switch logic - implements the protocol for passing a
packet from level to level; and (5) carry lookahead/priority logic - since all processors
are bit-sliced, this logic allows several processors to be linked together to form one
larger processor.

One packet is four bytes in length. The address or routing tag requires one byte
and the data uses three. Packet switching is implemented such that two packets are
processed simultaneously during the same cyele. The result is similar to having two
parallel packet switched networks. Each node thus has two one byte buffers, one for
each packet. Packets move as byte trains, progressing one level per clock cycle. A new
packet can enter the same port every fourth cycle. Request and grant signals are used
between nodes to negotiate the transfer of the first byte of a packet into the receiving

node. Once the first byte is transferred, the rematning bytes will follow without interr-

uption.
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Figure 3.30  SW-Banyan with S=2, =3 Heavy lines form a 2x3 crosshar,
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3.3.7 Conclusions

The complexity of proposed switching elements varies considerably. The simplest
are the telephone network crossbars that handle circuit switched serial communication
lines. All of the centrally controlled circuit switching networks for connecting proces-
sors and memories tend to have very simple switching elements. However, the com-
plexity of the controller is high since, in the general case, it must accept N requests for
connections and generate O(N logoN) control signals.  Packet switched networks have
much more complex switching elements. Logic is needed to handle the buffering of
packets and the protocol of transferring packets to other switching elements.

When control of the network is distributed among the switching elements, they
become more complex regardless of whether they are circuit or packet switched. The
switching elements in the SW-banyan network are very complex since they handle both
circuit and packet switching. The two modes are time multiplexed, so a sizable
number of control signals are needed to handshake with other switching elements and
to keep track of the switch state. In the next section, distributed control methods are
described, which will give an indication of the complexity of the control logic in a

switching element.
3.4 Distributed Control Methods

3.4.1 Introduction

The Clos and Benes telephone switching networks have centralized control. The
fastest known set-up algorithms for these networks were developed by Opferman and
Tsao-Wu [OpT71a] and require O(Nlog,N) time for arbitrary sets of connections. For a
large network, the time required to set the states of the switching elements is reason-
able for telephone switching (e.g. 0.75 seconds), but not for computer communication.

Lenfant found that he could speed up the set-up time in the Benes network for certain
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classes of useful permutations called Frequently Used Bijections (FUB'’s) (a bijection is
a permutation). Each FUB belongs to one of five classes and each class is characterized
by up to four parameters whose size is a function of N. (For N=256, 39 bits encode
the FUB.) There are n stages of control logic (one stage of control logic provides signals
to two stages of the network). The FUB code is passed from stage to stage, so a packet
switched network can be set up ‘‘on the fly,” one step ahead of the data. This method
is somewhat distributed but limited to the FUBs. There is no known method for com-
pletely distributing control of the Benes or Clos networks. Each network user cannot
determine which switches it should use without knowing which ones all the other users
have or will request when it requests access.

The reverse-exchange network is a log,N stage network proposed by Wu and Feng,
designed to perform arbitrary permutations [WuF79a). This is done by making two
passes through the network. The first pass goes from input to output and the second,
from output to input (see Figure 3.23). The effect of making two passes in this way is
comparable to traversing the Benes network once. Thus, to control the reverse-
exchange network, one of the algorithms for the Benes network must be used. To
route arbitrary permutations, the control of the network cannot be fully distributed.

Some of the first designs for multistage interconnection networks used in comput-
ers had centralized control. They could do this efficiently because they were designed
for SIMD operation and permuting data. This means that individual processors were
not requesting network connections. Rather, the control processor issued an opcode to
the network control unit specifying a particular permutation (or other) configuration to
be established. Examples of this approach are described in [Bat76} for the Flip network
and in [Fen74] for the data manipulator. The main advantage to this approach is that
the switching elements are very simple (e.g. sce Figure 3.12(b})} and therefore inexpen-

sive and the control units are not very complex.

........................................................................
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A network is considered to have fully distributed control if (1) each user calculates
all the switch setting information required by the switching elements to be used for the
current transmission and (2) each switching element can set its state based only on the
control information associated with the transmissions it handles. The first network to
be proposed that had fully distributed control was the bitonic sorter [Bat68]. Due to its
designed purpose, its switching elements determine their state based on the transmitted
data itself. This is therefore a rather trivial example of distributed control. However,
the bitonic sorter can be modified to interconnect processors and memories and be con-
trolled in a fully distributed way using routing tags. This is because it is almost func-
tionally equivalent to the Generalized Cube network. Thus it can be modified to use
the routing tag scheme that will be described for that network in Section 3.4.7.

Lawrie's routing tag scheme for the Omega network was the first of its kind to be
proposed for fully distributing control of that network [Law75]. It is designed to route
transmissions from one side of the network to the other. Lang and Stone then pro-
posed a simplified version of Lawrie's scheme, for the extended shuffle-exchange net-
work [LaS76]. Its capabilitics are a subset of those of the Omega network. Their
scheme is not as flexible, but it does allow some uscful permutation connections to be
set up. In [WuF78], Wu and Feng extended Lawric’s scheme for the Baseline network.
Their scheme allows transmissions to be routed into and out of the same side of the
network in addition to traversing it. Patel developed a general routing scheme that can
be used by any of the networks in the Delta class {Pat79]. His scheme is identical to
Lawrie's for any of the networks constructed from 2x2 switching elements (which
includes the Omega network).

For the class of regular SW-banyan networks, Tripathi and Lipovski developed a
general scheme whose capabilities are a superset of the Delta network scheme [TrL79)].
It is more general because it deals with axb crossbar switching structures (as opposed to

bxb only). The banyan scheme also includes a rerouting capability for avoiding faulty
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switching elements. It does this by mis-routing a transmission and then allowing it to
backtrack to a point from which it can move forward again to reach its desired destina-
tion.

The scheme discussed in [SiM81b] for the Generalized Cube network is designed
for networks constructed from 2x2 crossbars or interchange boxes. It uses routing tags,
but they are calculated in a way different than Lawrie's scheme and have different pro-
perties. They can, however, be used to control the Omega network or, with minor
modifications, any of the other networks discussed that are topologically equivalent to
the Generalized Cube.

In [McS82d] and [SiM81a] routing tag schemes are discussed for controlling the
ADM and IADM networks in MIMD mode and SIMD mode respectively. These
schemes are equally well suited to controlling the Gamma network and one of them can
be readily used in the CC-banyan type shown in Figure 3.11 (see Section 3.1.8.1).
Because these are all multiple path networks, the routing tag schemes are more sophis-
ticated than those used by the cube type networks. The MIMD mode tag scheme has
the ability to perform dynamic rerouting to avoid busy or faulty switching elements
when possible, without backtracking [McS82d].

In the following sections the details of the fully distributed control schemes for the
Omega, extended shuffle-exchange, Baseline, Delta, regular SW-banyan, Generalized
Cube, ADM and IADM networks will be described. All these schemes use routing tags
to distribute the control. If the network is packet switched, the tag is part of the
header information in each packet. If it is circuit switched, the tag is held on the input
data bus until a complete circuit is established. Further extensions to the basic
schemes for the Generalized Cube, ADM and 1ADM networks are described in [McS82a,

McS&2d, SiM81a, SiM8Ib).
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3.4.2 The Omega Routing Tag Scheme

The routing tags defined by Lawrie in [LLaw75] are called destination tags. No
computation is required on the part of the network users to generate the tag. The
desired destination address, D, is itself the tag. Let d,.,---d,dy be the binary
representation of D. The interchange box in stage i, I < i < n, examines bit d,_;. If
d, ;=0 the upper output is selected and if d,_;=1, the lower output is selected. As an
example, consider the path from input 6 to destination 1 in an Omega network of size
N=8& (n=3), as shown in Figure 3.31{(a). D = d,d,;dy = 001; in stage 1, d, is examined
and found to be 0 so the upper output is used. Similarly, in stages 2 and 3 the upper
and lower outputs are used, respectively. If the user at destination 1 wants to send an
acknowledgement or return message it must know the sender’s address. Assuming that
address 6 was transmitted with the message, D is set to 110 and the path shown in Fig-
ure 3.31(b) is established. The sequence traversed is lower, lower, upper. If the net-
work is bidirectional, it can be readily verified that this scheme works in reverse (from

output to input) as well.

3.4.3 The Extended Shuffie-Exchange Routing Tag Scheme

As was pointed out in Section 3.2.8, the extended shuffle-exchange network is
identical to the Omega network in its topology and in the way inputs and outputs are
numbered. Thus destination tags could be used to control it. However, Lang and
Stone intended it to be used for routing permutation connections [LaS76]. To keep the
control as simple as possible, they developed a scheme in which each input simultane-
ously enters a one bit tag. Each switching element combines the two control bits
received using a Boolean operation (e.g. exclusive-or), sets its state according to the
result, and passes the result on to the two switching elements in the next stage to
which it is connected. The initial N bit input vector and the Boolean operator used

define the overall permutation obtained. It was shown that the uniform shift
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- permutations (input j, 0 < j < N, is connected to output j+s mod N, s any integer)
can be performed using the exdlusive-or operation at the switching elements and an
v appropriate initial bit vector to determine s. Each input can calculate what its bit
- value should be knowing only the permutation to be performed. By replacing the
exclusive-or with an equivalence operation at certain stages it was also shown that p-
ordered vectors can be unscrambled (accessing of various vectors from a matrix stored

in a skewed format [Law75]).

3.4.4 The Baseline Routing Tag Scheme

The Baseline network is defined to be bidirectional, with its [/O ports labeled Side
= I and Side 2 (sce Figure 3.20) [WuF78]. Paths can be established from (1) Side 1 to
| Side 2, (2) Side 2 to Side 1, (3) Side 1 to Side 1, and (4) Side 2 to Side 2. The routing
scheme used for cases {1) and (2) is exactly the same as Lawrie's destination tag
scheme. The procedure for (3) and {4) is fairly complex and works as follows. Let
S=s, 1589 and D =d, |- --d,dy be the pair of /O ports that want to com-
municate on, say, Side 1. Compute C = ¢, ¢;¢gas S @ D, the bitwise exclusive-
orof Sand D (ie. ¢; =5 @ d,0<i<n1) If¢is the most significant 1 in C then
there are 20 possible shortest paths between S and D with length 2(j+1). Next deter-
mine the set of addresses of the switching elements at which the path can reverse direc-
tion of travel. given by: {(z; 4.2~ Zosp1Sn 2 " " §41); [2 = 0o0r ;0 <i < j-1}.
A member of this set is finally chosen using a conflict resolution procedure described in

(Wulk78].

...................
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3.4.6 The Delta Class Routing Tag Scheme

The Delta network routing tag scheme is a generalization of Lawrie's destination

tag scheme [Pat79]. For a b"xb" network constructed from bxb crossbar switching ele- .

ments, destination addresses are represented as base b numbers, ie. D = L
. N 4

(dy-y - - - d1dg),- An example for b=3, n=2 is shown in Figure 3.22(a). Each of the A. N

switching element outputs is labeled from 0 to b—1. If the stages are labeled from n—1
to 0, input to output, then a switching element in stage i examines d;. The requesting

input is connected to the output labeled d;. Clearly if b=2, the upper output is labeled

0 and the lower output is labeled 1 and this reduces to Lawrie's destination tag scheme.
In the special case where b=2™, the destination addresses can be represented in ST
binary, as by, - - - b;by. Since m bits form a base b digit, the switching elements in

stage i, 0 < i < k/m, examine bits b4y - b b__, which directly specify one

me*it+] mei

of the outputs labeled 0 to 2™-1.

3.4.6 The Regular SW-Banyan Routing Tag Scheme

The routing scheme for regular SW-banyans [TrL79] is slightly more general than
the scheme just described for Delta class networks. For rectangular SW-banyans it is
identical. To see this, examine Figare 3.32(a). An S=F=3 SW-banyan is shown with
bases and apexes labeled A through C. The graph shown corresponds to a 3x3
crossbar. If the figure is rotated 90° clockwise and A=0, B=1, and ('=2, a crossbar
identical to those shown in Figure 3.22(a) is obtained. A two level S=F =3 SW-banyan
is identical to the network in that figure. The routing tag described in [TrL.79] is a des-

tination tag and consists of sequences of letters instead of digits. It is represented as

Dy, - -D;:--Dj for an L level banyan, where D;, 1 <i <L, is a label. A node at
level i chooses the node at the next level with label D, In an actual implementation,

digits would be used instead of labels.
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: The labelings for an S=2, F=3 regular SW-banyan are shown in Figure 3.32(b).
This is the graph of a 2x3 crossbar. In this case, for connections from apex to base, the
B label is invalid. The routing tags are the same, but not all labels lead to physical

ports.

Rerouting to avoid faulty nodes is possible if backtracking is allowed. This is illus-

trated in Figure 3.33. Assume node | at level i has failed. This affects bases p through
q when they want to communicate with any of apexes x through y (and vice versa).
Suppose base s = S ---§;---S, wants to communicate with apex d =
D, --D;---Dy, where S; and D;, 1 < i <L, are labels as described above. Base s

cannot go from node m to node ! since node 1 is faulty. The scheme calls for the path

s

to go through any node with a label other than D;. From the new node n at level i, it
must go to o at level i +1, turn around and go to node r#n back at level i. It can then
choose to go to any node in level i—1, say t. From t it can proceed directly to d as
thought no reroute occurred. The values of m, |, n, o, r, and t are given in the figure.

This rerouting procedure requires the traversal of four extra nodes.

3.4.7 The Generalized Cube Routing Tag Scheme
The routing tag scheme for the Generalized Cube network presented in [SiMR1b)

computes the (Hamming) distance between the input port number and desired output

; port number. Let S be the source address (input port number) and D be the destina-
‘ tion address (output port number). Then the routing tag T =S @ D (where “®~
means bitwise “exclusive-or”). Let t, , - - - t;t, be the binary representation of T. An
i interchange box in the network at stage i examines t;. If t,=1, an exchange is per- _i-_'i."-;q'
: formed and if t,=0, the straight connection is used. If N=16, S=1011, and D=0110, EEES,
then T=1101. The corresponding stage settings are exchange, exchange, straight, e ]
i exchange. Because the exclusive-or operation is commutative, the incoming routing tag ;-;;'.'-;-'.-;|
is the same as the return tag. Since the destination has the routing tag to the source, Cr
i 3 - :_
e e T T e S e e N e
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it is easy to perform handshaking if desired. It can be readily verified that this scheme

R A

g
4

“h S

also works in creating a path from output to input. Thus it can be used in a bidirec-

tional implementation and the inverse Generalized Cube.

This scheme can also be used in the Omega network. In th: example in Figure
3.31(a), S=110, D=001, so T=111. The sequence traversed in that figure and in the
return path in Figure 3.31(b) is exchange, exchange exchange. It should also be

pointed out that the destination tag scheme could be used in the Generalized Cube net-

A R A a ARl T

work.

Consider an example of the use of the “‘exclusive-or” scheme in an SIMD environ-
ment. One interconnection function known to be admissible by the Generalized Cube
network is a uniform shift of +2' mod N. That is, input port x is connected to output
port (x +2') mod N, where 0 < x < N and 0 < i < n. Table 3.1 shows calculation of
the routing tags and the pairings of tags used to set the state of each intechange box
for N=8 and i=0 (i.e. a shift of +1 modulo 8). The rectangles around certain bits of
each pair of tags indicate that those bits determine the state. Figure 3.34 shows the

paths that will be taken through the network.

3.4.8 The ADM and IADM Routing Tag Scheme

3.4.8.1 MIMD Mode Communications. The routing tag scheme described here is

used for both the ADM and IADM networks. All the properties to be discussed apply
equally to both networks. This scheme can also be used in the Gamma network. In
each network, a message can change its route at any stage. Since there are three possi-
ble paths that can be taken in each stage (except in stage n—1), logs(3" '+2) is the
theoretical lower bound on the number of bits required to represent any unique path

through either network. The most general way to represent any unique path is with a

:
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T
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full routing tag [SiM81a). It is represented by fy fo o - - - [ifg. The high order n bits
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of the 2n bit tag are sign bits and the low order n bits are magnitude bits. In stage i, if
f,=0, the straight link is used; 1f f;=1 and f,4;=0, the +2' link is used; and if f;=1 and
f.+,=1, the —2 link is used. The pair f, 4+;f; corresponds to a signed digit as discussed
in [PaR&2|.

Given a source address S and a full routing tag F =f, _, - - - f,f, the destination

address D is calculated as:

D = S+[(~1)2n tof,_ 2" Y H(—1)fen-2of, o272+ - - - +(=1)a-f,+2%] mod N.

For example, in the ADM network, for N=16, if the source is 3 and the destination is
10, one possible value for F is 00101011. The path traversed is +23, straight, —2!
+2% In Section 3.1.8.2, some methods for calculating full routing tags will be dis-
cussed.

If all the sign bits are the same, they can be collapsed into one bit. Thus the new
tag only requires n+1 bits. Although all possible paths cannot be represented, a tag
can be found to route a message between any source/destination pair. This is because
there is more than one route between all source/destination pairs (source # destina-
tion). To take advantage of the multiple routes, dynamic rerouting schemes can be
employed [Mesg2d].

The n+1 bit routing tag scheme uses a relative addressing approach in which the
information contained in the tag is the “distance” from the source to the destination,
as opposed to the actual destination address. This scheme also provides a return tag
which can be used if it is desired to send an acknowledgment.

Let' S =5 | - 550 denote the source address and D = d,, | - - - d;dy denote the
destination address, where s; and d; are the i'" bits of the respective unsigned addresses.
An n+1 bit routing tag is formed by computing the signed magnitude difference
between the destination and the source: T =t t, | - - t;tg = D=S. The sign bit is t,

where t;, =0 indicates positive and t,=1 indicates negative. Bits t, | - - - t,tg equal the




absolute value of D-S, the magnitude of the difference. A routing tag calculated in this
manner is called a natural rouling tag. In SIMD mode, if all N routing tags for a per-
mutation are calculated in this way, then the permutation is said to be routed using
natural permutation rouling tags.

As an example, if N=16, S=1011, and D=0100, then T=10111. If the source and
destination addresses are interchanged, the new tag is 00111. It is only necessary to
complement the sign bit of an incoming tag to form a routing tag for a return or
handshaking message.

To route a message through either network, stage i need only examine bits t, and
t, in the routing tag. If t;=0, the straight connection is used regardless of the value of
t,. If t,=0 and t;=1, the +2' link is used, and if t,=1 and t;=1, the —2' link is used.
In the previous example, with T=10111, if a message enters the ADM network at stage
3, the sequence of connections traversed from processor 11 to 4 is straight,
-22 —21 —20 If a message enters the IADM network at stage 0, the sequence of con-
nections is =20, =21 —22 straight. A route consisting of only straight or +2' connec-
tions is called positive dominant and a route consisting of only straight or -2 connee-
tions is called negative domsnant.

Given a source address S and a routing tag T = t;t, | - - - to, the value of the des-
tination address D is calculated as:

D = [SH(-1)n{t, 2" '+ - +42%[modN.

Two tags, T, and T,, are equivalent if and only if they route a message from the
same source address to the same destination address; i.e., given T(S)—D; and
To(S)—Dy, Ty ~ Ty if and only if D,=D,.

A characteristic of the routing tag scheme is that for any arbitrary non-zero tag an
equivalent routing tag can be computed that uses links of the opposite sign. The
method for calculating equivalent tags is as follows. Let T' denote the two's comple-

ment of T, then T' ~ T (if T=0, T' =T). To see this, let Ty denote the magnitude
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bits of T. Also let t, be the sign bit of T'. For T=t Ty, T#0, T' =t,Tyy. (Recall the
two's complement of an n bit number T is evaluated by subtracting T from 2".) Assum-

ing arithmetic is mod N,
T'(S) = S+(-1)'n Tyy = S—{~1)'n(2°-Tyy) = S+(~1)Tyy = T(S).

For example, for N=16, if S=0110 and D=1101, then T=00111. The equivalent
tag T' is 11001. In the ADM network, the first route is straight, +22 +2! +2° The
equivalent route is —23, straight, straight, -29 A positive dominant tag can thus be
converted to a negative dominant tag, and vice versa.

If the first node of the IADM network where a non-straight link is requested
resides in stage i, if the +2' link is requested but blocked, then the —2i link can be
used, or vice versa. The equivalent tag can be formed and the message routed on the
oppositely signed link. In the ADM network, if a straight link is blocked in the input
stage, it can be avoided. As long as the low order n~1 bits of the tag are not all 0, the
equivalent tag can be formed and the message sent on either non-straight link. Simi-
larly. if a non-straight link at the input stage is blocked, the straight link can be used.

Return tags, to route from D to S, are formed by complementing the sign bit of
the tag from S to D. Fquivalent tags generate equivalent return tags.

Since the CC-banyan network shown in Figure 3.11 consists of +2' and straight
links only, strictly positive dominant routing tags can be used to control it in a distri-
buted fashion. Since all tags have the same sign, the sign bit, t,, can be dropped from
the tag.

In SIMD mode, a permutation s said to be routed using positive domsnant permu-
lation rouling tags if those tags that are negative dominant in the set of natural permu-
tation routing tags are converted to positive dominant. Similarly, a permutation is said

to be routed using negative dominant permutation rouling tags if those tags that are
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positive dominant in the set of natural permutation routing tags are converted to nega-

Phil S NN

tive dominant.

3.4.8.2 SIMD Mode Communications. In an SIMD environment, all the processors
< operate in lock-step and all active processors use the interconnection network simul-
taneously. There are two basic types of network settings: permutations, where each
network input communicates with one network output, and broadcasts, where some
network inputs are connected to multiple network outputs (but each output is con-
nected to only one input). Here, the more common communication need in SIMD

mode, that of permuting data, will be discussed.

- NCAERL S

First, the calculation of full routing tags for SIMD communications is examined.

Then, some permutations performable by natural, positive dominant, and negative

dominant permutation routing tags are described. Finally, the ability to perform a
. given permutation using different network settings is demonstrated.

Several permutation routing tag schemes were described previously in Section
3.4.8.1. A permutation is said to be passable by a network if the physical network
structure (i.e., links and switches) allows the connections to be made. The use of full
routing tags allows the ADM or IADM network to perform any passable permutation.
The natural, positive dominant, and negative dominant permutation routing tags are
limited in the permutations they can implement, but are, in general, more easily com-
puted.

The full tags described in Section 3.4.8.1 are capable of representing any path in

e the network. A non-trivial problem however, is to find a way to calculate the tags for
any ADM or IADM passable permutation so that the N paths specified do not conflict.
‘ Out of the N source/destination pairs in the permutation, a given pair may have many
possible paths to choose from to complete the individual connection. Assuming the

other N—1 paths have been specified, there will be only one path that does not conflict
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with those already established. If the method used to calculate tags does not specify
that particular path, the control scheme will not pass the permutation even though the
network will.

If a permutation is performable by the ADM using natural (or positive dominant
or negative dominant) permutation routing tags then the full routing tag can be easily
generated. To convert a natural tag to a full tag it is only necessary to extend the sign
bit, i.e., bits 0 to n-1 of the full are set to bits 0 to n—1 of the natural tag, and bits n
to 2n—1 of the full tag are all set to the value of bit n+1 of the natural tag. The two’s
complement operation can still be used to produce an equivalent tag.

In [Sie79,8iS78] it was shown that the ADM can perform any permutation that the
Generalized C'ube network can. Similarly, the IADM can perform any permutation the
inverse Generalized Cube can. This result can be used to generate full routing tags for
either network based on the tags that would be used by the Generalized Cube network
or its inverse. The way to compute the full routing tags from the Generalized Cube
tags defined in Section 3.4.7 is given in Table 3.2, where s; and d, are the itP bits of the
source, S, and destination, D, and [, and f, 4, are the i and (n+i)™ bits of the full
routing tag. To calculate the tag, sct f, - - fifo to SOR D and fy, ;- - - f 4, to
SD. For example, a full tag to establish a path in either network from 7=0111 to
11=1011, for N=16, is F = 01001100.

Permutations that are passable by the ADM (or JADM), but cannot be specified
using natural permutation routing tags or as Generalized Cube (or its inverse) permuta-
tions are more difficult to handle. If it is known at compile time that such a permuta-
tion of data must be performed (and the permutation itself is known), the full routing
tags can be precomputed and the execution of the SIMD algorithm will not be impeded.
However, if it is necessary to perform an arbitrary passable permutation that is deter-
mined at execution time, this method can not be used. The eflicient execution time

computation of full routing tags to properly set the network to perform passable
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permutations is currently an open problem.
Now consider the capabilities of the natural, positive dominant, and negative dom-
inant permutation routing tag schemes. Recall that these schemes can set the ADM to

perform only a subset of the ADM passable permutations. However, they are easy to

P esal ol nl0l 4

compute and require only n+1 bits each.

In [Len78], different classes of permutations known to be important in SIMD pro-

cessing were defined. It was shown in [McA80] that positive or negative dominant per-
mutation routing tags can correctly specify the connections required by two of these
permutation classes. The first class is called the lambda permutation. Source address
¥ X is connected to destination address )X +k mod N, where j is an odd, positive integer,
k is any integer and 0 < X < N. The other permutation class is called delta and is

comprised of uniforin shifts in groups of 2' where 0 < i < n. This permutation can be

.. ¥,

thought of as the concatenation of 271 networks of size 2 in which the same uniform
shift (mod 2'} is being performed in each. It was also shown in [McA80] that natural

permutation routing tags correctly specify the connections required to perform the per-

LalFars

fect shuffle [Sto71]) permutation (defined in Section 3.2.7) in the ADM network and the
inverse perfect shuffle in the IADM network. Algorithms that can be used at compile

time to determine if a given permutation is performable with natural, positive dom-

inant, or negative dominant permutation routing tags were also presented.
An important property of the ADM and IADM networks is the existence of multi-
- ple paths between all non-trivial (i.e. source”destination) source/destination pairs.

. Because of the nature of the multiple paths, there are many permutation connections

that can be established in more than one way. The same pairing of inputs to outputs is
achieved, but all messages {data items) have more than one path available to them.

-: The constraint imposed is that all messages take paths that are mutually compatible

(i.e. there must be no conflicts). Exploiting this property leads to some fault tolerance.
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As an example, consider the uniform shift permutation defined earlier as connect-
ing input X to the output whose address is X+k mod N, where k is some constant.
This is shown in Figure 3.35 where k= +2 and N=16. For each input, the path taken
consists of the straight, straight, +2! straight connections. As shown in Figure 3.36,
the same uniform shift of +2 can be achieved if all paths consist of straight, +22 -2,
straight connections. Other combinations are possible.

Intuitively, the “weights” of the links in a path can be summed, where +2i and
-2 links have weights +2' and —2i, respectively, and straight links have a weight of 0.
Thus, any set of paths for which the weights sum to +k mod N can be used to perform
the uniform shift permutations. When a different network configuration can be used to
perform a given permutation it is said that redundant control setlings exist for that per-
mutation.

For the example given above, if any (or all) of the straight links in stage 2 or any
of the +2! links in stage 1 are faulty, the connections shown in Figure 3.36 can be used
to avoid them. There is another configuration that can be used if any of the straight
links in stage 3 are faulty (i.e., +23 —22 —2! straight). In this example, there is no
way to avoid using the straight links in stage 0. If 2° was added to or subtracted from
the sum of the weights, there would be no way to adjust the other weight values (i.e.
change the path) to produce a total of +2. In general, if one path from an input
(source) S to an output (destination) D has straight conditions at stages 0,1, - - - i, then
all paths from S to D must have stages 0 to i set to straight. Further information

about redundant control settings for permutations is in [SiS79).
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3.4.9 Conclusions

The easiest way to fully distribute the control of a multistage interconnection net-
work appears to be to use routing tags (it is certainly the most common). Each net-
work user calculates the tags it will use, and each switching element determines its
state according to the tags only it receives. The majority of the routing schemes dis-
cussed incorporate destination tags. The tag is simply the desired destination address;
n=log.N bits are required for a network with N destination ports. Because of the
highly structured nature of the networks that use them, each switching element can
determine its state based on a subset of the tag bits. The networks that were discussed
that use destination tags are the Omega, baseline, Delta, and regular SW-banyans
(which means that networks not discussed, but in this class, can use destination tags).

The advantages to destination tags are: {1) that no computation is required to gen-
erate them (once the destination is known); and (2) misrouting can be detected by com-
paring the tag to the physical address where it arrives. The disadvantage is that for
handshaking or sending return messages, the source address must accompany each mes-
sage.

A different approach to routing tags is to compute the “‘distance” to be traversed.
This was proposed for the Generalized Cube network where the Hamming distance was
used. This tag also requires only n bits. A ‘“‘distance” tag was also proposed for the
ADM and IADM networks. In this case, the arithmetic distance is computed and
represented in sign-magnitude form, which requires n +1 bits.

The distance tags are trivial to calculate, requiring an exclusive-or operation (for
the Generalized Cube) or a subtraction (for the ADM/IADM), so this is not a major
disadvantage. The advantage to this approach is that the tag contains all the informa-
tion needed to determine the source address. For a return message, the Generalized
Cube tag can be used without modification and the ADM/IADM tag can be used after

complementing a single bit (the sign bit). The main disadvantage is that routing errors
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cannot be directly detected. To add this capability requires sending the destination
address with each message.

For the cube type networks, either the destination tag or the distance tag
approach can be used. They are equally powerful and require the same number of bits.
The choice depends upon specific system requirements. For the data manipulator type
networks the distance tag approach is preferable. It can be shown that destination tags
could be used. However, each switching element would require enough intelligence to
compare the tag to its level in the network and then decide how to reduce the tag’s dis-
tance from the desired destination. Considerably more logic would be required.

The scheme discussed for the extended shuffle-exchange network is interesting
because it only requires one bit tags. However, it is special purpose, being designed for
certain permutation connections in SIMD mode. Thus it is not generally suited to use

in other non-functionally equivalent networks.

3.5 Fault Tolerant Designs

3.5.1 Introduction

There are two major aspects to fault tolerance: diagnosing faults and avoiding
known faults (if such a capability exists). The literature on fault diagnosis of intercon-
nection networks will be briefly summarized in the following and then some fault
tolerant multistage network designs will be examined in more detail.

General multistage network fault diagnosis is discussed in [NaS80). A method for

diagnosing faults in the Benes network is presented in [OpT71b]. As discussed in

[SoR&0], certain kinds of faults can be tolerated in all stages of the Benes network

except the center stage. A way to add an extra switching element to make the network

tolerate any single fault is shown and will be described in Section 3.5.3.
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Detecting and locating faults in the Baseline network are discussed in [WuF79b]
and one of the results is extended in [FeK82]. The procedures described are generally
applicable to the cube type networks. The method used is to generate test patterns
that are propagated through the network. The emerging patterns are compared to
precomputed, expected patterns. This requires no extra hardware in the network.
Using a different approach, in [RaM80] four methods are described for diagnosing SW-
banyan networks. Extra hardware is required and it is assumed that the switching ele-
ments can diagnose themselves and set a latch if faulty. It is claimed that two of the
methods can be used for any multistage network.

In [FaP81] the diagnosis of multistage cube type networks is discussed. The
interesting aspect of this work is that it is assumed that one whole stage of the network
is implemented on one VLSI integrated circuit chip. Due to pin constraints, this is only
realistic for small bit sliced networks. For example, a 32x32 network with bit slices one
bit wide requires each chip to have 64 pins for data paths alone. Since control lines
require two pins per data path, the count rises to 192. Systems with 64x64 networks
and 60 bit path widths, built from discrete components, are being constructed
[Mcs®2a). If they were built with one switching element per chip, they would require
7940 pin chips (including power, ground, clock, and reset)!

Most of the diagnosis studies implicitly assume the network is circuit switched
{becanse of assuming the fault model in [L.eG68]). However, diagnosing cube type
packet switching networks is addressed in [Lim82]. In a more theoretical vein, a graph
model is used in [MaM31) to determine the necessary and sufficient conditions for being
able to diagnose t faults. An optimal assignment for a t-diagnosable network is
presented. In [Agra2], methods for diagnosing multistage networks are surveyed.

In [ShHRO0] an interesting approach to fault tolerance analysis is taken. J-networks
are defined as any interconnection network constructed from J-elements (after Joel

[Joe6R]). i.e 2x2 crossbar switching elements. A d-network is considered fault tolerant
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if any pair of I/O ports can communicate after a finite (but arbitrary) number of passes
through the network. This is a much less restrictive definition than the usual, which
requires communication to be possible in one pass. Several simple structures were
analyzed in [ShH80]. The work was extended in [She82], where the shuffle-exchange,

indirect binary n-cube, Benes, and double-tree (to be discussed in Section 3.5.2) net-

works were analyzed.

A 12 node network is shown in Figure 3.37, where a processor and memory is
presumed to reside at each node. This structure was proposed in [Pragl] for parallel
processing and was shown to be able to tolerate one arbitrary node or link failure. In
[PrR81], the topology, routing tag schemes and fault diagnosis of similar structures are
discussed and analyzed. Consideration is given to minimizing the maximum path
length and keeping the interconnection complexity low. This kind of structure is well
suited to a number of parallel processing problems. It does not, however, have the high
bandwidth required by a number of large-scale systems such as PASM [SiS81], PUMPS
[BrF82], the Ballistic Missile Defense (BMD) Agency test bed [McS&2a], Burrough's

Flow Model Processor [BaL81, Bur79], TRAC [SeU80], HEP [Smi78, Smifla], and
I STARAN [Bat74]. Thus it is important to investigate adding fault tolerance to multis-
tage interconnection networks, which do have the requisite bandwidth.

In the remainder of this section, a number of fault tolerant multistage interconnec-

tion networks that have been proposed are surveyed. Included is early work done on

making permutation networks (full access networks) fault tolerant by adding a repair

network to the output [LeGB8]. A much less expensive approach discussed is the addi-

tion of a single extra switching element to the Benes network [SoR80]. A different kind

of fault tolerance is achieved by adding an extra stage of switching elements to the net- =

work input (or output). This has been considered for the Generalized Cube network
[AdS82a,AdS82b,SiM&1b] and the baseline network [Wul.82]. A different approach,

also examined, is the inclusion of extra links between stages. This has been proposed
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for the JADM network [McS82b] and for a cube based network [CiS82]. Finally, a
novel scheme for the Omega network is described that uses error correcting codes

[LiL82).

3.6.2 The Double-Tree Network

The double-tree network shown in Figure 3.38 for N=8 is designed to exchange
any pair of inputs. It was proposed in [LeG68|, for addition to any multistage permut-
ing network constructed from 2x2 switching elements. Its intended use is to correct
permuting errors. It was shown that any switching element in the multistage network
stuck in the ‘“‘straight™ or ‘‘exchange” state has the potential effect of exchanging two
outputs. This happens if the stuck-at-state is opposite to the necded state in that
switch. Their justification for the ‘‘stuck-at” fault model was based on analyzing the
failure modes of the switching element shown in Figure 3.26. If the double-tree net-
work is appended to the output of the faulty network, then the exchanged outputs can
be exchanged again, and corrected.

The double-tree network performs an arbitrary exchange in the following way.
Any pair of inputs can be directed to one of the switching elements in the left half
(shown by dashed lines in the figure) of the network. At the switch where they meet,
they can be exchanged. The switch settings required to do this are then copied by
reflection (about an imaginary vertical line through the switch labeled b,) to the
switches in the right half of the network, except for the switch that corresponds to the
(left half) switch eflecting the exchange. It is set to the opposite state. If the switch
labeled b, is where the input pair meets, it is set to exchange and all settings in the left
half are mirrored to the right half. This kind of a network can be constructed for any
value of N by ‘“pruning” a corresponding double tree network for the next largest

power of two greater than N.
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It was shown in [LeG68] that when a double-tree network is combined with a full

permutation network (e.g. the Benes network), the composite network can accommo-
date a single stuck-at fault in any of the switching elements. It was also shown that
this capability holds when the output column of the double-tree section is removed.
The double-tree network that results from removing the output column is called the
truncated double-tree (TDT). Finally, if p faults can be decomposed into separate pair-
wise exchanges, then a cascade of p TDT networks added to the permutation network
can correct the faults.

It is important to note that this scheme is only designed to handle control line
faults. If any fault occurs that alters data passing through the network, it cannot be
corrected. This is because all switching elements participate in routing data and none

can be avoided.

3.56.3 The Fault Tolerant Benes Network

After analyzing the Benes network, it was found in [SoR80] that the network can
accommodate most single stuck-at faults (as defined in Section 3.5.2). This is because
there are multiple paths between each input/output pair. It was shown that there are
some permutations that cannot be performed under stuck-at faults anywhere in the
center stage of the network. For example, any stuck-at exchange fault in the center
stage prevents the identity permutation (input j to output j, 0 < j < N) from being
performed. Any stuck-at-straight fault in the center stage prevents a uniform shift of
+N/2 mod N from being performed. It turns out that any center stage faults can be
corrected with the addition of a single 2x2 switching element at the output of or input
to the network. One connection to the switching element must come from a line
labeled between 0 and (N/2)-1 and the other from a line labeled between N/2 and
N-1. An example with the extra switching element at the output connected to 0 and 4

is shown in Figure 3.39 for N=8.
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3.5.4 The Extra Stage Cube Network

The extra stage cube (ESC) is formed by adding an extra stage along with a
number of multiplexers and demultiplexers to the Generalized Cube network
[AdS82a,AdS82b,SiM81b]. Its structure is shown in Figure 3.40 for N=8. The extra
stage, labeled stage n, is placed on the input side of the network and implements the
cubey interconnection function. Thus, there are two stages in the ECS that can per-
form cube,.

Stage n and stage 0 can each be enabled or disabled (bypassed). A stage is enabled

when its interchange boxes are used to provide interconnection. It is disabled when its

interchange boxes are being bypassed. Enabling and disabling in stages n and 0 is
accomplished with a demultiplexer at cach box input and a multiplexer at each output.
Figure 3.41 shows an interchange box from stage n or 0 in detail. One demultiplexer
output is connected to a box input, the other to one input of the corresponding multi-
plexer. The remaining multiplexer input is connected to the matching box output.
The demultiplexer and multiplexer are configured such that they are either both con-
nected to the interchange box (enabling it) or both disconnected from it, thereby shunt-
ing it (disabling it). All demultiplexers and multiplexers for stage n share a common
control signal, as well as those for stage 0.

Stage enabling and disabling is performed by a system control unit. Normally, the
network is set so that stage n is disabled and stage 0 is enabled. The resulting struc-
ture is that of the Generalized Cube network. If after performing fault detection and
location tests a fault is found, the network is reconfigured. If the fault is in stage 0
then stage n is enabled and stage O is disabled. For a fault in a link or box in stages
n—1 to 1, both stages n and 0 are enabled. A fault in stage n requires no change in the
network configuration; stage n remains disabled. If a fault occurs in stages n—1 through
1, in addition to reconfiguring the network, the system informs each source device of

the fault by sending it a fault identifier. The ESC can thus tolerate any single failure
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in the network. However, this applies only to MIMD mode communication. For the
permutation connections required in SIMD mode, it is not one pass fault tolerant (two
passes are required).

As discussed in Section 3.2.11, the Generalized Cube network, and therefore the
ESC, compare addresses in stage i that differ in the i*! bit. Viewed a different way, this
means that stage i, 0 < i < n, determines the i*? bit of the output port address to
which the path is to be established. Consider the path from source S =5, ; - - - 559 to
destination D = d, | - - - d;dg. If the route passes through stage i using the straight

connection then the i*P bit of the source and destination addresses will be the same, i.e.,

d;=s;. If the exchange setting is used, the i** bits will be complementary, i.e., d;=s5. In Lo
, . " T A

the Generalized Cube, stage 0 determines the O bit position of the destination is a g
Fre

similar fashion. In the ESC, however, both stage n and stage 0 can affect the 0" bit of R

the output address. Using the straight connection in stage n performs routings as they

occur in the Generalized Cube. The exchange setting makes available an alternate
route not present in the Generalized Cube. In particular, the route enters stage n—1 at
label s, | -+ - 55, instead of s,_| - - - s;5. SASON

A related network is the extra stage baseline used in the Starnet system [WuL 82].
It is shown in Figure 3.42 for N=8. Though it can tolerate single faults in the middle

stages, since the input and output stages cannot be bypassed, it cannot tolerate arbi-

trary single faults. If it is modified by adding multiplexers and demultiplexers as is _,

done in the ESC, it would have the same capabilities.

3.5.5 The F-Network
The F-network was proposed in [CiS82] and is shown in Figure 3.43 for N=8. It

consists of n+1 columns of N switching elements each. A switching element selects one

of four inputs to be connected to one of four outputs (or multiple outputs for broad-

casting). The input column uses 1x4 switching elements and the output column uses
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4x1 switching elements. Assume the columns are numbered from 0 to n, input to out-
put. If P; = (p, |- piPo); is the level of a switching element in column i, then P; is

connected to

Piyy =(Po-1 - Pi+1PiPicy " Poli+ 1

Qi+1 = (Pn-1 " Pi+1PiPi-1 ~ " Poli+1s

Riyy = (Pu-1 - - - Pi+1PiPicy * * * Poli+1, and

Si¢1 = Pn-1* * * Pi+1PiPiy © Po)iﬂ

in column i+1. Notice that p;4+, and Q; 4, are the choices available at the input to an
interchange box in stage i of the Generalized Cube network. In the F-network the cube

functions are ordered from cubeg to cube,_;, the reverse of the Generalized Cube. Since

n-D
two other functions are available at each stage, the F-network’s capabilities are a
superset of the inverse Generalized Cube’s.

It was shown in [CiS82] that at each column there are always two path choices

avatlable. Hence, the F-network can tolerate the failure of any single link or any

switching element in columns 1 through n—1. If a switching element in column 0 fails,

one input is isolated and in column n, one output is isolated. The network is very

robust under multiple faults.
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3.56.6 The IADM Network with Half-Links

It has been pointed out (see Sections 3.2.12 and 3.4.8.2) that the IADM network
has multiple paths between nonequal source/destination pairs. Dynamic rerouting
schemes have been developed to take advantage of that fact [McS82d]. The one draw-
back to dynamic rerouting is that it is not always possible to change paths.
Specifically, this is the case when a straight link is required. To solve this problem, a
scheme is presented in [McS82b] in which extra links are added to the IADM network.
The links, called half-links, are added to each of stages 1 through n—1 (refer to Figure
3.19). At level j, 0 < j < N, in stage i, the half links connect switching element j to
switches (j +2Y) mod N and (j—2"!) mod N. The name half-link comes from the fact
that 27! = (1/2)2}, i.e., these links move routing tags half the distance of existing non- 7.~
straight links.

The addition of half-links is motivated by the desire to route around a busy or
faulty straight link. For example, suppose a tag wishes to route straight through stages
i and i+1. Assume the straight link in stage i is unavailable. The tag can route +2
in stage i and then —2 in stage i+1. The net result is the same but the straight link in
stage 1 is avoided.

It can be shown that, due to the additional links, a message in stage i,
0 < i < n—1, can always route on either the +2!, straight, or —2! link if it is currently
on a positive or negative dominant path. Otherwise it can always take the +2\"! or
-2 link (either half-link). As an example, examine Figure 3.44. All possible paths in
the IADM network with half-links between source 9 and destination 31 are shown. The
positive dominant routing tag associated with the 9 to 31 connection is T=010110.
The positive and negative dominant paths are shown as solid lines. The alternate
paths that are normally available in the IJADM network are shown as dotted lines.
Finally, the dashed lines indicate all the paths that are now available due to the inclu-

sion of half-links. Examining the figure, it can be observed that there are three path
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choices at each switching element intersected by a solid line in stages 0 through n—2.
Everywhere else therc are iwo choices. There is always exactly one choice in stage n—1
(stage 4 in the figure) since the paths must converge here (the +2"! and —2"! paths
are connected to the same output and so are considered non-distinct paths).

To make this network fault tolerant, a fault look-ahead mechanism must be incor-
porated into each switching element. A separate latch associated with each of the five
output links is included in every switch. If the outgoing link or switch to which it is
connected is faulty, the corresponding latch is set to 1. Otherwise the latch is 0. The
packet switching protocal (see Chapter 2, Section 2.5.2) must be modified so that any
packet requesting this switch will be denied access if it is going to use a link whose
fault latch is set to 1 (this can be determined from the packet’s routing tag). With this
scheme, it is shown in [McS82b] that the network can tolerate any {wo faults in links or
switching elements (excluding the input and output columns which form the ‘‘hard-
core”).

To reduce the amount of hardware required to implement the IADM network with
half-links, three options are available but with some sacrifice in fault tolerance. The
first option is to remove stage 0, the second is to eliminate straight links in stages 0
through n—2, and the third is to do both. All of these modifications produce networks
that can tolerate one arbitrary fault (again excluding input and output columns).
Differences between the options result in variations in throughput.

A routing tag scheme is presented in [McS82b] for controlling the IADM with half-
links and any of the networks produced by exercising the hardware reduction options.
It is an extension of the scheme discussed in Section 3.4.8. It should be noted that
modifying the ADM network according to the methods described in this section does

not produce a fault tolerant network.
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3.5.7 The Error Correction Coded Omega Network
A novel approach to designing a fault tolerant Omega network is proposed in

[LiL82). A wide path width is assumed and all data and routing tags are encoded with

an error correcting code (e.g. a Hamming code). To see how the scheme works, visual-

ize the network as being three dimensional. The x dimension is the direction of infor-

mation flow, the y dimension is that of the inputs, and the z dimension is that of the

parallel information bits. A network is normally viewed in the x-y plane. It is assumed

that due to VLSI pin limitations, the switching elements are bit sliced, s bits per

switch. If the network path width is w, there are w/s chips per switching element.

There are also w/s NxN x-y switching planes. The trick then, is to encode groups of

bits with an error correcting code and then to route each bit from one group through a

different x-y plane. In this way, if a single chip fails, only one bit error is generated in

each coded group and each can be corrected. Also, link failures can be easily tolerated.

To avoid routing errors, the routing tag is encoded and any errors are corrected at each

stage. In addition, the control section needs to generate three sets of control signals

independently. Each switching element then votes to determine its state. Thus, no

single error can cause a mis-route. A major advantage to this scheme is that it can

handle spurious errors as well as hard failures (e.g. a line stuck at logical 1).

This scheme can be applied to any of the multistage networks that have been dis-

cussed. It works equally well for SIMD mode permutation connections and MIMD

mode random connections.
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3.5.8. Conclusions

To place these fault tolerant multistage interconnection networks into perspective,
the family tree in Figure 3.25 is completed. The remainder of the tree headed Fault
Tolerant Networks is shown in Figure 3.45. Two kinds of fault tolerance are con-
sidered: (1) SIMD mode, where only routing errors are dealt with (but are done so in
one pass) and link or switching element failures that corrupt data cannot be tolerated;
and (2) MIMD mode, where multiple paths are provided so that faulty links and
switches can be avoided. Networks in the second category can be used in SIMD mode,
but two passes are required when a fault is present.

The earliest approach to providing SIMD mode fault tolerance was to add a
double-tree repair network to a permuting network. This network can be added to any
of the cube type networks as well as the Benes network. It restores their fault free per-
muting abilities in the presence of permanent routing errors. Another approach in this
category is to add an extra switching element to the Benes network.

To add fault tolerance to a network used in MIMD mode, one approach is to pro-
vide multiple paths between inputs and outputs.Two ways to accomplish this are (1) to
add an extra stage of switching elements to the network; or (2) to add extra links
between stages. The former is done in the Extra Stage Cube network and in the base-
line with an extra stage. In the figure, the baseline is shown with a dashed line because
it requires some modification to qualify as fault tolerant. The second method for pro-
viding multiple paths is used in the IADM network with half-links are added and in the
F-network.

All of the approaches listed so far have drawbacks, a number of which are dis-
cussed in [LiL82] and will be enumerated here. The SIMD mode fault model is very
optimistic. It assumes that the only kind of fault that can happen is that a switching
element will get stuck in one of its valid states. Not considered are invalid states, link

failures, and switching element failures that alter data. The MIMD mode approaches
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do deal with these problems but cannot route permutation connections in one pass (two
are needed). If these approaches depend on periodic diagnosis to detect faults, tran-
sient errors will go undetected. The MIMD mode networks also have more complex
routing tag schemes.

The solution proposed in |LiL82] to all these problems is the Error Correction
Coded (ECC) Omega network. This is listed under both SIMD and MIMD mode in the
figure. A crucial assumption required for this scheme to work is that the switching ele-
ments are bit sliced. Then different parts of one switching element can fail indepen-
dently. For current technology, this is a reasonable assumption for many applications,
due to the pin limitations of VLSI chips. The main drawback to this scheme is the
large amount of extra hardware required since the parity bits increase the total path

width significantly.

3.6 Conclusions

This chapter has presented a broad survey of multistage interconnection networks.
In addition to examining the different topologies that have been proposed, different
switching element implementations, distributed control schemes and fault tolerant
designs have been discussed. For the most part, the networks included were those
deemed to be suitable for use in large-scale systems. The other networks included were
those originally proposed for telephone exchanges, from which modern parallel process-
ing networks descended. These early networks not only have historical significance, but
their structure and properties are highly related to the modern networks.

In this survey, wherever possible, the networks have been discussed independent of
any particular system configuration in which they might be used. It is possible, how-
ever, that some configurations would require modification of some of the schemes

described. For example, actual switching element design depends highly on whether a
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unidirectional or bidirectional approach is taken; also upon whether packet or circuit
switching is used. On the other hand, topology, control method and fault tolerance
issues are more independent of such considerations.

In Section 3.2, seven classes and 17 different multistage networks were presented.
It was found that the majority of the networks designed for parallel processing fall into
one of two categories: (1) cube type and (2) PM2I (data manipulator) type. The cube
type group has 10 members and the PM2I type has four members listed in Figure 3.25.
This result should simplify the network notation scheme to be developed. For example,
if the notation simply specifies the sequence of interconnection functions implemented
by the network, nearly all of the networks listed in Figure 3.25 can be represented.
The Omega and Generalized Cube networks are represented by cube,_,,
cube, o, ... ,cube), cubey; the indirect binary n-cube by cubey, cube,, ..., cube,;;
and the ADM by PM2, ,, PM2, . ...,PM2,,, PM2,, Other interconnection
functions need to be identified so that any network can be described this way. This
represents the structural aspects of a network.

Based on the information in Sections 3.3 through 3.5, other parameters to be
included in the notation can be identified. Implementation parameters should indicate
whether the switching elements are crossbars or connect one input to one output at a
time; this is in addition to the protocol related parameters discussed in Chapter 2, Sec-
tion 2.5.2. Control parameters should indicate how many bits are used in a routing tag
and how they are interpreted. Fault tolerance can be specified in terms of the number
of link faults and switching element faults that can be tolerated.

A good approach to representing control and protocol information would be to use
an ISP-like notation. For example, this would allow queue structures to be defined for
packet switching and the interpretation of a routing tag would be analogous to decod-

ing an instruction (but much less complex).
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CHAPTER 4
HIGH LEVEL DESCRIPTIONS OF
CONCURRENCY IN PROCESSES

4.1 Assessment of Parallel Programming Languages
4.1.1 Introduction

Recently, parallel systems have become practical and feasible. In order to program
these systems efficiently, a number of parallel programming languages have been pro-
posed and many of these have been implemented, both for simulation and actual use.
Many of the languages have been developed with particular machines in mind, yet
many are general purpose.

In terms of modeling distributed processing, parallel and concurrent programming
languages provide one means of representing the parallelism in a process. Given a list
of desired algorithm parameters, several languages are investigated here to see if these
parameters can be determined given the program text and assumptions about run time

parameters.

4.1.2 Language Features

Several important algorithm features have been investigated (see Chapter 5).

From these, a preliminary list of minimal language features is proposed. In order to ol
perform an effective analysis of a program written in a particular language, the j:u_':tjl--
DS W

: e SANAN

language should include specifications of: TN
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~ 1a. size of local data declared by
) b. size of global data declared
j 2a. concurrent processes
? b. dynamic process creation and termination
_‘ 3a. description of communications paths
b. communications primitives
4 . synchronization primitives
i 5 . data types
6 . other global resource requests
'. These features are discussed below.
' 1a. Size of Local Data Declared
b. Size of Global Data Declared
Let any data that is accessed entirely by one processor be called local. Any data
- that is accessed by more than one processor is called global. A further distinction could
be made for data that is accessed by only a few processors. This distinction is not valid
here since similar performance penalties are incurred when any global access is made.
. The critical distinction is the number of actual accesses to global data, not the number .
of possible accesses to that data. Local data size determines the amount of memory per ¥
processor required on a target machine. A large global data base may indicate a need
for a global shared memory or a fast interconnection network.
:
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2a. Concurrent Processes

b. Dynamic Proce - Creation and Termination

A means for specifying concurrent processes is necessary. The analysis must know
how the algorithm is to be divided among processors to match it to the number of pro-
cessors available in a system. Most MIMD real time image processing tasks require a
significant amount of dynamic task reconfiguration. To accomplish this a language
must be able to specify the creation, execution, and termination of processes. (A subsct
of digital signal processing tasks involve a one time static enumeration of processes.
These tasks could be described by declaring a static set of processes. However, for a
language to effectively describe all algorithms in the problem domain, it must be able to

express dynamic task changes.)

3a. Description of Communications Paths

b. Communscations Primilives

Interprocessor communication is an important feature of any parallel language.
The topology of communications paths is important since it determines the types of
communications networks required. The implicit or explicit enumeration of communi-
cations allows analysis of the bandwidth necessary in any given network implementa-

tion.

4. Synchronization Primitives

If synchronization is required on a fine grain, it is imperative that the architecture
support some quick method of synchronization. The granularity is determined by

analyzing the frequency of occurrence of synchronization in the algorithm.
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5. Data Types

The requirement on data types is dictated by digital signal processing applications
rather than by the parallelism in the tasks. This enumeration of types determines the

instruction set capabilities required of a given processor architecture.

6. Other Global Resource Requests

Other requests cover any special requirements of a given algorithm for global

R ) ohiuee et

resources such as I/O devices and disk storage. These may be considered for specific

algorithms, but in general, these requests will not be considered here.

4.1.3 Languages

Following is a description of how the features above are implemented in several
languages. A discussion of trends and a summary of ‘“ratings” is given at the end.
This is not intended to be a complete summary of all parallel languages. It is merely a
look at a cross section of more common or recent languages, and how well the
languages support the features listed above. Comments about the ease of analyzing the

implementations are inserted where appropriate.

A da

Ada |DoD80} is a new programming language, sponsored by the United States
Department of Defense. It includes mechanisms for MIMD parallel processing.

Concurrent processes in ADA are called tasks. The number of tasks is completely
determined from the declarations. These tasks are initiated when the program unit in
which they are declared is entered. Even though the number of tasks is free to vary,
the number is easily extracted from the declarations in the current program unit. Ela-

borate facilities are available for termination of tasks.
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Communications are performed by the rendezvous concept. In a multiprocessor
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re

.-P
RN

system, this could be implemented easily with interprocessor communications. The

input and output parameters plus some fixed overhead define the amount of data
transferred for each rendezvous. Synchronization is defined with this same mechanism,
except these rendezvous actions are defined with no input or output parameters. The
communications bandwidth necessary can be determined from the fixed overhead of
arranging the rendezvous.

Ada is strongly typed and all data formats and sizes can be easily determined from
the program text and the STANDARD package, defined for a particular host archi-
tecture. For instance, the sizes of SHORT INTEGER, INTEGER, and
LONG_INTEGER can be defined to best fit a given architecture. Thus all data sizes
and formats are easily determined. In Ada, all variables are assumed local to tasks
unless otherwise indicated. Global variables are those that appear in
SHARED VARIABLE UPDATE calls. In a multiprocessor implementation, this
suggests some form of broadcast. These variables are the global data; all others are
4 local.

Because of its completeness, Ada is a complex language to compile or analyze.

The syntax does, however allow analysis of the indicated program features.

CcSpP

CSP [Hoa78] stands for Communicating Sequential Processes, and is a language

proposed by Hoare to describe these communications. CSP, as proposed, is a syntax to

describe interprocess communications. The serial processes themselves are written in a

language that is implementation dependent. Therefore it is not a complete language t::":':',::
specification in itself, although complete languages have more recently been imple- E‘j:
mented from the original definitions. 3‘*'1

K



In CSP, processes are created when the program is begun. Thus, the maximum
number of processes is known. Processes are permitted to terminate asynchronously.
Presently, dynamic process creation is not supported. Since this is dependent on the
implementation, this may become available in later developments. From the program,
the number of processes can be determined but no variation of this number in time is
permitted.

Communications is a fundamental part of CSP. All communications are invoked
by asking to give or take data to or from another process on a defined channel. The
communication operation is complete when both sender and receiver request the opera-
tion. Synchronization is accomplished in the same way, through the transfer of a
dummy value, since neither process can continue past a communication until the opera-
tion is complete. The necessary number of transfers in a communications network can
be determined from the explicit input or output statements.

Data type specifications are part of the given implementation. One would expect
all implementations to use a typed structured language like Pascal in [Ada82] and C in
[JaGRr2]. Thus types and sizes of data will be easily available for the analysis. All data
is local to processes in CSP; no global data is permitted. All global data must be s.mu-

lated with communications constructs.

C'oncurrent Pascal

Concurrent Pascal [Han77a] was developed for writing real time operating systems
on uniprocessor machines. The power of the language allows its use with multiproces-
sOr systems.

The data types are easily determined since the ‘“‘conventional” serial portion of the
program is written in Pascal. All variables are local to processes. Conventional global
variables are replaced by monitors. These monitors define global variables and all

possible permitted actions on these variables. Monitors guarantee exclusive access
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through some semaphore technique or equivalent. The size of global data is determined
by the monitor declarations and the access of these variables is indicated by a call to a
monitor entry. Thus, these features are quantifiable. Processes are important con-
structs in Concurrent Pascal. As in CSP, these are statically initiated when the pro-
gram is run. Thus the number of processes is fixed and can be determined from the
number of processes declared in the program source.

As implied, all communication and synchronization are performed through moni-
tors. These monitor calls can be considered predefined custom communication modules
guaranteeing exclusive access to communication buffers. Through analysis of the moni-
tors, the types of communications can be analyzed. Through analysis of the monitor
entries called, the communications bandwidth can be estimated.

Concurrent Pascal is very structured, thus limiting some features such as process
creation. However, this same structure makes it easy to analyze in order to produce

reasonable quantifications of the indicated features.

Path Pascal

Path Pascal [CaK80] is an extension of Pascal which accounts for dynamic con-
current execution of processes, under restrictions of path expressions. Path expressions
represent characteristics such as the amount of concurrency, precedence and ordering
constraints, and restrictions on concurrent execution. Features for real time use have
been added for interrupt handling and process priorities. Although Path Pascal was
designed for uniprocessor systems, its extension to multiprocessor systems is direct.

Data types are complete as in standard Pascal. All variables declared within the
context of a process are local. All other variables are global and require interprocessor
communication to access them in a multiprocessor implementation. In fact, all inter-
process communications are performed through these variables. Thus, communications

can be quantified by the accesses to these global variables; the amount of data
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transferred is related to the size of these variables.

Processes are clearly defined in Path Pascal. Restrictions on the execution of
processes may be imposed with path expressions. These path expressions describe the
synchronization constraints. Within these restrictions, processes are created when they
are invoked much like a Pascal procedure. The difference is that the invoking process
continues without waiting for the process to finish, thus producing a coroutine instead
of a subroutine. Analysis of these invocations within the path constraints can produce
the number of concurrent processes at any given time during execution. The path
expressions can also implement a form of synchronization.

The path expressions introduce complexity into the analysis, but this complexity is
traded off against the ability to invoke processes on a dynamic basis. The communica-
tions facilities are not explicit and must be implied from the use of global variables.

Path Pascal emphasizes the concept of processes, while de-emphasizing communications

issues.

Modula

Modula [Wir77] was developed by Nicholas Wirth (author of Pascal). It is
intended for real time operating systems and primarily uniprocessor systems. A subset
of the Pascal language is expanded to account for multiple processes, signals, and dev-
ice dependencies.

Variables are strongly typed as in Pascal. Variables declared in the main program
block are global to all processes, those declared within processes are local. Therefore, it
is trivial to determine the type, size and scope of variables.

Separate processes may be declared only in the main program block. Processes are
initiated much like a procedure call, but the calling routine never waits for a return.
This limits the flexibility somewhat, but provides for easy analysis of the number of

processes at any point in the program execution.
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Communications are performed through the use of interface modules. Thus, the
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exact specification of the communications is programmed by the user in these modules. ‘
Analysis of these modules in a program will give a measure of the amount of communi- :?
cation per invocation of the module. E-;':

Signals are used to provide an explicit synchronization mechanism. They may be &_:‘d

o

2

implemented in a more efficient manner than general communications. The analysis is

straightforward since all signal actions are performed through the primitives wait,

send, and awaited. -
Modula provides a limited but useful dynamic process creation facility. The com-

munications is not built in to the language, but is confined to interface modules. Sig-

nals provide explicit synchronization primitives. The language is well defined, and

allows direct analysis. :-i

Edison :
Edison [Han81] is a language developed by Brinch Hansen (designer of Concurrent

Pascal.) It is designed specifically for multiprocessor operation. In comparison to its

predecessor Concurrent Pascal, it is more flexible while losing very little of the strict =

structure.

Based on Pascal, the typing of variables is complete. Both local and global vari-
ables are supported. Procedures containing a cobegin statement contain variables that
are considered global. That is, processes starting with a cobegin statement in a given
procedure have access to the variables in that procedure. Otherwise, all variables
declared within procedures are local.

Separate processes are introduced in a program by a cobegin statement of the

form:
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P
' cobegin
1 do procl
’.
;'_Z also
o
. 2 do proc2
also
. 3 do proc3
; end

The number may optionally be used for processor binding. The ‘“parent” process will
not proceed until all the “children” have finished. This allows for great flexibility,
while providing for easy analysis of the number of processes running in any portion of
the program.

Communications are not explicit and analysis must be based on global variable
accesses and parameters passed to processes. Variables that are shared may be accessed
exclusively through use of the when statement. Communications are then defined with
implicit use of these variables. Communications may also occur when a process is

passed parameters or returns values. The analysis of communications must interpret

these implicit communications.

C'omments and Summary

In interpreting a language, the concepts of global store and interprocess communi-
cations are not distinct. A given MIMD system can simulate an interprocessor com-
munications network through a global store, or can simulate a global store through
interprocessor communications. Both of these concepts suggest information is
transferred from the domain of one processor to the domain of one or more other pro-
cessors. So in a sense, both are equivalent ideas. Some languages restrict specification

of “communications™ by not allowing global variables, while others provide no explicit
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communications primitives. Synchronization may also be expressed as combinations of
globally stored semaphores or communications protocols. Different languages emphasize
different parallel constructs by providing primitives for those operations. The
languages that look more conventional are those that use global variables for communi-

cations. The implication on a multiprocessor system with no global store is that every

access requires communication to the processor where that variable is actually stored.
This is much less efficient than a local memory access. If the program is written using
a large number of global variables, it should not ‘‘match” well with a machine with no

global store. Likewise if the program is written using communications primitives for all

communications, it will not take advantage of a global store. Since a language may

exclude use of one or the other operation, the language in which an algorithm is
expressed influences the type of architecture on which the program will run best.
Although it is the role of the compiler to implement the constructs used in an efficient
way, the most versatile language is one that allows specification of transfers in either
form.

The ability to alter the number of running processes dynamically is a desired
feature of a parallel language. It may not be necessary for all problems, especially
those on a small scale. However, as the problems become more complex, it is essential
to have this capability in the language.

The languages Ada, Concurrent Pascal, Modula, and Edison all look like conven-
tional languages (Pascal). They are similar in appearance and also in philosophy. Con-
cerning process creation, in order of increasing capabilities, Concurrent Pascal is the
most limited since all processes are started once. Modula declares dynamic processes
cleanly in the main program block, but does not allow more than the first level of pro-
cess declarations. Ada generates all the processes in a program unit when that unit is
entered. Edison goes the furthest to allow processes to be started at any point in the

program.
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Ada and Concurrent Pascal provide explicit primitives for communications and
synchronization in the form of a rendezvous or monitor. Modula provides interface
modules for custom communications formats. Of these four more ‘‘conventional”
languages, Modula is the only one to provide a signal mechanism specifically to facili-
tate synchronization.

('SP and Path Pascal have markedly different objectives from the four languages
just discussed. CSP describes communications through the use of explicit operators.
i The analysis is simple and few assumptions need to be made. The number of con-
- current processes cannot be altered dynamically in CSP. Whereas CSP is built around

communications, Path Pascal concentrates on process ordering and concurrency. A

path expression describes what ordering of processes is allowed. On communications,

Path Pascal provides nothing but global variables.

4.1.4 Languages and Language Features

Following is a summary of how well the languages discussed above express the

desired features.

la. Size Of Local Data Declared

b. Size Of Global Data Declared

All the languages distinguish between local and global variables. Some are more
exphicit than others. Ada assumes variables are local to processes unless they are
involved in SHARED VARIABLE _UPDATE calls. CSP has only local variables. Con-
current Pascal limits global variables to user defined monitors. Path Pascal defines
local variables within process definitions and global variables outside the scope of the
processes. Modula has global variables in the main program block and local variables

with processes. Edison has global variables in blocks that generate parallel processes,
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but variables within processes are local.

2a. Concurrent Processes

b. Dynamse Process Creation and Terminalion

Path Pascal has the most the most complex and most thorough description of con-
current processes. Edison allows concurrency to be introduce dynamically at any level.
Ada generates groups of processes when their given program unit is entered. Modula
allows concurrent processes to be generated only from the main program. CSP and

Concurrent Pascal provide a static enumeration of processes.

3a. Description of Communications Paths

b. Communications Primilives

CSP provides a built-in mechanism for communications, as well as a description of
all possible communications channels. Other languages provide user definable commun-
ications mechanisms. Ada provides rendezvous, Concurrent Pascal provides monitors,
and Modula provides interface modules. Path Pascal and Edison do not provide expli-

cit communications mechanisms.

4. Synchronization Primitives

Modula provides explicit communications mechanisms. Path Pascal provides a
complex mechanism for providing synchronization through path expressions. The other
languages provide for synchronization with the same mechanisms that provide com-

munications.

Sty -t . L T
T I R S A S ..




MR R )

- R g A

AR DR N

PR SN

- '~

~ " W NIV VTR EE R APl - At e v " —— Mg ate amnh aEA: ok aller-. b ame

4-14

5. Data Types

All languages were modifications of Pascal, except one implementation of CSP
based on C. With these languages, all variable are declared as a certain type. Thus

analysis of variable types is straightforward.

4.1.5 Summary

Different languages approach MIMD parallel processing from different viewpoints.
Regardless of the approach, one can assume the language is implemented as a series of
primitive operations such as data transfers or synchronization mechanisms. Some
language constructs may be implemented through global store or interprocessor com-
munications. Analysis must consider this and account for all communications on a
higher level. Some languages make it easier to extract the indicated features by mak-
ing them more explicit. With a suitable amount of effort, all the indicated features can
be extracted from the languages examined. Parallel or concurrent languages may
therefore provide a useful means of representing some of the features of a distributed
process. Morcover, the language constructs can be applied at both the general design
and detailed implementation phases. In the design phase, a coarse decomposition of a
task can be expressed in terms of general descriptions of data requirements, communi-
eations patterns, synchronization points, and process creation/execution/termination,
using the representations provided by a concurrent language. In the implementation
phase, the details of these attributes can be filled in. Concurrent languages can there-

fore serve as one possible modeling tool for describing distributed processes.
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4.2 Graph Theory Applied to Modeling

of Asynchronous Computation

4.2.1 Introduction

Our initial study of the application of graph theory for describing asynchronous

computation has focused on Petri nets and their extensions. The literature contains
many examples of the use of Petri nets to model various aspects of asynchronous com-

putation. Many extensions are also described along with the limitations which they

help to overcome and the tradeoffs that they impose. Here we summarize some of the :‘L\.
most interesting results and suggest further extensions. »l-,.

C. A. Petri developed the basis for Petri net theory in his Ph.D. thesis [Pet62]. His ~_..j
work drew the attention of people working on two important projects: A. W. Holt and "

others from the Information-System Theory Project of Applied Data Research Inc.,
(ADR) and also of J. B. Dennis’ Computation Structures Group of Project MAC at

MIT.
The final report of the ADR Project [HoS68] detailed much of the early theory, 'i:l'-;-".:i‘

notation and representation of Petri nets developed and extended in the course of the

project. Of particular relevance to this report is a paper [HoC70] showing that Petri

nets could be used to model and analyze concurrent system components.

Dennis and others of M.LT. have published many reports and dissertations on
Petri nets [Den72,Hac72,Bak72]. Conference proceedings from the MAC Conference on
Concurrent Systems and Parallel Computation in 1970 [Den70] and Conference on Petri
Nets and Related Methods in 1975 have helped to develop and spread the ideas and

results of Petri net theory.
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4.2.2 Basic Petri Net Theory [Pet77]

A Petri net is a formal structure composed of a set of places P, a set of transitions
T, an input function I, and an output function O. The input and output functions
(defined relative to the transitions) relate the transitions and places. Thus, a Petri net

structure C is a 4-tuple:

C =(P,T,1,0)

where, for example, sets of places and transitions, P and T, might be written

P = {p,,p2:P3,PsPs} and T = {t to,t3,t4}

The input and output functions are collections of places for each transition. Since
a place may occur more than once as in input to or output from a given transition, the
input and output functions generate ‘‘bags” rather than sets. (A bag is like a set
except that an element in a bag may occur zero or more times, whereas recurrences of
an element in a set are not significant.) We could write the I and O functions for an

example net as:

I(ty) = {ps} Ofty) = {pz,P3.Ps}
I(ts) = {p2p3ps}  Oltz) = {ps}

t3) = {p3} O(t3) = {ps}

I(ty) = {py} O(ty) = {ps,ps}

The structure and arrangement of the Petri net may not be very obvious from its
written deseription so the graphical representation is more commonly used. Places are
represented as circles and transitions as bars. The input function is diagrammed by
directed arcs from places to transitions while arcs from transitions to places represent
the output function. Thus the Petri net defined by the formal structure C = (P,T,1,0)

above may be shown graphically as in Figure 4.1.




.
”
¥
K
W L e % LU,
.I' ..A .n- -‘l. " Te
S ARy

.......

4-17

Figure 4.1 Petri Net Graph Equivalent to Given Example Structure [Pet77)

When modeling systems, events and situations with Petri nets, the places (circles)
are used to represent conditions or the status of some element of a system. The transi-
tions (bars) represent actions; in other words, the transitions are from one state to
another.

To be able to show dynamic characteristics with Petri nets, a net is marked. The
presence of a token in a place can be thought of as indicating that the condition
represented by that place holds, the absence of a token indicating that the condition
does not hold.

The earliest Petri nets were restricted to having either zero or one token in a place
but now unless some specific limit is imposed, a place may have any non-negative
integer number of tokens. A marking function g yields the number of tokens in a
place. The range of the marking function is the set of non-negative integers. For
example if there are 3 tokens in place p;, then p(p;) = 3. A marking may also be writ-

ten as a vector. For example, a net with places P = {p,,po,p3} marked as:

mpy) =1 pp) =5 plpg) =0

has a marking vector u = (1,5,0).
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The activity or execution of a Petri net is made up of transstion firings governed
by firing rules. These rules have been defined in different ways at different times but
there is now general agreement on the rules for basic Petri nets. They are as follows:

A transition may fire if it is enabled. A transition is enabled if there is at least one
token in each input place. When a transition fires, a token is removed from each input
place and a token is added to each output place.

Note that nothing has been said to indicate timing of execution. The basic
definition of Petri nets says only that an enabled transition may fire, not that it must.
Also a firing is defined as occurring instantaneously, i.e., in zero time. Thus the proba-
bility of two or more transitions occurring simultaneously is zero. A transition may be

enabled for an indefinite length of time.

4.2.3 Modeling of Concurrency
Hwang and Briggs [HwB81] give an introduction to the use of Petri nets to model
asynchronous concurrency and concern themselves with the formal definition of Petri
net structures. They point out that Petri nets can be used to model the specific class of
problems defined as ‘“‘discrete-event systems with concurrent (parallel) events.” See

Examples 1, 2 and 3.

Example 1 - Petri Net Used to Show Asynchronous Concurrency [adapted

from HwB81]
Figure 4.2 represents a computer system in which a processor is dedicated

to serving two input devices that are gathering data.




'
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Circles represent
places (conditions)

Previous Data
Transmitted

Dots are tokens
which denote existence

Obtain New Data of condition

Bars represent
transitions (Actions)

Data Ready

s
K
O

Arcs show

ot =
Service Routine logical flow i!‘
, for Input Device o ,
o :
Processor Available :' .
.

Figure 4.2 Modeling Asynchronous Concurrency

Example 2 - Petri Net Used to Model Various Constructs of High Level
Language Including Explicit Concurrency [adapted from HwB81] f."
See Figure 4.3. :::-:Itj:
RO
By
program Py; AN
To:
while P, do [* Ty %/
if P, then
Ts;
else
Tg
endif J* P3 */
cobegin [* Ty %/
Ts:
T
Tg;
coend [* Ty %/
endwhile
goto Pq [* Ty */ To

Figure 4.3 Modeling Concurrent High Level Language Program
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N

§ Example 3 - Petri Net Model of Producer/Consumer Relations With Bounded
. Buffer [HwB8lI]

N Figure 4.4 shows the relationship between a producer and a consumer with
E a buffer of fixed size between them. If the bufler is full, the producer is blocked.

empty slots
in buffer

Place in Consume

full slots
in buffer

Figure 4.4 Model of Producer/Consumer Relations. The total number of to-

kens in P, and Py is the total number of slots in the buffer.

Peterson [Pet81] gives a more complete and general formal definition of Petri nets

and gives examples of Petri nets used to model synchronization in various multi-task,
multi-program or multi-processor systems. Examples 4 and 5 show Petri net models of .:j"_l
synchronization primitives.
Example 4 - Mutual Exclusion for Critical Sections [Pet81]
Mutually exclusive critical sections are program segments which must not
be executed concurrently; for example, sections of an operating system which

allocate and de-allocate memory blocks.




A}
\ / “‘ /
critical critical
section section
.
b .
.
Process 1 Process 2

Figure 4.5 Modeling Mutually Exclusive Critical Sections
Example 5 - P and V Synchronization
The P and V operations on semaphores invented by Dijkstra [Dij65] can be
modeled by Petri nets as follows. Extended P and V operations can be

represented by allowing multiple tokens in the semaphore place S.

semaphore
)

P(s) V(s)

Figure 4.6 Modeling P and V Operations on Semaphores

Krygiel [Kry81] defines vector masks and vector places to yield a tool called syn-
chronous nets (S-nets). These constructs are designed for and applied to the modeling
of SIMD machines and offer a shorthand for Petri nets of large multiplicity. See Exam-

ples 6 and 7.
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Example 6 - Vector Extensions to Petri Nets to Make Synchronous Nets A

Vector mask places are made up of vector places and vector masks as shown

by Figure 4.7. A

O O S
O % O 19| — S
: : ,

O

Vector Place Vector Mask Vector Mask Place

Figure 4.7 Vector Elements of S-Nets

The vector place represents aggregates of logically associated and homogeneous
conditions whose initial and ceasing events are synchronized; for example, the
conditions of an array of SIMD processors. The vector mask can model the par-

ticipation or non-participation of elements of the vector place in firing of transi-

tions. A vector place is holding if at least one of the elements of the vector

mask is marked to 1 and cach element of the vector place corresponding to the ':i. ;:';'.;

mask elements marked to 1 have a non-zero marking. The markings of the
masks are chosen from a list of valid markings given by a descriptor of the He...
immediately preceding transition. The choice of which possible marking is

active is not determined by the model itself but by external means.
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3
Example 7 - S-Net Representation of a SIMD Machine with Array of Three
Computing Elements [Kry81] _.;‘
The structure is given by: --.'-‘
T:{tht21t3vt41t’5’t6} S:{Sl’s2:s3} E_::.::
V={V1,V,V3,Vy} M={M;MyM3M,} e
V=<V Vi Vi3> M, =<my,my,m3> 5:;
Vo=< vy, Va2, Vo3> M, = <mgy,mgq,mgz> — :
V3 =<v3,V30,V33> M; = <myg,;,mgy,mz3>
V=<V, V40,V 43> M= <myy,mp,my5> s
U={<V1,Ml>,<V2,M2>,<V3,M3>,<V4,M4>} NGRS
A={ <sp,t >, <4, U >, <ULt >, <t Up >, <Usg >, < Uy 80>, .
<t‘11U3>7<U3at’4>’<t41U4>)<U47t3>a -

<sgts>,<tg,8 >, <sg,tg>, <tg,53> }
with initial marking Ky:
Ko(s)) =1 Kqolsz) =0 Iofs3) = 0 4

Ko(V1) = Kg(V3) = KolV3) = Ko(Vy) = <0,0,0> ::::_':;
Ko(M;) = Ko(Mp) = <1,0,0>  K¢(My) = <1,1,1> o
Figure 4.8 shows this structure graphically. F!
.
ofi] ™ o o

O — l — 0O Ts

O O

T/ v, M, Ts / 5

L —.O To

5 S N
O __"Il“__’g 0/ l\O

O 0 S,
O O .
V, M, v, M, -

Figure 4.8 S-net Representation of an SIMD Machine (see [Kry®1] for details)
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Baer [Bae82] shows some of the limitations in the modeling power of Petri nets and
some of the tradeoffs involved in the use of various extensions. One such example is
detailed in Example 8. Here the extension of inhibitors allows testing the emptiness of
a place which is not directly testable with basic Petri nets. Baer further asserts that
this extension gives Petri nets the power of Turing machines. The cost of this exten-
sion is that “liveness” (the freedom from potential deadlock), and ‘‘safety” (the bound-

edness of the number of tokens in a place), of the nets are no longer decidable.

Example 8 - The Inhibitor [AgF73]
The inhibitor allows testing the emptiness of a place. It is diagramed by an

arc with a bar through it.

inhibitor

Figure 4.9a The Inhibitor
Transition T; may fire if and only if it is enabled in the normal way ezcept
that any input place connected to it with an inhibitor must be empty, i.e., T;
may fire if and only if P, and P, are holding and P, is empty. No tokens are re-
moved by inhibitor arcs.

Bacr [Bae82] shows that this extension allows the solution of a problem posed in
[Kos73): two producers Py, Pa, two consumers C,, C,, and two buffers By, B,. The two
consumers are not allowed to access their buffers simultaneously (perhaps they use the
same 1/O channel) but ¢ has priority: (', can access By only when B, is full and B, is

empty. Unless the queues are bounded (that is, safeness constraints are imposed), Petri
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nets cannot represent this situation. However, the extension of inhibitors makes this :E;}» .
.‘ y
.

easy.

Figure 4.9b Producer, Consumer, Buffer Problem with Priority Shown by Inhibitor

Another tradeoffl mentioned by Baer is in the external restriction of ‘‘safeness.”

Without this restriction many of the formal properties are undecidable. (Safe nets can

be interpreted as finite state models.)
Disjunctive logic is allowed by an extension to the firing rules. Example 9 shows
the use of an exclusive-or function in modeling an IF-THEN-ELSE construct.
Example 9 - Disjunctive Logic Extensions in Petri Nets [Bae82)

Disjunctive logic extensions modify the firing rules of basic Petri nets.

@ means exclusive-or

,f f’ ’l‘ ‘

-~ e
N
% 5 %y °

Figure 4.10a Exclusive-or OQutput

When transition T fires, only one of Py, P3 or P, will receive a token.
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Figure 4.10b Exclusive-or Input
Transition T can fire if one and only one of P, P, and P; contains a token.
This extension also offers the descriptive advantage that a decision-making

event is modeled as a transition, which simplifies the model of the IF-THEN-

ELSE statement.

THEN

ELSE

Figure 4.10c  Modeling the IF-THEN-ELSE Construct
The class of nets which is always left in a predetermined state after execution is
called “*properly terminating” or PT-nets. The next extension discussed by Baer intro-
duces token absorbers. These can be used to “soak up” stray tokens which makes it

much easier to construct Petri nets of the PT class. Token absorbers are used to *“kill”




redundant processes. Example 10 illustrates such a process.

Example 10 - Token Absorbers Yield Properly Terminating Petri Nets [Bae82

el ol DL

When a transition with absorbers fires, all tokens in the places to which the

>
h S 8

absorbers are attached are removed. Figure 4.11 is a graph of a table search

done in a dual processor environment. Each processor searches half the table.

VAR LY l"‘.

The token absorbers are shown as dashed lines.

begin search

next

‘e re
]

o
]
>

Figure 4.11 A Table Search Illustrating the Use of Absorbers
When the transition labeled ‘“‘cleanup” fires, all remaining tokens from the other

process are absorbed.

The absorbers from the ‘‘cleanup” transition of Process 2 are not shown in

full but are symmetric to those emanating from Process 1.

Baer goes on to say that with large numbers of processes, the graphs would rapidly
become intractable. He shows that colored Petri nets ( suggested in [Jen79] ) reduce
this “spaghetti® effect by allowing tokens of several colors to move about the net

independently, thus showing more than one process active on the same graph. They
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also can model program re-entrancy and the instantiation of several identical processes

3

[Bal77].

Peterson [Pet81] examines the formal properties of conservation and coverability
and their relation to the modeling power of Petri nets. Strictly speaking, conservation
refers to maintaining’the total number of tokens in a net. By extension, we are con-
cerned with conservation of resources modeled by the net. Coverability addresses the
problem of whether there exists a reachable marking with the number of tokens in
given places greater than or equal to those in some specified marking. He also presents

a system of matrix equations used to represent a Petri net of large multiplicity in a

compact form. This form, it seems, would also lend itself to computer representation of
a Petri net model. Peterson concludes with a study relating and comparing to Petri
nets many of the existing systems for representing and modeling concurrent computa-

: tions. He shows (here and in [PeB74]) that conversions between these systems are pos-

sible, allowing results from other systems to be extended to Petri nets. His bibliogra-

phy is particularly well rounded and commented.

4.2.4 Conclusions

In summary, it is clear that various properties of Petri nets are of value in model-
ing asynchronous computation. The concepts of state-space and next-state functions
for Petri nets are natural extensions from finite-state machines, state diagrams and
next-state tables. Their particular value here is in the property that allows Petri nets
to model both hardware and software functions in an asynchronous parallel environ-
ment; thus it should be possible to model the interaction between hardware and
software.

The formal properties of safeness and reachability (the ability of one marking to be
reached from another) allow these models to be used to check for hazards such as

boundedness of the use of resources, and the property of liveness to check for possible
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deadlock situations. Formal languages based on Petri nets [Pet81] and some of the pro-
perties above have been used to allow optimization in systems or programs represented
by Petri nets [ShS70].

Since Petri nets have no explicit relation to the passage of time, except to give a
partial ordering to events, there are areas of modeling which may require further exten-
sions not yet found in the literature. Task graphs (graphs which represent precedence
constraints of various possibly concurrent subtasks) have certain similarities to Petri
nets and usually do have timing possibilities. The properties of a new class of nets with
this added timing information need to be further studied.

When a conflict is modeled by a Petri net, there is usually no information about
which of two (or more) transitions will fire. Another graph system with some similari-
ties to Petri nets is the Markov-graph, which is a graphical representation of a
Markov-chain [Pap65]. Examples of the use of Markov-graphs in concurrent systems is
given in sections 7.3, 7.5 and 9.3 of {HwB81]. Here probabilities or probability func-
tions are associated with the various possible transitions. The class of graphs which
would result from the merging of Petri net and Markov-graph concepts should also be a
powerful modeling tool and would probably be compatible with the extension to task-
graph style timing information. Note that the timing might also be expressed as a pro-
bability function. The probabilities of transition firing might be functions of time-of-
arrival of various tokens in the input (or other) places. More work will be done to

explore the properties of these proposed graph concepts.
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CHAPTER 5
FEATURES FOR DESCRIBING
PROCESSES AND ARCHITECTURES

5.1 Introduction

The direct correlation of hardware attributes to features of software algorithms is
a complex task. The approach taken here is to examine a variety of hardware
configurations and concurrent programming languages as well as algorithms written in
those languages. Salient features of computer architectures are identified and, where
possible, metrics are proposed for quantifying or measuring them. Similarly, elements
of the programming languages whose effectiveness (e.g., speed of execution) is affected
by architectural features (or the lack thereof) are identified. Metrics are proposed for
quantifying the extent to which a critical element is present in a given algorithm (e.g.,
the number of times a synchronization instruction is executed). To produce a correla-
tion coefficient, equations are proposed for combining the architectural metrics with the
algorithmic metrics. If architectures and algorithms being considered are specified in
sufficient detail, each of the metrics can be evaluated and a set of correlation
coefficients produced. In this way, the ‘“‘best” architecture among those being con-
sidered can be chosen to execute a given algorithm, or the “best” algorithm can be
chosen for a given architecture.

Preliminary results are presented in the following. A hierarchical approach is
taken by defining high and low level features or characteristics. High level metrics are
used in the absence of more detailed information. When more details are available, low

level metrics, which are a refinement of their high level counterparts, are applied. The
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format for presenting the metrics is as follows. Each section contains an algorithmic
feature and its associated metric, and discussion on how the metrics can be used to
determine compatibility between the features. It remains to evaluate the effectiveness
of the features discussed by applying them to proposed architectures and existing algo-

rithms.

5.2 Higher Level Characteristics

5.2.1 Uniformity
Algorithm: Uniformity of Processing

During the course of a computation, resource requirements vary. Resources
include processors, memory, and the interconnection network. Appropriate features

which relate to these resource requirements include:

% Degree of concurrency
*  I'requency of interprocessor communications

Structure of these communications

*

*

Data type conversions

Metries associated with cach of these algorithmic features are discussed later. Here,

uniformity or the degree to which they change is of interest.

Architecture: Reconfigurability

Architectural features which allow changing demands to be accommodated include:
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* Total number of processing elements and ease of reconfiguring these elements
into smaller groups

* Overall bandwidth of communications network and number of permutations
as well as the amount of overhead involved in reconfiguring the network

* Ability to operate on different types of data and the ease of converting

between these different formats

These metrics are intended to match dynamic algorithms with dynamically
reconfigurable architectures. If an algorithm changes its requirements often, it is desir-
able to accommodate these changes quickly and efficiently. Algorithms that are more
“‘static” in their needs do not require such capabilities, thus the additional cost of a

reconfigurable system should produce a poorer match between these features.

5.2.2 Global Control

Algorithm: Global Control

Concurrent algorithms run on separate processing units independently. In order to

guide the overall flow of the program, global control is required. This control is con-

sidered overhead in the computations if its execution cannot be overlapped with that of
the non-control instructions. In some algorithms, it may even dominate the execution

time. Several programming concepts are included in this category. Among them are:

| * Synchronization (e.g. semaphores)
* Process generation (task spawning)
* Dynamic allocation of resources such as

* Processing elements

S

..\ . r" l,"l" ~_‘" s

]
.

............
........

o e N T R ORI NN UDRR I,
e e

. - ® v e .‘. ‘- » . - - - . - -
K EASAEA ARSI NS - v % L Te e
LW W RS S S SN STV PGS, T L W, R DA T RO P e )




WU W W W W WV VL W oW

% Memories e
* Communication channels

* System reconfigurations

The proposed measurement for each of these is their frequency of occurrence. That is,

if the number of control steps per total program steps at run time can be estimated,

the amount of overhead incurred can be determined for any given architecture. An
algorithm with few global control statements does not require elaborate hardware con-

trol mechanisms.

Architecture: Global Control Mechanisms

Various architectures have provided means for control activities on a global level.
These special mechanisms reduce overhead for executing programs and provide facilities
for the ecasy unplementation of concurrent programming constructs. These mechanisms Sy

mclude:

*  Test and set hardware
* Feteh and add hardware
* Process state management hardware

* Communications network

* Structure .‘
*  Flexibility
*  Bandwidth 3
*  Sectup time F

% [Extent of built-in control
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* Control units

Many of these hardware features were designed to accommodate some software need.
One possible measurement of fit is a matching of features with needs. Then bandwidth

is considered in each case. Also, the architecture description needs to be complete

enough so that the capabilities of providing for each software need can be measured.
That is, if an architecture does not provide a particular mechanism, what time penality
is paid for using an alternate, slower hardware mechanism?

Thus even in the case where an architecture does not directly provide for a control
need, the overall performance can still be estimated. A further refinement considers

maximum capabilities and insurance that worst case demands are met.

5.3 Lower Level Characteristics

5.3.1 Parallelism
Algorithm: Degree of Parallelism

Algorithms incorporate parallel constructs on many levels. These include explicit

definition of co...arrent processes as well as parallelism implicit in loops. The number
of bits in each data type can be considered a measure of a rudimentary form of paral- :;f‘,-_ :Z:

lelism, at the word level. If the program is described as a graph model, the number of

independent nodes gives a good measure of parallelism. Consider metrics describing the

degree of parallelism at each of several levels including:

* Number of independent processes
* Number of subprocesses

* Width of data types
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Let these parameters be indexed as a function of time. Then the maximum
requirements as well as the average and deviation can be calculated. These measure-

ments characterize the inherent parallelism in an algorithm.

Architecture: Parallelism Available

Primarily, three techniques have been used to achieve parallelism in architectures:
(1) replication of execution units; (2) replication of processors; and (3) pipelining various
functional units. A good architecture description should at least identify each of these TA_J
types of parallelism.

Handler [Han77b, Han81] describes a scheme which include these ideas. He defines

»
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two types of parallelism: pipelining and replication. The three types of replication are:
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(1) multiple computers; (2) multiple execution units; and (3) parallel bits. Each of
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these functional units can be pipelined producing: (1) macro pipeline; (2) instruction

v

pipeline; and (3) execution pipeline. A macro pipeline consists of a series of processing
clements operating on data sets and passing results on to the next processing element.
In this way each processing element can be matched closely to the appropriate sub-
algorithm. Also pipelining within processing elements can be considered, for example,
in the case where each component process is processing arrays of data. In general, a

measure of fit for pipelined systems and algorithms at any level can be expressed. Let

N be the number of “‘stages” in the pipe and X be the number of “‘items” to be pro-

cessed. Stages may be adders or entire MIMD systems and “items” may be bits of data
or large matrices. The eflicieney of the system, E, is the average fraction of stages in

use. I is given as

X

E= SN+ xat

where S is a (possibly zero) pipe start up time. The optimal speedup is N since N

stages are working. The performance, P, is NxE compared to a serial system. We will
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N-1

{

normalize this measure to between 0 and 1, by replacing the N by This new

measure rewards (i.e. produces a normalized number closer to 1) algorithms operating
on long *‘vectors,” since the time to fill the pipe is short relative to the time it is full

It also rewards pipes in general since more processing can be accomplished as long as

“vectors” are involved. A combination of a long pipe and few data items produces a
normalized number eloser 10 0. Henee, the performance metric due to pipelining is:

NX
T === and

S+N+X-1

M

Pyornt = -v_‘(L\";"J)}:,H_
N(S+N +X~-1)

A major source of potential speedup in MIMD systems is replication of processing
elements. The etliciency of the pipeline concept is hampered by filling the pipe. In
replication of elements, the efliciency is degraded only when all units are not kept busy.
If X is the replication in the software and N is the replication in the hardware, then the
cfficiency. E, is of the form

= XN
© XN

where [\] is the smallest integer greater than or equal to A, This measure varies
between ~ for a serial algorithm and 1 when the parallelism in the algorithm is 2 mul-

tiple of the parallelism n the architecture.

This measure considers only efliciency and does not take mto account the overall
thronghput . Thus, it mus