
AD-AlE? 316 DISTRIBUTED COMPUTING FOR SIGNAL PROCESSING: MODELING 1*'4
OF ASYNCHRONOUS PAR.. CU) PURDUE UNIV LAFAYETTE IN
SCHOOL OF ELECTRICAL ENGINEERING L J1 SEIGEL ET AL.

UNCLSSIFIED MAR 63 TR-EE-83-11 ARO-18799.i?-EL-APP-A F/ 92 ML

L,- 0A1&0t
L WJ-6

1 1.25 1111

l.

11<W

MIC~nr.P' CHA-

% .

............. APPENDIX A for
Distributed Computing for Signal ,.P,'~~-

........... Processing: Modeling of Asynchronous
* Parallel Computation; Final Report

for U.S. Army Research Office

...................Contract No. DAAG29-82-K-Ol0l

........... Distributed Computing for
(0 Signal Processing:

.... ..Modeling of Asynchronous
Parallel Computation
1983 Progress Report

L.J. Siegel, H.J. Siegel, PMH. Swain,
G.B. Adams 111, W.E. Kuhn III,
R .J. McMillen, T.A. RiceJ
K .D. Smith, D.L. Tuomenoksa

---------------- --...*......... .

~.. TR-EE 83-11

March 1983 :

U.S. Army Research Office
Contract No. DAAG29-82-K-01O1

DT!C
ZLECTE

APR3 2

D
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Approved for public release- distribution unlimited

.5 - * 6 428 17

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (when. Date. Fnleed)

REPORT DOCUMENTATION PAGE
iREPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPENT*S CAT ALOG NUMBER

4TITLE (aim! Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

Distributed Computing for Signal Processing: iProgress Report:ApriL 1, 1982 W %

Modeling of Asynchronous ParaLLel Computation ;through March 31, 1983
____ ___ ____ ___ ____ ___ ____ __

1983 Progress Report 6. PERFORMING ORG. REPORT NUMBER 1%1%

7. AUTHOR(n) 8. CONTRACT OR GRANT NUMBER(s) e

L. J. Siegel, H. J. Siegel, P. H. Swain, G. B. Contract No.
Adams 111, W. E. Kuhn III, R. J. McMit~en, T. A. DAA629-82--K-0101
Rice, K. D. Smith, D. L. Tuomenoksa ____

9. PERFORMING ORGANIZATION NAME AND AREAES 10 PQC(RAP UNI-T. NUMBJERS

SC hool of ELectrical Engineering AE OKUI UBR

Purdue University
West Lafayette, IN 47907

11. CONTROLLING OFFICE NAME AND ADORESS .2.REPORT DATE
March 1983

U. S. Army Research Office
Post Office Box 12211 3Uf4RFAE

Research Triangle Park, NC 2770929
14. MONITORING AGENCY NAME 0 ADORESS(ll differenlt from Controlling Office) IS. SECURITY CLASS. (01 tAl. report)

Unclassified

IS*. J)EC ,ASS-IF1CATION4/DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of tMt. Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatrdct entered In. Block 20. 1t different from, Report)

NA *

distributed computing, parallel processing, asynchronous computation, signa[

processing

120L ATUrAC? (Marft M teme40 IV nemv1 ad Id..Uitr by block n.~m&.)

- Research in the area of distributed computing systems for digitaL ciqInal pto--

cessing applications is described. The work invoLves the modeL ing of i,yrf' :. I
nous paralel processes and computer systems for executing these prorf-.so'.. The

objective of the work is to develop techniques by which the compatibil ity ot in

architecture and an algorithm can be evaluated. The three part effort addr-,'es:
1. Modeling of asynchronous parallel computer system architectures;
2. Modeling of asynchronous parallel computational processes;
3. Evaluation of alternative architectures relative to classes of computationa

An, ,17 PTO.PMVSSSLT UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whten Date Entred)

UNCLASSIFIED

SCumuTY CLASSIiCATION OF THIS 0PAGUiA i ,t Em.bes.*

processes.

The approach to the modeling of parallel processes and architectures is to examine

the parallelism in a variety of one- and two-dimensional signal processing tasks. I
This includes a study of the ways in which different types of digital signal

processing tasks can be executed on different types of architectures. The goal

is to develop one set of features by which processes can be characterized, and

anotler set of features by which paratlet architectures can be characterized:

arid to use tht-se features to obtain measures for the evaluation of process/ %

architecture compatibility. ,

This research will contribute to the understanding both of how distributed %

computer systems can be designed for the execution of a class of tasks, and--

of how signal processing tasks can be decomposed for execution on a distributed

computing system.

-- Z

i/

* ..- .'...

UNCLASSIFIED
sitCUMITY CLASSFrICATION OF TWIS 0AC~gVooo Dges Enfe1ed,

A. .-.

DISTRIBUTED COMPUTING FOR SIGNAL PROCESSING:
MODELING OF ASYNCHRONOUS PARALLEL COMPUTATION

1983 PROGRESS REPORT . .

L. J. Siegel, H. J. Siegel, P. H. Swain,
G. B. Adams Ml, W. E. Kuhn III, R. J. McMillen, T. A. Rice,

K. D. Smith, D. L. Tuomenoksa

March 1083

U.S. Army Research Office
Contract No. DAAG29-82-K-O1O1

Purdue University
School of Electrical Engineering

West Lafayette, IN 47907

TR-EE 83-11

Approved for public release; distribution unlimited. -

Is .

4 .

THE VIEWS, OPINIONS AND/OR FINDINGS CONTAINED) IN TIS RIEPORT
ARE THOSE OF THE AUT[HORS AND SHOULD NOT BE CONSTRUEDI AIS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY Oft IE-IS!ON,
UNLESS SO DESIGNATED BY OTHER DOCUMENTATION. TR-EE 83-11

D~.ISTIBUTE CMUTN FO SIGNAL PROCESSING:

MODELING OF ASYNCHRONOUS PARALLEL COMPUTATION

1983 PROGRESS REPORT .

CONTENTS

Abstract

*CHAPTER 1 - INTRODUCTION 1.1

CIIAPTER 2 - MODELING ARC11ITECTURES:

CLASSIFICATION SCIIEMES ... 2-

* CHAPTER 3 -MODELING ARCITECT11RES: mulLTI~s'rA(;E

INTER CONNECTION NETWORKS 3-1 J

* CHAPTER 4 - hIIGI LEVEL D)ESCRIPTIONS OF

CONCURRE?,.NCY 'IN P'ROCESSES i...... -1

CHAPTER 5 - FEATURES FOR DESCRIBING P"RO(I5S15

AND ARChIITECT TRES 5-

CHAPTER 6 - AI'PLIC'ATION STU)DIES 6......-....

REFERENCES .. 1..........1... -1

AccesionFoJ
NTIS CRAT
DTIC TAB 03
Unannouniced
Justificatiun

B y

Dist. ib.; lio. I

Availability Coies j -

Ava 6 a..d or
Dibt I Sp:Ccia

______r

DISTRIBUTED COMPUTING FOR SIGNAL PROCESSING:

MODELING OF ASYNCHRONOUS PARALLEL COMPUTATION ~-

1983 PROGRESS REPORT

L. J. Siegel, 11. J. Siegel, P. 11. Swain
G. B. Adams 111, W. E. Kuhn III, R. J. Meeln,1..\.lic,

K. D. Smith, D. L. Tuomen)Oksa

r.
Purdue tUniversity

School of Electrical Engineering
W~est Lafayette, Indiana 417007

Mlarch 1083 _

TR-EE 83-11

ABSTRACT

Research in the area of distributed] computing systems for (ligital signal processing
applications is described. The work involves the modleling of asvnchrorv. is p~arallel
processes and computer systems for executing these processes. The objec(tive of the
work is to develop techniques by which the compatibility of in nrchitecture andl an
algorithm can be evaluated. The three part effort addresses:

1. Modeling of asynchronous parallel computer system arcbitect ir(-s;
2. Modeling of a-synchronous parallel computationll processes-
3. Evaluation of alternative architectures relative to clisses of u)inpJut a.

tional processes.
The approach to the modeling of parallel processes and architect tires is to vx amine the
parallelism in a variety of one- and two-dimensional sigwal processing task,. T'his

includes a study of the ways in which different types of (digital signal prtces singr ta tks
can be executed on different types of architectures. The goal is to dlevelop) one set of
features by which processes can be characterized, and another set of feature, 1)y which
parallel architectures can be characterized; and to use thes~e fi-o 'nrsf 10fl '1(Pir,

for the evaluation or process/architecture compatibility.
This research will contribute to the understand ing 1)o01 (I d I, t r I', - (TI I~n-

puter systems can be designed for the execution or a (li-,s ofIr t si- ann1 of 1- . Iprd
processing tasks can be dlecomplosed for execution on a (ist ritbitd c, v' re if' ills: t 'r!

CHAPTER I

INTRODUCTION

1.1 Motivation

Evolving digital technology has made it possible to upgrade substantially the corn-

putational power available for solving complex data processing problenis. Improve-

ments in electronic device speed and central processing unit (('PU) architecture have

brought about significant enhancements in system throughput. L~argely untapped, how- .

ever, is the potential for further gains offered by distributed processing. This potential

has been demonstrated by the parallel processing systems which have appeared, such as

Illiac IV [BaB68,Bou72], STARAN [Bat74,Dav74], and PEPE (31a77,W\V77], but these

represent only a very restricted class of multiprocessor systems. The -microprocessor

revolution" has made feasible more general distributed system architectures %%hich have

recently begun to come under study {e.g.,Lie79,Nut77,Pea77,SiM78,SiS8 a,SuB77,

SwF77].

"A distributed processing system is one in which the computing functions are

dispersed among several physical computing elements" [Lie7f]. Given this definition,

distributed processing can be further subdivided using terminology and definitions con-

monly accepted but nowhere formally standardized. The first subdivision is into

"loosely coupled" and "tightly coupled." In tightly coupled systems, there iN generally a

higher degree of interaction and sharing among the processr sl, to :'coiiplilh some

specific task. In contrast to these tightly coupled systems. the naiti,,ide A..l\'XET

can be considered a loosely coupled system. The category of tightly coupled distributed

processing can be further subdivided into synchronous processing an,! :synchronous

processing. The synchronous subdivision includes ;IMI) systems, such as the lihe IV"

[l3ouT21. The asynchronous subdivision includes MIMI) systems, such as the ('.momp

" -...e.

.......... . -:.

-A - . -- - - .. - - - -. -. -. - .,. .' N' --

1-2

[WuB72]. The use of asynchronous distributed systems is the focus of the research

described in this report.

One application area which stands to benefit greatly from the development of dis-

tributed processing is digital signal processing. One- and two-dimensional signal pro-

cessing methods typically involve large amounts of computation, often required in real-

time, and are generally of a character amenable to parallel processing.

To illustrate, consider the hypothetical missile detection and tracking system

shown in Figure 1.1. In this highly simplified example, the system is composed of a

large number of signal processing operations applied to both one- and two-dimensional

inputs. Pictured are inputs from a variety of sources including seismic sensors used to

detect missile launches and temporal sequences of satellite imagery which might be used

to track suspected missiles. Both sets of signals are assumed noisy and are subjected to

filtering before attempts are made to extract characteristic features and apply pattern

recognition techniques to classify objects detected by the system. The figure suggests

that one,. a suspected missile is detected, it is continuously tracked and the tracking

iuformation is analyzed to reinforce (or to quench) the identification of the object as a

luis.ile. Of course, it is entirely possible that many such objects will have to be tracked

. in,,Iitaiuotsly. The ultimate output of the system might be a listing and/or a real-

time display of suspected missiles detected, their locations, trajectories, and possible

targets. or the system output might act as input to the control of a radar and/or

defense syst em.

The performance of such a system, which must operate very reliably and in real-

time, can be greatly enhanced through use of distributed processing. Many of the com-

ponent operations can be implemented independently, some using special purpose pro-

cessors, most themselves employing parallel or pipeline operations internally (e.g., MAP

[(spOOJ, ASAP [Esl00], AP-120B [Flo00J, FDP [GoL71], SPS-4 [SigO0]). System reliabil- m -

itv can be enhanced through deliberate incorporation of redundancy in the form of

....................................-..

-. -...... -.

1 -3

SEISMIC SIGNALS MULTISENSOR IMAGERY ~ .

I-D 2-1) 1u
FILTERING FILTERING NOS

FFT FFTSUPPRESSION

FEATURE IEANEMN SIGNAL

EVENT OBJECT I
DETECTION DETECTIONJ

PATTERN
RECOGNITION

IDENTIFICATION1

OBJECT

TRACKING

REAL-TIMIE
DISPLAY I
& ALARMj

Figure 1.1 Hlypothetical issile Det ct (iri nd 'Ira.tii ' g. 'inl

1-4

additional parallel processing.

Effective implementation of complex high-performance signal processing tasks

using distributed processing involves numerous difficult design choices. Each of the

component signal processing operations could be carried out by a variety of alternative

algorithms requiring different amounts of computation and producing results of differing

quality. Each of the candidate algorithms could be implemented using any of a number

of different uni- or multiprocessor architectures. Whatever the choices, the component

subsystems will have to communicate with each other and be coordinated so that data

and intermediate results continue to stream through the system without encountering

bottlenecks.

Some rather specialized architectures have been developed for specific problems or

narrow classes of computational processes [c.g.,Bat79,DuW74,Kru73,Mcc73]. Somewhat

more general studies have been made of the capabilities of particular parallel architec-

tures (.g.,la~7l,Orc76,RoP77,RuF76. The use of parallelism based on consideration

*of the t;.,k alone, independent of a particular architecture, has been examined in the

learsay If speech understanding project [FeL77,Les75. Some initial work has been

done in the study of the relationships between algorithms and architectures

[e.g.,Fos76,(;,m78,Kul"79). However, much more work is needed in the area of deriving

a fundamental understanding of the ways in which tasks can be structured as parallel

processes and the ways in which to match parallel processes to parallel architectures.

The ana.sis of the relationships between the problem domain of digital signal process-

ing and th solution domain of special purpose distributed computing is the technologi-

cal gap mi, which this research focuses.

, i?*S'*

" .1"

A - '

-. 77. L-- -7V. I

1-5 %

1.2 Research Objectives %

The general objective of this research is to identify the parameters which best

characterize distributed processing architectures and asynchronous parallel processes as

they apply to tasks from the signal processing problem domain so that the mnost suit-

able architecture for any given task can be determined. More specifically, a three part
MAW

effort is being pursued:

1. Modeling of parallel processing architectures. Based on evolving technology, a

wide variety of system architectures can be envisioned. What parameters best charac-

terize distributed processing architectures? Examples of possible parameters include

processor instruction set and interprocessor communications capabilities.

2. Modeling of asynchronous parallel computational processes. A computational

task can be solved by a variety of algorithms. What parameters capture the salient

features of these alternative algorithms? Candidates include parameters such as data

dependencies between component processes and sizes of data bases required by the p~r -"

cess.

3. Evaluation of alternative architectures relative to classes of computational

processes. flow can the relationship between an architecture and .1n al>gorithm)e"

measured? In particular, how can the parameters from (1) and (2) be used to, cv hilate

the compatibility of an algorithm and an architecture?

The approach to the modeling of parallel processes and architectures is through

examination of the parallelism in a variety of one- and two-ni uunsiinal sig nl procs-

ing tasks. This includes a study of the ways in which diflerent t v ps of dig di signal

processing tasks can be executed on different types of architectures. These sthiliis aim
MW

to(develop one set or features by which processes cai he (<halr:iri(,f. to dtevelop

another set of teatures by which parallel architeciur, ,an .. hirmtr,1-,11 and to use

these features to obtain measures for the evallati,,n if I i'/: rh ictmmre ,',pIlt iil-

it v.

.....

1-6

1.3 Approach

1.3.1 Modeling Asynchronous Parallel Computer System Architectures

The two basic classes of multiple processor systems are SIMD and MLMD (see Sec-

tion 2.1). In the SIMD mode all processors operate synchronously using the same

instructions, while in the MIMD mode all processors operate asynchronously, each using

its own independent instructions. The types of asynchronous distributed processing

systems of interest here come under the M1MD category, which is more general and

flexible than the SIMD mode. In order to study the parallel/distributed implementa-

tion of a "total task," as opposed to component algorithms such as the FFT, the

* NMIMI) mode is more applicable than SIMD. Most real-time total tasks involve compu-

tations not, suitable for the SIMD mode, although an MIMD system designed to process

a total task may include SIMD machines as component processors. With the generality

that the MIMI) mode provides come the problems of task decomposition and system

control, whi c[will be examined in the problem domain of signal processing.

Our approach involves developing modeling tools for constructing large-scale distri-

buted multiprocessor systems for signal processing tasks. These systems may be for a

single task or a class of tasks. Depending on computational speed requirements and

volume of data to be processed, some tasks will justify the construction of special pur-

* pose (listributed systems for their execution. In other cases, one special purpose system

which can be used for a set of tasks will be appropriate. In either case, each processor

in the system will operate independently except for the sharing of data and results.

Furthermore, each processor may be different. For example, a distributed system

might contain several 8-bit microprocessors, pipelined array processors, SIMD machines,

and l6bit microprocessors with special floating point hardware, all cooperating to solve

a particular problen. The microprocessors and other components may include off-the-

shlf and/or custom designed VLSI chips; the design of large-scale distributed systems

"" .*.....,.;

1 -7 ' -t -.

provides an excellent vehicle for exploiting the predicted low cost and high complexity

of VLSI hardware.

To illustrate the design of a special purpose distributed system with heterogeneous . ,

processors, consider again the simple hypothetical missile detection and tracking system

shown in Figure 1.1. Assume that the principal system performance criterion requires

that subtasks be executed as quickly as possible. Furthermore, assume that new

seismic signals and multisensor imagery are real-time inputs to the system. Civen these

assumptions, in order to maximize execution speed, it would be appropriate to design a

special-purpose distributed processing system for this task. Each subtask in the figure

would be executed by a different processor or set of processors. For example, the FFTs

could be done by pipelined array processors, the edge enhancement by an SIMD

machine, and the object identification by a set of cooperating microprocessors. In addi-

tion, by designing the system so that each subtask takes approximately the same

amount of time, the data could be pipelined through the system, i.e., each subtask pro-

cessor (or processors) could contain data from a different input data set. In this simple

example the design choices are fairly obvious. For more complex (and realistic) tasks,

it is much more difficult to identify the component subtasks and match them with suit-

able architectures in such a way as to meet performance requirements. ".

Distributed computer systems can be characterized in different ways. To describe

the computational capabilities of a system, the types of features which might be con-

sidered include:

-interprocessor connection network

- instruction set of each processor

- shared memory method and size

- individual processor memory sizes

- number of processors

- processor speed

77- •"r W-.7 %

1-8

-processor precision

Each of the types of architectural features may be divided into subcategories for -

analysis.

The approach taken in this research is to study the ways in which specific types of

digital signal processing tasks can be executed on different types of architectures. From

this, the salient architectural features should be identifiable. Existing computer system

classification schemes and notational methods for describing computer systems are the I
starting point of this investigation. Our initial work in this area is presented in

(Chatpters 2 and 3 of this report.

1.3.2 Modeling of Asynchronous Parallel Processes

One broad method of characterizing the parallelism in a process is by identifying

the degree of parallelism. A process can be classified as being in one of three categories:

it may be inherently parallel, it may possess limited parallelism, or it may be inherently

serial. An example of an inherently parallel process is the task of detecting the appear-

ance of a blip on a display screen. This task can be accomplished by a large number of

subproc'esses executing in parallel, with each subprocess examining only a portion of the

screen. The parallelism in this task is limited only by the size of the screen and by the

aflount of the screen which must be available to a process in order for it to detect a

blip. An example of a process which can be characterized as having limited parallelism

is the task of summing N numbers, given that only pairwise additions can be per-

formed. Initially N/2 pairwise additions can be performed simultaneously, producing

N/2 intermediate sums. At the next step, N/4 pairwise additions can be performed in

parallel. N/I of the processors (adders) employed in the first step are no longer of use.

The summation can be performed in at best log 2N addition steps, with only N/2 i pair-

wise additions performed in parallel in the i-th step, I < < og 2N. Inherently serial

%4....

processes arise from time dependencies among portions of the process. For example, in

the missile detection and tracking scenario, the edge enhancement cannot be performed

until the two dimensional filtering of the image has been completed.

Although the "degree of parallelism" measure provides some insight into the

characteristics of a task being considered for parallel implementation, it does not, ade-

quately describe all of the factors which will enter into a parallel implementation. Con-

sider the task of finding a tank in an image. One portion of the process may involve

multiple feature analysis, e.g., the detection of both straight line and curved line seg-

ments. These two subtasks may be performed in parallel, but in order to do so, prob-

lems such as the sharing of data and communication of results must be considered. For

this reason, a more detailed means of describing the processes is needed. Examples of

the types of features which may be included in such a description are:

- representation of the data dependencies between component processes

- maximum number of independent subprocesses

- inter-process communication requirements

- specification of the ways in which subprocesses may be generated

- number and sizes of data bases required by the process

- type and precision of data

As seen in Chapter 4 of this report, high-level parallel programming languages have

begun to appear which, to a greater or lesser extent, have facilities for describing such

features. Also in Chapter 4, it is noted that data dependency relations can be

expressed in terms of Petri nets [PeB741, S-nets [Kry81], and related graphical methods.

It is our aim to consider the suitability of these and other schemes for representing the

data dependencies so that process characteristics may be compared to architecture

characteristics. Further considerations along these lines are discussed in (hapter 5 of

this report. .

-- - - - - - - - - --.-...

.. o

1-10 0 ,

1.3.3 Evaluation

The final aspect of this work will be to integrate the information provided by the

models of parallel processes and parallel architectures. The following examples of the

interaction of algorithm and architecture communication features from the SIMD

domain illustrate the type of analyses to be performed.

In the 2-1) FFT algorithm in [SiM79b], in order to transpose an array, processor

lust be able to send a data word to processor i+k, for all i, 0 < i < N, simultane-

ously, and for a fixed k, I < k < N. This can be modeled at the process level as single

wordl transfers using "shift" connections, where shiftjx) = x +k mod N, 0 < x < N.

From an architectural point of view, this corresponds to packet switching IThM79] with

single word packet size and a "uniform shift" permutation capability. Multistage cube

". networks [Si1811 can perform uniform shifts efficiently and can be implemented in a

"acket -wit(h mode [NlcS80bl.

Parallel iniage smoothing [SiS8la , where each processor is assigned a square

suhimage to smooth, requires connections from each processor to its neighbors to

transmit subimage edge data. This can be modeled at the process level as multiword

hifts for k + I, -I, N / 2, -N" 2 (for the edge data on the right, left, bottom, and top

edges of the subimage), and single word shifts for k -N , -N'/ 2 +I, +N'/ 2 -1,

and +NI/2t (for data at the four corners of the subimage). From an architectural

point of view, this corresponds to the eight nearest neighbor connection scheme, and

either circuit switching or packet switching with variable size packets [ThM79I. A sin-

gle stage network, as in the Illiac IV jBou72,Sie79j but with an eight neighbor mesh

connection pattern, would be most efficient, implemented so that network settings can

remain unchanged for multiword transfers.

Other investigators have discussed, to a limited extent, the relationships between

architectural features and algorithms. Foster [Fos76] has examined the particular

architectural features needed by an associative processing system in order to execute

:. i ill ? . . ".-. -.. "" • " &

1-11

efficiently particular fundamental algorithm constructions. lie defines algorithmic

features such as mode of address, depth of nest, interpass coupling, and number of

internal operands. lie then uses these features to show which associative processor V -.

instructions are needed to support different types of algorithms. .- .

Gonzales [Gon78] discusses the need for techniques that permit an evaluation of

distributed computing systems. lie suggests that the following elements are required: a

set of attributes, a measure of the extent to which a distributed structure possesses

each attribute, and a measure of the relative importance of each attribute to the task

being computed. Ie then discusses, in a general sense, what the components of such a

quantitative approach should be.

Kuck and Padua [KuP79 have used measurements on programs to describe the .. '

performance characteristics of some general architecture schemes on different types of

programs. Their goal is to use the measurements in programs from a particular appli-

cation area to guide the design of special purpose multiprocessor systems for that area.

The approach is based on decomposing serial programs into blocks based on data

dependencies.

The algorithm characterization which we have been working on for the Defense

Mapping Agency (DMA) [SwS80 is aimed at providing information towards matching

image processing algorithms to SIMD architectures.

This work that has been done provides us with a basis for our architecture and

algorithm modeling, but there are significant differences from this previous work in

both our approach and objectives. For example, Foster's study is limited to associative

parallel processors. Gonzales suggests types of information that would be useful in

obtaining a quantitative evaluation of an architecture, but does not explore the specific

features which would enable an architecture and an algorithm to be compared. Kuck

and Padua base their program measurements on automatic transformations on serial

FORTRAN programs, rather than examining tasks at the sutt-,Lk and algorithm level

. *

5,* ' .

55.5.:

1-12

as we propose to do. Our DMA work is limited to the analysis of specific image pro-

cessing algorithms rather than tasks, and is limited to SIMD parallelism rather than the

more general MIMD mode.

Our approach here is to develop techniques by which the parameters which charac-

terize a system architecture and the parameters which characterize a computational

process can be objectively compared. The effect will be to define a measure or meas-

ures by which the suitability of a particular architecture for a particular algorithm or

set of algorithms can be evaluated. There are three ways in which this measure could m
be used:

(1) Given a set of algorithms, evaluate a variety of architectures. Used in this way,

the measure provid e s a design tool for the development of special purpose systems.

(2) (;iwen an architecture, evaluate alternative algorithms for a particular processing

task. This provides a design tool for the development of software for a computer

s st em.

(3) (;ivn an architecture and algorithm, assess the performance of the algorithm on

that system. The performance measures used would be determined by the specific

requirements of the intended application.

Numerous techniques exist for evaluating the complexity of serial algorithms

[A.hll76,Ktm73J. Although measures of complexity of a serial algorithm include implicit

assumptions about the model of computation, the asymptotic time complexity of an I

algorithm will be the same for any canonic serial computer model [AhI1761. These tech-

niques for evaluating the complexity of a serial algorithm are therefore not directly

applicable to, parallel algorithms, where the architecture must be considered as a vari-

able affecting the execution of the algorithm. We shall investigate techniques for

obtaining theoretical lower bounds on the asymptotic time complexity of asynchronous

processes, given specified architectures. These techniques will be based on the parame-

ters derived in the models for parallel processes and architectures.

. - -.. - .

1-13

In order to evaluate the suitability of an architecture for a task or set of tasks,
measures of "goodness" are required. Two possibilities are raw computational speed

and cost-effectiveness. Maximum speed with which a task can be processed would be of

interest for determining a lower bound on execution time. This is especially important

for real-time tasks. By adding considerations such as the monetary implementation

cost of the computer system, measures of cost-effectiveness can be obtained. However,

factors such as reliability, maintainability, and accuracy must also be considered. We

have studied such measures for SIMD parallelism [SiS82J. Our future work will include

examining ways in which to incorporate such performance measures into an evaluation

scheme based on the models of processes and architectures.

1.3.4 Signal Processing Task Analysis

A key aspect of our approach to the modeling process is to examine the parallelism

in a variety of typical one- and two-dimensional signal processing tasks for the purposes

of identifying what features can best be used to relate parallel processes to parallel

architectures. The types of tasks to be studied include problems from the areas of

radar processing, image processing, statistical and syntactic pattern recognition, speech

understanding, and speech coding. Figure 1.2 outlines the analysis process for a task.

The subtasks represent the major computational units into which the task can be

decomposed. Some of the subtasks may be executable in parallel; some may have data

dependencies that dictate sequential execution. For each of the subtasks, sets of alter-

native algorithms for performing the subtask are identified, and for each algorithm,

alternative implementations are considered. At each level in the analysis structure,

features which characterize the components and interrelations among components at

that level are abstracted.

Chapter 6 of this report contains an initial look at three prototypical signal pro-

cessing tasks from the image processing domain.

.

--- vi'

1-14

TASK

SUBTASK SUBTASK SUBTASK

AL"'TERNAIV:E ALGORITHMS .0..

00 00 ... -

ALTERNATIVE IMP~LEMENTATIONS
(F'OR ELACII ALGORITHM)

Figure 1.2 Task Analysis

2A.-

1-15 ::- '

1.4 Progress Summary -

Our approach to date has combined both "top down" and "bottom up" strategies

to the modeling problem. From a "top down" point of view, we have surveyed and

analyzed high level representations of concurrency and existing architecture

classification schemes. Starting with these known modeling tools, we are examining

their applicability to problems of interest. From a "bottom up" perspective, we have

considered the structuring of specific signal processing tasks for distributed execution in

order to identify the salient attributes of the tasks and the corresponding architectures.

From both approaches, we intend to extract features which characterize various aspects

of distributed processes and architectures.

1.4.1 Modeling Architectures (Chapters 2,3)

Existing architectural classification schemes have been surveyed. These include

general schemes, based on major system characteristics, and more detailed system

description notations such as the processor-memory-switch (PMS) notation. Based on

this survey, our approach to developing a comprehensive classification scheme will be to

create a hierarchical classification system. A high level characterization will be followed ..-

by a more detailed description of the system's functional units and their organization.

This scheme will involve combining and augmenting existing methods. Preliminary -.

work has been done on the specification of this hierarchical system.

An extensive survey of multistage interconnection networks has been completed.

From this, characteristic features of networks have been observed and a taxonomy of

interconnection networks has been developed. Four aspects of multistage networks

have been detailed: structural characteristics, distributed control schemes, implementa-

tion attributes, and fault tolerance.

-------------. .*.'-..*

* .* . .*.-.*.- *.

1.4,2 High Level Descriptions of Concurrency in Processes (Chapter 4)

Concurrent programming languages and graphical representations are being stu-

died for their usefulness in expressing the relevant characteristics of distributed

processes. Lainguages considered include Ada, CSP, Concurrent Pascal, Path Pascal,

Niodula, and Edison. The languages have been examined with respect to their ability

to represent some- of the attributes which appear to be critical in designing concurrent

implementat ions of signal processing tasks. These include provisions for local and glo-

bal data, support of concurrent processes and the dynamic creation and termination of

processes, specification of communication paths, and support of synchronization primi-

Graphical representations are being studied for their ability to model various

aspects of process synchronization. In asynchronous computation, the need for syn-

chronizaition arises in various ways. A major process, after having spawned multiple

sulbtasks, must resynchronize to coordinate the bringing together of results for use by

the parent and/or subsequent processes. Our models must recognize data dependencies

andl inludI~e the overhead incurred by the resynchronization mechanism. We wish to

develop mlodecls that take into account the different character of various synchronization

methods, hoth in hardware and software. This is particularly relevant as it has been

found that svnichrotiization overhead may vary greatly for similar tasks executed on

architect tres that differ only in their synchronization mechanisms, so the software

Mfodecl should he accurate with various architectures. Another circumstance in which

sirichronizatifort overhead must be considered is in the competition of multiple tasks for

shared resources (peripherals, computation elements, shared data, etc.). Since the input

to the systeins under consideration is often random in nature, our models must include

thie stochatstic behavior of this competition (the use of shared resources often cannot be

p resched iiled).

. . ..-. . .

71 .7 v. I -- I 7 .. -

1-17

An extension of Synchronous Nets (which are themselves an extension of Petri

nets) is being investigated for its utility in the asynchronous environment. Markov

graphs or modifications thereof will be evaluated for use in stochastic modeling.

1.4.3 Features for Describing Processes and Architectures (Chapter 5)

Preliminary work has been done on integrating the information derived from the

studies of concurrent languages, graph representations, architecture classification

schemes, and task scenarios. Algorithm properties have been enumerated and candi- . .'-

date features to provide a "run time profile" have been identified. The features charac-

terize such aspects of a task as uniformity of processing, global vs. local control, global

vs. local data access, degree of parallelism, data set sizes, data types, and frequency of

synchronization. Correspondences between algorithm/task features and architecture

attributes are being developed.

1.4.4 Applications Studies (Chapter 6)

Parallel implementations of digital signal processing tasks are being designed in --

order to identify what features can best be used to relate parallel processes to parallel

architectures. Three tasks from the image processing problem domain have been stu-

died: contour extraction, shape recognition using Fourier descriptors, and computer

vision. The contour extraction scenario involves edge detection, edge-guided threshold-

ing, and contour tracing. It embraces both SIMD and MIMI) subtasks, and is charac-

terized by both local and non-local communications. The shape recognition task

requires resampling, discrete Fourier transforms, global normalization operations, and

library comparisons. It too can be implemented using a combination of SIMD and

MIMD subtasks and requires a number of markedly different communications patterns.

The computer vision task involves classification of the pixels of an image in order to

delineate objects, followed by calculation of a number of parameters for each object,

.......................

~. * *.*....

% ~~ ~ , - °," --- .-

1-18

including hole statistics, area, perimeter, and axis dimensions. A model of limited

MIMD operation has been defined for this task, and simulations of the parallel vision

algorithms have been performed. From these scenarios, significant attributes of the

tasks which affect the parallel implementations have been observed.

* 4M

,v..

. '-. %°t

.*y*. .- :_

...~..... .•. ,%

CHAPTER 2

MODELING ARCHITECTURES: CLASSIFICATION SCHEMES

2.1 Introduction

Architectural classification and description schemes discussed in the literature vary

considerably in the level of detail in which they treat systems. Consequently, the dis-

cussion of the different schemes is divided into subsections according to the level of

detail. In Section 2.2, the general classification schemes of Feng [Fen72j, Flynn [Flyb6,

Fly72J, Kuck tKuc8O] and Shore [Sho73] are described. In Section 2.3, the more

detailed structural system level description notations of Bell and Newell [BeN71J (PMIS

notation), Hockney and Jesshope IHoJ81], and Giloi IGil81l are presented. lit Section

2.4, some description and classification methods for computer subsystems are described.

Included is Hindler's ECS notation fHan77b, Han8ij for describing processors and

Ramamoorthy and Li's pipeline classification scheme. Siegel, Mc~lillen, and Muteller's

[Sim7gaJ taxonomy and parameters for describing networks and Mceillen and Siegel's :.-

[MlcS8Ob] taxonomy for protocols are presented in Section 2.5. In Section 2.6, fune-

tional descriptions of computers are addressed in terms of instruction sets and1 data

types supported directly. Bell and Newell's 151' notation [BeN711 and (Giloi's Taxon-

omy IGill] are described. Finally, some recommendations toward combining a1 number

of the more effective schemes together to produce a comprehensive, hierarchical archi-

a--- - I1

. "sio and 2 .

2-2

2.2 General Classification Schemes

2.2.1 Flynn's Classification

The oldest and most widely used scheme for classifying parallel computers has

been proposed by Flynn [Fly66. He divides computers into four groups depending on

the number of concurrent instruction and data streams present. The simplest

configuration is that used in a conventional serial processor which is classified SISD for

single instruction stream - single data stream.

The first type of parallel system is classified as SIMD, single instruction stream -

multiple data stream. Typically, an SIMD machine consists of a control unit, P proces-

sors, M memory modules (M is usually > P), and an interconnection network. The

control unit broadcasts instructions to all of the processors, and all active processors

execute the same instruction at the same time. Thus there is a single instruction

stream. Each active processor executes the instruction on data in its own associated

memory module. Thus, there is a multiple data stream. The interconnection network

sometimes referred to as an alignment or permutation network or switch, provides a

communications facility for the processors and memory modules. A classic example of

the SIMD organization is the Illiac IV [BaB68.

The second classification for parallel computers is MISD for multiple instruction

stream - single data stream. In this type of an organization, a high bandwidth, dedi-

cated execution unit is shared by a number of virtual machines. The virtual machines, -

operating independently on different programs, each have access to the execution

hardware once per cycle. Thus there are multiple instruction streams and a single,

interleaved data stream. An example of this is the peripheral processor units (PPM's)

in the Control Data Corporation (CDC) 6600 (Tho70].
The multiple instruction stream - multiple data stream or MIMD organization is the

last type defined by Flynn. An MIMD machine typically consists of P processors and

M memories (M > P), where each processor can follow an independent instruction

......... . ..,

. %- .

2-3

°o - , r'

stream. As with SIMD machines, there is a multiple data stream and an interconnec-

tion network. Thus, there are N independent processors that can communicate among

themselves. There may be a coordinator unit to oversee the activities of the processors.

Flynn allows pipelined computers to be placed in the SIMI) category f1y721.

However, some researchers [llan77b, ilo.181J believe that pip)'lin('d c)mputers should be

in a separate category and it has generally been the (-as, that researchers using the

term SIMD exclude pipelined processors. Since Flynn's classification is very broad, it is

suitable for use only at the highest level in a hierarchical class'ih4iation.

2.2.2 Feng's Classification

Feng's scheme for classifying computer architectures is based on the number of

bits in a word and the number of words that are processed in parallel [Fen72]. These

two simple measures of a system form a two dimensional feature plane in which a given

computer is represented by a point in the plane. If x is the number of bits per word

and y is the number of words operated upon in parallel, then (x..y) ripresents the coin-

puter. For example, the Illiac IV that was actually built is rpresented by (61, 6-1).

STARAN [Bat74] would be represented by (256,1).

The intent of Feng's scheme is to distinguish among a variety of computecr designs

using two, easy to evaluate, features. The scheme is not, however, desigqed to expose

the structure of a given computer. Thus, in the case of the STARAN, it could be con-

eluded that it is a serial processor with an enormous word size- Tlh, ftl thIht it is a

powerful associative array computer is not readily apparent (',onlsquently, Feng's

classification scheme is not well suited for use at a high level in the hicrArchical scheme

to be developed. On the other hand, the features of bits per word and words operated

on in parallel are useful at a lower level of system description and will b- n'orporated.-

there.

"MOM"

. . . . **.* . ._.. . . .
. -.. °. ...

2-4

2.2.3 Shore's Classification

Shore divides computers into six classes or machines as illustrated in Figure 2.1

[Sho731. His motivation in defining these machines is to refine Flynn's classification. '.

Machine I consists of instruction memory (IM), a control unit (CU), a processing unit

(iPU), and a data memory (DM). The control unit fetches instructions from IM and the

processing unit fetches and operates on words from DM. This is the organization of a

conventional serial processor and corresponds to Flynn's SISI) classification. .
If the I)M in machine I is rotated 90 0, machine II is obtained. In this case, the

processing unit accesses the same bit of all words in memory, i.e. a bit sice. STARAN

is a good example of this type.

When parallelism is considered with respect to bits, Shore observes that there is

little difference between machines of type I and I. If the data memories are square,

performance will be the same in either case, In practice, however, there are typically

many more words than there are bits per word. Consequently, machines of type II are

cal)able of very high performance. It is partly for this reason that type II machines are

considered "parallel" (since parallelism usually implies greater performance) whereas

type I machines are not. Technically type 11's can be classified as SIIMD machines (and

are considered as such by Ilockney and Jesshope [lloJ8lJ) since there is one instruction

stream and multiple (albeit bit serial) data streams. Machine type Il is simply the

combination of types I and II and has been called an orthogonal computer [Sho70].

Although the STARAN is capable of accessing words or bit slices from its 256 by 256

data memory, it does not have separate processors for dealing with the two formats.

Thus it does not qualify as type IlI. The OMEN-60 series of computers do, however,

belong to this class [llig72j.

Machine type IV is obtained by replicating PU-DM pairs. Each pair is connected

to a single control unit. Since there are no connections between PU's, the only corn-

munication that can take place between PU's is through the CU. This configuration

- -

I - . .

2-5

aiii.

4ord-~~ 'I it

V) (1!) (II %

P.

P,~~ o P ,., oOPj PU

am.

F - -I -"

Mahn ,word- seralb t lll; , or paalelbtsra;t1,1ad1

com ineothgnlco ptr V unonetdara, ,cnnce

array; 'V * a f'

P p P1 P aP

I - 2] "-

;.U2-& 2

-I --I?

/.' ..-

-2-. -.--

2-6

has previously been called an ensemble. PEPE [ViC78] has an architecture very similar

to this except that there are three control units instead of one.

If near neighbor connections are added between the PU's in a type IV machine, a \.

* type V machine is obtained. The Illiac IV is such a machine. These computers are

often referred to as arrays as opposed to ensembles due to the processors' ability to

communicate with one another.

Since Shore's paper was written, considerable research has been done on intercon-

nection networks that provide processor communication [cf. AnJ75, Fen8l, Sim79a,

Thu741. Some of the methods that have been proposed are considerably more sophisti-

cated than the linear near neighbor connections illustrated by Shore. Since the

intended structure of the type V class is not altered by a more sophisticated connection

scheme, it is considered appropriate to include array computers with interconnection

networks in this class.

Finally, an array of logic in memory defines the type VI machine. Processing logic

is associated with each bit of memory. Such machines are fully associative processors.

Illustrating just how "fuzzy" the line between serial and parallel processors is,

Shore places the line between machine types I1 and IV and Hockney and Jesshope

place it between I and II. The primary shortcoming of this scheme, as was the case

with Flynn's, is the lack of provisions for pipelined designs. In addition, there is no

provision for MIMD type organizations. The conclusion (as reached by Hockney and

Jesshope [lIoJ8l]) is that Shore's machine types II - V are useful subdivisions of Flynn's

SIMI) category.

2.2.4 Kuck's Classification

Whereas Flynn categorized computers according to their instruction and data

streams, Kuck proposes to classify them according to instruction streams, instruction

type, execution streams, and execution type [Kuc78]. The instruction and execution

:: .:. : -. - .- ...*.- ..*- - . , * .- .
.* . . *.. * *

d, ' d: -' *m-- .- l" " * " "" " ". " -*-"-- " - • ' ' ' " , "

2-7

streams can be single or multiple and the instruction and execution types can be scalar

or array. The number of instruction streams is determined by the number of programs

that can be executed at once. It is assumed that each program requires a single register

in some control unit to point to the next instruction to be executed. There is no res-

triction on the interaction between programs in the sense that they may be cooperating J&

to achieve one final result. If the instructions used are essentially indistinguishable

from those of a conventional uniprocessor, then the instruction type is scalar. If

instructions explicitly refer to whole vectors or groups of operands (e.g. with base,

limit, and increment as in the Texas Instruments Advanced Scientific Processor (TI

ASC) [The74] or a vector register as in the CRAY-I [Rus78l) then their type is array.

The number of execution streams is determined by the number of operation types

that can be issued collectively at one time by all of the control units in the system.

That is, regardless of the number of copies of an operation type issued, the number of

execution streams depends only on the number of different types that can be issued

simultaneously. Traditional operation types (usually specified by a single op-code in a

uniprocessor) include store, load, fixed-point add, floating-point multiply, etc. The exe-

cution type is determined by the number of operands to which the instruction is "'

applied. For example, in the Illiac IV, scalar type instructions are fetched by one con-

trol unit and broadcast to 64 execution units. Since only one instruction type is broad-

cast, there is a single execution stream. However, 64 operands are acted upon, so the

execution type is array. The Illiac IV is thus classified as SISSEA or single instruction

stream, scalar instruction type - single execution stream, array execution type.

To recapitulate, to characterize a system using Kuck's proposed scheme four

parameters must be determined: the number of instruction streams (single or multiple),

the instruction type (scalar or array), the number of execution streams (single or multi-

*; ple), and the execution type (scalar or array). Since there are four parameters with two -'

possible attributes each, 16 categories are defined and each is physically meaningful.

.--.--...- ~~~~~~~~~~~~~~~~~...-. .. '.'.-......"... "' -"--'

However, not all categories necessarily lead to desirable architectures. Table 2.1 lists

the categories and many existing and proposed systems are shown as entries.
um.'

To a large extent, this classification scheme does a good job of separating different

architectures into different categories while those in the same category are very similar

in function if not in form. For example, in the SIAMEA category are the Burroughs

Scientific Processor (BSP) [Sto771, CRAY-I, Control Data Corporation (CDC) 7600,

and the TI ASC. The latter three all have multiple arithmetic pipelines whereas the

BSP has 16 non-pipelined arithmetic units. Despite the difference in architecture, all VW-

machine's capabilities are approximately the same; in each case there can be 32

operands in some state of computation at one time (assuming dyadic computations are

performed, i.e., there are two operands).

In the SISSEA category both the STARAN and Illiac IV machines are included,

yet architecturally and functionally they are significantly different. Shore classifies the

STARAN as type II (since it can be viewed as having a single processing unit with 256

bit registers) and the Illiac IV as type V. The simplest way to further classify these

machines would be on the basis of the number of processor units they have: single and

multiple respectively.

The PASM (SiS81a and TRAC [SeU80] machines are reconfigurable and thus are

listed in several categories. Their entries in categories not requiring all of their capabil-

ities are shown in parentheses. PASM's most powerful mode in MISMEA and TRAC's

is MIAMEA (i.e. TRAC's instruction set allows for explicitly referencing and operating

on vectors [KaPSO]).

Conceptually, data flow machines do not have instruction streams per se, only

data streams. However, proposed implementations (e.g. IDeB80) generally have some

kind of instruction cells that receive operands, combine them with an instruction

opcode and distribute the packets of data and instructions to execution units (the N

opcode may be simply the address of a single function arithmetic unit). Consequently

• .2. .. ° .. * . *° " . * . .' .= ° -• • . = .

7,. -7.

2-9

Table 2.1 Kuck's 16 Categories of Computer Architectures

SINGLE EXECUTION MULTIPLE EXECUTION

TYPE SCALAR ARRAY SCALAR ARRAY

ILLIAC IV

SCALAR PDP 11/45 STARAN CIX'6600 ONIEN-60

(PASM) CPU

SINGLE (TRAC)

INSTRUCTION

CRAY- I-

ARRAY ZILOG Z80 CYBER NONE liSP -

203/205 KNOWN CD)C 7600

TIASC

BU1RROUIGHS V%11 DENELCOR IILIP

SCALAR CDC 6600 NONE DATA FLOW PASNI

PPIU KNOWN (PASNI) (TRAC)

MULTIPLE (TRAC)

INSTRUCTION

PEPE

ARRAY UNDESIRABLE NONE NONE CDC NASF

DESIGN KNOWN KNOWN TRAC

.~~ ~ ~ ~- -. .- -. .- -. .-.. .. .

2-10

there are multiple instruction streams which coincide with the execution streams.

There are four categories for which tiere are apparently no existing or proposed

machines: SIAMES, MIAMES, MISSEA, and MIASEA. The first two categories imply

an architecture in which single or multiple array type instructions are issued such that

many operation types, to be applied to one pair of operands each, are specified by oe

array instruction. This represents an unusual instruction set which would be most

likely found in a special purpose application, if it exists.

The MISSEA and MIASEA categories fall into the broader category of MISE

machines - multiple instruction stream, single execution stream. This architecture

implies that several instruction streams are interleaved on an instruction by instruction

basis. An example in the MISSES category is the peripheral processing units (PPU's) in

the CDC 6600. There are no known examples where this is done for array type instruc-

tions or arrays of operands. Indeed, this type of architecture is only appropriate when

the execution units operate considerably faster than the rate at which instructions are

issued by one control unit. In the MIASES category, it is very unlikely that streams of

array instructions would need to be merged to keep a single execution unit busy.

In the SIASES category an architecture is implied in which array instructions are

issued but execution takes place one operand (pair) at a time. This is useful for

compressing the instruction set. An example is the Zilog Z80 microprocessor which has

block move instructions. An array of data is to be moved, but it is done one element

at a time. Such an instruction saves time since it only has to be fetched once.

Kuck's scheme is the most powerful of the general classification schemes examined.

It is. however, more cumbersome to use. Thus, when no ambiguity will result, Flynn's
.*ter.

scheme will be used in general discussions. When clarification is needed or a discussion

is more detailed, Kuck's scheme will be used. & ._-.

Mae * . .

* *..

•-.. . .-..

.--.,• --. -.- .- . . -. -- -. . * - .. . - ..- .

2-11

2.3 System Description Notations

System description notations are designed to indicate explicitly the architectural

features of a given system. The three notations that are discussed here are (1) Giloi's .

notation [Gil8IJ; (2) processor-memory-switch or PMS notation [BeN71]; and (3) Ilock-

ney and Jesshope's notation [HoJ81] (which will be referred to as lIOJ notation). .- _

Giloi's notation for describing architectures is not as detailed as the other two. I'MS V W

and IIOJ notation are comparable in their descriptive power but there are important

differences that will be described. All three notations are hierarchically organized and

thus can be used to describe systems in varying levels of detail.

2.3.1 Giloi's Taxonomy

According to Giloi, [Gil81] there are two major features of a computer architec-

ture: hardware structure and an operational principle. The latter deals with the instruc- -.

tion set implemented and data types that can be directly manipulated. This aspect of

the architecture will be discussed later (Subsection 2.6.2). The hardware structure is

defined by the type of hardware resources and their number, an interconnection system,

arnd a set of cooperation rules. Hardware resources include processors, memories, and .

peripheral devices; the interconnection system is comprised of all physical means by

which hardware resources communicate; and cooperation rules govern communication

and synchronization among the resources.

The hardware structure is specifically subdivided into a processor structure,

memory structure, and communication structure. The processor structure can contain a

single or multiple)rocessing sites. A single processing site consists of a conventional

CPU, a multifunction)rocessor, or a pipelined processor. Multil)le processing sites can

be arrange(d as an array of processing elements, a multiprocessor system, or a multicom-

puter system. Typically, a multiprocessing system consists of an array of processors

Which may vach have some memory associa ted with them, wh,,se primna ry purpose is

." , , ° °• , • ° ° ° , . . ," • . .. " " ., % . ', • °- . . ° .• '.* ' • 4" .° - . " 4 4 % . .• - . • ° • .

* 2-12

task execution. A multicomputer system consists of a number of computers that are

linked together, where each computer contains a processor and its own memory. In

addition, each may have I/O facilities and/or disk storage. .' .-

The memory structure consists of private and/or shared memory. The communi-

cation structure consists of memory sharing, a message switching bus, a message buffer

memory, or a connection network. The cooperation rules used by multiple resources

can implement a Master-Slave relationship, data flow, or cooperative antonomy.

Giloi's taxonomy is a useful way to view the components of a system at different

levels of detail. However, there is no provision for explicitly indicating how the

resources are connected together. Furthermore, the level of detail to which a system

can be described is limited.

2.3.2 Bell and Newell's PMS Notation

Processor, memory, switch or PMS notation has been proposed by Bell and Newell

[3eN71 for naming, describing, and interconnecting the parts of a computer system.

The name of the notation comes from three of the primitives or basic component types

used in the notation. There are a total of seven primitives:

M: Memory is a component used for storing information. It is not capable of

altering the information it is given to store.

L: Link is a component that transfers information from one place to another

without altering it.

S: Switch is a component that constructs links between other components. It has

an associated set of L's that it enables or disables to make required connec-

tions.

...................- . .,

2-13
,%

D: A component that performs data operations. It can create an(l alter informa- . ,

tion. A classic example of this is ar. arithmetic unit.

K: Control is a component that evokes discrete operations of the other component

in the system. With the exception of a processor (I'), all the other primitives

are passive and require activation by a K component.

T: Transducer is a component that transforms information without altering its

meaning. For example, it might convert data from bit parallel to bit serial

form.

P: Processor is a component that is capable of interpreting a program in order to

execute a sequence of operations. Technically, it is not a primitive since it can

be constructed from M, L, S, D, K, and T's. However it is such a fundamen-

tal part of systems, it is treated as a primitive.

The external environment is denoted by the symbol X. Components are connected-

with solid and broken lines (see Figure 2.2). Solid lines indicate flow of data and bro-

ken lines indicate transfer of control information. Lower case letters following a primi-

tive symbol are used to differentiate between different types of a given primitive. For

example, Pc is a central processor and Pio is an input/output processor. Nip is a pri-

mary memory and Ms is a secondary memory. A basic computer, C' is dfine] as:

C Mp-l'c-T-X.

This notation is not usually linear. For example, if Pc is expanded into its co)-

ponents, the structure shown in Figure 2.2 results.

A considerable level of detail can be achieved by describing the att ib,.|es (f a-

component in parentheses, adjacent to its symbol. For example, the Iroces 'r in AII

IBM 370/165 can be represented as 11WN711]: .

Pc (model: '165; cycle time: 8Ons; data paths: 61 bits; coling: %kater).

An attribute such as the type of cooling use(d is useful for documentat i,, purp,,s,a, ltI

2-14

M -D -T -X

K

*Figure 2.2 Basic Structure of a Computer Using Primitive Components of PMS
Notation

2-15

is superfluous with regalrd to evaluating the architectutre's ab~ility to execute an algo-

rithm.

A rigorous definition of PIMS notation is given in the appendix in IlBeN7l]; it is too

lengthy to include here. As an example of the capabilities of this notation, a dletailedl

description of the Digital FEquipmnent (iorporat ionll1I- is sho;%ni lin [iguire 2.3. The

main drawback to this notation is readily apparent fromi tho figuire: it is two dimien-

sional. It does not lendl itself to being embedded in text or stored in a computer (i.e.

for analysis of the represented syst em's capabilities), 'rlie not at ion p~reselite(l(in the -

next section solves this problemn.

2.3.3 Hockney and Jesshope's Notation

Ilockney and Jesshope have developed a notation specifically designed to allow a

One-line Or feW-Jine dIescrip~tion of ain algebraic style aui ei ide~ to pr intin g aniid en try

into a computer [1 loJ8 1]. 110.1 not at ion represents a compu~it er as a wnib ler of fune-

tional units that man ipuilat e dIat a, are corneced by dat a paths. and inret cont rolledl by

instruction units. I. sinig their not at ion, a sim ple serial c im put er is repr(eented byv:

This means that the comnput er, C, consists of a single instruct ion unit, that controls the

units in brackets. TIhose units are an ex ecution unit, E', thant performs anthmiet iC, con-

nected to one memory unait , NI, by a sin gle pathi (the, sed l i) There are a totalI of 20

rule types that define symnbols, govern their use, and litow t Ihev nre- (i I)e co'nnect ed. A

summary of them is given belo0W -1long" wit h sO11 :1te ' ;ai lS~

B3: B~oolean, integer, or fixed-point exet-itiii il~t

76 7 6 - -c-.7

2-16 -

r5 r

0-a%

T. consoe -

is(017)K - T(Teletype; 10 char/s; 8 b/char; 64 char)-

17at. Oreik;" ' K 'paper tape; (reader; 300 char/s)I (punch - "'°. "

I
1
0
0

char/s): 8 b/char J

e j K incr mental point plot; 300 point/s;

ra. Ac~e~en/point]

SK T(card; reader; 2001800 card/mn)-
S"04 Data 1 T(card; punch; 100 card/min)-

ruirplesor K fline; printer; 300 line/min; 120 col/linel
radial; 4 char/col-'
Lrom:7 PK; K CRT: display; area: lO x 10 In215 $ 5 in -

o: Mp130 s/point; .01 .005 in/point -F

K T(light; pen).

K . T(Oataphone; 1.2 - 4.8 kb/I)-

K(Il:l0)-L(analog; output; 0 - o-0 volts)-

K- 5--(0:63; analog; input; 0 - -10 noits).-

K- 5 K(0tO:63; Teletype; 110. 180 b/s)-

K -. S -M #Ui;7; bEC~ape; addressable magnetic tape; ch-r133 ps/w; length: 260 ft; 350 char/in; 3 b/clar

:K.....S_.#... 0:7; magnetic tape; 36 LaSI75 1112.5 in/s:

L200,55
6
,800 b/in; 618 b/char "

K- S_ S0:3; fixed head disk; tdelay: 0- 17 ms;
J6 vs/w; 32768 wM]16 I*/w; 262144 w /
(12.1 parity) b/w (

P(display; '338) T(00:3; CRY; display: area: 10 x 10 In2)-.
7(10:3; light; pen)-'

L T(,0:3; pish buttons; console).-

P FLaboratory 1 ..console

instrument msF, O:I; LINC.tape; addressable magnetic tape
7
-

Comnputer/LlIC L6.25 knu/S: 2 J
T(00:15; knobs, analog; Input).-

T(CRT; display; S x In
2
)
-.

T(dlgital; Input. output)-

T(Oata Terminal Panel; digital; Input, output)-

'*lcore; 1.5 na/in; 4.096 w: (12I?)b)

aS('ery Bus)

Pt(I .2 n/instruct;on: data: . i bv. I b/w: MProe.ssor stati e2 -. 3.) -; technlooy: transistors;

antecedents: POP-5; descendants; POP-SS, PoP-81, POP-L) 2

S('l/O Bus; from; Pc; to. 6 K)
IKII - 4 Instructions; PI.buffer(I char -2 w))

Figure 2.3. PMS Diagram of Digital Equipment Corporation PDP-8 (from [BeN71)

.. " "..

."

.i* .. **.**.-.*..*... . .

" " " " " " " ' ' " " " " " " :" " : : " " : " ° " " -' ." a -""

- '~. L . . .- _.l !, l.: ,-,-- ._-r ..-. _..:..._. _ __;

2-17

C: A computer containing at least one I unit.

Ch: An 1/0 channel that can operate independent of other units.

D: An I/O device (e.g. disk). Its type is specified in parentheses. -W1 V,

E: An execution unit (i.e. ALU). Can be specified s an F or 13 unit.

F: A floating-point execution unit.

H: A data highway or switching unit. It does not alter data other than to .,-,

possibly reorder it (e.g. the Flip network in STARAN [Bat761).

I: An instruction unit. It decodes a single instruction stream and sends

commands to execution units within its scope of control. Instructions are

sequenced with a single instruction counter.

10: An interface to an I/O device.

M: A memory unit for storing data and/or instructions (e.g., registers, cache,

main memory).

0: An orthogonal memory (two dimensional).

P: A processor with at least one execution unit but. no instruction units.

U: An unspecified unit. To be used when the unit to be described fits into

none of the above categories. A description is placed in parentheses adja- .:W-

cent to the 11.

Xp: A pipelined unit (X is one of the above)

Iv: The I unit can interpret vector instructions. (v is the last symbol if the

unit is also pipelined, i.e. lpv).

Xn: n is any integer, used to differentiate between multiple units of the same

type, e.g. lpvl, lpv2.

nX: n is an integer indicating the number of units of thw same type that may

operate simult aneously.

-7- . •
' ~~ ~~. °° -",' . - . °.- -. -' .° ao . .- . . •. •- . .. •' . • •. o. .".. .

**.,,'' " "- "-" ""%-". o" """ ." -.%., ," ,' ." .,"." ,, .. " ,' ." *- ' .• . . . • .a , . • . ,

2-18

nX: Indicates that multiple units of the same type are identical, e.g. 64P

represents 64 identical processors as in the Illiac IV [Bou721.

{-pr}: Indicates identical replication of a group of units defined by expr, e.g.

64{E-M) represents 64P in expanded form.

{X,...,Y): A group of units that can operate concurrently.

{X,Y,Z)p:Units or operations (e.g. memory read) X, Y, and Z that operate or are

executed in an overlapped (pipelined) fashion.

{X/.../Y):A group of units that can only operate one at a time.

Example: {4FI/BI; 4F1 {F(+),F(*),F(1/x),Fsqrt)}; BI -{B(+)/B(shift)}. This

illustrates four floating point units that operate concurrently relative to each other, but

sequentially with respect to a fixed-point unit. The floating point units consist of add,

multiply, reciprocal, and square root units. The fixed point unit can perform an add or

a shift but not both at the same time. m_.

Xb: Subscript b is the number of bits on which unit X operates, X $ M or 0.

nMwsb: n is the number of one dimensional memory banks, each of which con-

tains w words, b bits wide.

Ow.b: An orthogonal memory w words by b bits in size. It either delivers a b

bit, word-slice or a w bit, bit-slice.

"Xt: t is the characteristic time of the unit in nanoseconds unless otherwise

noted. If X = I, t is the clock period, if X = E, t is the average execution

time, and if x = M, t is the access time.

An unspecified connection.

wit.-]....

*AA~% ~ ~... ~ . -~. :.-.-.--.. .. : *A! A- .

2-19

->,<-: Unidirectional connections.

<->: Full duplex connection.

<-/->: Half duplex connection. ..

t is the transfer rate of n identical buses with d data bits and a addressD*{d+a)

bits each. M

Example: Complex communication structures can be defined in a nested fashion

using the highway type: H3 = {{-->,<--}/<--}. The bus denoted by 113 can

be operated with 16 bits travelling each direction or with 32 bits travelling to the

left. That is the direction of half of the bus can be reversed.

X - Y - Z: Series connection.

-XI: Connection on the left but not the right (I is optional if there is no
ambiguity). :::::

IX -:Connection on the right but not on the left.

-{-X-,-Y-)-: Units X and Y are connected in parallel.

-{X,Y}: Group of units that can operate concurrently, connected to a single '-'-..

bus in an unspecified way. --I -

-{-X- / -Y-)-: Two parallel paths that can be used only one at a time.

Example: Very complex structures can be specified using this notation. The struc-

ture illustrated in Figure 2.4 is represented by the expression:

Xl-{-X21 ,X - - 7 K } ,{X -- S X - - - /- -}X .. ".-

X-a: A unit can be attached to a connection point represented by a lwer---•

case letter. This is used for connectinig very mnIplex strtrs. "'

, ,.-

2-20

l.p

X2

X3 X7

X1 X X8 X9

Figure 2.4 Hypothetical Arrangement of Nine Functional Units

'* -

2-21 ~'.

X-{a,bc}: Unit X is attached to connection points a, b, and c. .

nXl-nn: n units with first near neighbor connection, i.e. four nearest neighbors. .. "'.

n " Second nearest neighbor connection is used, i.e., to the eight nearest

neighbors.

nX°-nn: There is no connection.

nX x mY: Cross connection between nX units and mnY units via a crossbar or

switching network.

(Comment): Comments are placed in parentheses and used to clarify descriptions or

how connections are to be made.

Example: A memory hierarchy could be represented by:

Ml 0(bipolar) - M2s°°(CMOS) - Di(lms)(fixed head disk).

A system with the Generalized Cube multistage interconnection network ISiM81b"

could be represented as:

64E x (Generalized cube) x 6-."

P = E - NI: Simplest form of a processor; there is no I unit.

C = I[E - MJ: Simplest form of a computer. Since it. contains an I unit, it can

control other units. For example, ([1IAP represents a computer . .

with control over 6-1 identical processors.

X1 I.: Control is asynchronous; X{l,C} -'-

X[Ih: Control is horizontal. One instruction controls several different .

units at, each cycle.

X[b: (ontrol is lockstep or synchr,, omi

.- .- .

2-22

X[]r: "Issue when ready." An instruction is issued when the execution

unit and required registers are available, e.g., the CRAY-I [Rus78]. M

A complete formal specification of IIOJ notation in Backus Normal Form (BNF) is

given in the appendix in (lioJ81.

This notation is very powerful and well suited to representing those features of an

architecture that determine how well an algorithm will execute on it. Table 2.2 illus-

trates 1OJ notation's ability to represent a wide variety of systems and its compatibil-

ity with Kuck's classification scheme. Kuck's 16 categories are listed and a representa-

tive structure is given for each in IIOJ notation. Where an example system is included

for a particular category, the IIOJ representation is given specifically for that system.

The correspondence between Kuck's four features and notational components of

1IOJ notation is apparent from Table 2.2. The number of I units determines the

number of instruction streams. The presence or absence of a "v" on an I unit deter-

imines whether the inst ruction type is array or scalar, respectively.

The number or E units determines whether the execution type is scalar or array.

it all E units in the system are identical (i.e. there is a single E, F, B, or P in the

representation then there is a single execution stream. It there are multiple, indepen-

dent execuition units (e.g., one I unit and multiple E units or multiple identical C units)

then there are multiple execution streams. Because of this relationship between HOJ

notation and Kuck's taxonomy, once a system has been described in HOJ notation

tven at just a coarse level), it is very easy to classify.

2.4 Processor Description

Some research ,n cla.ssitjcation methods has concentrated on specific portions of a

coniputer syslem. I)escribedl below is liindler's Erlangen (lassification Scheme (ECS)

[Ilan77b, ilanlJ which concentrates on processors (conputers according to IIOJ

67- ,

2-23

Table 2.2 Relationship Between Kuck's Taxoniomy and~ I Iockney and Jesshope's
NotatiOn

CA TEG OltY EXAMIPLE SYSTEM REPRESENTATIVE STIU'(TtTIE

SISSES 113M 7090 I!F, -Nl

SIASJLS ZIIA)G Z80 hIV -,;li \ 1 I98 \6 4K.S .

MiISSES CD)C 660() ITUblE-

MI.*SES io1IIE: - Ni]

NIISSEA 5j1f

MIASEA 51V13 I'll

SISMES CD)C 6600 I~*F,6BI - :12\ - lOPIr

SIAMIES vIE-2M

MISMES BUTRROU[GhS C CI -C2 - 512T3 (OMEGA NI;T rWoRK) x521M; -

('3=Ip J[FB) - N1J 2K.., (AL.SO 7 1P11 SECIEI)]

MIAES256C v .(ADNI NETWORK) -256M

SISMEA OM1EN-64 1 I4- 1 O4 1 -E~

SIAMEA CRAY-I IV 1
2[1E'iM 0 r 2p{F~,91

CI(IIOST)-C2-16U3{', (MULTISTAGENETWORK), -C4;

C3 = C516-1I'll /C5 - 6.I{I(1W))

MISMEA PASMI C5=12lB-{M(A)/N(B))}; Il=-M(A)/M(B));
C4 =64C (NfSU)-5C(MEM(IIY MANAGEMENT);

C(MSUI)=C6 - I)(IISK)

*MIAMEA TRAC 16Cv1 8 I(SW-3ANYAN, S=2, F=3)x (MIO);

_________ _______________(MIO)={64P, 1610, D(DISK)}; P=1-MK.8

-N

2-24 1

terminology since I units are considered) and their structure, ignoring memory and

interconnection. The ECS takes all forms of pipelining explicitly into account. Also ol__

discussed is Ramamoorthy and Li's classification of pipelining methods [RaL77].

2.4.1 Hindler's Erlangen Classification Scheme

The main purpose of the ECS is to account for all forms of parallelism in the sys-

" tern to be classified. As with the approach taken by Shore (see Subsection B.3), the

basic unit of information considered is one bit. The processing hardware associated

with one bit is called an Elementary Logic Circuit (ELC). This is the lowest level of

processing that is distinguished. The next higher level of processing is that of the

U. Arithmetic and Logical Unit (ALU) and the highest is that of the Program Control Unit

(I'CiJ). The IC1J interprets program instructions (one at a time) and issues directives

to one or more ALUs. Each ALU executes the directives or microinstructions.

U Nicroinstructions are made up of microoperations which initiate elementary switching

operations that are performed by ELCs. The number of PCUs, ALUs per PCU and

EIXs per ALAT form a triple denoted by (k, d, w). A very simple early computer called

MINIMA [ilan77b] is classified by the triple (1, 1, 1). A conventional serial computer

s||ch as the IBM 701 is classified as (1, 1, 36). The Illiac IV is (1, 64, 64) and the

STARAN is (1, 256, 1). This information is directly imbedded in HOJ notation. The

classification (k, d, w) corresponds to the IIOJ structure: kW; C = I[dEw - MI. (Note:

this specification is not the same as klldEw2- Ni] because this implies that k I units

* have control over d E units. To be equivalent, braces need to be inserted:

klIdEw - Ni]).) The -NI means that the 1" units are connected to memory of an

unspecified configuration. In the case of the Illiac IV, for example, the computer would

be specified as: C lI dE'W - M}].

lindler notes that each of the components in the triple can be pipelined. Pipelin-

ing at the ELC level corresponds to arithmetic pipelining as in a pipelined floating

=/ . .--i'1 .- .. .:i.i.i..i .. . - .i- -. --.' : 1..'-' : .- i i- -i-. -

*~~~~~~~~~~~~~~~~ 7-7- 77 P ~. .. . -. .' .- . --- - - . - . .. 77 7P 7 -7-..

2-25 '

point unit. Pipelining at the ALU level is instruction pipelining and at the PCU level

is called macro-pipelining. The number of units that operate concurrently in a pipe is ZI E
indicated by the variables w', d', and k', respectively. Incorporating these parameters

into the triple yields (k x V, d x d', w x w'). This takes both horizontal (multiple

units) and vertical (pipelined units) forms of parallelism into account.

In HOJ notation, ELC level pipelining is indicated by a lower case p that irnmedi-

ately follows any execution unit symbol (e.g. Fp). It does not indicate the number of

stages in the pipe, though the number of bits is included. A useful addition to the -

notation is to include this information in the form: XW* w , where X(l{',F,B}, w is the

number of bits and w' is the number of stages in the pipe. If w' is undetermined or not

known, then the form Xpw should still be used.

Hindler measures the degree of instruction pipelining in terms of the number of

independent function units available to execute an instruction. Thus, tle CDC 6600 is

classified as (lxl, lx10, 60xl) since there are ten different arithmetic units. Instruc-

tion pipelining occurs because one instruction is decoded before the previous one is

finished. If the second instruction does not need the same function unit and is indepen-

dent of the first, it can begin execution immediately. Fetch, decode, and execute cycles

are thus overlapped. The d' parameter measures the amount of hardware involved, but

it does not indicate the level of speed up potentially possible or typically obtainable. In

the case of the 6600, typical speed up is a factor of 2.6, not 10. For the purposes of

this report, it would be more useful if d' measured the number of stages in an instrue-

tion pipe.

In 11OJ notation, the parameters d and d' as defined by "inder are incorporated.

The d' measure is implied by multiple, non-identical execution units, e.g., d'E, whereas

d is implied by identical units, e.g., dE. IIOJ notation can easily be extended to allow

the number of stages in an instruction pipe to be added as a subscript on an I unit in

the form |beb', where b is the number of bits and b' is the number of stages in the pipe.

S-. ,.. :

2-26

'Pb is to be used when b' is unknown or undetermined.

Macropipelining can be performed when a set of data is to be processed sequen-

tially by more than one task. Each task can reside in a different processor. As the first

task produces results, they are placed in a memory to which the second task also has

access. The second task can begin processing intermediate results before the first task WE

has finished, and so on. In the case where no results are available from a task until all

results are, if there are several independent sets of data to be processed (e.g. a sequence

of images) this method is still effective in speeding up the process time.

Macropipelining can be indicated explicitly or implicitly in HOJ notation. If the

macropipelining factor is k', then it can be represented explicitly as k serially linked

computer/shared memory pairs. For example, for k' = 3:

CI-> M-> C2-> M-> C3-> M.

Macropipelining is represented implicitly by the structure:

k'C x (NETWORK) x k'M.

Depending on the implementation details, as long as the computers operate indepen-

dently, macropipelining can be achieved on this type of structure. This structure is

more flexible than the previous since it is not limited to macropipelining.

The last aspect of ECS is a method of indicating combinations of different comput-

ers and those whose structure is reconfigurable. Two operators are used for the former:

"+" (concurrence) and "x" (pipelining). The operators are used to connect triples.

For example, (4, 1, 16) can also be represented as -.. -

(1, 1, 16) + (1, 1, 16) + (1, 1, 16) + (1, 1, 16). The concurrence operator is most use-

ful when the computers are different. A good example of the pipelining operator is

illustrated in the representation of the CDC 6600: (10, 1, 12) x (1, 1 x 10, 60) (pipelin-

ing terms are omitted from a triple when pipelining is not present). The term on the

left is for the peripheral processing units (PPUs) through which all programs must pass

.-:...:..-

2-27

to be executed by the main processor...z,

The "V" (logical OR) symbol is used to indicate different, configurations of the

same hardware. For example, the C.mmp system [WuH72] is represented as

(16, 1, 16) V (I x 16, 1, 16) V (1, 16, 16). For reconfigurable systems like PASM "

(SiS81a), TRAC[SeU80, and the Dynamic Computer [KaK701, this notation becomes

cumbersome because of the large number of possible configurations. For example, the -

Dynamic Computer has a variable word width in multiples of 16, which is the number

of bits contained in the basic computer. In a size N dynamic computer group there are

2N -1 ways to configure the system into from one to N independent virtual computers of

varying word sizes. In addition, the independent virtual computers can be linked "

together in a wide variety of combinations. Expressing all the possibilities in ECS

would be tedious and of questionable value.

The preferred approach is to represent reconfigurable systems in IIOJ notation in

sufficient detail to expose the legal configurations. For example, the structure for

PASM in Table 2.2 shows two mutually exclusive configurations for a C3 computer.

Since there are 16 C3 computers, there are 216 = 64K (K = 1024) possible

configurations. Thus the number of configurations can be derived from a sufficiently - -

detailed HOJ representation.

2.4.2 Ramamoorthy and Li's Pipeline Classification Scheme

In [RaL77], Ramamoorthy and Li distinguish between two levels of pipelining that

correspond to thindler's level 2 (instruction) and level 3 (arithmetic). They further dis-

tinguish between unifunction and multifunction pipes. The former is capable of per-

forming only one kind of operation, e.g. multiplication. The latter can perform several

different operations, e.g., floating point addition and subtraction. Multifunction pipes

can be subdivided into static and dynamic categories. A static pipe can only perform

one operation at a given time. Thus all instructions wishing to use a pipe at. the same

- - .7-•- • .

* .*.?°(-°.°

2-28

. time must use the same configuration. A unifunction pipe is static by definition. A

dynamic multifunction pipe allows overlapped processing among instructions using

different configurations. The control of a dynamic pipe is much more complex than

that of a static pipe.

The last distinction is between scalar and vector arithmetic pipes. Scalar pipes

accept operand pairs as they become available from the instruction unit. Vector pipes

are augmented with hardware specifically designed to accommodate vectors or arrays of

numbers stored sequentially in memory. They are usually equipped with registers for

storing base addresses, offsets and vector length. The main advantage of a vector pipe

over a scalar pipe is simplified address generation which leads to faster overall execu-

tion.

These additional parameters can easily be incorporated into HOJ notation either

formally or informally. Informally they can be included as comments with the pipe-

lined unit. For example:

lv[{Fp(+, - *, + dynamic, vector),Bp(+ - *, static, scalar)} - M, ..

Whether the unit is uni- or multifunction is implicit in the list of functions it can per-

form. The specification can be made formal (and more compact) by replacing the "p"

with two lowercase letters. The first is a "d" or an "s" and the second is a "v" or an

"s." The previous example becomes: .". .

Iv[{Fdv(+,-, *, +), Bss(+,-, - MIr

If any of the execution units are vector type, then the I unit has vector instruc-

tions. The converse, however is not true. For example, the structure Iv[10{F-M}] is

possible.

• . ".*.

".. -* °•. o.o.........--]]

2-20

2.5 Interconnection Network Description

In this section, ways to characterize two different aspects of interconnection net-

works are discussed. First, their structure is examined. A taxonomy used by Siegel, .,

McMillen, and Mueller [Sim79a is described. Also, parameters they used to compare a .-1.'

variety of networks are discussed. The second aspect of interconnection networks

addressed is protocol. A taxonomy of network protocols proposed by McMillen and

Siegel [McS80b] is presented. In the chapter that follows, multistage interconnection

networks are surveyed extensively.

2.5.1 Siegel, McMillen, and Mueller's Taxonomy and Parameters

In their survey of interconnection methods, Siegel, McMillen, and Mueller [Sim79a]

organize the networks to be discussed according to the taxonomy shown in Figure 2.5

(the single stage category has been added for completeness). The classifications are

based on the differences between physical implementations. Before discussing the tax-

onomy, it is useful to define what is meant by "path" and "switching element.." Ander-

son and Jensen [AnJ75] define a path as the "the medium by which a message is

transferred between the other system elements" (e.g., wires or buses), and a switching

element as "an entity which may be thought of as an 'intervening intelligence' between

the sender and receiver of a message." Networks can be described by the type of

switching elements used and the paths between switching elements.

As shown in Figure 2.5, interconnection networks can be separated into staged and

direct path categories. In a staged network, a message typically passes through a

number of switching elements on its way to its destination. These networks can always

be designed so that the path between switching elements is dedicated to the pair con-

nected [McS82b]. In a direct path network, aside from interfaces, a message typically

traverses paths only in moving from one processor to another. In the case of a

hierarchical organization (which is discussed further lbelow) a message may shift levels.5-.

-

2-30

IV

U%

C6

00

1-40

M 06

Z 8..

.

2-31

via a mapping element which is considered a switching element (e.g., the (,I* system .

[SwF77]). In this case, however, many switching elements usually share one path. In a

direct path network, it is possible that a message would have to pass through infer-

mediate processors on its way to its destination. Assume all the networks to be dis-

cussed have N inputs and N outputs.

Staged networks are subdivided into the single stage and multistage groups. A

single stage network consists of one column of switching elements. Paths are arranged,

connecting outputs to inputs, so that a message can be routed from any input to any

output by recirculating enough times through the network. Such networks usually

have a small upper bound on the number of passes required (e.g., log 2N). In this type

of implementation, no intermediate processors are involved in handling a message

between source and destination. Examples of this are in [ChY82, LaS76].

A multistage network consists of several columns of switching elements. Such net-

works usually have at least logbN stages or columns where b is the number of input or

output ports of one switching element. These networks can be further divided into

cube type and PM21 type. These types and many examples are discussed in detail in

the next chapter.

Direct path networks can be subdivided into dedicated path and shared path

groups. A dedicated path network has direct links between pairs of processors. Typi-

cally, a message has to pass through several processors to reach its desired destination. :..

Only in the case where all processors have a direct link to all other processors (fully

connected) do messages totally avoid intermediate processors. An example of a systemj

with a dedicated path network is (IIOPP [SuB77]. Control of such networks can be

centralized or distributed via routing tags (as is done in II()I)).

A shared path network is typified by a bus where several devices (e.g., [)rocvssors)

share its use via time multiplexing. Shared path networks are subdivided into linear, -.-..-

hierarchical and crossbar configurations. A single bus or multiple buses at the same

.-- '.- i -L -.°. - . . . --..- .-..

2-32

level form linear shared paths. When several buses are combined so that high level .

buses carry traffic between low level buses the configuration is hierarchical. A switch-

ing element is usually required to switch traffic between levels. When there is a bus for

each input and each output, totaling 2N buses, with a crosspoint (on/off switch)

between every input and output bus, a crossbar structure results.

There are mathematical functions called interconnection functions (that will be

described in detail in Chapter 3) that can be used to describe the pattern of connec-

tions used in a network. Two such functions are the "cube" and "PM21" (plus-minus

2I). it should be noted that different classes of networks can be based on the same fam-

ily of functions (e.g., single stage, multistage, and linear direct path networks can all be

based on cube functions).

Parameters that can be used to describe or quantify a network as described in

(Sim79a] are summarized as follows. The communications setup method is the method

used to establish an interprocessor communications path. Delay is the time it takes a

network to transfer one data item from a source to the desired destination. The ease of

use of a network is the degree to which connections are automatically established. The

cost of a network is the asymptotic complexity of its implementation.

The partitionability of a network is its ability to divide the system into indepen-

dent subsystems of different sizes. Partitionable systems may be characterized by any

limitation on the subset of processors which may belong to a partition. Furthermore, a

systeni may be logically partitioned using software techniques or physically partitioned

."* using hardware switches within the network control structure. A network is homogene-

ous if it treats all processors similarly. Modularity is the ability of a network to be con-

structed from a small set of basic modules. VLSI compatibility is the suitability of a

module to be implemented as an LSI chip, i.e., high-circuit complexity and low external

connection requirements. The extensibility of a network is its ability to be extended to

a larger size, i.e., the amount of modification needed to make the network function for

.....-- ,....-.... ,......,........ .:...,..,.... . .

2-33

a larger number of inputs/outputs. Fault tolerance is measured in terms of a system's

features which would allow the system to remain operational with faulty components

(with possible degradation).

Let m be the number of processors which can transfer data simultaneously using

the interconnection network. Then the degree of simultaneity supported by the inter-

connection network is S = m/N, 1 < m < N. Permutations are one-to-one connec-

tions in which all processors participate. For networks with N inputs, N outputs, and

S=I, let r be the number of permutations possible in a single pass through an intercon-

nection network. Then the connectivity of the network is C=r/(N), l<r<N!. The

ability of a processor attached to the network to broadcast a single data item to all

other processors can be measured by the broadcast scope. Let b be the maximum -

number of other processors which can receive data simultaneously from a given proces-

sor after one pass through the interconnection network. Then the broadcast scope is

B=b/N-1). The broadcast delay is the number of transfers required for a complete

broadcast. The range of a network can be measured by R=x/(N-), where x is the

order of the set of processors (i.e., the number of processors) from which a single pro-

cessor can choose to send data to in one pass through the network. The range can be

further characterized by specifying the set of processors which can be sent data. Simi-

larly the domain of a network can be measured by D=x/(N-), where x is the order of

the set of processors a single processor can receive data from in one pass through the

network, and can be further characterized by specifying the set of processors which can

send the data.

The parameters likely to be the most useful in determining how well a computer :. -

using a given interconnection network can perform a given algorithm are delay, ease of

use, partitionability, and simultaneously. Other parameters which may be useful are *.,

connectivity, broadcast scope and delay, range, and domain. They may be more useful

in a different form, however. For example, a measure or characterization of the -

:°.. - .: ...

• °. °.° ".

-...:. -. .:.:. .. -.-. ... - .:. .: .i - -.--.° •...-. .
.:-..:.-:...-

2-34

A -1.

network's ability to broadcast to a subset of all possible destinations may be more use-

ful than the broadcast scope measure.

2.5.2 McMillen and Siegel's Protocols

There are two basic kinds of switching that can be used in an interconnection net-

work, circuit switching and packet switching. Circuit switching is a mode of communi-

cation in which a complete path is established from an input port to an output port

before any information is transmitted. Packet switching is a mode in which relatively

small units of information called packets move from switching element to switching ele-

ment as paths between switches become available. Packets do not require their entire

path to be established prior to entering the network.

Some of the interconnection network types discussed in the last subsection are

inherently limited to one mode of switching or the other. Single stage networks are

packet switched due to the fact that several passes through the network may be

required to reach the destination. Linear shared path networks are circuit switched

since a circuit is always established between pairs of communicating devices. All of the

remaining network types can be implemented either way. The following discussion of

circuit and packet switching protocols (as presented in [McS80b]) only applies to those

networks for which such an implementation is practical. I.

The options to be discussed are primarily concerned with packet switching. In cir-

cuit switching networks, the design of the switching elements is more straightforward.

Design options in the circuit switching case are primarily concerned with: (1) implemen-

tation of the interface between the network and the devices it serves; and (2) protocol

*" between sending device and receiving device upon establishment of the connecting cir-

cuit. Since the emphasis here is on switching element protocol, these issues are not dis-

cussed in detail. The options that will be discussed are shown in Figure 2.6. They

include packet versus circuit switching, synchronous versus asynchronous request/grant

Ilk A I b- -. - ;?w 7.. ----.---- .- w

2-35

00

co

it~ w

mU W

00

00

000

0; 0 r4 ~I

000 6

~. 04

<C 0

00

z C6

Ciz W
00.

CCi

2-36 iM

(R/G) cycles, fixed versus variable message size, number of data items transferred per

R/G cycle (packet size) and two methods for implementing a variable message size.

Throughout the remainder of this section, the use of the routing tags is assumed

for networks with distributed control. In a packet switched network, the tags control %..e%

the moving of packets from switch to switch. In a circuit switched network, the tags

establish paths through the network. Since moving the tags through a circuit switched

network (with distributed control) to establish paths is a special case of packet switch-

ing, the latter is discussed first. It is assumed that a packet switched network has dis- W"

tributed control.

In the following, a message is defined as a unit that is to be sent from one network

user (device attached to a network input/output port) to another. It is composed of a

routing tag and some number of data words. The data words are assumed to be the

sanie width as the processors' data buses (i.e., the basic word width used by the proces-

sors). A packet is defined to be a unit that is transferred from one switching element to

another in the network. Packets are delineated by control sequences that are per-

formed by pairs of switches, in preparation for the transfer. If a message is larger than

the packet size, it. will be separated into a sequence of packets (possibly only the first of

- which contains the routing tag). This separation must either be performed by the net-

work users (e.g., processors) or the network interface.

In a packet switched network, several functions the switching elements must per-

form can be identified. Consider a switching element labeled i. Let all other switching

elements to which it can send a packet be in group i+ I and all those from which it can

receive a packet be in group i-1. Switch i containing a packet must examine its rout-

ing tag and determine which switch in group i+1 is to receive the packet. (This

assumes the packet contains a routing tag; when passing multi-packet messages , if

there is only one copy of the routing information, it is stored in the switch.) Switch i

must then request of the group i+ I switch permission to transfer the packet to it. If

wit. -'

-:': '. ".. ... " " "

- . - - 4 . a-

2-37 -

switch i contains multiple packets (due to having multiple inputs), multiple requests

may be sent to group i +I switches from this switch. If two or more packets at switch i

need to use the same output port (of the switch), only one of the packets can be pro-

cessed at a time. If the packets in switch i use different output ports, multiple requests

will be made to switches in group i+ 1. Thus in each switch, during the request cycle,

routing tags are decoded, arbitration occurs if necessary, and requests are issued. Upon

receiving requests from switches in i-1, switch i determines if it has the storage capa- .- -

city to accommodate any of the packets. If so, appropriate grant signals are issued. ..-

This process occurs during the grant cycle. Finally, for those switches receiving grant ..

signals, the transfer cycle effects the actual movement of data from one switching ele-

ment to the next.

Given this scenario of the basic functions each switching element performs, the .

options in Figure 2.6 can be discussed. It is assumed that there is a single network

clock connected to every switching element and that in one clock period or cycle, any

one of request, grant, or transfer (of one data item no wider than the network data

path width) may occur.

The first implementation option considered is whether or not to make the.. .

request/grant (R/G) cycles occur simultaneously in all switching elements. If so, the .

R/G cycles are called synchronous and, if not, they are called asynchronous. In the

synchronous mode, all switches follow a fixed sequence of request, grant, transfer P

words, request, grant, transfer P words, etc., where a number of network clock cycles .

are required to perform the transfer. Furthermore, in this mode the packet size I is

fixed. The exact number of cycles required to move a packet is determined by the

number of words in a packet, the word width relative to the network path width (e.g., ..

a 16 bit word requires two cycles to traverse an 8 bit path), and some options to be dis- "

cussed. If the total number of words to be transferred (e.g., the number of words in a ",% "

message sent by a processor) is greater than I, one or inre additional l?/G cycles will

%-..

~. . -- A

2-38

occur in each switching element through which the packet passes. In a system contain-

ing a synchronous network, the messages to be transferred must be segmented into

packets of size P. . -

In the synchronous mode, when a device needs to send a message, it may have to

wait a number of network clock cycles for the next request phase before requesting to

enter the first packet. In the asynchronous mode, only one request and grant cycle is

executed per message per switching element (i.e., the message size is equal to the

packet size). On a given network clock cycle, any switching element may be executing

a request, grant, or transfer cycle. The obvious advantage to the asynchronous mode is

the smaller total number of network clock cycles required to transfer a packet from

input to output. The advantage to the synchronous mode is that the number of con-

nections between switching elements can be reduced and their control logic is less com-

"* plex.

The next design choice concerns making the size of the message sent by the device

attached to the network fixed or variable. Being able to choose one over the other is

highly dependent on the expected communication transactions. A fixed message size is

easier to implement than one which is variable. There is more overhead associated

with a variable size message since information regarding the size must be included with

the data. Two schemes for conveying the information are to include the exact count or

to include an end of message marker. These schemes will be discussed later.

If the synchronous request/grant scheme is implemented, the packet size must be

chosen. The packet. size determines the minimum amount of storage required in each

switching elenent. From a cost point of view, keeping storage requirements low is

desirable. Transferring one word or a small number of words at a time will accomplish

this. To minimize contention in the network, the storage capacity in each switch

should be as large as possible. As soon as switch i is filled to capacity, for example, it

will revoke the grant that correspond&: to the switch that filled it in group i-I. If the

* .+ 1 o -.--.. . .- ".o+ ',.

2-3gISL • . .*
w .* ,.

group i-I switch was receiving packets bound for the currently blocked link it will

begin storing them. When filled to capacity, it will in turn revoke any appropriate

grants. If each switching element contains a minimum amount of storage, one conflict

in a switch near the output can soon "tie-up" many links in the network. Thus overall

throughput is worse than if the conflict had been contained to just one switching ele-

ment. Simulation results reported in [DiJ81] for multistage networks verify that M ,

throughput increases significantly as the buffer size is increased (until a plateau is ""

reached).

If the R/G cycle is synchronous but the message size is variable, an appropriate

packet size must be chosen. The larger the packet, the better the throughput for

lengthy messages, due to the lower ratio of R/G cycles to transfer cycles. On the other

hand, there is the larger buffer requirement and worse fragmentation. Fragmentation

results when the message size is not a multiple of the packet size. The last packet will

contain unused data slots that are routed through the network.

In an asynchronous R/G cycle network, the packet size is the message size (regard-

less of whether the message size is fixed or variable). Thus, the asynchronous mode is

the most efficient from a throughput point of view.

The last option represented in Figure 2.6 concerns how to implement variable ines- ..

-" sage length. As mentioned earlier, this can be accomplished by including a word count

or an end-of-packet (EOP) marker. The word count has an overhead of one additional

word that immediately follows the routing tag.

In a circuit switched network, there are two approaches to establishing paths %ih-.

* routing tags. In the unbuffered case, the routing tag must be placed o, the i iput data

bus and held there until the path is complete. In the buffered case, establishing circluits

is a special case of packet switching one word packets, i.e., roting tag% only. ()nc, a

path is established, all buffers are bypassed to form a direct circuit. A %ariation 4,n this ll[
form of circuit switching is called pipelining [SmS781. In this case, data follows the tag

...................................

2-40
%

e .

through the buffers. Any of these methods can be synchronous or asynchronous, but

the difference in set-up time is negligible - two network clock cycles.

For a circuit switched network that is centrally controlled, all devices wishing ser-

vice must submit their desired destination address to the controller during a request

phase. For those requests granted, a request line must be held for the duration of the

transmission.

The various options that have been discussed here can be incorporated into a net-

work description notation. The notation should distinguish between circuit and packet

switching, synchronous and asynchronous timing, fixed and variable packet size, and

buffered and unbuffered circuit switching. Parameters should indicate packet size,

amount of information transferred per cycle, and cycle time or delay for packet switch-

ing. Set-up time, switch node delay, and path width should be specified for circuit

switching.

2.6 Functional Description

The discussion of notations and classification schemes so far has concentrated on

the hardware structure of a computer system. In this section, operational characteris-

tics are examined. Specifically, the kinds of operations that can be performed by the

hardware and the data types that are supported directly. Bell and Newell's instruction

set processor (ISP) notation [BeN71] is described first. It is designed to complement

their iMIS notation that was described in Subsection 2.3.2. Then Giloi's taxonomy

based on operational principles is explained. It is complementary to his hardware tax-

onomy that was presented in Subsection 2.3.1.

2.6.1 Bell and Newell's ISP Notation

ISP notation is designed so that any set of operations can be defined along with

" rules for interpreting a set of bits that represent a program. The program is a sequence

i-i

• .% ,* .''. * . .'. -'.- ' . .'.. .''° .- * ' ..'° .. " . °"- °" "- - -- " . . ." -'• ."
.. ..~*... -, i : .. * *

2-41

of operations. The set of operations can be divided into two groups. The first group

consists of those needed to operate other system components: links, switches, memories,

etc. (to use PMS terminology). The second group contains operations associated with D

or data-operation components. These components actually transform information.

Primitive forms of these components include add, subtract, multiply, divide, AND, Of,

EXCLUSIVE-OR, etc. The D components are specialized according to the kind of data

upon which they can operate, i.e., data-type. A data-type is defined by the referent of

the bit pattern (e.g., that the bits refer to an integer in a given range) and a format

(e.g., the most significant bit is the sign and the remaining bits are coefficients of

sequentially decreasing powers of two in the binary representation of the integer). One

processor may use several different data-types such as unsigned integer, signed integer,

floating point and double precision floating point. Different operations are required for

each data-type.

A processor is thus completely specified at the ISP level by its instruction set and-

its interpreter. These are defined in terms of operations, dala-types and memories.

Each instruction in the instruction set is described by an instruction-expression of

the form

condition - action-sequence.

The condition determines when the instruction is invoked. The action-sequence

describes the transformations of data that takes place between memories (e.g., regis-

ters). The right arrow (-) represents the control action of a K unit or controller. The

components of the action sequence eventually have the form

memory-expression -- data-expression. .-

The memory-expression describes which memory location is affected. The left arrow

(4} corresponds to the transmission operation of a link and amounts to an Lssignment

operator. The data-expression describes the information that is to he transmitted to

the specified memory location. Data expressions generally are written in terms of

•.*.).**.**"**•***.-*- "--,.*.-.-.* --* --.%"

2-42 -
'.4,'2

standard mathematical notation.

Action sequences can be concurrent or sequential. If the components of the action

sequence are separated by semicolons only, they occur simultaneously. For example, in -.

the sequence

Y- XI; Y 2 -X2

all \s are assumed to have defined values prior to execution of the action-sequence and

upon execution, the Xs are transferred to the Y memories simultaneously. If the com-

ponents of the action-sequence are separated by the term "next," they are sequential.

For example, the sequence

Y Z; next X,-Y

%%here X, Y, and Z are registers, causes the contents of Z to be copied into X and Y

(this sequence is needed if there is no direct connection from Z to X).

Memorv in the system (including registers) is given mnemonic names followed by

the number of words in square brackets and the number of bits in angle brackets. The

-vords and bits are specified by address and number, respectively, of the form a:b. The

first number is "a" and the last is "b." For example, a 64K main memory with 16 bits

is represent ed by

Mp[O:FFFF 161<0-15>

where base 10 is the default. Where there is only one word of memory, as with a regis-

*i ter, the square brackets and included information are omitted. For example, a 16 bit

accumulator can be represented by

ACC<0:15>.

The bits can be named and enumerated, separated by commas, as with a status regis-

ter:

..

/! '. .

2-43

STAT<E,F,1I,I,N,Z,V,C>.

These are the status flags used in the Motorola 6809 microprocessor (entire state on
.-,. ,,-' ,

stack, fast interrupt, half carry, irq interrupt mask, negative, zero, overflow, and carry-

borrow). Bits can also be concatenated using the "0" operator. For example, the

carry bit in the status register might be appended to the accumulator to form a new '

register for use in an arithmetic action-sequence:

CAC<C,0:15> C OACC.

The ":=" is used to define a new entity.

If a memory is multidimensional, several start/end address pairs can be used. For

example, the Digital Equipment PDP-8 memory can be described as consisting of eight

memory fields of 32 pages each, with 128 words per page and 12 bits per word. This is

represented by

Mp [0:71[0:3110:1271 < 0:11 >.

Finally, a set of bits can have several names. A good example of this is to define

fields within a register, such as an instruction register. In the IPDP-8 the instruction

format is /BeN711:

Op<0:2> : instruction <0:2>

indirect_bit/ib := instruction <3>

page_0 bit/p := instruction <4>

pageaddress<0:6> = instruction <5:11>.

The "/" in the above is used to indicate equivalent symbols and is read "or."

With the basic notation and the form of expressions defined, some examples of

instruction interpretation can be given. The following is a definition of the two's

.2 2, .-

2-44
p -p

complement add operation: .

two's complement add/tad -- (CEJACC -+ COACC + Mp[ZJ)

tad • (op = 1).

An abbreviation for the operation is defined along with the action that is to occur.

Then, the opeode associated with the operation is defined. By defining all registers and .%.IW

action-sequences for each opcode, the functional characteristics for a given computer

can be completely specified. An example from [BeN71 of the complete specification of

the PDP-8 is shown in Figure 2.7, which illustrates how powerful the notation is. The

formal specification for ISP can be found in the appendix of [BeN711.

ISP notation appears to be flexible enough to describe the function of any of the

computers that have been discussed in this chapter. In the case of a computer like the

Cray-i, since concurrent events can be described, pipelined operations can be defined.

Also, vector registers are simply represented as multiword memories. For multiple

computer systems, a description is given in ISP for each computer type.

2.6.2 Giloi's Taxonomy

In [Gil811, Giloi points out that most architectural classification schemes (e.g.,

those discussed in sections 2.2 through 2.5) are concerned solely with structural

features. To remedy this situation, he has developed a scheme that takes into account

(1) how information is represented in the machine; (2) information access mechanisms; b

(3) control structures; and (4) communication structures. These features are all based

on operational principles of the architecture.

A computer cannot be described by operational principles alone, so it is assumed

that the taxonomy to be described is taken together with the structural features dis-

cussed in Subsection 2.3.1. Giloi's taxonomy is intended to be abstract and thus imple-

mentation independent. Therein lies the difference between his scheme and Bell and

Newell's ISP notation.

.4,' . . , , , , , . , € % - -. , . , . , . , . .. ' ,•

-_' _,.A :, ,:, ._:. ,, .:, :,,:,=.,,,= . =.,. = -,.,:-.,,- ..,. , .., . .. • . .,...,. ..,, -,

2-45 0

P00 I Ik..

P0 : 1; 1-;0, n 1 1

OP.- 13-2.

th0 1je0: , PCI4,

PCne Oo: 7(. IP C, 0 1)1 1

I d O se I e :710lt ; Pa p rJ2I0. , 1:1>. , .. i. . . .

O S. ,I* .O:II. . .o . ,.

indirect b1t/b :r 13 ", .

page 0 bit/p I= ' ,", : " ' " " " ":r,. - .

ag e 2.ad res otatio6. := o.e: 1e-o

(hrsoeqe<0:4. (otPcnud.op: 2-46)

.bit ': .. .:- . - ~a,>.

So2 bi . -O ', . '

.,z*o- .o.. -

b~ . ..") '

z ,II : (paGe 0 b.: . th ,,n. pa,rq'Oa add n,•.,°-, "

-. j~ac Or . V~ 4 .. ,:, .1I'4...

Figure 2.7 ISP Notation Representation of Digital Equipment Corporation PI)P-8 --..
(from [BeN71]) (continued on page 2-46) """-:.:_:.

..- :.- .:..

,-:. .. : :- :- ..-.--.-,: .: : :. ! : . i: i ::: :: .::: .. ,,.::. :.. :... . =================== ============= ===========.===.

2-46

lnetructicn Interpretation fProcess

Run A , (Interrupt.reouest A Interruptfltate) n-. f i nterrupt interpreter

instruction ,- M(PC]; PC ,- PC u 1; nlext !" rot

Run A Interrupt request A Interrupt state T. rtu' "eree

M[0] ,- PC; Ioterrupt~state -0; PC ,- 1)

- t Tnerrurt .n Jet and Inotructflon Executiton I't'o.*eu

Iflstruttiontteteutiton:

nd (: p - 0) -. (AC .AC A PI z]); d. a7 2"'1

tad(: op - t()LA MOM W&Ac nit)). a....enra-U

0 P -PC

jm p-2) 1(O~e] :PC]; next lshf:r ztfc up to11;ie

*~ o 5) - PE .- Z);

mat (op6)n .t rr, 4r irf m-ornOt eet u o3nl

,...pI..t- 10,pulse. 1- ; next r~ - o-. ,ton. i

io..p.i t l0-.pulse,2 .- ; next

op, p - .0Oprrute.e... utiun oao:,rtrt'i' o teIni Fe n.

7he -r. F prvgrve r er , ,z.ta: t. tu,t no: t')rraTt. gt', '179.'a- i, mi xivn!, I arit hnr> ame defined as a Separate

:nR t n Al..

OPerr.feeecuflan-

*~~1 4, 1 lr - (A(t. 0). . -'r t r -- pi .'neltr.t- nr.

'na . 6 i AtC u c ."Mv<..,- A

*~ I 'aII I t * nA C Lisc I. ' t . : I

1a -03 2-S .'KJA('LatYS4 r:s

- I r~t(.. TO 3! 'ciA , OAL'22r.a,'.r ~ C-

trr f 8;t, 47]A - ~ L'IACi 22*~. *

nokr _2 1.1 in -dn . s a fl

"il . .1) .tA(AC. ll s cis .-.

Figure 2.7 (continued)

2-47 V*-.A.

At the highest level, Giloi's taxonomy can be characterized as follows. The opera-

tional principle of a computer architecture defines its functional behavior in terms of an K-

information structure and a control structure. The information structure consists of a

set of abstract data types which specify the type and structure or information in the

machine, its machine representation, and operations the machine can perform on it.

The control structure is defined by control algorithms which interpret and transform

information in the machine. This view of the function of a computer is very similar to

* that taken by Bell and Newell as described in the previous subsection.

A machine data type is defined by the triple (O,F,R), where 0 is a set of machine ..

data objects of some type, F is a set of machine operations applicable to the objects in

0, and R is a set of representations of the objects in 0. Three major classes of object

types that are distinguished are elementary types, set types, and structure types. Ele-

mentary data types can be characterized by such objects as instructions, descriptors, "''

capabilities, reals, integers, characters, and semaphores. Classes of operations or func-

tions that can be performed on elementary data types include (I) binding (i.e., load a

data object with new information); (2) access (i.e., provide access to the contents of a
data object); (3) decoding (i.e., interpret a data object); (14) value production (i.e., pro-

duce a value to become a data object); (5) test and set (i.e., test and/or change a sema-

phore); and (6) conversion (i.e., change an object type and/or ret)resentation). In a con-

ventional computer, binding corresponds to assigning a value to a variable, access

corresponds to evaluating an address, decoding corresponds to initiating control

sequences, value production results from the usual arithmetic operations (add, subtract,

etc.), and conversion is a change in format (e.g., from integer to real).

Corresponding to major object types, there are three majnor classes of object

representations: (1) elementary; (2) set type; and (3) data strueture. For elemcntrary

data objects, existing architectures utilize three kinds of scalar representation.s. The

first is generic in which the scalar machine data object is a bit, vector that represents

.........- - .. ,-- ,..- -.... "..... ...-. . -.....................-... '.......

2-48

the value of the data object. The machine determines from the kind of function

applied to the representation how to interpret it. The second is a self descriptive

representation in which some bits of a bit vector form a tag field which denotes the

object type. The remaining bits form a value representation of the data object. The

third type of scalar representation is self iLntifying. Some bits of a bit vector form a

key field which denotes a class of which the object is an element. The remaining bits

form a value representation.

The objects of a set type are linearly ordered sets of scalar data objects. All

objects in the set have at least one common attribute (e.g., element type or access con-

trol attributes). If all elements in a set have the same type, it is said to be homogene-

ousq.

The objects of a structured machine data type are presented by the four-tuple

[<object identifier>, <structure specification>, <data set>, <attributes>).

The <Atructure specification> and <attributes> are represented by an object

descriptor at the hardware level. The <data set> is represented by a set type object.

I)ata items of a structured object are not individually named and cannot be referenced

directly. Rather, they are accessed through the use of access functions. Examples of

.- structured machine data types include a stack, tree (as used in reduction machines),

and vector.

A complete and very detailed taxonomy based on these concepts is presented in

Ji181]. Its length is too great to be included here.

2.7 Conclusions

This survey of architectural classification schemes and description notations has

shown that much work has been done, but at significantly different levels of detail. It .

is apparent that none of the schemes discussed is comprehensive. Hockney and

Jesshope's notation has the most breadth of any single scheme, yet it does not address

*- .-. . - ...

2-49

interconnection networks in enough detail nor does it provide a functional specification'-&

for the system described. The combination of Bell and Newell's PMS and ISP nota- '"-"

tions comes closest to completely describing a computer system. However, as pointed LA

out in Section 2.3, PMS notation is not as well suited to representing architectural"' '

features that determine an algorithm's performance as IIOJ notation. The combination '

of Giloi's structural and functional taxonomies is very broad, hut too abstract for the

purpose at hand.

Taken as a whole, the elements of a comprehensive classification

scheme/descriptive notation are embodied in the schemes presented in this chapter.

Thus, the following approach to constructing a comprehensive scheme based on niany

of the results described here is proposed. It will be referred to as the CIIACA) scheme

for Comprehensive, Hierarchical Architectural Classification And Description scheme.

As the name implies, it is hierarchical, and four levels are defined. Levels I and I! are

classification oriented and levels IIl and IV are description oriented. Level I is the most

coarse and consists of four categories, based on Kuck's classification scheme (cf. Subsec-

tion 2.2.4). They are (1) single instruction stream, single execution stream (SISIF); (2)

single instruction stream, multiple execution stream (SIME); (3) multiple instruction

stream, single execution stream (MISE); and (4) multiple instrtction stream, multiple

execution stream (MIME).

Level 1I has sixteen categories and is Kuck's complete scheme. These categories

are derived from those at Level I by distinguishing between scalar and array instruction

and execution types. Level III is an expanded version of llockney and Jesshope's (J. -

notation. It was illustrated in Subsection 2.3.3 that there is a close relationship

between Kuck's categories and IIOJ representations of systems in those categories.

Thus, the transition from Level 11 to Level Ill is snooth. in Section 2.A some addi- ".

tional notation was recommended for representing pipelined structures in more detail

which should be included.

• - .-+ . . .- . ." -'. . " " - . ' - .. - -. . -" . .. i " + ". -.- , . ; '; / ;

N - -v. -- ..70Q , ---.

2-50

Level IV is the most detailed representation of a computer system. It is this level

upon which future research should concentrate. Notation needs to be developed, corn-

patible with HOJ notation, that describes the salient features of the system intercon-

nection network and of system wide functionality. The structural taxonomy, parame-

ters, and protocol taxonomy described in Section 2.5 should form the basis of the inter-

* connection network notation. The notation should consist of two parts: (1) structural,

describing how switching elements are connected; and (2) functional, describing how

each type of switching element functions.

Bell and Newell's ISP notation (cf. Subsection 2.6.1) is recommended as a basis for

the functional notation. However, it needs to be expanded to include, for example,

.. parallel data types (e.g., a skewed array) that are manipulated by multiple processors.

Systems that have been proposed but not implemented may have undefined or

* only)artially defined features (e.g., the instruction set). Thus the CIIACAD scheme

needs to be able to describe a system at the level available. At Levels I and iI, parame-

"* ters need to be identified that quantify system characteristics that can be determined at

the respective levels. Providing these parameters will facilitate the evaluation of an

algorithm's compatability with the system, albeit with a lower degree of confidence. In

Chapter 5, some features or parameters that correspond to different levels of description

will be discussed.

b..

.

~ S *....°.

4

* ".

CHAPTER 3

MODELING ARCHITECTURES:

MULTISTAGE INTERCONNECTION NETWORKS _-

3.1 Introduction

Many different approaches to providing a communication capability in parallel pro-

cessing systems have been proposed. These include the use of busses [Wid76], hierar-

chies of busses [SwF771, direct links [DeP78], single stage networks [Sto7I], multistage

networks [Bat76, Fen74, GoL73, Law75, Pea77, SiM81a, SiM81b, SiS78], and crossbars

IWuB72l. These approaches have been surveyed JAnJ75, Fen8I, SiM79a, Thu74] and

were discussed in Chapter 2. In this chapter, multistage networks are examined in

detail. In Section 3.2, seventeen networks that have been proposed and/or built are

presented and discussed in the order in which they appeared in the literature. The net-

works are then placed into a family tree based on their structural relationship to one "

another. Two major classes of networks are identified. In Section 3.3, implementations

for switching nodes or switching elements are surveyed and compared. Methods for dis-

* tributing the control of multistage interconnection networks are discussed in Section

3.4. Finally, in Section 3.5, fault tolerant designs for these networks are examined.

This chapter was also supported in part by another research grant.

- p. -..*"." Zf]

_ -. o-..

p.* - . .]

3-2

.. '., 4..'

, 3.2 History of Multistage Networks

3.2.1 Introduction

A considerable amount of research has been done on multistage interconnection

networks in recent years. The earliest efforts were in the context of telephone switch-

ing [Ben64,Clo53,Joe68,Wak68. It was then realized that some of that work might be

applicable, with suitable modifications, to computer communication [OpT7la,OpT71b].

Also, around that time, special purpose networks for number sorting called bitonic sort-

ers were investigated IBat68. With experimentation into parallel processing or multi-

pie computer systems such as Illiac IV [BaB681 and C.mmp [WuB72I, interest in design-

ing interconnection networks tailored to that application began to grow. Early work

published in that vein was done by Lipovski on the SW-structure [Lip70]. That work

was later refined and generalized by Goke and Lipovski who introduced a class of net-

works called Banyans IGoL73I. In [GoL731 it is pointed out that SW-banyans (S=F=2)

(formerly SW-structures) are equivalent in topology to Batcher's bitonic sorter. In

* 1971, Stone published an influential paper on the perfect shuffle network [Sto71.-

Though presented as a single stage network, it was later extended by Lang and Stone

into a multistage version [LaS76I. Feng published work in 1974 on implementing net-

works for data manipulation [Fen74I. One such network has since come to be known

as the data manipulator. At that same time Batcher was doing work on the Flip net-

work used in STARAN (Bat74J, but the details were not published until 1976 [Bat76).

Soon to follow was work by Lawrie on the Omega network [Law75 and by Pease on

* the indirect binary n-cube network fPea77J.

In April of 1978 Siegel and Smith published a paper comparing the data manipula-

tor, Flip, Omega, and indirect binary n-cube networks [SiS78]. As a benchmark, they

introduced the Generalized Cube network and showed that the Flip, Omega, and

indirect binary n-cube networks were all topologically equivalent to it. They also

relaxed some restrictions on the implementation of the data manipulator, calling their

S.-.... , . ..-. -.. • *o - *- . .,,... ;- . . • *~ -. .-. -. 2". "

3-3

version the Augmented Data Manipulator (ADM), and proveed that its capabilities were

a superset of those of the Generalized Cube (and therefore all networks equivalent to

the Generalized Cube). At nearly the same time, in August of 1978, Wu and Feng also

published a comparison paper. They introduced the baseline network as a benchmark

and showed that the Flip, Omega, indirect binary n-cube, SW-banyan with spread and,

fanout of two (a member of the Banyan class), and the reverse (or inverse) baseline

were all topologically equivalent. At the same conference where this work was

presented, the HEP system and network were introduced [Smi78].

In the very recent past, the class of Delta networks has been introduced by Patel

[Pat79], the reverse-exchange network has been investigated by Wu and Feng

[WuF7Oa], and properties of the inverse ADM (IADM) network have been presented by

McMillen and Siegel [McS80a 1. In September 1980, Pradhan and Kodandaparni pub-

lished another comparison of multistage networks (also including single stage networks)

IPrK80b]. They defined an equivalence relation and showed that the Flip, Omega,

indirect binary n-cube, SW-banyan, and all of their inverses were equivalent under the

defined relationship. The most recent introduction of a "new" multistage network is

called the Gamma network, presented by Parker and Raghavendra I'al?82]. It will he

shown later, however, that it is topologically equivalent to the IADM network.

3.2.2 Clos Networks

The early work on multistage interconnection networks was aimed at providing

economical telephone switching capability. The most important. constraint imposed on

the network design is that any idle pair of input and output ports can be connected,

regardless of the existing connections. This is called the non-blocking property. The

* most obvious means for meeting this requirement is to build an NxN crossbar, shown in,

Figure 31(a). A connection is made from an input to an output by closing the

crosspoint switch, illustrated in Figure 3.1(b), where the two busses intersect. The

* . * . **~. ** .*%**'*** .. - ...

TM -" M

-3-

N O4JTPWS

.-

(a).

A-A

L I t

I 11 1

N ;0 NPT NTRDIATET OTPUT Na

Figure 3.1- (a).L Ix Cr ss a Il 3 I

STAGIE (8) STACGE (b) SmTAG (c)

Figure 3.2 36036 Three Stage Clos Network [Cio531

3-5

major drawback to this scheme is that N2 crosspoints are required. In 1953, Clos inves-

tigated a class of multistage networks with the non-blocking property but a lower cost

[C1o53]. An example of a 36x36 three stage network is shown in Figure 3.2. The first

and last stages have six 6x11 crossbars and the middle stage has eleven 6x6 crossbars.

The number of crosspoints required is 6N 3/ 2 - 3N = 1188 for N-36. This compares

with 1296 for a 36x36 crossbar. For values of N less than 36 the crossbar is cheaper.

The larger N grows beyond 36, the greater the difference becomes. For N=1000, the

difference is 1,000,000 versus 186,737.

The general three stage Clos network is shown in Figure 3.3. The first and last

stages have r nxm crossbars and the middle stage has m rxr crossbars, where n=N/2

There are r-n inputs and outputs. A three stage Clos network is completely character-

ized by m, n, and r. Clos was able to show that for m > 2n-1, the network is strictly

non-blocking [Clo53].

3.2.3 The Benei Network

A network is called rearrangeable if any idle pair of input and output ports can be

connected after possibly rearranging some of the existing connections. Benes investi-

gated a special case of the Clos networks in which only 2x2 crossbars were used

[Ben65]. N is required to be a power of two. The Bene' network is constructed recur-

sively as follows. First construct a three stage Clos network with nin=2 and r=N/2.

Then, for each of the N/2 x N/2 middle stage crossbars repeat the procedure. This

process continues until there are N/2 middle stage 2x2 crossbars. A size N=8 Ilenes'.

network is shown in Figure 3.4. In general, an NxN Bene network has (21og 2N)-l

stages of N/2 2x2 crossbars or switching elements. This is a rearrangeable network.

Since a 2x2 crossbar contains four crosspoints (see Figure 3.1(b)), a lBvne4 network o"-

size N requires 4Nlog 2N - 2N crosspoints. For N=1024, this is 38,912 versus 1,018,576 :"""""'

for the crossbar or 193,536 for a three stage Clos network, quite an improvement. The

7.."..."

3-6

n I~ I I

n: r r n

Figure 3.3 General Clos Network [Ben65J

I EQUIVALENT
MI1DDLE STAGE

Figure 3.4 Mx Bene; Network [Ben65J

U3 v

W4 v

2 o 3 i

Vs ?- Is.

Figure 3.5 Benei Network as Modified by Waksman
[Wak681

3-7

Bened network was refined slightly by Waksman who showed that a few of the switch-

ing elements could always be set to one state and therefore be removed [WakG8]. This

is shown in Figure 3.5, where one possible connection of all inputs to all outputs is -'.

illustrated.
.'-,

3.2.4 The Bitonic Sorter

The bitonic sorter is a network designed by Batcher for efficiently sorting a bitonic

sequence of numbers into a monotonic sequence [Bat681. A bitonic sequence is the jux-

taposition of two monotonic sequences (i.e. in non-decreasing or non-increasing order),

" one ascending, the other descending. Thus the bitonic sorter can be used to merge two

- monotonic sequences (which can always be combined to form a bitonic sequence) into

-" one. This combined with other hardware can sort an arbitrary list of numbers. A sin-

*. gle comparator element is shown in Figure 3.6(a) and an eight input bitonic sorter is

shown in Figure 3.6(b). Notice how similar this network is to the first three stages of

the Bene4 network (see Figure 3.4) if the A2-A6 comparator is swapped with the A3-A 7

comparator (they are topologically identical). Batcher points out that one application

of this network is interconnecting multiple computers.

* 3.2.5 Banyan Networks

Banyan networks are defined in terms of their graphical representation [(1oL731. A

banyan is a directed graph composed of vertices and edges or arcs such that. it is

irreflexive, asymmetric, and intransitive (a lasse diagram of l)artial ordering [lBerG2]). -

A base in the graph is any vertex havin- no arcs incident into it and an ape" is any ver-

tex having no arcs incident out from it. The graph has the)roperty that there is

exactly one path from any base to any apex (and vice versa). A regular banyan is one

in which the number of arcs incid,,nt into each vertex (fanout or F) and the number

incident out from each vertex (spread or S) are constants. A rectangular banyan is a

3-8

A L - MIN (AB)

25 2

-Cp

(L A L A

3

a

(b)

Figure 3.6 (a) Two Input Sorting Element
(b) Eight Input Bitonic Sorter

3-9 ".d V

,-.. ..- ,

regular banyan in which the spread and fanout are equal. The TRAC prototype

[SeU801 contains a regular banyan with spread = 2 and fanout 3 as shown in Figure

3.7 (arcs shown undirected). In the figure there are four apexes and nine bases. Pro- . a

cessors are connected to apexes and memory and 1/O to bases. A structure that is '.e.

equivalent to the bitonic sorter (Figure 3.6(b)) is the rectangular SW-banyan with

S=F =2 shown in Figure 3.8 (with undirected arcs). To see the equivalence, replace all

the sub-structures in Figure 3.8 that look like the banyan in Figure 3.9(a) with the

switching node shown in Figure 3.9(b). This relationship is discussed in detail in

IMcS82c].

The SW-banyan can support the formation of data trees, shown in Figure 3.10(a)

and instruction trees, shown in Figure 3.10(b). The data trees allow one processor to

have access to more memory than that contained in just one memory module. The

instruction tree allows several processors that have been linked together to form a

larger processor and/or several processors working on vectors in SIMD mode, to receive

the same instruction during their fetch cycle. The instruction tree structure is only

active in the network during that cycle. The combined configuration in Figure 3.10

results in a two processor SIMD machine where each processor has two memory

modules and one 1/0 port.

Anothe: type of regular banyan is the CC-banyan, shown in Figure 3.11 for N=8.

If apexes and bases are labeled from 0 to N-I, right to left and levels are labeled from -

n--I to 0 from top to bottom, then vertex j, 0 < j < N, at level i, 0 < i < n, is con-

nected to vertices j and (j +2') mod N at level i-.

Ird.-.;d." °-.. . "

:?: : .. .: . . " :.. ::::: :::: ::::: :: ::::: :: :::::::::: :: :::::.:: :: ::: :: : : ..-..-..- ...-:

3-10

s 5 2 ltr
mediate~

Figure 3.7 4x9 Regular B~anyan with S=2, F=3 [JeB82I

3-I1I1

APEX\4

IFigurv3:.8 8x8 Veetarguhlr SWV-Iariya withI S --i-'= [Uf~T77J

s=2 t=2 SW Banyan Switching Node

(a)()

Figure 3.0 (a) 2x2 SW-Ilanyan Network
(b) 2x2 Switching Element

[JeI382I

3-12

p p

(a)

(b)
Figire 3.10 (a,)) Data Trees in theSW-I3,hnyan (S=F=2)

(b) An Instruction Tree in the SWV-Hanyan (S=F=2

6S%

3- 1 "

S- -.' ,
• .. o.' ~ l

A I
1

A .'

1l AZ A

AIAM

Figure 3.11 8x8 CC-Banyan Network
[GoL73"

.--,-.

....-.........

- . -. - -

3-14

3.2.6 The Data Manipulator Network

Feng's data manipulator is shown in Figure 3.12(a) with eight inputs and outputs.

The network's structure is such that if there are N=2n 1/O ports, then there are n

* stages or columns labeled 2" , .. , 21,20, and an unlabeled output column. A cell .

(Figure 3.12(b)) at level k, 0 < k < N, in column 2i is connected to cells k-2 i mod N,

k, and k +2' mod N in column 2"- . If the -2 i connections were removed from this net-

work, it would be structurally equivalent to the CC-banyan shown in Figure 3.11.

Each column of the data manipulator receives three pairs of control signals and Ias-

each cell is connected to one signal from each pair: V, I , H, H, DI, D2'. U2'

enables "Up" or -2' links in stage 2', H' enables "Horizontal" or straight links, and D2'

enables "Down" or +2' links. Those cells whose ith bit of their level, k, is a 0 are con-

nected to control lines with subscript 1 and those whose it h bit is a I are connected to
U - U 2 n- 1

°''''.

control lines with subscript 2. Note that and 2 are functionally identical to

D2 and D2 n I

In [Fen74] it is shown that the network with this control scheme is able to perform

the data manipulating functions of permuting, replicating, and spacing. Permuting is a

rearrangement of the data at the input such that all items appear at the output in a

". new order and no two items go to the same output. Useful permutations include the

shift, flip, shuffle, transpose, merge, mix, and bit reverse functions [Fen74]. Replicating . -

is the copying of a group of elements. Spacing is any operation that moves the data

without reordering it. For example, spreading and compressing.

3.2.7 The Flip Network

An 8x8 Flip network is shown in Figure 3.13(a) [Bat76]. A size N network has n

stages labeled from input to output from 0 to n-1. At stage i, the inputs to that stage%..

which differ in their ith bit can switch positions. The network is centrally controlled

and has two kinds of signals, one for flip permutations and one for shift permutations.

-.. .-.

3-15

... oo

OPCDDE DECODER
TK4 BASIC

ri'JNE -MANPJLATOR

* -.

0*.

CLM 212' 20

CR CONTROL. REQSlR ter)
[MR INPUT MASK REGISTER tpA,l V

OROUTPUT MASK~ VECISIERtps0I

(a)

CONLAW 2
1 CU.O 1 To (k-2l)-th CELL. OF

COLUMN 21+ COLUMN a~

kh-th C!LL. OF COLUMN 21

(b)

Figure 3.12 (a) Wx Data Manipulator Network
(b) Switching Element [F en74I

*.

-~7 .- w 1* -7 -. $Ir.~ -

M-7 T77-76 qy7, I

3-16

00

p 4 p

6~ 6

(a)

OAA

4

7- 4

N

2~ B p % :

T T

STAGE 012

ligiire 31.13 (a) 8x8 Flip Network
(b) F'lip Network H edraiwn willi Shiri (oWi.rol

3-17

Let F = f-" ff 0 be the flip control vector such that stage i gets fi, 0 < i < n. If S

-Sn_ " 1s0 is an input address, then the flip network moves data at that address to

output address S G F = sn1 E fn-, .. ,s G fl, So E fo. Since every value of F

corresponds to a unique permutation, there are 2n flip permutations the network can

perform. When F =I''.11, the data is flipped end for end (mirror permutation).

The shift control requires i+1 signals at stage i, 0 < i < n, and is illustrated in

Figure 3.13(b). The shift control allows data at input S, 0 < S < N, to move to out-

put S+2 m mod 2P, 0 < m < p < n. A shift of 2' mod 2P divides the 2n data items

into groups of 2P items each and shifts each group down end-around 2' places. For

example, to obtain a shift of +1 mod 8, in Figure 3.13(b) the control signals should be

0A=1, IA=I, 1B=0, 2A=I, 2B=0, and 2C=O. There are (n2 +n+2)/2 different shift

permutations (including the identity). ..- ..

Notice that if the flip network in Figure 3.13(a) is rotated counterclockwise 90 it

is structurally identical to the SW-banyan (S=F=2) in Figure 3.8. This is true in gen-

eral, thus it is possible to implement the capabilities described for each network in

either one.

3.2.8 The Omega Network

Lawrie's Omega network of size N=8 is shown in Figure 3.14(a) [L4aw751. It has n

stages, in this case numbered from 1 to n from input to output. Each stage has an

identical structure; the links form a perfect shuffle permutation and connect to N/2

interchange boxes or switching elements. The perfect shuffle permutation ISto7I]

moves an item from location S to location (2S +[2S/Nj) mod N. The interchange boxes

have four states as shown in Figure 3.14(b). Two items can pass straight through or be

exchanged, or an item on either input can be broadcast to both outputs,)ue to the

way the stages are labeled, at stage i, inputs that differ in the n-i' h bit are compared

and can be exchanged (the addresses paired can be obtained by setting all boxes in

3-18

7 6

7 ------ ~ -7

STAGE I STAGE 2 STAGE 3

STRAIGHT INTERCHANGE

LIPPER LOWER A

BROADCAST BROADCAST

(b)

Figu re 31 .1 (a) 8x8 Omnega Network
(b) Fouir states or ani Initerchuange B~ox

[La'w75j

LIE ~ *c3T)

~~~C 3 1 '

4) (4). .



- --r .-- -°

3-19

Figure 3.14(a) to straight and moving the input addresses on the established path

throughout each stage). An Omega network can be controlled in a distributed fashion * .. J'

using routing tags which will be described in Section 3.4.

In [Law75] the ability of the Omega network to access vectors for processors (con-

nected to the input) from matrices stored in memory (connected to the output) was

investigated. It was shown that if a matrix is stored in memory in a skewed fashion,

the Omega network provides conflict free access and alignment of rows, columns, diago-

nals, backward diagonals, and N1 /2xN 1 /2 partitions in either row or column major

order. It can also produce Ni/2vector fanout and duplication functions.

3.2.9 The Extended Shuffle-Exchange Network

The extended shuffle-exchange network, shown for N=8 in Figure 3.15, and its

capabilities are discussed by Lang and Stone in [LaS76). It is a multi-stage version of

the (single stage) shuffle-exchange network in [Sto7l. Structurally it is identical to the

Omega network just discussed. The only difference is that it does not include the

broadcast capability. In [LaS76], a simplified distributed control scheme is proposed

that will be discussed in Section 3.4. This scheme is not quite a general as Lawrie's,

however they show that it allows the network to perform some useful permutations.

These include the uniform shift (S connects to S+k mod N, 0 < k, S < N), unscram-

bling p-ordered vectors, and interchange of elements 2n r apart (which is used in some

FFT algorithms). The network can also be used for partitioning 2 processors into

blocks of 2? (with slight modification of the control algorithm).

I- A

. . . . . . . . . .-. . .. . .

................- -.

... .... ... .... ... .... ... .... .... .....*..-,



3-20

3.2.10 The Indirect Binary n-Cube Network

Pease's indirect binary n-cube network is shown in Figure 3.16(a) for N=16 (n=4).

inputs and outputs are labeled from I to n [Pea77]. At stage i, input addresses that

differ in their i-Ia bit can be exchanged, as illustrated in the figure. This network also

supports only two states, straight and exchange, in its switching elements (shown in

Figure 3.16(b)). A hierarchical centralized control is proposed to set the switch states.

In [Pea77J, it is shown that the network supports the communication requirements

of a large array of processors working on massive numerical problems with a high

degree of parallelism. Algorithms examined include those used in the solution of partial

differential equations in two and three dimensions, the radix-2 FFT and other signal

processing algorithms. Also, performing matrix operations, in particular matrix multi-

plication, is discussed.

3.2.11 The Generalized Cube Network

The (;eneralized Cube network is a multistage cube type network topology that

.. was introduced as a standard for comparing network topologies [SiS78]. The network

has N inputs and N outputs, in Figure 3.17, N=8. The Generalized Cube topology has

n stages, where each stage consists of a set of N lines connected to N/2 interchange

boxes. Each interchange box is a two-input, two-output crossbar. The labels of the

input/output lines entering the upper and lower inputs of an interchange box serve as

the labels for the upper and lower outputs, respectively. Each interchange box can be

set to one of the four legitimate states shown.

'The connections in this network are based on the cube interconnection functions

[Sie77J. Let P = PI .. PnPo be the binary representation of an arbitrary I/0 line

label. Then the n cube interconnection functions can be defined as:

cubeil(P, 1 " PIPo) = Pn I Pi+piPi- " PIPo

where 0 < i < n, 0 < i) < N, and Pi denotes the complement of pi. This means

,.... ..... ..- . .... .. .. :.:.: .:.•...: :. -.... :........-..-...,....:.:............. .......... ......... ...................--..



3-21 ~p

I , S
2  

I S, S, 
.

(111

13IM,

141,

((9)

10 40
12 1121

F'igiu ri' 3. 10 (a) 6xl lhd irel I Iinar --00)ch Network
(ih) rwo( state(s or ain inteirchl ge Bo~ x

[IPea771



RD-RI67 316 DISTRIBUTED COPUTING FOR SIONRL PROCESSING: MODELING 24
OF ASYNCHRONOUS PRR.. (U) PURDUE UNIV LAF YETTE IN
SCHOOL OF ELECTRICRL ENGINEERING L J SEIGEL ET AL.

UNCLASSIFIED MRR 83 TR-EE-83-11 RO-18790. 17-EL-RPP- F/O 9/2 MLnnmhhhmammhal
lflflflflflflfllllll
Ehhmhmhmhhhhhl

I flhlhhlflhflhfl
Ilflflflflflflfllllll

EIIIIIIIIIIIIIu



N

1.0
I I 0.

..N,e

llnl1,__., ....

UII llnii ii ""

I~cRflOP' CHPRT ."":""

9..' .. ,

C . ...... ,-...-'-.."....

. . .. . - .- . . - - . .- . . . . . . . - . . . . . . * .*. . - . .

. . .. -. . . .. .' . . . ... . . '.'. . - - .. .... .. .. .. .. .. .' .' .\ ¢ .'.'. .. .., , a.',.' , \. . " ." ," ', .'."A.., '. ."



S -L u qj 13, -jF 1% V. -. -3M -j

3-22

STGE I 0

0 .0

PL T

I.~ ~ 2gr 3. 47 4 ~ 8 eeaie tl e r. h orvldsae
interhang boxare hown

T ~~~ 6*.65

6 3 3 5 5.*p



3-23

that the cube i interconnection function connects P to cubei(P), where cubei(P) is the

I/O line whose label differs from P in just the ith bit position. Stage i of the General-

ized Cube topology contains the cube interconnection function. That is, it pairs I/O

lines that differ in the ith bit position. The other networks that have been discussed so

far that are also based on the cube interconnection functions are the Bene , bitonic

sorter, SW-banyan (S=F=2), Flip, Omega, extended shuffle-exchange, and the indirect

binary n-cube. These networks are therefore referred to as cube type networks. Net-

works to be discussed that are also in this category are the baseline, reverse baseline,

certain HEP networks, some Delta networks, and the reverse-exchange network.

3.2.12 The ADM and IADM Networks

The augmented data manipulator (ADM) network [SiS781 is shown in Figure 3.18

for N=8. It has the same structure as Feng's data manipulator discussed in Section -- "

3.2.6 [Fen74]. In the ADM network, a stage consists of N switching elements or nodes

and the 3N data paths that are connected to the inputs of a succeeding stage. At stage

i of the ADM network, 0 < i < n, the first output of node j is connected to the input

of node (j - 2') mod N of ti. next stage; the second output is connected to the input of

node j; and the third output is connected to the input of node (j + 2') mod N.

Because (j - 2n-1) equals (j + 2n-1) mod N, there are actually only two distinct data

paths instead of three from each node in stage n-i (in the figure, stage 2). There is an

additional set of N nodes at the output stage. The Inverse ADAI (IADM) network

shown in Figure 3.19 is identical in structure to the ADM except that the stages are

transversed from low order to high order (i.e. in the opposite order). The difference

between these networks and the data manipulator is that the switching elements are

controlled individually. This is done with routing tags that will be discussed in Section

3.4.

.......................... ............... ..-. ,,:?.,', .'-,',',.'. ,%'." -. . .,....., .,,:,. ,...-.~~............ . ,...,,...-....., ,.......-.........-...-.......:.: ,,-



3-24

0

S 2G 2 2 0

55

N T

f.5 b. I

STAGE 0 1 0

Figure :1.18 . it) Augmenes Dia Maipul e ata N tok iuLtowr Ne leork

rep..o, en -ro n connetions



- - -- ..- . - . * . . . ~ . . . . . *•.-..-... -

3-25

Both of these networks are based on the PM2[ (Plus-A inus 2') interconnection

functions (Sie771. There are 2n of these functions defined by PN2+i(j) = j + 2' mod N

and PM2iJ) = j - irod N for O<j<N, 0<i<n, where-x rood N=N-x ...

mod N. (Note PM2+(, = PM2(n 1). The data manipulator and the Gamma (to be

discussed) networks are also based on the PM21 interconnection functions. Because

they are all so closely related to the data manipulator, they will all be referred to as

data manipulator type networks.

3.2.13 The Baseline Network

The baseline network was presented in [WuF78 by Wu and Feng as a standard

for comparing network topologies. Its topology is generated in a recursive fashion. A

column of N/2 2x2 switching elements form the first stage. The switching elements are

numberd from 0 to (N/2)-1 with binary addresses of the form P, 2 ... pipo• The

upper input and output lines are labeled Pn-2 "•PPO0 and the lower lines are labeled

Pn -2 .. P1Po1. The first stage is connected to two N/2 x N/2 subnetworks, Co (upper

network) and C, (lower network). The upper outputs from the first stage are con-

nected to C0 , ordered by switching element number and the lower outputs are con-

nected to C, in the same order. For each of the subnetworks this process is repeated

until the sub-subnetworks reach size 2x2. The result is shown in Figure 3.20 for N=16.

The number of iterations required is n-I resulting in an n stage network. The stages

are labeled 0 to n-I from side I to side 2. The network is controlled using routing tags

• that will be discussed in Section 3.4. The switching elements used here can assume

-* only the straight and exchange states.

A reverse baseline is just the inverse network, which is equivalent to traversing a

baseline from side 2 to side 1. The sides are not labeled as input or output because the

network is defined to be bidirectional. Paths through the network are allowed to ori-

ginate on either side and terminate on either side.

_ _ _ _ _ -7. -:



3-26

,% . "* . '

.1 2 3
se0000 000000 00000 0001 -- '

s 0010 001 001 D 0010 s
0011 001 0011 001 0011 1 11 001 0011

0100 010o 0.000000
D10 1 01 1 10 0 0101 D

c 0110 O il 0110 E
0111 _ 11 111 O lIIO l ol

100 1000
1001 1001001 1 1 1 001 1 100 1001

1010 !010
1011 1 1-,

1100 ----11100
1101 10 1101 110 1 1 110 1 110 1101

1110 1110

level 0 1 2 3 4

Figure 3.20 WOx 16 Baseiine Nelwork [WuF8O!

," . .';

°.. °. . - °. . -. - . . . . . . . . . -. . ..- ° . . . . .. . * . . . . .



u- .- i ' -vr~s t - w v J " - F7 U 7 U - -77; ; W-T 1 W V! - R . - L-.

3-27

3.2.14 HEP Networks

The HEP network is not defined according to any particular topology. Rather, the

function of a switching element is defined and the network consists of any desired

structure that can be obtained by interconnecting the switching elements. A switching "::-' -.

element is shown in Figure 3.21(a). The dashed lines in the figure show possible paths

through the switch. The switching element can be viewed as a three port, full duplex

switch. Since any input can be connected to any output, it can also be viewed as a 3x3

crossbar switch. Any network constructed from these switching elements would be of

the dual path bidirectional network type.

The IIEP network is implemented as packet switched. The switch has the rather .

unique property that when two or more packets contend for the same output, one of -..

them will be given access to it and the remainder will be intentionally mis-routed. This . -

eliminates the need for buffering packets inside the switch. To compensate for the ",.- '-

mis-route, a priority word that accompanies each packet is incremented. Packets with

the highest priority are given preference when conflicts occur. Packets whose priority

has reached the maximum (15) are handled specially. There is a path called an

Eulerian circuit that traverses every port exactly once in each direction [Smi8la.

Packets with this priority are sent on such an Eulerian circuit, independent of their

destination address. This guarantees (1) that the packet will reach its destination and

(2) that maximum priority packets will not conflict with one another. This path is not

necessarily optimal but it is guaranteed. To determine how a packet should be routed, .

a routing table associated with each output port (stored in every node) indicates the

optimal path for all possible destination addresses. The table is written to the nodes

when the system is initialized.

The need for routing tables is a direct result of the arbitrary way in which switch

nodes can be connected. It is only the regular structure of the other networks that

allows them to be controlled without using routing tables.

. -. , -...

. . . . . . . . . .. . . .. .•..-

. .• .-.. =.,:



WT -

3-28

0 r

2 2

D D
E E

1 2

STAGE 2 10

I igure :1.21 (ai) I lEE Switching Ellemviit
(b) Onp P'ossile( 9x8 IlE'Network



3-29 " "

To facilitate comparison of the HEP network with the other multistage networks,

the topology shown in Figure 3.21(b) is assumed. Note that the lines in the figure are

actually bidirectional, consisting of a pair of unidirectional lines going opposite direc-

tions. Single lines are shown for clarity. Functionally, it is equivalent, to the General-

ized Cube network shown in Figure 3.17. The four IIEP switching elenwnts within the

dashed lines in Figure 3.21(b) perform the same function as one interchange box in Fig-

ure 3.17, however, no broadcast capability is included. To see the structural

equivalence, notice that the same addresses are paired at a given interchange box and

its functional equivalent in the HIEP network. For example, addresses I and 5 in stage

2.

3.2.15 Delta Networks

Delta networks are a class of networks introduced by Patel [Pat79]. They are con-

structed from bxb crossbars with outputs labeled from 0 to b-1. A bVxb" delta net-

work contains nba - ' bxb crossbars. Any network that can be constructed using the fol-

lowing rules is a member of the class: (1) No more than bn -1 crossbars can be used in

one stage and no more than n stages are created; and (2) Each bxb crossbar that
receives inputs from other bxb crossbars must have all its inputs connected to identi-

cally labeled outputs. A 32x32 delta network is shown in Figure 3.22(a) and an 8x8 is

shown in Figure 3.22(b).

One property of delta networks is that there is exactly one path from any input to

any output. Another property (from which the name is derived) is that they are digit-

controllable. The setting of each crossbar is determined by a base b digit at each input.

This control scheme will be described in detail in Section 3.4.

The Delta class of networks includes the bitonic sorter, all rectangular SW-

banyans, the Flip, Omega, extended shuffle-exchange, indirect binary n-cube, General- -':

ized Cube, baseline, and reverse baseline networks when they are implemented with

. . ... .. ° -. ° • . . . .



3-30

(d d)1 03

0 0 0 00

I I 1 01

2 2 2 02

3 ~ 10

5 2 2 12

6 0 0 20

2 2 22

001

100

110

Vigu re .3.22 (a O~ xf D elt a Nelwork

(b) S\S DI~ta Net work
[Pat79I



3-31

bxb crossbars (typically b=2). It does not include any of the data manipulator type

networks because they all have multiple paths front input to output. The data mani-

pulator type networks are, however, digit controllable, as will be shown in Section 3.4.

3.2.16 The Reverse-Exchange Network

The reverse-ex change network was introduced in [WulF79a]. It is designed to per-

form arbitrary permutations of its inputs in two passes. A size N=8 version of this

network is shown in Figure 3.23. Comparing it to the Omega network in Figure 3.14,

it is clear that the two networks are topologically identical. Consequently, it is topo-

logically equivalent to all the cube type networks (this was pointed out in [WuF79a]).

The difference between this and the omega network is in how the inputs are labeled.

The different labeling gives the reverse-exchange network different permuting capabili-

ties.
a. .-

The reverse-exchange network is related to the Bene; network in the following way

(compare Figure 3.4 and 3.23). If the interchange boxes in Figure 3.23 are rearranged

so that they are in order by box number, then these three stages are identical to the

* first three stages of the Bene4 network in Figure 3.4. If the shuffle-ex change network is

reversed so that the output becomes the input and vice versa, it is equivalent to the

last three stages of the Bene' network. The algorithm used to control the reverse-

exchange network is based on the work of Opferman and Tsao-Wu [OpT7a], Anderson

IAn(1771, and Lenfant [Len78j for controlling the Benes network.

3.2.17 The Gamma Network

The Gamma network is shown in Figure 3.2-1 for N 8 [1a1i?21. Its structure is

identical to that of the IADM network discussed in Section 3.2.12. The difference

between these networks is that the IADM switching elements connect one of their 0 "A

inputs to one output at a given time (or to multiple outputs for broadcasting); the

• . . - .. .

. . . .. . . . . . . . . . . . . . . . . . . . . i ~



.77 .. . . . .. . .~ . . . -

3-32

0

1 2 2 2a
N T
p p

T T -

7jM 7

I'igture 3.23 8X8 Reverse Exchange Network LWuF79aI



3-3

Fu
* --* .p

, T

Fu -. 8t

-7:

,...,-_,-_.-.,.. ,......,. :.. :. _ -_ :- ~~~............................. ................. _. ,._.-..,,;-:'



3-34

Gamma network switching elements are 3x3 crossbars. In [PaR82], it is shown that the

Gamma network can perform some permutation connections that the LADM cannot,

e.g. the perfect shuffle.

3.2.18 Conclusions

The number of interconnection networks that have been proposed since 1953

(which for all intents and purposes was the birth of the multistage network), when Clos

investigated cheaper ways to build a crossbar, is very large. Seventeen specific network m
topologies and seven different classes of networks have been surveyed here. Many of

the networks discussed are very similar while others are quite different. To place all

these networks into perspective, a family tree for multistage interconnection networks

is shown in Figure 3.25. Each network or class has a date next to it to indicate when it

was first presented in the literature. Four broad categories are defined: Permutation

Networks, Multiple Path Networks, Single Path Networks and Fault Tolerant Net-

works. Fault tolerant networks will be discussed in Section 3.5, where the remainder of

that family tree will be filled in.

Permutation networks are those that can connect their inputs to their outputs in

any arbitrary way as long as no two inputs want the same output. For an N input, N

output network, there are N! possibilities. The only networks discussed that can do

this were those in the (los class including the Bene; and the Waksman modification of

ithe lhen,4. The lene network is the least expensive network in the Clos class.

Nultiple path networks are those that have more than one path between a given

input and output (with the possible exception that there is only one path when

input-output). This category includes all of the members of the Permutation Network

category listed and the data manipulator type networks. The former tend to have

many more paths per input/output pair than the latter.

. . ..
.,. , -. _ .



3-35

!'.'. .

5 Nx,

Nz - 2 ,

$u

-- " - . .... .

Z. 9-

-C -C wa0

- a i- r

so -

w

-i -

2 A

a 

'

IL"



3-36

The data manipulator type networks all have topologies constructed from straight,

+2', and -2' type connections. Thus they are generically referred to as PM21 type net- --

works. Included are the data manipulator, Augmented Data Manipulator (ADM),

inverse AI)M (IADM) and Gamma networks. The ADM's capabilities are a superset of

the data manipulator's. The ADM and I.ADM are comparable, and the Gamma net-

work is the most powerful, having capabilities that are a superset of those of the IADM.

The single path networks have exactly one path between every arbitrary

input/output pair. The two classes listed in this category are the Banyan class and the

Delta class. The Banyan class is extremely general since it is defined in terms of unla-

beled graphs. Each node (switching element) in the graph can have a different number

of incoming and outgoing arcs (links) than the other nodes as long as some basic rules

are followed. Of practical interest are the somewhat more structured subclasses called

C(C-hanyans and SW-banyans. The Delta class is shown at this level in the tree

because, in some qualitative sense, it is approximately as general as the CC-banyans

and SWV-banyans. The dashed line between the CC-banyans and the data manipulator

tvpe networks indicates that they are relatives. This is in the sense that some CC-

banyans are based on straight and +2' type connections.

Within the class of SW-banyans is the subclass of regular SW-banyans. Regular

implies that all the nodes (switching elements) are the same (i.e. have the same number

of inputs and outputs as the other nodes). Within this class are the rectangular SW-

banyans in which each node has the same number of inputs and outputs. Since the

Delta class has switching elements with equal numbers of inputs and outputs, rectangu-

lar SW-banyans are also a subclass of the Delta class. Connections between switching

(elements in the Delta class are more general.

The class of rectangular SW-banyans contains more specific instances that have

been discussed in the literature than any other class listed. Included (in historical

order) are the bitonic sorter, SW-structure, STARAN Flip, Omega, extended shuffle-

% *-.-*., •
• %. ".. "= - . . " % ,., % .-. " .- - . ". % . .- -.- ,"""% % "." ° . """.. . . J" '



3-37 1_

exchange, indirect binary n-cube, Generalized Cube, Baseline, Reverse Baseline, some

instances of HEP networks, and the reverse-exchange. JIEP is shown in parentheses ,_-__"_

because not all HEP type networks belong to this class. N.

Two observations can be made regarding the consequences of membership in the

rectangular SW-banyan class. First, when these networks are used in an MIMI) mode,

where random requests for connection come in, their performance is the same. In

jPat79j an analysis showed that all networks of the same size in the Delta class con- " -

structed from bxb crossbar type switching elements have the same performance. That

is they have the same bandwidth and probability of accepting a request for access.

The second observation is with regard to use in SIMD mode. As was pointed out

in [WuF79al, topological equivalence between two networks implies a one-to-one and

onto mapping between the components of the networks and does not necessarily imply

functional equivalence. Wu and Feng's proposed definition of functional equivalence is

that two networks must have the same set of realizable connection capabilities using

the same control information (with a possible mapping of the information to its proper

location) [WuF79a. It has been shown, however, that with an appropriate renumber-

ing of inputs and outputs, it is possible to convert one network in this class into

another JSiS78,WuF79a].

It can be concluded that any of the capabilities shown for one network can be :
built into another with suitable modifications (often minimal). Hence there is a

significant body of literature describing a wide variety of things rectangular SW-banyan

class networks can do. The capabilities discussed in this section included sorting

bitonic sequences of numbers, partitioning resources, forming tree structures, accessing

various vectors from matrices, and duplicating and spacing data out. Permutations.-

that can be performed include flips, uniform shifts, and several useful to FFT algo-

rithms.



3-38

3.3 Switching Element Implementations -'."

331Introduction °".c

3.3,

In most of the papers introducing the networks surveyed in the last section, the, "

switching elements used to construct the network were functionally specified but no

particular implementation was proposed. The simplest realizations of interchange .....

boxes specified have been designed for use in circuit switched networks. Levitt, et al.'" . '-

proposed one of the first designs called a basic cell [LEG68]; Joel calls the same design a

'..-. he-

si-element [Joe68; Smith and Siegel use a simple externally controlled multiplexer

[SmS78, Smi8Ib]; and Patel suggests a slightly more complex, fixed priority, 2x2

crossbar implementation [Pat791. Owing to advances in LSI technology, some

significantly more sophisticated designs have been proposed (and implemented)

recently. Ciminiera and Serra propose implementing whole subnetworks of circuit ---

switched 2x2 crossbars and their associated control logic on one LSI chip [CiS8I).

*" 'Preinkuimar, et al. describe in considerable detail, the design and implementation of 2x3

"" switching nodes capable of "simultaneous" (in the same network clock cycle) circuit

and packet switching [PrK80a]. In the following, these various implementations will be

*. discussed in more detail.

3.3.2 Early Switching Elements

The earliest suggested use of small crossbars for constructing large interconnection

networks is attributed to (los jClo53]. His intended application, however, was for tele-

phone switching networks. At the time, connecting large numbers of processors was

unthinkable. The lBenes network, a special case of the ('los networks is constructed

front 2x2 crossbars Ieni5. Bene4" work is primarily concerned with the capabilities

and control of the network as a whole, not the design of the 2x2 crossbars. Given that

circuit switching is performed and the switches are controlled externally, the actual



3-39 *4

implementation of the crossbars is understandably one of the less important aspects of

the network. A 2x2 crossbar simply consists of two small 2-to- I multiplexers.

One of the first discussions suggesting that networks of 2x2 crossbars be used to

connect multiple computers is in [LeG68f. The motivation behind the work is the

desire for ultra-reliable computer systems for aerospace applications. In these applica-

tions only a relatively small number of computers are involved. Levitt, et al. provide a .

circuit diagram (shown in Figure 3.26) of a simple 2x2 crossbar, so they can analyze the

types of faults that could occur and how to circumvent them. The crossbars contain

flip-flops that store the state of the switch. Altogether, the crossbar requires two flip- .

flops, five AND gates and two 01t gates. One crossbar passes one bit of information, so
(. .%

a number of them in parallel are required to pass bytes or words of information." °

Though Waksman [Wak68] presents interesting results on controlling Henes net-

works, he apparently has little or no knowledge of hardware. There is a rather

humorous remark regarding the implementation of 2x2 crossbars in the introduction

which asserts, "Let the 'elementary cell' be the basic building block of such a network,

which ... presumably can be constructed using a single flip-flop."

3.3.3 Omega and Indirect Binary n-Cube Switching Elements

The papers by Lawrie fLaw75] and Pease [Pea77J each make recommendations

regarding the design of network components but neither presents a specific implementa-

tion. Lawrie notes that his omega network of size N can be partitioned to form two

identical subnetworks, which are themselves omega networks of size N/2. lie reconi-

mends implementing the size N=4 subnetworks as one module containing four 2x2

crossbars or as one 4x4 crossbar. These modules are then interconnected with 2x2

crossbars to form a larger omega network. An example of this configuration is shown

in Figure 3.27. He points out that a large network containing 4x- crossbars has more

powerful capabilities than that containing the four 2x2 crossbars. Lawrie assumes the



3-40

FF +

Figure 3.26 2x2 Crossbar Implementation fLeGO81

Figue 327 n Oega etwrk ith4x4 nd x2 withingEleent [Lw75



3-41

2x2 crossbars in an omega network have a broadcast capability. Implementing this -.- ,.

capability increases the comnplexity of the control logic associated with each 2x2 or x4 " -"

crossbar McAN0). The increase is not pro',ibitive, however. Pease assumes no such

broadcast capability is present in the 2x2 crossbars which compose his indirect binary

n-cube network. His only recommendation with regard to implementation is that each

2x2 crossbar be placed on one LSI chip.

pow-- .



3-42 -

3.3.4 Delta Network Switching Element . -
V..-:

Patel has defined a class of delta networks which are used in a circuit switched

mode to connect processors to memories [Pat7g]. The networks are constructed from

bxb crossbars. The only design presented is for 2x2 crossbars as shown in Figure 3.28.

The crossbars are controlled by routing tags. For a 2x2 crossbar, one bit from each

input, do and dl, determines its state. Based on the equations in the figure, 18 gates "

are required to implement the control logic and 6W gates for the INFO or path select

logic, where W is the path width. The design shown is unidirectional. The priority

scheme for each node is fixed; the upper input always has priority over the lower input.

The result of this for an Omega network (a member of the class) is that one processor

(at input 0) connected to the network will never be blocked while another (at input

N-i) will only be able to establish a path consisting of links no other processor wants.

All other processors will have non-equal probabilities of establishing their desired paths.

The priority among processors can be randomized by connecting the two outputs of

each 2x2 module to two different priority input ports at the next stage. Doing this,

however, changes the permuting ability of the network in SIMD mode. It is better if

the priority in each node alternates to assure all processors equal access to memories, on

the average.

3.3.5 An Optimal Switching Element Size Study

(iminiera and Serra performed a study whose goal was to determine an optimal

packaging of some number of 2x2 crossbars onto one LSI chip [CiS80,CiS81]. They

estimated logic and pin requirements for various size Omega networks. Shown in Fig-

tire 3.29 is a block diagram of a size four implementation. The block labeled 'C' con-

tains four 2x2 crossbars. Routing tags control the switch setting. If an NxN omega

network is implemented on one chip, the control unit will examine log 2N bits of each

tag. Details of this procedure can be found in Section 3.4. '

7 . \

"-''- ,'-.'-, ... . . . ..' " .. ." "'"2 "" . . -*, . • II. . -. . . .



3-43

.%.N

.% ..

request 0 0  reus

destination d 0  8 f busv

busy b laws

CONTROL

b

01 0 01

No * ft , *rod *.rd

boX0 + B b,80 4 001 001d

0 00 0 1

Figure 3.28 2x2 Crossbar Implementation [Pat7gJ

I4

VV



3-44

I3 2

1 T1 *

~si~ out. *0

F , c

Figure__ 32 SMoueo xlO a CS1

r2



7 7. ..7

3-45
p.-A"

In [CiS81], asynchronous circuit switching is assumed. When a tag is presented to

the input of a chip, the control unit checks to see if the desired connection can be esta- ,-"- >'

blished. If connections existing in the chip do not block the new path, the states of the

appropriate 2x2 crossbar! are set and the "busy-out" signal corresponding to the

"request-in" is turned off. The tag is then forwarded to the next chip via the newly

established connection. Their analysis shows that if the maximum number of pins per

chip is 60, an optimal configuration contains one 4x4 omega network, 6 bits wide. The

network can be unidirectional or bidirectional. If the pin limit is doubled, an 8x8

omega network can be accommodated. If it is unidirectional, the optimal path width is

7 bits, or if bidirectional, 6 bits. Optimality is defined in terms of maximizing the logic

per pin ratio without exceeding logic or pin limitations.-

3.3.6 Banyan Switching Elements

One result noted in [CiS81] is that the pin limit is always exceeded before the logic

limit. Aware of this fact, Tripathi and Lipovski [TrL70I suggest including a packet

switching capability with nodes that also circuit switch. Doing so increases the logic in

a node without a substantial increase in the pin count. This has been implemented in

an SW-banyan network. Since the SW-banyan connects processors to memories, and

because of memory access timing, they found that packet switching could be over-

lapped with circuit switching with a negligible time penalty. A circuit, is only used in

the latter part of a memory cycle, thus packets can be moved during the first part.

Conversely, packets require time to negotiate a movement from one node to another, so

this can be done while the circuit is in use. Though no design is presented in [TrL79],

design issues for packet switched implementations are enumerated. Included are node-

to-node protocols, buffering at the nodes, packet assembly/disassembly, error correct on.

coding, acknowledgment, time-out, and retransnmissions. PAW.l



3-46
* t, .

A detailed discussion of the design of nodes in an SW-banyan network is presented

by Premkumar, et al., [PrKSOa]. Two parameters determine the topology of the net-

work, spread and fanout (S and F). An SW-banyan with S=2 and F=3 is shown in

Figure 3.30. An N input SW-banyan has 1og 2N levels. It is important to note that one

node in the figure is not a 2x3 crossbar. One node can connect one of the incoming

lines to one of the outgoing lines. Five nodes and the lines connecting them form the

equivalent of one 2x3 crossbar as shown by the heavy lines in the figure. Interpretation

of these graphs is discussed in detail in [McS82c].

The functional components in one 2x3 node are: (1) clock decode logic - a single

netw)rk clock is converted into a six phase clock which determines all internal event

se(puences; (2) bus control logic - determines the current direction of the bidirectional

circuit bus. (3) link co(ntrol logic -establishes a path from one input to one output and

arlitrates conflicts; (-4) packet switch logic - implements the protocol for passing a

,:i'ket from level ((, level; and (5) carry lookaheadlpriority logic - since all processors

are bit-sliced, this logic allows several processors to be linked together to form one '-"-•

larger processor.

One packet is four bytes in length. The address or routing tag requires one byte

and the data uses three. Packet switching is implemented such that two packets are

protcessed(l sinilt aneusly during the same cycle. The result is similar to having two

)arallel packet switched networks, E'ach node thus has two one byte buffers, one for

each packet. Packets move is byte trains, progressing one level per clock cycle. A new

pa(ket can enter the sane V,)rt every fourth cycle. Request and grant signals are used

beil wen nodes to nego)tiat e the transfer of the first byte of a packet into the receiving

nide. Once the first byt e is transferred, the remaining bytes will follow without interr-

lip100.

.~~~~~ . .



* 3-47

t

r w

Figue 330 W-Bltya wih S2, =3. leav lnesrorm.1 rosbar



3-48 LAW

3.3.7 Conclusions

The complexity of proposed switching elements varies considerably. The simplest

are the telephone network crossbars that handle circuit switched serial communication ",,..

lines. All of the centrally controlled circuit switching networks for connecting proces-

sors and memories tend to have very simple switching elements. However, the com-

plexity of the controller is high since, in the general case, it must accept N requests for

connections and generate O(N hog 2N) control signals. Packet switched networks have

much more complex switching elements. Logic is needed to handle the buffering of

packets and the protocol of transferring packets to other switching elements.

When control of the network is distributed among the switching elements, they

becoe n more complex regardless of whether they are circuit or packet switched. The

switching elements in the SW-banyan network are very complex since they handle both

('ircuit and packet switching. The two modes are time multiplexed, so a sizable

number of control signals are needed to handshake with other switching elements and

to keep track of the switch state. In the next section, distributed control methods are

des('rilwd, which will give an indication of the complexity of the control logic in a

s%%itching element.

3.4 Distributed Control Methods

3.4.1 Introduction

The (los and Hene. telephone switching networks have centralized control. The

fastest known set-up algorithms for these networks were developed by Opferman and

'l'sao-Wu [OpT71a and require O(NIog 2N) time for arbitrary sets of connections. For a

large network, the titme required to set the states of the switching elements is reason-

able for telel)hone switching (e.g. 0.75 seconds), but not for computer communication.

ILenfant found that he could speed up the set-up time in the Bene,' network for certain

N .'. Z .A ."- •

- -_~~~~~.'. .'.Oo..-....'..".•. , .'_.,-.-., ..-. . ........ " •. ..- '- .



3-49

classes of useful permutations called Frequently Used Bijections (FUB's) (a bijectioii is ".. .."

a permutation). Each FUB belongs to one of five classes and each class is characterized

by up to four parameters whose size is a function of N. (For N=256, 30 bits encode

the FUB.) There are n stages of control logic (one stage of control logic provides signals

to two stages of the network). The FUB code is passed from stage to stage, so a packet

switched network can be set up "on the fly," one step ahead of the data. This method

is somewhat distributed but limited to the FUBs. There is no known method for corn-

pletely distributing control of the Benei or Clos networks. Each network user cannot -

determine which switches it should use without knowing which ones all the other users

have or will request when it requests access.

The reverse-exchange network is a 1og 2N stage network proposed by Wu and Feng,

designed to perform arbitrary permutations [WuF79a). This is done by making two

passes through the network. The first pass goes from input to output and the second,

from output to input (see Figure 3.23). The effect of making two passes in this way is

comparable to traversing the Bene; network once. Thus, to control the reverse-

exchange network, one of the algorithms for the Benes network must be used. To

route arbitrary permutations, the control of the network cannot be fully distributed.

Some of the first designs for multistage interconnection networks used in comput-

ers had centralized control. They could do this efficiently because they were designed

for SIMD operation and permuting data. This means that individual processors were

not requesting network connections. Rather, the control processor issued an opcode to

the network control unit specifying a particular permutation (or other) configuration to

be established. Examples of this approach are described in [Bat76) for the Flip network

and in [Fen74] for the data manipulator. The main advantage to this approach is that

the switching elements are very simple (e.g. see Figure 3.12(b)) and therefore inexpen-

sive and the control units are not very complex.

- -a" °



... .. " "..:" ..... .. .. - . ::-i-:

3-50

A network is considered to have fully distributed control if (I) each user calculates

all the switch setting information required by the switching elements to be used for the

current transmission and (2) each switching element can set its state based only on the

control information associated with the transmissions it handles. The first network to

be proposed that had fully distributed control was the bitonic sorter [Bat68I. Due to its

designed purpose, its switching elements determine their state based on the transmitted

* data itself. This is therefore a rather trivial example of distributed control. However,

the bitonic sorter can be modified to interconnect processors and memories and be con- -

trolled in a fully distributed way using routing tags. This is because it is almost func-

tionally equivalent to the Generalized Cube network Thus it can be modified to use

the routing tag scheme that will be described for that network in Section 3.4.7.

Lawrie's routing tag scheme for the Omega network was the first of its kind to be

proposed for fully distributing control of that network [Law75]. It is designed to route

transmissions from one side of the network to the other. Lang and Stone then pro-

posed a simplified version of Lawrie's scheme, for the extended shuffle-exchange net-

work [LaS76j. Its capabilities are a subset of those of the Omega network. Their

scheme is not as flexible, but it does allow some useful permutation connections to be

set up. In [WuF78J, Wu and Feng extended Lawrie's scheme for the Baseline network.

Their scheme allows transmissions to be routed into and out of the same side of the

net%%ork in addition to traversing it. Patel developed a general routing scheme that can

be used by any of the networks in the )elta class [lfat7g]. His scheme is identical to

I,ari,'s for any of the networks constructed from 2x2 switching elements (which

includes the Omega network).

For the class of regular SW-banyan networks, Tripathi and Lipovski developed a

general scheme whose capabilities are a superset of the Delta network scheme [TrL7]...

It is more general because it deals with axb crossbar switching structures (as opposed to

bxb only). The banyan schene also includes a rerouting capability for avoiding faulty

. • . - .

. . . > - . . . .. . . ,. , -. . .
";"" "- : -""-"'- -: -- -' :'- -.',u - m i " " " : : " "":" ' "= ":,,-" -"""' '. .- ,. "



F-i-yr-b-i.-.-,: ,-I-. v.- .W2 M-

3-51

switching elements. It does this by mis-routing a transmission and then allowing it to

backtrack to a point from which it can move forward again to reach its desired destina-

tion. -

The scheme discussed in [SiM81b] for the Generalized Cube network is designed--:. -

for networks constructed from 2x2 crossbars or interchange boxes. It. uses routing tags,

but they are calculated in a way different than Lawrie's scheme and have different pro-

perties. They can, however, be used to control the Omega network or, with minor

modifications, any of the other networks discussed that are topologically equivalent to

the Generalized Cube.

In [McS82d] and ISiM81a routing tag schemes are discussed for controlling the

ADM and IADM networks in MIMD mode and SIMD mode respectively. These

schemes are equally well suited to controlling the Gamma network and one of them can

be readily used in the CC-banyan type shown in Figure 3.11 (see Section 3.I.8.1).

Because these are all multiple path networks, the routing tag schemes are more sophis-

ticated than those used by the cube type networks. The MIMD mode tag scheme has

the ability to perform dynamic rerouting to avoid busy or faulty switching elements

when possible, without backtracking [McS82d].

In the following sections the details of the fully distributed control schemes for the

Omega, extended shuffle-exchange, Baseline, Delta, regular SW-banyan, Generalized

Cube, ADM and L4DM networks will be described. All these schemes use routing tags

to distribute the control. If the network is packet switched, the tag is part of the

header information in each packet. If it is circuit switched, the tag is held on the input

data bus until a complete circuit is established. Further extensions to the basic

schemes for the Generalized Cube, ADM and IADM networks are described in [McS82a,

McS82d, SiM8la, SiM81bI.

~. *..> - *.. ° * *..*-.*.\.*.j-*j



3-52

3.4.2 The Omega Routing Tag Scheme
b% .*q/ '*

The routing tags defined by Lawrie in [Law75] are called destination tags. No

computation is required on the part of the network users to generate the tag. The

desired destination address, D, is itself the tag. Let dn_ .. d.d0 be the binary

representation of D. The interchange box in stage i, I < i < n, examines bit dn i. If

(in i=O the upper output is selected and if dni=l, the lower output is selected. As an

example, consider the path from input 6 to destination I in an Omega network of size

N=8 (n=3), as shown in Figure 3.31(a). D d2d~d0 = 001; in stage 1, d2 is examined

and found to be 0 so the upper output is used. Similarly, in stages 2 and 3 the upper

and lower outputs are used, respectively. If the user at destination I wants to send an

acknowledgement or return message it must know the sender's address. Assuming that

address 6 was transmitted with the message, D is set to 110 and the path shown in Fig-

tre 3.31(b) is established. The sequence traversed is lower, lower, upper. If the net-

work is bidirectional, it can be readily verified that this scheme works in reverse (from

output to input) as well.

3.4.3 The Extended Shuffle-Exchange Routing Tag Scheme

As was pointed out in Section 3.2.8, the extended shuffle-exchange network is

-" identical to the Omega network in its topology and in the way inputs and outputs are

numbered. Thus destination tags could be used to control it. However, Lang and

Stone intended it to be used for routing permutation connections [LaS76]. To keep the

control as simple as possible, they developed a scheme in which each input simultane-

ously enters a one bit tag. Each switching element combines the two control bits

rec('ived using a Boolean operation (e.g. exclusive-or), sets its state according to the

result, and passes the result on to the two switching elements in the next stage to

which it is connected. The initial N bit input vector and the Boolean operator used

define the overall permutation obtained. It was shown that the uniform shift

-.° "-.



Z- .r 777 r -r .-

3-53 O

0 -oP

STAGE i STAGE 2 SA.;E 3

tS

STAGE I STAGE 2 STAGE 3

Figure 3.31 (a) Path from 6 to I in the Omega Network (N ~8)
(b) Rleturn Pati, from 1 to 6

.*.*~~ -* .V .~~~ % .'. . X .<.~ ..' .... ..' \- . . .' .. .* * *.* .



3-54 MW

pernutations (input j, 0 < j < N, is connected to output j+s mod N.s any integer)

can be performed using the exklusive-or operation at the switching elements and an

appropriate initial bit vector to determine s. Each input can calculate what its bit -.

value should be knowing only the permutation to be performed. By replacing the .-

exclusive-or with an equivalence operation at certain stages it was also shown that p-

ordered vectors can be unscrambled (accessing of various vectors from a matrix stored

in a skewed format [Law751).

3.4.4 The Baseline Routing Tag Scheme

The Baseline network is defined to be bidirectional, with its I/O ports labeled Side

1 and Side 2 (see Figure 3.20) [WuF78]. Paths can be established from (1) Side 1 to

Side 2, (2) Side 2 to Side 1, (3) Side I to Side 1, and (4) Side 2 to Side 2. The routing

scheme used for cases (1) and (2) is exactly the same as Lawrie's destination tag

scheime. The procedure for (3) and (4) is fairly complex and works as follows. Let

s*• sns 0 and D -da-, ... d1d0 be the pair of I/O ports that want to com-

* munnicate on, say, Side 1. Compute C = c, clc0 as S E D, the bitwise exclusive-

,,r of S and D (i.e. ci =s i ED d, 0 < i < n-1). If is the most significant I in C then

ihere are 2J possible shortest, paths between S and D with length 2(j + 1). Next deter-

mine the set of addresses of the switching elements at which the path can reverse direc-

tion of travel, given by: {(z z1zi2 • z0 sn- Sn 2 *" s+ zi 0 or 1; 0 < i < j-1}. 7-

A member of this set is finally chosen using a conflict resolution procedure described in

S..

. . ..o

'. . . . . . *5 * . , - .C



3-55 % %

3.4.5 The Delta Class Routing Tag Scheme

The Delta network routing tag scheme is a generalization of Lawrie's destination

tag scheme [Pat7g]. For a b'xb' network constructed from bxb crossbar switching ele-

ments, destination addresses are represented as base b numbers, i.e. D =

(dn-1  dld0)b. An example for b=3, n=2 is shown in Figure 3.22(a). Each of the

switching element outputs is labeled from 0 to b-I. If the stages are labeled from n-I

to 0, input to output, then a switching element in stage i examines di. The requesting

input is connected to the output labeled di. Clearly if b=2, the upper output is labeled

0 and the lower output is labeled 1 and this reduces to Lawrie's destination tag scheme.

In the special case where b=2m, the destination addresses can be represented in

binary, as bk-I • b1b0 . Since m bits form a base b digit, the switching elements in

stage i, 0 < i < k/m, examine bits bm(i+l)1• b.i+, bm.i, which directly specify one

of the outputs labeled 0 to 2m-1.

3.4.8 The Regular SW-Banyan Routing Tag Scheme

The routing scheme for regular SW-banyans [TrL79] is slightly more general than

the scheme just described for Delta class networks. For rectangular SW-banyans it is

identical. To see this, examine Figare 3.32(a). An S=F=3 SW-banyan is shown with

bases and apexes labeled A through C. The graph shown corresponds to a 3x3

crossbar. If the figure is rotated 90 clockwise and A=0, B=1, and (=2, a crossbar - '

identical to those shown in Figure 3.22(a) is obtained. A two level S=F=3 SW-banyan

is identical to the network in that figure. The routing tag described in [TrL79I is a des-

tination tag and consists of sequences of letters instead of digits. It is represented as ______

DL ' -. D i '  D, for an L level banyan, where Di, I < i < L, is a label. A node at

level i chooses the node at the next level with label Di. In an actual implementation, .

digits would be used instead of labels. '0.

. ... . ... " .- %
.,::-.-'-.;..----.>-........-.-.......-..-...........-....................... . . . .. ..-.-..

I - .- '- ' L ' L L .. , ' . -' " -'_'," "-" " " " "" "" " -" * "" " "" " -""" : .'* " " """ "" "-". '"-. . " '



.

3-56

%

Xa)

A Is

1-Level Banyan

9=2, f=3
bI)

Figu re 3.32 ( L) eled S=F 3 S%%-It:tnvtan
()Labled S=2, F 3, Ilvl
(b[Trl,7'9



° .. •

3-57

The labelings for an S=2, F=3 regular SW-banyan are shown in Figure 3.32(b).

This is the graph of a 2x3 crossbar. In this case, for connections from apex to base, the

B label is invalid. The routing tags are the same, but not all labels lead to physical . :.

ports.

Rerouting to avoid faulty nodes is possible if backtracking is allowed. This is illus-

trated in Figure 3.33. Assume node I at level i has railed. This affects bases p through

q when they want to communicate with any of apexes x through y (and vice versa).

Suppose base s = SL • -. Si- . S1 wants to communicate with apex d

DL ... Di • - • DI, where Si and Di, I < i < L, are labels as described above. Base s

cannot go from node m to node I since node I is faulty. The scheme calls for the path

to go through any node with a label other than Di. From the new node n at level i, it
must go to o at level i+1, turn around and go to node r/n back at level i. It. can then . "

choose to go to any node in level i-1, say t. From t it can proceed directly to d as

thought no reroute occurred. The values of m, 1, n, o, r, and t are given in the figure.

This rerouting procedure requires the traversal of four extra nodes.

3.4.7 The Generalized Cube Routing Tag Scheme

The routing tag scheme for the Generalized Cube network presented in [SiM8b.

computes the (Hamming) distance between the input port number and desired output

port. number. Let S be the source address (input port number) and D be the destina-

tion address (output port number). Then the routing tag T = S E I) (where "ED

means bitwise "exclusive-or"). Let tn I" t1t0 be the binary representation of T. An

interchange box in the network at stage i examines ti. If ti=l, an exchange is per-

formed and if ti=0, the straight connection is used. If N=16, S=II, and )=0110,

then T=1101. The corresponding stage settings are exchange, exchange, straight,

exchange. Because the exclusive-or operation is commutative, the incoming routing tag

is the same as the return tag. Since the destination has the routing tag to the source.

...... . ... .....

.... . . . . . ......... ........ °...-...........•. .. .....-.. .... •. ... . • .-. -



3-58

46
top

1 %, u

0 ~ LaS1 iklI

Lsm..1 i

p I q

Base Si' i-V

Addlress of 'in -(S S D0l..l

Addrss o 1 1 <5L- Di'D-'D>pAddrsof In' S D D0

Address of lo' <SL .0D.D. D

Address of It <0 ''k i

Address of It <SL. -!,S il-D

['gir .3.33 Icmli rg In ani SW-Ri nv an Net work ..

[TIr[1.7J 
.4)

.4' 
J%



3-59

it is easy to perform handshaking if desired. It can be readily verified that this scheme -."

also works in creating a path from output to input. Thus it can be used in a bidiree- .' ..- ',

tional implementation and the inverse Generalized Cube.

This scheme can also be used in the Omega network. In th, example in Figure .-.

3.31(a), S=110, D=001, so T=111. The sequence traversed in that figure and in the

return path in Figure 3.31(b) is exchange, exchange exchange. It should also be
I

pointed out that the destination tag scheme could be used in the Generalized Cube net-

work.

Consider an example of the use of the "exclusive-or" scheme in an SIMD environ- m
ment. One interconnection function known to be admissible by the Generalized Cube

network is a uniform shift of +2' mod N. That is, input port x is connected to output

port (x +2) mod N, where 0 < x < N and 0 < i K n. Table 3.1 shows calculation of -

the routing tags and the pairings of tags used to set the state of each intechange box

for N=8 and i=0 (i.e. a shift of + 1 modulo 8). The rectangles around certain bits of

each pair of tags indicate that those bits determine the state. Figure 3.34 shows the -

paths that will be taken through the network. - "-""

3.4.8 The ADM and IADM Routing Tag Scheme

3.4.8.1 MIMD Mode Communications. The routing tag scheme described here is -

used for both the AI)M and IADM networks. All the properties to be discussed apply .

equally to both networks. This scheme can also be used in the Gamma network. In

each network, a message can change its route at any stage. Since there are three possi-

ble paths that can be taken in each stage (except in stage n-1), nog(3n 1.2) is the

theoretical lower bound on the number of bits required to represent any unique path -.

through either network. The most general way to represent any unique, path is with a

full routing tag [SiM8la]. It is represented by f2 if2 2 1f0. The high order n bits

.'_._ .'_.._..?_.._,. .°..L.Z ". ".'Z.S.."• ." - 5 .._,. , , ,.,,. ", • °.....,..............,.......,...,.".........,',........".•.....



3-60

CD4

M C) CD CD

C) C) CD CDC) C

-4~~~. 1"* -4 - 4 4

CI 0 -. 0 4 C) C- C .

ra

4-)

+ /

C., 4- CC C ))

.4 . ) CD -4 -4 C C) C) .-

1-4 -C) ) 14
4J CD C) CD r4 -4 C

I- CD -4 a 4 )C
- 01 C) C) -4 - CD C) '-

0 ~ ~ C- 4-) CD 010 0I) j~



3-61

P T

5 T

6V

F igure~ 3.3.1 Vnifo rmfl Shirtf. ofr -I 111(1( 8 iii Ow ( .Iera hzid C ube Network ~-



3-62

of the 2n bit tag are sign bits and the low order n bits are magnitude bits. In stage i, if

fi=O, the straight link is used; if fi=1 and fn+i=O, the +2' link is used; and if fi=1 and

fn+i=l, the -2' link is used. The pair fn+ifi corresponds to a signed digit as discussed

in [PaRS2].

Given a source address S and a full routing tag F f2n-" f1 r 0 , the destination

address D is calculated as:

1) S+[(-I)2n 'fn.' 2 nl+(-l)2n-2"f. 2 "-2+ " +(ll)f f 0-2 0] mod N.
li

For example, in the ADM network, for N=16, if the source is 3 and the destination is

10, one possible value for F is 00101011. The path traversed is +2 s, straight, -2',

+20. in Section 3.1.8.2, some methods for calculating full routing tags will be dis-

cuI Ised.

If all tle sign bits are the same, they can be collapsed into one bit. Thus the new

tag only requires n +I bits. Although all possible paths cannot be represented, a tag

(';II be tound to route a message between any source/destination pair. This is because

hbere is more than one route between all source/destination pairs (source / destina-

lion). To take advantage of the multiple routes, dynamic rerouting schemes can be

* mlhyed [M'82d1.

The ii +I bit routing tag scheme uses a relative addressing approach in which the

infr iation contained in the tag is the "distance" from the source to the destination,

as (Opposed to the actual (est in at ion address. This scheme also provides a return tag

lihi( can be used if it is desired to send an acknowledgment.

L't S __ . .I si O (lenot , the source address and I) = d, I did0 denote the

destinat ion address, where s i and di are the ith bits of the respective unsigned addresses.

An it + I bit routing tag is formed by computing the signed magnitude difference

between the destination and the source: 'T : tnt n I 1 ) tltO = )-S. The sign bit is t.

where tn-=O indicates positive and t,-I indicates negative. Bits t I t0 equal the



7 -1 - W' ~ V~ V'

3-63

absolute value of D-S, the magnitude of the difference. A routing tag calculated in this

manner is called a natural routing tag. In SIMD mode, if all N routing tags for a per-

mutation are calculated in this way, then the permutation is said to be routed using

natural permutation routing tags.

As an example, if N=16, S=1011, and D=0100, then T=I0111. If the source and

destination addresses are interchanged, the new tag is 00111. It is only necessary to

complement the sign bit of an incoming tag to form a routing tag for a return or

handshaking message.

To route a message through either network, stage i need only examine bit's tn and

ti in the routing tag. If ti=0, the straight connection is used regardless of the value of

tn. If tn=0 and ti=l, the +2' link is used, and if tn=1 and t i =1, the -2' link is used.

In the previous example, with T=10111, if a message enters the AI)M network at. stage

3, the sequence of connections traversed from processor I t to 4 is straight,

-22, -2w, -20. If a message enters the IADM network at stage 0, the sequence of con-

nections is -2 ° , -21, -22, straight. A route consisting of only straight or +2' connec-

tions is called positive dominant and a route consisting of only straight or -2 i connec-

tions is called negative dominant.

Given a source address S and a routing tag T = tt n I . . to, the value of the des-

tination address D is calculated as:

D : [S+(-l) t n(tn- 2n-f+ " " +t 0 2°)lmodN.

Two tags, T, and T 2, are equivalent if and only if they route a message from the

same source address to the same destination address; i.e., given T,(S)-.I) and

T2(S)-.D 2, T, T 2 if and only if D, =D2.

A characteristic of the routing tag scheme is that for any arbitrary non-zero tag an

equivalent routing tag can be computed that uses links of the opposite sign. The

method for calculating equivalent tags is as follows. Let T' denote the two's comple-

ment of T, then T' T (if T=0, T' =T). To see this, let TNf denote the magnitude

? ,. . .. . . .. - -. ' ". . . . .. . .. .. . . • .. . . .. . . . . . . . .. . .. . . . .



3-64

bits of T. Also let t n be the sign bit of T'. For T=tnTM, Ti0, T' =t'. (Recall the I
two's complement of an n bit number T is evaluated by subtracting T from 2'.) Assum-

- r

ing arithmetic is mod N,

T'(S) = '+(-I) tnT S-(-1)'n(2n-TM) S+(-1) tnTM T(S).

For example, for N=16, if S=0110 and D=1101, then T=00111. The equivalent

. tag 1" is 11001. In the ADM network, the first route is straight, +22, +2', +20. The

equivalent route is -2g straight, straight, _o. A positive dominant tag can thus be

converted to a negative dominant tag, and vice versa.

If the first node or the IADM network where a non-straight link is requested

resides in stage i, if the +2' link is requested but blocked, then the -2' link can be

used, or vice versa. The equivalent tag can be formed and the message routed on the

oppositely signed link. In the A)M network, it a straight link is blocked in the input

- stage, it can be avoided. As long as the low order n-I bits of the tag are not all 0, the

eqiivalent tag can be formcd and the message sent on either non-straight link. Simi-

lary. if a non-straight link at. the input stage is blocked, the straight link can be used.

lReturn tags, to route from D to S, are formed by complementing the sign bit of

Ihe lag froi S to D. Equivalent tags generate equivalent return tags.

Since the ('('-banyan network shown in Figure 3.11 consists of +2' and straight

links only, strictly positive dominant routing tags can be used to control it in a distri-

bute,d fashion. Since all tags have the same sign, the sign bit, tr, can be dropped from

the tag.

In SIMI) niode, a permutation is said to be routed using positive dominant permu-

" lation routing lags if those tags that are negative dominant in the set or natural permu-

tation routing tags are converted to positive dominant. Similarly, a permutation is said

to be routed using negative dominant permutation routing lags if those tags that are

%o



3-65

" positive dominant in the set of natural permutation routing tags are converted to nega- .

tive dominant.

3.4.8.2 SIMD Mode Communications. In an SIMD environment, all the processors

operate in lock-step and all active processors use the interconnection network simul-

taneously. There are two basic types of network settings: permutations, where each

network input communicates with one network output, and broadcasts, where some

network inputs are connected to multiple network outputs (but each output is con-

nected to only one input). Here, the more common communication need in SIMD

mode, that of permuting data, will be discussed.

First, the calculation of full routing tags for SIMD communications is examined.

Then, some permutations performable by natural, positive dominant, and negative

dominant permutation routing tags are described. Finally, the ability to perform a

given permutation using different network settings is demonstrated.

Several permutation routing tag schemes were described previously in Section

3.4.8.1. A permutation is said to be passable by a network if the physical network

structure (i.e., links and switches) allows the connections to be made. The use of full

routing tags allows the ADM or IADM network to perform any passable permutation.

The natural, positive dominant, and negative dominant permutation routing tags are

limited in the permutations they can implement, but are, in general, more easily com-

puted.

The full tags described in Section 3.4.8.1 are capable of representing any path in

the network. A non-trivial problem however, is to find a way to calculate the tags for -

any ADM or IADM passable permutation so that the N paths specified do not conflict.

Out of the N source/destination pairs in the permutation, a given pair may have many

possible paths to choose from to complete the individual connection. Assuming the

other N-I paths have been specified, there will be only one path that does not conflict

. . . . * .* .* * *. . *-. - .. .

* . ... .- *.-* * * * . . . * . **;*. . . . . -. '.



* .,". .. ". ..

3-66

with those already established. If the method used to calculate tags does not specify

that particular path, the control scheme will not pass the permutation even though the

network will. -

If a permutation is performable by the ADM using natural (or positive dominant

or negative dominant) permutation routing tags then the full routing tag can be easily

generated. To convert a natural tag to a full tag it is only necessary to extend the sign

bit, i.e., bits 0 to n-i of the full are set to bits 0 to n-I of the natural tag, and bits n

to 2n-1 of the full tag are all set to the value of bit n-+ I of the natural tag. The two's -

complennt operation can still be used to produce an equivalent tag.

In [Sie7t9,SiS781 it was shown that the ADM can perform any permutation that the

(;eneralized Cube network can. Similarly, the LADM can perform any permutation the

inverse Generalized Cube can. This result can be used to generate full routing tags for

either network based on the tags that would be used by the Generalized Cube network

or its inverse. The way to compute the full routing tags from the Generalized Cube _

tags detined in Section 3.4.7 is given in Table 3.2, where si and di are the ith bits of the

*source, S, and destination, D), and 1j and tn~ are the ihand (n +thbits of the full

routing tag. To calculate the tag, set fn ... fif 0 to S OR D and f2n-" fn+ 1 fn to

SI). F,,r example, a full tag to establish a path in either network from 7=0111 to .-

11=i011, for N=16, is F 01001100.

Permutations that are passable by the ADM (or IADM), but cannot be specified

using natural permutation routing tags or as Generalized Cube (or its inverse) permuta-

(ions are more difficult to handle. If it is known at compile time that such a permuta-

tion (,f data must be perf,,rmed (and the permutation itself is known), the full routing

t:gs can be precomputed and the execution of the SIMI) algorithm will not be impeded.

|lowever, if it. is necessary to perform an arbitrary passable permutation that is deter-

nined at execution time, this method can not be used. The efficient execution time

computation of full routing tags to properly set the network to perform passable

... o... . ....°



* 3-67

Table 3.2 Full Routing Tag Settings for Performing a Generalized Cube
Passable Permutation S

*s, di Route fn+i fj

o 0 Straight 0 0

o 1 + 2' 0 1

1 0 -2' 1 1

1 1 Straight 0 0



3-68

permutations is currently an open problem.

Now consider the capabilities of the natural, positive dominant, and negative dom-
"e4 '. .

inant permutation routing tag schemes. Recall that these schemes can set the ADM to

perform only a subset of the ADM passable permutations. However, they are easy to

compute and require only n + I bits each.

In [Len78], different classes of permutations known to be important in SIMD pro-

cessing were defined. It was shown in [McA80] that positive or negative dominant per-

mutation routing tags can correctly specify the connections required by two of these

permutation classes. The first class is called the lambda permutation. Source address

X is connected to destination address jX+k mod N, where j is an odd, positive integer,

k is any integer and 0 < X < N. The other permutation class is called delta and is

comnprised of uniform shirts in groups of 2' where 0 < i < n. This permutation can be

thought of as the concatenation of 2n-i networks of size 2' in which the same uniform

shift (mod 2') is being performed in each. It was also shown in (McA80j that natural

permutation routing tags correctly specify the connections required to perform the per-

feet shuffle [Sto7lJ permutation (defined in Section 3.2.7) in the ADM network and the

inverse perfect shuffle in the IADM network. Algorithms that can be used at compile

time to determine if a given permutation is performable with natural, positive dor-

ainnt, or negative dominant permutation routing tags were also presented.

An important property of the ADM and IADM networks is the existence of multi-

ple paths between all non-trivial (i.e. source/destination) source/destination pairs.

Because of the nature of the multiple paths, there are many permutation connections

that can be established in more than one way. The same pairing of inputs to outputs is
achieved, but all messages (data items) have more than one path available to them.

The constraint imposed is that all messages take paths that are mutually compatible "-."-.

(i.e. there must be no conflicts). Exploiting this property leads to some fault tolerance.

L...........-.



--..-- 1

3-69 a

As an example, consider the uniform shift permutation defined earlier as connect-

ing input X to the output whose address is X+k mod N, where k is some constant.

This is shown in Figure 3.35 where k= +2 and N=16. For each input, the path taken .:

consists of the straight, straight, +21, straight connections. As shown in Figure 3.36,

the same uniform shift of +2 can be achieved if all paths consist of straight, +22, -2',

straight connections. Other combinations are possible.

Intuitively, the "weights" of the links in a path can be summed, where +2' and

-2i links have weights +2' and -2', respectively, and straight links have a weight of 0.

Thus, any set of paths for which the weights sum to +k mod N can be used to perform

the uniform shift permutations. When a different network configuration can be used to

perform a given permutation it is said that redundant control settings exist for that per-

mutation.

For the example given above, if any (or all) of the straight links in stage 2 or any

of the +21 links in stage I are faulty, the connections shown in Figure 3.36 can be used

to avoid them. There is another configuration that can be used if any of the straight

links in stage 3 are faulty (i.e., +2 3, -22, -21, straight). In this example, there is no

way to avoid using the straight links in stage 0. If 20 was added to or subtracted from

the sum of the weights, there would be no way to adjust the other weight values (i.e.

change the path) to produce a total of +2. In general, if one path from an input

(source) S to an output (destination) D has straight conditions at stages 0,1, ,i, then

all paths from S to D must have stages 0 to i set to straight. Further information

about redundant control settings for permutations is in [SiS79].

. . - . . -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . °- ° '



3-70

2A 2

4 4-8

p 4-T

T .. _ _U

_____ _____T10 4-10

12.-4 12
0- -0

14.-4 14

4-a

STAGE 3 2 10

AUGMENTED DATA MANIPULATOR

V"igiire 3.35 1. frm rt Shift of +- 2 mod Ii In I i I N etN.work IN = If)



3-71 , .

LAW,.

a 1

b ~*'%
c e-t...4

2~ 2

0 0

N
p T

U 88 P

10 T0

12 1

14 1

14.

AUMETD AA ANPLAO

Fiur .3 Euvaet ouig o te nfomShfto +2mo 1 nah
APNI etwor (N1b

c4

d.. . .. . . . . . .



3-72 .

3.4.9 Conclusions

The easiest way to fully distribute the control of a multistage interconnection net-

work appears to be to use routing tags (it is certainly the most common). Each net-

work user calculates the tags it will use, and each switching element determines its

state according to the tags only it receives. The majority of the routing schemes dis-

cussed incorporate destination tags. The tag is simply the desired destination address;

n=log 2N bits are required for a network with N destination ports. Because of the

highly structured nature of the networks that use them, each switching element can . -

det(,rmine its state based on a subset of the tag bits. The networks that were discussed

that use destination tags are the Omega, baseline, Delta, and regular SW-banyans

(which means that networks not discussed, but in this class, can use destination tags).

The advantages to destination tags are: (1) that no computation is required to gen-

erate them (once the destination is known); and (2) misrouting can be detected by com-

paring the tag to the physical address where it arrives. The disadvantage is that for

handshaking or sending return messages, the source address must accompany each mes-

sage.

A different approach to routing tags is to compute the "distance" to be traversed.

This was proposed for the Generalized Cube network where the Hamming distance was

used. This tag also requires only n bits. A "distance" tag was also proposed for the

AI)M and IADM networks. In this case, the arithmetic distance is computed and

represented in sign-magnitude form, which requires n + I bits.

ihe distance tags are trivial to calculate, requiring an exclusive-or operation (for

the Generalized Cube) or a subtraction (for the AI)M/IAI)M), so this is not a major

disadvantage. The advantage to this approach is that the tag contains all the informa-

in m needed to detcrinine the source address. For a return message, the Generalized

('ube tag can be used %ithou modilication and the ADM/IAIA) tag can be used after

crMnpiuenting a single bit (the sign bit). The main disadvantage is that routing error,

-.

'4 x 

°.°"



3-73

cannot be directly detected. To add this capability requires sending the destination

address with each message.

For the cube type networks, either the destination tag or the distance tag

approach can be used. They are equally powerful and require the same number of bits.

The choice depends upon specific system requirements. For the data manipulator type

networks the distance tag approach is preferable. It can be shown that destination tags

could be used. However, each switching element would require enough intelligence to

compare the tag to its level in the network and then decide how to reduce the tag's dis-

tance from the desired destination. Considerably more logic would be required.

The scheme discussed for the extended shuffle-exchange network is interesting

because it only requires one bit tags. However, it is special purpose, being designed for

certain permutation connections in SIMD mode. Thus it is not generally suited to use

in other non-functionally equivalent networks.

3.5 Fault Tolerant Designs

3.5.1 Introduction

There are two major aspects to fault tolerance: diagnosing faults and avoiding

known faults (if such a capability exists). The literature on fault diagnosis of intercon-

nection networks will be briefly summarized in the following and then some fault

tolerant multistage network designs will be examined in more detail.

General multistage network fault diagnosis is discussed in JNaS8OJ. A method for

diagnosing faults in the Benei network is presented in [OpT71b. As discussed in

[SoRf80, certain kinds of faults can be tolerated in all stages of the Bene. network

except the center stage. A way to add an extra switching element to make the network

tolerate any single fault is shown and will be described in Section 3.5.3.

S. .* .



, 3-74

Detecting and locating faults in the Baseline network are discussed in [WuF79bj

and one of the results is extended in [FeK82I. The procedures described are generally

applicable to the cube type networks. The method used is to generate test patterns ."-"-"'-

that are propagated through the network. The emerging patterns are compared to

precomputed, expected patterns. This requires no extra hardware in the network. - ,

S(Using a different approach, in [RaM80 four methods are described for diagnosing SW-

* banyan networks. Extra hardware is required and it is assumed that the switching ele-

.ients can diagnose themselves and set a latch if faulty. It is claimed that two of the

methods can be used for any multistage network.

In [FaP8IJ the diagnosis of multistage cube type networks is discussed. The

interesting aspect of this work is that it is assumed that one whole stage of the network

is implemented on one VLSI integrated circuit chip. Due to pin constraints, this is only

!* realistic for small bit sliced networks. For example, a 32x32 network with bit slices one

bit wide requires each chip to have 64 pins for data paths alone. Since control lines

require two pins per data path, the count rises to 192. Systems with 64x64 networks

andi 60 bit path widths, built from discrete components, are being constructed

[McS'S2a]. If they were built with one switching element per chip, they would require

71)10 pin chips (including power, ground, clock, and reset)!

Most of the diagnosis studies implicitly assume the network is circuit switched

(hwcaiisv of assuming the fault model in [LeG68]). However, diagnosing cube type

packet switching networks is addressed in flim82]. In a more theoretical vein, a graph

model is used in IMaM8IJ to determine the necessary and sufficient conditions for being

able to diagnose t faults. An optimal assignment for a t-diagnosable network is

presemnte(l. In [Agr82], methods for diagnosing multistage networks are surveyed.

In [Shl80] an interesting approach to fault tolerance analysis is taken. 43-networks

are defined as any interconnection network constructed from 3-elements (after Joel

[loebsi). ix. 2x2 crossbar switching elements. A ;i-network is considered fault tolerant

L 

. ,



3-75

if any pair of 1/0 ports can communicate after a finite (but arbitrary) number of passes

through the network. T1Is is a much less restrictive definition than the usual, which

requires communication to be possible in one pass. Several simple structures were

analyzed in [ShH80]. The work was extended in [She82], where the shuffle-exchange,

indirect binary n-cube, Bene., and double-tree (to be discussed in Section 3.5.2) net-

works were analyzed.

A 12 node network is shown in Figure 3.37, where a processor and memory is

presumed to reside at each node. This structure was proposed in [PraSl] for parallel j
processing and was shown to be able to tolerate one arbitrary node or link failure. In

[PrR81], the topology, routing tag schemes and fault diagnosis of similar structures are

discussed and analyzed. Consideration is given to minimizing the maximum path

length and keeping the interconnection complexity low. This kind of structure is well

suited to a number of parallel processing problems. It does not, however, have the high

bandwidth required by a number of large-scale systems such as PASM [SIS81], PIUMIPS

[BrF82], the Ballistic Missile Defense (BMD) Agency test bed [NcS82al, Burrough's . .

Flow Model Processor [BaL81, Bur79J, TRAC [SeU80], HEP [Smi78, SmiSlaj, and

STARAN [Bat74]. Thus it is important to investigate adding fault, tolerance to mnultis-

tage interconnection networks, which do have the requisite bandwidth.

In the remainder of this section, a number of fault tolerant multistage interconnec-

tion networks that have been proposed are surveyed. Included is early work done on . -I-A-. A
making permutation networks (full access networks) fault tolerant, by adding a repair

network to the output [LeG68]. A much less expensive approach discussed is the addi-

tion of a single extra switching element to the Bene., network jSoR80]. A different kind

of fault tolerance is achieved by adding an extra stage of switching elements to the net-

work input (or output). This has been considered for the Generalized Cube network

IAdS82a,AdS82b,SiM81b] and the baseline network [Wul,821. A different approach,

also examined, is the inclusion of extra links between stages. This has been proposed

:::.:-..



3-76

N0

F-'igure 3.37 A One-Fault-Tolerant Interconnection Structure (N= 12)
[IPra8l]



[ , - . . .. . . . . . .

3-77

for the IADM network [McS82b] and for a cube based network [CiS82]. Finally, a
%t %

novel scheme for the Omega network is described that uses error correcting codes

[LiL82].

3.5.2 The Double-Tree Network

The double-tree network shown in Figure 3.38 for N=8 is designed to exchange

any pair of inputs. It was proposed in ILeG68], for addition to any multistage permut-

ing network constructed from 2x2 switching elements. Its intended use is to correct

permuting errors. It was shown that any switching element in the multistage network

stuck in the "straight" or "exchange" state has the potential effect of exchanging two

outputs. This happens if the stuck-at-state is opposite to the needed state in that

"- switch. Their justification for the "stuck-at" fault model was based on analyzing the

* failure modes of the switching element shown in Figure 3.26. If the double-tree net-

work is appended to the output of the faulty network, then the exchanged outputs can

be exchanged again, and corrected.

The double-tree network performs an arbitrary exchange in the following way.

Any pair of inputs can be directed to one of the switching elements in the left half

(shown by dashed lines in the figure) of the network. At the switch where they meet,

they can be exchanged. The switch settings required to do this are then copied by

reflection (about an imaginary vertical line through the switch labeled bx) to the

. switches in the right half of the network, except for the switch that corresponds to the

(left half) switch effecting the exchange. It is set to the opposite state. If the switch

labeled bX is where the input pair meets, it is set to exchange and all settings in the left

half are mirrored to the right half. This kind of a network can be constructed for any

value of N by "pruning" a corresponding double tree network for the next largest

power of two greater than N.

• U. . -



3-78

J. -.

.J.

h

S
V

4'

.1

I -~ - / 1

*1 3

4 4
I 5

6 - ~4,. 6

I I

8 - B

I' igure 3.38 8x8 I)ouble-Tree Network
[She8'2j

.9,.

V

.4.
'I-

*'..

. . . .......... . . .



3-79

It was shown in [LeG68] that when a double-tree network is combined with a full

permutation network (e.g. the Bene network), the composite network can accommo-

date a single stuck-at fault in any of the switching elements. It was also shown that

this capability holds when the output column of the double-tree section is removed.

The double-tree network that results from removing the output coluni is called the .'

truncated double-tree (TDT). Finally, if p faults can be decomposed into separate pair-

wise exchanges, then a cascade of p TDT networks added to the permutation network

can correct the faults.

It is important to note that this scheme is only designed to handle control line

faults. If any fault occurs that alters data passing through the network, it cannot be

corrected. This is because all switching elements participate in routing data and none

can be avoided.

3.5.3 The Fault Tolerant Benei Network

After analyzing the Benes network, it was found in jSoR80] that the network can

accommodate most single stuck-at faults (as defined in Section 3.5.2). This is because

there are multiple paths between each input/output pair. It was shown that there are

some permutations that cannot be performed under stuck-at faults anywhere in the

center stage of the network. For example, any stuck-at exchange fault, in the center

stage prevents the identity permutation (input j to output j, 0 < j < N) from being

performed. Any stuck-at-straight fault in the center stage prevents a uniform shift of

+N/2 mod N from being performed. It turns out that any center stage faults can be

corrected with the addition of a single 2x2 switching element at the output of or input

to the network. One connection to the switching element must come from a line -

labeled between 0 and (N/2)-I and the other from a line labeled between N/2 and

N-I. An example with the extra switching element at the output connected to 0 and 4

is shown in Figure 3.39 for N=8.



3-80

C,)

'a

bO .
r_.

*,o



3-81 "\

3.5.4 The Extra Stage Cube Network

The extra stage cube (ESC) is formed by adding an extra stage along with a

number of multiplexers and demultiplexers to the Generalized Cube network "

[AdS82a,AdS82b,SiM81hJ. Its structure is shown in Figure 3.40 for N=8. The extra

stage, labeled stage n, is placed on the input side of the network and implements the

cube0 interconnection function. Thus, there are two stages in the ECS that can per-

form cube0 .

Stage n and stage 0 can each be enabled or disabled (bypassed). A stage is enabled

when its interchange boxes are used to provide interconnection. It is disabled when its v-, :

interchange boxes are being bypassed. Enabling and disabling in stages n and 0 is

accomplished with a demultiplexer at each box input and a multiplexer at each output.

Figure 3.41 shows an interchange box from stage n or 0 in detail. One demultiplexer

output is connected to a box input, the other to one input of the corresponding multi-

plexer. The remaining multiplexer input is connected to the matching box output.

The demultiplexer and multiplexer are configured such that they are either both con-

nected to the interchange box (enabling it) or both disconnected from it, thereby shunt-

ing it (disabling it). All demultiplexers and multiplexers for stage n share a common

control signal, as well as those for stage 0.

Stage enabling and disabling is performed by a system control unit. Normally, the

network is set so that stage n is disabled and stage 0 is enabled. The resulting struc-

ture is that of the Generalized Cube network. If after performing fault detection and

location tests a fault is found, the network is reconfigured. If the fault is in stage 0

then stage n is enabled and stage 0 is disabled. For a fault in a link or box in stages

n-i to 1, both stages n and 0 are enabled. A fault in stage n requires no change in the

network configuration; stage n remains disabled. If a fault occurs in stages n-I through

1, in addition to reconfiguring the network, the system informs each source device of

the fault by sending it a fault identifier. The ESC can thus tolerate any single failure

° -..... . . . . ..-.. :



L-IlmF 11-..

3-82

4 24

0

NT

r ri

STAGE 3 2 1 0

F"iguare :3.10 SO8 ExtIra St age (Cube Net work. A single link or switching

elviiien (infIereha nge box ) I'a du re cani be t olerated.



VII.-4. N11% -j

3-83

INTERCHANG BOX.

(b) InterchTneCBoxNGEaBOX

(a) Inecag BxDsbe



3-84 1.

in the network. However, this applies only to MIMD mode communication. For the

permutation connections required in SIMD mode, it is not one pass fault tolerant (two -

passes are required).

As discussed in Section 3.2.11, the Generalized Cube network, and therefore the

ESC, compare addresses in stage i that differ in the ith bit. Viewed a different way, this

means that stage i, 0 < i < n, determines the ith bit of the output port address to

which the path is to be established. Consider the path from source S = s,_1 •ss to

destination 1) = d - dId0 . If the route passes through stage i using the straight

connection then the ith bit, of the source and destination addresses will be the same, i.e.,

di=si. If the exchange setting is used, the ith bits will be complementary, i.e., di='9i. In

the (Generalized Cube, stage 0 determines the 0 th bit position of the destination is a

similar fashion. In the ESC, however, both stage n and stage 0 can affect the 0 1h bit of

the output address. Using the straight connection in stage n performs routings as they

occur in the Generalized Cube. The exchange setting makes available an alternate

. route not present in the Generalized Cube. In particular, the route enters stage n-I at

label sn I sIs0, instead of s,,_- sis 0.

A related network is the extra stage baseline used in the Starnet system [WuL82].

It is shown in Figure 3.12 for N=8. Though it can tolerate single faults in the middle

.mages, since the input and output stages cannot be bypassed, it cannot tolerate arbi-

trary single faults. If it is modified by adding multiplexers and demultiplexers as is

done in the ESC, it would have the same capabilities.

3.5.5 The F-Network

The F-network was proposed in [CiS821 and is shown in Figure 3.43 for N=8. It

consists of n + I columns of N switching elements each. A switching element selects one

of four inputs to be connected to one of four outputs (or multiple outputs for broad-

xcsting). The input column uses lx4 switching elements and the output column uses

. .". ." " m • •
m
.. . .. I.-- . . .. .... . . . . . . . '



3-85

j%
-

p

T p

T

L a 8 9 Bwl ~infw Nitwoti

kigure 3.42 An 8xg ~s~n ewr ~tiI;tr 1tge (The network
CaiInot tolerate all arbitrary single 1amilts.) [WUL,82J

0

1 b

2 iur 2.388FNfwr

3 382



3-86

a'%

UxI switching elements. Assume the columns are numbered from 0 to n, input to out-

Put. If Pi = (Pn I.. Pp) is the level of a switching element in column i, then Pi is

-~ connected to

Pi+ I (Pn - Pi +I iPi- I i+1

=i+ (Pn-t Pa+iP-i oi,

Rj+I (.- .. F+ipjpj__i po)i+i' and

Si+i (N-1 1i+iPii-I P~

*in column i±+1. Notice that pi +I and Q +1 are the choices available at the input to an

* interchange box in stage i of the Generalized Cube network. In the F-network the cube

* functions are ordered from cube0 to cuben-1, the reverse of the Generalized Cube. Since

- two other functions are available at each stage, the F-network's capabilities are a

- superset of the inverse Generalized Cube's.

It was shown in fJiS82J that at each column there are always two path choices

available. Hence, the F-network can tolerate the failure of any single link or any

switching element in columins I through n-1. If a switching element in column 0 fails,

one input is isolated and in column n, one output is isolated. The network is very

robust under multiple faults.

*#*J



3-87

3.5.6 The IADM Network with Half-Links

It has been pointed ouc (see Sections 3.2.12 and 3.4.8.2) that the IADM network "-.

has multiple paths between nonequal source/destination pairs. Dynamic rerouting

schemes have been developed to take advantage of that fact [McS82dj. The one draw-

back to dynamic rerouting is that it is not always possible to change paths.

Specifically, this is the case when a straight link is required. To solve this problem, a

scheme is presented in [McS82b] in which extra links are added to the IADM network.

The links, called half-links, are added to each of stages I through n-I (refer to Figure -

3.19). At level j, 0 < j < N, in stage i, the half links connect switching element j to

switches (j +2'-') mod N and (j-2'- 1) mod N. The name half-link comes from the fact

that 2'- ' = (1/2)2', i.e., these links move routing tags half the distance of existing non-

straight links.

The addition of half-links is motivated by the desire to route around a busy or

faulty straight link. For example, suppose a tag wishes to route straight through stages

and i+1. Assume the straight link in stage i is unavailable. The tag can route +2'

in stage i and then -2 in stage i+ 1. The net result is the same but the straight link in

stage i is avoided.

It can be shown that, due to the additional links, a message in stage i,

0 < i < n-I, can always route on either the +2', straight, or -2' link if it is currently

on a positive or negative dominant path. Otherwise it can always take the +2' - ' or

-2' - link (either half-link). As an example, examine Figure 3.44. All possible paths in

the IADM network with half-links between source 9 and destination 31 are shown. The

positive dominant routing tag associated with the 9 to 31 connection is T=010110.

The positive and negative dominant paths are shown as solid lines. The alternate

paths that are normally available in the IADM network are shown as dotted lines.

Finally, the dashed lines indicate all the paths that are now available due to the inclu-

sion of half-links. Examining the figure, it can be observed that there are three path

-i.~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~. ."..-'.-•--....-.. .... .. "--.'......'-....... .".. . ... •- -. .-.- . •* .



* . .... . . . . . . . . . . . . .- "

3-88

101

0 /0

I. ). *.l

2 2

4 /*4

6 /*6

89

•'/ 10.€'

10 10 .

12 12 0

N 14 14 U

P 16 16 T

U 18 18 P

T 20 20 U

22 22 T

24 24

26 26

28 28

30 30

STAGE 0 1 2 3 - "

INVERSE AUGMENTED DATA MANIPULATOR

Figure 3.44: All Possible Paths Between Source 9 and Destination 31 in the LADM
Network with lialf-Links (N =32). T = 010110. Solid lines - positive and
negative dominant paths; dotted lines - alternate paths available without
half-links; dashed lines - paths available due to inclusion of halt links.

,.'.



3-89
LAW

choices at each switching element intersected by a solid line in stages 0 through n-2.

Everywhere else there are two choices. There is always exactly one choice in stage n-I

(stage 4 in the figure) since the paths must converge here (the +2 - and -2' - ' paths

are connected to the same output and so are considered non-distinct paths).

To make this network fault tolerant, a fault look-ahead mechanism must be incor-

porated into each switching element. A separate latch associated with each of the five

output links is included in every switch. If the outgoing link or switch to which it is

connected is faulty, the corresponding latch is set to 1. Otherwise the latch is 0. The

packet switching protocal (see Chapter 2, Section 2.5.2) must be modified so that any

packet requesting this switch will be denied access if it is going to use a link whose

fault latch is set to I (this can be determined from the packet's routing tag). With this

scheme, it is shown in [McS82b] that the network can tolerate any two faults in links or

switching elements (excluding the input and output columns which form the "hard-

core").

To reduce the amount of hardware required to implement the IADM network with

half-links, three options are available but with some sacrifice in fault tolerance. The

first option is to remove stage 0, the second is to eliminate straight links in stages 0

through n-2, and the third is to do both. All of these modifications produce networks

that can tolerate one arbitrary fault (again excluding input and output columns).

Differences between the options result in variations in throughput.

A routing tag scheme is presented in [McS82b] for controlling the IADM with half-

links and any of the networks produced by exercising the hardware reduction options.

It is an extension of the scheme discussed in Section 3.4.8. It should be noted that

modifying the ADM network according to the methods described in this section does

not produce a fault tolerant network. "..-

UL5

....................................................................................2 *.% %' '-



F~~ 91• :• I r, .

3-90

3.5.7 The Error Correction Coded Omega Network

A novel approach to designing a fault tolerant Omega network is proposed in

[LiL821. A wide path width is assumed and all data and routing tags are encoded with

an error correcting code (e.g. a Hamming code). To see how the scheme works, visual-

ize the network as being three dimensional. The x dimension is the direction of infor-

mation flow, the y dimension is that of the inputs, and the z dimension is that of the

parallel information bits. A network is normally viewed in the x-y plane. It is assumed

that due to VLSI pin limitations, the switching elements are bit sliced, s bits per

switch. If the network path width is w, there are w/s chips per switching element.

There are also w/s NxN x-y switching planes. The trick then, is to encode groups of

bits with an error correcting code and then to route each bit from one group through a

different x-y plane. In this way, if a single chip fails, only one bit error is generated in

each coded group and each can be corrected. Also, link failures can be easily tolerated.

To avoid routing errors, the routing tag is encoded and any errors are corrected at each

stage. In addition, the control section needs to generate three sets of control signals

independently. Each switching element then votes to determine its state. Thus, no >'.,

single error can cause a mis-route. A major advantage to this scheme is that it can

haidle spurious errors as well as hard failures (e.g. a line stuck at logical 1).

This scheme can be applied to any of the multistage networks that have been dis-

cussed. It works equally well for SIMD mode permutation connections and MIMD

mode random connections.

. . . . .• . .•



3-91

3.5.8. Conclusions ""

To place these fault tolerant multistage interconnection networks into perspective,

the family tree in Figure 3.25 is completed. The remainder of the tree headed Fault

Tolerant Networks is shown in Figure 3.45. Two kinds of fault tolerance are con-

sidered: (1) SIMD mode, where only routing errors are dealt with (but are done so in

one pass) and link or switching element failures that corrupt data cannot be tolerated;

and (2) MIMD mode, where multiple paths are provided so that faulty links and

switches can be avoided. Networks in the second category can be used in SIMD mode,

but two passes are required when a fault is present. -.

The earliest approach to providing SIMD mode fault tolerance was to add a
double-tree repair network to a permuting network. This network can be added to any

of the cube type networks as well as the Beneg network. It restores their fault free per-

muting abilities in the presence of permanent routing errors. Another approach in this

category is to add an extra switching element to the Bene network.

To add fault tolerance to a network used in MIMD mode, one approach is to pro-

vide multiple paths between inputs and outputs.Two ways to accomplish this are (1) to

add an extra stage of switching elements to the network; or (2) to add extra links

between stages. The former is done in the Extra Stage Cube network and in the base-

line with an extra stage. In the figure, the baseline is shown with a dashed line because

it requires some modification to qualify as fault tolerant. The second method for pro-

viding multiple paths is used in the IADM network with half-links are added and in the

F-network.

All of the approaches listed so far have drawbacks, a number of which are dis-

cussed in [LiL821 and will be enumerated here. The SIMD mode fault model is very

optimistic. It assumes that the only kind of fault that can happen is that a switching

element will get stuck in one of its valid states. Not considered are invalid states, link

failures, and switching element failures that alter data. The MIMD mode approaches

s7.. .-....

. . . . .. . . . . . . . . . . . . . . . ... .

• -('--,.._T,,.'.L ', , : _ ,,/,-. :,3 L , _,.R - ,'-. -- ,_, , . .*. .' . * - * .'- . . . . ....-. . -,'-'.. . .- ,., .. ". '.:..., :



3-92

3~3

0'
- @

l~c
ax

0'

lag -

U) 0 ro-

0 "3 0



3-93

do deal with these problems but cannot route permutation connections in one pass (two

are needed). If these approaches depend on periodic diagnosis to detect faults, tran- %

sient errors will go undetected. The MIMD mode networks also have more complex

routing tag schemes.

The solution proposed in JLiL82] to all these problems is the Error Correction

Coded (ECC) Omega network. This is listed under both SIMD and MIMD mode in the

figure. A crucial assumption required for this scheme to work is that the switching ele-

ments are bit sliced. Then different parts of one switching element can fail indepen- -"

dently. For current technology, this is a reasonable assumption for many applications,

due to the pin limitations of VLSI chips. The main drawback to this scheme is the -

large amount of extra hardware required since the parity bits increase the total path --.

width significantly.

3.6 Conclusions

This chapter has presented a broad survey of multistage interconnection networks.

In addition to examining the different topologies that have been proposed, different .

switching element implementations, distributed control schemes and fault tolerant

designs have been discussed. For the most part, the networks included were those

deemed to be suitable for use in large-scale systems. The other networks included were

those originally proposed for telephone exchanges, from which modern parallel process-

ing networks descended. These early networks not only have historical significance, but
their structure and properties are highly related to the modern networks.

In this survey, wherever possible, the networks have been discussed independent of

any particular system configuration in which they might be used. It is possible, how-

ever, that some configurations would require modification of some of the schemes

described. For example, actual switching element design depends highly on whether a

.- . . ° - -. °- . o. .- -.. . . %o %.°- - . . .. .. . . . .- - . . .- . . . . . . .. .

... ' ''' '°. ' ." ,/'d ' '- -' ' '° -" " .'h o °' • °. . ." " " °° °," " '°, %' " -% "" ,".% " ° % " ,•. '2 *.% % '



3-94'

unidirectional or bidirectional approach is taken; also upon whether packet or circuit

switching is used. On the other hand, topology, control method and fault tolerance

issues are more independent of such considerations.

In Section 3.2, seven classes and 17 different multistage networks were presented.

It was found that the majority of the networks designed for parallel processing fall into

one of two categories: (1) cube type and (2) PM2I (data manipulator) type. The cube

type group has 10 members and the PM2I type has four members listed in Figure 3.25.

This result should simplify the network notation scheme to be developed. For example,

if the notation simply specifies the sequence of interconnection functions implemented

by the network, nearly all of the networks listed in Figure 3.25 can be represented.

The Omega and Generalized Cube networks are represented by cuben-.,

cuben- 2,... ,cube1 , cube0 ; the indirect binary n-cube by cube0 , cube, . . . ,cuben-1;

and the ADM by PM2Jn_ PM2_ 2, ... ,PM2*i, PM2 0. Other interconnection

functions need to be identified so that any network can be described this way. This

represents the structural aspects of a network.

Based on the information in Sections 3.3 through 3.5, other parameters to be

included in the notation can be identified. Implementation parameters should indicate

whether the switching elements are crossbars or connect one input to one output at a

time; this is in addition to the protocol related parameters discussed in Chapter 2, Sec-

tion 2.5.2. Control parameters should indicate how many bits are used in a routing tag

and how they are interpreted. Fault tolerance can be specified in terms of the number

of link faults and switching element faults that can be tolerated.

A good approach to representing control and protocol information would be to use

an ISlP-like notation. For example, this would allow queue structures to be defined for

packet switching and the interpretation of a routing tag would be analogous to decod-

ing an instruction (but much less complex).

*~~ .

'"''''""-', ."."-"-"." .-. .'''. . " . . .,. . " .. . -.. . . . . . . . . % 4.. -. "*. ...- "



%

CHAPTER 4 .. "

HIGH LEVEL DESCRIPTIONS OF .

CONCURRENCY IN PROCESSES

4.1 Assessment of Parallel Programming Languages '

4.1.1 Introduction

Recently, parallel systems have become practical and feasible. In order to program

these systems efficiently, a number of parallel programming languages have been pro-

posed and many of these have been implemented, both for simulation and actual use.

Many of the languages have been developed with particular machines in mind, yet -.

many are general purpose.

In terms of modeling distributed processing, parallel and concurrent programming

languages provide one means of representing the parallelism in a process. Given a list

of desired algorithm parameters, several languages are investigated here to see if these

parameters can be determined given the program text and assumptions about run time

parameters.

4.1.2 Language Features

Several important algorithm features have been investigated (see Chapter 5).

From these, a preliminary list of minimal language features is proposed. In order to

perform an effective analysis of a program written in a particular language, the

language should include specifications of:..'.-
.: ...- 

.,e'+-%. ".-.--,

- ... ..- ; . - .. , . - -. , . . , , -. ' ' - . . -, ,. . . . . + . ., . . .. . . • . ..



4-2

Ia. size of local data declared

b. size of global data declared

2a. concurrent processes :- h

- b. dynamic process creation and termination

3a. description of communications paths

b. communications primitives

4 . synchronization primitives

5. data types

6 .other global resource requests

-.5".:,

These features are discussed below. ZL

Ia. Size of Local Data Declared

b. Size of Global Data Declared

Let any data that is accessed entirely by one processor be called local. Any data

that is accessed by more than one processor is called global. A further distinction could "-,

be made for data that is accessed by only a few processors. This distinction is not valid

here since similar performance penalties are incurred when any global access is made.

The critical distinction is the number of actual accesses to global data, not the number

of possible accesses to that data. Local data size determines the amount of memory per

processor required on a target machine. A large global data base may indicate a need .

for a global shared memory or a fast interconnection network.

N:

". a* % " % .-.- ° . .'. -. ° -.. °'%.. ... ... o..°. .. '. •.. ... °° .. '." o .o. - -.



4-3

2a. Concurrent Processes

b. Dynamic Proce * Creation and Termination

A means for specifying concurrent processes is necessary. The analysis must know

how the algorithm is to be divided among processors to match it to the number of pro-

cessors available in a system. Most MIMD real time image processing tasks require a

significant amount of dynamic task reconfiguration. To accomplish this a language '

must be able to specify the creation, execution, and termination of processes. (A subset

of digital signal processing tasks involve a one time static enumeration of processes.

These tasks could be described by declaring a static set of processes. However, for a

language to effectively describe all algorithms in the problem domain, it must be able to

express dynamic task changes.)

3a. Description of Communications Paths

b. Communications Primitives

Interprocessor communication is an important feature of any parallel language.

The topology of communications paths is important since it determines the types of

communications networks required. The implicit or explicit enumeration of communi- - -

cations allows analysis of the bandwidth necessary in any given network implementa-

tion.

4. Synchronization Primitives

If synchronization is required on a fine grain, it is imperative that the architecture

support some quick method of synchronization. The granularity is determined by

analyzing the frequency of occurrence of synchronization in the algorithm.

,, - -.,:.

• ' • .' . . . . . . . .• . .- "



4-4
--

5. Data Types

The requirement on data types is dictated by digital signal processing applications

rather than by the parallelism in the tasks. This enumeration of types determines the

instruction set capabilities required of a given processor architecture.

6. Other Global Resource Requests

Other requests cover any special requirements of a given algorithm for global

resources such as I/O devices and disk storage. These may be considered for specific

algorithms, but in general, these requests will not be considered here.

4.1.3 Languages

Following is a description of how the features above are implemented in several

languages. A discussion of trends and a summary of "ratings" is given at the end.

-. This is not intended to be a complete summary of all parallel languages. It is merely a

look at a cross section of more common or recent languages, and how well the

languages support the features listed above. Comments about the ease of analyzing the

imlplementations are inserted where appropriate.

Ada

Ada [DoD80] is a new programming language, sponsored by the United States

Department of Defense. It includes mechanisms for MIMD parallel processing.

Concurrent processes in ADA are called tasks. The number of tasks is completely

determined from the declarations. These tasks are initiated when the program unit in ,..

which they are declared is entered. Even though the number of tasks is free to vary, ;..:.:,:

the number is easily extracted from the declarations in the current program unit. Ela-

borate facilities are available for termination of tasks.



4-5

Communications are performed by the rendezvous concept. In a multiprocessor

system, this could be implemented easily with interprocessor communications. The

input and output parameters plus some fixed overhead define the amount of data

transferred for each rendezvous. Synchronization is defined with this same mechanism,r.r ,

except these rendezvous actions are defined with no input or output parameters. The

communications bandwidth necessary can be determined from the fixed overhead of ,

arranging the rendezvous.

Ada is strongly typed and all data formats and sizes can be easily determined from

the program text and the STANDARD package, defined for a particular host archi-

tecture. For instance, the sizes of SHORT INTEGER, INTEGER, and

LONGINTEGER can be defined to best fit a given architecture. Thus all data sizes

and formats are easily determined. In Ada, all variables are assumed local to tasks

unless otherwise indicated. Global variables are those that appear in

SHARED VARIABLE UPDATE calls. In a multiprocessor implementation, this

suggests some form of broadcast. These variables are the global data; all others are

local.

Because of its completeness, Ada is a complex language to compile or analyze.",

The syntax does, however allow analysis of the indicated program features.

C* -

CSP [Hoa78 stands for Communicating Sequential Processes, and is a language

proposed by Hoare to describe these communications. CSP, as proposed, is a syntax to -.

describe interprocess communications. The serial processes themselves are written in a

language that is implementation dependent. Therefore it is not a complete language

specification in itself, although complete languages have more recently been imple-

mented from the original definitions. 'h[

" - .

" ,. '

.... . _ : _._ , ... . ,:,-,- . _:._,: .. _,. - , , ... .. . ... . ...... .... ... .... . .



*1 4-6

In CSP, processes are created when the program is begun. Thus, the maximum

number of processes is known. Processes are permitted to terminate asynchronously.

" Presently, dynamic process creation is not supported. Since this is dependent on the

implementation, this may become available in later developments. From the program,

the number of processes can be determined but no variation of this number in time is

permitted.

Communications is a fundamental part of CSP. All communications are invoked

b) asking to give or take data to or from another process on a defined channel. The

communication operation is complete when both sender and receiver request the opera-

tion. Synchronization is accomplished in the same way, through the transfer of a - -

dummy value, since neither process can continue past a communication until the opera-

tion is complete. The necessary number of transfers in a communications network can

be determined from the explicit input or output statements.

Data type specifications are part of the given implementation. One would expect

all implementations to use a typed structured language like Pascal in [Ada821 and C in

[Ja(82]. Thus types and sizes of data will be easily available for the analysis. All data

is local to processes in CSP; no global data is permitted. All global data must be s.mu-

It ted with communications constructs.

('oncurrent Pascal

('oncurrent Pascal [llan77a] was developed for writing real time operating systems

on uniprocessor machines. The power of the language allows its use with multiproces-

sor systems.

The data types are easily determined since the "conventional" serial portion of the

program is written in Pascal. All variables are local to processes. Conventional global

variables are replaced by monitors. These monitors define global variables and all

possible permitted actions on these variables. Monitors guarantee exclusive access

• V ............... .... .. ....... .. ... ... ............... " ".-- ...... '



4-7

through some semaphore technique or equivalent. The size of global data is determined:: ."

by the monitor declarations and the access of these variables is indicated by a call to a

monitor entry. Thus, these features are quantifiable. Processes are important con-

structs in Concurrent Pascal. As in CSP, these are statically initiated when the pro-

gram is run. Thus the number of processes is fixed and can be determined from the

number of processes declared in the program source.

As implied, all communication and synchronization are performed through moni-

tors. These monitor calls can be considered predefined custom communication modules

guaranteeing exclusive access to communication buffers. Through analysis of the moni-

tors, the types of communications can be analyzed. Through analysis of the monitor

entries called, the communications bandwidth can be estimated.

Concurrent Pascal is very structured, thus limiting some features such as process

creation. However, this same structure makes it easy to analyze in order to produce

reasonable quantifications of the indicated features.

Path Pascal

Path Pascal [CaK80] is an extension of Pascal which accounts for dynamic con-

current execution of processes, under restrictions of path expressions. Path expressions

represent characteristics such as the amount of concurrency, precedence and ordering

constraints, and restrictions on concurrent execution. Features for real time use have

been added for interrupt handling and process priorities. Although Path Pascal was

designed for uniprocessor systems, its extension to multiprocessor systems is direct.

Data types are complete as in standard Pascal. All variables declared within the

context of a process are local. All other variables are global and require interprocessor

communication to access them in a multiprocessor implementation. In fact, all inter-

process communications are performed through these variables. Thus, communications

can be quantified by the accesses to these global variables; the amount of data

2 i 2 "" • " ;'?.. ........ .... . ......... ' - ..... ? .....
• • . . . o . * - ° ,, . . ' * .* • - , --. *.' . * . . ^.



4-8

transferred is related to the size of these variables. .

Processes are clearly defined in Path Pascal. Restrictions on the execution of ____

processes may be imposed with path expressions. These path expressions describe the

synchronization constraints. Within these restrictions, processes are created when they

are invoked much like a Pascal procedure. The difference is that the invoking process

continues without waiting for the process to finish, thus producing a coroutine instead ..

of a subroutine. Analysis of these invocations within the path constraints can produce

the number of concurrent processes at any given time during execution. The path

expressions can also implement a form of synchronization.

The path expressions introduce complexity into the analysis, but this complexity is

traded off against the ability to invoke processes on a dynamic basis. The communica-

tions facilities are not explicit and must be implied from the use of global variables.

Path Pascal emphasizes the concept of processes, while de-emphasizing communications

issues.

Modula

Modula [Wir77j was developed by Nicholas Wirth (author of Pascal). It is

intended for real time operating systems and primarily uniprocessor systems. A subset

of the Pascal language is expanded to account for multiple processes, signals, and dev-

ice dependencies.

Variables are strongly typed as in Pascal. Variables declared in the main program

block are global to all processes, those declared within processes are local. Therefore, it

is trivial to determine the type, size and scope of variables. W

Separate processes may be declared only in the main program block. Processes are

initiated much like a procedure call, but the calling routine never waits for a return.

This limits the flexibility somewhat, but provides for easy analysis of the number of

processes at any point in the program execution.

. ............. . . .



4-9

Communications are performed through the use of interface modules. Thus, the

exact specification of the communications is programmed by the user in these modules.

Analysis of these modules in a program will give a measure of the amount of communi-

cation per invocation of the module.

Signals are used to provide an explicit synchronization mechanism. They may be

implemented in a more efficient manner than general communications. The analysis is

straightforward since all signal actions are performed through the primitives wait,

send, and awaited.

Modula provides a limited but useful dynamic process creation facility. The com- ,

munications is not built in to the language, but is confined to interface modules. Sig-

nals provide explicit synchronization primitives. The language is well defined, and

allows direct analysis.

Edison

Edison [Han8l] is a language developed by Brinch Hansen (designer of Concurrent

Pascal.) It is designed specifically for multiprocessor operation. In comparison to its

predecessor Concurrent Pascal, it is more flexible while losing very little of the strict

structure.

Based on Pascal, the typing of variables is complete. Both local and global vari-

ables are supported. Procedures containing a cobegin statement contain variables that

are considered global. That is, processes starting with a cobegin statement in a given

procedure have access to the variables in that procedure. Otherwise, all variables

declared within procedures are local.

Separate processes are introduced in a program by a cobegin statement of the

form:

. . * . * * * * * * .



4-10 -

cobegin
I1do rl
2 do proc -

-."also ...

r- 2 do proc2

also

3 do proc3

The number may optionally be used for processor binding. The "parent" process will

* not proceed until all the "children" have finished. This allows for great flexibility, """

while providing for easy analysis of the number of processes running in any portion of

the program.

Communications are not explicit and analysis must be based on global variable

accesses and parameters passed to processes. Variables that are shared may be accessed pi
exclusively through use of the when statement. Communications are then defined with

implicit use of these variables. Communications may also occur when a process is

* passed parameters or returns values. The analysis of communications must interpret

these implicit communications.

Comments and Summary

In interpreting a language, the concepts of global store and interprocess communi-

cations are not distinct. A given MIMD system can simulate an interprocessor com-

munications network through a global store, or can simulate a global store through

interprocessor commu nications. Both of these concepts suggest information is

transferred from the domain of one processor to the domain of one or more other pro-

cessors. So in a sense, both are equivalent ideas. Some languages restrict specification

of communications" by not allowing global variables, while others provide no explicit

• .. . . . . . . . . . . . .



[-, I.- ILI 11''"kT.. v - ,1 T -1 -T W N- - ".I j': T- 74-11 %

- communications primitives. Synchronization may also be expressed as combinations of

*i globally stored semaphores or communications protocols. Different languages emphasize

different parallel constructs by providing primitives for those operations. The :1p.r

languages that look more conventional are those that use global variables for communi-'-.'

cations. The implication on a multiprocessor system with no global store is that every

access requires communication to the processor where that variable is actually stored.

This is much less efficient than a local memory access. If the program is written using

a large number of global variables, it should not "match" well with a machine with no

global store. Likewise if the program is written using communications primitives for all

communications, it will not take advantage of a global store. Since a language may

exclude use of one or the other operation, the language in which an algorithm is

expressed influences the type of architecture on which the program will run best.

Although it is the role of the compiler to implement the constructs used in an efficient

way, the most versatile language is one that allows specification of transfers in either

form.

The ability to alter the number of running processes dynamically is a desired

feature of a parallel language. It may not be necessary for all problems, especially

those on a small scale. However, as the problems become more complex, it is essential

to have this capability in the language.

The languages Ada, Concurrent Pascal, Modula, and Edison all look like conven-

tional languages (Pascal). They are similar in appearance and also in philosophy. Con-

cerning process creation, in order of increasing capabilities, Concurrent Pascal is the

most limited since all processes are started once. Modula declares dynamic processes

cleanly in the main program block, but does not allow more than the first level of pro-

cess declarations. Ada generates all the processes in a program unit when that unit is

entered. Edison goes the furthest to allow processes to be started at any point in the

program.

. . ..- x.



4-12

Ada and Concurrent Pascal provide explicit primitives for communications and

synchronization in the form of a rendezvous or monitor. Modula provides interface

modules for custom communications formats. Of these four more "conventional" -7

languages, Modula is the only one to provide a signal mechanism specifically to facili-

late synchronization.

('Si and Path Pascal have markedly different objectives from the four languages

just discussed. CSP describes communications through the use of explicit operators.

The analysis is simple and few assumptions need to be made. The number of con-

current processes cannot be altered dynamically in CSP. Whereas CSP is built around

communications, Path Pascal concentrates on process ordering and concurrency. A

path expression describes what ordering of processes is allowed. On communications,

Path Pascal provides nothing but global variables.

4.1.4 Languages and Language Features

Following is a summary of how well the languages discussed above express the

(hsired features.

a. Size Of Ioral Data Declared

1). Size Of Global Data Declared

All the languages distinguish between local and global variables. Some are more

explicit than others. Ada assumes variables are local to processes unless they are

involved in SllAIIEI)_VARIAIlEI)JIDATE calls. CSl ) has only local variables. Con-

c(urrent Pascal limits global variables to user defined monitors. Path Pascal defines

It,cal %ariablvs within process (efinitions an(i global variables outside the scope of the

pr,,wessie.. NMo(hila has glob:l variables in the main program block and local variables

with process,,s, isni hIas global variables in blocks that generate parallel processes,

ii!uA:;

. .-.. . ..



4-13 : :-:-:

but variables within processes are local.

2a. Concurrent Processes
S._. J.*.

b. Dynamic Process Creation and Termination -\.,.

Path Pascal has the most the most complex and most thorough description of con- * ,

current processes. Edison allows concurrency to be introduce dynamically at any level.

Ada generates groups of processes when their given program unit is entered. Modula " - '
-

allows concurrent processes to be generated only from the main program. CSP and

Concurrent Pascal provide a static enumeration of processes. .

3a. Description of Communications Paths

b. Communications Primitives

CSP provides a built-in mechanism for communications, as well as a description of

all possible communications channels. Other languages provide user definable commun- '7

ications mechanisms. Ada provides rendezvous, Concurrent Pascal provides monitors, -

and Modula provides interface modules. Path Pascal and Edison do not provide expli- -'-

cit communications mechanisms.

4. Synchronization Primitives

Modula provides explicit communications mechanisms. Path Pascal provides a

complex mechanism for providing synchronization through path expressions. The other

languages provide for synchronization with the same mechanisms that provide con- -

munications.

- .. *-.o



V7 %" .

4-14

5. Data Types

All languages were modifications of Pascal, except one implementation of CSP -

based on C. With these languages, all variable are declared as a certain type. Thus

analysis of variable types is straightforward. '-

4.1.5 Summary

Different languages approach MIMD parallel processing from different viewpoints.

- lRegardless of the approach, one can assume the language is implemented as a series of

primitive operations such as data transfers or synchronization mechanisms. Some

language constructs may be implemented through global store or interprocessor com-

inmications. Analysis must consider this and account for all communications on a

highor level. Some languages make it easier to extract the indicated features by mak-

ing them more explicit. With a suitable amount of effort, all the indicated features can

be extracted from the languages examined. Parallel or concurrent languages may

diherefore provide a useful means of representing some of the features of a distributed

pro((ess. Moreover, the language constructs can be applied at both the general design "

and detailed implenentation l)hases. In the design phase, a coarse decomposition of a

tahsk can be expressed in terms of general descriptions of data requirements, communi-

(at ions patterns, synchronization points, and process creation/execution/termination,

using the representations provided by a concurrent language. In the implementation

tph:ase, the (let ails of these attributes can be filled in. Concurrent languages can there-

fore serve as one possi)le modeling tool for describing distributed processes.

°°.o .... .. . .............. ...... ,"-



4-15

4.2 Graph Theory Applied to Modeling

of Asynchronous Computation

4.2.1 Introduction

Our initial study of the application of graph theory for describing asynchronous

computation has focused on Petri nets and their extensions. The literature contains

many examples of the use of Petri nets to model various aspects of asynchronous con-

putation. Many extensions are also described along with the limitations which they

help to overcome and the tradeoffs that they impose. Here we summarize some of the

most interesting results and suggest further extensions.

C. A. Petri developed the basis for Petri net theory in his Ph.D. thesis [Pet62]. His

work drew the attention of people working on two important projects: A. W. Holt and

others from the Information-System Theory Project of Applied Data Research Inc.,

(ADR) and also of J. B. Dennis' Computation Structures Group of Project MAC at

M.I.T.

The final report of the ADR Project [HoS68 detailed much of the early theory,

notation and representation of Petri nets developed and extended in the course of the

project. Of particular relevance to this report is a paper [tloC70] showing that Petri

nets could be used to model and analyze concurrent system components. :-:

Dennis and others of M.I.T. have published many reports and dissertations on

Petri nets [Den72,11ac72,Bak72J. Conference proceedings from the MAC Conference on

Concurrent Systems and Parallel Computation in 1970 [Den70] and Conference on Petri

Nets and Related Methods in 1975 have helped to develop and spread the ideas and

results of Petri net theory.



4-16

4.2.2 Basic Petri Net Theory [Pet77]

A Petri net is a formal structure composed of a set of places P, a set of transitions

T, an input function I, and an output function 0. The input and output functions

(defined relative to the transitions) relate the transitions and places. Thus, a Petri net

structure C is a 4-tuple:

C (P,T,I,0)
- .- ..

where, for example, sets of places and transitions, P and T, might be written

P = {PI,P2,P3,P4,PS} and T = {t1 ,t 2,t3 A,t4}

The input and output functions are collections of places for each transition. Since

a place may occur more than once as in input to or output from a given transition, the

input and output functions generate "bags" rather than sets. (A bag is like a set

except that an element in a bag may occur zero or more times, whereas recurrences of

an element in a set are not significant.) We could write the I and 0 functions for an ... ,

example net as:

l(t 1 ) {p} 0(t) = {P2,P3,PS}

l(t,) {P2,P3,PS} 0(t 2) = {PS}

|(t 3) O P(t 3) = {P4}

l(t 4) = {P41 O(t4 ) = {P2,P3}

The structure and arrangement of the Petri net may not be very obvious from its

written description so the graphical representation is more commonly used. Places are

represented as circles and transitions as bars. The input function is diagrammed by ,.

directed arcs from places to transitions while arcs from transitions to places represent

the output function. Thus the Petri net defined by the formal structure C = (P,T,|,0)

above may be shown graphically as in Figure 4.1.

.....- - .......... .........-....-. - -... . -



4-17

. . P.

Figure 4.1 Petri Net Graph Equivalent to Given Example Structure [Pet77-

When modeling systems, events and situations with Petri nets, the places (circles)

are used to represent conditions or the status of some element of a system. The transi-

tions (bars) represent actions; in other words, the transitions are from one state to

another.

To be able to show dynamic characteristics with Petri nets, a net is marked. The

presence of a token in a place can be thought of as indicating that the condition

represented by that place holds, the absence of a token indicating that the condition -"'- "

does not hold.

The earliest Petri nets were restricted to having either zero or one token in a place

but now unless some specific limit is imposed, a place may have any non-negative

integer number of tokens. A marking function p yields the number of tokens in a

place. The range of the marking function is the set of non-negative integers. For

example if there are 3 tokens in place pi, then p(p1 ) 3. A marking may also be writ-

- ten as a vector. For example, a net with places P {PIP2,P3} marked as:

p(p,) = I P(P2) = 5 (P3) = 0

has a marking vector p -(1,5,0).

... ;':.":'.



* .~. ...

4-18

-:.

The activity or execution of a Petri net is made up of transition firings governed

by firing rules. These rules have been defined in different ways at different times but

there is now general agreement on the rules for basic Petri nets. They are as follows:

A transition may fire if it is enabled. A transition is enabled if there is at least one

token in each input place. When a transition fires, a token is removed from each input 7

place and a token is added to each output place.

Note that nothing has been said to indicate timing of execution. The basic

definition of Petri nets says only that an enabled transition may fire, not that it must.
1'. - .

Also a firing is defined as occurring instantaneously, i.e., in zero time. Thus the proba- " :

bility of two or more transitions occurring simultaneously is. zero. A transition may be

enabled for an indefinite length of time.

4.2.3 Modeling of Concurrency

llwang and Briggs ItwB8IJ give an introduction to the use of Petri nets to model

asynchronous concurrency and concern themselves with the formal definition of Petri

net struclures. They point out that Petri nets can be used to model the specific class of

problems defined as "discrete-event systems with concurrent (parallel) events." See

lxamples 1, 2 and 3.

Examl)le I - Petri Net Used to Show Asynchronous Concurrency jadapted

from lwB81J

Figure 4.2 represents a computer system in which a processor is dedicated

to serving two input devices that are gathering data. ...-

~. .a.

. . . .° .•. °•• .. ., ...-.. °.. . . . .• _••

.. . . ......... .. . .. . .. . .. .



4-19 .

Circles represent
Previous Data places (conditions)
Transmitted Dote are tokens 0

which denote existence
Obtan Ne Dat ofcondition

Data eadytransitions (Actions) .

for ~' I n u0Dv c

Processor Available

Figure 4.2 Modeling Asynchronous Concurrency

Example 2 -Petri Net Used to Model Various Constructs of High Level

Language Including Explicit Concurrency [adapted from HwB81]

See Figure 4.3.

program PO; e
TO; To

while P1 do /* Tj2 *
if P2 then Ti T2

T3; P2

else T3 T4

endif /* P3  P3

cobegin /* Ts Ts

T6; p4  ps pe

TF7;
T8;To T7  TS

coend /* Tgo*
endwhile P71  P s r
goto P0  /* T, *

Figure 4.3 Modeling Concurrent High Level Language Program

*I "

:Y.



4-20

Example 3 - Petri Net Model of Producer/Consumer Relations With Bounded

Buffer [HwB81'

Figure 4.4 shows the relationship between a producer and a consumer with

a buffer of fixed size between them. If the buffer is full, the producer is blocked.

)%.

full lots
in buffer

Figure 4.4 Model of Producer/Consumer Relations. The total number of to-

kens in Pe and Pr is the total number of slots in the buffer.

Peterson [Pet81] gives a more complete and general formal definition of Petri nets i)-;5

andl gives examples of Petri nets used to model synchronization in various multi-task,

multi-program or multi-processor systems. Examples 4 and 5 show Petri net models of '.2

synchronization primitives.".. -
Example 4 - Mutual Exclusion for Critical Sections [Pet8]"

Mutually exclusive critical sections are program segments which must not -.- '

be executed concurrently; for example, sections of an operating system which ... 2,.

allocate and de-allocate memory blocks. ,".t-b o

. . . . . .. . . . . . . ..



4-21

• , • .?' .2. "

critical critical

section section

P r o c e s s I P r o c e s s 2 - " - - - - -

Figure 4.5 Modeling Mutually Exclusive Critical Sections

Example 5 - P and V Synchronization

The P and V operations on semaphores invented by Dijkstra [Dij65] can be

modeled by Petri nets as follows. Extended P and V operations can be

represented by allowing multiple tokens in the semaphore place S.

P(s) -.. . .

Figure 4.6 Modeling P and V Operations on Semaphores

Krygiei jKry81] defines vector masks and vector places to yield a tool called syn-

chronous nets (S-nets). These constructs are designed for and applied to the modeling

of SIMI) machines and offer a shorthand for Petri nets of large multiplicity. See E'xam- .: .-

ples 6 and 7. %

L I..-



4-22

Example 6 - Vector Extensions to Petri Nets to Make Synchronous Nets

Vector mask places are made up of vector places and vector masks as shown ___

by Figure 4.7.

0

Vector Place Vector Mask Vector Mask Place

Figure 4.7 Vector Elements of S-Nets

'1T1e vector place represents aggregates of logically associated and homogeneous

condl(itions whose initial and ceasing events are synchronized; for example, the

con(liti ons of an array of SIMD processors. The vector mask can model the par-

tiil)ation or non-participation of elements of the vector place in firing of transi-

tions. A vector place is holding if at least one of the elements of the vector

mnAk i, marked to I and each element of the vector place corresponding to the

nmsk elements marked to I have a non-zero marking. The markings of the

masks are chosen from a list of valid markings given by a descriptor of the

inmmediately preceding transition. The choice of which possible marking is

active is not determined by the model itself but by external means.

iio-.;



4-23

Example 7 -S-Net Representation of a SIMI) Machine with Array of Three

Computing Elements [Kry8l]

The structure is given by:

T{t, t2,t3 t0, 5 t6  S {sIs 2,s3}
V(V,V 2,V3 ,V4 ) M={M1 ,M2,M3,M4 1

VI <VIVI2VI3>MI =<M1 1 ,M1 2,M13 >A

V3 :::<V317V32 ,V33> M3 < M31,M3 2,M33>

V4 "-<V4 ,V42,V43> M4  <M1M2M3

A::- <s1 ,t1>,<t1 ,1J1>,<U1 ,t 2>,<t2,U2 >,<U2,t3>,<t3 ,s9->,

<t1 ,U3>,<U3 ,t4 >, <t4 ,U4 > ,<U4,t3 >,
<S2 ,t5 >,Kt 5,sl>,<s2-,t6>,<t6 ,s 3 >

with initial marking K0 :
K0 (sj) =1K 0 (s,) =0 "0 (s3) 0
K0(V1 ) K0(V2) =K 0 (V3 ) =K 0 (V4) = <0,0,0>
K0(M1 ) = I((M 2) < 1,0,0> K0(M3) -< 1,1,1 >
K0 (M4) =<0,0,1>

Figure 4.8 shows this structure graphically.

T
T 1V, M T 3  /

S 0 1 T 4 0  S3 0

Sa

V3 Mi3  V4 Mi4

Figure 4.8 S-net Representation of an SIMI) Machine (spe [Kry8l] for details)

A4



ftD-R167 316 DISTRIBUITED COMPUJTING FOR SIONAL PROCESSING: NODELING 3/4
OF ASYNCHRONOUS PM.. (U) PURDUE UNIV LAFAYETTE IN
SCHOOL OF ELECTRICAL ENGINEERING L J SEIGEL ET AL.

UNCLASSIFIED MAR 03 TR-EE-83-11 RRO-18796. 1?-EL-APP-A F.'G 9/2 NL

mhhhhhhmhhhhlo
Ehhhhhhhmhmml
EhshmhohmhmhhE
smmhhhhhhhom
I fflfflffllfllfllfllf



LA

I m':i' 
'-6

p CHART

J%

4%

,.-.-. - ... ,.-..- ., ... ,. -,. , .,, .. -. ,,.-., .,. .. ,, . ,. ., --... ,- -. ,.. ..- ,. .- : ,-... / . .- ,.-...,-,,.. . ,-:.,.- -

" m m u nnuuannum I _lnu ma n u



~~IJ.;..v-w,-- ;--L7--- . -% -;7 - .- ~. . .

4-24

Baer [Bae821 shows some of the limitations in the modeling power of Petri nets and

some of the tradeoffs involved in the use of various extensions. One such example is L m

detailed in Example 8. Here the extension of inhibitors allows testing the emptiness of

a place which is not directly testable with basic Petri nets. Baer further asserts that

this extension gives Petri nets the power of Turing machines. The cost of this exten-

sion is that "liveness" (the freedom from potential deadlock), and "safety" (the bound-

edness of the number of tokens in a place), of the nets are no longer decidable.

Example 8 - The Inhibitor [AgF731

The inhibitor allows testing the emptiness of a place. It is diagramed by an

arc with a bar through it.

p. inhibitor P" p.

Figure 4.9a The Inhibitor

Transition Tj may fire if and only if it is enabled in the normal way except

that any input place connected to it with an inhibitor must be empty, i.e., T,

may fire if and only if Pm and Pn are holding and Pi is empty. No tokens are re-

Ifove(l by inhibitor arcs.

llaer {lhae82] shows that this extension allows the solution of a problem posed in

[Kos731: two producers P,, P, two consumers C1, C 2, and two buffers B1 , 12. The two '

cnsijiners are not allowed to access their buffers simultaneously (perhaps they use the .

sariie 1/0 channel) but C has priority: C, can access 132 only when B2 is full and B, is

enlty. Vnhess the queues are bounded (that is, safeness constraints are imposed), Petri

, ."-o.- .



4-25

Op~ 06

nets cannot represent this situation. However, the extension of inhibitors makes this

easy.

Another tradeoff mentioned by Baer is in the external restriction of "safeness." ..:-

Without this restriction many of the formal properties are undecidable. (Safe nets can :_

be interpreted as finite state models.)-"--

Disjunctive logic is allowed by an extension to the firing rules. Example 9 shows

the use of an exclusive-or function in modeling an IF-THEN-ELSE construct. "".

Example 9 - Disjunctive Logic Extensions in Petri Nets [Bae82l ,:

Disjunctive logic extensions modify the firing rules of basic Petri nets. .-.:

S means exclusive-or l"-
P2

Q • "~. -k

Figure 4.a Exclusive-or Outputy -ob-nit"

When transition T fires, only one of P2, P3 or P4 will receive a token. "sfns.

Si s . . sho

th s fa exlsieo funtio in modlin a.n: I.F-THE.-E...c...struc.........°
:." ~ ~ ~ E am l .... .." "-: "-"---"-"-"-- ,-'-"-' Disunciv Logi Exte sion in Per Nets ".[- -"'." . . B , , "a. "•" e,8.,., . . 2- 1 .. ' ".,- ', .". , , .."."" .," .",



4-26

P2 P4

Figure 4.10b Exclusive-or Input

Transition T can fire if one and only one of P1 , P2 and P 3 contains a token.

Th is extension also offers the descriptive advantage that a decision-making

event is modeled as a transition, which simplifies the model of the IF-TItEN-

ELSE statement.

THEN

Figure 4.10c Modeling the IF-TIIEN-ELSE Construct

The cla.s of nets which is always left in a predetermined state after execution is

called "properly terminating" or PT-nets. The next extension discussed by Baer intro-

,ltees token absorbers. These can be used to "soak up" stray tokens which makes it

uimich easier to construct Petri nets of the PT class. Token absorbers are used to "kill"

................



4-27

redundant processes. Example 10 illustrates such a process.

Example 10 - Token Absorbers Yield Properly Terminating Petri Nets [Bae82] .

When a transition with absorbers fires, all tokens in the places to which the . p

absorbers are attached are removed. Figure 4.11 is a graph of a table search

done in a dual processor environment. Each processor searches half the table.

The token absorbers are shown as dashed lines.

begin search
Process I Process 2 .. '.."

next

end r/2Fue .nA table Ilutrtn-teUe fAsobr

Clean uplbe "cleu" frs a iet

process--re absorbed.

The absorbers from the "cleanup" transition of Process 2 are not shown in

full but are symmetric to those emanating from Process 1.

Baer goes on to say that with large numbers of processes, the graphs would rapidly

become mnt actibl)1. Ile shows that colored P~etri nets (suggested in [Jen7g] reduce

this "spaghetti" effect by allowing tokens of several colors to move about, the net

,ed. 1 th. saa

~§~** ~5~5 ~ :.~~7 j.'.:..I.. ..



4-28

also can model program re-entrancy and the instantiation of several identical processes

[BaJ771. .

Peterson [Pet8l] examines the formal properties of conservation and coverability

and their relation to the modeling power of Petri nets. Strictly speaking, conservation -. ,.

refers to maintaining the total number of tokens in a net. By extension, we are con-

c,,rned with conservation of resources modeled by the net. Coverability addresses the

problem of whether there exists a reachable marking with the number of tokens in

given places greater than or equal to those in some specified marking. He also presents

a system of matrix equations used to represent a Petri net of large multiplicity in a

compact form. This form, it seems, would also lend itself to computer representation of

a Petri net model. Peterson concludes with a study relating and comparing to Petri AMM

nets many of the existing systems for representing and modeling concurrent computa-

tions. lie shows (here and in [PeB74]) that conversions between these systems are pos-

sible, allowing results from other systems to be extended to Petri nets. His bibliogra-

phy is particularly well rounded and commented.
•- a• .*

4.2.4 Conclusions

In summary, it is clear that various properties of Petri nets are of value in model-

ina aisynchronous computation. The concepts of state-space and next-state functions

for Petri nets are natural extensions from finite-state machines, state diagrams and

next-state tables. Their particular value here is in the property that allows Petri nets

to model both hardware and software functions in an asynchronous parallel environ-

iient thus it should be possible to model the interaction between hardware and

s ft ' a re."'" "

The formal properties of safeness and reachability (the ability of one marking to be

reached from another) allow these models to be used to check for hazards such as

bounde(lness or the use of resources, andl the property of liveness to check for possible ..

. °-%o %

".* .. ,.. ° "'- . • • • ° % . ° - " ° - " o " . "' , . " ° ° . ° ° • - . ° • • • ° • " ° ° ' -"1 ° - " . . ." " "



4-29

deadlock situations. Formal languages based on Petri nets IPet81] and some of the pro-.,.' -
perties above have been used to allow optimization in systems or programs represented

by letri nets [ShS701.

Since Petri nets have no explicit relation to the passage of time, except to give a

partial ordering to events, there are areas of modeling which may require further exten-

sions not yet found in the literature. Task graphs (graphs which represent precedence

constraints of various possibly concurrent subtasks) have certain similarities to Petri

nets and usually do have timing possibilities. The properties of a new class of nets with

this added timing information need to be further studied.

When a conflict is modeled by a Petri net, there is usually no information about

which of two (or more) transitions will fire. Another graph system with some similari-

ties to Petri nets is the Markov-graph, which is a graphical representation of a

Markov-chain [Pap65J. Examples of the use of Markov-graphs in concurrent systems is

given in sections 7.3, 7.5 and 9.3 of [HwB81I. Here probabilities or probability func-

tions are associated with the various possible transitions. The class of graphs which

would result from the merging of Petri net and Markov-graph concepts should also be a

powerful modeling tool and would probably be compatible with the extension to task-..

graph style timing information. Note that the timing might also be expressed as a pro-

bability function. The probabilities of transition firing might be functions of time-of-

arrival of various tokens in the input (or other) places. More work will be done to

explore the properties of these proposed graph concepts.

........
*. . .'"" " .'.. ..-j -: " ","% ..'% ...- *. *".' *2" *7 "* "* y°" *," ".

€
.. ."" "" ." .. . ._ . . .



C.~~F - .. -

CHAPTER 5

FEATURES FOR DESCRIBING :*: -'

PROCESSES AND ARCHITECTURES

5.1 Introduction

The direct correlation of hardware attributes to features of software algorithms is

a complex task. The approach taken here is to examine a variety of hardware

configurations and concurrent programming languages as well as algorithms written in

those languages. Salient features of computer architectures are identified and, where

possible, metrics are proposed for quantifying or measuring them. Similarly, elements

of the programming languages whose effectiveness (e.g., speed of execution) is affected

by architectural features (or the lack thereof) are identified. Metrics are proposed for

quantifying the extent to which a critical element is present in a given algorithm (e.g.,

the number of times a synchronization instruction is executed). To produce a correla-

tion coefficient, equations are proposed for combining the architectural metrics with the

algorithmic metrics. If architectures and algorithms being considered are specified in

sufficient detail, each of the metrics can be evaluated and a set of correlation

coefficients produced. In this way, the "best" architecture among those being con-

sidered can be chosen to execute a given algorithm, or the "best" algorithm can be

chosen for a given architecture.

Preliminary results are presented in the following. A hierarchical approach is

taken by defining high and low level features or characteristics. High level metrics are .- ' -]

used in the absence of more detailed information. When more details are available, low .. .

level metrics, which are a refinement of their high level counterparts, are applied. The

iMi
•..- ..o



,5-2

format for presenting the metrics is as follows. Each section contains an algorithmic

feature and its associated metric, and discussion on how the metrics can be used to

determine compatibility between the features. It remains to evaluate the effectiveness

of the features discussed by applying them to proposed architectures and existing algo-

rithms.

5.2 Higher Level Characteristics

5.2.1 Uniformity

.,llgorilhm: 'nIformily of P'rocessing

l)uring the course of a computation, resource requirements vary. Resources

include processors, memory, and the interconnection network. Appropriate features

which relate to these resource requirements include:

* I)egree of concurrency

* Frequency of interprocessor communications

* Structure of these communications

* Data type conversions

,idirics associated with each of these algorithmic features are discussed later. ||ere,

uniformity or the degree to which they change is of interest..

.Archilerlure. Ieconfigurabilily

Architectural features which allow changing demands to be accommodated include:

..... .................. .... . .. . . . .. . ...



5-3

* Total number of processing elements and ease of reconfiguring these elements

into smaller groups

* Overall bandwidth of communications network and number of permutations

as well as the amount of overhead involved in reconfiguring the network

* Ability to operate on different types of data and the ease of converting

between these different formats

These metrics are intended to match dynamic algorithms with dynamically

reconfigurable architectures. If an algorithm changes its requirements often, it is desir-

able to accommodate these changes quickly and efficiently. Algorithms that are more

"static" in their needs do not require such capabilities, thus the additional cost of a

reconfigurable system should produce a poorer match between these features.

5.2.2 Global Control

Algorithm.: Global Control

Concurrent algorithms run on separate processing units independently. In order to

guide the overall flow of the program, global control is required. This control is con-

sidered overhead in the computations if its execution cannot be overlapped with that of

the non-control instructions. In some algorithms, it may even dominate the execution

time. Several programming concepts are included in this category. Among them are:

* Synchronization (e.g. semaphores)

* Process generation (task spawning)

* Dynamic allocation of resources such as

* Processing elements

............

............. >

.&kA a . A - - - .. . -- .'o



5-4U

* Memories

* Communication channels

*System recon figu rations

The proposed measurement for each of these is their frequency of occurrence. That is,

it the number of control steps per total program steps at run time can be estimated,

the amiount of overhead incurred can be determined for any given architecture. An

* algorithm with few global control statements does not require elaborate hardware con-

* trol mechanisms.

Architecture: Global Control Alechanisylns

Various architectures have provided means for control activities on a global level.

* 'lHws'e special mechanisms reduce overhead for executing programs and provide facilities

for Ilie ea-sy implllemnentation of concurrent programming constructs. These mechanisms

* Tes,-t anid set hardware

* Fetch and add hardlware

*Process state management hardware

C omnmunications network

* Structure

* Flexibihitv

* lBanidwidtlI

* setiJ) timie

* [-xte-nt of built-in control



% . -. - . - p -- -r r -

• Control units

Many of these hardware features were designed to accommodate some software need.

One possible measurement of fit is a matching of features with needs. Then bandwidth

is considered in each case. Also, the architecture description needs to be complete

enough so that the capabilities of providing for each software need can be measured.

That is, if an architecture does not provide a particular mechanism, what time penality

is paid for using an alternate, slower hardware mechanism?

Thus even in the case where an architecture does not directly provide for a control

need, the overall performance can still be estimated. A further refinement considers

maximum capabilities and insurance that worst case demands are met.

5.3 Lower Level Characteristics

5.3.1 Parallelism ...

Algorithm: Degree of Parallelism

Algorithms incorporate parallel constructs on many levels. These include explicit

definition of co. arrent processes as well as parallelism implicit in loops. The number

of bits in each data type can be considered a measure of a ruiimentrary form of paral-

lelism, at the word level. If the program is described as a graph model, the number of

independent nodes gives a good measure of parallelism. Consider metrics describing the

degree of parallelism at each of several levels including:

* Number of independent processes

* Number of subprocesses

* Width of data types

.... . ._ -•. .



5-6

Let these parameters be indexed as a function of time. Then the maximum

requirements as well as the average and deviation can be calculated. These measure-

ments characterize the inherent parallelism in an algorithm.

Architecture: Parallelism Available

Primarily, three techniques have been used to achieve parallelism in architectures:

(1) replication of execution units; (2) replication of processors; and (3) pipelining various

functional units. A good architecture description should at least identify each of these

* types of parallelism.

Haindler [|lan77b, Han8l] describes a scheme which include these ideas. He defines

two types of parallelism: pipelining and replication. The three types of replication are:

(1) multiple computers; (2) multiple execution units; and (3) parallel bits. Each of '-

these functional units can be pipelined producing: (1) macro pipeline; (2) instruction

pipeline; and (3) execution pipeline. A macro pipeline consists of a series of processing L _

- ,elements operating on data sets and passing results on to the next processing element.

In this way each processing element can be matched closely to the appropriate sub-

algorithm. Also pipelining within processing elements can be considered, for example,

in the case where each component process is processing arrays of data. In general, a

measure of fit for pipelined systems and algorithms at any level can be expressed. Let

N be the number of "stages" in the pipe and X be the number of "items' to be pro-

Fcessed. Stages may be adders or entire MIMD systems and "items" may be bits of data

or large matrices. The efliciency of the system, E, is the average fraction of stages in

use. E is given as
= x

E S + N +X-I.

where S is a (possibly zero) pipe start up time. The optimal speedup is N since N

stages are working. The performance, ', is NxE compared to a serial system. We will

i272 i 7257..............."..::.. : -. -...................... -" " -........... ... .. . .. ,.....,,



7 F-7- v. .. 7. .7

nomliethis tnaueto betwee 0 and 1, by replacing the N by N i This new

N

measure re~ ards (i.e. prod uces aI normia ized nuber closer to 1) algorithm is operating 6

onl long "vectors," since the tinie to fill the pipe Is short relaive to the Oie It, Is full.

It also rewards pipes in general since Iiore processing (-an be accomiplished as long as

I'etr"are involved. A cominlat ion of a. long pipe and ( fow dat a it i, is1~4ue

normalized n umber closer i ) 0. 1 fence, the perform a nce ietric duo to pipelin ing iZ:

NX n
4 ±N4-X- I

NORM N(4\+N

A miajor source of potential speed iip iii MIMiI) sv-,,i is replicat inn of processing

elements. The efficiency of Owh pipeline coincept is ham11pered by filling the pipe. In

replication of eleints, the efficiency Is d egrnd I onlyv wh cii all uniiits aire no t kept busy.

If X Is the replica! ion 'in the 4oft are :ir(j N is the replication in the hardware, then the '

efliciencv. E, is of the forin

XJN

where [,IIis the smualles.t integer greater thIian or equalI to' A. Tbis wvneasul n a r ils

between for a serial algorithmn and I Nwen the parallelism in the algorthmi 1a miil-

tiple of thle lirllii in the archtecture.

This nifoa urv co(nsilers only etlilnicy iond disnot like iinto nrtomnt thme rnvr 'It

thronghiput Thius, It imost 1w lInq)(l1ied. ti) 1i1,1ic.111 111:0 t IV. Is 11111 uhhzXiill d pr~oAs

sors will.o.r ' ''a at''mi if 32 siji nlvori fhiws ire involved, t0'; Will iltil-

ize It6 provmig eol';nts just av, tIl 3~ 2. % t Ie Iw 161lomiiii inrit hine 0 il "

tieas uiui'h tifie. Fnh 4r~ei Of lii b.oioi''rw mii liH* ' foi iive to) i t%%,

s i b-alIgor i I uH IIi i In 'rl o-:iloI ct(-mnt hris t( 4-il villj f l\ 1 [' J 1 ' 1i,



5-8

algorithms. Thus multiplying the efficiency by N accounts for degradation due to

running more than one sub-algorithm on each processing element. So our performance

measure will be given as:

p= X/N I X/N

[X/NJ X [X/NJ - x/N

This na ure of fit applies to any non-pipelined set of replicated units.

5.3.2 Data Types

Algordhin: Data Types

Assume that data can be in the form of fixed or floating point numbers of various

sizes. The data required is separated into these categories and the operations on these -

typlw are numbered. The resulting measures are

# floating operations # fixed operations
and

total # operations total # operations

N inre detaied analysis separates the count or operation by the number of bits in each

format (e.g. 8, 16 and 32 bit fixed point and 32 and 6-1 bit floating point operation). . .

'i'lie nuiiber of ty)e conversions is also accounted for.

Architecture: Support of Data Types

Architectures may or may not support in hardware every data type required. If a

iarticular operation needs to be performed in software, the measure of fit is reduced by

a factor prop)rtional to the slowdown.

Specifically, if the operations on data types are defined as O1'j, I < i < N, where

there are N possible operations, Fi is the efficiency of OPi. Ei = I if the operation is

directly supported. Otherwise, E _ where (software time)i = b(hardware time)i. If

b• ,. ,-



* -- - - - -- - - r.* . - -

N
the number of occurrences of each operation is mi and M = i mi then the mea-sure of

fit P is given as:

• . ~N mi  1N,. ,_.
" v =~ E E, --- ---

i=1N

This does not take into account the raw speed of the architecture. This needs to I)c

considered as another measure. This also does not address the proldem of kno wing how

long an operation would take in hardware when that operation is not available

5.3.3 Local Storage

Algorithm: Local Storage Requirements L

Architecture: Size of Local Memories S

l,ocal storage is defined as non-shared variables. If the capacity of local invinry is "'"

enough to provide for all local variables, the fit is good. Otherwise, execution will be

greatly slowel and the measure of fit should be degraded. This can be expressed by a

boolean variable: L. +*

0 if I, < S

A more refined measure can be given if more is known about how frequently the local

variables need to be accessed and how much overhead is incurred by keeping local (data

in a remote or global store.

- *- . .. . . . . .. . . . . .o -

.. ~.. .



- -

5-10

5.3.4 Local vs Global References

Algorithm. Local versus Global References

Architecture: Aemory Structure and Access Timing
. '6 N

All memory references in a program can be categorized as either global or local

accesses. Local memory is typically the fastest memory available (excluding registers or

cache). Local memory is not shared by other processing elements, thus no contention

occurs. If no local memory exists in an architecture, then local access time is the same "

as global access time. Global memory is accessible by more than one processing ele-

ment. It is invariably slower than a local memory due to potential contention and

more complex access logic. If a global memory as such does not exist, access time can

be computed for requesting values from a processing element acting as a global store

and transmitting the requested values through an interconnection network. This form -

of global variable access is much slower, yet should be considered as an alternative to a

global store with direct hardware access. In either case, the access times for both local

and global nemory will be referred to as I and g respectively. g does not include delay

du(e to contention. Assume the number of local and global accesses made during execu-

lion of a program are L and G respectively. The fraction of time, t., spent accessing .-

global store computed as

___ __ __ g(L +G)

GL+ J G.L+CJ ,L

This assumes the global store is operating with little or no contention. To take conten- -

tion into account, this metric is multiplied by a degradation factor G, typically a func- ... \ _

tion of the global access rate. One way to characterize G is to assume that it is 1 until .

Gthe access rate or memory load exceeds a threshold, C. That is G = 1 if L+G < C.

Ieyond the threshold, further loading decreases the performance. Assume that this

* . . . . . . . . .. . . . . . . . . . --- ".-*o'.....o.-..



degradation is linear. Then the perforniance intilt illier is or the forml

a C; - a is thle slope, which is a1 function of thle access schemeit used. I ossi-

C 1crossbar

.5 < C < .75 m ultistage nterconnect ion network (veM -2J

* ~~The global access timle g c'all now be 1110(1ified byV the lh :id illg finct Ii to give a ri wgh

estimiate of the real access timnes g' gG . 'Ihe( fractionI of t ili spent oni loca.l and glo-

* bal accesses is

J+ g, l+g

The numnbers tj and t~ lie between 0 and I and give an indication of program w ia ior.

-These paramneters as a fuinction of timie indlicate thle p)rograin's memiory, access behavior

*andl where bottlenecks m-ay be occuirring. It is desirable to keep tg 9"s sriiall as5 possible.

*If t is ab~ove a given threshold, it, will becomne significant in the mieasure of fit.
9 .

5.4 Summary

A p rel iian', set o)f rlea-siiralble paramneters has b~een p~resen~ted . In tml )s cases,

* mathemnatical expressions describing mnea-sures; of fit were proposed. Future work%

* incliidve ex pand'ling and refinling the list of feattures, examning ways of coiiibiliiig thle

* id iv id nal nwasijres ino a sin gle correlation fact or to (let ermine overall fit., and "test-

- ~inig- tile nwXPe41re(( on sa iniple parallel arch it ectiiires and signal processing tasks. Work

by ( :1 ' ( "ni deferriminri the rcompatmbilitv of nn architecture amd ain algo-

*rithni %%ill ry a' :,i tart ing 1-int fir ouir researchv onY d1(rivi an overall inwtric.

.U-6~



% .. .

CHAPTER 6

APPLICATION STUDIES .. "" U

In contrast to the preceding chapters, the work described in this chapter takes a

bottom-up approach. That is, specific signal processing tasks are given parallel imple-

mentations, and each task and its implementation are closely scrutinized to identify the

salient attributes of the task and the requisite architecture. At this point, each task

has been considered independently, but eventually the joint implications of the ensem-

ble of tasks will be determined.

6.1 A Parallel Algorithm for Contour Extraction.

6.1.1 Introduction

This section presents a case study of a two-dimensional signal processing task

known as contour extraction. Contour extraction is a difficult problem in image pro.-

cessing, but one of critical importance to many applications ranging from computer

assisted cartography to industrial inspection. The task is used to develop model

parameters descriptive of important computational needs. These needs are in turn

examined to determine important architectural features which should be included in a

system designed for contour extraction. The relating of these computation parameters

and architectural features is a step toward developing a capability to evaluate candi-

date architectures in the light of classes of computational processes.

fThe research in Section 6.1 was also supported by additional grants. Prof R. -.
Mitchell also contributed to this section.

- A A . *,. . ° *

"A. -. ,

A A -A.".- .A.-,.° -



6-2

In the past, edge information has been used to improve threshold selection [Mil70]

in the contour extraction process. A new scheme for determining threshold values has

been developed by Suciu and Reeves [SuR821. This scheme has been incorporated in an
.V .

image shape analysis method directed toward classifying small well-defined regions,

such as buildings and airplanes, which has been investigated by Mitchell, Reeves, and

Fu [MiR81I. A processing scenario (composed of serial algorithms) which produces

interpretation results from digitized imagery using these methods has been implemented

at Purdue University on a VAX 11/780. In this application, image sizes are typically

5000-by-5000 pixels (picture elements). The image is analyzed in 256-by-256 pixel

subimages which are processed independently. To insure that each object (which has a

maximum dimension of 127 pixels) will be completely contained within at least one

subimage, it is necessary to overlap the subimages.

The swrial method of [Mil?81] yields good results, but is computationally intensive,

incurring long execution times. The time required to complete the processing scenario

can be reduced by exploiting its inherent, parallelism. In this work, a processing

scenario ,omtposed of parallel algorithms which allows the problem to be completed

%ith significantly reduced execution time is considered. In addition to decreasing the

processing time, the parallel scenario does not place a limit on the maximum size of an

object. Once it has been constructed, requirements which the parallel scenario imposes

on the architecture of a parallel computer system such as PASM [SiS81a] are studied.

.A parallel computer system model is given in Section 6.1.2. In Section 6.1.3 the

object shape analysis problem [MiR81 is defined and the parallel scenario is over-

viewed. In Sections 6.1.4 and 6.1.5 the parallel algorithms which compose the scenario

are presented. and they are evaluated in Section 6.1.6. The implications the scenario

has concerning system architecture are considered in Section 6.1.7.

.. . ..... f...............-.........



6-3

6.1.2 An SIMD/MIMD Model

The system model which will be used for implementing the contour extraction task

is PASM. PASM, a partitionable SIMD/MIMI) machine, is a large-scale dynamically

reconfigurable multimicrocomputer system being designed at Purdue University

[SiM78,SiS81a]. Image processing and pattern recognition tasks are the target problem

domain for PASM, and the requirements of these applications are being used to guide -

design decisions. PASM is intended to be a flexible research machine, and it has more

capability than is necessary to cope with the example image processing scenario dis- .-

cussed in this chapter. In particular, PASM's capability to be partitioned to operate as

many independent SIMD/MIMD machines of varying sizes is not needed for this

scenario.

The rest of this section is a brief overview of PASM to provide background for the

following sections. A block diagram showing the basic components of IiASM is given in

Figure 6.1. The System Control Unit is a conventional machine, such as a IPI)l-ll, and

is responsible for the overall coordination of the activities of the other components of

PASM. The Parallel Computation Unit (PCU) contains N 2n processors, N memory

modules, and an interconnection network. The PCU processors are microprocessors

that perform the SIMD and MIMD computations. The PCI' memory modules are used

by the PCU processors for data storage in SIMD mode and both data arid instruction

storage in MIMD mode. PASM is being designed for N = 1024. An N 16 prototype

based on Motorola MC68000 processors is planned [KuS82].

The PCU is organized as shown in Figure 6.2. A pair of memory units is used for

each PCU memory module so that data can be moved between one memory unit and

secondary storage while the PCU processor operates on data in the other mnemory unit

(double-buffering). Each memory unit is of substantial size (e.g., 61K words). A pro--

cessor and its associated memory module form a !'CU prorcssing element (PE). The

'A".



6-4

MEMO Y sIt' T %I O. 1M'

'F CON-..

MEFMORY S~[

MFNSOIAG TAI- CONTROL-

Figure 6.1 Block Diagram Overview of PASM



MEM.~~ IAMl'I.)

M E NI. 11 PRO
<~ b*

z

PROCESIN NCIIN-1E

Fiur 6. IAN "~rI opuainUi

M E.. N- I MIR

ME-. N -13 ..



PCU I'FI's are addressed (numbered) from 0 to N-I. The interconnection network pro- .

vides a means of communication among the PEs. PASM will use either a Extra Stage

Cube type [AdS82b,SiM8Ibl or Augmented Data Manipulator type [McS82d,SiM81a of

multistage network. The Memory Management System controls the loading and unload-

ing of the l'CU memory modules from the multiple secondary storage devices of the

Memory Storage System.

The Micro Controllers (AICs) are a set of microprocessors which act as the control

units for the ["Es in SIMD mode and orchestrate the activities of the PEs in MIMD

Mode. Control Storage contains the programs for the MCs.

6.1.3 Image Processing Task

6 1. . 1 Problem Definition and Serial Algorithms

The first stage of the shape analysis scenario of [MiR81J is to identify boundaries

of potential objects using edge-guided thresholding (SuR82]. Edge-guided thresholding

(1';' uses adaptive thresholding to allow contour extraction where gray level varia-

tions would not allow global thresholding to be effective. The image is segmented by

S.selecting svral gray level thresholds and tracing the resulting contours. Classification

"............,nl)lis!e'l by comparing the contours with prototype object models using either

Fourier descriptors [WaWSO] or standard moments [llu62,Tea80].

r. An overview of the serial image processing scenario follows (further details are

given later in this section). Segmentation is simplest when there is little background

inf,,rmaton. i.e., the objects of interest cover a significant portion of the image. To

- achieve this with a very large image, the image can be divided into subimages. A

sulhimage size twic(. the largest dimension of an object is chosen, and each subimage is

processed independently. Subimages are located so that they overlap neighboring

sulbimages 50 percent in both the horizontal and vertical direction. This insures that

.,o. ,o. .

t".,-. .-. .- .. . . - .. . . .. . . . . . ... . ...... ...... . . .. . . . . '-"



6-7

an object will be completely contained in at least one block. However, It is necessary to

perform the image processing computations four times for each pixel. The advantage

of this method is that it eliminates the nleedl to trace ('ontolirs across subimage boun- -

daries (simplifying the algorithms) and significantly reduces the amount of main --

memory required (subimages are discarded after processing).

Potential thresholds for a subimage are selected using edge-guided thresholding,

which selects thresholds based on an edge-matching criterion. U'sing the So)bel edge2

operator [Du1I73], an edge iniage is generated in whieh gray levels indicate the magni-

tude of the gradlient. A figure of merit which indicates how% well a given thresholded

gray level imiage matches edges in the edge linage is tOen computed for ever)- possible

threshold. Using thresholds with high figures of mnerit, a requantized ver:,iol of the

* gray level image is generated. A mnedian filter VaWiN8 I may then be applied to remove

* ~isolated noise artifacts. The contours fo~r all potential (oljecl t l touching the su himi-

age boundary (i.e., completely contained within the subininge) are extracted for further

* shapeanalysis. Very short and very long contours may not be ret ainied if they represent

* objects outside the range of interest. rhe boundary of each object (contour) is stored

as a sequence of x-y coordinates.

* 6.1.3.2 P~arallel Scenario

In this section a parallel formulation of the contouir extraction scenario is

presentedl. This p~arallel scenario will be used as an application example for dletermin-

ing the ex ec ution env ironmen t which must be provided by the airchitectunre or an

,SIMI)/XMI\l parallel processing systemn such as P ASM . The specific co n text (of t h

c()Oujtlr extract lol sceieiri( would (leperid(l on the :ijplicntilmi. Th'le contour extract Lii1

scenario inmay be preceded by imruage pr~ messing such is rectiflicatin. Sn1 )svqiw nt u. ue (J

the extr rct ed contours depends on t he p~articu11lar end a ppli(catin H~l Iighlighiting con-_____

twtrs of an itiiage requires essentially rio furt her pro cessin g, wile sh ape ana alsis and



clasiictin ayinvolve sinfcn additional calculation beyond cntur extraction.

An NI-by-NI pixel image is represented by an array of M2 pixels, where the value of __

*each pixel is assumed to be an eight-bit unsigned integer representing one of 256 possi-

* Ible gray levels. To implement contour extraction on an SIMI)/NIIMD machine of 1024

lIEs, assume that the lIEs are logically configured as a 32-by-32 grid, on which the NI-

byv-\ Iinage is superimposed, i.e., each processor has an M/32-by-M/32 subimage (see

Figuire 6.3(a)). For NI 5120, each PE stores a 160by-160 subiniage. Each pixel is

uiniquiely addressed by its i-x-y coordinates, where x and y are the x-y coordinates of

fte pixel in the suljm nage con tained in PE i.

Two Important parallel algorithms of the contour extraction scenario are edge-

gidcd t hresh idin g and] contour tracing. The edge-guided t hresholding algorithm,

* wh~Idis discussed In Sect ion 6.1.4, is used to determine a set or optimal thresholds ror

* '~~1:tclu .1linit The contour tracing algorit hm, which is considered in Section 6.1.5,

* II~isthe '.et of opt imial thresholds to segment the Image andl trace the contours, gen-

cr3 Iitigll i- -'s seq1(uence fo.r each conit our.

'Hli 1) ir Idt algorit Iimn. described y id a significant reduc tion in execution time

buuui'.'e 11l4, inIltiplWONt 4 orm-rt)(4ors al~sall (If the s ubimnages to lbe processed simul-

tiii ,uiJv. , rnce the parAlel uooi ir tracing al g )rit hin is a ble to trace contours over

- il 11minae I rders. it is not necessa ry to overlap the subi mages, and each pixel is pro-

* (esselonly' once. The parallel algorit hmis can result in Improved informat ion extrac-

I I sinice the( suIhinitages can be smaller (assu ruing a large ii umber of IDEs), yielding a

b~et ter ('h(l oic(f thresholds with in each subimage. InI add it ion. the parallel algorithms

do no4t reiltiire an object to be contained in aI single su bimlage.

The pairalIlel scenario couild be Imp~lemlent ed (i n a serial computer svst em with v ir-

t 11.1 mnemo~ry [D en70aJ. The disadlvan tage of this approach isthat when a contour

spanDs more thtan one subimiage, thie linking or partial contours residling in different



5120 PIXELS

PEO PEI PR 31
160

PE 32 . .. PIXELS
I PIXEL I PIXEL

510 60~ PE'160 PIXELS PE J 160 PIXXELS
PIXELS PIXELS Li

160
PIXELS 1 PIXEL I PIXEL

180
PIXELS

PE 992 PE 10231

(a) (b)

Figure 6.3 (a) Data Allocation for a 5120-by-5120 Image U~sing 1024 PEs

(b) Data Transfers Needed to Apply Sobel 'dge Operator



'17- 7 7.747 -7- -7

6-10

subimages requires that a representation of the subim ages, as well as any contour infor-

mation, be accessible. This may result in significant delay due to paging subimagesNM

into primary memory. Paging overhead does not occur on a parallel system since the

entire image is stored in primary memory. Thus, it is the multiplicity of primary

memories ifl a p~arallel system such as IPASM (the large primary memory space) that

* makes the non-overlapping subimiage approach practical.

6.1.4 Edge-Guided Thresholding

The first major procedure of the example scenario is edge-guided tharesholding

*(LY;7) ISul?82], which Is usedI to identify boundaries of possible objects. Edge-guided

thresholding selects threshold levels based on an edge-matching criterion instead of the

- cl:sl.cal t echnique of imiage histogram local minimum values [PrMGO6]. Frequently,

- IC(T gies better results than the histogram miethod because it, is able to detect small

regI(i uiw~0 t (I iceriiiblv represented In the histogramn [SuR82J.

The IA '(l a 1iorjt n operates on each subimage indlependent ly, and consists of

t h re maI:jo r ,1cpjs. I' irst :mn edge Image is generat ed. Then a figure of merit is com- ..

pot ed (r~ ~r 1'' is,,i1b1e t hreshiold. Finally, local maxima ( peaks) in the figure of merit

- fui Nn ct i,) dlet ermu e the thIireshold IeN els.

The Sobe)(l edge operator is used to generate the edge image in the example

* -wenario. SINI) IaralIle ismn is the most adlvanltageous form of parallelism for the Sobel

*algoritblin. This ca:n be shown by anilysis of the operator Itself. Let the image I be

NI- y-NI and l(ij) be aI gray level image pixel, where 0 < 1, j :5 NI-I. The Sobel pro-"

-~~~ cedutre ( Igno'ring image edge pix els for clarity) is the following.

%.



'a , . W °

for i = ito M-2 do

for j = I to M-2 do - -. ,

-(l(i + ,j-1) +2*1(i + 1,j) +l(i + lj + 1))

sy(i,j) = (l(i-1,j-l)+2*l(ij-I)+l(i ± l,j-1))

-(I(i- ,j + 1)+ 2*I(ij + 1) + l(i + 1,j + 1)I"

g(i,j) =/sx(i,j) 2 + syoij)"

The value g(ij) represents the gradient at pixel (ij), and these values form the edge

image.

The algorithm is particularly well suited for SIMD parallelism because all pixels .

are processed identically. This complete synchronization aids the PE-to-PE commu ni-

cation necessary when subimage border pixels within each PE nist be processed. In

the case of this algorithm, transmission delays incurred due to PE1-to-PE data transfers

can be overlapped with data processing to reduce total execution time. All PEs will

simultaneously request the same border pixel relative to their subinages. For examlple,

when processing begins (with the upper left corner subimage pixel) all PEs will request,

(from the PE to their upper left) the pixel immediately above and to the left of their

upper left corner pixel (if this pixel is within the complete image). This transfer of

data from tipper left neighbors can occur for all PEs simultaneously. A total of

4*(160 + 1) = 6.14 parallel transfers are needed for a 5120-by-5120 l)ixel image, as

shown in Figure 6.3(b). The candidate interconnection networks for PASM can support

these parallel transfers from any neighboring IE. The result of the Sobel operatqr is

the edge image. High edge image pixel values indicate the presence of an edge.

.° . .•°°. .

* *.-....* ..-..



6-12

A4 .- 
L

The next step of the EGT algorithm is to compute a figure of merit value for each

possible gray level. The figure of merit is a measure of how well the edges generated by

a given threshold match the edges detected by the Sobel operator. Specifically, the

figure of merit is determined as follows.

1. The local maximum and minimum pixel values over a 3-by-3 window are

determined for each gray level image pixel.

2. For each possible threshold value (i.e., all gray levels) the center pixel of the

3-by-3 window is tested to see if it is an edge point. It is an edge point if

the threshold is greater than or equal to the local minimum and less than

the local maximum.

3. The mean of the edge image pixels corresponding to the gray level image

pixels found to be edge points at a given threshold is the figure of merit for

that threshold.

The figure of merit calculation has portions suited to both SIMD and MIMD paral-

lelism. Steps I and 2 can be done efficiently in SIMD mode since all pixels are pro-

c(Pssed similarly. Step 3 is executed only on the gray level image pixels which are edge

points. To do this, the PEs operate in MIMD mode, each sequencing through the edge
points in its subimage. Since the number of such pixels may vary, some PEs may com-

plete Step 3 before others.

The greater the mean of the edge points in Step 3, the better the match between

threshold-generated boundaries and the edges detected by the Sobel operator. To avoid

the assignment of a high figure of merit to a small number of noise pixels, a bias can be "-

added to the denominator when calculating the mean. This has the effect of lowering ., .

the figure of merit if only a small number of pixels are above the threshold. The gray

levels associated with local maxima (peaks) in the figure of merit function are chosen

for image segmentation. Typically, three to six levels are chosen. The next step of the M

-. .. 
-7 -

. o .



6-13

scenario is contour tracing.

6.1.5 Contour Tracing

In this section an approach to performing contour tracing using MIMI) parallelism

is presented. Initially, each PE contains a list of threshold values, {T 1 ,T2 .... ,Tt), for its

subimage which have been selected using edge-guided thresholding. The number of

thresholds for any given PE is denoted by t and can differ for each PE. The contour

tracing algorithm has two phases. In Phase 1, the subirnage is segmented within each

PE and all local contours (both closed and partial) are traced and recorded. In Phase II,

the partial contours traced during Phase I are connected.

A contour table is constructed in each PE containing an entry for every contour,

whether partial or closed, which is located in the subimage associated with that PU.

Each contour table entry contains the following fields: (a) a contour identification

number, (b) the threshold value which generated the contour, (c) the number of pixels

in the contour, (d) a flag indicating if the contour is closed or partial, (e) a pointer to

the array containing the i-x-y sequence of the contour, (f) a flag indicating whether the

partial contour has been connected (for use in Phase II), (g) the physical address of the

PE which linked the contour, (h) the physical PE address and identification number

denoting the partial contour blocking extension of the contour, and (i) a

locked/unlocked semaphore. Contour table entries g, h, and i are discussed below.

Each PE also contains a partial contour list. This list has an entry for each partial con-

tour containing the i-x-y coordinates of its two end points and a pointer to its contour

table entry.

In Phase I there is no P,-to-PE communication. Each PE considers its threshold

values T i, I < i < t, independently. Its subimage is segmented using each threshold

level T i. To create the segmented image for threshold T i, pixels in the original image



6-14

which have a value greater than or equal to T i are assigned a value of one, while those

which are less than the threshold are assigned a value of zero.

The rows of the segmented image are scanned beginning with the top row. Scan-

ning stops when a pixel with value one is found which has a zero-valued neighbor to

either side. This pixel is marked as the start point of a new contour, and its i-x-y coor-

dinales are stored. Consider this pixel as the center pixel of the 3-by-3 window in Fig-

ure 61. The contour is traced in a counterclockwise direction generating a sequence of

i-x-v coordinates. Beginning with the neighboring pixel in position five (see Figure 6.4)

and incrementing by I modulo 8 to determine the next pixel, the algorithm looks for a

pixel which has a value of one. The algorithm stores the direction, p, of this new pixel

and appends its i-x-y coordinate to the contour sequence. Treat this new pixel as the .

center point of the 3-by-3 window in Figure 6.4. The algorithm then looks for the next

pixel in the contour beginning with the pixel in position (p + 5) modulo 8 (to produce

a counterclockwise trace). Tracing continues until the start point or a point of indeci-

sit)n is reached. If all of the neighbors of a start point are zero, that pixel is an isolated

p,,int and is ignored.

A point of indecision occurs when information from an adjacent subimage is

required to determine the direction of the contour. When a point of indecision is

reached, it is recorded as an end point, and the algorithm returns to the start point to -.

trace the contour in a clockwise direction until another point of indecision is reached.

When tracing in the clockwise direction, the new contour pixels are inserted onto the

front of the i-x-y sequence. Each pixel in the contour is marked in the thresholded

image so t hat Ihe contour will not be retraced.

(onsider the following contour tracing example based on Figure 6.5. A 1-by-20

image is divided into two 10-by-1O subimages; each subimage is loaded into one of two

i 'l's. The local threshold value T , is applied to the subimage in each PE. Each PE i

,:. ..:.:..;,.



6-15

2. 2e 1"

Figure 6.4 Naming Convention for the Neighbors of the Center Pixel in a 3-by-3
Window

PE o  PE1

(0,3,3) (0,3,9)
O> . -0 0-

(0,4,4).o .......... ...

- ........ .0-

(0,7,9) (1,7,0)

0 Start point
-O Counterclockwise trace mark
0- Clockwise trace mark

End point (counterclockwise)
D> End point (clockwise)

Figure 6.5 Example of Phase I Contour Tracing for a IO-by-20 Inage

V



T.,.

6-16

begins scanning its respective subimage at pixel (i,0,0), for a one (indicated by a dot)

with a zero on either side. PE 0 locates the edge of a segmented object at pixel (0,3,3).

Pixel (0,3,3) is the start point for the new contour. PE 0 traces the contour of the

object counterclockwise to a point of indecision at pixel (0,7,9), which is recorded as an

1end point. Pixel (0,7,9) is a point of indecision since pixels (1,6,0), (1,7,0), and (1,8,0)

of the subimage in PE 1, which could extend the contour, are not in the subimage con-

tained by P'E 0. PE 0 then traces the contour in the clockwise direction beginning at

pixel (0,3,3), reaching a point of indecision at pixel (0,3,9). After the clockwise trace,

the first pixel in the i-x-y sequence describing the contour is (0,3,9). PE 0 resumes

scanning at pixel (0,3,1) and finds no other contours in its subimage. Note that, for

example, pixel (0,-I,.I) is not a start point for a new contour since it was marked during

the trace of the first contour. Similarly, a partial contour is located in PE 1 with

(1.7.0) as the first pixel in its i-x-y sequence. Once a P'E has scanned the segmented

iuiitge generated by threshold Ti, it repeats the process for threshold Ti+ 1. After all

ih resh,,ld v alues in a I'E have been considered, Phase I is complete.

In Plhase II, each 'E attempts to connect its partial contours to partial contours

*%hi, h are lcated in neighboring PEs. There are two alternatives for determining when

"a IT can enter Pha-se II. With the first, PEs are allowed to start Phase II processing

affter all liae <ofpllh'ted Phase 1. With the second, a P'E enters Phase 11 immediately

aiftcr completing I'hase 1. lowever, it can only attempt to extend contours into subim-

ages of I's which are also in Phase II. If all neighboring PEs are still in Phase I, the

'L m.t wait. The latter approach may reduce the total scenario execution time since

the ITL with the longest Phase I time may well riot be the one with the longest Phase II

tine. The first alternative requires time equal to the sumn of the longest times in each

p h ase.

-Since muitll iple Is can contain portions ,f the same contour, there must be a rule

t,, deternmile wi(ch I's have priority to attempt to close a contour. The rule is each

"-"" """"" " " "'" '- "" "' " "i...':.-i: .". - ".-." -: .'. .. '-.."' ''-'- - ." " - " -- -- - -- . . .- . . . "



6-17
4

PE attempts to extend only its partial contours which have both end points bordering %

subimages to the left and/or above. For example, in Figure 6.6, partial contours A, B,

C. and D are considered by the PE, while E, F, and G are not. For each given partial

contour (generated by a threshold T1), the PE attempts to extend it into the neighbor-

ing PE from the counterclockwise end point (as described below).

In order for a PE to extend a contour, it must be able to access and modify con- "

tour tables which are located in other PEs. As a result, a mechanism to prevent one

PE from using a contour table entry while another PE is in the process of using that

entry must be provided by the system and used by the contour tracing algorithm. Any

section of code which modifies a contour table entry is a critical section [Dij68]. The

only table entry fields which can be modified by another PE are the flag which indi-

cates if the partial contour has been connected and the physical address of the PE

which linked the contour (fields (f) and (g)). While a critical section is being executed

on a given table entry, that entry is locked, so no other processor can modify it. -. -

A semaphore is a variable whose value indicates whether or not a critical section

can be entered [Dij68]. There is a semaphore for each contour table entry which can

take on a value of zero or one. Before a PE enters a critical section (for a given con-

tour), the processor performs a P-operation (Dij68] on the given contour to determine if

it is unlocked. If the semaphore for the contour table entry is one, the processor sets

the semaphore to zero (locking the contour table entry so that no other processor can

access it) and enters the critical section, free to modify the contour table entry. When

the processor completes modification of the contour table entry (i.e., the critical section

ends), it performs a V-operation [Dij68 on the semaphore for the contour, setting the

semaphore to one. The contour table entry is then unlocked. On the other hand, if the

semaphore is initially zero, the processor receives a message in(icating that, the partial

contour is locked. '

"-.,..'



-----------.- . -

6-18
V.

N-

~. .. ~

* a,

I I
I I

__ I

C
A

B E

- -- D

F G

I I
I I
I I

Figure ti.6 Phase II Connection Precedence. Partial contours A, B, C and D are con-V sidered by the PE; E, F, and G are not.

*1~

K
r.

I.

~ :7. :K. *~* 11 I~**. . -. * *~



6-19I

If the end point of a given partial contour is not at a corner of its subimage, there

are three pixels, located in the adjacent subimage, which can possibly extend the con-

tour. The PE accesses the partial contour list for the adjacent subimage (see Section

6.1.7). Considering the possible extending pixels one at a time in counterclockwise

order, the PE checks the partial contour list to determine if any partial contours in the

adjacent subimage have the possible extending pixel as an end point. If such a partial

contour exists, the PE performs a Il-operation on the contour table entry pointed to by

the partial contour list. If the contour was unlocked, the i-x-y sequence for the contour

is transferred (discussed in Section 6.1.7) to the PE containing the given partial contour

and then concatenated to its i-x-y sequence, forming a new, extended partial contour.

If there is more than one partial contour with the same end point, which can extend the

given contour, the partial contour which was generated by a threshold value closest to

that for the given contour is selected.

If the end point of a given partial contour is a corner point of its subimage, there

are five pixels located in adjacent subimages which can possibly extend the contour.

Since these five pixels are located in three different subimages, the PE attempting to

extend the given partial contour must check for continuation in each of the upper-left

adjacent subimages (in a counterclockwise order).

Note that regardless of where partial contour end points lie, the search for pixels

to extend the contour can be widened beyond the three or five pixels here to allow for

threshold value discontinuities at subimage boundaries. Thresholds could be interpo- " '

lated across subimage boundaries to allow partial contours with non-adjacent end

points to be joined.

Assume that PE i has a partial contour which it is responsible for extending. If a

continuation of the partial contour is not found in the partial contour list for the adja-

cent subimage, PE i probes into the adjacent subimage to determine if an extension of

, *.

• : :- . : . . .. . .: ... .. . ..... : : . -. . . . : : .. . -. -. .- : " ' . .



L

* 6-20 1

% the partial contour can be generated by the threshold, T, it (PE i) used to trace its par-

p,." - i

tial contour. If so, PE i extends its partial contour by accessing the data from the -

2 adjacent IT. Instead of creating an entire segmented subimage for the threshold T, PE

...' o%.*

(ldynamically thresholds pixels as needed. This contour generation using T is done since

it is possible that the partial contour in the adjacent PE was not located in Phase I

because different threshold values were used, or the contour fell along the edge of the

subimiage (see the split between "Es 2 and 3 in Figure 6.8).

Once PE i locates a partial contour in an adjacent subimage which continues the

iven contour and has stored the concatenated contour in its contour table, it repeats

the process, if necessary, by following the contour to the next PE until the contour is

cloused ir cannot 1e extended. A limit is placed on the maximum contour length to

giar:mnte algurit hm termination in the event of a pathological image.

Consider thie examp~le in Figure 6.7 where a 12-by-12 pixel image is divided

b)1e('IIn four J'Es. After P'hwse 1, PE 0 contains partial contours A with end points

(01.5) and (0,5, 1) and B with end points (0,4an 5) and (0,5,3); I I contains partial con-

tour C with end points (1,4,0) and (1,1,0); and IT 2 contains partial contour D with

end~ points (2,0,1) and] (2,0.3). Since both end points for conto)ur C border the subimage

he ft , loattempts to extend contour C in Phase u. im iarly, PE 2 attempts

to eixend contour ) since its n a t points border the subtipage above.

IL' I at tempts to extend C in the co)unterclockwise direct ion, i.e., from pixel

(1,1.0). It first locks its contour table entry for C. It then examines the contour table

()f Ir4 0 ili, deteruines that A can be linked to C. If the table ent.rv for A is unlocked

t lin seuaphore valete is zero), I'E I locks it (paerfors a -operation) and appends

the i-\-% 10uena ()f A to the I-Xo-V sequen pice of C. It also oets the lag which indicates

I hat A has been linked and records that E I performed th link age.

%;

-...-...-...



6-21

PED A PE,
(0,1,5) (1,1,0)

(0,4,5) (1,4,0) -

(2,0,1 (2,0,3)

PE2  0 Pixels traced in Phase I E ;

Figure 6.7 Example Where Two PEs Attempt to Connect the Same Contour



." . -. . ° : . .
"  

. .r . ,- --.., . . - ~ o,- T ,.r- - . - ... .w-.-.----r V- , . .. . . °- . - - .. - : . - - . -

6-22

Independently of the actions of PE 1, PE 2 attempts to extend contour D (from

pixel (2,0,3)). As did PE 1 with A, PE 2 appends B to D. If PE 2 attempts to extend

the result, D13, while PE 1 is in the process of extending C into PE 0, it will find C

locked. IPE 2 then abandons its attempt to close the contour, since PE I is also

atte'mpting to (1o it, and unlocks partial contour DB. This allows PE I to access DB

after it has appended A to C. Therefore, the closed contour CADB is ultimately traced

cml)letely and stored by PE I. If PE I had completed linking A to C before PE 2

COmpleted linking 13 to 1), the closed contour would have been completely traced by PE

2- l)adlhck is the situation when each of two or more PEs are halted while waiting for

thl, other(s) to continue [StoS0]. If a PE is blocked due to a lock then (1) not allowing

a I1: to Nwait fo~r access to a locked contour table entry of another PE, and (2) requiring

the blh)('ked P' to unlock its affected partial contour prevents deadlock.

If I'l I and IPE 2 had completed their first linking operation simultaneously, both

%,uld have abandoned tracing the contour (i.e., no PE would link the contour CADB).

I' ) inure that the linking of a contour will not be abandoned by all PEs, the following

1 rot(i,',l is use(d. Assume I, i is blocked from extending a contour X by PE j, which

liis highier positional precedvnce (i.e., i < j). In that case, PE i unlocks contour X and

. ,C1lds a niic.s:gr' informing P'E j that P'E i has abandoned its attempt to further extend

c(1,nImir X. If Pl' j had also abandoned the contour, this message would cause PE j to

try a:gain. The menssage sent from PE i to P'E j contains the identification number of

c,,Plwour X and the value i. After receiving the message, I'1 j searches its contour table

1() dtIterinit it abandoned X. To do, this it uses field (h) (of the contour table. For

the atmve ex :i le P' 2 would link the partial c)ntours since it has higher precedence.

)ead l,)'k with multiple contours cannot occur since each IF' considers only one

c.ntour At a tini ( and does not abandon the att empt to extend that contour until that
IU..

IPF has 4(')sed Ih, conthur or has relinquishe(d control t( anotdher PE!' to close that con-

t lr.."

. . . *..... , , *



6-23

When Phase I1 of the -lgorithn is complete, the i-x-y sequence for each contour in

the image will be contained in cxactly one of the PEs which contained part of the con-

tour originally. In the example given in Figure 6.5, PE I will contain i-x-y sequence for

the contour.

As a final example, a 30-by-20 image is divided into six 10-by-10 subimages; each

subimage is loaded into one of six PEs. In Figures 6.8 and 6.9 the results of Phase I and "I

II processing are shown, respectively. Even though the entire object in PE 5 was

located within the subimage, the left edge of the object was not traced in Phase I since

PE 5 could not determine whether the object continued into the next subimage. On

the other hand, a closed contour was found in Phase I for the object in PE 4 since the

object did not include any border pixels of the subimage. .".. -

6.1.6 Algorithm Evaluation

Serial algorithm subimage size is chosen to be twice the maximum allowed object

dimension so that overlapping of subimages guarantees that each object. appears in its

entirety in some subimage. With this property, partial contours never need to be con-

sidered; all objects are found as closed contours within a subimage. The advantage of

the serial approach (Section 6.1.3.1) over the parallel approach (Section 6.1.3.2) is that

partial contour extension is not necessary. The disadvantages of the serial approach

when compared to the parallel approach are threefold. First, the maximum size of an

object of interest must be established so that subimage size is known. This choice is

constrained by the fact that EGT performance tends to degrade with increasing subimn-

age size. Thus, there is a practical limit, on the maximum object size. Second, each

pixel is processed for contour extraction four times. Finally, thresholding (including

EGT) tends to perform less well when objects are small relative to the image (in this

case, subinmage) size. The parallel algorithms (1o not limit maxitmum object size, pro- ..

cess each pixel just once, and may improve threshold accuracy by allowing ready use of .:..-



G-24 ,1

"... ... I

PE0  PE'

0 00-0-0- -.0

-* 0
-0-

-0490- ..........

-0 ..... ... O-* -:0.

PE2  PE3O

.-0-

. - .O-

P 4 PE5 0••.fli:.

-0-0-0-0•0--

O •-0 •

-0. . .

0 Start point
-0 Counterclockwise trace mark
0- Clockwise trace mark
< End point (counterclockwise)
0> End point (clockwise)

Figure 0.8 IResuht of P~hase I of Contour Trucing for a 30-by-2O Subimage



6-25

PE 0  PEI -*-

0000000000 ~ -

0..0.

0. * *0 . . .** 0

PE2  PE 3 0 .
0000 0. -*

0..
0..
0- *E0000

0 . . . . 0

00000000

PE4  PEr3
0000000

00. 00

0.-0 -

0. .0 00000
0000

0 Pixels traced in Phase I
al Pixels traced in Phase HI
0 First pixel in the x-y sequence of the contour

Figure 6.9 Results or Phase 11 of Contour Tracing for a 30-by-20 Subimage



4 .°". .. ,.

6-26'

small subimages. Thus, parallel systems can allow the full benefits of adaptive thres-

holding via EGT to be more readily realized.
. WS: •

Speedup is the usual rationale for employing parallel processing techniques, and

the example parallel scenario has the potential for significant speedup. However, the

* speedup is data dependent. This is because the PE workload may be highly varied dur-

ing contour tracing due to uneven distribution of contours throughout the image being

processed. While it may be possible to implement load sharing for this portion of the

scenario (with certain overhead costs), inequities reducing actual speedup are almost

certain to remain.

Overail, the parallel algorithms presented are strong contenders to replace serial

iwnthods in some applications. One such is quality control inspection of printed circuit

b,ards. In this application, large object handling capability is needed for following long

circuit traces, and suticient speedup is necessary for timely response. Other applica-

Iions involve, military environments where real-time processing is crucial.

6.1.7 Architectural Implications

'h'e stidv of a parallel formulation of an image processing scenario involves both

loe ,hsign or individual parallel algorithms and the determination of a method to

integrate tine into a single job. This leads to an understanding of necessary and use-

fil hardware attributes for a parallel machine intended to execute that, scenario. For

"h, ex:imple scenario, aspects of each algoritlii which have an architectural impact

,,her tihan iho)5 pertaining to the proc(essors will be listed. Processor specific con-

siderations (e.g., instrumetion set) are not treated because they arc similar for serial and

pa):rallel eiaohines.

The Sohel o(ge detecltion algorithm step of EGT requires data that. is, by vast

majority, lowal to each PE. When non-local datr is required, nearest neighbor PEs

%. . .. .........

°'"""'° ' "" °. . . . ..".". .'. . . .."". . ..". ."%'°" °-i°' 'i .. . . . . . . ..° 
-

" :"° - '°i. "''°'
°

°'" 
'

' .. '. . 'i. '''" i-"..
°



- . - . r .-

6-27
Li..

e, . .. ,

comprise the set of data sources. Local maxima and minima calculation on 3-by-3 win- %

dows mimics the characteristics of the Sobel operator, but with more memory refer-

ences. Edge point detection is similar in these regards to the previous steps.

The figure of merit calculation for EGT is different in kind from the previous

steps. Only local data is required, and processing time is data dependent. MIMD

operation is preferable to SIMD, even if edge point detection and figure of merit calcu- .-.- .-

lations are merged into a one-pass operation.

Phase I of contour tracing requires only local data, but execution time is data

dependent. Phase II makes heavy use of non-local data and has data dependent execu-

tion time. Both phases are suited to MIMD mode.

Now the architectural requirements for a parallel machine performing the example

scenario can be considered. Probably the most basic need for the system if it is to sup-

port the scenario well, is to be capable of dynamically switching between SIMI) and

MIMD operation, as can PASM. With only SIMD capability, vast inefficiency would

occur in later stages of the scenario. Having only MIMD mode is a less serious handi-

cap, but will lengthen execution time for the Sobel operator and determining local max-

ima and minima, due to the need for explicit synchronism and data sharing. Thus, the

capability to dynamically switch between SIMI) and MIMD modes is important so that

each subsequent portion of the scenario can be executed in the most appropriate opera-

tional mode. %

An interconnection network is needed to perform permutations involving eight

nearest neighbors in SIMD mode. In MIMD mode, it is used for eight nearest neighbors

and for somewhat arbitrary one-to-one connections (when transferring partial contour ME g

information between non-adjacent PEs). Both types of connection nee(s must be per-

formed efficiently by the network. The networks proposed for PASM can do so.

. - • °. .

;il A.:A 2



6-28

The PE-to-PE transfer of information must be efficient, or the parallel algorithms

will be slowed. One method to perform PE-to-PE communication is by using direct

memory access (I)MA). )MA is a method for storing or retrieving data without proces-

sor intervention. There are several ways to implement this capability. In one, a PE

extending a partial contour sends an interrupt to the remote PE containing the exten-

sion of the partial contour along with the identifier of the needed partial contour. The

remnote I'll then enters a DMA handling routine. This routine computes the local

iienory address range of the requested partial contour i-x-y sequence and sends this

inforli:ln along %%ith the requesting PE number to special DMA hardware. The

I)M\ hardware then autonomously retrieves the information from local memory and

ierf,,rnis iiecessary network interfacing to send the data to the requesting PE. DMA

h:ardwar, accesses to local memory can be via cycle stealing. Another implementation

or im)NA cal):bility iN through an intelligent network interface unit (NIU). Requests for

dat a tr,,, remo)te lP';s woufd be received, interpreted, and discharged by the NIU

%l,,ut l I,,c'lC 1)r,(u'ssor intervention. The NIU would combine )MA capability with

tirt work prot(,, support. VLSl technology may allow ready fabrication of sophisti-

*. t,.d NIt s "lus. such a )M\A capability would be worthwhile to include in a system

6.1.8 Summary

( ,,nsi(lhring in 'ntire scen ario in the light of par' llelism is a useful approach for

Ii lII 'illig ill ag, processing tasks and parallel architectures. A number of observations

\cr, iwi de aid cornl usions drawn from the example image processing scenario. In par-

t icular, thlh parallel scenario was found to embrace both SINI) and MIMI) subltasks,

ilIohE' signiicaInt lP"-to-PE data transfer, and contain both nearest-neighbor and non-

* adj it.n l'I; comimunication patterns. Parallel formulation of the algorithms lead to

sc ral advaItages incliding speedup, elimination of object, size constraints, and ""-

*. *. *s*. * -~~~~~. . . . . . . . . .. . . . . . . . . -

.



- . .. -. - ~ .. ... b -....-..- S -

6-29-

potential for improved accuracy.

These observations indicate that parallel contour extraction could be useful in

industrial inspection and military applications. They suggest desirable system architec- .4** 7_

ture features, including SIMD/MIMD capability with dynamic mode switching, dedi-

cated PE-to-PE communication support hardware, and arbitrary PE-to-PE interconnec-

tion capability. These requirements are consistent with the capabilities of PASM.

This study is an initial effort towards relating parallel computation characteristics

and parallel architecture features to develop an ability to evaluate alternative architec-

tures relative to classes of computational processes. Contour extraction is a key com-

ponent of many image processing tasks. The results and insight described in this

chapter will be extended by drawing together our work in Fourier descriptors. This

will give a more varied image processing task from which to extract more detailed pro-

cess models and guide architecture model evolution.

... -...._%

- . - .

. "%* .- ..

.. -.,.. ..

S-*.*",.". -"
.... ..... *.*.... .... *.-**....*~ . ", *.* D* .



r4

6-30

6.2 Fourier Descriptors

6.2.1 Introduction 4.

Fourier descriptors [WaM79, WaM80] have been proposed as a method of perform-

ing shape analysis for applications such as object recognition and tracking. The task of

computing normalized Fourier descriptors has been structured for MIMD execution.

The objective of this work is to identify the characteristics of the Fourier descriptor

task which influence its parallel implementation, and the attributes of the parallel

architecture which best supports the task.

6.2.2 Algorithm Overview

(;iven the contour of an object in a two dimensional plane as input, a series of fre-

(Iutiviy domain coefficients are computed which describe the image. These are the

Fourier descriptors, which are further processed in a normalization procedure so that

they can be compared to a library of these descriptors. The end effect is the

ide itification of the object as well as a reasonable estimate of its orientation in space

[\aN79]. The algorithm has been proven effective in identifying and tracking aircraft

in flight [WaN8O].

Input to the program consists of the chain code representation of the contour of an

image in a two dimensional plane. This chain code input is then converted to X-Y

co(,rdinates of the image. After optional smoothing, the image is resampled at equally

spaced intervals on the contour. If an FFT transformation is later employed, this

resaiiipling must be done with the number of samples equal to a power of two. Then a

complex Fourier transform is performed on the resampled points. This produces a

Fourier descriptor (Fl)).

. . . . . . . . . .



*r .- -- - r ~ - -. -" - -7 .-,.

6-31

The second logical division of the algorithm normalizes this descriptor. The goal is

to scale and orient the contour by rule such that the FD from an unknown contour will . .".*

always normalize to the correct library representation. Different normalizations have

been proposed, but Wallace's algorithm [WaM79] is the one investigated here. The nor-

malization is accomplished as follows: The It most significant complex coefficients of

the FD (H is typically 32), are denoted as A(-- + 1) through A(-). This frequency
2 2

domain representation of the contour is normalized by taking out information relating

to the relative position of the contour, its size, its starting point, and its orientation.

This is accomplished by three steps . -.

Step 1: Set A(O) = 0.

This takes out all "DC" positional information.

Step 2: Divide A(i) by IA(1)I, -- !L + I < i <
2 2

This normalizes the size of the image such that A(i) < 1.

Step 3: Multiply the A(i) by ei[(i-k)u + (l-i)v?/(k-l)

k is the coefficient with second largest magnitude (next to A(1)).

u and v are the phases of A(1) and A(k) respectively.

k is the coefficient with the second largest magnitude.

This simultaneous application of the rotation and starting point shift

operations finds one of the normalizations satisfying u = v 0 0. If k =

2, this normalization is unique. Otherwise the phase and starting point

of the normalization must be shifted to account for the 1k - 11 - 1 other

possible normalizations. Then the correct normalization must be

chosen based on some other criteria. The criterion examined here

chooses the correct normalization as the one which maximizes

' _. _ .. -:2-:::.' ;.C...-: U-~~~~~~~~~~...-...-..,... ::.......... ::............-............ ::....... . . .,..



6-32

'i -- - -2 " + t ~R e[A(i)] IRelA(i)] I :::<;':,._.

:+ This algorithm will be examined closely for parallel constructs. To accomplish....

this, it will be divided into distinct tasks, and each examined individually. To achieve .. :

further parallelism, the tasks could be pipelined to increase real-time throughput. This.-.-

global parallelism will not be investigated at this time. The major emphasis will be on /"'

(itscribing parallel implementations of each section and discovering what features of a -

palh,( arhieture would most affect the performance of each task.

ar -1 arpte

Some bas ic assumptions about the architecture are made. The primary emphasis
is on MIMI) systems although SIMID systems will be considered as a component of a

hslarger MIiD system. Thus the major thrust will be with exMD systems lnterproces-.

sor cmmlunication networks will be investigated if they affect execution speed. Local

_ menr is a commonly proposed means for reducing memory conflicts, and thus will be

pxallared when it is relevant. Access to a global memory system will also be con-

6.2.3 Decomposition into Parallel Algorithms a me h r r m s

Is this section, parallel algorithms are described for each of the subtasks required

for p nrating normalized Fourier descriptors. The algorithms are for conversion from

hain . to X-Y cordinates, filtering, resampling, Fourier transform calculation, and

I"A) normalizationm. ' -"

Iput Conversion

r no, It will be assumed rthms he contour of the image is entered in chain code

.lrepresentiat i, n (see Figure 6.10). The hwation of point pi is dependent upon the points

L-'. .-. . - , .. •.. . ... . .... . .. . ....... . . . . . . . .. . . : . .'



6-33

Po through pi-I. This presents immediate problems for parallel implementation. Also, ,''

the algorithm requires equally spaced sampling along the contour, which is not the case .,{

iii p-,i'r:aI .inv e ,:Oin code line segivnvs may have leIngths differing by a factor of VS

(see Figure 6.10). -;:'

Representation Meaning Length

0 right I unit -

I right I unit, up I unit V/2-

2 up I unit 1

3 left I unit, up 1 unit v---

4 left I unit 1 .--.

5 left 1 unit, down 1 unit vf2

6 down I unit:

7 right I unit, down I unit V2-

Figure 6.10. Typical chain code input

Also, it may be desirable to resample the contour so that the number of samples is a

power of two. This is a requirement if a FFT is used in the next step. Chain code

inputs of practical use contain from a few hundred to a few thousand points. This is

typically a variable number which depends on the relative size, shape, and perspective

of the object being identified. Define the number of chain code inputs as C, and the

number of processors as P. The effects of these parameters on processing speed will be

investigated given a suitable parallel algorithm.

Chain code input is inherently serial since each input is merely an offset from the

previous input. Consider a parallel algorithm for this normally serial task. Initially,

. -z*...'.



6-34 LML

assume that any processor has access to all memory. Also, initially assume that

Cp12. Thus, the C inputs can be divided among VCprocessors and each processor

will be responsible for P VC chain code inputs. This is illustrated for an example

haviing P5r and (C=25 in Figure 6.11. The contour consists of input points XY(i), f.%

O<i<25.

XYXY(5)

CC (O) CCn) CCn) CC(P1

Tw Inpt then eiewe aalleloeraioing cac rociensiora atsao as rown rlom

fThis array. The i)ara oitswll alorth feollowas.C~iO--

K-no Cn~) C~() lnP1

CCI, n (P CnP+1



6-35 ,

Initially each row of the input is processed by a separate processor. This is

equivalent to dividing the contour into P continuous pieces and giving each processor a

piece to work on. Each processor can then assume that it has the "first" section of the

contour and assign the first point the coordinates (0,0). It can then compute the X-Y

coordinates of the rest of its points starting from this reference. Given P chain code

inputs in each segment, each processor assumes the first point, then generates X-Y K .

coordinates for P additional points. Thus, the last point generated in processor'

corresponds to the first point for processorp+ 1 (the point assumed to be (0,0)). With

this completed, X-Y coordinates for all the input points have been generated. However,

each row of the array (each segment of the contour) has a different origin in the X-Y

plane.

Now a correction step may be employed. Denote the X-Y coordinates of an input

point as XY(0..C-I). Since the origin is arbitrary, set it at the point XY(0), that is

XY(0) =( 0,0). Then our previous step correctly computed the coordinates of XY(0)

through XY(P). To correct the coordinates of XY(P) through XY(2P) in the second

segment, add to each of these the coordinates of XY(P) computed in the first segment.

Then to correct points XY(2P) through XY(3P) in the third segment, add on the (newly

corrected) XY(2P) from the second segment. This correction must be done in order, for

each row of the square or each continuous segment of the contour. To clarify this,

examine a program segment aimed at computing XY coordinate from chain code

inputs. Assume this is executing concurrently on P processors and that there are C

input points where C = p 2. Assume the existence of the functions CtoX() and CtoY(.

which convert one chain code input to the proper increment in the X or Y coordinate

according to a conversion table. Let SYNC be a synchronization instruction which

insures that all processors have completed up to this step. Finally, each processor

knows its "number" p (0 < p < P - 1). The algorithm is expressed in Flock Algol, an

algorithmic language proposed in (SiS81b]. The algorithm is executed asynchronously. .- -

. ...........



G-36

in each of the P processors.

/* Global variable definitions *
/ * All processors have access to these variables *
CCIn(O..C-I) /* Chain code input*/..
X(O..C-I) /* X coordinates */, .

Y(0..C-J) /* Y coordinates *

/* Local variable definitions *
/* 1-ach processor has a separate copy of these variables *

'owtart /* Starting index *
index /* Computed index *

p /* Initialized 1.o the processor number *
(,ol /* Column to work on in correction step *

/* Fach segmnent. starts at the origin *
I? owvSt art )-

N(I? oS t art ) -0

/* Compute X-)' coordinates from this origin *
FOR 1---0 THROUGH P-2 DO
BEGIN

ind(ex 4-? owStart +
Xlindex +J)4-X(index) +CtoX(CCJn index))
Y'(index + l)-Y(index) + CtoY( CCIn (index))

END

SYNC
/* After synchronization, compute the first point of the next segment *

index +w~ar I-Xid+ tXnine)
X(index + I )'-X(index) + CtoY(CCln(i ndex)

SYNC

Col.-p +1 I
H o"-St art -0

/* Correct. each point according to offset from actual origin *
FOR i.-I THROUGH P-I DO
BEGIN

X1l? owSt art + Coil +-X[H owStart + Col +X f~owStart.
If? owStart + Coll )-Y[RowStart +Coll + Y[RowStart]

HowStart-HowStart+P /* Move to the next row
SYNC

END

V. .



. _ .. . . - ,, -. ... .. !.

6-37

In order to estimate the amount of computation performed, some assumptions

t. about the number and types of statements will be made. In the first FOR loop, the X

and Y increments are chosen based on a test of the input value. This will be con-

sidered one "test." The assignment of the next X and Y outputs will be assumed to

require one complex add and one complex assignment. In the second FOR loop, each

step consists of one complex addition. The original serial scheme consisted of C tests,

C complex additions, and C complex assignments. The parallel approach executes in

the time for OC tests and viC assignments and 2VC - I complex additions. Assuming

the dominant operation is the additions, the speedup is approximately given as

C C zv7_ 2/ -VC - .vP 2 "(

Since P VC- in the ideal case, then

S 13J
2

The tests were not included in the count, and the addition in the second loop could be

performed directly in memory, so the second FOR loop would probably be shorter in

execution time. It was assumed that the two loops were comparable in execution time,

thus, the speedup estimate is conservative. Simulations are under way to determine the

speedups more exactly.

Consider the kinds of memory references required in the above algorithm. If the

data is viewed as a matrix with P data points on a side, each processor operates on a

row and then a column of that matrix. In a parallel system with global memory, the

store is typically divided into several memory units. Optimum efficiency comes about

when each processor is accessing a different memory unit during a given memory cycle,

since each memory unit can deliver only one word per memory cycle. The most obvi-

ous way to split up the data is to put each segment of the contour (row of the matrix)

in a separate memory unit. During the first half of the conversion, each processor acts

,I.. . . .......... ,. .'"l l 2 J, 'e- .'. ., '.. " , . ' • " " .' .. .' .- . ... .'-:. .. . . ... .. '-. ." " ... '-.. , .. . . . .. .-. .'. .



G-38 MW

* on a row, so the memory system operates with ideal efficiency. During the second halt

or the conversion, every processor acts on the same row simultaneously. This creates a

large bottleneck at the miemory unit containing that row. Kuck discusses this problem

N in [Kuc77] and suggests skewed storage techniques to eliminate these bottlenecks, at

the cost of more comlex address computations in array accesses. There is an overheadWS

Iflv'vd~ iii every array access, thus reducing the speedup.

Anot her comimon model of parallel systems involves processors that can access only

I)Ilmemlories. It, is assumedl that these accesses can occur without contention from

()Iher processors. InI this model, all communications between processors take place

hroiigh a conimiunjentlolls network. In a system with local memory, the cost of paral-

lel c' nput at iVon call be compllute-d by considering the additional code and the number of

ti1e t css r c )fl)m n ica tions steps.

The 11Vlg13-orithmn below ha-s been rewritten and restructured to use local memories

oly~ midl to, iniliiize parallel overhead by unnimizing the number of communications

It'p ?vcir~ive douibling is a method of computing accumulated sumns across proces-

srs [StoxSO] .All ampI~jle showIAin~g the use- of recursive doubling to obtain a different

J;'iii1 1ilaited sum ill in ach p~rocessor is shown in F2igure 6.12. 1Here the doubling is done

top utce correct Hin valties for all the segments of the contour at once. To show this

* ~ il ii a rogratin segment, assume a call to rec dbl( val) uses the value val, takes care of all

ile( comtmun!!)i(:0t i s to perform the recursive dloubling, andl then ret urns the partial

SuMI. That Is, if vali is tilie value in p~rocessor i, I <i< p, andl rec dbl is called in proces-

- ~~~, r p, It %%Ill ret in the sumi of v'a1o t hrough vae

rcdbl1)(valp) ~,vali

d The call 1(i nec _dbl function assumes that the execution of the function will be syn-..*-

* ~chrt mized w ithl the oIther processors arid that synchronization and transfers will be per-

formed iii Taall Ihe restriction that P 2is relaxedl. The only assumption made



* .-. bMAW

PE 0 0

0E 0 0

0~~ 00+'
1 0+1

1+ 2+ ++1+

3+ 0+1+2+3

1± 14+0+1+4+3+4

e% 0+1+2+3+4+6

- Mk 0+1-+2+3+4+6415

6+7 ++6 +7 .

7 0 -ho0+1+2+3+4+5+6+7

Step!I Step 2 Step 3

Figure 6.12. Recursive Doubling Example for 8 PEs, Requiring 1o928 3 steps



- - . -- - -r

6-40

is that there are D input points in each processor's local memory in the array

(CIn(0..)-1). Using these constructs and the constructs of Flock Algol, the algorithm

-~ is given as follows:

1* Local variable definitions *
P /* Number of processing elements *
1)/* Number of data points in each processor

(Cln(0..D-I) /*Input chain code for one contour segment *
X (O..l1)) /* X coordinates for this contour segment *
111. .1)) /* Y coordinates for this contour Segment *
SUMx /* Partial sum of all X coordinates *
sumy /* Partial sum of all Y coordinates 9"
p /* The processor number *

X(0) Y(O) =0;
stilmx SumTI. 0:

/* Compute X-Y coordinates for all points *
FOR i,- I THROUGH D-1 DO
BEGIN

X(i + [)sX(i) +CtoX( (CIni)
Y'(i +I).-Yi) +Cto'( CCn (i)

END

/* Compute correction factors in parallel *
s u nix - rvcc_(b)(X(D)) /*log2P t ransfer st eps and 2iog2P synchronization steps *
sumx+--suinx-X(D) /* Only consider offset from previous segments *
suniy+-revdb(Y(I))) /* 1092P transfer steps *
sirny4--su my-Y(D) /* Only consider offset from previous segments *

/* Correct each segment. locally *
FOR i-1I THROUGH D- I DO
BEGIN

X(i)4-X () )+sumx
Y~)*Y(i+sumy

END

Ifere the number of input points is C=I)*D. The overall computational complex-

ity is proportional to 21) +210g21". If the assumption is kept that CPthen D=P

Since the correction stage is simpler than the original conversion, and the recursive

doubling is only of the order 21og 2I-', speedups of at least -are reasonable to expect.
2

-' his modlified algorithm also has the distinct advantage that is is independent of the



6-41

number of points in each processor, thus it is more versatile for handling a variable

number of input points.

2. Filtering V.-

The filtering of the image is an optional step to remove some of the quantization

noise. This could be done easily in parallel by giving each processor a section of the

contour. Given a filtering window width W, each processor will need to access W/2

points from each adjoining section. This could be accomplished by at most an addi-

tional W transfer steps. If a memory system is used where accesses to adjacent

memories are allowed, it is important that "wrap-around" can occur.

Overall, in this portion of the algorithm speedups on the order of P can be

expected. Significant deviations from this could come about depending on the window

size W (a predetermined value). For a large W, the number of accesses to data in adja-

cent processors may be significant. Then, properties of the parallel system would have

more effect on the speed of processing. These properties include methods of memory

accesses and interconnection between processors/memory.

3. Resampling

The input outline needs to be resampled since the Fourier descriptor algorithm

requires equal distances between input samples. From chain code input, the diagonal

segments are longer by a factor of vr2. If the points are divided into P continuous sec-

tions after resampling, there will be approximately the same number of points in each

group. The computation of the total length of the contour can be sped up consider-

ably. The length within each group can be computed with a speedup of P and the par-

tial and total sums across the groups can be computed in Iog2P steps using a recursive

doubling technique [Sto80]. If the filtering step is not employed, the lengths can be

............ °"

. . . ..*..•. .... .. °

-._-._., ...° -. . . .. -. '..., . *... ,. .... .. .. , - -- - - - - - - - - - - - - - - - - - : .J" -,ii..'..> §



6-42 A WOW

computed more directly from the original chain code inputs. Now that the total length, .-

the partial length up to the local segment, and the length within the local segment are

known, a new "starting point" for each segment can be computed. A starting point is 'L

a point known to be in the resampled image. As soon as each processor has computed a

starting point within its segment, it can individually compute the resampled points in

its own section. The resampling operation consists of a convolution of the original

points on the contour with a window function known as the interpolation kernel

[Pra78]. The resampling is completed when every processor reports that its section is

resampled. Although SIMI) algorithms to perform resampling have been developed

[WaS82], this algorithm is well suited to asynchronous operation since each processor

can start once it knows its starting point, and each processor may have a different

number of resampled points to compute.

Except during the recursive doubling, each processor operates primarily on local

data. The only non-local data needed is from the adjacent segment (for resampling the ili4

(,nd point) and typically consists of a single point. Hence, the memory conflict problem

doe1s niot exist, and the algorithm is well suited to any parallel system. During the

recursive doubling activities, the interconnection network may be used. Thus, any

architecture in which the communications facilities can easily support these kinds of

transfers should run this algorithm well. Alternatively, if these transfers need be per-

fornied in sonme other longer way, the degradation in performance should be small, since

they account for only a small fraction of the computation time.

A serial resamt)ling algorithm is very irregular. It is desired to follow the contour

and mark points at equal spacing to be in the resampled contour. Except for the task 01M

of computing a starting point in the resampled contour for each segment, the opera- .

tions perform(-d are identical to the serial algorithm. This is well suited to a MIMD

nimachine, the operations performed in any processor are directly dependent on the shape

of the contour segment assigned to that processor. The number of resampled points



6-43

'., .%.

within any segment may differ by as much as v since the original allocation divided

the contour by the number of original sample points, not by the length of each seg-

ment. The overhead is again minimal. Communications facilities are the major

requirement of the MIMD architecture, yet these do not account for a significant

amount of the processing time. "

4. Fourier Transform Calculations

Once the contour has been resampled, the one-dimensional Fourier transform of .

the (new) contour is computed. It may be easier to compute the Fourier transform

directly instead of using an FFT since for applications such as shape recognition, only

the H most significant frequency coefficients are used, where typically H = 32 [WaM792.

If the entire input contour could be accessed by all processors with equal ease, then up

to 32 processors could each compute the DFT complex coefficient for each of the 32

most significant coefficients. With no global memory this would take C' broadcast

steps to distribute all the data points where C' is the number of resampled data points.

Thus, a quick broadcasting ability would improve execution speed. Then, the Fourier

transform could be computed locally as defined:
C' - ( '"2 )mk

A(k) = C(mle
Mn=0 ' '.."

where k has a different value in each processor. This clearly can be accomplished in

C'(!) steps. It is not unreasonable that -- may be I (P = 32) in which case the algo-

rithm can achieve a speedup of P. In general, an FFT cannot accomplish similar gains

because it computes C' coefficients, all but H of which are ignored. C' may be on the

order of 256 to 2098 while H = 32.

Using the approach cited, the major limiting factor may be the time necessary to

broadcast all input data to all processors. From then on, speedup on the order of P

.. . . . . .. . .- .. - .

-°. . . -. . .. . ".



6-44

can be expected. Simulations are being performed to determine the ranges where the

DFT or FFT is faster. -

• - -

5. FD Normalization Procedure

For the moment, assume 1t = P = 32. A(O) is set to 0 and all values are scaled by

IA(1)I. This requires one broadcast and I parallel division. To find which coefficient is

largest, the magnitude can be computed in parallel, then the comparison will take log 2P iI-
(=5) transfers and comparisons. The speedup would be on the order of only

= 6.2 for this small section, using recursive doubling. Then depending on

parameters of A(O) and A(k), the starting point and origin are shifted appropriately.

This is done once if k = 2, otherwise it is done k - 11 times. Speedups can be

estimated from the operations involved in shifting the origin or starting points. Either

of these can be computed easily by multiplying each coefficient by a complex factor. .

This factor is the same across processors for the origin adjustment and it is computed

individually for the starting point adjustment. No communication or synchronization is !"

needed, so any MIMD system should handle these well. The speedups then will be

S 1 P 32 for these shifting operations.

When more than one of these normalizations are done, the "correct" normalization b -

is computed as the one with the maximum sum -j ReIA(i)]I Re[a(i)]. These terms can
i=1 -"x

be computed in parallel with optimal speedup and then the sum can be formed in log 2H

steps and compared on a single processor to each of the other normalizations.

Instead of dealing with a few hundred or a few thousand data points, where the

number of data points varies depending on the input contour, this procedure deals with

only II (1-32) data points. Thus, care must be observed in estimating speedups since
synchronization overhead may be a significant factor in execution speed. For this part

- . . K , • , . . , . % . . . , - , - . • +. .. , . . . -. , + . . . " . . ° - . " '. y.4 ° . ,,,.,.. . 'I , -, . ,-... _. ",,',. " .. . ,- .. " . . . . : . . . , - - . . .• , . . . . . .. . - , . . . . . - . ., . ' . - , .



6-45

of the processing, an SIMD system may be better suited to the operations being per-

formed. In general, the ability to perform limited synchronous tasks in an asynchro-

nous system is an important factor to consider in this step. Overall, a somewhat lesser .

speedup in this section may not significantly affect the execution time since it is dom-

inated by other sections.

6.2.4 Summary

A parallel implementation of the calculation of normalized Fourier descriptors has

been presented. Issues addressed in the design include selection of SIMD versus MIMD

processing for the component algorithms of the task, effects of global versus local

memories, number of processors used, and interconnection requirements of the various -'""

portions of the task. These aspects of processing are included in the

algorithm/architecture feature sets being developed.

:ii"..:

. . •. .

*.* . .

.*. . . . . . . . . .. . . . . .. ,

. . . . . . . . . . . . . . . . . . .. . . . . . . - .. . -. °

" " " " ." -" -" ".- 2-. : - ;- - - -: . - ° J-" 2 " --'° - ' " - " : - " - -i i-'- '- -i- -' ' :- ' '. ?- 2 " .-'-'. .. -.



6-46

6.3 Computer Vision

6.3.1 Introduction,.

With the advent of practical parallel architectures and the use of robotics becom- ,

ing more prevalent in industry, it becomes of interest to see how these fields can be tied

together to achieve higher levels of technological automation. One way in which this

can be achieved is through the use of computer vision. By applying parallel computing

to the computationally intensive task of computer vision, one might be able to achieve

computational speedups large enough to benefit production systems. Other applications

include applying the computer vision techniques to digital photogrammetry [Kea76], or

applying parallelism to robotics. Although some hardware does exist to perform vision

tasks in real-time, the hardware approach does not allow easy expansion or

modification of the parameters measured. Moreover, existing real-time hardware is res-

tricted to operations on binary images (number of gray levels equals two: black and

p. white). Significantly more computation is needed for images having more (e.g., 2561

C, gray levels.
In this work, the specific focus will be upon deriving and analyzing a flexible paral-

lel computer vision system. The basic parameters that it is desired the system derive

are based upon the SRI vision module [SR179]. Additional parameters are based upon

the usage of Fourier descriptors [WaM80]. This work provides "bottom up" informa-

tion towards the identification of features which characterize the match between

processes and architectures. By examining the attributes of the vision task and the

architectures which appear well suited to it, the salient attributes of both the task and
the architecture can be observed.

.
% -n -.



6-47

6.3.2 Definitions for Parallel Simulation

The machine model assumed is a variation of the PASM multimicroprocessor sys-

tem [SiS81a. This scheme assumes a number of Processing Elements, or PEs under the

management of a Control Unit. The number of PEs is a power of two. Each of the PEs

has a unique "address" between 0 and N-i where N is the number of PEs. In addition,

there exists some type of mechanism to allow all of the PEs to transfer data to other

PEs simultaneously. For the computer vision task, the only transfer patterns that are

being assumed are uniform modulo shifts (the highest PE connects to the lowest PE)

and power of two distance transfers. An example of the former case is a uniform

modulo shift of three, where PE0 transfers to PE3 and PE transfers to PE(i+3)mod N"

Note that the transfers wrap around from the high numbered processors to the low

numbered processors. In general, the modulo shift can be of any positive or negative

integer increment. An example of a power of two distance transfer is a transfer of dis-

tance 2 for 8 PEs. For this case, the following pairs exchange data: (0,2), (1,3), (4,6),

(5,7). -.. .

In the model, each PE will contain the same code to run but will execute the code

on a different subimage. (This is not a necessity for PASM.) However, within each PE,

the code can run in a Multiple Instruction stream - Multiple Data stream (MIMD) form.

This allows different PEs to execute different parts of a conditional statement con-

currently, whereas in a strict Single Instruction stream - Multiple Data stream (SIMD)

machine, only one of the parts of a conditional could be executed at a time. Note that

this is not full MIMD performance, as it is required that the code in each PE be the

same. This aids in insuring synchronization and thus helps enforce data coherence, i.e.,

insuring that a PE grabs the correct version of a variable from another PE. Thus, it

does not matter if the separate processors take different times to execute their code, as

they will be forced to synchronize at transfers to insure coherence. • -

Iiii!i



6-118

The validity of the assumed model comes about from two directions. First, the

idea of splitting the image among several PEs is valid since each subimage thus formed
".-..'

is still a valid image and the same types of operations are still needed on the pixels of

each subimage. Second, since the actual quantities of the various operations that will

be )erformed on each subimage may vary, asynchronous operation may allow higher

- PE utilization than strictly synchronous operation.

Synchronization can take place in one of two ways. First, synchronization is

required at all data transfer points. This is done because data transfers often involve

the same variable for all of the PEs. Explicit synchronization will also be possible by

,,mie of the simulation language constructs that requires that all PEs finish a section of

code tefore any can move to the next section.

In order to develop parallel software, one must choose from one of two major

pprowaches. Either the software can be of a generally descriptive nature to illustrate the

par:lllinm (Or lack thereof) inherent in a task, or the software can be designed to be

-.<,niplalde :ard testable, either by parallel execution or via serial simulation. Due the

(,Mipiutatiowil intensity and intricacy of the task at hand, the most reliable way to

mie.ure correctness is via testing. This will insure that typical problem cases are being . -

h:nlld by correctly by testing the software for a variety of images. A set of test

' mmme with multiple objects, was used for debugging and for analyzing computa-

-;inal speedui. Therefore, the software was designed so that it, could be compiled and

.lihe aciiil programming was done in a modified version of 'C' [KeR781. This . -

.*. l:mmguage was chosen for its simplicity of developing parallel data structures and the

* high d,gree to which one can manipulate system information (such as memory areas).

'I. l Iler plai ed a large part in the simulating of parallel data transfers. The actual

.iveri( , of the serial 'C' language !o a parallel language was done via macros and

• ~ portUplrt sibr,,itinc s. These features were designed to facilitate the development of

,we

• . . .. . .. . - . . -; ; ; ; - '- . . .



6-49

parallel code without the user having to know the specific details of the serial imple-

mentation. Thus, one can simply use the macro file without knowing its details and can -

then write parallel code.

The major points of this implementation are as follows. A construct of the form
ie{ I

in_pe codeblock;

executes the enclosed block of code in each of the PEs. The prefix "PE." prepended to

a variable indicates that the variable is local to a PE. All other variables are assumed

to be global (e.g., the control unit has one copy of the variable). Global variables are

used for such operations as loop control and overall conditional testing. There are also

versions of the "inpe" construct that allow the code to be executed in a limited subset

of the PEs (mask() and recurinpe{}). These schemes use an address mask; an

address mask is a matching format that the PE address must match for execution to

occur in that PE.

Interprocessor communication is accomplished via a "transfer" subroutine,

transfer(destination address,sourceaddress,offset)

where the addresses are the variable addresses in the current PE. The transfer routine

uses these addresses along with information about the size and structure of the PE data

space to simulate the transfer via a memory-to-memory move. Recursive transfers and

broadcasts (where one value is transferred to the all of the PEs) are similar. Synchroni-

zation is needed at transfer points to insure data coherence (otherwise, one PE might

grab an incorrect version of a variable).

Adaptations of this basic scheme are possible. First, the limited MIMD ability

could be converted to strict SIMD operation. The code would be the same, but the exe-

cution time would increase. This occurs because typically there would be idle PEs when

conditionals are being executed since only one of the options of a conditional could be

' .



6-50

executed at a time. As a second adaptation, the requirement for identical code in each

PE could be removed. This could be useful for PEs that have to do special tasks (e.g., W

PEs processing an external border of an image). However, synchronization becomes a

major concern at this point. ... ''

6.3.3 Overview

In this section, an overview of the procedures followed by the parallel computer

VisioI software is provided. More detailed descriptions will be presented in the next

section.

To facilitate testing of the system, it was desired that there be a simple way a user

could enter an image into the system. The method chosen was to develop a simple

schcme whereby the user could use a terminal with cursor control to draw an image on

the s(reen and enter that image into the data memory. This section of the code used a

sijiall subsection of the "curses" [Arn] utilities available on the test system.

After an image has been entered into the data memory, the first task is to classify

Ihe inage 'This consists of transforming an image consisting of edge and non-edge pix-

els into an image with edge, internal, and external pixels. An internal pixel is a pixel

that re)resents a point on an object, whereas an external pixel represents a point exter-

nal to an objec.t (such as the external background or a hole in the object).

After the inside and the outside of the image have been identified by the

classifiation step, the holes in the image need to be located. A hole is defined as an

area outside the object. Thus, the background also fits the definition of a hole. These

holes are identified so that later merging can be easily accomplished. This capability is

needed since holes that are initially thought to be separate may actually be joined.

This separation can occur in one of two ways. First, a hole within a PE subimage

might l)e or such a shape that it is initially thought to be multiple holes. This is due to

the scanning pattern. The second way in which one hole might be thought to be



K. ~ ~ F7 .7---

6-51 ,'.".

multiple holes is if the holes crosses a PE subimage boundary. In this case, each PE

would think its section of the hole was separate.

Along with locating the holes, the areas of these holes are computed and recorded.

This is done at the same time as the original hole identification since the data search

patterns are quite similar. For purposes of isolating the object parameters, the back-

ground is defined to have an area of zero.

Once the inside of the object is known, it is a simple matter to determine the

center of mass of the object. This is done by computing the local moments in each PE

and then combining the results. Although, in and of itself, the center of mass is not a

eparticularly useful parameter, it is used to normalize some of the perimeter statistics to

be derived later. .
To find the perimeter, all that needs to be done is find edge points that are adja-

cent to the background. Once this has be done, it is a simple matter to find the dis-

tances from the perimeter points to the center of mass. These distances are used to cal- .1
culate the average, minimum, and maximum perimeter distance from the center of

mass.

Finally, using the already determined perimeter, a description of this perimeter is

produced in the form of a list of coordinate pairs. This list can then be used to deter-

mine Fourier descriptors or other similar parameters. Provisions have been made for.- .•

the processing of images that contain multiple (non-overlapping) objects.

6.3.4 Detailed Descriptions of the Parallel Software

Image Initialization "

To be able to test the system easily, a simple method by which a user could enter -

an image into the system was developed. The user executes the vision program and

then uses a standard keyboard to direct the cursor and draw an image border. The user

also has the option of turning the cursor on and off to allow him/her to draw

- .. .*..,-.



6-52
-. -€,,

unconnected borders (such as an internal border). The connection pattern for the

drawing is an eight neighbor scheme. That is, from a point, the user can direct the cur-

sor in any of the four horizontal and vertical directions as well as along the diagonals

between these directions. After the user has created the image to his/her satisfaction,

an exit command automatically starts the image processing on the given image.

The produced image can be easily saved for later testing and can be reloaded and --

modified if desired in place of drawing a new image. The user also has the option of

either saving the results in a text file or of simply viewing the results as they are pro-

duced.

The image is divided among the PEs with each of the PEs having an equally

dimensioned stripe (either horizontal or vertical) of the image. Each PE then operates

upon the section of the image contained in its local memory, communicating with other

PEs when further information is needed. Thus, the granularity (unit of operation) in

each PE is on the subroutine level.

Internal/ External Classification

The classification scheme implemented is a two-pass method. A fixed number of

passes has the advantage of having deterministic timings. The software could easily be

modified to allow for indeterminate numbers of passes. As the results show later, this

section of the software demonstrates good speedup. Thus, the assumption of a two-pass

classifier gives a conservative speedup estimation. This is because if more passes were

used, each pass would exhibit the same good speedup. As a result of the classification

in this section, each pixel is labeled as being on the inside of the object, outside the

object, or on the border. The first pass traverses the image from the upper left to the

lower right. The initial classification of a pixel is based upon the two neighboring points

(to the left of the current point and above the current point) that have already been

classified. The method tries to classify the new point as external if either of the ..

.. -,. ' .



6-53,.. -*

previous points is external. If the adjacent points are both edges (border pixels), then .

information on the length of the edge and the previous region classifications are used to

make the classification.

The second pass traverses the image from the lower right to the upper left (back-

wards as compared to the forward pass). This pass uses the four major compass points

in relation to the current point to attempt to correct any classification errors. Again,

- the bias is toward external classification.

This section of the vision software also uses several schemes to insure robustness.

Besides the previously mentioned ability to reclassify points on the second pass, the

software also looks for the specific case of tracing an edge. In addition, several trouble

patterns are checked for to prevent major misclassifications. Figure 6.13 illustrates the

classification procedure. The first part of the figure is the image before classification :

(border only). The edges are represented by '2.' The other two parts are the image after

the first and second passes of the classification. Internal points are represented by '1'

* and external points are represented by '0.' An example of a reclassification on the

-* second pass is illustrated by the outlined areas in Figures 6.13b and 6.13c.

In the parallel implementation, each PE works with its own stripe of the image

data. The communication between PEs is limited to the values of the border elements

of a subimage. One such transfer will take place for each border element on one of the

sides of the subimage. These transfers will be uniform modulo shifts of distance one.

Identifying Image Holes

After the object has been separated from its surroundings by the classification see-

tion, the holes in the image need to be identified. This operation is initially performed

separately within each PE. This is done by creating a template of the same size as the

initial local section of the image. These templates are arrays that are of the same size

as the subimage in the PE. Each template location will contain an identifier that

. .. . . .... . . . . . "" , i ' i~i .2 .iF .'- ' - i .l - . - - - . :. .'. ' . . . -i



6-54

2 2 2
2 2 2 22222 2

2 2 2 2 2 222222
2 2 2222222 2 2 2 2
2 2 2 2 22 2

2 22 2 2

2 2 2
2 2
2 2 22222222 2
2 2 2 2 2
2 2 2222222222 2

2 2 2
2 2 22 2
2 2 2 222222222 2 2 2
2 2 2 2 2 2 2
22 2 2 2 2
2 2 2 2 2

2 22

Figure 6.13a InitiaL Image

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000020000000000000000000000000000000000000000000000
0000000000000000212000000000000000000020000000000000000000000000
0000000000000002111200000000000000000212222200000002000000000000
0000000000000021111120000000000000002111111120000021222222000000
0000000000000211111112000002222222021111111112000211111112000000
0000000000002111111111200021111111211111111111202111111112000000
0000000000021111111111120211111111111111111111121111111112000000
0000000000021111111111112111111111111111111111111111111112000000
0000000000211111111111111111111111111111111111111111111112000000
0000000002121111111111111111112222222211111111111111111120000000
0000000021112111111111111111120000000211111111111111111200000000
0000000211111211111111111111222222222211111111111111112000000000
0000000000000021111111111111111111111111111121111111120000000000
0000000000000002111111121111111111111111111202111111200000000000
0000000000000000211111202111111122222222212000211111120000000000

"* 0000000000000000021112000211111200000000020000021111112000000000
0000000000000000002120000021112000000000000000002111122000000000
0000000000000000000200000002120000000000000000000211202000000000

. 0000000000000000000000000000200000000000000000000022000000000000
* 0000000000000000000000000000000000000000000000000000000000000000 -. . -

Figure 6.13b CLassification: First Pass

.'.

!I .--7

' .*.-'- .. .. . *. " -- 5".'-. *.-.' - .-- . .. .'i ? .- '5 .-i. . . . . . . .'. ..--- .- '. ".....-.'? i .. -. ,,-- ," . -. .



6-55

0000000000000000000000000000000000000000000000000000000000000000 -
0000000000000000000000000000000000000000000000000000000000000000 ...
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000020000000000000000000000000000000000000000000000
0000000000000002212000000000000000000020000000000000000000000000
0000000000000002111200000000000000000212222200000002000000000000
0000000000000021111120000000000000002111111120000021222222000000 - .
00000000000002111111120002222222021111111112000211111112000000
0000000000002111111111200021111111211111111111202111111112000000 -

0000000000021111111111120211111111111111111111121111111112000000
0000000000021111111111112111111111111111111111111111111112000000
0000000000211111111111111111111111111111111111111111111112000000-
0000000002021111111111111111112222222211111111111111111120000000 " '

0000000020002111111111111111120000000211111111111111111200000000 "
0000000200000211111111111111222222222211111111111111112000000000
0000000000000021111111111111111111111111111121111111120000000000
0000000000000002111111121111111111111111111202111111200000000000
0000000000000000211111202111111122222222212000211111120000000000
0000000000000000021112000211111200000000020000021111112000000000
0000000000000000002120000021112000000000000000002111122000000000
0000000000000000000200000002120000000000000000000211202000000000
0000000000000000000000000000200000000000000000000022000000000000 ;
0000000000000000000000000000000000000000000000000000000000000000

Figure 6.13c CLassification: Second Pass

-°

I .",,



indicates til local hole number for the corresponding subiiage point(eofrnnhl(zerofor nn-hol

points). Each time an external point is located that is not adjacent. to a previous hole,___

a new hole identifier is used and entered for that point in the template. If the external

* point Is aldJacent, to a previous hole, then thle previous identifier is continued. A two

neighbor scheme is used for all of the p)ixels except thos an one of the subimage bord-

ers. Since t he points oil one edge will only have points from the previous row (or

Column, lit the case of horizontal stripes) to base a decision upon, a one neighbor

tomne is mivd. Ex perimient ation showed that ito accuracy problems are encountered Aft

dtie to thie small number of neighbors being used in thle classification. There is also the

)(,,,td case oif an external point being adjacent to two different previous hole

idont ifiers. This is effectively a merging of holes. The software accounts for this via a

*m- 4* rramieters that keep track of mnerge1 holes and their stat istics without having to

I)Iac ind relAw Iet th hole template.

'I'tose operA~n i01 re peCrformedl totally within a PE: no communication with other -

I 'V neededJ. lEaich PE olwns the information about its own holes. This information is

* ~ ~ F;I Ii~tfrrw'l to ( itler PH,,s during hole merging (described later).

1F Igari 6.1.1 4iows the internal hole identifiers for each P~E (the sections of thle

.11.g Nili hn each IT" are separated for easier examination). Ihole identifiers that, are

-1-1 C h'I r'ODSidered common. '[hat is, only one of thle identifiers contains the infor-

inrit i,n f~ 'r the hi de. All of the others contain a pointer t~o the " master" information.

)iicv thle holes have been identified wit hin each P E, they need to be merged across

he PEI bordlers. TIls is done by transferring thie b)orders of the PE hole template to

:idjali t~n lro(&eslrs and looking for mat ching holes. The areas are merged at the same

I ue ihal holes are Joined. The scheme used is that if a hole has only one edge on a PE

* lio(rdvr. tOwn thle statistics5 for that hole are transferred to that adjacent l'.This finally

results, with each hole being "controlled" by one PE. For purposes of easy identification

AndI to separate holes wit hini an object from the background, the border background is



6-57

PE 0 PEl1 PE 2 PE 3

* 11111111 111111111111 111111111 1111111111
* 111111111111 1111111111 111111111 1111111111111

11111111111111111111 11111111111 11111111111

1111111111111111 11111111 111111 11111 1111111111113777771

11111111111 111111 228888 9 333333332 877771

1111111111111 2222222 ::3333333333 2 9999991
11111111111 332222222 3 3333333 222222244444441

111111 44444 naton 555555551sn iag
1111111111 6666666661:

11111111111 4.1 77777777771emintio



6-58

defined as having an area of zero. The process of merging is illustrated in Figure 6.15.

This method of merging holes across PEs is deterministic in that the maximum OW

number or passes needed can be determined by the types of images being examined. - '

For example, the more an object tends to spiral (a spring, for example, as compared to

a wheel), the more passes that will be needed. For analyzing performance, a fixed .AF

nundcr of passes (more that necessary for the images being considered) was assumed. It

,,.ws found that this section provides poor speedup. Thus, the net result of the fixed

n m iber of passes is again to provide a conservative estimate of the computational

spev(lup of the algorithm. The information that. needs to be transferred from each PE

is pla'ed on a transfer stack. These stacks are then transferred. All of these are

tra;iisrrs to logically nivgboring PEs. The amount of information transferred is highly

dijclmlent upon the actual image.

in"t/ling imaye iHole .1 reas

1 r :ras lo be computed can easily be tabulated at. the same time as the hole

pt,. are placed in the template. This reduces the anount of computation neces-

*: .7 .'iiCP tlh( :irva computation is divided among the PEs. To handle the merging of

h*l,-,,. citl hr within a l'lPF of between PEs, an indirection table to point to the actual . .

Shole, a rca is used

Locuting the Center of Alass

.Aftcr the points that comprise an object, are known, the center of mass of the

otject can be easily determined. In this system this step is performed by computing the

i,oiiicts in e:m'h PE separately and then summing across PEIs using recursive doubling

[Stm,,x01. ,\ter the center of mass has been determined, it is broadcast to all PEs since

this ifrrnmation will be needed at a local PE level in later processing. This scheme

re(Iiires that each P'E know its absolute position in the configuration since the

'. . . . .•



~L

PEG PE I PE 2 PE3 '.,

INITIAL HOLE:
4 PARTS 7

fT

PEO PE I PE2 PE3

REMOVED HOLE

1E P E I PIXEL,

REOE HOL

PE 2 CONTROLS
FINAL HOLE

1 PIXEL I PIXEL

Figure 6.15 H-ole Merging Example

J, w' .



6-60

weighting of one of the moments in each PE is dependent upon the PE address. For

example, if the stripes are in the vertical direction, the the x axis will be split among

the PEs. Moments that involve the absolute distance along the x axis would depend

upon the PE address. To get the center of mass, log 2N sets of transfers will be needed.

This would be followed by one broadcast, for an effective total of 1 + log9 N transfers. - -

Pcrimeter Identification and Perimeter Statistics Determination

Identifying the perimeter is straightforward once the external background hole has

been identified. This hole has area zero by definition. An edge point next to an exter-

wil hole (or next to another perimeter point) is a perimeter point. Since the area of

hoh, is determined through an indirection table, all one needs to do is see if the hole

h: /t,,, area. When a )erimeter point is located in a PE, a counter in that, PE is also

* Ilirnnt d to that the total perimeter can be determined by a simple application of

rec(nrsive doubling to accumulate the total across the PEs.

Vier the perimeter has been identified, it is a simple matter to find the distances

t ,.twevi the perimeter points and the previously determine(] center of mass. This is --

di. 1,N scanning through the image template looking for perimeter points. Each PE

* OlIt,.t stripe of the image For each perimeter point so found, the radial distance

fr thie perinter point to the center of mass is determined. A running sum is kept of

tlth(,se i.salels, along with the minimum and the maximum distances. When the entire

iII;Ig, has been sctanned, recursive doubling is used to find the average, minimum, and

maiinum such distances. Three stages of recursive doubling transfers will be needed,

on. "M for each of the perimeter statistics being gathered. This results in a total of

- 31, ,gA t rans fers.

I igui e 6. 16 showos the identified perimeter for an image. The perimeter is noted by

1'"- is compared to -2" for a non-perineter edge point.

"u'."

' - -" " - "" ." - " -? .' -: . •" "-- "- " - '. " " ". - " :. , . . , -. ., , "- " - -. " - ' . - - - - - - -. - - - - .. i ', : . - "



6-61 -. 

Data Preparation for Fourier Descriptors ''

As an illustration of some of the higher level functions that can be performed once '- . '

the basic parameters have been extracted, the image can be converted into the informa-

tion necessary to calculate Fourier descriptors (refer to Chapter 6.2 of this report).

This information is simply an ordered list representation of the perimeter of the object.

Each entry in this list consists of a set of coordinates representing a perimeter point.

The vision software begins this step by forming the perimeter nodes into a

multiply-linked list. This is done to facilitate the removal of false perimeter points

(spikes). This converts the perimeter into a traceable contour. Next, these linked-lists

are transferred to one PE which completes the processing. This processing includes con-

verting the lists into partial ordered lists and then combining these lists. Other

schemes, such as forming the partial lists in each PE separately, were found to induce

such a large amount of overhead in transfers that any advantages in parallelism were

lost. The final contours in the single PE are then broadcast to the remainder of the

PEs in preparation of the Fourier descriptor calculations. If the perimeter is equally

distributed among the PEs, 75% of the partial ordered listings will need to be

transferred. Each of the objects in one of these lists contains ten data fields. If the per-

imeter is not equally distributed, then the perimeter could be gathered into the PE with

the largest number of perimeter points. Thus, if there are P perimeter points, a max-

imum of 7.5P transfers would be needed. An example of a contour listing for the image -- '-

from Figure 6.16 is given in Table 6.3.1.

Multiple Object Images

The software that has been described up to this point has treated the contents of

the image field as one object. If there is more than one object in the image field, the

same software can still be used, but the results will be a composite of the information

for the separate objects. However, it is not exceedingly difficult to separate the

n• ".o-'%-•... .



A 6-62*

B
B B B.k

B B B BBBBB B
B 8 8 B B BBBBBB

B B BBBBBBB B B B B
B B B B B B B

B B B B B
B B B

B B
B B 22222222 B

B B 2 2 B
B B 2222222222 B

B B B
B B B 8 B

B B B BBBBBBBBB B B B
B B B B B B B

B B B B BB
B B B B B8j.'.

B BB

TotaL Object Perimeter: 109
Center of Mass: (33,11)
Perimeter Statistics: distances from Center of Mass

MIN 3, MAX 24; AVG =12

Figure 6.16 Object Perimeter Determination and Center of Mass Statistics

one".-



6-63

Table 6.3.1:
FinaL Contour Representation.

(Read across, then down) -,-"

•-%- -:

(7,31) (7,30) (7,29) (7,28)
(7,27) (8,26) (9,25) (10,24)
(9,23) (8,22) (7,21) (6,20)
(5,19) (4,18) (3,17) (4,16)
(5,15) (6,14) (7,13) (8,12)
(9,11) (10,11) (11,10) (12,11)
(13,12) (14,13) (15,14) (16,15)
(17,16) (18,17) (19,18) (20,19)
(19,20) (18,21) (17,22) (16,23)
(17,24) (18,25) (19,26) (20,27)
(21,28) (20,29) (19,30) (18,31)
(17,32) (17,33) (17,34) (17,35)
(17,36) (17,37) (17,38) (17,39)
(17,40) (18,41) (17,42) (16,43)
(15,44) (16,45) (17,46) (18,47)
(19,48) (20,49) (21,50) (21,51)
(20,52) (19,53) (19,54) (18,54)
(17,53) (16,52) (15,53) (14,54)
(13,55) (12,56) (11,57) (10,57)
(9,57) (8,57) (7,57) (6,57)
(6,56) (6,55) (6,54) (6,53)
(6,52) (5,51) (6,50) (7,49)
(8,48) (9,47) (8,46) (7,45)
(6,44) (5,43) (5,42) (5,41)
(5,40) (5,39) (4,38) (5,37)
(6,36) (7,35) (8,34) (7,33)

9m



.,~ W7

6-64 -

informat ion for the separate objects.

Once the contours of the image have been determined, the software knows how 2W_

many separate objects are in the imageT This involves the classification, hole and area .

*" identification and merging, and perimeter determination steps described above. That

is, the number of contours will equal the number of objects in the image given that the W

objects do not overlap and that, no object is inside of another (such as a bolt within a

whelq rim). To process the items individually, all that needs to be done is remove the

objects corresponding to the undesired contours and reprocess the image. This should

be done for each object in the image. The individual processing involves all the the
previous sections from classification through perimeter determination and perimeter

stat ist ics.

Fo renove an object from the image, its perimeter points (which are known from

the contour) are marked to be removed. Two passes are made over the image (similar

(h, te initial classification) to convert internal, perimeter, and edge points bordering the

17r,,ii,,val points to removal points themselves. This is similar to the erosion scheme

usCd by ('1.1 ' [!eO)2]. A fina pass is made of the image to convert all removal

p,ints to external points, effectively erasing the object from the image.

If Ihe program detects multiple images, it will still give the composite results, but"

it k' ll also su(jiwntially cra-se all but one of the objects and then process the remaining

(,bjct. Iis additional processing is identical to the main processing sequence, except

Iblie chccks for muhiple objects are omitted.

- Ilr(Iaralel I "ily Softivare

A lbng with the macros used to help define a parallel v ersion of ',' several subrou-

. ie)s wr, neVeded to simulate sum'h operations as uniform shift, transfers, recursive dou-

Wling t ransfers. and address nask computation The most major of these operations are

the I ransfcr r,ut in.4 "lb se routines use the address (f a source and dst at io wit hin - '

€S
• .. 1



6-65 -""

a current PE to obtain the proper address in the destination PE. This new address is

used for the actual transfer of information. Thus, inter-PE transfers are simulated by

memory operations. Recall that synchronization is needed at transfer points.

Parallel Computer Vision Software .- '..

The actual programs used for the parallel computer vision software were compiled

and run on an 11/780 Dual Vax at Purdue University. Figure 6.17 contains an exam-

pie of the vision software output. - -.

6.3.5 Analysis

In order to determine the validity of applying parallel architectures to computer

vision, a comparison of the parallel software with serial software is needed. This simula-

tion was performed on an 11/789 Dual Vax [GoM82j. An estimation of the computa-

tional speedups were derived by an examination of the structure of the parallel

software as described above (see Table 6.3.2). It is assumed that the parallel architec-

ture is capable of performing some limited type of MIMD operation. However, the

software is such that in strict SIMD operation is needed, then the speed will be reduced

by a factor of close to a small power of two (due to the nested conditional statements).

For example, for a two level conditional, which effectively has four states, then the

SIMD machine will need to execute each of these conditions separately. If the code exe-

cuted in the conditional sections is of approximately the same complexity, then the

SIMD machine would need four times as long to execute the code for all conditionals

than the MIMD machine would.

-* .* . .. * * *

r, -,, .,. ..-...... •..... . .- .. .... • ......... .. . ........ . ,..-..,. . .'. ."...,",. ,.,



6-66

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

~~~0000000000000000212000000000000000000020000000000000000000000000 
:-•

0000000000000002111200000000000000000212222200000002000000000000
0000000000000021111120000000000000002111111120000021222222000000 Zt--

0000000000000211111112000002222222021111111112000211111112000000
0000000000002111111111200021111111211111111111202111111112000000
0000000000021111111111120211111111111111111111121111111112000000
0000000000021111111111112111111111111111111111111111111112000000
00000000002112000000
00000000020211111111111111111122222222111111111111111111200000000000000020002111111111111111120000000211111111111111111200000000

0000000000002111111111111111222222211111111111111112000000000
0000000000000021111111111111111111111111121111111120000000000-
000000000000000211111112111111111111111111120211111120000000000000000000000000002111111211111111112222221202111111200000000000-.

'-

0000000000000000021112000211111200000000020000021111112000000000
00000000000000000021120000021112000000000000000002111122000000000
0000000000000000000200000002120000000000000000000211202000000000

-000000000000000000000000000200000000000000000000022000000000000
00

Hole determination: 2 total holes in image

Total Object Perimeter: 109

Total Hole Areas: 7

Center of Mass: (33,11)

Perimeter Statistics: distances from Center of Mass

MIN =3, MAX =24; AVG = 12

1 Object(s) in Image.

Figure 6.17 Example of Vision Software Output

II

-h-

6-67

Table 6.3.2
Computational Performance Results

Algorithm Division Approx. Speedup Serial 'rime Time Proportions
class() N(1/(1 +N-I1)) 15.36 0.3531
holes) _N((N-1)(SPIFAC + 1)) 15.79 0.3630
areas() (called by holes) N/A N/A
centero N 1.64 0.0377
pstats() N 10.71 0.2462

I Image Border (I by I image)
N -Number of PEs
SPIFAC =How many times a section of the object in

the image can switch directions in crossing
the image (for example, the letter "T' would
have a SPIFAC of 2). For the images analyzed,
SPIFAC = 6

To provide coherence with the "curses"~ input method,
images were 64 by 23. The image was divided into
64/N by 23 stripes. With this division method, the
speedups are still primarily determined by N and 1.

Total Weighted Speedup:
353, 1)I +.6 + 0.0377N + 0.2-162N

S(NI i+N-1 +(N-1)(SIPIFAC +1)

-1 0.35311 + 0.3630 + 0.28391
I+N-1 (N-1)(SPIFAC +1)J

0.3630
lim S(N,1) =0.35311 + + 0.2839N

N-oo SPIFAC+ I
Thus, a reasonable maximum speedup for design assumptions is:

S(N,I1) < 0.351

For 1 1024,

S(N,1) -7lwithN 128

S(N,1) l35withN 256 .

S(N,1) 247withN 512

S(N,l) 433withN 1024

6-68

Simulation demonstrated that the major problem with the parallel implementation

is)asically of one form: the amount of transfers needed reduce the effectiveness of the 1W_

para llelism. This can occur when tihe amount of information that. is needed to make a ...- ,

proer decision (such as for hole merging) is large. This problem can manifest itself in

.- v(,ral fornis, such as algorithms that are inherently serial or that, require data from OW

the ,ntire linage. Such tasks might better be performed in one PE or in the Control

KI
'he actual results for the major section of the software are presented in Table

6 3 3. The proportions of time required by different sections of the code were deter-

111ed b% e'xecuting a serial version of the algorithm. The problem of non-determinism

in speedups was handled by using deterministic versions of non-deterministic routines.

Tl'heee ro)utines were designed in such a way as to provide a conservative estimate of the

speedup. With the current simulation, there is no way to account for major synchroni-

zait ii delays due to greatly different execution times. Thus, these results should only

"i' used ai, an order of magnitude indicator.

One inust remember that these analyses assume that the serial simulations of

p i'rallel ,)perations (such as inter-PE transfers) are approximately a factor of N slower

fr sinaitLiing an N P' system). If a transfer is assume(d to take approximately the

.*au.ie tinie :is a memory access (no provision for operational overlap), then this assump-

Ilon iN qu1ite (''alid.

The proportions of time that the serial algorithm sections take are used to provide

a weighting of the parallel speedup results. This way, a section with low speedup that

roquire's onlv a small fraction of the serial processing time will not falsely lower the --

overall speedup. Similarly. a section with high speedup that requires only a small fr -

tion of the serial processing time will not falsely raise the overall speedup.

S S . S *.. .,

a ..:.''.'....'-.:". •- v. ""./ :.°""'"..

6 -6 9 t z*g .-

Table 6.3.3 V.

Experimental Speedup Results ''.

Algorithm Serial Time N=2 Time N=4 Time N=2 Speedup N=4 Speedup

" classification 15.36 9.47 6.02 1.62 2.55 .'"

holes and areas 15.79 13.47 17.11 1.17 0.92

center 1.84 1.11 0.68 1.48 2.48

perimeter 10.71 5.61 2.79 1.91 3.84

overall 43.50 29.64 26.86 1.47 1.62

Compare these with the analytical speedups of 1.24 for N=2 and 2.35 for N=4

(obtained from the speedup formula). Thus, there is no advantage in having N too

large. Again, the assumption of no overlap between processing and transfers is conser-

vative. Other software could be added to the program and analyzed in a similar

fashion.

An example of this would be producing the contours. Simulations of methods

tried so far have produced poor results due to the serial nature of the algorithm. How-

ever, it must be noted that the rest of the processing can be done in parallel without

incurring losses in computational speed when the contours need to be found. That is, . V.

even though the parallel method is poor, the overall algorithm can take advantage of

parallelism without having to increase processing time to regroup data to find the

-V * ~ ~V ... <...-.>.. . .

6-70

contours. Again, the major overhead is transfers. If any type of full or partial global

memory is available, the speedups should improve for this algorithm.

6.3.6 Possible Additional Features

The purpose of this simulation was to determine the feasibility of performing com-

puter vision tasks on a specific class of parallel architecture. It can easily be expanded

and used as a model for an actual vision system. In such a system, there are other

features that one might wish to add in order to improve the robustness of object

identification. Some of these additional parameters are simply combinations of previ-

(ous parameters. An example of such a parameter is the factor of roundness (how circu-

lar the image is). which is computed by dividing 4ir times the area by the square of the

perimeter. The area of the object could also be calculated at the same time that the

sVecond classification pass is made. This area could be combined with the internal hole

area to provide a total of the areas occupied by the object. The ratio of hole area to

total area is similarly obtainable.

There are other parameters that would require additional computation in the main

pr,(icssing sequence to determine. This class of parameters would include such features

as q4Conld moments, ratios of major and minor axes, finding the bounding rectangle,

and line fitting. Others could be added based upon the specific task at hand.

F in ally. o(me needs to consider the non-ideal cases where either inultiple objects in

the image overlap or the objects are not. enlirely contained within the borders. Much

infrmation for the latter case can be obtained from)rocessing the object as usual and

then applying statistical methods to determine possible matches with known objects..-

The other case is not as simple - some type of image reduction would be necessary if it

was determined that an object was not known. Such software could selectively reduce

protrusions of an object until a known obje(t was found.

* -. - 4.•** '% - :

6-71

6.3.7 Architectural Considerations

A specific type of architecture has been assumed throughout this simulation and

analysis. At this point, this restriction will be removed and the tasks considered will be

examined to explore the advantages of other types of parallel architectures.

First, consider the attributes which the vision task requires. Each processing unit

would need access to a substantial amount of memory to store a large enough subsec-

tion of the image. Also, arithmetic operations are necessary (not just simple logical

operations).

One type of architecture that has been used for simpler image processing is a largel.-

scale bit-processing machine. Although such a machine might be adaptable to the

variety of tasks at hand, the correspondence is not obvious.

If the approach of tracing a contour is taken (i.e., one PE traces exactly one con-

tour), two major problems arise. First, how does one select the contour to trace? That

is, is one contour split up among processors, and if so, how is this division performed?

Also, what happens in the case of multiple contours? Second, such a scheme might

have serious problems utilizing a reasonable number of processing units. '

The final major approach to be examined here is region growing. However, this -"

approach is not far different from the methods already used. It thus appears that the :. •

original is an acceptable initial choice. The concern now becomes to determine how this

model could be improved. This redesign will be performed in an attempt to reduce the

major cause of efficiency loss - interprocessor transfers.

By examining the algorithms, is it seen that a set memory area (the memory

assigned to one PE) is not needed by more than two PEs in a given processing section.

If the memory is dual ported, with one write channel and two read channels, then the

need for transfers can be virtually eliminated. In such an approach, the memory that

was previously the exclusive responsibility of a specific PE would still be connected to

that PE via the write channel and one of the read channels. However, the other read

. . . -. .. .

6-72 kI
* . . o'

-

channel would be connected to a memory redirection network that would be setable by .

the Control Unit when a new type of access pattern is needed. This redirection net- WI

work could either be bidirectional or (more practical) two unidirectional networks, one

direction being used to transmit the memory accesses and the other being used to

return the data. The advantage of using two unidirectional networks is that informa-

tion can be flowing in both directions at the same time without the need for redirection

or buffering. This would allow the memory to be accessed in an interleaved manner,

further improving system performance. When this scheme is compared with the __._

number of transfers needed in some of the processing steps (such as in hole merging and

Fourier (lescriptor preparation), the possible savings are quite evident.

:" 6.3.8 Conclusions / Recommendations

This software has demonstrated the advantages of applying parallel architectures

to coiputer vision specifically and image processing in general. Because of the modular

design of this software, it is quite possible to expand the processing sequence to include

,,t hr coilini()n image processing techniques. Such actions will help provide a clearer pic-

Nlre of the advantages and disadvantages of parallel computing. In general, it has been

shown that increases in performance (such as overall speedup) of near to I for an I by I

linage are obtainable. Performance of this order of magnitude is also attainable with a "' '

imoderate nimnber of l's (N up to 1).

%w

.. . .-..

.dii;-i

i'. l%

• . -, '

.

I "'. %' ,

REFERENCES

[AdS82a] G. B. Adams III and H. J. Siegel, "A multistage network with an addi- .

tional stage for fault tolerance," 15th Annual Hawaii Int'l. Conf. System

Sciences, Vol. 1, Jan. 1982, pp. 333-342.

[AdS82b] G. B. Adams III and H. J. Siegel, "The extra stage cube: a fault-tolerant - jWj
interconnection network for supersystems," IEEE Trans. Computers, Vol. -

C-31, May 1982, pp. 443-454.

[Ada82] J. Adamo, "Pascal + CSP, merging Pascal and CSP in a parallel process-
ing oriented language," Third In '7. Conf. on Distributed Computing Sys- mow

tems, Oct. 1982, pp. 542-547. %

jAgF731 T. Agerwala and M. Flynn, "Comments on capabilities, limitations and
'correctness' of Petri nets" Proc. 1st Symp. Computer Architecture, July
1973, pp. 81-86.

[Agr821 D. P. Agrawal, "Testing and fault-tolerance of multistage interconnection
networks," Computer, Vol. 15, Apr. 1982, pp. 41-53.

[Ah1I761 A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley Publishing Co., Reading, Mass.,

1976.

[AnJ75] G. A. Anderson, and E. D. Jensen, "Computer interconnection structures:
taxonomy, characteristics, and examples," ACM Computing Surveys, Vol.

7, Dec. 1975, pp. 197-213.

[And771 S. Anderson, "The looping algorithm extended to base 2' rearrangeable .'. . . -.

switching networks," IEEE Trans. Communications, Vol. COM-25, Oct. .'-.

1977, pp. 1057-1063.

[ArnO0] K. Arnold. "Screen Updating and Cursor Movement Optimization, A
Library Package," UNIX* Version 4.lbsd.

[BaB68 G. H. Barnes, R. M. Brown, M. Kato, 1). J. Kuck, 1). L. Slotnick, and H.
A. Stokes, "The ILLIAC IV computer," I/EE Trans. Computer.. %'(I. C- ___

17, Aug. 1968, pp. 746-757. "

UNIX is a trademark of Bell Telephone laboratoriep, Inc.,

7- 7 7-7-7W- Vr n F 7 - F.y--.-.. ..-

R-2

[BaJ77] J.-L. Baer and J. Jensen, "Simulation of large parallel systems: modeling

of tasks" Proc. 3rd Int '. Symp. on Modeling and Performance Evaluation,

Oct. 1977, pp. 53-73.

[Bal,81] G. ti. Barnes and S. F. Lundstrom, "Design and validation of a connec- ,.

tion network for many-processor multiprocessor systems," Computer, Vol.

14, Dec. 1981, pp. 31-41.

[Bae82] J.-l. Baer, "Techniques to exploit parallelism" in Parallel Processing Sys-

terns, An Advanced Course D. J. Evans, ed., Cambridge University Press,

Cambridge, England, 1982, pp. 75-99.

[Bak72] 1H. Baker, "Petri nets and languages," Computer Structures Group Memo

68, Project MAC, MIT, 1972.

Ilaiti81 K. E. Batcher, "Sorting networks and their applications," AFIPS 1968

Spring Joint Computer Conf., April 1968, pp. 307-314.

[lat7.1] K. E. Hatcher, "STARAN parallel processor system hardware," AFIPS

1974 Nat'l. Computer Conf., May 1974, pp. 405-410.

[Iat761 K. E. Hatcher, "The flip network in STARAN," 1976 Int'l. Conf. Parallel

Processing, Aug. 1976, pp. 65-71.

[pat7.] K. E. Batcher, "MPI' -- a massively parallel processor," 1979 Int'l. Conf.

Parallel Processing, Aug. 1979, p. 249.

j~au7 1] L. 11. Bauer, "Implementation of data manipulating functions on the

STAR AN associative array processor," 1974 Sagamore Computer Conf.

Parallel Processing, Aug. 1974, pp. 209-227.

fleN711 C. G. Bell and A. Newell, Computer Structures: Readings and Examples,
\Ic(raw-Ilill, New Yfork, 1971.

[Ib"riG] V.E. Ih lnes , "Opt imal rearrangeable multistage connecting networks,"

Bell System Technical Journal, Vol. ,13, No. 4, Part 2, July 1964, pp.
16.11- 1656. """

[Ile1651 V. E. Ben(s, Mathematical Theory of Connecting Networks and Telephone

Trafic, Academic Press, New York, N.Y., 1965.

-Her621 C. Berge, The Theory of Graphs, John Wiley and Sons, Inc., New York,

N.Y.. 1962, 1). 12.

......'.-.-.'..,.-.---.. .
o"U% l % P • . .. " . U " •", . , •, ' . • .-.- • "," . - .

WI

[Bla77] C. E. Blakely, "PEPE application to BMD systems," 1977 Int'l. Conf.
Parallel Processing, Aug. 1977, pp. 193-198.

[Bou72] W. J. Bouknight, et al., "The Illiae IV system," Proc. IEEE, Vol. 60, No.
4, April 1072, pp. 369-388.

[BrF82I F. A. Briggs, K. S. Fu, K. liwang, and B. W. Wah, "PUMPS architecture - ,,
for pattern analysis and image database management," IEEE Trans. '. -

Computers, Vol. C-31, Oct. 1982, pp. 969-983.

[Bur79] Burroughs Corporation, Final Report - Numerical Aerodynamic Simula-
tion Facility Feasibility Study, prepared under contract NAS2-9897, Paoli,
Pa., March 1979.

(CaK80] R. H. Campbell and R. B Kolstad, "An overview of Path Pascal's design
and Path Pascal user manual," SIGPLAN Notices, Vol. 15, No. 9, Sept. '

1980, pp. 13-24.

[ChY82] P.-Y. Chen, P.-C. Yew, and D. H. Lawrie, "Performance of packet
switching in buffered single-stage shuffle-exchange networks," 3rd Int'l.
Conf. Distributed Computing Systems, Oct. 1982, pp. 622-627.

[CiS80] L. Ciminiera and A. Serra, "LSI implementation of modular interconnec-
tion networks for MIMD machines," 1980 Int'l. Conf. Parallel Processing.
Aug. 1980, pp. 161-162.

[CiS81] L. Ciminiera and A. Serra, "Modular interconnection networks with asyn- .* -

chronous control," 14th Annual Hawaii Int'l. Conf. System Sciences, Vol. L
1, Jan. 1981, pp. 210-218.

[CiS82] L. Ciminiera and A. Serra, "A fault-tolerant connecting network for mul-
tiprocessor systems," 1982 Int'l. Conf. Parallel Processing, Aug. 1982, pp.
113-122.

IClo53] C. Clos, "A study of non-blocking switching networks," Bell System .'.".

Technical Journal, Vol. 32, No. 2, March 1953, pp. 506-424.

[CspOO] CSP Inc., Burlington, Mass.

[Dav74] E. W. Davis, "STARAN parallel processor system software," AFIPS 1974
Nat'l. Comp. Conf., May 1974, pp. 17-22.

[DeB80] J. B. Dennis, G. A. Boughton, and C. K. C. Leung, "Building blocks for
data flow prototypes," 71h Annual Int'l. Symp. Computer Architecture,
May 1980, pp. 1-8.

....°-. .. °.

R{-4 A

11)(4,781 A. MI. Despain and D. A. Patterson, "X-tree: a tree structured multi-
processor computer arch itecture," 5th Annual Int'l. Symp. Computer

Architecture, Apr. 1978, pp. 144-151.

[1)(,n7Oa] P'. J. D~enning, "Virtual memory," Computing Surveys, Vol. 2, Sept. 1970,
p~p. 153-188.

[Dven7Ob] J. D)ennis (editor), Record of the Project MAC Conf. on Concurrent Sys-
tenis and Parallel Computation, ACM, New York, 1970. O

[Dlhn721 J. Dennis, "Concuirrenev in software systems," Computation Structures
Groups Memo 65-1, Project MAC, MITr, 1072; Also Advanced Course in
Software Engineering, Springer-Verlag, Berlin, 1973, pp. 111-127.

Il~iJ811 1). M. Dia~s and J. It. Jump, "Analysis and simulation of buffered delta
networks," IEEE Trans. Computers, Vol. C-30, Apr. 1981, pp. 273-282.

[l)IJ-65] U.. I)ijkstra, "Solution of a problem in concurrent programming," Coin-
munications of the ACA!, Vol. 8, 1965, pp. .569-570.

jI~iliX IXW. 1)ijkstra, "Cooperating sequential processes," in Programming

Languages, edited by F. Genuys, Academic Press, Inc., New York, 1968,
pp. 413-112.

[1),l)821 Ahflitarg Standard: Ada Programming Language, United States Depart- 4
mnent of D~efense, Dec 1980.

I i)i Il731 l?. 0. Duda and P. E'. Hlart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973.

jlo)%W7 11 M. J1. B. D)uff, 1). M. Watson, and E. S. Dentsch, "A parallel computer for .

array processing," Information Processing 74, pp. 94-97.

[IK-lI-,'. S. L., Inc., Sunnyvale, Calif.

jv,, 's I K. MI. Falavarjani and D. K. 1'radhan, "Fault-diagnosis of parallel proces-
sor interconnection networks," 11th Annual Int'. Symp. Fault-Tolerant
Computing, June 1981, pp. 209-212.

[l'~.K82j T. l'eng and 1. Kao, "On fault-diagnosis of some multistage networks,"
198;2, Intl. Conf. Parallel Processing, Aug. 1982, pp. 99-101.wi

[Fel,771 H. D. Fennell and V. It. Lesser, "Parallelism in artificial intelligence prob-
lein solving: a case sluidy of Ilearsay II," IE-,EE Trans. Computers, Vol.
(C-26, No. 2, Feb. 1977, pp. 98-111.

4~~~E W -.

R-5

[Fen72] T.-Y. Feng, "Some characteristics of associative/parallel processing,"

Proc. 1972 Sagamore Comp. Conf., Syracuse Univ., Aug. 1972, pp. 5-16.

[Fen74] T. Feng, "Data manipulating functions in parallel processors and their

implementations," IEEE Trans. Computers, Vol. C-23, Mar. 1974, pp.
309-318.

[Fen8l] T. Feng, "A survey of interconnection networks," Computer, Vol. 14, Dec.

1981, pp. 12-27.

[F loOOJ Floating Point Systems, Inc., Portland, Ore. Wd7

[Fly66] M. J. Flynn, "Very high-speed computing systems," Proc. IEEE, Vol. 5.1,
Dec. 1966, pp. 1901-1909.

[Fly72] M. J. Flynn, "Some computer organizations and their effectiveness," IEEE

Trans. Computers, Vol. C-21, Sept. 1982, pp. 948-960.

[Fos76] C. C. Foster, Content Addressable Parallel Processors, Van Nostrand

Reinhold Company, New York, 1976.

[GaW81] N. C. Gallagher, Jr. and G. L. Wise, "Passband and stepband properties

of median filters," IEEE Trans. Acoustic, Speech, Signal Processing, Vol.

ASSP-29, Dec. 1981, pp. 1136-1141.

[Gil8l] W. K. Giloi, "A complete taxonomy of computer architecture based on

the abstract data type view," IFIP Workshop on Taxonomyl in Computer

Architecture, June 1981, pp. 19-38.

[GoJ80] M. J. Gonzalez, Jr., and B. W. Jordan, Jr., "A framework for the quanti-
tative evaluation of distributed computer systems," IEEE Trans. Comput-

ers, Vol. C-29, No. 12, Dec. 1980, pp. 1087-1094.

[GoL71] B. Gold, I. L. Lebow, P. G. McHugh, and C. M. Rader, "The FDP, a fast
programmable signal processor," IEEE Trans. Computers, Vol. C-20, No.

1, Jan. 1971, pp. 33-38.

[GoL73] L. R. Goke and G. J. Lipovski, "Banyan networks for partitioning mul-

tiprocessor systems," Ist Annual Int'l. Symp. Computer Architecture, Dec.

1973, pp. 21-28.

[GoM821 G. H. Goble and M. H. Marsh, "A dual processor VAX* 11/780," IEEE
9th Annual Symp. on Computer Architecture, Apr 1982, pp. 291-298.

VAX is a trademark of Digital Equipment Corp.

7, 1' -7.

R-6

[Gon78] M. J. Gonzales, Jr., "Quantitative evaluation of distributed computer sys-

tems," 2nd Rocky Aft. Syrp. on Microcomputers: Systems, Software,

Architecture, Aug. 1978, pp. 125-130.

[11ac72] M. Ilack, "Analysis of Production Schemata by Petri Nets," M.S. Thesis,
Department of Electrical Engineering, MIT, 1972. .,'j, .,:

[Ilan75] P. Brinch Hansen, "The programming language Concurrent Pascal,"
IEEE Trans. on Software Engineering, Vol. SE-I, No. 2, June 1975, pp.

199-207.

[llant77a] 1. Brinch Hansen, The Architecture of Concurrent Programs, Prentice-

lhl, Inc., Englewood Clifts, New Jersey, 1977.

Sllan77b] W. 1indler. "The impact of classification schemes on computer architec-
ture," 1977 lnt'l. Conf. Parallel Processing, Aug. 1977, pp. 7-15.

hIh118I W. 11andler. "Standards, classification, and taxonomy; experiences with
E('S," IFIP Workshop on Taxonomy in Computer Architecture, June 1981,
pp. 39-75.

Illan8la P. Brinch Hansen, "Edison a multiprocessor language," Software "'
Practice and Experience, Vol. 11, No. 4, April 1981, pp. 325-361.

(Ilan lb P. Brinch Hansen, "The design of Edison," Software -- Practice and Vam
Experience, Vol. 11, No. 4, April 1981, pp. 363-396.

lainlc] 1P. Brinch lansen, "Edison programs," Software -- Practice and Experi-
ence, Vol. 11, No. 4, April 1981, pp. 397-414.

[11ig7 21 L. C. lhigbie, "The OMEN computers: associative array processors,"

(VMPCON '72 Digest, 1972, pp. '287-290.

lh,('701 A. lolt and F. Commoner, "Events and conditions" Applied Data
Hesearch, New York 1970; Ajso Record of Project MA4C Conf. on Con-
current Systems and Parallel Computation, New York: ACM, 1970.

I1,).1811 H. W. flockney and C. R. Jesshope, Parallel Computers: Architecture,
'rogramning and Algorithms, Adam Ililger ltd, Bristol, 1981.

[il,,Si] A. lolt, I1. Saint,, R. Shapiro, and S. Warshall, "Final report of the infor- -__

mation system theory project," Technical Report RADC-TR-68-305

Rome Air Development C(enter, Griftiss AFB, New York, 1968.

n~r..-. .".1-.,.• :. ,. :" . .. • .

R-7

[Hoa78] C. A. R. Hoare, "Communicating Sequential Processes," Communications

of the ACM, Vol. 21, No. 8, Aug. 1978, pp. 666-677.

[Hu62] M. K. Hu, "Visual pattern recognition by moment invariants," IRE

Trans. Info. Theory, Vol. IT-8, Feb. 1962, pp. 179-187.

[HwB81] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Process-

ing, Class Notes, 1981, to be published McGraw-Hill, 1984.

[JaG82] M. Jazayeri, G. Ghezzi, D. Hoffman, D. Middleton and M. Smotherman, 7.

"Design and implementation of a language for communicating sequential

processes," Third Int'l. Conf. on Distributed Computing Systems, Oct.

1982, pp. 173-180.

[JeB82] R. M. Jenevein and J. C. Browne, "A control processor for a

reconfigurable array computer," 9th Annual Int'l. Symp. Computer Archi--

tecture, Apr. 1982, pp. 81-89.

[Jen79] K. Jensen, "Coloured Petri nets and the invariant method" Technical

Report DAIMI PB-104 C. S. Dept., Aarhus University, Denmark. 1979.

[Joe68] A. E. Joel, Jr., "On permutation switching networks," Bell System Techn-

ical Journal, Vol. 47, No. 5, June 1968, pp. 813-822.

[KaK79] S. I. Kartashev and S. P. Kartashev, "A multicomputer system with

dynamic architecture," IEEE Trans. Computers, Vol. C-28, Oct. 1979, pp.

704-720.

[KaP80] R. N. Kapur, U. V. Premkumar, and G. J. Lipovski, "Organization of the

TRAC processor-memory subsystem," AFIPS 1980 Nat'l. Computer

Conf., May 1980, pp. 623-629.

[KeF78] J. Keng and K. S. Fu, "A special purpose architecture for image process-

ing," 1978 IEEE Comp. Soc. Conf. Pattern Recognition and Image Pro-

cessing, June 1978, pp. 287-290.

[KeR781 B. W. Kernigham and D. M. Ritchie, The C Programming Language,

Prentice Hall, Inc, Englewood Cliffs, NJ, 1978.

IKea76 T. J. Keating, "Analytical photogrammetry from digitized image densi-

ties," XIII Congress, Int'l. Soc. for Photogrammetry, 1976.

[Knu73] D. E. Knuth, The Art of Computer Programming. Vols. 1 (1968) and 3

(1973), Addison-Wesley Publishing Co., Reading, Mass.

.-------

ND-IS?6 316 DISTRIBUTED COMPUTING FOR SIGNAL PROCESSING: MODELING 414
OF ASYNCHRONOUS PAR.. (U) PURDUE UNIV LAFAYETTE IN
SCHOOL OF ELECTRICAL ENGINEERING L J SEIGEL ET AL.

UNCLASSIFIED MAR 83 TR-EE-93-±1 ARO-1979. 17-EL-RPP-R F/6 9/2 NLEEEEEEEEEEE

." w~

, . -p...- . ..

0::,*.-..- .:-

laa.

I'"'": "W:III,.II-- "

IIL-

"""'o I 1.
I. =16

* u.. .. :.,:.

IIJI 2 11 1.

IN.

., .MIC.,- ... ,- .,, ,-. C.- .-O-. ... P.' . . - C.... ,. , .. .:".". . . .-. : L". . .,'''

u~m: i~ L 1e - r- ' - .° ~- o -° ,,, ',, ,,'. .'.- . . • - ,- - .' • .. ?, .. . ,,.. .

R-8

LKos73I S. Kosaraju, "Limitations of Dijkstra's semaphore primitives and Petri
Nets," Operating System Review, Vol. 7, No. 4, Oct. 1973, pp. 122-126.

IKru731 B. Kruse, "A parallel picture processing machine," IEEE Trans. Comnput-
ers, Vol. C-22, No. 12, Dec. 1973, pp. 1075-1087.

[Kry8l] A. Krygiel, "Synchronous nets for single instruction stream - multiple
data stream computers," PT oc. 1981 Int'l. Con!. Parallel Processing, Aug.
1981.

[KuI'70J D. J. Kuck and D. A. Padua, "High-speed multiprocessors and their coin- -

pilers," 1979 Int'l. Con!. Parallel Processing, Aug. 1979, pp. 5-16.

[KuS821 J. T. Kuehn, 11. J. Siegel, and P. D. Hallenbeck, "Design and simulation
of an NMC68000-based multimicroprocessor system," 1982 Inl '. Conf.
P~arallel Processing, Aug. 1982, pp. 35.3-362.

[Kiic-771 1). C Ktick, "A survey of parallel machine organization and program-
ming", A CM Computing Surveys, Vol. 9, No. 1, March 1977, pp. 29-59.

[Ku'ic78j 1). J. Kuck, The Structure of Computers and Computations, Vol. 1, John
Wiley and Sons, Inc., NY, 1978.

jlxtc,801 D. J. K~uck, "Iligh speed machines and their compilers," in Parallel Pro-
cessing Systems - An A4dvanced Course, Cambridge U~niv. Press, Cam-
bridge, 1). J. Evans, Ed., Sept. 1980, pp. 103-214.

[L.aS761 r1. Lang and(11. S. Stone, "A shutlle-exchiange network with simplified

control," IlEE Trans. Computers, V'ol. C-25, Jan. 1976, pp. 55-65.

(1-m-751 1). 11. Lawrie, "Access and alignment of data in an array processor,"
IEEE Trans. Computers. Vol. C-24, Dec. 1975, pp. 1145-1155. .-

[LeGG8I K. N. Levitt, M. W. Creen, and J. Coldberg, "A study of the data com-
mutation problems in a self- repa irable multiprocessor," AFIPS 1968 .-

Spring Joint Computer ('onf., April 1968, pp. 515-527.

[Len781 J. Lenfant., "Parallel p~ermultations of data: a 11eneS' network control algo-
rithm for frequently used permutations," IEEE Trans. Computers, Vol.
C-27, July 1978, pp. 637-647.

[Les7,5] V. R. Lesser, "Parallel processing in speech understanding systems," in :
Speech Understanding D. R1. Reddy, ed., Academic Press, New York,
1975.

R-9

[LiL82 J. E. Lilienkamp, D. H. Lawrie, P. Yew, "A fault tolerant interconnection
network using error correcting codes," 1982 lnt'l. Conf. Parallel Process-
ing, Aug. 182, pp. 123-125. __

[LiT77I G. J. Lipovski and A. Tripathi, "A reconfigurable varistructure array pro-
cessor," 1977 Int'!. Conf. Parallel Processing, Aug. 1977, pp. 165-174. -. J

[Lie79l B. H. Liebowitz, Distributed Processing Overview, notes and viewgraphs

from tutorial presented at the First Int'l. Conf. on Distributed Computing
Systems, Oct. 1979.

[Lim82I W. Y. Lim, "A test strategy for packet switching networks," 1982 lt'. ..I.tl.
Conf. Parallel Processing, Aug. 1982, pp. 96-98.

[Lip70] G. J. Lipovski, "The architecture of a large associative processor," AFIPS

1970 Spring Joint Computer Conf., May 1970, pp. 385-396.

[MaM8I] J. Maeng and M. Malek, "A comparison connection assignment for self-

diagnosis of multiprocessor systems," 11th Annual Int'l. Symp. Fault-
Tolerant Computing, June 1981, pp. 173-175.

[McA80] R. J. McMillen, G. B. Adams I1, and H. J. Siegel, "Permuting with the
augmented data manipulator network," 18th Annual Allerton Con. Com-
munication, Control, and Computing, Oct. 1980, pp. 544-553.

[McS8Oa] R. J. McMillen and H. J. Siegel, "MIMD machine communication using
the augmented data manipulator network," 7th Annual Int'l. Symp. Com-
puter Architecture, May 1980, pp. 51-58.

jMcS80b] R. J. McMillen and H. J. Siegel, "The hybrid cube network," Distributed

Data Acquisition, Computing, and Cont-ol Symp., Dec. 1980, pp. 11-22.

[McS82a] W. C. McDonald and R. W. Smith, "A flexible distributed testbed for
real-time applications," Computer, Vol. 15, Oct. 1982, pp. 25-39.

[McS82b] R. J. McMillen and H. J. Siegel, "Performance and fault tolerance

improvements in the inverse augmented data manipulator network," 9th
Annual Int'l. Symp. Computer Architecture, Apr. 1982, pp. 63-72.

[McS82c] R. J. McMillen and H. J. Siegel, "A comparison of cube type and data
manipulator type networks," 3rd lnt'i. Conf. Distributed Computing Sys-
tems, Oct. 1982, pp. 614-621.

[NlcS82dJ R. J. McMillen and H. J. Siegel, "Routing schemes for the augmented --

data manipulator network in an MIMD system," IEEE Trans. Computers,
Vol. C-31, Dec. 1982, pp. 1202-1214.

R-10

[Mcc73] B. 11. McCormick, "The Illinois pattern recognition computer - ILLIAC
III," Pattern Recognition: Introduction and Foundations, J. Sklansky, ed.,
Dowden, Hutchinson, and Ross, Inc., Stroudsburg, PA, 1973. -

[MiR81] 0. R. Mitchell, A. P. Reeves, and K. S. Fu, "Shape and texture measure-
ments for automated cartography," 1981 IEEE Comp. Soc. Conf. Pattern e

Recognition Image Processing, Aug. 1981, pp. 367.

[Mil79] D. L. Milgram, "Region extraction using convergent evidence," Computer

Graphics and Image Processing, Vol. 11, 1979, pp. 1-12.

[NaSSO] J. J. Narraway and K. So, "Fault diagnosis in inter-processor switching
networks," 1980 Int'l. Conf. Circuits and Computers, Oct. 1980, pp. 750-
753. l-

[Nut771 G. J. Nutt, "Microprocessor implementation of a parallel processor," 4th
Annual Symp. Computer Architecture, Mar. 1977, pp. 147-152.

[(pTl'71a] 1). C. Opferman and N. T. Tsao-Wu, "On a class of rearrangeable switch-
ing networks - Part 1: control algorithm," Bell System Technical Journal,
Vol. .50, No. 5, May-June 1971, pp. 1579-1600.

[0 'I'711] D. C. Opferman and N. T. Tsao-Wu, "On a class of rearrangeable switch-
ing networks - Part I: enumeration studies and fault diagnosis," Bell Sys-
tern Technical Journal, Vol. 50, No. 5, May-June 1971, pp. 1601-1618.

[()rc761 S. E. Orcutt, "Implementation of permutation functions on Illiac IV-type .'-
computers," IEEE Trans. Computers, Vol. C-25, No. 9, Sept. 1976, pp.
929-936.

v[O)eS21 A. L. Overvig. "The Simulation of the Generalized Cube Interconnection
Network", MSlFE Thesis, Purdue University, Aug. 1982, p. 251.

!i', l)f; A. Papouilis, Probability, Random Variables, and Stochastic Processes,
Mc(;raw-lfill, New York, 1065, pp. 528-535.

tl'al?82] I). S. Parker and C. S. Raghavendra, "The Gamma network: a multipro-
cessor network with redundant paths," 9th Annual Int'l. Symp. Computer

Irchiterture. Apr. 1982, pp. 7.3-80.

[l'at79] J. 11. Patel, "Processor-memory interconnections for multiprocessors," 6th
.Innual Int'l. Synp. Computer Architecture, April 1979, pp. 168-177.

[l'lI7 1] .1. L. Peterson and T. 11. Bredt,"A comparison of models of parallel com-
lmitation." Information Processing 74. 197.1, pp. .166-470.

.

S . - . •

............

. b.

[t- l .I .1",[- ~~R- 11 ;-'"

%
[Pea77I M.C. Pease, "The indirect binary n-cube multiprocessory array," IEEE

Trans. Computers, Vol. C-26, No. 5, May 1977, pp. 458-473.

[Pet62] C. Petri, "Kommunikation mit automaten" Ph.D. Dissertation, University
of Bonn, West Germany, 1962 (In German); Also "Communication with
automata;" (translated by C. F. Greene Jr.) Supplement I to Technical
Report RADC-TR-65-377, Vol. 1, Rome Air Development Center, Griffiss
AFB, New York, 1966.

[Pet77] J. L. Peterson, "Petri nets," ACM Computing Surveys, Vol. 9, No. 3,
1977, pp. 223-252.

[Pet81] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-
Hall, Englewood Cliffs, N.J., 1981, pp. 31-78.

[PrK80a] U. V. Premkumar, R. Kapur, M. Malek, G. J. Lipovski, and P. Horne,
"Design and implementation of the banyan interconnection network in
TRAC," AFIPS 1980 Nat'l. Computer Con., June 1080, pp. 643-653.

IPrK8Ob] D. K. Pradhan and K. L. Kodandapani, "A uniform representation of
single- and multistage interconnection networks used in SIMD machines,"
IEEE Trans. Computers, Vol. C-29, Sept. 1980, pp. 777-791.

IPrM66] J. M. S. Prewitt and M. L. Mendelsohn, "The analysis of cell images,"

Annals N. Y. Academy of Science, Vol. 128, 1966, pp. 1035-1053.

[PrR81] D. K. Pradhan and S. M. Reddy, "A fault-tolerant communication archi-
tecture for distributed systems," lth Annual Int'l. Symp. Fault-Tolerant
Computing, June 1981, pp. 214-220.

[Pra78] W. K. Pratt, Digital Image Processing, Wiley, New York, 1978, pp. 93-
120.

[Pra8l] D. K. Pradhan, "Interconnection topologies for fault-tolerant parallel and

distributed architectures," 1982 Int'l. Conf. Parallel Frocessing, Aug.
1981, pp. 238-242.

[Pyl81] 1. C. Pyle, The ADA Programming Language, Prentice Hall Int'l., London,
1981.

[RaL77] C. V. Ramamoorthy and H. F. Li, "Pipeline architecture," ACM Comput-
ing Surveys, Mar. 1977, pp. 61-102.

(RaM80 B. D. Rathi and M. Malek, "Fault diagnosis of networks," Distributed

Data Acquisition, Computing, and Control Symp., Doc. 1980, pp. 110-119.

.

R-12

[ReO821 D. E. Reynolds and G. P. Otto, "Software tools for CLIP4," Dept. of
Physics and Astronomy, University College, London, 1982. -,

[RoP77] D. Rohrbacker and J. L. Potter, "Image processing with the STARAN WM
parallel computer," Computer, Vol. 10, No. 8, Aug. 1977, pp. 54-59.

[RuF76] S. Ruben, R. Faiss, J. Lyon, and M. Quinn, "Application of a parallel
processing computer in LACIE," 1976 Int'. Conf. Parallel Processing,
Aug. 1976, pp. 24-32.

ti.us78] R. M. Russell, "The Cray-I computer system," Communications of the
ACM, Vol. 21, Jan. 1978, pp. 63-72.

[SlI?79] Stanford Research Institute, "Machine intelligence research applied to-

industrial automation," Menlo Park, Ca, 94025, Aug. 1979.

[Set 80] M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. S. Charlu, and G. -.

J. Lipovski, "An overview of the Texas Reconfigurable Array Computer,"

A HI'S 1980 Nal'l. Computer Conf., June 1980, pp. 631-641.

[shll80] J. P. Shen and 11. P. Ilayes, "Fault tolerance of a class of connecting net- . .'. "

works." 7th Annual Int'l. Symp. Computer Architecture, Apr. 1980, pp. .-. -
61I-7 i... -(

jSh.;701 IH. Shapiro and 11. Saint, "A new approach to optimization of sequencing L
(lecisions" Annual Review in Automatic Programming, Vol. 6, Part 5,
1970, pp. 257-288.

[Sh1 ,x2] .1. P. Shen, "Fault tolerance analysis of several interconnection networks,"
1982 Int '. ('enf. Parallel Processing, Aug. 1982, pp. 102-112.

Jho7O W. Shooman, "Orthogonal processing," Parallel Processor System Tech-

nique, and Applications. New York. Spartan Books, 1970.

jSh,,731 J. F Shore, "Second thoughts on parallel processing," Comput. and Elect.
Eng., Vol. 1, Pergamon Press, 1973, pp. 95-109.

[i\1781 If. .1. Siegel, P. T. Mueller, Jr., and 11. E. Smalley, Jr., "Control of a par-

titionable multimicroprocessor system," 1978 Int'l. Conf. Parallel Process-
ing, Aug. 1978, pp. 9-17.

['i\170:a II. J. Siegel, l?. J. McMillen, and P). T. Mueller, Jr., "A survey of inter- :-,-:

connection lmethods for reconfigurable parallel processing systems," ..

AFIi'WS 1979 Nat'l. (omp. ('onj., June 1979, pp. 529-542.

% " -o '

, * .- °

,,,, • ,, ~~~~~~~~. ;"....-....... .- ,, ,€'. .
.~~-. r7 V. ripe 9. I..

R-13 r--

[SiM79b] L. J. Siegel, P. T. Mueller, Jr., and H. J. Siegel, "FFT algorithms for _
SIMD machines," 17th Annual Allerton Conf. Communication, Control,
and Computing, University of Illinois, Oct. 1979, pp. 1006-1015. -

[SiM81] H. J. Siegel and R. J. McMillen, "The cube network as a distributed pro-
cessing test bed switch," 2nd Int'l. Conf. Distributed Computing Systems,

Apr. 1981, pp. 377-387.

[SiM81a] H. J. Siegel and R. J. McMillen, "Using the augmented data manipulator
network in PASM," Computer, Vol. 14, Feb. 1981, pp. 25-33.

[SiM81b] H. J. Siegel and R. J. McMillen, "The multistage cube: a versatile inter-
connection network," Computer, Vol. 14, Dec. 1981, pp. 65-76.

[SiS781 H. J. Siegel and S. D. Smith, "Study of multistage SIMD interconnection
networks," 5th Annual Int'l. Symp. Computer Architecture, Apr. 1978, pp.
223-229.

[SiS791 If. J. Siegel, L. J. Siegel, R. J. McMillen, P. T. Mueller, Jr., and S. D.
Smith, "An SIMD/MIMD multimicroprocessor system for image process-
ing and pattern recognition," 1979 IEEE Comp. Soc. Conf. Pattern
Recognition and Image Processing, Aug. 1979, pp. 21.1-224.

[SiS81a] H. J. Siegel, L. J. Siegel, F. Kemmerer, P. T. Mueller, Jr., I. F. Smalley,
Jr., and S. D. Smith, "PASM: a partitionable SIMD/MIMI) system for

image processing and pattern recognition," IEEE Trans. Computers, Vol.
C-30, Dec. 1981, pp. 934-947.

[SiS81b] L. J. Siegel, H. 11. Siegel, P. I!. Swain, et al., "Parallel image ',"-.

processing/feature extraction: interim report for fiscal 1981, volhme I.
algorithms", School Elec. Eng., Purdue Univ., West. Lafayette, IN, Tech.
Rep. TR-EE 81-35, Oct. 1981.

[SiS82] L. J. Siegel, H. J. Siegel, and P. H. Swain, "Performance measures for

evaluating algorithms for SIMD machines," IEEE Trans. Software
Engineering, Vol. SE-8, July 1982, pp. 319-331.

[Sie77] 11. J. Siegel, "Analysis techniques for SIMD machine interconnection net-
works and the effects of processor address masks," IEEE Trans. Cornput-

ers, Vol. C-26, Feb. 1977, pp. 153-161.

jSie79j II. J. Siegel, "Interconnection networks for SIMI) machines," Computer,

Vol. 12, June 1979, pp. 57-65.

--.. -...

R-14

[SigOO Signal Processing Systems, Waltham, Mass.

[SmS781 S. D. Smith and H. J. Siegel, "Recirculating, pipelined, and multistage -

SIMI) interconnection networks," 1978 lnl'l. Conf. Parallel Processing,

Aug. 1978, pp. 206-214.

[Snii78] II. J. Smith, "A pipelined, shared resource MIMD computer," 1978 Int'l.
Conf. Parallel Processing, Aug. 1978, pp. 6-8.

[Smi~laj B. J. Smith, "Architecture and applications of the IIEP multiprocessor

computer system," SPIE, Vol. 298, Real Time Signal Processing IV, Aug. . .

1081, pp. 241-248.

jSini18lb] S. 1). Smith, "LSI design considerations for multistage interconnection
networks for parallel processing systems," 14th Annual Itawaii Int'l. Conf.

System Sciences, Vol. 1, Jan. 1981, pp. 219-227.

[So,!{80] S. Sowrirajan and S. M. Reddy, "A design for fault-tolerant full connec-

tion networks." 1980 Conf. Information Sciences and Systems, Princeton
!Univ., Mar. 1980, pp. 53-540.

jSto71] I!. S. Stone, "ParallOl processing with the perfect shuffle," IEEE Trans.

Computers, Vol. C-20, Feb. 1971, pp. 153-161.

[St 77] 1. A. Stokes, "Burroughs scientific processor," Iligh Speed Computer and

Algorithm Organization, D. J. Kuck, D. IH. Lawrie, and A. I. Sameh,
lt"ds., Academic Press, New York, 1977.

[5t,,80] II. S. Stone, "Parallel computers," in Introduction to Computer Architec- .:,

ture, 2nd edition, edited by t1. S. Stone, Science Research Associates, Inc.,

Chicago, !!, 1980, pp. 363-425.

[St,,2] P. i). Stotts, Jr., "A comparative survey of concurrent programming

languages", SIGPLAN Notices, Vol. 17, No. 10, Oct. 1982, pp. 50-61.

[SiM771 if. Sullivan, T. R. Hashkow, and K. Klappholz, "A large scale homogene-
ous, fully distributed parallel machine," 4th Annual Syrnp. Computer

.Architecture, Mar. 1977, pp. 105-124.

[Sul?821 Il. U. Suciu and A. P. Reeves, "A comparison of differential and moment
based edge detectors," 1980 IEEE Comp. Soc. Conf! Pattern Recognition

and Image P~rocessing, June 1982, pp. 97-102.

[Swl"771 1?. .1. Swan, S. If. Fuller, and D. P. Siewiorek, "Cm*: a modular, multi-
microprocessor," AFIPS 1977 Nat 'l. Comp. Conf., June 1977, pp. 637-6.11.

" "." . 5. ".
°

°,.° .

R-15

[SwS80] P. H. Swain, H. J. Siegel, and J. EI-Achkar, "Multiprocessor implementa-

tion of image pattern recognition: a general approach," 5th Int'l. Conf.

Pattern Recognition, Dec. 1080, pp. 309-317.

[Tea80] M. R. Teague, "Image analysis via the general theory of moments," Jour-
nal Optical Soc. Am., Vol. 70, Aug. 1080, pp. 920-933.

[ThM79] K. J. Thurber and G. M. Masson, Distributed-Processor Communication

Architecture, Lexington Brooks, Lexington, MA, 1979.

[The74I D. J. Theis, "Vector supercomputers," Computer, Vol. 7, No. 4, Apr.
1074, pp. 52-61.

[Tho70 J. E. Thornton. Design of a Computer, the Control Data 6600, Scott,
Foresman and Co., Glenview, IL, 1970.

[Thu74] K. J. Thurber, "Interconnection networks - a survey and assessment,"
AFIPS 1974 Nat'l Computer Conf., May 197.1, pp. 909-919.

[TrL79] A. R. Tripathi and G. J. Lipovski, "Packet switching in banyan net-
works," 6th Annual Int'l. Symp. Computer Architecture, Apr. 1979, pp.
160-1 67.

[ViC78] C. R. Vick and J. A. Cornell, "PEPE architecture - present and future,"

AFIPS 1978 Nat'!. Computer Conference, June 1978, pp. 981-1002.

[WaM79] T. P. Wallace and 0. R. Mitchell, "Local and global shape description of
two- and three-dimensional objects," School Elec. Eng., Purdue Univ.,

West Lafayette, IN, Tech. Rep. TR-EE 79-43, Sept. 1979.

[WaM80] T. P. Wallace and 0. R. Mitchell, "Analysis of three-dimensional move-
ment using fourier descriptors," IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. PAMI-2, No. 6, Nov. 1980, pp. 583-588.

[WaS82] M. R. Warpenburg and L. J. Siegel, "SIMD image resampling," IEEE
Trans. Computers, Vol. C-31, Oct. 1982, pp. 93-1-9-12.

IWaW80 T. P. Wallace and P. A. Wintz, "An efficient three-dimensional aircraft
recognition algorithm using normalized Fourier descriptors," ('omput.
Graphics and Image Processing, Vol. 13, 1980, pp. 99-126.

[Wak681 A. Waksman, "A permutation network," Journal of the ACM, Vol. 15,
Jan. 1968, pp. 159-163.

- . -

R-16

[W~el77j If. 0. Welch, "Numerical weather prediction in the PEPE parallel proces-
sor," 1977 Int 'I. Conf. Parallel Processing, Aug. 1977, pp. 186-192.

[Wid176J L. C. Widdoes, Jr., "The Minerva multi- microprocessor," 3rd Annual
Int'l. Symp. Computer Architecture, Jan. 1976, pp. 34-39.

I Wir77aj N. Wirth, "Modula: a language for modular multiprogramming," Software
-Practice and Experience, Vol 7., No. 1, Jan.-Feb. 11977, pp. 3-35.

[Wir77b] N. Wirth, "The use of Modula," Software -- Practice and Experience, Vol.
7, No. 1, Jan.-Feb. 1977, pp. 37-65.

[%Nir77c] N. Wirth, "Design and implementation of Modula," Software -- Practice
and Experience, Vol 7., No. 1, Jan.-Feb. 1977, pp. 67-84.

[W01I721 W. A. Wulf and C. C. Bell, "C.mmp--a multi-miniprocessor," AFIPS 1972
Fall Joint Comnputer Conf., Dec. 1972, pp. 765-777.

[NVulF78] C. Wu and T. Feng, "Routing techniques for a class of multistage inter-
connection nttworks," 1978 Int'l. Con!. Parallel Processing, Aug. 1978,
pp. 197-205.

[WiiF'79)a C. Wu and T. Feng, "The reverse-ex change interconnection network,"
1979 Int'l. Conf. Parallel Processing, Aug. 1979), pp. 160-174.

iW 0 791)] C. Wu and T. Feng, "Fault-diagnosis for a class of multistage intercon-
nection networks," 1979 Int. Conf. Parallel Processing, Aug. 1979, pp.
269-278.

[Wil-'80] C. W~u and T. 1"eng, "On a class of multistage interconnection networks,"
WE.TE Trans. Computers, Vol. C-29, Aug. 1980, pp. 694-702.

[WuL82] C. Wu, W. Lin, and M. Lin, "Distributed circuit switching starnet," 1980
mt 't. ('on!. Parallel Processing, Aug. 1982, pp. 26-33.

S.

iS.

-V.

-p.,

-ft

rI.

646
4

ft

'ft

I
i

/1
* -ft

'ft

* -ft

-. .- .- ft. - ft... - .. .-------- - . -..........

'ft ft'ftftftft-ft,... ft , ''f t ..- .- ft.- ft .~%.ft. **ft, ~ ft

ft.- ft* 'ft. -'ft ft ft ft . - ft . - ft. - . .' - Vft... -ft .4'

