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INTRODUCTION

/ This report compiles the results of the(}research\performed under U.S. Army
Research Office Contract Number DAAG29-82-K-0101, covering the period April 1,
1982 through September 31, 1985. The work isin the area of modeling asynchronous
parallel architectures and computation for applications in the areas of digital image and
signal processing. The work can be broadly divided into three areas: -

¥

Y i ol e

1. Case studies of parallel image processing algorithms and tasks, the objective of
which is to study the interaction of parallel processes and parallel architectures;
These are described in Papers 1 through 5 and in portions of Appendices A, B, C,
and D. :

2.  Modeling of interconnection networks. An important component of any large-scale
distributed system is the interconnection network. Different techniques for model-
ing interconnection networks were developed and are described in Papers 6
through 9 and in portions of Appendices A, C, and E.

/

3. Aspects of the problem of modeling parallel processes and parallel architectures.
This includes mechanisms for describing MIMD algorithms (Paper 11 and portions
of Appendices A and D), application of a Petri net based modeling scheme to
SIMD and pipeline implementations of example image processing algorithms (por-
tions of Appendices A and F), consideration of performance criteria for parallel
image processing algorithms (portions of Appendix F), matching algorithms with
macropipelined distributed systems (Paper 12 and portions of Appendix G), new
models for the organization of distributed systems comprised of collections of spe-
cial purpose computing devices (Paper 10), and companion features for describing
parallel processes and parallel architectures (portions of Appendices A and D).
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From the Proceedings of the 1983 Computer Society Workshop on Computer
Architecture for Pattern Analysis and Image Database Management,

Pasadena, CA, October, 1983.

PARALLEL ALGORITHMS FOR COMPUTER VISION

Thomas A. Rice
Leah Jamieson Siegel

School of Electrical Engineering
Purdue University
West Lafayette, IN 479007

Abstraet

An application of paralle] processing to the computa-
tionally intensive task of computer vision is presented.
Computational speedups, both theroretical and experi-
mental, are derived and presented for the extraction of
several parameters based upon the SRI vision module and
Fourier descriptors. Good results are obtained for
moderate numbers of processing elements. The use of
parallel processing allows easier expansion and
modification of the vision algorithms as compared with a
hardware approach.

1. Introduction

Parallel processing offers the potential of providing
fast, fiexible solutions to many computationally intensive
tasks. In this paper, the use of parallelism for computer
vision is described. Theoretical analyses and simulation
results are presented. Considerations for the design of a
parallel architecture for computer vision are discussed.

2. Definitions for the Parallel Simulation

In this section, two genera! models of parallel com-
putation are defined and the specific model used for the
computer vision task is presented. The implemeantation
of the parallel simulation is described.

Model

Single instruction stream - multiple data stream
(SIMD) machines [4] represent a form of synchronous,
highly parallel processing. Systems with up to 1,000 full
processors have been proposed [10, 14]; systems with as
many as 9,000 and 16,000 simple processors have been
built [2, 3]. An SIMD machine typically consists of s
control unit, & set of P processing elements (PEs), each a
processor with its own memory, and an inlerconnection
nelwork. The control unit broadcasts instructions to all
PEs and each active PE executes the instruction on the
data in its own memory. The interconnection network
allows data to be transferred among the PEs. SIMD
machines are especially well-suited for exploiting the
parallelism inherent in certain tasks performed on vectors
and arrays.

Multiple instruction stream - multiple data stream
(MIMD) machines [4] represent asynchronous parallel pro-
cessing. D systems with 16 [18] and 50 [18] proces-
sors have been built; MIMD systems with as many as
4,000 processors {6] bave been proposed. An MIMD

This research was supported by the United States Army
Researck Office, Department of the Army, usder grast pumber
DAAG29-83-K-0101.

CH1929-9/83/0000/0093501.00 © 1983 1EEE
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machine typically consists of P processors and M
memories, M > P, where each processor can follow aa
independent instruction stream. As with SIMD machines,
there is 8 multiple data stream and an interconnection
petwork. Thus, there are P inde‘)endent processors that
can communicate among themselves. There may be a
coordintor unit to oversee the activities of the processors.

The parallel machine model assumed for the com-
puter vision task consists of & set of PEs under the
management of a control unit. The number of PEs is
power of two: N=2" Each of the PEs has a unique
“address” between 0 and N - 1. In addition, there exists
an interconnection network to allow the simultaneous
transfer of data among the PEs. For the computer vision
task, the transfer patterns required will be uniform
modulo shifts and “cube” interconnection functions. In
a uniform modulo shift, PE j transfers data to PE (j +d)
modulo N for alt ), 0 € j < N, given a positive or nega-
tive integer distance d. The value of d may vary from
one transfer to the next; however, for a given transfer, all
PEs will send their data the same distance d. The set of
cube interconnection functions consists of n = logsN func-
tions, cube,, for 0 < i < n 113]. Hpoy  "Pi" "Pois
the binary representation of s PE's address, then the
cube; function exchanges data between all pairs of PEs
whose addresses differ in bit i:

Pi " Po)=Pa-1° " Pi* " Po

The model assumed here combines SIMD and MIMD
attributes. Each PE will contain the same code but will
execute the code on a different subimage. However,
within each PE, the code can run in MIMD mode. This
modification to the basic models allows faster execution
on some code than a pure SIMD model without incurring
the expense of the full flexibility of an MIMD machine.
The gains in speed will occur on the execution of condi
tional statements:

where <condition> do <blockl>
elsewhere do <block2>

cubep,y - -

In SIMD mode, those PEs satisfying the <condition>
execute <blockl>. Then the remaining PEs execute
<block2>. In the model here, <blockl> and
<block2> will be executed concurrently, but in different
sets of PEs. On the other hand, this is not full MIMD
mode, as it is required that the code in each PE be the
same. This aids in insuring synchronization and thus
helps enforce data coherence, e.g., insuring that a PE
?)cgunres the correct version of a variable from another

 Synchronization can tske place in one of two ways.
First, synchronization is required at all data transfer
points. This is done because data transfers often involve
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the same vanable for all of the PEs. Thus, it does not
matter if the separate processors take different times to
execute their code, as they will be forced to synchronize
at transfers to insure coherence. Explicit synchronization
will also be possible by one of the simulation language
constructs that requires that all PEs finish & section of
code before any can move to the next section of code.

The motivation for the assumed model comes about
from two directions. First, for many image processing
operations, 1t is natural to consider executing the same
code on subimages of the original image. Eacg subimage
is a valid image and the same types of operations are
needed on the pixels of each subimage. Second, since the
actual quantities of the various operations that will be
performed on each subimage may vary, asyanchronous
operation may allow higher PE utilization.

Slmulation

There are two major approaches to the development
of paralici software. Lither the software can be of a gen-
erally desenptive nature to illustrate the parallelism (or
tark thereof) inherent in a task, or the soltware can be
de<igned to be compilable and testable, either by parallel
execution or via serial simulation. Due to the computa-
tional intensity and intricacy of the computer vision task,
tire most rehable way to insure correctness is via testing.
This will guarantee that typical problem cases are being
iintdiad correctly by testing the software for a variety of
wuages A set of test images, some with multiple objects,
was used for debugging and for analyzing computational
speedup. Therefore, the soltware was designed so that it
cou’d b compiled aund tested.

Vrogramming was done in a modified version of the
‘7 beguage {7]0 This language was chosen for the caps-
bibitiex it provides for developing parallel data structures
aw! the high degree to which one can manipulate system
1info ation {such as memaory aceas). The latter played o
ivrge , art in the simulating of parallel data transfers.
Cae act 1 seavaersion of the serial 'C’ language to s
Laiele angage wae done via macros and support sub-
toaiti. 1 hese features were designed to facilitate the
tevetone wnt of parallel code without requiring the user
o ancw the speaific details of the serial implementation.
T - wow can simply use the macro file without knowing
v 4 asis and can Jhen write parallel code.

“he cvwgor porito of this impiementation are as fol-

Powe A st of the form

1w pe { eodibtack:

.t e aclosed block of ende 1w each of the PEs.
{+ ety "t 1) " prepended to s variable indicates that
the varaahle s eal to 8 PE. All other variables are
axvumoad 1o he giobal [re., the control unit has one copy
{ the vanabiey Global variables ate used for such
aperations as loop control snd overall conditional testing.
‘{hers arc also versicns of the “in_pe” construct thst
sllow the ende to be executed in a limited subset of the
'}« ‘Three schemes use an address mask {12], which is s
catehing formast that the PE address must match for
execution o occur in that Pt
Interprocesor communication is accomplished vis &
“transfer” subroutine

transfer{destination_address sou rce_address,offset).

The transfer routine uses these addresses along with
mformation sbout the size and structure of the PE dats
space to simulate the transfer vis s memory-to-memory

rmove  Recureive transfers and broadcasts (where one
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value is transferred to the sll of the PEs) are similar.
Synchronization is needed at transfer points to insure
data coherence.

The vision software and simulations were run on a
dual-processor Vax 11/780 [5].

8. Overview of the Vislon Algorithms

In this section, an overview of the computer vision
algorithms is provided. The parameters described are
based on the SRI vision module [9] and Fourier descrip-
tors [17).

A simple mechanism for entering an image into the
system was desired. In the method chosen, the user
employs a terminal with cursor contro! to draw an image
on the screen and enter that image into the data
memory. This section of the code used a small subsection
of the “cuises” [l1] utilities available on the test system.

After an image has been enlered into the data
memory, the first task is to classify the image. This con-
sists of transforming an image comprised of edge and
non-edge pixels into an image with edge, internal, and
external pixels. An internal pixel is a pixel that
represents a point on an object, whereas an external pixel
represents a point external to an object {such as the
external background or a hole in the object).

After the inside and the outside of the image have
been identified by the classification step, the holes in the
image are located. A hole is defined as an area outside the
object. Thus, the background also fits the debnition of a
hole. These holes are identified so that later merging can
be accomplished easily. This capability is needed since
holes that are initially thought to be separate may actu-
ally be joined.

The areas of the holes are computed and recorded st
the same lime as the original hole identification, since the
data search patterns are quite similar. For purposes of
isolating the object parameters, the background is defined
to have an area of zero.

Once the inside of the object is known, the center of
mass of the object if determined. Although in and of
itself the center of mass is not a particularly useful
parameter, it is used to normalize some of the perimeter
statistics to be derived later.

To find the perimeter, the edge points that are adja-
cent to the background are identified. Once this has be
done, it ic a simple matter to find the distances from the
perimeter points to the center of mass. These distances
are used to calculate the average, minimum, and max-
imum perimeter distance from the center of mass.

Finally, ucing the already determined perimeter, a
description of this pertmeter is rroduced in the form of a
list of coordinate pairs This list can then be used to
determine Fourier descriptors or other similar parameters.
Provisions have been made for the processing of images
that contain multiple (non-overlapping) objects.

4. Detailed Description of the Parallel Software
In this section, details of the vision algorithms and of
their paraliel implementation are presented. Results of
the simulation of the parallel algorithms and snalysis of
the performance of the paraliel vision system are
presented in Section 5.

Image Initialization

To be able to lest the system easily, s simple
method by which a user could enter an image into the
system was developed. The user executes the visicn pro-
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gram and then uses a standard keyboard to direct the
cursor and draw an image border. The user also has the
option of turning the cursor on and off to allow him/her
to draw unconnected borders (such as an internal border).
The connection pattern for the drawing is an eight neigh-
bor scheme. That is, from a given point, the user csn
direct the cursor in any of the four horizontal and verti-
cal directions as well as along the diagonals between these
directions. After the user has created the image to
bis/her satisfaction, an exit command automatically
starts the image processing on the given image.

The produced image can be saved for later testing
and can be reloaded and modified. The user also has the
option of either saving the results in a text file or of sim-
ply viewing the results as they are produced.

For the parallel implementation, once the image has
been created, it is divided among the PEs with each of
the PEs having an equally dimensioned stripe (either hor-
izontal or vertical) of the image. Subsequently, each PE
operates on the section of the image contained in its local
memory, communicating with other PEs when [urther
information is needed.

Internal / External Classification

As a result of the internal/external classification,
each pixel is labeled as being on the inside of the object,
outside the object, or on the border. The classification
scheme implemented is a two-pass method. The first pass
traverses the image from the upper left to the lower
right. The initial classification of a pixel is based upon
the two neighboring points (to the left of the current
point and above the current point) that have already
been classified. The method tries to classify the new point
as external if either of the previous points is external. If
the adjacent points are both edges (border pixels), then
information agZut the length of the edge and the previ-
ous region classifications are used to mske the
classification.

The second pass traverses the image from the lower
right to the upper left (backwards as compared to the
forward pass?. This pass uses the four major compass
points in relation to the current point to attempt to
correct any classification errors. Again, the bias is toward
external classification.

This section of the vision software uses several
schemes to insure robustness. Besides the ability to
reclassify goints on the second pass, the software also
looks for the specific case of tracing an edge. In addition,
several trouble patterns are checked to prevent major
misclassifications. Figure 1 illustrates the classification
procedure. Figure 1a is the image before classification
(border only). The edges are represented by ‘2.' Figures
1b and 1c¢ are the image after the first and second passes
of the classification, respectively. Internal points are
represented by ‘I’ and external points are represented by
‘0." An example of a reclassification on the second pass is
illustrated by the outlined areas in Figures 1b and le¢.

~ In the parsllel implementation, each PE works with
its own stripe of the image data. The communication
between PEs is limited to the values of the border ele-
ments of s subimage. One such transfer will take place
for each border element on one of the sides of the subim-
age. These transfers will be uniform modulo shifts of dis-
tance one. As the results show later, this section of the
software demonstrates good speedup. Thus, the assump-
tion of s two-pass classifier gives a conservative speedup
estimation: if more passes were used, each pass would
exhibit the same good speedup.
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Fig. 1a. Initial image.
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Fig. 1b. Classification: Pass 1.
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Fig. 1c. Classification: Pass 2.
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Identifying Image Holes

After the object has been separated from its sur-
roundings by the classification operation, the holes in the
image are identified. This process consists of two steps:
initial local bele identification within each PE, followed
by merging of holes between PEs. Initial hole labeling is
initially performed separately within each PE. This is
done by creating a template array in each PE that is of
the same size as the subimage in the PE. Each template
location contains an identifier that indicates the local bole
number for the corresponding subimage point or zero for
non-hole points. Fach time an external point is located
that 1s not adjacent to a previous hole, a new hole
identifier i1s used and entered for that point in the tem-
plate. If the external point is adjacent to a previous hole,
then the previous identifier is continued. A two-neighbor
scheme is uced for all of the pixels except those on one of
the subimage borders. Since the points on one edge will
have only points from the previous row (or columa, in the
case of horizontal stripes) to base s decision upon, a one-
aeighbar scheme is used at the borders. The software
maintains a set of parameters that keep track of merged
holes and their statistics in order to handle the special
case of an external point adjacent to two different previ-
ovs hnole ideotifiers. Experimentation showed that no
accuracy problems were encountered due to the small
number of neighbors used in the classification.

These operations are performed totally within a PE:
no communication with other PEs is needed. Each PE
«wps the information about its own holes. This informa-
tion is transferred to other PEs during hole merging
{described later). Figure 2 shows the internal hole
identifiers for each PE Hole identifiers that are adjacent
{e g, labels 3. 4, 5, and 6 in PE 2) are considered com-
mon  That s, only one of the identifiers contains the
mmformatinng for the hole. Al of the others contain a
romter to the “master” information.
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Fig. 2 Image hole determination.

Once the holes have been identified within each PE,
they are merged across the PE borders. This is done by
transferring the borders of the PE bole template to adjs-
cent processors and searching for matching holes. The
areas are merged at the same time that holes are joined.
In the scheme used, if a hole has only one edge on a PE

border, then the statistics for that hole are transferred to
that adjaceat PE. This results in each hole being “con-
trolled” by one PE. The information that needs to be
transferred from each PE is placed on a transler stack.
These stacks are then transferred. All of these are
transfers to logically neighboring PEs (uniform modulo
shifts of a distance of one}. The smount of information
transferred is highly dependent upon the actual image.
For purposes of easy identification and to separate holes
within an object from the background, the border back-
ground is defined as having an ares of zero. The process
of me.ging is illustrated in Figure 3.

PEQ PE1L PE2 PE3

INITIAL HOLE:
¢ PARTS

|

PE 0 PF t PE2 PE 3

| — REMOVED HOLE

A 1
y I I
i I 1
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1 PIXEL 1 PIXEL
REMOVED HOLE
PEO PE1 PE3 PEs
T — ]
' I i
'
o777 '
WA \
v%/ ///,‘I a,be, I
i A i
't/{// ) PE 3 CONTROLS
Il lis \ —  FINAL HOLE
| | i
1 1 1
e -
1PIXEL i PIXEL

Fig. 3. Hole merging example.

This method of merging holes across PEs is deter-
ministic in that the maximum aumber of passes nceded
can be determined by the types of images being exam-
ined. For example. the more ap object tends to spiral (a
spring, for example, as compared to s whee?, the more
passes that will be needed. In order to analyze perfor-
mance, 8 fixed pumber of passes (more than necessary for
the images considered) was assumed. In simulation, it was
found that this section provides r speedup. Thus, the
net result of the fixed large numgr: of passes is again to
provide a conservative estimate of the computational
speedup of the algorithm.
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Computing Image Hole Areas

The areas to be computed are tabulated st the same
time as the hole identifiers are placed in the template in
each PE. The srea computation is therefore divided
among the PEs. To handle the merging of holes, either
within 8 PE of between PEs, an indirection table that
points to the actual hole area is used.

Loeating the Center of Mass

After the points that comprise an object are known,
the center of mass of the object can be easily determined.
In this system this step is performed by computing the
moments in each PE separately and then summing across
PEs using recursive doubling [15] (Figure 4). The
transfers used are the cube; functions, 0 < i < log;N.
This scheme requires that each PE know its absolute
position in the configuration since the weighting of one of
the moments in each PE is dependent upon the PE
address. For exsmple, if the stripes are in the vertical
direction, the the x axis will be split among the PEs.
Moments that involve the absolute distance along the x
axis will depend upon the PE address. To obtain the
center of mass, log,N sets of transfers will be needed.
After the center of mass has been determined, it is broad-
cast to all PEs since thic information will be needed at a
local PE level in later processing.

Y
3
.
i
.
.
i
.
.

Exsmple of summing across PEs using recursive
doubling.

Perimeter Identification and Perimeter Statistles
Determination

Identifying the perimeter is straightforward once the
external background hole has been identified. This hole
has area zero by definition. An edge point next to an

Fig. 4.

erimeter point) is s

external hole (or next to another
holes is determined

perimeter point. Since the area ofp

through an indirection table, all one needs to do is see if
the hole has zero ares. When s perimeter point is locsted
in a PE, a counter in that PE is also incremented so that
the total perimeter can be determined by s simple appli-
cation of recursive doubling to asccumulate the total
across the PEs.

After the perimeter has been identified, it is & simple
matter to find the distances between the perimeter points
and the previously determined center of mass. This is
done by scanning through the image template looking for
perimeter points. Each PE scans its stripe of the image.
For each perimeter point so found, the radial distance
from the perimeter point to the center of mass is deter-
mined. A running sum is kept of these distances, along
with the minimum and the rmaximum distances. When
the entire image has been scanned, recursive doubling is
used to find the average, minimum, and maximum such
distances. Three stages of recursive doubling transfers
will be needed, one set for each of the perimeter statistics
being gathered. This results in a total of 3logaN
transfers.

Figure 5 shows the identified perimeter for an image.
The perimeter is noted by “B,” as compared to “2" for a
non-perimeter edge point. Figure 8 shows an example of
the overall output of the vision software.

Data Preparation for Fourler Deseriptors

As an illustration of some of the higher level func-
tions that can be performed once the basic parameters
have been extracted, the image can be converted into the
information necessary to calculate Fourier descriptors
[17). This information is simply an ordered list represen-
tation of the perimeter of the object. Each entry in this
list consists of a set of coordinates representing s perime-
ter point. Fourier descriptors have been proposed as a
method of performing shape analysis.

Total Object Perineter 109

Cester of Wess (38.11)

Peripeter Statistics dastaaces fros Ceater of Mase
NIB @ 3, MAX = 34, AVS » 12

Fig. 5. Object perimeter determination snd center of

mass statistics.
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Fig. 8. Example of vision software output.

The visi.n software begins this step by forming the
penmeter nedes into a multiply-linked Yist. This is done
t+ facilitate the removal of false perimeter points (spikes).
This converts the perimeter into a traceable contour.
Next, tese hnked-hsts are transferred to one PE which
cappletss the processing. This requires uniform modulo
«hfts of dhstances from 1 to N - 1. This processing
.actades ~onverting the lists into partial ordered lists and
then rombiming these lists  Other schemes, such as form-
ing the §artial lists in each PE separately, were found to
s {a0o «ych s large amount of overhead in transfers that
anr adiantages in parallehsm were lost. The final con-
taupe an the wuingle P'E are then broadcast to the
remandor F tue I'Ex in preparation for the Fourier
descripr cJetlatbions. I the perimeter is equally distri-
hoted ans g the PFs, (N - 1)/N of the partial ordered
s abi ueed te he transferred. Each of the objects in
cire of these lists cortains ten data fields (two link fields
for the linked-hst and eight neighbor pointers). If the
genircter s pot equally distributed, then the perimeter
ccld be gathered inte the PE with the largest number of
penimeter points, and this will require fewer total
transfers. Thus, if there are ' perimeter points, s max-
imum of (N - HP/N transfers will be needed.

Muttiple Object Images

The software that has been described to this point
has treated the contents of the iinage field as one object.
If there is more than one object in the image field, the
same software can still be used, but the results will be a
composite of the information for the separate objects.
However, it 18 not exceedingly difficult to separate the
information for the separate objects.

Once the contours of the image have been deter-
mined, the software knows how many separate objects
are in the image. This involves the classification, hole
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and area identification and merging, and perimeter deter-
mination steps described above. That is, the number of
contours will equal the number of objects in the image
given that the objects do not overlap and that no object
1s inside another {such as a bolt within a wheel rim). The
items can be processed individually by removing the
objects corresponding to the undesired contours and
reprocessing the image. This can be done for each object
in the image. The individual processing involves all the
the previous steps, from classification through perimeter
determination and perimeter statistics.

To remove an object from the image, its perimeter
goints {which are known from the contour) are marked to
e removed. Two passes are made over the image (simi-
lar to the initial classification) to convert internal,
perimeter, and edge points bordering the removal points
to removal points themselves. This is similar to the ero-
sion scheme used by CLIP4 [I1]. A final pass is made
over the image to convert all removal points to external
points, effectively erasing the object from the image

If the program detects multiple images, it will stiil
give the composite results, but it will also sequentially
erase all but one of the objects and then process the
remaining object. This additional processing is identical
to the main processing sequence, except the checks for
multiple objects are omitted.

Additional Parameters

Other parameters may be added to a vision system
in order to improve the robustness of object
identification. Some of these additional parameters are
simply combinations of previous parameters. An example
of such a parameter is the factor of roundness (how circu-
lar the image is), which is computed by dividing 4x times
the area by the square of the perimeter. The ares of the
object could also be calculated at the same time that the
second classification pass is made. This ares could be
combined with the internal hole area to provide s total of
the areas occupied by the object. The ratio of hole area
to total area is similarly obtainable.

There are other parameters that would require addi-
tional computation in the main processing sequence. This
class of parameters would include such features as second
moments, ratios of major and minor axes, finding the
bounding rectangle, and line fitting. Others could be
added based upon the specific task at hand.

Finally. one needs to consider the non-ideal cases
where either muitiple objects in the image overlap or the
objects are not entirely contained within the borders.
Much information for the latter case can be obtained
from processing the object as usual and them applying
statistical methods to determine possible matches with
known objects. The other case is not as simple - some
type of image reduction would be necessary if it was
determined that an object was not known. Such software
could selectively reduce protrusions of an object until a
known object was found.

5. Analysis

In order to evaluate the use of the parallel architec-
ture for computer vision, analytical comparisons of the
parallel and serial algorithms were performed snd the
simulation of the paralle]l software was compared to the
serial implementation. An estimation of the computa-
tional speedups was derived by an examination of the
structure of the parallel software. Table 1 summarizes

the speedups for the major algorithms. The proportions
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Table 1

Computational Performance Results

Aiiife S Siuias S 5 i B Site SR Ryt SR N

| Algorithm Division Approx. Speedup Serial Time | Time Proportions
class() N(I/(I+N-1)) 15.36 0.3531
hol N/((N-1){SPIFAC+1) 15.70 0.3830
areas() (called by holes) N/A N/A
center() N 1.64 0.0377
pstats(} N 10.71 0.2462

I = Image Border (I by I image)

N = Number of PEs

SPIFAC = How many times a section of the object in the image can switch
directions in crossing the image (for example, the letter “Z” would have a SPIFAC of

2). For the images analyzed, SPIFAC = 6.

of time required by different sections of the code were
determined by executing a serial version of the algorithm.
The time proportions are used to provide a weighting ol
the parallel speedup results. In this war, s sectiop with
low speedup that requires only a small fraction of the
serial processing time will not falsely lower the overall
speedup. Similarly, s section with high speedup that
requires only a small fraction of the serial processing time
will not hlsel{ raise the overall speedup. Using the time
prop;otions, the total weighted speedup S(N) can be com-
puted:

0.353INI + 0.3630N
1+N-1 (N-1}SPIFAC +1)

+ 0.0377TN + 0.2¢462N

=N 0.35311 0.3630
1+N-1 = (N-I)SPIFAC+1)

S{N) =

+ 0.2839]

One measure of the performance of a paralle] slgo-
rithm is the eﬂin'encg E{I\P , defined to be the ratio of the
speedup to the number of processors [8]. Table 2 shows
the speedup and efficiency for the case of a 64 by 64
image. For the example, although the speedup increases
with N, the rate of increase is not proportional to N snd
the efficiency decreases gradually with N.

The experimental results for the major sections of
the software are presented in Table 3. The simulations
were designed to provide a conservative estimate of the
speedup; assumptions about transfer timings and g{n-
chronization delays could only be approximated. The
problem of non-determinism in speedups was handled by
using deterministic versions of non-deterministic routines.
Again, these routines were designed to provide a conser-
vative estimate of the speedup. No overlap of processing
and transfers was assumed, although in many situations,
inter-PE transfers can be performed at the same time

Table 2
Speedup and Efficiency for I=64
N | S(N) | E{N)

2 | 137 1 0.683
4] 255 1 0638
8 | 488 | 0.610
18 | 0.17 | 0.573
32 ] 18.7 | 0.523
64 | 206 | 0.4683

‘ To be compatible with the “curses” input method,
images were 64 by 23. The image was divided into 64/N
by 23 stripes.

that independent processing is occurring. The simulation
results can therefore be used as a rough indicator of the
speedup obtained by the parallel algorithms. Both the
analytic and experimental results bear out the observa-
tion that the speedup will not grow as N, because the
algorithms in which the largest proportion of time is
spent (classification and hole location) have less than
ideal speedup. (The experimental speedups are somewhat
less than the analytic speedups due to the comservative
assumptions made throughout the simulation and the
non-square image used.) Simulation demonstrated that
the major problem with the parallel implementation is

Table 3 - 'j}
Experimental Speedup Results O

Algorithm Serial Time | N=2 Time | N=4 Time | N=2 Speedup | N=4 Speedup
classification 15.38 9.47 6.02 1.62 2.55
boles and areas 15.79 13.47 17.11 1.17 0.92
center 1.64 1.11 0.66 1.48 2.48
| perimeter 10.71 561 2.7¢ 191 3.84
overall 43.50 20.64 26.86 1.47 1.62
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basically of one form: the number of transfers npeeded
reduces the effectiveness of the parallelism. This can
occur when the amount of information that is needed to
make s proper decision (such as for hole merging) is large.
This problem can manifest itsell in several forms, such as
algorithms that are inherently serial or that require dats
from the entire image. Such tasks might better be per-
formed in one PE or in the contro} unit.

6. Architectural Considerstions

A specific type of srchitecture has been assumed
throughout this simulation snd analysis. At this point,
this restriction will be removed and the tasks considered
will be examined to explore a paraliel architecture
tailored to the characteristics of the vision task.

By examining the algorithms, is it seen that a given
memory area {the memory assigned to one PE) is not
needed by more than two PEs in & given processing sec-
tion If the memory is dual ported, with one write chan-
nel and two read channels, then the peed for transfers
csn be virtually eliminated. In such an approach, the
memory that was previously the exclusive responsibility
of a specific PE would still be connected to that PE via
the write channel and one of the read channels. How-
ever, the other read channel would be connected to a
memory redirection network that would be setable by the
control unit when a new type of access pattern is needed.
This redirection network could either be bidirectional or
{more practical) two unidirectional networks, one direc-
tion being used to transmit the memory addresses and
the other being used to return the data. The advantage
of using two unidirectional networks is that information
can be fiowing in both directions at the same time
without the need for redirection or buffering. This would
allow the memory to be accessed in an interleaved
manner, further improving system performance. When
this scheme is compared with the number of transfers
needed in some of the processing steps (such as in hole
merging and Fourier descriptor preparation), the possible
savings are quite evident.

7. Summary

Ia this paper, analytic and simulation results for the
spplication of parallel processing to the computer vision
task Lave heen presented. In general, it has been shown
that for moderate numbers of processors, incresses in per-
formance {such as overall speedup) on the order of I for
an I by I image are obtainable. Because of the modular
dessign of the software developed, it is quite possible to
expand the processing sequence to include other common
image processing techniques. From the anslytic and
simulatiop capsbilities described, given specific speed
requirements for a particular vision task snd assumptions
about processor speed, it will be possible to determine the
number of processors needed to satisfy the task require-
ments. This work contributes to the understanding of
the design of parallel systems for image processing appli-
cations.
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Chapter Five

Parallel Processing for Computer
Vision*

Thomas A. Rice and Leah H. Jamieson

1. INTRODUCTION

Parallel processing has the potential of providing fast, flexible solutions to
many computationally intensive tasks. In this paper, the use of parallelism
for computer vision is described. Considerations for the design of a parallel
architecture for computer vision are discussed.

The vision task consists of a number of different algorithms; several of the
algorithms have markedly different computational characteristics. It is
possible to achieve real-time implementations of some sequences of vision
algorithms in hardware. The use of parallel processing allows significantly
greater flexibility, both in the types of images that can be processed (e.g.,
gray-level images as well as binary) and in the choice of vision algorithms
used. The work here presents theoretical analyses and simulation results for
a collection of individual algorithms and for the overall vision task. This
paper extends the work reported in Rice and Siegel [1].

2. DEFINITIONS FOR THE PARALLEL SIMULATION
In this section, two general models of paraliel computation are defined, and

the specific model used for the computer vision task is presented. The
implementation of the parallel simulation is described.

* This research was supported by the United States Army Research Office, Department of the
Army, under grant number DAAG29-82-K-0101.
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58 Thomas A. Rice and Leah H. Jamieson

2.1 Model

Single instruction stream-multiple data stream (SIMD) machines
{2] represent a form of synchronous, highly parallel processing. Systems with
up to 1 000 full processors have been proposed (3], [4]; systems with as many
as 9 000 and 16 000 simple processors have been built [S], {6]. An SIMD
machine typically consists of a control unit, a set of P processing elements (PEs),
each a processor with its own memory, and an interconnection network. The
control unit broadcasts instructions to all PEs, and each active PE executes
the instruction on the data in its own memory. The interconnection network
allows data to be transferred among the PEs. SIMD machines are especially
well-suited for exploiting the parallelism inherent in certain tasks performed
on vectors and arrays.

Muluple instruction stream—multiple data stream (MIMD) machines {2]
represent asynchronous parallel processing. MIMD systems with 16 [7] and
50 [8] processors have been built; MIMD systems with as many as 4 000
processors [9] have been proposed. An MIMD machine typically consists of
P processors and M memories, M = P, where each processor can follow an
independent instruction stream. As with SIMD machines, there is a multiple
data stream and an interconnection network. Thus, there are P independent
processors that can communicate among themselves. There may be a
coordinator unit to oversee the activities of the processors.

The parallel machine model assumed for the computer vision task consists
of a set of PEs under the management of a control unit. The number of PEs is
a power of two: N = 2" Each of the PEs has a unique address between 0 and
N — 1. In addition, there exists an interconnection network to allow the
simultaneous transfer of data among the PEs. For the computer vision task,
the transfer patterns required will be uniform modulo shifts and cube
interconnection functions. In a uniform modulo shift, PE j transfers data to
PE(j + d  modulo N forall j, 0 = j < N, given a positive or negative
integer distance d . The value of d may vary from one transfer to the next;
however, for a given transfer, all PEs will send their data the same distance
d . The set of cube interconnection functions consists of n = log, N functions,
cube,, for 0 = i < n [10]. If P, y -~ P, -+ Py is the binary representa-
tion of a PE’s address, then the cube, function exchanges data between all
pairs of PEs whose addresses differ in bit i:

cube, (P, " P, Py =P, P, Py

The model assumed here combines SIMD and MIMD attributes. Each PE
contains the same code but executes the code on a different subimage.
However, within each PE, the code can run in MIMD mode. This
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modification to the basic models allows faster execution on some code than a
pure SIMD model, without incurring the expense of the full flexibility of an
MIMD machine. The gains in speed will occur on the execution of
conditional statements:

where < condition > do < block 1 >
elsewhere do < block 2 >

In SIMD mode, those PEs satisfying the < condition > execute
< block 1 >. Then the remaining PEs execute <. block 2 >. In the model
here, < block 1 > and < block 2 > will be executed concurrently but in
different sets of PEs. On the other hand, this is not full MIMD mode, as it is
required that the code in each PE be the same. This aids in enforcing data
coherence, e.g., insuring that a PE acquires the correct version of a variable
from another PE.

Synchronization can take place in one of two ways. First, synchronization
is required at all data transfer points, because data transfers often involve the
same variable for all of the PEs. Even if the separate processors take different
times to execute their code, they will be forced to synchronize at transfers to
insure coherence. Explicit synchronization is also possible by one of the
simulation language constructs that requires that all PEs finish a section of
code before any can move to the next section of code.

The motivation for the assumed model comes from two directions. First,
for many image processing operations, it is natural to consider executing the
same code on subimages of the original image. Each subimage is a valid
image, and the same types of operations are needed on the pixels of each
subimage. Second, since the actual quantities of the various operations that
will be performed on each subimage may vary, asvnchronous operation may
allow higher PE utilization.

This hybrid mode of operation may not be suitable for some algorithms.
The requirements for such a mode to be useful are (I) that the PEs contain
and execute the same code, with possible differences based only on the
evaluation of conditional statements, and (2) that the need to synchronize at
data transfers does not cancel the gains obtained by simultaneous evaluation
of conditionals. For the vision algorithms examined here, these requirements
are met.
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2.2 Simulation

There are two major approaches to the development of parallel soft-
ware. Either the software can be of a generally descriptive nature to illustrate

AL NS S S Y Y Y I . T

KR

R

3
e, RIS USRS . T T L I AN
VAN I W TPV WA TPy I/ Sy Wag Py ] PSPPI VO TS Wy UL, WP PSP SN IPN- PO ST S S

‘
o,

,.
i
.
\
[ A

.
’
pay ™

o
i




e LT T Tt W W e W ey o
R RN . e Al ang s
. - AN AR SIS SVLACH 2T RPh ot AAL o s obian o AL % RO A ot e 2 oo

60 Thomas A. Rice and Leah H. Famieson

. s

the parallefism (or lack thereof) inherent in a task, or the software can

be designed to be compilable and testable, either by parallel execution or -_::::'\::-:
serial simulation. Due to the computational intensity and intricacy of the '::_' ::
computer vision task, the most reliable way to insure correctness is by :.1221':
testing. This guarantees that typical problem cases are being handled ;-’!,1,,

correctly by testing the software for a variety of images. A set of test images, SRR
some with multiple objects. was used for debugging and for analyzing R
computational speedup. Therefore, the software was designed so that it could el
be compiled and tested. e

Programming was done in a modified version of the C language [11). This
language was chosen for the capabilities it provides for developing parallel
data structures and the high degree to which one can manipulate system
information (such as memory areas). The latter played a large part in the
simulating of parallel data transfers. The actual conversion of the serial C
language to a parallel language was done by means of macros and support
subroutines. These features were designed to facilitate the devclopment of
parallel code without requiring the user to know the specific details of the
serial implementation. Thus, one can simply use the macro file without
knowing its details and can then write parallel code.

The major points of this implementation are as follows. A construct of the
form

in_pe { codeblock; }

executes the enclosed block of code in each of the PEs. The prefix “PE.”
prepended to a variable indicates that the variable is local to a PE. All other
variables are assumed to be global (i.e., the control unit has one copy of the
variable). Global variables are used for such operations as loop control and
overall conditional testing. There are also versions of the “in_pe” construct
g that allow the code to be executed in a limited subset of the PEs. These
- schemes use an address mask [12], which is a matching format that the PE
= address must match for execution to occur in that PE.

' Interprocessor communication is accomplished by a transfer subroutine:

] transfer (destination_address, source _address, offset)

The transfer routine uses these addresses along with information about the
size and structure of the PE data space to simulate the transfer by a
memory-to-memory move. Recursive transfers and broadcasts (in which one
value is transferred to all of the PEs) are similar. Synchronization is needed at
: transfer points to insure data coherence.

] The vision software and simulations were run on a dual-processor Vax
11/780 {13].
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3. OVERVIEW OF THE VISION ALGORITHMS

In this section, an overview of the computer vision algorithms is provided.
The parameters described are based on the SRI vision module [14] and
Fourier descriptors {15].

A simple mechanism for entering an image into the system was desired. In
the method chosen, the user employs a terminal with cursor control to draw
an image on the screen and enter that image into the data memory. This
section of the code used a small subsection of the ‘“‘curses” [16] utilities
available on the test system. This was later expanded to allow other image
formats to be input. The images used here and in the subsequent steps are
assumed to be binary images, although the algorithms can be generalized to
handle gray-level images.

After an image has been entered into the data memory, the first task is to
classify the image. This consists of transforming an image comprised of edge
and non-edge pixels into an image with edge, internal, and external pixels.
An internal pixel is a pixel that represents a point on an object, whereas an
external pixel represents a point external to an object (such as the external
background or a hole in the object).

After the inside and the outside of the image have been identified by the
classification step, the holes in the image are located. A hole is defined as an
area outside the object. Thus, the background also fits the definition of a
hole. These holes are identified so that later merging can be accomplished
easily. This capability is needed because holes that are initially thought to be
separate may actually be joined.

The areas of the holes are computed and recorded at the same time as the
original hole identification, because the data search patterns are similar. For
purposes of isolating the object parameters, the background is defined to
have an area of zero.

Once the inside of the object is known, the center of mass of the object is
determined. Although in and of itself the center of mass is not a particularly
useful parameter, it is used to normalize some of the perimeter statistics to be
derived later.

To find the perimeter, the edge points that are adjacent to the background
are identified. Once this has been done, it is a simple matter to find the
distances from the perimeter points to the center of mass. These distances are
used to calculate the average, minimum, and maximum perimeter distance
from the center of mass.

Finally, using the already determined perimeter, a description of this
perimeter is produced in the form of a list of coordinate pairs. This list can
then be used to determine Fourier descriptors or other similar parameters.
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62 Thomas A. Rice and Leah H. Jamieson

Provisions have been made for the processing of images that contain multiple
{nonoverlapping) objects.

4. DETAILED DESCRIPTION OF THE PARALLEL SOFTWARE

In this section, details of the vision algorithms and of their paraliel
implementation are presented. Results of the simulation of the parallel
algorithms and analysis of the perfomance of the parallel vision system are
presented in Section S,

4.1 Image initialization

To be able to test the system easily, a simple method by which a user could
enter an image into the cystem was developed. The user executes the vision
program and then uses a standard keyboard to direct the cursor and draw an
image border. The user also has the option of turning the cursor on and off to
allow the drawing of unconnected borders (such as an internal border). The
connection pattern for the drawing is an eight-neighbor scheme. That is,
from a given point, the user can direct the cursor in any of the four horizontal
and vertical directions as well as along the diagonals between these directions.

The screen size does not limit the size of the image being created, as the
screen merely acts as a window into the image. During image creation the
current position of the cursor is maintained in the upper left-hand corner of
the screen. Messages and inputs are handled on the lowest line of the screen.
If the drawing gets too near to any of the borders, the window into the image
is automatically moved. The user can also specify a location to which to move
the cursor. If this position is not in the current window, the window is
automatically moved. All borders are strictly enforced: The user cannot draw
beyond the edge of the border under any condition. After the user has created
the image, an exit command automatically starts the image processing on the
image.

In addition. images with 256 gray levels that are stored as character arrays
(e.g., one character per pixel) can be loaded by the system. Simple
thresholding routines as well as a Sobel operator are automatically applied to
such images to convert them into binary irages. The user is prompted for the
thresholds for each image.

The produced image can be saved for later testing and can be reloaded and
modified. The user also has the option of saving the results in a text file or of
viewing the results as they are produced.
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For the parallel implementation, once the image has been created, it is
divided among the PEs with each of the PEs having an equally dimensioned
stripe (either horizontal or vertical) of the image. Subsequently, each PE
operates on the section of the image contained in its local memory,
communicating with other PEs when further information is needed.

4.2 Internal/external classification

The internal/external classification labels each pixel as being on the inside
of the object, outside the object, or on the border. The classification scheme
implemented is a two-pass method. The first pass traverses the image from
the upper left to the lower right. The initial classification of a pixel is based on
the two neighboring points (to the left of the current point and above the
current point) that have already been classified. The method tries to classify
the new point as external if either of the previous points is external. If the
adjacent points are both edges (border pixels), then information about the
length of the edge and the previous region classifications are used to make the
classification.

The second pass traverses the image from the lower right to the upper left
(backward, as compared with the forward pass). This pass uses the four
major compass points in relation to the current point to attempt to correct
any classification errors. Again, the bias is toward external classification.

This section of the vision software uses several schemes to insure robust-
ness. Besides the ability to reclassify points on the second pass, the software
also looks for the specific case of tracing an edge. In addition, several trouble
patterns are checked to prevent major misclassifications. Figure 1 illustrates
the classification procedure. Figure 1(a) is the image before classification
(border only). The edges are represented by ‘2.” Figures 1(b) and 1(c) are
the image after the first and second passes of the classification, respectively.
Internal points are represented by ‘1,’ and external points are represented by
‘0.” An example of a reclassification on the second pass is illustrated by the
outlined areas in Fig. 1(b) and 1(c).

In the parallel implementation, each PE works with its own stripe of the
image data. The communication between PEs is limited to the values of the
border elements of a subimage. One such transfer takes place for each border
element on one of the sides of the subimage. These transfers are uniform
modulo shifts of distance one. As the results show later, this section of the
software demonstrates good speedup. Thus, the assumption of a two-pass
classifier gives a conservative speedup estimation: if more passes were used,
each pass would exhibit the same good speedup.
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Fig. 1(a) Iniual image
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Fig. I(b) Classification: Pass 1
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Fig. I{(c) Classification: Pass 2

4.3 Identifying image holes

After the object has been separated from its surroundings by the classifica-
tion operation, the holes in the image are identified. This process consists of
two steps: initial local hole identification within each PE, followed by merg-
ing of holes between PEs. Initial hole labeling is first performed separately
within each PE. This is done by creating a template array in each PE that is
of the same size as the subimage in the PE. Each template location contains
an identifier that indicates the local hole number for the corresponding
subimage point, or zero for non-hole points. Each time an external point is
located that is not adjacent to a previous hole, a new hole identifier is used
and entered for that point in the template. If the external point is adjacent to
a previous hole, then the previous identifier is continued. A two-neighbor
scheme is used for all the pixels except those on one of the subimage borders.
Since the points on one edge have only points from the previous row (or
column, in the case of horizontal stripes) upon which to base a decision, a
one-neighbor scheme is used at the borders. The software maintains a set of
parameters that keeps track of merged holes and their statistics in order to
handle the special case of an external point adjacent to two different previous
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66 Thomas A. Rice and Leah H. Famieson
hold identifiers. Experimentation showed that no accuracy problems were
introduced by the small number of ncighbors used in the classification.
These operations are performed totally within a PE: no communication
with other PEs is needed. Each PE owns the infotmation about its own holes.
This information is transferred to other PEs during hole merging (described
later). Figure 2 shows the internal hole identifiers for each PE. Hole
identifiers that are adjacent (e.g., labels 3, 4, 5, and 6 in PE 2) are considered
common. That is, only one of the identifiers contains the information for the
hole. All of the others contain a pointer to the “master” information.
Once the holes have been identified in each PE, they are merged across the
PE borders. This is done by transferring the borders of the PE hole template
to adjacent processors and searching for matching holes. The areas are
merged at the same time that holes are joined. In the scheme used, if a hole
has only one edge on a PE border, then the statistics for that hole are
transferred to that adjacent PE. This results in each hole being “controlled”
by one PE. The information that needs to be transferred from each PE is
placed on a transfer stack. These stacks are then transferred. All of these are
transfers to logically neighboring PEs (uniform modulo shifts of a distance of
one). The amount of information transferred is highly dependent on the

PE O PE 1 PE 2 PE 3
T11911018111111 1122111190210 1020000000 801200 2111112010208
TTI1111119911811 1112131002 211111 1ER000010 0008001 11111182222 11111
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1111181118011 08 1-101812080 011188 18110100012 21211 111121110 21212¢211
1111111100801 ~~-1112 020100101 111888 -10210100¢ 1110111220111t
1111111111081 ----111111111111 1111~ 1111 111-111111111111
1TttiitreLeel-- ---~~ IERRSERRREE NN DS B Sttt 11 11---ee- 11
ettt --- ------1111t  --- --1----------- 8 B e 11111
1Mreg---- ----e-- t11------ ----mmoomeooooon] mmmmesooo - 11
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Fig. 2 Image hole determination
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actual image. For purposes of easy identification and for separation of holes
within an object from the background, the border background is defined as
having an area of zero. The process of merging is illustrated in Fig. 3.

This method of merging holes

across PEs is deterministic in that the

maximum number of passes needed can be determined by the types of images
being examined. For example, the more an object tends to spiral (a spring,

for example, as compared with a

PE 2

wheel), the more passes are needed. To
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Fig. 3 Hole merging example
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analyze performance, preliminary tests assumed a fixed number of passes
{more than necessary for the images considered). In simulation, it was found
that this section provides poor speedup. Thus, for this step, the net result of
the fixed large number of passes is again a conservative estimate of the
computational speedup of the algorithm. A refinement of the algorithm was
also tested. By using only the required number of passes, appreciable
improvements in speedup were obtained.

4.4 Computing image hole areas

The areas to be computed are tabulated at the same time as the hole
identifiers are placed in the template in each PE. The area computation is
therefore divided among the PEs. To handle the merging of holes, either
within a PE or between PEs, an indirection table that points to the actual hole
area is used.

4.5 Locating the center of mass

After the points that comprise an object are known, the center of mass of
the object can be easily determined. In this system this step is performed
by computing the moments in each PE separately and then summing across
PEs using recursive doubling [17] (Fig. 4). The transfers used are the cube;,
functions, 0 <. 1 < log; N. This scheme requires that each PE know its
absolute position in the configuration because the weighting of one of the
moments in each PE is dependent upon the PE address. For example, if the
stripes are in the vertical direction, then the x axis is split among the PEs.
Moments that involve the absolute distance along the x axis depend on the PE
address. To obtain the center of mass, log, N sets of transfers are needed.
After the center of mass has been determined, it is broadcast to all PEs,
because this information is needed at a local PE level in later processing.

4.6 Perimeter identification and perimeter
statistics determination

Identifying the perimeter is straightforward once the external background
hole has been identified. This hole has area zero by definition. An edge point
next to an external hole (or next to another perimeter point) is a perimeter
point. Since the area of holes is determined through an indirection table, all
one needs to do is see if the hole has zero area. When a perimeter point is
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Fig. 4 Example of summing across PEs using recursive doubling

located in a PE, a counter in that PE is also incremented so that the total
perimeter can be determined by a simple application of recursive doubling to
accumulate the total across the PEs.

After the perimeter has been identified, it is a simple matter to find the
distances between the perimeter points and the previously determined center
of mass. This is done by scanning through the image template looking for
perimeter points. Each PE scans its stripe of the image. For each perimeter
point found, the radial distance from the perimeter point to the center of
mass is determined. A running sum is kept of these distances, along with the
minimum and the maximum distances. When the entire image has been
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Fig. S Object perimeter determination and center-of-mass statistics. Total object
perimeter is 109; the centre of mass, {33, 11); distances from center of mass to
perimeter, muin 3, max 24, average 12
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Fig. 6 Example of vision software output. Two holes 1n image; total perumeter 1s 109;
total hole area 7; center of mass ‘33, 11); distances from center of mass to perumeter,
min 3, max 24, average 12; one object in image
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scanned, recursive doubling is used to find the average, minimum, and
maximum distances. Three stages of recursive doubling transfers are needed,
one set for each of the perimeter statistics being gathered. This results in a
total of 3 log, N transfers.

Figure 5 shows the identified perimeter for an image. The perimeter
(border) is noted by “B,” as compared with “2” for a nonperimeter edge
point. Figure 6 shows an example of the overall output of the vision software.

4.7 Data preparation for Fourier descriptors

As an illustration of some of the higher level functions that can be
performed once the basic parameters have been extracted, the image can be
converted into the information necessary to calculate Fourier descriptors
(15). This information is simply an ordered list representation of the
perimeter of the object. Each entry in this list consists of a set of coordinates
representing a perimeter point. Fourier descriptors have been proposed as a
method of performing shape analysis.

The vision software begins this step by forming the perimeter nodes into a
multiply linked list, which facilitates the removal of false perimeter points
(spikes). This converts the perimeter into a traceable contour. Next, these
linked lists are transferred to one PE which completes the processing. This
requires uniform modulo shifts of distances from 1 to. N — 1. This
processing includes converting the lists into partial ordered lists and then
combining these lists. Other schemes, such as forming the partial lists in each
PE separately, were found to induce such a large amount of overhead in
transfers that any advantages in parallelism were lost. The final contours in
the single PE are then broadcast to the remainder of the PEs in preparation
for the Fourier descriptor calculations. If the perimeter is equally distributed
among the PEs, (N - 1)/N of the partial ordered listings need to be
transferred. Each of the objects in one of these lists contains ten data fields
(two link fields for the linked list and eight neighbor pointers) If the
perimeter is not equally distributed, then the perimeter could be gathered
into the PE with the largest number of perimeter points, and this requires
fewer total transfers. Thus, if there are P perimeter points, a maximum of
(N - 1) P/N transfers are needed.

4.8 Multiple object images

The software that has been described has treated the content of the image
field as one object. If there is more than one (nonoverlapping) object in the
image field, the same software can still be used, but the results will be a
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72 Thomas A. Rice and Leah H. Famieson

composite of the information for the separate objects. However, it is not
exceedingly difficult to separate the information for the separate objects.

Once the contours of the image have been determined, the software knows
how many separate objects are in the image. This involves the classification,
hole and area identification and merging, and perimeter determination steps
described above. That is, the number of contours equals the number of
objects in the image, given that the objects do not overlap and that no object
is inside another (such as a bolt in a wheel rim). The items can be processed
individually by removing the objects corresponding to the undesired con-
- tours and reprocessing the image. This can be done for each object in the
image. The individual processing involves all the the previous steps, from
classification through perimeter determination and perimeter statistics.

To remove an object from the image, its perimeter points (known from the
contour) are marked to be removed. Two passes are made over the image
(similar to the initial classification) to convert internal, perimeter, and edge
points bordering the removal points to removal points themselves. This is
similar to the erosion scheme used by CLIP4 [18]. A final pass is made over
the image to convert all removal points to external points, effectively erasing
the object from the image.

If the program detects multiple images, it still gives the composite results,
but it also sequentially erases all but one of the objects and then processes the
remaining object. This additional processing is identical to the main proces-
sing sequence, except that the checks for multiple objects are omitted.

Sh5 SN

l' 0'

4.9 Additional parameters

Other parameters can be added to a vision system to improve the robust-
ness of object identification. Some of these additional parameters are simply
combinations of previous parameters. An example of such a parameter is the
factor of roundness (how circular the image is), which is computed by
dividing 47 umes the area by the square of the perimeter. The area of the
object could also be calculated at the same time that the second pass in the
internal/external classification step is made. This area could be combined
with the internal hole area to provide a total of the areas occupied by the
object. The ratio of hole area to total area is similarly obtainable.

There are other parameters that would require additional computation in
the main processing sequence. This class of parameters includes such
features as second moments, ratios of major and minor axes, finding the
bounding rectangle, and line titting. Others could be added, based upon the
specific task at hand.
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Finally, one needs to consider the nonideal cases in which multiple objects
in the image overlap or the objects are not entirely contained within the
borders. Much information for the latter case can be obtained from proces-
sing the object as usual and then applying statistical methods to determine
possible matches with known objects. The other case is not as simple: Some
type of image reduction is necessary if it is determined that an object is not
known. Such software could selectively reduce protrusions of an object untii
a known object is identified.

5. ANALYSIS

To evaluate the use of the parallel architecture for computer vision,
analytical comparisons of the parallel and serial algorithms were performed,
and the simulation of the parallel software was compared to the serial
implementation. An estimation of the computational speedups was derived
by an examination of the structure of the parallel software. Table I
summarizes the speedups for the major algorithms. The proportions of time
required by different sections of the code were determined by executing a
serial version of the algorithm. (The serial algorithm does not incur any
overhead for operations such as transfers or processor disabling.) The time
proportions are used to provide a weighting of the parallel speedup results. In
this way, a section with low speedup that requires only a small fraction of the
serial processing time does not falsely lower the overall speedup. Similarly, a
section with high speedup that requires only a small fraction of the serial
processing time does not falsely raise the overall speedup. With the time

Table 1
Computanonal performance results

Algorithm division Approx. speedup Seral ame Time propornions
Class() NUI/T+N-1n 15.36 0.3531
Holes() N/((N-1xSPIFAC+ 1)) 15.79 0.3630
Areas() (called by holes) N/A N‘A
Center() N 1 64 0.0377
Pstats() N 10.71 0.2462

Note: I = Image border (I x I image); N = Number of PEs; SPIFAC = number of nmes a
section of the object in the image can suntch directions in crossing the imuge .\ for example, the letter Z
would have a SPIFAC of 2'. For the images analyzed, SPIFAC = 6.




Sy A R A LR R o T g ah Eag b Nt g Al A4 S L v S et 2 A I e Ak Sr Aevataieth AT S M LSRR S A R S R RA RS

74 Thomas A. Rice and Leah H. Famieson

Table 2
Parallel simulation: expennmental results (64 x 64 i1mage)®

Algonithm ! PE 2 PEs 4 PE;s 8 PEs

Avg Avg Norm Avg Norm Avg Norm
Class 40.25  42.25 21.13 50.25 12.63 $8.67 7.313
Holes and areas 48.75  79.75 39.88 183.0 45.75 642.0 80.25
Center 5.25 6.25 3.125 6.5 1.625 7.0 0.875
Pstats 1475  15.25 7.625 12.75 3.188 15.33 1.917
Time subtotal 109.0 71.76 63.19 90.38
Partial speedup 1 1.52 1.72 1.21
Chain :serial) 64.75  23.75 23.75 28 28 27.67 27.67
Chain . parallel) N/A 76.75 38.38 139.25 34 81 272.33 34.04
Total ume 173.75 133.89 126.0 152.09
Overall speedup 1 1.30 1.38 1.14
Edbciency 1 0.65 0.345 0.143

“ Iimes in | AUh second

proportions, the total weighted speedup S(N) for processing an I x I image
using N PEs can be computed:

SNy = BN 0.3630N + 0.0377N + 0.2462N
N =1 N1 "N <-nepeiFacs T :
0.35311 0.3630

MIFN -1 "(N-DSPIFAC+ D) 0'2839]

The experimental results for the major sections of the software are
presented in Table 2. The columns labeled Avg give the average time the
serial simulation took for each step of the algorithm. The columns labeled
Norm give the conversions of the average serial times to the average par-
allel times. This is the normalized execution time. The Time-subtotal
row indicates how much time the first four component algorithms
(internal/external classification, hole identification assuming a fixed number
of passes, center of mass and perimeter statistics) required. The speedup that
these partial times indicate is presented in the Partial-speedup row. The final
algorithm step, formation of the chain code representation of the perimeter,
is represented by two rows in the tables, because it has both a serial and a
parallel component. Finally, the Total-time and Overall-speedup rows
indicate the time that the entire proc sing operation needed and the speedup
reflected by this time.

One additional measure of the performance of a parallel algorithm is the
efficiency E(\N), defined to be the ratio of the speedup to the number of
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Parallel Processing for Computer Vision 75

processors [19]. Table 2 also shows the speedup for the case of a 64 x 64
image. For the example, although the speedup increases with N, the rate of
increase is not proportional to N, and the efficiency decreases fairly sharply
with N.

The simulations were designed to provide a conservative estimate of the
speedup; assumptions about transfer timings and synchronization delays
were approximated. The problem of nondeterminism in speedups was
handled by using deterministic versions of nondeterministic routines. Again,
these routines were designed to provide a conservative estinate of the
speedup. No overlap of processing and transfers was assumed, although in
many situations, inter-PE transfers can be performed at the same time
that independent processing is occurring. The simulation results can, there-
fore, be used as a rough indicator of the speedup obtained by the parallel
algorithms. Both the analytic and experimental results bear out the observa-
tion that the speedup will not grow as N, because the algorithms in which the
largest proportion of time is spent (hole merging and chain code formation)
have less than ideal speedup. (The experimental speedups are somewhat less
than the analytic speedups due to the conservative assumptions made
throughout the simulation.) In particular, the discrepancy between the
theoretical and the experimental results is primarily in the holes and areas
section. In this section, the theoretical results take into account the number
of times the merging must be performed but do not take into account the
overhead incurred by the transfers required by the merging. This overhead
turns out to be a substantial portion of the algorithm, to the extent that it
destroys the effectiveness of the increased parallelism. It appears that having
subimages less than 16 pixels wide is counterproductive.

To address the problems with the hole merging algorithm, a new version of
this algorithm was constructed that performs only the required number of
hole merging steps (thus removing one of the earlier conservative assump-
tions). The algorithm is divided into two parts, which correspond to
single-sided hole merging (such as was illustrated earlier) and multiple-edged
hole merging (which handles ringlike holes such as the background hole).
Each of these stages proceeds until the number of holes merged in each PE is
zero. This has the advantage of eliminating unneeded overhead as well as
having the capability of dealing with pathological cases that might require
additional merging steps.

The results for this software with this modification included are in Table
3. Note that with this modification, for 64 x 64 images, eight processors
still provide speedup gains, whereas previously only two or four could be
used before the results deteriorated due to the overhead of the parallelism.
With eight processors, the stripes in each PE are only eight pixels wide, so
the proportion of time spent in overhead to coordinate between PEs is
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Table 3
Non-determimstic merging parallel simulation results (64 x 64 image)*

| PE 2 PE;s 4 PEs 8 PEs

Algonthm Arg Avg Norm Avg Norm Arg Norm
Class 4025 4525 22.63 49.0 12.25 58.67 7.333
Holes and areas 48.75 830 41.5 121.25 30.31 249.0 31.13
Center 5.25 6.5 3.25 6.75 1.688 6.67 0.8334
Pstats 14.75 15.75 7.875 14.0 35 15.33 1.917
Time subtotal 109.0 75 25 47.75 41.21
Parual speedup 1 I 45 2.28 2.64
Chain ‘serial) 64.75 24.0 240 28.0 28.0 28.33 28.33
Chain “parallel) N/A 81.0 405 144 25 36.06 272.67 34.08
Total tme 173.75 139.76 111.81 103.62
Overall speedup i 1.24 1.5% 1.68
Efficiency | 0.62 0.188 0.210

@ Times in 1/60th second

substantial. Thus, simulation demonstrated that the major problem with the
parallel implementation is basically of one form: The number of transfers
needed reduces the effectiveness of the parallelism. This can occur when the
amount of information that is needed to make a proper decision (such as for
hole merging) is large. This problem can manifest itself in several forms, such
as algorithms that are inherently serial or that require data from the entire
image. Such tasks might better be performed in one PE or in the control unit.

6. ARCHITECTURAL CONSIDERATIONS

A specific type of architecture has been assumed throughout this simulation
and analysis. At this point, this restriction will be removed, and the tasks
considered will be examined to explore a parallel architecture tailored to the
characteristics of the vision task.

By examining the algorithms, one can see that a given memory area (the
memory to be accessed in an interleaved manner, further improving system
processing section. [f the memory is dual-ported, with one write channel and
two read channels, then the need for transfers can be virtually eliminated. In
such an approach, the memory that was previously the exclusive responsibil-
ity of a specific PE would still be connected to that PE by the write channel
and one of the read channels. However, the other read channel would be
connected to a2 memory redirection network that would be setable by the
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Parallel Processing for Computer Vision 77

control unit when a new type of access pattern is needed. This redirection
network could be either bidirectional or (more practical) two unidirectional
networks, one direction being used to transmit the memory addresses and the
other being used to return the data. The advantage of using two unidirec-
tional networks is that information can be flowing in both directions at the
same time without the need for redirection or buffering. This would allow the
memory to be accessed in an interleaved manner, further improving system
performance. When this scheme is compared with the number of transfers
needed in some of the processing steps (such as in hole merging and Fourier
descriptor preparation), the possible savings are evident.

7. SUMMARY

In this paper, analytic and simulation results for the application of parallel
processing to the computer vision task have been presented. Because of the
modular design of the software developed, it is possible to expand the
processing sequence to include other common image processing techniques.
From the analytic and simulation capabilities described, given specific speed
requirements for a particular vision task and assumptions about processor
speed, it will be possible to determine the number of processors needed to
satisfy the task requirements. This work contributes to the understanding of
the design of parallel systems for image processing applications.
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A PARALLEL ALGORITHM FOR CONTOUR EXTRACTION:
ADVANTAGES AND ARCHITECTURAL IMPLICATIONS
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West Lafayette, Indiana 47907

Abstract

Contour extraction is used as an image processing
scenario to explore the advantages of parallelism and the
architectural requirements for a parallel computer system,
such as PASM. Parallel forms of edge-guided threshold-
ing and contour tracing algorithms are developed and
analyzed to highlight important aspects of the scenario.
Edge-guided thresholding uses adaptive thresholding to
allow contour extraction where gray level variations
would not allow global thresholding to be effective.
Parallel techniques are shown to eliminate some types of
overhead associated with serial processing, offer the possi-
bility of improved algorithm capability and accuracy, and
decrease execution time. The implications that the paral-
lel scenario has for machine architecture are considered.
Various desirable system attributes are established.

I. Introduction

Image processing has long been an application
viewed as suited to parallel processing |3). Many indivi-
dual image processing algorithms and their formulations
for parallel processing environments have been studied,
such as image coding [17], image correlation [1.25]. image
segmentation [6], two-dimensional FFT lﬂk, histogram-
ming [24], and line segment generation [26]. However, lit-
tle work exists in considering a scenario as a whole for
parallel processing. One such scenario is contour extrac-
tion. Contour extraction is a key tool for use in applica-
tions ranging from computer assisted cartography to
industrial inspection.

In the past, edge information has been used to
improve threshold selection [15] in the contour extraction
process. A pew scheme for determining threshold values
has been developed by Suciu and Reeves [28]. This
scheme has been incorporated in an image shape analysis
method directed toward classifying small well-defined
regions, such as buildings and airplanes, which has been
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investigated by Mitchell, Reeves, and Fu [I18). A process-
ing scenario (composed of serial algorithms) which pro-
duces interpretation results from digitized imagery using
these methods has been implemented at Purdue Univer-
sity on a VAX 11/780. In this application, image sizes
are typically 5000-by-5000 pizels (picture elements). The
image is analyzed in 256-by-256 pixel subimages which
are processed independently. To insure that each object
{which has a maximum dimension of 127 pixels) will be
completely contained within at least one subimage, it is
necessary to overlap the subimages.

The serial method of [16] yields good results, but is
computationally intensive, incurring long execution times.
The time required to complete the processing scenario can
be reduced by exploiting its inherent parallelism. In this
wotk, a processing scenario composed of parallel algo-
rithms which allows the problem to be completed with
significantly reduced execution time is considered. In
addition to decreasing the processing time, the parallel
scenario does not place a limit on the maximum size of
an object. Once 1t has heen constructed, requirements
the parallel scenario imposes on the architecture of a
parallel computer system such as PASM [24] are studied.

A parallel computer system model is given in Section
Il In Section Il the object shape analysis problem [16] is
defined and the parallel scenario is overviewed. In Sec-
tions IV and V the parallel algorithms which compose the
scenario are prescnted, and they are evaluated in Section
V1. The imphcations the scenario has concerning system
architecture are considered in Section VIL.

II. SIMD/MIMD Model

An SIMD/MIMD machine (e.g., CAIP [12]) consists
of a control unit, an interconnection network, and N pro-
cessing  elements (PEs), where each PE is a
processor/memory pair. This is shown in Fig. 1. An
SIMD/MIMD machine can operate in either SIMD (single
instruction stream - multiple data stream) (8] or MIMD
{multiple instruction stream - multiple data stream) (8]
modes and can dynamically switch between them. When
operating in SIMD mode, the control unit broadcasts
instructions to all processors and each active processor
executes the instructions on data in its own memory.
The same instruction is executed simultaneously in all
active processors. The interconnection network provides
interprocessor communication. When operating in MINMD
mode, each processor fetches instructions [rom its own
memory and executes them on data in its own memory.
In MIMD mode, the control unit may coordinate the
activities of the PEs. A partitionable SIMD/MIMD sys-
tem (e.g, PASM [24]), TRAC [11,20]) can be dynamically
reconfigured to operate as one or more independent
SIMD/MIMD machines of varying sizes. In this paper
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Fig. 1. Model of an SIMD/MIMD machine.

PPASM 1s used as an example parallel computer system.

FASM, a partitionable SIMD/MIMD machine, is a
large-scale dynamically reconfigurable multimicrocom-
puter system being designed at Purdue University [23,24)].
Image processing and pattern recognition tasks are the
target problemm domain for PASM, and the requirements
of these applications are being used to guide design deci-
sions.  PASM is intended to be a flexible research
machine, and it has more capability than is necessary to
cope with the example image processing scenario dis-
crissed v this paper. lo particular, PASM's capability to
be partitioned to operate as many independent
SIMD/MIMD machines of varying sizes is not needed for
this seenario.

The rest of this section is a briel overview of PASM
ty provide bachground for the following sections. A
block diagram showing the basic components of PASM is
given in Fig. 2. The System Control Unit is a conven-
tinnal machine, such as a PDP-11, and is responsible for
the overall coordination of the activities of the other com-
ponents of PASM. The Parallel Computation Unit (PCU)
contans N = 2% processors, N memory modules, and an
aterconnection  network.  The  PCU processors  are
microprocessors that perform the SIMD and MIMD com-
putations. The PPCU wmemory modules are used by the
PPCU processors for data storage ip SIMD mode and both
tata and instruction storage in MIMD mode PASM is
being designed for N = 1024, An N = 16 prototype
tased on Maotorola MC68000 processors is planned [13).

SYSTEM
D conTron K>
UNIT
MEMORY PARALLEKI MICRO
MANAGE Ay
MENT | KoK OMPUT A no~NkC T conron,
SYSTEM UNIT LERS

Fig. 2. Block diagram overview of PASM.
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Fig. 3. PASM Parallel Computation Unit.

The PCU is organized as shown in Fig. 3. A pair of
memory units is used for each PCU memory module so
that data can be moved between one memory unit and
secondary storage while the PCU processor operates on
data in the other memory unit (double-buffering). Each
memory unit is of substantial size (e.g., 64K words). A
processor and its associated memory module form a PCU
PE. The PCU PEs are addressed (numbered) from 0 to
N-1. The interconnection network provides a means of
communication among the PEs. PASM will use either an
Extra Stage Cube type {2,22] or Augmented Data Mani-
pulator type [14,21] of multistage network. The Aemory
Management System controls the loading and unloading
of the PCU memory modules from the multiple secondary
storage devices of the Memory Slorage System.

The Micro Controllers (MCs) are a set of micropro-
cessors which act as the contro! units for the PEs in
SIMD mode and orchestrate the activities of the PEs in
MIMD mode. Control Storage contains the programs for
the MCs.

I11. Image Processing Task

A FProblem Definstion and Serial Algorithms

The first stage of the shape analysis scenario of [16]
15 to identify boundaries of potential objects using edge-
guided thresholding {28]. Edge-guided thresholding
(KGT) uses adaptive thresholding to allow contour
extraction where gray level variations would not allow
global thresholding to be effective. The image is seg-
mented by sclecting several gray level thresholds and
tracing the resulting contours. Classification is accom-
plished by comparing the contours with prototype object
models usig either Fourier descriptors [30] or standard
inoments |10,29).

An overview of the senal image processing scenario
follows (further details are given later in this section).
Segmentation is simplest when there is little background
information, t.e¢., the objects of interest cover a significant
portion of the image. To achieve this with a very large
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image, the image can be divided into subimages. A
subimage size twice the largest dimension of an object is
chosen, and each subimage is processed independently.
Subimages aré located so that they overlap neighboring
subimages 50 percent in both the horizontal and vertical
direction. This insures that an object will be completely
contained in at least one block. However, it is necessary
to perform the image processing computations four times
for each pixel. The advantage of this method is that it
eliminates the need to trace contours across subimage
boundaries (simplifying the algorithms) and significantly
reduces the amount of main memory required (subimages
are discarded after processing).

Potential thresholds for a subimage are selected
using edge-guided thresholding, which selects thresholds
based on an edge-matching criterion. Using the Sobel
edge operator (7], an edge image is generated in which
gray levels indicate the magnitude of the gradient. A
figure of merit which indicates how well a given thres-
holded gray level image matches edges in the edge image
is then computed for every possible threshold. Using
thresholds with high figures of merit, a requantized ver-
sion of the gray level image is generated. A median filter
l‘?L may then be applied to remove isolated noise artifacts.

e contours for all potential objects not touching the
subimage boundary (i.e.,, completely contained within the
subimage) are extracted for further shape analysis. Very
short and very long contours may pot be retained if they
represent objects outside the range of interest. The
boundary’ of each object {contour) is stored as a sequence
of x-y coordinates.

B. Parallel Scenario

In this section a parallel formulation of the contour
extraction scenario is presented. This parallel scenario
will be used as an application example for determining
the execution environment which must be provided by
the architecture of an SIMD/MIMD parallel processing
system such as PASM. The specific context of the con-
tour extraction scenario would depend on the application.
The contour extraction scenario may be preceded by
image processing such as rectification. Subsequent use of
the extracted contours depends on the particular end
application. Highlighting contours of an image requires
essentially no further processing, while shape analysis and
classification may involve significant additional calcula-
tion beyond contour extraction.

An M-by-M pixel image is represented by an array of
M2 pixels, where the value of each pixel is assumed to be
an eight-bit unsigned integer representing one of 256 pos-
sible gray levels. To implement contour extraction on an
SIMD/MIMD machine of 1024 PEs, assume that the PEs
are logically configured as a 32-by-32 grid, on which the
M-by-M image is superimposed, i.e., each processor has
an M/32-by-M/32 subimage (see Fig. 4(a)). For
M = 5120, each PE stores a 160-by-160 subimage. Each
pixel is uniquely addressed by its i-x-y coordinates, where
x and y are the x-y coordinates of the pixel in the subim-
age contained in PE i.

Two important parallel algorithms of the contour
extraction scenario are edge-guided thresholding and con-
tour tracing. The edge-guided thresholding algorithm,
discussed in Section TV, 1s used to determine a set of
optimal thresholds for each subimage The contour trac-
ing algorithm, which 1s considered in Section V, uses the
set of optimal thresholds to segnient the image and trace
the contours, generating an i-x-y sequence [or each con-
tour.

The parallel sigorithms described yield a significant
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Fig. 4. (a) Data allocation for a 5120-by-5120 image
using 1024 PEs.

(b) Data transfers needed to apply Sobel edge
operator.

reduction in execution time because the multiplicity of
processors allows all of the subimages to be processed
simultaneously. Since the parallel contour tracing algo-
rithm is able to trace contours over subimage borders, it
is not necessary to overlap the subimages, and each pixel
is processed only once. The parallel algorithms can result
in improved information extraction since the subimages
can be smaller (assuming a large number of PEs), yielding
a better choice of thresholds within each subimage. In
addition, the parallel algorithms do not require an object
to be contained in a single subimage.

The parallel scenario could be implemented on a
serial computer system with virtual memory [4]. The
disadvantage of this approach is that when a contour
spans more than one subimage, the linking of partial con-
tours residing in different subimages requires that a
representation of the subimages, as well as any contour
information, be accessible. This may result in significant
delay due to paging subimages into primary memory.
Paging overhead does not occur on a paralle] system since
the entire image is stored in primary memory. Thus, it is
the multiplicity of primary memories in a parallel system
such as PASM (the large primary memory space) that
makes the non-overlapping subimage approach practical.

IV. Edge-Gulded Thresholding

The first major procedure of the example scenario is
edge-guided thresholding (EGT) [28!), which is used to
identify boundaries of possible objects. Edge-guided
thresholding selects threshold levels based on an edge-
matching criterion instead of the classical technique of
image histogram local minimum values [19]. Frequently,
EGT gives better results than the histogram method
because it is able to detect small regions not discernibly
represented in the histogram [28].

The EGT algorithm operates on each subimage
independently, and consists of three major steps. First
an edge image is generated. Then a figure of merit is
computed for every possible threshold. Finally, local
maxima (peaks) in the figure of merit function determine
the threshold levels.

The Sobel edge operator is used to generate the edge
image in the example scenario. SIMD parallelism is the
most advantageous form of parallelism for the Sobel algo-
rithm. This can be shown by analysis of the operator
itself. Let the image | be M-by-M and I(x,y) be a gray
level image pixel, where 0 < x, y € M-1. The Sobel
procedure (ignoring image edge pixels for clarity) is the
following.

_— e

v e Y..‘v{'l -

L]
DA



C i i

A S

C 2N 2 D Nt AR et i et i e ]

for x = | to M-2 do
fory =1 tw M-2do

sx(x.y) = {(u(x—l.y—l)wﬂ(x-l.y)+l<x-|.y+ln
~x +1,y-1)+2el(x +1,y) +{x +1,y+1))]

sy(x.y) = :—[(I(x-l,y—l)+‘1tl(x,y-—l)‘H(x +1,y-1))

lx-ly t1)t2sllx .yt 1)t ix 1y +1))

gix.y) = Vax(xy) + sy(xy)?

The value g(x.y) represents the gradient at pixel (x,y),
and these values form the edge image. The M-by-M
image in the Sobel operator definition corresponds to a
subimage within a PE for the scenario.

The algorithm is particularly well suited for SIMD
parallelism because all pixels are processed identically.
This complete synchronization aids the PE-to-PE com-
munication necessary when subimage border pixels within
each PE must be processed. In the case of this algorithm,
transmission delays incurred due to PE-to-PE data
transfers can be overlapped with data processing to
reduce total execution time. All PEs will simultaneously
request the same border pixel relative to their subimages.
For example, when processing begins (with the upper left
corner subimage pixel) all PEs will request (from the PE
to their upper left) the pixe! immediately above and to
the left of their upper left corner pixel (if this pixel is
within the complete image). This transfer of data from
upper left neighbors can occur for all PEs simultaneously.
A total ol 4#(160 + 1)} = 644 parallel transfers are
needed for a 5120-by-5120 pixel image, as shown in Fig.
4{b). The candidate interconnection networks for PASM
can support these parallel transfers from any neighboring
PE. The result of the Sobel operator is the edge image.
Iggh edge image pixel values indicate the presence of an
edge.

The next step of the EGT algorithm is to compute a
figure of merit value lor each possible gray level. The
igure of merit is a measure of how well the edges gen-
erated by a given threshold match the edges detected by
the Sobe! operator. Specifically, the figure of merit is
determined as follows.

1. The local maximum and minimum pixel values
over a 3-by-3 window are determined for each
gray level image pixel.

2. For each possible threshold value (i.e., all gray
levels) the center pixel of the 3-by-3 window is
tested to see if it is an edge poinl. It is an edge
point if the threshold is greater than or equal to
the local minimum and less than the local
maximuis.

3 The mean of the edge image pixels corresponding
to the gray level unage pixels found to be edge
points at a given threshold is the figure of merit
for that threshold.

The figure of merit calculation has portions suited to
hoth SIMD and MIMD parailelism. Steps 1 and 2 can be
done efficiently in SIMD mode since all pixels are pro-
cessed stmilarly. Step 3 is executed only on the gray level
image pixels which are edge points. To do this, the PEs
operate in MIMD mode, each sequencing through the
edge points in its subimage. Since the number of such
pixels may vary, some PEs may complete Step 3 before
others

The greater the mean of the edge points in Step 3,
the better the match between threshold-generated boun-
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daries and the edges detected by the Sobel operator. To
avoid the assignment of a high figure of merit to a small
number of noise pixels, a bias can be added to the
denominator when calculating the mean. This has the
effect of lowering the figure of merit if only & small
nutnber of pixels are above the threshold. The gray lev-
els associated with local maxima (peaks) in the figure of
merit function are chosen for image segmentation. Typi-
cally, three to six levels are chosen. The next step of the
scenario is contour tracing.

V. Contour Tracing

In this section an approach to performing contour
tracing using MIMD parallelism is presented. Initially,
each PE contains a list of threshold values, {T,,T,,...,Tj,
for its subimage which have been selected using edge-
guided thresholding. The number of thresholds for any
given PE is denoted by t and can differ for each PE. The
contour tracing algorithm has two phases. In Phase I,
the subimage 1s segmented within each PE and all local
contours (both closed and partial) are traced and
recorded. In Phase II, the partial contours traced during
Phase I are connected.

A contour table is constructed in each PE containing
an entry for every contour, whether partial or closed,
which is located in the subimage associated with that PE. S
Each contour table entry contains the following fields: (a) TR
a contour identification number, (b) the threshold value
which generated the contour, (c) the number of pixels in L
the contour, (d) a flag indicating if the contour is closed
or partial, (e) a pointer to the array containing the i-x-y
sequence of the contour, (f) a flag indicating whether the
partial contour has been connected (for use in Phase 1),
{g) the physical address of the PE which linked the con-
tour, (h) the physical PE address and identification
number denoting the partial contour blocking extension R
of the contour, and (i) a locked/unlocked semaphore. RSNRSAT
Contour table entries g, h, and i are discussed gelow. :
Each PE also contains a partial contour list. This list has
an entry for each partial contour containing the i-x-y
coordinates of its two end points and a pointer to its con-
tour table entry.

In Phase 1 there is no PE-to-PE communication.
Each PE considers its threshold values T;, 1 <i<t,
independently. Its subimage is segmented using each
threshold level T;. To create the segmented image for
threshold T;, pixels in the original image which have a
value greater than or equal to T; sre assigned a value of
one, while those which are less than the threshold are
assigned a value of zero.

Contour tracing begins by scanning rows of the seg-
mented image beginning with the top row. Scanning
stops when a pixel with value one is found which has a
zero-valued neighbor to either side. This pixel is marked
as the start point of a new contour, and its i-x-y coordi-
nates are stored. Consider this pixel as the center pixel of
the 3-by-3 window in Fig. 5. The contour is traced in a
counterclockwise direction generating a sequence of i-x-y
coordinates. Beginning with the neighboring pixel in
position five (see Fig. 5) and incrementing by 1 modulo 8
to determine the pext pixel, the algorithm looks for s
pixel which has a value of one. The slgorithm stores the
direction, p, of this new pixel and appends its i-x-y coot-
dinate to the contour sequence. Treat this new pixel as
the center point of the 3-by-3 window in Fig. 5. The
algorithm then looks for the next pixel in the contour
beginning with the pixel in position (p + 5) modulo 8 (to
produce a counterclockwise trace). Tracing continues
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Fig. 5. Naming convention for the neighbors of the
center pixel in a 3-by-3 window.

until the start point or a point of indecision is reached. If
all of the neighbors of a start point are zero, that pixel is
an isolated point and is ignored.

A point of indecision occurs when information from
an adjacent subimage is required to determine the direc.
tion of the contour. When a point of indecision is
reached, it is recorded as an end point, and the algorithm
returns to the start point to trace the contour in a clock-
wise direction until another point of indecision is reached.
When tracing in the clockwise direction, the new contour
%lxels are inserted onto the front of the i-X-y sequence.

ach pixel in the contour is marked in the thresholded
image so that the contour will not be retraced.

Consider the following contour tracing example
based on Fig. 6. A 10-by-20 image is divided into two
10-by-10 subimages; each subimage is loaded into one of
two PEs. The local threshold value T, is applied to the
subimage in each PE. Each PE i begins scanning its
respective subimage st pixel (i,0,0), for s one (indicated
by a dot) with a zero on either side. PE 0 locates the
edge of a segmented object at pixel (0,3,3). Pixel {0,3,3)
is the start point for the new contour. PE O traces the
contour of the object counterclockwise to a point of inde-
cision at pixel (0,7,9), which is recorded as an end point.
Pixel {0,7,9) is a point of indecision since pixels (1,6,0),
(1,7,0), and (1,8,0) of the subimage in PE 1, which could
extend the contour, are not in the subimage contained by
PE 0. PE 0 then traces the contour in the clockwise
direction beginning at pixel (0,3,3), reaching a point of

PEy

(0,3,3) 5

[oXogododod
0,440 - -

Roacl 1 Jod 00000-
(0,7,9)}(2,7,0)

© Start point
O Counterclockwise trace mark
@ Clockwise trace mark

4 End point (counterclockwise)
» End point (clockwise)

Fig. 6. Example of Phase 1 contour tracing for s 10-by-
20 image. The triple (i,x,y) represents the i-x-y
coordinates of a pixel.
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indecision at pixel {0,3,9). After the clockwise trace, the
first pixel in the i-x-y sequence describing the contour is
(0,3.9). PE O resumes scanning at pixel (0,3,4) and finds
no other coptours in its subimage. Note that, for exam-
ple, pixel {0,4,4) is not a start point for & pew conlour
since it was marked during the trace of the first contour.
Similarly, a partial contour is located in PE 1 with (1,7,0)
as the first pixel in its i-x-y sequence. Once a P
scanned the segmented image generated by threshold T,,
it repeats the process for threshold T, . After all thres-
hold values in a PE have been considered, Phase I is com-
plete.

In Phase II, each PE attempts to connect its partial
contours to partial contours which are located in neigh-
boring PEs. There are two alternatives for determining
when a PE can enter Phase I1. With the first, PEs are
aliowed 1o start Phase I processing after all have com-
pleted Phase I. With the second, a PE enters Phase 1l
immediately after completing Phase 1. However, it can
only attempt to cxtend contours into subimages of PEs
which are also in Phase II. If all neighboring PEs are still
in Phase I, the PE must wait. The latter approach may
reduce the total scenario execution time since the PE
with the longest Phase | time may well not be the one
with the longest Phase Il time. The first alternative
requires time equal to the sum of the longest times in
each phase.

Since multiple PEs can contain portions of the same
contour, there must be a rule to determine which PEs
have priotity to attempt to close a contour. The rule is
each PE attempts to extend only its partial contours
which have both end points bordering subimages to the
left and/or above. For example, in Fig. 7, partial con-
tours A, B, C, and D are considered by the PE, while E,
F, and G are not. For each given partial contour (gen-
crated by a threshold T.}), the PE attempts to extend it
into the neighboring PE from the counterclockwise end
point (as described below).

In order for a PE to extend a contour, it must be
able to access and modily contour tables which are
located in other PEs. As a result, a mechanism to
prevent one PE from using a contour table entry while
another PE is in the process of using that entry must be
provided by the system and used by the contour tracing
algorithm. Any section of code which modifies a contour

Jan

Phase 1l connection precedence. Partial contours
A, B, C, and D are considered by the PE; E, F,
and G are not.

Fig. 7.
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table entry is a eritical section [5]. The only table entry
fields which can be modified by another PE are the flag
which indicates if the partial contour has been connected
and the physical address of the PE which linked the con-
tour (fields (f) and (g)}. While a critical section is being
executed on a given table entry, that entry is locked, so
nu other processor can modify it.

A semaphore is a variable whose value indicates
whether or not a critical section can be entered (5]
There is a semaphore for each contour table entry whic
can take on a value of zero or one. Before a PE enters a
critical section (for a given contour), the processor per-
forms a P-operation (5] on the given contour to determine
if it is unlocked. 1f the semaphore for the contour table
entry is one, the processor sets the semaphore to zero
(locking the contour table entry so that no other proces-
sor can access it) and enters the critica) section, free to
modify the contour table entry. When the processor
completes modification of the contour table entry (i.e,
the critical section ends), it performs a V-operation (5] on
the semaphore for the contour, setting the semaphore to
one. The contour table entry is then unlocked. On the
other hand, if the semaphore is initially zero, the proces-
sor receives a message indicating that the partial contour
is locked.

If the end point of a given partial contour is not at a
corner of its subimage, there are three pixels, located in
the adjacent subimage, which can possibly extend the
contour. The PE accesses the partial contour list for the
adjacent subimage (see Section VII). Considering the
possible extending pixels one at a time in counterclock-
wise order, the PE checks the partial contour list to
determine if any partial contours in the adjacent subim-
age have the possible extending pixe! as an end point. If
such a partial contour exists, the PE performs a P-
operation on the coptour table entry pointed to by the
partial contour list. If the contour was unlocked, the i-
x-y sequence for the contour is transferred {discussed in
Section VII) to the PE containing the given partial con-
tour and then concatenated to its i-x-y sequence, forming
a new, extended partial contour. If there is more than
one partial contour with the same end point which can
extend the given contour, the partial contour which was
generated by a threshold value closest to that for the
given contour is selected.

If the end point of a given partial contout is a corner
point of its subimage, there are five pixels jocated in
adjacent subimages which can possibly extend the con-
tour Since these five pixels are located in three different
subimages, the PE attempting to extend the given partial
contour must check for continuation in each of the
upper-left  adjacent subimages (in a counterclockwise
order)

Note that regardless of where partial contour end
potiits lie, the search for pixels to extend the contour can
be widened beyond the three or five pixels here to allow
fur threshold value discontinuities at subimage boun-
daries. Thresholds could be interpolated across subimage
boundaries to allow partial contours with non-adjacent
end points to be joined

Assume that PE i has a partial contour which it is
responsible for extending. If a continuation of the partial
contour 18 not found in the partial contour hst for the
adjacent subimage, PE i probes into the adjacent subim-
age to determine if an extension of the partial contour
can be generated by the threshold, T, it (PE i) used to
trace its partial contour. If so, PE | extends its partial
contour by accessing the data from the adjacent PE.
Instead of creating an entire segmented subimage for the
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threshold T, PE i dycamically thresholds pixels as
needed. This contour generation using T is dooe since it
is possible that the partial contour in the adjacent PE
was not located in Phase I because different threshold
values were used, or LLe contour fell along the edge of the
subimage (see the split between PEs 2 and 3 in Fig. 9).

Once PE i locates a partial contour in an adjacent
subimage which continues the given contour and has
stored the concatenated contour in its contour table, it
repeats the process, if necessary, by following the contour
to the next PE until the contour is closed or cannot be
extended. A limit is placed on the maximum contour
length to guarantee algorithm termination in the event of
a pathological image.

Consider the example in Fig. 8 where a 12-by-12
pixel image is divided between four PEs. After Phase I,

[FE; 4 PE,
0,1 SJ (1,0,0
ik c
(0,4,8){(1,4,0)
0500 - oy
| o +
(z.o,l)I . i (2,0,3)
D
PE, P

© Pixels traced in Phase

Fig. 8. Example where two PEs attempt to close the
same contour. End point coordinates are given
where (i,x,y) represents the i-x-y coordinates of
the pixel.

PE 0 contains partial contours A with end points (0,1,5
and (0,5,1) and B with end points (0,4,5) and {0,5,3); P
1 contains partial contour C with end points (1,4,0) and
(1.1,0); and PE 2 contains partial contour D with end
points (2,0,1) and (2,0,3). Since both end points for con-
tour C border the subimage to the left, PE 1 attempts to
extend contour C in Phase II. Similarly, PE 2 attempts
to extend contour D since its end points border the
subimage above.

PE 1 attempts to extend C in the counterclockwise
direction, i.e., from pixel (1,1,0). It first locks its contour
table entry for C. Jt thep examines the contour table of
I’E. 0 and determines that A can be linked to C. If the
table catry for A is unlocked (i.e., the semaphore value is
one), PE 1 locks it $performs a P-operation) and appends
the i-x-y sequence of A to the i-x-y sequence of C. It also
sets the flag which indicates that A has been linked and
records that PE 1 performed the linkage.

Independently of the actions of PE 1, PE 2 attempts
to extend contour D (from pixel (2,0,3)). As did PE 1
with A, PE 2 appends B to D. If PE 2 attempts to
extend the result, DB, while PE 1 is in the process of
extending C into PE 0, it will find C locked. PE 2 then
abandons its attempt to close the contour, since PE 1 is
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also attempting to do it, and unlocks partial contour DB.
This allows PE 1 to access DB after it has appended A to
C. Therefore, the closed contour CADB is ultimately
traced completely and stored by PE 1. If PE | had com-
pleted linking A to C before PE 2 completed linking B to
D, the closed contour would have been completely traced
by PE 2. Deadlock is the situation when each of two or
more PEs are halted while waiting for the other(s) to con-
tinue [27]. I a PE is blocked due to a lock then (1) not
allowing a PE to wait for access to a locked contour table
entry of another PE, and (2) requiring the blocked PE to
unlock its affected partial contour prevents deadlock.

It PE 1 and PE 2 had completed their first linking
operation simullaneously, both would have abandoned
tracing the contour (i.e., no PE would link the contour
CADB). To insure that the linking of a contour will not
be abandoned by all PEs, the following protocol is used.
Assume PE i is blocked from extending a contour X by
PE j, which has higher positional precedence (i.e., i < j}.
In that case, PE i unlocks contour X and sends a message
informing PE j that PE i has abandoned its attempt to
further extend contour X. If PE j had also abandoned
the contour, this message would cause PE j to try again.
The message sent from PE i to PE j contains the
identification number of contour X and the value i. After
receiving the message, PE j searches its contour table to
determine if it abandoned X. To do this it uses field (h)
of the contour table. For the above example PE 2 would
link the partial contours since it has higher precedence.

PE, PE,
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P PES 4
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E 00ob 0. .0
0| 0000
-o...
-Q.-.
9 - -laooo
.0..-...0
O"""O
©000</pooe
PE,
0000000
----- 9 leooo
.0
0@ P

© Start point
© Counterclockwise trace mark
© Clockwise trace mark

4 End point (counterclockwise)
» End point (clock wise)

Fig. 9. Results of Phase 1 of contour tracing for a 30-by-
20 subimage.
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Deadlock with multiple contours cannot occur since
each PE considers only one contour at a time and does
not abandon the attempt to extend that contour until
that PE has closed the contour or has relinquished con-
trol to another PE to close that contour.

When Phase 11 of the algorithm is complete, the i-x-y
sequence for each contour in the image will be contained
in exactly one of the PEs which contained part of the
contour originally. In the example given in Fig. 6, PL 1
will contain 1-x-y sequence for the contour.

As a final example, a 30-by-20 image is divided into
six 10-by-10 subimages, each subimage is loaded into one
of six PEs. In Figs. 9 and 10 the results of Phase | and Il
processing are shown, respectively. Even though the
entire object in PE 5 was located within the subimage,
the left edge of the object was not traced in Phase I since
PE 5 could not determine whether the object continued
into the next subimage. On the other hand, a closed con-
tour was found in Phase I for the object in PE 4 since the
object did not include any border pixels of the subimage.

V1. Algorithm Evaluation

Subimage size for the serial algorithm is chosen to be
twice the maxtmum allowed object dimension so that
overlapping of subimages guarantees that each object
appears i its entirety in some subimage. With this pro-
perty, partial contours never need to be considered; all
objects are found as closed contours within a subimage.

PE, PE,
PO0O0O0OeOCOO
o R LI ®
PR o)
©- - - - B )
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0. 00000
o N
o .. .0
000000
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0000
Q- - - 0 |00000
©o- - 0] a. .« -0
©0--0000 |o--:0
0..0 ...o
0. -0 @ -0
- -0 00000
0000 J

O Pixels traced in Phase |
@ Pixels traced in Phase 1l
© First pixel in the x-y sequence of the contour

Fig. 10. Results of Phase II of contour tracing for a 30
by-20 subimage.
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The advantage of the serial approach (Section lILA) over
the parallel approach (Section 111.B) is that partial con-
tour extension is not necessary. The disadvantages of the
serial approach when compared to the parallel approach
are threefold. First, the maximum size of an object of
interest must be established so that subimage size is
known. This choice is constrained by the fact that EGT
performance tends to degrade with increasing subimage
size. Thus, there is a practical limit on the maximum
object size. Second, each pixel is processed for contour
extraction four times. Finally, thresholding (including
EGT) tends to perform less weli when objects are small
relative to the image (in this case, subimage) size. The
parallel algorithms do not limit maximum object size,
process each pixel just once, and may improve threshold
accuracy by allowing ready use of small subimages.
Thus, parallel systems can allow the full benefits of adap-
tive thresholding via EGT to be more readily realized.

Speedup is the usual rationale for employing parallel
processing techniques, and the example parallel scenario
has the potential for significant speedup. However, the
speedup 1s data dependent. This is because the PE work-
load may be highly varied during contour tracing due to
uneven distribution of contours throughout the image
being processed. While it may be possible to implement
luad sharing for this portion of the scenario (with certain
overhead costs), inequities reducing actual speedup are
aliost certain to remain.

Overall, the parallel algorithms presented are strong
contenders to replace serial methods in some applications.
One such is quality control inspection of printed circuit
boards. In this application, large object handling capabil-
ity is needed for following long circuit traces, and
sutlicient speedup is necessary for timely response. Other
applicativns involve military environments where real-
time processing 13 crucial.

V1. Architectural lmplications

The study of a parallel formulation of an image pro-
cessing scenario involves both the design of individual
parallel algorithms and the determination of a method to
integrate them nto a single job. This leads to an under-
standing of necessary and useful hardware attributes for
a parallel machine intended to execute that scenario. For
the example scenario, aspects of each algorithm which
have an architectural impact other than those pertaining
to the processors will be hsted. Processor specific con-
siderations (e.g., instruction set) are not treated because
they are similar for serial and parallel machines.

The Sobel edge detection algorithin step of EGT
requires data that is, by vast majority, local to each PE.
When non-local data is required, nearest neighbor PEs
comprise the set of data sources. Local maxima and
minima calculation on 3-by-3 windows mimics the charac-
teristies of the Sobel operator, but with more memory
references. Edge pont detection 18 similar in these
regards to the previous steps.

The figure of merit calculation for EGT is different
i kind from the previous steps. Only local data is
required, and processipg time is data dependent. MIMD
operation is preferable to SIMD, even if edge point detec-
tion and figure of merit calculations are merged into a
one-pass operation.

Phase [ of contour tracing requires only local data,
hut execution time is data dependent. Phase II makes
heavy use of non-local data and has data dependent exe-
cution time. Both phases are suited to MIMD mode.

Now the architectural requirements for a parallel
machine performing the example scenario can be con-
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sidered. Probably the most basic need for the system if it
is to support the scenario well, is to be capable of dynam-
ically switching between SIMD and MIMD operation, as
can PASM. With only SIMD capability, vast inefficiency
would occur in later stages of the scenario. Having only
MIMD mode is a less serious handicap, but will lengthen
execution time for the Sobel operator and determining
local maxima and minima, due to the need for explicit
synchronism and data sharing. Thus, the capability to
dyonamically switch between SIMD and modes is
important so that each subsequent portion of the scenario
can be executed in the most appropriate operational
mode.

An interconnection network is needed to perform
permutations involving eight nearest neighbors in SIMD
mode. In MIMD mode, it is used for eight nearest neigh-
bors and for somewhat arbitrary one-to-one connections
(when transferring partial contour information between
non-adjacent PEs). Both types of connection needs must
be performed efficiently by the network. The networks
proposed for PASM can do so.

The PE-to-PE transfer of information must be
efficient, or the parallel algorithms will be slowed. One
method to perform PE-to-PE communication is by using
direct memory access (DMA). DMA is a method for stor-
ing or retrieving data without processor intervention.
There are several ways to implement this capability. In
one, a PE extending a partial contour sends an interrupt
to the remote PE containing the extension of the partial
contour along with the identifier of the needed partial
contour. The remote PE then enters a DMA bandling
routine. This routine computes the local memory address
range of the requested partial contour i-x-y sequence and
sends this information along with the requesting PE
number to special DMA hardware. The DMA hardware
then autonomously retrieves the information from local
memory and performs necessary network interfacing to
send the data to the requesting PE. DMA hardware
accesses to local memory can be via cycle stealing.
Another implementation of DMA capability is through an
intelligent network interface unit (NIU). Requests for
data from remote PEs would be received, interpreted,
and discharged by the NIU without local PE processor
intervention. The NIU would combine DMA capability
with network protocol support. VLSl technology may
allow ready fabrication of sophisticated NIUs. Such a
capability would be worthwhile to include in a system
such as PASM.

VIII. Summary

Considering an entire scenario in the light of parallel-
ism is a useful approach for matching image processing
tasks and parallel architectures. A number of observa-
tions were made and conclusions draws from the example
image processing scenario. [n particular, the parallel
scepario was found to embrace both SIMD and MIMD
subtasks, involve significant PE-to-PE data transfer, and
contain both nearest-neighbor and non-adjacent PE com-
munication patterns. Parallel formulation of the algo-
rithms lead to several advantages including speedup,
elimination of object size constraints, and potential for
improved accuracy. These observations indicate that
parallel contour extraction could be useful in industrial
inspection and military applications. They suggest desir-
able system architecture features, including S /MIMD
capability with dynamic mode switching, dedicated PE-
to-PE communication support bardware, and arbitrary
PE-to-PE interconnection capability. These requirements
are consistent with the capabilities of PASM.
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Chapter Nine
The Use and Design of PASM*

James T. Kuehn, Howard Jay Siegel,
David Lee Tuomenoksa,
and George B. Adams Il

1. INTRODUCTION

Parallel processing has been successfully used to reduce the time of computa-
tion for a wide variety of applications. The processing of large amounts of
data, the need for real-time computation, the use of computationally
expensive operations, and other demands that would make a task too
time-consuming to perform on conventional computer systems have forced
computer architects to consider parallel/distributed computer designs. Ap-
plications that have one or more of these characteristic demands include
image analysis for automated photo reconnaissance, map generation, robot
(machine) vision, and rocket and missile tracking; digital signal processing
for speech understanding and biomedical signal analysis; and vector process-
ing for the solving of large systems of equations. To date, a variety of
special-purpose machines has been constructed to speed the processing of
select groups of algorithms. Examples are special-purpose digital signal
processors such as the APS-II [1], array processors such as the AP-120B
(Floating Point Systems, Inc. Portland, Oregon), and supercomputers with
vector/pipeline operations such as the Cyber 205 [2].

Qur goal is the design of a flexible parallel processing system that can be
dynamically reconfigured to meet the particular processing needs of a large
variety of applications in the image and speech analysis domains. The system

* The research was supported by the United States Army Research Office, Department of the
Army, under grant number DAAG29-82-K-0101; by the United States Air Force Command,
Rome Air Development Centre, under contract number F30602-83-K-0119; and by the National
Science Foundation under grant ECS-81-20896.
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134 7. T. Kuehn, H. J. Siegel, D. L. Tuomenoksa, and G. B. Adams I11

being designed is a PASM, partitionable SIMD/MIMD machine. In this
chapter, two algorithms used in parallel contour extraction are given as an
image processing scenario to explore the advantages and implications of using
the PASM parallel processing system and to motivate the inclusion of its
important architectural features. These features will help to identify the
attributes of a custom-designed VLSI processor chip set for PASM. In
particular, the architectural features that could be incorporated into a VLSI
chip set that will match the needs of parallel algorithms in the image and
speech processing domains will be explored. Using algorithm characteristics
to drive the design of PASM will lead to a machine that has the necessary
flexibility for executing image and speech processing algorithms.

In the next section, the parallel processing model and an overview of the
PASM architecture are given. Section 3 oudlines two algorithms of the
contour-extraction task. The first algorithm, edge-guided thresholding, is
discussed in Section 4. Section 5 describes the second algorithm, contour
tracing. The architectural implications of these algorithms are explored in
Section 6.

2. SIMD/MIMD MODEL
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Two types of parallel processing systems are single-instruction stream-— B
multiple-data stream (SIMD) machines and multiple-instruction stream- 4
multiple-data stream (MIMD) machines [3]. A SIMD machine typically )
consists of a control unit, an interconnection network, and N processing
elements (PEs), with each PE being a processor/memory pair (Fig. 1). The
CONTROL UNIT Sant
PEO PE 1 PE 3 ses PEN-
PROC.0 PROC. 1 PROC.2 || +«s [ |PROC. N1
| I 1 1 1
MEM. 0 MEM. 1 MEM.2 | | eee || MEM. Na

| [ [ - |

INTERCONNECTION NETWORK

Fig. 1 Model of an SIMD/MIMD machine.
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MEMORY SYSTEM CONTROL

STORAGE ) A conTROL [K— A s 3
TORACH NTR STORAGE
R pnt PARALLEL MICRO
MANAGE-

MERT KO OMPUTATIONK ] CONTROL-
SYSTEM UNIT LERS

Fig. 2 Block diagram overview of PASM.

control unit broadcasts instructions to the processors, and all active (enabled)
processors execute the same instruction at the same time. Each processor
cxecutes the instructions with data taken from its own memory. The
interconnection network allows interprocessor communication. A MIMD
machine has a similar organization, but each processor can follow an
independent instruction stream. As with SIMD architectures, there is a
multiple data stream and an interconnection network. The control unit may
coordinate the activities of the PEs in MIMD mode. A SIMD/MIMD
machine can operate in either mode and dynamically switch between them. A
partitionable SIMD/MIMD system (e.g., PASM [4]; TRAC [(5),[6]) can
be dynamically reconfigured to operate as one or more independent
SIMD/MIMD machines of various sizes.

PASM is being designed using a variety of applications problems from the
areas of image and speech analysis to guide the machine design choices. It is
not meant to be a production-line machine but a research tool for studying
large-scale SIMD and MIMD parallelism.

A block diagram of the basic components of PASM is given in Fig. 2. The
heart of the system is the parallel computation unit (PCU), which contains
N = 2" processors, N memory modules, and an interconnection network.
The PCU processors are microprocessors that perform the SIMD and MIMD
computations. The PCU memory modules are used by the PCU processors for
data storage in SIMD mode and both data and instruction storage in MIMD
mode. The interconnection network provides communication among the PEs.
PASM will use ecither an Extra Stage Cube type or Augmented Data
Manipulator type of multistage network {7].

The PCU is organized as shown in Fig. 3. Each processor is connected to a
memory module to form a PE. A pair of memory units is used for each

T, e e
-----

W IR I

|" . ‘A""." .
IS




et i 2 o S A A

136 7. T. Kuehn, H. J. Siegel, D. L. Tuomenoksa, and G. B. Adams I

—
. : PROCESSING ELEMENT 0 |
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Fig. 3 PASM Parallel Computation Unit.

memory module. This double-buffering scheme allows data to be moved
between one memory unit and secondary storage while the processor
operates on data in the other memory unit. Each memory unit is of
substantial size (¢.g., 64K words). PEs are addressed (numbered) from 0
toN - L

The system comtrol unit, a conventional computer, is responsible for the
overall coordination of the activities of the other components of PASM. The
memory management system controls the loading and unloading of the PE
memory modules from the multiple secondary storage devices of the memory
storage system. The microcontrollers (MCs) are 3 set of microprocessors that
act as the control units for the PEs in SIMD mode and orchestrate the
activities of the PEs in MIMD mode. Each of the Q MCs controls a fixed
group of N/Q PCU PEs. By combining the effects of multiple MCs, virtual
machines (partitions) can be created. Comtrol storage contains the programs
for the MCs. PASM is being designed for N = 1024 and Q = 32. An
N =16, Q = 4 prototype based on Motorola MC68000 processors is uader
development [8).

This brief overview of PASM provides the needed background for this
chapter. Further details and a list of papers about PASM can be found in
Siegel [9].
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3. EXAMPLE TASK

e

Many individual image and speech processing algorithms and their formula-
tions for parallel processing environments have been studied, such as 2-D
FFTs [10),{11), Hadamard transforms [12], image correfation {13], histo-
gramming [4], resampling [14], one-dimensional FFTs [15], linear predictive
coding [16], and dynamic time warping [17]. However, rarely is a complete
scenario considered as a whole. Consider the situation in which the results of
one algorithm are used as input to another. In the parallel environment, this
may strongly influence how each algorithm is structured. For example,
results calculated in one PE might need to be communicated to another PE
for use in a later algorithm.

Contour extraction is a key tool for use in applications ranging from
computer assisted cartography to industrial inspection. Two algorithms from
a contour extraction task will be used as an application cxample for
demonstrating the architectural features that must be provided by PASM to
have an appropriate execution environment. It will be shown how computa-
tional attributes of a parallel implementation of this example SIMD/MIMD
scenario influence the hardware design choices, including those features that
would be desirable in a custom-designed VLSI chip set.

The two algorithms to be considered are edge-guided thresholding (EGT)
and contowr tracing. The EGT algorithm, discussed in Section 4, is used to ..
determine the optimal threshold for quantizing the image [18). The contour- 2 :'_'..Lj--:j

IR RN R GRS

» tracing algorithm, considered in Section S, uses the set of optimal thresholds AR
J to segment the image and trace the contours. These two paralle] algorithms AEROAC
- are based on those developed in Tuomenoksa et al. [19] and are summarized .'::.'f'. e

here because their processing demands are quite different from each other. m
As will be seen, the EGT algorithm is best suited for SIMD mode, whereas d -t
MIMD mode will be used for the contour tracing algorithm. Also, the EGT '
algorithm will have inter-PE communication needs that are different from the e
] communication needs of the contour tracing algorithm. Other aspects will be o
: discussed in Section 6. For this task scenario, the ability to partition PASM is S
not used; i.e., all N PEs are employed.

4. EDGE-GUIDED THRESHOLDING

Consider an M X M pixel inpus image to be processed by the two algorithms.
The value of each pixel is assumed to be an 8-bit unsigned integer
representing one of 256 possible gray levels. Using the PASM model, assume
that the PEs are logically configured as au?h_l x /N grid, on which
the M x M image is superimposed; i.c., each processor has an
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M/J_IV X M/\/'Iv subimage. For M = 4096, N = 1024, each PE stores a -
128 x 128 subimage. Each input image pixel is uniquely addressed by
its i-x-y coordinates, where x and y are the x-y coordinates of the
pixel in the subimage contained in PE i.

The EGT algorithm consists of three major steps. First, the Sobel edge
aperator {20] is used to generate an edge image in which gray levels indicate
the magnitude of the gradient. A figure of merit that indicates how well a
given thresholded gray-level image matches edges in the edge image is then
computed for every possible threshold. Finally, the maximum value of the
figure-of-merit function is chosen to determine the threshold level. This is
done for each subimage independently; thus, the threshold levels may differ
from one subimage to the next. The complete EGT algorithm is most easily
. formulated as the SIMD procedure given in Fig. 4. Let the subimage
SI be M//N x M/ /N and SI4,x,y) be a subimage pixel, where
0=x,y<M/J/N,0=i<N. The algorithm is performed for all of the
subimages (all 1) simultaneously.

Referring to Fig. 4, the first for statement clears the sumedge and nedge
l counters (10 be described) for each possible threshold value. The next pair of
N nested for statements contains statements to calculate quantities associated

with each pixel in the subimage. The Sobel operators, sx and sy, represent L
weighted pixel value differences in the x and y directions, respectively. The ST
= value g(1, x, y) represents the gradient at pixel (i, x,y), and these values form : y
. the edge image. The presence of an edge is indicated by high edge image pixel
values. Next, the local maximum and minimum pixel values over a 3 x 3
window are determined for each gray-level umage pixel. Note that the same
image pixels necessary for the calculation of the gradient can be re-used for
the determination of the local maximum and minimum. The center pixel S
of the 3 x 3 window is an edge point if the threshold is greater than or equal to ERthC

- S s T T

4
the local munimum and less than the local maximum. Running sums of the -‘ i
edge image pixels (gradient values) corresponding 10 edge points at each L]

threshold (sumedge) and a count of the number of edge pixels for each
threshold (nedge) are updated in the innermost for loop. In general, each PE
performs this for statement using a different localmin and localmax and thus
performs the statements in the loop (updates the sums) various numbers of
times. This implies that each PE has the capability of maintaining its own
loop index values. PEs are disabled whea they finish their looping, because
PEs must remaun synchromzed in SIMD mode. The total time to perform the
innermost for loop 1s the maximum time taken by any PE.

The mean for each threshold (sumedge/nedge) is known as the figure of
merit (ment) and is calculated in the final for statement using the accumu-
lated sums. High figure of merit values indicate better matches between
threshold-generated boundaries and the edges detected by the Sobel oper-
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[ for thresh = 0 to 255 do
sumedge(i, thresh) = nedge(i, thresh) = 0
forx =0 to M//N - 1 do begin
j fory=0toM/JW—ldobegin
| sx(i, x,y) = {(SIG, x = 1,y — 1) + 2+SIG, x — 1,y)
+8IG,x - 1L,y + 1)) = (SI(6,x + Ly - 1)
+ 2:8I(,x + L,y) + SI(5,x + 1,y + 1))
P

W(i,x,y) = *[(Sl(‘,‘ - 1,}' - l) + Z#S[(i,x,y - l)
+ SI(I,I + l’y - l)) - (Sl(')x - l’y +1)
+ 2o8I(i, x,y + 1) + SIG,x + 1,y + 1))

g, %,y) = Jsx(iy x,9 + (i, x,y)
localmax(s)
= max(SI(i, x L,y - 1), SI(i,x,y — 1), SI(¢,x + Ly-1D,
SIG, x - 1,y), SIGs, x,y), SI(i,x + 1,y),
S, x ~ Ly + 1), SI(s,x,y + 1), SI(i,x + Ly + 1))
ftocalmin(r)
= min(SI(s,x — L,y — 1), SI(s,x,y — 1), SI(4,x + 1,y — 1),
Sl(i)x - l!y): Sl(‘: I;y), Sl(l,l + l))’)r
SIG,x — 1,y + 1), SI(,x,y + 1), SI(i,x + 1,y + 1))

for thresh = localmin(i) to localmax(i) — 1 do begin
sumedge(s, thresh) = sumedge(i, thresh) + g(i, x,y)
nedge(s, thresh) = nedge(s, thresh) + 1
end

end
for thresh = 0 1o 255 do
merit(i, thresh) = sumedge(t, thresh)/nedge(i, thresh)
Fig. 4 EGT algorithm.

ator. The gray level associated with the maximum value of the figure-of-merit
function is chosen for image segmentation.

The EGT algorithm is particularly well suited for SIMD parallelism
because all pixels are processed similarly. This aids the PE-to-PE com-
munication necessary when a PE must process pixels not in its subimage (i.e.,
in a neighbor PE). All PEs will simultaneously request the same pixel relative
to their subimages. For example, when processing begins (with the upper left

. corner subimage pixel) all PEs will request (from the PE to their upper left)
i the pixel immediately above and to the left of their upper left corner pixel (if
3
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this pixel is in the complete image). This transfer of data from upper left
neighbors can occur for all PEs simultaneously. In the case of this algorithm,
transmission delays incurred due 10 PE-to-PE data transfers can be over-
lapped with data processing to reduce total execution time. A total of
&M/ /N + 1) parallel transfers are needed for a M x M pixel image. The
candidate interconnection networks of PASM can support these parallel
transfers from any neighboring PE.

Since PE-to-PE communications in MIMD mode require explicit synchro-
nization between the two processors for each data transfer, SIMD mode
transfers should be used to provide each PE more efficiently with the
one-pixel-deep border points of its subimage (from its neighbors). However,
once each PE has all of the data it needs to perform the EGT algorithm, the
calculations could proceed in MIMD mode. Although MIMD mode would
make the execution of the innermost for loop more efficient (because no PEs
would be disabled), this advantage must be weighed against the extra time
involved in switching from SIMD to MIMD mode and requiring that each
PE perform its own control flow operations for the outer two for loops.
Control flow operations include initialization and incrementing of loop
counters, evaluation of conditional expressions, and branching. These opera-
tions are performed by the MC in SIMD mode for the outer two loops and
can be overlapped with the PE operations. The next step of the scenario is
contour tracing.

5. CONTOUR TRACING

A contour tracing algorithm using MIMD parallelism and based on the one
given in Tuomenoksa ef al. [19] is summarized in this section. Initially, each
PE contains a threshold value T for its subimage, which was calculated using
the EGT algorithm of the previous section. The contour tracing algorithm
has two phases. In Phase I, the PEs segment their subimages based on the
threshold and all local contours (both closed and partial) are traced and
recorded. In Phase II, the parual contours traced during Phase I are
connected.

A contowr table is constructed in each PE, containing an entry for every
partial or complete contour in its subimage. Each contour table entry
contains bookkeeping information such as the threshold value that generated
the contour and a pointer to the the i-x-y sequence of the contour. Each PE
also contains a parnal contour list, which has an entry for each partial contour
containing the i—x—y coordinates of its two end points and a pointer to its
contour table entry.
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In Phase I there is no PE-t0-PE communication. Each PE uses its
threshold level to segment its subimage. To create the segmented image for
threshold T, subimage pixels that have a value greater than or equal to T are
assigned a value of one; otherwise, the pixels are assigned a value of zero.

Contour tracing begins by scanning rows of the segmented image begin-
ning with the top row. Scanning stops when a pixel with a value of one is
found that has a zero-valued neighbor on both sides. This pixel is marked as
the start posnt of a new contour, and its i-x—~y coordinates are stored. For edge
PEs, i.c., those on the edge of the /N x /N grid of PEs, no image points lie
beyond the edge; thus, all points in the lefumost (or rightmost) column of the
subimage of the PEs in the leftmost (or rightmost) column of the grid of PEs
are potential start points. For all other left and right subimage edges, it is
assumed that the pixel in the neighboring PE is one-valued so that spurious
start points are not chosen. Bypassing a potential start point (e.g., a left
subimage edge with a zero-valued neighbor in the PE to its left) is not a
problem because (1) contours have multiple potential start points within the
subimage and (2) the partial contours will be connected in Phase II regardless
of the start point chosen.

The contour is first traced in a counterclockwise direction (CCW) if the
start point has a one-valued point to its right and is first traced in a clockwise
direction (CW) if the start point has a one-valued point to its left. If there are
zeroes on botn sides, the initial direction chosen does not matter. Consider
the start point pixel as the center pixel of the 3 x 3 window in which
direction 0 is east, 1 is northeast, and so on [21]. The CCW algorithm is
stated as follows. Beginning with the neighboring pixel in direction five and
incrementing by 1 modulo 8 to determine the next pixel, look for a pixel that
has a value of one. When it is found, store the direction p of this new pixel
and append its i-x—y coordinate to the contour sequence. Treat this pixel as a
new center point of the 3 x 3 window. Then continue by looking for the next
pixel in the contour beginning with the pixel in position (p + $) modulo 8.
Tracing continues until the start point or a subimage boundary (point of
indecision) is reached. The CW algorithm is similar, but scanning begins
with the pixel in position zero and decrements by 1 modulo 8 to determine
the next pixel. After a point is found, the pixel in position (p + 3) modulo 8
is scanned. Horizontal edges that span a subimage are also recognized;
however, they are treated as a special case because no start point would have
been identified. An implicit assumption is that all contours to be traced define
regions that have area. Examples of illegal contours that would not be traced
are one-pixel-wide lines or isolated points.

A point of indecision is reached when a pixel from an adjacent subimage is
needed to determine the next direction of the contour [19]. When a point of
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indecision is reached, it is recorded as an end point, and the algorithm returns
to the start point to trace the contour in the opposite direction until another
point of indecision is reached. When tracing in the CW (or CCW) direction,
the new coatour pixels are inserted onto the front (or back) of the i~x-y
sequence. Pixels in the thresholded image are marked so that the contour will
not be retraced.

As an example, 2 30 x 20 image is divided into six 10 x 10 subimages;
each subimage is loaded into one of six PEs. The result of Phase I processing
is shown in Fig. 5 where a dot indicates a one-valued pixel. Even though the
entire object in PE 5 was located within the subimage, the left edge of the
object was not traced in Phase I, because PE 5 could not determine whether
the object continued into the next subimage. On the other hand, a closed
r contour was found in Phase I for the object in PE 4, because the object did
not include any border pixels of the subimage.
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Fig. 5 Results of Phase I of contour tracing for a 30 x 20 subimage. (Based on
Tuomenoksa, er al., (19].)

L e ot e o ma g

T S T L e T
~, .'.-\ ..' _.-..\ A.\ o) _.. ,.. - -.I..\.>‘l..\.s.-{-. ;‘\-.L‘ ..!..-.\'-\";.§...\-h-".\"h“-h J- ‘ .




-

P

p e e Tr Ty YR %

s

o v v
Y. . .

The Use and Design of PASM 143

For the example in Fig. 5, the local threshold value T is applied to the
subimage in each PE. Each PE i begins scanning its respective subimage at
pixel (1, 0, 0,) for a one (indicated by a dot) with a zero on either side.
Depending on the start point found, tracing will proceed in either the CW or
CCW direction. For example, contours A, C, E, D, and G are traced in the
CCW direction first, whereas contours B, F, and H are traced in the CW
direction first. In the example, PEs 1 and 3 have found two start points and
have produced two traces. Once a PE has scanned the segmented image
generated by its threshold, Phase I is complete.

In Phase II, each PE attempts to connect its partial contours to those
located in neighboring PEs. In order for a PE to extend a contour, it must be
able to access and modify contour tables that are located in other PEs. As a
result, a mechanism to allow access to a contour table entry by only one PE at
a time must be provided by the system and used by the contour tracing
algorithm. A semaphore [22] associated with each contour tabie entry is used
to indicate whether or not that entry is locked so that no other processor can
access it. Semaphores are used to prevent variable access and updating
problems due to interrupts. Details of these problems are beyond the scope of
this paper.

For the example of Fig. 5, PE 0 might try to extend the CW end point of
partial contour A by considering the possible extending pixels in PE 1 one at
2 time using the CW algorithm. To do this, PE 0 first locks the contour table
entry for A. Then PE 0 requests that PE 1 check its partial contour lists to
determine if any partial contour has the possible extending point as an end
point. If such a partial contour exists, PE 1 locks the contour table entry
pointed to by the partial contour list signifying that this entry is to be linked.
In this case, PE 0 determines that A can be linked to B; thus, PE 1 locks B’s
contour table entry so that only PE 0 will be allowed to connect the partial
contour. The i-x-y sequence for contour B is transferred to PE 0 and
concatenated to the i-x—y sequence of partial contour A, forming a new,
extended partial contour AB. If PE 0 found the contour table of partial
contour B to be already locked, it will not be allowed to connect the contour.
The extension of corner points is handled similarly but involves communica-
tion with more than one PE. Note that the use of semaphores prevents
another PE, i.e., PE 3, from using PE | to access B's contour table entry
which PE 1 is in the process of modifying for PE 0.

Once PE 1 locates a partial contour in an adjacent subimage that continues
the coatour and has stored the concatenated contour in its contour table, it
repeats the process, if necessary, by following the contour to the next PE
until the contour is closed or cannot be extended.

Independently of the actions of PE 0, PE 3 might attempt to extend
contour D CCW to form the partial contour DC. If PE 3 attempted to extend
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Fig. 6 Results of Phase II of contour tracing for a 30 x 20 subimage. (Based on
Tuomenoksa, et al., [19].)

the result, DC, when PE 0 is in the process of extending A into PE 1, it will
find A locked. PE 3 then abandons its attempt to close the contour, because
PE 0 is also attempting to do it, and unlocks partial contour DC. This allows
PE 0 to access DC after it has appended B to A. Therefore, the closed contour
ABDC is ultimately traced by PE 0. Akernatively, if PE 0 had completed
linking B to A before PE 3 completed linking C to D, and PE 0 finds D
locked, it would unlock AB. Thus, the closed contour would have been
completely traced by PE 3. Not allowing a PE to wait for access to another
PEs locked contour table entry and requiring the blocked PE to unlock its
affected partial contour prevents deadlock.

Occasionally, some contour tracing operations must be performed in Phase
I1 before certain contours can be linked. Figure 6 shows a situation in which
PE 2 traces contour E along the subimage boundary in Phase II before
linking it to contour F. The subimage boundary pixels of contour H are also
traced in Phase II.
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These examples demonstrate the basic ideas underlying the algorithms.
The actual parallel algorithm details that ensure proper interaction of the PEs
are complex and are not examined here.

When Phase II of the algorithm is complete, the i-x—y sequence for each
contour in the image will be contained in exactly one of the PEs that
contained part of the contour originally. The result of Phase II processing for
the example for Fig. S is shown in Fig. 6. Since each PE tries to connect its
contours independently, the number of the PE that finally closes a given
contour is nondeterministic. Although this may not be desirable in a few
cases, in general the lack of a specific protocol determining which PEs can
close contours equalizes both the processing load of each PE and the number
of closed contours that eventually reside in each PE.
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6. ARCHITECTURAL IMPLICATIONS

The study of a parallel image processing task leads to an understanding of
necessary and useful hardware features for a system such as PASM. For the
example algorithms, aspects of each that have an architectural impact will
be listed. Processor-specific considerations (e.g., instruction set) are also
treated, because they can have a profound effect on the performance of the
algorithms.

Although only two closely related algorithms were presented in the
previous sections, the two could hardly have been more different in their
processing demands. As discussed in Section 4, the EGT algorithm is best
suited for SIMD mode. This is because the algorithm requires data that are
mostly local to each PE. Also, there are approximately (or exactly) the same
number of pixels to be processed in each PE, and all pixels are processed
similarly.

When nonlocal data are needed in the EGT algorithm, the eight nearest-
neighbor PEs comprise the set of data sources. The PE-to-PE transfer of
information must be efficient, or the parallel algorithms will be slowed. In its
simplest form, this communication would be handled entirely by the PEs;
each PE would control the network settings (through the use of routing tags
[7]) and perform all of the network protocol support (e.g., buffering, error
detection). Each word transferred and each new network setting would
require processor instructions. A more efficient method of PE-to-PE com-
munication is by direct memory access (DMA). DMA is a means by which data
can be retrieved from one memory location and stored in another without
processor intervention. The DMA hardware usually operates on a cycle-
stealing basis so that a PE’s access to its memory is not severely affected. In
its basic form, PEs in SIMD mode would enter a DMA handling routine.

....................................................
..............................
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This routine computes the local memory address range of the points to be
transferred and sends this information to the special DMA hardware. The
PEs4 then would compute the destination address of the PE that is to receive
the data and set the network accordingly. The DMA hardware then would
autcnomously retrieve the information from local memory and perform the
necessary network interfacing to send the data .o the requesting PE.
However, iae PE would still be responsible for checking the incoming data
\ (after the transfer is complete) for transmission errors and so forth. A more
advanced implementation of DMA capability is the use of an intelligent
network nterface unit (NIU). Requests for data from remote PEs would be
made to the local NIU, which would interpret and satisfy the request by
coordinating with a remote NIU. The NIU would combine DMA capability
with network protocol support. VLSI technology may allow ready fabrication
of sophisticated NIUs. _

As discussed in Section 4, M/ /N pixels come from each of four neighbors.
For the sake of example, let M = 4096, N = 1024, and M/ /N = 128.
Rather than involving the source and desunation PEs in the individual
transfers of these points, one of the DMA modes just described would be of
great use. If pixels were stored in PEs by row (rows numbered 0-127), and
the transfer from PEito PE i + /N was selected, the DMA hardware of PE
1 would be instructed to transfer 128 pixels starting at the address of row 127
of the image. The DMA hardware associated with PEi + /N would be set to
read 128 pixels from the network and store them beginning at an address
representing row — 1. When data are transferred froma PEi1two PE¢ + 1,
the situation is more complicated in that image data to be transferred are not
contiguous. Conventional DMA hardware only supports physical block
transfers of data. Here, a strong case for an intelligient NIU is made: the NIU
could accept more complicated instructions such as “transfer 128 pixels
starting at address X, taking every 128th pixel.”

The processing requirements (instruction set) for the EGT algorithm are
not out of the ordinary. LSI technology already allows the fabrication of
complete microprocessors having all required arithmetic and data manipula-
tion operations on a single chip. Recent designs (e.g., Motorola 68000 [23])
handle a variety of dara formats including bit, byte, 16-bit word, and 32-bit
long word types. Floating point and special arithmetic function (e.g., square
root, trigonometric) capability abounds in the form of coprocessor chips.
Although the EGT algorithm involved only one special function (square root)
in the calculation of the gradient, other algorithms such as image rotation,
parallel root finding, and FFTs for speech processing make heavy use of
special funcuons. Since many of the special arithmetic functions are calcu-
lated by iterative procedures, a strong case is made for including hardware to
perform these operations rather than performing them in software. Software

"
Y
E 146 J. T. Kuehn, H. J. Siegel, D. L. Tuomenoksa, and G. B. Adams 111
)

>

Chme sl kiR At 45

R AR S, A

s mn i

k. L%
~ i . -~

*~ T . .
- . - - - " . -~ . e M et Lt ARV A
.'-\.-.¢‘- -‘.Q.‘ -A' ." -"- -.'.' -'." -. -'-A' . .t . - .t » L ..'-.n.-"‘.'-._.'s'.‘-“n“r'-' '-"-.'vc\-.‘.ﬂ'..“.' Ce e et t et
R B S O RSy S VR I iy iy iy N WA A A W R RS VRN, WIS DA D L T WUV LA R




The Use and Design of PASM 147

procedures in which the number of iterations required is data-dependent are
especially troublesome in SIMD mode, because processors must be disabled
as they complete the desired number of iterations. Also, the total time to
perform an operation is the maximum time required by any processor
(because the PEs are synchronized). There is a slight advantage to having
special-purpose arithmetic functions on the same standard CPU chip in that
data to be processed need not be moved between the two devices. VLSI
technology should make such combined CPU-specialized arithmetic proces-
sor chips a reality.

The processors must be capable of operating in SIMD mode efficiently.
Although designs for using off-the-shelf microprocessors as SIMD/MIMD
processing elements have been developed, some external hardware would be
required to enable, disable, and synchronize PEs and get them to operate in
slave mode, i.e., to accept instructions broadcast by a control unit rather than
to take the instructions from their local memories [8]. This external hardware
could be easily incorporated into a VLSI chip.

The EGT algorithm has been simulated for N ranging from 16 to 256 and a
total image size of 64 x 64 pixels. A special-purpose SIMD simulator
developed to evaluate the MC68000-based PASM design described in Kuehn
et al. (<] was used to perform the simulatons. Although the details of the
simulaton results are not presented here, the general trends of the results will
be described.

As the number of PEs (N) decreased, the subimage size increased because
a fixed-size total image of 64 X 64 pixels was used. For large subimages, the
ratio of subimage edge pixels to total subimage pixels is low, making
processing very efficient. This is because inter-PE transfers make up only a
very small fraction of the total processing time. A speedup factor (serial
execution time/parallel execution time) approaching N was obtained for
arithmetic operations for this case. (A speedup of N is optimal.) As N was
increased to 256 PEs, the subimage size decreased to 4 x 4. Here, the ratio of
subimage edge pixels to total subimage pixels is very high, and inter-PE
trapsfers make up a large percentage of the total processing time. Although
the total processing time is minimized as N increases, the speedup factor
decreases. The simulations imply that N should be as large as possible for the
EGT algorithm to minimize the processing time. However, this would make
contour tracing (the next algorithm of the scenario) inefficient, because few
contours would be traced in Phase I, and heavy use of inter-PE communica-
tion would be needed to close the contours in Phase II. Thus, the scenario
must be considered as a whole rather than as a sequence of individual
algorithms.

Turning now to the contour tracing algorithm of Section 5 we note that
both phases of the algorithm are suited to MIMD mode, because they involve
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data-dependent execution times. Phase I of contour tracing requires only
local data, whereas Phase Il makes heavy use of nonlocal data. Phase I
imposes no extraordinary requirements on the system, because there are no
special arithmetic operations and no network transfers to be done. Phase II,
however, with its arbitrary one-to-one connections (when transferring partial
contour information between nonadjacent PEs), use of semaphores, and
special signaling protocols imposes many new architectural requirements.

The interconnection network and any DMA or NIU hardware would be
heavily used in Phase II processing when PEs extending partial contours
probe remote PE memories that may contain the extensions of the partial
contours. As in the EGT algorithm, NIU hardware would be of great use,
because it could process queries about possible extensions to partial contours
without interrupting the remote PE. There would be a combination of short
and long messages between PEs during this phase. A short message would
occur when a PE, extending a partial contour, requests information about
possible extending pixels from a remote PE. If a connecting partial contour is
found, a long message, consisting of the i—x-y sequence of the partial
. contour, would be sent. Thus the interconnection network should support a

variety of message sizes so that the efficiency of sending either type of
message is high.
. Since semaphores play a large part in ensuring correct linking of partial
- contours in Phase I, processors must be equipped with test-and-set or similar
operations to facilitate a correct semaphore implementation. Most modern
microprocessors already have some semaphore capabilities.

If the system is to support the execution of the two example algorithms
well, it must be capable of dynamically switching between SIMD and MIMD
operation, as PASM capn. With only SIMD capability, the contour tracing
algorithm would be executed with huge inefficiencies, because there would
be varying numbers and lengths of contours and arbitrary one-to-one com-
munication patterns. A machine having only MIMD mode would be less
seriously atfected but would lengthen execution time for the EGT algorithm,
due to the need for explicit synchronization for each data transfer step and
the overhead of loop counter processing which is done concurrently by the
MCs in SIMD mode. Thus, the capability to dynamically switch between
SIMD and MIMD modes is important so that each algorithm can be executed
in the most appropriate mode of parallelism. '

Since PASM is an SIMD/MIMD system, the interconnection networks
proposed for PASM would be capable of operating both synchronously and
asynchronously. The proposed networks are of the multistage type and can
perform both the nearest-neighbor and arbitrary one-to-one connections.

The design of a multi-microprocessor system that could be used as a
building block for PASM is discussed in Kuehn et al., [8). This design uses
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. the Motorola MC68000 as the heart of both the PE and MC components. The

f extra hardware needed for SIMD/MIMD mode processing and communica-

: tion was described. It was found that most of the extra hardware was inv' .ved
in the enabling/disabling, synchronization, and instruction broadca,ung for
SIMD mode and in getting the PEs to switch from SIMD to MIMD mode
and back again efficiently. The design highlights are described:

MC CPU. The MC CPU is a Motorola MC68000-series processor.

Fetch unit. This unit fetches instructions from MC memory in SIMD
mode, determines whether they are control (MC) or data processing (PE)
instructions, and broadcasts them either to the MC CPU or PE CPUs. Each
instruction word in the MC memory is tagged to allow the fetch unit to
determine its type. The tags are generated at assembly time.

Masking operations unit. This is specialized hardware, under the control of
the MC CPU, that produces a mask (pattern) used to selectively enable or
disable PEs (used in SIMD mode).

MC/PE interface. This is specialized hardware to queue PE instructions
and enable signals broadcast to the PEs. The queue has been shown to
increase the amount of program overlap between the MC and PEs. This
interface is for SIMD mode; there would also be a MC/PE communication
bus for MIMD mode and error-handling messages (which is not discussed
here).

PE CPU. The PE CPU is a Motorola MC68000-series processor.

SIMD/MIMD mode switching logic. This is a specialized address decoder
that generates instruction requests to the MC/PE interface in SIMD mode
and causes local PE memory to be accessed in MIMD mode.

; Nerwork interface unit. This unit bandles DMA and network protocol.
i VLSI technology should be used to combine the components listed above
only when some speed or complexity advantage is gained. For example, the
. ; PE CPU and SIMD/MIMD mode switching logic should be combined into a
. single component so that the PEs can operate equally well in SIMD and
: MIMD mode. This action would result in very little additional silicon areca
and at most a few additional pins being used. Taking this one step further,
one could also fabricate the DMA and NIU hardware on the PE CPU chip.
However, to allow communication on the CPU data bus (with, for example,
the local memory chips) and the NIU-interconnection network bus to occur
simultaneously, pias for a complete NIU bus interface would have to be
added. The technology at implementation time would determine the max-
imum pin count and thus the suitability of this scheme.

Similarly, the MC CPU and fetch unit should be combined on one chip so
that MC operations such as fetching SIMD instructions and branching are
done by the same unit. The masking operations unit could easily be made a
part of the MC CPU since it is not too complex; however, the number of CPU
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pins would have to increase by N/Q. For the PASM design goal of N = 1024
and Q = 32, N/Q = 32. Again, the desirability of integrating this unit is
dependent on pin count limitations. The MC/PE interface is also a
candidate for inclusion on the MC chip. It would not require much silicon
area, but its pin requirements are high. Since the interface queues both
enable signals and instruction words to be broadcast to the PEs, an additional
N/Q + 16 bits would be required on the MC CPU package (for MC68000
16-bit words). Thus, assuming that the number of pins that the MC CPU
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'.,&: alone requires is P, if the masking operations is integrated with the CPU,

P + N/Q pins would be required; if, in addition, the MC/PE interface is
integrated, P + N/Q + 16 pins would be required (the masking operations
unit output pins to the MC/ PE interface would now be internal to the chip).
As has been discussed in McMillen and Siegel [24], VLSI implementation of
interconnection network functions is most promising, both from a functional
standpoint and a design standpoint due to network regularity.

In summary, based on our prototype plans and the expected execution
needs of the contour extraction task and other image and speech processing
algorithms, certain desirable system architecture features have been iden-
tified. These include dynamically switchable SIMD/MIMD capability,
support for PE-t0-PE communications using DMA and intelligent network
interfaces, and special arithmetic function hardware. These requirements are
consistent with the capabilities of a VLSI implementation of PASM.
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7. SUMMARY

Contour extraction has been used as an image processing scenario to explore
the advantages and implications of using the PASM parallel processing
system. Use of these parallel algorithms leads to several advantages, notably
speedup. Analysis of the algorithms has motivated the inclusion of several
important architectural features. These features were used to discuss possible
configurations of a custom-designed VLSI processor chip set for PASM. The
use of algorithm characteristics to drive the design of PASM leads to a
machine with features that provide the necessary flexibility for executing
tmage and speech processing algorithms.
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Parallel Computation of Normalized Fourier Descriptors
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PARALLEL COMPUTATION OF
NORMALIZED FOURIER DESCRIPTORS

KIRK D. SMITH and LEAH H. JAMIESON
School of Electrical Engineering
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West Lafayette, IN 47907

ABSTRACT

Normalized Fourier descriptors provide an effective but computationally
intensive method for performing object identification and tracking. Parallel
algorithms to compute normalized Fourier descriptors are presented. The task
includes sub-algorithms for conversion of chain code inputs to X-Y coordinates,
filtering, resampling, Fourier transform, and normalization. MIMD and SIMD
formulations are considered. The algorithms are analyzed with respect to
computational complexity and communications requirements. For typical problem
sizes and appropriate choice of machine size P, specdups of O(P) are achieved.

1. INTRODUCTION

Image processing algorithms are growing more complex as research is conducted.
Performance demands are also increasing steadily. The major factor fueling these
advances is increased speed of computer hardware. Practically, speed of computing
hardware has some limitations. In the future, gains in speed may not be as
dramatic. Even today, certain tasks cannot be performed because of computational
bottlenecks and real-time requirements.

Clearly, a solution to these problems lies in the replication of available
computing hardware. A challenging part of this field lies in the development of
parallel algorithms for varied image processing tasks. In this paper, an
implementation of an image processing algorithm is presented. It is representative of
a wide class of image processing algorithms since it is composed of several sub-
algorithms, each with different characteristics.

2. ALGORITHM OVERVIEW

Given the contour of an object in a two dimensional plane as input, a series of
frequency domain coefficients which describes the image is computed. These are the
Fourier descriptors, which are further processed in a normalization procedure so that
they can be compared to a library of these descriptors. Output of the algorithm is
the identification of the object as well as a reasonable estimate of its orientation in
space [0]. The algorithm has been proven effective in identifying and tracking
aircraft in flight [lOﬁ.

loput to the program consists of the chain code representation of the contour of
an image in a two dimensional plane. In practice, chain code inputs typically
contain from 64 to 2048 points. This chain code input is then converted to X-Y
coordinates of the image. After optional smoothing, the image is resampled at
equally spaced intervals on the contour. Then a complex Fourier transforin is
performed on the resampled points. This produces a Fourter descriptor (FD).

The second logical division of the algorithin normalizes this deseriptor. The
goal is to scale and orient the contour by rule such that the FD from an unknown
contour will always normalize to the correct library representation.  Different
normahizations have been proposed. Wallace's algorithm [8] is investigated here.

This matenial is based on work supporied by the 1’ S. Army Research Office under Con-
tract DAAG29-82-K-0101.
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The normalization is accomphished as follows: The N most significant eamplex
coctlicients of the FD (N s typically 32), are denoted as A(-N/2 + 1) through
AIN/2Y This frequency domain representation of the contour is normalized by
removing information relating to the relative pusition of the contour, its size, its

I, starting pont, and its orientation. This is accomplished by three steps:
ne Step 1 Set A(Q) 5 0.
Y This removes all “DC™ positional information.
Step 2 Davide ) by [AQ], ON/2 + 10 <P < NJ2

iy detintion, A1) will be the Lirgest coellicient, so this normalizes
the size of the mnage such that AQ) <= 1, for all
Step 3 Aadtiphy the AQYs by oltr B (0 asfiken)
ks the coctlierent with second largest magnitude {(aftere A(1))
uond v oare the phases of AQ1) and A(R) respieetively

i Thos womslaneans appheaton of tie potation and starhing point shift
2 aperations finds ane of the normabizations atisfyig w - v = 0.
5 This places o magor axas of the contour along the X-axis

[N 2 thas nornahization s unigue Otherwise the phase and starting paant of the
normalization must be shifted to account for the lk ~ 1§ =1 other possible
nornmahizations. ‘Then the correet normalization must be chosen based on some other
criteria. The eriterion examined here chooses the correct norinalization as the one
which waxaimizes

N/2 . .
N RefAG)]| RelAG]]

N

A parallel implementation for the complete FD algorithin will be presented.
The algorithin is divided into disvinet tasks, each of which is examined individually.
To achieve further parallelism, the tasks could be pipelined to increasc throughput
for real-time applications.

3. MACHINE MODELS

Two models of asynchronous parallel processing and one model of synchronous
patallel processing will be used in the algorithms. The asynchronous models will be
MIMD  (Multiple Instruction Stream - Multiple Data Stream) machines; the
synchronous model will be an SIMD  (Single Instruction Stream - Multiple Data
Stream) achine [2].

The orgamization assamed for an SIMD machine will be a set of P processing
elements (PEs). each a processor with its own memory; a control unit; and an
interconnection network  The control unit broadcasts instructions to all Plis, and
cach active PE cexceutes the instruction on the data in its own memory. The
interconnection network allows data to be transferred among the PEs. Examples of
this model are MPP (Massively Parallel Processor) (1] and Siegel's PArtitionable
SIMD/MIMD (PPASM] system [5]. An MIMD machine will be assumed to consist of
I' processars, M omemories and an interconnection network  Fach processor can
cvecute an nmudependent instruction stream.  In the Shared Memory MIMD model,
the interconnection network s used to allow all proecessors access to all of memory.
Examples of this model inelude the NYU Ultracomputer [4] and C.mmp [3]. In the
Private Memory MIMD model, there is no global store, each processor has a local
memory (M = P), and the interconnection network provides communications among
separate processors. An example of this is PASM [5).

Since communication is a critical part of parallel algorithms, the types of
communications needed by each of the algorithms will be analyzed. This will be a
function of the way in which the data is distributed among the processors/memories.
However, for a given data allocation, the precise communications requirements can
be obtzamed for SIMD and Private Memory MIMD systems. These will be expressed
w terms of a few commaen interconnection fupctions. In SIMD mode, the transfer will
ocenr simultaneously for all active processors p, 0 < p < P; in a Private Memory
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another PI7s memory. (ln SIMD algorithins it more common 1o consider

transforring duta from a given PE to another PE. In MIMD algonthms, it jay be

more natural to consider a data aceess as a transfer of data from a non-local memory

foa given P'E o sinee the interconnection functions we are using are symmetric, this

distinetion witl not matter.) The interconnection functions needed will be:

(1} the class of shift functions, where shift £d transfers data from PE p o PE
(p2d) mod P

(2)  the class of cube functions, where if v = log,P and p, ; -~ p; - pgis
the Linary represetation of p, 0 < p < P, then

cube(p) =py op R

where pis the complement of p.

[~
o
i
i‘
L AMINMD anachine, the transfer will be a request from one PE to obtain data from
g
b
E

« ‘T

4. DECOMPOSITION INTO PARALLEL ALGORITHMS

In this section, parallel algorithms are described for each of the subtasks
required for generating normalized Fourier deseriptors.  The algorithms are for
conversion from chain code to X-Y coordinates, filtering, resampling, Foutier
transform calculation, and FD normalization.

Y. .

Pt s 2

4.1 Input Conversion

It will be assumed that the contour of the umage is entered in chain code
representation. Figure la shows a typieal representation for an 8 nearest neighbor
chain code. The location of point p,is dependent upon the points py through p, .
The horizontal and vertical segments (0.2.1,6) have leagth 1, the diagonal segments
{1,3,5,7) have length v2.

An example 25-point contour with its chain code representation is given in
Figure 1b. Chain code inputs of practical use contain from a few hundred to a few
thoysand pomnts. This is a variable number which depends on the relative size,
shape, and perspective of the object being identified. The number of chain code
inputs will be assumed to be C.

Y v, v

Chain code input is inherently serial sinee each input is merely an offset from
the previous input. Two parallel algorithms for this normally serial task will be
described. Initially assume that ' = VC. Thus,_the Cinputs can be divided among
P PLs and cach PE will be responsible for VC chain code inputs.  This can be
illustrated by forming the input logically into a two dimensional array. The array of
input points will be denoted as CCln{0..C-1). Figure 2 shows the division of the
contour into segments and arranges each segment into a line of the array. We can

then define parallel operations in which each Pl acts on a row or colutin of this
array.

" The first parallel algorithm uses the Shared Memory MIMD maodel. initially
o each row of the input is processed by a separate PE. This is equivalent (o dividing
' the contour inta P contiguous segments, with each PE responsible for one segment.
~ Each P can then assume that it has the “first™ segment of the contour and assign
N the coordinates (0,0) to the fiest point. It can then compute the X-Y coordinates of
the rest of its pointe starting from this reference. Given VO chain code inputs in
. each scgment, cach PE assumes the first point, then generates X-Y coordinates for
) VO additional points. Thus, the last point generated in PE p corresponds to the

: first point for PE p+1 (the point previously assumed to be (0.0)). X-Y coordinates
3 for all the input points have now been generated, however each row of the square
] (each segment of the contour) has a different origin in the X-Y plane. Now a
r correction step is employed.  Denote the X-Y coordinates of input point i as
XY(1). 0 < i < . Since the origin is arbitrary, set it at the point XY(0), that is
XY(0) = {0.0) Then the previous step correctly computed the coordinates of XY(0)
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Fig. la. Typical chain code representation
- Fig. 1b. Example 25 point chain code and contour
' CCln(0) CCla(l}  CCln(2) *- CCln(P-1)
- CCl(P)  CCIn(P+1) .
D CClng2P) .
CCIn(P-1)P) ' ) " CChn(P%1) A
e TN
.’ Fig. 2. Division of chain code points -:{1:.:-::-
: :--"h-': -\:-
& through XY(I') To correct the coordnates of XY(P) through XY(2F) in the second .:.}:.\::
Y segment, we must add to ecach of these the coordinates of XY(P) computed in the RS
first segment  Subject to memory access constraints, these P +1 corrections can be :
. done concurrently. Then to correct points XY(2P) through XY(3P) in the third
- segment we must add the {newly corrected) XY(2P) from the second segment. All of
X the segment S can be corrected in paraliel, however, segment S must be corrected
A before segment S+1, for 1 €8 < P-1. This correction must be done in order, for
. each row of the square.
o This algorithm can easily be generalized to any number of input points by

assigning [C/P] consecutive points to each of the first P~ 1 processors, and
('—(I’-lﬁ( '/I'i points to the last processor. Some efficiency will be lost if all
processors do not contain the same number of points.

In order 10 estimate the amouat of computation performed, some assumptions
about the number and types of statements will be made. lnitially, synchronization
overhead and memory conflicts will not be considered. The basic operations
performed in the parallel algorithm are the conversion from chain code input to X-¥
. coordinates based on an arbitrary origin and the correction of the X-Y coordinates to

the correct origin. Assume that the functions CtoX() and CtoY() convert one chain
code input to the proper increment in the X or Y direction. This can be done with a

. simple case statement or a conversion table in which each of the 8 possible chain e :
. code inputs maps to the appropriate X and Y increments. Then the coordinates for OGN
S :_1..1
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XY(i+1) can be obtained from XY(i) and the i-th chain code input by the pair of
statements:

X(i+1) — X(i) + CtoX(CCln(i))
Y(i+1) — Y(i) + CtoY(CCln(i))

This can be considered to be 2 additions and assignments using real arithmetic or
one addition and assignment using complex arithmetic. The serial algorithm consists
of C calls to the conversion functions, C complex additions, and C complex
assignments. The parallel approach executes in the time for VC calls to the
conversion functions, VC assignments, and V(-1 complex additions for the initial
conversion, plus \/‘E:—l complex additions and assignments for the correction.
Assuming the dominant operation is the additions, the speedup on computations is
approximately

C C 1
Sy ——— > ——= = — VC.
2W/C-1" 2/C 2 ve
For P = VC, § =P/2

Consider the memory references required in the above algorithm. If the data is
viewed as a matrix with P> data points on a side, each processor operates on a row
and then a column of that matrix. In a parallel system with global memory, the
store is typically divided into several memory units. Optimum efficiency comes
about when each processor is accessing a different memory unit during a given
memory cycle, since each memory unit can deliver only one word per memory cycle.
An obvious way to distribute the data is to put each segment of the contour (row of
the matrix) in a separate memory unit. During the first half of the conversion, each
processor acts on a row, so the memory system operates with ideal efficiency. During
the second half of the conversion, every processor acts on the same row
simultaneously. This creates a large bottleneck at the memory unit containing that
row. Kuck discusses this problem in [Kuc77] and suggests skewed storage techniques
that eliminate these bottlenecks at the cost of more complex address computations
i array accesses. There is an overhead involved in every array access, thus reducing
the speedup.

In the SIMD or Private Memory MIMD model, it is assumed that accesses to the
local memory can oceur without contention from other processors. Consider
rewriting the algorithm 1o use only local memories. The initial step of the algorithm
is unchanged: each PE obtains X-Y coordinates for one segment of the contour,
assuming an arbitrary origin. Then recursive doubling is done to produce correction
values for all the segments of the contour at once. Recursive doubling is a method
of computing accumulated sums across processors [8]. To show this in a program
segment, assume a call to rec_dbl(val} uses the value val and takes care of all the
communications to perform the recursive doubling. If val(i) refers to the value of val
in PE i, then for all PEs p, 0 < p < P, rec_dbl(val(p})) will retura the partial sum:

rec_dbl(val(p)) = EPJ val(i)
i=0
An example of recursive doubling is shown in Figure 3.

For the Private Memory algorithmn, the restriction that P = VC is relaxed. The
oply assumption made is that there are D input points in each processor’s local
memory in the array CClIn(0..D-1). This algorithm stores a segment of the contour
in each PE's local memory. Initially, each PE computes coordinates based on the
assumption that its first point is at the origin (0,0). Knowing the relative
coordinates of the last point in each segment, the absolute coordinates of the
beginning of each segment can be computed as follows. The correction for PE 1 is
given by the coordinates of the last point in PE 0; the correction for PE 2 is given
by the sum of the coordinates of the last points in PEs 0 and 1; in general, the
correction for PE p is the sum of the coordinates of the last points in PEs 0 through
p — 1. Recursive doubling is used to compute all the needed sums simultaneously.
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5 OH1 2 +3+4+0
o 0+14243 444048
! 0+1 #2143 +416+647

Step t Step 2 Step 3

v e w— .- -

Fig. 3. Recursive doubling example for 8 PEs
Onee each PE has the absolute conrdinates for its first point, it ean correet the rest
of its segment tocally. This step will be done concurrently in all Phis. The algorithm
s given in Figure 1.

(t Local variable definitions «/
> /* Number of processing elements +/

/* Number of data points in each processor s/
(‘(‘In&()..l)—-l) /* Input chain code for one contour segnient +/

.
)

.
’
]

«
]
-
3
-
h
=
14

X(0.1 /* X coordinates for this contour segment */
Yio.b /* Y coordinates for this contour segment */
sumx /* Partial sum of all X coordinates #/
sumy /* Partial sum of all Y coordinates */

X(0)~-Y(0)+0
sumx «-sumy«—0

‘. Compute X-Y coordinates for all points s/

"OR i—~0 THROUGH D-1 DO

BEGIN
X(i+ I{‘—-.\':l{"'('l().\ ('('lnti{{
Y(i + 1)=-Y(i) + CtoY(CClnfi

END

/* Compute correction factors in parallel =/

sumx« rec_dbl(X(D))) /* log.]’ teansfer steps +/

sunt¢ e—sumx - X{h X: Only consider offset from previous segments */
sumy s—rec_dbiY(D)) /+ log,P transfer steps »/

sumy —sumy-Y{l}) ). Only consider offset from previous scgments »/

+ Correct each segment locally »
OR i-1 THROUGH D1 b
BEGIN
NX{—=N\{1) +sumx
D Y{)—Y(i) + sumy

Fig 1 Input conversion algorithm for a Private Memory MIMD machine
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Here the number of auput points is C = PsD. The overall computational
complexity iy proportionad to D +log.P. If the assumption is kept that ¢ = P2, then
D =P = VC and the complexity is \/('+Iug._,\/(', compared with a complexity
proportional to C for the senal algorithin The operations i the first part of the
algorithm (1.¢., the local chain code to X-Y coordinate conversions) are the same as
those used in the serial algorithm, but are performed in C/1 steps instead of € The
remainder of the parallel algorithm is all overhead. The recursive doubihng requires
logoP  complex  additions and assignments. It also requires logal® pomnts  of
synchronization. The jocal correction step takes time proportional to C/1% however,
each operation is simply a complex addition, which takes less time than the onginal
chain code to X-Y coordinate conversion step. The time is therefore dominated by
the original conversion step. An O(F) speedup is expected; accounting for the extra
steps, an actual speedup of P72 s conservative.

Summarnizing, two algorithms for the input conversion have been presented.
Both methods are fairly regular and could be done on an SIMD machine  The figst
method is well suited for a Shared Memory MIMD machine, and the second method
works well with either MIMD machine model. The first method effectively uses
broadcasts (by placing values in memory). while the second method uses shift + 2
functions, 0<i<log,l’, for the recursive doubling.  Consider representing  the
complexity of the algorithm as being proportional to aC/P +logsl’.  The actual
choice of I' will jn general be made based on speed constraints of the application and
the range of values of €. We would like 1o estimate P, the largest “reasonable”
value for P As an arbitrary measure, if we say that we want the cost of the
computation to dominate (i.e.. aC/P > log,l’) and let a =2, then for small
contours (€ = 61), P,,, = 16, and for large contours (C = 204R), P, .. = 256.

max

4.2 Filtering

The filtering of the image is an optional step to remove some of the
quantization noise. Typically this is a smoothing operation, in which each point is
replaced by the {possibly weighted) average of itself plus W neighboring points. This
can be done ecasily in parallel by giving each processor a section of the contour.
Given a filtering window width W, each processor will need to access (W/2)=1 points
from each adjoming section. This could be accomplished by at most W transfer
steps. If a memory system is used where accesses to adjacent memories are allowed,
it is important that “wrap-around™ can occur. That is, PE I’™~1 should be a
“neighbor™ to PE 0. For more discussion of the filtering problem in general, see 7).

Overall, in this portion of the algorithm speedups on the order of P can be
expected for small values of W. For large W, the number of accesses to data in
adjacent processors may be significant. Then, properties of the parallel system will
have a greater effect on the total processing time. These properties include methods
of memory accesses and interconnection between processors/memory.

In the filtering step, only shift £1 communication is necded. The number of
usable PEs is related to the aumber of points per PE and the width W. Speed
constraints may dictate how many points must be filtered by each PE. Speedup can
be increased by increasing I*. On the other hand, for large W, the relative effect of
the transfers can be reduced by decreasing P and thus increasing /. Since
filtering is a regular operation, it could be done easily on SIMD as well as MIMD
machines.

4.3 Resampling

The input outline needs to be resampled since the Fourier descriptor algorithm
requires equal distances between input samples. From chain code input, the diagonal
segments are longer by a factor of V2.

- The basic approach to resampling is to compute the fength of the entire C-point
[~' contour, then resample it to R evenly spaced points. The length within each PE can
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be computed with a speedup of PP and the partial and total sums across the PEs can & ’

.. be computed in logal steps using recursive doubling.  After the total length has been K

. obtained, the contour is divided into P groups of points such that all groups have '

equal length. Each PE will compute the resampled points for its awn group. In the
conversion and filtering siages, each PI held the same number of points. Here the
PEs hold equal length groups of points, and the number of original points between
two groups may differ by as much as \/‘g Once the boundary locations between
groups have been determined, contour points may have to be moved between
adjacent I'Es to achieve the division into equal length groups. Once the appropriate
points are collected into a PE, it can compute the resampled points for its own
group. Simee cach PE's group has the sae length, each PE will compute the same
number of resampled points.

Durimg this resampling, each processor operates primarily on local data. The
only peed for non-local data oceurs at the ends of the contour segments.  The
atunt of non-local data sequired depends on the resampling technigue employed.
Smee most data s local, memory access is not a problem. During the recursive
doubling, the interconnection network will be used. Thus, any architecture in which
the communications facihities can casily support nearest neighbor (shift 1) and
recursive doubling {(shift. +2') transfers should run this algorithm well.

Althongh SIMD machines can be used for resampling [11], MIMD execution is
more suttable here because of the possible irregulanties in the distances between the
otiginal samples  Either MIMD model should perform well. Again, P, is chosen so
that the number of pomnts i each P12 is farge enough so that the amount of work is
signilicant compared o the parallel overhead. The range of P, as a function of C
will be approxmmately the same as for the input conversion algorithm.

4.4 Fourier Transform

The FD is obtained by computing the first 32 points of the DFT on the R-point
resampled contour. Here an FFT algorithm utilizes the PEs well. Since the number
of contour points may be as large as 2048, but only 32 frequency domain coefficients
are requiced for the FD, it may seem that a DFT, computing only the 32 coefficients
needed. could provide similar speedups.  Unfortunately, the DFT suffers from the
need to broadeast all R points to all PEs, and dves not approach the low
computational cost of the FF'T for the range of R of interest.

Using the parallel FFT algorithms in [6), a radix-2 R-point FFT can be
computed in P processors (PP a power of 2) in —2Flog2R complex multiplication steps,

1§-I.)g2R complex  addition steps, and —lLk)gzP transfer steps. If, for example,

P = 32, then each PE will hold R/32 input_samples, and the execution is dominated

by a"’%“ complex multiplications and 3—2—10ng complex additions. In addition,
. b
-2 R transfer steps are necded. These transfer steps represent the overhead of

parallel execution and could account for execution overhead near the time required
for the multiplication and addition steps. Even so, for R>>P, the speedups are no
worse than 17/2, thus the asymptotic speedup for this portion of the algorithm is e
O(P). In order to accomplish these gains, a8 communications facility is required to :
transfer the data at cach point of synchronization. Because of the high degree of
synchronization required, the FFT is best suited for SIMD rather than MIMD
implementation. ‘Ihe data transfers are cube, functions, 0 < j < logyP, and are
done frequently Ao MIMD machine of either type would be slowed by the large
amount of communication and synchronization.

For an R-point radix-2 point FFT, as many as R/2 PEs could be used.

However, it will be practical to use the same number of PEs as were used in the RO
previous algorithm (resampling), so that data reallocation is not needed. TN
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4.5 Descriptor Normalization

The remaining step normalizes the coeflicients by rule so that they can be
compared to a library of contour coeflicients. The number of coeflicients is N which
is typically 32. Suppose P = N = 32. To normalize the coefficients, A(0) is set to 0
and all values are scaled by ‘lA(I)l. This requires one broadcast and one parallel
division. To find which coefficient is largest, the magnitudes can be computed in
parallel, then the comparison can be performed in log, (=5) transfers and
comparisons using recursive doubling. The speedup would be on the order of only
P/log.l’ = 6.2 for this small section. Then depending on parameters of A(0) and
Alk), the starting point and origin are shifted appropriately. This is done once if k
= 2, otherwise 1t is done |k - I| times. Speedups can be estimated from the
operations involved in shifting the origin or starting points. Either of these can be
computed easily by multiplying each coetlicient by a complex factor. This factor is
the same across all processors for the origin adjustment and it is computed
individually  for the starting point adjustment. No communication or
synchronization is needed, so any MIMD system should handle these well. The
speedups then will be 8 > P = 32 for these shifting operations.

When more than one of these normalizations are done, the “correct”
normalization is computed as the one with the maximum sum
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i= N/2 +1
These terms can be computed in parallel with optimal speedup. The sum can then
be formed in loggN steps and compared on a single processor to each of the other
vormalizations.

Instead of dealing with a few hundred or a few thousand data points of varying
number, this procedure deals with only N (N~32) data points. Thus, care must be
observed in estimating speedups since synchronization overhead may be a significant
factor in execution speed. For this part of the processing a SIMD system may be
more efficient. MIMD systems would need to have efficient synchronization
mechanisms to perform well. Overall, however, a somewhat lesser speedup in this
section will not significantly aflect the execution time, since the number of data
items has dropped from several hundred to 32, and the complexity of the operations
performed in this step is not high. Since each PE could contain as few as one point
each, P_ .. could be 32.

6. CONCLUSIONS

The use of a parallel machine could speed up the normalized Fourier descriptor
algorithm significantly.  For practical contours, the number of PEs that can be
effectively used is approximately 18 or 32. The Lypes of transfers required are the
cube, shift 11, and shift +2' functions, for 0 < i < logoP. Some sub-algorithms
are better suited to MIMD architectures, others to SIMD architectures. Together,
the collection of algorithms that comprise the FD task demonstrates a varicty of
techniques in parallel processing and shows that substantial speedups can be
achieved using parallelism.
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THEORETICAL MODELING AND ANALYSIS
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Abstract

Most research in interconnection network analysis
has been based on topologically regular (uniformly
structured) networks. As hardware becomes less expen-
sive, more and more distributed algorithms will be
implemented by special purpose multiprocessor systems.
In this paper, a formal graph/algebraic model of special
purpose (topologically regular and irregular) networks is
presented. These analysis techniques can be used for
(a) system emulation; (b) fault tolerance; and (c) parti-
tioning of systems.

I. Introduction

Most research in interconnection network analysis
bas been based on topologically regular interconnection
networks such as the ILLIAC {3}, Shuffle {11], multis-
tage Cube [1], single stage Cube [19], STARAN [2],
ADM [13}, Mesh [14), and PM21 [18]. As hardware
becomes less expensive, more and more distributed algo-
rithms will be embedded into special purpose multipro-
cessor systems {15, 16, 17]. A system informally con-
sists of a set of devices, an interconnection network,
and a rule which defines the usage of the network. A
device will be assumed to have two ports: one input and
one output. A typical device might be a
processor/memory pair, a processor only, or a memory
only. Distributed algorithms for multiprocessors may
give rise to specisl purpose irregular interconnection
networks. Some effective modeling and analytical
methods to study these irregular networks are needed.

This resesrch was supported by the US. Army Research Office,
Department of the Army, wader contrsct aumber DAAG20-82-K-
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Problems that will benefit from precise analytical
methods include:

(1) the use of system A to emulate system B (three
different degrees of strictness of emulation are dis-
cussed);

(2) fault tolerance/reliability (achieved by multiple
mappings of the same problem into s system); and

(3) partitioning of & system.

Some work has been done on these problems for regular

interconnection networks, for example for (1)*quotient

networks” (5] and for (3) partitioning theory [20, 21].
The methods developed here will allow a well

defined- comparison between topologies of systems. For

example if system A is related to system B, and system

B is related to system C, then it may be possible to say

something about the relationship of system A to system

C. The similarity measures are of three basic types,

with each one stricter than the previous one.

The material is presented as (ollows: after each
major definition or theorem a brief example of its appli-
cation is given. In this paper it will be assumed that
the reader is familiar with basic graph theory [4, 9] and
basic abstract algebra |8, 10}].

In section II some basic concepts are defined. The
model of interconnection networks to be used is given in
section ITI. In section IV the definitions of a system and
three types of subsystems are presented and their pro-
perties analyzed. The concept of a ‘‘quasimorphism” is
explained in section V. Its usage in analyzing the emu-
lation and other problems is exemplified. Finally, in
section VI, the global conclusions of this paper are dis-
cussed.

II. Basic Definitlons
In this section, basic definitions needed as back-
ground for the rest of the paper are given. A general
model of an interconnection network is shown in Fig. 1.
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DEMUX
MUX MUX
D E
C ={Co, Cy}

Cp = {(A,D),(B,E)}
C, = {(A,E),(C,D)}
vl = ‘A,B,C} ’ Vo = (DIE)

Fig. 1. General mode! of an interconnection network.

Definition 2.1:
Let V| be the set of input labels of a network, and
let Vo be the set of output labels of a network
such that:
VanO =0. V(#ﬂ. VO #0, where O s
the empty set.
Then  Cp, C V| x Vo @ {(v,,¥})] v.EV,.V4EVo)
is called the //O correspondence of V; with V.
{Physically, C,_ represents one state of a
reconfigurable network).

Definition 2.2: )
Let C, C VixVg be an [/O correspondence, then
S(C,) @ {va](vavp) € Cp) is called the source
sel of C,.

Defmition 2.3:
Let C,, C VxVg be an [/O correspondence, then
D(C,) @ {vp| (vavy) € Cp} is called the destina-
tion set of C,,.

Definition 2.4:
Let {C,,} be & set of I/O correspondences, then
S({Cu}) & U S(Cp).

Definition 2.5:
Let {C,} be a set of 1/O correspondences, then
D({C,}) 4 U D(C,).

Definition 2.6:
Let C,, C V)xVg be an /O correspondence.
It vy 2vy Y(vovp) (v,vg) €EC,  then the
correspondence Aas the property of nondestrue-
tinnly.

Definition 2.7:
Let A be a set, then P(A) @ (S | SCA} is the
power sel.

Definition 2.8:
l.et @ be a map from A to B. Let ECA then
o) 8 (b€B| &s) = b, s€E} is the image of E
under 0.

1. Interconnection Network Model

In this section, a formal graph/algebraic model of
an interconnection network is presented. This model
will be used to define a system in section IV.

Graph models for analyzing networks have been
used by other researchers. For example, in [8, 7, 12, 22]
they are used to analyze Banyan networks, sad in [5)
they are used to study the partitioning of regular net-
works. The model presented here differs from [8, 7, 12,
22] and [5] by being cobmpletely general so that it can be
used to describe an arbitrary (including topologically
irregular) interconnection network.

Definition 3.1:
1/ O representation of network.
(1} V| —set of input vertices
(2) Vg — set of output vertices
(3) C - set of 1/O correspondences C,,, where
CnCVixVo
(4) VC, €C, where C, has the property of
nondestructivity '
(5) S(C) =V,
(8) DIC) =V,
*K" will be used to denote a network.
Notation: K = (C) = ({Ca}) = ({{vevs)}})
{the notation {(v,,v,)} indicates a set of one or
more pairs of vertices).
Physical implications: (v,,v,) € C, represents network
moving data from input v, to output v, whea the state
of the network is C,,. C represents the set of all possi-
ble states of the reconfigurable network.

IV. Systems and Subseystems

In this section, formal graph/algebraic definitions
of a system and three types of subsystems are discussed.
Also shown are basic properties of the three types of
subsystems. Some theorems about subsystems are
presented and brief examples of their applications are
given.

The mathematical definition of system given in this
section can be used to model the following object. It
can be interpreted as a paralle] computer system, where
the vertex v,EV| corresponds to a device output, v,€Vg
corresponds to a device input snd Cg to a state of a
physical network.
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Definition 4.1:
Cr — feedback correspondence. Let
K = ({{(v,.vp)}}) be a network. If the usage of
the network is such that data outputed at v,EVp
can be fed back in v,EV|, then (v v )ECs.
Phynical implicationa: This describes the situation where
& processor or any other device is connected to both v,

and v,. The device inputs data into v,€V, and receives

data at v EVg. Thus if (v,,v,)ECy then the same dev-
ice is attached to v, and v,. If (v,,v,)¢Cp then a
separate device is attached to each of v, and v,. Since
it is assumed that each device has only one input and
one output, and that a vertex can have at most one
device connected to it, Cp has the following properties:
(8} if (v,,v,) (v',v’)ECr then v, = v,;
(b) if (v,,v,), (v4,¥,)ECy then v, = v,
(C) Cp C V|Xv°. '
Theorem 4.2:
Cr is map, 1:1, onto from X to Y, where XCV,
snd YCV,.
Proof :
Obvious by definition of Cy and properties (a),
(®), {c).
O
Definition §.9:
System. Let K = (C) =({C,}) be a network,
with V; and Vg, and let Cp be a feedback
correspondence (CpCV xVy), then § = (C,Cf) =
{{Cpm}. CF) is called the system.
Physical implications: The Cp precisely describes the
usage of a network in a system. U S{Cy) =V, and
D(Cy) = Vg, then the system is fully recirculating. 1f
Cy # O and either S(Cg) # V) or D{Cy) # Vg (or both),
then the system is partially recirculating. If Cp = O
then the system is nonrecirculafing.
An example of a system is given in Fig. 2.

vo V v YN
Vl{ o V1 i N

1 | - . |

DEVICE

‘ DATA FLOW

Vo {[ - ]

Y u Y Uma

Fig. 2. Example of a system.
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Definition §.4:
Equality of systems. Let S = (C), Cf!) snd
si2) = (cf?), CF")) be two systems. If (1)
vih = v, vl = v, (2) ¢ = C); and (3)
Y = 2, then S is equal to S,
Notation: st = §2).
Physical implication: S/ and S} are completely inter-
changeable.
Theorem 4.5:
Sufficiency condition for equality of systems. If (3)
holds in Def. 4.4 then (1} holds.
Proof:
(8) Show: (3) = V[V = V{2
Vil = §(cth) = s(Ci¥) = v{3),
(b) Show: (3) = V{I) = v,
v = p(c) = p(c®) = vg).
O
The implication of this theorem is that to check two
systems for equality it is only necessary to examine Cp
and C.
The definitions 4.6, 4.7, and 4.8 describe three
different types of subsystems: a, b, and ¢. They are
presented in order of increasing strictness.

Definition 4.6:

Subsystem type a. Let S =(C, CM) and

S = (C, C) be two systems.

() v C v v C v,

(2) CV € 2 and

B vecHecH

JcPect chgcchUch

then $1 is subsystem type & of S3). (*=x" mesns

“such that”)

Notation: $'Y) Ca S,
Example of subsystem type a.
Let
§# = (C®, ) be s system.
Vi = {vo v vl
VE = {ug, vy, ug)

('P) {{vo, upldvy, uy)iva, us))
¢ = (Cf, ¢, ¢ty

CE = (v, upldve, up){va, )}
CP = {vy, uhdvy, ugh)

("52’ = {{va, uyl(vy, uyl}).

Let
V{') = {vo vy}
Vb') = {ug uy}

C}" = {(vo, up)(vy, uy)}
¢l = {(‘6”' C[”}

C&l) = ((V°| uo)v(vl' U|))
cl" = {{vo, uy)}.
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Then (1) (C!, CH") is & system (denoted SIY)),
2 () Vi'C VP, v v
(b) Cciic ¢
© GV Cepuc
o € cff € cfp Ui
= S} Ca 82,
« Defmition 4.7 '
Subsystem type b. Let S =(CY, CH) and
§@ = (C¥), Cf*) be two systems,
I (1) ViV C VA, VR C V§
(2) Cf) € Cf), and
@veMech 3cPecd =l ccl
then S!V is subsystem type b of S(2),
Notation. 5!V Cb St
Example of subsystem type b.

. R V. & s 3 o A WERYT S .

PP MY

el LY

TR ¥

Let
SB = (C?, ) be a system.
I VB = {vg, vy, v3)
. VE = {ug. uy, ug}

(7‘.7) = {{vp, ug)(vy, uy)(va, ua)}
Cc¥ = ‘cp)' CP" C{”)
Ci = {({vq, ug)(ve, uyh{va, u3)})
CPPY = {vy, upilvy, ug))
CP = {(va, uphlvy, vy}
Let
Vi) = {vo, vy}
VJ)” = {u,, uy}
CH) = {{vo. upldvy, u)}
Y = ((_;él)‘ C]”}
C = {(vg, uo)}
CJ" = {{vq, vohiver uy)).
Then (1) (C!), CH)) is a system (denoted SIV)).
(2) () VIV C VAL VE C V§
(b) CMC P
ey chcce, cfhcep
- S Cp S3),
Definition {.8:
Subsystem type ¢. Let SV =(C CH) and
$@ = (C), Cf*) be two systems.
N Cc v v Cc vy
(2) Cf1 C CP, and
Bvehech 3cPec® xch=cp
then S! is subsystem type ¢ of S@),
Notation: S Ce S¥).

Exumple of subsystem type ¢.
Let

53 = (C3, Cf) be » system.
vl‘.’) = {VO' Vi vl}

vg) = ("Ov Uy, "2)

CH) = {(vo, uohlvy, up)(va, ug))

R L bt Sh st Sadeio b aeraeagin-ste D s ée S0 JSL SR INE IR EE ST R e S

cl = (¢, ), iy
C = {{vo, uollve, u)lvy, ug)}
CIB = {{vy, whlvy, ug)}
C = {(vq, vy)lva ug))-
Let
Vi = {vy, vy}
V) = {uy, up)
CHY = {lvy, uy)}
i = ¢y, cfY)
C§" = {(v), uy){vy, up)}
Cf” = {{vg, uy){vse ug)}).
Then (1) (C!, C}Y) is a system (denoted S{Y)).
(2) (a) VIV C VR, VE C V)
(b) ciccPp
(o) CM=cp, cph= cy)
= S} Ce 6,
Theorem 4.9:
Sufficiency condition for subsystem type a.
If (2) and (3) hold in Def. 4.6 then (1) holds.
Proof: ,
(8) Show: (2), (3) = V{!} C V{3,
Vit = siet) = siJ el
C S (€ Uc)
since §!" Ca §1? = yCMect)
3 cPec® aciccPuch.
SIUCR U Cf) C S(U(cP U cfh)
w 3 Cl e c .
SUECH U iy
= s(U ¢l U s(cf) = v
Therefore V{! C V3.

(b) Show: (2), (3) = VEIC V.
Similar to (a), with S(C() and S(C3)
replaced by D(C") and D(C?)), respectively.
Q
Theorem 4. 10:
Sufficiency condition for subsystem type b.
1f (3) holds in Def. 4.7 then (1) holds.
Proof:
Analogous to proof of Thm. 4.9 (note that (2) is
not needed since Cy is not part of (3)).
a
Theorem §{.11:
Sufficiency condition for subsystem type ¢.
If (3) holds in Def. 4.8 then (1) holds.
Proof:
Anslogous to prool of Thm. 4.10.
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Theorem 4.12:
Let sV =(C), C") and s
two systems.

(1) 1 S" = S (hen Si1) Ce 52,
(2) 1S Ce S then SV Cb S2),

(3) 16S" Cb S then S Ca S12).
Proof:
Obvious, follows from definitions of subsystems.
0

= (C3, C) be

Theorem 4.13:
Let St = (¢, C{") and s?
systems.
It (1) SMCeS?. and (2} SB® CesM,
sl = g(2),

= (C1), Cf*) be two

then

~ Proof:

Show: (1) V§V = v{3) v{t
and (3) C1V) = C1?),
Remerk: From Thm. 4.11 it is known that (3)
= (1), s0 only (2) and (3) have to be shown.
(s) Show: C = CP.

S Ce s = CiV) C CP.

S® Ce Sl = ) C CHY). = V) = G,

Show: CI!) = C13),

vclec

3 unique CP e C® x ) = CP.
Similarly v C{? € C?

3 unique C“’ ecl Cm = Cm
- Cit) = C")

=V§; (2) ¢ = cp);

(b)

V. Quasimorphism
In this section the main results are presented. A
new similarity measure between systems is defined that
sllows s comparison between arbitrary (regular and
irregular) systems. This measure is called quasimor-

* phism and is completely specified by two mappings

called ¢ and ¢g. The quasimorphism will facilitate the

analysis of following problems in parallel processing:

(a) system A emulating system B (three different
degrees of strictness of emulation are discussed);

(b) fault tolerance/reliability (achieved by multiple

mapping of same problem into s system);

partitioning of a system.

(c)

The concept of quasimorphism provides an analytical
method to study network properties that are implemen-
tation independent, such as emulation and partitioning.
Definition 5.1:
Quasimorphism type (a,b,c); where (a,b,c) means
oneof aor borec.

...........
L.
......
..........
......
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Let S = (¢, cf) = ((ci), cf)
= (({(vavs )} ), {(ve%y))); and
si?) = (¢!, C}"‘)) = ({(ﬂﬂ} CP))
= ({{(wywy)1}, {(w,,%,)}) be two systems.
It3 ¢ = (). ¢o) such that
(1) ¢ Vi = VA isamap
(2) ¢o: V& — V§ is s map
(3) ¢: (S} — (S} is a map such that:
W(S) = W{{(vav )t} ((Vevy)))
2 ({{(8x(v,)Bo(v)} ), {((¥,), dolv,)})
C (a,b,c) S@,
then ¢ = (¢, do) is quasimorphiam type (a,b,c)
“from St 1o S,

. Physieal implications of quasimorphism: Given two sys-
tems with arbitrary vertex descriptions, if there exist ¢
type (a,b,c), that is, a ¢, and ¢y with the proper con-
straints from S} to S, then S!) and S(® are similar in
a topological sense. The loosest similarity is ¢ type a.
The strictest similarity is ¢ type c. The ¢ = (¢, ¢¢)
precisely describes how to handle the following prob-
lems: (1} emulation of systems; (2) identilying
equivalent systems; and (3) partitioning of a network.

Additional auxiliary maps based upon ¢ and ¢
are defined to facilitate later analyses.
Definition 5.2:

¢ 1x0 Map.

Let St = (CV.CLM); and S? = (C.C[4) be two
systems.

Let ¢pp ViV = V{2 be a map; ¢g: VI - V§
be a map.

Define: ¢p,0: VIV x V) — V{3 5 VR

#1x0 ((vave)) & (84(v,). Solvy)).
Defmition 5.9:
p map.
Let stV =(c", C[Y); and S
two systems.
Let ¢,0: Vi" x V&) = V3 x V) be a map.

= (C1®, CP) be

Define: g: P(V{") x V§)) = P(V{? x V§)
#({vav))) @ {dyollvavh).
Lemma 5.4:
If 4y, do are 1:1 maps then @y, is 1:1 map. )
Proof:
Follows from definition.
o
Lemma 5.5:
If 1,0 is 1:1 map then uis 1:1 map.
Proof:
Follows from definition.
(=]
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Defmition 5.6:
Allernate notalion for quasimorphiam.
Let S = (C, 1) = ({{vave)}), {Vau¥))) be
a system.
Then: YY) = w{({ {{vav))), v, v}
= ((I‘({(vuvb””v "(“vl'vl)”)
= ({{dol(vava)) ), (Suollva¥a)}):
Lemma 5.7:
Let S = ({{(v,vs)}}, {(v,.¥,)}) be a system.
Let u: P(V{Y x V) — PV x V§).
Let y: {S} — {S} be s quasimorphism.
WS = ((p({(vuvy)])}, Bl{Yav))
If uis 1:1 map then ¢ is 1:1 quasimorphism.
Proof:
Straightforward, but tedious.

Theorem 5.8:

Let ¥ = (¢4, o) be & quasimorphism.

If ¢, and ¢g are 1:1 maps then ¢ is 1:1 quasimor-

phism. ’
Proof: .

{1y o $0 )1 = é0 1:1 (Lemma 5.4).

(2) éno 1:) =* p 1l (Lemma 5.5).

{3) p l:l=»y 1.1 (Lemma 5.7).

a

Physical implications: Suppose there is a ¥!") such that
vi(sh) = 83 and ¢((S3) = S and ¢!V is 1:1. First,
this mesns that S!V = % gince p!V is 1:1. Second, snd
more important from an enginecring point of view, the
1.1 guarantees an eflicient emulation of S by S,

That is, il sll V) were connected to processors and Vg

to memories, the emulation would be such that the pro-

‘cessing work of one processor in S!! would be exactly

equal to the processing work of one processor in the
image of S\ in $2). Also, the amount of data stored in
s single memory unit in S!") would be exactly equal to
the amount of dats stored in memory unit in the image
of S in S3). In other words, the mapping is regular in
some sense. Analogously, the load balancing snd utili-
zation in the image of S{") in $!? will be identical to
that o S14),
Definition 5.9:

Let {S} be a set of systems. .

Define the relation R of type y{s,1:1) on (S}

denoted by R-¢{a,1:1) as follows:

(S1V,5®) € R-y(a,3:1) if 3 a quasimorphism

¥ = ($1.90) type a, L1 from S 1o S,
Theorem 5.10:

Let R-y{n,1:1) be 22 in Del. 5.0 then:

(1) R-¢(al:}) is reBexive,

{2) R-y{a,}:1) is pot symmetric,

(3) R-v{s,i:1) is transitive.
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Proo]:
For (1): To show reflexivity, need to show
(S8t € R-yl(a,1:1) Vv SMe(S). Let

¥ = (#1,40) be such that ¢;,¢q are identity maps.
The rest is straightforward.
For (2): show R—y{a,1:1) is not symmetric.
Must show (S!), S12)) € R-y(a,1:1) does not imply
(812, 80y € R-y{a,1:1).
Oulline: Constructing an example of S{") aad Si?
such that (s™,51?) € R~y(a,1:1) and
(S®@), Sty ¢ R-y{a,1:1). Although sn example
where |V{"| #|V{¥] would suffice a more
interesting example is given.
Let
st = (c,cf
V{" = {vava}s V!)" = {“c-“d}
C"” = {(vatte) (viyug))
cly = (C&“, C}ll}
C§" = {(vyug)),
Cft = {{vauolvaug))-
Let
Y = (¥, CP)
VI = {wawy), VB = (xxg)
CP) = ((wmxc)-(wbvxd"
cl? = {Cp)'c{zi;
C® = {(wpx)),
CP) = {(W.,X‘),(W..X‘”.
Then ¢ = (d1,00) with ¢{v,) = w,, $i(vy) = wy,
¢o(ue) = X @olug) = x4 is quasimorphism type
a,1:1 from St to S, but there does mot exist
quasimotphism type o,1:1 from SB to S,
For (3): show R-y{a,1:1) is transitive.
Must show: (S!Sl € R-yf{a,1:1),
(8'2,83) € R-y(a,1:1) = (S,SP)) € R-¥{a,1:1).
Outline: Transitivity will be shown by exhibiting
¥(a,1:1) from S!*) into S13),
{1): Let S =(Cchcfy; s =(CO.CP); and
$1 = (C,CHY) be three systems.
(S, € R-y(s,1:1)
= I o Vi VA 1)
and 3ol : VM - VH 11
(2) and Lemma 5.4
= 3ol Vi x VI = VB x V@, 11,
(2) and Lemma 5.5
= 3 4l PV x V) - PV x V),
)L
($2),519) € R~yy(s,1:1)
- 3 ¢ : V@ - VP 11
and 3 o) : V) - VH | 1.1
(4) and Lemma S 4
=32 VA x VP = VI x V§ , 1.1,

(2):

(3):

(4):

(8):
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(4) and Lemma 5.5
= 3 42 PV x V) - PV x V§)),
1:1.
(6): Define: ¢; = ¢f 0 ¢f!): VI = VP (“o" is
compoasition of maps)
Clearly: ¢; is map, 1:).
(7): Define: ¢ = ¢{2) 0 ¢{!): VE) = V§.
Clearly: ¢q is map, 1:1.
(8): Define: ¢,0 = #fch 0 #f)h :
$0 : VIV x VO = VI x VI
Clearly: ¢;,0 is map, 1:1.
(9): Define: g = p!? o " -
p: POVEY x VEY) = PV x V§).
Clearly: u is map, 1:1.
(10): Claim: ¢ = (¢y,60) is quasimorphism from S(*
to S, type a,1:1.
(11): Show: u(C{h) C CP.
(5".5%) € R-y(a,1:1) = u"C{") C CP.
(S¥,5%) € R-v{a,1:1) = 4¥(C) C CP.
= u®hutcph) C cP
= (™ o wiiC) = ucl) € CP.
{12):Show: yCM e c" 3 cM e CB
3: pC) c cHUCP.
(a): (SM,8) € R—y(a,1:1)
—ycihech 3cP ec?
3: M (Cc) c cPUCP.
(b): (5,5%) € R—y(a,}:1)
—~ycPec? 3cPecd
3: u9(Ci C c U P
(c): (s), (b) = wCM) g CV
3 ci e CY 3: 4Buclh)
c #MCP U ci)
= w(CP) U uHC)
ccPUCPU u® (CcP).
(d): (c) and CI¥ D 2(CfH)
= upCl) = (™ o IYCh)
=uci) g cPUCP.
(13):(11) and (12) =* ¢ = (¢,é¢) is quasimorphism
type a.
(14):(9) and Lemma 5.7 =~ ¢ is I:1.
(15):(13) and (14) = (S{1) S(¥) € R-y(a,1:1).
{16): Conclusion: (15) == R-y{a,1:1) has the pro-
perty of transitivity.
o
Physical implications: If $(S/') C a S then the system
S3 can emulate system S!'). The movement of the
data is sccomplished (8) by using the network {C{2}
correspondences, and (b) by using the feedback or inter-
nal connection of the device connected to both input
and output of the network.

This type of emulation always exists if the S® gys-
tem is partially or fully recirculating. If the network in
$12 is  partially or fully recirculating then
3 (v,v,) € C#. Then using maps ¢v;) = v,

Vv, € VY, @olv;) =v, Yv;€VE will satisly the
necessary conditions for quasimorphism type s. This
however will result in very poor load balancing. Great
improvement in load balancing optimality will result if
the quasimorphism is 1:1. Then each device in wstth
{the image of ${" ynder ¢) will have same amount of
computation (data) as the corresponding device in s,
Definition 5.11

Let {S} be a set of systems.

Define the relation R of type (b 1:1}) on (S}

denoted R-y(b,1:1) as follows:

($t",5) € R-y{b,1:1) if 3 a qussimorphism

¥ = (#.90) type b, 1:1 from SI!) 1o S).

Theorem 5.12 :

Let R-¢{b,1:1) be as in Def. 5.11 then:

(1) R~-y(b,1:1) is reflexive,

(2) R-¢(h,1:1) is not symmetric,

(3) R-y(b,1:1} is transitive.

Proof:
For (1): Reflexivity: similar to proof of Thm. 5.10.
For (2): Show: R—¢(b,1:1) is not symmetric.

Must show (S1),S®)) € R-y{b,1:1) does not imply

(S'2),811)y € R—yib,1:1).

Outline: Constructing an example of S{') and st

such that (SIS € R—y(b,1:1) and
(S s(M) ¢ R-y(b,1:1).
- Let

st =(ch,cf")

VP) = {V.vvb)vvbn = (ue-ud)

i = {(vyu,))

o= {(’J”.C"’.Cl")

G = {(vpu4))

C{" = {(vyug))

iV = {(vyul).

Let

sf2) = (C(z)'(;'(ﬂ)

VP) = {wnvwb}-Vg) = {xel‘d}

O = {(wyx,))

o = (e

C&” = {(wl'xd)'(wl'xc))

C¥ = {(wyxy)}.

Then ¢ = (¢Iv¢o) with ¢(v,) = w,, élve) = wy,
and ¢olu,) = x,, @olug) = x4 is quasimorphism
type b, 1:1 from S!!) to S, but there does pot
exist quasimorphism type b, L:1 from S to St
For (3): Show: R—y«{(b,1:1) is transitive.

Must show: (S!") 512} € R-y{b,1:1),
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(513 $B3) € R-¢(b,1:1)
- ($!1,51%) € R-y¢ib,1:).
Ostline: Transitivity will be shown by exhibiting
¥(b,1:1) from S!Y) o SB).

{1y Lew st = (cticty, s

= (C¥ CYy; and
§1 = (CBCY) be three systems.
The proof is similar to the one of Thm. 5.10 part
3, steps 2 through 11 except replace y{a,1:1) by
v(b,1:1).
(12):Show: wCi € ¢V 3 ¢ € CV!
> ucih Cc c.
(a): (S S1®) € R-y(b,1:1)
- ycMech 3cPe cl@
3 ptciy c cla.
(S*1.81)) € R-y(b,1:1)
- VC,‘,"’ ecCd 3 C‘(lS) € C
> wHCP) C Cf.
(a), (b)
= ychecth 3cHect
> ey ¢ pAe) € e
(13):(11) and (12) =+ ¢ = (¢.00) is quasimor-
phism type b.
{14):{9) and Lemma 5.7 == y s 1:1.
(15):(13) and (14) = (SIS} € R-y(b,1:1).
{(18); Conelusion: {15) =+ R-y(b,1:1}) has the pro-
perty of transitivity.

(b):

(e):

]
Physical implication: It y(S'") C b S then the system
$2) can emulate system S!Y. The movement of the
data is accomplished by using the network correspon-
dences {C!¥). This type of emulation is harder to
achieve than the type a since the Cy contribution can-
not be used to move the data. Again, as in type 8, the
load balancing optimality will greatly increase if the
quasimorphism w 1:1. I the quasimurphism is 1:1 thea
the load balaucing as well as utilization io the image of
' in 513 will be identical to that in S{!).

The quasimorphism can be used o map multiple
copies  of system S into  SB),  where
vt N l3(S1Y) = O is pecessary additional con-
straint. This will allow tandem crosschecking of partial
results of & computation and therefore can be used as
error detection for fault tolerance.

Definition 5.18:
Let (S} be a et of systems.
Define the relation R of type y{c,1:1) on {S)
denoted R-y{c,1:1} as follows:
(8",8?) € R-y(e,1:1) i 3 & quasimorphism

= {¢1.00) type ¢, 11 from S 1o S

Theorem 5. 14 Let R~yfc,1:1) be as in Def. 5.13 then:

(1) R-y{c,1:1) is reflexive,
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(2) R-y{c,1:1) is not symmetric,
(3) R-y{c,1:1) is transitive.

For (1): Reflexivity similar to proof of Thm. 5.10.

For {2): Show R-¢{c,1:1) is not symmetric.

Must show, ($!1.S?)) € R-y{c,1:1) does not imply
(81 st1) € R-yfe,1:1).

Outline: Constructing sn example of S{!) and S®

such that (S, 813 € R-y(c,1:1) and
(s,51) ¢ R-y(e,1:1).
Let

st = (ct, ¢y

Vl(l) = {V.'vb}. Vbl) =

CH = {(vpug)}

o = (cfi.cf
&“ {(V.,Ild) (vbl :)}

CiV ={(v,u,)}.

Let

s = (c3 )

VP, - (W wb, Vg” = (xcvxd)

{“Clud}

CR = ((wyxg)}

c? = (cp.cpci)

052’ = {(wyx.)}

CP) = {(w.,x‘),(wb,xe)}

C = {(wpixg)}-

Then ¥ = (¢),80) with ¢y(v,) = w,, ¢{vy) = Wy,

and ¢olu.) = x, doluy) = x4 is quasimorphism
type ¢, 1:1 from S} to S, but there does not
exist quasimorphism type ¢, 1:1 from S(® to (),
For (3): Show R-y{c,1:1) is transitive.
Must show: ($!V),S13)) € R-yfc,1:1),
(52.513) € R-y(c,1:1) = (S1).S)) € R-yc,1:1).
Ovutline: Transitivity will be shown by exhibiting
e, 1:1) from S into S,
(1) Let 8t =(ch,cf), s® = (Cc®,Cf); and
63 = (CH,C be three systems.
The proof is similar to the one of Thm. 5.10 part
3, steps 2 through 11 except replace y{a,l:1) by
yic,1:1).
(12): Show ¥ C e M 3 ¢ e CV)

> uCi) =ci.

(a): (S5 € R-yfc,1:1)

—~ycMech 3¢l ect
> l‘(')(Cr(n')) = C'(Iz)_

(b} (S® 8 € R-yte,1:1)
= yclec? 3cPect
3 u¥ClH) = cP.
(a), (b)
= yCcihect 3 C,{” e c®
> WluC) = wCf) = c.

{c):

- T COC I,
- - ST o,
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(13):(11) and (12) = ¥ = (¢,60) is quasimor-
phism type ¢.
{14):(0) and Lemma 5.7 =+ ¢ is 1:1.
(15):(13) and (14) = (S SO) € R-yg{c,1:1).
(18): Conelusion: (15) =+ R-y{c,1:1) has the pro-
perty of transitivity.
: a
Physical implications: of & quasimorphism type ¢. Since
it is required in type b that

vchechacPec® xch c c

there may be some side effects caused by C{? emulsting
the correspondence C{!). Moreover, these uncontrollied
side effects will not allow partitions to operate indepen-
dently. That is, connections that are part of C/?, but
not part of C{!), may be established when C{? is used
to emulate C!!). This may or may not be a problem.
To asnalyze this potential problem, the type ¢ was
defined. With a type ¢ quasimorphism, when the sys-
tem S emulates system S('), the movement of the data
is accomplished by a subset of C!?. The difference
between type b and type ¢ is that in type ¢,

vCc{le ¢ 3 c® el o ¢ =

This requirement will eliminate the side effects that
type b has. More importantly it means that y(S!!) is
actually an sutonomous subsystem of S*). The auto-
nomous property will be explored further in a later
paper studying partitionability.

V1. Conclusions

In this paper a theoretical basia for analyzing both
topologically rogular and irregular interconnection net-
works was developed. A rigid graph/algebraic model
that can be applied to both regular and irregular inter-
connection networks was defined and its usefulness and
flexibility was demonstrated in subsequent snalyses.
An important and very useful measure of similarity of

networks called quasimorphism was introduced. Three »

types of quasimorphism were defined between two sys-
tems S" and S®, where type s is the least strict and
type ¢ the most strict. Necessary conditions for each
type of quasimorphism are given and their properties
snalyzed. The model and the quasimorphism relation
provide the necessary theoretical background for study-
ing the following problems of paralle) processing.

(a) Emulation of system S(") by system S(3),

(b) Fault tolerance method achieved by con-
current execution of multiple copies of the
same problem.

{c) Partitioning of s system.

Future work includes characterizing the necessary con-

264

ditions for partitioning of a system and studying muiti-
level quasimorphisms for snalyzing systems involving
multiple networks.
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ANALYSIS OF PARTITIONABILITY PROPERTIES
OF TOPOLOGICALLY ARBITRARY INTERCONNECTION NETWORKS

Robert R. Seban
Howard Jay Siegel

PASM Parallel Processing Laboratory
School of Electrical Eagineering
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West Lalayette, IN 47007, USA

Abstract

As hardware becomes less expensive, more aad more
distributed aliorithms will be implemented by special
purpose multiprocessor systems. An important  com-
ponent of such a system is the processor interconnection
setwork. A general model of interconnections is used to
formally study composition, decomposition, and partitio-
nability properties of networks. For the reasons of imple-
mentation efficiency and reliability, these properties of
networks are salient factors. Three different types of par-
titionability are distinguished and described and their
properties shown. An algorithm is preseated and proven
correct that will accept as its input an arbitrary intercon-
nection network and will produce one of four possible
outputs: {1) the network is not partitionable; (2}, (3),
and {4) the network is partitionable in one of the three
types of partitionability described.

1. Introduction

As hardware becomes less expensive, more and more
distributed algorithms will be embedded into special pur-
pose multiprocessor systems f{eg.. 9, 10, 12|. Most
current research on interconnection networks is specific to
a single network or a single class of networks; it consists
of defining a model for the network or class to be
analyzed and using it for the analysis [18]. This method
suffers from the following drawback: the model usually
holds for only the network or class in question snd there
fore the analytical results are useful anly lor that aetwork
or class. A solution to this problem is to define a com-
pletely general model as was done (11]. By using this
model, analytical results are applicable to most classes of
networks. The model was defined aad used in {11] to
anslyze the emulstion properties of networks.

Tbis research was supported by the US. Army Research Office,
Departmest of the Army, usder contract number DAAG29-82-K-
0101. 2ad the Purdue Research Fouwsdatioa David Ross Graat
1084/8S gumber 0857.

CH2149-3/85/0000/0173501.002 1985 [EEE

In this paper the properties of network composition,
decomposition, and partitinnability are analyzed. An
algorithm is developed which will output one of the foi-
lowing:

(1) The network is not partitionable.

(2) The network is partitionable into subnetworks with
common control signals and the combination of the
of the subnetworks will exactly generate all intercon-
nection patteras of the original network.

{3) The network is partitionable into subnetworks with
separate control signals and the combination of the
subnetworks will exactly generate ail interconnection
patterns of the original network.

(4) The network is partitionable into subnetworks with
separate control signals and the combination of the
subnetworks will generate a superset of interconnec-
tion patterns of the original network.

The partitionability property of interconnection net-
works for parallel computer systems is important for the
following reasons.

(1) If the network is partitionable then the resource
allocation of only a subset of the total resources is
possible. This can be used as follows.

(a) The allocation of only a subset of the total
resources is possible so that a user can use
only a small part of the machine for program
development and to use the whole machine
when the program is developed.

(b) In a multiple user enviroanment the partition-
ing provides a natursl protection among users.

(¢} In s multitasking environment the partition-
ing provides a protection among independent
tasks.

{2) If the network is pactitionable the fault tolerance of
the system increases as follows,

(a) A method of graceful degradation is possible by
separating the faulty section from the correctly
operating ones.
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{b) If in addition to being a partitionable network,
the sections are isomorphic, then an increase of
reliability may be realized by multiple map-
pings of the same task oanto the multiple sec-
tions and tandem cross checking of partial
results.

{¢) It is possible o construct a fault tolerant net-
work using a partitionable network as a core as

will be shown in future work.

{3) It the network is partitionable, then there is an
efficient implementation in terms of hardware and
control. The network can be implemented as a set
of network components each with its own set of
inputs 3nd outputs.
(a) If an input/output belongs to the input/output
set of a component network them it does not
belong to a different component, and the rout-
ing of the data paths on a VLSI chip or on a
printed circuit board will be simplified.
{b) In addition, only the subset of controls that
affect a particular partition will be conaected
to it, therefore the control lines routing may be
simplified.
The results presented here are applicable to all network
topologies. It is assumed here that the reader is familiar
with basic graph theory |1, 8] and basic abstract algebra
(5.5

The paper is organized as follows. In section H the
basic concepts are defined. The definition of an intercon-
nection network with an arbitrary topology is given in
section IMl. lo section IV three different types ol partitio-
nability of interconnection networks are described. In
section V an algorithm is presented which determines if a
setwork is partitionable, and if it is, differentiates among
three types of partitionability.

I. Basic Definitions

In this section, basic definitions needed as back-
ground for the rest of the paper are given.

Let the set of input labels of a graph/slgebraic
structure be denoted by V; and the set of output labels
of the structure be denoted by V. All graph/algebraic
structures defined in this paper over V; x V, will assume
that ViM Vg =0,V 20, Vg 20, where O is the
emply setand V; x Vo = {<v > | v, € Vy, vy € Vpl.

The following notation will be used throughout this
paper. The symbols are enclosed in a pair of double quo-
tation marks.

"'} - delimiters for set.
“{*.")" - function application and grouping of operations.
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“&",>" - delimiters for a-tuple.

“[".]" - used as defined in context.

Definition 2.1: Let C, C [V| x Vg, then C,, is an [JO
correspondence over V; x V,.

Definition 2.2: Let C, C [V x V| such that
v, >, <v,vy> €C, ™ vy #vy, then the
C. is 3 nondestructive correspondence. (Physi-
cally, C,, represents one state of s reconfigurable
network).

Definition 2.3: Let C[V; x Vol & {C, € [V x Vol | Cq
is nondestructive}. Then C[V| x V| is called the
C-set over V; x V5.

Definition 2.4: Let C, € C[V| x V), then
s(C,,) 2 {v)] <v,vp> € C,} is the source set of
Cm

Definstion 2.5: Let C, € C[V| x Vy|, then
d(Cp) 2 {vy] <V, V4> € Cp} is the destination
set of C,.

Definition 2.6: Let
C = {Cn| m=1.2...0} C C[V| x V), then
s(C) 2 L-J 8(Cp) is the sowrce set of C.

Definition 2.7: Let
C = {Cn| m=1.2...,0} C C[V{ x V), then
d(C) & U d(C,) ia the destination set of C.
m

[OI. Interconnection Network Model

In this section, a formal graph/algebraic model of an
interconnection network is presented. Graph models for
analyzing networks have been used by other researchers.
For example, in [3, 4, 8, 15| they are used to snalyze reg-
ula- SW-banyan networks, and in [2] they are used to
study the partitioning of regular networks. The model
presented here differs from {3, 4. 8, 15] and [2] by being
completely general so that it can be used to describe an
arbitrary (including topologically irregular) interconnec-
tion network.

Definition 3.1: Let K = <C> be such that:
(1) C C CVixVy|.

(2) Vi =s(C).

(3) Vg = d(C).

4 |C| 22

Thea, K = <C> is an [/O representation of a

reconfigurable network over V;x V.

An example of an arbitrary interconnection network and
description of it using this notation is shown in Fig. 1.
Physical implications: <v,v,> € C,, Cp € C represents
the network moving data from iaput v, to output v,
when the state of the network is C,. C represents the
set of all possible states of the reconfigurable network.
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Co={<A,D>, <B.E>}
C,={<A,E>, <C, D>}
Vi={A, B, C}, Vo ={D, E}

Fig. I. Example of an arbitrary interconnection net-

work.
LN

Definition 3.2: Let K[VixVo] 8 (K| K =<C> is »
network over Vi x Vg}. Then K[V;xVo] is called
the K-set over Vyx V.

Definition 3.3: Let K' € K[V{!'xV{], K! = <C'>, and
K? € K[VixV3], K? = <C?>, be two networks
such that:

(1) V} C VP, V4 C V3.
(2) vClect3ctec?a:clccl

Then K' is subnetwork of type b of K. Notation:

K'Cb K®
Definition 2.4: Let K' € K[V{xV}], K!' = <C'>, and
K? € K[V#x V3], K® =<C?>, be two networks
such that:
(1) V' C Vi V4 C V.
(2) vClec'ac2ecC?®a:Cl =C?
Then K' is subnetwork of type ¢ of K*. Notation:
K! Ce K2
Note: The reason for referring to these subnetworks as
types b and c is to make this notation coosistent with the
definitions of subsystems in [11].
Definition 3.5: Let K! € K[V{ x V4], K!' = <C'>, snd
K? € K[V} x V3], K* = <C?>, be two petworks

such that:
(VY =V vy =V3
(@act=ct

Then K' is equal to K*. Notation: K! = K2,

Theorem 3.6: Let K' € K{V{xV{], K' = <C'>, aad
K® € K[VixV§], K® = <C?>, be two networks.
If ¥CleC' 3CIeC? 3: CLCC? then
K' Cb K2

.
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Proof: (1): Show V! C V{.
(VCa €CY) (3CT €CY(Ca € C)
= (¥Cp € C") (Ca C Ciu)
= (VCp € C") (s(Ca) C S(Cém))
- (Ln{ s(Ca) C Lﬂ{ (Cgm))
= (Us(Ca) S Us(CI =V C V.
m L]
(2): Show V{4 C V3.
Similar to (1) except replace the s set by the d set.
(@]
Theorem 3.7: Let K'€ K[V{xV§], K' = <C'>, and
K® € K[VixV§], K* = <C?>, be two networks.
If vClecC' 3CleC® 3: Cl=C: then
K!' Ce K2
Proof: Show V{' C V{ and V§ C V3.
The proofs are similar to proof of Theorem 3.5. D

Theorem 3.8: Let K'e K[V{!xV{], K!' = <C'>, and
K? € K[V{x V3], K* = <C?>, be two networks.
It C! = C® then K' = K2

Proof: (1): Show V{! = V.
C'=Ct = yCY) =
(2): Show V§ = V3.
C!' =C* = d(C') = d(C? = V§ =V3.

s(C%) = V! = V£
o

IV. Compeosition and Decomposition of Networks

This section describes a ‘‘horizontal” composition
and decomposition of networks. The discussion here is
presented for the composition of two networks into one
and the decomposition of one network into two. How-
ever, it can be generalized into the composition of n net-
works into one and decomposition of one network into n,
0> 2. What is meant by the horizontal composition of
two networks K' and K® is that V/ N V2 = 0O and
V4N V§ = 0. Similarly, the honzontal decomposition
of K iato two networks K' and K*® will result in
VIN V=0 and Vi N V3 = @. Two types of compo-
sition {decomposition) are described. Oune, the o-
composilion (decomposition) corresponds to the physieal
situation where the controls of the individual subpet-
works of the network are independent. The other type is
the r-composition (decomposilion), which corresponds to
the physical situation where the controls of the individual
subnetworks of the network are dependent upon oge
another.

This section conceptually consists of two parts. In
part one the definition of the o-composition is given and
some of its basic properties are presented. In part two
the definition of the ncomposition is given and its proper-
ties are described.
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Definstion 4.1 Let K' € K[V} x V{], K! = <C'>, and
K? € K[V{ x V3. K* = <C*>, be two petworks
such that: (VP U VHNI(VFU VE) = 0. Deliae
o-map as follows: K!' ¢ K® = <C!'> ¢ <C2?> &
<{CpUCH Clec!, CFeC>.

This describes the composition of two networks where the

controls of the two networks are independent from one

another.

Lemma §.2: Let K' € K[V x V§| and K* € K[V{ x V§|
be two networks such that:

(ViU VI NIVEU VE) = 0.
Then K' 0 K* = K ¢ K'.

Proof: Obvious from the definition of o-map and commu-
tativity property of set uaioa.

a

Theorem §.3: Let K'€K[V{! xV{. K'=<C'>, snd
K*eK[Vix V3] K* = <C®>, be two networks
such that: (VP U VSN (ViU V3) = 0. Then
K'o K € Ki(V{! U V{) x (V4 U V3.

Proof: Let {C) U c}lclec, ClecC? =¢3,

Cl e Cand CIV U Vi) x (VAU V@) =C°.
(1) Show C}C C°.
Clearly  C3 C {(V U V{) x (V4 U V3l
Must show noadestructivity.
<uyup>, <u,ug> € C3 =+ three cases.
(L1} <ug,up>, <u,ug> € C,
CP'EC'-‘ubﬂud.
(1.2), <u,uy>, <u,uy> € C,’,
CleCl=ryy, #u,
(1.3 <u,u,> €C,,C)€C' and
<u.uy> €CHCleCl
VPUVHN(VEUVE) =0
= VN V=0 = u, =u,
(1.4): (1.1),(1.2), and (1.3) = C3 € C*
= C3C C.
(2):  Show s(C%) = V! U V3.
4C%) =4((CjUCt|clect, clec
= {(s(CHUsCH|Cyec!, CleC) =
{stCy)| CoeCYU {s(CH| Cle ch) =
s(CHU s(C% =V U VE&
(3):  Show d(C%) = V§ U V§.
Similar to 2 except replace the s set by the

d set.
(4::  Show |C¥| 2 2.
(4.1): IC’] =

[{CfUC}=xC)ec!, Clech.
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(42): CIUC? #ClUC p#sorr #t = all
CJ are distinct.
(43k (41), (42) =|C] =|CY-|CY 22 -2=4¢
o
Lemma 4.4: Let K'€K[V{ x V], K*€ K[V} x V§],
and K3 € K[V} x V§| be three networks such that
(VFUVIN(VPUVE) =0,a #b,ab =1,2,3,
then (K! s K*) 0 K3 = K! ¢ (K* ¢ KY).
Proof: Obvious from the definition of o-map and the
associativity property of set uanion.
=]
Definition 4.5: Let KEK[V; x Vo] be a network. Let
{K'VK%...K"| KI€EK[VixVi]} be a set of pet-
works such that: K=K'¢K®¢---K". Then

(1) K'aK?c --- K" is called a o-decomposition
of K.

(2) {K! K®...K"} is called a o-decomposition set
of K. :

(3) K'is called a 0 -decompoasition element of K.
(4) K is the o -compositionof K! s K2 ¢ - - - K",

Definition 4.6: Let K € K[V] x V| be a network. If the
only possible o-decomposition is K = K thea K is
called a ¢-prime network.

Definition 4.7: Let K € K[V x Vg] be a network and let
K = K. Then K' is called the trivial o-
decomposition of K.

Lemma 4.8: Let K € K[V| x Vg] be a network. Then K
bas a o-decomposition.

Proof: Let K = K! be the trivial o-decomposition of K.

Q

Definition 4.9: Let K € K[V} x Vg| be a network. Let K
=K' K20 - - - K" be 3 o-composition, where
Vi, K is a o-prime petwork. Then
K'¢K?o - - K® is called 8 o-composition prime
of K.

This decomposition can be used as a canoaical form of s

|
petwork. Notice that this implies V; =L..{V|i and
1=

]

Vo = .L-JIV}, (where the notation D=AlJB mesns
i=

D=AUBaad ANB=0).

Theorem 4.10: Let K € K[V; x Vo], K = <C>, be a
petwork. Let K = K'o¢K?eo - - K® be any o
decomposition. Then: o < logz | C|.

Proof: Let Ki = <Ci>.

(1): Kiis a network = |C] > 2.
@ |c| =[] |c]| 22
i=t
(3 o =log; 2* < logy | C|. o
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This can be used as an upper bound oa aumber of net-
works in a g-decomposition set.
Theorem 4.11: Let K € K[Vy x Vo], K = <C>, be a
network.
{) 1t K has a nontrivial g-decomposition then
[C| is not a prime number.
(2) I1|C| is s prime number then K does not
have a noatrivial g-decomposition.
Proof: Follows [rom the proof of Theorem 4.10. Q
This counting principle can be used as a necessary condi-
tion on a o-decomposition of a network.

Theorem 4.12: Let K' € K[V{! x V§|, K' = <C'>, and
K? € K[V{# x V3], K* = <C?>, be two networks
such that: (VU VEHN(VFUVE) =0. Let
K? = K! # K® be a o-composition.

(1) If Oc € C? then K' Cc K® where O¢ is the
correspondence consisting of o edges, i.e., no
connections between the set of inputs and

(2) K'r,K*=<C'>1,<C*> 8 <{CUCH
a(C}) =C}, CjeC!, CleC?} >.

This describes the composition of two networks where the

controls are dependent in the sense that choosing a C; in

C'! means o(C,‘) must be selected in C®. Thus, the o

map exactly specifies how the controls are dependent.

The basic difference between the g-map and r,-map is as

follows. Suppose K' = <C'> and K* = <C?>.

If K* =K' g K® K3 = <C*>, then

(a) |C*| =|C"-[C? and

{b) Cpl is 2 subset of [ C"'] correspondences in C>.

It K3 =K' r, K® then

{a) |C3| =|cY = |C’| and

(b} C" is a subset of one correspondence in C3,

specifically C} U a(C}).

Definition §.14: Let KEK[Vy x V| be a network. Let
(K" K%...K"| K'€K[V{xV}]} be a set of pet-
works such that: K=K'7,K?r, - - - K" Then

the set of outputs. (1) K'r,K3r, - - K" is called a ~decomposition
2 ' s of K.

(2) "' %¢ eac theos K CbK' but pot (2) {K', K%...K"} is called a rdecomposition set
K'! Ce K. of K.

(3) IfOc e C'then K* Ce K.
{4) If ©c¢gC' then KXCHLK?) but unot
K:Ce K3
Proof:
Case 1:Show K' Cc K3.
(1) K}=K'¢K?=vyClecC!vCiecC?
3cjec*a:Cl=CclUC]
(2): (1) and O¢ € C?
—-yClect BCSGC‘ 3:C =C:
= K! Ce K3
7ase 2: Show K' Cb K? but not K' Cec K*.
(1): Same as Case .
(2): (1) snd Oc ¢ C* = (VCL€EC'3C} e C?
3:C4 C CJ) and (VCLeC' BCJeCx
CL=C}) = K' Cb K* and not K! Ce K.
Case 3 and §: Same as Case | and 2 by the commuta-
ti ity of the o-composition (Lemma 4.2). o
Defivition §.13: Let K'e€K[V{ x V{], K'=<C'>, and
K2eK[VEx V3], K2=<C?>, be two networks
such that:
M (VU VHN (VU VE) =0, snd
@ [c =[cY.
Deflae r, -mep as lollows:
(1) Define a: C'~C?, map 1:1 and onto.

(3) K'is called a ~decomposition element of K.
(4) K is the r-compositionof K! 1, K2 1, - - - K".
Definition §.15: Let K € K[V} x Vg], K = <C>, be a
network. If there exist K' € K[V} x V{,
K' = <C'>, and K? € K[V} x V@],
K? = <C?>, two networks such that:
(1) Vi UVE = V,, and (2) V§ UV = Vg, then:
(1) 1 K'r, K2 =K, then K is a r-partitionable
network.
@ I KloK2=K, then K is a strietly o-
partitionable network.
3) UK ¢K?#K and K' 0 K* De K, then K
is a o-partitionable network.
Note that strictly o-partitionable implies: [C| =
|C' +jc? smdC ={C}UCCleC CleC? In
contrast o-partitionable implies: |C| < |C!| +|C?| and
cci{cluci|clec,,clec?. It K is a »
partitionable network then it is also a o-partitionable. It
is not strictly o-partitionable because it is strictly o-
partitionable only if |C'|+|C? =|C| sod it si »
partitionable only if |C'| =|C? =|C]|, which implies
| €' =|C? =|C| =1; however, |C'|, |c?, |c] 22
by Definition 3.1. Also note that if there exists a o-prime
composition of K, then K is a strictly o-partitionsble net-
work.
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V. Partitionability Algorithm path from each node to every other node and there is no :‘v:
In this section an algorithm is presented that has an path between any two nodes from different components. L

input any general network (with an arbitrary topological Clearly G[Vy x V| = L;J B, trJV| =V}, and trJVB =Vo.
structure) and which produces one of four possible out- Definition 5 3: Let G[V| x V] be the underlying graph of

o 1T FEEE.Te e w0 & BT -

puts. K e K[V; x Vo], K= <C>. Let C, € C and let
{1) The network is not partitionable. B’ be a componeat of G[V| x V,]. Define the pro-
(2) The network is rpartitionable. Jection p of C,, onto B* as follows:

(3) The network is strictly o-partitionable. P(CnB) 2 (v, vy> € Cul <¥a,7,> €B).

Lemma 5.4: Let G[V[ x Vp| be the underlying grapb of
KeK[Vix Vo], K= <C>. Let C, € C and let
{B'.B%...B"} be the set of all components of

(1) The network is o-partitionable .

The engineering interpretation of the four outputs is as

E
?
:

follows: G[Vy x Vg|. Then
(1) The network is not partitionable into disjoint sub- Cam = P(Cx,B"Y U p(Co B - - - p(C,,BY).
networks.

Proof: (1).  Show
p(CnB') N p(C, B) 20 = B =B.

{2) The ndtwork is partitionable into subnetworks with
common control signals that are dependent upon one

annther and the combination of the subnetworks will (1.1): p(C,B)N P(Cm-B’:) 20 =
exactly generate all interconuection patterns of the <vuny> € P‘Cm-Bf)-
onginal network. <v,vp> € P(Cm'Bf)-

(3) The network is partitionable into subnetworks with (1.2 <v,vy> € p(C,,,,B:)_: ;
independent control signals and the combination of <vuny> € Gy, <Y"'5> € B
the subnetworks will exactly generate all intercon- (1.3} <v,v> € p(C,,B) = ‘
nection patterns of the original network. <v,,vy> € C,, <v,,v,> €BL.

(4) The network is partitionable into subnetworks with (1.4): <v.,vb>EB", <v.,vh>€Bi, and
independent control signals and the combination of G[Vix Vo] =B =B =Bi.
the subnetworks will geaerate a superset of intercon- ' )
nection patterns of the original network. (2} Show C, = L.J P(Cm,B)-

The algorithm can be programmed on a computer (2.1): Show C, C U p(C,.BY).
1

and if the output of the algorithm is (2) or (3) then it will

KV > EC, ™ <y, vwD>EG xV,
produce a more efficient implementation of the metwork i = el Vi ol

= 3B, <v,,vy> € Bi =
0 terms of data path bardware and possibly control

l I (4) though t of <vet> € HCaB) =
implemeatation n case , even ough 3 supersetl o <v R’ >E U C ,Bi X
the states of the ariginal network is obtained, the imple- »'h i PCaB)
mentation produced by the algorithm will be efficient in (2.2): Show C,, 2 U p(C,.BY).
most 1nstances. The following definitions are needed to ' i .
discuss the algorithm and prove its correctness. <vom> € L;J PCoBY) = 3B,

Defiution 5.1: Let K € K[V; x Vp], K = <C>. Let <v, vy > € p(Cp,B') = <v,v,> €C,.

Cm € C and <v,vy> € C, be an edge (directed). (3 (1) and (2) = C, = bJp(C,,Bi). -

Denote the undirected arc associated with the N ! )

directed edge of <v,vy> by <vovg>. Let  Definition 5.5: Let G[Vix Vo| be the underlying

G[V; x Vo 2{<Vu"y> | <v 0> €Cp, undirected graph of K € K[V; x Vo], K = <C>.

VCn €C}. Then G[V;x V| is the snderiying Let B’ be a component of G[V; x Vo]. Define the

wndivected graph of K. residse set modulo B' as follows:
Defintion  5.2: Let G[Vyx Vo| be the underlying nB) 2 {p(C,B) | VC,€C}.

undirected graph of K € K[V; x Vgo|. Then the Theorem 5.6: Let B' be a component of the underlying

connected subgraphs of G[V| x Vo] are called graph G[V; x Vo] of K € K[V} x Vo], K = <C>.

components of G|V, x Vo]. Let r(B) be the residue set moduio B, B* over
Notation: Components are demoted by B! B? . B Vix Vs It |uB) 22 thea <r(BY)> F
Denote the vertices associated with Bf by V[ and V§, EK[V{ x V§|. <r(B)> is called & component T
ViC Vi, V5C Vo In a component B there exists a network of K denoted by K(B"). BRE
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Proof: (1)

Show C, € 1(B") = C, € C[V] x V}).
C.€ rB)= {p(C,B)=xC,eC) =
3C, €C, €, = p(C,B) =
¢, € CIVf x V§l.
{2):  Show s(r(B‘)) = V{.
(2.1): Show s({p{C,,B) = C, € C}) C V{.
u, € {{p(C,B) =xC,eC}) = 3C,eC,
<u,uy> € Gy, <uup> €B* =
u, € V{.
(2.2): Show (p(C.,B'liC. €C}) 2 V.
8, € v[' = <u,u> € Bf = BC,, € C,
<u,u,> € C, = <u,u,> € p(C,,B")
. = u, €{{p(C,B") = C, € C}) = o(r(B)).
(2.3): (2.1), (2.2) = s(r(B*}) = V{.
(3):  Show d(r{B")) = V§.
Same as (2] except replace the s set by the

d set.
(4): Show |(B)| > 2.
By Theorem hypothesis.
(8):  (1),(2),(3) and (4) == <r(B)>
€ K[V[ x V§. a

Given an arbitrary petwork it possible that
| #(B)| = 1 for some B, that is, p(C,,B') = p(C,,B"),
vC,C, € C. Then r(B) does not constitute a
reconfigurable network as defined. To bandle this case
from an engineering point of view, do the following. If a
network coatains such s B', that part of the network is
constant, that is, it has a single state only. So to remove
this constant part from the network K = <C> do the
following.

(1) Coastruct separately the constant part

#(B"), VB" = | t(B°)| =1, as a set of nooreconfigurable

links.

(2) K 8 <{Cp-<v, > | Ca € C, ¥V, "> €B,

VB = |r(BY| =1}>.

K' then contains only the reconfigurable links. In the fol-

lowing it is assumed that the constant part of the net-

work has been removed already.

If G[Vyx Vo] =B!, thea K= <r(B")>. In this case,
K is 3 o-prime network and is aot partitionable.

The following Lemmas sad Theorems are shown for
the case of GV, x V] having two components, B! and
B2, for reasons of simplicity. They are all applicable to
the case of B!.B?...B% 0 > 2.

Lemma 5.7: Let {B!, B?} be the set of components of the
underlying graph G[V; x Vo] of KEK[V;x Vo),
K=<C>. Let [r(B)| =[C|, Vi. Thea 37,
such that if
<C¥> =K(B") r, K(B? thean C C C.
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Proof: (1): | r(Bi)l - l Cl.3i=
This is pecessary and sufficient condition for
the existence of a.
p(C..B") # p(C,,B'), VC,,C, €C, x 2y, Vr
(21 <C> =K(B') 7, K(B?) =
C* = {p(C,,B") U p(Cy,B%)] o(p(C,B")) =
p(Cy.B%), C, € C, C, EC).
(3): Let
a: {p(C,,BY)| C, € C} — {p(C,,B)| C, € C},
a(p(C,,B") = p(C,B?).
(4): C,€C = C,=p(C,BYU p(C,.B%).
(5) (2),(3)and (4) = C,eC* = CC c. o
Lemma 5.8: Let {B!, B?} be the set of components of the
uaderlying graph G[V| x Vo] of KEK[V,x V),
K=<C>. Let |r(B)| =|C|,Vi Then 37,
such that if
<C¥> =K(B') r, K(B?) then C* C C.

Proof: (1): (1), (2), and (3} from Lemms 5.8 proof.
(2): C,€C* = C, =p(C,.B") UJ p(C,.B?).

(3): (1) and (2) =~ C,€C* = CC C . o

Theorem 5.9: Let (B!, B?} be the set of componeats of
the  underlying grapb  G[Vyx Vo]  of
KeK[Vyx Vgl, K = <C>. Let |(B)| =|C],
vi. Then 3 r, such tbat K(B') r, K(B%) = K.

Proof: (1): Let
a: {p(C,,,B')| CEEC) had (P(Cmaz)l C,EC},
a(p(Cm,B")) = P(Cr,B?).
Let K(B) 7, K(B?) = <C*>.
(2): Lemms 5.7 = C C C.
(3): Lemma 58 = C*C C.
(4): (2),30d (3) = C*=C.
(5): Theorem3.8 = C'=C =
K(BY) r, K(B}) = K. a
Lemma 5.10: Let {B!, B?} be the set of componeats of
the  underlying  graph G[Vi x Vo] ol
KeK[Vix Vo], K=<C>. Let
K(B') ¢ K(B?) = <C*>. Then C C C*.
Ca€C = Cp = p(CaBY) U p(Ca B).
(2: <C'> = K(BY)e K(B) = <(p(C,B") |
C,EC}> o <{p(Cy,B}) | CLEC}> ==
C,€EC' = CcCC. a
Theorem 5.11: Let {B!B?} be the set of components of
the  underlying graph  G[Vyx Vo[  of
K € K[V; x Vo], K = <C>. Let K(B") ¢ K(B?)
= <C*>. Let |(BY)] * |(BY)] =|C|. Then
K(B") ¢ K(BY) = K.

Proof: (1):
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By Lemma 5.10 C C C.
By Theorem hypothesis | r(B')| | r(B?)|
=|cY =|c| = C =C3.
(2 By Theorem 3.3 and (1) = K(B!) o
K(B%) = K. o
Theorem 5 12 Let {BY.B*} be the set of componeats of
the underlying graph G[Vix Vo] of K €
KiVi x Vo|. K = <C>. Let K(B') ¢ K(B%) =
<C'>. Let |uBY| - |#B%)] > |C|. Then K(B")
o Ki3*) D¢ K and K(B') 0 K(B°) # K.

Proof {1, By Lemma512C C C*.

Theorem hypothesis | f(B')| - | r(B%)| =

[Cf >ic] = cc
(2 Theorem 3.7 and (1) = K(BY) ¢ K(B?)

Dc K. and Theorem 3.8 and (1) = K(B")
o K(B%) # K.
a

Note that by definition K(B'), ¥i is a o-prime pet-
work.

Definition 5.13: If B'B® .. B" are the components of
G[V{x Vo], where G[V;x Vg| is the underlying
graph of K, then K{B!), K(B?),...K{B" is a prime
decomposition of K.

The prime Jdecomposition of K 13 unique and caa be used

25 a3 cagonical form of the network.

The algorithm 13 presented below. The input is an
arnitrary network K € K[Vy x Vg]. K = <C>, with the
constant part removed. The output is >ne of (1) K is not
partittonable, (2) K 15 ~partitionable, (3) K is strictly o-
partitirnable, (4) K 1s o-partitionable. [n cases {2). (3),
and {4) the algorithm also produces the component net-
works K(B'), K(B%)....K(B"), n step (8).

Algorithm

input: K € K{Vy x Vg|, K = <C>

Output: {1): K is not partitionable,
or (2): K is r-partitionable,
or {3). K is strietly o-partitionable,
nr (4} K is o-partitionable.

‘1) Construct the nnderlying graph G[V| x V] of K.
{2) Find componeats B! B .B" of G[V| x Vyl.
{3) If {(n=1) return (1)
() Find p(C_,BY, YCr€C.i = 12,0
(5) Find (B} = (p(C,.B')| YCo€C} i = L2
(6) Constrnet K(B'Y = <e(B"Y)>,1 = 1,2,....0.
7)) U {eBY ={C}. r=12..0)
then return (2).

180

() 10(FT] w8y |) =|c|
(B

then return (3).

(99 Else return ().
Proof of correctness: The proof is directly implied by
Theorems 5.9, 5.11, aad 5.12. o]

The outputs of the algorithm can be used in the fol-
lowing ways. [f the output is *“1° (not partitionable),
then the system designer will know that the network can-
oot be divided into individual subaetworks. If the output
is 3" {strictly o-partitionable), then the network caa be
partitioned and the composition ol the compooent net-
works will produce a set of correspondences identical to
that of the original network. Note that if a network is
strictly o-partitionable it is not rpartitionable nor o-
partitionable. If the output is 4" (g-partitionable), then
the network can be partitioned and the composition of
the component networks will produce a set of correspon-
dences that is a superset of that of the original network.
If the output is 2", the network is r-partitionable. Any
network that is r-partitionable is also o-partitionable.
However, il a network is rpartitionable then |r(B')| =
| #(B)] =|C]. 1 £ij < n, which is not true in geperal
for a o-partitionable network. Since
|vBY| =|etB)| ={C|], 1<i, j<n, the pumber of
correspondences in each component network <r(B')> is
the same (|C|) for i. 1 <i<n. This property means
that the same control decoders can be used in all network
components in a r-partitionable network.

The output of the algorithm applies only to the
reconfigurable part of the network because partitionabil-
ity is defined in terms of a decomposition into
“reconfigurable” aetwork components (lr(Bi)l >1).
the original network had some B' such that |r(B‘)| =1,
then those constant component(s) should be added to the
network component(s) generated by the algorithm in
order to reproduce the original network.

There are less strict definitions of partitionability
thaa the one used here. Future work in this area
includes the study of the partitionability of networks if
some of the network correspondences are not used, e.g.,
as can be done with the cube petwork {13, 14].

V1. Conclusion

In this paper the interconnection network properties
of composition. decompoasition, and partitionsbility were
analyzed. The partitionability property of interconnec-
tion networks for parallel computer systems is important
for (1) resource allocation, (2) fault tolerance, and (3)
efficient bardware implementation as discussed in the




! »T LSRR

R ey L T P TPy

introduction. The results presented here are valid across 18] G. I Lipovski and M. Malek, **A Theory for Inter-

all network topologies. conpection Networks,” Electrical Engineering
. . Department, University of Texas at Austin, TRAC
In summary, a general model of interconnection net- Report 41, Oct. 1982.
works was used to describe composition, decomposition, [9] M. C. Pease, “An adaptation of the fast Fourier
and partitionability properties of networks. An algorithm transform for parallel processing,” Journal ACY,
for aetwork partitioning was presented and proven Vol. 15, Apr. 1968, pp. 252-264.
correct. (10} A. P. Reeves and R. R. Seban, “The moment

computer,” I5th Hawasi Intl. Conf. System Sci-
ences, Jan. 1982, pp. 388-396.

[11] R. R. Sebaa and H. J. Siegel, “Theoretical model-
ing and analysis of special purpose interconnection
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Evaluation of Cube and Data Manipulator Networks®

ROBERT J MCMILLEN
Hughes Aircraft Compuny . Long Beach. California QURIO
AND
HOWARD JAY SIEGEL

PASM Parallel Processing Laborators, School of Electrical Engineering.
Purdue University. West Latuvette, Indrana 47907

The interconnection of a large number of processors and other devices to torm a
parallel/distributed computing system is a rescarch arca recewving a great deal of
attention. One method is to use a multistage network. Thiy paper compares (wo
classes of multistage networks by examimng two Fepresentative networks: the Gen-
eralized Cube and the Augmented Data Manipulator. The two topologies are com-
pared using a graph model. By interpreting the graphical representations of the
networks in different ways. different but functionally equivalent implementations
result. The costs of the various implementations ase compared taking VLSI consid-
erations into account. Finally, the robustness (fault tolerance) of the different net-
works is measured and contrasted.  © 1988 Acudenne Press. Ind

I INTRODUCTION

The interconnection of a large number of processors and other devices to
form a parallel/distributed computing system is a research area receiving a
great deal of attention. Many different approaches to the interconnection
method have been proposed and discussed including the use of buses [47].
hierarchies of buses [44]. direct links [13]. single-stage networks | 21]. mul-
tistage networks 19, 22, 30, 38}. and crossbars [49]. An important aspect of
this research is the evaluation and comparison of the proposed approaches
16. 16. 40. 45]. The conclusion most often reached is that the best scheme to
use in a particular design depends highly upon the intended application,
performance requirements. and cost constraints. Once a connection method

*This work was supported by the Umited States Arny Rescarch Otfice, Department of the
Army. under Grant DAAG29-82-K-0101_ the National Science Foundation under Grant ECS
80-16580: and the A Force Oftice of Scienttic Rescarch, Air Foree Systems Commands.
USAF. under Grant AFOQSR 78-3881 The U8 Gosernment's night to retan a nonexcluspe
royalty-free license i and to this paper. for gov crtimental purposes, s acknow ledged
749

074373585 $3.00
Copynght ¢ 198RS by Academic Press. Ine
Al nghts of reproduction 1 any form resenved

P et e e e, T e L

. - . DT L
RARAFREARIPEAE IR W

- - "
- . EEAESS
AT DR G SRS PR Sy

5
)

A

iL.-\

et - .
AN AN AN wr At

Oy
X
.

T e, .

- '.\ ‘l MY «
R
AW als a




80 MC MILLEN AND SIEGEL

is chosen (e.g.. single-stage network), a specific design must be decided upon
and then implemented. During this phase of a system’s specification, it is
important for the designer to understand fully the differences and similariues
between candidate designs.

This work is motivated by an ongoing study of methods to model distrib-
uted systems and an examination of networks suitable for use in the PASM
[41] and PUMPS (10] systems. Two classes of multistage networks that have
been considered for use in these and other systems. cube type and data
manipulator type, are investigated in this paper. Specifically. graph models
are used to quantity the difference between the Generahized Cube and Aug-
mented Data Mantpulator (ADM) networks in terms of cost and robustness
(fault tolerance). Graph models are used because they are unencumbered by
implementation details and are an excellent tool for representing an essential
characteristic of a network: its topology. They also facilitate comparison of
this work with other studies (e.g.. |5, 19]).

The Generalized Cube and ADM networks are defined in Section 1. Their
relation to other multistage networks described in the hiterature is also dis-
cussed. Using a graphical representation, the networks™ topologies are com-
pared in Section {Il. In Section IV, two tunctionally equivalent imple-
mentations resulting from two different graph interpretations are examined to
compare the cost of each network. Here, using VLSI chips is considered and
costs are compared relative to the traction of a stage that can be implemented
on one chip. Finally, Section V contains an analysis of the robustness each
network exhibits.

I THE GENERALIZED CUBE AND ADM NETWORKS

The Generalized Cube network is a multistage cube-type network topology
that was introduced as a standard for comparing network topologies {39].
Assumie the network has N inputs and NV outputs: in Fig. 1. VN = 8. The
Generalized Cube topology has n = log: N stages. where each stage consists
of aset of MV lines connected to N,/ 2 interchange boxes. Each interchange box
Iy d two-input, two output device. The labels of the inputoutput lines entering
the upper and lowcer inputs of an interchange box serve as the labels for the
upper and lower outputs, respectively  Each interchange box can be set to one
of the tour legitimate states shown [22).

The connections in this network are based on the cube interconnection
tuncions [35]. Let P = p, - - - p;p, be the hnary representation of an
arbitrary 1 O hine label. Then the n cube interconnection functions can be
defined as

cubeApy o pipa) = opy oy O (Y OF TR O

where O~ 1 -, 0 = P <0 N and p, denotes the complement of p,. This
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FG. 1. Generalized Cube network for N = 8 {37]. The four legitimate states of an inter-
change box are shown.

means that the cube, interconnection function connects P to cube,(P). where
cube;(P) is the 1/O line whose label differs from P in just the ith bit position.
Stage i of the Generalized Cube topology contains the cube interconnection
function. That is. it pairs 17O lines that differ in the ith bit position.

The ADM network is shown in Fig. 2 for N = 8. It is based on Feng's data
manipulator [15). In this network, a srage consists of N switching elements
or nodes and the 3N data paths that are connected to the inputs of a succeeding
stage. Each node can connect one of its inputs to one or more of its outputs.
At stage i of the ADM network, 0 < i < n, the first output of node j is
connected to the input of node (j — 2') mod N of the next stage: the second
output is connected to the input of node j; and the third output is connected
to the input of node (j + 2') mod N. Because (j — 2" 'y equals (j + 2" ")
mod N, there are actually only two distinct data paths instead of three from
each node in stage n — 1 (in the figure, stage 2). There is an additional set
of N nodes at the output stage.

Both of these networks are based on the PM2I interconnection functions
[35]. There are 2n of these functions defined by PM2,,(j) = j + 2’ mod N
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FiG. 2. Augmented Data Manipulator network for N = 8 [37). (Lowercase letters represent
end-around connections.)

and PM2 (j) =/j - 2mod Nfor0 = j <N, 0 =< i < n where —x mod
N =N — xmod N. (Note PM2,,,.,, = PM2_,_,,.)

A number of systems have been proposed and/or built that use multistage
networks (e.g., |7, 8, 24, 34, 41]). Among the networks that have been
proposed are the ADM [38], baseline [48], binary n-cube [30], data manip-
ulator [15]), Gamma ]29], Generalized Cube [39]. inverse ADM (IADM)
{27]. omega [22]. STARAN flip [9]. and SW-banyan [19]. Studies have
shown that the baseline, binary n-cube, Generalized Cube, omega, STARAN
flip, and SW-banyan (§ = F = 2) networks are all topologically equivalent
[31. 36, 37, 42, 48). Differences between these networks are due to proposed
control schemes, whether or not a broadcast capability is included, and the
method used to number input and output ports. All of these networks belong
to the general class of cube-type networks. Because of the similarities among
these networks, a designer is not faced with choosing between six different
networks; rather the choice is whether or not to use a cube-type network.

The data manipulator, ADM, IADM, and Gamma networks are topo-
logically identical. The differences between these networks are the control
scheme, order in which stages are traversed, and switch complexity. The
switches in each stage of the data manipulator are divided into two groups.
Each group receives an independent set of control signals and all switches in
a group respond identically. Each switching element of the ADM, IADM,
and Gamma networks is controlled individually. The stages of the IADM and
Gamma networks are traversed in an order opposite to that of the ADM and
data manipulator. Also, the Gamma network's switching elements are 3 x 3
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crossbars (as opposed to selecting one input at a time). One property that these

N networks have is that for all nontrivial source/destination pairs (i.e., source
N address # destination address) there are multiple paths through the network.
N For that reason, none of the networks is a member of the general banyan class

[19].
X The capabilities of the Gamma network are a superset of the ADM and
B IADM networks. It has been shown in turn that their capabilities are a
- superset of all the cube-type networks as well as the data manipulator network
‘ [36. 37. 42]. Data manipulator-type networks, however, are more complex
than cube-type networks.

A common feature of all cube-type networks is that there is exactly one

path through the network for each source/destination pair. This property
makes control schemes simple but any single failure of a link or switch will
: disallow the use of any path requiring the failed component.
] Thus there exists the classic trade-off between cost and performance when
. choosing between the two network types. In this paper, the network types are
compared, using one representative network from each type: the Generalized
Cube and the ADM. Both networks have the same number of input and output
ports and individual switching element control. Routing tag schemes are
available for the networks {22, 28, 38, 39], so it is assumed that they are used
to implement network control.

Some aspects of the Generalized Cube and the ADM networks have been
compared elsewhere. The ability of the ADM network to perform all the
functions a Generalized Cube can was demonstrated in {42}. In (1], the total
number of unique permutation connections each network can perform was
compared. In [5], graph models were used to study multistage interconnection
networks which have the “buddy property” (cube-type networks have that
L - property) and other networks including the ADM. In that paper emphasis was

‘ on comparing the networks’ permutation capabilities. This paper is concerned
with comparing cost and robustness or inherent fault tolerance. Cost is exam-
B ined from two points of view. The first is the common method of counting
- links and switching nodes. In this case, the graph model with a consistent
‘ interpretation (two are possible) is used to ensure a “fair” comparison. The
second point of view is oriented toward VLSI considerations. Modules for
each network requiring roughly the same number of pins are compared. The
change in relative cost is also examined when as much as one whole stage is
-~ placed on one chip. Robustness is measured by calculating the average num-
: ) ber of network inputs and outputs affected by the removal of a single link or
L~ switching element. The calculations are performed for both of the graph
. interpretations to be defined.

-V A AL 2. e

”

III. GrAPH MODELING: A COMMON BASIS FOR COMPARING NETWORKS

Graph models have been used by Goke and Lipovski [ 9] as the basis for
defining a class of networks called banyans. The graphs used to represent
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FiG. 3. Graphical representation of the Generalized Cube network for N = 8.

these networks consist of nodes connected by directed arcs. By definition, in
abanyan there is one and only one path from input to output [ 19]. In this paper
the arcs are undirected and there is no restriction on the number of paths from
input to output.

It has been observed [20, 23] that the Generalized Cube network (Fig. 1)
has the graphical representation shown in Fig. 3. This graph also represents
an SW-banyan (with § = F = 2). The graph can be interpreted a number of
different ways. One is to treat each node (vertex) (a circle in the figure) as a
switch and each arc (edge) (a line in the figure) as a link. To model the
network's behavior under this interpretation, the switch (node) shown in Fig.
4a should only connect one of the input links, a or b, to one of the output
links, ¢ or d. An implementation based on this interpretation, for an N
input/output network, would consist of n + | stages of N switches, with 2N
lines between stages. The TRAC reconfigurable, multimicroprocessor system
contains an SW-banyan constructed from switches of this type (but that have
two incoming and three outgoing links, i.e., § = 2 and F = 3) [32].

A second interpretation of the graph in Fig. 3 is to treat the nodes as links
and the arcs as forming interchange boxes. For example, the thickened lines
in Fig. 3 can be considered to represent the interchange box with inputs 2 and
6 (compare this to Fig. 1). In this case the SW-banyan implementation would
have the same structure as specified here for the Generalized Cube (assuming
a bidirectional network). This interpretation is illustrated in Figs. 4b and c.
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with a switch, input a or b can be connected to output ¢ or d. (b) Four nodes from the graph. -+
When the arcs, a. b, ¢. and d are equated with switches, a 2 X 2 crossbar is obtained. (c) The
components of a crossbar that correspond to the graph in (b).

Each of the arcs labeled a through d in Fig. 4b acts as a crosspoint switch in
Fig. 4c. When viewed this way, the portion of the graph within the dashed
lines of Fig. 4b behaves as a 2 X 2 crossbar or interchange box. If a and d
are “on,” the straight setting is obtained: b and ¢ “on™ corresponds to ex-
change; a and b “on™ corresponds to upper broadcast; and ¢ and d “on”
corresponds to lower broadcast. Conflict occurs if a and ¢ or b and d are on
at the same time. It will be shown in the next section that implementations
based on the first and second graph interpretations are functionally equivalent.

A third possible interpretation of the graph in Fig. 3 is to equate nodes with
2 x 2 interchange boxes and arcs with links. In that case. Fig. 3 would
represent a size N = 16 Generalized Cube network. This interpretation will
not be discussed further in this paper.
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Fi;. 5. Graphical representation of the Augmented Data Manipulator for ¥ = 8.

The graphical representation of the ADM network (Fig. 2) is shown in Fig.
5. Since there are multiple paths trom input to output. this is not a banyan
graph. This graph can be obtained by adding the dashed lines shown in Fig.
S to the graph in Fig. 3.' When switches are equated with nodes, the network
depicted in Fig. 2 1s obtained. When switches are equated with arcs. the
network looks like that shown in Fig. 6 In the figure, two nodes directly
connected by a solid line between stages are represented by a single node in
Fig. 5. Note that the labels on end-around connections in both Fig. § and Fag.
6 are attached to the same arcs (links) in the network. This second type of

‘We first published this observation i October 1982 10 the Procecdings of the Third
International Conference on Distnbuted Computing Systems. in o prehnmnary version ot this
matental [t was also discovered independently and pubhished in [5]
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FiG. 6. Implementation of the Augmented Data Manipulator for N = 8 when the graph of
Fig. 5 is interpreted with arcs equated to switches.

implementation is examined in [43), where LSI packaging of network build-
ing blocks is discussed.

Though the same ADM network is represented, Figs. 2 and 6 look rather
different. Depending upon which representation is chosen, a comparison with
the Generalized Cube in Fig. 1 could produce different conclusions. Com-
paring Figs. | and 2, one might conclude that, in addition to having an extra
column of switches, the AD! has twice as many switching nodes and three
times as many links as the Generalized Cube network. It would be easy to
decide that the ADM network is considerably more expensive. On the other
hand, comparing Figs. 1 and 6, it appears the only difference is N extra links
that interconnect switches within each stage of the ADM network. The latter
comparison is more accurate because the network depictions of Figs. | and
6 are based on the same interpretation of the networks’ respective graphs.
Thus when making comparisons, it is important to compare either graphical
representations or consistent interpretations of those graphs. In the next sec-
tion, the latter is done for both interpretations, so that the resulting imple-
mentations can be compared as well.

IV.  Cost COMPARISON

A. Introduction

The purpose of this section is to compare the cost of the Generalized Cube
network to that of the ADM network. To do this, implementations of each
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88 MC MILLEN AND SIEGEL

network are examined. Two different criteria are used in the comparison.
First, hardware requirements are examined. Since two basic implementations
are possible for each network, to be tair, only implementations corresponding
to the same graph interpretation are compared. Then, since VLSI imple-
mentation is being considered, the total number of data pins available on a
chip is held constant and chip counts are compared for all the different
implementations. It would be desirable to compare the gate densities required
for each chip: however, that requires having a detailed design for each. In lieu
of such details, the attempt was made to compare chips with comparable
major architectural features (e.g.. queues) which presumably require the
same amount of logic and which can be compared at a gross level.

Although the discussion presented here is in terms of integrated circuit
chips, it is not restricted to any particular technology. It is only presumed that
a network is constructed from modular elements with 1/O facilities (ports)
proportional to that portion of the network graph (with an appropriate inter-
pretation) intersected by the boundary of the module. For example, in the
future, an I/O port may consist of a laser diode and a single optical fiber
instead of many parallel wires.
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B. Hardware Realizations

There are two basic ways to implement multistage networks. They can be
circuit switched or packet switched. In circuit switching, a complete path is
established from input to output and must be held for the duration of the
communication. Circuit switching is often used when processors are con-
nected to the network inputs and memories are connected to the outputs.
Designs for circuit-switched interchange boxes have been discussed in [11,
26, 43]. In packet switching, messages are decomposed into packets which
each make their way from stage to stage until the output is reached. This
method is often used in configurations that connect processing element
(processor/memory pair) j to input j and output j of a unidirectional network.
Packet-switched network switching element designs have been discussed in
{14, 26, 46].

In the remainder of this paper, implementations will be discussed primarily
in terms of packet switching. Circuit-switched versions can be obtained by
replacing any queues shown with buses. Other than this. remaining differ-
ences are in the control logic; however, the logic is shown only at the block
diagram level. Only key elements of the implementations to be discussed are
included since many variations of the basic designs are possible. For more
detail see [14. 26, 46].

C. Generalized Cube

Figure 7 shows two designs for a Generalized Cube switching element.
Figure 7a results when switches are equated with nodes in the graph (this
corresponds to Figs. 4a and 3). One of the two inputs is selected depending
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F1G. 7. Implementation of Generalized Cube switches. (a) Node = switch interpretation. (b)
Arc = switch interpretation.

on the requests (if any) received by the (left half of the) control logic. which
handles any needed arbitration. A single output link is shown, but it is to be
connected to rwo other switches as shown in Fig. 8. A bit in the routing tag
is examined by the control logic, which then determines to which switch a
request for access should be made. The (right half of the) control logic
maintains the queue, interprets the routing tag, generates access requests, and
receives grants for access requests. Switches that implement nodes in column
3 of Fig. 3 only contain hardware to the right of the dashed line in Fig. 7a.
Switches that implement column 0 nodes only contain hardware to the left of
the dashed line. A detailed design of this type is discussed in [32].

If arcs in the graph are equated with switches. then four arcs forma 2 % 2
crossbar or interchange box (see Figs. 4b and ¢ and 1). An implementation
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FIG. 8. Four swiches from Fig. 7a combined to form one switch (within dashed lines)
equivalent to that in Fig. 7b.

for this is shown in Fig. 7b. Here two input queues are required. As long as
a given queue is not full, incoming packets for that queue will be accepted.
Logic 1s required to handshake with other interchange boxes, maintain two
queues, and interpret the routing tags at the head of each queue. This logic
only interprets the tags in order to request the desired settings for the multi-
plexers. Logic asociated with the multiplexers performs any necessary arbi-
tration. It also makes appropriate requests of other interchange boxes once the
multiplexers are set. Different protocols and design variations tor this type of
switching element are discussed in [26). The performance of networks imple-
mented with these interchange boxes has been studied 1in (3. 14, 25].

The equivalence of two networks implemented with the two kinds of
switching nodes 1s illustrated in Fig. 8. Four of the switching elements shown
i Fig. 74 are connected as prescribed by the graph in Fig 3. It can be seen
that the hardware within the dashed lines is identical to that shown for the
interchange box in Fig 7b. The handshaking lines (directed Jdashed lines)
shown connecting control units w.. equivalent to internal connections be-
tween the tag interpretation and queue control logic and the arbitration and
output request logic n the control unit of Fig. 7b. It is thus apparent that the
same total amount of hardware is required for either implementation. but that
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FIiG. 9. Implementation of Augmented Data Manipulator switches. {(a) Node = switch inter-
pretation. (b) Arc = switch interpretation.

the two graph interpretations lead to different network building blocks or
packagings for the components.

D. Augmented Data Manipulator

Two implementations for the ADM network are shown in Fig. 9. Figure
9a results from equating the nodes of Fig. § with switches. In this design, the
multiplexer selects from among three input links and the output link is con-
nected to three other switches. The control signals shown on the output side
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3

X in Fig. Ya are used to determine which of the switches 1s to read the data from
;: the output link. A broadcast is performed by selecting more than one switch.

The basic routing tag scheme for the ADM network [28] requires the routing
tag logic to examine two bits, so it is slightly more complex than that required
in the Generalized Cube. As with the Generalized Cube. the switches imple-

2 JT

menting nodes in columns 0 and 3 of Fig. § only require the logic to the left
- and night, respectively, of the dashed line in Fig. 9a. This was also observed
3 in [15].

:'; If arcs are equated with switches, an implementation similar to the inter-

change box is obtained as shown in Fig. 9b. Here, however. the outputs from
the queues must be connected to multiplexers in two other switching elements
tas shown in Fig. 6) via intrastage buses. Similarly, the two multiplexers
shown here must accept connections from the queues of two other switching
- elements. Two control signals must also accompany each of the intrastage
- buses.

k. Compuarison

An approximate cost compartson between the Generalized Cube and the
ADM petwork can be made by comparing their respective switching ele-
ments. Since the choice is arbitrary. Figs. 7a and 94 will be compared. Both
require a single queue. It the cost of the queue and its associated control logic
dominates the cost of the switching element, then the ADM switch will cost
only shightly more than a Generalized Cube switch in a discrete imple-
mentation. On the other hand. for a circuit-switched implementation. the
multiplexer and control logic in an ADM switching element will cost about
50% more than that required in a Generalized Cube switching element.

The perspective changes somewhat when implementing these tour designs
in VLSI is considered. Input/Output (1/O) requirements and logic/pin ratio
become important considerations. For constructing a Generalized Cube net-
work. the interchange box in Fig. 7b is a better choice than the switch in Fig.
7a. The interchange box (Fig. 7b) has approximately 33% more pins but
approximately 100% more logic than the switch (Fig. 7a). For the ADM
network, the logic pin ratio is nearly the same for both of the designs in Fig.
9. The design in Fig. 9b has approximately twice as many pins and twice as
much logic as that shown in Fig. Ya. The extra links that give the ADM R
network its superior capabilities over the Generalized Cube require a larger :'_ R

PCNE

¥ o e . :

o number of pins on the VLSI chips being considered.

:; The design of Fig. 7b and that of Ya have approximately the same number
[:: of pins. It this number of pins (due to the data path width) is near tech-

nological limits (and thus the design of Fig. 9b will not fit on one chip), then
the Generahized Cube interchange box is superior due to the logic/pin ratio.
Assuming the cost of two chips with the same number of pins is about the
same. an ADM network would be more than twice as expensive as a Gener-
ahzed Cube network of the same size (when realized with these two re-
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spective chips). The logic/pin ratio of the ADM chip (Fig. 9a) can be im-
proved considerably by implementing extru capabilities the ADM network is
known to support [27. 28]. These capabilities include dynamic rerouting of
blocked messages and stage look-ahead with rerouting tor blockage predic-
tion. None of the additional features requires any extra pins. The additional
capabilities are possible because of the extra paths between input and output
and thus are nor available for the Generalized Cube network.

The cost difference between the two implementations of each network due
to pin limitations can be further quantitied. Assume that one switching ele-
ment is implemented on one chip and that the chips are bit sliced. For the sake
of modularity, in the node-equals-switch implementation of both networks.
this means the chip will be more complex than necessary for the switching
elements in the input and output columns (3 and 0 in Figs. 3 and 5).

Let D) be the number of pins available on the chip for data path connections
and P be the number of 1/O ports required by the switching element (see Figs.
7 and 9). The D/P is the number of pins available per port. It is assumed that
data pins dominate the total pin count and that the chip has the capacity to
accommodate the small number of control and power pins also needed. If the
network data path width is W, the W - P/D is the number of chips required to
construct one switching element. Multiplying this by the number of switching
elements needed to implement the network gives the total chip count. The
expressions for the chip count for the four implementations as a function of
W, D, N. and n are given in Table I. A crossbar is included for comparison.
The arc-equals-switch (interchange box) implementation of the Generalized
Cube gives the lowest count regardless of the values of W. ), and N. As an
example of the number of chips required in networks of size N = 16 and
N = 64, assume the network path width is W = 32 bits and there are a total
of D = 64 pins available on the chip for data connections. The resulting
counts are shown in Table I.

TABLE 1
COMPARISON OF CHIP COUNTS FOR TwWO [MPLEMENTATIONS OF GI NERATIZED CUBE AND
ADM Nt rworks”

W - 312D =064

Network Implementation P Chip count N 16 N =64

Generalized Cube Node = Switch ) YW DN - 1) 120 672

Arc = Switch 4 QW D)Nn [{5) %4

ADM Node - Switch 4 HW DN+ U ‘46

Arc = Switch R HW DN 128 ToR

Crossbar Crosspoint linking 2 AW DINT 256 1096
two buses

“P is the number of 1 O ports per switching clement, 8 s the network path width, D is the
number of data pins per chip. and n ~ log. v
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As advances in packaging technology continue, the cost difference be-
tween the Generalized Cube and the ADM will narrow considerably until the
ADM is more cost eftective. To see this, examine Fig. 6. The larger the
number of switching elements (of the type in Fig. 9b), in the same stage, that
can be placed on a single chip. the more intrastage buses can be internalized.
This reduces the 170 overhead of the extra links. If a whole stage can be
placed on one chip, then the ADM network requires the same number of chips
and connections between chips as the Generalized Cube network. The as-
sumption here is that the chip circuit density is not sufficient to support a
crossbar but it will accommodate more logic than one stage of a Generalized
Cube requires. The ADM network’s structure thus fills a gap between the
cube-type networks and crossbars. Until very large portions of an inter-
connection network can be placed on a single chip, it is clear that the ADM
network will be more expensive to implement than the Generalized Cube.
though the difference will continue to decline. Thus, it is important to deter-
mine the networks ™ cost effectiveness. it has already been pointed out that the
ADM's capabilities are a superset of the Generalized Cube’s. Another factor
that is becoming more important as the construction of enormous systems 1s
considered will be discussed in the next section: robustness of inherent fault
tolerance.

Voo RastsINESS A COMPARISON OF DEGRADATION UNDER COMPONENT
FALURE

N Iae i o

[n this section. the robustness of each network is measured by removing a
single component chink or switch) and counting the number of input and
sutput ports that are aftected  An input port is considered affected it 1t cannot
send a message to all output ports. An output port is considered affected if
there 1s at least one input port from which it cannot receive messages. Since
the number of ports aftected varies with the focation of the removed com-
. ponent. averages are computed. Caleulating the averages for the Generahzed
ﬁ Cube network s relatively straightforward. Calculating the averages tor the
A ADM network 1s complicated considerably by the varying numbers of multi-
ple paths between ports of the network. Extensive use of and extension to the
theoretical result in [28] were regquired to obtain the closed-form solutions
[ presented here. To streambine this presentation, however. most of the math-
. ematical denvations appear in the Appendix.

The average number of aftected ports is calculated for both imple-
mentations of cach network. These calculations are pertormed using two
ditterent rules tor counting affected ports. The first rule requires ali 1 O ports
= to be considered. Under this rule. it has been shown that some permutation
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connections can be routed around a faulty link in the ADM network, but this
is not true in general [38).

The second rule allows “severely™ affected ports to be disabled and thus not
included in the count. It is implemented as follows. Referring to the graphs
in Figs. 3 and S, if a straight (or horizontal) arc at level j is removed, then
input port j and output port ; are disabled. If links are equated with arcs. one
pair of 1/0 ports is disabled. If switches are equated with arcs. since two
straight arcs are included in each switching element (Figs. 7b and 9b). two
pairs of 1/0 ports are disabled. Thus. in Figs. 1 and 6, the 1/O ports whose
addresses correspond to the output labels on a given switching element are
disabled if that switching element fails.

This second rule takes into account a practical system response to a network
fault: the disabling of some components so that operation can continue, but
in a degraded mode. This is feasible if the network is used for asynchronous
communication by cooperating processors (MIMD mode [ 18)]). If the network
is used in a synchronous mode to establish permutation connections (SIMD
mode [18]) disabling some components is not feasible. However, if the
system is partitionable so that subsets of the processors, called submachines,
operate synchronously but independent of other submachines, then certain
submachines can be disabled when a fault occurs. PASM [41] and TRAC [34]
are systems with this capability. »

Since robustness is useless unless it can be exploited, it is implicit that
faults can be detected and diagnosed and that the system can continue to
function once a fault is detected. Detection and diagnosis have been in-
vestigated in [4, 17, 33. 39]. The latter requirement implies that measuring
robustness is only meaningful for MIMD and partitionable SIMD environ-
ments.

The results using the first rule are shown in Table II and those using the
second rule in Table IIl. Two examples of how to calculate the expressions

TABLE 1l
AVERAGE NUMBER Of AFFECTED 1/Q) PORTS IN THE GENERALIZED CUBE AND ADM
NETWORKS WHEN LINKS AND SWITCHES ARE REMOVED

Node = Switch Arc = Switch
Failure Link Switch Link Int. box
- -9 ] — D ;o
Generalized Cube W -2 W 2 v -2 o4
n n+ | no+o n
- ) N ) -
ADM N+n-1 N +n N +n N K*I
in n o+ n+ | 2n
Cube/ADM =6 -2 -2 114

“All ports are considered. Node — switch implementation corresponds to Figs 3 and 2
Arc = switch implementation corresponds to Figs. 1 and 6
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TABLE Il
AVERAGE NUMBER OF AFFFCTED 1/0 PORTS IN THE GENERALIZED CtBE AND ADM
NETWORKS WHEN LINKS AND SWITCHES ARE REMOVED

Node - Swatch Arc = Switch
Failure Link Switch Link Int. box
AN -2 N N 2
Generalized Cube AN 1 -0 2 LA 2 &
n n+ 1 nt | n
ADM 0 0 0 Wy
2n
Cube/ADM x * * =1 33

“Severely attected ports are disabled and not counted.

in Table 1T are shown in the next subsection. The remaining derivations for
both tables are presented in the Appendix. It should be noted that the entries
in both tables under the “Node = Switch™ column for a switch fatlure and
under the “Arc = Switch” column for a link failure are identical. This is
because both situations correspond to removing 4 single node trom the graph-
ical representation. Removing a link trom the node-equals-switch imple-
mentation corresponds to removing a single arc from the graph. whereas
removing an interchange box from the arc-equals-switch implementation
corresponds to removing four or eight arcs from the graph. considerably
different situations.
B Fault Effect Analvsis Counting All Affected Ports

Here the effects of a link tault are analvzed in detatl tor the Generalized
Cube network and then for the ADM network. For the former, assume there
i~ a link farlure 0 stage 1. the first rule applies. and the network is imple-
mented by equating nodes with switches (kg 3). To see which nputs are
aftected. start with the failed link and move backward toward the input,
tracing all links that are connected to the tailed one. The number of affected
mputs corresponds to the number of traced links 1 stage n - 1. In general
this numberis 2 * ' For example, if the link at level 3. stage | (Fig. 3), fails.
mputs O and 4 are attected. The number of affected outputs is catculated by
tracing hinks from the fatled one to those to which it is connected in the last
stage. e, stage O, This number is expressed as 2° For example. fatlure of
the link atlevel 6. stage 2 (Fig. 3). affects outputs 4. 5. 6. and 7 To calculate
the average number of atfected 'O ports. given a single hink failure. a sum
of these two terms taken over all stages is computed:

ta

i C 3, -
| AN LN B TH N\ o -(\ . h
e =

=

n




TR TN LT TS TR T TR,

a4

CUBE AND DATA MANIPULATION NETWORKS 97

As a second example. consider the case of a link failure in the ADM
network, using the first rule. and implemented by equating nodes with
switches (see Fig. 2). A property of the ADM network is that there are at least
two paths between every nontrivial (input address # output address)
input/output pair [28]. One of the existing paths consists of plus and straight
links only and is called positive dominant. There is another path that consists
of minus and straight links only and it is called negative dominant. The
portions of the positive and negative dominant paths that are distinct depend
on the relationship between the addresses. It they agree in the low-order i + |
bits, then the paths converge at the input to stage ¢ and follow the same set
of straight links in stages i through 0. (The paths will be distinct in stages
n — 1 through ¢ + 1.) Thus if a nonstraight link fails, none of the 1/O ports
are affected because there will be a distinct path of the opposite dominance
that avoids that link. (Routing schemes have been proposed that allow mes-
sages to dynamically switch between positive and negative dominant paths as
they traverse the network (27, 28], allowing them to avoid busy or faulty links
and switches. ) If a straight link in stage / at level j fails, then all the input ports
whose low-order i + | bits agree with output port j's low-order i + 1 bits
will not be able to send a message to output j. There are 2" ' such input
ports. The other input ports can communicate with output port j since their
paths to j do not converge until reaching a stage less than i. No output port
other than j is affected by the failure. To see this, consider output port k # j.
All input ports must be able to communicate with k. They can be divided into
two classes: (1) those whose addresses agree with ks in less than i + |
low-order bits: and (2) those whose addresses agree with &’s in at least i + 1|
low-order bits. In the first case, either a given path from the input to output
k does not include the faulty straight link (in stage i, level j) or if it does, there
is another path of opposite dominance that does not. In the second case. in
stages i through O the required path uses straight links; however, they are all
at level k. Thus all inputs can communicate with output & so k is unaffected.
As an example, suppose the straight link in stage 1, level 4 (in Fig. 2), is bad
(i = 1, j = 4). Consider three different situations: communication from in-
puts 0 and 4 to output 4, from input 0 to output 5. and from input | to output
5. QOutput 4 will be unable to receive messages from inputs 0 and 4, since 0
and 4 agree with j in the low-order i + [ bits (2 bits). All the other output
ports are unaffected. Consider connecting input O to output 5. Even though
the positive dominant path, +2°, straight, +2', from input 0 to output $
includes the bad straight link. a message can simply take the negative domi-
nant path, straight, —2'. —2° Input | agrees with output 5 in the two
low-order bits (bits 0 and 1) and therefore requires straight links in stages ()
and 1. However. the required links are at level S. and thus the faulty straight
link is not required.

The average number of /0 ports affected by a bad straight link, under the
first rule. is calculated by adding the number of affected input and output ports

A e e e e e el e b Yt o ¥ RO e 0 R She hestRte“Bin-hhe Shhe Foo 2 hutR - Jids s 20e B e e a2t AR N




P i BAEIA S Rtk A sed it BNa ot et it Sett Al AT T B ACe A At A% B hin IACIL JhA S AnieAniuial ek A Arh S A AT R A AR AN S S SN

98 MC MILLEN AND SIEGEL

oY P
‘-.'_0...\ - e
'.‘-4b .
P4 . .
4 5 o
’

(as a function of the stage in which the fault is located) and summing over all
; stages:

s
s e

n-d

n i —_
l (2n>xrl+l)=_|2(2'+|)=ﬁ:_n__..l_.
n <t n < n
Since the failure of a +2' or a —2' link does not affect any 1/Q ports, if link
failures are equally likely. then the average over all links is one-third of the
above value.

In Table II, the ratio of the average number of affected 1/O ports in the
Generalized Cube to those in the ADM is computed. Regardiess of network
size, in the node-equals-switch implementation, a link failure in the Gener-
alized Cube network affects six times as many ports. on the average. as a link
failure in the ADM. A given switch failure affects twice as many ports. In the
arc-equals-switch implementation. a link failure in the Generalized Cube
network affects twice as many ports as the same failure in the ADM network.

An interchange box failure affects 1.14 times as many ports.

C. Discussion of Fault Effects with Some Disabled Ports

The measurement using the first rule is a very conservative indication of the
robustness of the ADM network. Table Il shows that under the second rule.
the ADM network is very robust. When the pair of 1/0 ports connected to the
network at the level of the failure is disabled in the node-equals-switch
implementation. none of the remaining ports is affected by a link or a switch
failure. A failure can only eliminate one of at least two paths that are always

- available between the enabled 17O ports (as illustrated in the example above
connecting input 0 to output 5). In the arc-equals-switch implementation, link
failures have no effect on enabled [/O ports. because (as pointed out earlier)
the situation is equivalent to removing a switch in the node-equals-switch
implementation. However, “interchange box™ failures do aftect some enabled
ports. The reason this is the case is that there are situations in which both paths
between input and output ports pass through the same box . It so happens that
these situations only occur in networks larger than size N = &. The full details
are presented in the Appendix.

The entries in Table 111 for the Generalized Cube network are calculated in
a fashion similar to those in Table 11, The derivation for cach entry is given
in the Appendix

The “interchange box™ implementation fault analysis tor the Generalized
C'ube and ADM networks considers only the worst case: i.¢.. the entire box
is faulty. Whether both paths are acutally blocked due to a single fault in a
real implementation depends on the nature of the fault. Assume that one
interchange box is implemented on a single integrated circuit chip. If two data
lines internal to the chip and coming from the same input become shorted, this
will bave no eftect on the other internal data path and it is not necessary to
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assume that the whole interchange box has failed. On the other hand. a
mechanical failure could affect enough of the chip to render the entire device
unusable. From a reliability point of view, this analysis shows that the
implementation in Fig. 9a (which corresponds to the network in Fig. 2) is to
be preferred over that in Fig. 9b (which corresponds to the network in Fig.
6). Since the logic/pin ratio is roughly the same for both implementations.
nothing is fost. However, the total component count will be higher. leading
to a less physically compact implementation.

The robustness measures for the ADM network are equally applicable to
all the data manipulator-type networks with individual switching element
control since all the properties used to derive them apply to each of the
networks. Similarly, all the measures for the Generalized Cube network are
applicable to all the cube-type networks that have individual switching cle-
ment control.

The results presented here are for the basic cube-type and data manipulator-
type topologies. It should be noted that variations on these topologies which
are more fault tolerant have been propased [2. 12, 27].

The above analysis assumed that the failure of one component was inde-
pendent of the failure of any other component. If all or a large part of one
stage is implemented on a single chip. this assumption may or may not be
valid. If it is not, then the networks can be reanalyzed using the technigues
presented here to account for the new failure pattern exhibited.

VI. CONCLUSIONS

This paper has examined two classes of multistage interconnection net-
works for use in parallel/distributed systems: the cube type and the data
manipulator type. This was done by comparing a representative network from
each class: the Generalized Cube and the Augmented Data Manipulator
(ADM). This paper has attempted to quantify the differences in imple-
mentation costs by considering comparable implementation models tor both
networks. It was found that a discrete, circuit-switched implementation of the
ADM network costs approximately 50% more than the same type of imple-
mentation of the Generalized Cube network. For discrete, packet-switched
implementations, assuming the packet buffer cost dominates. the two net
works cost about the same amount (ADM would be slightly highery 1t the
networks are to be constructed from VLSI chips, assuming the network’™s
building block chips are to have ncarly equal numbers of pins. the ADM
network requires more than twice as many chips as the Generahzed Cube

Both networks can benefit from VLSI implementation. Each can be par
titioned into complex building blocks that have higher logic-pin ratios than
partitions of simple building blocks. Though the ADM building block re-
quires more 1/0 ports on a chip than a Generalized Cube building block.

« S, B T e e e e o R S N ]
LI R D P A I e N A A U R R
PRAPEIPR WAL WS W WIS PR 1P

.t R IR L BRI - L TS - v - - “ e . . .
s CatateSatiatata s . atas PR AL VAR N WA GAE WA A W WA SRS RSy %




- -y - v T W Al
ey e e et mNE s Ak AN M N EOd S U SnL g LGS ame ate ae i i g S S e Y SR S v M S Db ah s ANt Y e e Jndad
3

100 MC MILLEN AND SIEGE]

present and future predicted pin capacities are sufficient for the ADM
network's needs. Using bit slicing, arbitranily wide networks of either type
can be constructed.

Using a graph model as a basis, two guantitative measures of comparative
robustness were applied to the networks assunung they are used in MIMD or
partitioned SIMD environments. Applying the measures to two differem
(functionally equivalent) implementations of cach network under different
faults it was found that the ADM network 1s always more robust. Using the
first measure, the Generalized Cube network vaned from having | 1410 6
tmes as many atfected I/O ports due to a single tailure as the ADM petwork
tising the second measure. in which some 'O ports are disabled, one imple-
mentation of the ADM network was shown to be able to fully support
communication among the remainng enabled 10 ports

In summary, a graph model has been used as a basis tor quantifsing the
differences between cube- and data manipulator-ty pe networks. Both imple-
mentation costs and robustness have been compared.

APPENDIN: DERIVATIONS OF ROBUSTNESS RE:st11s

The tollowing are derivations of each of the resuits in Tables I and 1lI
(excluding those already presented in Section V., B: the average number of
atfected 12O ports in the Generalized Cube and ADM networks when links or
switches fail. Two different implementations and two difterent rules for
disabling 10 ports are considered. Recall that a port 1s aftected by a tailure
if it cannot send a message to all of the other ports or if it cannot receive a
message trom all of the other ports.

I Rule 11 When a link or 4 switch tatls. no 'O ports are disabled.
A lmplementation: Node = Switch (Are = Link).
I, A single hink fails. This case was considered in Section V of
the text.
2 A single switch fails, Under this implementation there are
n o+ L ealumns of switches (see Figs. 2 and §) so summations
in the average are taken from 0 to .
4. CGeneralized Cube
Start:ng at the failed swatch, trace hnks and switches back
to the input to determine the number of attected inputs
I'ths number s 2 4t the taled swatch s i cojumn 4
Using this same method. but tracing to the output, the
number ot affected output ports is 2. The average num-
ber affected 1s thus

1 " 2 & 22NV -
ceem e N2 ) T N *--—*—l—)n
not+ = n‘l“—" n o+ 1
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b. Augmented Data Manipulator
The same reasoning discussed in the text (Section V)
applies here. There are 2" ' atfected input ports and only
1 affected output port. The average 1s thus

2N—l+ _ N+ n
n+1 n+ 1

B. Implementation: Arc = Switch (Node = Link).

2.

A single link fails. This case is completely analogous to 1.A2

above.

A single interchange box fails. The effects of this are deter-

mined by examining Figs. | and 6.

a. Generalized Cube
The effects of a failed interchange box in stage / are
determined by tracing both input links to the box back to
the input and the two output links to the output. The
number of affected input ports is 2" ' and output ports is
2'*!. The average number affected is

1 n-1 l 2 n-1 4t AN - |)
- n—yi 1+ P 2I‘|=_v ' )
n%(z +2''h nz S22

=0 [\l n

b. Augmented Data Manipulator

In this implementation, the straight arcs (from Fig. §) that
are paired at stage i (for the network in Fig. 6) are p, ,
o papipi o peandp, o pappo i Po
The logical “distance™ between these links is 2. Thus, if
J=Pa o poaOp 0 - ¢ pois the address of the upper
input to an “interchange™ box in stage 7, then j + 2 =
Payc o poaIpo s 0 pois the address of the lower
input. For example, in Fig. 6. the second box {rom the
top in stage 1 has inputs with addresses 4 and 6. In binary
the addresses are p-Op, = 100 and p:1p, = 110, respec-
tively. Notice that each box has two other inputs from
nonstraight links. To consider all of the inputs that possi-
bly could be atfected by the faiture of a box with inputs
jand j + 2'in stage i, trace links backward from each
box input to the input of the network. The castest way to
do this is to use Fig. S. Start with the nodes at levels j and
Jj + 2 in column i. For the example above. these are

» U
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nodes 4 and 6 1in column |. Trace the three links back-
ward to column ¢ + | and mark the appropriate nodes.
Repeat the procedure for each marked node. There will
be 2" ' inputs marked in column n. so this is the upper
bound on the number of affected inputs. For the example,
nodes 0, 2. 4, und 6 are marked in column 3 of Figure S
This translates to inputs with these numbers in Fig 6
None of the other inputs can be aftected by the failure of
this box because they have no phyvsical connection to it
All of the marked nputs are aftected. This is because any
input whose low-order ¢ + 1 bits match cither 7 (s
Op, - - - paorg 2 (b dp, - poy will require
straight connections in stages 1 through 0 at devel j or
J + 2 when these inputs communicate with outputs 7 or
J + 2. They will be torced to use the taulty interchange
box in stage /. Calculation shows that there are 27 ad-
dresses that meet this criterion so the number of attected
inputs equals the upper bound

To determine which outputs are affected requires two
observations: (1) inputs that can reach output jory + 2
of the faulty interchange box can only get to levels in
stage 1 of the formj = A2 mod N, b any integer: and (2)
regardless of the path taken in stages n — 1 though /.
when the path reaches the output of stage 7. it must be less
than a distance of 2" (t.e.. 0 to 2" - 1) of the destination
D, Observation (1) is a result of the fact that the inputs
agree with j in the / low-order bits  In stages n - |
through ¢ the smallest increment by which a path can
change levels is 2 Thus all the levels it can get oin stage
i agree with jin the ¢ low order bits. Observation (2) is
a result of the fact that the maximum distance stages
¢ - 1 through O can change a path is X, | 24 = 2 - |

Now consider tive cases reparding the relationship be-
tween 1), oand ; + 2 First. note that any interchange
bov w stage 1 1 that fails will attect all the outputs
since none of them can receive messages from inputs
andy + 27 Soasume s o |

Case 1 1) = j Output ;15 the only output from the
taulty box less than g distance of 2 tfrom ). therefore (as
shown in the atfected inputs analysisy inputs that agree
with 7in the low-order ¢ bits cannot communicate with 1)

Case 2.0 - ;) « 2 The argument is the same as tor
Case 1 thus D s affected
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Case 3. j < D < j + 2. The only outputs in stage i
| less than 2' from D are j and j + 2. Thus both potential
: paths from an input that agrees with J in the low-order
bits must route through the taulty interchange box, so D
is affected.

Cased. 0= D <j(ifj=0= DseeCase ). ItDis
a distance of 2'*' or more from j. it is completely un-
affected because there is no physical path from the faulty
box to D. If D is a distance of less than 2'"' from j. the
only outputs from the faulty box less than 2’ from ) are
J — 2'andj. One of the paths to outputj ~ 2' comes from
the faulty box. However, it is known that there are at least
two ways to get from an aftected source to output j — 2'
in stage i (which is input j — 2' of the next stage. stage
i — 1). This follows from the facts that (1) there are at
least two paths between every nonequal network input
and output (28], and (2) the only way to reach network
output j — 2' from an affected source is to go through
inputj — 2/ from stage i — 1 and then “straight” through
the rest of the network. Therefore, there are at least two
physical paths from an affected source to input j — 2' at
stage i — 1. Thus, every affected input must be able to
communicate with D through the other path to input
J — 2'in stage i — 1. Therefore, D is unaffected.

Case 5. j+ 2 <D <N-1(fj+2=N~-1|=
D see Case 2). This case is completely analogous to Case
4. If D is a distance of 2'"' or more from j + 2' then it
is completely unaffected. Otherwise, the only outputs in
stage i less than 2 from D are j + 2'andj + 2" Thus
D is unaffected.

To summarize, if i = n — |, two inputs and all N
outputs are affected. For 0 =i < n - |, the outputs
affected have an address D such that j <= D < j + 2/
There are 2' + 1 such outputs. The inputs affected agree
with j in the low-order i bits. There are 2" ' such inputs.
The average number of affected 1/O ports is

n-2
1[2(2"’+2'+ l)+N+2}
n 1=0

a2 1 IN-38
=1[2(4(2')+2'+ |)+N+ZJ=—+ 1.
n 0 2"

« -
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Q) Il Rule 2: If a straight link or switching element at level j fails, disable

'f‘-j input j and output j. If an interchange box with inputs j and k fails,

N disable inputs j and k and outputs j and k.

A. Implementation: Node = Switch (Arc = Link).

l. A single link fails.
a. Generalized Cube

When a straight link in stage 1 fails there are 2" * ' — |
affected inputs and when a nonstraight link fails there are
27 Daftected inputs tsince no ports are disabled). Sim-
Harly there are 2 - 1 and 2 affected outputs. re-
spectively  The average is thus

Inl

D N AN BRI IR B
n ~

10

In‘l 2.,\7 h)
SN ey = 2T

H -~ n

- b.  Augmented Data Manipulator

. It any straight link at level j twls. the only output some
of the inputs cannot communicate with is output j. Since
it 18 disabled and 1t was the only affected output (sce the
discussion in Section V), none of the remaining enabled

- input or output ports is affected.

- 2. A single switch fails.

- a.  Generalized Cube

- This case 1s similar to case 1.A.2.a except that there 1y

one less atfected input and one less aftected output. Also,
the failure of a switch in column n or (0 has no effect on

. any inputs or outputs. This is because when a column n
- switch fails. any input other than the one entering that
X switch can reach all outputs. Similarlv. when a column 0
" switch tails, the only output that cannot be reached is the
A

one attached to the failed switch. The average is thus

. i nol b) v

- hl »” . -

= N2 e 2 ey e T N
o n o+ n+ | -

Chet]

.
'l.n
H
1>
| <
-

b Augmented Data Mamipulator
No anput or output hnks are aftected. The reasoming is
. similar to case LA 1.b. If a switch at level j fails. the

~-'~'.q‘<u «'at.. "
alalfaialdadateldel sl e
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only affected output port is that connected to the taulty
! switch by straight links. namely, output j.
- B. Implementation: Arc = Switch (Node = Link}.
. 1. A single link fails.
This case is completely analogous to case I1.A.2 above.
2. An interchange box fails.
a. Generalized Cube

This is similar to case [.B.2.a except that two less inputs S
and two less outputs are aftected. Also. the failure of an \‘,
interchange box in stage n — 1 or O has no eftect on any ALYy

inputs or outputs. This is because when a stage n — 1 box
fails, any input other than those entering that box can
reach all outputs. Similarly. when a stage (0 box fails, the
only outputs that cannot be reached are those attached to
the failed box. The average is thus

| 2] N
=SS+ =22 === -4
n< n e n

b. Augmented Data Manipulator
This is similar to case 1.B.2.b except that two less inputs
and two less outputs are affected. As in case [1.B.2.a, the

failure of an interchange box in stage n — 1 or 0 has no N
effect on any inputs or outputs. Theretore, the average is e
[ I 2 | nﬂ_‘ IN

- 274+ Y - 3) = - 3-2 -3 == -1

n 45-:‘ ( n ‘21 ( 2n
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. A SURVEY OF FAULT-TOLERANT MULTISTAGE NETWORKS
AND COMPARISON TO THE EXTRA STAGE CUBE
+
George B Adans HI
\ Howard Jay Siegel

School of Electrical Engineering
Purdue Universuty
West Lafayette, IN 470907

Abstract

A vanety of fault-tolerant multistage interconnection networks for parallel processing
systems that have been proposed in the hterature are surveyed. A network s fault-
tolerant if it ean continue to meet its fault tolerance eriterion i the presence of one or
more failures of the type(s) allowed by its Tault model. Sficant dilferences i fanlt
models and fault-tolerance criteria exist among various fault-tolerant networks. This
mahes direct comparison of these networks diflicult. Tn analyzing the networks, this
paper compares the various models and assesses the effect of choosing a comimon model
and criterion. Network characteristics such as degree of fault toleranee, routing control
method, and permutation capability are discussed. The networks surveyed and com-
pared to the Extra Stage Cube are the Modificd Basehine, Augmented Delta, F-network,
Enhanced Inverse Augmented Data Manipulator, Gamma, Faulti-=Tolerant Benes, and
J-networks.

an aim of this paper is to compare these networks with
the Ixtra Stage Cube network, the fault tolerance of
which is a consequence of its topology. Other methods
for enhancing network reliability such as using error
correcting codes with existing interconnection networks
have been investigated {10] but are not considered here.

1. Introduction

A number of fault-tolerant multistage interconnection
network designs have been discussed in the literature
recently. The interconnection network is an important
component of farge-scale parallel and distributed com-
puter systems since it is the mechanism for information

transfer among the computation nodes and memories, 2

Basie terminotogy is defined in Section Seetion 3

Assuring adeguate reliability for such large systems is a
significant task. ‘Thns, a erueial practical aspeet of ap
intereonnection network used o meet communication
needs is fault tolerance.

This paper surveys of a number of fault-tolerant multis-
tage interconnection networks which have appeared in
the literatare. Included are the Extra Stage Cube net-
wark {1, 2], the Modified Baseline network {21], the Aug-
mented Delta network [6], the F-network [5], Enhanced
Inverse Augmented Data Manipulator {11, the Gamma
uctwork [13], the Fault-Tolerant Benes network [3, 17),
and d-networks [14]  Only networks with topologies
intended to provide fault tolerancee are ineluded because
This tesrarch was supported by the U. S Army Rescarch Office,
Department of the Army, under Contract DAAGRO-R2-K-0101, and
the National Science Foundation under Grant ECS 8016580,

t G. 13. Adams Ul is now with the Research Institute for Advanced
Compnter Seience NASA Ames Research Center, Mofett Field, CA
940055,
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desenibes the networks and their characteristios relevant
to fault tolerance. The networks are evaluated in Sec-
tion 4 and compared to the Extra Stage Culie in Scetion

r
DN

2. Definitions

Interconnection networks which can continne, in at least
some cases, to provide service when they contain Taulty
components are known as fault-tolerant. A network is
termed single fault tolerant if 1t can function in spite of a
<ingle fault. If up to ¢ faults can be tolerated then the
network is i-fault tolerant. A network will be termed
robusl if it can tolerate some instances of i faults, but is
not i-fault tolerant. A fault is hard if it is not of a tran-
sient nature.  All faults are assumied hard for the pur-
poses of this paper.

It is only meaningful to speak of a network as i-fault
tolerant  with regard to a particular faull-tolerance
model. A fault-tolerance model consists  of  two
components. The lirst, a faull model, defines the nature

268
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ol all faults that are assumed to occur in a network.
The fault model for a given network may or may not
correspond closely to actual or predicted expericnce with
hardware In particular, fault models are often chosen
to have charactenistics suited for performing an analysis,
evonaf ther characteristios do not exactly reflect reality
I'he soecond vomponent s the faull-toleranee criterion,
M bt that mest be met for the network to be
toi b Lave toderated a given fault, or faults This
caros from network 1o network due to differences in the
cacton of whiat vonstitutes functionality for a given
ek s ally wnat amount of degradation from

cotree oo oo sllowed).

Ve Cranee ol g network s deternnnod by vari-
oo anchuding the chosen fault amodel and fault-
oo cnenon 'The chowee of fault model, however,

b dironear of one investigating the fault
e Sy nctwark Different chotees can lead Lo
Foo sent daras for the fault tolerance of a net-
v scwaardy varioos Chotees of fault-tolerance eri
sncunply Wfleront fault tolerunee capabilitios
the Daglt-teloraiee mndel s essential to under-
cinpenng the fault vcranee capabilitios
coas sotwerhs Bocwuse different fault-toleranes
o i s Afferent networks, sofne care must

«' o apanng frult-tolerant networks.

cetas s oy boall perform their iterconnection
. wiv slages of 0 suifching elements (switchesj
oo cf st depeuds on the netwerk, as does
s fthe swatching clements The swatehing ele-

o tod iy dinks

4 Ivetaork Deseriptions and Fault-Tolerance

M cudels
ok s thas section fall anto four gen-
tootes The Frira Stage Cube, Aagmented
N oochel Baseners and poaetwirk form oa group
ceto e Dovcralized Unbe network (15, 16)0 The
oo o b ackeeve faalt wlerance by adding an
S vage c Cssrlches 1o a basee network which o

;b Goneralued Cube. The Fonetwark gans
et b aner by wang a Generahzed Cube network
crootare wals additional hinks

Do ware nampdater (K elass of  petworks s
popge onto U by the BEgbanced Inverse Augmented Data
Mucpabao e BADMY and Gamma petworks  The
boonoe TADAY necwork uses additional links, and the
Coanima ootwork uses anereased switching element com-
piexaty to readize fault wlerance.

The Lauit-Tolorant Benel network is a third type of

ek ses 2o L stages of switchiag elements and
an sdlnenal switehing element to provide fault toler-
sree compoared o the nostages of switches in a Generak
veel Cotie where N222% s the number of inputs. The
lonrth category of network s represented by 3-networks
T Tondy of networks spans a wide range of topologies
sed e fanlt toleranee through an operational tech-
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Py 1 The Lxtra Stage Cube network with N=8

3.1 Extra Stage Cube

The Extra Stage Cube (ESC) {1, 2} is formed from the
Generalized Cube by adding an extra stage of switching
clements along with a number of multiplexers and
demultipioxers. Thus, the ESC has relatively low inere
meatal cost over the Generahzed Cube network. ESC
network structure 18 illustrated in Fig. I for N=8

Each stage of the EESC contains N/2 inlerchunge bures
or Z-amput/2-output switches. Let the upper input and
output hines of an wterchange box be labeled i, and the
lower lines, j. Then the straight setting connects input i
to output ¢ and wput § to output j. The exchange set-
ting connects wmput i to output j and input j to output )
A broadcast connects an input to both interchange box
cutputs. ESC switching elements are capable of straight
and exchange connections and broadcasts from either
input to bnth outputs.

The connections between stages in the ESC are based on
the cube iaterconnection  functions [18].  Let
P = p, . p,pp be the binary representation of sn arb-
trary 1/O line label. Then o cube interconnection func-
tions can be defined as

evbedp._ypiPo) = Pa-t--Pi+1Pibi 1--PyPo

where 0 <1< 0, 0 <P <N, and p; denotes the com-
plement of p;  This means that the cube interconnection
function conneits P to cube(P), where cube(P) is the
1/0 line whose label differs from P in just the 1'® bt
position.

Stage 1 0 <1< n of the ESC topology contains the cube,
taterconnection function, ie, it pairs [/O lines whose
addresses differ in the i** bit position. It is the only
stage which can map 8 source to a destination with an
address different from the source address in the i'P bit
position  When an interchange box in stage i is set to
exchange, the daia items input to that interchange box
are transferred as specified by the cube, interconnection
function  When set to straight, data items input are
transferred according to the identity function, where
dentity(p,, | o) ¥ pa 1 Po Since each interchange
box s wdividually controlled, each stage i may perform
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the cube; intercannection function on all or some subset
of the data items depending on the settings of the inter-
change boxes. The extra stage of the ESC. stage n, is
placed on the input side of the network and implements
the cubey mterconnection function. Thus, there are two
stages in the ESC which can perform cubeg.

Stage n and stage 0 can ecach be cnabled or disabled
{bypassed). A stage is enabled when its interchange
boxes are being used to provide interconnection. It is
disabled when its interchange boxes are being bypassed.
Lnabling and disabling in stages n and 0 is accomplished
with a demultiplexer at each box input and a multi-
plexer at cach output. All demultiplexers and multi-
plexers for stage n share a common control signal. as do
those for stage 0. Fig. 2{a) details an interchange box
from stage n or 0. The demultiplexer and multiplexer
are configured such that they either both connect to
their box (enable) or both shunt it {disable) as shown in
Fig. 2(b) and 2(c). respectively.

tal fe———— INTERU{HANGE BCK

DEMULTIFLEXREFR

(b) (c)

Fig. 2 {(a) Detail of interchange box with multiplexer
and demultiplexer for cnabling and disabling. (b)
Interchange box enabled. (c) Interchange box dis-
abled.

Stage n and 0 enabling and disabling is performed by a
system control unit. Normally, the network will be set
so that stage n is disabled and stage 0 is enabled. If
after running fault detection and location tests a fault is
found, the ESC is reconfigured. A fault in a stage n box
requires no change in network configuration; stage n
remains disabled, and the fault isolated. If the fault is
in stage 0, stage n is enabled and stage 0 is disabled.

only one of which can contain the cxisting fauit.

1Lty =T =SOD. In the case of faults, bit posi-
tions o and 0 of the tag TY may need to be altered, so
actual tag values depend on whether the ESC has a
fault as well as source and destination addresses, but are
readily computed [2]. At each stage i the switching ele
ment examines the itP tag bit. If the bit is a 0, the
switeh is set to straight; if it 1s a I, it is set to exchange.

The fault model for the ESC assumes both switching cle-
meats and hinks can fail. However, the input and out-
put ports and the multiplexers and demultiplexers
directly connected to the ports of the ESC are always
assumed to be functional f a port or the stage n
demultiplexers or stage 0 multiplexers were to be faulty,
then the associated device would have no access to the
network.  The fault-tolerance criterion for the ESC is
retention of full access capability {5]. Full access capa-
bility is the ability to connect any given input to any
output. Under its fault model and fault-tolerance cri-
terion the ESC is single fault tolerant and robust in the
face of multiple faults [2].

3.2 Modified Baseline Network

The Modified Baseline network [21] is derived from the
Baschine multistage interconnection network [20]. The
Baseline network has but one path between any source
and destination. Thus, any network component failure
will affect comuunication for some set of inputs and
outputs. To lessen this difficulty, an extra stage of
switching clements 1s added to the Baseline network.
Iig. 3 shows the Modified Baseline network and indi-
cates the original Baseline network and the additional
stage. The Modified Baseline network is similar to the
ESC except no bypassing of input or output stages is
provided. Hf an extra stage incorporating switching ele
ments with { outputs is added at the input side of the
network then there are t connection paths between any
/O pair [21].

Routing in the Bascline network is carried out using des-
tination lags [9] which consist of the address of the
intended destmation of a message. 1f rxr switches are
used {r=2 for Fig. 3) then a destination address D ocan
be represented by a base-r number d,, didg where
m =log,N. This base-r representation is used to seleet a
path through the network in the following way. The
switching element connected to the source will use s

Stage n then performs the funetion of the disabled stage O
0 For a fault in any link or in a box in stages n—1 to I, } {
both stages 0 and 0 will be enabled.  Enabling both :\: r
< stuge n and 0 provides tolerance to this type of fault by u {
- providing two paths between any source and destination, T it

> Routing i the ESC is carried out using rouling lags |9).

-, Routing tags tags for the ESC, which take full advan-

‘ tage of its fault tolerant capabilitics, can be casily com-

= puted. The ESC uses n+1 bit routing tags where the it"

v bit position controls stage i. The rmmng tag for the e . . . =
:":f fault-free case is given by T' = t,t, .4t where Fig. 3 The Modilied Baseline network with N=2
x
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output nuibered d,, , to hok to a switching clement in
the next stage. At stage 1, d, b used to determine the
sciection of switch output, 0 <1 < m-L. For the
Modilied Baseline network an  extra digit can be
appended to the defined destination tags to control the
extria stage.

The fauit medel for the Moditied Baseline assumes only
sattehing elements not in the snput or output stages faid
Faulty switches are considered uwnusable The fault-
toierance critenen s, as for the ESC, full access. The
Mohived Basehne netwerk s single fault tolerant and
the presense of muitiphe faults with respect to
telerance model

obhost

RPN P

3.3 Augmented Delta Network

oAngimented Dot network {6) s dlustrated by Fig o
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g A Augirented Deita network
e e e b onemal Delts netwerk, labeied D
Nare tanady of W TN/ bxh swatehung
e cnnected b b delta netwarks each of size
Coant b These bogetworks are Bibeled Dy through
v e tase and ase cach stractured in the same
[RITER N :m(\,uv;k
ek s a stegie poh between any geven
. N R NI Fie Nugraeat-d Delta neiwaorh s

feone Moaded Baseline motwaork The distane
cowerr b two is that te Augmented Delta net-
tr s oase more than one estra stage and the

sy eatra staget are adentical to all others
a0 et b A honal rodundant paths can he
vecead Uy wd Bng more stages So that this netwoerk

e mparabie widh the othe e netwerks diseussed
thoe aper aeby ome stage s assumed to be adided

P v omentod Debta network s stmlar to the FSC Tt
ots namg b owatching vieients, where the FSC
ce 2w swiichos wnd thus can have more paths
Zoven anpat and any output However hike

Yoo Boehine theroas o bypassing of anpat or
FRSERS SR AR RN

Voo hvammentod el Tandt nedel ancorporates the
opte s thar ol faalts eour o both swat-hing el
et and ks 2 stage 0 and noswateling clemients
Gns Taadefree (3) Landts aeonr mdependently and
s Dedity unee roswatehing clomeats are ot v adable

)
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for use. The fault-tolerance criterion is defined as

retaining full access capability. Under such s fauit-
‘tolerance model, an Augmented Delta network con-
structed from 2x2 switches is single fault tolerant. If
bxb switching elements are used throughout then the
network is (b = 1)-fault tolerant.

3.4 F-Network

The F-network {5 connects N=2" mputs to N oulputs
via n+1 stages of N switching elements which are,
general d-input/f-output devices that connect one it
to ene output - A switching clement in stage ). T,
denoted by a bit strmg P =p. [.pypg It 15 connected
to the stage j+1 switching elements Poyy=po o pipy
(2 +i pn 1 )'ll ‘, \ PiFo.

Koo =ia anl' P, 1 PiPo and
\J” P Ppealpy o Pipe Fig 5 shows the F-
network for ?\ Stages are nuinbered from left to

—
]
)
o
i = U
N 3l T
P — P
v «f U
T T
5
al
7

Stage 0 ] 2 3
Fig 5 The F-network for N=3 [3]

right ranging from G to no and within each stage. switih-
ing elements are numbered from 0 to N-1

The F-network contams the structure of the Generalized
Cube network and can emulate 1t using only the Py,
nd Qe e niections Thas  the fault toleran e
«||mnrh of the Fonetwork s to add links (R 4, and
S ¢) o the Goneralized Cube structuee, llnflkv the
ISC Modificd Baseline and Augmented Delta networks
Routing 1n the Feonetwork s accomphshed through the
u-e of routing tags The algerithim used to caleulate the
tag~ provides for the chonce of twg of the four vutput
Links at any switching element {except for an output
stage awitchy 50 This allows the Taalt-tolerance capa-
buitie ol the boctworh to be realized

Phe faalt medob weed f - otie Fonetwerh asumes (1)
faults ocour enly dn swatc ooy cicinents, {23 ~tage 0 and o
switching lements are always fault-free (33 faults vecur
dependently  and (4) b fault prevents the correct
exvecution of any switching eloment functin sa a faulfty
switelung eloment 5 tatally unavmlablie




The F-network is considered to Lolerate faults as long as
every input/output pair can communicate. Thus, the
fault-tolerance criterion for the F-network is retention of
full access. The network is single fault tolerant and
robust in the presence of multiple [aults with respect to
its fault-tolerance model [5].

3.5 Enhanced Inverse Augmented Data
Manipulator Network

An Inverse Augmented Data Manipulator (LADM) net-
work .s an Augmented Data Manipulator (ADM) net-
work [16] with the order of stage traversal reversed.
The ADM is derived from the data mampulator network
8. Fig. 6 shows the IADM for N=8. It consists of

~C VZ—
-“C D~CO

STAGE O ! 2

Fig. 6 The Inverse Augmented Data Mampulator net-

work for N=38.

n =logaN stages of N switching clements and 3N links
that are connected to the succeeding stage. LEach
switching element connects one of three inputs to one of
three outputs. Specifically. at stage i. 0 <1< n, the out-
puts of switching element j. 0< j <N, are connected to
switching elements (j—2') mod N, j. and (3 + 2') mod N
in stage i + 1. These links are known as the minus,
straight, and plus links, respectively. Since (3=2" 1) s
congruent to (j + 2" ') mod N. there are actually only
two distinet logical data paths from cach switching el
meat in stage n—1 (stage 2 in Fig. 6). There is an addi-
tional set of N switching elements at the output stage.

In [11]) performance and fault tolerance enhancements of
the IADM are discussed. The fault model for the
Enhanced 1ADM network is the same as for the Aug-
mented Delta network.  The criterion for tolerating a
fault is also the same.

One method of providing fault tolerance with the 1ADDM
is adding redundant straight links. This allows the
bypass of a faulty straight link by using the alternate
straight hnk. Faulty plus or minus hnks can be avorded
by taking ihe alternate path avulable at the stage just
prior to the fautty link [11]. However. switching clement
faults cannot be tolerated. Routing for the [ADM
enhanced with straight links 1s exactly the same as for
E'W] [ADM network and is performed with routing tags
11}.
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Fig 7 The Enhanced laverse Augmented Data Manipu-
lator network with half links for N=8.

A second. more effective madification to gain fault toler-
anee 15 1o add half hnks to each of stages 1 through n-1.
Half links conneet a switching element m in stage i to
switching elements (m+21) mod N and
(m-2" "Ymoud N This is shown for N=8 in Fig. 7.
Adding half hnks provides single fault tolerance to any
switching clement ot link failure. This is because at any
switching clement (except those in stage n—1, the last
stage) along a path from a network input to output
there are at least two (sometimes three) links leading to
distinct switching elements in the successive stage, each
of which can be used to satisfy the overall routing need
[tl]. Agam. routing tags as in the IADM can be used.
Significant switching element logic is required, however,
to wterpret the routing tags and allow their dynamic
maodification to achieve the full fault-tolerance capabili-
ties of the network. This makes these switches candi-
dates for VLS| implementation. With a single-stage
look-ahead technique the network becomes two-fauit
tolerant [11]. That is, messages will not be sent along a
route on which all alternative paths to the next stage
are blocked by the two faults. Further modifications of
the hardware enhancement methods given above are dis-
cussed i [11].

3.6 Gamma Network

The Gamma network [13] s adapted from the TADM
network (see Fig. 6) and has redundant paths connecting
N = 2" jnpats to N outputs. It consists of n stages of N
switches.  lHowever, unlike the [ADM. ecach of the
switching clements 1s, in general. a 3-input/3-output
crossbar switch ansterd of a one-of-three wmputs 1o one-
af-three outputs selector. Switching elements - the
imnput stage have only one input and three outputs, while
output stage switches have three inputs and only one
owtput. The connection pattern established by the links
s identical to that of the TADM

In general. the number of paths P between an anput, or
source. . and an output, ar destination, D, in an n stage




Gamma network 13
P,,.,l~;— mod N}, x even

Palx) = x+1

2
where x = (D=S) mod N, P4{0}) =1, and Py1) =2
Note that P (0) = } for all n. The fact that P (x) > 1
for x £0 1s the source of {ault tolerance in the Gamma
Detwork

P, ll‘!‘;‘l mod N} + P, || wmod N). x odd

The Gaumma nctwork ran be controlled by n digit rout-
g tags, the value of which is the difference mod N
betwren the numbers of the network input and output
te ke conunected. The digits of the tag may be I, 0, or

1. corresponding to the +2', straight, and —2' links,
respectively  Control of the Gamma network when
fanlts occur s not explicitly specified in (13)

A fault model that can be used for the Gamma network
assumes (1) faults oceur only in switching elements, (2)
the aeput and output stage switching eclements are
alwayy favlt-free, (3) faults oceur independently, and {4)
fulty <witehiny elements are not available to pass infor-
mation. The {ault-tolerance criterion appropnate for the
G we celwork is full access without the stipulation
that wn li.put be able to connect to the identically num-
Lereg ouiput, as there is only one way to perform this
councctior. Under this fault-tolerance model the net-
work tosingle fault tolerant.

4.7 ¥ault-Tolerant Benes Network

3 koo network {4] connects N=2% inputs to N outpuls
st or b ostages each with N/2 2-input/2-output switch-
., ¢feinents. The switching eleinenty can be set to one
of two states. straight or exchange. The Benes network
i rearruegealble in that any idle input/output pair can
'ocnected by rerouting any estabiished one-to-one
cosneciions as gecessary.  in other words, sny one-to-
©oonnerton can be established regardless of any
Joone aene eonpectons Thus, the Benes net-
e g foesany permutation of wputs Lo outputs

o1tk baube Toictent Beres network s per-
Yo necesaary ettings of all the
vichuer ements and then nnpostog that state on the

<o tnrcagh controd ines ne per switeh The com-
st 6oreqaones tune proportional o the numler of
o el Fualty sweches are not avorded [17) The
Seope b oswateh setimgs can e adyie ted 1o ateh the
Cec e ayekoswatch Faulty swatehies mut e used
Coutabions wte o e petfermed an only one pass

Dot b edmuting t

b rhe netwe ow

Pho ot aneadet aeed s 3T Tor abe anade e o fait
: Uothes Benes metw o s a0 swatchimg vionent

bk Tt et Pt asa swart g elemony can 1

ko he ekt et or stack s the oaclange
st bBaccher Tauie s are assamed o cocar onfy i the
awitehmg clements of the network to occar mdepen-
Peath and e e hard Finadly, faalty swirehing ele-
vt are allowed e sata and he path o cosatadd

S oot for the state Wf the stoc ks,
Eris eoa rehively woak fantt mioded i vht o snppose

273

L P T, A AN

Proceedings of the Seventeenth Annual Hawaii International Conterence on >ysiem acwincues, 130%.

an optimistic view of hardware behavior. For example,
other switching element failure modes may well bie possi-
ble, such as ones where continued use of the switching
element 1s not possible. Link failures may also occur in
a physics) network.

The Benes network can tolerate most single faults, as
defined by the above model, where the fault-tolerance
ceriterion 1> retaining the ability to perform any permuta-
tion connection in a single pass through the network.
This is also known as full connection capability [17}. 1t is
the most stringent fault-tolerance criterion of the net-
works constdered. but the Benes network is the most
capable of all the aetworks considered, in terms of
permuting capability. Sowe multiple switching element
faults not 10 the center stage can be tolerated as well, so
the network is robust However, if any single switching
elemuent in the center stage is stuck at the exchange set-
ung then the dentity permutation, which connects each
input (o the identically numbered output, cannot be per-
formed. Also, if any center stage switching element is
stuck at the straight setting then the uniform shift con-
necting each input §, 6 <IN, o output N/2 mod N is
not pussible.

Any center stage fault can be corrected by a
modification that involves adding a single switching ele-
ment at the input or output stage [17]. The Benes net-
work without modification can tolerate a switching ele-
ment stuck-at fault at all but the center stage. The
additiun of the single switching element overcomes this
difficulty. The configuration of the fault-tolerant net-
work with the extra switching element at the output is
shown in Fig. 8 for N=8. Tolerance of a fault is

big 8 Pauli-tolerant Benes network fur N=8.

achteved by using the extra switching element to correrct
for the misrouting (if any) caused by the fault  Further
modifications of the Benes network allowing multapte
fault tolerance to swatehing element stuck-at faults, but
roquiring extra stages,are deseribed i [17]

3.8 1 Nelworhs
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Fig. 9 A simple single-stage S-network.

sidered in this paper. This provides a more complete
view of the state of the art in fault-tolerant multistage
networks.

A B-network is defined as having the dynamic full-access
property if cach network input can be connected to each
network output in a finite number of passes through the
network. Between passes it is assumed that each output
can connect to its corresponding input (i.e., the input
with the same number as the output) via a path outside
the network. The S-network is said to tolerate a fault if
the fault does not destroy dynamic full-access capability.
This is a considerably less restrictive fault-tolerance cri-
terion than is used in any of the other networks sur-
veyed. The purpose in using the dynamic full-access
measure is o better characterize the connectivity
requirements of computer systems than either full-access
or rearrangeability (full connection) capability[14]. How-
ever, the multiple pass method of network operation
implied by the dynamic full access criterion may be
unsuited for some, if not many, applications.

The fault model used for A-networks is the same
assumed for the Fault-Tolerant Benes network. Thus,
fault tolerance in a A-network is considered to be reten-
tion of dynamic full-access using f-elements even with
stuck-at faults.

There are two important disadvantages to the g-network
approach to fault-tolerant networks. One is the compu-
tational complexity of using the dynamic full access cri-
terion. Even when faults have been detected and
located considerable work remains to determine the
operational status of the network. Specifically, the set
of located faults must be tested to see if it comprises a
critical fault, one which destroys dynamic full access.
The sccond disadvantage is that by allowing a finite
number of passes through the network, data transit time
becomes widely variable. This will impose burdens on
an SIMD (7] system attempting to maintain synchroniza-
tion.

Routing in a J-network can be accomplished using
binary routing tags with as many bit positions as there
are stages in the network. lowever, g-networks consti-
tute such a broad class that there is no one routing tag
scheme  gencerally  applicable.  Also, realization of
dynamic full access capability may incur significant com-
putational expense for routing tags, since a set of tags
leading from the original source via a finite number of
passes through the network to the ultimate destination
must be generated.
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3.9 Summary of Network Survey

Table 1 summarizes the network fault tolerance informa-
tion presented. It gives the possible faults that can
occur in each network under the assumed fault model,
the fault-tolerance criterion, the method in which the
network copes with faults, whether the network is single
fault tolerant, and how it performs when there are mul-
tiple faults. Note that in the table the phrase “internal
node faults only™ is another way of saying input and
output switching clements are always [ault-free.

4. Network Evaluation

There is a growing literature on fault-tolerant muitistage
interconnection networks. lowever, as pointed out in
(10} many of the results to date have several limitations,
ncluding {1) unreasonably optimistic fault models, and
(2) increased data routing complexity. As noted earlier,
the choice of fault model and fault-tolerance criterion
plays a key role in determining the [ault tolerance
characteristics of a network. In this section the ESC is
compared with the other networks surveyed. Table 2
summarizes that comparison. The facts and reasoning
supporting Table 2 are discussed below.

[2SC fault tolerance is evaluated in light of a fault mode!
that presupposes the possibility of failure of any network
component except the stage n demultiplexers and stage
0 multiplexers which are treated as part of the network
input/output interface. Stage n multiplexer and stage 0
demaultiplexer failures are treated as stage n and stage )
link failures, respectively. As can be seen from Tables 1
and 2, this fault model is stricter than the fault models
of the comparison networks. That is, it assumes at least
as many possibilities f{or failure as the other models
(both switching clements and links) and dire conse-
quences for such failures (any faulty component is unus-
able). The ESC fault model may well be the most real-
istic of these fault models.

The fault-tolerauce criterion for the ESC is the same as

that for most of the networks surveyed. Basically, what
is required is that one-to-one interconnection capability
be uncompromised. The Fault-Tolerant Benes network
uses the more demanding criterion that permuting capa-
bility be unaffected: all permutations should still be per-
formable with a single pass through the network. It is
appropriate to use this strict criterion because the
Fault-Tolerant Benes network, unlike the other net-
works considered, is capable of full connection capabil-

ity.

The fault-tolerance criterion used to study S-networks is
a much less strict test to pass. All that is required is
that it be possible to connect any input to any output in
a finite number of passes through the network. Succes-
sive passes are performed by returning data from a net-
work output to the same numbered input. In a fault-
free condition a f-network may require multiple passes
for data to reach its destination, so the chosen fault-
tolerance criterion is appropriate. However, since the
class of f-networks is so broad, it is important to note
that this forgiving criterion may inflate the capabilities
attributed to more complex A-netwotks. The faulit-

~> ‘l
R
T
.-Zj

- - - . - .~ - .
LR S L SR S « .. m™
AR AN Yy Tatala




. 4
b
3 g
3 :
L WO AIUE L]0}
h NIOMI3U JRIY J0f [HUYID -i{nej PUB [3poW J(NB) U0 AR spusdap lomsuy R
v., HorOId .w.v:d._;_au.::&b [us ahotil ﬁ:dh RS} w:mv,.a »
b v yiomjan $52008 3jqesn | ‘
5 o ou —— ; _¥shyos uo ssud 1ny . nq | .
. 1 : Aqsndly spuadap pajeadas Jtweuip 12018 JG i sydomjau-g | .
”. uo ,ww_w.w.“m L Vs s Aiqedes a]qEsn mac,&ﬁ. A
g . ,., . danety a.{w_ sl i #N04sIW | UolId3uu0d 1nq JuRIIO [ |
. ) fejras i ‘zlt.:lai.,llquLh.,mm\ it 1SnGos saf 1431100 [ng | 'yomys gs ! SLE 4 4
4 ~1qeden iy U01}303UU0d T 1 —y
g ss0u LS o] Lnuapt ajqesnan {| | A
g Joy3y AERENETH ssa) ! Juvdajo 21n0d ou Inq ‘{juo 3§ : R
b s can | Galo11)8 yonu | ne 4 sngng sax 91BUIAY® | '$Sa23% ||n) LR EERLA EE«J )
_.A. 1145 T i PEIYBNOO| ! | | ’
b STRTINIE TGS e | Ssof Y TriEr) _ firw m Jqssnan ” .
: e o R B e ! Aun ) (syun ey d
S i i | _ eepg 31101 553008 | 1045 | INUYT | .
Y poiuawodun sultfapiws _ i “Jsnqol saf | airwiayw 1) | |8t | pasueyug ! L
[ 3unnoy Ut uappry ! ITFRCANINER T ’ ,.Zanza:lﬁl < 4._1 v
% xopdwos dsows Qropdutoy P sop NGV __ ¥ay *: 1yBied;s) | ! ..L
r\ Jtaojeaas ICHEUN ‘_|il s _ spy3s : y..t?.:rEh.wl . 210048 _ S5300% H e (S _ Navy ! ... .u
' ! ” ,, ! isnqol :ap S1BUINE lin) | 1swajur i} pasueyuy | - S
' : s y i T T apqusren | Y N ]
, | | sal | airng A $59008 “{jao 33 , ge
3 1] s auins | fpydus i isngol 3,,.% arudge h it |BQINTL || YI0WIaU- 4 | m
g ST .o S3qO1ins ] “ i .m
’ lepuwis aepus | auies | ssap I faomiau- g qxq quis elqesnun . | )
’ T T s e ) Ul \ S
i | : ynef-{1-q) jnod $S2208% 10 4S | €a(] | et
: ; A '1SNGOd | a4 3180418 LU [BQ13101 ;| pajmawidny K
lypwis Jgqruts AWES tpyds ajqesnan . -
; 118 Anng 53908 Lo 3§ “ suijaveq] | u
: IepIwits Jepuis AWES ss3 sod | eI {nj [BQIaUL )| pogipy ! J
) Lijtqede)y HOLLO ) s[yE~nun ) IS
: MFFICIRIR | Hixopdwoy | osvussagoe] o anod $5320% Aoy i 23015 | B
! yneq Funnoyy ne g ... Im.wu.,» ! !a.m.chol? 1Ny | 40 9 Ave B4 L
b e :::ioh W uciiag) " "
" Toyne 4 , .Z,.S.;o. azuspajog, | 1apojy ...1
. | ) T
; ainqune Lunonged ©oonandar st )< L RARAS N .l)llm|:_|rer|| RIS EEERILLE | _ ne j F!Mw. NSNS o ...,.
. O} pUT uolIsenb il YIrwied gl 1aawiaq - 4..‘
“ digsuonejas agy {R1 1 unosatnucg Juaigeja STQIAS I0) UDLB R
m. NIOWIIH ST ThE o I wgad Totaal ALY LE TS LAROAINS ,,f:.iuma am C
w SUOOL UL JURIa L Sy b esneduaie hRME LR S NITULIC U o RIGGY TR FD LBTIWNg [ a7y : ...“4
: T
M 2




e & 4 4 ¢ + Jmp u ¥ ¥V ¥ 8 4 F T W€ ¥ 5 - 7

LS. .Y V. e 0 TN .

" PToceeaings of the Seventeenth Annual Hawaii

tolerance criterion of the Gamma network may be
unsuitable for some computer systems as it does not
consider inability to conncet an input to the identically
numbered output (an identity connection) to be a
failure. Il the same device, e g. a processor-memory
pair, is connected to the same numbered anput and out-
put then this is not a problem. since a deviee should not
need to communicate with itself

For most of the networks, routing i the presence of
faults is ltdde more complex than in the absence of
faults. The notable exception to this is J-networks
The dynamic full aceess procedure requires chosing a set
of intermediate outputs which ean each be reached eon-
sceutively. such that the ultimate destination can be
reached 10 one pass from the mput with the ~ame
number (address) as the last antermediate output. A
general salution to this problem s not known Routing
complexity for the Fauh-Tolerant Benes network s
kigher than for the ESC because of the nature of the
Benes network [12]. 1t is not due to the moditication for
fault tolerance.

6. Comparison to the Extra Stage Cube

The fault tolerance capabilities of the networks con-
sidered are all reasonably sinndar given the vanous bases
by which they are determined. This s apparent from
the column on fault tolerance capalihities m Table 2.
There should be no surprise that this is so. It s casy to
agree with the idea that a network should have what-
ever fault tolerance capabilitics are feasible, and single
fault wlerance is more feasible than i-fault tolerance,
1> 1. However, because cach network is studied using
its own fault-tolerance model significant diflerences in
capabilities might appear if a common fault model is
u(lupll'd.

The ESC fault madel and fauli-tolerance eriterion can
Le applied 1o the other surveyed networks i arder to
relate ther fault tolerance to that of the LSC. This
information is given in the fiest column of Table 3.
Under the ESC fault model and fault-tolerance eriterion
none of the surveyed networks is single fault tolerant.
Many of the networks fail to be single fault tolerant
Lecanse they cannot tolerate an input or output switch-
ing clemnent fault, as can the ESC. This is why so many
of the fault models refer only to internal switching ele-
ment faults, If the ESC fault model is amended to
assume fault-free switching elements in the input and
oulput stages, some of the networks become single faalt
tolerant as shown in the table.

The Fault-Tolerant Benes netwark s eapable of single
fault tolerant operation under the relaxed ESC fault
model. Although faulty components cannot be used (o
pass data under the ESC fault moded (unhike the Pault-
Tolerant Benes fault model), only one-to-one conneetions
need be supported {as con pared to permutation connec-
uons for the Fault-Tolerant Benes fault model). The
Fault-Tolerant Benes network can perform any one-to-
one copnection without using a given faulty component.
Hlowever, the control method given in [17] must he
modificd o achieve this fault tolerance capability so
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Table 3 Fault tolerance capabilities of the networks
ustng the ISNC onetwork fault model and
fault tolerance criterion.

A sigle fault wolerant using ESC fault
wodel and fault-tolerance eriterion

B smgle fault tolerant af ESC fault maodel

v rebaved to assame mput and outpat

stage switehing elements are Fanlt-free

Network F\ B

Pntra Stage Cube f] yes | oyes

F e 0 o
Modiied Baseline | no yes

Auginented Delta [ no | yes

F-network no | yes

e m J——

Fanhaneed LADM uo | no
(straight links)
Enhanced LADM no | yes
{half Links)

Gamma oo | o
- RASSSIY | S -
Fault-Tolerant no | oyes'
Bened

- -
J-networks no !oyes

+ -

Mast odify control seheme ta achieve fault toleranee
under this model.
.. .

I'y pically yes, but depends on network

that Laulty network components are avouded {the given
algorithin uses faulty components)

The Enhanced TADM with redundant straight hoks s
not single fault tolerant when the ESC fault model s
relaned becanse it stll cannot tolerate all switching cle-
ment fadures.  This includes the switching  clement
failures in intertor stages allowed under the modified
fault model. The additional straight links provide fault
tolerance against the loss of a strasght link, but wot a
switch.  The Fanli-toleranee capabality wath re pect 1o
switehes s the sime as the LADM, and there are many
cases where i swateh failure will block a connection [11]
The Gamma network s not single fault tolerant under
the relaxed ESC Bult-talerance model because it has
only one path from an input o the identically numbered
output. A strmght-hink faudt will prevent an put from
commumicating with the wdentically numbered output {as
it would w the TADM network on which the Gamuna
network is based). Thus, the Gamma network does not
satisly the I5SC fault-tolerance criterion of full access.

6. Conclusions

Eight fault-tolerant interconnection networks have been
deseribed.  All have multiple stages, but there are wide
variations in topology and switching clement design.
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The Fault-Tolerant Benes network and g-networks are
both composed of J-elements, but have dilfering haok
patterns. The Gamma network uses 3x3 crossbar
switching elements and the same link connection pattern
as the ADM. The enhanced IADM and F-network use
5x5 aud x4 switches, respectively, which pass one item
at a ume. The Augmented Delta, Modified Baseline,
and ESC networks are all cube-type networks [190}, and
vach incorporates an extra stage of switching clements
to provide redundant paths. The ESC provides for
by passing of faulty input and output stage switcling ele
ents

Pespre s Lal'epmg fault model and fault-tolerance
Cieron cae PSC getwork s sirgle fault tolerant. The
Loalt e and fauhi-toler e cnitenion for the EsC

ro hesen Lo their conststency wath engineering pras
The 1S s ntereded o be qovinble soswer 1o
cpallel ceraputer ater ennedtion meeds
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From the Proceedings of The 5th International Conference on Distributed
Computing Systems, May 1985.
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THE LOCO APPROACH TO DISTRIBUTED TASK ALLOCATION AT AN
IN AIDA BY YERDI
:, V. M. Milutinovi¢, J. J* Crakovié, L -Y. Chaag, aud H. J. Siegel
|~ School of Electrical Engineering
. Purdue University
2 Woest Lafayette, Indiana 47907
v (317)-494-3530
ABSTRACT As the application requiremeats are gettiag more and more com-
9 A system of special purpase processing resources shared by o plex, the overall computational capabilities can be further increased by
. number of general purpose processing resources is conmdered. We adding more SPPRs to a GP host. Several experiments of this type
- essume thal special purpoac processing resources are dediceted to were reported [MarBr81{. This tread is very likely to continue, espe-
- different tasks typical of complez artificsal intelligence multitask jobe. cially given the great importance and massive computational require-
) Posnible types of special purpose processing resources include pipelined ments typical of the general area of Al. Coasequeatly we expect that
array proceseors, SIMD parallel processor aystems, or MIMD muitipro- in the 19908 systems oriented ta Al will consist of hundreds of SPPRs.
cessor aystems, unth aseociated dala bases or knowledge bases, for As the SPPRs will still be costly, it will make sense to share them
numeric or symbolic compuling. Each specific lype may be repr ted g 3 sumber of GP hosts. It is very unlikely that ail SPPRs in
by several units. Such a structure may be found in tAc large local area such a system will be of the same type, and it is even more unlikely
networks of the [990s which are used predomsnanily for artificial intels- that each oae will be diflerent from the others. We expect that they
gence, or in high-end computers of the 5tA generation. Given such o pro- will be of a variety of diferent ty pes where each type is represented by
cessing environment, in this paper an approach for efficient disiributed an appropriate number of uaits. Diflereat SPPRs will be of different
task allocation is introduced. It ia referred to as the LOCO approsch, levels of specialization. It is reasonable to expect that the whole sys-
becawse an analogy unth g locomotive engine {and sppended wagons) is tem of GP hosts and SPPRs will span an area the size of 2 typical
used to degeride it. An analytic model of the LOCO approach is university campus or military base (up to about 1 mile in radius).
developed and used for performance enalyms. Resulls of the perfor- A similar type of processing eavironment may also be found in
mance analyss are presenied comparatively with those of load dalancing high-esd computers of the 5th generation. Input/output (in the wide
applicd Lo the same processing environment. Although our primary con- sense) will include aatural language pr ing and computer vision.
cern is ¢ pr ing ennr t for artificial intedigence, we find (Aat Memory {in the wide sease) will incorporate a variety of data bases and
the LOCO aspproach can be used cfficiently in other types of processing knowledge bases. The processor (in the wide sense) will incorporate the
enwvironments, as well. capabilities (or both informatioa and kaowledge processing [TreLi82|.
s , In both cases it will be extremely important to have an efficient
:'(Pgrm?rﬂ _33:;":::}‘;: ;:‘:7“;‘;:?3::’” ‘l; :?;:"C::" led Mul- mechagism for the dynamic allocation of different tasks belonging to
' . complex Al jobs [Davis83]. For a ber of r this mech
L INTRODUCTION must be distributed in nature. It might exist as distinet and

identifable blocks of code, or only 1s a desiga philosophy [Enslo?8,
JeaP184]. The complexity of the problem is higher than what may ini-
tially be expected, as most of the hosts may be working in a
muitiprogrammiag eaviroament, where differeat processes ruoning on
the same host will have jobs with tasks oriented to differeat SPPRs.
. Also, the allocation requiremeats will change in time. Obviously, the
that cm',“' .G Pf omp;‘t::“ser!:e :: c;h: ‘;‘::I: “:nf:s:; :‘“:;: solutios of this problem shouid invoive the folloyin; two dasic aspects:
SPPRs are oriepted to vuio.u specialized tasks :ypie al of co m‘ plex a) System architecture that supports an efficient task allocation
multitask Al jobs. Tbhese tasks may be signal processing leg b). D"m"f' "“.k ’“9‘“"," procedure which is ‘.h"'"b‘“?d in aature.
RabGo7$|, natural language processing/understanding [e.g., Gros:82], With all that in n,m(’;d;: this pa:e |r ;_.y:lum |mh$‘;:Pl;lcon:ﬂ'de"d
vision processing/understanding [e.g., Brady82), intelligent retrieval which consists o osts aad logically cluste 8. all con-
from knowledge bases within the expert systems |e.g., HaWalL33), ete pected by a shared muitiple access bus, possibly but Dot vecessarily of
Internally, the SPPRs may be orgaaized as special fu;ctio- m“’“m' the CSMA/CD type [e.g., ShDaR82|. Such a structure well suited to
. P . the execution of complex muititask jobs typical of Al aad will be

3.;:.;;'5' ::’hi';;’r[n; ':".':I, 4 éub spéglm ':::":: [F l"’n’i referred Lo as A/DA {Artificial lntelligence Directed Architecture). For

Coaveantional general purpose {GP) computers are not able to
meet the complex computational requirements typical of artificial
intelligence (AJ). However, the overall processing power of the coaven-
tiosal GP computers caa be considerably enbanced if appropriste spe-
cial purpose processing resources (SPPRs) are attached to them. In

p . , this type of system architecture aa efficient approach to dynamic and
::‘“: base or knowledge base, and will be °"'“fd to sumenc or sym- distributed task allocation is introduced and analyzed. It is referred o
¢ Processing. We have maay exynpla of ."u"“l orgaaizations as the L OCO approsch, because aa logy with 3 | ive i
?"'['“d "adsdw'l"“d control [e.g.. MilWa83, Milut83), sigual process- (and appended wagoos) is used to describe it [MilSi84]. As will be seen
™ (eg., Mc A ‘32" speech Pmmmg[ ‘.'dm‘"d'” [e.;.,'l.mesol, Ister, this approach is quite general in nsture, and can be applied to
image processing/uaderstanding |e.g., SiSiK31], eficient retrieval from pr ing eavis te other than the ope described here.

relational data bases [eg., MuKaM83|, combinatorial sesrch
{WadMas84], inference [Ushid83, SuHoS81], ete. A single SPPR may
coasist of a large sumber of processing clements (PEs). As sa example,
the MPP processor for image processing [Batch80| includes 2'* PEs.
The DADO productios system is supposed to inciude oa the order of
magaitude of a bundred thousand PEs [StoSh82|. A large number of
PEs is wsed to speed up » special-purpose computation, and pot to

1t shouid be noted that the empbasis bere is on a system that con-
sists of 2 {arge sumber of heterogeneous ciasses of SPPRs, made acces-
sible to a very large aumber of users through a large number of hosta.
Furthermore, due to the variety of SPPRs, the types of compatations
Lo be performed are unlimited — the system is oot restricted to any sin-
gle task domain. This makes it very appropriate for euvironments,
such as Al, that require many different types of tasks to be executed.

3cquire geaeral proceseing power. This caa be comtrasted to 3 parallel processing system like PASM
. ~ . o [SiSiK81] in the following ways: (1) PASM's computation engine con-
J. L Crakont @ sow with the Doy o al aad Comp sista of a set of bomogeneous processors, (2) the PASM processors are

Unroermy of Misams, Coral Gables, Flonds 3312¢.

interconnected by 3 multistage oetwork {Siege84|, rather thaa 2 net-
This research ®1s partially supperted by ke US. Army Revearch Office, Depariment work of shared busses, {3) when operating ia SIMD mode, the PASM
o the Army, sader contract DAAGIS-8-K0101, and the Schoul of Electrical Eo- processors exploit instruction level parallelismn, while the inter-SPPR
posnsg, Purdue Universy. parallelism ia on the task level, (4) PASM is intended for image under-
", Procesdings of the S0b IEEE | J Coal se Duinbated Competing Sy» standing [KuSiA84), wherte LOCO/AIDA s much more “general pur-
,-‘;{ \ems, Ovaver, Colerade, May 15-17, 1985, pose” io aature, (5) PASM is inteaded Lo support 3 much smaller set of
4 L)
h'.’
”
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gsers than LOCOAIDA and (6) PASM itsell could be aa SPPR 1o
LOCH/ VDA
e excelleat study of distributed resource shariog s givea in
IWahd4) Aceording to . AlDA <an be treated 38 3 resource shanng
network arehitecture based on 3 single shared bus, aad LOC? as a pro-
codure with an addressing mechaasm distributed in the getwnek
Ao the LOCOSAID A enviconment is characterized by 3 aumber of
ciements typical of the data Jow environment {GaPak32l
This paper is organized (nto six sectinas. Assumptions of the
anaivais are addressed in Section (1 The system architecture {AD A} s
watroaduesd oy Saction UL The distributed procedure for dyname task
e ation (LOCO s v rnduesd 1 Section [V, frst through an exam-
ste 1nd then generalized A model of the LOTO approach based oa
AP ar-kitectare i inaaduced in Sectics Vo For comparisoa pur-
n the came <e~tion. 1 mod=i of load balancing (L B} applisd to
ame -vstem architecture 8 ntroduced, aa well. Priformance
h~ 1.4 appeaach aad its romparison to the LB approach

e Zoeen o Seetion MV

RN
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{1, BASIC ASSUMPTIONS OF THE ANALYSIS

Ta= prasentation to follow will be based on the foilowing assump-
ae
Y orak s the mmonolthir eamipien of fomputation (hat cap be per-
foromg by 1g PPR without any atermediate oteraction by the hose
Ia other werds nace an SPPR s loaded with the program. its parame-
sers and the data it ran autonomously exectte the task until its rom-
The tasks are highly speciaiized Consequently. a great
vty dhifferene SPPR 13 necessary  For the gumber of
SPER vpes C VA we assome N>
1Tt part of the job () that beloags (0 a pioeess [ P) run-
2 wae of the Rosts (/) N aumber 3¢ processes cae rua coa
g the sarce host A cinede procesa may .o fude 3 aumber of
~ rinming sequentiafly cr concarrsatly). A single job coasists of a
A mfferant tasks frunning cequentiaily or conecurrently). Thus
“anhe emhnilally repeecected as in the example of Fig. 1. Coo-

< -

Lirtion

Ly pes

Tty

her

«nw

g et Fyampie of 4 Cogncle Mattitass Al Job
u HRETIPEY Y B 1¢nal (eaturas
T Tarmed image B Input cules
I3 i TeAlgres 7. - Buldt-io rales
FRIN T 4 Telpuy predicates
Cotoate theanter we Inta aepecdeacy (8 the sxample of
. Taw wt TAasko 2 faa run concurrently on two diffesent
e sole b ASK L nuist wt for TASK | to be completed, since 1t
pemgs Ty { < oyteat 4ats. The vame task may sxist 1n varous ron-
e hs the mamber L8 aobs can be very laege. it may heip
- ~ 9

;a s tepeesenteg by mare thao one woit Fore the aumber
PPR vne’ NV we asaume Ny D> |

vl numines of "PEPRs a0 the system (V) s qiven by
. wnirpate that ia real systems of the 1990a this
qumbes mav grt to be on the eder af severai hundreds. The sumber of
sasfs L ng s cob genrratan @ wanmed Lo be nf the same order of
reagr.tude These faees pustifv the gse of 3o infinite populating modef
rohe Lasn s o follow

NERTATRI
Tha

RPN W

 avarcied eariier the HSPPRS mav he more or less speciaiized A
peciie Tase can rya oo one SPPR type only, or sa one of 3 aumber of
titlerenc SPEY tvpes In the secnnd rase. however one of the SPPR
tvpes will me che st smitable  In the presestation to {ollow 1 task
wii! Vwavs he asscerated with one SPPR type regardleas of f it s the
niv a2t the most suitable possibiity  Thia assumption
simpitfes the areseniation withont affecing its generahity

monarbalie

[ e T .
qieap otherw v qoted we assume (d3L +ard PR Lepe s tepreseaced be the same
remuer

o amite Thre wul wmoniy 'he aotatios withoat afectiag the geaciainy of

1T s avee

Taiatosaiakas

Tt Yatars fara

R
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5 The duration ~f 1 task sxecution 15 considerably loager thaa the
time nerded to transfer 42ta to the SPPR that will execute the task
The translre time ncludes the Ume Lo access the communications
medium and to ex hange control data. This assumption 18 quite reajis-
tic. Un one hand, advanced fiber optic technology s enabling local
area commumications to reach g13abit/second speeds {e.g.. PoCoS83)
On the other hand. the sxs-ution time of Al tasks may be extremely
high  This s due ta »xtensnes data quantities j{tasks with 2 puxels
andy o 27 1ogic ruies are not nnermmon) and extenstve computational
mteasty Har both numers processing and logic search). As knows
from praviuus wock je g \Wih34] . the task transimssion time is small
compared to the task service ame, the single bus approach s the best
appreach. This was the justificatzon for us to concentrate 1n out
research on the <ingle bus <v.tem architecture for support of the task
aflocation
6. Each task i execution ~an be treated as a2 secondary process {run-
ning on th= SPPR) that caa geaerate 3 number of secondary jobs, sach
ane conmisting of 3 number of secondary tasks. The aesting can coo-
tinue 18 necessary  We treat this 1ssue as 2 VERUcally Distributed
Tatertask:ng, or simpiy VERDE Consequently, the system architecture
is referred to as the A[DA by VERD! We meation this nesting as 20
mnteresung property f the LOCO approars. However, thaty ssue will
not be fyrther analvredn this work
7. Af tasks {both those predomiaaatly oriented to numeric and sym-
bolic processingj are characterized by large execuiton Lime vanatioas
iBradyR2. Grosz82) The same copclusion has been derived by a recent
study [Rober84l. < hnsequently, the correlation between past exper:-
ence on execution uime for 3 g.ven Uy pe of Lask and us future exezution
tune s low  This fact represeats one of the essential differences
between typical Al rasks. and the tasks typical of the “conveational”
P pracessing snvianment. [t 1s of cruciai smportance for the analyss
1o fouoty. As wili Le seen later. this fact has 2 major inldueace on our
choree ol the task allocation procedure, and the uanderlying system
architecturs.
8 Programmag of the SPPRs s very complex. Although the user can
devalcp s awa o{twire, typicaily parametric library routines are
used. The user’'s major »flort 15 to specily the software parameters.
The iibrary routires ace wsumed to be reiatively short, as they coatrol
spectalized processing resources These (3cts infBuence the choice of the
system architecture foe the efficient support of task allocatioa.
3. The areaover which the system s spanned, as well as the bandwidth
of the communiations medium, ensure that the propagation time
between any two pownes in the system 1s negligible 10 comparison with
duration of the <hertest possible message. We assume that enough
bangwidth 5 av adable, so that :omputation and not the commuagica-
tioa is 3 system dottleneck This assumption permits us to aeglect the
med1a access sad handshaning efects 1a the analysis to follow.
10 Thie paper conrentrites oo the case when SPPRs are the
botileneck in the sy<tem The case whea both SPPRs and interesopee-
ien netwetk 3re the hottleneck o tbe system is not coosidered as 3
part o f this worek

inless

iheiwice aonted uil thece assumptions will be used

throughout the presentation to foilow

{II. SYSTEM ARCHITECTURE

One possihls approach to a system architecture for the processing
snvironment iteated here imphes ronnecting of SPPRs to the back-
ends of the hosts and conrecting of hosts mto 1 single shared bus aet-
werk o as indicated an Fig. 23 This approach permits load balaacing
‘e g HMwCrR2Y hut reliability and expandability may be problematic
MW follow here another appraach acrording to which the SPPRs are
moved into the front-~nd and <hare the <ame bus with the hosts, as
indieated in Fig Xh Thie approach has gnod reliability and expaoda-
hility 1t supports lead balaneng and several good papers exist on that
topus ‘e g WanJudl WakHi32) Load balanciog 18 very efficient of
sxecyt on times of the tasks warting nr processing can be precisely
rstimated  This sxtimation mav got be possible or may requite intea-
sve computation (aaTostl So ailocation typrcaily relies oa past
axpettence 1hout the axerution Lime for 3 given tvpe of task 1f the
cotesfaiion between nast and future sxecution time s relatively high.
the joad balancing oroves to whieve 3 very good petflormance leg..
NiHwadl, ChokoTUi Vafortuaately this assumption is not satisbed 1o
our case and we caanot use the existing resulta We were forced to
search for appropriate taok aliocatioa procedure and a system architec-
ture that are - %0 ot wald at any enewie 177 300ul Jaek sxeculton himes
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Figure 2. Some Possible System Architectures for Distributed Pro-
cessing on 3 LAN (Local Area Network).

{a) The SPPRs in back-end of the hosts, with load
balaacing.

{db) The SPPRs directly appended to the LAN, with
load balancing.

(¢) Logical clustering of physically remote SPPRs.
The SPPRs are assumed to be physically remote.
However, they are connected by a bhigh-speed link,
and they behave as if they were locally clustered,
i.e., logicaily clustered.

Fortunately, (Ae ezistence of & Aigh-speed communications
medium gives an imporiani new dimension to distriduted proceesing. It
egables the introductioa of the concept of logical clustering of physi-
cally remote SPPRs of the same type. Consequently, given a fast
enough communications medium and 2 small enough local ares, it
makes sense to interconnect all SPPRs of one type into a single logical
cluster, as indicated in Fig. 2¢. Although physically remote, these
SPPRs behave as il they were logically local to each other. Conse
quently, we have N, logical clusters, with Ny SPPRs of the same type
iz each.

Logical clustering meaas that all SPPRs of the same type are
treated a8 a single multiple-server service station. No load balancing is
needed any more as it implies the eavironment characterized by muitis
ple single-server service stations. Also, the lack of correlation between
past and future is of no importaance any more. The task is simply seat
to a logical cluster that coasists of all SPPRs which are best suited to
its efficient execution. [t waits 10 the queve associated to the logical
cluster uatil after all the previously arrived (in the case of FIF O discip-
lines) or higher priority tasks (i the case of priority disciplines) bave
beea served. Note that the coacept of clusters in our approach is cos-
siderably different compared to the covcept of clusters ia Cm*
[SwFuS77], Ultracomputer [GoGriK83|, or Cedar [Gal.aK84).

Now we will deseribe the Aruilicral [ateiligeace Directed Architec-
tare (AIDA), which s hased oo the above described principle of logic
clustering, It 18 given in Fig. 3. The system consists of Ny hosts aad
Ng SPPRs nrgamized nto N clusters with Ny SPPRs per cluster.
Each cluster 1 aanneiated with 3 mass storage ugit M(j); j=L....Nen.
TAhis is where the software {parametric library routiaes) for all SPPRs

Ny

RIE )

foAT\W~ 7272

T

ALLOCAFION S b .
A [ =z [:-‘
' o
‘7 [ aaus]
iz = iE ’T = }.‘
5= 113 ERE S
2z T Y OF TPUT HRANCH g =7k
[nd o ———— OF THE P e
= : CLLSTER 3 : ;
f"' = - INPUT AR AN - .-
Lo TR ;
| ) l-...] = L Lt~ ‘ E , .
Zz 5 | : i
[z = =g
R <5 5
| R .
’ [ )
ey AN
Figure 3. The AIDA: An Architecture for Efficrent Support of the

LOCO Approach to Distributed Task Allocation.

in that cluster is stored. Knowiedge bases and data bases caa exist
within SPPRs. in the mass storage units associated with the cluster, or
in any other suitable form. The SPPRs are interconnected by 3 system
of buses. Separate buses are used for task allocation, for data aad
parameter transfer, and for the transfer of the library routines. These
buses will be referred to as the ailocation. data, 1ad software bus,
tespectively. The allocation bus is a single-line bus (bit transfer). It
connects the hosts, the SPPRs, and the mass storage uoits, as the
software libraries have to be updated occasionally. [t includes the cius-
ter branches. Each cluster braach is separated into the
INPUT.BRANCH and the OUTPUT.BRANCH. The
INPUT.BRANCH is daisy chained. 3s indicated in Fig. 3. Gives
assumption #8, the software bus can also be 1 siagle-line bus (bit
transfer). We assume one software bus per logical ciuster. The
software buses coanect the SPPRs of the cluster with the correspond-
ing mass storage unit. Given assumption #5. the data bus should be 3
muitiple-line bus (word transfer). It connects the hosts aod the SPPRs.
An identification number (/D} 18 assigned to each host (H./D), process
{P.ID), job {J.ID) and task (T.ID). ldeatification numbers are also
associated to the clusters {C./D), SPPRs (S./D), mass storages (M./D),
and library routines (L./D). All these ideatification oumbers act as
processing environment specifiers. The way they are used « 1adicated
in Table 1. The short specification can be used only if the missing
specifiers are known (rom the context.

Table (. Pr ¢E S peeih
fem: Moemenwe  Full specieatos. Shors specification Exzampie
CLUSTER [+ cicm) CIC D) Cla
HOST H H{H DY HIH DY HN
jon J NMHDPDIM A1y HTS o HN
LIBRARY ROUTINE L LIC DL 1D\ LiL Dy L{28 4} oe Lia}
MASS STORAGE A wC D \HC D} Mi4)
PROCESS P PIHMDP D) PIP DY P17 5) or Pt$)
PrR S SIC D S Dt SIS 1Dy S{124) or SE4)

TASK T THWDPDIODTY) TITWL) T(7.5.3.1) oe T(1}

The following identification numbers and related pieces of infor-
matios are geeded to allocate and rua the task: cluster ID [C.ID),
libeary routine [D (L.[D), program parameters (or their locations), and
the data (or their locations). Data for a task reside either in 3 single
memory block of one of the system resources (host or SPPRJ, orin a
nsumber of memory blocks, possibly <ome 1n the hosts and others in the
SP processors. Each system resource containing 3 data block keeps a
list of all tasks that will need or that might aeed that data block (vatil
permission is given to delete that data block). So. i a task aeeds a data
block 1t must know the [D of the system resource currencly holdiag
that data block. When requesting the data block, the task bas to
specify its own [D {T.ID). Each task is associated with 3 vector { D),
the elements of which define the sources of input data for that task. A
cealar £ s Also associated with each task [ts form s either E = X or
E = [CID S ID|. It specilies which SPPR executed that task. Iniuiaily
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the value of E is undetined, 1e, E = X When 3 task 13 assigned to an
SPER. this processor will set the value of . to point to atsell. ie  E =
[CIDSID} Onee a2 task is executed. the output data will be stored in
the lacal memoey af the SPPR that executed that task.

Earh host and SPPR has attached to it 3 task allocatios con-
troller This contenller 1s a2 hardware device which executes special
purpose dedicated software to interface the host or SPPR to the inter-
ennaectiop actwork and to the rest of the system  The coatrollers ace
inserted hetwenn the host or SPPR and the netwark  The cnateoller
¢an he implemented 3y 3 VLN chip and will be, berealter. referred to
W A LAOCO stn The LOCO station coatrols the access to all the
buses and axerytes the task ailorating procedurs  So hosts and SPPR s
ars fres ol these aetivities, vhich has 3 sumber of positive implications
on ostem ~xpandabidity  refiabiity, aed compaubility of varnous
Reterngsnecas ~OPRs Differeny access schemes can be used on the
huses  The eoncept of the -arrter sense multiple access with railistog
detesrisn [CSNEVICD) seems 1o be the most suitable. However, the
anaiv as of pescibhie access schemes will aot be presented as 3 part of
is work. Vhen the station acquires 3 bus. 1t broadeasts the message
with the festnatien address in its beading. The message is accepted
iy v the snitian that matches the address from the message header
Cin the 3t and woftware buses the station reeponds oaly if it recog-
aizes 15 own addesss in the message heading Co the allocatioa bus.
racn <tation s tesponding to thres types of addresses: [3) cluster
address {C D), (b) station address. i.e.. SPPR address (C D S.1D), and
ir} the zddress of the train (to be defined laters currently located at
that stauon (1D PID.J D) If the address in the message header
consists of 3 CID anly, the message will be accepted by the station
assecatet woeny the tiest dls SFPR a the chaio of the cluster C D (this
can be ensuerd ty appropriate dausy chamming; If the address 1 the
message header consista of both 3 C 1D and S [D. the message will be
ccespied by the <parthed SPPR I the address 10 the message header
cursists of a 11D P ID. and J D, the message will be accepted by the
SEEH currencly in possession of the traia {to be defined tater),

V. TASK ALLOCATION PROCEDURE
The basic viey in the LOCO approach to distributed task allnea-
Lo ot gse the pracessiag eavironment specifiers (see Table 1) in
acrtibon amaong different taaks for the SPPRs they need. The
Wers deune which job s competing for which SPPR type (indi-

s+ 0« as DY Ouie the SPPR s ase:qned o a job. in order to
evesy e oce il e Lasks the SPPE 1 ioaded with the necessary library
(3 ine oo parametsrs and data. and the sxeiution of the task caa
srrer enen Che execution 5f the task w nmpleted. the job will com-

peis T ve nex e SPPR that 1t seeds, and so oo,
The § 500 pencedure will be first presented through 3o sxampis
3nd thien U wail be zeperanzed. Assume that the kast HEH D)= H(T} s
ene SIHID PN = 2(7.5) or abbrevated PLO), with 3 job
= 17 5 2 or abbreviated 131 Aseume that Ji3) con-
Gk aterceinted 38 do PR 7 oand abbreviated 3a0 T,
TRO T e To vesume thad tank TilV bas 1o be executed ip clus
Havest of tbe ubreare satne L), T(2) :a TI14)
Caeder Ll and Trdian Cly under Lit30G
Lot foilowa that e Dot task U reade in host H{T), Tor
Sorb T e T s SPOR that scecuued THL) aod for Tid) o
S el e an the STPRG spar exeeuted T2 aad T3). The Soal
fate prodne g by ooh [0 tesde 0 the SPPR that executed T(3) apd

1,

f L TN

Bge teomar nterpretatiog of the above cperified job may he s
Duews Tolerefers o the transfonmatoa of 3 Byiog object image and
igem ot tae

wopopriate SPER of the JIMD type T(2) refers to process
stigpat {that may rontaio some informatica
coefe panying to the abject faunching) and '8 beat executed oo a ape-
Saste oo npelhined aeray Lrtocessor, T3 relers te unage understacdiog
r2prres she aopropnate SPPR of the M (D type. Output daca
[rere his task yie for some re1son geeded by the job source. Finally.
Toay cetrer to atedgent setnieval (1om 2 knowle ige base wichia an
Fxpert cystemn whisn g oneated to dentiication of 8y.ng objects. The
sxpertsysteaa aeeds aput data irom TIZ) Ti3), and the job source fts
Ot 133 are aceded g the job destinativn {same or apnther host),
atd abo 0 toe b aagree o g for updatng of relevant wnformation
Ancthes posaihle interpretation mav b 1o the domain of the medical
srpsament, whers TPl and Ti3) refer to processing and understandiog
nf the seanner image T{2) ta processing of 10 EEG signal. aud T{4) to
inteiligent retrieval from apprapriate knowledge hass within a0 evpert

tystrem lor medie ahaga s
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Sertion name Section contents

-y

HOST <UeTI0N C"‘ HOIDY O
PPROCEIR SEOTION PP Dy
JOR SLCTION W
DATASFCTION Do )
Figure 4 Striccare of the Locomotive and Costeats of Differegt
Loeamotive Sectlinos.
Sectivg came Sectiun contents
.
TLUSTER SECTION R o
TASK SECTION / TiT Dy
LIBRARY _ROUTINE SECTION Ll i
DATASECTION 1 0Dy 1
FXECUTOR SECTION i E
WAGON_STATUS SECTION [ ©
—
Frgure 5 Structure of the Wiagon and Cootents of Different

Wagon Sections. Depeading oo the LOCO version, the
DATA SECTION may contain sither data or pomnters to
data

Now we describe the way in which the LOCO peocedure will
treat the above specifieq job. Once the job J{3)1s defined in the process
P51, the Bost's station correspondiag to H{7} will create the message
{train) tht consists of a number of submevsages. One of them s dedi-
cated to the job J{3) as 2 whole /the LOCOmotsvej. The others are
Jehicated 1o diflerent tasks /the wagonss.

The structute of the locomotive is shown in Fig. 4. 1t consists of
four sections. 3ections HOST SECTION, PROCESS.SECTION, and
JOB.SECTIOIN define the processing environmeat of the correspoad-
ing job. Sectios DAT\ SECTION defines the tasks that produce the
final data aeeded by this job (other tasks are produciog the iatermedi-
ate data only). Since the locomotive is playing the vital role in the task
sllocation approach under coasideration here, it is referred to as the
LOCO approach. Note that the above description of the locomotive
implies the case when the job source and the job destination are the
same For the case whea job source may be different thaa the job des-
tination, only 3 minor modification of the locomotive is required.

The structure of the wagon is shown 1a Fig. 5. Each wagon W(k),
k=12, cocsists of six sections. Section CLUSTER.SECTION
specifies the cluster in which the task correspoadiang to that wagos bas
to be executed. Section TASK.SECTION specifies the task
rorrespondiog to the wagon. Since the wagon 8 always appeaded to
the locomauve, the short specification of the task caa be used. The full
specification can be obtained by combining thts section aad the Brst
three sections of its locomotive, The
LIBRARY ROUTINE SECTION specifies the library routine to be
used in the task execution. Typically, this section will aiso contain the
parameters to be passed to the routiae. or at lrast. the pointers to these
parameters. The DATA SECTION «pecifies the tasks that produce
data  for the task cortesponding  to the wagon. The
EXECUTOR SECTION specifies the particular SPPR that executed
the task corresponding to that wagon. Before the executioa of the job
atares. it s not known which SPPR will do the execution of which task.
So. as indicated earlier. the contents of this secting 1 imitially E=X, as
mentioned earlier  The WAGON_STATUS SECTION contains the
sperifier W that indicates if the task correspondiog to this wagon is
currently under sxecution somewbere 1n the system (W=IMAG) or aot
{W=REAL). If W = REAL and the wagon is behind the locomotive,
its execution s completed [ W = REAL and wagon is in the froant of
the locomotive its execution did not stare yet,

For the particular case of Fig. 1, the initial form of the traia »
given 0 Fig. 5a. Inttially, the locomotive is pushing the trasn. The
froat wagon corresponds to T{1}, the next one to T{2). etc. Of course.
the appropriate preambie shouid be appended to the froat. and the
ippropriate cyeiic redundancy check (CRC) lor error detection pur-
poses to the =nd of the tran. Oace the train 15 created. the host's sta
ton will compete for the alincation bus and after accessing it, the sta-
twoa will broadeast the trata. The CLUSTER SECTION of the front
wagon {aow W(l}) has the fuaction of the train destination address,
and the tramn will #nd up 1 the first curreatly idle SPPR of the cluster
C{2) Whea the train 13 accepted an scknowledgement will be sent to

the tram teanamitter The (D of the train transmitter can be fouad by
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Figure 6. Differeat Farms of the Train During Execution of the
Job from Figure 1.
PRE - Preamble CRC - Cyclic redundancy check

examining the contents of the locomotive. If the Brst SPPR in the
chain 1 rurreatly busy, it will pass the train to the next SPPR ia the
chain. If none is available, the tramn will “wait” in the queue vaotil the
irst SPPR becomes available. This “queue™ may physically exist in
the form of the closed cluster-dedicated loop withia which the train is
propagated until allocated. This is indicated by dashed lines in Fig. 2¢.
The station that transmitted the train will wait for the acknowledge-
meat. When the acknowledgement is received it will cleas up the buffer
in which the train was stored and will use it for the ather purposes.
Here an error-free channel is assumed.

Assume one of the SPPRs is free (e.g. 5{7)). Using the allocation
bus. the SPPR S(7) will acknowledge the receipt of the train and at the
same time it will request data from ail the sources specified in the
DATASECTION of W(1), i.e.. from P(7.5). Using the software bus,
the SPPR S{7) will request the library routine specified ia the program
section of W(1), i.e, L{S). [a the meantime, before the data and pro-
gram arrive, the SPPR S(7)'s station will examine W(2) to see if T(2)
¢am run concurrently with T(1). This is indicated by the conteats of
the DATA SECTION of W(2). Ip this example. concurrency is possi-
ble. Note that the wagon must be in the station while the SPPR works
on its load. It will bave W=IMAG durieg that time. So, W(1) will be
removed and the imaginary copy of W(1) will be appended to the back
of the train. A copy of the locomotive will be saved at the station along
with the wagoa. The train {see Fig. 6b) will now be broadcast and
bopefully accepted by one of the stations in C(4), e.q.. S(17). The sta-
tion 5(17) will acknowledge the receipt of the train, will request its data
and program and will examine W(3) for possible concurreacy. This
time concurrency will oot be possible, since T(3) aceds data from T(1)
and the wagon correspoading to T{1) is imaginary which meaas that
T(1)is not yet completed. So, the train will sit in the station S(17) for
some time. So far, our example clearly points to the ability of the
LOCO procedure to exploit maximally the existing parallelism on the
task level. Other more sophisticated forms of parallelism could be bao-
dled by the LOCO procedure equally well.

Alter some time, T(1) will be completed. The station S(7) will
place the output data into its local memory and will “remember” that
the data will be needed by T(7,53.3). That informatioa is obtsined
from the train while it is at the station. The station S(7) will set up
E=S5(7) o the wagoe W(1), will appead W(1) to the train, and will
broadcast i (see Fig. 6¢).

The message from Fig. 6¢ will be accepted by the station which is
currently in the position of the train, i.e.. S(17). The station 5(17) will
Bow exchange the imaginary wagoo with the real one, aad will reexam-
ine if T(3) can run concurreatly. Siace now it can, the train of the form
indicated 1n Fig. 6d will be broadcast. Assume that this train will be
accepted by 5{2,27) and that T(4) will be executed in S(1.37). In that
case, the tran will have the forms indicated in Figs. Ge. 6f. and 6g.

J63

Note that a wagoa will be destroyed when it is ot aeeded any more.
Finally, the locomotive is pulling the wagoas. Once the train from Fig.
6g is accepted by P(7.5) it will request the final data from S(2.27) and
S{1,37). At last, P(7.5) will broadcast the permission to delete all
memory blocks corresponding to J{7.5.3)

Our example described the basic idea of the LOCO approach. A
more rigorous delinition can be easily derived from this example. How-
ever. note that the LOCO approach is more powerfuyl than indicated by
the example. Instead of the topology from Fig. 1. any topology can be
used. Next, in the example used here, the schedule of the tran and its
load (i.e.. which type of SPPRs will be visited and what will be the
data sources) is set up at the time when the train was created. How-
ever, each task can be given the possibility to change the coatents of ail
the wagons corresponding to the tasks not yet executed. o that case
the task execution is made conditional, as well as the data to be used.
Also. as indicated earlier, each SPPR can be given the possibility to
treat each accepted task as a secondary process which can generate
secondary jobs and secondary tasks, where a new secondary train has
to be associated with each secondary job. Also, it is very important to
note that. under ption #5, all possible parailelism on the task eze-
culson level can be fully explosted by the L OCO praceduyre. The actual
extent to which the parallelism will be exploited depends upon how the
train is composed whes it is generated, i.e, the way in which the job is
decomposed into tasks and the way in which the wagons are ordered.

Note that the LOCO procedure can exist 1a various versioes. [o
one version, the train 8rst competes for the appropriate SPPR and
then coilects the input data (specified by the pointers 1o the train). fn a
variation, the train Grst collects the data needed for the task ana then
competes for the appropriate SPPR. The former version was explained
in the example, since we [eel it 1 simpler. It needs a smaller queueing
bufler in each cluster, but is less time-efficient. The latter version will
be treated in the performaace analysis to follow. It geeds 3 larger
queueing buffer in each cluster, but is more time-efficient.

V. MODELLING

We first develop a modet of complex muititask job (intertask
model) which is applicable to both the LOCO and LB approaches.
Thea we develop the models of the task execution time (intratask
model), separately for the LOCO and LB approaches. Load balancing
bas attracted a lot of research interest, aad some very good work has
been reported recently [e.g., ChoAbSZ. NiHiwa81. TanTo34. WahJud3)
However, here under the term LB approach we coasider the approach
which is obtained by applying the priaciples of load balancing to the
system architecture of Fig. 2b.

A. Model of the Multitask Job (Intertask Model)

We assume a complex muititask job that consists of J tasks (run-
sing serially and/or concurreatly). Each task is serviced by a general
ized service station {GSS). Activities of the GSS wclude allocation of
the task to one of the appropriate SPPRs. collection of input data from
appropriate data sources, collection of the library routiae from the
appropriate mass storage uait, and execution of the task. The oniy
diflereace between the GSS for the LOCO and LB approaches is in the
allocation of the task to ome of the appropriate SPPRs. So the
differences are within the GSS and are not visible on the level of the
iatertask model. Consequently, both procedures can be represeated by
the same open queueing network model [Kobay 78], as indicated wn Fig.
7.

Our analytical model based ou queueing theory incorporates ooly
the most essential parameters of two procedures under consideration.
We are forced to such an approach by the inberent limitations of
queueing theory.

We assume aa infinite population queuciog network. Task gea-
eration does not depend on the sumber of tasks currently existing in
the network. Task generation s governed by the Poisson process.
Routing of tasks abides by a Grst-order Markovian chain. Queueing
discipline at each GSS can be agy work-conserving one. Service time is
exponentially distributed. The task destination s capable of absorbing
all tasks departing from the system. The observauca interval is loag
enough so that the system can reach a steady state. Under these condi-
tions, Jackson's decomposition theorem [Kobay7?8| hoids. and the
steady-state distnbution of the probability that the setwork is 10 state
3 is given oy:

Ny
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Open Queueing Network Mode! of 3 Multitask Job for
the LOCO and LB Approaches.

q; -  Branching probabilities for differeat tasks
within the job

Ges~ Generalized service station

+J - Number of tasks in the job

1y = S{Source), 1.2.....J.d(Destination).

N - Poissoa arrival rate at the source node

Figure T

wheee pin.) 1s the marginal distribution of the variable ay(i=1.....Ng),
and Ng refers to the number of possible states [Kobay78] Elemeats of
the vector i refer to the aumber of tasks ia each of Ng SPPRs of 3
given cluster. This ennclusion implies that execution of different tasks
within 3 eomplex multitask job can be analyied independently one
from aaother, regardless of the wtertask data depeaden:y and other
refevant parameters. The same hoids for both the LOCO and LB
approaches. On the basis of this conclusion. in the next subsection the
intratask models for the LOCO aod 1.B approaches are iatroduced and
used later for their comparative perlormance analysis.

B. Model of the Task Executlon (Intratask Model)

We cnusider 1 task which belongs to a complex (multitask) job,
204 1ty execution in the GSS. lo geaeral, input data for the task reside
@ nas or more of the hosts or SPPRs. Now we assume that input data
tecitie ;0 a Qiven host. Also. we assume that when the task is ready for
rxerytna hefore 1ts allneation, st the input data have to be
re jue o {rom the host The same applies for both the LOCO and LB
sppt vwhes The model of the host as 3 source station for data retrieval
s giv-0 .0 Fig 32 The ZIFY) queueiny disciphae is assumed. [f the
datarequest at the host 1 (1= 1, Ny} 1s a Poisson process characterized
hy (he venval rate Ny the probabiiity density (uacting (p.d.[.) of the
Titareeuestinterarrivainteryals s given by

gt
wWhE e 20

The viiae 3f « ran easily be measurrd as.

aumber of dat. requests

gy Fohm

* t-rx t
Soon cers ce e dary petievad) 3t the host a(i=1, Nyj s 20
sorones tal pracess characterized by the seevice rate uyy then the
Dl fihmservics me s givea by-

" ¢
LY = e md t>0

w, '
o ey

. “\,"‘

W, -y
|

-

~ . W

Frigure 3 "ements of the Task Uvecution Model.

131 The host 28 2 service statico for data retrieval
'h) The LOCO yppenach
ir)  The! B approach
Wittt Ny) RBsamated watiog ume
Wil Moy~ Reai watiog ime

The value of uy, can easily be measured as:

e Cru
Ri =~
B,

where Dy refers to the average number of iastructions executed duriag
data retrieval. and Cy to the average aumber of instructions executed
10 3 unit of time. The utilization factor 1s given by:

o = Ml b
The waiting time p d.[. at the bost is givea by:

o
80 = womll-ande M >0

Finally, the response time p d_f. 3t the host 1s given by:
Y = M) © 18 = wlt-a)e ™Y 0

where © stands for convolution. The average respoase time for data
retrieval at the host s given by:

=
T = [odMend

Next, after the data are requested and obtained. the task is allocated to
3 SPPR accoeding to the existing task allocation procedure. Note that
nur model of the LOCO procedure concentrates on a single cluster. So
the parallel execution of different tasks in different clusters 1s iacor-
porated oaly indicectly

{n the case of the LOCO approach. the task is seat to the queue
corresponding to the appropriate logical cluster. As indicated earlier,
this queue may physically exist in the form of the closed clustee-
dedicated loop withia which the train is propagated until allocated (see
Fig. 2c). So the logical cluster can be modeiled as 3 siagle muitiple
server service station. The FIFO queueing discipline s assumed. We
assume 3 Poisson arrival of the tasks (due to the decomposition of the
complex muititask jobs with Poisson arrivals) with the arrival rate at
cluster j (j=1...,Nc) equal to )., We assume an exponential service at
=ach SPPR io the cluster, with the service rate equal to u.;. Thus, an
M/M/m queueiag system is assumed, where m = Ny. Both .y and uey
can easily be measured in real systems. The traffic intensity of the
cluster is given by a.;=)\./p.; aod the utilization factor by
Pey = Neyf(mytu. ) = acy/m;, where my is the oumber of SPPRs in the
cluster ). Note that my = Ny; under the assumption that each cluster
contaias the same aumber of SPPRs. Now we are temporanly remov-
ing that assumption in order to make the resuits more general. The
respoose time p.d.f. at the ciuster j is given by comvolution of the
appropriate service time p.d.{. and waiting ime p.d.I.

1) = £HY D 151y
[n expanded form Lhis reads:

Mt {15 JE Ao e 50 ey BEL
‘ gt emyflmag ) T YT my
(L) = ..t
e ¥ m-t
Moo {1700 JEAMy )} =~ 130 p <
eyl 1700 jEA )”m,{l-pq)-l >0: pey ™

where

“'-2

m{1=pe,)

k @ik
- A,
bymt = |2 T 2,
’ ml=0e ) [ |vmo
Fiauily, the average response tume for Lask executiom in the logical
clyster 13 given by

THLOCH = [ phudt

“ote that T2iLOXCO) refers to the average time that 3 task speads in
the LOCO ~luster 3fter the 1ata are retneved

As already mentioned we coasider 3 task which s part of a com-
plex multitask job. So the madei has to incorporate both the respoase
time for data retrieval and response time for task execution. Passing
the output data. from the task under consderation, to the following
task s incorporated 1nto the model of the followiag task.® ln concle-

Sase that Gaas 14t Sarve o e rorwarded to the 10b desuusation However Lhu cas
oe aeqlecied .f the aamber >f teraly sxecoted (asks 19 arge esongh
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sion, the GSS in the case of the LOCO approach can be modeled as 2
cascade of the models from Figs. 8a aod 8b. This issue will be
addressed ia Sectioa VI

In the case of the LB approach, the source of the task first
inquires about the load of differeat SPPRs appropriate for that task.
After that information is obtained, the data for the task are requested
and obtained and the task is sent to the queue of the SPPR which
reported the minimal load (in terms of the total estimated execution
time of all tasks currently waiting in its queue). Note that the reported
load represents the estimated value (W), aad oot the real value (W).
The minimal reported value is aot ily the absolute migimal
value. This is indicated ia Fig. Sc. In conclusion, the GSS for the case
of the LB approach can be modelled as 3 cascade of the models from
Figs. 3a and 8¢c. Under the same conditions as in the case of the LOCO
approach. il the load estimatioa is ideal, the average task respoase time
at the SPPR should be given by the same equation for both
approaches:

T(LB:IDEAL) = T{LB:s=0) = TYLOCO)

where o relers to the standard deviation of the task execution time
estimate. {o this case. the LOCQ aad LB approaches are characterized
by the same performance.

For fair comparison of the LOCO aad LB approaches, 3 model
tor the LB approach has been chosen which maximally favorizes the
LB approach. Coasequently, 3 muitiserver model has been chosen,
with informatioa oo the staadard deviation of the task execution time
estimate iacorporated into the service time p.d.[.

According to the Kingmag-Kollerstrom approximation [Klein786},
the waiting time distribution in a G/G/m system is given by:

aS+aiimd '

Wit)=1-e

where o2 refers to the variance of the interarrival time, 30d o to the
variance of the service time. The waitiog time p.d.f. {{t) is a deriva-
tive of the above given W(t). Using this approach we evaluate T;(LB)
for the M/G/Ny; system. Note that the LB approach i characterized
by: my =Ny =m, 4.3 = u, and Ay = X. For G we select the gamma
distribution defined by:

afat)le® t>0
T8 toE
) = 0 ;t<0

with 2= 3 and a = Au. We have chosen an integer J to simplify the
analysis, without affecting its generality. The value J=3 bas been
chosen a8 it is the case when the gamma distribution closely
corresponds to the gormal distribution {Klein76]. Parameter A has
beea incorporated to enable more flexible variations of the mean and
the variance. For the gamma distribution, the mean and variance are
equal to 3/a and 3/a’, respectively [Kobay?78|. For selected values of
a and J, the service time p.d.f. is given by:

(A!!ll‘t:e‘bl R 2 0
) D t<0

with the mean equal to i—, and the variance equal to 3 7. Note
e Ap A%y

that [ fe(¢}dt = 0.575, and for the expouential distributios we have:

e

[ uwe*'dt = 0.63. This approach allows us to evaluate the LB system

°
performance for diflerent values of o (¢ was deflued earlier), and for
various appropriate vafues of A,

The response time p.d.[. for LB system is given by couvolution of
appropriate service time p.d.1., and waiting time p.d.l.

the) = tXt) © tife)

wow
PG AN ot s A sty oG e aotie

A

where:
2AMmu(1-
Al +3
Fioally, the average response time for task execution (after the data
are retrieved) is given by:

TYLB) = [ uf{t)de

Another possibility for dealing with LB approach is by using the
following assumption: If the load estimation is nooideal (0 #0}, then the
average task execution time for the LB approach should be given by:

T{LB.7#0) = THLOCO) » N(o:m,)

where Q{a:m,) is the modification functioa for the LB approach, in the
case when the data retrieval time is oot taken into consideration. The
function 2 characterizes the load estimation. The form of function
o:my) depends on the type of estimation. We assume that statistical
char:\ctemucs of the estimation error p, = W-W, (i=1,,, .my) at each
station are the same and given by the zero-mean Gaussian distnibution
of the form: )3
1 . ,,z;

pe l o
As already indicated, o is equal to the standard deviation of the load
estimation. It is very difficult to obtain aa analytic form of the func-
tion Q(o:m)). The family of cutves in Fig. 9 is obtained by simulation.
Ia this figure, the value of o is treated relatively to the average exesu-
tion time of all tasks involved in the simulatioa (T). The level of detail
in our simulation mode! was ch to correspond to the level of detail
in our analytical model.

Usiag the method of empirical-functions smoothiog and applyiag
it to Fig. 9. it is possible to derive analytical expression for Q(c/T:m,).
We aasume that the functioa (2 could be given by the following analyts-
cal formula:

wipy) = -0 < <+

O(x) = K- e™¥2 +

Coefficient K depends on my. It bas been determined that it is equal to
0.77. 1.53, 2.24, and 2.83, (or m,equal'.o. 4, 8 and 18, respectively.
The suudud deviation is less than 2.1%% in all cases. Using these
results, we get an estimation for coefficieat K which is characterized by
a staadard deviation less than 3%, for all selected cases. This value
reads:

K
ﬂl’ 2
Ne/T.Ny) 0c,. 123
YIS
LN
Me/T Ny =18
e/ T .Ny=8)
3o+
Ne/T:Ny=4)
20}
/T Ny =2

1.0¢ « o/ T.Ny=1)

Il .

L A I |

T
12 14 18 19 20 o

[ 02 04 06 08 10

where j = 1,....Ny (oumber of SPPRs in a cluster). In expanded form Figure 9. Modification Function for the LB Approach. obtained
this reads: from the Simulator.

_A_’Lc-e-a .C < Ap o= Standard deviation of the task execution time

(Au=C) ' - estimate
fkt) = Al ’C[CE(C- A lL°’!C’ Ap)+2] T~ Average task execution time (executiow ouly, no

- a' = =he'AM . C > Au waiting)

AC~Apj} Ny~ Number of units i the ciuster
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It is possible to use this 3pproximation oaly ia the cases when we have
values for the LOCO approach and we need to generate the values for
the LB approach. under the conditions of our simulation. Our
stmulaioe is of the “self-driven” type [Kobay 78], and is implemested in
the SLAM laoguage. We bave fully followed the methodology of
{Kobay 78] for simulation model formulation, simulator implementa-
tion, design of the simulation expeniments, validation of the simulaticn
model. and analysis of the simuelation data. ThAroughout the simulstion,
the traffic of indiindual SPPR1 was kept constant.

V1. PERFORMANCE ANALYSIS
We ronsider first the model of the LOCO approach developed 1o
the previous section IFigs. Ba and 8b). According to |Kobay 78], the
average time that 3 task spends ia the system is given by-
-
TWULOCO) = [tly,ftdt
[

where

fadt) = 1740 O (54
Ny). aod

We assnme that the put data reside 1a the host i (1=t !
that the tusk 13 sxecuted o cluster j (j=1.  N-). After applyiog 3
series of tramformations we get:

T, jLocoy =

*
._.L_-
oy, (1me, Edm ) >

PERIRTNUEE N1 CPRN [T NPT LT A iy O

o, (1-2. .J>u..u~»..xl

[ >
Y hmpy, Cxm ) . ’ ’ L}
3 (0o i m L pe i@ 1= i g )] (AR Sonit A
< m-1 |
. wu f1-r Enim ) SR l
P B N YR TR R CIPE T Loy T
_a-l
e iy Jdm) | T
gt i e T BB (e
where:
. A
A, = =1 & 2y = e
ey My

2 B{mg) was dcfxnrd rarhier o the text. The it two lormulas
apyly to the case m, = 1 The dependeace of the IogMTu(LOCO" on

m: i3 preseawsd ip Fig. 10 for the case when my=N., aad for differeat
vaines of 4y, and gyy. Yote that (Ae total traffic in Fig. 10 is kept con-
atant. egard ces of the value of Ny, Conszequentiy, ~orn Ny ncresses,
Ae indivigual iraffic of sach SPPR decresser Varauce of the total
time that a task spends o the LOCO systern s gives by

g

PHEOCD) = (et - THLOCH)
a9
At s aeries of transformations we get
SHLOWO) =

Moo ) 2 e el e e Ao 170 S ar Lo e 178, B, )
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Figure 10. Avetage Time that Task Spends in the LOCO and LB
Systems.

Ny~ Number of units in the cluster

Average total Lime spent 10 Lbe system. averaged over all possible data
sources and task types, is givea by:

= NeNe

T(LOCO/SYSTEM) = T U T, (LOCO)py

(zy=1

where py, refers to the probability that input data reside in the host i
and the task is executed 1n cluster j. Average queue leagth of the clus-
ter j (j=1....N~} in terms of the number of tasks waiting in the queae
associated to cluster j is given by {Kobay78):

- k.4
Q= ¥ lo-myp, = ﬁ 2y

P
o o (1=p )
where
" 1
SR, x
O e S
=g a! )’ l-""l

The variance of the queue length 1s given by:

-
. > . 1=p; +202
R ‘_‘J:..._ii__'i.po
ey my (l-n..,)'

where p, 18 defloed 3bove, and p, is the probability of baviag o tasks in
the cluster.

We consider aow the model of the LB approsch developed in the
previous section (Figs. 8a and Ac| According to queseing theory. the
average time that 3 task spends wa the system s gives by:

=
Ti(LB) = [ ¢ty ftide
o
where:

fralth = 1Y @ tHy)
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We assume that the input data reside ia the bost i (i=1.....Ny}, aod the
task is executed in the SPPR of the type j (j=1,...Ny). After applying
a series of transformations we get:

ADs* .C < As
As-CIMO-C1°C ‘orc
s C<an
lic-asit0-c10 ‘pcc
4Lh

- g}t #{C - > iQea, 40 > As
(C-As1-0 *As/"0 D<a,
., L on L »f o . At ST 0. .c > Aa
(C-An\D~Aui™A%s ‘0> A,

where:

oAl -
c= WMl oy b= pit-an).
ASp*+3
The dependence of the log,o[T);(LB)| oa m, is preseated in Fig. 10
for various values of uy, and oy, JThe plotting is provided for A =
1.75. Note that total traffic i Fig. 10 is kept constaat, regardless of
the value of Ny. This is the same as in the case of Fig. 10, but differeat
compared to Fig. 9. Whea Ny increases, the individual traffic of each
SPPR decreases, but slower (Fig. 10).
Variaace of the total time that a task spends in the LB system is
given by:

of{LB) = [ ey ftide - T(LB)
[

After 3 series of transformatioas we get:

of{LB) =
» - O o8 C<an
Ac-antoy " it m><
v Iy Cc<an
{C-asDCYD* " gt omd €€
AY ApiieiC-a Ag) * (Do, A A, 4 »(C-aglDe s gh D=4, C>As
(C-Asp’ * (Aw-OP * OF " omdl-md €A,

__n_[ . P o,
[CoaafDAmanat HC A=A NC A D= 40/ HC -As(D~ARlIC-2A» .

1D 0y? +(C-AsNO~ A} HC-ApIAISN-CDINC-A 1D~ 2 0y®

T > As

“UE *0=IAS HC-ASUD= Asihs *HD-As)*(C=As{D- A0} *(C-A 'A} .
i ndet it > A,

where D = gy {1-pn ), while C aad A were defined earlier.
Average total time speat in the system, averaged over all possible
data sources and SPPR types, is given by:

= MMy _
TLB/SYSTEM) = © ¥ T\ LB} py,
1= jmy
whete py, refers to the probability that input data reside in the bost i
and the task aeeds the SPPR of the type j. The formulas for TLB)
and T(LOCO) match each other very closely for Ny = 1. Numerical
values difler oaly in the third decimal digit. -
For the LB approach, average quewe leagth Q[LB) could be
evalusted using Little's formuls [Kiein 76|:

Q4LB) = MT(LB) - '—';l) = AT(LB) - mp

where T/(LB) was defined earlier, a0d index i is omitted. After a series
of trassformations, we get:

3.3
LY. S, : C <A
(Au=C)*C

Q|LB) =

- - 2
ACHC-ANPAC-ApAB+AYY | . 55 4,
(C-Au)®
whete C and A were defined earfier.

Some coaclusioas may be derived from Figs. 9 and 10. Tbhe
bigher the value of o (implies A < 3), the larger the performasce
difference detwees the LOCO and LB approsches, which is expected.
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In the enviroament under consideration, as already mesntioned 1o See-
tion [], the values of o are relatively large due to the fact thae, in the Al
enviroumesnt, the correlation between past values and future values of
execytion times for the same type of task may be very low. This indi-
cates that, for realistic values of @, the performance difflerence between
the LOCO aad LB approaches can be relatively bigh. For example,
according to our simulation, for ¢/T=1 (standard deviatioa of the
estimation i8 equal to the average task executioa time), aod Ny=8
{case of eight SPPRs in each cluster), the total time tbat the task
spends io the system is 2.6 times shorter for the LOCO approach, com-
pared with the LB approach. Note that our simulator peglects the time
needed in the LB approach for the inquiry and processiag of the infor-
matioa about the load of diferent SPPRs.

A number of observations bave beea derived from our analysis.
For example, with the given coaditions, the higher is the value of Ny,
the larger is the performance difference betweea the LOCO and LB
approaches. However, the step of the performaace increase is smaller
for the higher values of Ny,.

V1. CONCLUSION

la this paper a problem was recognized, one of having a large
oumber of special purpose processiag resources (SPPRs) shared by a
sumber of hosts. Processiog structures of this type will arise in 19908
around Al aad other computationally massive applications. Similar
processing structures may atrise in the high-end computers of the 5th
generation. la such a processing structure, it is of crucial importance
to have an efficient procedure for the distributed allocation of different
tasks among different SPPRs.

Under the assumptions that affect the abave described processing
structure, a distributed task allocatios procedure was introduced which
is efficient in 3 laege range of circumstances. Both the task allocation
procedure (LOCO) and the underlying system architecture (AIDA)
were presented and analyzed.

One of the most desirable features of this approach is that the
task allocation conmtroller (the LOCO station) can easily be imple-
mented in 2 single VLSI chip. The LOCO station acts as an interface
between the SPPR and the tasks to be executed by it. The LOCO sta-
tion enables SPPRs of different types to be incorporated iato a monol-
ithic task allocation scheme.
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MIMD Algorithm Analysis: Low Level Algorithm Descriptions
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From the Proceedings of The 5th International Conference on
Distributed Computing Systems, May 1985; Denver, Colorado.

Abstract

This work identifies salient features of MIMD
algorithms. A set of language and machine independent
MIMD constructs is proposed. In analysis, algorithms are
reduced to an equivalent description composed of these
constructs. These constructs are at a low level, thus one
can analyze the algorithm performance in relation to
several MIMD architeci: res. At the same time, these
constructs are at a high nough level to retain the basic
structure of the algorithm. The paper focuses on issues
of communication and synchronization. Examples from
Ada, CSP, Edison, and Path Pascal are given.

Introduction

This work addresses problems in the analysis of
MIMD slgorithms. Especially in the area of application-
driven or algorithm-driven architecture design, one would
like to be able to predict the performance of MIMD
algorithms on different MIMD architectures. Since few
MIMD machines exist, direct execution is generally not
possible. Simulation of MIMD processes at a low level is
possible but difficult. The work here is inlended to
Frovide an extension to traditional algorithm analysis.

eatures such as inter-process communication and
synchronization, which are critical to the performance of
MIMD algorithms, are mapped from high level languages
to common, relatively low level represeatations on which
analysis can be performed.

The undetlying approach will be to extract a few
primitive features of parallel algorithms. These features
should be comprehensive enough to cover a wide range of
language constructs, while being simple enough to
correspond to hardware capabilities. The major areas of
interest are communications and synchronization. Models
are developed to describe many forms of these operations
in a uniform notation. In the following sections, some
high level language constructs to express communications
and synchronization are surveyed. We then identify basic
. representations to which the high level constructs can be
- mapped. These low level representations are close enough
to the hardware level to allow analysis of the effects of
= hardware on the execution characteristics. Just as
importantly, the representations encapsulate the meaning

: of the original algorithm. By devel oping these simple
! constructs, analysis is simplified and unified.
. MIMD Architecture Models

In MIMD machine designs, two memory
. orgapizations are common: the Shared Memory Model

and the Private Memory Model.

This materis) is based on work nu{ﬁwmd by the U.S. Army Research
: Office under Contract DAAG29-82-K-0101.
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The Shared Memory (or Global Memory) Model
consists of a set of N Processing Elements (PEs) with no
local memory. These are connected through a network to
a global store. Examples of this model include the NYU
Ultracomputer' and C.mmp2. The major advantage of
the Shared Memory Model is that sll processors can
access all of memory. This is important in the analysis of
algorithms for this type of system. One of the critical
design problems in such a system will be the arbitration
network. Much research bas been devoted to data
storage schemes (o improve efficiency of the data
accessesdd,

The Private Memory Model gives eack processing
element its own memory. The PEs themselves are
connected directly through a petwork. An example of
this is the PASM system®. The advantages of the Private
Memory Model include fast exclusive memory access for
each PE to its own memory. The associated cost is the
inability to access all of memory directly. Again, this will
appear in later discussions of algorithm aualysis. Siegel
et al.® give a good discussion of the relative benefits of
each model.

These two madels identify one of the largest single
differences between various MIMD architectures. Many
designs contain aspects of both models. These models are
not, thercfore, meant to divide MIMD architectures into
two classes. These models merely identify two of the
most common approaches. For instance, the Texas
Reconfigurable Array Computer (TRAC) combines the
two given models by providing both private and shared
memory®7®, For the purposes of the analyses presented
here, it is sufficient to show that results are valid for both
models, so that mixtures of models will also produce valid
results.

These models are fairly simple. Thus, they are not
intended to take all aspects of a parallel architecture into
account. Yet in their simplicity, they distinguish features
of an architecture that have a major bearing on its ability
to run parallel algorithms. These models will be useful in
mapping language constructs to actions in the hardware.

Implementing Language Constructs
in Paralle]l Architectures

Assumptions

In this section, assumptions made in the subscquent
analyses are outlined.

There is a distinction to note between tasks or
processes and their relationship to PEs. There are scveral
approachu. Each task can be statically assigned to a
PE. For Private Memory, this approach is always
reasonable since it takes a significant amount of time to
copy a task in and out of & PE's local memory. For
Shared Memory, this approach is ideal when the number
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of tasks is less than the number of PEs. For Shared
Memory, another option is to assign a task dynamically
to any available PE. Over 5 much longer time (tame,
this is feasible for Private Memory as well. Throughout
the following discussion, it is assumed that a process is
provided with memory tesources and a PE. In Shared
Memory, the assigned PE may change over time, but the
memory resources are unchangeable by external events.
For Private Memory, the memory is associated with each
PE, so this is fixed. So, to simplify analysis, it will be
assuined that once a memory resource 18 allocated, it
stays with the process until the process releases it. No
external action can take away or move this resource.

Anather assumption is that all communication to
~ther processey or tasks will be performed through some
general inechanisin. This mechanism will have to handle
the  detads of transferning data from one process to
another u-ing the available facibities. In a Shared
Memory system, data s transferred through a global
store. so all data transfers are accomplished 1 the same
manner.  In a Private Memory systeni, interprocess
communication may imply data 13 transferred between
two physical PEs. "This would not necessarily be the case
when there 15 more than one process per PE. For the
sake of simplicity, the following discussion will assume
that « simlar evecution penaity W ancurred for both
cases  Except for a trwvial MIMD system (2 PEs), or
when tratlic patterns are expheiily described, there is 8
higher orabanility that o trausler will require accessing a
phiysscaily distinet Ph.

Summanizing, to provide for a more concise analysis,
a ix-Y or process 1s assumed to be mapped to a logical PE
ac: logical memory. In most cases, this will correspond
to a physical PE and  physical memory. Future
exd nscns of this analysis may relax this assumption,

I the following sections, iwo features of parallel
“lecotens are nvestigated. Global  variables  and
coattn anieabioas afe miethods for processes to

EROTTIRE S amnong themseives. Concurrency
Soanaaomns adeatify  code which can be  executed
cacarrently  Synchronizatics allows  processes  to
vaesnGe correct algonthms These facilitier are expressed

-v o differs ot ways 1 ifferent languages The goal 18
¢oreo e actttade of {forms ol expressions into a
corann Torm Foroanalysis This form shoult be elose
cpomet o the hardware jowel to allow analycis of the
T o0 fhandware o the execution charactenetios  Just
{

crtantdy . chis Form showd eacapsulate the nieaning
tie aZinai algoninm

Giobal Variahles and Communications

Ir tine ~ection, a nuinber ! high level language
iecbanise, s for previding shared memory and intes-
process columunisation are surveyed  Implementations
on the two MIMD models are discussed

Local vs CGlobal Variables

1+ al varabies are ronsidered t be those variables
a oseord by oniy one PEO while global variables are
atosed by mare than one PE This does not necessarily
wiedy teat a local or global variable is kept in a local or
glola, temors. When speaking of variables, local and
ghtal refer tnoa logieal association with  processes.
D ferent dangeages  support  this in different  ways.
Ada® 1% acuines Jdata is doonl to tasks. As a consequence
of the visitulity rules, an ubject declared in a parent task
s visthie by the children, thus more than one task can
access a variable  In  some situations, this is s
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“dangerous” form of global variables since care must be
taken to avoid conflict by one task reading the variable
and another task changing it simultaneously. Ada
supports a library of implementation-depeadent routines
which it calls the STANDARD package. To update these
globally visible variables in a reliable way, one must use
the SHARED_VARIABLE_UPDATE generic procedure
defined in the STANDARD package. This is a procedure
which insures data integrnity in a multiprocessing
environmeni  To du this, it may have to perform some
sort  of software interlocking.  Alternatively, global
variables can be imjlemented as local variables in a
special task. This task does nothing except repeatedly
accept requests to aceess the data. That “data manager”
task must then accept the rendesvous by the processes
requesting the "global™ data.

Simitarly, Concurrent Pascal''? uses monltors to
access  global variables  Alternatively, Modula!314
assumes all variables declared within the main program
block are global variables. All other variables are local.

These languages ali explicitly provide for global
variables. The variables may be accessed in a limited
scope or through a special mechanism, but they are
readily available.

Interprocess Communication

There are some languages that do not provide for
global variables explicitly. An example of this is CSP'®.
This language is a so-called “message based” language.
Omitting the global variable construct forces the
programmer to use other methods to transfer information
between processes. CSP requires all shared information
to pass between processes on clearly defined channels.
This performs a similar function to the traditional shared
variable. In fact, through the use of a semaphore and a
global variable, a similar aperation could be performed in
a language that does not support message passing.

Clobal Variables va. (‘ommunication

Global variablex, by definition, contain information
relevani to more than one process. This may be in the
form of a global vanalle pame, s moniltor, or s
channel. Thus, inter-PE  coinmunication can be
mterpreted as a form of global storage. Conversely,
gloha! storage can be interpreted as a form of inter-PE
comrmunication T'hus, global variables and
communications can be used lor similar purposes and can
he unplemented in the same way. In analyzing parallel
algorithme, this vquivalence can be used to unify many
language constructs into a common analysis framework.

Implementation Framples

To illustrate this further, consider implementing an
Ada compiler for a Shared Memory system. In order to
execute 8 SHARED_VARIABLE_UPDATE the code
must access memory set aside for general use. This area
of meimory 18 designated as a global storage ares and all
PEs access it whenever necessary. he hardware
accounts for the arbitration and insures that a memory
operation by one PE cannot be interrupted by another
P i this memory is accessed often by several
processes. the arbitration can introduce a significant
delay Overall, this  .cheme is a quite direct
wterpretation of the langnage construct

Now consider nuplementing the same compiler for a
Private Memory systemm. There is no memory accessible
by all PEs. In this case the inter-PE communications
network plays a key role. Options include designatiog a
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spare PE as a global memory handler, spreading the
global memory among the PEs randomly, or keeping the
global memory with the (parent) task where it is
declared. When a PE needs to access a memory location,
it must pass a short message to the appropriate PE
describing the memory operation. The remote PE may
return a value or perhaps a write confirmation. This is a
somewhat more complicated issue than merely using a
hardware arbitration scheme as in Shared Memory.

Conversely, suppose the task at hand is to develop a
CSP compiler for a Private Memory machine. CSP
provides simple mechanisms for the passing of
information on defined chaunels. There is a natural
mapping from the use of channel specifications to the use
of an interconnection network.

On the other hand, to provide for chanpels on a
Shared Memory machine, one would bave to set aside
areas of memory to simulate the hardware chaunels. For
an algorithm with heavy inter-PE communications, it is
important that the compiler place these memory areas in
a fashion that produces few memory access conflicts. The
memory conflict problem is an ares of research in itself®*,
so it is sufficient to note here that this could be a
significant problem.

Language vs. Algorithm

In the case of “conventional” languages, it appears
that the “natural” mapping of global variables is to s
Shared Memory machine. Likewise, CSP and other
“message based” parallel languages “naturally” map to a
Private Memory machine. It is proposed that this so-
called “natural” mapping is actually artificial. In analysis
of parallel algorithms, we wish to analyze the algorithm,
not the language. In particular, the language should not
introduce a bias in favor of one of the two MIMD models.

In order to accomplish this analysis, an algorithm
must be stripped of its {anguage dependencies. This can
be accomplished with a generic set of MIMD operations.
Every language construet must map to an equivalent
MIMD operation or set of MIMD operations. These
operations will identify a  global memory
access/communications operation. From this common
intermediate form, a cost model for performing the
required access on a particular architecture can then be
applied. By mapping the high level language constructs
to this intermediate representation, we can migrate the
analysis away from language dependencies and towards
the relationship between the algorithm and the target
architecture.

Concurrency Control

Two aspects of concurrency control are the
specification of when processes can proceed concurrently
and the converse operation of preventing (presumably
barmful) simultaneous access to shared resources. In
relating these concepts to the performance of an
algorithm on an D srchitecture, it is profitable to
focus on the fundamental mechanisms by which
concurrency is regulated. In the next section, the use of
the semagbore as a viable concurrency primitive for use
in algoritbm snalysis is outlined from two points of view:
(1) Semaphores can be wused (o express the
synchronization/concurrency indicated by higher level
language constructs. Thus, independent of language,
slgorithms can be mapped to a representation whieiuuses
semaphores. (2} Semaphores can be implemented on both
Shared Memory and Private Memory machines. Thus
the algoritbm can be evaluated with respect to different
architectures.

b e b el - - wor
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Semaphores

Concurrency specification is another facility with
many forms of expression. A partial list of mechanisms
in use includes semaphores'’, test and set!®, guarded
commands'®, replace~add?®, fetch and add!, fetch and
¢3!, path  expressions®, interface modules!3i4is

fork/join'®, cobegin®242% monitors®, rendezvous®, event

counts and sequencers®’, channels'®, and messa, s,
q

Obviously, there are many ways to express
synchronization in algorithms. To allow analysis, the
goal is to identily a common form which can describe any
of these synchronization mechanisms. This form should
be close to hardware implementations so that further
algorithm analysis can correlate the algorithm with the
architecture.

One of the oldest synchronization methods are
Dijkstra's P and V operators’’. These provide a basis for
more modern proposals for synchronization mechanisms.
Briefly, a semaphore is an integer valued variable which
can have P and V opcrations applied to it. The V(S)
operation inicrements the semaphore S in an indivisible
fashion. The P(S) operation decrements the semaphore S
when the result would be non-negative. The last test and
subsequent decrement is an indivisible operation.

The classical use for semaphores is in regulating
access to shared resources. However, the semaphore can
also act as a low-level, “common denominator” notation
for specifying concurrency. For instance, Edison?324%
provides a cobegin statement in which a parent process
creates any number of processes, then waits for their
completion. The cobegin statement can easily be
expressed using Dijkstra's notation. Suppose three sub-
processes are all concurrently executing, or ready to
execute given any scheduling constraints. Also suppose
that the main process is running. This would require two
semaphores, alart and end , both initialized to 0. Fig. 1
shows the code for the main process and one of the sub-
processes.

Path Pascal® provides another good example of a
language that can be translated meaningfully to P and V
notation. It has a very complicated syntax to describe
the concurrency of the program. This involves path
expressions which specify when processes can be invoked
in relation to other processes. For instance the path
expression

path procl ; proc2 end;

signifies that proc2 should run only after procl has
completed. Any number of these sequences may be
active at one time. Likewise the path expression

path 3:(beginproc; endproc) end,

process main

Do initial processing;

V(start);

V(start),

V(start);

P(end);

P{end
P(end);

Do more processing;
end process

'y

process procl;
P(start);
Do useful work;
V(end};
end process
Fig. 1. Edison Coroutine Example
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procedure P(semapbore)
send_message_to_CU(PE, P_MESSAGE, semaphore);
4 wait_for_reply_from _CU(PE, semaphore);
en

signifies that endproc may only follow beginproc, and
there may be up to three concurrent executions of this
scquence. Concurrency limitations even as complex as
Path Pascal's can be described with semaphores. The
condition that proc2 must follow procl is insured by a
semaphore S with initial value of 0, such that procl

Ay AIRP

KA

. _A

procedure V(umnphor:}
send_message_to_CU(PE, V_MESSAGE, semaphore);

r':', exccutes a V(S) at its end, and proc2 executes a P(S) end

- before it begins. Likewise, to limit the number of

" currently active paths to N, a semaphore S is initialized procedure handle_events

ot to N. A P(S) is placed at the beginning of the path, and read_message_from_net(PE, message, S);
" a V(S) is placed at the end. case message in

¢ P_MESSAGE:

.‘l"'.

. e

It is important to note that the definition of a
semaphore describes a behavior, not an implementation.
As such, it is an appropriate construct for describing the
concurrency-related characteristics of an algorithm. As
discussed below, it is model-independent in the sense that
there are implementations suitable for both Shared
Memory and Private Memory machines, so an algorithm
whose synchronization and concurrency requirements are
expressed in terms of semaphores can be mapped to
either model.

Io the subsequent step of evaluating an algorithm
with  respect to a particular  architecture, the
implementation will be of interest. Commonly, the
semaphore notation is associated with a variable in a
global memory system. This follows the definition closely
for the V operation. The implementation of the P
operation is highly dependent upon the machine
architecture and cven the operating system. The
definition duves not specify what a process is to do while it
is waiting on the semaphore. Depending on the
circuinstances, the process may loop continually testing
the semaphore. Alternatively, the process may “sleep”
and allow another process to use the same CPU. In this
case, the P operation is responsible for “waking up” the
“sleeping” processes. The sleeping and waking is often
accomplished by intervention by the operating system.
The second implementation is prevalent in single CPU
time-sharing  systemns.  These implementations seem
suited for a Shared Memory machine. The major
prublein is guaranteeing the mutual exclusion during the
mdivisible operations.

Likewise, there are implementations of P and V best
syited  for 8 Private Memory machine. In  one
iopletaentation, a single PE would store the semaphore
in its private memory, and keep a queue of P requests,
theu respond to the Ps whenever a Viis performed on the
same semaphore.  The example in Fig. 2 uses this
mathod. A single PE bas exclusive access to each
semaphore and any other PE must communicate with
that one PE tv gain access to the semsphore. This
guarantces the mutual exclusion needed for the
semaphores.  This  implementation wonld well take
advantage of a separate control unit (CU) or PE to
handle these actions. lo Fig. 2, note that only the
procedure  “handle_events” can actually modify the
semaphore. A simplified implementation for P and V is
also shown in Fig. 2.

Here the C'U has to reply to every P operation. The
requesting PE waits until it receives the reply. No special
restrictions need be placed on the accessing of the
semaphore, since all the accesses are done by the single
C\3, If the value of the semaphore is greater than 0, s P
opcration is immediately acknowledged with a reply.
When the PE receives the reply, it cobtinues its
execution. When the semaphore is less than or equal to
zero, the CU keeps track of Ps by keeping a queue for
each semaphore containing the PEs that have performed

if S.semaphore > O then
scend _reply _to_PE(PE, S);
S.semaphore = S.semaphore — |;
else
enqueue{event.queue, PE);
end if
V_MESSAGE:
S.semaphore = S.semaphore + 1;
if S.semaphore > 0 and
NOT_EMPTY(S.queue{ then
dequeue(S.queue, PE);
send_reply _to_PE(PE, S);
S.semaphore = S.semaphore - I;
end if
end case
end procedure

Fig. 2. P and V Implementations
in a Private Memory System

a P on that semaphore and are waiting for a V from
another PE. ]t puts the PE into 8 queue associated with
the semaphore S through the routine enqueue(S.queue,
PE). Likewise, it rcmoves a PE from the queue
associated with S through the routine dequeue(S.queue,
PE). The queue length must be as large as the number of
processes.

For both Shared Memory and Private Memory
implementations, semaphore access can become a
bottleneck.  For specific algorithm/implementation
environments, simulation can be used to assess this; for
the more general case, statistical and queuing analyses
can be applied. Techniques to avoid the bottleneck
involve distributing the load. An example of this in a
Shared Memory machioe is the use of Fetch and Add
hardware in the NYU Ultracomputer!. In a Private
Memory machine, various PEs (rather than a single CU)
can be responsible for semaphores. To allow a process to
know which PE controls a given semaphore, the compiler
could associate a simple tag with each semaphore. The
distribution of the semaphores across the PEs would
reduce the likelihood of bottlenecks, and the tagging
would not add a significant cost to the implementation.

Eztensions to Semaphores

In the previous section, the feasibility of using
semaphores as a primitive for algorithm analysis was
discussed, in terms of the mappings from both high level
language to semaphore representation and from
semaphore representation to architecture. With some
minor extensions to P and V, more general mechanisms
can be provided that more closely correspond to modern
day architectures. In the Edison coroutine example, the
parent process executes three V operations and three P
operations. These operations could be done just as well
with slightly expanded P and V operations called Pn and
Vn. The Vn(S, N) operation adds N to the semaphore S
in an indivsmble fashion. The Pu(S, N) operation
subtracts N from the semaphore S when the resuit would

[
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be non-negative. The last test and subsequent
subtraction is an indivisible operation. The cobegin
statement in the Edison main process would simply be
implemented as Vn(start, N) followed by Pn(end, N),
where N is the number of parsllel branches of the
algorithm.

Pn and Va can be used in this context as a superset
of P and V since P(S)=Pn(S,1) and V(S)=Vn(S,N). Pn
and Vn retained the meaning taken from the higher level
constructs. In the Edision example, the Pn and Vn
implementation is more direct than the P and V
implementation. There is a trend to put higher level
synchronization [facilities in parallel languages and
] architectures. A set of notations which includes P and V,
but which also includes more complex synchronization
mechanisms may therefore be useful i1n analysis. A higher
level notation must, however, be able to map directly and
! equivalently to the low level notation (P and V). Only
then would it be applicable to an architecture which does
not support the higher level capability.

In order to show that this extension to a larger set of
{ e}rimitiva is valid, possible implementations of Pn and
¢ D are given. Pn and Vb can be implemented using only
P and V as shown in Fig. 3. The semaphore S becomes a
variable containing two parts. S.semaphore is a
semaphore valued variable which contains the value
associate with S. S.simple_semaphore is a semaphore
which can bave only P and V operations performed on it.
S.simple_semaphore is initialized to 1. Then accessing
S.semaphore is bracketed by P and V operations on
S.simple_semaphore. This insures that only one process
may access with S.semaphore at apy time.

One must take care in blindly converting groups of
P operations into a single Pn operation. A problem
occurs if two or more processes have outstanding Pn
operations on a semaphore with different values of N.
The process with the largest value of N may be locked
out by the other processes, since they can continue when
the value of the semaphore reaches some value smaller
than the largest value of N. Pn could be defined
differently to account for this condition. In translating
the joining of concurrent paths into a Pn operation, only
one process may execute the Pn, so for this analysis this
is mot s problem.

Since many languages and architectures provide
mechanisms for higher level synchronization constructs, it
1 is desirable to use a higher level mechanism where
possible. This higher level notation must satisly the two

procedure Pn(S, N)
' loop forever
if S.semaphore — N > 0 thea begin
P(S.simple_semaphore);
temp = S.semaphore - N;
! if temp > 0 then
S.semaphore = temp;
V(S .simple_semaphore);
if temp > 0 then
RETURN;
end if

end loop
end procedure

procedure Vu(S, N)
P(S.simple_semaphore);
S.semaphore = S.semaphore + N;
V(S.-imple.nmnphoreg

ure

end p
Fig. 3. Pn and Vn as Defined in Terms of P and V
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following conditions: (1) P and V can be simply defiged in
terms of the mechanism. (2) The mechanism can be
simply implemented in terms of P and V.

First, in any analysis, it will be necessary to
recognize the P and V operation in its basic form so it
can be analyzed in a consistent manner. Secondly, for
those machines not supporting the provided constructs
directly, the defined operations should be easily
implemented using only common machine instructions
and P and V operations.

A Generalized Semaphore Notation

It has been shown how the P and V operations can
be extended to the more general Pn and Vi operations,
based on the stated restrictions. There are numerous
ways to extend the P and V operations to various forms.
In developing the NYU Ultracomputer’?!, a generalized
notation was developed to describe Fetch and Add and
other similar synchronization constructs. This notation

will be borrowed, then extended. The extension shows U

how many general semaphore mechanisms can be defined

in terms of two functions. s
The Fetch and Add operation is defined as shown in REURORE

Fig. 4. The part of the operation between the braces is
considered indivisible. PRI

FetchAndAdd(G, L)
{ Temp — G
Ge—G+L}
RETURN Temp;

Fig. 4. FetchAndAdd Definition

This is equivalent to Vn operation described earlier. Pn
;an b;l defined in terms of Fetch and Add as shown in
ig. 5%

procedure Po(S, N)
loop forever
ifS - N 2 0 then begin
temp — FetchAndAdd(S, — Nj;
if temp > N then
TURN;
else

FetchAndAdd(S, N);
end if

end loop
end procedure

Fig. 5. Pn in Terms of FetchAndAdd

There are many possible hardware facilities available
to support similar operations. Rather than picking one
facility as a basis for all synchronization mechanisms, a
class of mechanisms is defined based on the two
restrictions greviously given. The goal is to define
operations which correspond to P and V, but which can
account directly for a wider variety of high level language
constructs and hardware implementations. .

The first operation corresponds to V, and is the S
FetchAnd¢ operation prol-Posed in Gottlieb and Kruskal®!.

It is defined as shown in Fig. 6.

FeuhAnd%G, L)
{ Temp ~ G
G+ ¢(G, L)}
RETURN Temp;

Fig. 8. FetchAnd¢ Definition
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Table 1. Common Uses of FetchAnd¢
____Qperation _ Expression in FetchAnd¢

R~ TeatAndSet(G)T R — FetchAadOr(G, TRUE)
R « FetehAndAdd(L.G)' | R «— FetechAndAdd(G, L)
V(S) *+ — FetchAndAdd(S, 1)
Va(S, N) & — FewchAndAdd{S, N)

A

¢ is a suitably defined function, G is a variable, and L is
a value. Only a few ¢s have proven themselves useful in
synchronization statements, A few common ¢s are given
in Table 1. A = in the expression indicates that the
value 15 not used and need not be returned.

Logically, this notation can be extended to describe
. a class of operations that corresponds to the P operation.
Thus, the notation is expanded here to include WaitFor4.
This has two equivalent definitions/implementations
based on the capabilities of the hardware. These are
shown in Fig. 7. As before, G is a variable, L a constant.
The new argument C is a condition that must be satisfied
befure the function will return. The first implementation
assumes the hardware is capable of performing a test and
conditionally performing the equivalent of FetchAndd.
The second insists only that the hardware be capable of
the FetchAnd@ operation. Note that the second form
may perform unneccssary steps. It decides that the
operation should probably succeed and then in another
diatinel step, it attempts the 8 operation. In case its
assumption was invalidated, it checks afterwards and
“undoes” the 8 function with §°

Call

[

I

WaitFor®(G, L, C(G))
loo!

{ if C(G) then
Temp — G;
G~ &G. L))
if C(Temp) then
RETURN Tenmp;

ooy A s ".' R

end loop

WatFord G, L, C(G), £1G, 1))
oo
if C{G) then begin
. Temp ~- FetchAnd&G, L)
k if C{Temp) then
RETURN Temp:
else
FetchAndf (G, L)
end loop

5 Fig 7. WaitForf Definitions

Table 2 shows some examples of synchronization

operations that can be expressed in terms of WaitFord

functions A binary semaphore can have values 0 or 1

. (free or reserved). The Wait on a Binary Semaphore

- operation  waits until the semaphore is free (0) and

resetves it {sets it to 1) in one indivisible operation. The

other constructs in the table are familiar. In all cases,

) the choice of 9, C and 4} functions must be consistent
and miust guarantee reliable operation.

A generalized notation for basic synchronization
mechanisms has been presented.

examples in Tables

can be mapped to

the most

A Simple Set of
Language-Independent MIMD Operations

An MIMD algorithm will consist of portions that

execute simply as serial code on a single PE along with

several operations specific to MIMD operation.

principal  such

Throughout the discussion, it has been argued that the

common language operations map into a few simple

generic operations. The operations map as given in Table

3. Attempts to map

features into more complex

operations result in counter-examples of constructs from
some languages that will not map into the iow level

mechanism.

Table 3 Mapping to Generic Operations

L.ow level operatiop |

Arithmetic /1. ogical
Conditional Branching
(ilobal Variable Access

fjj igh level operation

laterprocess Communications

Concurrency Control
Sype 1

Same as serial analysis
Same as serial analysis
Communications/ Memory
Commucications/ Memory
P/V or

Traditional analysis techniques exist for enumerating
the time/space costs of simple arithmetic statements and

lonp control statements

with  MIMD

synchronization

algorithm
variables/communications
Because of the generality of the GV/C

he most significant problems
analysis stem from global
{GV/C), concurrency, and

and concurrency/synchronization primitives shown here,
it is possible to map the high level constructs from s wide

variety of languag~s

into combinations

of these

primitives. Thus, 10 a..lysis, the occurences of any given
bigh level construct would map to a series of these

generic operations.

Example

A simple example of an snalysis using the proposed
primitives is presented. Although the example is very
simple, it illustrates the mapping of the high level
language algorithm to a set of primitives. The example is

Table 2. Common Implementations Using WaitFor#

Operation result ¢ GIL| Cx) [¢(GL)
Wait on Bin. Sem. * OR G|l |x=0 G
P(S) * Subtract | S | 1 x21 G+l
Pn(S, N} * Subtract | S [N | x> N G+N
R ~ WaitApdSubG. 1) | R Subtract | G [ L [x>L G+l
; 155
Lt i e

The corresponding
and 2 show four pairs of
mechanisms that can be described in terms of the
generalized notation, including P and V themselves. This
model unifies several of these types of mechanisms into a
common notation. These mechanisms may be realizable
in hardware for some architectures. They can safely be
used in analysis, since they can also be realized using only
P and V, the basic semaphore operations. It is desirable
to have a number of these mechanisms available for
analysis since software specifications of these mechanisms
natural hardware
implementation, rather than to a less obvious and more
artificial implementation,

The
operations have just been described.

- PR
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Architecture, June 1985, pp. 116-123.

MODELS FOR USE IN THE DESIGN OF MACRO-PIPELINED PARALLEL PROCESSORS

Bradley Warren Smith and Howard Jay Siegel

PASM Parallel Processing Laboratory
School of Electrical Engineering
Purdue University
West Lafayette, IN 47007

Abstract

An approach is proposed for modeling off the shelf
hardware aod for modeling parallel slgorithms, aloog with »
design methodology to use the information provided by these
models, to design a class of macro-pipelined special purpose
architectures. Nine parameters to form a wodel of the charac-
teristics of parallel/distributed algorithms and the environment
in which they must execute are presented. In addition, a set of
tuples to model the characteristics of computer architectures is
presented. By combining the tuples with the parameters, the
execution time of the algorithm modeled by the parameters on
the hardware modeled by the tuples can be approximated. The
combination of these models could be used as a basis for com-
puter aided tools used in the design of macro-pipelined
parallel/distributed processors.

1. Introduction

For certain applications, such as speech processing, time is
an important factor. In such applications, there is a peed to pro-
cess wany data sets in the same way e.g., coutinually performing
an FFT foy every frame of input data. Previous analysis, such as
that performed in [4), [5], [34], {35), and [37) indicate that for
many types of tasks, conventional general purpose processors
are insufficient. In this paper, an approach is proposed for
modeling off the shelf bardware and for modeling paralle] algo-
rithms, along with a design methodology to use tie information
provided by these models, to design a class of macro-pipelined
special purpose parallel architectures. The ultimate goal is to
use models such as the ones proposed here to develop computer
aided design tools. Special purpose processing systems (such as
those used for dedicated real-time analysis) are typically sold in
small quantities. As a result, the cost of the design can make the
resulting system prohibitively ex pensive. Computer aided design
tools for this process would reduce the cost involved and are
therefore desirable.

This paper uses nine parameters to correlate the hardware
to be designed with the applications software to be executed and
the /O environment in which the machine will operate. A
macro-pipelined layered approach to task decomposition is
demonstrated. Each portion of the decomposed task is then
assigned to a special purpose processing unit. This implies that
esch processing upit may either be a traditional serial type
design or a parallel design. Once this initial decomposition is
established, techniques such as those used to adjust the execu-
tion time and throughput of a pipeline in {14] can be applied.

In this approach to reaching the goal of computer aided
computer design, functional descriptions (models) of the
bardware components that may be used in the design must be
combined into a database. Included in such descriptions are
information about the cost of the device, an enumeration of all
the operations that it can perform, and the pathwidth and exe-
rution times for those operations More complen taxonomies,
such as those fouwd 1 (7], V], {10], and [12] are vot wecided for

This research was suppomted by the U.S. Army Research Ofice, Department
of the Army, under Contract No. DAAG29-82-K-0101, and by the National
Science Foundation, under Grant No. ECS-81-20898.
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the database because they specify architectural information that
is unneeded bere.

The information in the database will be used to select
bardware to perform a given task within cost and. time coa-
straints. Time coustraints are in two forms, respouse time and
throughput. Respense lime is the time belween receiving an
iuput and completion of the corresponding result. Throughputis
the number of data sets processed per unit time.

Consider a task that is composed of several sub-tasks. An
example of such a task might be isolated word recogaition [17],
(19}, (23}, and [37]. For isolated word recognition, a typical pro-
cessing scemario might be: digital Bitering, autocorrelation
analysis, linear predictive codiag (LPC) analysis, linear time
warping, and dynamic time warping. Each of these processes
(sub-tasks) represents a portion of the scenario. Each of these
sub-tasks will be called a layer. Using information about each
sub-task a special-purpose architecture can be developed to per-
form the sub-task within some time and cost cobstraints. The
special- purpose bardware that is assigued to each layer will be
called a level.

For simplicity, ouly scenarios in which there is no feedback
will be considered. lnitially, the layers will be chosen according
to conceptual diferences, i.e., digital filtering is different frow
autocorrelation analysis, so each should be a different layer.
This uses the simplifying assumption that conceptually different
portions of the task (the layers) will require diflerent hardware
resources to produce an imitial counfiguration. The layers and
their associated levels of an isolated word recognition system are
shown in Fig. 1.1.

it is the goal of this scheme 1o achieve a higher throughput
by decomposing a scepario into layers. Because each layer
requires fewer computations than the eutire scepario, connecting
the levels in a macro-pipeline and pipelining the data sets
through the machine should increase the throughput of the
resulting system. This Lype of parallelism is referred to Lere as
verlical parafielism. Furthermore, each layer is executing on spe-
cially designed hardware, which may employ multiple computa-
tiona! units, so the response time of the resulting system is
decreased. The parallelism occurring within a given %evel, where
multiple units are performiog operations on different portions of
the data set simultaneously, is referred to as Aarizontal pacallel-
ism. This vertical and horizontal parallelism is similar to the
tecbniques of subdivision and replication discussed for pipelines
in [14] or the “purely pipelined' and the “purely parallel’ archi-
tectures discussed in [36). Throughput constraiuts may require
that a fayer must be further divided into smaller processes.
These will not represent new layers, but sub-layers, which will
correspond to sub-levels of bardware, consistent with the previ-
ous nomenclature.

By developing a model to transform a task descriptioni o
a potential macro-pipelined architecture, a machine can be buiit
with the necessary characteristics to execute the task quickly
and without excessive amounts of hardware. A basis for such a
wodel is proposed and analyzed ia this paper. The information
provided by the nine parsmmeters mentioned earlier will allow
each level to be designed for a specific sub-task, baving a special
hardware complement to perform that sub-task more quickly.
Each level can use SIMD and/or MIMD (6] parallelism. The




Level ) Laye: 1
Specialized Hardware Uait 1 Preemphasis
>
Level 2 Layer 2

Specialited Hardware Uait 2 Autocorrelation Analysis

Level 3 Layer3
Specialized Hardware Unit 3 LPC Asalysss
Level 4 Layer 4

Specialized Hardware Usit 4 Ligear Time Warping

Level 5 Layer 5
Speiciatized Hardware Unit § Dyoamic Time Warping
/Decision Rule

Fig. 1.1 Layering of lsolated Word Recogaition System

resulu of the techoique is to design a machine that can perform a
processiug scenario within some time constraiuts.

1t 1s the goal of this paper to introduce methods of wodel-
iug hardw are and algorithms so that an reasonable approxima-
.00 of the execution time of an algorithm ou a special-purpose
system is posstble. The hardware model is discussed in Section 2.
Ap overview of the proposed design scenario is presented in Sec-
tion 3 In addition, types and limitatioas of various forws of
parallelism are discussed. Section 4 presents pine parameters
tbat model an algorithm and discusses the calculation and
siguificance of each of the parameters. An example of the design
methodology is given in Section 5.

3. The Hardware Database

A processor description in the database consists of two 6-
tuples, two N-tuples, and three N+ 1-tuples, where N is the
ovumber of assembly language instructions {the ** +1" is used to
describe the instruction fetch unit). The first 8-tuple consists of
the processor nuwe, cost, cluck speed, data pathwidih, address
psthwidth, and virtual address widith. The second 6-tuple con-
sisty of the size and speed of on-board cache, the size and speed
of ou-board memory, and the size and width of the registers.
The N- and N+1- tuples must be able 10 answer (uestions
regarding the execution time for all processors iu the database.
Thus, the tuples must provide iuformation about the type of
machine iustructions, the execution time for a single operation
for each ustruction, the number of stages in any pipelines, the
replication of units, and the overlap of operations. The tuples
corresponding to the last three iuformation categories are
N+ 1-tuples to account for any pipelining, functional overlap,
sod parallelism that can occur within the instruction fetch unit.
By combioiog the information contaived in the various tuples, it

13 possible to determine the exact calculation time of all opera-
tions whose times are constant. For example, by combining the
uumber stages in a pipelined unit with the single operation exe-
cution tune of the wumit, it is possible to determine the
throughput of the unit.

Because different processors have diflerent instruction sets,
N is pot the same for all processors. Consider the case of a sim-
ple processor with an instruction set coasisting of an 8-bit add, a
16-bit add, a return ou 2ero, a move memory to register (8-bit),
and » move register Lo memory (8-bit). The first 8-tuple would
look like:

(BRAND/MODEL, $5.00, 1.3usec, 8-bits, 16-bits, 16-bits)
The tuple describing the type of machine instructions would
look fike:

8-bit add register to register

16-bit add register to register

return if zero

8-bit move memory to register

8-bit move register to memory
For this tuple, both the source and destination must be
enumerated. This allows for processors like the 8085 in which
registers can only be added to the accumulator.

The other tuples contain the types of information men-
tioned earlier, where information in the i*" elemnent corresponds
to the i** ipstruction. By iucluding this information in the data-
base, it is possible to recreate the timing information stored in
the architecture description set forth in {12].

For che purposes of this paper, the units considered for the
database are either singic chips or small boards. The underlying
assumption for this schewme is that there is no shared or
reconfigurable pipeline units oo board. When this assum ption
becomes faise, two N+ 1-tuples will be required to represent
shared pipelines and their reconfiguration times. Other factors
that should be included in the data base are power consumption,
heat dissipation, and size. While these last three factors do not
influence performance, they do provide necessary application
information about the possible environment in which the chips
can operate.

A functional description, such as that found in [2], can be
used to accurately calegorize each unit accordiug to its func-
tional capabilities. To this paiut, only processing bardware has
been considered. The hardware database can be divided into the
functional units of processor, memory, inputfoutput, vector,
and array processors. This is consistent with [2]. Each func-
tional unit will have its own set of tuples used to describe its
performance. The tuples will be used with the characteristics of
the application algorithm to choose specific hardware for each
level of the system.

Iocluded with the hardware descriptions of the processors
in the database would be a routine that can simulate that pro-
cessor. By combining the simulation procedures with the archi-
tectural information of other components in the database, e.g.,
memories, it is possible to create a simulator for the proposed
macro-pipelined arcbitecture. Such a database with simura‘:ion
routines for each relevant componeut would be a useful tool for
the research community interested in the design of macro-
pipelined special purpose systems. These tools would be used
according to the approach presented in the next section.

3. The Design Scenario

After the initial layeriog is performed, an exact statement
of the application algorithm to be performed at each level is
nceded. This is done using nine parameters that are discussed in
the gext section. This information is then used in conjunction
with the hardware description to evaluate the performance of
each processor iu the bardware database. Then inlormation
ahout the desired througbput and average desired response time
(T 4es) of the system must be gathered. These will be the
evaluation criteria, i.e, can a proposed system process the data
with the desired throughput and response time.

The first step in the modeling process is to choose all levels
(o process their iucoming dita as fast as possible without using
vertical or horizootal parallelism within any given level. Since
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this type of design is a macro-pipeline, the throughput of vhe
pipeline is limited by the slowest level.

Macro-pipelined architectures produce a continuous flow of
data. The time to process a single data set (the time for data to
go from the first level to the last level, i.e., the response time) in
such a vertical architecture is same as for a single-processor
serial system because the data must be processed by the multi-
ple fevels of hardware. The throughput for multiple data sets is
greatly increased because new results are completed at a rate
equal to the processing time of the slowest level or sub-level. if
the time 10 go from the first level to the lust level is too slow,
since the levels are designed with the fastest serial processors in
the database and only off the shelf parts are allowed, horizontal
parallelism, such as thav found in SIMD or MIMD machines,
must be applicd. For example, if the processing time for all lev-
els and sub-levels of an architecture were halved, the time to go
from the first level to the tust level would also be batved. Thus,
vertical parallelisn can be applied 1o increase throughput, while
borizontal parallelisin can be applied to increase throughput and
decrease response time.

If che required throughput is 1 job/ T seconds, thaa each
level must execute its layer in at most Ty seconds. If the
machine fails to meet the throughput qualification, the execu-
tion speed of all levels not meeting the time constraint {Ty)
must be increased. This can be accomplished with the previously
discussed borizontal and vertical parallelism.

The maximum amount of horizontal parallelism that can
be applied to a task is the inhereat parallelism of the subtask to
be performed (the minimuwn horizontal parallelism at any level
is a single unit). Further, borizontal parallelism is aflected by
precedence constraints of the subtask. Typically, each addi-
tional processor used for horizontal parallelism will not increase
the execution speed linearly, i.e., the speedup may be less than a
factor of P using P processors for any P. This is discussed in {31].
The minimuim vertical parallelism is one processor and the max-
imum vertical parallelisw is up to oue processor per iustruction.
Usiug one processer per iustruction will not only cause a poteu-
tial architecture to be prohibitively expensive, it may require sn
exorbitant amount of overhead to impr'mcnt. Vertical parallel-
ism is not allected by precedence counstruints because they are
still enforced; however, vertical paralleliss will not reduce the
response time. Thus, there are associated costs and limitations
with both vertical and borizontal paraflelism.

There are two additional limitations on the type and
amount of parallelism applied at each level. The first is that
there is ao upper bound on the cost. Apn additional limication is
placed on the type and amount of parallclism by requiring that
alt parts be “off the shelf." This second limitation forces the
architecture to be buildable with prescnt day technology. These
limitations assume that an algorichm can be structured for hor-
izontal parallel execution. If an algorithm is unsuitable for hor-
izontal parallel execution, vertical parallelism will be required.

It is required that there be some form of coordinution
between the levels. This can be either (a) a waster system clock
that tells each level when it can procecd to the next data set or
(b) a unit that keeps track of all levels aud, when all levels are
doae, rignasls cach to proceed 1o the vext data set. A system
executing with a master clock will typically execute more slowly
thap a system where each level reports jts sitatus to a control
unit. If T, is the time required for level i to complete its subtask
given its current data sct, then the master clock cycle time T
must be set to the maximum value of T, over all levels for all
data sets. The implementation suggested in (b) for an L level
system will requite an execution time T, ol
T, = wax(T,, T, Ty - - -, T,). There is additional overhead for
scheme (b) in terms of countrol hardware and signaling time.
Thus, if it is expected that there will not be a significant
difference between T and T,, method (a) would be preferable.
In the extreme case, Tc = T,. Normally, T, will be much less
than Tc.

To fully utilize the bardware in the system, it is desirable
to match the speed of all the levels. Thiy can be done in an_L
level systew by forcing the average response time of level i, T,
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to be T, = T 4o /L. After the initial design (all levels designed to

rform their layer us fast as possible with no vertical or bor-
1izoutal parallefisim ), the data processing rate of all the levels will
be koowsn. ) the designed wachine meets or exceeds the
throughput and response time qualifications of the scepario, fas-
ter levels that are adjacent can be combined. Faster levels can
also be built with slower and less expensive hardware. This will
still maintain the throughput of the system, however, the
response time of the system way be increased. Such a process
can be repeated as long as the throughput/response time
requirements are met. This will lower the cost of the overall sys-
tem.

To propose and evaluate candidate architectures for levels,
a mapping Is required between a layer and its corresponding
level. locluded in this mappiog is the description of the layer iu
termns that relate it to the computations) requirements that it
places on the bardware. It is this mapping chat i3 the topic of
discussion in the aext sectiou. Usiug information from the
bardware database discussed in section 2, the perforutance of
candidate architectures can be evaluated by some measure such
as those in [28].

Aflter the architecture of all the levels have been proposed,
the approximate performance of the system is known. Simula-
tion is required for an exact evaluation of the performance of the
system. This is required 10 insure that the system will perform
as desired.

4. Nine Evaluation Categories:
Their Relationship to Hardware and Software

Wkhen designing bardware for a specific algorithm, charac-
teristics of the algorithm must be “mapped" onto the hardware.
To build bardware to exccute a given layer, a user must suppl
each of the of the following evaluation parameters about eacg
layer in the system.

(1) Type, rate, and amount of input

(2) Type aud number of operations per input datum
(3)  Raunge aud accurucy of arithmetic data to be used
(4) Algorithm to be used

(8)  Type, frequency, aud message leagih of processor-to-
processor comn unications

(6) Amount of memory required

(7)  Type, amouat, and beuefit of parallclism
(8) Type, rate, and amount of output

(9)  Evaluaiion criteria

These parameters form a model of the algorithms in the task.
The information they supply can be used with the hardware
model of Section 2 and the design scenario of Section 3 to
develop a macro-pipelined architecture for the task.

Category (1) places restrictions on the input bufferiog,
input data rate, and the iuternal data format of a level. The
type of duta specifics the format and word width required to
process the incowming data. Combined with the rate, the type of
data specifies the speed of the input unit. Between levels, either
double-buffering or triple-buffering [5] may be used; i.e, two or
three memory units may be employed to between adjacent levels
to allow the overlap of computation and 1/O. If the application
does not require real-time processiag, then the system must be
such that the incoming data rate of the first level determines the
steady state througbput. For real-time applications, the iacow-
ing data rate of the first level determines the minimum data rate
for the system. The dilference is: a non-real-time system can
stop the incoming data stream as necessary; however, a real-
time system may not be able to stop the incoming stream of
data without losing data.

Evaluation category (2) determines the specific aumber of
operations that must be performed by a given level ia time T,
From one data set 10 another the required processing may vary,
80 an exact statement of what operations must be performed
way be unavailable; however, a reasonable estimate may be cal-
culated for either the average case or the worse case through
either simulation techuiques or statistical analysis, as was done
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w |20). Depending ou the apphication of the hardware, ¢ither aun
average value for the number of calculatious or a worst case
value may be uscd.

The vuwber of cach opiration cun be wultiphed by the
correspouding execution Luwe for a siugle wstructiva (from the
first N-tuple). If the resulting values are summed and multiplied
by the clock speed of o processor, the worst case execution time
can Le deterunned for that processor. To yickd a more precise
bound oo the exccution time of a process with processors that
coutain pipelines or parallel units, either simulation or task
apalysis such as that shown in [18] must be applied to the algo-
rithm.

Classes of algorithms of concern for this parameter are
those slgorithms that perform the sane operations on each data
elewment (dats independant) and those algorithms that treat
cach dats element differently (data dependent). For data
adependent algorithing, the vumber aod type of cach operation
peeformed are countable from the algorithm. For a data depeu-
deot algonithun, the number of vperations can be deterwmiued
through simulatios on sample data scts or, in some casey,
through analysis waking certain assuia ptions about the charac-
teristics of the data ‘Typically, dats depeudent algorithms
require varyiog resources and processing tiuses.

The Data Dependency (DD) of an algorithm is:

pD = Data Dependent Operatious

‘Total Operations

and can be used a3 ap indicator of what percentage of the
expected exccution time 13 fixed (1e., data independent) and
what percentage may vary (ie, duta dependeat). It also indi-
cates the appropriatenesy of SIMD or MIMD parallclism.

Operationy can be divided into five groups: (A) arithmetic
and lugic. (B) addressing, (C) wdex calculation (loop variables),
(D) couditional, and (L) inter-processor data transfer. These
classes were chosen 1o yield partial wformation about which
operations can be overlupped. For example, on seme SIMD sys-
tems, operations 1o (C) und some io (B) can be done in the con-
trol umit, overlapped with the parallel execution of the rest of
the operationn doue by the processing clements. luformation
about class (B indicates how much the network will be used
Ou a system where all processing is done by the same uuit, the
distunction between the types of operations is diminished; how-
ever, to consiruct specisl purpose hardware for real-time pro-
cessing. the distinction is uscful.

leformation sbout the {A), (B), and (C) must be further
sub-dsvidled to provide information necessary to choose suit able
processing wardware. For example, (A) and (C) should be
divided iutu. floating point additions, subtractions, multiplica-
tons, divistous, cowparisons, and special functions; and fixed
point additicns, subtractions, multiplications, divisions, comw-
parony, cud specisl functions. (B) skould be divided into load
aud score.

The pumber of operations in each of the above sub-groups
gives the absolute number of each operation to be done. From
this, it iy possible 1o culculate the relative importance of the
speed of each vperation. Vor each floatiug poiut or Gixed point
special function, the vumber of times each operation is expected
(10 be performed is specified aloug with an equivalence relation,
giving the uumber of “standard” (11| operativus ueeded to
unplement the specified function in software. If a unit cannot
perform a specified fuuction directly in hardware, the time
required to synthesize that function (specified by the
equivaleace relation) must be calculated. If a special device (e.g.,
coprocessor) i3 availuble to performn the specisl functions, the
veed for suctuding ths device cau be deterwived. By using this
approsch, various umty cau be raoked by their execution speed
for a given algorithm.

The pumerical range and accuracy (3) places various hi-
tationy o the hardware Typicslly, mare accurate bardware
tlarger words) will be slower and/or more costly than bardware
with smaller words. Thus, it would be advantagous to use the
smallest word size mecting the range und accuracy constraints.
Flostiwg  point  operations  are typically slower than the
corresponding iuteger operations. lo certain cases, if the sumeri-
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cal range required for various calculations is swall, but out of
the range of specitic bardware, e.g., underflow, normalization of
data can climinate the need for special bardware at the cost of
sotpe processing tiwme. ‘The arithwetic range associated with a
set of operatious greatly affects the bardware required [30).
Approaches to dyvamic word size machines, such as those in (1],
Ilbr, aud |18], can be employed in cases where arithmetic ranges
vary from loop to loop.

The oumerical range and accuracy of a sub-task is a func-
uon of algorithw and data. For au algorithm, it is necessary to
determioe the maximum and mivimum values of the range of
the calculations. The range of the calculations should be divided
accordiug to the range of index values, range of integer arith-
metic, and the range of Qosting point arithmetic. This specifies,
1o the SIMD case, the word size of the control unit, and the word
size of the iuteger and floating poiut units. lo other cases the
word size of the integer uuil 1y set accordivg to the marimum
rauge required for integer and iudexog arithmetic.

With kuowledge about the algorithm a level is to process
(1), SIMD andfor MIMD Lorizontal parallelism can be intro-
duced. Special parallel analysis tecbniques, such as those dis-
cussed io {3], [16), and |22} can be employed to utilize “extra”
parallelism. This can be accom plished by breaking the algorithm
dowa iuto wultiple streaws, using MIMD parallelism. Applica-
ble loops arc those countaining variables that can be calculated
indepeudently of other variables within the loop. The ‘‘break-
dowa" occurs when a variable can be extracted rrom a loop and
calculated is a separate cuvironment (either a different proces-
sor or processors) [3]. Otler techuiques for parallel processing
such as the use of “recursive doubling™ for calculating sums or
maximums [32] using SIMD or MIMD parallelism can be
apphied.

The algorithm is required to obtain timing information
from the previously discussed N-tuples describing the bardware
database. By wultiplying the numtﬂ of each type of operation
by the corresponding operation time, an upper bound on the
execution time can be obtained. The algorithm must be
scapped to determine whit percentage of the operations can be
pipclived sud for overlapped. This wust be doue for cach proces-
sor in the database. After the smount of time suved by the
parallehisw aud pipelives is determined, this time is then sub-
tracted frowm the execution time for the processor. For systems
with reconfigurable pipelines, the reconfiguration time must be
multiplied by the number of reconfigurations required by the
algorithm.

By deriving bouuds on execution time as described in [lSI,
levels requiring large amounts of time cap be analyzed. This will
indicate where cach level is spending its execution time. If con-
sistent variable names are used from layer to layer, similar task
decomposition to the above can be applied across levels to allow
the combination and/or sub-division of levels as needed. Con-
sider the scevario iu Fig. 1.1, if level three calculates a, b, and ¢
independently of the out put of level two, and the throughput of
level three is too low, the portion of the algorithm calculating
a,b, und ¢ can be moved 1o level 2. If this makes the throughput
of level two too low, a separate unit cau be employed for the cal-
culations. The result is shown on the right of the figure.

The type, frequency, and message length of the processor-
to-processor comwunications within a layer (5) will dictate the
topology of a level and the design of the interconpection net-
work. There are two types of intercounection networks. A glo-
bal iuterconnection network allows a given processor to com-
wupicate directly with any other given processor withia a given
borizoutally parallel structure (e.g., SIMD or MIMD portion of
machinc). Typically a multistage arrangement is used for such a
network (26 {although it does not permit al possible SIMD data

rinutations). The second type of interconnection network is
ocal interconnection network, which allows a processor to com-
wugicate with a specific namber of its acighbors (e.g., 4- or 8-
ocarest neighbors) [30] and [33). In this case, the processors can
be viewed as cither a one, two, or three dimensional array when
determiuing the connections to be made by the network. A net-
work must be capable of mauling the desired connections
cfliciently aud with winimal collisions, to avoid sigaificant
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Fig. 4.1 Sceaario before and after application of techniques ia [13]

delays during transfers. it would be desirable to have a data-
base of known global connection networks and the permutations
that they can perform, so an appropriate connection network
can be chosen.

From the type of communications required by a layer,
information can be gained sbout the type of processing that
should take place on a given level, i2., the more random the
communications, the more likely that s horizoatally paralie)
level sbould use MIMD (asynchronous) parallelism, as opposed
to SIMD (synchronous) parallelism. Knowing the length of the
transfers will aid the design of the network. For instance, the
longer the transfers, the more suitable a circuit switched net-
work becomes. For small transfers, a packet switched network
is desirable. The number of network transfers and the leagth of
the average transfer provides information about the loading of a
network with a given transfer speed.

Determination of the type and amount of processor-lo-
processor communication for a highly data independent task is
straightforward and can be obtained from analysis of the paral-
lel structure of the algorithm statement in (4). For data depen-
deut tasks, the required transfers may vary in length and con-
pection, dependent solely on the duta set being processed.
Simulation may be required to achieve accurate estimates. To
midimize the need for simulation, analysis of Lhe data set can
yield information about the required counections. For example,
f a process performs edge tracing on an image containing small
objects (relative to the image size), global conuectious are not
required, only local (nearest nmeighbor) connections are peeded
|34ﬂ:l l‘; the objects are large, then global counections may be
needed.

Memory size (6) is an important factor in the design of a
system and is a function of the proposed data set size, data type,
and algorithw. The data set size, processors in a level, and algo-
richm chosen have an important bearing on how much memory
is associated with a processor in a given level. This will be con-
Lide;ed in addition to the buffer memory associated with a given

vel. :

Memory usage falls into three classes: program, stack, and
data memory. Progratm memory is not determinable from the
algorithm, although ap estimation is possible. It is a function of
the machine and the compiler. The stack memory contains
srguments to subroutines, retura addresses, aand temporary
isforwation 1t is o function of the nesting of subroutines, slong
with the inforwation that is passed to the subroutines. For duta
depeudent recursive algorithins, simulation may be required to
determine the appropriate smount of stack memory needed. Ao
sltervative 10 simulation is to place a waximum depth {in terms
of calls to specific funciions) on the stack. If each speaific fune-
tion is called with given arguments (each with a given size), cal-
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culation of the stack size is straighiforward, based on the max-
imum oumber of calls times the space needed for each call.

The data memory size is composed of the index memory
size and the process data memory size, where the index memory
is the memory required to store loop counters and some index
variables. The process data memory is the memory used to
store the parameters, working data, intermediate results, and
index variables that could not be stored in the CU of an SIMD
system. For a data independent task, data set size is trivial to
determine from a algorithm. A data dependent task may
require simulation.

‘The particular divisious of memory stem from where the
data must be accessed. lo su SIMD eavironment, the stack,
index memory, and program memory must be associated with
the control unit, while the process data must be accessible by
the processing elements. {n other environments, this memory is
associated with the processor, so the divisions do nat matter so
wuch as their total.

The type and amount of paralielism (7] will specify the
vatyre and maximum number of processors associated with a
given level. The benefit due to purallelism is specified in two
areas: (1) speedup due to P processors aad (I) the maximum
value of P.

The type of parallelism is a function of the algorithm. Cer-
tain algorithms may be written for aa SIMD mackiae, thus
SIMD parallelism should be used. For a geaeral algorithm,
determining whether an algorithin is best suited for a specific
environment can be done by looking at the DD, as discussed
abave. For a typical parallel algorithm, the lower the DD, the
more likely an algorithn is suited to SIMD type processing.
Typieally, MIMD parallclism is more fiexible; however, SIMD
paralelism bas the advantages of built-in syachronization and
the ability to averlap CU control operations with processing ele-
ment instruction execution.

Thbe amount of parallelism can be determined by several
criteria. Typically, the larger the number of processory, the less
processing each processor must perform and tge more significant
transfer and wait times become. As transfer and wait times
become more significant, the processors will spead a larger por-
tion of time idled, so the utilization of a processor will decrease.
A variety of performance measures are discussed in [28]. These
can be used to determine the relative beuebit of cach additional
pracessor, allowing one to calculate the number of processors
associated with a given level.

The speedup due to P processors (1} can be obtained by
analyzing the algorithm. This figure can be used to determine
the decrease in response time by using P processors. The max-
imum value of P (11} is the ceiling on the amouat of parallclism.
This represents the maximum amount of inherent parallelism in
a given task and can be calculated by analyzing the task. For
both ! and 11, data dependent tasks simulation may be required.

Knowledge of the type, rate, and amount of output (8) will
be required for auy formatting that must be done to interface
the data to the device gathering the results. lo addition, it
places constraiots on the output data rate.

Finally, the evaluation criteria (9) deGne bow the merit of
syatem is 10 be calculated. Here, the evaluation criteria will be
speed and cost, i.e., the execution must vecur in real-time for the
minimum cost. For non real-time systems, other criteria such as
those convidered in [8] and |28] may be used, e .g., efficiency, util-
ization, and power consumption. By iucorporating the evalua-
tion criteria into the design procedure, proposed designs not
meeting the evaluation criteria can be avoided. 1n addition, this
provides a way to rank various designs.

6. Example of Approach

Cousider the upplication of the nine paramicters to » tash

such as Dyuvamic Tiwme Warping (Y7W ), whicl 13 performed 1

speech processing. ‘This algunithin warps conung utterances to

find the best match in a list of templates of huown words. ¢

represeuts the most computationslly jntensive portion of the

ropascd speech processiug scenario and correspouds to one
ayer of the task (Fig. 1.1).
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hold = 00 ; template =0;/¢ initialization /
fork = 1t0 10000 { /* for each template ¢/
forj = =1 t0 1 { /* initialization ¢/
fori=-ltol{
afili) =00
dji|ls)=oo;
}/oeadie/
}/oendjsof
for j = 140 B0 { /o for each frame in a and bJk] o/
fori = j~gto j+r ( [+ each frame within window s/
il(i<0)i = 1; /* force i to be valid ¢/
if(i>80) i = j—e+1;
else {
djiffi|=0;
forb =119 {
/* compute ‘distance’ between
trames ali] and blk][j] ¢/
aillil= dili] +
(alil{b}-biK]b])eo2:
send b e
siijls) = min(gli~ 11— 2] +2d[ij i),
sli=10i=2f + 2d}i)l= 1) + dhl].
sli=2Jli- 1] + 2dfi= 1)1} +dlifla]
}[oendis/
} /o eudjof
D{a,blk]) = g[8oj[80];
i{D(a.bk]) < hold) { /o store minimuin value o/
bold = D(a,bk]);
template = k;
)/ end if of
J/oendk of
2 - unknown word (UW)
ai} - frame s of UW
LY - ¢lemeat h of vector describing frame i of UW
blk| - reference word k (HWK)
bik (o « frame i of RWK
blsjlyJlb] - element h of vector describing frame i of RWK
D{a blk]) - distance between UW and RWK
8(i) - cumulative distance between a and blk]
hold - distance number of best litting reference word
template - number of best fitting reference word

Fig. 5.1. Sample DTW algorithin

A DTW algorithm is shown in Fig. 5.1 [37]. The input to
this algorithin consists of 80 frames of speech, each represented
by vector of nine 18-Lit integers (80). There will be one 16-bit
quantity used 1o identify each word. Assume there are 10,000
templates in the databuse (meaniug the system can understand
1000 words since ten templates are required for each word [25])).
The variable *'r" is the amount the algorithm will be allowed to
warp the incoming template. For the purposes of this paper,
r=3. The pine evaluation categories are as follows:

1. Type, rate, and amount of input
Type: Fixed poiut data
Rute: ! utterance/1.0 second
Awmauut: 720 lixed poiut wunbers/uttcrauce

11. Type and number of eperationsfinput datum

6.8M iudex variable assignments

0.1M index variable additions

66.1M index variable additions ( +1)
67.3M index variable conditionsl branches
132.7M address calculations

105.5M fixed point additions

5.8M fixed poiut assignments

11.3M fixed point conditional branches
60.7M fixed point multiplications

60.7M fixed point subtractions

" a. ARG et kst Jan MR e aNICENA i s ik e

H1. Range and accuracy of srithmetic date
2, 41

V. Type, amount, end frequency of proccaser-te-processer
communication

Type: Global, capable of recursive doubdling [32)
Amount: 2 fixed point numbers
Freq.: 2 log,P transfers per second

V. Amount of memory required

Memory: (14.5/P)+0.01 Mbytes of data per processor for
reference (template) and incoming utterance storage
10 Kbytes of program and stack
Note: one copy of the program is required per
processor for MIMD machine; one copy in the control
upit for SIMD machine.

VI. Type, amount, and benefit of paralichiom
Type: SIMD or MIMD

Amount (max ):
10,000 (utterance in database)

Benefit:
T

% + [(log,P)](lc + 2xNO)

speedup =

where a single processor takes time T, IC is the time
for an integer comparison, and NO is the time for a
network operation.

VI. Algorithm to be used
Algorithm: See Fig. 5.1.

VIII. Type rate and amount of output
Type: 1 English word
Rate: 1 per second
Amount: 100 characters maximum (arbitrary)

IX. Evaluation criterie
Speed and cost

These nine evaluation categories represent an analysis of
the algorithm. Evaluation category Il is directly determinable
from the algorithm. The range and accuracy is determinable
from the application. [24] states that 2'° %1 is a reasopable
range und accuracy for this task. To apply a parallel machine to
this algorithm, each processing element would need to execute
this algorithm on its own portion of the template database com-
puting a local D{a blk]). Recursive doubling [37] would then be
used to combine the results; i.e., the word associated with the
smallest d(a,blk]) is the chosen word. This requires 2log,P
transfers for the d(a,b[k])'s and the identifiers far their associ-
ated words.

The amount of wemory is ex pressed as a function of P, the
aumber of processors. A “'C" lasguage program was coded and
compiled to estimate the prograw size. The DD is swall, so
cither SIMD or MIMD parallelisu can be applied 10 the pro-
gram; bowever, the maximum pasallelism is 10,000 processors,
assuming each PE executes the algorithm for one or more tem-
plates. Application of P processors will yield the speedup shown
in V6. The output of this system is one word. It is imperative
that the system keep up with the input; bowever, it is desirable
to do such with a minimal cost.

The number of each calculation can be multiplied by the
single-operaud execution times of the tuples for each processor
in the database. The sum of the products yields an approximate
worsi-case executiun time for a single copy of each processor in
the database to perform this algorithin. Actual execution time
could be better due to clever software or special bardware func-
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tions. For example, software that is written to ignore redun-
dant calculations (e.g., calculating the address of b[jj[k] oaly
once in the expression: bb][k]=bt|] k] +5). Also, by upplying
pipeline analysis techniques to this algorithm and wusing
structural information about each processor, such as functional
overlap, stages in processing pipelines, and the multiplicity of
units, a more precise approximation of the single processor exe-
cution times can be obtained.

Based on the desired throughpt and response time, addi-
tional processors of the same type are repetitively added until »
level composed of such processors could wmeet the time require-
ments. The number of processors is then multiplied by the cost
of the associated bardware. To this amount, the price of other
devices, such as memory and inter-processor comwunicatious
links, is added to approximate the cost of the processiug
bardware involved. The processor choses used for the design
will be chosen based on the least expensive hardware.

Consider the application of a Motorola 68000 [20] to the
above task. The tuples enumerating the operations and their
respective times contains over 1000 instructions: a partial list is
inciuded for brevity:

{add r,#;add rl;r2;add (a)+, ricond. branch; mov r,#;mov
r,Sa);mov #.(3)mul r1,r2; mul (a)+,r; sub r,#;sub rl,r2;sub
a)t.r)

where r stands for register, # stands for immediate, (a) stands
for memory location stored in register “‘a”, (a)+ stands for
memory location stored in register “‘a’ followed by incrementing
Il‘..l

The tuple describing the timings (in cycles) is:
{8,4,8,10(true)/8(false),8,12,12,70,74,8,4,8}

The 68000 has no functional overlap or pipelining other than a
five stage instruction decoder. These tuples will be owitted. A
08000 has po special address calculation hardware, so a two-
dimensional address calculation requires loading a register, mul-
tiplying by a memory location, and the addition of two memory
locations. Assuming that the index variables are stored in regis-
ters and that fixed poiut numbers are stored in memory, a 2.5
MH: 68000 would take 1579 seconds to perform dynamic time
warping on a single word. Using a multistage cube network that
takes 1.0 msec for two transfers, 1600 processors in MIMD wode
would take .998 seconds to perform dynamic time warping. (A
thorough analysis should consider the overlap of CU and PE
operations in SIMD mode; e.g., address calculations). Dynamic
time warping is normally done with fewer than 100 refereace
templates because of its great computational complexity.

Such an analysis would be required for each processor in
the database. Then, ao actual implementation of the above
approach would consider simulating the algorithm on the vari-
ous processors to obtusiu a more accurate timing estimation,
Finally, if no processor in the databuse ¢ould be used to imple-
ment this algorithm, the layer would need to be broken down
into sub layers, each of which would be analyzed with the pro-
posed techniques.

8. Conclusions

Using the above nine categories, an algorithm can be
analyzed according to what requirements it places on a system.
if maoy hardware components are analyzed and categorized
according to abilities and processing times, a library containing
information about these J)roccssors can be built. By using these
models of algoritbms and bardware to map the organisation of
each level io a multi-level desiga to a layer-of soft ware, comput-
ers can be used to aid in the design of systems for the specific
peeds of algorithms, thus making possible computer assisted
design of special purpose parailel architectures.

Ip summary, this was a study of ope approach to model the
design of a class of macro-pipelined paraliel architectures.
Categories of hardware analysis were presented. Their relation-
ship to the hardware requirements and their depeudence on the
algoritbm to be performed was discussed. An example of the
spplication of the parameters and tuples was showa. By study-
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in%approachcs to bridging the gap betweep bardware and algo-
ritbms, computer aided special purpose machine design comes
closer to being a reality.
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