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indirect gaps, (2) calculation of SiGe alloys band structure,
electron mobility and core-exciton binding energy and
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studying the sensitivity of defect levels to band structures
and impurity potentials, (6) a study of the dipolar
contribution to the mixing energy and its implication to the
long-range order in alloys, e.g., GaAlAs, and (7) a model
which allows a simple but detailed calculation of alloy
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This grant supported our work on semiconductor alloy

theory. Through interactions with Dr. Arden Sher's group at
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SRI International, many useful results have been obtained under
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this grant. Below we summerize th highlights. The details

will be discussed in the publications enclosed with this

report.

A. Generalized Brooks' Formula and the Electron
Mobility in SiGe Alloy
Although Brooks' formula has been used widely for
calculating the alloy-scattering limited electron mobility, we
show that this formula is only valid for a direct-gap
semiconductor. There are also questions about the scattering
parameter and the effective mass. We generalized the formula
for indirect-gap alloys with multiple bands and applied it to

SiGe alloy. Our results, correlated well with experiments,

showed that the electron mobility drops fast with alloying.

The mobility has a dip at 15% Si concentration, corresponding a

transition from the X to the L edge.

B. Bond Lengths, Lattice Relaxation and Mixing
Enthalpies in Semiconductor Alloys

We treated the problem with a model which combines S LY

Harrison's bonding theory with a valence force model and an
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elastic continuum. While the local strain is the main driving ;:
force for the bimodal bond-~length distribution in pseudo-binary E’i
alloys found in the EXAFS experiment, we found that the *
chemical shifts arising from different bond lengths and

polarities of the constituent bonds can have a significant
contribution to the mixing enthalpies. 1In fact, the sizable i
negative values of the chemical shifts in the cation i~

substitutional alloys, e.g. Ga(x)In(l-x)As, may be important

L
PR
PR

for stabilizing the mixture. We also deduced a simple ﬁ -
criterion for separating miscible from immiscible alloys. _ :
=

C. Sensitivity of Defect Levels to Host Band ’ 5:
Structures and Impurity Potentials -, 5-

Our calculation of defect levels for more than 30 .
impurities in CdTe showed that the discrepancies caused by
different host band structures and impurity potentials ranged n
from less than @.1 eV to the whole band gap (1.6 eV). This .
result casts some doubt about the quantitative nature of the byl 3;
empirical tight binding method for deep-level studies. We also ) 3:
suggested ways to improve the theory. ;f f;
D. SiGe Alloys - Band Structure and Core-Exciton ;i SE
==

SiGe binary alloy has regained research interests recently, :? tf
because it has a potential for high-speed devices in the - ;i
strained superlattice configuration. We have applied our ¥a ;:
- 3 - .2
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technique to obtain high-quality band structures for Si
and have performed alloy calculation for Si(x)Ge(l-x). The
results have been checked against available optical data and
have been applied to the mobility calculation mentioned
earlier. Another interesting result is that the alloy band
parameters allowed us to correlate the Si 2p core-exciton
binding energy with its linewidth in the alloy. The observed
minimum in the linewidth near x=06.15 can be explained as a
result of competition between an intrinsic broadening due to
screening and an extrinsic alloy scattering. The most
reasonable binding energy in pure Si was found to be 0.15 eV.
This work thus has helped resolve the controversy about the

unusually large binding energy for the core exciton in Si.

E. Calculation of the Alloy Band-Edge Properties

There are two basic techniques for calculating the band
structure in semiconductor alloys: empirical formula and
detailed theory such as the coherent-potential approximation
(CPA). The formal is handy to use, but provides very little
insight. The latter is usually very time consuming, and for
energies near band edges the numerical accuracy is often
questionable. For III~-V and most of the I1-VI pseudo-binary
alloys, these difficulties can be circumvented by using

perturbation theory. Moreover, the CPA results are sensitive

and Ge,
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the band models used for the constituent compunds. By
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examining the overall structures of the Green's function,
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partial densities of states, and the tight-binding interaction

parameters involved in the band-edge states and in the
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pertdrbation theory, we have concluded a procedure for a simple
but detailed calculation of the various contributions to the

band gap bowing and the low-field electron mobility in these o !k

alloys.
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F. Dipolar Contribution to Alloy Mixing Energy
and Its Implication to Long Range Order

The alloy formation energy (F.E.), defined as the

difference between tha alloy total energy and the average of

the constituents' values, and mixing entropy are two competing :;r
factors which govern the alloy thermodynamics. While a ;i;i;
o
negative E favors a long-range order (LRO) at low temperature, ! -'_:
a positive F.E. tends to cause spinodal decomposition. It was o iif

suggested recently that the long-range electrostatic o
interaction among cations and anions contributes to a negative - ii;
3 F.E., and hence serves as a driving force for the LRO found in ?7 )
; GaAlAs grown by MBE and MOCVD. We showed analytically that, ) %;f
; when all terms are included, this dipolar contribution to F.E. = if
! is positive. Therefore, it is not a force to stabilize the LRO . ;?
E phase., However, the value of the dipolar F.E. in the ordered ; :Ek
phase is smaller than that in the disordered one. Since the i$£
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initial distribution of atoms in the growth process is closer

to the LRO phase than to the spinodally decomposed one, the
dipolar force may tend to drive the system toward the former -

a metastakle phase.
G. Statistics and Micro-clustering in Alloys

One of our major efforts was to develop a statistical
theory for cemiconductor alloys which will cover three aspects:
energetics, statistics and phase diagram. Because of the
smallness of the mixing enthalpies, typically several Kcal/mol,
the present first-principle theory is not accurate enough for
this purpose. We found that a combination of Harrison's model
and a valence force field model provides an adequate approach,
We then generalized Guggenheim's quasi-chemical approximation
to treat the tetrahedral clusters. Our results showed a
non-random atomic distributions in most alloys. This
non-random distribution will affect the band structure,
mobility and mechanical properties of alloys, and will reflect
in many measurable properties such as phonon spectra, EXAFS,

deep level spectra etc.. The study of these effects is one of

our current efforts.




it g z__'._,\_ L e =Y Sl hdonad g

PN I AT SR A S S Tl Ry
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"Semiconductor Alloys: Local Bond Lengths, Mixing
Enthalpies, and Micro-clusters”, A.-B. Chen and A. Sher,
Mat. Res. Soc. Symp. Proc. Vol 46, 137 (1985).

"Sensitivity of Defect Levels to Host Band structures and
Impurity potentials in CdTe", A.-B. Chen and A. Sher, Phys.
Rev. B3l, 6490 (1985).
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8 Semiconductor pseudobinary alloys: Bond-length relaxation and mixing enthalpies
194

A.-B. Chen -
. Department of Physics, Auburn University, Alabama 36849 m
o S
A. Sher AN
o SRI International, Menlo Park, California 94025 :-,,::. i-
a (Received 1 March 1985) N
Sa : A _ : Pt
Harrison’s bonding theory, the vzlence force field (VFF), and an elastic continuum are combined .
in a study of the substitution energies 4, and local (first-shell) bond lengths d, of isoelectronic im- ';::,
s purities in semiconductors. Explicit expressions for A, and d, are derived, which enable us to ab- .
b sorb measured elastic constants into the calculation and to study the chemical effects arising from Tl
differences in the covalent radit and polarities. Several models based on VFF alone are also derived ERATCIA
"~ for comparison. The full theory and at least five VFF models are found to produce impurity bond SR
:.:- lengths in excellent agreement with experiment. The substitution energies are shown to provide
i good estimates of the mixing enthalpies 02 of pseudobinary alloys and to predict miscibility gaps
properly. The chemical shifts in 2 are found to be negative for most cation alloys but positive for
o anion substitutions.
.E I. INTRODUCTION II. IMPURITY-SUBSTITUTION ENERGY
Consider the problem of substituting an isoelectronic
i The discovery of a bimodal distribution of the nearest- zli:ums‘::b/:tift(:t; I:-;rt ogal?naéxsbl::d:hf)i:p;urg BCI‘)(e.%;
:'-: neighbor bond lengths' in Ga,In, _,As has sparked con- ’ L

siderable interest in the bonding nature of semiconductor
. alloys.2® This finding has changed the conventional pic-
i ture of the alloy crystal bond configuration, which has

far-reaching implications about the electronic structure,

structural stability, and thermodynamics of these materi-
.’ als. Because of the complexity of both the structural and
- the potential disorder in these alloys, ab initio band-
structure techniques have not yet evolved to a stage suit-
able for direct calculations. Therefore, we have extended
Harrison's bonding theory” to study the alloy structural
properties.® In this paper, we apply an intermediate ver-
sion of the theory to the dilute-limit case of an isoelect-
ronic impurity.

A particularly useful application of the theory is its
perturbation-expansion form, in which measured elastic
constants are incorporated to obtain accurate results.
This form is also useful for comparison with other previ-
ously published models™*° that are based on the valence-
force-field (VFF) (Ref. 10) model alone. Thus, all the
factors influencing bond-length relaxation, e.g., strains,

boundary conditions, and chemical effects, can be studied. e 4o ‘ P
The ability to incorporate the chemical effects is one ma- > : -2
jor difference between this theory and other VFF models. s

The remainder of the paper contains the foilowing sec- s liox : o
tions: Sec. Il describes a theory for calculating impurity o, L e .
substitution energies. Section IIl casts the theory 1nto 2 3
perturbation form and combines it with a valence force : ,' ! ‘\\; v
field and an elastic continuum. Several VFF models are . TN IR o
derived in Sec. IV. The modifications of numencal re- ~? P
sults due to chemical effects on local bond lengths and al- FIG. 1 A sketch of the flattened picture of a single impunty e
loy mixing enthalpies are summarized and discussed in 4 m o BC compound. The positions and displacements for
Sec. V. Conclusions are drawn in the last section, Sec. V1, those atoms labeled are used 1n Appendin B

kp; 1698 < 1985 The Amencan Physical Society
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general, the bond lengths d;, d,, d;,... for the first-,
second-, and third-shell bonds surrounding the impurity
are different from the equilibrium values of either the
pure BC compound, denoted as d, or the “impurity” com-
pound AC, denoted as d; =d (1 —8;). If A starts being a
free atom and B also ends being a free atom, then the en-
ergy difference between the final and initial states is de-
fined as the substitution energy and is given by

A,:(Ed,[+€g)—(£pu,¢+£,4), (1)

where €, and €5 are free-atom energies for 4 and B,
respectively, Egy is the total energy of the semiconductor
with a defect as sketched in Fig. 1, and E |, is that of the
pure host BC crystal. Equation (1) can be written as

As :(Edef"’Edn)—(EA _EB)+(Edls'—Epurr)
:AR"(CA_CB)+Ad|sv (2)

where we have added and subtracted a term E,,, which is
the total energy of a distorted BC compound with all the
atoms held at the positions specified in Fig. 1, except that
the central atom is a B atom. Clearly, Ag =E 5 —Egy, 18
a replacement energy, and the distortion energy
A= Eg — Epure 1s the energy required to deform a pure
BC crystal from its equilibrium lattice to that specified in
Fig. 1. Ag contains all the chemical terms that arise from
different bond lengths and polarities between AC and BC
bonds.

Ap can be treated most easily by Harnson's bonding
theory.” In this theory, the energy per bond relative to the
vacuum state is

Ey=2¢e4 +V, +6€, + 6, . (3

where €, is the energy of the bonding state constructed
from the two hybrid orbitals facing each other along the
bond direction

Ey=tef+ep)—(viqgpine, (4)

with €, and €5 being the energies of the anion and cation
hybnd orbitals, respectively. The antibonding energy ¢,
has the same form as in Eq. 14, except with a plus sign.
V', is called the covalent energy, which is the total elec-
tromic Hamiltonian matrix element between the two hy-
brids in question, and the polar energy ¥, is the differ-
ence b= —élef, —E;’. The €, and ¢,,. the metallization
energies, are the shifts of the bonding level caused by in-
teractions with the neighboring antibonding states, where
+ and — indicate whether the common adjacent atom 1s
a cation or anion. For example, this term for an AC bond
labeled by d, in Fig. | due to an antibonding state labeled
by d. is given by

e (./'b‘(]) N ‘(;an‘z) 2 l'(l N

€m (2 )= == e T S (5

Epll)—g, 12)

where 4 and B denote AC and BC bonds, respectively,
b= tigt -c; 1 with ¢f and r,‘, being the s- and p-term
values of the common adjacent atom C. U 1) s the

with a bond length d,, whereas UF(2) is the correspond-
ing probability amplitude for the antibonding state of a
BC bond of bond length d,. Finally, ¥, is a repulsive
pair potential required to prevent the crystal from collaps-
ing and to guarantee a correct equilibrium bond length.
The local perturbation, Eq. (5), is applicable because the
square root of the numerator is much smaller than the
separation between the antibonding and bonding levels
and the valence band is completely filled, so the interac-
tion between the bonding states only spreads the ¢, levels
into bands without affecting the center of gravity of the
occupied states.

The replacement energy Ag of Eq. (2) can now be writ-
ten explicitly:

A =4[ 26D+ VD +6er 40,1 +6e542,1)
~ 28 —-VHn—6eeBB1,1)—6e2Bi2,1)
+eetlan—6eBB01,2)). (6)

The distortion energy Ay, of Eq. (2) now involves only BC
bonds of different bond lengths. It can be treated with ex-
actly the same procedure for any given set of bond-length
distnbutions. Thus, a straightforward energy minimiza-
tion procedure can be carried out. The accuracy of this
procedure, however, depends in turn on the accuracy of
scaling rules for ¥, and ¥, and the input parameters. At
present, Harrison's model” with ¥, « 1/d? and Vy« 1/d*
and his universal parameters are only semiquantitative.
We are improving the quantitative nature of the theory so
that the full theory will yield accurate predictions of the
structural and thermal properties of semiconductor de-
fects and alloys.

I11. PERTURBATION EXPANSION,
VALENCE FORCE FIELD,
AND ELASTIC MEDIUM

As pointed out earlier, a perturbation expansion of the
theory is instructive. This is feasible because the differ-
ences  AV,=V.(4C)-V,(BC) and AV,=V,4C)
— V3(BC) are small compared to each individual value for
many of the isoelectronic impurities in 11I-IV and 1I-VI
compounds. To this end, Eq. 16) is rewritten as

A= EMD—El N se[efta e 220,10

——6[5,:,?*(2.‘ ‘_E":‘.?( 1’] ']

~o[emti 2 —elRi200)

—b[tﬁ‘f-t1,2\-52'(’4".2‘] . (7

where Ei1) and Efil) are energies per bond in Eq. (3)
for AC and BC compounds, respectivelv, with the relaxed
hond length d, =di1-&1. The difference between these
energies E, and the corresponding values at their respec-
tive equilibrium bond lengths d, and d are just the strain
energles per bond in uniform deformation:

Ef U ~ENd)« 2 3Bydyid, d; .

probability amplitude of finding an electron in the hybnd 0 . B ) R
orbital of the C atom in the bonding state of an AC bond Efilv—~Egdv=2v 3Bdvd, dr-
- T
- o
R
e
e et foata . _'...‘.. "--',"",'-‘_'. LR -‘_.-’ ,'“'.‘ L T Y Sl LT S TN IRV IR T SRt ey ".." R P S L
[ AR %, R SR T ISP J P S S T PN AP T T P ST AT Ao -‘:q' PO APV (\f\-':'nl' x’:‘i‘ AT N :
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where B; and B are the bulk moduli for the impunty AC
and host BC crystals. The rest of the terms in Eq. (7) are
all due to changes in €, caused by the differences AV,
and AV,. We shall use Harrison's scaling rules to deduce
them.” Expanding Eq. (7) to second order in AV, and
Ad=d,—d,, we write

6(e2 42, D—eAe(1,1)]
=f;Ad —g;AVy+h)(Ad Y — W, Ad AVy+ U (AV,)?,
(9)

where f;, g;, and so on, are appropriate derivatives
evaluated for the impurity crystal AC. When similar ex-
pansions are made for the rest of the terms in Eq. (7), it
becomes [with d, =d (1—8), d; =d(1—§)]

TAr=AEy +(f; —f)Ad — (g, —g)AVy +(h; +h)(Ad )}
— (W, +W)Ad AV +(U; + UNAV;)?
+2V3B;d%8—60)*—2V3Bd?s? , 10)

where

AE,=Ed) —EL(d)— +(e,—¢p) an

is just the difference in the binding energy per bond be-
tween the “BC’ and “AC” crystals. In Eq. (10) the coef-
ficients f,g without a subscript are those for the host BC
system. It is convenient to define an excess energy
AE=A,/4— AE,, which is the extra energy per bond re-
quired for the impurity substitution over and above the
binding-energy difference between the BC and AC crys-
tals. The binding-energy difference accounts for much of
the substitution energy; however, the correction measured
by the excess energy can be significant. The excess energy
results from strain energies and chemically driven charge
redistributions around the defect. Using Eqs. (2) and (10)
and defining F=f;—f and G=g; —g, we can write AE
up to second order in AV, and Ad as

AE=2V3B,d*6—8,)*—2V3Bd*6* + F Ad —G AV,

+HAD + WA AV + UAV  + T8y, (12)

where H=h;+h, W=w,+w, and U=u,; +u.

To treat the distortion energy Ag,, we divide the crystal
into two regions. Inside a sphere of some radius R mea-
sured from the impurity, the strain energy is taken to be
the valence-force-field'® value:

an? 3 . 2
Ay = F;GE[A“’:’ d))

3

+.___..
8d?

3 3 Blawd )], (13)
' uin

where i sums over all the bonds inside R and the pairs in
the B terms include those that have adjacent atoms inside
R and on the boundary. The parameters a and B are
force constants to be considered later. Ald-d))=dd,
—-d}o'-d}o‘ measures the change of the dot product be-
tween bond vectors due to distortions. Outside R we as-
sume an elastic continuum with radial displacements in-

versely proportional to the square of the distance from the
center. The elastic energy in this medium can be shown
to be (see Appendix A)

AW =RCu?, (14)

where the effective shear coefficient is
C=4ﬂ[0.4(C|| -_ C|2 )+ I.ZC“]

and u is the displacement at R. In view of the fact that
the bonds d, and d, are coupled through the chemical
terms in Eq. (10), the smallest logical radius R is the
second-shell atomic distance, namely R =2v3d/V3.
Atoms on this boundary have displacements of the forms
u=d(y,y,00/V3,.... Thus, u=V2yd/v3 and the
elastic energy in the continuum is

Ag"=3v2/3Cr'd’ . (1)

The distortion energy represented by Eq. (14) contains
six different contributions (see Appendix B): the bond-
stretching energy of the four first-shell bonds 6a8%d?, the
B terms from the first-shell bonds, B6%d?, the a terms
from the second-shell bonds, 2a(8+2y)%d?, the B terms
between the first- and second-shell bonds, 28(86+v)%d?,
the B terms among the second-shell bonds, 285°d?, and fi-
nally the B terms between the second-shell bonds and
those in the continuum,

1Bd(36+ A7+ (5 +A )],

where A, =40v2/(19v'19) and A,=2—40V2/(11VT1).

To assemble all the contributions to Eq. (12), we need to
consider the assignments of the elastic constants and the
force constants a and 8 in VFF. While the experimental
values'! of C,;, C};, and Cy, can be used for the elastic
constants, a and B have to be deduced. If Martin's origi-
nal procedure'” (also followed by Martins and Zunger®) is
used, then Eq. (13) alone will not produce the correct (ex-
perimental) bulk moduli. There are small corrections due
to Madelung terms, which are hard to treat in the case of
nonuniform distortions. A simpler procedure is adopted
here. We use the experimental bulk moduli for B, and B
in Eq. (12) and experimental elastic constants to calculate
C of Eq. (14) and then force a and B in the VFF to pro-
duce the correct bulk moduli B and shear coefficients
Ci—C);. Such an approach is also consistent with
Harrison’s bonding theory’ and other approaches in which
the Coulomb forces are automatically incorporated in the
band and bond energies, and do not need to be redundant-
ly treated. With our procedure, the bulk modulus is sim-
ply related to the force constants by B =(3a+8)/(4V3d).
Table I lists our a and B values. We want to point out in
advance, however, that the numerical results deduced
from our sets and those of Martin of @ and 8 do not in-
troduce differences more than the present experimental
uncertainties in the local bond length (~0.01 A) and
the mixing enthalpies ( > 0.5 kcal/mole).

Using the above procedure and adding all contributions,
the excess energy per bond from Egs. (10) and (12) is the
full perturbation theory (FPT) result
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TABLE 1. The bond lengths d (in A), valence force constants @ and 8 (N/m), shear coefficients C of
the continuum tin 10" ergs/cm”), melting temperatures T,, (K), and Liedermann ratios V,, for the com-

pounds used in this paper.

Compound d a B C T.* Ym
AlP 2.367 44.323 8.068 122.396 1773 0.070
AlAs 2.451 40.849 8.717 112.695 1873 0.0°3
AlSb 2.656 34.073 6.900 85.351 1323 0.062
GaP 2.360 44.764 10.737 145.921 1510 0.064
GaAs 2.448 39.235 9.159 121.844 1738 0.071
GaSb 2.640 31.876 7.347 89.372 985 0.055
InP 2.541 40.363 6.543 91.785 1343 0.059
InAs 2.622 33.203 5.752 78.816 1215 0.061
InSb 2.805 28.557 4.891 60.721 798 0.049
ZnS 2.342 40.429 5.273 89.272 2123 0.081
ZnSe 2454 32.200 4.562 82.687 1788 0.080
ZnTe 2.637 29.445 4.659 62.430 1511 0.071
CdTe 2.806 26.569 2.722 38.453 1371 0.067
HgTe 2.798 26.396 2.746 40.363 943 0.056

*Reference 30. -

AE={3a,;(8—80/2+B1(6—8y)°/2+a(d+2y)/2" 8= —4F,(1-0/2)/(3d(3a; +B,)] . 19

+B5+y) /2488 /4+B36+ Ay ) /8
+B8+A,7)/4)d} +V2Cy¥ 3 /3V3) + AE,, ,
(16)
where the chemical contnbution is wnitten as
AEy, =F,, Ad + H(AdY + AE,
= TF 25+ y)d+ s H(26+y)d?
+[UAVP -G AV,], an

where AF,=F—WAV, and AE,=U(AV;)—G AV,
F.y is a chemical force, which when it is positive tends to
push the C atom away from the impurity atom A. This
force arises from the difference in the bond tensions in-
duced between the 4C and BC bonds adjacent to C be-
cause the neighboring antibinding states are different
from those of their respective host states. AE, is due to
the difference in the polarities AV; alone and is indepen-
dent of the displacement. Finally, H can be regarded as a
chemically induced force constant, which when it is posi-
tive tends to restrain the lattice from distortion and in-
creases the elastic energy.

The equilibrium requirements J(AE)/36=0 and
d(AE) /3y =0 then lead to the solution y =Q8, and § is
given by

5=(8,+80)/{ 1 +[all —=2Q1+B(17/4 - AQ)
+16H(1-201/9)/13a; +B}} . (18)

where the constant 2 is | + 34, /4 + X,/2, and

with Q=2J/K, J=a+AB/2+8H /9, and
K=4a+2V2Cd/(3V3)+ (1 +A1/4+13/2)B+8H /9 .

IV. VALENCE-FORCE-FIELD MODELS

In this section we consider several models based on the
valence force field. These models have been used fre-
quently to explain the impurity bond relaxation.”*%° We
shall first derive the explicit expressions for these models
and tken connect them with the existing results.

A. Model A: Third-shell atoms and beyond are fixed
at their pure crystal positions

Let the bond lengths surrounding the impurity again be
dy=d'1-8) and let the second-shell atoms have radial
displacements of the forms (d /v 3), (y,y,0). etc. Beyond
and including the third shell, all the other atoms are held
at their pure-crystal positions. There are nine different
contributions to the strain energy in VFF (see Appendix
Bi: the a terms from the four bonds surrounding the im-
purity, 6a,(5~8))°d*; the B terms among the six pairs of
these bonds, 3,8 —8,)3d*; the B terms between the first-
and second-shell bonds, 28(6+1)°d*; the a terms from
the second-shell bonds, 2a(§ + 2y °d*; the B terms among
the second-shell bonds. 285°d°; the B terms between the
second- and third-shell bonds, $B8°d* + B8 +2y)'d?; the
a terms from the third-shell bonds, 8ay-d-; the B terms
among the third-shell bonds, 48y°d*; and the B terms be-
tween the third- and fourth-shell bonds, 68y%d*. Thus,
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the excess energy (in this case ; times the strain energy)

becomes
AE=[2a;(8—80)+ +B,(5—6p)2 + 186+ )
+ald+2y7+ 581+ 1B6+2y)
+2ay’+ 1By?ld*. (20)

The minimization of AE with respect to § and y leads Eq.
(20) to y = —&/4, and

5=8¢/[1+(a+17B8/2)/(6a; +B;)] . Qn

We note that there is some ambiguity in the third con-
tribution listed above for the B terms between the impuri-
ty and host bonds. The value of 8 could be chosen as one
of these combinations B, B;, +(B+8;), V'BB,, or other
proper combinations. Because the values of 8 and B, are
comparable and B values are much smaller than a (see
Table I), the results for § and AE are not too sensitive to
the choice. There is also some ambiguity in the values for
d,”-d)” for the “undistorted” crystal. The —d 2/3 used
is the simplest choice. A different choice will not affect
the results for § at all, but will make AE slightly different.
In fact, model A was first used by Martins and Zunger.}
However, their expression for & is different from Eq. (21)
because they made different choices of the two quantities
just mentioned. Nevertheless, Sec. IV will show that these
two expressions yield very similar results. These ambigui-
ties do not occur in the full theory in Sec. 11, where the
impurity-host interactions are taken into account natural-
ly by the replacement energy Ag [see Eq. (10)].

B. Model B: Second-shell atoms connect
to a fixed boundary

This model corresponds to ¥ =0 in model A. So we
have

AE=

X 3 s ) , V2 s
Ta)(8—80) + T B8 =80  + Fa(d+2y) + TB(O+7)12+ 88+t B3O8+ Ay P+ B+ Ay ) + J-V—,Z_;Cdr

AE=[3a;(6~80)’+ ¢B(6—80) + +ab®+ + B6?)d?
22)

and
8=5¢/[1+(a+198/4)/a;++B,)] . 23

This expression will be used to study the effect of trunca-
tion.

C. Model C: Simple spring model

If all the B's in Eqgs. (22) and (23) are set equal to zero,
we have the simple spring model with
AE=[2a,;(6—8))+ 7abd’]d? (24)
and
8=58y/(1+ tasa;) . (25)

The spring model recently discussed by Shih et al.? corre-
sponds to Eq. (25) witha=a;, 50 6/8,= 1.

D. Model D: VFF with the continuum connected
to the second-shell atoms

1. Model D!

In this case, AE only contains the first five contribu-
tions listed for case A plus the elastic energy in the con-
tinuum. However, the 8 terms between the second- and
third-shell bonds are modified because atoms outside R in
the continuum now have radial displacements proportion-
al to the inverse of the square of the radius. The result is

126)

where A, and A, are the same as the constants that appear in Eq. (16). The corresponding equilibrium condition can be

shown to be

8--80/11+[a1 =201+ 19374 Bil+3X /4+1:/4)Q)/Bay + B /211 27

where
2a+B+3A,0/4+1.8/2) 8
=t T T Tt o oy e td
140 +2v2Cd 73V 3B+ i + 43P

2. Model D2

A companson between Eg. 26 and the full perturba-
tion theory, Eq (161, shows twe major differences. Firw,
all the chemical terms are absent an Fy. 268 Secondly,
the terms

L )
- ST PIREEIAY
* P

: S T

188 —8)d? +  B5%d?
in Eq. 116} become

1‘31(5~6())2d:+ %‘B&zdz
in Eq. 1261, This difference in the stram energy will mask
the true effects of chemical forces if & from Eq. 260 &

compared with FPT. A better way to study the chermeal
effects 18 1o use the tollowing equation

d?,
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3 2,1 2,1 2,1 2, 1pp2 ) 2, 1 2172, V2 o203
AE=[30,(8-8+ 781680+ 3a(84 211+ A8+ ¥V + 365+ 3 BUIS+ Ay Y1+ 180+ Agy PJd* 4 S5 Cyld
29)
L which is Eq. (16) with all the chemical terms neglected. The corresponding 6 becomes
: 5=8p/{1+[a(1-2Q)+ L B~Bl1+ 3X,+ +2,)Q)/3a, +B)} , (30

with Q still given by Eq. (28).

E. Model E: Continuum connected
to the first-shell atoms

In this case, y = —3v/38/(8V'2) and AE only includes
the first three contributions listed in model A plus the
strain energy of the continuum:

l AE= | 3a;(8—8)+ 1B,(6—8)
n V3

+ 1P [1_ 8v3

The relaxation parameter is ;iven by

2
3v3
"375‘”

2
Y ++Cds? }dz . (31

/(3a,+%ﬂ,)l.

32

We note that the continuum model used to estimate the
bond-length relaxation by Baldereschi and Hopfield® cor-
responds to Eq. (32) without the S terms, which yields
8/89=0.4 10 0.5, rather than the proper values around 0.7
to 0.8.

V. ALLOY MIXING ENTHALPY

The impurity-substitution excess energies AE provide a
first estimate of the mixing enthalpies of pseudobinary al-
Joys. Most current thermodynamics theories of semicon-
ductor alloys are based on an extension of the binary solu-
tion model.'? 1n this model, the mixing Helmholtz energy
of an A, B,_,C alloy is defined as

AF,,,:F.,,‘,,—(.!F‘C+yFBC) > 33}

where y=1-—x, and F,c and Fpc are the respective free
energies of the pure AC and BC compounds at the same
temperature. Because the C atoms occupy a sublattice,
the nearest neighbors of 4 and B atoms in the alloy are
the C atoms. Thus, the pair potentials that enter the
binary solution theory are now the second-neighbor in-
teractions. Let N,,, N p, and Nz be, respectively, the
numbers of the second-neighbor A4, AB, and BB pairs,
with corresponding pair interaction energies € 44, € 45, and
€g5. For tetrahedral semiconductors, there are a total of
6N second-neighbor pairs for a crystal containing N unit
cells. Denote the ratios N,,, Nz, and Ngg to 6N as
744+ Tap==r, and rgp, respectively. Then those ratios are
related to the alloy composition by r 4 =x--r/2 and
rgp =y —r/2. The mixing free energy has two terms,

AF, =AE, ~TAS, (34)

- o+ s
A o

e e

—
where the mixing energy is given by
AE, =E oy — (xE4c +yEpc)
=ON(E y7 44 +E 48748 +EppTog) —ONI(XE 4 +yEpp)
=6Nr Ac, (35)
where
Ae=€,4p— (€44 +E5p) . (36)

The mixing entropy AS can also be written from a simple
generalization of the random distribution.'”” For modest
pressure, AE is the same as the mixing enthalpy AH,,.

Now the pair interaction energies can be approximately
related to the impurity-substitution energies by

A,(A in BC)=12(¢ 5 —ep5) 37
and

B,(Ain BC)x12e 5 —£44) . (38)
Thus, Ae of Eq. (36) becomes

Ae=3{A,(4 in BC)+A,(B in AC))

=+[AE(4 in BC)+ AE(B in AC)] . (39)

Usually, the experimental AH,, is written as

AH, =x(1—x)2, (40)

which is equivalent to assuming a random distribution,
ie, r=2x(1~x). Using this expression for r and com-
paring Eqgs. (40) and (35), we see that the mixing enthalpy
parameter {Q is given by

Q=2{AE(4 in BC)+AE(B in AC)) . 41)

This connection provides a further check of the theory.

VI. NUMERICAL RESULTS AND DISCUSSION

A. Chemical terms

Table 11 lists 8y=1-d,/d, 5=1—d, /d, the excess en-
ergy (per bond) AE for the full theory and its correspond-
ing VFF model D2, and the terms derived from the
metallization energies, &, [Eq. (19)), Fy. H, AE,, and
AE, [Eq. (17)]. The appropriate derivatives f, g, h,...
[see Eq. (9] are computed using the atomic-term values
that we have generated from impurity-level'’ and
structural studies.’

For substitutions involving the cation pair (Ga,Al), F,
has the same sign as &, which means that F,, prevents
relaxation and thus tends to increase the strain energy.
The chemical forces H are also significant. As a result,
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TABLE IlI. Comparison between the full theory and the corresponding VFF model D2 to study the effects of chemical terms. All
AE's are in units of kcal/mole band.

Impurity

Ga
Al
Ga
Al
Ga
Al

In
Ga
In
Ga
In
Ga

In
Al
In
Al
In
Al

Cd
7n
Hep
Cd
Hg
Zn

As
P
As
P
As
P

Sb
As
Sh
As
Sh
As

Sh
P

Se
S

Te
Se
Te

VOt et At et e
[N WP PP I Wil Wl W g, i)

Host

AlP
GaP
AlAs
GaAs
AlSb
GaSb

GaP
InP
GaAs
InAs
GaSb
InSb

AlP
InP
AlAs
InAs
AlSb
InSb

ZnTe
CdTe
CdTe
HgTe
ZnTe
HgTe

AlP
AlAs
GaP
GaAs
InP
InAs

AlAs
AlSh
GaAs
GaSb
InAs
InSs

AlP
AlSh
Gab
3aSh
{nP
InSh

/nS
ZnSe
ZnSe
InTe
ZnS
ZnTe

Model D2
& 6
0.003  0.002
~0.00) ~0002
0001  0.001
~0001 ~—0.001
0006 0004
—0006 -0.004
~0077  -0052
0071 0056
-0071 -0.048
0066 0052
—0062 —0.043
0059 0046
—0074 -0053
0068 0053
0070 —0048
0.065 0052
~0056 -0039
0053 0042
~0.064 —0048
0060 0050
0003 0002
~0.003  -0.002
~0.061 0045
0058  0.048
~0.035 0026
0034 0025
~0037  —0.025
0036 0027
~0032 -0023
0.031 0.024
~0.084 -0058
0077 0.059
~0078  -0.052
0073 0.055
0070  -0.051
0065 0051
20121 -0.08s
0.109 0.08s8
~-0.119 —-0.078
0.106 0.083
104 0072
0.094 0.077
- 0.048 ~-0.036
0046 0.037
-0.075 - 0056
0.069 0.084
-0.126 -0.092
0112 0.09]

AE

0.00)
0.001
0.000
0.000
0.005
0.005

0.959
0.734
0.752
0.592
0.554
0.445

0.761
0.674
0.705
0.576
0.440
0.368

0.432
0.314
0.001
0.001
0.392
0.286

0.179
0.185
0.226
0.211
0.136
0128

1.024
0.919
0.908
0.823
0.603
0.551

2.007
1.888
2.132
1.806
1.383
1.191

0.231
0.221
0.550
0532
1.565
1.446

8o

-0.001
0.001
—-0.002
0.002
-0.004
0.004

-0.006
0.005
~0.009
0.007
-0.004
0.004

-0.007
0.006
-0.010
0.008
—-0.008
0.007

- 0.003
0.002
0.004

—0.004

-0.001
0.001

0.001
~0.001
0.002
~0.001
0.001
-0.001

0.008
-0.007
0.018
-0.014
0.010
—0.009

0.010
- 0.008
0.021
-0.015
0.011
0.008

- 0,001
0.001
0.000
0.000

-0.001
0.001

Full theory
5 Fy 10°'°N) H (N/m)  AE, AE,,
0.001 0.150 4.58) -0.016 -0016
—~0.001 —0.150 4.581 -0.016 -0.016
—0.001 0.243 5733 —-0.020 -0.021
0.00} -0.243 5733 -0.020 -0.021
0.001 0.389 5.632 —0.054 -0.053
—0.001 —0.389 5.632 —-0.054 -0.053
-0.054 0.699 1778 —-0.188 -0.219
0.057 —0.699 3778 —0.188 ~0.206
—0.050 0.804 4778 —-0.257 -0.283
0.054 —~0.804 4,778 —0.257 ~D.265
—0.042 0.352 5.201 -0.363 —-0.308
0.044 ~0.352 5.201 -0.363 -0.287
- 0.056 0.769 3.506 -0.035 -—-0.087
0.056 ~0.769 3.506 -0.035 -0.083
-~0.051 0.942 4437 ~0.048 -0.111
0.054 —~0.942 4.437 -0.048 —-0.099
—-0.041 0.689 4979 ~0.061 --0.073
0.044 -0.689 4.979 -0.061 —0.061
—~0.050 0.202 - 0484 -~0.005 ~0.0064
—~0.053 -0.202 —0.484 ~0005 --0072
0.005 --0.278 -0.753 -0.01i8 —-0.026
-0.005 0.278 -0.753 -0018 -0.026
0.046 0.075 0.002 0.052 0.037
0.049 ~0.075 0.002 0.052 0.035
~0.025 -0.085 0.717 - 0.005 0.008
0.025 0.085 0.717 —0.005 0.008
-0.024 —0.181 1.078 -0.011 0.012
0.025 0.181 1.078 -0.011 0.014
-0.022 -0.057 0.919 -0.003 0.008
0.024 0.057 0.919 - 0.003 0.009
~0.05} ~0818 0.644 —0.180 0.002
0.053 0.815 0.644 -0.180 0.027
- 0.040 - 1.599 0927 --0.363 0.106
0.044 1.599 0.927 -0.361 006}
—0.042 -0.824 0.855 a1t 0.008
0.044 0.824 0.85% 0171 0.008
-0.077 ~0.944 0.645 0.241 0.074
0.078 0.944 0645 -0.241 0.121
—0.061 - 1.868 0930 -0.50% S 0040
0.070 1.868 0930 ().50% G.0923
-0.063 0922 R84 0214 0.089
0.069 0.922 0854 0.214 0123
- 0.036 [$X ¢ () tds Qa003 0000
0.037 0.0"7 0,645 0.003 0]
- 0.086 0028 0.638 0 00X (o4
0.054 - 0.028 0,638 000X 0028
- 0.002 0101 0.644 0022 O]
0.091 0101 0.644 0.022 008

AE

-0.013
-0.013
~0.018
-0018
—0.039
-0.039

0.742
0.530
0.472
0.330
0.247
0.160

0.679
0.596
0.602
0.485
0.369
0.310

0.373
0.247
~-0.018
-0.018
0.429
0.322

0.187
0.194
0.240
0.228
0.144
0.138

1.060
0.984
0.929
0D.904
0.645
0.6113

227
2.030
2.244
2084

1 s01
1379

023
0222
(URRE )
0887
1 606
1 496
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all six cases involving this pair have nearly equal d, and
d,, i.c., the smal) bond-length differences are made even
smaller in the alloy. The excess energies all become nega-
tive, mainly because AE, is negative. For the systems in-
volving the (Ga,In) and {In,Al) pairs, F, has the opposite
sign from 8, so §; and §; have the same sign. The chemi-
cal force favors bond distortion. However, because H is
positive and introduces an increase in the denominator of
Eq. {18), most of the effect of &, is cancelled. For cases
involving (Ga,In), the polarity contributions AE, are all
negative. The F,, Ad term is negative, but H(Ad) is pos-
itive, so they cancel to a certain degree and leave AE
lowered primarily because of AE,. While AE, is still neg-
ative for the (In,Al) substitutions, its magnitude is reduced
considerably. The other chemical energies
F., Ad + H(Ad) can be as large as AE,, but the overall
reductions of AE are only a fraction of those for the
{Ga,In) cases. For the several II-VI systems studied, both
F., and H are small and the net changes in & have the
same sign as 8;. However, because §; is small in the
(Cd,Hg) substitutions, F,, actually causes a reversal in
which the short bond length becomes shorter and the
longer one becomes longer. This is the only exceptional
case of this type found for all the systems studied. The
change of AE due to chemical terms in the (Hg,Zn) substi-
tution 15 also peculiar—it increases mainly because AE, is
positive.

Next, we examine the anion substitutions. For the
groups involving the (P,As) pair, the chemical shifts are
all small, but the trend is less toward relaxation and larger
AE. The groups involving {As,Sb} and (P,Sb) pairs behave
very similarly: F_, are significant and are opposing relax-
ations, t.e, 8y and 8, have opposite signs. At the same
time, the H values are several times smaller than those for
the corresponding [I1-V cation substitution case. Thus,
most of d;, translates into a real reduction of the ratio
5/8, and consequently introduces extra strain energy. Al-
though the AE, energies are significant and negative,
F .y, Ad are positive and the net AE,,, can be either positive
or negative. However, the induced-strain energy due to
reduction of the 6/6, makes all AE positive for these two
groups of systems. For 11-VI systems, all the chemical ef-
fects again are small, but the net chemical changes on AF
are slightly positive.

The above discussion can be summanzed in Fig. 2,
where the excess energies AF calculated from the full per-
turbation theory and Model D2 are plotted normalized to
the results of the simple spring model of Shih, Spicer,
Harrison, and Sher (SSHS) (Ref. 8), 1e.. Eq. (24 with
a;=a, so AE/(; ad?=8, The calculated AE rises fas-
ter for &, >0 than for 5, <0, mainly because a/a; =1. In
fact, if the relation™'® a/a; =1d; /d)* with S of order of
3 to S is used in Eq. 124), we obtain a percentage correc-
tion of $8,/4 to the SSHS results, which explains the
skewed behavior of the curve. [t s also clear that AE
rises faster than 8 for larger &, However, the zeroth-
order theory of SSHS is clearly an excellent representation
of the global features of AE. The results from model D2
are closer to the parabolic form than those from FPT
The figure clearly shows the general trends: the chemical
terms cause negative shifts in AE for cation substitutions

T T T T
SUBSTITUTED
SUBLATTICE _ #9V 0 -
CATION e o ®
ANION . ‘io -

.m}a-’-

-12 10 or a¢ o os oY 10 2

10 & 3, omersonm

FIG. 2. The excess energies AE over %adZ calculated from
the full perturbation theory (FPT) and its corresponding

va'ence-force-field model D2. The solid curve corresponds to
Eq. (24) witha=a;,.

and positive shifts for anion impurities. It is also clear
that the chemical shifts can be very large. These effects
will have important consequences on the alloy mixing
enthalpies to be discussed later.

B. Impunty bond length

Table I lists the impurity bond lengths 4, calculated
from different models, while a comparison of theory and
the available experimental data''*'" 1s presented in Table
IV. The actual size of changes in d, induced by the
chemical terms can be seen by companing model D2 with
the full theory. Except for the systems involving the sub-
stitution of ¢«Ga,As) and iP,Sb) pairs ‘where changes range
from 0.01 10 0.03 A, all the chemically induced changes
are less than 0.01 A. Companson among models A, B,
and C shows that, while extending the boundary helps the
relaxation ‘compare model B to Ay, e, 878,15 closer to
1, the inclusion of the bond-bending forces ithe 3 terms
rcompare maodel B with Cropreventaat. The ample spring
model imodel Ci. which contains neither of these terms,
evidently represents 3 dehicate cancellation of these offects
and predicts results close to those of the full perturbation
theory and expenment  Although the d| values of model
C are often very close to those of model A, there are cases
[e.g.. GaP.Sh]in which model € can differ from model
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TABLE I1I. Calculated impurity local bond lengths (in A) from the full theory and several valence
force models discussed in Sec. 111, and their comparison with the values calculated by Maruns and
Zunger (Ref. 3).

L

L

Impurity Host A B C D1 D2 E FPT MZ
Ga AlP 2362 2363 2.362 2.362 2,362 2364 2.364
< Al GaP 2365 2364 2365 2365 2365 2365 2363
N Ga AlAs 2449 2449 2449 2449 2449 2450 2492
Al GaAs 2450 2450 2450 2450 2450 2450 2447
Ga AlSb 2645 2646 2644  2.645 2644 2649 2653
= Al GaSb 2.651 2.650 2.652 2.652 2.652 2.650 2.644
In GabP 2477 2462 2492 2479 2483 2435 2487 2474
, Ga InP 2406  2.421 2.402 2.395  2.399 2409 2396 2409
S In GaAs 2559 2544 2573 2.561 2.565 2518 2570  2.556
Lo Ga InAs 2492 2506  2.486 2482 2485 2496  2.481 2.495
In GaSb 2747 2734 2760 2749 2.754 2710 2750 2739
r.e Ga InSb 2683 2697  2.678 2.673 2676  2.686  2.680  2.683
[
o In AlP 2487 2472 2494 2490 2493 2447 2498 2480
Al InP 2412 2427 2408 2401 2405 2415 2400 2414
. In AlAs 2.561 2546 2572 2.563 2.568  2.523 2575  2.553
- Al InAs 2493 2506 2487 2483  2.487 2497 2480 2495
In AlSb 2754 2.741 2.763 2756 2.760  2.721 2765 2746
. Al InSb 2693 2.705 2.689 2.685 2687 2696  2.683  2.693
N
w Ccd ZnTe 275 2740 2760 2760 2763 2720 2770 2755
Zn CdTe 2673 2688  2.676 2660  2.665 2671 2658 2674
v Hg CdTe 2.800  2.801 2800  2.800  2.799  2.80) 2.790
i Cd HgTe 2804 2803 2804  2.805 2805 2804 2813
Hg ZnTe 2750 2.73s 2754 2783 2787 2715 27158 2.748
. Zn HgTe 2.671 2.685 2674 2,659 2664 2671 2662 2673
b
w As AlP 2425 2418 2429 2427 2428 2406 2427 2422
P AlAs 2392 2399 2.387 2.387 2389 1,394 2390 2195
As GaP 2417 2409 2424 2417 2420 2396 2416 2414
| GaAs 2386 2193 2380 2.382 2383 2389 238 2387
tr As InP 2,506 2589 2599 2598 2600 2579 2598 2.595
P InAs 2.561 2.568 2.558 2.557 2558 2563 2560 2562
=
[
. Sb AlAs 2584 2566 2597 2.587 2.5 2539 2877 2574
As AlSb 2506 2.522 249  2.495 2.49% 2511 2814 2510
= Sb GaAs 2569 2,553 2.584 2.571 25876 2524 2546 2564
As GaSb 2.501 2516 2480 249 2498 2508 2828 2808
Sb InAs 2,747 2730 2754 2750 2754 2708 MBKR hEAT
As InSb 2669  2.683 2.663 2.658 2662 2672 2eNd 266"
- Sb AIP 3558 1420 2560 2861 26k 2aNR 2880 24l
P AlSb 2.440 2.462 2426 2428 2420 2447 234K 2 44d *
o Sb GaP 2526 2503 285 2820 2837 246l AT SRS [
o P Gash 2.431 2.45) 2414 2418 2422 2430 2484 243
) Sb InP 2.712 2.687 2.720 2719 2728 2654 202 20
p InSb 2.599 2619 1.59j 2585 2500 2604 261l T
4 Se ZnS 2420 2409 2.421 2424 2426 2396 2426 2420
S ZnSe 2367 2376 2,345 2360 234 23700 2ied 1T
Te ZnSe 1586 l.Sev 2588 2.5%Q NEEM 2840 2 syl D and
Se ZnTe 2.501 2.8 2497 2.490 2au4 2804 ragas NETN
Te Zns 2.543 2813 2,544 2,882 1.55% 3478 AT AR
) ZnTe 2.406 1420 2400 2.380 2 e 2410 RRRE NE T
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I A by 0025 A. Model A produces about the same d,
values as model D1, where the maximum difference in d,
is only 0.015 A. Martins and Zunger' used the same
model as model A; however, their analytic expression for
8 is different from that given by Eq. (21). Nevertheless,
numerical results indicate that these two calculations
. agree t0 0.01 A. The slightly different forms of strain en-
ergies used in models D2 and D1 only introduce a small
change in d;, with the largest difference being less than
0.01 A. The first-shell continuum model (model E) allows
too little relaxation, so while the other models produce a
ratio 8/8, ranging from 0.6 to 0.8, model E only ranges
from 0.4 to 0.6. The reason that the fixed boundary in
model A works is that the effective shear coefficient C
{see Table I) characterizing the strain energy in the elastic
continuum is large. However, model B is too ngid and
does not provide enough buffer between the impurity
bond and the fixed boundary.

The comparison of the theoretical results with the
available experimental data in Table IV indicates that
models B and E are the least accurate. Models A, DI,
that of Martins and Zunger (MZ), and the full theory are
comparable in that all have an average absolute deviation
of 0.012 A, which is about the experimental uncertainty in
extended x-ray-absorption fine structure (EXAFS). The
agreement between theory and expeniment, however, is not
uniform. The most surprising result in Table IV is that
the simple spring model (model C) and its cruder version
used by Shih ef al.® [@a=a; so 6/8,=0.75, labeled as
SSHS) have the smallest variance in d,, about 0.006 A.
We know this does not imply that the simple spring
model represents the real picture of bond-length relaxa-
tion. For example, if we let all the shear coefficients be O,
i.e., B=C =0 in our model, then as the range of the boun-
dary is gradually extended, the local bond length will
eventually relax to the impurity bond length d,=d,, or
8=38y. This can be seen in model A from Eq. (21), where
& reduces to 8y/(1 +a/6a;), rather than 8,/(1 +a/3a;)
as predicted by model C, and in model D from Eqgs. (27)
and (30), & becomes 8, if the continuum is taken to be
sheariess. Considering that various effects are included
that may mask the absolute accuracy of d, predictions
(e.g., while low-temperature bond lengths are used in the
calculation, the room-temperature values of clastic con-
stants are adopted), the agreement of various models with
experiments in Taole IV should be regarded as excellent. -
There are, however, many other impurity systems in R
which the simple-spring-model predictions differ consid- - ot
erably from other models, as is shown in Fig. 3, where & is E
plotted against 8§ for the full theory. Those points that s
deviate significantly from the 0.75-slope line are the sys- e
| tems with (As,Sb) or (P,Sb) substitutions. Additional EX- Tt
| AFS measurements on these systems are needed to test St
¢ these predictions.

Expt
2.587°
2487
2.75Q2)°

2.68102.69°
2.595¢
2.496°

SSHS*
—0.009
0.005
0.012
0.010 —0.01

—0.004
0.004
0.006

—0.031
0.008
0.003

—0.01t0 —0.02

-~0.011
0.006
0.012

MZ

r ° N .

v oroT T

*

FPT
-0.017
—0.006

0.018
~0.02t0 —0.03

—0.004
—0.001
0.012

D1
—0.028
—0.005
—0.008

—0.02t0 —0.03
—-0.003
—0.006

0.012

C
-0014
0.008
0.0t0 —0.01
-0.07
0.01
0.006

—0.001

A
-0.028
0.004
0.004
~0.01w0 -0.02

TABLE IV. Deviations of the calculated impurity bond lengths (in A) as compared with the experimental values from EXAFS.
—0.009
0.005
0.011

Host
GaAs
InAs
ZnTe
CdTe
ZaSe
ZnTe

C. Mixing enthalpies

Table V lists the mixing enthalpy parameters {1 fin PO
kcal/mole) for a number of alloys estimated from Eq. (41 RO,
for all the models considered, along with other theoreti- Dt
cal™'*~'* and experimental values.'™'® As alrcady dis- v

*SSHS, Ref. 8.
‘Quoted in Ref. 3.
SReference 14

*Ref. 1.

deviation

In
Ga
Cd
n
Te
Se
Mean
absolute
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TABLE V. Mixing enthalpy parameter 2 un kcal/mole! esumated from the full perturbation theory and several valence force
models discussed in Sec. 111, and companson with experiments and other theories.

I

A B C DI D2 E FPT  MZ* DL® FM  VV¢ Expt*
! (Ga,ADP 0.00 0.01 0.00 0.0t 0.01 0.01 -0.05
(Ga,ADAs 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.02 0.02 0.03 0.11 0.0
-~ (Ga,AlISb 0.02 0.03 0.02 0.02 0.02 0.03 —0.15 0.02 0.02 0.03 0.0
P
o (Ga,In)P 3.76 4.79 30 329 3.39 5.24 2.54 4.56 363 294 3.25,3.5
(Ga,In)As 297 3.76 2.36 2.61 2.69 4.14 1.60 249 2.81 2.42 1.25 1.65, 2.0, 3.0
P (Ga,In)Sb 222 2.83 1.77 1.95 2.00 3.09 0.81 2.53 1.85 1.83 147, 1.9
e
. (In,Al)P 124 4.22 2.77 2.78 2.87 4.60 2.55
(In,ADAs 2.86 3.65 2.32 2.49 2.56 393 217 3.60 2.81 2.37 25
r (In.Al}Sb 1.81 233 1.49 1.57 1.61 2.50 1.36 2.06 1.46 1.45 0.6
T
- (Cd,Zn)Te 1.80 243 1.73 1.43 1.49 2.45 1.24 2.12 1.97 1.63 i.34
, (Hg,Cd)Te 0.00 0.00 0.00 0.00 0.00 0.00 —-0.07 07, 1.4
.-j: (Hg,Zn)Te 1.63 2.20 1.56 1.30 1.36 223 1.50 1.91 1.81 1.48 30
N Al(P,As) 081 103 065 071 073 114 0.76
) GatP,As) 0.95 1.18 0.70 0.86 0.87 1.32 0.94 1.15 0.98 0.66 0.12 04, 1.0
é In(P,As) 0.60 0.78 0.52 0.51 0.53 0.84 0.57 06.72 0.58 0.52 04
Al(As,Sb) 4.3 5.45 3.38 3.80 3.88 5.92 4.09
GalAs,Sb) . 4.69 2.81 340 3.46 5.22 3.67 4.58 338 2.76 40, 45
| : In(As,Sb) 2.61 3.39 223 224 2.31 3.67 2.52 2.89 229 2.17 6.65 225,29
AI(P,Sbi 8.60 10.99 6.99 7.54 7.73 12.00 832
‘, GalP,Sb) 8.54 10.6} 6.36 7.72 7.88 11.66 8.66
. In(P,Sb) 5.87 7.64 5.08 4.99 5.15 8.04 5.76
Zn(S,Se) 1.04 1.39 0.98 0.85 0.90 1.49 0.90
‘- Zn(S,Se) .04 1.39 0.98 0.85 0.90 1.49 0.90
kS
i ZniSe,Te) .47 327 223 209 2.16 303 2.26 2.91 3 2.12 12 1.55
| ZniS,Te) 102 9.34 6.45 5.80 6.02 8.72 6.20
. Reference hoowmm Aot e, T -
=~ YReference 16.
‘Reference 18.
T YReference 17.
. “References 16 and 19.
i cussed, the chemical terms reduce the excess energies in fact, the' vz‘x]uesl of MZ are closer to model B than 10 A.
the cation impurities and increase them for anion impuri- To distinguish the quantitative nature of different
ties. The corresponding changes in ) are the differences theoretical models, we note that there are also important
i' between the FPT and model D2. We note that the reduc- factors that may mask the comparison between theory

¥t |

tions of 1 for the (Ga,In! alloys are very large (> |
kcal/mole! and also significant for iln A} alloys. Howev-
er, the tncreases in {} for the anion substitutional alloys
are not as large. Also, the 2 differences between models
D1 and D2 are less than 109 . Model A produces Q
values about 207 larger than model D1, model B in tuin
is 20% higher than model A, and model E s 1077 higher
than model B. The {) values 1n the simple spring model
imodel C) are seen 1., e about the same a» model DY, 2l
though the differcnces among system cun be positive or
negative  Although M/Z used the saine stramm model as
model A, their {1 valuces do not agree with our model A
values because their way of estimating (1 1« different. In

R R T Wy e L P : I B
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and experiment for ). One important factor is that the
mixing enthalpies extracted from phase-diagram analysis
are sensitive to sample and experimental conditions.
These Ay contain contributions from various nonideal

structures such as vacancies, impuntes, dislocations,
grain boundares, and surface conditions, 1n addition to
the ideal AM,, conadered here for sohd solutions. Thus,
our theoretical AH, should represent a lower bound
Another comphcation comes from the version of the
theory of solid solutton adopted.  The theory used for
analyas so far assumes a regular sohd solution with
second-neighbor pair interactions as was outhned in Sec
V. Recent experimental® = and theoretical’’ studies
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' FIG. 3. Calculated bond-relaxation parameter & from FPT and D2 as a function of 8,. The 8= 28, curve corresponds to the
3 theory of Shih, Spicer, Harrison, and Sher (Ref. 8). N
- .

have suggested the possibility of compositional clustering
or long-range correlations in alloys. Extending the theory
to include such effects will alter the simple results for
AH,, from Eq. (41). Moreover, there is evidence from the

composition variation of the alloy hardness®* and from
the optical-phonon frequencies®® that the shear coeffi- e
cients of alloys increase near the center of the composition
range. This will cause the effective continuum shear coef-
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FIG. 4 Plotof 7 7T asafuncnon &, .5, for 7 obtaned from o' FPT and b the expenimental £ Table V' Invar the ar-
cles are for amon atloys, the squares for cation substitution. The sohd hines m bath parts cotrespond to the simple theors discussed in

Appendix C. The dashed hines ur [, 7 Oseparate the misaible from immisaible groups

. AT . LR . JRE
I DTN LA A T DR IS




Wars

1
.

32 SEMICONDUCTOR PSEUDOBINARY ALLOYS: BOND-LENGTH . .. 3707

TABLE V1. Comparison of the critical temperatute T, of mixing and mehing temperatures of the
constituents T, and T3, in the order of their appearance in the parentheses. Also tabulated are the

averaged absolute values of 8y and the ratio . /b,,.

18y T,
System (%) (K)
{Al,Ga)Sb 0.6 0
(Al.Ga)As 0.1 0
(AL Ga)P 0.3 0
(Al,In)Sb 5s 342
(Ga,In)Sb 5.8 204
(Al In)As 6.8 547
(Ga,In)As 6.9 403
(AL In)P 7.1 642
(Ga,In)P 7.4 639
In(P,As) 32 144
Ga(P,As) 37 236
Gai(P,As} - 35 191
In(As,Sb) 6.8 635
GalAs,Sb) 7.6 924
AllAs,Sb) 8.1 1030
In(P.Sb) 9.9 1450
Gat(P,Sb} 1.3 2180
AlP,Sb) 11.6 2095
(Cd,Hg)Te 0.3 0
(Zn,Hg)Te 6.0 377
tZn,Cd)Te 6.2 312
ZniS,Se) 4.7 226
Zn(Se Te) 72 569
ZniS.Te) 11.9 1560

T./T, T./T, 180 /B
0 0 0.067
0 0 0.009
0 0 0.029
0.25 0.42 0.679
0.21 0.25 0.716
0.29 0.45 0.687
0.23 0.34 0.697
0.36 0.48 0.732
0.43 0.48 0.763
0.11 0.12 0.330
0.14 0.15 0.352
0.10 0.11 0.307
0.52 0.79 0.840
0.53 0.94 0.844
0.56 0.78 0.810
1.08 1.82 1.222
1.25 2.21 1.256
1.19 1.58 1.116
0 0 0.033
0.25 0.40 0.659
0.21 0.23 0.564
0.11 0.13 0.362
0.32 0.38 0.615

0.74 1.03 1.017

ficient C in Eq. (14) to be composition dependent, which
will cause Q0 to increase. Despite these uncertainties, use-
ful comparisons across the board in Table V can still be
made.

Based on the above considerations, we can conclude
that models B, E, and MZ predict Q values that are too
high. We should emphasize that all the (2 numbers for
models from A through MZ are directly calculated
without any adjustable parameters. The fact that models
A, C, and D1,D2, and the FPT agree with the experiment
as well as or even slightly better than the one-parameter
theories, the delta-lattice (DL) model'® and the model of
Fedder and Muller'* (FM), is already quite an accomplish-
ment. The few numbers taken from Van Vechten's calcu-
lations'” (VV) indicate that the dielectric model predicts
results at larger variance with experiments. There are two
important implications about the FPT that can be drawn
from Table HI. First, the theory predicts a small but neg-
ative ) value for several alloys. This not only means that
there is no miscibility gap in these alloys but also implies
a tendency toward ordering, in which the substitutional
atoms tend to be surrounded by different second-neighbor
species. For stoichiometric compositions, this implies a

tendency toward compound formation. Secondly, the
FPT tends to predict smaller {2 values than observed ex-
perimentaily, which should be expected according to our
discussion. To the extent that the FPT predicts the
correct AH,, values for an ideal solution, the difference

P _AH, may be attributed to imperfect conditions
and deviations from the ideal solution theory.

Finally, the calculated ) values in Table V provide
some guidance in separating the completely miscible al-
loys from tmmiscible ones.”*>" In a true random alloy,
the criteria™® for alloy mixing at a temperature 7T is that
T > T,., where the critical temperature T, is given by
Q/(2R, ), with Ry being the universal gas constant.”® For
an A,B,_,C ailoy to be miscible throughout the whole
concentration range, the requirement is that both the
melting temperatures T and T of the pure 4C and BC
compounds be greater than T,.. Table VI lists the values
of T, associated with the () values in the FPT, the ratios
T./T, and T,./T,. and the average absolute values of O,
for the alloys considered in Table V. In Table VI, T, 18
set equal to zero if Q 1s negative and I'5 s chosen to be
the lower value of the two melting temperatures, so the
critenon for not having a misabihty gap s T, Ty < |

o v,
l'l L ]
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There is an empirical rule’® stating that this will be satis-
fied if the lattice mismatch |8;) between the two alloy
components is less than 7.59%. However, we find that (see
Appendix C) a more precise rule is |8, >§,,, where
b, =1.63Y,, and X, is the ratio of the rms bond-length
amplitude fluctuation to the bond length at the melting
temperature T,. The values of T, for the compounds in-
volved® and the associate Y, values estimated from Egs.
(C2) and (C3) are tabulated in Table 1. The model used in
Appendix C yields T, /T, =(8y/8,1>. This suggests that
it is instructive to plot T,/7T; as a function of ' 8! /8,
as is shown in Fig. 4 for the T, calculated from FPT.
This plot is similar to the AE versus 8§, curve in Fig. 2 be-
cause, in fact, () is proportional to the sum of the AE
values of the two constituents (see Eq. (415]. However, 1f
T. /T, 1s plotted against |, alone, the FPT points are
much more scattered, and those of SSHS would not even
exhibit a smooth simple quadratic form because the lower
melting temperature T is not a smooth function of : 8, .
This result suggests that | 8, /5, <1 is a better cnterion
than |81 < 0.075. Figure 3 also clearly shows the chem-
ical effects: all the cation-substitution alloy pownts he
below the solid curve and all the anion-substitution alloys
have (T, /T,) values on or above the curve, corresponding
to negative and positive shifts in AE due to the chemucal
terms. Again, the curve based on the SSHS model 1s an
excellent universal representation. From the figure, we
see that all (P,Sb) alloys should have miscibihity gaps and
all (As,Sb) alloys are predicted to be miscible, although on
the borderline, because the actual mixing enthalpres are
larger than these 1deal calculated values  The figure also
shows that Zn(S,Te) has a misaibility gap but o smaller
value of T./T, than the (P.Sh- allovs. despite the fact
that its &, value is larger. Al these predictions are
consistent with the available expenmental evidence

VII. SUMMARY AND CONCLUSION

In this paper a simple theory of defect substutution en
ergies 1s formulated. The substitution energy is compact!s
separated 1nto a replacement energy A and 4 distortion
energy of the pure host crystal [see Eg. 2] However,
ngorous application of this theory requires an improve-
ment in certamn quantitative aspects of Harnson's bonding
theory.” particularly the elastic constants.” The most in-
teresting apphication of this theory presented in this paper
15 1ts perturbatton form which enables us to absorb the
measured elastic coefficients o the calculation and.
more importantly, to study the chemical effects. The on-
gin of chemical influences on impurity bond relaxation
can be attributed to three mechamsms [see Eq. (17 a
chemical force F, that either helps or hinders lattice re-
laxation, depending on whether it has the same or oppo-
site sign from the bond-length difference d-d; between
the host and impunity, a chemical energy that depends on
the difference of the polarities between the impunty and
host bonds, A4, and an effective elastic force constant #
that, when positive, also tends 1o restrain the lattice from
distortion. To study the effect of boundanes between the
core atoms around an impurity and the rest of the castic
medium, vurtous models based on the valence force field™

are denived and their results are compared with the full
pertusbation theory and available experimental data. We
found at least five models, including the FPT, that pro-
duce the correct impurity bond lengths with variances for
the compounds studied about equal to the experimental
uncertainties in EXAFS"* (_0.01 A). However, some
models are oversimplified and will certainly not predict
other properties equally well. However, more experimen-
tal lattice constant measurements to further test the
theory, particularly on (As,Sb) and (P,Sb) substitution sys-
tems for which there are larger differences between dif-
ferent models, are needed. It would also be instructive to
see if the predicted reversal for (Hg.CdiTe 1s found.

The excess energies of impunty substitution are also
shown to provide good estimates of the mixing enthalpies
2 of pseudotinary alloys. The chemical shifts are found
to have a negative net contribution to Q for most cation
substitutions, but posttive contnbutions for anion substi-
tutions. The chemical reduction of Q1 1n :Ga.lni alloys is
larger than 1 kcalmole 30 M7 Several VFF
models and the full perturbation theory produce results
for Q that are as good as the best theones with one adjust-
able paramicter However, the fuli theory tends o yield
answers on the fow side of the expenmental values, which
we argue s oas b shouid be because there are nonideal
structures that alse contnbute to £ The calculated Q2
values and the meltimg temperatures are used to predict
the existence -f alloy miscibilits gaps. and the results
correlate wels with expenments

Finally. we wisho te Comment on the accutacy of the
thevties that ate o toected to the presceat medel The per-
turbation theer nes aiteady been strerched bevond its ex-
pocted Texn o b vaadiy and predicis o te wathin expens
Mertal ancoriaities DDA even for cases with large
ot Length diftererces 5 - 601 The accuracy can only
he vmpros e the tall nonperiurbation theery outhined in
Seo T s ased Thie Cadcuiation s needsd for the strong
substitution cases 1hat woere ot considered an this paper
examples o B.Ga Bilo o NP LOONACG) NSbh, 0S8,
OMSe cand O Te cabstitations Althousn we beneve that
ter the properties ireated. tne madei with g contingum at-
tached 1o the secona sbetas as accurate as the perturba-
ton theory used. 1t remains 1o be seen af this s trye for
other properties, espeaially siram coefficents Finally, the
present theory has been extended to study alloys™® by
embedding clusters i an effective medium - This enables
us 10 study the bond length and energy  vanations
throughout the whale concentration range  However, a
quantitative calvulation sull awats an provement of the
accuracy of Harrson's theors . A simidar procedure 18
also bemng extended 10 4 study of the alloy electronie
structure for which a cluster CPA coherent-potential ap-
proximation' isvobving both potential and structural disor-
der'” wili be used.
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APPENDIX A: ELASTIC ENERGY IN CONTINUUM

In Sec. 111 the elastic energy outside a sphere of radius
R centered at the impurity is assumed to be a continuum
with a radial displacement ux?/r’. If the displacement
at R is ug, then ulr)=uo(R?/r*ft. The energy density in
the continuum is given by

Selr) = %Cll((’i, +efy+e;)
+Cialeen +e,,0,, 4 €y)

i 2 2 2
+ 3Cules, +ey, +eg),

where
du )
€xx = -‘a'f—‘ =R‘UO(7*—3XZ)/"S ,
du, au)' 2 s
eq:—a—x—— —é~x——'———6R UOXy/r'v"-~

Thus, the total elastic energy in the continuum is
AL = f ® de(r)d’r
dis R
241TRU(2)( _ZTC” — %CIZ + %C“)
=CRu} ,
where the effective shear coefficient is given by

CZTT(I.()C” “16C|2+48C“) .

APPENDIX B: DISTORTION ENERGY

In this Appendix we count the detailed contributions of
the bond-stretching terms Alr,-r,) and ‘“bond-bending”
terms A(r,'r;) for i ~jin VFF {Eq. (13)] that enter Eq.
(16) in FPT and in the VFF models in Sec. 111

1. a and B terms from the first-shell bonds

The four bond vectors pointing away from the central
impunty according to Fig. 1 are

TS B B S Y PRGN
rp=tl b, - 1-h 18y L
Thus, Alr;rb- 25d° and Airyr, iod’ The «

terms contnbute

$ 3a, - 20dT T RdT 6 &t

and the 3 terms contribute

TSR BN

i

6 3,

If an 4 atom 1s replaced by 4 B atom. as was done 1n
FPT, the a,; and 3, arc replaced by a2 and /3. respectively

. B . - N T
LA R T N T T B T TR

T P T B IR A P S S S
PRLPSPLALICNT PR P T W VROV T AP P

2. a terms from the second-shell bonds, 8 terms
between the first- and second-shell bonds
and among the second-shell bonds

For these terms we need to consider the four bond vec-
tors pointing away from C. They are

r={—1+8 —1+48 —1+8d/V73,

f=(—=148 1484y, 1+6+y)d/\V3

3,
f=(1+8+y, =148, 1+y+8d/V73

g oo

Then Afryra)=3i8+2yd? Alry 1) = — 3(8+y)d? and
Alryny)= ﬁﬁdz. Thus, the a terms from the second-shell
bonds become

4x3x3a[ +(5+2y)d? |} /8d* =2ald+28)d? ,

the B term between the first- and second-shell bonds are
4x3XIB 28+ yId)/8d =2y +61Bd?,

and the B terms among the second-shell bonds are

4x3x3B($864%)?/8d%=267Bd* .

3. a terms for the third-shell bonds, 8 terms
between the second- and third-shell bonds
and among the third-shell bonds adjacent

to the second-shell atoms

For these terms we need to consider the bond vectors
pointing away from B in Fig. 1. They are

r=01-86 -1—y—8 —t—y-8d /73,

n=U0+y, 143y —y, 143y —yid V3,

n={(~-1—-y" 14+3y"—vy, —l+}'"~)')d/&f3 ,
and

Fe=(—1—p" =14y =y, 1+3y" -y dVv3 .

Thus, we have

N
Ps

A(rl-r;)z—d

2 136+ 5y,
Alry Ty 4;—:6+2y~57”) .
Alrirg)- Sdiy
Arroora d;‘ 2y oy e 3y
Alryry) d;(b)” i
and
RYE S SR d; 4y -4y

For model A, 5" - r" . 0,50 the a termy of the third-shell
bonds become

403 3|2 Arrt s AT ) 8T Raydt
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the B terms between the second- and third-shell bonds are f=(—1+y, —1-y, - V3, ;::,:.
o g

4 3 3B[(Ar, 1,0 +2(Ar,13)? ] /8d2
=3BdY 8+ 2(5+2y )= 1882  + (& +2y)d?,

and the B terms among the third-shell bonds adjacent to
the second-shell atoms are

4% 3> 3B[2(Ar; 1) /(8d°) +(Ary ) ] =48y3d? .

For continuum and the only contribution from this group
are the B terms between the second- and third-shell bonds.
Since the displacements in the continuum are proportional
to 1/R%,y =8V3y/(19V19) and y"=8V2y/(11V1I).
Thus, these 8 terms become

n=(-1,1,1d/V3,

ry=(1, ~l+y, 1+yd/V3,
and

re=(1,1, - d/V73,

which only results in the first-order term A(r,-r;) = 3yd2.
Thus, the group contributes to

4~ 3% 3B[2Ar,1,)?)/8d7 =4ByMd* |

and the combined contribution from these two groups is
6B8yd>.

9 .|d* n2, 24t ey APPENDIX C: CRITERION OF
2d’B S (36+5y" )%+ 5 (6+2y —5v") MISCIBILITY
40V3 2 Starting with Eq. (24) and using the SSHS model
=1B| |36+ 19v15 y a=ay, one finds the mixing enthalpy parameter {2 to be
V3 Q= 3a(d sc —dpc)'No . D
40v'2
+216+2y - 1V 14 . where N, is Avagodro's number and & = 3(a ¢ +apc).

Then relate the mean-square bond-length fluctuation (£?*)

; St
at the melting temperature T, to T, for a compound by L
equating the average potential energy per unit cell to half OO
4. B terms for bonds adjacent of the thermal energy: -:.‘_"__-
to the third-shell atoms ] \ s ) A
(Vo 724X 3a(*)=3(2X3kp T, , (C2) A
These terms only enter model A, so r'=r"=0. There o ) ) s
are two different groups, one like those adjacent to C’ and where kg is the Boltzmann constant. Defining a Lieder- e
another like those meeting at C”’. The four bond vectors mann ratio of melting X, by -2
pointing away from C' are (22, d (C3) :::::::
n=(—L —l+y,—l+yid/v3, and choosing the mixing criterion to be T,./T,, <1, where Tos
fL=(—1,1, Dd/V3 T,, now is the smaller value of the two melting tempera- R
- _ tures of the constituent compounds, we require that N
n=(1,-1,1d/v3, s .
T, Qk 3 (dyc—dpc) W
and T = TIT T <! (C4) A,
_ m 4Rga¥,d Xd R
re=(1,1, —1d/V3. or L
Thus, the only contribution from this group is s
Jon Tom T e 80! /8m < 1. (C3)
4x3x3B[Alr 1)) /8d*=2By"d* . :
! 2] 4 where &, =1.63Y, and &, is the percentage bond- .o
The four bond vectors around C” are length difference. RS
R
-. .ﬁ‘
)
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Sensitivity of defect energy levels to host band structures and impurity potentials in CdTe
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A. Sher
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(Received 10 December 1984)

The sensitivity of defect energy levels in semiconductors to the host band structures and impurity
potentials has been studied for approximately 30 impurities in CdTe using four different band-
structure models. The discrepancies in the defect levels between two different sets of band struc-
tures and impurity potentials are found to range from less than 0.1 eV to the whole band gap (1.6
eV). The band-structure effects are analyzed here in terms of detailed partial densities of states.
Examples of contradictory predictions from different band structures are illustrated, and ways to

improve the theory are suggested.

1. INTRODUCTION

In several of our recent papers,'~’ we have applied a
method to calculate the band structure of semiconductors
that is both efficient and accurate. Because the procedure
involves casting the basis functions into orthonormal local
orbitals® (OLO), our method has the advantages common
to empirical tight-binding (ETB) calculations,®~ " except
that the Hamiltonian matrix elements to all ranges are re-
tained. The inclusion of these higher coefficients makes it
possible to produce excellent band structures including
conduction bands and effective masses. The method also
yields wave functions for optical property calculations.
Moreover, its OLO description also permits its extension,
through the coherent-potential approximation, to al-
loys.?~*

The recent attention focused on defects in semiconduc-
tors motivated us to apply our method to this problem.
The theories of defects have ranged from very sophisticat-
ed self-consistent density-functional theory''~'* (SCDF)
to simple ETB calculations. It is generally recognized
that SCDF is as accurate in defects for the ground-state
properties as it is for pure semiconductors, but less certain
in assigning excited energy levels. ETB, because it can
produce results for many systems in one study, claims to
predict the trends of deep levels'® even if the accuracy for
a given impurity may be poor. However, this contention
remains to be verified.

To assess this concern, we ask the following question:
“How sensitive are defect levels to host band structures
and tmpurity potentials”” To this end, we have adopted
the simple yet nontrivial defect model, that of site-
diagonal substitutional defects often used in ETB studies.
CdTe was selected in this study because its band structure
has been examined in great detail by us, and there are
three published band-structure models®~ ' that we could
easily generate for comparison. There 1s also a consider-
able body of experimental data on deep states in this sys-
tem.'¢-V

.

II. CALCULATIONAL PROCEDURE

In the simple site-diagonal substitutional defect model,
the impurity energy levels E are determined by the equa-
tion

1—-v,g,(E) =0, (1)

where a designates the symmetry of a local state, e.g., [,
'3, and I3 on an atomic site in the zinc-blende structure,
and g, is the real part of the diagonal matrix element of
the host-crystal Green function. g, can be calculated
from the partial density of states (PDOS) by

8alE)= [ pale)/(E —€)de . )
The PDOS is given by
Pol€)=3 |as(k)|Ble—~e,(k)), 3)
nk

where €,(k) are band energies and a, (k) are the probabili-
ty amplitudes of the band state in the Bloch basis con-
structed from the OLO labeled by a. The Briilouin-zone
integration in Eq. (3) is calculated using an accurate ray
scheme.'®

Because a principal concern of this paper is the sensi-
tivity of impurity levels to the host band structures, we
should empbhasize the difference between our method and
ETB. Our method consists of four steps.

{1) We start with four Gaussian orbitals per atom and
empirical pseudopotentials,'® and compute the Hamiltoni-
an matrix H(k) and overlap matrix S(k) as was done by
Kane? and Chadi.”

(2) The Gaussian orbitals are transformed into OLO,®
s0 H (k) is transformed into Hy(k) and S into the identity
matnx. The band structures calculated from Hytk) are
accurate to 5% as compared to more sophisticated
methods using the same potential.'

(3) A spin-orbit Hamiltonian in the OLO basis* is in-
corporated to deal with this interaction.

{4) To compensate for the effects of truncated basis and
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nonlocal! potentials, a perturbation Hamiltonian H, is
added. H, has the same form as a truncated ETB Hamil-
tonian. The parameters in H, are adjusted to fine tune
the important band energies and effective masses.’~*

Although both ETB and our methods are empirical,
there are two major differences.

(1) While most ETB retains the H matrix elements only
to the first- or second-neighbor shell, ours extends to all
ranges, so that the high Fourier components needed to
produce the sharp band curvatures are properly given.

(2) Our method can directly generate wave functions for
calculation of other properties.

Thus, while our method yields more accurate band struc-
tures, it retains much of the advantage of ETB, namely
the computational speed and a simple direct-space
description of the Hamiltonian.

III. BAND STRUCTURES AND PARTIAL
DENSITIES OF STATES

Figure 1 depicts the four band structures to be con-
sidered for CdTe. OQur result is in panel (a); panels {b)
{Ref. 8) and (c) (Ref. 9) are two ETB band structures with
the Hamiltonian matrix elements truncated at second
neighbors. (Because different parameters were selected,
these two band structures are not identical.) Panel (d)
(Ref. 10) results from the use of five basis orbitals per
atom; the extra one is an excited s state. All these band
structures are adjusted to have the proper fundamental
band gap of 1.6 eV. The principal differences one sees on
first inspection are in the band curvatures, especially the
conduction bands. The effective mass at the bottom of
the conduction band in panel (a) is 0.1 times the free-
electron mass, in agreement with experiment,'’ while in
other panels it is more than twice as large.

Figure 2 shows the densities of states (DOS) for each of
the band structures in Fig. 1. While the valence bands at
least exhibit general common features, the conduction
bands are almost unrecognizable as representing the same
compound. In panels (c) and (d), for example, there is a
second band gap above the fundamental gap. Also note
that there are two extra narrow peaks associated with the
two extra excited s orbitals (one for Cd and the other for
Te) included in the calculation.

To analyze the band effects on defect levels [see Egs. (1
and (2)], the DOS is further decomposed into partial den-
sities of states for [(s), [+(p'’), and Tyip/?) states on
the Cd and Te sites, as shown in Figs. 3—-6. The T,
PDOS are not shown because they are nearly the same as
I, with only a slight upward energy shift. These PDOS
show how the “atomic™ levels evolve into band states.
These curves contain useful information about many
properties, e.g., the relation between the crystal bonding
and atomic energies. and how potential disorder in alloys
affects different parts of the bands,” " in addition to de-
fect Jevels studied here.

The I'(Cd! PDOS shown in Fig. 3 split between the
conduction and valence bands. [t i« generally assumed
that the cation s states an I11-V and 11-VI compounds

ENERGY (eVv)

FIG. 1. Four band structures of CdTe used for comparative
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\‘, evolve into the conduction bands, while the anion p states all four panels in Fig. 5 show that the Te s states are con- o
o.® make up most of the major valence bands just below the fined to the deep valence-band states, as generally recog- R
2 gap. Thus it is perhaps a surprise to see a prominent peak nized. Finally, Fig. 6 shows that the Te p states dominate -
derived from the cation s states at the bottom of the ma- the upper valence-band states. Panel (a) has much less mE
. jor valence-band structure. However, this is a general conduction-band content than the other three panels. As 0 i:
- feature for all sp’-based compound semiconductors. we will see, these differences can result in quantitatively (-'-:
- These are the states responsible for the first observed  or even qualitatively different predictions about the deep o ::
-~ breakdown of the virtual-crystal approximation for a levels. .-;‘ 2
- semiconductor alloy: Hg,_,Cd,Te (which is caused by . ¢
v . : 4,522 -
the large s-energy shift between the Cd and Hg sites). IV. IMPURITY-LEVEL DETERMINATION - ;
- A more detailed examination draws attention to some RO
. important differences among the four panels in Fig. 3: A convenient way to study the impurity energy levels A
= the valence-band peak in panel (c) is about 2 eV higher using Eq. (1) 1s to rewrite it as vy =1/g,( E) and plot E as L
- than the rest, and it is also high compared to experi- a function of v. Once this E-v curve is deduced for each -
’ ment.?> Our conduction-band PDOS in panel (al is a, the deep levels E, for a given impurity can be read off T
- broader than the others. The ratio of the integrated the curve by drawing a vertical line at the appropnate -
PDOS in the conduction bands to that in the valence value of v, for the impurity. We set the zero of energy at &_
N bands in our model is larger than those in other panels. the top of the valence bands. Because the gap is 1.6 eV, -
T Also our PDOS just below the valence-band edge is obvi- we will focus on levels in the energy range from —0.5 to =
- ously smaller than that found in other models. 20eV. v
" Figure 4 shows that the Cd p states are concentrated in Calculations have been performed for all neutral impur- Lo
\ the conduction-band states. This is particularly true in ities listed in Table 1. Because we do not believe that -
> panel (a), where their contribution to the valence-band there exists a uniformly accepted table for v we have - 3
. states shrinks almost to nothing. In other panels, there  adopted a table that we used for structural studies.?**
? are still sizable (~ 20%) valence-band states. In contrast, Table I lists the term values, which we obtained from to- - f.
..\ -~ '_.‘
~: TABLE 1. s- and p-state correlated term values in units of —eV. The top entry is the s-state, the SO
" second the p| ,;-state, and the third the p;,;-state energy. (All energies are negative.)
< 1 i i v v vi vil ! ]
Li Be B C N 0 F
5.390 9.320 14.003 19.814 26.081 28.551 36.229 ) .
5.412 8.300 11.260 14.540 13.613 17.484 S
5.412 8.300 11.260 14.540 13.610 17.420 RS
Na Zn Al Si P S Cl “
5.140 9.390 11.780 15.027 19.620 21.163 25.812 v ”
42137 5.980 8.150 10.610 10.449 13.136 . _
; 4.011 5.980 8.150 10.550 10.360 13.010 S
= K Cd Ga Ge As Se Br S
4.340 8.990 11.230 16.396 20,014 21.412 24.949 PN
4.313 6.000 7 880 10.14¢6 10.188 12.153 N
] 4.097 5.850 7.694 9.810 9.750 11840
> Rb Hg In Sn Sb Te 1 -
4.180 10.430 12.032 14.525 17.560 19.120 21.631 End
. 4.998 S.780 7.340 9.39] 9.951 11.470 W
n. 4.031 5.453 6.879 8.640 9.010 10.450 I
Cs Pb 0
- 1.890 15.250 DR
7410 .
o 5479 & 3
Cu --
o 7.720 N
- RN
- Ag ,": Y
o~ 7.570 >
. 3.647 B L
i 1487
. Au . ::.
9220 R
3440 e
- 3 68N
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F1G. 7. The E-v curves for the [, states on a Cd site.

tal energy differences between atomic configurations cal-
culated using the norm-conserved pseudopotentials®® and
self-consistent charge-density-functional theory, with the
first ionization energies adjusted to be the experimental
values.?® These term values are found to yield consistent-
ly better structural properties®® in Harrison's theory?’:?
than those based on Mann's values?® adopted by Har-
rison.”® The impurity-potential parameters will then be
taken as the difference of the term values between the im-
purity atom and Cd (or Te). To study the sensitivity of
E, 10 v,, we shift v, by +0.5 eV and compute the corre-
sponding changes in the energy levels.

Figures 7—10 display the E-v curves for several a.
Each figure has four curves, corresponding to the four
panels of PDOS in each of Figs. 3—6. The functional
behavior of these curves can be understood qualitatively
using Eq. (2) and Figs. 3—6. If E lies in the gap, the con-
tribution from conduction bands is negative, but positive
from the valence bands. The closer the PDOS to the E in
question, the larger will be its influence. Applying this
argument to the I',(Cd) representation, we see that the
curves in Fig. 7 are negative in the gap region because the
PDOS in Fig. 3 near the bottom of the conduction bands
are much larger than those near the valence-band top.
Thus, on the Cd site, only impurities with an s energy

20 T T T T T
15 R
10} 5
>
L
w p
05 f—" g
o.or /;-—::
VP P
05 i 1 ."'/.(” 1 -
-25 0 5 10 15 20 25

V {eV)
FIG. & The £-v curves for the T- states on a Cd site
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15+
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FIG.9. The E-v curves for the I' states on a Te site.

below the Cd s level (—8.99 eV) will produce a ' level in
the gap. However, we note that in Fig. 7, g,(E)=0 for
models (b) and (c) just below the valence-band edge be-
cause of cancellation between the conduction- and
valence-band contributions. At this E value, the E-v
curve switches from v=—w to v=o (not shown); an
ideal vacancy level (corresponding to v, = o) is located at
this E. A similar consideration, but with the conduction
and valence bands interchanged, leads to an understanding
of the curves in Fig. 10. Using the same principle, we can
easily understand why all curves in Fig. 9 for the I'4(Te)
representation are positive, but the reasons for the large
displacements between these curves are not easy to
deduce. In Fig. 8, the curve labeled a is distinctively dif-
ferent from other curves, because the PDOS in panel (a) in
Fig. 4 is completely dominated by the conduction band;
however, for the other panels the PDOS just below the
valence-band edge are as large as those just above the
conduction-band edge. This produces a very sharp nega-
tive E-v curve for (a), but split behavior for (b), (c), and
(d).

These E-¢ curves provide a clear picture of how dif-
ferent host band structures may affect the deep levels.
Numerical values for the impurity levels can be obtained
from these figures by drawing vertical lines at the ap-

Sn Ga CdAg
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propriate impurity potentials (i.e., differences between the
term values listed in Table 1), as has been shown for
several representative impunties. To provide a more
quantitative companison, Table II lists some calculated
impurity levels E, and the corresponding changes AE,
due to the 1-eV change in v,.

V. RESULTS AND CONCLUSION

To summarize we recall that band models (b) and (c)
are the same second-neighbor ETB with two different sets
of parameters, and model (d) is a first-neighbor ETB with
one extra s orbital per atom. Our model [model (a)] has
the form of ETB but is derived in a very different manner
and includes all the long-range interactions. Therefore,
we expect that the results from models (b) and (c) will be
close, model (d) will have larger discrepancies from (b)
and (c) than that between (b} and (¢), and model (a) will
differ even more. This is evident from Figs. 7—10 and
Table 11. We found the energies for the [',(Cd), I';(Te),
and I4(Te) states produced by models (b} and (c) agree
within 0.1 eV. For the other states, i.e,, [ (Te), I';(Cd),
and [3(Cd), the energies from (b) and (c) are qualitatively
similar, but the difference can be as large as 0.4 eV. The
largest discrepancy between models (d) and (b) [or (c)] is
more than 0.5 eV, and that between (a) and other models
is more than 1 eV. The largest difference comes from the

el e ek e ek )b evel onel SN s e e SR SN
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p levels on a Cd site. For example, the filled p level of C
on a Cd site in model (a} is a resonance state just below
the valence-band edge but is a donor state in the other
models. Similarly, model (a) puts the neutral Te antisite
defect p levels at about 7 and 3 of the gap [E(I';)=0.48
eV and E(Iy) =0.95 eV}, while other models assign them
as resonance states inside the conduction bands. We also
note that the discrepancies between different models are
not uniform, but vary with v,. Consider [,(Cd) for ex-
ample. All four models yield the same ordering and about
the same energies for the group-11I impurities Al, In, and
Ga. However, as v becomes more negative, the splitting
between the curves increases, so the discrepancies become
larger [~1 eV difference between models (a) and (d) for I
impurity]. Similarly, for the I';(Te) states, all four models
put the Sn impunity energies close to the valence-band
edge, but the agreement deteriorates as v, increases.
Regarding the sensitivity of energy levels to impurity
potentials, Table II shows that a 1-eV shift in v, produces
a change in E, ranging from less than 0.1 to 0.65 eV.
Very little is known about the size or trends in errors in-
troduced in v, from the use of atomic term values. How-
ever, we know that the discrepancy of v, between two dif-
ferent tables of atomic term values can be larger than 2
eV. This discrepancy translates into an uncertainty of less
than 0.1 to more than 1 eV in the impurity energy levels,

TABLE II. Defect energy levels £ and changes AE due to a 1-eV change in the impurity-potential parameter. All energies are in

units of eV, ¥ stands for ideal vacancy.

Modcl (a) )

Model (b)

~ Model (c)

Model (d)
Defect E AE E AE E AE E AE

I', on Cd site
Ga 1.29 0.39 1.42 0.24 1.33 0.23 1.57 0.18
C -0.21 0.09 0.38 0.09 0.36 0.13 0.74 0.08
Si 0.67 0.30 1.02 0.10 0.93 0.19 1.27 0.15
P 0.19 0.1 0.39 0.09 0.38 0.08 0.75 0.08
(¢} < -0.5 --0.02 0.02 0.04 0.01 0.3 0.02
Te --0.13 0.13 0.44 0.10 0.42 0.08 0.79 0.09
Ci < --0.8 006 0.03 0.10 0.02 041 0.04
v, <« =05 < 0.5 -0.30 -0.20

I'- on Cd site
C -0.02 0.37 1.32 022 1.59 0.20 1.39 0.19
Si 1.57 0.65 » 2.0 -2.0 2.0
P 0.16 0.38 | .4% 0.26 1.73 023 1.82 0.21
O < 0S5 .89 0.14 1.22 013 102 0.12
Te 0.4% (.55 1.60 029 1. KR 023 1.66 0.24
Ci - 08 V.90 0.17 1.29 0.14 1.09 0.14
V., . 05 (.00 021 0.06

. on Te wite
L 014 029 12N n22 1.15 0.3% C~6 02s
Cu < 0.8 1S4 04; 012 0.82 0.01 0.32

I-oon Te site
Ag 189 02 vle 022 0 D23 0.99 0.20
Cd .66 [AIRE) [ 026 1.08 0.26 1) XS 022
Ga (.98 (144 06l [T (.88 032 .40 0.30
Si 0.07 (B "4 (I [FIRT 0.3 ().3% [t} 072
Sn 0 2. R iy 0 1] 013 0.4 002 028
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which is comparable to that due to differeat host band
structures.

Putting this large uncertainty in the deep levels against
a band gap of 1.6 eV, we are left with great doubts about
the predictability of this oversimplified theory. Unfor-
tunately, the experimental means available for identifying
microdefects in semiconductors are sull very himited, and
the ab initio band theory 15 still not capable of accurately
predicting the energy levels. Thus, there is a great temp-
tation to use simple theories like the one carried out here
to help with the identifications. To illustrate this point,
consider the following examples: Table II shows that Li
on a Te site has an s level of 0.14 eV in model (a), so one
may be tempted to relate 1t to the acceptor state identified
experimentally. ' However, this is not the hydrogenic ac-
ceptor state on a Cd site, as one might anticipate. One
might also want to assign the 1 and + gap states for the
Te antisite p levels on the Cd site found from model (a) as
those seen in experiments.'™ ' Because of the large uncer-
tainty in the calculation, these results should be regarded
as suspicious surprises rather than theoretical confirma-
tions.

The results presented here should not discourage con-
tinued research on the ETB approach, but improvement is
clearly needed. Work ranging from universal**?"% to
specific* "% structural studies to our band calculations
and alloy studies' =7 indicates that the ETB type of theory
is practical for both bonding properties and electronic
structures. The reason that ETB works well for some
properties, e.g., photoemission spectra and bonding prop-
erties, but not for impurity levels, is that the former de-
pend only on the gross total density of states, while the
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latter have been shown to be sensitive to the details of the
partial densiues of states.

To establish the credibility of ETB in defect studies,
one needs 10 look at the problem more seriously. The
most difficult and yet important rask is 1o deveiop a better
way for determuining the Hamiltonian matrix elements.
Haas ef al.® and Harrison®™?® have suggested using the
atomic term values as the diagonal matnx elements. Our
work'!™* has suggested using a universal long-range in-
teraction to improve the accuracy of the conduction
bands. Several studies"?"*%33 have also pointed out scal-
ing rules of the matrix elements. A combination of these
ideas may lead to an acceptable model. Secondly, both
the bonding and deep-level states of impunities should be
studied at the same time in order to provide correlated in-
formation for defect identification. Finally, more realistic
models should be examined. Besides the substitutional
site-diagonal defects, one should consider the possibility
of interstitial, paired, and even more complex defects.
One also needs to deal with long-range impunty poten-
tials, possible charge shifts, and lattice distortions. Pro-
gress in all these areas can be expected if the calculation is
constantly correlated with experiments and available
ab initio theory.

ACKNOWLEDGMENTS

This work was supported by AFOSR Contract No.
F49620-81-K0012 and Grant No. AFOSR-84-0282. A.-
B. Chen would like to thank Professor W. E. Spicer of
Stanford University for his hospitality.

Vol 13

CCOE Joness Vo Nare b Lundawst, andg DU Pulia b Vae
Scr Technol 210087 jus):

PROT. Colliny and T.C MGl 1 Ve SO Tachne) AL inss
JuR3.

KK Kanasawa g FOC Brown, Phee Rev 13§ 4370
1964

A B Chen. Phinve Rev B 6 329 1ot

D3 Chad 1P Walter, i ML ¢ ohen P Re B S
ISR ]972

VE O Kane Phas Rov B 13347 197

“iD 3 Chadi, Phys Rev B 16, 3870 jum-

TIOA Sitherman. PO Mongar, Wb Spicer anc A Mo
Vac Sar Technal 210142 i9s0

SACB Chenand A Sher, Mictoncicnee 301 1ng

A Sher. ALB Chen and W B Spicer o T s
tioral Confercnce on Detoci,on Semaondu, * -
C. Kimerling and J M Parvev ht The Moo
of AIME, 1985 1 732

S N wods

3Gl B o Bachelet, D Hommare and M Shun e Rev b
26, 4199 (198D
I6C. Kattel, Intreduction o S nd Stan Bhvas i e W

ley, New York, 1976, p 7¢ Table 2
WA Harrnison, Flecirorn Strwciure i e S




LA Sthe At s iasatiamen TN

- s
’ -
! k1 SENSITIVITY OF DEFECT ENERGY LEVELS TO HOST . . . 6497 "~
r ‘ \
\ . :\
t (Freeman, San Francisco, 1980). D. G. Petufor and R. Podloucky, Phys. Rev. Leut. 53, 826 e
" 2W. A. Harnison, Microscience 3, 35 (1983). (1984). P
i\ 9], B. Mann, Atomic Structure Calculations, 1: Hartree-Fock  3'D. C. Allan and E. J. Mele, Phys. Rev. Lett. 53, 826 (1984). L~
D Energy Results for Elements Hydrogen 1o Lowrencium (Clear- 32D, §. Chadi, Phys. Rev. Lett. 52, 1911 (1984). ; 3
. inghouse for Technical Information, Spnngfield, Virginia, 330. K. Andersen, W. Klase, and M. Nohl, Phys. Rev. B 17, e a{'
. 1967). 1209 (1978). £
s-'l |-':.
5: [

..".

?"'v

o A
£34
o
.
o

S

"I' ,, 'v. ‘-_ " N

B
R 4N

:
LAY, )
L]

S

F K
i

° y a"l "’.I
P N

PR
-y (RN

et
e by

fig%e

L' ' L '.-
N 2’
R Y .
h . =

. - -,
. -
. - l-~.
. D e
®

uv.-

- ‘.-
- . -

., ‘.-_ ‘-..
. S o
. 8L .
R at
3 u-“.-
.. 3 -'
K}

X




fle

¢

r

PO N AN SO IEIES

VOLUME 55, NUMBER }

PHYSICAL REVIEW LETTERS

15 Jury 1985

Binding Energy and Spectral Width of Si 2p Core Excitons in Si,Ge; _ , Alloys

S. Krishnamurthy and A. Sher
Physical Electronics Laboratory, SRI Internanonal. Menlo Park, Califorma 94025

A.-B. Chen®’
Depariment of Physics, Auburn University, Auburn, Alabama 36849
(Received 24 January 1985)

A calculation is presented to explain the anomalous experimental behavior of the Si 2p core-
exciton binding energy and linewidth in Si,Ge,; . alloys. The observed minimum in the linewidth
near x = 0.15 can be explained as the result of a competition between intrinsic broadening due to
screening and extrinsic alloy broadening. For pure Si. the binding energy is estimated to be
0.15 £0.05 eV and the width is shown to be smaller than that observed at x =0.15.

PACS numbers: 71.55.Fr, 71.35.+2, 78.70.Dm

Until 1984, the Si 2p core exciton was believed 1o
have an anomalously large binding energy.'-'? Later,
Newman and Dow'! proposed a radically different pic-
ture in which the Si 2p core exciton is in fact a reso-
nance with a negative binding energy. They further
predicted that the exciton binding energy remains neg-
ative throughout most of the Si,Ge,_, alloy composi-
tion range, excepl near x = 0.20 where it becomes
positive. In a recent experiment,'? Bunker er al. found
an znomalous sharpening of the exciton spectra near
x=0.15. the data were interpreted to support the
Newman-Dow point of view. Yet the most recent ex-
periment!? still suggests a positive value for the bind-
ing energy E2 in silicon.

In this Letter, we present a calculation that offers a
plausible resolution to the above problem. In our
theory. the calculated Si 2p core-exciton binding ener-
gy Ep(x) and the linewidth A(x) in Si,Ge,_, alloys
are sensitively dependent on the parameter EY. A
companson of the calculated A(x) with the experi-
ment'? suggests a positive value 0.15 +0.05 for Ep.
The anomalous experimental spectrum'? near x =0.15
1s explained as a result of a competition between an in-
trinsic broadening A; due to screening and an extrinsic
alloy broadening A 4. In the present theory, there is no
need to suppose that the exciton suddenly changes its
character from an extended effective-mass-like state 1o
a deep localized state.

We need to calculate £, and A =3, + 1, as a func-
tion of alloy concentration x The calculations are
based on a guantitaive coherent-potential-upprox-
imationn {CPA) band structure. Details of the CPA
calculations will be presented elsewhere. Below. we
briefly discuss a Green’s-function method for calculat-
ng Eb and A 4

The one-parucle effective Green's function in CPA
takes the form

tonian and X(£) is the seif-energy. The site-diagonal
Green's function is denoted as

F (E) = (¢,1G(E)lo,), (2)

where ¢, is a localized orbital of specified symmetry.
Here we only need to consider a = s for 4, symmetry.
The corresponding function in pure Si is denoted as
F,°(E). Following the theoretical treatment of deep
substitutional-impurity levels.® the core-exciton level
for pure Si is determined by

FO(E) = (V—ES)1, 3)

where E,S' is the site potential seen by an s electron in
bulk silicon, and V is a central-potential parameter.
For a chosen value of V,, Eq. (3) can be solved for E.
and vice versa. Then E)=E2—E, where E? is the
conduction-band edge in pure silicon. Because of the
uncertainties in the value of experimental £ and
theoretical ¥, we treat EQ (or V) as a parameter. The
binding energy £, in a Si,Ge;_, alloy can be calculat-
ed by solving

FAE =V - E, Y (E)Y (4)
where
E,=xE>+ (1~ x)ESe. (s)

Then E, is given by
Ey=F - E (6)

The calculated values of the conduction-band edge
and the exciten level measured relative 1o the top of
the valence band are plotied 1n Fig. 1 The band gap
increases with x with a slope disconuinuity at = 0.18
The dashed lines a. b, and ¢ represent exciton levels
obtaine ! with £)=0.1, 015, and 0.30 ¢V respective-
ly. The binding energy £, is also an increasing func-
tion of x, with a slope discontinuity near =018

, ) = ¥, ' - . .
o ti) a2 h The CPA introduces a slight bowing in £, and £,
where # s the virtual-crystal approximation Hamii- Strinati'® has calculated the variation of A, with £,
320 ¢ 1985 The Amenican Phystical Society
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FIG. 1. Variauon of the band gap (sohid line) and the Si

2p core-excion level with x in Si,Ge, -, alloys. The energy
is measured from the top of the valence band. The dushed
curves a. b, and ¢ represent exciton levels calculated with
EP=0.1.0.15 and 03 eV. respectively

by replacing the short-range Coulomb potential with a
spherical square well of variable depth and a screened
Coulomb tail. Strinati’s results can be used to estimate
A, corresponding to the calculated E,. A, decreases
rapidly with £, then saturates for larger £.

The contribution to the natural linewidth from the
alloy broadening is calculated by a consideration of the
electron part of the exciton wave funciion, &,. The U/
is expanded in a linear combination of the s part of the
conduction-band wave functions ¢ }:

U(k) =3 Cpdr3(k). (7)

ns

We found that alloy scattering is only moderaie and s
scattering is dominant. thus, the alloy broadening
A, (E) 1s well approximated by

A B =x(1 -8 ImF(E), (8)

where &, is the difference between £ and EC¢
Hence. the alloy-broadening contribution 10 A is relat-

ed 10 the alloy broadening of the band states.
A, (k.E)

A= Lw 3 G (KA (B (k)
: k

l\ 33 CRALKE)
! kK n
= [ (A (£1aE
= (1= 08km [pEVE (9)

The integral in Eq. (9) is evaluated numerically.
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FIG 2. Vanauon of A (solid lines) and A, (dashed lines)

with x for three E? values

The calculated A, which is the sum of 3; and A 4. 18
plotted against x in Fig. 2 for three values of £C. In all
three panels, the dashed curve represents A, and the
solid hine represents A. It is seen from Fig. 1 that the
exciton level follows the X edge of the conduction
band. Hence the binding energy £,. relatuve to the
conduction band edge, remains almost constant (for a
given E) until the minimum switches from the XY
edge to the L edge. Because of the change in the siope
of E,. E, decreases rapidly when L becomes the
minimum. Correspondingly. A, varies slowly until the
X 10 L crossover and then increases rapidly. This
feature is clearly seen in Fig. 2.

For £2=0135, the A, and A, are comparable near
x=0.50. and A, dominates for all small x and large v
These two competing mechamisms give a relative
minimum near n == 0.13 a broader maximum near
A = 0.50, and a smaller minitmum for pure silicon. As
EQ is decreased. the relative mimimum s shifted 10
larger x. eg. the minimum shifts o =020 for
EQ=010 ¢V For E)=0.15 eV. the positon of the
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relative minimum is in agreement with the expern-
ment'? (By measuring the relative width at x=0.1$
to that x = |, one can make a better estimate of £).)
To correlate the theory with experiment, the calculated
1/a7 1s compared with the measured'? (Ap) ' (du/
dE) ., in Fig. 3, where Au is the edge step and
(du/dF),,, are the maximum values of the derivative
of absorption spectra with respect 10 photon energy.
Because the experimental values are given in arbitrary
units, the values are normalized to agree at x =0.5.
The observed anomalous behavior near x=0.15 and
the qualitative x dependence in that region is clearly
replicated by the theory. However, the calculation
predicts g larger maximum at x = 1. It would be in-
teresting to have experiments that cover the entire
range of xto further test this prediction.

For larger values of Ey. the calculated £, is also
large and hence A, decreases slowly with v Because
the broadening is determined mamly by A4, the
linewidth s expected 1o be small for v =0 and v =1
only. this occurs for £5=0.30 eV For negative values
of £ £, remains negative for all values of x. Accord-
ingly. the hinewidth s broad for all x, and there would
be no such anomaly as in Fig 3

The calculations presented in this Leuer are slightly
different from alchemy approximations.® We treat the
ceritral-cell potentisl b as a4 parameter and narrow its
range from other considerations. We examine values
of b - £ of -849. ~709. and -656 eV, corre-
sponding to £ values of 0.30. 015, and 0.10 eV,
respectively It the stnict alchemy approuvmation were
taken. the value of = EM would be £7— £2'= —4.59
eV in the tught-binding approxamation. and a negative
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FIG 3 The calculated T A7 values (solid hine) compared

with the expersmental results fmarks) from Ret 12
value of caiculated A6S1) s 0127 eV
normalized to the theory w1y - 008
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EQ (—~ -0.10 eV) would be obtained. When long-
range interacuions are included, however, the above
resonance state becomes 4 shallow donor level, which
1s the experimental situation for a P impurity in $i
Our results suggest that } for core excitons in Si s
deeper than those implied by alchemy approximations
However. if we use the alchemy approximation as a
means of scaling. the value of V for Ge 3p core exc:-
tons should be deeper than that for Si 2p core excitons.
Hence. the curve corresponding to £y =0.30 in Fig. 2
should be a reasonable estimate for Ge 3p core-exciton
binding energy in alloys. Therefore, we do not expect
1o see an anomalous behavior of A in alloys for this
case.

In summary, the present calculations of the Si 2p
core-exciton binding energy and linewidth suggest that
the exciton level is about 0.15 +0.05 eV below the
conduction-band edge for pure Si It follows the X
edge for A > 0 15.1n the Si Ge,_, alloys, and F, may
eventually reach zero in the dilute hinut x — 0 Our
value for £ represents the lower end of the previous
measurements.'~® but 1s in good agreement with a re-
cent experimental’’ value of 0.120 + 0.03 eV. By con-
sidering the intrinsic linewidth and the alloy broaden-
ng. we can explain the observed relative mmmimum in
the hinewidth near x = 0.15, without requiring a sud-
den change of the exciton character. On the basis of
this calculation. we expect the corresponding width in
pure Si to be even smaller than that observed near
x=015 We further argue that the binding energy of
Ge 3pcore excitons should be larger than that of Si 2p
core excitons and there should be no anomaiy 1n the
Ge 3plinewidth in ailoys.

This work was supporied in part by the U S. Depart-
ment of Defense Advanced Rescarch Projects Agency.
under Contract No MDA 903-83-C-0108 and the Aur
Force Office of Science Research through Grant No
AFOSR-84-0282 Onec of us (A-B.C.) would hke o
thank Professor W E Spicer for his hospitality at
Stanford Universiiy.
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Generalized Brooks’ formula and the electron mobility in Si, Ge, _, alloys

Srinivasan Krishnamurthy and A. Sher
SR1 International. Menlo Park, California 94025

An-Ban Chen
Auburn University. Auburn, Alabama 36830

(Received 19 March 1985; accepted for publication 7 May 1985)

A formula for alloy-scattering-limited electron mobility in semiconductors is obtained for
indirect gap systems with multiple band minima. All the input parameters needed are defined
explicitly. The drift mobility of Si, Ge, ., which has adip at x ~0.13 and a broader minimum at
x ~0.5is calculated by adding alloy scattering to other scattering mechanisms and correlates well

with the measured Hall mobility.

The electron and hole mobilities in semiconductors are
determined by the band structure and various scattering
mechanisms, predominately impurity and phonon scatter-
ing. For alloys, the mobility is also affected by disorder aris-
ing from aperiodic atomic potentials and atomic positions.
Many years ago, Nordheim' and Brooks® obtained an
expression for alloy-scattering-limited electron mobilities in
metals and semiconductors, respectively. Brooks’ well-
known formula reads

_ 2ne#'N, 1
Ha 3x(1 — x)m**"? (AEPJKT
where N, is the number of atoms per unit volume, m* is a
band-edge effective mass, x is the fractional concentration of
one of the species, and 4 E is an energy parameter character-
izing the alloy potential fluctuations. Although this formula
has been widely and, to some extent, successfully used for
direct gap materials,””* the identification of the alloy disor-
der parameter 4F remains uncertain. Various suggestions
have previously been made for AE, e.g., and band-edge dis-
continuity® or band-gap differences.” Any of these simple
choices is bound to fail when one applies Eq. {1} to more
complicated indirect gap systems such as Si, Ge, , alloys,
where one encounters conduction-band minima transferring
between the X and L points of the Brillouin zone. For exam-
ple. if A£ is taken to be the difference in corresponding band
edges, then one finds that AE ~0.1 eV for the X (4 ) valley
and ~ 1.2 eV for the L valley. The values that fit the experi-
ment are about half this value for L and ~0.5eV for X.* The
purpose of this letter is to resolve the identity of AE for indi-
rect gap materials.

Moreover, there is a problem with the m*® that enters
Eq. (11. For direct gap alloys, the band-edge effective mass at
I" naturally enters Eq. 11). For the indirect gap alloys. the
effective mass is anisotropic and hence an appropriate mass
must be chosen. Previous authors™’ have chosen m* to be
the effective conductivity mass m®. We shall show that dif-
ferent masses enter for different cases.

The first unambiguous assignment for 3 £ in a direct gap
alloy was given by Hass e al.* To estimate the imiting elec-
tron mobility in Hg, Cd, |, Te based on a tight-binding (TB;
band description, they defined 4E to be /' 3E ., where f, is
the s fraction in the density of states and J £ 15 the difference
between the s atomic term values of the Hg and Cd atom«. By
extending this approach to alloys with indirect gaps and

(h
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multiple bands, we show that all the uncertainties identified
above are resolved. Our generalized Brooks' formula will
then be applied to Si, Ge, _ , systems to explain their ob-
served mobility.”®

Because Brooks' formula has never been derived expli-
citly in the literature, we rederive it first and then generalize
it. Consider the case of a single band with an isotropic effec-
tive mass. The dc electronic conductivity based on the linear
response theory® is given by

o= f o(e)( = e, )

de

where the energy-dependent ofe) in the weak alloy scattering
limit is

ate) = (€°/3)(€lD (elr(e). (3)

D (€) is the density of states {DOS) per unit volume for both
spins, so D (€) = 2N ,p(€), with N, = N,/2 being the number
of unit cells per volume (for the diamond structure, half the
number of atoms N, per unit volume) and pi€i being the DOS
per unit cell per spin. The mean square velocity vi{e} for
carriers with energy € is given by

Uz‘f' = Z vik)? ‘_S_k_—_d_k)_]

. ple)
The scattering lifetime for carriers with energy €, i€l is re-
lated to the alloy broadening 4 (€) by rie) = #i/23 i€), where
the energy 4 (€] is the imaginary part of the self-energy in the
averaged alloy Green's function. For weak scattering 4 (€!1s

14

d1€) = mxil — x1(AE yple), (5

where in a tight binding {TBi description 3 £ is the difference
in the term values of the constituents. Then the mobulity 1s
U, = o/ne with the electron density given by

n= QJ‘fle‘y)lﬂdﬁ 16)

For a nondegenerate semiconductor, fe€} 1s the Boltzmann
distribution and fie1x e * *'*" Furthermore, for a para-
bolicbandeiki = Ak 7/2m®,ple) = 2m*' "¢’ */47# then
all the above equations can be combined to arnive at Eq. (1)

For a real semiconductor alloy in a TB description, the
alloy scattering can be characterized by two parameters AE,
and JE . the differences 1n s and p term values between two
substitutional atoms Then an effective broademng i given
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by
dle)=(4,p, +4,p,)/p, (7

wherep,, p, are partial density of states (PDOS}and 3, and
4, are similar 10 Eq. (5), with p replaced by p, and p,, re-
spectively. For Hg, ,Cd, Te, the s disorder is predomin-
ent®'® and one can neglect 4E,. Defining p, = f,p (and
P» =/,p), onc arrives at

d=ux(l —x)(f,AE,Vp.

Thus as was pointed out by Hass et al.,* f,4 E, plays the role
of AE in this special case where AE, can be neglected.

For an alloy with a single indirect gap minimum, one
has to consider both s and p contributions to the alloy broad-
ening and the masses that enter p and v°. Again, Egs. {2)6)
can be combined to yield

Ba
- (eA*Noy27)
[3x(1 ~ ximem®(m?)'*kT)' N (fIAE] + f1AE})]
(8)
where m? and m?® are respectively the longitudinal and the
transverse mass at the band edge, and N, is the number of
equivalent minima, e.g., 6 for Si. The conductivity mass m?*
comes from averaging v° in Eq. (2) and is given by 3(2/m?*
+ 1/m%)~'. Equation (8) clearly identifies the masses and
the energy parameter that enter Brooks' formula.

Next we consider a still more complicated case where
the contribution to the mobility comes from more than one
band. For example, in Si, Ge, _ , the X and L minima cross
near x = 0.15."" There are now two contributions to the net
conductivity, so 0 = Zg,, where i is X or L. The quantities
v2(€). D, (€}, and N, (€) now take different values for different
bands. The structure of r,{€) requires more careful consider-
ation. The complication comes from the fact that the effec-
tive broadening 4 is still given by Eq. (7). but p,, p,, and p
contain contributions from both the bands. The proper ex-
pressionsarep = Z,p, N, andp, = X.f,,, N.p, wherei= X
orL,a=sorp,and N¥ = 6, N' = 4. The equation for d is

a4 (€)= mx(] - x)E(Zf,,,N ‘p€AE, )/(Z pEIN! ) (9

The mobiiity associated with the /th band s defined as
&, = 0,/(ne) then

. TeR'N, 1

"l - x [mPm22m? ]-

] cp,lf)(}_:.\';p) (6))1’ <
/

I,:f ?'Ie/Jf"‘e A de (1)

! E(Zﬁ,, Nip mAE,,)

Thus, the generalized formula no longer has the exphent
xand I dependences of the original Brooks' form. Howeser,
all the quantities needed —the masses, the scattering param-
eters 3F,, . the band gaps, and the fractions f,,, —can be eval-
uated theoretically without resorting to experimentally fit-
ted paramcters. To demonstrate, we shall apply Eq. (101 to
$1, Ge, .. The band quantities are obtained from our CPA
calculation.'' We found that the effective masses vary weak-
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TABLE | Calculation parameters.

Parameter $i1, Ge, |, systems

mX) 097m,,

m*X) 0 19m,

mo(L}) 1.64m,

mML) 0.082m,,

E lix) 0.8941 + 0.0421x 4 0.1691x"

Elx) 0.7596 + 1.0860x + 0.3306x"

Suxlx) 0.333 + 005x (0 x<0.3)
0.339 + 0.03x {03<x<1.0)

S x) 0632 +0.13x

ly with the concentration, so m? and m? are assumed to be
constant and assigned the values 0.97 and 0.19 for the X
minima and 1.64 and 0.082 for the L minima, respectively.
The calculated energy gaps for the X' (4 ) follows the func-
tional form E X' = a + bx + cx’ and for L is given by E\*'
= A + Bx + Cx®. All the parameters of our calculations are
listed in Table I.

To correlate the calculation with the measured mobili-
ties, we need to have an estimate of scattering rates 1/7, due
to impurities and phonons. A crude approximation is to as-
sume 1/7, for a given valley to be the same as the appropriate
constituent's values and add to it the alloy scattering rate 1/
7,4 . Then the average mobility and the mobility from the ith
minimum in the alloy are

H=2np/3n,

)7 =W W {12)
utis given by Eq. (10) and u are the measured drift mobili-
ties for Si or Ge.'? The drift mobility, calculated from Eq.
(12), is plotted as a function of alloy concentration x in Fig. 1.

For x<0.05 and x »0.20, the energy difference between
the X and L edges is large enough so there is a negligible
contribution to the mobility from the higher minima. In the
Si, Ge, _, system, the s scattering is predominent. Because

'f - |
004 3 4]
' 00 4

\ {

N
s |

G N a6 D19 0 0

el L '
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0

. e ve
FIG 1 Calculated isolid hine electron dnft motihity and the expenmental

Hall mobility 1dashed hine: from Refs 6 and & are plotted as a functiion of
alioy concentration
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the L edges have a larger s content, alloy scattering reduces
the average mobility substantially for small x. Even though
the s content i1s almost the same for ali x0.20 at the X edge,
the mobility still decreases to x = 0.5 as shown in Fig. | be-
cause of the x{] — x) term in Eq. (10).

An interesting feature is obtained for the compositions
0.13<x <0.18. The average mobility attains a local mini-
mum near x = 0.14 and a smaller maximum at x =0.17.
This feature occurs because of the X to L crossover.'' For
x<0.14, the major contribution to g comes from L minima.
Near x = 0.14, the density of states increases because the X
and L minima merge. So the alloy scattering increases there
and the average mobility decreases. For x>0.14, the X bands
have the lower minima. As the s content is small at the X
minima, the reduced alloy scattering increases the average
mobility. For larger values of x, the x(]1 — x) term takes over
and the mobility varies as shown. The values of measured
Hall mobility in Si, Ge, , systems are also plotted in Fig. 1.
The interesting feature near x = 0.14 is clearly seen. Since
the experimental drift mobility g, for Si, Ge, _, is not
available and the generalization of Eq. (10) to Hall mobility
py is less clear, we present the calculated 1 , and experimen-
tal u,, {Ref. 7,8) here. While we do not expect quantitative
agreement, because u,, /¢, can range from 1t02,'*'* we do
expect them to display the same qualitative x dependence. It
is rewarding to note the similarity in the trend in Fig. 1.
Previous authors explained the dip in the mobility curve by
including intervalley scattering with an arbitrary adjustable
coupling constant.® Our calculations automatically include
that portion of intervalley scattering that results from alloy
disorder with a coupling constant set by the atomic proper-

162 Appl Phys Lett Vo 47 No 2 'S .u.y 1985

ties of the constituents. However, the additon of intervalley
scattering mediated by phonons and impurities is expected
to increase the dip near crossover.

In summary, an expression for alloy-scattering-limited
charge carrier mobilities is derived for indirect gap alloys
with multiple bands. This expression reduces to Brooks' for-
mula for direct gap alloys. The quantities m* and 4 E can be
calculated exactly. Alloy scattering accounts for the ob-
served mobility features in the Si, Ge, _, alloy, including
the anomaly near the L to X' (4 ) crossover.

A.-B. would like to thank Professor W. E. Spicer for his
hospitality at Stanford University. This work was supported
in part by DARPA contract MDA 903-83-C-0108 and grant
AFOSR-84-0282.
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SEMICONDUCTOR ALLOYS: LOCAL BOND LENGTHS,
MIXING ENTHALPIES, AND MICROCLUSTERS

A.B. CHENs AND A. SHER?
+Physics Department, Auburan University, AL 36849
tSRI International, Menlo Park, CA 94025

ABSTRACT

Several recent theoretical studies of the local structure of semiconductor alloys are
summarized. First, dilute limit calculations of local bond lengths and mixing enthaipies
are discussed. These calculations include effects due to both bond length and bond-
angle distortions, as well as local chemical rearrangements. Then, a new statistical
theory of concentrated alloys is described. Deviations from random alloy distributions
(microclusters) are predicted.

INTRODUCTION

This paper summarizes our recent theoretical studies directed toward understand-
ing the microscopic structures of pseudo-binary semiconductor alloys AB;_,C. We first
present a detailed calculation of the local bond length relaxation in the dilute limit
x — 0, i.e. the case where an A atom is substituted for a B atom in a BC compound.
The mixing enthalpy parameter {1 is found to be related to small excess substitution
energies. These excess energies are calculated directly through a minimization pro-
cedure. Thus, the accuracy of the predicted 2 is not limited by trying to find small
differences between large numbers. The theory is then generalized to concentrated
alloys using statistics based on combinations of tetrahedral clusters of five atoms. Qur
results predict that microclustering occurs in a majority of alloys. We conclude by iden-
tifving systematic corre{ations between the theory and several experiments.

Before discussing the calculation, it is useful to provide some background about
the structure of these alloys. It was customary to assume that these alloys have two
sublattices in which the C atoms occupy one sublattice. and A and B atoms are ran-
domly distributed on the other. This picture, refetred to as the virtual crystal approxi-
mation (VCA), implies that the nearest-neighbor (nn) bond lengths in the alloy are the
roncentration weighed average values, ie. dye = dgc = d = ¢ 4{¥ + (1-x) dy¥ where
the values with a superscript {0) denote the pure-crystal values. On the other hand.
according to Pauling’s covalent radii approximation {CRA), the local bond lengths
retain their respective pure-crystal values, i.e. dyc = d(¥ and dg = d &

If we define & = (d - d\¥) / d and é = (d - dy¢) / d. then the ratio /&, in VCA
i« zere, but in CRA it i< 1. However, Mikkelsen and Boyee'! found from their EXAFS
experiment on Gagny (A= that the nn bond lengths do not At either VCA or CRAL
Instead. they found the value of 478 to he close to 3/4. Nince then. similar experiments
have been done for 2 number of zinc-blende pseudo-binary allovs.' and the 3,4 ruir

appears to be quite general,
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7 DILUTE LIMIT #a
¢
The dilute limit is the easiest case but is still not trivial. Its solution provides »
Y both end-point results (x = 0 and 1), as well as insight into the extension to the concen- \"
. trated alloy case. A complete description of this case is being reported elsewhere; here N
. we summarize the essential results. The substitution energy A, for an A atom replac ng
a B atom in a BC compound is calculated and minimized w0 find the relaxed .-
S configuration. A, can be written as A, = 4 (AE, + AE, + 8E,). where AFE, is the A
': binding energy difference between the AC and BC compounds, AE, is the sirain energy, N
and AE. is a chemical energy shift. All AE' s are energies per bood. Then,
- AE = AE, + AE_, is the excess encrgy per bond for the impurity substitution. AF, is .
- caleulated by dividing the crystal into two regions. Outside R (which is the distance of B
- the second-shell atoms to the impurity), the distorted crystal is treated as an elastic con- -
A tingum with a radial displacement field which is inversely proportional to the square of
. the radial distance, so AE{®Y = 1/4RCu?, where C is an eflective shear coeflicient,
~ C =1 (1.6(Cyy - Cyp) + 4.8 Cyy) () w
-
- and u is the magnitude of the displacement at R. Inside R, the strain energy A" is .
: treated with a valence force field (\’FF).(” Finally, the chemicai energy shift AF.,, is cal-
culated from Harrison's model and arises from changes in the metalization energies ’
9 caused by diflerent bond lengths Ad = dpc - dac  and covalent energies
- AV, = Vi(AC) - V4(BC). Note that & = (dfY - df¥) / d¥ and ,
= 5 = (d§Q - dac) / dg2 in this dilute limit, so the excess energy AE can be expanded up m
to second order in & u. and AV For a given pair A and B, AE is an explicit funetion of !
'-: & and u. Minimization of AE with respect to 6 and U leads to the equilibriuin local
% bond length d,c and energy AE. Then. AE is used to estimate the mixing enthalpy .
- parameter 10 in the mixing enthalpy AH = x(1-x)(I by .::
. L™
- 1 = 2 (AE (A in BC) + AE (B in AC)). (2 =
8.°, A systematic comparison with other models based on strain energy alone shows .
L that an increase of the range of the fixed boundary R increases the relaxation of dy. i.e. e
) it causes é/& to increase. The inclusion of the bond angle restoring force, on the other
- hand, reduces the relaxation. It turns out that a delicate cancellation of these two KN
i effects causes a ~imple spring madel pointed out by Shih et al. (SSHSPY o vield acen. R
:‘ rate results. In this model &= 2 "1 + 1/3 afm), where a and ap are the teand -
. stretching force constants for the host (BC) and the impurity (ACY ervstals, Win
a = ay, this model predicts § = 3/44, for a zine-blende alloy. Although our full pertur. -

- bation theors ‘FPTiand the VEF modei of Martin and Zunger (M7 08 prediet 1, with s
an average absoiute deviation eomparable to the experimental yncertainty of 0.01A, the

«

4 simpie spring m del is sven better,
v
> ,
T We gate that wtile onoour theo oy, M2 and SSHNC the (2 vasies are direetly eatieg: .
. fated withe nt any wijustatle jarsmeer, our theory and SSHS geree with the exper .
ment as well o e ooven dightlv better than the one-parameter the ries, ”® Although wir L]
theory prediers a negative 1 vaige for all three (Gao AD allovs, the mugnituis
. N N . . .
. {0 = 017 keat/mode ) is too small to account for the crdering of Ga,Alp (As grown R
600 to TO00°C found recently. ' The calcuiasted {1 values also provide guidance in DN
., separating miscible from immiscible aileye. In a random alloy, the criterion for atloy ‘. :_-_
.
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mixing for all x is T > T,, where the critical temperature T is given by T, = /2R,
with R, being the universal gas constant. Figure 1 is a plot of T /T, against
[6g1/18n1 « where Ty is the lower of the two constituent's melting temperatures, and
bm = 1.83x, With x being the ratio of rms bond length amplitude fluctuation to the
bond tength st T,. The simple spring model gives T /T, = (8,/65)° 8s indicated by the

¢ |

[N

-t solid curves.

. There is an empirical rule stating that a miscibility gap will occur if | & |
r. between two alloy components exceeds 7.5%. However, if T /T, is plotted against
L] TRy . .

- |8, 1. the simple spring model would not exhibit a smooth simple quadratic curve, and

our theoretical points would be much more scattered. This suggests that
. 41/ 165 ] > 1is a better criterion than |& | > 0.075. Figure 2 also clearly shows
y the chemical effects, namely negative and positive chemical energies AE, for cation and

[

. anion substitutions respectively. The full theory and the experiments correlate within

the experimental uncertainties. The simple SSHS model clearly is an excellent universal
B representation. However, T /T, varies faster than quadratically for larger [&/6n, {
., values, as born out from both the experimental data and the full theory.

CONCENTRATED ALLOYS

Turn now to the concentrated alloy case. First, an improved statistical model is
) required. We have extended regular solution theory based on pair energies to one for

five-atom clusters. For an A,B,,C alioy, the building blocks are clusters of
s A{m)B(4-m)C, where m ranges from O to 4. For a given alloy concentration x and for a
. given set of energies ¢, associated with these clusters, we have derived expressions for

the cluster population distribution Xy, = iy, / N. where N is the total number of unit

cells and i, is the averaged number of cells with A(m)B(4-m)C clusters. The partition
. Function 2 is obtained using a steepest descents argument which then yields the mixing
i Helmhotz free energy AF. The result reduces to Guggenheim's tetrahedron case!™ if
" pair potentials {for the second-neighbors) are assumed. Another major difference is that
we only need 1o solve a single quartic equation, while Guggenheim needed to solve four
simultaneous quartic rquations.

|
.
e The key to the problem, however. lies in the calculation of the energies ¢ . If one
assumes that the size of the tetrahedra for all m-clusters at a given alloy concentration
. takes on the corresponding YCA values but allows the central C atom to relax, then the
% energies as functions of x behave like those shown in Figure 2(a). There are at least two
'~:, auajer Gaws in this result. First, the energies are too large and would correspond to 0
* values many timmes the experimental values. Second, at x = 0.75, 0.5, and 0.2, these
eperzies imply compound formation for A3B,Cy A;B:C,. and AB3C,. respectively.
Lol which is opposite to the known tendency for spinodal decomposition of Ga,ln,  As at
Da ow T, Hewever, if the local cell valume of each cluster is allowed to be in mechanical
e equilitrinm  with  a  continnous  medium  with  an  effective  shear coaflicient
T om O - b O O G where the C value for the pure material ix given by Eq 1y
e then, *he corresponding energies ¢, as 3 function of x are given in Figure 2(b), which
:~. new vields a reasonable value of mixing enthalpy and correctly predicts the tendeney
- ¢ ward spinedal decrmposition at low temperature. With this set of vnergies, one can
“het cabeulate the ~uster distribution xpy. and compare them with the correspending
. calues for a random alloy. Le. x® = (4, w™(1-x)* ™. Figure 3 shows the deviation
--. fram randemness Axg = Xg - x% as a function of x for four arbitrarily chosen growth
L

DRI . = AT st .
R N~
LI *\.‘_

X O .....-_ .‘..;‘..'_. . "."_. IR ..“_" *
DI R A A AP W AL AR




140
' Sin e R ey sanlh sub o ey )
Gait 018
10} -J 10
e e
AP SbI @
s } - " }»
'S - Goias Sbr
" L Y o2 T -y [’ TS VI U o S
Golas So1e
intay 301
anar s0/9°, Riliadiae
os} g . osf- s
tu. niAs — 1Ce 1ms
Znise T — T tacimise — Ga s
. .
-Q 12n wgite A IniSe Ve,
N i
Coras 0 \\ Ga rarse .
Aliay Pl T IS See Hn CarTe Py Ty
~~nip A Lx
v o X
o 02 os o 08 10 t2 e °
g b Sortm
(o) THEORY 5 EXPERMENT
we
FIGURE | PLOTOF T./ToASAFUNCTION -8, &, FOR T _OBTAINED FROM (2) PRESENT THEORY af
AND (b) THE EXPERIMENTAL Q. IN {a). THE DOTS ARE FOR ANION ALLOYS AND CROSSES !

FOR CATION SUBSTITUTION. THE SOLID LINES IN BOTH PARTS CORRESPOND TO THE
BASED ON THE SIMPLE THEORY OF REF 3 THE DASHED LINES AT T,/ T, = DSEPARATE

THE MISCIBLE FROM {MMISCIBLE GROUPS o

inAy GaAs tnAs Gaks :‘.

06— T T T T —rr— T T -
[ (a) (b)

CLUSTER ENERGY (aV}
o
w

e

v‘.

La

FIGURE 2 THE CLUSTER ENERGIES €, AS A FUNCTION OF « CALCULATED e
IN TWO DIFFERENT WAYS AS DISCUSSED IN THE TEXT LI




LY
N

T v T Y T 0

g
@l Iny.q AL (290 K} /ﬁ
L

£ 3
2 |
015 01
x
005 —+—— r—— Y A T 003

" Gay Ioy_y As 11000 K)

FIGURE 3 DEVIATIONS FROM RANDGM DISTRIBUTIONS FOR THE FIVE CLUSTERS

~

141

v
Gag Ing , As

T

(600 x)

AT SEVERAL GROWTH TEMPERATURES

. “n ’ “u N - n " S T T . ‘-
. .- .I. H. - .‘ .- ., - .~-4 -N - ® ' w .‘. .‘ v -
TIPS LR LA IS ada

NN
S,
Az s ats

R
.

oA
WNIN W

.

Gay Iy, As (1500 X)

2 atiaz

T

Aok




bl - RRCER TR SR R L I ) - D “ IR R D A R A St R e
ST . o B - = LR ¥ st et et M R R s e R O A '\J
,\"\
] .\-’ 3
E =3
£ )
v
“b *
o, ‘:";-
A 5
o RIS
- Ve
~ '.‘.‘-
ﬂ Y
" v

s
LAy
' I
N Band structures of Si,Ge,_, alloys :__';'_"_
- S
i Srinivasan Krishnamurthy and A. Sher -2
" SRI International, Menlo Park, California 94025
o d "
H an 9
3
) A.-B. Chen O
. AN
o
o Physics Department, Auburn University, Auburn, Alabama 36849 ',.';:
< A

W Dy}
TALS

» e
a

e
~




.'.—..'.*V_:"'.'."‘-_'A.' .."."'..‘"._". "'.."',‘V_TA P Lol o s T‘".”‘v‘,- N R R T Y Y Y W W W P WV vy vy wrw
. o W~ A . - e . R t > e . e T T T e e R et L e T T e PR . EREE . - DN

.
| E~
: .
; 3
D o
)
\ .
-
>
N ABSTRACT ;"
:.. ’Jl
' Starting from realistic band structures of the constituent materials, the electronic -
I\ [
"~ structure of Si,Ge,_, alloys are obtained in the coherent potential approximation (CPA). "
“~
E“‘ Various quantities, including the bowing parameter of the fundamental gap and the .
N A
energies of several optical gaps, the masses, and the linewidths of the E, and E; transi- ’
tions, are calculated on the basis of both diagonal and ofl-diagonal CPA. All of the o
band-energy and line-width predictions are in good agreement with experiments. Fur-
thermore, the theory yields alloy-scattering-limited electron-drift mobility in qualitative \i
agreement with experimental results.
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I. INTRODUCTION

Semiconductor alloys offer the freedom to design material properties by choosing
appropriate alloy constituents. In some cases, the physical properties of the alloys can
be quite different from those of the constituents.(1-4) In recent years, there has been a
renewed interest in Si,Ge;_ alloys(s) and superlatt.ices.(s’ 10) Because silicon is the most
technologically advanced semiconductor, the results on SiGe systems have many poten-

tial applications.

The lattice constants of silicon and germanium differ by ~4%. Hence, the strain
introduced in the formation of Si,Ge,_, alloys can affect the band structure(10) and the
transport properties.(s) Prior authors used virtual crystal approximation (VCA)(“JQ)
and coherent potential approximation (CPA)(”) to study the band structure and related
properties. Either because of less accurate band structures of the constituent mauerials,
or because of the approximations involved in the alloy formalism, these calculations
predicted only trends of specific quantities, not quantitatively accurate results. Because
the s-state site potentials (¢,) for silicon and germanium differ by approximately 1.5 eV,
VCA cannot accurately describe effective masses and other finer details of the band
structure. Because of the use of poor basis functions, earlier CPA work(13) predicted
alloy broadening of conduction band states substantially differing from experiment. The

purpose of this paper is to correct these flaws and treat transport phenomena.

Because of a substantial difference between the site potentials and lattice constants
of silicon and germanium, we incorporated both chemical and structural disorder in the
calculation of the electronic structure of Si,Ge,_, alloys. Thus, both diagonal and off-
diagonal CPA are included in the predicted band structure and related quantities. Parts
of the band structure have been used to study the Si-2p core-exciton(14) and the alloy

mobilities.(15) A comprehensive report of the calculations and results is presented here.

2




The rest of the paper is arranged as follows. The detailed procedure of fitting sili-
con and germanium band structures is given in Section Il. The VCA, CPA, and off-
diagonal CPA calculations are described in Section IIl. The results and interpretation of

the alloy band structures and mobility are given in Section IV.

1. BAND STRUCTURE BASIS

In order to derive an accurate alloy band structure, one must start from a realistic
band structure of the constituent materials. Chen and Sher have developed a
method(16) following a prescription of Kane(17) and Chadi(18) that includes all long-
range interactions, and then fine tuned the band structure with an adjustable local Ham-
iltonian. Because the details have already been published,(lﬁ:lg) the underlying method

will be presented here in brief.

Gaussian orbitals of the type a ( a can be s, p,, py, or p,) for each sublattice in a
cell are used to construct the corresponding Bloch basis. In this basis set, the overlap
matrix and the Hamiltonian derived from empirical pseudopotentials can be calcu-
lated (17.18) | is possible to cast the problem in a basis set of Gaussian orbitals in
which, in crystal units (cu), the same exponential factors apply for all III-V com-
pounds.(lg) In this universal basis, the overlap matrix and the kinetic energy matrix are
same for all lII-V compounds. Then, by a unitary transformation, the basis set is ortho-
normalized.(20) The Hamiltonian in this new basis set is denoted Ho(k). The band
structure resulting from this method reproduces the results of elaborate band structure
calculations within a few percent throughout the Brillouin zone (BZ). To establish accu-

rately certain important band structure features adjacent to the gap, an extra small 8x8
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Hamiltonian matrix H;(K) is added to Ho(k). This H,(k) has the form of a tight-binding
(TB) Hamiltonian, in which only the nearest neighbor interactions are included, and
stimulates the effect of nonlocal pseudopotentials and an expanded orbital set. The total
Hamiltonian, H(T(.), in this orthonormalized basis set is diagonalized to obtain the band

energies and the corresponding wave functions.

Following this procedure with the same exponential factor § = 0.26 in the Gaus-
sian orbitals for both silicon and germanium, the matrix Ho(k) is obtained. For silicon

and germanium, H, contains 6 adjustable parameters: namely, the corrections to the

term values &, and A, and to the nearest-neighbor interactions Vg, V,,, V,, and V,,.

. The values of A, A, Vi, and V,, are determined from fitting the three experimental

[ 0%

energy gaps(21-28) at (K = 0): 'y ~Ty, ;s -Tay, and Ty - Ty , and the photo-

' ]
«fe’a

electric threshold (PT) values -5.07 and -4.80 eV for silicon and germanium respec-

>
1
v

tively.(29) The remaining parameters V,, and V,, are obtained from the experimental
values(21-28,30) of the gaps X, - X,, and L;. - Ly ,. Some adjustments in these input
quantities are made to obtain an overall good band structure with more accurate
effective masses. Table I lists the empirical pseudopotential form factors and the param-
eters used to obtain the band structure. The calculated band structures and experimen-
tal values are given in Table II. From Table II, one can see that an excellent fit to the
silicon and germanium band structure is obtained: All the calculated values lie within
the experimental uncertainties. The optical difference between L, and Lj,, ['yy and '

are in excellent agreement with the known optical transition values.

Although the calculated effective transverse masses agree very well with experi-
ment, the effective longitudinal mass for germanium is less than the experimental value.
This is due mainly to our attempt to have a common J and the choice of local pseudopo-

tentials, causing Hy(k) to be the same in crystal units (cu) for both germanium and
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¥ silicon. Because of the common Hg(k), the alloy disorder is contained in these adjusted ﬁ é
. . LA
X parameters. This Hy would also be useful for the interface and superlattlce(30) prob- -
| lems. If we grant ourselves the freedom to adjust V,,, longitudinal eflective mass in ger- ::: :.{:
L] f.
&0
' manijum can be fitted to the experimental value. When V,, is changed, the L., Ly , will o
. also change. We have chosen not to do this because little is gained for the extra com- = ";
! plexity. For an indirect gap semiconductor, the important effective mass used in tran- . :j‘{:}
: -1 Sl
sport studies is the conductivity mass, 3 (1/m"y + 2/m*,) . Because m*y >> m"’, in RN
r
germanium, m°; will not be much different if a less accurate value of m®, is used. More- o]
. SNGA
y over, the Si, Ge,_, alloys which have potential device applications are in the silicon-rich :-:::'-
) . ¢
. . r.' K
: region, where the effective mass at the L edge is not expected to affect the further stu- r‘ >
dies. .
- RS
K It is important to note that an excellent fit to the experimental values can be ;-:_':
) . . . s C;‘.’l
obtained with only seven adjustable parameters (8, A,, A, V,,, Ve Vi V“). with 8 J =

being universal in cu. The calculated band structure of silicon and germanium are

shown in Fig. 1(a) and 1(b) respectively. The characteristic indirect gaps are clearly -

seen. These band structures compare favorably with the best results available, and, in

contrast with those obtained in the usual empirical TB approaches, produce good con- p

duction bands.
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III. ALLOY CALCULATION

A. VCcA

Because we have the same Ho(k) matrix for both silicon and germanium, it is only

e the H, matrices of the constituents in scaled VCA which distinguishes them. In this
- approximation, the diagonal elements of the alloy Hamiltonian H(Kk) are simply the
L concentration-weighted average of the corresponding elements of the pure silicon and
germanium Hamiltonians, whereas the offl-diagonal elements of H(E) are obtained by

assuming a 1/d? dependence. H(k) can be diagonalized to obtain the VCA band struc-
RS ture for various concentrations, x. The VCA band structures for x = 0.1 and 0.5 are

shown in Fig. 1(c) and 1(d) respectively.

B. Diagonal CPA

An earlier work on CPA band structure of SiGe alloys(l3) is based on a local but

= energy-dependent pseudopotential approximation. While the value of the scattering

potential parameter was 1.49 eV, close to our value, the calculation predicted too-large
- linewidths in the E, spectrum and essentially no effect on the electron mobility. With

the availability of a set of good basis functions and constituent band struciures, more

realistic band structures of the alloy can be obtained.

In the current model, we have a TB Hamiltonian, which contains matrix elements
to all ranges. The simplest alloy model is to assume that the important disorder resides

e
>~ only in the diagonal matrix elements, ¢, and ¢,. In our model, the ¢ and ¢,5¢ differ by
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1.46 ¢V, whereas epSi and epc‘ differ by 0.21 eV. For the present, we neglect the disorder

in the of-diagonal element. Mathematically, we have

H_"o,=ﬂ+§;VT ,

where Tis a fcc lattice vector identifying a site, and Vy is the 8x8 diagonal matrix with
elements U, = ¢, - 5, U, = ¢, -, in the orthonormal local orbitals |Tja>; j denotes
the two atoms in the unit cell labeled T, o represents s or p symmetry, and €, and €, are

the concentration-weighted average values of s and p silicon and germanjum term value

energies.

The one particle alloy Green’s function is defined as

1

Gl.lloy(z) = 7 - H."
oy

We are after the configuration average of this Green’s function, which, in effective

medium theory, is replaced by an effective Green's function G,
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where L is the self energy. In CPA, we can now write £ = Y3 (L;), with Iy being an
T

8x8 matrix in the basis | Tja> having the form

ADO
Z=10 a) - “)
where
L, 0 o0 o
A_o“l,,oo
—00290
0 0 o %,

Here X, and £, are the s and p parts of the self energy. The L, and T, are determined
from the conditions that the average atomic t-matrix with respect to the CPA Green’s
function G is zero. With our ansatz for I, the matrix equation <t>>=0 reduces to two
coupled equations <t,> == 0 and <t,> = 0, where the average is the concentration-

weighed average <Q> = xQ%+yQ®, and the t is defined as

(U za) [l Fa(U "Ea)]-

(a =sorp, B8=SiorGe) . (5)

In the above expression, F, is the diagonal matrix element of G in the local basis

F.(Z) = <lja | G(Z) | Tja>. Z, and L, are coupled because F, and F, each contain
both £, and L,.
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An iterative average-t-matrix (1IATA) procedure(lg) is employed to solve the CPA
equation. This procedure improves £, upon a guessed solution £ through the following

equations

T, =2+ <t2> (1 + Fe<te>]!

T, =C7 + <t;> 1 + Fp<eo>)t (6)

where <t2> and F¢ are similar to those in Eq. (5) except that £2 now replaces L,.
The most time-consuming calculation is then the computation of the local Green's func-

tions F,” and F), given by the BZ summation; e.g.

FZ) = § T [ﬁ(—%ﬁ_f’l“ |

where the inverse of an 8x8 matrix is involved for every k. This can be simplified by
observing that £ has the same form as ¥ in Eqgs. (4) and (5) and that the 4x4 A matrix

can be written as A = EPT + (E4-Z,)J, where 1 is the identity matrix and
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Defining the matrix

o= (3 9

F(Z)and Fj(Z) can now be calculated from

FAZ) =-I%):Y; gu(k.2) |

F2) = 357 T (6D raulf2rsuR2) (™)

where
g =g +g°(1-og%)" . (8)

with

(9)
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In Eq. (9), €,(K) is the band energy in VCA and {U, ,(k)} satisly the following Eigen

equation:

g Ha.ﬂ(F)Uﬂ.n(—k‘) = (n(r)Ua,n(F)

Because the ¢ matrix has only two nonzero elements, the matrix inversion in Eq. (8) is

obtained analytically.

A substantial reduction in computer time is made possible by using an analytical
continuation method.(32) In this method, £, and E, are calculated as a function com-
plex Z, and then, using the analytical properties of the self energy and Green’s functions,
they are interpolated for real Z. Because the functions I,, £, and G are smooth for

complex Z, the CPA iterations and BZ integrations can be carried out with substantially

less computer time.

For the concentration x = 0.10 and x = 0.50, the L and X(A) gap respectively are
preferred. The L to X(A) crossover takes place near x == 0.15. The CPA correction to
L and X edges at x = 0.10, 0.15, and 0.50 should be good enough to study the quantita-
tive variation of band gap in Si,Ge,_, alloys. Hence, the calculations are carried out for
these three cases. In addition, because the experimental results are available for x =
0.109, CPA calculations are also done here for comparison. As expected, L, is much

larger than X, for all the cases. The self energy as a function of energy is plotted in

Fig. 2 for an x = 0.50 alloy.
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C. Off-Diagonal CPA

As mentioned earlier, silicon and germanium differ in their lattice constant by
~4%. In order to include the effect of the structural disorder, the CPA calculation is
repeated next with off-diagonal (OD) disorder included. By an application of the molec-
ular coherent potential approximation (MCPA)(33), Hass et al. included OD disorder in
the CPA calculation of A’ ,A' ' | B semiconductor alloys.(34) Assuming that B atoms
occupy the sites of an ordered zinc-blende virtual lattice, they modeled the dominant
structural effect as the difference in A’ -B and A’ ' -B hopping matrix elements. Hence,
the chemical and structural disorder effects are treated as random variations of €A, V,A,

V,AB, where the symbols have their usual meaning.(35)

The extension of the method to Si,Ge,_, alloys is not straightforward, mainly
because silicon and germanium can occupy both sublattices; hence, there can be no
ordered virtual lattice in this case. If we choose the tetrahedral unit cell as the molecu-
lar unit for MCPA, we see that the disorder is not cell diagonal. However, by choosing
an appropriate basis set, we can make the intercell interaction be the highest order
effect. We start with a hybrid basis |Th>>; obtained from the sp® hybrid orbitals.(35)
The hybrids 1 through 4 (i = 1-4) are obtained from orbitals centered on a sublattice I-
site, and the states 5 through 8 (i = 5-8) are those from the orbitals located at the four
nearest neighbor sites on sublattice II. The Bloch basis states, corresponding to A; T,
symmetries, | k >; located on an I-site (i = 1-4) and Il-site (i = 5-8) are obtained from

the corresponding hybrid states given by the relation

lT >i = 28: Cij l-n'l>, y (10)

i=t
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An explicit defimition of these rbit. -an be found in Rel (20) Io this new basis, the

self energy L at the given site takes the form

P e
3%~ Y
LA R s |

B l"o "z' ‘ (11) g.
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- The self energies can be obtained again from the IATA iteration procedure.
] .
=50+ <<T>> [l + F<<T>> ! , (14)
&
. where
.. 1 Q+inQn'
Fim L 5y e 15
o "TNIY 7D "
o
= with
Y_~’
%
(H(k) + £)Q = E(Zk)Q ,
:_ <<T>> =x <T)> +y <Tg> ,
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>, <TA>=x1',AA‘+4th,AA'B+6xy toAB, T 4y'x tTsg, +y t'g, , A=Si, (16) @ :
w !
>, N
i. with a similar expression for <Tg>. Physically, for a given A atom at the center, the :ﬁ F.,_
.v* ) L\-,
e . . Ua
- other four atoms in the molecular unit cell can be all A atoms, 3 A atoms and 1 B atom, o
. SN
- 2 of each 1 A atom and 3 B atoms, or all four can be B atoms. <'T.> or <Tp> - Y
i represents the configuration-averaged t-matrices, and < <T>> is the concentration- &.
'.': weighted average of the configuration. By exploiting the symmetry, as seen in Eq. (11), A
- one can reduce this problem to solving two 2x2 coupled matrix equations. Eq. (14) can » -
. 5 &
be iterated to obtain L,, £, £,, and I,,. After every iteration, we get a new set of s
- Zu L, Ly, Iy, and £y © The new set has not been tested to see if £,/ is still given :( .:T::
2 by Eq. (13). In our calculation, we did not iterate to obtain a new ;' ; instead we fixed :‘-::"_
i it by the relation given in Eq. (13). The error introduced by this approximation is ! L
- expected to be very small. As in the case of diagonal CPA, the computation can be sub- Lo
& o
E_, stantially reduced by the method of analytical continuation.(32) - ::_-:
re el
N -

-
.'-"l'
e’

IV. DISCUSSION
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- A. Ey and E| Optical Transition

1 O

The VCA values of Eg (T'y - I'ys,) and Ey (I'jsc - ['gs5,) and their measured

S
&
e
A4
, _a_2

”,
B
.

Py
[
ola
7/
4

values are plotted as a function of x in Fig. 1{e). Because the measurements(36) are

X

made at room temperature, the experimental values are smaller than the values

A
i WS
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calculated from the zero temperature band structure. Inclusion of the relativistic effects,

%
7

which are not present in our calculations, is expected to form a more accurate basis for

| :::“::'
)t
t- comparison with the experiments. As seen from Fig. 1(e), the theoretical and the experi- 3 ﬁ
'~ Y
> mental values both have a linear variation with x. Similar calculations of E; (L, - Ly ,) ¢
" also have a linear variation on x and are in qualitative agreement with experiments.(36)
o From the CPA self energies &, and L, it is straightforward to calculate the correc-

tion to the VCA bands. The calculated complex band structure is plotted for x = 0.50
e in Fig. (3). The CPA corrections are shown only in the vicinity of the band gap. The
- shaded portion represents the half-width of that energy state. Because s-scattering is
dominant in these alloys, we see that the major disorder lies in the conduction band.

The topmost valence band, wit.h its rich p-content is least affected. The CPA band

:C structure is used to calculate the E; and E; peak positions for x = 0.10, 0.109, 0.15, and

. 0.50 concentrations. The calculations and the data from Reference (36) show a small

. bowing that is not seen on the scale of Fig. 1(e).

; The self energies X, T,, L9p, and Iy, are calculated in MCPA for the x = 0.50

- alloy. As in the case of CPA, the self energies associated with s-symmetry are much -
. - larger than the ones associated with the p-symmetry. While Z,, is found to be very .
i small, £y is at least an order of magnitude smaller—almost zero. However, the ImX, :
e obtained by CPA and MCPA difler considerably. As seen from Fig. 4, the difference }
'-_ increases as one goes away from the band edge. Therefore, the lifetime associated with - '-“Z.
] the alloy disorder is decreased by the inclusion of OD structural disorder. In addition, ':.:
E;: the OD disorder lowers the conduction band, introducing an extra bowing. The h
. Eg and E, values are reduced by 27 and 12 meV respectively. The VCA, CPA, and '.:":::j
i MCPA values of E, and E, are listed in Table III. R
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The half-width of the alloy states is calculated from the imaginary part of the
CPA self energies. The half-width of the lowest-lying conduction band of Siy;Gey ¢ alloy
is plotted in Fig. 5 as a function of K, in the [100] direction. The calculated half-width
is 186 meV for the I'» state and decreases to zero at the band edge. Because of the
negligible alloy broadening of the topmost valence band state, the half-width correspond-
ing to the E, transition, A(Ey), is 186 meV, which is approximately one-half of the previ-
ously published CPA results.(13) The CPA value of the half-width corresponding to the
E, transition, A(E,), is 31 meV. Because of the increase in the imaginary part of the self
energies, the MCPA values of the hall-widths of the Ey and E, transitions are 206 meV
and 32 meV respectively. Because the complete Eg peak is not shown in the published
electroreflectance spectrum(36), it is difficult to estimate the corresponding half-width.
However, one can conclude from the spectrum of the x = 0.458 alloy that the half-width
of the E; transition is considerably smaller ( =~ 50 meV) than that of the E, transition.
The agreement between the experimental and the theoretical values can be regarded as
good because there are errors in estimating the width from the published spectra, and we

have neglected the extrinsic broadening due to the apparatus used in the experiments.

In order to make a more accurate comparison with the experiments, the CPA
values of A(Eg) and A(E,) are calculated for the x = 0.109 alloy. The calculated half-
widths of the Ej and E, transitions are 13 and 2 meV respectively. From the spectrum,
we estimate the corresponding values to be 8 to 15 meV and 3 to 6 meV. We see that
CPA values are in excellent agreement with these experiments. Because x is small, the

inclusion of off-diagonal disorder is not expected to change the calculated values

significantly.
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B. Energy Gap

1

The fundamental gaps of these alloys are calculated as a function of concentration.

The VCA gap is an increasing function of x with a slope discontinuity at x =~ 0.11. The

—

]
v

LN

conduction band minimum changes from L-point to X(A) point at this crossover. In

= _.
& addition to the band gap, the effective electron masses and the band edge K, are also %
b calculated. When the X(A) gap is preferred, the band edge moves linearly from ;‘.f::
e K at (0.9,0,0),_q5 to (0.8,0,0),_,. The effective masses at a given minimum increase "'.:":1:
} linearly from their pure germanium values to the corresponding pure silicon values.

" Using CPA self energies, the band gap, band masses, and the band edge are also

E calculated. The position of the band minimum did not change by virtue of the inclusion

(Et of ofl-diagonal disorder. While the effective transverse mass remains almost the same as

. the VCA value, the longitudinal mass has a maximum of 12% enhancement. Because

i the real part of CPA self energies is negative in the forbidden gap region, an extra bow-

] ing is introduced to the VCA energy gap. Because of this bowing, the L-X(A) crossover R

f. takes place near x == 0.13. The VCA, CPA, and experimental(”) bowing parameters

are 0.06, 0.18 and 0.24 respectively. The calculated energy gap is plotted as a function

& |
.I
'
1 4

N of x in Fig. 6. N .,
&:' Because of the negligible change in the effective masses, the corresponding values in N
the pure materials are used in the calculation of the alloy-scattering-limited electron :.-.;_-"
mobility. The CPA X-gap ng and L-gap Esl' ate fitted to a polynomial form. The gen- ;
o eralized Brooks’ formula that is applicable to the alloys with an indirect gap and multi-
- ple bands is used.(15) The calculated electron drift mobility and the experimental Hall g
'::- mobility(l) are plotted in Fig. 7, where the theory explains the qualitative behavior of <'
experimental results{(1) As observed,(5) even a few percent alloy concentration can -,:,,-
E‘ reduce the drift mobility substantially. It can be seen that the rate of decrease near \.“

18
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0 and x = 1 are quite different. This is because the L-edge has more s content than the
X-edge. Because the s scattering is dominant in these alloys, the L electrons are scat-
tered more than the X electrons. Precisely for this reason, one observes a dip in the
mobility near the L to X(A) crossover. For x < 0.13, the minimum gap is the L gap.
After the crossover, the minimum gap is the X(A) gap, and the reduced alloy scattering
increases the average mobility. For still larger x, the mobility decreases because of the
increased alloy disorder. All these features are clearly seen in Fig. 7. While our calcula-

tions include the inter-valley scattering mediated by alloy disorder, the effect of other

scattering mechanisms is expected to increase the dip near the crossover.

The calculated alloy scattering rate for the holes is several orders smaller than that 2o
for the electrons, because (1) the valence band edge has dominant p content, (2) the p-
scattering parameter (A¢, = 0.21) is only 1/7 of A¢,, which alone decreases the scatter-
ing rate for holes by a factor of 50, and (3) finally, the imaginary part of the self-energy s .ch
is proportional to the density of states, which approaches zero at the band edge. Hence, ! L

the hole mobility in this system is insensitive to alloy disorder.

In MCPA, the conduction band is pushed down, because of an increase in the ima- -
ginary part of the self energy, giving rise to an additional bowing in the fundamental R :,
gap. For an x = 0.50 alloy, the gap is reduced by 7 meV. The bowing parameter, . ':'-]:

including the MCPA correction, is 0.21, which is in excellent agreement with -

experiment.(37)

It is interesting to compare the results of our calculations with those of Hass et

al.(34) In their calculations on the Ga,_In,As alloy, CPA introduced an extra bowing in - é
the fundamental gap. However, after the MCPA corrections, the total scattering was .:::.
diminished and the results were similar to VCA results. These results were explained in . :‘:
terms of the relative strength and sign of the atomic term values and VAB. We extend i E
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their argument to Si,Ge,_, alloys. The hybrid level of silicon is higher than that of ger-
manium. Because of its shorter bond length, the V, of silicon is larger than that of ger-
manium. Thus, in this case, both effects combine to give more disorder in the conduc-
tion and valence bands. Therefore, the scattering is enhanced in these alloys. This
explains the increase in the imaginary part of the self energy due to inclusion of OD

disorder in our calculation.

In conclusion, we have incorporated both chemical and structural disorder into the
calculation of the CPA band structure of Si,Ge,_, alloys. The calculation, based on a
realistic band structure of silicon and germanium, suggests that the band gap is an
increasing function of x with a slope discontinuity at x = 0.13. The linewidths of the
Eo and E, transitions calculated by CPA and MCPA are in good agreement with experi-
ments. Addition of the structural disorder to the diagonal CPA decreases the band gap
slightly but increases the s-part of the self energy considerably over certain energy
ranges. The calculated alloy-scattering-limited electron-drift mobility is in qualitative

agreement with the observed Hall mobilities.
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TABLE 1. Pseudopotential form factors .

" : '

.;L and the band parameters (in eV). N

~ 8, n:,‘-
E’ Parameter Silicon Germanium :::
il » L“‘

P\ %

. s 3
k V(/3) ~ 2872 - 2872 R
-

VW/4) 0.124 0.124 |
L V/8) 0.638 0.638 o
. V/11) 0.109 0.109 e
i
& ~16.175 -16.922 g
b &, ~16.109 ~14.971 s
e
Vs - 0.111 0.13] T
i e
: Vep 0.040 0.150 b
\‘.-‘- d
~ Vyx 0.025 0.030 NS
= :-‘:’ \
Vyy 0.050 0.100 N
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TABLE Il. Band structure of silicon and germanium E 3
DR
(all energies are expressed in eV). '.::
3
Silicon Germanium "M
-~ K
Bands Calculated EXPTL2/EPMb Calculated EXPTL*/EPMb RO
- r ~12.60 ~124:06 ~12.56 -12.6+0.3 o
Ly, -10.26 -93+04 -10.74 ~10.6%0.5 - '!j '
Ly - 6.99 - 68402 - 165 - 74103 oo
X1y - 8.29 - 9.20
Xqy - 255 - 2.55 4 B
L3, - L1 - 12+02 - 113 - 1.1£0.2 -
sy 0.0 0.0 0.0 0.0 o
L. 2.24 0.76 0.76 aE
3K
Iy, 4.10 4.00 £ 0.05 0.99 0.99 e
Ise 3.43 3.40 3.24 -
A
X 1.34 1.17 0.95 = I
XS
Ly, 4.34 4.16 L
Eq LIl 111 0.76 0.76 i)
Ko (0.8.0.0) (0.8.0,0) (0.5.0.5.0.5) (0.5.05.0.5) .
me| 0.89 091 1.09 1.59 P
me, 0.16 0.19 0.077 0.082 ooET
my 0.35 0.50 0.28 0.34 N
2
(a) References 21-28 o E\f,\
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TABLE lII. Calculated values of Eq. E; and their respective half-widths

~

A(Eg) and &4(Ey ) (all energies are in eV).

A

X Quantity VCA CPA MCPA

0.10 1.290 1.248 ——

g

= E 2016 1.995 -

0.109 Ey 2.028 2.009 -

E, 1318 1.275 — RN
AEI) 0.002 -— o

B 0.15 Eg 1.442 1.382 — -

o E, 2.083 2.051 -
- AEy) 0.002 - -
0.50 Eq 2.517 2.418 2.391 :

,-;i AEg) 0.186 0.206
E, 2.578 2510 2.498

E AE)) 0.0308 0.0319
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FIG. 1. Calculated VCA band structures of (a) silicon, (b) germanium, (c) SigsGeg 5

(4

alloys, and (d) Sig;0Gepgo. (€) Calculated VCA values(solid) and the experi- ,

mental values (dashed) of the Eg and E,/ peak positions are plotted as a

».
_m B %% 2 .

function of alloy concentration x. ©) ::[‘-

)

FIG. 2. The variation of the imaginary part of the seif energy X, (CPA) as a func- :... f‘_:::
tion of energy for x = 0.50. ) ‘E-_

FIG. 3. Calculated CPA complex band structure of the SigsGegy alloy. Only the ;":f
bands in the vicinity of the energy gap are shown. The shaded portion é

represents the alloy broadening. . »‘_Z:-

FIG. 4. Imaginary part of £, (CPA) and I, (MCPA) as a function of energy for x = - ‘_::::
0.50 alloy. E B

. {:::;.

FIG. 5. The variation in the width of the lowest lying conduction band as a function :-:: '::'_f
" T

of K, in the [100] direction for the x = 0.50 alloy. ‘:}

FIG. 6. The variation of the VCA energy gap (dash-dotted) and the CPA energy e :::::
o

gap (solid) as a function of x. o g

R "‘\!

FIG. 7. Calculated drift mobility (solid) and the experimental (dashed) Hall mobility .
(Reference 1) as a function of x. 5 ~‘
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