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SYMBOLS AND DEFINITIONS

VPS - vertical plane of symmetry
HPS - horizontal plane of symmetry
TE - transverse electric
TM - transverse magnetic
LSE - longitudinal section electric
LSM - longitudinal section magnetic
QLSE - quasi-LSE
QLSM - quasi-LSM
FHOM - first higher order mode i
DRWG - double ridged waveguide (empty)
DSLRWG - dielectric slab loaded rectangular waveguide
DLDRWG - dielectric loaded double ridged waveguide
PBD - peak power breakdown
P\IL - maximum voltage equivalent power
(M,E) - magnetic wall at VPS, electric wall at HPS
(E,E) - electric wall at VPS, electric wall at HPS
(MM) - magnetic wall at VPS, magnetic wall at HPS
(E,M) - electric wall at VPS, magnetic wall at HPS
BW - bandwidth

w - radian frequency
f - cyclic frequency

- permittivity
r - relative permittivity ,:-.

/A ) - permeability of free space
p - x-directed component of wave vector
k - y-directed component of wave vector
3 - z-directed component of wave vector
a - loss term of complex propagation constant

- complex propagation constant, = + .//3
8mn - Kronecker delta function
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AN INVESTIGATION OF

DIELECTRIC LOADED RIDGED WAVEGUIDE

1.0 INTRODUCTION % S

1.1 Background

Many types of transmission media are used in the microwave portion of the frequency spectrum
for guidance of electromagnetic ener,:. Waveguide, coaxial cable, twin lead, stripline, and micro-
strip constitute some of the more common types, and a variety of different configurations exists for
each. In this report such waveguide types as dielectric waveguide and coplanar waveguide are not con- -- "-
sidered, and the term waveguide is restricted to mean conducting cylindrical tubes with a uniform, but
not necessarily homogeneous, cross-sectional geometry.

Two important characteristics of waveguide are: (H) low insertion loss and (2) high-power capabil-
ity. In both of these categories, waveguide is distinctly superior to other transmission media, and for
many high-power applications, waveguide is the only choice. Waveguide is not without its disadvan-
tages, however. Factors such as size, weight, and cost are outside the scope of this investigation, but ' " "
the dispersive nature of waveguide [1,21 and the problems that can arise from multimoding, or the
simultaneous propagation of different waveguide modes [2,31, are important considerations and are dis- .'.,'..

cussed in detail in Section 1.2.

Most early waveguide development 14-7] concentrated on rectangular and circular cross sections
with homogeneous loading. The solutions to the boundary value problems posed by these regular cross
sections are straightforward [1,81, and the real effort was in work on special features (bends, tuning
posts, junctions, coupling slits, etc.). One of the first nonregular waveguide cross sections to receive
much attention was ridged waveguide (Fig. 1). Early analyses of such waveguide geometry have been
done with a number of different approaches [2,7,9-13). One of the first investigations using numerical
solutions was conducted by Montgomery 1141 in 1971 using the Ritz-Galerkin method.

(a) double ridged (b) single ridged

Fig - Cross section of ridged waveguide

Every mode of propagation in any waveguide may be characterized by its field distribution. For
homogeneous waveguides, modes are usually classified as TE (transverse electric) or TM (transverse
magnetic) [1,2,8J. The principal, or dominant, waveguide mode is the mode with the lowest cutoff fre- "
quency. A fractional bandwidth may be defined as the ratio of the cutoff frequency of some higher
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CHARLES W. YOUNG, JR.

order mode and the cutoff frequency of the dominant mode. For a true single mode bandwidth, the
maximum operating frequency is limited to the cutoff frequency f,. of the first higher order mode that
can propagate, thus, the single mode bandwidth is "-

BW~m, (first higher order mode)
BWm - .[,.(dominant mode)

Ridged waveguide achieves a large single-mode bandwidth as a result of the excess capacitance in the
center of the waveguide (a consequence of the reduced height in the gap region) which has the effect
of lowering the cutoff frequency of the dominant TE1,0 mode. The next propagating mode is the TE2.0
mode which has an electric field null in the center, thus, the added capacitance has only a second order
effect on the TE2 .0 cutoff frequency. A characteristic of ridged waveguide is the high wall current den-
sity in the ridge region, which results in a greater transmission loss than conventional waveguide. For .-

many applications, a more serious disadvantage is the greatly reduced peak power breakdown level due "to the increased electric field intensity in the ridge gap.

An alternative method for increasing the TE1 0-TE2 .o bandwidth of rectangular waveguide is place-
ment of a dielectric slab vertically in the center (Fig. 2). This dielectric slab loaded rectangular --

waveguide has received considerable attention [15-24). The two most notable features 1181 are: (1) -

TEI.0-TE 2,0 bandwidths comparable to those of ridged waveguide could be achieved, and (2) the
power-handling capacity was increased over that of air-filled rectangular waveguide as a consequence of
the higher breakdown strength of the dielectric material. The increase in power-handling capacity was
emphasized in 1976 by Findakly and Haskel [231. Dielectric slab loaded rectangular waveguide also
achieves a large TE1 .0-TE2.0 bandwidth as a result of the added capacitance in the center of the
waveguide, but with the added capacitance due to the higher dielectric constant of the slab rather than
to a reduced height. However, the first higher order mode to propagate in this waveguide structure
usually is not the TE2 .0 mode. Because of the dielectric loading, LSE (longitudinal section electric) and -

LSM (longitudinal section magnetic) modes 11-3,181 may propagate prior to the TE 2.0 mode. Except -'- "
for waveguides with small aspect ratios (height-to-width ratios), the first higher order mode to
propagate will be the LSE1 .1 mode as shown by Gardiol [191. The extensive bandwidth-power capacity
design information of 1231 uses a TE1.0-TE.0 definition for bandwidth, assuming that intervening LSE -

and LSM modes could be suppressed or eliminated. The importance of limiting the waveguide propaga-
tion to a single mode is shown in [31 and 1241.

Fig. 2 - Cross section of dielectric slab loaded
rectangular -•weguide

One shortcoming of dielectric slab loaded rectangular waveguide is the limited increase in
bandwidth provided by dielectric materials with low to moderate values of relative dielectric constant E,.
The TE, ,-TE,,, bandwidth is dependent on the thickness of the dielectric slab as well as E,- however. -

the minimum required value of *, increases very rapidly with bandwidth. From 1231. a fractional
bandwidth of 5.25 requires a value of E, of at least 50. High dielectric materials are available but gen- -"' .
orally have much greater loss than low e, materials 125,26. Also, large e, materials are usually more

2
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difficult to machine, can be very sensitive to temperature and atmospheric humidity, and in many cases %
are anisotropic.

L S

1.2 Objectives

The purpose of this investigation is a theoretical analysis of a waveguide structure which is a com- '.es '
posite of the two types discussed in Section 1.1, air-filled ridged waveguide and dielectric slab loaded
rectangular waveguide. The generalized cross section of this partially dielectric loaded double ridged ,: ,,
waveguide is shown in Fig. 3. The principal objective will be a complete modal analysis of this
waveguide structure. The only previous theoretical investigation of this waveguide found in the techni-
cal literature was conducted by Magerl [271, with analysis restricted to a geometry where the dielectric
width was exactly that of the ridge and with only a limited discussion of modes other than presumed
TE,0 modes. Although Magerl's analysis is valid for cutoff frequencies of the TE, 0 modes, true TE
modes do not exist above cutoff [281. With the complete modal analysis of this investigation, the cut- , .
off frequency of any waveguide mode may be calculated, thus allowing the true single mode bandwidth
to be determined. Also, this analysis will take into account the deviation of the dominant mode from a MW
true TE mode for frequencies above cutoff, and will allow numerical evaluation of propagation terms ..

(phase and loss) and peak power breakdown levels as a function of frequency for the waveguide of Fig.
3. A secondary objective of this investigation will be to show that the dielectric loaded ridged
waveguide may be designed to have a much greater theoretical peak power breakdown level than either
air-filled ridged waveguide or dielectric slab loaded rectangular waveguide having an equal single mode
bandwidth.

If-

< s -..-.5..--

a

Fig 3 - Cro, ,ection of dielectric loaded
double ridged wa,,eguide

The single mode bandwidth condition, where the maximum operating frequency is limited to the
cutoff frequency of the first higher order mode that can propagate, is an important consideration.
Although waveguides may be used in an overmoded condition where more than one mode may
propagate, it is standard practice to limit if" possible the operating frequency to the frequency range - **

where only the dominant mode propagates. This is done to prevent coupling between modes. If more
than one mode may propagate. some degree of' coupling is inevitable in any real device because of'
slight geometrical imperfections. Energy coupled Iron- the dominant mode into any propagating higher
order mode may then be trapped between discontinuities. such as bends, and give rise to cavity effects.
For high Q cavities, even a small coupling may thus produce sharp absorption peaks at the resonant fre-
quencies of the cavities 12.8,191. Mode suppression techniques such as properly oriented resistive film ....
act to increase the attenuation for the higher order modes 13,241, thereby lowering the Q factor of the
corresponding cavities and greatly reducing the absorption peaks. [or high-power operation, where

3
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such techniques for higher order mode suppression may be impractical due to arcing or melting of the
resistive film, single mode bandwidth operation is therefore highly desirable.

A simplified explanation of how the composite waveguide structure of Fig. 3 could achieve a
larger single mode bandwidth-power breakdown product than either of its constituent waveguide types
may be made from an intuitive viewpoint. The added capacitance in the center of this waveguide is a
combined effect of the reduced height in the gap and the dielectric loading. The added capacitance
lowers the cutoff frequency of the dominant (TEI.0 -like) mode which has a maximum electric field in
the center of the waveguide, but has little effect on the cutoff frequency of the TE 2.0-Iike mode which
has an electric field null at the center. The modes are referred to as TErno-like because true TE modes
do not exist in this structure ( nor do true TM, true LSE, or true LSM modes), as will be shown. The
effect on the power breakdown level of the increased electric field intensity for the dominant mode in
the region of the gap is offset by the increased breakdown strength of the dielectric. Since the vertical
walls of the ridge are conducting surfaces, tangential electric fields may not exist there. The higher
order LSE-like and LSM-like modes, which have electric fields tangential to the ridge wall, will there-
fore have an effective height less than the waveguide height, with a corresponding increase in cutoff
frequency.

.. *- . ,

The dielectric slab must extend past either wall of the ridge, with the H shape shown in Fig. 3, if
the addition of the dielectric is to maximize the power breakdown level. This is necessary because the
strong fringing fields from the gap could cause arcing in air.

In Section 2, the mathematical development of the theoretical analysis is made to confirm this
intuitive explanation. Numerical results obtained from this theoretical analysis are compared with the
results of other theory. In Section 3, this analysis is further substantiated by comparison of theoretical
results with experimental data from measurements on waveguide samples with varing geometries. Sec-
tion 4 presents some of the characteristics of dielectric loaded ridged waveguide and compares the
waveguide performance parameters with those of air-filled ridged waveguide and dielectric slab loaded
rectangular waveguide.

2.0 WAVEGUIDE THEORETICAL ANALYSIS

2.1 Discussion of Analysis Approach

As noted by Lewin [29], the number of waveguide problems capable of exact solution is limited
to a few very simple shapes, even when the common approximations of ideal geometry and infinite wall --

conductivity are made. Approximate solutions for more complicated waveguide shapes may be found - -

via a number of methods and techniques. Some classes of waveguides are more suited to certain
analysis methods than to other methods. Of the variety of methods available for finding numerical
solutions to the hollow waveguide problem [30,311, many are not applicable for analysis of inho-
mogeneous waveguides. A ,-eview of different analysis methods which are suitable for obtaining a solu-
tion to the general inhomogeneous dielectric loaded waveguide problem may be found in Ref. 32.
These methods include the transverse equivalent transmission line concept [1,7,9,11,33-391, perturba- -

tion methods [1,40-451, variational methods [1,38,41,46-50], Rayleigh-Ritz methods [1,38,41,
46,47,51-531, reaction concepts [41,47,541, and finite difference or finite element methods [55-60].

The transverse resonance method is probably the least complex of the possible approaches that
may be used to find solutions for waveguide configurations of the type shown in Fig. 3. In this
method, an equivalent transmission line circuit is formed to represent propagation characteristics in one
of the transverse dimensions of the waveguide rather than along the waveguide axis [I,21. Discontinui-
ties along the transverse axis are reflected as lumped elements in the equivalent circuit. In general, -

each propagating mode will require a different equivalent circuit for analysis. •

The computational requirements of the transverse resonance method are much less than those of
other numerical methods, but there are two drawbacks to the use of this method to analyze the

4
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waveguide of Fig. 3. First, the transverse resonance method gives only the propagation characteristics
with no insight into the behavior of the fields, the electric field distribution is required to determine the'
power breakdown of the waveguide. Second is the question of a suitable equivalent circuit to represent
the discontinuity formed by the ridge walls. This discontinuity is reflected as a change of the
waveguide height in the transverse direction. By use of quasistatic methods and conformal mapping,
such a discontinuity may be shown to have an equivalent transmission line circuit consisting of a shunt -,%

capacitance at the junction of two transmission lines of unequal characteristic impedance [7,33,38,391.,'- -

However, this derivation of the shunt capacitance assumes a propagating TE mode with only a vertical -

component of electric field incident upon the discontinuity formed by the height change, and further g, -
assumes the discontinuity to be isolated, i.e., far removed from other discontinuities in the waveguide.
In the case of air-filled (or any homogeneous dielectric loaded) ridged waveguide, the TE 10 and TE2.0
propagating modes each satisfy the first assumption: the propagating component of the transverse wave
is TE to the ridge wall with no axial component of electric field [7,9,111. Corrections to the value of
the shunt capacitance in the equivalent transmission line circuit may be made to correct for proximity
effects due to narrow ridges and/or close in sidewalls [101.

When attempting to find an equivalent circuit to represent the ridge wall in the partially dielectric
loaded ridged waveguide of Fig. 3, several problems arise as a consequence of the inhomogeneous
dielectric loading. In the absence of the ridge, modes other than TE,,,.0 are characterized as LSE or
LSM. Introduction of the ridge will cause distortion of the fields from true LSE or LSM nature, but as
in the undistorted case the propagating components of the transverse wave will have axial components
of electric field. Equivalent circuits to represent the change in waveguide height for incident modes '

other than the dominant mode (no axial electric field component) were not found in the technical
literature. Without a suitable equivalent circuit to represent the effects of the ridge walls, the
transverse resonance method is not applicable for analysis of the distorted LSE,,.,,(n ;e 0) and LSM
modes. Even for the distorted TE,,.) (LSE,,.,)) modes, the accuracy of an equivalent circuit such as that
from [7] may be questionable. An axial component of electric field must exist to satisfy the required
boundary conditions at frequencies above cutoff 1281. Although this axial electric field may be evanes-
cent, leaving the propagating portion of the transverse wave incident on the effective waveguide height
change the dominant mode, the equivalent circuit derivation does not consider any axial electric field
since none exists for the homogeneous case. An additional limitation on the accuracy of the derived
shunt capacitance is due to the possible proximity of the discontinuity at the air-dielectric interface to
the discontinuity at the ridge walls. Corrections to the shunt capacitive term for proximity effects such
as in Ref. 10 do not consider a change of the dielectric media.

Despite the drawbacks of the transverse resonance method for analysis of the waveguide of Fig. 3,
approximate solutions for the propagation characteristics of the dominant mode that may be obtained
using this method are useful for several reasons. As the ridge depth becomes small (d - b in Fig. 3),
the solution must approach that of the dielectric slab loaded rectangular waveguide for which the dom-
:,ant mode is the TE.1, mode. At the dominant mode cutoff frequency of the actual ridged waveguide,
the axial component of electric fields %anishes. thus the equivalent circuit derivation from Ref. 7 to
represent the effect of the ridge walls need only consider proximity effects. At frequencies above cut-
off, the dominant mode may be considered as a TE 11 mode distorted by the presence of the ridge. To
a first order approximation, the evanescent axial component of electric field may be ignored and the
dominant mode treated as true TE1.. The departure of the dominant mode from a true TE1 ,0 mode
will increase as the ridge gap becomes smaller. The solution obtained by the transverse resonance
method thus will not be exact, but may provide sufficient accuracy for many purposes. Since the con-
putational requirements are minor, the method is useful to provide approximate propagation charac-
teristics of the dominant mode as a starting point in the search for a numerical solution of the more
rigorous (and considerably more complex) analysis developed in Section 2.2.

Appendix A outlines a detailed development of the transverse resonance method to solve for the
propagation characteristics of the waveguide of Fig. 3. The development includes the TEL., mode as

;..-.-..-....'.'......,-"... -... ,.......... . .....-.. . ."..... .....
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well as the TE1,0 mode since all of the arguments made concerning the approximations of the method
for the distorted TE1 j mode apply to the distorted TE2.0 mode as well.

As pointed out in Section I.I. the first higher order mode to propagate in dielectric slab loaded .
rectangular waveguide may not be the TE 2.0 mode. Both the LSE1 .1 and LSM 0.1 mode are likely to have
lower cutoff frequencies than the TE20 mode. For the partially dielectric loaded double ridged
waveguide, the distorted versions of these longitudinal section modes must have their cutoff frequen-
cies determined if the single mode bandwidth criteria is to be used. For lack of a suitable equivalent
circuit to represent the effects of the discontinuity at the ridge walls, the transverse resonance method
is unsuitable for analysis of these higher order modes, thus another analysis approach must be found.
A second reason for finding another means of waveguide analysis is the questionable approximations
that were made for the distorted TE,0 modes. A more rigorous solution is desirable, preferably one
that uses the same analysis method for all waveguide modes.

A perturbation method was rejected as a viable analysis approach for the partially dielectric loaded
ridged waveguide because of the possible large deviation from the unperturbed problem, the dielectric
slab loaded rectangular waveguide, for which the solution is readily available (Appendix B). Some con-
sideration was given to the possibility of deriving an equivalent circuit to represent the effects of the
ridge walls for higher order LSE- and LSM-type modes, as well as to account for the axial electric fields
for the distorted TE,,, 0 modes, thus allowing a more accurate analysis with the transverse resonance
method. It. was determined that an accurate equivalent circuit could not be derived for which the ele-
ment values would be a function of the ridge wall discontinuity alone- all of the geometry parameters
(Fig. 3) would be required to numerically define the element values. Such a process essentially would
constitute the rationale "solve the problem to find the quantity needed to solve the problem." an obvi-
ously circuitous approach.

Many of the analysis approaches described in Ref. 32 are appropriate for obtaining numerical solu-
tions for waveguides with arbitrary or very complex cross sections. While such methods could be used
to obtain numerical solutions for the partially dielectric loaded double ridged waveguide, the computa-
tional requirements would be considerably in excess of a method which utilized the rectangular features
of this waveguide with analysis restricted to the generalized cross section shown in Fig. 3. The
approach of the latter method was selected for the waveguide analysis. Section 2.2 presents the
mathematical development of the analysis. This analysis uses the Galerkin form [46,47] of the .,-p

Rayleigh-Ritz method. This procedure is commonly referred to as the Ritz-Galerkin method [14] and
constitutes a mode-matching technique 148,581.

2.2 Analysis of Lossless Waveguide

The appropriate physical parameters of the partially dielectric loaded double ridged waveguide .
under investigation are defined in Fig. 3. Only those configurations possessing physical symmetry in
both the vertical and horizontal planes are considered. For the initial analysis, the following assump-
tions will be made:

0 The waveguide is lossless, with the metal walls being perfect conductors and the loss tangent of j
the dielectric material equal to zero. Loss calculations will be made at a later stage by using
perturbational techniques.

• The dielectric material is homogeneous and isotropic with a relative permittivity E, and a per-
meability equal to that of free space, 1A0. . .

0 The interior volume of the waveguide is charge-free.
" Axial propagation is unidirectional in the +: direction.
0 Time dependence of all fields has the form cxp (+Jw i), where J = vZ-I and w is the radian

frequency.
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\Vk'winr.ec: nio hc taken of the hori/ontal s~nmmetrv to reduce the model for analysis to a half
'I sh,' %n in I ig, 4. kith either a magnetic wall or an electric wall placed at the vertical

1 \ PS) at ~ >The model could be further reduced to one quadrant of' the cross
I, the sertrcl immr. hut such a further reduction wouid offer no real advantages

K-LIcN.u 1f the xertical s~ nietry. howkever. either an electric wall or a magnetic \vall

-\ sit it the hori/onta plane of symmetry (IPS) at Y = 0. The type of' wall, electric
If I. t t he \ I'S is i ndependent of t he wall ty pe at the 11 PS. The resulting sol utions

1 1 T1 r 1m t11C t 'or pi ssthle combinations of' symmretry conditions. Until further clarification
!d 1P lc .tH riditions itt the planes of' symmretry will be indicated by at two-letter comibina-

hi, ftsri lctte:r de~notIng the w&all type at the VPS and the second denoting the wall ty pe at the___
11 Ps, I h,: 1u 1 Iutiun -1L1W1,III then he defhined as (At. L), (Af. Af. (E, AP,. and (E. E).

Vertical Plane of Symmetry

(VPS)-Electric Or Magnetic Wall

Region Reglo RgionI

23

yd/2

x
Er

Y=-b/ 2

xX XX=X 0~ xX -
Horizontal Plane of Symmetry

(HPS)-Electric Or Magnetic Wall

ig. 4 - Mo~del for .n~in~ 'sI

The relationship between the v-direction parameters of the model for analysis (Fig. 4) andl those
of" the \&awguide (Fig. 3) are given by:

XI (a o ~/2 (2.l1a)

0 ft - / 2! (2. 1b)

.2. (2. 1c)

I he model \%ill he separatedl into three homogeneous rectangla1.r regions:

Region I < - v. -h, 2 1)~ 2

Region 2 v< 0t. - /7 2 1i b 2

Region 3 d) 2t !x. dI i /2
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The rectangular coordinate system is the natural choice for an analysis of this configuration. The axes %-0are defined in Fig. 4. The respective unit vectors are a , ay, and a." .,.,

For the assumptions noted, Maxwell's equations reduce to:

7 x E =-joix0H (2.2a)

V x H=jweE (2.2b)

V E = 0 (2.2c)

V H = 0. (2.2d)

Amplitudes are peak rather than RMS. Appropriate boundary conditions are:

n x E 0 at all electric walls.--.3")n • H = 0J (2.3a).-v

n'E- 0 at all magnetic walls
n x H 0 (at3all'(2-"b)

n X I continuous across the

n x E air-dielectric interface (2.3c)

where n is the unit vector normal to the applicable surface. Taking the curl of both sides of Eq. (2.2a)
and substituting Eq. (2.2b) gives

V x V x E = coj2go EE.
Using the vector identity

V x V x E _ 2VE + V (V E)

and (2.2c) gives the Helmholtz equation [40]

V' E + wo ±1of E =0 (2.4a)

where V2 is the vector Laplacian operator [44]. A similar derivation for H gives

V 2 H + &2 go E H = 0. (2.4b)

In rectangular coordinates,

V 2 a V 2 + a1 V2 + a: V 2

where

72 02 +02 02V. 2 = - + + -Z. -.. "-
a~ ,2 02

Thus

12 + _ + 2, A-_o02 (2.5)ax 2 2X( ax2 &Z 225

forW = E, E E. H, 1 or IL.

Because of the homogeneous nature and rectangular shape of each region in Fig. 4, a separable ,'*-'

solution may be presumed to exist (611 for all the fields in the region. The full solution will be a
superposition, or linear combination, of particular solutions each of which satisfies Maxwell's equations
at all points within the region. The required boundary conditions for the region will be satisfied by the

8
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full solution, but in general may not be satisfied completely by any particular solution. For ,
representing any of the six field quantities,

S(xyz) a, 4' (xyz)

where the constants a, must be determined and each particular solution has the form .

q4, (x,yz) = X,(x) Y,,(y) Z,,(z).

The vector representation of the particular solution may be expressed as

E, ax a , + a., En, + a: E,

H,= an H, , H. +a. H.,II".-+. .,.

Since each particular solution must satisfy Maxwell's equations,

7 X E, = -j #o H,, (2.6a)

V x H, = jo e E, (2.6b)

V E, = 0 (2.6c) -...h..

V H, = 0. (2.6d) ,

Also, Eq. (2.5) must hold for all field components of each particular solution, thus
X,, Y,, Z,, + X. Yn Z, + X,, Y,,Z. = -o+2# E X, Y, Z,, where the double prime superscript denotes the
second derivative with respect to the corresponding variable. The time dependence has been stipulated
to be harmonic with the form exp(jwot) and is implicit for all fields. Since the product X, ),,Z, cannot
be zero if a solution is to exist, X,/X, + Yn/ Y,, + Z,,/Z. = -+ 2#.0e. Since x, y, and z are indepen-
dent variables, each function must separately equal a constant. With ..

X,, = pn (2.7a)
Y,,/ Y, = - k.2  (2.7b)

.1 -,e.'-2
z./z = -p32 (2.7c)

the separation equation is given by

3,2 + kd - pn= W/.Lo E. (2.7d)

The general solution for Eq. (2.7c) is

Z.(z) = cI exp 'P,,z) + c2 exp (-jpz).

Any propagating mode must have a unique axial dependence. Since propagation has been assumed to
be unidirectional in the + z direction, /3,p 2 is single valued, p,2 = 32, and because the time dependence is

taken as exp (jwt), the axial dependence for all fields is Z(z) = exp (-j/3z). Like the time depen-
dence, the axial dependence will be implicit henceforth for all field quantities. The amplitude will be
absorbed into the individual field amplitude term.

The general solution for the differential equation of Eq. (2.7b) is
,. '.

Y, (y) = c1 sin (kY) + C2 cos(k,,v). "2.'....

In a region with height h, the fields E, E:, and H, must be zero at Y = h/2 and at y = -h/2 by virtue
of Eq. (2.3a). Then for - E, E., or H,,

' v 1Y - -- X1(x () Yn(Y)I ,,,/2-- 0

9
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which can be true for all x in the region only if Y, (y h _/2) = 0 for all n. Thus, I
c sin (k,,h/2) + c2 cos (k,,h/2) 0

and ,

-c1 sin (k,,h/2) + c, cos (kh/2) = 0.

Addition and subtraction of these last two equations will show that Y, (neglecting the amplitude term
which will be absorbed into the overall amplitude for TI,, ) must have one of two forms:

Y,,(v) = cos (kv). with kn - (2n + I)7r/h (2.8a)

or

Y,() = sin (kv).. with k,, = 2n7r/h (2.8b) e

for n=0. I. 2. 3. If Maxwell's equations are to hold at all points within the region, then E,,, E:.
and !,,, must have the same v-dependence. Furthermore. E,.,,. H,.,,. and H, must have the com-
plementary v dependence. If the v-dependence of the nth term of E,, E., and H, is
cos [(2 n + I) r v/hi, then the v dependence of the nth term of E,. H,. and H. must be
sin [(2n + I) 7r v/il. if the v-dependence of the nth term of E,, E.. and H, is sin (2n 7r Y/h), the .-. b

y-dependence of the nth term of E,. H, , and H. is cos (2n 7r v/h).

The boundary condition (electric or magnetic wall) at the HPS will determine the type of v-
dependence for the fields. For (M.E) and (E,E) solutions. E,. E., and H, must vanish at v = 0. The
y-dependence for E.,,,. E-.,,, and H,,,, is therefore sin (2n 7/ j/h) and that for E,.n, H, , and H, is
cos (2n ir v/h). The (CA.M) and (E.M) solutions require E, H,. and H. to vanish at y = 0. thus
E,.,,. E-.,,. and H,.,, must have the v-dependence cos [(2n + 1) 7" y/h] while E,.,,,. and H.,.
have sin [(2n + 1) if v/hi as their v-dependence.

The general solution to the differential equation of Eq. (2 .7a) may be expressed in several forms.
For positive values of p, . the solution is normally expressed as

N,,(x) = a,.,, cosh p,,x + a,.,, sinh p,,x

where p,, = x/p,. For negative values of p,2. the solution is normally expressed as

X,,(X) = a1 ,, cos (%['-- -) + a,.,, sin X).

The solution when p,2 equals zero is

V,, (.v ) = a .,, + a ,, "
n -

The hyperbolic form may be used for p,; negative or zero if for the former case p,, is taken as imag-
inary.

P,, =J-" i = f7/ for ,2 < 0.,.- ..

This would result in a complex representation for X, (-) when p,, is negative since

cosh .jI01 = cos 191 (real)
sinh jIlI = j sin I#I (imaginary )

Such a complex representation may be avoided by expressing the general solution to (2.7a) as

X,,(x) = a,, cosh (p,,x) + a..,, sinh (p,.) /p, (2.9)

. . .. ". . %

,-..-.-..-.,.-.-.--.-.-2...-.,-.,- ,...-..-.-... .....-... -... . . .-..... ...... . .... . .. ,. .... ... ..- -''?
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This expression is equivalent to the conventional hyperbolic solution, differing only in the form of the
constant of the sinh term. To conform with the known solution when p is zero, the limiting definition
will be used:

sinh p,,x = Jim sinh p,,x
p .= 0 p,-

0 I| ,, -

-x for p =O.

By using Eq. (2.9) to represent the x-dependence of the fields regardless of the value of p,.
unnecessary complications in the mathematical notation will be avoided as will the need for imaginary
amplitude coefficients. Examination of Eq. (2.9) will show that X,(x) and all of its derivatives remain
real when the amplitude terms are real, regardless of the value of p, (positive, negative, or zero).

The development of the field expression thus far may be summarized as follows: in each region,
the x- and y-dependence of each of the field quantities may be expressed as a series,

i, (x, v)= T X, (x) ,().

The x-dependence will have the general form

X,(x) = a,, cosh (px) + b,, sinh (px) /p,

where the amplitude terms a, and b, will differ for the different fields. The value of p, in each region
is determined by the separation equation, with

= 2 (0~ 2*J
2

,,E

and

= - for p, > 0

p = jV ,1 for p,2 < 0.

The j-dependence will use a double notation for compactness. The fields E, E:, and H, will have

,, (.v) = i ,".v.-.Co-

while the fields E, H,, and H. will have

Y(y) = k,.v,

where the upper trigonometric function is to be used for (M,E) and (E,E) solutions (an electric wall
at y = 0) with k, = 2nr/Ih and h is the waveguide height in the particular region. For (M,M) and
(E.M) solutions (a magnetic wall at * = 0), the lower trigonometric function is to be used, with
k, = (2n + 1) r/h. The question of limits on the summation in the series representation for the fields
will be deferred until a later stage in the analysis development.

The boundary conditions at the horizontal conducting surfaces of the waveguide have been used
to formulate the field expressions to this point. The remaining boundary conditions to be satisfied are
at the vertical side wall, at the air-dielectric interface, at the plane of the ridge wall, and at the vertical
plane of symmetry. Before proceeding to these boundary conditions, it is necessary to consider in more .. * •.

detail the analysis approach and how it will be expected to yield a numerical solution. In Appendix B,

* " o " - o-

. -. ,o-
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the general solution for the dielectric slab loaded rectangular waveguide is shown to reduce to an eigen-
value problem of the form

where the eigenvectors are the modal coefficients of the x-directed electric and magnetic fields. The %
field distribution for any mode of the partially dielectric loaded double ridged waveguide may be viewed %

as a distorted field distribution of the corresponding mode in dielectric slab loaded rectangular
waveguide, with the distortion resulting from the presence of the conducting surfaces of the ridges.
Therefore for this analysis the approach follows that for the dielectric slab loaded rectangular
waveguide. ,... .

If the eigenvectors of the eigenvalue problem are to represent the x-directed electric and magnetic
fields, it will be necessary to find the relationship between these fields and the orthogonal fields.
Maxwell's curl Eqs. (2.2a, 2.2b) may be expanded as

4 Oy tz
-jo Io H= E -- E (2.1Ob)

' a z ax:

-jWJ AO = az E, a E (2.1Oc)ax a.

E, - - H0-H (2.1Od)
jEE H. az

jo E' a - ax H. (2.1Oe)

jw oEEL H - H. (2..Of)

Since the --dependence for all fields is implicit as exp (-j:). the differential operator a/a: may be
replaced by -j/3. Substitution of Eq. (2.10c) into Eq. (2.10e) will yield the relation

Go2/Ao + aAL) E, 1 -L E -oLH. (2.11a)
aX2 a.X ay

- .4 .%

In a similar fashion, substitution of Eq. (2.10b) into Eq. (2.10f) will give 4 ,.4.

2 a 2 '
(W- ij,, + x) E.=-j E, +.witoZ -L H,, (2.11 b)-,--

+ X.

while substitution of Eq. (2.10f) into Eq. (2.10b) gives

ao + aH, coe8E, + a a (2.1 lc)

aX2 a X ay
and substitution of Eq. (2.1Oe) into Eq. (2.10c) gives

6 (o + -- ) H. = -. 3 f E,-j - H, (2.lid)

Since Eq. (2.11) were derived directly from Maxwell's equations, they may used to determine the rela- "" *.
tionship between fields on a term-by-term basis in the series expansion for the fields.

In Region 1, the conducting sidewall at x = -xi (Fig. 4) requires E,, ., and H, to vanish at this
plane. This boundary condition may be used to eliminate one of the unknown amplitude coefficients in

. . . . . .. . . . . "

- - .- 4 
- _-

.. 4 - ..

12.. • .. ,

% ' i' .
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the generalized form of the x-dependence for each term in the field expansion. With
'I'(x. y) - X, X.(x) Y (x) representing any field. E,, E:. or H,. it is easily shown that each term XK Q.

must be zero at x - - x if %P is to vanish at all points on the sidewall. Using the generalized form for
X,(x) from (2.9).

a,, cosh (-p,,x) + a.,, sinh (-p,,x.) /p,, = 0,

thus

sinh (p,,x )
a,, = a2 ., p,,cosh (p,xl)

The x-dependence for these fields now becomes ,. '12

X(x)= p,,cosh(pnx) sinh (p,,xl) cosh (p,,x) + cosh (pxi) sinh (px)J.

A new constant may be defined as

b= a 2., /cosh (p,,x l )
. 4,4+

and the mathematical identity

cosh 0 sinh 4) + sinh 0 cosh 4; = sinh (0 + 4)

used to further reduce the x dependence to

X, (x) = b, sinh [p,,(x + xj)] /p,"

for the fields E4, E, and H. Since Maxwell's equations must be satisfied on a term-by-term basis,
and at every point within the region, the x-dependence for the nth modal component of the field
Ex, Hy, and H, must have the form

X,,(x) = c, cosh [p, (x + xl)J.

The l/p, term is absorbed into the constant to maintain consistency with the form of Eq. (2.9).

The fields of Region I are now expressed as

Isin
=x") A,,, cosh [pi,(. + \) Cos k I., (2.12a)

F1' __ sinh (pi., (x + \')] CL0" -Z BI,, Isn k...' (2.12b)
pllf

sinh [pl, (x + X1)] [sin
= •p.,, " cosJ k . . (2 .12c)

D ,. sinh [P,.,, (.v + -vl)_ cos k. ., ( .2
Hx) = D-sinA P I." Pi.,, in ks.. (2.12d)

isin
= £oI., cosh p.,.+ (.x [ Cos k Af (2.120',

nH: I=  .jG ,.,, cosh [pi, . v .+ V )l •Csn k ,. I . y12.12f)

13 ".'-"-

.. - ,. *," '.-" .'.-
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where the extra subscript I on the amplitude constants and the constants p, and k,, and the extra
superscript (1) on the fields are to distinguish these quantities from the corresponding quantities in the
other regions. The constant j is included in the expressions for the axial (:-directed) fields to allow
the amplitude coefficients to be real, thus avoiding the need for complex arithmetic in the numerical ,
computations. The dual y-dependence notation will avoid much of the notational repetition that other- .
wise would be necessary for separate derivations to correspond to the two different types of wall condi-
tions (electric or magnetic) at j = 0 imposed by symmetry consideration. For (ME) and (E.E) solu-
tions, the upper trigonometric function is applicable, with

k, = 2nf/ b. (2.13a)

For (EM) and (MM) solutions, the lower trigonometric function is applicable, with

k., = (2,n + 1) 7r/b. (2.13b)

The separation equation for Region I becomes

p,= 2 + kL,, - oEo (2.13c)

and pl, will be real or imaginary, depending on the sign of p.,.

Equations (2.11) may be used on a modal component, or term-by-term, basis with the fields
given in Eqs. (2.12) to obtain a relationship between the various amplitude coefficients. Applying Eq.
(2.1la) to (2.12) yields

Cos
(W 1.-IE0 + P2.,,) BI.,, sinh [pl., (X + x)] /Pi. sini k,

= (: k .,,) PIn,, AI.,, sinh [Pl.,, (x + .' .sin k .,, ..

Cos.
-w.) p D.,, sinh IP.,, (x + x)]/P.,, ".I , y (2.14) sin."

The ± notation on k ., is the result of the dual notation for the y-dependence, whenever the ± (or T-)
notation is encountered, the upper symbol is to be used for (M,E) or (E.E) solutions while the lower
symbol is to be used for (M.M) or (E,M) solutions. The expression Pl.,, sinh Ip.,, (x + x1 )I may be
replaced by the expression p?.,, sinh [pl.,, (x + x1 )] p., for all p.,, (pl., real or imaginary) if the lim-
iting definition is used.

sinh [p ,(. + .\l)] sinh [p.,, (x + x 1 fl

PIn ,- PL,,- PI."

= \ + V].

With this replacement in Eq. (2.14). the relationship beteen the amplitude coellicients must be

(uo AA jE. + pf.,, B1.,, + A ,, P?,, 1 p2 ,, - lli 3 I ,.

for Eq. (2 14) to hold at all points in the region. From Eq. (2.13c

JA, IE + pr=1 +

thus
(132 + A1,,) B .,, = ± K,, ,'p.,, .4,, -,.L,,13 DI,,.

14
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In a similar fashion, Eqs. (2.1ib), (2.1Ic) and (2.1 id) may be used with Eqs. (2.12) to obtain the .... ,.
relationship of the amplitude coefficients of E.'., H,'1 . and H',''. respectively, with the amplitude .

coefficients of E.,m and H.'1 . The complete results are given by 4:

(12 + k2,)B ,,, = - k.,, p , A ,, - I 13 D,., (2.15a)

(132 + k?,) C1,, = - T p,, A - k., oai DL , (2.15b)

('12 + k ,) 2 F., = ( , 3 A ,.,, / k , D .,, (2.15c)

(132 + k2,,) G1 ., = T k.,w E) A 1. - 3 D.,,. (2.15d)

The relationships expressed in Eq. (2.15) may be reduced to matrix form as

. .. 
.

1 0 K,.. . (2.16)
0 "t- K 1  0 U0 D

-,0",, 1 .. A, and'o "-. a pec-':"-" ". _.

%here the vectors C.' B1, F1, G1. :A,, and D, are column vectors having the ordered components C1. , ,  ,_
8 .,. F . GI., .l ,,4 A . , and D I, respecti,ely. .

The matrices tb (b, K 1, and P2 are diagonal matrices with elements .,

jt l ...... = (132 + k,) . . (2.18a) -" :" "

= 13 8 ..... (2.18b)

{K1 },.... = k ,, ,,, (2.18c)
{gp 1 .... = p 1.,, 8 ... (2.18d) , . . .

where ,,,, is the Kronecker delta function

= i form= n i.

=0 for m n " "

and U is the unit matrix. Since the question of limits on the summation in the series expansion for the
fields has yet to be addressed. no attempt will be made in the analysis to make the index notation of
the various vectors and matrices conform with the conventional notation in which the integer indices """
start at one. Such a departure from convention should not cause confusion in the mathematical treat-
ment of the analysis. When programming a computer to solve for a numerical solution, however, cau-
tion must be exercised since most computer routines require the conventional indexing method.

From Eqs. (2.12). it is apparent that for terms where k, is zero (encountered only in
(M,E) and (E,E) solutions with n equal to zero) the corresponding modal components of
E,"', E.'". and H , ' ' vanish everywhere, and the amplitude coefficients A,(.) Cj.). and F., are there-
fore meaningless. To maintain a consistent notation, these elements will be carried in the development

A. .!"° " ° " " " ° " " " " ." " ° " " " " "" ."" "".. . . . . ." " " " P . . . . . . . . ." " """ * . . " . ". . % -" ," , %

"¢ ","" ''. .' " , .'."."., " . ,- " .. , ---- ' ''" p. ' .-. --. ''/- * < .' - . "'- - '.-' ' . .' .' . ..-.-,'''' -. '''' -' -,€ '
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when k,, is zero, but strictly as dummy elements not to be included in the final solution. There is

further discussion of this issue later in the development of the analysis.

The situation at the waveguide cutoff frequency (where by definition ,3 - 0 ) for any mode con-
taining terms with k,.,, = 0. where i = 1. 2. or 3. in the series expansion for the fields will be referred
to as a singular condition. For a singular condition (2.15) losses meaning for kj,, = 0 since both sides
of each equation are zero. lHowever, Eq. (2.10c) may be applied directly to Eq. (2.12) to give

B = 1. G 10 for ,8 = 0, k1 , = 0. (2.19)

The result of Eq. (2.19) alternatively could be obtained by a limiting definition with Eqs. (2.15a) and
(2.15d). W ith k .0= 0"/3-8 "-wl,...,,

162 Bn.0 = - wo/,t0 1 D1.0 ." "
"It-..

/2 G1,0 = - P3 D1.0.

Obviously, lim D, 0 - 0; however,

lim B L  
' " "

For the matrix equations of (2.16) and (2.17) to remain valid for the singular condition, the matrices
qt and V must be modified as

2+80) 8mn(220c {tb}.,.. =(,' + k 2 + o),,, (2.20) .'-S '

t'{4m, = (,6 + 80) 8,,,, (2.21)

where

l for =, k,,= 0
Ootherwise. (2.22)

Also, for the singular condition the leading element of the vector D, must be - G1.0 rather than Dn0.
The modifications to the matrices I and (P will cause (2.16) and (2.17) to give

C 1 0 = - P'0 A 1.o

F1,0 = o E0 A '0

for the singular condition, but the relationship of these three coefficients is meaningless since they are
dummy elements.

In Region 3, the development of the x-dependence for the fields is similar to that for Region 1.
For (I.E) and (M.M) solutions, the vertical plane of symmetry represents a magnetic wall, thus
E,, I,, and H, must vanish at x = x 3, and the x-dependence for the modal components of these fields
is found to be of the form

X,, (x) 0.,, sinh [p3., (X X3 )I /P3.,. (2.23)

For Maxwell's equations to hold for all points in the region, the x-dependence for the modal corn-
ponents of the fields E,, E:, and H, then must have the form

X,, (x) = c3,, cosh [p., (x - x 3 )1. (2.24)

For (E.M) and (E.E) solutions, the VPS represents an electric wall, thus E,, E., and Hr must vanish
at x = x3. The x-dependence of the fields then reverses from the case for (M,E) and (MM) solu-
tions. with the x-dependence of the modal components being given by (2.23) for the fields
E,, E and H, and by (2.24) for the fields Er, H,., and H.

16
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For (M,E) and (M,M) solutions, the series expansions for the fields of Region 3 then become

sinh [P3 ,(X -X 3)] sin
Ep'33A.nl o k3, y (2.25a)

(3) Cos1
= y B3,, cosh [P3 ,(X -X 3)] sin k 3,n Y (2.25b)e

E'(3) C3., cosh IP3 ,(X X3) [sinl k3,,, Y (2.25c)

n~ Icosi

H>" ~ 3,, cosh IP3,, (X- j sinJk y(25d
n

sinh [P3 ,(X -X 3)] 1sinJ(22e
H,(3 FO k 3 nY(25e

t )sinh [P3,n (X -X 3)I Ico
= jG 3 ,, Pn 1sn 3,n Y (2.25f)
n P,

% while for (E,E) and(E,M) solutions the fields are

3.n sin
n P.

E3  ~ sinh [P3.n (X - X3) cs k3,(26c
P3, Ics

Hx3 3nsn In( 3] csin k,,,, y (2.26b)

= ~ inh p3~ x - 3)J sin
n P 3  3 , 226).

H,(') 3,~ coh*I XsinJ k3,,Y (2.26d) .

jI> G F cosh (P3 ,(, ) (cos k3 ,, Y- (2.26f)

Hf"= j 3,n cs[p(X- 3)] Isini 3  ' 22f

Analogous to the case for Region 1, the upper trigonometric function for the Y-dependlence is to be
used for (M,E) and (E,E) solutions with

k3.n= 2ntr/d (2.27a)

*while the lower trigonometric function is to be used for (M,M) and (E,M) solutions with

k3,= (2n + 1) arid. (2.27b)

The separation equation for all solutions is given by

p2 , = 9' + k3, -'A IE0 er (2.27c)

where e, is the relative dielectric constant of the dielectric material.

* 17
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The relationship between the amplitude coefficients of the modal components in the series expan- .*

sion for the fields in Region 3 may be found in a manner similar to that of Region 1. For
(ME) and (M.,M) solutions, (2.11) is applied to (2.25) on a term-by-term basis, with the results

(p2 +k3,,) )C3,, = -3 A 3, T- k3 .n gop. D3., (2.28a)

(,02 + k',,) 83,, = ±t k3.,, A1  - W S DL 3 ?3, (2.28b) -

(,8' + k',) )F, = w3 E3 (3 A3, T k3, ~, ) 22c
((3 + k~ _ 3,, ~ 3 .n -3. n],1) (2.28c)

(2+ k, ) 3.n = T 3.,, 0 EA 3, 3, 3.D3.,(.2d

where 4E = ErEO. For (E,E) and (E,M) solutions , the results of applying Eq. (2.11) to Eq. (2.26) are 7'

Expresse in, mari form Eqs (2.28 an (2.29),aregiven.2by

+ j3n F3., B= 3 P1( 03, T -3nD (2.390

Thpessd matrix fosrhesme as for28 Reind (22 and given by(21)ThmarcsW an WDrelo

-' -U (2.30a)

whl for (E3E Knd E) solutionsD

tP 4  p + 3  W2.34 0
H' 0  U.(2.31b)

0 # G.. D 0 D D

whreth vctrsC3 BF3 G, 3,an D aecoum vctrs wthth leens f 3 e18 h

39 )m- 9.*.*** - (2.32c) -
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The singular condition (80 1) in Region 3 is treated in a manner similar to that for Region 2. For
k3,, equal to zero, then in the limit as 3 becomes small, from Eqs. (2.28)

lim D 3,0 = 0

lima B " W/-

-G3.0 p. o

for (M,E) solutions, while for (E,E) solutions, from Eqs. (2.29)

lim D. o = 0

lim =wco 0 . S-I,

Thus, for the matrix equations of Eqs. (2.30) and (2.31) to remain valid, the leading element of the
vector Ds must be replaced as -Gso/p.o for the singular condition in (M,E) solutions. For the singu-

lar condition in (E,E) solutions, the leading element of D3 must be -G 3 ,0. For the singular condition,
the coefficients A3.0, C3.0 , and F3.0 are dummy coefficients- thus, the relationship between them is
immaterial. In (E,M) and (M,M) solutions, the singular condition is not encountered since k, ... is
nonzero for all n in each region, i = 1, 2, 3.

In Region 2, the x-dependence of each modal component in the series expansion for the fields
will retain the general form given in Eq. (2.9) with two unknown amplitude coefficients. The fields of

* Region 2 are then given by
• " [~sin I"':'

E 21 1 2[A2 , cosh (p2.,x) + A2-' sinh (p,,,x)/,,,2 1,, . ts,,, (2.35a)

' ' '-'E2 ,.B cos
( 2  . cosh (p2 ,,x) + B-; sinh (p2.,x)/.,) sin Jk 2 .y (2.35b)

Ej 2 = .'[C+'. cosh (P2.,,x) + C2 sinh (p 2  n]x)/p2 .l (2.35c)
2_ n csi

-- 2 - [,-2"' cosh (P2 nx) + C2' sinh (p 2 kx)/p2.] • s fk 2.) (2.35d)
c F2, n (si "'- -3•

.- "...- .
S2., cosh (p 2 ,,x) + D2( sinh (p2 ,,x)/p. • I os 2 ,y (2.35f)

where the upper trigonometric function in the y'-dependence is applicable for (M,E) and (EE) solu- ''' -

= 2nr/ (2.36a)i

and the lower trigonometric function is applicable for (E M) and (M.M) solutions, with 'k(3

H)= (2n + )r/b (2.36b)

and for all solutions the separation equation for Region 2 becomes l e-:En') u

k = (32 + k 1,, - W1 e, (2.36c)

22 1 + k ..

. . . . . .*•.•

" . .,f ,". -.-. - ' . .-. .- .. ',%'..,... • '..- , .' .'.. ..... ' . % , ., - .--.'.-.,. .. ".... . ..... .'.. .". .....-... . . . .
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where E,2 = Ee,. The superscript notation on the amplitude coefficients in this region is used to distin-
guish between these (unknown) constants. The choice of the (+) and (-) superscript notation was
made to reflect the fact that the cosh (sinh) function may be expressed as the sum (difference) of two
exponential functions. -

Obtaining a relationship between amplitude coefficients in Region 2 is slightly more complicated V%
than in Regions I or 3 because of the presence of both sinh and cosh terms in the x-dependence of
each modal component in the series expansion of the fields. Upon application of Eqs. (2.1 la) to (2.35) " "
on a modal component. or term-by-term, basis

Ccos
: O~~2.n,[B,'.+'. cosh (p2.,X) + B -2 ..... .sinh (P, ,.\l/p ,, sinlk .y .. '

,,[A', sinh (p2.,,x) + A2c ( 2 • "sn'"
-t k., cosh (p2.nxl/2i , [sinlk ., ?...-

cos
- [3 [D , cosh (p,.,,x) + D- sinh (p2.,x)/p2 ., sin k2 y (2.37)

where

h1. = (U/.I)o E' - P.,"

The function p2, sinh (p2.,,.) may be expressed as p2, sinh (p2.,,x)/p.. and the function

P2.,, cosh (p,,.x)/p2,, expressed as cosh (p.,,x), if the limiting definitions are used for p2, equal to
zero. Since Eq. (2.37) must hold for all points within the region, the coefficients of the cosh and sinh
terms may be collected separately, with the results

(32 + k2,,)B = -k ,.., (2.38a)

(=32 + k2,,)B2.,,' -k.,,pA2D.38b)

In a similar fashion, the remaining equations of' Eqs. (2.11) may be used with Eqs. (2.35) to give -. '''

(j32 + k Q, )F , = - ' 3 ,,:k 2.,nW1A D2,, (2.38c)

([32 + k2., )F, = wo(,3 A 4;' 2. 2 D,-) (2.38d)S2. . n--- 2 D +.)

(02: + k2,,)F1.,, = E, 6J , ' , .,p,.)2 ., 23

([3 2 + k2, ')') () ;'
2+ )G, = Tk,.,E,A ' - (3D , (2.38g)M. - - n2.

(f32 + k2)G-' = .k2,nWE2A- - gP.,D, (2.38h)

As for the case in Regions I and 3, the dual sign notation associated with the k,,,, term arises as a
co)nsequence of' the dual notat(ion in the trigononmetric representation for the y-dependence of the vari- .iii

ous modal components. For .),IE) and (E.E) solutions the upper sign is applicable, while the lower
sign is applicable for (E0) and (M2M. solutions.

'Ihe equaitions 01' (2.38) may he cxprcsced in matri\ form as.. .'-

,I- o o-t. K,

• I + K: U 0 AJ'...

- - - -.-.- --(2.39

0~~~ :t A', (1 0D4

20...:,.
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It/I - w"
lu l K 2  2 1 0

i 11 ±2 I 0 - (2.40)0- 1-02 B2(- K - 2 ;1 -) -0-- 1 -WAO U : D240 2-

I'0,2 1 0 F - 1-- _K2 E2 U 0 A 2,
-- " -- I ... - -- - ---- ' ---- I----- (2.42)

0 02 ±2 2 (D 0 U D(

0 2 F' 2±K 2 WE A2, $'.

0-~. G(D(

where the vectors are column vectors with each having elements corresponding to the ordered terms of
the respective amplitude coefficients. The matrices qJ2, K 2, and P2 are diagonal matrices whose ele-
ments are

102),,n = 8' + k2. + 8°mn (2.43a)

{K2)m.n = k 2,n8mn (2.43b)

S= P2,nmn (2.43c)

The matrix (D is given by Eq. (2.21). The treatment of the singular condition in Region 2 is similar to
that for Regions I and 3. From Eqs. (2.38)

lim0 D!'=lim D2.+) 0

lim D2-" oj.'o

; -o G].3' P2%.

lim = CUMot3-0 G P 2
t3-0 Gd 2.0  -r., ._

for k2.0 = 0. Thus. the leading elements of the vectors D2+' and D - ' must be changed from . and

to -G2- () and -G, respectively, for the singular condition if the matrix equations of -. .

(2.39)-(2.42) are to remain valid. Analogous to the case in Regions I and 3, the amplitude coefficients
A(+), A(., C ,- C -. , F(.0 • and F2.- are dummy coefficients for the singular condition and the

resulting relationships of these terms are immaterial.

In each region i. with i = 1, 2, 3, the matrix notation may be condensed somewhat with the fol-
lowing representation:

0 I

- - (2.45)
±K t K,

21

...............
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Simple matrix multiplication will show .P,,-f2

A 'A T\ , !, for i = 1, 2, 3. (2.46) . -

It is apparent that A, and 1P, each possess an inverse, with

-= W,. (2.47)

The need for the special treatment of the singular condition is obvious if inverse operations are to be
made with these matrices.

While matrices in general do not commute, diagonal matrices do commute [62,63J. Thus, the

matrix AP, and its inverse T - 1 will commute with any matrix of the form - -- - - where each of

the b submatrices is a diagonal matrix (hence all are square matrices of the same size), and the matrix

1 I 0
A, will commute with any matrix of the form - - - - - - where each submatrix F is diagonal, as

0 IF

may be shown by simple matrix manipulation. These commutation properties will be used in later
stages of the analysis without further comment as to the validity of the commutation operation.

In each of the three regions for the waveguide analysis, the y-dependence functions sin k,,y and
cos k,.,y may be considered the basis functions for the series expansion of the fields [46,47,51). These
basis functions are orthogonal on the interval -h/2 y K, h/2, where h is the height of the particular " -

-. region. For (EM) and (M,M) solutions, with k,, (2n + )ir/.h

<'f h12 0 for n ; ni

--- 2sin (k,j,,) sin (k,,my)dy h/2 for n = m (2.49a)

f ,12 0 for n mcos (2.48b(k),~d

-h/2 cos (ki.,y) cos (k, y)dy = h12 for n = m (2.48b)
h/2

. sin (k,.y) cos (k,,,,y)dv = 0 for all n. m. (2.48c)

For (M,E) and (E,E) solutions, ki,n has the form k,, = 2nfr/h, and the orthogonality of the basis
. functions is the same as for (E,M) and (MM) solutions with the exception of n and m both equal to
"" zero:

h/2fh1 sin (k,y) sin (k,,,,y)dy = 0 for n = m = 0 (2.48d)
-.. 1,_.2.:

f _,.1 cos (k, ,,) cos (k,,,y)dy = h for n = in = 0. (2.48e)

- 1.11.

The interface between Regions I and 2 is the air-dielectric boundary at x = -x,. The tangential
components of the electric and magnetic fields must be continuous at this interface, thus

oo t. 1'' (2.49a)

" 2  = E (2.49b)

H, - H - ' (2.49c)

l  = H.'"[ (2.49d)III2

22

"5 - -,q
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For any given waveguide mode, symmetry considerations require the same effective wall type (electric
or magnetic) for all regions at the HPS, y = 0. Since Region 1 and Region 2 each have a height b,

= 2.nfor all n and all modes. The result of applying an integral operator f f (f) d to a function
g(f) will be defined as ff (f)g(e)df, where any integration limits on the integral operator will reflect
as limits in the resultant integral. The series expansions for the various fields may be substituted into
Eq. (2.49). Subseq.uent application of the appropriate integral operator, either f b12b2 sin (kl,,y)dy or d

f b2COS ( kl my)dy, dependent on the form of the basis functions for the particular field, to both sides 3
of the equations will show that the equalities of (2.49) are valid on a modal component, or term-by-
term basis. Thus,

BI., sinh 1I. (X1 - X29IP 1 , = B2'.' cosh (P2.,X 2) - B2- sinh (p2,,X 2)/P2,, (2.50a)

C1, sinh (Ps,, (XI - X2 )]/PI,, = C2( cosh (P2,,X 2) - C(j-' sinh (p2,,X 2)/P2,n (2.50b)
F1, cosh IP1, n (X I - X2) = F (') cosh (P2.nX2) - F inh( 2 x)/ 2  (2.500)

G1 , cosh [P1.,(XI - X2)] = G2( cosh (P2,nX2) - G2(-) sinh (p2,,X 2)/P2. (2.50d)

where the y-dependence has been eliminated by virtue of the orthogonality of the basis functions. TheT

relationships of Eqs. (2.50) may be expressed in matrix form asj

1 0 CI 2+ 0) 0() 0
C 2 (+) I - - - - - - 2 . 1

1 0 2

11 2 2 -

where each of the 9 matrices is diagonal with '

(0 1 E)Jm" = sinh I,(p I (X21 - IA, (2.53a)

I~~~m,= cosh 1P ~(Xj X2)J8,mn (2.53b)

(02')m,,, = cosh (P2.nX2)8mn (2.54a)

(0 = sinh (P 2 nX 2)/ P2.n 8mn (2.54b)

Further compactness for the matrix notation may be obtained by defining new matrices for the doubled
0 matrices:

0 E)
Gi* E ) 0

-------- (2.55a)

( 41 I 0

~(II)- - -(1 (2.55b) ____

10
2( -- --) (2.55c)

0 9

23
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2 ' -- -o -"( 2 .5 5 d )

Premutiplication of Eq. (2.51) by the matrix o
o---- - --- --- A,

01 U

gives-.-.

C U 0 (zJ0U1  0C2+C2(
(., H) Ic ' - "

-- o , ' , B2-+) - (2.56)

while Eq. (2.52) may be premultiplied by the matrix expression -.

0? E) ---"-- "--- -

0 -WAo/ o

to give

P 2  F1_()-----------I 0 F +.'.
E)------- Io 64H

0 -jioU Gi

P 2 121 I I°PPO0 ]F( + )2F - '""'
= E()e ... .+ .. ... _ . -- , .--'-2. -- 2. 7

0 -()AO U G(+ G 2

But from Eqs. (2.16) and (2.47) V 1-i* -o

IC p (2.58
0

while~ fro Eqs. (217 anD.7

. . . . . . . ... ... ' 2 .5 1-. -..."..while from Eqs. (2.17) and (2.47)

Fj WE 0U i 0 A4
- -- -- - - (2.59)

The commutation properties of the matrices may then be used to show that the left-hand sides of' -

(2.56) and (2.57) are both equal to

(4 (t E)( 4 (H)- cue op 2 

-,0 -WI4soU DW

24

. •. -" o

........... •

°o .- °° °- o° . ," °' .' • f'o° ' ° % - . "% '. °o °° o / % "% . ,° f " - o ' .° % * '° °' +° ' % ° + • .. .' ' . o ' % , ° ' , .- • . ° . o. ° °o.-°
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thus the right-hand sides of these two equations may be set equal. Substituting from Eqs. (2.39) to
(2.42), the results are

(JEflU1  0 U 0 A2-H---- ~.~+)iI I91

2

0 &) 0 WO D2

I I 0 WE2 U

0 -wjo U 0  U D

= ~ WE U 1 ~+~,I EU 0 A

-I - - --( . 0

The matrix A~ commutes with the matrices (-)2'+) and (-)2'' and since A 1  2 A

With both sides ol Eq. (2.60) premultiplied by

collection of like terms will then give

.E~P2  0 2
+ - - - - - - - - D2)()2-

2 - - - 26 a

0 U 01 U

The results of' Eq. (2.61 a) may be expressed ats

Q41 +A f + = Q41 A4 (2.61 b)____

25
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where the diagonal Q matrices are given by s

A'+= 2 P EO +) +1 2 (2.62a)

- E p 2 o)oI-) + o (Ho (2.62b)

--1 , 2 2 " 2,, , - (2.62c)

QW- = O1E&O2+ + oH'o2- ). (2.62d)

With this Q matrix notation

0 Q.4 ~
-.... - - -- !- - - -  (2.63)
0D (- 0 Q(+) D2+

The remaining boundary conditions to be satisfied are at the interface between Regions 2 and 3.
This interface is the plane of the ridge wall, x = 0. Continuity of tangential magnetic field requires

H, - i3)= (2.64a)

/H!24 = H! 3) (2.64b)

for all v E{ Yt, where
•~~~ {Yj}- {-d/2<- y<, d/2}. .. -

The tangential electric field must also be continuous at this interface. In addition, the tangential elec-
tric field of Region 2 must vanish on the conducting surface of the ridge walls, thus .:

E3 ,I0 for y E ( Y1
El" -0-- 0forx-0, y E {Y 21 (2.65a)

k13) _ "--for"y E Y

E' ° = 0 for x 0, y { (2.65b)

where

f} = j-b/2 y y < -d/2, d/2 K y < b/21.

The requirements of Eqs. (2.65) ensure the condition that H, 2' will also vanish on the surface
x = 0, y E 1'2) since H, 2) may be expressed in terms of E, 2' and H 2) by means of Maxwell's curl
equation (2.2a).

It is apparent that an infinite number of terms must be used in the series expansion for the fields
i' the requirements of Eqs. (2.64) and (2.65) are to be completely fulfilled. If a numerical solution is
to be obtained, the series must be truncated to some finite number of terms. The resulting error in the
solution will depend on the number of terms used in the numerical calculations and on the convergence
properties of the solution, i.e., how rapidly the solution converges with an increasing number of terms.
The convergence properties will be discussed at a later stage of the analysis, and it will be shown that

26
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accuracies of better than IA may be obtained with as few as five or six terms in the series expansion J,

for the fields.

At v= 0, the tangential field components in Region 2 reduce to I WW.

= 2cosl k",,-
B [= ~ sinI

11 ) = i  4 2, sin .v

H,121 = F 2,11 1 S**".",. % -

E ''j 2 G' sin k,2 ,Y

where the number of' terms in the series expansion for the fields hats been truncated to NT terms, with

N, = N, + 1.

In Region 3. the tangential fields at x =0 are given by

= I a, cosl

H"',, 2. t sin1  k2" (j t

=0

V, sin1

r= N + I cosi'"' 1*"

193(//) 1 si n fly,

rir0

A 2

k. 3)1 j 31, 1 G1 n s-- k -

t., u =() = 3,n I Sl n 3" ' "," . ." ,

where for (M.E) and (M.M) solutions

'= csh (p3=x0) (2.66a)

0 = - sinh (PX3)/P3 (2.66b)

while for (EE) and (E,M) solutions

• -sinh (P3 1 P3 (2.67a) .... ... . "

cash (P3 .n-0 (2.67b)

Note that it is not necessary to truncate the number of' terms for the series expansion of the fields in
Region 3 to the same number of' terms used in Regions I and 2. For this analysis, however, the fields
in al! regions will use the same number of' terms in the series expansion to obtain numerical solutions.

To proceed further with the boundary conditions of' Eqs. (2.64) and (2.65). it is necessary to dis-
tinguish between the two types of' wall conditions. electri or magnetic, at the IPS. For an an electric
wall at = 0. the solutions are (Ml) and (E.E), and the upper trigonometric function in the jv-
dependence is used, with k2., = 211f/b and kl,, = 2ni/d. Substitution of the truncated series for the
fields into Eq. (2.64b) gives

03ilG3, cos (nEE/d) G ( cos (2so n " "/"b).
"-0 n-0

27:**
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*Applying to both sides of this equation the integral operator f12cos (2miry/d)dy. where m
takes the values 0, 1,2,.. N2 then gives

()N 2  ~ d12-_
dG03,030 =dG2(O + cos(' (2nirylb)dy

and

d cos 22iy/d + . d1f~2 COS (2niry/b) cos (2mffy/d)dy
2 03.rm3,m 2, 0 f dl? 2 d12

for m 1. But

f d12
-d2cos (2nary/b)dy =d sinc (nird/b)

J-d12 cos (2mff yl d) dy =0 for m I

* and using the mathematical identity

COS a COS )3 = [COS (a - 1G) + COS (a' + '6)]
2

the second summation integral may be evaluated as
dCOS (2nwy/b) cos (2miry/d)dy = sinc [1r(m - nd/b)I + sinc [ff(m + nd/b)J)d/2

*where the sinc function is given by

sinc(T) -snT

With the height ratio defined as

r =dib

* then
* N2

193/HG. 0 ~ G2+' + sinc (nirr)G(j'

and

G, Ysinc [7r(m - nr)] + sinc [ir(m + r]G )

for mn 1 . In matrix form, the results are
03M1/)G (2.68)

where the matrix 9,I) is diagonal with

()'I= 8 Mn (2.69)

and the matrix M4 is given by

1 for in 0. it 0

sinc (ntrr) for in = 0, nl 0(
MA4),, (2.70)

sinc (7r(m - it)! + sinc Iwr(m + nr)I form ;e0, n e0.

28 - -
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Substitution of the truncated series representation for the fields tt2I and H,''- into Eq. (2.64a) Igives 
ELI$

: 0MF 3 , sin (2nffy/d) = F , sin (2nnry/b).
n-0 n-0

Here the coefficients F3,0 and F') are strictly dummy elements since the modal components in both
regions corresponding to n = 0 are nonexistent. Applying to both sides of this equation, the integral
operator f2d/2 sin (2miry/d)dy with m - 1, 2, N 2, and using the mathematical identity

sin a sin )3 = -[cos (a - 3) - cos (a +/3).

2

will yield
N 2

(HI3..= Fsinc [7r(m - nr)] - sinc [7f(m + nr)])F2..
n=1 -

for m > 1. The dummy elements F3.0 and F2., may be expressed as

o3.0  F3,0  0 - 2,0-" ".

Thus, in matrix form
/,3= F2 (2.71)

where the diagonal matrix 0 H) is given by Eq. (2.69) and the matrix M3 is given by

l0 for m = 0 or n =0
IM3 m" = sinc kr (m - nr)]- sine 17r(m + nr)] for m 4 0 (2.72)

The boundary conditions for E (2' and E2! at x = 0 are given by Eq. (2.65a). Applying to both
sides of this equation the integral operator fM12 cos (2miiy/b)dy where m = 0, 1, 2. N2 gives

f cJn-d2) r 24 '° cos (2miry/b)dy = f',, ) 1. x cos (2mryr'b)dy.

Here the integration limits on the left may be extended to -b/2 since E,'2' must vanish on the con-
ducting side walls of the ridges at x = 0. y E { Y21. Thus.

f b! 2 2
2 l3

,/2 -=o cos (2m irv/b)dv = ) ,=oE3'1 0  cos (2m7rv/b)dv. (2.73)

Since a finite series representation for E,12 ) cannot be identically zero for all y E (Y2) at x = 0, the
approximation is apparent for the truncated series. With this approximation, substitution of the series
representation for E( 21 and E,3' into (2.73) will show that

2.0  --- tr .0  u .
=. .9'%,B1

B2= 2r sinc (m~rr)O)B3 0 + r ,{sinc [7r(n - mr)I + sinc [7r (n + mr)])03,,B ,, for m > I .

In matrix form these results may be expressed as •' -

B( M20.-'B 3  (2.74)

29
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where the diagonal matrix ,,3 is given by *.
1k' '._ 1k-)

3"I . 0,3., , f (2.75)

and the matrix MI, is given by

r for m 0, n 0(27)

0 fo r i f = 0, n -e 0 , (2.7.{M2}....' = 2r sine Onrrr) for m ;-: 0, n =0 (.

r~sinc [7r(n - mr)] +sinc [r((n + mr)]) for m 0, n 0.

The boundary conditions for E.(2) and E.') at x - 0 are given by Eq. (2.65b). Application to
both sides of this equation of the integral operator fP±'1 sin (2mirv/b)dy, with m = 1, 2, N2, and
extension of the integration limits in region 2 to +L b/2 (since E1 21 1_0 = 0 for y E ( Y21) gives

fh/2 E' 1i,, sin (2mfry/b)dv = f, 2 E'3 ,_0sin (2mnrry/b)dy.
h12 : d/2

Substitution of the truncated series representation for E. 2' and E,'3 and appropriate evaluation of the
integrals will then yield AN

2.= r sinc [7r(n - mr)l - sinc [r(n + tnr) 3 ,,C 13.

The coefficients (, and C,, are dummy elements and may be included in the matrix representation
with

C2=+ M O b. C3  (2.77)

where the matrix M is given by
0 for m = 0 or it = 0 .. ,..

= rlsinc I7r(n - mtr)l - sinc irf(n + mr)l for m e 0, n e 0. (2.78)

The relationships developed thus far between amplitude coefficients of similar tangential fields in M.
Regions 2 and 3 have been for (ME) and (E,E) solutions. The dummy coefficients as described are
included only as a convenience to simplify the notation. These dummy elements will later be discarded
as they have no bearing on the numerical solution.

For (MM) and (E.M) solutions, corresponding to a magnetic wall at v = 0. the lower trig-
onometric function of the v-dependence is used in the series expansion of the fields, with
k2., = (2n + I)7r/b and k3,,- (2n + l)r/d. For these solutions, the singular condition does not
exist. i.e.. neither k.,, or k3,, is zero for any value of n, thus, there are no dummy coefficients. The
procedure for obtaining relationships between amplitude coefficients of similar tangential fields is simi-
lar to that used for (M.E) and (E,E) solutions. Application to Eqs. (2.64a) and (2.64b) of the integral

op+ /. and sin (2m + I)r/dldv, respectively, will yield upon

substitution of the truncated series representation for the fields
Z'(F,,~ lsn ~[2 + + , -l(2,n+ m 2,, + IrI} ,_

3.) F- sine [Q2 + 1) (2n + I )rl + sinc 2 + 1) + (2n + Imru' 2,,
.,, ....

G 3 , [sinc (2in + I) - (2n + I )rl - sinc 2 + 1) + (2,n + D
2 2

for mn = 0, I 2, N,. Application to Eqs. (2.65a) and (2.65b) of the integral operators
f.' 2 sin [(2, + ID)nr/hldv and ",i' 2 cos (21n + 1)ryv/bldv, respectively, with the integration limits
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extended to ±b/2 for the tangential electric fields in Region 2. and subsequent substitution of the
truncated series representation for these fields will yield

N2
B"= r~ Isinc -1-[(2n + 1) - (2m + D~rl - sinc -1-[2n + 1) + (21n + l)r])03'FB 3 .,

.M2 2

N,'

C+)= rl (sinc -! -t(n + 1) - (2m + lDr] + sinc -11-1(2n + 1) + (2m + I)rJIO3(EB 3 ,,

n-O 2 2

for m = 0, 1, 2,. .N 2. In matrix form the results appear identical to those for (M,E) and (E, E)
solutions, with

C (+ M 103iEC 3  (2.79a)

B2 M203(E)B 3  (2.79b)

0 (H)F3 = M 3F2(' (2.79c)

3)3= M4 ((2.79d)

where, however, the matrices MI, M 2, M 3 , and M 4 are different. For (M,M) and (E,M) solutions

(MI),,, = rlsinc -7-[(2n + 1) - (2m + D)rl + sinc -! -t(n + 1) + (2m + lDrIl (2.80a) . .

2 2

(M 2 ), = r(sinc -1-[(2n + 1) - (2mn + O rI - sinc-7-[(2n + 1) + (2 mn + I ) (2.80b)
2 2

m-)nn= sinc -7-[(2m + 1) - (2n, + 1)rI + sinc -1-[(2m + 1) + (2n, + D~rI (2.80c)
2 2

IM,),,. = sinc -L-I(2m + 1) - O2n + Ol~r - sinc .!LI(2m + 1) + (2n, + Ol~r. (2.80d)
2 2

The elements of the diagonal matrices 0 (E and 0 1 are given by Eqs. (2.66) or (2.67), dependent on
the type of wall condition at the VPS, x =x..

With the matrix form of' Eq. (2.79) valid for all solutions, the four separate matrix equations may
be combined into a pair of matrix equations as

F 3c 1 +
- -- - - - - (2.81)

M34

where

M' 1 0
M2 --- (2.83a)

0

M4 --- (2.83b)"* '

o Md4
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o j(E) 3(E 0(28a 
-

3- --------------- - - - -- -a-

0 10E)

0 ~o(H)

From Eq. (2.30)

IC 
0 1 A _

B30 -wALOU D3

*while Eqs. (2.31) and (2.46) may be used to give

-A3 _ (,E 3U 1  0 A3F 3 _

4 ~~thusL 1  = 0 jW

IC3 W04E 0 F3
qf A3-- I -- --- -A3(2.85)

This last result will be expressed as

C 3 _1 Z I F _I( 2 .8 6 )

where the matrix Z may be partitioned into submatrices as

Zil Z12

Z21 Z2

* Substitution of Eqs. (2.44) and (2.45) into Eq. (2.85) will show the submatrices of Z are diagonal with

zII= I~ 4) WA 0+ w,.±OK 3W6 KI3 (2.87a)

Z12= ±K3I1(D W .LO WDI03- (2.87b)

Z1= Z2(2.87c)

Z2= lbt,1 -- K K1 W K 3 + (JA (1 W1,(P(.8d
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The ± notation for the submatrices Z 12 and Z 2 1 is analogous to that for the individual regions, with "
the upper sign used for (M,E) and (E,E) solutions and the lower sign for (M,M) and (EM)
solutions.

Substitution of Eq. (2.86) into Eq. (2.81) will give

C2+F 3  *-P~

M120E31EIZGJ
I 2+I 

which may be used with Eq. (2.82) to yield

(E)z f [H) --

I- M12,I 3 M34G (2.88)

or

R (2.89)

where the matrix R is given by

R (E)z[oH)M1203 Z 3  M 34. (2.90)

If R is partitioned as

R 1
- - - - - - - - - - - - - - - - -- - -
R21 R22.

substitution of the appropriate lower order submatrices into Eq. (2.88) will show that each of the sub-
matrices of R is a square matrix, with

R1 = M-E)Z1 I-- H)1j- M 3  (2.91a)

A ' E)7 [t (H)]IR1 2 -= M1 k'3Z12t[' 3 JH) M4  (2.91b) "- ,,- --

R21 = M 2-'3'E) Z 21[()3 l -I M 3  (2.91c)
R22 = Mv*(2)E)Z 22 )If)]3  M 4. (2.91d)

Using Eqs. (2.44) and (2.45), Eq. (2.41) will show that

F2+ 1O W 2 U 0 A 2' 1
I 2 -,N =2---- (2.92)U D

while Eq. (2.39) will show that

C 20 . (2.93) "
2 ------ I ---- -- --
B) 2+0 1- /o 2
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Premultiplication of Eq. (2.89) by A. with subsequent substitution of Eqs. (2.92) and (2.93) will give OV., -P

A __I A2 2 '

U 0 A2(-)2U 0. . .. ...- - -- (2 .9 4 )

o -W--Luo D2 0 U D(-)

From Eq. (2.63)

0 1  0 Aj Q. - 0 A 2-'

" - -,-- -:-1= -o I,+ ;
4f 0 D(J 0 QD' D(+)

%€ -, ,'

thus premultiplication of Eq. (2.94) by ,'.-

~,. ....

0 IQ9*

will give

.Q..o 0 A A.. . . Q. E U A 2' _
----- ---- - - - - - A ,R ' 20 -(01U 0 Qj)Y- D> 0 Q(I0 L' 4-

or

T --- 0 (2.95) -' .

with the matrix T defined as

U I 0 I 0 I 0 wU
T ---------------------- + --- S -- - ----- (2.96)

0 -WioU 0 Q 0 0

where the matrix S is given by

2= A 2RT'\ 2  (2.97)

= A2R,%,T2

Partitioning the matrix S as S21$ I-i $2j

substitution of the appropriate lower order submatrices into Eq. (2.97) will sho % that the suhmatrices of
S are square, with

S I = 4R 11 ) T (R 1 2K2 - K2R2 1F + K 2R22 K2  (2.98a)

S12= DRIIK2 - DR 12(D + K.R 2IK. 4 K 2R 2 4@ (2.98b)
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S, = -KR 111 + K2R 12K2 - 4R,4t ± DR22 K2 (2.98c)

S, = K 2RIIK2 ± K 2R 12) :± DRK + + R,4. (2.98d)

Again, the (±) and fl-) symbolism is the result of the dual sign notation used to distinguish the type
of wall condition at v = 0, with the upper sign to be used for (ME) and (E,E) solutions and the
lower sign for (MM) and (E.M) solutions.

The expression of Eq. (2.95) represents an eigenvalue problem for which the eigenvalue is zero
151,631. For a nontrivial solution to exist, the determinant of the matrix T must vanish:

det [TI = 0.

All elements of T are determined uniquely for given values of radian frequency w and propagation con-
stant 13 when the type of solution- i.e., (M,E), (M,M), (EM), or (E,E). is specified. Thus, the fre-
quency may be fixed and f3 taken as the unknown, with

det [T(g)] = 0

the requirement for a numerical solution for 13, or the propagation constant may be fixed and W taken
as the unknown. In the latter case, only the cutoff frequency will be sought, with13 = 0, thus

det [T(w,) = 0 --

is the requirement for a numerical solution for cutoff for any mode.

The matrix T may be partitioned into square submatrices as

7 , 1-T22--------------------------- -- ".".'.-

where from Eq. (2.96)

T11 = Q4' + EQ42Q'-'SlI

T12 = Q4 1 'S12

T2j = o 2EQD 1()~

T- = Q11),S22 I"- w-,i

For the waveguide modes where the singular condition is not encountered, i.e., k,,0  0, examination
of the matrix equations used to develop Eq. (2.95) will show that all elements of the matrices T12 and
T,1 vanish at the mode cutoff frequency where 13 - 0. Thus, when solving for the cutoff frequency of
these modes, -.-

T11 0 - ,'-,

detl T =det ---------
0 T22

= det IT111 - det T221 ..

=0
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and the requirement for the cutoff frequency is either "-'

det [ TI(w,)] = 0 (2.99a) ON

or

det IT 2 2 (01)] = 0. (2.99b)

In the general case, both determinants will not be zero simultaneously, i.e., for the same frequency.
For Eq. (2.95) to remain valid when det [Tj1 (wc,)] = 0 but det [T22 (w)] * 0, the vector must 41
vanish. If D( - ) = 0, then from (2.61-c) D ( 0. Thus, the waveguide mode with cutoff frequency
determined by Eq. (2.99a) has no x-directed component of magnetic field at cutoff, analogous to the
condition for LSM modes in dielectric slab loaded rectangular waveguide (Appendix B), and will be
referred to as a quasi-LSM, or QLSM mode.

If det [T 22(,)] = 0, but det [Tll((o)] e 0, then the vector A2 must vanish for Eq. (2.95) to
remain valid. From Eq. (2.61b) A' - ) = 0 if A2

( ) = 0, and the waveguide mode corresponding to the
cutoff condition imposed by Eq. (2.99b) thus has no x-directed component of electric field at cutoff,
analogous to the condition for LSE modes in dielectric slab loaded rectangular waveguide (Appendix
B), and will be referred to therefore as a quasi-LSE, or QLSE mode.

Note that the QLSE and QLSM modes of the dielectric loaded ridged waveguide do possess x-
directed components of electric field and magnetic field, respectively, at frequencies above cutoff. This
is in contrast to the LSE and LSM modes of dielectric slab loaded rectangular waveguide, for which the
x-directed components of electric field and magnetic field, respectively, maintain zero magnitude at fre-
quencies above cutoff. Additional discussions of the QLSE and QLSM modes at frequencies above cut-
off will be postponed until a more specific classification is formulated for the different waveguide
modes.

For the waveguide modes where the singular condition exists at cutoff, i.e., k,,0 = 0 for i = 1, 2,
3, the vector element A(') is a dummy element. To eliminate this dummy element, the eigenvalue
problem of Eq. (2.95) must be modified to

T --- =0 (2.100)

where T' is the matrix formed by deleting the first row and first column of the matrix T. The vector
A'(+) is the vector A2+ ) less the first, or dummy, element A2 f. When solving for 3 at frequencies
above cutoff, the vector D2

(- ) is the same as the vector D2- ). When solving for the mode cutoff fre-
quency, with 6 = 0, the vector D2 is the vector , but with the leading element D2%

1 replaced as
-0(+). The matrix T' may be partitioned as ;I -

[T'J= --- "--.-.-.-

T'9.

T~tl 22 -.- .-

where TI is the matrix TI less the first row and first column, T1' 2 is the matrix T12 less the first row,
Tj is the matrix T21 less the first column. The matrices TI'2 and Tj are nonsquare. It is straightfor-
ward to show that the eigenvalue problem of (2.100) is exactly the same as would have been obtained
had the development not included the dummy elements to maintain a consistent notation for the
mathematical analysis. The required condition for a numerical solution is thus

det I[T'(&j,j3)) 0
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where either w or)3 may be treated as the unknown quantity. The only types of waveguide modes for
which the singular condition exists, thus requiring modification of the matrix T to T' in the eigenvalue
srlution, are QLSE modes. This point will be clarified after the discussion of additional parameters
which may be used to further specify the different waveguide modes.

Thus far in the analysis of the dielectric loaded double ridged waveguide, the specifications for the .'

waveguide mode(s) have been the effective wall conditions, electric or magnetic, at the two planes of
symmetry, with an additional classification of each mode as either QLSE or QLSM, dependent on the
eigenvalue solution at the cutoff frequency. For each of the wall condition solution types,
(M,E),(M,M),(E,E), and (E,M), there will exist an infinite number of both QLSE and QLSM
waveguide modes. This situation is comparable to the infinite number of LSE and LSM modes that
exist in dielectric slab loaded rectangular waveguide (Appendix B). In the case for the latter
waveguide, an index integer pair is used to uniquely specify each of the LSE and LSM modes with any
given mode characterized as the LSEm, mode or the LSM ,, mode. The first index m refers to the ...

number of half cyclic variations of each of the existing (nonzero ) fields E , Ey, E , H, Hy, and H, as -
a function of x within the waveguide, i.e., from sidewall to sidewall. The second index n refers to the
number of half cyclic variations of each field as a function of y, i.e., from topwall to bottomwall. ,,-

In the dielectric loaded ridged waveguide, the fields of every propagating mode consist of an infi-
nite number of modal components. A single index integer pair may be used, however, to uniquely ,'.

specify each mode, in a manner analogous to that for the LSE and LSM modes of dielectric slab loaded ,'- ,-
rectangular waveguide, if the integers refer to the number of half cyclic variations of the fields of the ' k
lowest order modal component present, i.e., the modal component with the smallest value of n. The
y-dependence of the nth modal component in region i is

f,i)(y) sin) s

with the choice of the sin or cos function determined by the specific field. For (M,E) and (E,E)

modes, with an effective electric wall at y 0 0, in each region with height h,

ki, 2nir/h""

thus the number of half cyclic variations (topwall to bottomwall) of fields of the nth modal component
is 2 n. For (M,M) and (E,M) modes, with an effective magnetic wall at y = 0, ki,= (2n + 1)br/hi;,
thus the fields of the nth modal component have 2n + I half cyclic variations from topwall to bot-
tomwall. With each waveguide mode classified as QLSEm, , or QLSMm,,,, the lowest order modal com-
ponent of the propagating mode is given by n' = 2n for (M,E) and (E,E) modes, and by n' = 2n + I -

for (M,M) and (E,M) modes. In the series expansion of the fields, this represents a lower limit no on
the summation index n. For n' an even integer (corresponding to an electric wall at y = 0) the -

QLSE,,,, and QLSMm.n' modes have the lowest order field components with no = n'12, or
k.,o = n'ir/h. For n' an odd integer (corresponding to a magnetic wall at y = 0), the QLSEm.. and -

QLSMmn' modes have the lowest order field components with no = (n' - 1)/2, or k, 0 = n'ir/h,. With

the lower limit set on the summation for all fields in each region, each of the matrices developed earlier
in this section is thus dependent on this value for no. Some caution must be exercised when assigning
the index notation for matrix and vector quantities in any computer program since most computer sub- .

routines for matrix operations require a lowest order index of one.

For each propagating waveguide mode, the type of effective wall condition at the vertical plane of
symmetry, x - x3, will determine the symmetry aspects of each of the field components. With an
effective magnetic wall at x = x 3, the tangential magnetic fields H, and H. and the normal electric field
E must be antisymmetric about the VPS, while the tangential electric fields E, and E, and the normal
magnetic field H, must be symmetric about the VPS. For an effective electric wall at x = x3, the sym-
metry conditions are reversed, with the fields E, E:, and Hf antisymmetric and the fields H, H., and
E, symmetric about the VPS. The dependence of the field symmetry (antisymmetry) on the effective
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wall type at the VPS is identical to that for the LSE and LSM modes of dielectric slab loaded rectangu-
lar waveguide (Appendix B). To maintain the analogy with the propagating modes of the latter .
waveguide, the first index of both the QLSE,,,., and QLSM,,,, modes of the dielectric loaded ridged
waveguide will be an odd (even) integer for an effective magnetic (electric) wall at the VPS, x = x 3. mom
The four combinations of effective wall conditions at the two planes (vertical, horizontal) of physical
symmetry thus are reflected as restrictions on the index pair mn' for either the QLSE,,,.,, mode or the .
QLSMm mode with P. -..

Wall conditions In n'
(M,E) - odd even

(EE) - even even
(M,M) - odd odd
(E,M) - even odd (2.101)

In any propagating mode, the higher order modal components (terms of the series expansion for
the fields with n larger than the lower limit no) will in general be evanescent with respect to x; i.e., the
fields of these modal components will decay exponentially with distance from the ridge walls. For this
reason, and to maintain an analogy with the index notation for modes of dielectric slab loaded rectangu-
lar waveguide, the first index m of both QLSE,,.n, and QLSM,,,,, modes will be used to describe the
number of half cyclic variations (sidewall to sidewall) in the fields of the lowest order modal corn-
ponent, i.e., the field terms (with other than zero amplitude) corresponding to n = no in the series
expansions.

An equivalent but considerably more simplified description for the correlation between the field
structure and the propagating mode designation may be obtained by viewing the modes of dielectric
loaded ridged waveguide as the corresponding modes of dielectric slab loaded rectangular waveguide
with fields that have been distorted due to the presence of the ridges. Thus, the QLSX,,,., mode,
where m and n' are fixed integers and X denotes either E or M, would become the LSX,,,. mode if
the ridges were to vanish, i.e., if the ridged waveguide was reduced to rectangular waveguide. Of
course, the mode cutoff frequency and the propagation characteristics, as well as the exact field struc-
ture, would vary as the ridges were withdrawn.

The assumption of a lower limit no other than zero for the summation index n in the series
expansion for the fields of dielectric loaded ridged waveguide has an equivalent assumption if the '

corresponding waveguide mode is viewed as a distorted mode of dielectric slab loaded rectangular
waveguide. The equivalent assumption is that the single modal component of the undistorted mode (in ..
rectangular waveguide) remains as the lowest order modal component upon introduction of the ridges.
As an example, the LSEI. 2 mode of dielectric slab loaded rectangular waveguide has fields that have a

y-dependence f (y) =si 27ry/h. Upon introduction of the ridges, the fields of this mode are dis-
torted, with the mode becoming the QLSE 1.2 mode. Using the y-dependence to form the basis func-
tions for a series expansion of the fields in each region i, with f,,, = (sn 2nry/h, the assumption is[Cos]

that the lowest order modal component has si = sn 2vrv/h,, or that the lower limit on the summa-tCosJ

tion index n is no = !.

The assumption of a lowest order modal component for the higher order waveguide modes is sup- -%

ported to some extent by numerical calculations made for several modes and several waveguide
geometries. The cutoff frequency was calculated using the appropriate value for no in the series expan-
sions (thus setting the elements of the matrix for the eigenvalue solution) and compared with the cut-
off frequency obtained when the lower limit was forced as no = 0. For most waveguide modes and " - -

geometries tested, the agreement was excellent-less than 1% difference. Some comparisons were
poor, possibly because of the difficulty in finding numerical solutions to the eigenvalue problem due to
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the close proximity of poles and zeros of the determinant for the higher order modes. Such compari- ,.'
sons were made only for QLSEmn and QLSM,,,., modes with n' > 2 since the lowest order modal
component of modes with n' = 0 and n' = 1 correspond to the lower limit no = 0. As discussed in
the following paragraph, both the dominant mode and the first higher order mode will always have a .
lowest order modal component no = 0. Since the primary objective of this investigation concerns the
single mode bandwidth and field characteristics of the dominant mode, no further effort was made to
rigorously justify the assumption of a lowest order modal component with no ;' 0 for these higher
order waveguide modes.

For the QLSX,,, mode (X = E or X = H) of dielectric loaded ridged waveguide, increas;ng
either integer index will raise the cutoff frequency, analogous to the case for the modes of dielectric PTl .
slab loaded rectangular waveguide. Also, by analogy with the latter waveguide, the first index of the
QLSE,,.,, mode is restricted to nonzero positive integers, while the second index of the QLSM,,.,
mode is restricted to nonzero positive integers. The possible propagating modes for dielectric loaded
ridged waveguide are thus the QLSE .... modes, with in = 1, 2. 3. ... and n' = 0,1, 2 .... and the
QLSMm.n modes, with in = 0, 1, 2, ... and n'-- 1. 2, 3. As discussed earlier, the matrix of the
eigenvalue problem is a function of each of these indices. A simple comparison of index pairs for the
different modes will show that the two waveguide modes with the lowest cutoff frequencies, i.e., the
dominant mode (lowest fI) and the first higher order mode (second lowest f ), must be a pair of
modes from a group of four modes: the QLSE1 .o mode, the QLSE 2.0 mode, the QLSE1 .1 mode, and the
QLSM0.1 mode. These four modes represent respectively the four mode types, (M,E),(E,E),(MM),
and (E,M), describing the effective wall conditions at the (vertical, horizontal) symmetry planes. For ,..
practical applications, the waveguide geometry usually will be chosen so that the QLSL 1 0 mode is the
dominant mode.

Discussion on two issues raised earlier concerning certain properties of different waveguide modes
may now be continued with greater clarity since the mode designation has been completed. Since the
singular condition arises only at waveguide cutoff for modes with the lowest order modal component
having ki,0 = 0 and thus occurs only for modes with the index n' = 0, and since n' > 0 for QLSM,,,,
modes, the singular condition exists only for QLSE modes, or more specifically the QLSEmo modes,
and then only at cutoff. The second issue is that of the x-directed electric and magnetic fields of the
QLSEm. , and QLSM,,,, modes where n' # 0. As pointed out earlier, E, = 0 at cutoff for the
QLSE,,,, mode but at frequencies above cutoff E, ; 0, while for the QLSM,,., mode H, = 0 only at
cutoff. If solving for the propagation constant 6 at some fixed frequency, the full determinant T must
be used with

det [TI = 0 (2.102)

the requirement for a numerical solution. If the frequency is above the cutoff frequency of the
QLSE,,., mode and that of the QLSM,,,,,. mode, where m and n' are fixed with n' > 0, separate roots
to (2.102) will be found corresponding to the different values of 3 for the two waveguide modes. The
lower root for /3 will normally (but not always) correspond to the mode with the larger cutoff fre-
quency. The specific waveguide geometry will determine which mode has the larger cutoff frequency.
By tracking the root(s) for 3 as a function of frequency from cutoff for each mode, and solving the
eigenvector problem to determine amplitude coefficients of the various modal components, it is possi-
ble to compare the field magnitudes of the different modes. Such a procedure was used to compare the
fields of the QLSE1 .1 mode with the fields of the QLSM 1.1 mode for several waveguide geometries. In ,-.

each case, the most pronounced variation of any field component between the two modes at a fre-
quency well above cutoff of either mode was in the relative magnitudes of the lowest order _
(k,.o = 7r/h,) modal component of E, and H,. With all fields normalized to unit power flow in the
waveguide, the QLSE1.1 mode had a consistently smaller magnitude for the lowest order term of E, and
a consistently higher magnitude for the lowest order term of H, than the corresponding modal com-
ponent amplitudes of the QLSM 1I. mode. The amplitude difference between like fields varied from a
factor of 3 to more than 2 orders of magnitude, dependent on the specific waveguide geometry and the
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point where the comparison was made. For the QLSEI. and QLSM 1I, modes at least, this comparison
lends additional credence to the nomenclature of quasi-LSE and quasi-LSM modes. L.'-.'

As discussed earlier, the QLSE,,.0 modes use the matrix T' in the eigenvalue solution, where the
matrix T' is formed by deleting the first row and column of the matrix T of (2.96). This reduction of
the matrix is necessary to eliminate the effects of the dummy vector coefficients-corresponding to the
zero amplitudes of the n - 0 order modal components of E. E., and H, -on the eigenvalue develop- "
ment. For any given frequency above cutoff, the requirement for a numerical solution is .'-

det[ T'(l)] = 0.

When solving for the cutoff frequency of a QLSE,,,, mode, the computational requirements may be
reduced by partitioning the matrix T' as

T ' - .
T"21 T 122., -

If NT terms were used in the series expansion for the fields, then the matrix T will be square, with size
2 NT x 2 NT. The matrix T' is square also, (2NT - I) x ( 2 NT - 1). The submatrices T11 and T22 are
both square, where -rII is NT x NT while r22 is (NT - 1) x (NT - I). While the submatrices T12 and
T21 are both nonsquare, it is a straightforward procedure to show that each is a null matrix, i.e., all ele-
ments are zero, when /3 = 0. The requirement for a numerical solution for cutoff

det [T'(o -0 (2.103)

may thus be reduced to

det [r,((,.)J• det 1722()] = 0.
With the matrix T' partitioned as described, the full eigenvalue problem for cutoff of a QLSE,,. 0 mode

.. is given by

A~Aj

-- 2.NT"_ 0. 0 (2.104)

--------------------------------0 1T 22  D2(-)

D (- )V

where the coefficient D2(-' has been replaced as -G(2) as discussed for the singular condition. If at
some trial value of w, the determinant of the matrix r22 were to vanish, but det IrT) ;e 0, then all of
the lowest order (n = 0) model field components must vanish if (2.104) is to be satisfied, since D2.0
= 0 at cutoff. Thus, det r22] # 0 for a QLSEm,0 mode at cutoff, a fact confirmed by numerical
evaluation of this determinant for a variety of waveguide geometries.

The requirement for waveguide cutoff of a QLSE, 0 mode is thus

det [r ((,)] = 0. (2.105)

Since det [7,2(6,)] P 0, then H, - 0 to satisfy (2.104). This is in contrast to the cutoff of
QLSE,,.,>() modes, for which E, 0 0. However, the lowest order modal component of E,, E,.0, is
zero for the QLSE,. mode.
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In addition to the null field features that have already been pointed out for cutoff conditions of "
the different waveguide modes, other features are readily seen upon examination of the relationships
developed earlier between the x-directed electric and magnetic fields and the remained field com-
ponents. For waveguide cutoff, the fields can be summarized for different modes:I Ez, H, Hy 0 r

QLSMmn modes E Hz 0

QLSEmmodes1 E, Hx , H 0

E_,H H 0

QLSEm,0 modes Eo = 0

Ex,>0 d 0. , -8--

Once the solution is obtained for a given waveguide mode, i.e., either the cutoff frequency '
(with /3=0) or the propagation term / (for a fixed frequency) is found to satisfy the null requirement
of the appropriate determinant, conventional linear algebra techniques [51,62-651 may be used to calcu-
late the eigenvector associated with the full matrix, from Eqs. (2.95) or (2.100). With the amplitude
coefficients represented by the elements of the vectors A and D1' then known, calculation of the .. ,
remaining field amplitudes in all regions may be accomplished in a straightforward manner.

For the purposes of this investigation, the only mode that requires numerical evaluation of the
fields is the dominant mode. Because of practical considerations, only those waveguide geometries for
which the dominant mode is the QLSE1 0 mode will be considered. As with any waveguide, the opera-
tional frequency cannot be too close to cutoff because of greatly increased attenuation and dispersion.
These considerations will normally limit the lowest frequency of operation to 15 to 20% above cutoff.
Therefore, the details of the numerical determination of the fields will be given only for the QLSEIO0
mode at frequencies above cutoff.

Once 3 is found for any given frequency w > w , i.e., det [T'(w,/p)] = 0, the matrix 7' is fixed
and the vectors A ' +) and DI - ) may be calculated from Eq. (2.100). Because A( ') is effectively zero

(since k 2,0  0), the full vector A is thus known. The vectors A and D may be calculated
from Eqs. (2.61b) and (2.61c):

A" - [QA-)] - ' Q(+)-A (+) .- -'-= (Q,-,..

= [QD(+)J- QA 2D.

The remaining amplitude terms of Region 2 may then be found by using Eqs. (2.39) to (2.42), with
=+) - wY2AJ-  w ,lD(

+ )]
..

B2 ' k2]'[K2 A2 '  ow D2 ) "I:

€(+ = -[ 2]-h'[PAI-) + wjoK2D+]..

C = -[iJ, 2]-[3p2AJ + wjt 0K2 DJ
= 2  .2D (.

F = 1-'[we 2 PAY - 
- K 2P2D#A]"

(+) -140 21 [wE 2K2A 2- + DJ

GJ - - (b2]-'[aE2K 2AY-' + /3PDJ ] ,11'::::'

4 -1.1,1

",-, ." . " " " ' .. .... ... ".'..... ...........-. '... .. ".-.......:-..-...'"-."'."''"
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where the matrix 1 is replaced as f3U for w > w, and the upper (+) symbolism used for +_ K 2 since
the QLSE,,0 mode is a (M.E) mode. All of the vector elements may be calculated on a term-by-term
basis in Region 2 since all of the matrices involved are diagonal.

A number of different methods could be used to find the coefficients of the field components in
Region 3 once those of Region 2 are calculated. The method chosen was to first calculate F3 and G3.
From Eq. (2.79c)

F 3 = ,r, 3  J lvf3F 2

while from Eq. (2.79d)

G3= [t 3 H I VLM4G2 .

Determination of F3 and G requires matrix operations since neither M, or A 4 are diagonal matrices.
Since W4 = U and W) = P] for a (ME) mode, Eqs. (2.44) to (2.46) together with Eq. (2.31) will
give

A3 = - [/3F_ - K3G1  .

D3 = -[P' ]-'[KF 3 + PG 1].

Then Eq. (2.30) may be used to obtain

C 3 = -[03]-'[#A 3 + Ao/.K 3D 3]

B3 =[4)3
- I [KA3 - (O.D 3]"

The elements of the vectors A3, D3, C3, and B3 may be calculated on a term-by-term basis since all of
the matrices involved in calculating these vectors are diagonal..

The modal component coefficients of the fields in Region I may be found by matching tangential
fields on a term-by-term basis at the air-dielectric interface, x = -x 2. With this procedure, terms of
the form

a,, cosh (P2,,x 2) - b,, sinh (p2,,x 2)

will be encountered where the coefficients a, and b,, approach the same value as n becomes large. For
large n, the term P2.n is almost proportional to n, thus the cosh and sinh functions increase exponen-
tially with n. With as few as five terms in the series expansion for the fields, significant errors can be
caused by the numerical inaccuracy inherent in the calculation of the difference between two very large
numbers f64J. Such computational errors may be avoided by matching the normal field components at
x = -x 2. Using the matrix notation of Eq. (2.53),

O //A = e,[2,t,,A2 - ()A('] (2.106)

9 D 2 - 02 =2 (2.107)

where the vector elements A jo, A',.0 and A2.0 are zero magnitude. Substitution of Eq. (2.61b) into
Eq. (2.106) gives

MA, E= ,[QA-] IQ4 - +'9 ']A 2(.

Subsequent substitution for the matrices Q,-' and QA+) from (2.62) and appropriate commutation of
the diagonal matrices yields

+1 1 p2,9% . _ t~=1"A Er[Q,4-']-('EPI0")I12+)02' - 02')2''I + 0"'it)'o2' - 2"01- )IIA2Y'.

But
+)o - p2o92'o10 -- U,

024 " 2 .?[ "
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thus premultiplication by [01 - 1 yields

A=, [QAJ 'A2• (2.108)

In a similar fashion, Eqs. (2.61c) and (2.62) may be used with Eq. (2.107) to show that
D= [Q+]-t'D( - ). (2.109)

The results of Eqs. (2.108) and (2.109) could also have been obtained by matching the tangential fields
at x = -x 2 and using the relationships between the fields from Eqs. (2.16) and (2.17) to obtain cancel- "MA
lation of many terms. Such a procedure is straightforward but considerably more detailed than the
method shown. ,-, ,

Once numerical quantities for the elements of A, and DI are found from Eqs. (2.108) and .
(2.109), calculation of the remaining field coefficients in Region I may be accomplished by using Eqs.
(2.16) and (2.17) directly:

C, = -[Ij-I[I3PA + w/,OKIDII

BI = [ h]-'[K 1PI2A, - wMoj3DI]

F, = [-P1 '[.e01jA 1 - KID11

G, = -[.I1['60EoKIAI - f#D11.
Since all matrices involved in the calculation of the amplitude vectors in Region I are diagonal, the

coefficients may be determined on a term-by-term basis. The magnitude of any field may then be cal-
culated at any point within the waveguide.

The number of terms NT used in the series expansions of the fields affects the accuracy of the
numerical solution. Numerical calculations for a variety of waveguide geometries indicated rapid con-
vergence of solutions, for both w, and t3. For all geometries tested, as few as five terms gave solutions
within 0.5/ of the numerical value obtained by using many more terms. Convergence characteristics of
the cutoff frequencies for the four lowest order waveguide modes are shown in Table I for a typical
waveguide geometry. The convergence characteristics for J3 of the QLSE1 ,0 mode are shown in Table 2.

2.3 Peak Power Capacity

The peak power capacity of a waveguide is the maximum microwave power the waveguide will
carry without arcing due to the large electric fields within the waveguide. The power level at which arc-
ing occurs is referred to as the peak power breakdown level. The specified peak power capacity for
some waveguides may include a safety factor; however, for purposes of this investigation the peak
power capacity and the peak power breakdown level will be considered as equal unless otherwise noted.

The time-averaged power transmitted across any closed surface S is [40,411

P= -Re E x H* "dS.

The coordinate system used in Section 2.2 will be used here also, with the waveguide axis in the a:
direction. Propagation again will be assumed to be in the positive a: direction. The surface of integra-
tion is thus the interior cross section of the waveguide of Fig. 3, and with dS = a:dxdy, then

(E x H) dS = (EVH* - E, H )dxdv.

Advantage may be taken of the waveguide symmetry to limit the integration to the left half if a factor
of 2 is included in the power calculations. The surface integration will be separated into three regions
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Table I -Convergence Characteristics of Cutoff Frequencies
for Different Modes

Waveguide geometry parameters:

a = 1.0 (2.54) s = 0.2 (0.51)

b = 0.4 (1.02) 1 = 0.4 (1.02)

d = 0. 15 (0.3 8) e.=4.0

Dimensions are in inches (cm)

Mode Cutoff Frequency in GHz

NT QLSE1 ~o QLSE 2 ,0 QLSE Hl QLSM 0 .j

1 2.4528 9.6587 114.3651 12.3792

2 2.2497 8.8459 14.8782 12.3141a

3 2.2478 8.8425 15.0177 12.3065

4 2.2392 8.8062 15.0146 12.3058

5 2.2353 8.7911 15.0555 12.2996

6 2.2352 8.7903 15.0611 12.2996

7 2.2329 8.7808 15.0667 12.2983

8 2.2327 8.7800 15.0782 12.2967

9 2.2321 8.7776 15.0776 12.2979

10 2.2313 8.7747 15.0831 12.2959
11 221 .78 506 225

12 2.2315 8.7748 15.0862 12.2955

13 2.2308 8.7722 15.0899 12.2949

14 2.2308 8.7720 15.0903 12.2948

15 2.2304 8.7706 15.0915 12.2946

16 2.2304 8.7706 15.0935 12.2943
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Table 2 - Convergence Characteristics of Waveguide Parameters
for QLSE1 0 Mode

Waveguide geometry parameters:

a = 1.0 (2.54) s = 0.2 (0.51)

b =0.4 (1.02) ,0.4 (1.02)

d - 0.15 (0.38) 4.0 tan A = 10- 4

Dimensions are in inches (cm) Copper Walls

Frequency = 3.5 Gliz QLSEI.0 ./ = 2.23 GI-z

NT f3 (°/cm) Breakdown Breakdown ac ad
Power (kW)' Power (kW) 2  (dB/meter) (dB/meter) ,

1 365.89 6009.4 7195.8 0.1791 0.0818

2 395.17 I 2863.4 8984.8 0.1806 0.0768

3 395.48 2841.2 8957.5 0.1858 0.0768

4 396.65 2833.8 9120.1 0.1885 0.0766

5 397.18 2837.0 9187.4 0.1902 0.0765

6 397.21 2835.1 9188.9 0.1916 0.0765

7 397.54 2830.4 9221.6 0.1929 0.0765

8 397.56 2831.2 9225.3 0.1935 0.0765

9 397.61 2828.7 9232.6 0.1946 0.0765

10 397.54 2828.0 9242.6 0.1951 0.0765

11 397.54 2838.3 9242.0 0.1957 0.0765

12 397.76 2826.4 9248.7 0.1964 0.0765

13 397.81 2826.6 9250.9 0.1966 0.0764

14 397.81 2826.1 9251.5 0.1970 0.0764

15 397.84 2825.4 9255.6 0.1973 0.0764

16 397.84 2845.4 9321.3 0.1963 0.0768
Notes:

(1) Power for breakdown at air-dielectric interface
(2) Power for breakdown in dielectric
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to conform with the region definition shown in Fig. 4. Since the expressions developed for the
transverse fields E , E, H, and H, are real, the power carried by the waveguide is

3
P =2 P (2.11Oa)

with t ,:-

withP f = } [ f E.i)Hv') - E, H') dxdy (2.1lOb)

where the i subscripts and superscripts denote the particular region and with the appropriate integration
limits for each region.

The only propagating mode for which power breakdown is of interesL for this investigation is the
• ~dominant, or QLSE.0 mode. For this mode, in each region the nth modal component of E, and y"" j

has a y-dependence given by sin (2niry/h), while the nth modal component of Ey and H, has a y-
dependence given by cos (2nrry/h), where h is the height of the region. Because of the orthogonality
of these functions, the cross products generated by substitution of the series representation for the

fields will vanish when the y integration is performed. Thus the expression for the power in each
region may be reduced to

2 n Yn 2.111)

where the n subscript on each field quantity denotes the nth modal component for that field. For the
dominant mode, the lower limit on n in the summation is zero. The upper limit is theoretically infi-

. nite, as in the analysis to determine the propagation characteristics; but as in the latter analysis, the

number of terms must be truncated at some finite value for a numerical solution. The number of
terms that can be used to find P, is obviously limited by the number of terms NT used in the propaga-
tion analysis, and for power breakdown calculations will be set equal to NT. The effect of the series
truncation on power breakdown determination will be discussed after the mathematical development
has been completed...-

In Region 1, substitution of the series representation for the fields from Eq. (2.12) into Eq.
(2.111) gives

:" P I 1 ' b12 b1'.'.'
=, - A A F1 ,I". -n 2 ( /b)dv - B.D.,I cos2(2nr/

2 I, -b 2 "os.'."-b) d

where

I -n : cosh 2[p "(X + Xl)]dV

and

=,f-. =j sinh 2[p jx + xl)]/p2? dx.

The mathematical identities

cosh2# = (cosh 20 + I)/2 (2.112a)

sinh 20 = (cosh 20 - 1)/2 (2.112b)

may be used to evaluate I', and I, as

I'', = {cosh [pl,,(xl - v2)l sinh p, ,(xl - x,)lp, + (.vi- v)1/2

-/,, = (cosh [p.,(xl - x,)] sinh [p, (XI - .2,I/p.i - (x - v,)1/2 p-
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After the v integration is performed, the expression for P, becomese

,bB1 DI (I V2

= - Ij) + (A I,, Fl,,I, 11 - B1 D1 ,I,) (2.13)
'4

In Region 3, substitution of the series representation for the fields from Eq. (2.25) into Eq.
(2.111 ) gives

P3  Y } A3.,,,F3 n 3. f12 sin (2niry/d)dy - B3,1,D3.I1'" f% Cos (2n7ry/d)dyln-d,0

where

an3. fj sinh [P3,n(X -X 3 )I/~ dx

3.17 ' cosh [P3, 1 (x -X 3)JIdx.

The mathematical identities given in Eq. (2.112) may be used to evaluate /Is,, and 1I(,, as

11, [cosh (P3,,X 3) sinh (P3,nX3)/1 ,, -X 3I/2p 23, n

II, [cosh (P3.,,X3) sinh (P3,nX31 P.,n + X31/2.

The .v integration will then yield

dB3 A + IA3.nF+.n 1 - B 3, 1 ,1 3 ,,S') (2.114) -

2 3,0 4 3,1

In Region 2, the series representation of the fields from Eq. (2.35) is more complicated than in
Regions 1 and 3. and substitution into Eq. (2.111) will give rise to additional terms:

N2 ~ +A2FQ~+(A~F~ + ,~)I' fb1 2 sin 2 (2 n 7r v1b dv

(B2f D'D)(*' + B2' j)fc~ f bi2Cos 2 (2n1ry/b)dv
B1 n 2.-. 1 Iy +1 2,' 2.n 2 7 , .r

where

A(" f cosh 2(P 2,n X) dx

2. f sinh (P2.,,X)/2. n d

S2 n f2 cosh (P2.nX) sinh (P2.,X)/P2., dX.

Again, using the identities given in Eq. (2.112), the hyperbolic integrals may be evaluated as.

2I,= [cosh (P2.nX2) sinh (P2.,X 2)/P2.,, + X2112

12n= [cosh (p2 .,,X2) sinh (P2,,X2)/P2,, x2J/2p 2,,~

I" - [sinh p2.,1X2)/P2.n 12 /2.
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or
After performing the y integration ,.

P2 (- ) 2(+) " + 2  + (B I- D2) + )B2 D P'2 -- , u 20 L 20 u , 20 2,0 0 2.0 "2.0 20WI Jll

- -- [A, (+) F 2+) - 2+)D (+)F [ () -) B(-) D2(-)l B ?s D"Qn4.%.42y, 2 2n -- . 2, 2, t2,n 2, - '-'. '-2.2n 2, n.. .

+ (- F2(+) +, A+4r2-) - B(-)D(+) -B+)D-Isc B (2.115)
t 2, 2.n n 2n 2n '2.n '2,n -- "2, n ''2. n 2.n[

Calculations using Eq. (2.115) directly will cause numerical errors when the number of terms NT in the
series expansion for the fields is large. These errors arise because Eq. (2.115) requires taking the
difference between two very large numbers, analogous to the situation when calculating numerical
values for the modal amplitudes in Region 1 as discussed in Section 2.2. Such numerical accuracy
problems may be avoided in this case by using the elements of the Q matrices from Eq. (2.62) to
reduce the expression given in Eq. (2.115). Using the notation of Eq. (2.54), with -

02+ cosh (p2,,X 2)

0 = sinh (p2 ,x2)/P2. ..- " .

then
' [0,)0,, + x21/2 (2.116a)

l n = 2+)2(- X]/2p 2 (2.116b)

"c = - [0(-,]'/2. (2.116c)

In Eq. (2.115) the notation
(+)FA+)cc +%)-)(-)Iss -++ + A[ . 2 I n s (2.117)

F __ .2.n 2 n 2n "2, n 2., n"2.,- t' 2., "2. + .A 2 F 2.,. ."-

and
2BD B'D"'I/" + B D )Ps + (B7-DP(+) + B +) -)I. (2.118)2. - 2 ,n 2.n 2.n 2 , " 2.n 2,n 2. , 2,P7 2 , 2,n J 2.n( 2 1 8

will be used for all values of n. Substitution of Eqs. (2.116) into (2.117) will yield

, X2[A 2. F2 - A 2 , 2
+)A O 2-A Y']/2 + 02-F2(-'[0 +'A -1p2 n 2-) (+) 2.

t.F .
From Eq. (2.61b) .

+,,2. QA-) AA 2,(--

thus,
i2+)A (+) 0(-) (--) r, (-)n (+) - (+)a (-)] A (+)/ ,A--)~2.n 2n,- 02.h A2  = QO - Q ~ I (2.119)-

42.n , n2,n '2n .0 ' 4,

-9( A 2 A Q( (2.120)

From Eqs. (2.62a) and (2.62b)
#(*) )I 2 _O(- A,+) r,, (Et ) +) 2 M 1)n -),9 ( ) - 2 1 0

.01 ErP2nUn' Q 2.n P2n + .n p '2 (2.12 1 a)

From ErPq.. n(2.2an +2. (2n (2.121 b)
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where .and 0H) are given by Eq. (2.53). Substitution of Eq. (2.121) into Eqs. (2.119) and (2.120),
with proper rearrangement of terms and use of the mathematical identity

cosh 2 - sinh 2  
- 1,

will yield
2(+) -(+) - A (- I O(//)A ( )/Q --t2' 2n .1 7 2, n 1 ~ .n 2.n Q~ ... /

0~~~ (+) 2(- -1 0' ErP~~ )A2( ,nQn

Thus. 2,, may be expressed as .

;2,, n x2[A (+)F() -A,-) (-;2 + 0 -)A(+1 ) ' +) + 2 1 (, AF l1 F-T 1h 2 1 ,/Q j. (2.122)

In a similar fashion, substituting Eq. (2.116) into Eq. (2.118) and using Eqs. (2.61c), (2.62c), and(2.62d) will yield

X2[B(+,) (+) 2(-I 2(- ,I . .%
211- - +-ti~tu2,n) +,n /Q- (2.123)

The expression for the power in Region 2 then becomes

P ,2.0 B 2.,). (2.124) ,

If in both Eqs. (2.122) and (2.123), the quantities 9 and ,, are calculated as

0 = exp [pL, (xi - x2)]{l + exp [- 2p.,, (xl - x2)1}/2 (2.125a)

0 = exp [p ,(x - x2)]{1 - exp [- 2p,.,,(xl - x 2)I}/2p,,, (2.1 25b)

and the common exponential term taken outside the brackets, the numerical computation does not
require taking the difference between two very large numbers.

Calculations in all regions must consider the sign of p,2,. For those modal components where p,2,

is negative, the hyperbolic functions may be replaced by their trigonometric counterparts with

p,,= N for p,2,, < 0.

The power being carried by the waveguide, as calculated from Eq. (2.110) together with Eqs.
(2.113), (2.114), and (2.124), is dependent on the magnitude of the (arbitrary) normalization constant
used in solving for the eigenvector of amplitude coefficients in Eq. (2.100). Since the waveguide is a
linear device, the power is proportional to the square of the electric field magnitude. Using a zero sub-
script to denote numerical quantities corresponding to the eigenvector normalization,

P/IEI = P(VIEJ 2  (2.126)

for a given waveguide geometry and fixed frequency. The equality is valid for the electric field at any *

point and in any direction as long as E and E0 are similarly defined.

Peak power breakdown in the dielectric loaded ridged waveguide of Fig. 3 will occur when either
(1) the maximum electric field in the air region exceeds the electric breakdown strength of air, EBar or
(2) the maximum electric field in the dielectric exceeds the electric breakdown strength of the dielec-
tric, EeCrIc. In any complete rigorous analysis, such as this approach with an infinite number of
terms in the series expansion for the fields, a singularity in E will be found at the corners of the ridge
[11,14,661. Any ridged waveguide with perfectly square ridge corners would, in theory, break down at
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vanishing small power levels. However, if the corners of the ridge are slightly rounded, as is done in
practice 111], the E fields remain finite. The ratio of the maximum electric field intensity at the ridge
corners, E, to that at the center of the ridge, E, is then a function of the corner radius II I]. Peak
power breakdown will occur in the dielectric when E, > Ediectric. Different dielectric materials have
different breakdown strengths which in general will be dependent on several variables such as dielectric
thickness and moisture content [25,261. Rather than introduce additional parameters, the power break-
down aspect of this investigation will make the following assumptions unless otherwise noted: (1) the ,
breakdown strength of the dielectric is 10 times that of dry air, and (2) the EJ1E, ratio is 2.5. The
basis for the first assumption is the dielectric strength of polystyrene, with EBD = 700 volts/mil [251.
Other dielectrics such as polyethylene have substantially greater breakdown strengths [261. The basis
for the second assumption is the article by Hopfer on ridged waveguide I1 1 which shows a ratio of 2.5
for EF/E,, to be a conservative value. For most configurations of the dielectric loaded ridged
waveguide, air breakdown will occur at a much lower power level than that for breakdown in the dielec-
tric, and the exact values of EE and Edecric will not be relevant. If the waveguide is such that the
actual value of either of these two parameters is sufficiently different from the assumed values-larger

/E or smallEdielectric -so as to result in dielectric breakdown at a lower power level than that for
air breakdown, appropriate corrections must be made for power breakdown.

At all points in the waveguide, the axially directed electric field E. is small in comparison with the
transverse electric field E7, where Er = a,E, + a, E, for the dominant, or QLSE 1 ,0 mode at frequen- . -

cies above cutoff. Since E. is in phase quadrature with E, and E, the maximum electric field will lie
in the x-v, plane. At the center of the waveguide E, is zero for the QLSEI. 0 mode because of the effec-
tive magnetic wall at that plane, thus, the maximum electric field will be JEI,. From Eq. (2.25b),
E, at the waveguide center is

E, =,3 = 3 B3,, cos (2nfry/d).
,, =0

Since the coefficients B3, are a function of frequency and waveguide geometry, no rigorous procedure
is available to find the maximum in terms of a general function of the coefficients. Investigation of
numerous configurations, however, has shown the coefficients to alternate in sign. At the ridge sur-
faces. v : ±1/2,

E, = (-I)" B3.,

thus. the maximum value of E, occurs at the ridge. Calculation of E, as

, B,21, .-. -

must then he a worst case condition since

IE, (X X3)1 < L', (2.128)

w here the equality in Eq. (2.128) is valid at y = +d/2 for all of the many waveguide geometries that
vere checked. The maximum electric field within the dielectric \ill then be taken as 2.5 E, with E,
calculated from Eq. (2.127). The peak power level for dielectric breakdown is thus

(10 E(H~I)
12.S I1 +, 11

* (or

,,r ... . . . . . . . . . . . ..

/H' r M;+ B1; (2.1'"9)

-i-- ,--

_____ ____ .. '. .-. -... -. -
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where the coefficients B3 , are the same used to calculate the normalized power P0. Unless otherwise.:' .
noted, the value for air breakdown will be taken [11,251 as ...

- 30,000 volts/cm. (2.130)

In the air region, the maximum electric field will occur at the air-dielectric interface, x = -x 2 in
Fig. 4. At this plane, the fields are found from Eqs. (2.12) " -

N2

El =_ = 7 A ,, cosh [pI.,(xI - x 2)] sin (2nfry/b)

N2

EvlX-x2= 2 BI, sinh (pl,(x, - x 2)1/P, cos (2nfry/b).

The magnitude of the transverse field is

ETI = (E2 + E,2 ) / 2.

Investigation of several waveguide geometries showed the point of maximum JErI to occur at varying
distances from the horizontal plane of symmetry at y = 0, depending upon the thickness of the dielec- - -
tric piece and the ridge gap. For large (t - s)/d ratios, the maximum occurs at y = 0, as this ratio
decreases the point of maximum IETI approaches y = d/2. Such behavior is to be expected when the
fringing nature of the fields due to the ridge is considered. To determine the maximum electric field in
the air region, IETI was calculated at x = -x 2 for 33 equally spaced points for y, from y = 0 to
y = d/2, with IEI mn taken as the maximum of these values. The peak power level for air breakdown - -

is thus calculated as
P.= Po(Eq4°)2/1ET Ix (2.131)

where the coefficients used to find JEr max are the same used to calculate the normalized power P0. ,

Of course, the peak power capacity of the waveguide is the lesser of the two breakdown power "."L.
levels, P, or Pdectric. As mentioned earlier, the power capacity will be limited by air breakdown for .
most of the configurations investigated. The distinction will be made apparent for those conditions
where breakdown is in the dielectric rather than in the air.

Convergence characteristics of the numerical values calculated for power breakdown, both in air
and in the dielectric, are shown in Table 2 for a typical waveguide geometry. While the calculated
values for power do not converge as rapidly with increasing NT as do the values for .f, or 3, as few as
four terms in the series expansion for the fields will generally yield a value within ±12% of that
obtained using many more terms.

2.4 Attenuation Calculations from Perturbation of the Lossless Condition

Up until this point, the waveguide of Fig. 3 has been assumed to be lossless, with the complex
propagation constant y = a + jj3 having the loss term a equal to zero. This is a conventional assump- r -
tion made when deriving the propagation characteristics of low loss transmission lines such as
waveguide [1,2,16,411. Of course, any physical transmission media has some finite loss. If the
transmission loss is small, the conventional approach to theoretically determine the loss term is to *, . .
assume that the perturbation of the actual (lossy) fields from the fields of the lossless condition is
negligible. The lossless field distribution, together with parameters such as the conductivity of metallic
conductors and the loss factor of dielectric materials, is then used to calculate the loss term [1,21. Such
an approach will be used to calculate the loss of the dielectric slab loaded ridged waveguide of this _ &

investigation.
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For this attenuation analysis, the axis definition of Fig. 4 will be used and propagation in the posi-
tive a. direction will be assumed. Each of the Fields of the waveguide will vary as exp (-az), thus the
power will vary as exp (- 2az). If the power flow at a point z0 is Po, the power flow at a point incre-
mentally removed from zo, zo + Az, is P0 exp (-2aAz). Thus,

P(z= Zo)- P(z zo+ Az) = P0[I- exp (- 2aAz)].

If the increment Az is small,

P(Z = Z() - P(Z = Z() + AZ) = WLAZ

where W1 is the power lost per unit length of the waveguide. Thus, r%

P0[l - exp (- 2aAz)1 = WLAz

and if the series expansion

exp (-.) = I - v + x 212! - x'13! + ..

is used for the exponential term, then in the limit as A: approaches zero

= W,/2P0 . (2.132) -%

For the purposes of this investigation, the power loss will be attributed to two factors only: (1) the
imperfectly conducting metal walls of the waveguide, and (2) the finite resistivity of the dielectric
material used in the center region of the waveguide. Such additional factors as radiation loss are not
applicable. Loss in the air dielectric region will be neglected.

The power per unit length dissipated in the waveguide walls is given by [1.21:%

,= f, IJ, 2d (2.133)

where J, is the surface current density and R, is the surface resistivity of the metal. The contour
integration is clockwise around the waveguide boundary. The surface current density is assumed to be 21
that of the lossless waveguide, with [40,441

J= n x H
where n is the unit vector normal to the conducting surface. Thus,

IJ , 1 I 1 , F - '
1Jj*- H 12

where H , is the tangential component of magnetic field at the surface. The surface resistance R, is
[2,451

= 

where .f is the frequency in Hertz, A is the permeability of the metal (usually = JAO), and o" is the
conductivity of the metal. The attenuation due to conductor losses then becomes

a Rj , IH, 12 d
(2.134)

4P"

- The power flow P0 in the waveguide has already been derived in Section 2.3 and will not be repeated
here.
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Advantage will be taken of the field symmetry to calculate the conductor losses. Defining the fol-

lowing surfaces of Fig. 4 asI

S2: -XI X <-X 2 , Y b12

S3: -X 2 <1X -IO, y =b12

S4 : x=-O0,d2 -,y Kb12

S5: 0O1<X <X3 , Y d12

and letting IW,(i be the corresponding power per unit length dissipated at each surface, then

W, 2 W," + 4( W,(' + W~" + I +W'" 1) (2.135)

On the surface S,

1) R, IbH(11 + IH( 2

Substituting the series expansion from Eqs. (2.12) for the fields H() and H.(') gives,
RN2 Nv2 j j

b/ b/
+ GI FI. cosmf s2inb cos lb i (mry

G J,,G -. b12 (2Iy/ b) dyJ.

Because of the orthogonality of the y-dependent functions on the interval -b12 y b12, the last
equation reduces to

N2

W" 4 1, (F2,, + GI)(2.136)

On the surface S2

W 2 ) f..2.H..1 + iiM''21.1;

Substitution of the series expansion from Eqs. (2.12) for Hf,'1 and HP." then yields

R,2 2 -
w,(2 si- z p~( (- +jjmP +1) sinhj~n IpimX +

2P~n = 1  
P i'inm

Sf -X csih [p,,(x + xj)I sh fP.m(X + x)JdK
q, Isrim d

P53 I'

and.

f
nm -X.cos.. . . . . . . . . .. cos Ip .~ x.. . .. . .

... ... .. .. 53.
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These two integrals may be evaluated as

=~n (cosh IPI.,,(XI - X2)J sinh LiPIm ,(X 1  X 2 H/IPI,,m

-cosh (pl~m(xl - x2)1 sinh I1 ,(XI - X2)]/I/(P -p,,,)l , 1 for n m

1, nms = (cosh Ipj, (x1 - x91l sinh [PI,,,(X1 - X2)J/P1 , - (XI - X2)/12p?,, for n=in

I'~nm 1,4. cosh [Pi~m(xXi 2)] sinh tPi~n(Xj - -)IPn

- .Pm coht 1 ~ X 2)-x9 sinh IP1,,,(XI - X2)]/Pj m/Pi - for n -; in

="c? (cosh [PI1 n(XI - X2)J sinh (p1,(x 1 - X2)J/PI,,, + (XI -X 2))12 for n = m.

On the surface S3

Wz.'3) (21 + iIk2)1214

2 H '4'j b2

Substitution of the series representation for the fields H,,,( and H , 2 ) from Eqs. (2.35) gives M

R2 12
- rn- 0  

j$i

+ SCmIDti'D2(,) + G2(-G2P+J + 4,nm' D(n)D2B,) + G26-);G2(-) (2.138)

where the x integration is that for Region 2, with

2.,,m fX cosh (P2.nX) cosh (P2.mX)dx

=Jcosh (p,2 ,,x) sinh (P2.mX)/P 2 rndx

0I~m=; sinh(P2.,,X) sinh (P2. ,,X)
x2 P2,nP2.m

After integrating with respect to x, these integrals are found to be

'b.jnm = P 2.ncosh(P2.mX2) sinh (P2,nX29/P 2 .,

-P2,. cosh (P2,,X2) sinh (P2,, X2)/P2 ,,j/2p,, 2g,, for ni in (2.139a)

''nm = (cosh (P2.nx2) sinh (p2 ,,X9 2 ,,2. + X2)12 for ni in (2.139b)

4,2,sn = (cosh (p2 .nX2) cosh (P2.mX2)-

-2 sinh (P2,,,X2) sinh (P2.m X2) 2 2 forii i
P2.n P2,P,2. 2. forn i (2.1 39c)

tp I - c s P2. 2.m 4....

.I'nm=(- cs(px/2.n, for n = in (2.139d)

2. n, = - cosh (P2 ,X 2) cosh (P2.mX2) .

+P 2 sinh (P2,nX2) sinh (P2m ,X 2) (2 - p 2 t) fo i n(213e* '..

2. P2n2.m )/ (2.,

= I os 2 ( 2 ,x)2j, for it in (2.139f)
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2,,,-- Icosh (P2 ,,x2 ) sinh (P2.,,X2)/P2.,m
cosh ( ) sinh (p2.,X9 2 )/P1 2 2for n ? m (2.139g)-- s P 2 .X 2 ) s n ( p , , ) p , }/ p* P ,n)n

t,= Icosh (P 2.nX2 ) sinh (P 2 ,nX 2 )/P 2., - x2)/2p2., for n = m. (2.139h)_lop

The loss per unit length on the side of the ridge wall, or surface S4, is .*.-**

W/(4)= s fd2  +H:( 2)I dl.2 fhi 2 X_0 ,

The series representation for the fields may be substituted from Eqs. (2.35), and since dl - dy
because of the clockwise contour integration

". w 4} N, .N, R 'v2 '2
C(4) R2 (+) F24 + Rs2 2,m) 0, (2.140)

F2,., i nm n M E IG M
2,,=I ,=I n=O n=O

where
=B f hi 2

, ...17 /2 sin (2niry/b) sin (2mfry/b)dy.

(1,12

01,,,n 2 cos (2nfny/b) cos (2m7ry/b)dy. .. .

These trigonometric integrals are evaluated as --

h = -(sincr(n + m)rl - sinclir(n - m)r]} for n 4 m
"M 4

"= b - d + d sinc(2nirr)}/4 for n = m

= -Tsinc[ir(n + m)r] + sinc[r(n - m)r]I for n d m
4

o= b - d - d sinc(2nirr))/4 for n = m 0

.,=(b - d)/2 for n =m =0

where r is the height ratio, r = l/b.

Finally, on the surface Ss
W R, '"
= - 1 IH, 12+ IH- 12"

Substitution of the series representation for the fields from Eqs. (2.25) will yield

' = 2 1 D 3- I . . . D ., O ,, b ' ,. .. .+ G 3 ,, G , , 3 . ,t t ,, , ,,}t p ( 2 .1 4 1 ) ": ' "2.. . .

where the x integration is that for Region 5. with .-" s-'

= cosh Ip3.,,(x - 3) cosh [P3.,,(X - x3)Idx

, sinh [P 3,, ( x - . ) 1 sinh [P ,, ( A - V3) dx. . .
,b ?' ..... = P3 ,, P3, , __

. . . .. .
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These hyperbolic integrals are easily evaluated as

3 = { (p, cosh (P 3,mX3) sinh (P3 .,X3 )/P 3., f

- . cosh (p 3 .,X3) sinh (P3,mX3)/P 3.m/(p3.n for n e m (2.142a)

n'. = (cosh (p3 ,x 3) sinh (P3,x 3)/P3., + x 3)/2 for n = m (2.142b)

fm= 1cosh(P 3.nx3) sinh (P3,mX3)/P 3.m I.

- cosh (P3 mx3) sinh (P3 ,,x 3)/P 3.,}/(P,n - P3m) for n m (2.142c)

i3.m = (cosh (P3 ,x 3) sinh (P3,,x 3)/P 3. - x 3}/2p . for n = m. (2.142d)

On the four surfaces where the double summation is required to obtain the loss, the contributing
factors are symmetric; i.e., on each surface the loss term for n = i, m = k is the same as the loss term
for n = k, m = i. This fact is easily shown by examination of the various integration terms and may
be used to reduce the number of computations required for numerical solutions. Having obtained the
loss per unit length W" on each of the five surfaces Si the total conductor loss per unit length W, is
found from Eq. (2.135), and the attenuation due to the finite conductivity of the metal walls is -

o =W,/2Po.. 'i'.!'

Of course, the set of modal component coefficients used to calculate W, must be the same as that used
to calculate P0 as outlined in Section 2.3.

Any physical dielectric will absorb some energy when placed in a time varying electric field. In
addition to conduction loss due to finite resistivity, there are a number of mechanisms which will gen-
erate loss in an imperfect dielectric [2,26,40]. The physics of dielectric loss is outside the scope of this
investigation. The effects of such phenomena on the microwave properties of the subject waveguide
may be included by expressing the dielectric constant as

E = - jIE (2.143)

. where E' is the a-c capacitivity and all loss mechanisms are included in the dielectric loss factor '
[41]. A commonly used alternative expression to Eq. (2.143) is

E 11 I exp (-AD)

where 8 D is the dielectric loss angle. Thus,

,E'/= tan 8D (2.144)

where tan 8D is the dielectric loss tangent of the material. Good dielectrics have values of tan 8D in
the 10- ' - 10- 3 range [25,261.

For macroscopic properties, an equivalent conductance representing all losses in the dielectric [2]
is

re W0 E

The power loss in the dielectric is given by

PD fff 1.E E 12dv.
volume 2

The power loss per unit length along the z-axis due to imperfect dielectric is thus

*Wd =.-f (1_E'I2 + JE, 1 + IEj 21)dX dy (2.145)
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where the surface integration is over the dielectric portion of the waveguide. Advantage may be taken
of the waveguide symmetry to give

Wd = 2(W 2  + W (31) (2.146)

where WdJ2 and Wd3 are the power loss per unit length in Regions 2 and 3, respectively, of Fig. 4.
Wd(2> and Wd2P are calculated from Eq. (2.145) using the fields and integration surface of the
corresponding region. In each of the two regions, the integration in (2.145) may be done term-by-
term, with

W =i) w(,) + w(iy) + WJ') (2.147a)

for i = 2, 3, where

w<,)= (0 IE 2d dy (2.147b)""dp 2 Si" 
" "•

St

for p = x, y, z. Substitution of the series representation for Ex(2) from Eq. (2.35a) gives

W( x 2 J__ [A 2+, cosh (p2 ,,x) + A2- sinh (P2 ,x)/p 2 ,1 sin (2nwry/b).

[A (+) cosh (P2 ,,X) + A (-) sinh (P 2 mx)/P 2,m] sin (2m1ry/b) dx dy. (2.148)

Since the functions sin (2niry/b) and sin (2mlry/b) are orthogonal on the interval -b12 < y< b/2,
the y integration will eliminate cross products of the different modal components and Eq. (2.148)
reduces to

(2) (OE" b N2,[ (+)121c[ (+)12iss 11

SI + 2A(+) A(-)Is + IA'2.2nIa'x = 2 2 =l2,'2n 2,n -" 2,n z2,n 2,n 2,..n 2-' .

where the x integration terms IC  and 1', are the same as those used in the power analysis of
Section 2.3, and the same as q4q, 'cm and t ,'m, respectively, of this section with n = m and are
evaluated in Eqs. (2.139b), (2.139f), and (2.139h).

The development of Wd(.2 and WdJz 1 is similar to that for Wdx With substitution of the series
representation for the fields from Eqs. (2.35b) and (2.35c) into Eq. (2.147b)

+dc2[BE PI]Ic + 2+ [B (-2i$,,-
2 2. _0 (I. +n 22. , 2. .f.r ...:..-2:n:.

2 n(IE [ 2) + 2C;C;-V-c' + [C I2;sj.Wd,( , ~c2('+,)J +2,n 2,n, ..2" 2n 2
2 2 n-1

In Region 3, the calculation of W,,P is similar to that for WJ 21 in Region 2. Using the series
representation for the fields in Region 3 from Eq. (2.25) gives

WE" d N 2

" " d( +2 +. c

2 
2 n-0

, N 2 "'*

2 2,~n

r 57
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where the x integration terms If,, and I"', are the same as those of Section 2.3 and the same, respec-
tively, as qs3.S,, and 0 "" of this section with n = m, and are evaluated in Eqs. (2.142b) and (2.142d).

Once the full loss per unit length Wd due to the imperfect dielectric is found from Eqs. (2.147)

and (2.146) the dielectric attenuation constant is then calculated as

ad = Wd/2Po (2.149)

where the amplitude coefficients of the fields are the same for numerical evaluation of both Wd and P0.
The total loss per unit length of the waveguide is W, + Wd, thus the total attenuation factor due to
conductor losses and imperfect dielectric is

a = a, + ad- (2.150) V

Each of these attenuation terms is in nepers/unit length. To convert to the more conventional
engineering terminology of dB/unit length, the relation is

exp(- 2anepz) = 10- (ad
a:)/t°

where anep - nepers/unit length and adB = dB/unit length, thus

adB = 20a,,ep/inIO

or
adB = 8.686 aonep .

In calculating numerical values for both a, and ad, large errors may result when the number of.'
terms NT in the series expansion for the fields is large. This is due to the computational difficulty ..
encountered for numerical evaluation of factors such as

a, cosh (pnx) sinh (pax) - bm cosh (pAx) sinh (px) (2.151)

" when the hyperbolic terms are very large. Accuracy problems were found to be particularly trouble-
- some when evaluating the quantity WM3) for determination of ac and the quantity Wd2 ) for determina-

tion of ad. To avoid errors caused by such computational limitations, (2.61) and (2.62) may be used to %%%.
reduce the various terms in the double summation equations to expressions where factors like those of
Eq. (2.151) are not present. Such a technique is similar to that used in Section 2.2 for calculation of
the coefficients A I, and Dl ,.

Convergence characteristics for the attenuation terms a, and ad of the QLSE 1.0 mode as a func-

tion of N T are shown in Table 2 for a typical waveguide geometry.

2.5 Computer Program Implementation

The mathematics of the theoretical analysis developed in the preceding sections of this chapter
was incorporated in to the computer program DLDRWG to calculate numerical solutions for the dielec-
tric loaded double ridged waveguide. Appendix E2 lists this program. The program is written in
FORTRAN-10 and is designed for use on the DEC-10 timesharing computer.

Input parameters required for the program are the five physical dimensions (in inches) and the , -
relative dielectric constant of the dielectric material (Fig. 3). The waveguide mode for which a solution
is sought must be specified, as well as the number of terms NT to be used in the series expansion for
the fields. The cutoff frequency of the particular mode must be found first, then if desired the propa-
gation term je may be found for any frequency w > &j,. When solving for a root, either cW, or 0, two
modes of operations are available. The first is a search mode, for which the user must provide start,
stop, and incremental values of the unknown quantity. This mode enables examination of the deter-
minant value as a function of the unknown parameter and is useful to distinguish sign changes of the
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determinant due to poles from those at the zeros (roots). The second operational mode is an automatic ,,

seek mode to find any root between specified limits. The seek mode uses a combination of the binary %

search method and Newton's method to obtain the root [64,651. Because of the wide variation in the
magnitude of the matrix determinant, the criterion used for root determination was that the unknown
variable, o), or/3, be within 0.0011%/o of the actual determinant zero.

The program will calculate attenuation and power breakdown levels for the QLSE1,0 mode only.
If numerical values for these characteristics are requested, the user must supply additional parameter
information: (1) the conductivity of the waveguide walls, normalized to that of copper; (2) the loss
tangent of the dielectric materials; and (3) the electric breakdown strength, relative to that of dry air, of
the dielectric material.

The program will also supply, if desired, the modal amplitude coefficients for the fields in each
region of the waveguide.

In addition to the waveguide configuration of Fig. 3, program DLDRWG will provide numerical J

rL. 'Is for waveguides in which the dielectric width t is less than the ridge width s as shown in Fig. 5. . ?

The mathematical development of an analysis for such a waveguide geometry closely parallels the
development presented for t>, s, but the details will be omitted since the primary objective of this
investigation concerns large power breakdown levels. The waveguide of Fig. 5 obviously is not
appropriate for high peak power operation because of the large electric field intensity that would be
present at the sides of the dielectric material.

!t t . . ~. --. '-.J

a lip

Fig. 5 - Dielectric loaded double ridged
waveguide with i < s

Numerical solutions for dielectric loaded single ridged waveguide, Fig. 6, may be obtained with
this theory by considering the waveguide as the top half of a dielectric loaded double ridged waveguide
operating in a (M,E) or (E,E) mode, i.e., with an effective electric wall at the horizontal plane of sym-
metry. The modes of the waveguide of Fig. 6 thus would be the QLSEm, and QLSM m• modes, with
n restricted to even integers, of the waveguide of Fig. 3 where all vertical dimensions of the latter
waveguide are double those of the single ridged waveguide. The attenuation calculations for the double
ridged waveguide, however, would not be valid for the single ridged waveguide.

Theoretical results obtained using program DLDRWG are presented in Fig. 7 for a typical dielec-
tric loaded double ridged waveguide. Cutoff frequencies for the four lowest order waveguide modes are
shown, while the power breakdown and propagation characteristics of the dominant QLSE, 0 mode are -*,.

plotted as functions of frequency. As with any waveguide, the phase term /3 and the power breakdown
rapidly drop to zero as the frequency approaches cutoff, while the attenuation terms a, (conductor
loss) and ad (dielectric loss) each display a minimum value as a function of frequency.
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Fig. 6 - Cross section of dielectric loaded single
ridged waveguide

Waveguide Parameters Mode f (GHz)

Dimensions In Inches (cm)

500 am 0.6 (1.524) OLSE o 3.17 8W=4.68
b 0.36 (0.914) QLSE o 16.03

1200 d 0.09 (0.229) QLSE 2376 1.0

I s= 0.1 (0.254) QLSMo 1  14.83;,I t- 0.2 (0.508)

400 1000 e
=

4.0 0.8
Power 0.8

300 0.6 "

'..600

200 -3
Notes: (I) Copper Woveguide 0.4-

400 - ran I"--

100

0.

200- a, ' o

0-- o-j
3 4 6 8 to 12 14 16 Ii

Frequency (GHz)

Fig. 7 - Typical waveguide characteristics for QLSEI. 0 mode

2.6 Comparison with Other Theory '"

Numerical results obtained from the theory presented in this chapter were compared with results
obtained from other sources. For the reduction of the waveguide of Fig. 3 to empty rectangular
waveguide, i.e., d = b and E, = I, the results obtained from program DLDRWG-cutoff frequencies
and propagation characteristics for all modes, as well as attenuation and power breakdown values for the
dominant TE1 .0 mode-were identical to results obtained from conventional theory 11,2,41,42,67]."'
With the waveguide of Fig. 3 reduced to dielectric slab loaded rectangular waveguide, d = b, the results
of this theory again were identical with other published results [3,18,20,23,68,69]. Such favorable com-
parison is expected, of course, since for both types of waveguide the mathematics of this theory reduce
exactly to the corresponding mathematics of the conventional theory. This exact reduction is a conse-
quence of the matrices MI, M2, A 3 and M4 of Section 2.2 being diagonal when d = b, thus leading to
a diagonal matrix for the eigenvalue problem. "
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Comparisons for empty double ridged waveguide (4 = I but d < b in Fig. 3) were made from
several sources. Table 3 shows the agreement of this theory with results of Hopfer [1 ] for the normal-
ized cutoff wavelength of the TE1 0 (QLSE1 0) and TE 2 0 (QLSE,,0 ) modes. The attenuation results of
this theory were between 2% (for BW = 3) and 18% (for BW = 5) less than the graphical results kl
presented by Hopfer. ,.- -

Table 3 - Comparison of Cutoff Frequencies *,- :..
with Results from Hopfer e

Air-filled double ridged waveguide . .

/a TE10 mode XA/a TE 2,0 mode
s/ a d/ b """

This Theory Hopfer This Theory Hopfer

0.1 0.1 4.104 4.11 0.911 0.91

0.1 0.3 2.863 2.89 0.935 0.93

0.1 0.5 2.414 2.43 0.956 0.96

0.3 0.1 5.160 5.15 0.823 0.82

0.3 0.3 3.257 3.26 0.927 0.93

0.3 0.5 2.623 2.62 0.960 0.97

0.5 0.1 5.395 5.40 1.113 1.12

0.5 0.3 3.324 3.33 1.132 1.12

0.5 0.5 2.657 2.67 1.090 1.09

Notes:
(1) b/a = 0.5
(2) NT= 6
(3) Results from Hopfer Ill] are graphical

Power and attenuation comparisons were made using published technical data for standard double
ridged waveguide [671. For all waveguide geometries tested, the results of this theory agreed within 8%
of the listed values for both attenuation and power. For this comparison, the corner correction data
from Hopfer [111 was used to correct for the increased electric field at the rounded ridge corners and
the power safety factor of 4 included for this theory.

The only published data found in the open literature concerning higher order modes other than
TE,,,0 modes for empty double ridged waveguide were calculated by Montgomery 114]. For the
waveguide case with e, = 1, the QLSEm.0 mode designation of this theory may be replaced as a TE,,.0  .. ' -
mode since E, =_ 0; i.e., all modal components of E. vanish for all frequencies. Also, all QLSM modes
reduce to TE modes while all QLSE,,,, modes (with n > 0) reduce to TM modes when E, = i. A
comparison of cutoff frequencies for different TE modes obtained from this theory and those from [141
is shown in Table 4. The trough modes of Montgomery are cross-polarized to the hybrid modes- also,
the trough modes occur in pairs which are almost degenerate, hence the one to two correspondence .'-,-*."

with the modal designation of this theory. No numerical results were given in [14) for TM modes
corresponding to the QLSEn., (n > 0) modes of this theory.

% %.* °%
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Table 4 - Comparison of Numerical Results with
Those of Montgomery

Empty Double Ridged Waveguide

a = 0.5 (1.27) d = 0.11 (0.28) ".

b = 0.4 (1.02) s = 0.1 (0.25)

Dimensions in inches (cm)

This theoryml) Montgomery

Mode f, (GHz) Mode f, (GHz)

QLSE1, 0  6.8907 TE 1,0 Hybrid 6.8570 L_,

QLSE 2,0 24.9308 TE,,o Hybrid 24.8582

QLSE 3 0 32.0311 TE 3,0 Hybrid 32.0246

QLSM 0,I 15.076 TE1,0 Trough (2)  15.1046

QLSM I 15.127

QLSMo, 2  29.5737 TEM Trough '2 ,  29.5363

QLSMI 2  29.5742

QLSM 2 ,1 33.228 TE1,1 TroughQ) 33.2723

QLSM 3 1  33.295
Notes: -
(1) With NT = 6
(2) Trough modes are almost degenerate pairs

Magerl [27] had the only information found in the technical literature on dielectric loaded ridged
waveguide, but the investigation was restricted to the case where the dielectric width was exactly equal
to the ridge width (G = s in Fig. 3). Although the analysis incorrectly assumed a true TE modal struc-
ture, the derivation of cutoff frequencies for modes corresponding to the QLSE1 .0 and QLSE2, 0 modes
of this theory was valid [281 since E. does vanish at cutoff for these modes. Within thc limitations
inherent in obtaining numerical values from the graphical data of [27], the results were found to be .
identical with those of this theory for cutoff of the QLSE 1,0 and QLSE 2,0 modes. Although a brief dis-
cussion of other waveguide modes was made in [27], no analysis was given.

3.0 COMPARISON OF EXPERIMENTAL DATA WITH THEORY

3.1 Propagation Characteristics

Measurements were made on experimental sections of' partially dielectric loaded double ridged
waveguide for comparison with the predicted performance of the theory based on the mathematical
analysis derived in Section 2. Since the waveguide is a linear device, propagation characteristics are
independent of power level. The propagation characteristics thus were measured at low-power levels
due to the greater flexibility, increased accuracy and simplified hardware of a low-power measurement
facility as opposed to that for a high-power facility.

62

, - -- . , . .



NRL REPORT 8917

All lowv-power measurements were made on a computer-aided automatic network analyzer
(ANA), a Hewlett-Packard Model 8409B. This unit can measure complex transmission and reflection ,-*."
coefficients between 0.1 and 18 GHz of one and two port devices. The theory of operation and charac-
teristics of this type of microwave measurement system are well documented [70-73] and need not be
discussed further. Measurements were made in two bands, the first (low band) covering the 8 to 12
GHz range, and the second (high band) covering the 12 to 18 GHz range. This was necessary to allow
transitions from the coax system of the ANA to the rectangular waveguide sections used to interface
with the waveguide under test (WUT). The interfacing waveguide was standard X-band waveguide for
the low band and standard K,- band waveguide for the high band. These frequency bands were
selected since precision waveguide calibration kits were available for both X and K, waveguide; with
the increased accuracy of the ANA calibration greater accuracy could be achieved in the measurements.
Measurements were made in frequency increments of 0.5 GHz or less.

To obtain the propagation characteristics for a particular dielectric loaded double ridged
waveguide, measurements were made on three different lengths of the waveguide, where each
waveguide sample had the same cross-sectional geometry. Then at each measurement frequency, the
three measured complex transmission coefficients were used, along with the measured physical lengths
of the three samples, to correct for the inherent mismatch between WUT and the interfacing rectangu-
lar waveguides. The effect of the mismatch on the measured propagation characteristics is analyzed in
detail in Appendix D, where the technique used for mismatch correction is derived as Method 3. The , -V ,

values of the propagation constant 3 that will be shown as experimental data thus are not direct meas-
urement results, but are derived directly from the measured data. Discussion of the waveguide loss, or
attenuation, term a will be made at a later stage in this section.

To allow measurements of waveguides with a variety of cross-sectional geometries, brass test fix-
tures were fabricated as shown in Fig. 8. For each length of waveguide the top and bottom wall sec-
tions were common for all cross-sectional geometries. The sidewall sections as well as the ridge sec- _e-e

tions were fabricated in pairs. Screws were used to assemble the complete structure, along with steel
locating pins to minimize side play and allow accurate positioning when changing the geometry. While
not a recommended construction method for an operational waveguide, this method of fabrication
afforded a large degree of freedom in the choice of geometries for the waveguide. The three lengths of. -.

the waveguide used for the low-power tests were 1.25 in. (3.18 cm), 1.474 in. (3.74 cm), and 1.998 in.
(5.07 cm). Corresponding lengths of H-shaped dielectric inserts were machined from polystyrene (E,
=2.54) and from Emerson and Cummings Stycast K-12 (E, = 12) to mate with several housing
geometries. Because of the slight imperfections in both the machining and assembly processes of the . -

brass housing, it was necessary to make the dielectric inserts slightly undersize to allow assembly and '- "
disassembly of the complete waveguide test pieces.

- .

_ _ _ _ _ Note:-

t- - - - - - - - - Locating Pine And

Assembly Screws

Not Shown.

a. Exploded End View b. Assembled Side View

Fig. 9 - ow-p,,er test housing
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The first measurements were made on samples of dielectric slab loaded rectangular waveguide
(DSLRWG) and air-filled double ridged waveguide (DRWG) as a check on the validity of the program
used to correct for mismatch effects. For both waveguide types, the theory of this analysis has already
been shown to agree quite closely with the results of other researches (exact agreement in the case of
DSLRWG). Figure 9 shows the very close agreement between theoretical and measured values of t3
for DSLRWG operating in the dominant TE 0 mode. The agreement is good even for frequencies - -

where higher order modes may propagate. The absence of an effect on propagation characteristics of
the TE1,0 mode by higher order modes may be due to the fact that the higher order modes are not
present; i.e., although higher order modes may propagate, they are never launched by coupled energy
from the dominant mode. Alternatively, the higher order modes could be present but with no frequen-
cies for resonant conditions near the frequencies at which the measurements were taken, thus produc-
ing negligible effects. If higher order modes of significant magnitudes were present, they would cause .. ,
abrupt spikes at resonant frequencies in the otherwise smooth trace of transmission (both magnitude "-.
and phase) through the sample waveguide when the measurement was made in the manual mode of ..- ,'
operation for the ANA on a continuous swept frequency basis. Such a swept frequency measurement
showed no discernible evidence of higher order modes up to 18 GHz for the waveguide of Fig. 9.

Woveguide Parameters Mode f, (GHz)

Dimensions In Inches (cm)

300 - a 0.6 (1.524) LSE 1,0 7.00

b 0.3 (0.762) LSE 1  15.33
t z0.202(0.513) LSMo.I  16.38

250 - E z2.54L

LS ,, 2oo-.,13

E
u200

10 - Theoretical
- 1500 0 Experimental

A 100

50 - Higher Order Modes
May Propagate

0
8 10 12 14 16 18

Frequency (Gr, l--

Fig. 9 - Comparison of theory with experimental data for
dielectric slab loaded rectangular waveguide

The agreement between theoretical and measured f3 is shown as a function of frequency for the
TE.0 mode of DRWG in Fig. 10. For this waveguide, the cutoff frequency of' the first higher order
mode is greater than 17 GHz. Any higher order modes would thus be very close to cutoff at the largest
measurement frequency, 18 Gflz, and the resultant attenuation so great as to preclude any effect on
the TEI.0 mode measurements.

The initial measurements on the first sample of dielectric loaded double ridged waveguide did not
indicate good agreement with theory, as indicated by the triangular data values of t3 in Fig. il. For
these measurements, the actual volume of dielectric material was less than the theoretical volume
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250 Wavegoide Parameters

Dimensions In Inches (cm)

200- b=O.35 (0.889)
Ed=0.I (0.254)

3 - 0.098 (0.249)
e = .0

0

t00o Theory

0 Measured

50

0 8 10 12 14 16 Is

Frequency (GHz)

Fig. 10 - Comparison of theory with experimental data for
empty double ridged waveguide

Waveguide Parameters Mode f (GHz)

Dimensions In Inches (cm)

a =0.6 (1.524) OLSE, 40

325 b =0.35 (0.889) OLSM01, 14.29
d = 0.1 (0.254) QLSM1,1  14.32o
s = 0.098(0.249) OLSE 1 ~ 6.17

t z 0.3 (0.762) QLSE1 , 21.55.

275 CrP 2.54

E

S225

o Theoretical
CA Eperienta WihoutSi Geos

175 0 Experimental Withou Si Grease

12H Higher Order Modes
May Propagate

Fig. I I -Comparison 01 theory with cxpcrimental data for N

[LI)RWG with QLSE1)f. 4 c(i1
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because of the required loose fit of the dielectric piece for assembly. An effective dielectric constant
may be calculated on a volume basis as

V '+ (V - V')

where V is the theoretical volume of the dielectric piece and V' the actual volume of dielectric material.
With E, = 2.54 and V estimated to be 98% of V, E y, was calculated to have a value of 2.51. How-
ever, the initial measurements on this waveguide indicated a good fit for E,.1.1 = 2.2. The possibility .. *...

that the dielectric piece (polystyrene) might have some value other than the presumed e, = 2.54 was
considered as a cause for the discrepancy between theory and experiment. Sample pieces of poly--_ •
styrene, machined from the same stock as the waveguide insert, were checked and found to have the
expected E, = 2.54, however. The conclusion was reached that correction for the air gaps at the inter-
face between the dielectric material and the metal waveguide surfaces by a simple volume approxima-
tion to determine e,// was insufficient.

Rather than trying to derive a more sophisticated method to correct for air gaps, it was decided to
simply eliminate the air gaps. Use of coil dope (polystyrene dissolved in toluene) was considered as a
solution but rejected because of the need to disassemble the waveguide structure to change geometries.
The method finally adapted was to fill the slots of the polystyrene piece with silicone grease prior to
assembly. The relative dielectric constant of this material is slightly greater than that of polystyrene,
with E, 2.7. Upon assembly of the waveguide structure the excess grease was forced out of the '4

metal/dielectric interface volume, leaving no air gaps. Such assembly had to be performed slowly and
with caution in order to give the excess grease time to flow and prevent cracking of the polystyrene due
to a build up of hydraulic pressure. The slight difference between E, of the silicone grease and E, of
the polystyrene was then ignored because of the relatively small volume of grease. Of course, the sil-
icone grease did not harden as would have coil dope, and thus caused no problems with disassembly.

Using this silicone grease method for assembly, the measurements on the dielectric loaded double
ridged waveguide were repeated. The agreement between the theoretical and measured values of3 .
were excellent as indicated in Fig. 11. For frequencies above 14.3 GHz, swept frequency measure- '..

ments gave no indication of the presence of propagating higher order modes. .

All waveguides using polystyrene as the dielectric material were then assembled with silicone
grease. The agreement between theoretical and measured values of 3(QLSEIo mode) as a function of
frequency is shown in Fig. 12 for a waveguide similar to that of Fig. 11, but with an increased
waveguide width. Swept frequency measurements on the waveguide of Fig. 12 gave definite indications -
of the presence of some higher order mode(s) for frequencies above 16 GHz. The large deviation of
the measured /3 (corrected from the raw data) from theory is due to these higher order mode(s) since
the mismatch correction assumes a single mode to be propagating in the sample waveguide (Appendix
D). A similar situation existed for another waveguide with a different geometry as shown in Fig. 13.
For this waveguide, agreement between theory and experiment was good also until higher order modes
began to propagate.

By using the same brass housings, similar experiments using E, = 12 dielectric material were
attempted, although it was recognized that because of the heavy dielectric loading most of the single
mode bandwidth would lie below 8 GHz. An assembly method similar to the silicone grease method
was used, but using a material with E, = 12 rather than silicone grease. For such a material it was
decided to use the filler portion of a two-part castable dielectric epoxy with e, = 12.5, without adding
the hardening agent. Two such experiments were made, but both gave poor agreement with theory. In
both cases, one or more of the dielectric pieces was found to be badly cracked when the waveguide
housing was disassembled. This failure of the dielectric material was attributed to two causes. First,.- "
the material from which the dielectric insert was machined was old; experience has shown that dielectric
materials of this type tend to become brittle with age. Secondly, the dielectric epoxy used to fill the air

-7 .
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Waveguide Parameters Mode 1eCGHz)

Dimensions In Inches (cm)

a -- 0.796 (2.0 22) QLSE ,, 3.31

325 bz 0.35 (0.889) 0OLSEZ2 0  13.74 IN

d =0.1 (0.254) QLSMo, 14.71 
**~S~

2755

E

S225

175

125 Higher Order Madesx
I May Propagate

8 10 12 14 16 I8
Frequency (GHz)

Fig. 12 - Comparison of theory with experimental data for
DLDRWG with QLSEI 0 f,= 3.3 GHz

Waveguide Parameters Mode f,(GHz)
Dimensions In Inches (cm)

350 - a =0.6 (1.524) OLSE 1 , 5.0
b =0.35 (0.889) OLSE 2. 14.08 ~
d -0.190 (0.483) QS 0  57

300 - s-0.196 (0.498) OLSM 1  1 5.94 0'

t =0.3 (0.762) QLSE1 1  19.67

0~0

250

TheaoreticalI

50 o o 0 Experimental

- Higher Order Modes
100 May Propagate...

8 to 12 14 16 18V
Frequency (6Hz)

Fig. 13 - Comparison of theory with experimental data for
DLDRWG with QLSE1 4).- 5 611z
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gap was considerably more viscous than silicone grease; the hydraulic pressure encountered during
assembly split the dielectric. With the poor agreement between experiment and theory attributed to the ,,

cracked dielectric insert, no further experimental attempts were made using a high e, material; the
excellent agreement for the e, = 2.54 waveguide configurations was felt to constitute sufficient experi-
mental verification of the propagation aspects of the theory for the phase term/3.

By using the waveguides with polystyrene dielectrics, the actual cutoff frequencies for the QLSEI,0
mode were confirmed directly. This was done by operating the ANA in a swept frequency mode to
find the frequency at which the transmission through the waveguide rapidly approached zero. For this
measurement, the interfacing waveguide had to be large enough to propagate at the cutoff frequency of
the sample waveguide, and conventional S-band rectangular waveguide was used. For some measure-
ments, the S-band waveguide was operated at frequencies where the TE2 ,0 mode could propagate; in
this case, however, overmoding of the interfacing waveguide was immaterial since the sample
waveguide would still have infinite attenuation at its cutoff frequency. Since the interior size of the 5-
band waveguide was larger than the brass housing of the sample waveguide, aluminum foil and conduc-
tive copper tape was used to seal the gap between the waveguides and prevent coupling of the two
interfacing waveguide sections via radiation. Dielectric slugs were glued to either end of the sample
waveguide to increase the coupling between it and the adjacent sections of S-band waveguide, i.e., to
form crude matching transformers. Such matching transformers, of course, had no effect on the cutoff
frequency of the sample waveguide and were employed to partially overcome the huge discontinuity
resulting from the drastic change in cross section. -

Although the accuracy of such an elementary method to measure f, of the sample waveguide is
considerably less than the accuracy of the method used to measure 63 for f>f , the measurements
resulted in values of cutoff for the dominant mode that were within 6% of the theoretical value for all
waveguide geometries tested. Comparable deviations of measured values of f, from theory were found
when rectangular waveguide was used as a sample, and when the cutoff frequency was known exactly.

Attempts were made to compare the propagation characteristics of some of the higher order
modes as determined from experimental data with the theoretical values, using resonance conditions for
the propagating higher order modes in a manner similar to that used by Tsandoulas et al. [24]. At fre- "" -
quencies where any higher order mode could propagate in the WUT, a sharp spike in the transmission
loss indicated that a significant degree of coupling existed between the dominant mode and the higher
order mode, with a high Q resonant cavity being formed by the WUT for this higher order mode since
such a mode could not propagate in the adjoining rectangular waveguide. Thus, at the frequency of the
transmission loss spike, the WUT represents to the higher order mode a transmission line with an
effective electrical length equal to an integral number of half wavelengths. The effective length
includes the phase term of the reflection coefficient seen by the higher order mode at either end of the
WUT as well the product f6104,L. With an analysis similar to that developed for the dominant mode in
Appendix D, resonant conditions for any higher order mode occur at frequencies where

13L. - ( 2= nr, for n = 1, 2, 3, ... (3.1)

with n622 the phase of the reflection coefficient at either end of the WUT. Of course, the frequency
dependence of' both f3 and 622 is determined by the particular higher order mode. ..-

The waveguide geometry described in Fig. 12 was chosen for the higher order mode measure-
ments. Determination of the higher order mode causing the resonant cavity effect was essential for
comparison of experimental results with theory, and two techniques were tried to deliberately launch
the QLSE2,0 mode since the QLSE2  mode was the higher order mode with the lowest cutoff frequency.
The first technique used a small rectangular dielectric piece, e, = 13, in the input section of K,"
waveguide adjacent to the front face of the WUT and lined up with one arm of the H-shaped poly-
styrene insert. The generation of an asymmetrical component of electric field, due to the off-center
dielectric in the input K,, waveguide, was quite effective in launching the QLSE2.0 mode in the WUT as
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evidenced by the appearance of spikes in the measured dominant mode transmission loss. However,
this technique did not lead to good agreement between experiment and theory for /3 of the QLSE 2.0
mode. It was determined that the addition of the dielectric piece in the K, waveguide effectively
increased the length of the WUT for this mode since the LSE 2,0 mode could propagate in the short
length of dielectric slab loaded (off center) rectangular waveguide thus formed.

The second technique tried to deliberately launch the QLSE2 ,0 mode in the WUT consisted of a
simple shift, or offset, of the input K, waveguide (no dielectric loading) relative to the front face of %

the WUT. With this offset, the incident field pattern seen by the WUT was nonsymmetrical about its
vertical plane of symmetry, thus increasing the coupling to the QLSE 2,0 mode for which the EY fields
are asymmetrical about the vertical plane of symmetry. This technique also proved effective in launch-
ing the QLSE 2,0 mode, as evidenced by the spikes in the measured transmission loss at frequencies
close to the theoretical cutoff frequency of this mode. The magnitude of these loss spikes was reduced
as the waveguide offset was decreased, and vanished when no offset was used. Other transmission
spikes remained at higher frequencies, but were determined probably to be due to modes other than the
QLSE2 0 mode. Only the transmission spikes produced by the waveguide offset were used to obtain
experimental verification of the propagation characteristics for a higher order mode since these spikes a.
could be attributed to a given mode-the QLSE 2,0 mode-with a high degree of confidence.

The change of the phase term 022 with the offset of the input K, waveguide was immaterial since
this phase quantity could not be measured directly under any circumstances. The condition for higher
order mode resonance given by Eq. (3.1) remains valid if 4122 is taken as the average of the phase
angles of the reflection coefficients at either end of the WUT for the higher order mode. Since the
quantity 022 is some unknown function of frequency, the following approach was used to determine /3
for the QLSE 2,0 mode. With equal amounts of waveguide offset on the input end of the WUT, each of
the three lengths of the waveguide described in Fig. 12 was measured for transmission loss on the ANA
using the manual swept frequency mode. For each length, the frequencies at which transmission loss
spikes occurred-due to the waveguide offset-were recorded, and the value of )22 was then calculated
and plotted using Eq. (3.1) and the theoretical value of /3 for the QLSE2 ,0 mode. For the short lengths
used for the WUT, determination of the integer value for n was straightforward. Since 4122 was
independent of the length of the WUT, the plotted values of 0122 were used to construct a best fit linear ".' .*'. '
dependence of 0122 as a function of frequency between 14.05 and 16.15 GHz. The theoretical cutoff
frequency of the QLSE2 ,0 mode was 13.74 GHz for this waveguide geometry. The lowest frequency
transmission loss spike, at f = 14.05 GHz, occurred in the shortest length sample, corresponding to n
= I in Eq. (3.1). The lowest frequency spike for each of the two longer samples occurred at frequen-
cies corresponding to n = 2. The absence of spikes at frequencies corresponding to n = I for these
longer samples was disconcerting initially. However, when an extension of the assumed linear fre-
quency dependence of '122 was used to calculate the frequencies at which transmission loss spikes would
be predicted for n = 1, such frequencies were found to be very close to the theoretical cutoff fre-
quency. For frequencies very close to cutoff, the attenuation of the QLSE2 ,0 mode would be very large,
and the cavity formed by the WUT for this mode would have such a low Q as to preclude a spike in the
transmission loss of the dominant mode.

Loss spikes due to the waveguide offset were indicated at frequencies above 16.15 GHz, but were
ignored because of the erratic measured transmission loss at these frequencies-due to unknown higher
order modes-that existed with no offset. The linear approximation of )22 varied from -38' at
f - 14.05 GHz to -78 ° at f - 16.15 GHz, with the calculated values of 022 having a maximum devia-
tion of :t5 from the linear approximation. With the values of 0b2 2 (f) taken from the linear best fit
curve, calculations for /3 using Eq. (3.1) gave values within 3% of the theoretical value for all frequen-
cies where spikes were noted in the measured transmission loss. It is recognized that this comparison is
of limited value because of (1) the assumption of a linear dependence of b22 on frequency, and (2) the
use of theoretical /3 to calculate the points of 22 (f) from which the linear best fit curve was derived.
A more accurate determination of/3 as a function of frequency for this or any higher order mode would
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require either a continuously variable length WUT-ideal, but obviously impossible from a fabrication
standpoint-or a very large number of different lengths of the same waveguide geometry, in order to ..
have multiple measurements (different lengths) at each spike frequency and thus be able to eliminate

022 as an unknown in Eq. (3.1). With the three lengths of WUT used, two did have transmission
spikes at one frequency, f = 15.2 GHz. Using Eq. (3.1), 622 was eliminated and ,6 calculated directly
as f3 = 94.7/cm. This value compares favorably with the value 63 = 94.5°/cm as determined using the
linear approximation of 6 22 (f) and the theoretical value P3 = 95.8 0/cm for the QLSE 2 0 mode at this
frequency, thus tending to justify the bootstrap calculations used to compare the theoretical and experi-
mentally derived propagation characteristics at other frequencies for this higher order waveguide mode.

The approach of Method 3 of Appendix D used to correct for mismatch effects yields an attenua-
tion factor, or loss term a, as well as the phase term t3 for the dominant waveguide mode. However,
this method was found to be unsuitable for calculating a from the measured data. Using the measured
complex transmission coefficient of three different length samples resulted in wild fluctuations of calcu-
lated a as a function of frequency, even calculating a as a negative quantity (waveguide gain rather
than loss) in some instances. This was determined to be a result of the sensitivity of the mismatch
correction program to variations of a in the three different length samples. With the construction tech-
nique used for the waveguide housing-with six separate metal pieces held together with screws-the
conductor losses were greatly affected by the effective extra resistance formed at the metal-to-metal
interfaces, although such imperfections had only a negligible effect on the phase term (3. Sizable varia-
tions in attenuation (loss/unit length) thus were not unexpected since the nature of the metal-to-metal
contacts could not be controlled. The effect of variations in actual a between sample lengths on the
calculated values of a and (3 was checked for a variety of conditions. In each case. the complex
transmission coefficient t21 of three lengths of an imaginary waveguide was computed, assuming a fixed - -

(3 and fixed values for the S-parameters representing the discontinuity at either end of the WUT. Only
a was changed for the three different lengths. Then using the approach of Method 3 incorporated into
program CROOT3, these computed values of 121, along with the three assumed lengths, were used to

calculate the "measured" values for a and (3. In all cases, (3 was calculated to be within 1% of the
presumed value, but in general the calculated value of a was far removed from the average of the three
presumed values.

The method that was used to experimentally determine the attenuation of the dominant mode for
comparison with the theoretical value was the approach of Method 4 described in Appendix D. With
this method, only one length of WUT was required, and the loss term a was calculated at frequencies
%here the measured transmission loss was minimum, or equivalently where I t2! I was maximum. At
these frequencies, with 11-11 Imrn T , =

(I - s1112) exp (- aL)
T - (3.2a)I - Is,) 12 exp (-2 a L)-"'

from which

a(nepers/length) -(0n,)/L (3.2b)

vAhere

X [(I - Is, 1 2)2 + 4T 2s1 1 121 + is,1 - I /(2Tj s 1 ). (3.2c)

S .-I

The 5.07 cm length sample of the waveguide described in Fig. 12 had minimum transmission loss
at frequencies .f = 8.34 Gllz, .12 = 10.52 Gllz, and 1 = 11.85 GlIlz, with measured losses of 0.35 dB.

(11211 = 0.961), 0.5 dB (11211 = 0.944), and 0.55 dB (11201 = 0.939), respectively. Using resistive film -
loading of the WUT as described in Appendix C, the value of Is, II at these three frequencies was then
measured as 0.776, 0.750, and 0.724, respectively. With a(dB/m) = (Np/m) • 20/In1O, the attenua-
tion was calculated from (3.2) as af(fl) = 1.74 dB/m, af(1") = 2.83 dB/m, and a(fft) - 3.47 dB/m.,
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From the theory, taking the conductivity of brass as o = 1.41 x 107 mhos/m [741 and the dielectric
loss tangent of polystyrene as tan 8 = 4.3 x i0- (261, the total loss term, a - ac + ad, was predicted
to have values of a(f 1 ) = 1.15 dB/m, a(f 2) = 1.37 dB/m, and a(f 3 ) = 1.50 dB/m. At each fre-
quency, the conductor loss term was slightly more than the dielectric loss term. In a ratio comparison,
the ratio (in dB/m) of measured loss to theoretical loss was 1.51 at fl, 2.07 at f72, and 2.31 at f3. Mea-
surements of other waveguide geometries resulted in similar ratios of measured/theoretical attenuation;
in all cases the discrepancy was attributed to the multisection design of the waveguide housing for ;.". %,

which the added resistance at the joints was not taken into account by the theory. Previous experience
with sectioned experimental waveguide housings has indicated discrepancies of similar magnitudes
between theoretical and measured attenuation values.

3.2 Peak Power Breakdown

The peak power breakdown level was measured for one sample of dielectric loaded double ridged ]
waveguide to give a comparison with the theoretically determined value. The fabrication of this
waveguide was different than that used for low-power tests. A two-piece housing was machined from
aluminum, with the ridges being direct extensions of the top and bottom waveguide walk to prevent
possible arcing at the joints between the walls and separate ridge sections. Repeated assembly and
disassembly was not a consideration, and a fabrication method was sought that would ensure the com-
plete absence of air gaps at the metal/dielectric interface. With polystyrene chosen as the dielectric
material, an H-shaped insert was machined to form a loose fit in the assembled aluminum housing.
The polystyrene surfaces that would mate with the metal surfaces of the housing were then deposited
with a thin (=3000 A) evaporated gold film. The complete waveguide section was then assembled '

using silver epoxy to fill any voids between the metal walls and the plated surfaces of the polystyrene. **. -

When the high-power tests were made, breakdown occurred in the dielectric rather than in air at the
dielectric side walls although the theory predicted a power breakdown level for the dielectric more than
five times that for air breakdown. It was determined that the dielectric breakdown was due to the
rough surface left by the milling operation at the bottom of the slot in the polystyrene, where the .
evaporated gold film effectively formed a conducting surface with very sharp protrusions and irregular
features. The conflict with the theory was attributed to the extreme buildup of electric field intensity at
these sharp points, since the theoretical analysis assumed smooth wall surfaces (Section 2.3). To avoid
arcing within the dielectric due to rough surface conditions, the metal evaporation technique was aban-
doned in favor of the construction method which was finally used for the high power test. This method

used coil dope to fill the space between the smooth metal surfaces and the solid polystyrene H-shaped
insert as shown in Fig. 14, analogous to the use of silicone grease for the low-power tests. The
waveguide was assembled using screws and steel locating pins, and then baked at 90°C in an oven to
drive out the toluene from the coil dope. A rectangular steel insert was then used to remove any last
traces of coil dope from the top and bottom walls at the junction with the polystyrene insert. One end
of this waveguide was shorted by an aluminum plate screwed to the end of the housing. The other end
had a flange to mate with X-band waveguide (not shown in Fig. 14).

The physical length of the waveguide sample (WUT) was chosen to that at a frequency f = 9.368
GHz (the frequency of the high-power measurement facility) the electrical length would be such that
the front face of the sample waveguide would be close to a voltage null position of the standing wave
pattern caused by the short circuit. This aspect of the high-power measurement was necessary to
ensure that power breakdown (arcing) would first occur within the WUT rather than in air at the inter-
face of the WUT and the X-band waveguide of the high-power system. The WUT was fabricated with

an initial length longer than necessary. A brass plunger, U-shaped with rectangular arms machined to
fill the air region of WUT, was then inserted into the WUT to form an adjustable quasi-short circuit.
Using the ANA in the swept frequency mode, the position of the quasi-short was adjusted to a position A4 .
where the front face of the WUT represented a near short circuit to the adjoining section of X-band ',
waveguide. The insertion depth of the plunger was measured, and a corresponding length then
removed from the backside of the WUT by machining. Addition of the aluminum plate to form the
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Fig. 14 - High-power test housing

backside short circuit then completed the fabrication. The dimensions of the waveguide used for the
high-power measurement were: a = 0.600 in. (1.524 cm), b = 0.250 in. (0.635 cm), d = 0.150 in.
(0.381 cm), s = 0.100 in. (0.254 cm), t = 0.200 in. (0,508 cm), and a length L = 1.587 in. (4.031
cm). With the polystyrene used as the dielectric material, e, = 2.54.

Because of the standing wave within the WUT set up by the short circuit, points of maximum vol-
tage occur at distances equal to an odd number of quarter wavelengths from the short. At these points,
the voltage is twice that due to the wave traveling in either direction. (The small amount of loss in the
short length of the WUT was neglected.) Such voltage peaks thus are equal to the voltage that would
be produced by a single unidirectional wave carrying four times the amount of power carried by either
wave forming the standing wave pattern (Appendix D). Peak power breakdown of the waveguide .'.

occurs when, at any point, the electric field intensity (proportional to the voltage in the equivalent
transmission line circuit) exceeds the breakdown strength of the medium (either air or dielectric) at
that point. Since the power-handling capability of the waveguide has been assumed to be the peak
power breakdown level of the waveguide when propagating energy in a single direction, the power -: -
quantity of interest in the high-power measurement will be the maximum voltage effective power, or
PMVE, equal to four times the power carried by each of the waves forming the standing wave pattern in
the WUT.

Because the actual power levels within the WUT could not be measured directly, it was necessary
to calculate PAvE in terms of power incident on the front face of the WUT since the latter power could ..
be measured. From Appendix D, Eq. (D14)

401- IS2212) ':. .::
PMVE = 4- I(3.3)1 + 1s2212 + 21s221 cos 4 " -,*

4 022 - 29L (3.4)
where P, is the peak power incident on the front face of the WUT and s22 is the complex reflection
coefficient of the discontinuity formed at the junction of the WUT and the X-band waveguide, as seen
from the side of the WUT, with

22= IS221 exp (J 22)'
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Prior to the high-power testing, measurements of the WUT were made at low power using the ANA to
determine the necessary parameters required to calculate PMVE using Eq. (3.3). Using resistive film to
load the WUT (Appendix C), the complex reflection coefficient of the junction discontinuity, as seen
from the side of the X-band waveguide, was measured as a return loss of 4.4 dB with a phase angle of
176 deg, or equivalently

$II = 0.6 z- 176.

From Appendix C, Is221 = IsI, thus

Is221 = 0.6. (3.5)

After removing the resistive film, the complex reflection coefficient of the shorted WUT was measured
as t,. At the frequency fo = 9.368 GHz,

tIIf-f=o 0.999 z -1650 ,

thus verifying that the front face of the WUT would present an approximate short circuit to the X-band
waveguide. Return loss maximums (minimum ItilI) were found at frequencies of f, = 8.775 GHz
and f 2 = 10.76 GHz. The procedure outlined as Method 5 in Appendix D was then used to calculate
022. From (D16)

01f-f,= (2 n + )7r +j3,L i 1, 2 (3.6)

where /3, is the propagation constant of the WUT at the frequency fi. Using Eq. (3.4), 122 for the fre-
quencies f 1 and f 2 were computed as 33.2' and 31.8', respectively. From (D17), linear interpolation -.
was used to determine"..-

022f-f 0 = 32.5.

Then from Eq. (3.4) -
" = 67.6' (modulo 360 ) (3.7)

at the frequency f0. With the values given by Eqs. (3.5) and (3.7), the relationship expressed in Eq.
(3.1) was calculated to be ,

PMVE - 1.409 P, (3.8)

at the high power frequency fo. Of course, the numerical constant in Eq. (3.8) would change if either
the length or geometry of the WUT were different.

Peak power breakdown was measured using a pulsed high-power source. The experimental facility
used is depicted schematically in Fig. 15. The high-power modulator, an FXR 1 Megawatt Test Modu-
lator, was triggered from a I kHz pulse generator and powered a Raytheon QK-172 X-band magnetron.
The pulsed output from the magnetron was at an RF frequency of 9.368 GHz, with a repetition rate of
1 kHz and a pulse width adjustable from 0.1 to 1.0 As. The pulse width was set to 0.8 Ats for the
high-power measurement. Maximum peak power available from the magnetron was 100 kW. The
motor driven power divider was not used and locked into the low loss state. The high voltage from the
modulator was set to achieve maximum power from the magnetron. Peak power incident on the WUT
was controlled by manually adjusting the ganged waveguide sliding shorts, which together with the short
slot 3 dB hybrid coupler and the folded magic tees formed a high-power attenuator, with the excess - .
power from the magnetron being absorbed by a high-power waveguide load. The coupling between the
main RF line and the thermistor head was measured independently at low-power levels on the ANA for . . -

accuracy in determining the power level incident on the WUT. The total coupling was measured as
-49.8 dB at f - fo, equivalent to a power ratio of 1.05 x 10- 5. The power in the RF pulse was flat
within the 0.8 As pulsewidth as measured by the crystal detector output on the oscilloscope. The peak ". -
power incident on the WUT was thus calculated as

Pulse width _.1
=(Repetition rate) (power coupling)
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where P was the average power measured at the thermistor head. With the appropriate numerical
values,'--.

P,(kW) = 119 PI(mW). • .

A peak power meter was used s a check for the power measurement, using a crystal detector in place
of the thermistor, and showed agreement within o of the peak power as calculated from the averagepower reading. The crystal detector shown connected to channel B of the oscilloscope in Fig. 15 was.'-.-.,

used to monitor the shape of the high-power pulse incident on the WUT, while the detector shown
connected to channel A was used to monitor the reflected power pulse. arurnvllgt

in the test to measure the peak power breakdown, the power level was slowly increased from zero
while carefully monitoring the retlected pulse displayed on the oscilloscope and listening for any sounds
of arcing within the ges degreaid of a stethoscope. The first evidence of breakdown was a suddenonset of strong jitter in the reflected pulse, accompanied by the sudden and distinctly audible arcing ) )..

noise. This first breakdown occurred at an average power of 0.58 mW as measured by the averagepower meter, corresponding to an incident peak power level of 69 kW incident on the WUT. Because '~k:,
of the accumulation of carbon deposits in the WUT, subsequent measurements yielded decreasing
power breakdown levels. After the high-power measurements were concluded, the WUT was disassem-
bled. As expected, the arcing, as evidenced by the carbon buildup, was at regular intervals along the .,.,-.
sides of the polystyrene insert. These intervals corresponded to a half wavelength in the WUT, with - "-
the arcing closest to the short occurring approximately one quarter wavelength from the short and hav- '''.,'''
ing the greatest degree of carbon buildup. There was a very slight trace of' arcing within the poly- , _,
styrene, but the majority of breakdown was at the air dielectric interface ats predicted by the theory. I
There was evidence of arcing at the front face of the WUT also, between corners of the ridge, as evi-
denced by carbon paths across the end of the polystyrene insert. This arcing at the interface of the
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WUT with the X-band wa~eguidc was attributed to a shift in the position of the maximum in the stand- %

ing wave pattern. Prior to the initial breakdown, an approximate voltage null was located at the inter-
face. When the power level was increased sufficiently to cause arcing at a point A,14 from the short,
such arcing effectively produced a short circuit at that point during the short interval of the arc, thus
shifting a near maximum of the standing wave pattern to the front face of the WUT and producing the
arcing at that point.

From Eq. (3.8), the incident peak power of 69 kW for the initial power breakdown measurement
corresponds to an equivalent unidirectional power level of PMv'E = 97.2 kW. With the voltage break-

down strength of air taken as 30 kV/cm, a peak power breakdown value of PBD = 696 kW is predicted
by the theory. The discrepancy between the peak power breakdown level predicted by the theory and
that determined experimentally was attributed to three factors. First, a power safety factor of 4 is com-
monly utilized in practice for peak power ratings [671. With this safety factor included, equivalent to

reducing the breakdown strength of air to 15 kV/cm, the theoretical power breakdown of the WUT
reduces to PBD = 174 kW. The second factor was the presence of small but sharp protrusions of hard-
ened coil dope left at the junction of the top and bottom waveguide walls with the sidewalls of the

polystyrene insert. Such protrusions were the result of using the metal mandrel to attempt to remove
all of the excess coil dope from the waveguide. Just as at sharp corners of conducting surfaces,
extreme buildup of electric field intensity can occur at sharp dielectric corners [661. The theoretical
analysis did not take into account such possible electric field enhancement caused by a flawed assembly
technique. The third factor was the unknown effects of heating within the polystyrene insert. At peak

power breakdown, the average power carried by each wave forming the standing wave within the WUT
was 20 W. Using the theoretical value of dielectric loss, power dissipation within the dielectric was cal-

culated as 0.5 W. Since the thermal conductivity of polystyrene is very low and the power level was
raised gradually, it is quite possible that the heating caused portions of the dielectric to weaken or even
melt, forming irregularities on the otherwise smooth sidewalls, thus sharply increasing the electric field
intensity at some points. Thermal effects caused by average power heating were not considered in the
waveguide analysis of this investigation.

4.0 WAVEGUIDE PERFORMANCE CHARACTERISTICS

4.1 Discussion of General Waveguide Characteristics and Parameters

For the purposes of this investigation, the primary waveguide characteristics of concern are the
single mode bandwidth and the peak power handling capability. Attenuation is also an important factor
but will be considered secondary to the primary characteristics. All results presented in this chapter are

* based on the theoretical analysis derived in Section 2.

Material properties such as metal wall conductivity, dielectric breakdown strength, and dielectric n

loss tangent will affect the waveguide performance. However, these material properties will not be con-
sidered as design parameters, but will be assumed constant as discussed in Section 2. The wall conduc-
tivity and dielectric loss tangent affect only the waveguide attenuation, corrections to the calculated .

attenuation must be made as outlined in Section 2.4 to account for deviation from these assumed --

. parameter values. The exact value for the dielectric breakdown strength will not affect the peak power
breakdown calculation for most waveguide configurations since breakdown will occur in the air region
rather than in the dielectric. For those cases where the power level for dielectric breakdown is less than
that for air breakdown, or where the actual dielectric strength is significantly less than the assurned
value, corrections to the waveguide power handling capability must be made as discussed in Section 2.3.

The design parameters will consist of the five waveguide dimensions shown in Fig. 3 and the rela-
tive dielectric constant of the dielectric loading material. The six waveguide design parameters are thus
(I) the width a, (2) the height b, (3) the gap height d, (4) the ridge width s, (5) the dielectric width
t, and (6) e,. For many design purposes, the number of variable parameters may be reduced to five by
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normalizing all dimensional quantities to the waveguide width. Conventional frequency scaling tech-
niques [8] are applicable for such a normalization process. The power-handling capability and attenua-
tion also may be normalized. Since these waveguide characteristics are of interest for the QLSE.0, or
dominant, mode only, they will be normalized to the corresponding characteristics of an empty
rectangular waveguide operating in its dominant (TE1 ,0 ) mode and at the same frequency. The normal-
ized power will thus be calculated as

PBD (normalized) = PB (reference WG)-

while the normalized attenuation due to conductor loss will be calculated as

a, (normalized) = a (reference WG)

For each configuration of the dielectric loaded double ridged waveguide (DLDRWG), the correspond-
ing reference waveguide is conventional rectangular waveguide with the necessary width to give a TE1,0
mode cutoff frequency equal to f, for the QLSEI0 mode of the DLDRWG. The reference waveguide
will use an aspect ratio (height/width) of 0.5 regardless of the aspect ratio of the DLDRWG, and will
assume copper walls and an air voltage breakdown of 30 kV/cm. Since the reference waveguide has no
dielectric loss, the dielectric loss of the DLDRWG will be normalized to the conductor loss as

a (frequency (GHz)) /2 "
aa (normalized)

a, (reference WG)

The added factor of .. /12 is necessary because of the difference in frequency dependence of a, and ad.
(Section 2.4).

Even with the number of design parameters reduced to five, it is obviously impossible to present
complete design information, either in graphical form or otherwise. However, sufficient theoretical
results will be displayed to show typical characteristics for the DLDRWG, and more detailed results will
be presented for a specific dielectric material. . "

Figures 16 and 17 emphasize the fact that the first higher order mode that may propagate in
DLDRWG is dependent on the exact waveguide geometry. For the fixed parameter ratios given in Fig.
16(a), the first higher order mode (FHOM) is the QLSEI. mode for values of dib > 0.73, but is the
QLSE 2.0 mode for smaller values of dib. With the fixed parameter ratios changed slightly, Fig. 16(b) . ...-

shows the FHOM to be the QLSE 1.1 mode for d/b > 0.82 but the QLSM 0. mode for smaller values of
dib. In Fig. 17, the parameter ratio s/a is treated as the variable, with the ratio t/a maintained as t/a ' .
= s/a +0.1 and with the other parameters fixed. The FHOM is the QLSM0, mode for s/a < 0.2 and
the QLSE 2,0 mode for s/a > 0.2.

For dielectric slab loaded rectangular waveguide with an aspect ratio of 0.5, the LSE 1 1 mode is
normally the FHOM. The corresponding QLSEII mode in DLDRWG was found never to be the
FHOM for a variety of geometries where b/a = 0.5 and d/b < 0.5. The elimination of the quasi-
LSE11 mode as the FHOM is the principal reason that the DLDRWG can achieve large single mode
bandwidths without having to reduce the waveguide aspect ratio.

4.2 Variation of Performance About a Fixed Geometry

4.*-.
To demonstrate some of the characteristics of DLDRWG, a fixed (normalized) geometry was

chosen, with b/a = 0.5, d/b = 0.3, s/a = 0.3, t/a = 0.4, and e, = 6. Each of these quantities was %

then treated separately as a variable, with the remaining quantities held constant, and the resulting
change in normalized waveguide performance plotted. The attenuation and power breakdown levels I______
were calculated at a frequency vf v/3 f, where ./( is the QLSE1 0o mode cutoff frequency for the -

corresponding waveguide geometry.
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In Fig. 18, the waveguide performance is plotted as a function of the ratio dib. The dashed por-
tion of the bandwidth curve represents a condition where the QLSEII mode is the FHOM, and the
solid portion, the condition where the QLSE 2,0 mode limits the single mode bandwidth. A decreasing
value of dib provides an increasing bandwidth, but also results in a decreasing power breakdown level
and an increasing attenuation due to conductor loss. Note that most of the increase in bandwidth arises
as a consequence of the lowered cutoff frequency of the dominant QLSEI,0 mode rather than an
increase in the cutoff frequency of the FHOM. For this particular geometry, as dib is varied from , * "
unity to a value of 0.1, the cutoff frequency of the QLSE1 ,0 mode is reduced by a factor of 2.65, while
the cutoff frequency of the FHOM increases by a factor of 1.41. The size of the reference waveguide
used to normalize the power and attenuation characteristics of the DLDRWG is determined by the cut-
off frequency of the QLSE1 0 mode, and thus increases with bandwidth. With increased size, the refer-
ence waveguide will have greatly increased PyD and decreased a,., thus the variations of normalized
PBD and a. of the DLDRWG with d/b are accentuated relative to the variations of the corresponding
nonnormalized values.

Other Geometry Poometers
9.0 b/a = 0.5 - 40

s/a =0.3
t /o = 0.4

8.0 E,= 
6  35 "

7.0 -30

6.0 1.0 25 =.

-Q:

x 5.0 Pawer 0.8 Z 20

0

3.0 0.4 IO

2.0 0.2 5

,0 0.8 0.6 0.4 0.2 0
d-.b

Fig. 18 - Waveguide performance as a function of
dib variation about a fixed geometry

The normalized dielectric loss as a function of' d/b was essentially constant, with ad,, = 10.2 for

d/, = I and a,,,,, = II for dib = 0.1. The solid portion of the power breakdown curve represents
voltage breakdown in air, while the dashed portion denotes breakdown of the dielectric material. A
similar convention for plotting power breakdown will be used henceforth. --

The parameter ratio of' s/a is treated as the variable in Fig. 19. The FIIOM was the QLSE 20  -.
mode for all values of' s/a. The bandwidth peaks for s/a= 0.17, whereas the power peaks at s/a =

0.07. Any design must therefore consider some trade-off between bandwidth and power. Such trade-
off considerations will be required to determine most parameters. I lere the variation of attenuation is
small, but in other cases the change of attenuation may be large and thus be a factor in determining a
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Fig. 19 - Waveguide performance as a function of
s/a variation about a fixed geometry

final waveguide geometry. The rapid drop in PBD as s/a becomes small is due to dielectric breakdown
because of the increased electric fields in the gap region. As the ridge width approaches the dielectric
width, s/a - r/a, more of the fringing fields from the ridge gap extend into the air region, thus lower-
ing P8D:

In Fig. 20, the variable is the ratio t/a. Again the QLSE 2,0 mode is the FHOM. The trade-off
between bandwidth and power is even more pronounced than in Fig. 19. As the width of the dielectric
increases, more and more of the propagating energy is contained in the dielectric, thus dielectric break-
down becomes the limiting factor for power handling capability.

In Fig. 21, the ratio of b/a is taken as the variable quantity. Both power and bandwidth are weak
functions of b/a, and attenuation from dielectric loss is almost constant. Conductor loss is strongly
dependent on the height, however, increasing rapidly as b/a becomes small. A good design philosophy
would incorporate as large an aspect ratio as practical, making up lost power and bandwidth by varying
other parameters which would not lead to such drastic increases in attenuation.

Since the ratio d/b is fixed, small values of b/a result in small gap spacing, and the consequential
dielectric breakdown is apparent. The solid portion of the bandwidth curve denotes the QLSE 2.o mode
as the FHOM, while the dashed portion denotes the QLSM 0 j mode as the FHOM. For this geometry, - - --

the QLSM 0 1 mode will remain the FHOM for b/a > 0.76, and the bandwidth will start to drop sharply
for larger values of b/a. As for any geometry, sufficiently large values of b/a will cause the QLSMo.,
mode to become the dominant mode. The practical upper limit on b/a for a good design would be the
value at which the bandwidth starts to degrade rapidly.

In Fig. 22. the waveguide performance is plotted with the relative dielectric constant c, as the
variable. Low values of dielectric result in the QLSMO. mode as the FiOM (dashed portion of the
bandwidth curve), while larger values of Er have the QLSE 2 , mode as the FIIOM. For values of e, > ,

4, the increase in bandwidth is negligible with further increase of Er, while the power is dropping and
the attenuation is increasing rapidly. The curves of Fig. 22, as well as investigation of other waveguide
geometries, dictate that a good design should use the minimum value of E, required to achieve the
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Fig. 22 - Waveguide performance as a function of
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required power and bandwidth. Of course, there will still be performance trade-offs to be made in any
design, and dielectrics with very low values of e, will generally have lower breakdown values than that
assumed.

Any number of geometries could be chosen as the fixed geometry and plots made analogous to
those depicted in Figs. 18 to 22. The resulting variation of waveguide performance with each parameter
will depend on the initial geometry. It is obviously impossible to describe all of the combinations of %6

performance variations, but certain consistent design aspects stand out: (1) decreasing the value of dib
will result in larger bandwidths, but will also result in reduced power and increased attenuation; (2)
both bandwidth and power will have peaks as a function of the parameter ratio s/a, usually at different
values of the variable; (3) as the parameter ratio t/a is increased, the power increases until dielectric
breakdown occurs, and the bandwidth will normally decrease but may peak for certain geometries; (4)
bandwidth and power are relatively weak functions of the ratio b/a if the QLSE 2 0 mode is the FHOM,
but attenuation becomes large as b/a is decreased; and (5) best overall waveguide performance will
normally be achieved with the lowest practical value of er.

4.3 Design Information for e, = 2.54

Since low values of e, will normally give the best waveguide performance characteristics, more
detailed design information will be presented for a dielectric with e, = 2.54. This value of Er is typical -....

for a dielectric material such as polystyrene [25,261. A loss tangent of tan 8 - 10-4 and a dielectric
breakdown strength of 300 kV/cm again will be assumed.

In Fig. 23, bandwidth is plotted as a function of s/a for different values of d/b. The ratio t/a is
not fixed but varies as s/a, with t/a = s/a + 0.1. The rationale for maintaining such a relationship ...

between t/a and s/a is to have the high strength dielectric extend out far enough to prevent air break- .- -

down due to fringing fields from the gap, yet not so far as to greatly reduce the bandwidth. The ratio
differential constant of 0.1 thus represents a design trade-off between power and bandwidth.
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Fig. 23 - Bandwidth as a function of s/a for e, = 2.54

The FHOM is seen to be the QLSM 0j mode for low values of s/a, thus the dashed portion of the
bandwidth curves must be used to define the single mode bandwidth. The bandwidth as defined by the
ratio of cutoff frequencies of the QLSE2 ,0 and QLSE 1 0 modes is included for low values of s/a to
emphasize the fact that the FHOM is dependent on the specific geometry. If the ratio of b/a were
reduced (at the expense of increased attenuation), f for the QLSM 0j mode could be raised above .f, :.
for the QLSE2.0 mode for all s/a, and while both solid and dashed curves would be modified they
would not intersect.

In Fig. 24, the normalized waveguide performance at a frequency f - /3.f, is plotted as a func-
tion of s/a for d/b - 0.5, 0.3, and 0.1. Again tia is maintained as I/a = s/a + 0.1. For all dib
values, PD increases with s/a, whereas bandwidth peaks for s/a - 0.2 (from Fig. 23), and the
power/bandwidth trade-off is encountered once again. ,

In Fig. 25, the ratio s/a is held fixed and normalized waveguide performance plotted as a func-
lion of t/a for d/b = 0.5, 0.3, and 0.1. Bandwidth is also plotted to show the effects of variations of
Ila on this characteristic. In all cases, the power breakdown level is minimum for t/a=s/a. Such a
condition is to be expected since the fringing fields from the gap extend into the air region. The
increase of PsD with I/a is dependent on the value of d/b, with lower values of d/b giving a sharper-
rise of power. This is a predictable characteristic, since the smaller gaps will have fringing fields which
do not extend out from the ridge walls as far as those of larger gaps.

Breakdown is seen to occur in the dielectric rather than in air for progressively lower values of
t/a as d/b becomes smaller. This is to be expected since lower values of d/b result in increased con-
centration of the propagating energy in the gap region.
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The bandwidth is essentially flat for low values of t/a, and decreasing moderately as i/a increases IN
to larger values. A maximum power-bandwidth product would set t/a as 1/a = s/a + A, where A
would have to be determined for the remaining values of parameters. In general, A would decrease as
d/b decreases, and typically would have a range from 0.1 to 0.35.

The performance characteristics shown in Figs. 23 to 25 are not intended to provide a complete
design procedure, since even for a fixed value of e, there remain too many variables to plot all charac-
teristics. The depicted characteristics are intended to enable one to obtain an initial design geometry,
and to provide an insight on how to fine-tune the design parameters to achieve the optimum waveguide
performance.

4.4 Performance Comparison With Other Waveguide Types

The performance characteristics of a dielectric loaded ridged waveguide can be compared with
those of other types of waveguide. For a fair comparison, the other waveguides should have a single
mode bandwidth equal to that of the DLDRWG. The waveguides for which the comparison is made
are the dielectric slab loaded rectangular waveguide (DSLRWG) and empty double ridged waveguide
(DRWG). All waveguides are assumed to have copper walls, and all dielectric materials assume the
values tan 8 10 -4 and EdIatic = 300 kV/cm.

The design information presented by Findakly and Haskel [23] and Gardiol [681 for DSLRWG
was used to achieve the optimum design for that waveguide, but with the aspect ratio reduced to force
the TE2 ,0 (LSE2 ,0) mode to be the FHOM. The design information of Hoppfer [111 was used to
achieve the optimum design for the DRWG. Performance characteristics of both waveguide types were
calculated with the same program used in the calculations for DLDRWG.

The first comparison is for waveguides with a single mode bandwidth equal to 4.0 and a dominant
mode cutoff frequency f, = 4.0 GHz. For the DSLRWG, the minimum value of E, needed for BW =

4 was found to be E = 18. The remaining parameters used for the DSLRWG were: a = 0.649
(1.648), b = 0.114 (0.290), and t= 0.071 (0.180). Dimensional values are given in inches (centime-
ters). For the DRWG, the parameters were: a = 0.833 (2.116), b = 0.416 (1.057), d = 0.098
(0.249), s = 0.221 (0.561), and Er = 1. Parameters for the DLDRWG were selected as: a = 0.645
(1.638), b = 0.322 (0.818), d = 0.106 (0.268), s = 0.129 (0.328), = 0.258 (0.655), and E, = 2.54.
With these parameters, all three waveguide types have f, = 4.0 GHz for the dominant mode and f,. =
16.0 GHz for the FHOM. The FHOM is the TE2,0 mode for DSLRWG, the TE2,0 mode for DRWG,
and the QLSE2.0 mode for DLDRWG.

Figure 26 shows the difference in the propagation constant /3 for the three different types of
waveguides. As should be expected, the DSLRWG has the largest /3 for frequencies above cutoff .-.

because of the large dielectric loading with e, = 18, while the DRWG has the lowest 3 since E = i.

Figure 27 compares the attenuation characteristics of the three waveguide types. The large
attenuation of the DSLRWG is due primarily to the reduced aspect ratio required to maintain the cutoff
frequency of the LSE 1.1 mode above that of the TE2 .o mode and achieve the single mode bandwidth.
As with any waveguide, the attenuation increase for all three types as . - f is due to the rapid , -,

increase of dispersion.

Figure 28 compares power breakdown. The difference in power of the DLDRWG and that of the
DRWG is actually greater than depicted since no corrections were made for corner effects in the latter .. -,,.

waveguide. Such corrections were not required for the DLDRWG since breakdown in air occurred at a ,,
considerably lower power level than that for dielectric breakdown. .

85 -,-

% .. * , c e ~ .***



IVIA IUL-o7-Q 

'-W

CHARLES W. YOUNG. JR.

700

Q Air-Filled Doubl* Ridged Wavegulde

600 V Dielectric Slab Loaded

Rectangular Wavegulde

0 Partially Dielectric Loaded

Double Ridged Wavegulda

2 400

2~ 00

300

00

*.4.0 6.0 8.0 10.0 12.0 14.0 16.0

Frequency W0HO
0 Air-Filled Double Ridged Wavaguido

VDielectric Slab Loaded
Rectangular Wavaguide

1.2 0 Partially Dielectric Loaded

Double Ridged WaVegUide a

-1.0

aa
0.

aa

0.6

aa.

ad
Fig. 27 - Comparison of loss characteristics for 0.2

waveguide types with BW =4

0 1y L I4.0 6.0 8.0 10.0 12.0 14.0 16.0

Frequency (Gmal

86

a ac

n*~e- . . - . 7



NRL REPORT 8917

o Air-Filled Double Ridged Wavegulde

1600 - Dielectric Slab Loaded % "

Rectanguler Waveguide
o Partially Dielectric Loaded

1400 Doubt* Ridged Wevegulde

1200

0
9 ,000

0 P . t,

it 800

4 .*. -.0

6000

,5 -

4.0 6.0 8.0 10.0 12.0 14.0 16.0

Frequency (GH)

Fig. 28 - Comparison of power breakdown characteristics
for waveguide types with BW = 4

Similar comparisons are made of the three waveguide types for each having a single mode
bandwidth equal to 5.0 in Figs. 29 to 31. The parameters used for the DSLRWG were: a = 1.056
(2.682), b = 0.119 (0.302), t = 0.076 (0.193), and e, = 42 (the minimum value of E, needed for BW
- 5). An even smaller aspect ratio is required to prevent the LSE11 mode from being the FHOM than
in the case where BW = 4. The parameters used for the DRWG were: a = 1.396 (3.546), b = 0.698
(1.773), d = 0.108 (0.274), s = 0.378 (0.960), and E, = 1. For the DLDRWG, the parameters were
chosen as: a - 1.046 (2.657), b - 0.522 (1.326), d = 0.105 (0.267), s = 0.209 (0.531), f = 0.450
(1.143), and E, = 2.54. For each type of waveguide, the dominant mode cutoff frequency is 2.0 GHz
while the FHIOM has f, = 10 GHz. The FHOM for DSLRWG and DRWG is the TE2,0 mode, but is
the QLSM0., mode for DLDRWG.

The propagation constant g is shown as a function of frequency for each of the waveguide types
in Fig. 29. Because of the larger degree of dielectric loading in the DSLRWG, where f, = 42, the
difference between 3 of this waveguide and 6 of the other waveguides is more pronounced than for the
BW = 4 case where E, - 18.

Comparison of Fig. 30 with Fig. 27 will show that the attenuation difference between the
DSLRWG and the other waveguide types to be more pronounced for the BW = 5 case than for the
BW =4 case. This is due to the smaller aspect ratio required for BW = 5.

In Fig. 31, the power breakdown levels are shown as a function of frequency for each waveguide.
The increase in power breakdown of the DLDRWG over that of the other waveguide types is consider-
ably more pronounced than for the BW = 4 comparison. The DLDRWG does have dielectric break-
down near the upper end of the design band.
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An interesting feature of the DLDRWG is the behavior of the power breakdown level as a func-
tion of frequency. Unlike the power breakdowns of DSLRWG and DRWG, which essentially flatten
out with frequency, the PBD of DLDRWG increases monotonically with frequency until dielectric -_
breakdown occurs, and is constant for higher frequencies.

When waveguide performance comparisons are made with DSLRWG, it should be noted that the
aspect ratio of this waveguide need not be reduced to maintain the TE2•0 mode as the FHOM. The cut-
off frequency and dispersion characteristics of the TE1 0 mode are independent of height, while the
power breakdown level is directly proportional to the height. Also, the attenuation decreases with
increased height. Although f, for the TE2.0 mode is independent of the waveguide height as well, the
cutoff frequency of the LSE11 mode is not, but decreases rapidly with increasing height, thus restricting
the single mode bandwidth. As an example, for the DSLRWG with BW = 5 used for comparison in
Figs. 29 to 31, the aspect ratio was taken as b/a = 0.113. With this aspect ratio, the cutoff frequency
of the LSEI1 mode was the same as that of the TE2,0 mode, 10 GHz. If the height is increased to give
b/a = 0.189, the cutoff frequency of the LSE11 mode is reduced to 6.99 GHz (BW = 3.5), and if the
height is increased to give b/a = 0.5 f, for the LSE1 .1 mode is reduced to 3.82 GHz (BW = 1.9). Of
course, the optimum values of t/a and e, to achieve a given bandwidth would be different if considera- -
tion were given to the fact that the QLSEI, mode was the FHOM. However, for large single mode
bandwidths, the superior design must maintain an aspect ratio to keep the TE2.0 mode as the FHOM
because the drop in bandwidth as the aspect ratio is increased is much greater than the corresponding
increase in power breakdown. Waveguide performance comparisons with DSLRWG were thus confined
to the condition that the aspect ratio of this waveguide have equal cutoff frequencies for the LSE 1 and
TE2.0 modes.
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The conclusions that may be reached after comparing the theoretical performance characteristics ,ff- e-
of the three waveguide types are apparent. For a given single mode bandwidth, the peak power han-
dling capability of the DLDRWG is superior to that of either DSLRWG or DRWG, with the power
advantage of DLDRWG increasing with bandwidth. The price paid for the greater power breakdown of
the DLDRWG is increased attenuation over that of the DRWG. Expressed in terms of percentages,
however, the increased attenuation is far less than the increased power breakdown level. Also, with
attenuation calculated in terms of loss/wavelength rather than loss/unit length, the percentage change ,
of attenuation between waveguide types is even less, as shown in Table 5. The same waveguides ______

described earlier in this section were used for this comparison. The DLDRWG is superior to
DSLRWG from the viewpoint of both power and attenuation, with the added advantage of not requir-
ing very large dielectric constant materials to achieve large single mode bandwidths. From a practical
viewpoint, some cost effective manufacturing method must be found for DLDRWG to achieve the .
theoretical performance. The peak power breakdown would be particularly sensitive to any flaws in the '
waveguide structure.

Table 5- Comparison of Attenuation in dB/X9 for
Different Waveguide Types ..- : -*

Waveguide
Type

WGTI #1-Air-filled double ridged waveguide
WGT2 #2-Dielectric slab loaded rectangular waveguide
WGT3 #3-Partially dielectric loaded double ridged waveguide

(a) Waveguides with single mode bandwidth = 4 and
dominant mode cutoff frequency = 4 GHz

Attenuation (dB/X,)
Attenuation Waveguide

term type I= 5 GHz f = 8 GHz f = 10 GHz

a # 1 0.0194 0.0090 0.0055

#2 0.0284 0.0113 0.0067

#3 0.0205 0.0088 0.0056
#2 0.0071 0.0041 0.0036

#3 0.0071 0.0035 0.0029

(b) Waveguides with single mode bandwidth = 5 and
dominant mode cutoff frequency = 2 GlSlz ""

Attenuation (dB/X,)
Attenuation W aveguide -l -_

term type f = 2.5 Gliz .f = 4 Gljz .f = 10 Giz.

a, #1 0.0205 0.0107 0.0061

#2 0.0373 0.0161 0.0081

#3 0.0227 0.0112 0.0065 * .. ",.
a #2 0.0074 0.0045 0.0037

#3 0.0074 0.0035 0.0028
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Appendix A ,TRANSVERSE RESONANCE METHOD ANALYSIS%

i4

If the assumption is made that an electromagnetic wave propagating in a waveguide with cross-
section as shown in Fig. 3 is a TE,. mode, then a solution for the propagation constant P3 can be
obtained by a straightforward extension of the transverse resonance method used [9,11 ] to obtain solu- ,.

ions for the homogeneous ridged waveguide. Because of the symmetrical configuration of the ",
waveguide, the resonance condition for the transverse component of the propagation wave will result in :-.[

an infinite impedance at the center for m odd and zero impedance for m even in the equivalent"..[.:
transmission line circuit. Equivalently, this condition can be represented by a magnetic wall (m odd) or
an electric wall (m even) placed at the vertical plane of symmetry of the waveguide. The equivalent m.,_
circuit t~o be solved then reduces to that of Fig. Ala for m odd or Fig. Alb for m even. The capacitive. '-"-
susceptance B, is the lumped element term to represent the waveguide height discontinuity. Within,.""...
each region, where the regions are defined from Fig. 4, Z0, is the characteristic impedance, Y0 '-'''

l/Zo, is the characteristic admittance, and 0j is the product of the physical transverse dimension of the ."*
region and yx , the complex x-directed propagation constant. For the Iossless model, y and therefore

0, will be either real or imaginary.

00,

(a) Equivalent Tranernlseion Line. Circuit For M Odd""['".•.-

o.-

.AIt --Eqevl on i ei r ctransve r rsnn c v e hd.., .

analysis of TE.. 0 modes (a) m odd, (b) m even :

The reflected impedance Z presented by a load impedance ZL terminating a transmission line of"characteristic impedance Z with propagating constant y and length L is [75s

(zL + ZO x vL+ (ZL -O z exp (- -y::.-obtaied0 b(ZL + ZO) exp otLh (Zr Z) exp (- uAI o.' ..

For the circuit of Fig. A a the open circuit at X4 will reflect back to x p as gtowaeilrsutn

Z 4 - o coth 03(AD)

'~ 4 4- 3 Y03 tanh 03,( 3
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The short circuit at x, will reflect back to x 2 as

ZI--2- Z0 1 tanh 01 (A4) K
Equation (Al) may be expressed as -

ZL cosh yL + Z0 sinh yL (AD
Z = Zo ZL sinh y L + Zo cosh yL

Since ZI- 2 terminates Region 2, the short at x, will reflect to x 3 as

Z0-2 cosh 02 + Z 02 sinh 02 (A6)

- Z _2 sinh 02 + Z 02 cosh 02

Substitution of Eq.(A4) into Eq.(A6) yields

Z01 sinh 01 cosh 02 + Z02 cosh 01 sinh 02 (-7)
Z01 sinh O sinh 02 + Z02 cosh0O cosh0 2

or

Z01 sinh 01 sinh 02 + Z02 cosh 01 cosh 02 (A8)
Zo1 sinh 01 cosh0 2 + Z02 cosh01 sinh 02

Since the equivalent circuit is a composite, dissipationless, passive line matched at both ends, it must
be matched at all points 121. Therefore, the sum of the admittances at the point x3 must equal zero,

YI- 3 + A8c + Y4 - 3 = 0. (A9)

Substitution from Eqs. (A3) and (A8) gives
Z02

sinh 01 sinh 02 + cosh 01 cosh 02
tanh 03 + i- + Z0. (AI0)

02 0 sinh 01 cosh 02 + _ °-- cosh 01 sinh 02

Since Region 2 and Region 3 have the same dielectric loading, Y,2 = Y.0, and the impedances are pro-
portional to the heights: ' . ", "

Z0 3  Y02 _ d (All)
Z02  Y03  b

Region I and Region 2 have the same heights, and since the transverse wave is TE the impedance ratio
is "- .

Z02  VI (AI2)
Z01  Yx2
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)V

The left side of Eq. (A10) may be expressed as a single fraction. All terms in the denominator are fi-
nite, so the numerator may be equated to zero. With substitution of Eqs. (A 1l) and (A12), the resul-
tant expression is

ri 2 Ash 002+ BAI

(Y,2 sinh 01 cosh 02 + Y,1 cosh 01 sinh 02) (-- sinh 03 + cosh0 3) (A13)

+ cosh 03 (Yx2 sinh Oi sinh 02 + YxI cosh 01 cosh 02) = 0 •:.-.

Within each region

yX, +)21,0 OE, for i =1, 2, 3

with ..%P -e

e= - co and 1 2 =E 3  ff 0

For TE. 0 modes VY, = 0 and y, - j 3 for all regions; P is the longitudinal propagation constant
(above cutoff) for the waveguide configuration. Substituting into Eq. (A13).

Y Xi 4
2 - cu 2j 0 e, for 2

0 E, < 2

=j w2 ALE, - 02 for . 2A0 E, > (A I4)

and 0,-- y, L, with L, = (a - t)12, L 2 = (t - s)/2, and L3 = s12, where a, t, and s are the
dimensions from Fig. 3, then defines the transcendental equation that must be solved to obtain solu-
tions for the TErn,0 modes for m odd. When solving for the cutoff frequency, /3 = 0 and frequency is
the unknown quantity, with the smallest root of (AI3) the solution for W, of the TE, 0 mode, the
second root w, of the TE 3,0 mode, etc. If the frequency is fixed and the propagation term /3 is taken as
the unknown, the solution (actually in terms of /32 rather than 3) to (A13) will yield multiple roots of

" /32 if the frequency is greater than cutoff of the TE30 mode. The first root represents 3 for the TE3 "
-" mode, the second root 3 for the TE1, 0 mode.

For TErn0 modes with m even, the effective short circuit at x4 in Fig. Alb will reflect back to x,
as

Z4-3= Z03 tanh 03.

The resultant transcendental equation (with either wo or /3 the unknown) that must be solved for
TE,,,,,,,o mode solutions is given by (A13) with the terms cosh0 3 and sinh 03 interchanged.

For all TEr 0 modes, m even or odd, the impedance ratio B,/ Y02 may be calculated as [7,39]

B, 2b I ~ ( l A + A' + 2C
Y0- ---- In 4r 2 r In r+ AA'- C2

l b -2'1ri I "'""""

+ I r2  + A (A 15)

1,,I"P983* r , "I

"•% " - -•' - - - *'" "' " '" """" -""° *°" "" """° °"* - " " ° ~ "" ' % ° .° P- ° " ' " * *" m- 98°".
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where
II+ r2r )211 3r

A=Ir
" " 1 l [1- I - r2

A'= + r12 ' + - (d/k) 2]2  3 + r2

A'= -I--_(d/X) 212 + 2-
- 1L--27

4r2

with r the height ratio, r = dib. The wavelength xx is the transverse wavelength, ,= 2 /ox, where
the transverse propagation term f3x is that for Regions 2 and 3, with

Vx2 - x3 - Ox

since oE r> /,2 for any propagating mode.
AL

The computer program TRMWG incorporates the mathematics of this Appendix and may be used
to calculate solutions for the TE, 0 modes of dielectric loaded ridged waveguide. Since true TE modes
do not exist in this waveguide, the accuracy of the solutions is limited by the deviation of the actual
modal structure (QLSE,o or QTE,, 0 modes) from that of the presumed TE mode.

Program TRMWG also may be used for calculating TE,,.0 mode solutions (with accuracy limita-
tions already noted) for the waveguide where the dielectric width t is less than the ridge width s (Fig.
5). The analysis for this waveguide structure is similar to that for the case where t > s, with one
important difference. For large values of e,, the waveguide of Fig. 5 will have the propagating energy
concentrated in the dielectric at some frequencies above cutoff, with fields transversely evanescent in
the vicinity of the ridge wall. For &j > wo, where wo > cu,, w2CAoE o < /32 thus YxI(==,x2) will be real.
The definition of wavelength at these frequencies then loses meaning, and (AM1) may not be used to
calculate a numerical value of the shunt susceptance term in an equivalent circuit for the transverse
wave. For these conditions, program TRMWG assumes a value B, = 0. This assumption is equivalent
to ignoring the effects of the ridge, but since the transverse wave is evanescent at the ridge wall for
(o > wo, the assumption is reasonable for a first order approximation.

The FORTRAN listing for program TRMWG is given in Appendix El.
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AppendixB 

DIELECTRIC CENTER LOADED RECTANGULAR WAVEGUIDE

In the analysis of dielectric loaded rectangular waveguide (Fig. 2), most authors [1,3,18,681
correctly point out that propagating modes may be divided into two classes: (1) the LSE (Longitudinal
Section Electric) modes, which have no electric field component normal to the air-dielectric interface, .*.-..

and (2) the LSM (Longitudinal Section Magnetic) modes, which have no magnetic field component
normal to the air-dielectric interface. The propagation analysis is based on this a priori knowledge of
the wave structure. Identical results may be achieved by a more rigorous analysis, similar to that used
in the main body of this investigation, in which all field components are assumed to exist until proven
to be nonexistent.

Vertical Plane Of Symmetry

Region I Region 2

y=b/2 - _ _ _

Y : x =OxOl"-, .

XmyO - 21
Za

Fig. B I -Model for analysis of dielectric slab
loaded rectangular waveguide

If only the symmetric waveguide configuration is considered, the model for analysis may be
reduced to a half-waveguide cross section with either a magnetic or electric wall located at the vertical .-

plane of symmetry (Fig. BI). For this waveguide configuration, locating the y-O plane at the top or
bottom wall of the waveguide would simplify the analysis somewhat; however, in order to maintain
similarity with the analysis of the ridged waveguide, the v=O plane will be located at the horizontal
plane of symmetry. The derivations (from Maxwell's equations and the wall boundary conditions) for
the form of the field components in each region are exactly as for the ridged waveguide configuration;
the results are repeated here for clarity. In ,egion I

E,"'= 4A.1, cosh [pI,,(x + x) in (Bla)[cos] • .'- (Bla.

1_ (Pl + X/pt 1 1 Isin, k,.,v (BhI b)
E_,' Y J= ,, Bt, sinh [pl.,(x + vl)]/pl.,,, si k.I.,Y..B..

I in
- F, sinh [pt.,.(x + .' ) sin k v (Blc)

1cos ,y(Be

, , osh 1,., ( + vid Cs (B. ..-.
= . . . .. . . . . . . . . . . . . . . .

.... .-.... ... .-

, Z %-q
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with the separation equation given by
2  - 2= (2012 + k)." pi,, W A0u E0 (132)"'" .

for all n. For (M,E) and (M,M) solutions, corresponding to a magnetic wall at the VPS, the fields of Pm
Region 2 are given by

* ~(2 sin 9'**%

.E24= A 2., sinh [p 2.,(x - ICoSJ k 2""Y (B3a)
=/ i 8 cshlP2n x - )J 2 q (lb

c 
kE,11= B 2, cosh IP(.,o( - - -I(sBlE 21sin k2,,y (133)0 -''"

E JjC2[, cosh [P2.,(x -X2)] sin

2) D cosh P2. - cgs (B3d)H- C s - X)] ' sin -

(2)x c s in k(BnYe )H. 2 ) = jF2. sinh tP2.n x - X2)•IP2. (cose
k(2- sinh [p2.i(X cgsi k2.-y (B3f) ' -

n

with the separation equation given by
,82 + k.,n - p2., = o/0 or (B4)

for all n. For (E,E) and (E,M) solutions, corresponding to an electric wall at the VPS, the fields of
Region 2 are given by Eq. (B3) with the functions cosh IP2., (X - x 2)] and sinh IP2n (X - X2)]/p 2, "
interchanged. In both regions, k , = k2,, - ni'/b and the upper trigonometric function for the y-
dependence, with n restricted to even integers, is used where an electric wall is located at the HPS, i.e.,
(M.E) and (EE) solutions. The lower trigonometric function for the y-dependence, with n restricted
to odd integers, is used for the (M,M) and (E,M) solutions which have a magnetic wall at the HPS.

The remaining boundary condition to be satisfied is at the air-dielectric interface, x = 0. Since
the heights of the two regions are the same, the basis functions which form the y-dependence of the
modal components are orthogonal on the interval - b12 < y < b/2. Equating the tangential fields of E
and H of the two regions at x = 0 will then show

B81, sinh (pn,,x 1)/p 1 ,, = B2., cosh (p2,nx2) (B5a)

Ci., sinh (p1 .,0 1)/p1 n = C 2,, cosh (p 2 ,nx2) (BSb)

F1, cosh (p1.,x1 ) = -F 2., sinh (p2 ,x2)/p 2., (B5c)

Gi. cosh (pi nxi) = -G 2, , sinh (p 2 ,nX2)/P2,n (B5d)

for (M,E) and (MM) solutions. For (EE) and (E,M) solutions Eq. (135) will be valid if the func-
tions cosh (p2fx2) and - sinh (p2.,x2)/P2. are interchanged. In matrix form, Eq. (135) becomes

0 IC1  OE)0 l'2

0 1 191E 0 WE) 1B21

101

i 0. ... -..
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~ %

o(il 0 IF1) 2W 1 0 F2
= I I(B7)

0 1 (H) Gj 0 2 H) G2 j

where the matrices are diagonal with
(GIEI Im. . sinh (P.nx1)/P1 , 8,,n (B8a)

{1M. = cosh (PI.xi) 8, (B8b)

and for (M,E) and (M,M) solutions

2 = cosh (P2,,X2)8m, (B8c)

102'."). = -sinh (p2.x 2 )/p,,,A,, (B8d)

while for (E,E) and (E,M) solutions
{2 },m. = -sinh(p 2 .,,x 2)/P 2,, 8,, (B8e)

S21 H)) cosh (p2.,x ) 8,,,. (B8f)

The relationships between modal components coefficients within a given region have been derived
in the main body of this analysis. Expressed in matrix form, they are repeated here for clarity:

I C IE,.,l P?2 10 1A1 -I - -- -- ---- -( 9)
0 ... Bo 0  D, o

1--01F1 D1 1-- K I WE" ""A0 o, =G, ±K;k1 l 0 ,U .D

11120 -4) 1± 2  WA j 0 IA -C2  ----I(B I

02 I 0 F2i -- t K2 WA 0 .u .. A
0 W1 1  .. D2

where the indicated matrices are diagonal with

1K), = (nf/ b) ,,,n

= ((3 + 8*)(.... . .

102

. . .. . .

:. . : ,, .. .. : ... - - *'.. . . . .
*4 - . - • , * , * . - - .~ : . .... '-" - . . . . . . .•. .. . . . .•
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{~bm~ =ff
2 + (i/) 2 + m

P?}m.n = P2n8 mn

K 2 = K,

0b2  01

I for/3 =0, n -- 0
0 otherwise.

For (M,E) and (MM) solutions

w, = U

while for (EE) and (E,M) solutions h..
W4 = P2

2

WD= U.

The - notation on the K matrices corresponds to ni being (venj integers.

odd

Premultiplying (B6) and (B7) by the matrix----- -- and then substituting from (B9 - B12) yields
0 i 0 1

(E) 021 1 K ~ 0-4 . . u, 1 AI
- - - --. - - - - - - -----

0 10 ) ±K'( 0 I-co/i 0 U

(E)I 0F K2 WA 0 A2  "'1--

0 I01E) -

G IfH - ):- K, oie Uo o 0 -.. A,.

0 o1 I (H ±K '"0
I I IA0.. .... .... -" 0 6 " :

0 O'~' ±K(,l 4 u )D1 .0 (-..

I- I A' 'Il
!2 ' °H 0 - )± 1K 2  WE-, U 1  0 A2

0 2(H) ±tK 2 1 (b 0 1WD D,

103......... ...... I...... I...
. . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . .....
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after noting i hat diagonal matrices commute and 0~2 = 0 1ii Since K 2 =K 1 . and since the matrix

----- --- -- commutes with any diagonal matrix of the form- ----- (1313) and (1314) may be

KI-4 1 4) 0

premultiplied by- -- -- -- --- to give

(E)

I I2 I i(E0 r 1  0 A1 2 W A2

0 OJE0U 0 1 A11 0 (E) U 0 -10 U' A 2

~H) 0 0e WD 0D (H

W3 0 U A20

If' (13I5) is now premultiplied by- -- -- -- ----- --- --- --- and (B.16) premultiplied by
0 0 (H) 0 .. U

i 0 --- I h
0 --- - --- I U th left-hand sides of the two resulting equations will both be equal to

() o o (H)' P 2' [

0 0 (E) 0 ij(H) 0 U ID

* Equating the right-hand sides of these equations then yields

O(H) OJE o 0E Wo 0 (H) I 21?I~ A
I 1I W 1A2.1 110 2 10 ri1 A

0 0H 0 io(E 0 U [D 2J 0 0 0 H WD U1J

This last equation may be expressed as

[ 0 f 2I I =0(B 17)
j0 f2 1D2

104
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where the matrices f and 62 are diagonal with %

-E P2 E)H)(B8a)

f2= O)HWD - oi l  (Bl8b)

The expression of Eq. (B17) represents an eigenvalue problem, [M]V = XV, for the special case where
x - 0. For Eq. (B17) to be valid, the determinant of the matrix must vanish:

k 0.For q. (l7) o bevali, th

0Det ---I- - = 0.

Since the determinant in question is diagonal,

0
Det-Ht i}nn -(2)n.n,

0

thus the determinant is zero whenever any diagonal term is zero. For the general case, the functions

forming the diagonal elements of the matrix in Eq. (BI 7) will have separate roots (zeros). For a given -.
diagonal matrix element equal to zero (whether as a function of w or 1), all vector components other
than the one which is multiplied by the given matrix element must have zero magnitude in order for
Eq. (B17) to remain valid. Thus, any solution for a single propagating mode will have either H,=O
(LSM modes) or E,-0 (LSE modes). Furthermore, the field structure will consist entirely of modal
components corresponding to a single value of n.

From Eq. (BI8) the individual diagonal components of the matrices fiand 2 are

- cosh (pl.,x) cosh (p2,,x 2) + 4,Pj, sinh (p.,xi) sinh (p2.,X 2 )/p2 , (Bl9a)

{62 1n.n = -cosh (pl.,xt) cosh (p2,,x 2) - P2., sinh (p2.x 2) sinh (pj.,xj)/pj., (Bl9b)

for (ME) and (MM) solutions, while for (EE) and (E,M) solutions they are

P2, , - P2.n cosh (p1~x1 ) sinh (p2 ,x 2) - ErPl., sinh (pl.,xi) cosh (p2.,X2) (B20a)

{ 2n.,n cosh (p2,,x 2) sinh (p1 ,nx 1)/p 1 n + cosh (pl~xi) sinh (p2 .x 2 /P2 . .  (B2Ob)

For a solution with the expression of Eq. (Bl9a) equal to zero, the resulting mode is LSM, with the H
field antisymmetric about the VPS, and hence is called an antisymmetric LSM mode. A similar defini-
tion may be made for modes corresponding to Eqs. (Bl9b), (B20a) and (B20b) being zero; in sum-
mary,

Eq. (Bl9a) 0 ==> LSM modes, antisymmetric H
Eq. (BI9b) = 0 ==> LSE modes, symmetric E
Eq. (B20a) - 0 ==> LSM modes, symmetric H
Eq. (B20b) - 0=> LSE modes, antisymmetric E.

The expression (solutions) of Eqs. (B19) and (B20) are easily shown to be equivalent to the solutions
obtained by others [3,18,20,681.

A short discussion of homogeneous rectangular waveguide is appropriate before the question of
index assignments is addressed. The field structure of homogeneous rectangular waveguide is normally
characterized in terms of degenerate modes, TE,,., and TM,,,, were E - 0 for TE modes and H. - 0
for TM modes [1,2,8,421. The index pair m,n represents the number of half sinusoidal cycles the
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" fields of E and H make within the waveguide in the x and y directions, respectively. For TEn., modes,
." both indices may not be zero, while for TM,, modes neither index may equal zero. For TE0,, modes,

all fields are independent of x, while for TE, 0, modes all fields are independent of y. For any given -

index pair, the propagation characteristics of the TErn.. mode are identical to those of the TM,,,, mode, a* .. -.a
and any linear combination of the two degenerate modes constitutes a propagating mode. Of course, if

m = 0 or n = 0, the corresponding TMmn mode does not exist, and the field structure of the TE '-..
mode is unique.

The homogeneous rectangular waveguide alternatively may be characterized by LSEm,,, and
LSMr.. modes [411 with any single propagating mode consisting of the appropriate linear combination

.. of these two modes. The index pair has exactly the same interpretation as for the TE and TM modes.
For a given index pair with m ;e 0 and n * 0, the LSEm, mode and the LSMmn mode have identical
propagation characteristics (equal to those for the TEmn., and TMm., modes). Since E, and E_ must be
zero at the waveguide sidewalls, there must be a minimum of one half cycle for the fields in the x
direction if any fields are to exist for LSE modes where E, = 0; i.e., m > I for the LSEm. mode.
The index n will equal zero for E, =0, thus the LSEm,0 mode is identical to the TE,.0 mode. For LSM
modes, H, is zero everywhere, and H, must vanish at the top and bottom walls. Therefore, there must
be a minimum of one half cycle variation in H, (and hence in the other nonzero fields) in the y direc-
tion since no propagating mode can exist with only an axial component of magnetic field. All fields '"

may be independent of x only if E and E. vanish everywhere; thus, the LSM 0 m mode is identical to
the TE0,,, mode.

Of course, in the homogeneous waveguide there is no air-dielectric interface to define the "nor-

mal" direction. The a, unit vector was chosen to replace the normal unit vector of the dielectric slab
loaded waveguide to maintain similarity with that analysis. Had a, been chosen instead, the roles of
LSE and LSM would simply be interchanged, corresponding to a 900 rotation of the axis system in the ,:..,

x-y plane.

For the dielectric slab loaded rectangular waveguide, the TE,.0 and the LSE., 0 modes are identi-
cal. No other TE or TM modes exist, thus the reason for the LSEmn and LSMmn, analysis. The index --.

n for these modes still represents the number of half sinusoidal cycles made by the nonzero field com- , -

ponents in the y direction within the waveguide. Although the fields within any homogeneous region ..

may have a sinusoidal x-dependence, the variation with x over the full waveguide may be greatly dis-
torted from a simple sinusoidal form [1-3,18,411. However, the index m may still be used to represent
the number of distorted half cycles the fields make in the x-direction if the definition of a cyclic func-
tion is extended to include any function which is either (1) antisymmetric about the VPS with 0/8x =

0 at the waveguide side walls, or (2) symmetric about the VPS and zero at the waveguide sidewalls.
The only questionable aspect of this definition of the index rn arises for LSM modes, which in this
analysis will have index assignments m = 0, 1, 2, 3. ... and n = 1, 2, 3, .. which is in contrast to
Ref. 3 where the lowest index value for in is one. The LSM,,, mode of Ref. 3 is the LSMm_.n mode
of this report.

There are several reasons for having in =0 as the lowest order index for the LSM modes:

(I) The dielectric loading may be considered a perturbation of the homogeneous condition. As
the dielectric loading is reduced (erl), the field pattern of the waveguide must approach that of the
corresponding mode of the homogeneous waveguide. Since a LSM 0 .(TE 0 .) mode exists for the
homogeneous case, it is logical to refer to the perturbed mode as LSM 0, rather than LSML,.

(2) A large change in the width ("a" dimension) of the waveguide has only a second order effect
on the propagation characteristics of the LSM 0.. modes, analogous to the LSM 0.. (TEO,,) modes of the
homogeneous waveguide for which the propagation characteristics are completely independent of the

" width.
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(3) The fields II, and II n,* mit %.inish at the va'eguide side%alls if any fields are to exist. For
a LSM mode %ith smmetr ic H lteld, I(/. Vl and I t.L I solutions), these fields must possess an even .

number of hall cycles as, a function of \. and 4ith the definition used here m must be even (m is odd
in 13]). For a LSM mode with anti,.mmetric H fields ((M,.E) and (M.M) solutions), these fields -9 "
must undergo an odd number of half cycles as a function of x. thus m is odd (m is even in Ref. 3).

(4) Any LSM mode of dielectric slab loaded waveguide will have fields which are dependent on -

the x variable. The LSM modes which have fields with the least dependence on x (corresponding to
the lowest order of* m) are for (E,M) and (E,E) solutions and will have tangential E fields/r.

(E2.and E-) for which the x-dependence function has two half cycles. However, the x-dependence
function of the remaining fields, E. H,, and H., will not be cyclic; it will be nonzero for all x and may
be thought of as a perturbed constant. The next highest order LSM mode with (E,M) and (E,E) solu- -, .. , ,-
tions will have all fields with x-dependence functions which undergo two half cyclic variations (m A. _'
2). Therefore, the index assignment m = 0 will describe those lowest order LSM modes. ,

In summary, the dielectric slab loaded rectangular waveguide has two types of modal structures,
LSE modes with E = 0, and LSM modes with H, = 0. For (E,M) and (E,E) solutions, the modes
are LSEm with m =2, 4, 6, 8. n = 0, 1, 2, 3, ... and LSMm. with m = 0, 2, 4, 6 ... , n = 1,
2, 3, 4. For (M,M) and (M,E) solutions, the modes are LSE, with m = 1, 3, 5, 7 ..... n= ''

0, 1, 2, 3, ... and LSM,,n with m = 1, 3, 5, 7 ... , n = 1, 2, 3, 4. The characteristic equations V .
for these modes are given by

LSEodd.n modes: cosh 4 i., cosh 02.,n + P2.,, sinh 02,n sinh 4tl.,p/P, = 0

LSEvenn modes: cosh 02,n sinh l.nPtl ,n + cosh 01'n sinh 2n/P2 n ==0

LSModd.n modes: cosh '01,n cosh 02,. + e,pt., sinh 01,n sinh k2.n/P2,n = 0

LSMeve.nn modes: P2.,n cosh 01.n sinh 02., + ePi sinh 01., cosh 0'2., = 0

where

= P,.nx,
Pi.n = [/32 + (n~r/b) 2 - o 2/AOi]112 

, i - 1,2.

For a given m,n index pair, the LSEn and LSMm,, modes will have different cutoff frequencies and
different propagation characteristics, in contrast to the homogeneous waveguide, and thus are not --.
degenerate modes. Also, in contrast to homogeneous waveguide, for which knowledge of the cutoff
frequency of any mode may be used to immediately obtain the propagation constant /3 for frequencies
above cutoff [1,2.42], there is no simple formula to describe the dispersion characteristics for the - ,
dielectric slab loaded waveguide; the transcendental equation appropriate for the desired mode must be
solved at each different frequency.

,. ..
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Appendix C

SCATTERING MATRIX PROPERTIES OF
LOSSLESS WAVEGUIDE JUNCTIONS

Two different waveguides, each with a uniform cross section, may be joined together along a corn- *

mon axis of propagation. The resultant cross-sectional discontinuity will excite higher order modes in
both waveguides. Assuming the frequency is such that only the dominant mode will propagate in each --.
waveguide, the fields of these higher order modes will decay exponential in both axial directions from
the discontinuity. At distances sufficiently far from the discontinuity, the fields of the higher order
modes will have decayed to negligible magnitudes, and only the single (dominant) mode need be con-
sidered for circuit analysis if a suitable equivalent circuit is included to account for the coupling
between the dominant mode and the higher order evanescent modes caused by the discontinuity. Such
an equivalent circuit may be represented as a T-network of lumped elements as shown in Fig. CI -
[1,2,81. Alternatively, a 11 network could be used. If the waveguide is lossless, as will be presumed,
each element in the equivalent circuit must be reactive, either inductive or capacitive, as shown. In
general, each reactive element will be a function of frequency and the cross-sectional geometry of both
waveguides. In the equivalent circuit, the reactive elements represent the energy stored in the higher
order evanescent modes. The dominant mode impedance of the waveguide on either side of the
discontinuity is reflected as the characteristic impedance of the corresponding transmission line in the
equivalent circuit.

3 02

Zo, zjx... 9

Fig. CI Lumped element representation of
waveguide discontinuity

The scattering matrix representation [8,42,451 for the two-port network of Fig. CI is shown in
Fig. C2. Each term of the two by two scattering matrix [SI may be found in terms of the parameters of
Fig. Cl. The importance of the S-parameter representation is twofold: (1) circuit analysis may be
greatly simplified by the use of S-parameter notation, and (2) the results of microwave measurements
are usually expressed in terms of S-parameters.

Port I Port 2

z[01 IS] 02

Fig. C2 - S-parameter representation of
waveguide discontinuity
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If the composite waveguide is assumed to be lossless, the normalized scattering matrix of the
equivalent circuit must be unitary [40,42,451 with S U.* U Thus,

S11 S12  S;1 2;1 .v-yw

S2I I 0i
I S;2  S;2  0

or

SI1S;1 + S12S;2  I(C Ia)

S1 1S21 + S12S22 = 0 (CIb)

s 21S 1 + s 2 2 s 2  0 (Clc)

S21S21 + S2 2S 2  !. (CId)

The unitary property of the scattering matrix alternatively may be expressed as S S = U, yielding the

additional relationships:

sHs11 + s21S21  I (C2a)
'.........s1,s12 + s2 s22  I . (C2b) ""-""-.

When Eqs. (Cla), (CId), (C2a), and (C2b) are combined, the following equalities are found:

Is1 12 + 1s2
2 

= 1 (C3a)

1s2212 + Is12 -- I (C3b)

Is-11 1s221 (C3c

Is121 = Is 211. (C3d)

Expressing the elements of the scattering matrix as

S I 1 I 1le 
' 1

S12 = 1SI 1 e

S2= Is-1 e'le'"

S22 = s -.-

and substituting into Eqs. (CIb) and (CIc) yields the following relationship between the phase terms:

exp ( - 021)] + exp U(1;2 - 62201 = 0

or equivalently

exp [i('hI1 + 622)1 = - exp [.i(02 + 62)1 (C4)

The properties of the scattering matrix found thus far have depended only on the loss free
requirement. Since the waveguide junction is reciprocal, the scattering matrix for the equivalent circuit
must be symmetric 1761: S12 = s21. or 12 = 021- With this additional requirement, the determinant of.

the scattering matrix is Det [S] = slIs 22 - s12s21, where '

s1 s 2 - sl2l -- Is11 e'  + 6 ' - Is,e12
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Since 012 6 $21. Eq. (C4) together with Eq. (C3a) gives

SIlS 22 - S12S2l = e "/ (
.11 (C+) 'Lb.

For the lossless reciprocal two-port circuit of Fig. (CI), all properties of the 2 x 2 scattering matrix .
derived up to this stage are easily shown to be valid regardless of the numerical values of the parame-
ters.

For many types of discontinuities in homogeneous waveguide, the corresponding equivalent cir-
cuit will have a reactive network containing only a shunt element (XI = 0 and X2 = 0 in Fig. C).
Examples are a change in width or a change in height of rectangular waveguide, for which the shunt
reactance is inductive or capacitive, respectively [1.7,33]. Numerical values of the reactance (normal-
ized to one of the transmission line impedances) for both of the latter discontinuities, as well as for
many other discontinuities which may be represented by an equivalent circuit containing only a shunt
reactance, have been obtained by several different analysis methods [1,2,7,38,39]. The scattering
matrix for such an equivalent circuit is of special interest because a relationship may be found between
the phase of s11 and the phase of s22. If the shunt reactance in Fig. C1 is X3 = X, with Xn - 0 and
X, - 0, the scattering matrix elements are given by

=11 1~jXLO2 - - LOIZu2J/1 ljXL 2 + Z01) + ZOIZO2 1

S12 s( Z o2X -Z X(Zo02 + Z0) + Zo) 02  Z
SI2%

s= - jX(Z02 - Zo,- ZoZo2I/IJX(Zo2 + Z01) + ZOZ.

I-or this circuit, the relation between sil and s22 may be expressed as

S, = -s1 (I + s11)/(l + st). (C6)

The %alidit. of Eq ((6) is easily proven by substitution for S22 and sl in terms of the circuit elements.
An alternatnie wa. of stating the relation between s, and S22 is

622= -611 + ,r + 2 tan-'ills,,I sin biI(l + Is11 I cos (it)"

For an equi'alent circuit containing only a series reactance (where X2 = 0 and X in Fig.
CI). the relation between s, and s- is gi,,en by

S', = sin (I - Sut)/(I Sin) MC ) .-. -.. .. -

or alternati,,el.

18221 = IS l

6= - h + 7r + 2 tan- IsIl sin 6oi/(ll - Isil cos,6i).

For any discontinuity which can he represented by an equivalent circuit containing only one reactance, " -
either series or shunt, inductive or capacitive, the full scattering matrix may be found if the phase and
amplitude of either s I or s- is known. , -"

For the general representation of the discontinuity as shown in Fig. (C). no fixed relationship
exists between the phases of' sl and s2,, as may be shown by example. In the limiting case of X3 - 0,
the phase of .s, is determined entirely by the ratio Xl/ZI) l , while the phase of s,, is determined entirely
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by the ratio X,/Zo2; thus the two phases of this (extreme) example are completely independent of each .
-

other. Of course, if quantitative values for the equivalent circuit are known, all complex S-parameters
may be calculated.

V%

The discontinuity of interest for this investigation occurs at the junction of the homogeneous
rectangular waveguide used in the microwave test facility and the dielectric slab loaded (inhomoge-
neous) double ridged waveguide to be measured. The overall discontinuity is thus a simultaneous com-
bination of different types of simple discontinuities: (i) change of width in rectangular waveguide, (2)
change of height in rectangular waveguide, (3) abrupt transition from rectangular to ridged waveguide,
and (4) abrupt transition from homogeneous to inhomogeneous (dielectric slab loaded) waveguide.
Each of the first three types of discontinuities has a dominant mode equivalent circuit containing only a
shunt reactance [7,38,391. The equivalent circuit for the last type of discontinuity has been shown
[36,371 to be the general circuit of Fig. Cl. For this equivalent circuit, X, and X2 have opposite signs;
i.e., one is capacitive and the other is inductive, while the shunt element X 3 is inductive and is nor-
mally the major contributor to reflection among the three elements of the reactance junction network
1361.

No specific equivalent circuit to represent the composite discontinuity was found in the technical

literature. Since three of the four simple discontinuities which form the composite discontinuity have
equivalent circuits containing only a shunt element, and the fourth simple discontinuity has an
equivalent circuit in which the shunt element predominates, the equivalent circuit for the composite
discontinuity may be approximated by a single shunt element for many applications.

If in Fig. C2, port I represents the waveguide of the test facility while port 2 represents the
waveguide under test, the complex parameter snl may be measured directly by terminating the WUT
with its characteristic impedance. This latter condition may be approxienated by inserting tapered resis-
tive film in the plane of maximum electric field inside the WUT to absorb the microwave energy with ---

minimum reflection. Since this technique does not provide a perfect matched load to the WUT, there
., will be a small amount of ripple in both magnitude and phase of measured st, as a function of fre-

quency. However, if the assumption is made that s1l is not varying rapidly with frequency, sli may be . -
determined by constructing a smooth curve through frequency plots of measured Is1 ll and 61. The
desirability of having an equivalent circuit with only a shunt reactive term to represent the discontinuity
is apparent, even if the quantitative value is unknown. With sn determined experimentally, S22 may be
calculated using Eqs. (C6), then (C3) and (C4) used to find S12 and s 21.

The only element of the scattering matrix that can be obtained directly by measurement of a sin-
gle WUT is sil. For those applications where the approximation of the discontinuity equivalent circuit
as a single reactive element is not applicable, and the equivalent circuit is that of Fig. Cl. only the rela-
tionships between S-parameters based upon the lossless and reciprocal properties of the circuit may be
used:

I SHj I IS221

S12 = S

Is1112 + IS22 =

S IS11S22 S12S21 = eJ I +

For some calculations, it may be necessary to consider the loss factor in the WUT. For
waveguides with loss, the scattering matrix to represent the waveguide discontinuity is no longer uni-
tary.. However, if the WUT has reasonably low loss (little attenuation) the effect on the scattering -,,,

matrix is small and will be neglected. The loss factor will be used only to determine attenuation of sig-
nals traversing the length of the sample, and the scattering matrix of waveguide discontinuities will be
assumed unitary.
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Appendix D

EFFECTS OF STANDING WAVE PATTERNS , ,
ON SAMPLE MEASUREMENTS

Microwave measurements of any component will be affected by the standing wave pattern result-
ing from the interaction of two or more mismatches caused by discontinuities within the measurement
system [40,45,75,77]. For the measurements to be made in this investigation, the only applicable

.* mismatches to be considered are at the junctions between the standard waveguide used in the measure-
• ment facility and each end of the sample waveguide section to be measured; any mismatches in the

remaining portions of the measurement system are corrected for in the calibration procedure when
using a computer-aided automatic network analyzer [71-731.

Properties of the dominant mode scattering matrix for the discontinuity formed by the junction of
"* different waveguides are derived in Appendix C. The relevant transmission line circuit to be analyzed

to determine the effects of standing waves within the waveguide under test (WUT), and to correct for
these effects, is shown in Fig. D1. The initial analysis will consider the discontinuities, and therefore
the representative scattering matrices, at either end of the WUT to be different. Each scattering matrix
will use the port designation indicated within the box representing the equivalent circuit for the discon-
tinuity, as shown in Fig. DI. Each of the different traveling waves indicated will be normalized to the
square root of the characteristic impedance of the transmission line which the wave is traveling, i.e., the
power carried by a given wave is one half the square of the absolute value of the amplitude coefficient.
This wave normalization and the use of normalized S-parameters is a conventional procedure
[ [1,8,16,45,761. The wave a ( ) is the wave in the standard waveguide (SWG) traveling in the + x
direction and incident on the front face, or port 1, of the" WUT. The wave a( - ) is the wave in the
SWG traveling in the -x direction from port I of the WUT. Both a( +) and at - 1 will use port I as the
reference position. Using port 2, or the back face, of the WUT as a reference position, a (+) is the
wave transmitted through the WUT and traveling in SWG in the + x direction. The SWG on the back
side of the WUT may be considered to be terminated in a matched load, thus there is no incident wave
on the back face. Within the WUT, b'+' is the wave traveling in the + x direction and will be refer- -. -,

enced to port I of the WUT. while b(- ) is the wave traveling in the -x direction and will be referenced
to port 2 of the WUT. At any point within the WUT, the total wave will be the sum of the two travel-

' ing waves

b b +) exp (-yx) + b(- ) exp y(x - L) (D)
*" " where L is the physical length of the WUT and / is the complex propagation constant, y - a + jf,

with a being the attenuation factor and 13 being the phase factor. The time dependence exp (joit) is
* implicit.

Port I Port 2

,82 Zo02 L 2 SZ0--

I I_ l:

Fig. DI - Equivalent transmission line circuit for
analysis of standing wave effects in WUT
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In Fig. D I the transmission line with characteristic impedance Z 01 represents the SWG, while the V

transmission line with characteristic impedance Z 02 represents the WUT. The equivalent circuits

representing the waveguide discontinuities at either end of the WUT are composed of lumped elements

and thus have no associated lengths. For this analysis, the following assumptions are made: (1) the

SWG and the WUT will each support only a single (dominant) propagating mode, (2) the WUT is of L

sufficient length such that there is negligible coupling between the discontinuities at either end via .-.,.

higher order evanescent modes generated by the discontinuities, and (3) the equivalent circuit for each-. ,.

discontinuity is lossless; i.e., the corresponding normalized scattering matrix is unitary [Appendix C1. "

At port 2 in Fig. Dl, the wave traveling in the + x direction will be

b(+) L = b(+) exp (-yL). -

Since there is no incident wave on port 2 in the -x direction,

b(-) = sB b(+) exp (-yL). (D2)

At port 1 the wave traveling in the -x direction is

- = b(-) exp (-yL)

thus

b(= s a + + s2b
(-) exp (-yL).

Substituting for b(-) from Eq. (D2) givesSA. + A B .(+

1 s 1a 1 + s2 b2 ) exp (-2-yL)

or S A+ (~a + ) / [ Il A S

b(-- 1al S222 2 exp (-2YL)]. (D3)

The wave ah- is given by
a(- ) = sA a(+ ) + sA 2b"- exp (-yL).

Substitution from Eqs. (D2) and (D3) then yields
SA A .B''-.-

A W + 12S2 S22 exp (-2yL) (D4)a, S11+ I-S "B aD4
l-s 2 s22 exp (-2yL)

The wave a2+) is given by
(+ + exp (-yL)

which becomes, upon substitution from Eq. (D3), Z
(+ (_S ~a+ A B

a2 - S--- exp (-yL)al (D5)
s22s2 2 exp (-2yL)

Measurements made on the network analyzer will have results expressed in terms of the normal- t

ized scattering matrix for the complete WUT. This scattering matrix will be designated as T, with ele-

ments tk. For transmission measurements, the SWG will be the same at each end of the WUT, thus,
the waveguide interface discontinuities are identical, and with the S matrix port designations indicated

S- S .  From symmetry considerations, I --t22 and 1 2= t21, with I) = a-)/at+' and

t2 - a2 +/a+)• For transmission measurements, only t21 is of importance. Letting S = SA, Eq. (D5) A.

becomes ., .

S2 2S 21 exp (-yL) (D6 )
'2) I - s 2 exp (-2yL)
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If the elements of the scattering matrix S were known, it would be a simple exercise in algebra to cal-
;" ~culate -y from the measured complex transmission term IIIj. Since quantitative knowledge of' the ,,,,

• " discontinuity equivalent circuit is not generally available, the elements of S may not be obtained
directly from theory. With certain approximations, measured s1 I may be used to calculate the three
remaining terms of S, as discussed in Appendix C. Before this latter approach is considered, it is
instructive to examine closely the quantitative effects of the discontinuity mismatches on the measured
transmission term 121.

All four elements of the scattering matrix S are determined uniquely at any given frequency by
the discontinuity at the waveguide interface and are independent of the length of the WUT. If the
denominator term in Eq. (D6) could be ignored, measurements on two different lengths of the sample W
waveguide could be used to eliminate the quantity S12S 2 1 and easily calculate y. Unfortunately, the
denominator term cannot be ignored for short lengths of the WUT. Expressing the various scattering
matrix parameters in terms of magnitude and phase,

SA = SI A exp (joAI
t,, = t,, I exp (ji ) i, k = 1.2.

shows that

021 4!? + 4)21 - #3L - 4,

where ib is the phase of the denominator

= ta - Is,2 12 exp (-2aL) sin 2(6 22 - 13L)

I- Is,,1 2 exp (-2aL) cos 2( 2, - 3L)

The measured phase 0,1 is seen to be basically linear with length but with a periodic perturbation. The

period of the phase perturbation is L = 7r/13 while the peak phase deviation from the linear case is
easily shown by inspection of a phasor diagram to be

,iI'max - _±sin-ils 22 12 exp (-2aL)].

If the small variations with frequency of the elements of S are ignored, the same phase ripple in 021
will occur for a fixed length WUT with changing frequency. For a waveguide discontinuity with a 5:1
N SWR, and assuming zero loss in the WUT (a = 0), the phase error caused by the standing wave set
up between the ends of the WUT could be as much as ±_t26.4'. or 7.3%, in a sample one wavelength
long. If the attenuation of the WUT is small, the phase error will be reduced only slightly.

The standing wave pattern will also affect the loss measurement. From Eq. (D6)

1s 2s 211 exp (-aL)
11211 I- 12exp (-2a L )exp j2( (-h L

The measured loss also has a periodic component, with period L = r/f3. The extremes of I tI occur
when

622 - f3L = ±n7r/2.

Since Is1's' I I- IsI 2 for a unitary scattering matrix S. the extremes of Irt, are given by
(I - 1s22 12) exp (-aL) (Dla)

111 Imax - S12(137a)I - Is22 exp (-2aL)

* and
(I-1s22 12) exp (-aL)

It21 mn = i+1s 2 12 exp (-2aL) (D7h)
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For Is'2 > 0 and a > 0
(1 - IS22L)

I - 1s2,t2 exp (-2aL)

thus even the minimum measured loss, J12mad, will be greater (in dB) than the actual loss in the
WUT, exp (-aL). For a sample waveguide with a loss of 0.2 dB and a 5:1 VSWR mismatch at each
face, the measured extremes in loss, also expressed in dB, will be 'Imlam- = 0.51 dB loss and
It21[m, 8.38 dB loss. These large variations in loss may be viewed as a cavity effect [2,40-42] where
the WUT forms the cavity. V. ,

Errors in the transmission measurement tIl caused by the standing wave pattern within the WUT .
will decrease rapidly as the match between the WUT and the SWG is improved. For a perfect match
(s, = 0), the standing wave will vanish as will the measurement errors for both phase and magnitude.
A perfect match is impossible to achieve other than at a single frequency, and fabrication of matching
structures may be impractical, especially for measurements covering a large frequency bandwidth and
involving a number of different geometries for the WUT, because of the very low mismatch required
before the standing wave effects on the transmission measurements may be neglected. However, there
are a number of approaches that may be utilized to correct for the standing wave effects, even when the
mismatches at the waveguide interfaces are large.

In the approach that will be referred to as Method 1, the exact equivalent circuit for the
waveguide discontinuity is used to calculate the elements of the dominant mode scattering matrix S.
The complex propagation constant y for a particular sample waveguide is then found from Eq. (D6)
using the measured transmission coefficient 121 for a single length of the WUT. If only the general
form of the equivalent circuit is known for the waveguide discontinuity, this method is not applicable.

In Method 2, the equivalent circuit to represent the waveguide discontinuity is assumed to consist
only of a shunt element with unknown numerical value. With this assumption, the scattering matrix
elements s1., s,,. and s,, are found from the measured value of sil as described in Appendix C. Then,
Eq. (1)6) may be used to calculate -y directly from the measured transmission coefficient t21 of a single
length sample.

Other methods for obtaining the propagation constant of the waveguide from measured data were
investigated, including those which assumed the WUT to be lossless (a = 0) with the phase term 3 the
desired quantity. None offered any real advantage over the approach which will be referred to as
Method 3. This method requires the measurement of the complex transmission coefficient t2j from

" three different lengths of sample waveguide, each with the same cross-sectional geometry. The advan-
tage of this method is that it requires no knowledge, either measured or theoretical, of the waveguide
discontinuity equivalent circuit or the associated S matrix. For the WUT with length L,. let the
corresponding measured transmission coefficient t, 1 be represented by

t, =(L L,) = T,, i = 1,2,3.

Then Eq. (D6) may be written as
yL, - -yl. 2-

T, e -- (r,e S12 SI2S1

Since the quantity sj'si1 is independent of the length of the WUT. " '.

T, - re As , - S,-2

for any combination of lengths i, k = 1,2,3. This last equation may be rearranged to yield .--

Y1 y L'',':
T , -T L, 4 C€ 18

T, - re -- D1
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% Since s2 is also independent of the length of the WUT, Eq. (D8) is valid for any combination of i,k,
thus

73e -,L Tie -yL r 2e) e-L

-)'L3 -)LI - )L 2  - YLI
73 e -Tie T2e - Te -

from which

-. yQ~
3 

- LP -)3 (Lj - L3) U2 -~ L L1 ) + 2T

= J~~(L3 - L,) -TTe(LI - L3) y ,Te(L2 - LI)+T.

Expressing the length differences as

Li- Lk =Aik, i~k =1,2,3

then
T3 T2 sinh (YA32) + T2TI sinh (YA 2 1) + TIT 3 sinh (YA13) =0 .(D9)

Thus, the unknown elements of S have been eliminated by utilizing the measured complex transmis-
* Sion term t2l of three different lengths of the WUT. Of course, Eq. (D39) must be solved at each fre-
*quency for which y is sought using the corresponding measured data.

The left-hand side of Eq. (D39) is a complex function of a complex variable,

F(y) = F(a + j,6)

and for the value yo =ao + jp3o at which the function is zero, its real and imaginary parts may be
* equated to zero separately:

R 6a0 ,6 0) =0 (DlI Oa)

I (ao,43o) =0 (D IOb)

where R (o.J3) =Re IF(a + JIM3) and I/6,8) = Im [F(a + j1).Use of the mathematical identity

sinh (x + jiv) =sinh x cos y + Icosh x sin y

* will show that

R (a,#3) =X32P32 Y32Q12 + X21P21 -Y 21Q21 + X13PI3 -Y1 3Q13

I (a-13) =X 32Q32 + Y32P32 + X21Q21 + Y21P2 1 + X, 3Q, 3 + Y13 PI3
*% where

X, = Re IT,TkJ

Yk= Im[T,Tkl

Pk= sinh ("Ak) COS (IGA,A.)

QA = cosh (aA,A) sin (1AAk)
for the index pair ik =32,2 1.13. Newton's method in two dimensions [64] may be used to find a solu-

* tion to Eq. (DIO). W'ith yi al + J,1 used as an initial estimate for yo,

R6,01,) - R

W it h a=a j+ Aat and 6 3 + AJ3.

R (a, + Aa,,1 + A#3) =0

I (a, + Aa, + A)3) =0.
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Approximating each of the functions R (a,,3) and I(a,,3) by a first order Taylor series [51,781 then '%6
gives ' : ,

R, + a, Ra + - A - 0

/I + "-Aa + A0 0 W

or in matrix form [ R/a OR/0/ ~ _c (R,

/, 0/0 13 = -1 •-.1

Since the function F(y) is an entire function, i.e., 6F/63" exists at all points in the complex v plane,
advantage may be taken from the Cauchy-Ricmann condition [78], with

aR/oa - 01/13
OR/03 = -0/Oa. .-:"-'

to show that

- R __/12 + OR _1 (D IlIa)
ORa 013 Oa 01 :'--

A 1 - / jR I.R I4R13 I a IfOa " (DIIb)

The derivatives are given by .).U-V-X
OR/Oa A32 X32U32 -Y32 V32) + A21 X21 U21 -Y21 V21I + A13 X13U13 Y13 V131 -:.:':'':i

aR/O(= -A32 X32 V32 + Y3 2 U 32) - A21IX21 J/2 , + Y 21 U 2 1)-A 1X 3 V13 + Y13U)3

where

UA = cosh (aA,k) cos (/3,A)

V= sinh (aAA) sin (1A,A)

* for the index pair ik = 32,21,13.

The function F(y) is a relatively simple function possessing no poles or singularities, and
Newton's method, via repeated iterations of Eq. (D 11), will quickly converge on the root -,0. The com-
puter program CROOT3 utilizes this approach (Method 3) to solve for the complex propagation
constant y when provided with the measured complex transmission coefficient t21 of three different
lengths of the WUT. A FORTRAN listing for this program is given in Appendix E3.

The loss term ce of the complex propagation constant may be found independently of the phase
term 3 at frequencies where the measured transmission loss of the WUT is minimum. This may be
accomplished by measuring s11, as described in Appendix C, at the frequencies where 11211 is max- -,
imum. Since !s221 = IslI, then from Eq. (D7a)

(l-IS1,12) exp (-aYL) 
-

IS],n.~ -I,1
2 eXp (-2tkL)%
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This last equation is quadradic in exp (-aL) and is easily solved. With X= exp (-aL) and
T = It21 1max

X - [( + Is111
2)2 + 4T2Is 1111

/2J + Is11 2-I)1/(2TIs 1 I
2) (Dl2a)

a = - In X/L. (Dl2b)

][his technique for obtaining the loss term a of a given WUT will be referred to as Method 4. The,:,',.

number of points at which It2I will be maximum will depend on the length of the WUT and on the 'S

frequency band for the measurements. As with the other methods, this technique is valid only if a sin-
gle mode propagates in the WUT.

A similar development to find a at frequencies where It211 is minimum is possible; however, this
procedure is not recommended for the following reasons. First, the measured value of 1t21I will have a
minimum that is much less sharply defined than is the maximum as can be seen by examination of Eq.
(D6) or as can be shown by experiment. A second and more important reason is that the sensitivity of
calculated a to measurement errors in both IsII and It21i is much greater when 1t211 is minimum than
when It2i1 is maximum. Thus, Method 4 will ignore the minima of It2I and calculate a only at fre-
quencies where the transmission magnitude is maximum, or equivalently, where the transmission loss
is minimum.

Up to this point, the effects of the standing wave within the WUT on the reflected signal have
been ignored since the emphasis has been on the measured transmission t21 through the effective two-
port network, with little or no additional knowledge of y to be found from the measured reflection
coefficient t . If one port of the WUT is terminated, the effective circuit becomes a one-port network
and reflection is the only measurement possible. In particular, if port 2 of the WUT is terminated with
a short circuit, then in Fig. DI sI2 = -1. From Eq. (D3), with SA S.

b(+' = s21a(+1/[l + s22 exp (-2yL)I.

The power contained in the wave traveling in the +x direction within the WUT is given by

1s2112

P 0+)]-0= P, II + s 22 exp (-2yL)12  (D13)

where P, is the power incident on the front face, or port 1, of the WUT. Like b(+), the power P(+) is
referenced to port I of the WUT, but will drop off as exp (- 2ax). If the attenuation of the WUT is
small, and if the length L is only a few wavelengths, exp (-2aL) may be approximated as unity
(equivalent to assuming a = 0) for calculations to determine the peak voltage within the WUT. With
this approximation, from Eq. (D2)

b(= - b"exp (-j3L).

Then, from Eq. (DI) the total voltage at any point within the WUT is

b(x) - b(+)[exp (-jax) - exp (jfax - j2I3L)]

or

lb(x)l = 21b' +' sin 13(L - x)II.

The total voltage will be maximum

Ib(x) l,,m = 21b'+'l

when sin [/3 (L - x)] = 1 I, or equivalently, when

L - x = (2 n + I)X,/4, n = 0,1, 2,

where the guide wavelength X. is given by
x, = 21riO. "-.. -
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Since power is proportional to the square of the voltage magnitude, the voltage maximum is the same
that would be produced by a single wave, traveling in either direction, with a power four times that of
either wave forming the standing wave pattern. This power will be referred to as the maximum voltage
equivalent power, or PM\'E. Thus, from Eq. (D13) 2

PMVE 4P, ~2I~IfIi+ S22 exp (-j2fL) 12

since IS212-!- IS222 °-" ", ',
Sic 1 -4(1 - Is22 12)P,
PM I'E = (D 14a)

1 + IS2212 + 21S221 COS

where

= 22 - 2.8L. (D14b)

Peak power breakdown in a waveguide occurs when the electric field intensity at any point
exceeds the electric breakdown strength of the dielectric medium at that point, thus causing arcing to
occur. With a WUT terminated at one end with a short circuit, points of maximum E field thus will be
located at odd multiples of quarter wavelengths from the short. The equivalent unidirectional power
PVE at breakdown may be calculated in terms of the power incident on the WUT from Eq. (DI4).
Even if the phase term )3 is known, the phase and magnitude of s22 must be found for accurate calcula-
tion of PMVE. As in the case for determination of the propagation constant vy from measured transmis-
sion through the WUT, quantitative knowledge of the discontinuity equivalent circuit will not be avail-
able for most geometries of the WUT, thus Method I is not applicable for finding s22. Assumption of
an equivalent circuit containing only a shunt element to calculate s22 from measured sil (Method 2)
may be applicable for some geometries of the WUT, but in general will give rise to some error in the
calculated phase ( 622) of s22. As the calculation of PMVE from Eq. (D14) may be very sensitive to
errors in 4622, a more reliable method to determine i,22 is indicated.

A method analogous to Method 3 is possible to determine peak power breakdown. This method
would require testing three sample waveguides, each with the same cross-sectional geometry but with
different lengths, to their respective breakdown levels of incident power. Using Eq. (D14) together
with the three measured power levels, s22 could be eliminated as an unknown and PMVE calculated....---
This approach was rejected because of two major practical deficiencies: (1) the actual peak power break-
down levels of the three different length samples could vary significantly because of slight differences
in construction, and (2) the length of the WUT must be such that the standing wave pattern produces a
electric field null at the interface of the WUT and the SWG. The latter condition is required to prevent
arcing at the interface and is discussed in greater detail in the section on peak power measurements in
Section 3.

The technique that was chosen to calculate ProVE from measured incident peak power at break-
down will be referred to as Method 5. The phase factor 6 will be assumed known as a function of fre-
quency (either from theory or from measurement). For a single WUT with length L, the measured
reflection, il l a-'/a , from the front face, with the back face shorted, from Eq. (D4) is

S12S21 exp (-2yL)

+ S22 exp (-2yL)

or . -' -

S11 + (SllS 22 - S12S2 1) exp (-2-yL)

+ S22 exp (-2yL)
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%From Appendix C ky
SlIS22 -S 12S21  e 11~+ 22)

thus

t = e" 1s1 + e-2aL ej(0'2 2L)
N 1 ~~+ 1S221e -cLeJ(2-2L

* Letting

I S221 = s111 G

e A'

'k22 -2#3L=

* then

I G + Xe~f
*~ 1+ GXeif

* and

G2 +X 2 +2GX COS
I,~ + G2X2 + 2GX CO fD5

If the WUT is lossless, then a - 0, X = 1, and 1:ItI - 1. However, even a small amount of loss will
have a pronounced effect on the magnitude of the reflected signal. The extremes in reflection will

* occur when a It,, 12/ a 0. From Eq. (D 15)

a =t,1 2GX(G 2 + X'2 - G2X2 
- 1)_

(1+ G2 X 2 +2GXCOS f) 2 si

Since

G2 + X'2 
-G

2X2 - I - (G2 - 1) (1 X A') 0

the extremes of It,, 2 occur when sin =0 or, equivalently, cos f = ±l. Return loss will be
minimum (,I2maximum ) for cos ~=1 or

2nir, n = 0, 1, 2, .

* ~and return loss will be maximum (,l2minimum) for cos f 1 or

as may be shown either from (1) calculating &21j11I2/,9f2 as negative or positive, respectively, for
sin =0, or (2) direct inspection of Eq. (D 15) for cos ~=±1

When measured on a swept frequency basis, ItI I will display a broad maximum but a very sharp
* minimum. If the peak power breakdown test is to be run at a frequency .fo. then the frequencies of the

first minima on either side of fo, .f I< f0 and f2 > fo, may be accurately measured. The phase Of S22
may then be calculated at each of these frequencies

0221f, = (2n + Orn + f3,L, i = 1,2 (D 16)

since 6 =/(.f,) is known. The ambiguity of n in Eq. (1316) is easily resolved since 7r <f 22 1< 7

A linear interpolation is then used to find ek22 at the desired frequency fo:

:7~~ 0211 42211,

= 4221), + (hf - ft1) ~ ~.(1317)
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The accuracy of the linear interpolation will depend on (1) the dependence of the phase 022 on fre-
quency, and (2) the spacing of the frequency points f, and f2. The latter factor is dependent on the ,,.-p
length of the WUT, with a greater length yielding closer spacing, hence greater accuracy in the calcula-
tion of 462 2 at fo. If the difference in phase between the two measurement frequency points is less than '
a few degrees, the error in the calculated value of 022 at fo due to linear interpolation will be negligible.
The magnitude of s22 at fo is found by measurement of si as described in Appendix C, with
Is221 = IsII.,

All measurements to determine the phase and magnitude of S22 may be accomplished at low r
power levels since the WUT is a linear device. However, these low-power measurements must be done
prior to the actual high-power breakdown test since any arcing may leave conducting paths of carbon
build-up which could affect subsequent low-power measurements. Once s22 at the frequency of the
high-power test is determined, the WUT (with a short circuit on the back face) may be subjected to
increasing levels of peak power until breakdown, i.e., arcing within the WUT is detected. The final step
of Method 5 is then to calculate from Eq. (D14) the effective, or undirectional, peak power breakdown
level using the known phase term 3 and the measured incident power at which breakdown occurred.

'. - . -

-
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Appendix E

COMPUTER PROGRAMS

ElI PROGRAM TRMWG
E2 PROGRAM DLDRWG
E3 PROGRAM CROOT3

.12
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PROGRAM TRMWG

00100 C THIS IS PROGRAM TRMIG.FOP - CUY -OCT 90
'00200 C THIS PPOGRAM USES A TRANSVEPEF RESONANCE METHOD TO
00300 C SOLVE FOR SOLUTIOi: OF SYNIMiETRICRL DIELECTRIC LOADED
00400 C DOUBLE RIDGED bAVEGUIDE. WAVEGUIDE MODES ARE PRESUI-ED

00500 C TO BE TEU(1,0) JIODES.*-
00600 INTEGER RIK .
00700 P103. 1415927
00800 C2Z.997.25E+08
00900 RP-39.37008
01000 R2=2.0*R
01100 RRIDI-180. O'(PI'R1)
01200 CIn (2. OE+09*PIC)'2 **"
01300 HIEWRU""O
01400 TYPE 100
01500 100 FORMAT (//" PROGRPM TRMIJGo'CfY'OCT 80')
01600 105 TYPE 110
01700 110 FORMAT(//"' WAVEGUIDE DIMENSIONS IN INCHES - AFDS: 'S)
01800 READ(5,*), ,P,DS
01900 115 TYPE 120
02000 120 FORMAT (/' RELATIVE DIELECTRIC CONSTANT OF CENTER
02100 1 LOADING: 'S)
02200 READ(5,*)EPS
02300 TYPE 125
02400 125 FORMAT (e "I,1TH IN INCHES OF CENTER LOADING: f$)
02500 READ(,-.)T
02600 1,2 TYPE 130
02700 130 FOPMAT(' ,VEGUIDE NDLE - TE(190) (1] OR TE(2,0) [21 -

* 02800 1 D Rr's
02900 ACCEPT 1335,TE12
03000 133 FDMAT (11)
03100 ]FUITE1Z.tlE.1.Ai;l.ITE12.rE.2GO TO 128 '
03200 lFT6lrc.$
03300 IFCT.GT.V)IFTGC=1
03400 140 TYPE 145
02500 145 FORMAT (/' iF:I.'GDL PAFAMETERS ------- D1MENSIONf IN
03600 1 IflCHES'8':" A'9N'P'D'9X'512XT6X4HEPS')
03700 TYPE 150.fLoD, l,.,T,PEPSR
03s00 150 FDPMAT (4F10.4.F13.4.F10.3)
03900 R=D/P
04000 RS=RP*2
0410C, IFR=0
04200 IF (AI: (R-I. 0). LT. 1. OE-06) IFF=1
04300 I1=(1 -I FTG) * .A-ZP2+ I FTGS* %A-T) P2
04400 612- 1 -IFTG$S) S*-T) F2. IFTG.* (T -S) P 2
04500 1.3= 1 -I FTG) # T ,R2'+ I FTG SS/P2
04600 ATRY=I . 5 A* (1.0+ 1. 0/P+ (EPZR-1. 0) T/A)
04700 IF %ITE 12.EO. 2) ATPY=-.5.
04800 C THE ARDVE OUANTITIES ARE TO FE USEl' FOP CALCULATING
04900 C APPROXIMATE STARTING VALUES OF CUTOFF FREOUENCIES
05000 IFC=1
05100 FREO=CPR1/ (ATPVN_. OE+09)
05200 XXDEL I.5.FREO
05300 Po. 0
05400 GO TO 215
05500 160 IFNEEII,,PL.LT.2)GD TO 165
05600 IFFSTART.GT.FCGH)GO TO 180
05700 165 CONTIINLE
05800 IFCITE12.E0.2)GO TO 480
05900 TYPE 167
06000 167 FORMAT(' WISH TE(1,0) PROPAGATION CONSTANIS. *)
06100 ACCEPT 133,IEETA
06200 IF(IPETA.NE.1)GO TO 480 ',.-

06300 139 TYPE 170
Oc.400 170 FORMAT (/" FREOUENCIES IN GH.- START,STOFINCEIIENTS '$-
06500 READ (5, *)FSTAPT, FSTOP, rELF
ooo 15 FORMAT (F9.3.1X.F9.Z.1X.F9.3-
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0.-700 ISOf 1FkFSTART.LT..0E-1'GO TO 4F'0
O~too F-FSTAFT.GT.FCGHL--.V TO 196t

06900 TYPE 1S-,
07000 1M5 FOPIIATC( FPE0LUEHCY toUST BE GPEATER THAI4 CUTOFF')
07100 60 TO 165

-' 7800 IF (FSTOP.LT. 1. CE- 13) FSTDP=FSTAPT-I. 0
07300 190 TYPE 195
07400 195 FORMAT (-14X4HFPECO8X4HF.ETA9X3H~tIL7X5HRATiI e~O8XHc,.A .5

07500 1 5X3HC.HZ6X6HDEG'1M6X6HlNCHES4X8HGwLe.FSUL7X6HR OR 1/') r e.6
07600 FREO-FSTART
07700 BY-0.1
07800 C THIS IS A FIRST TRY FOP PETA
07900 XXDELIO0.0*FPEO
03000 210 C011TINUE
08100 215 C014TINILE
08200 IFTRY-0
08300 IRST-2
08400 220 CIF=CI*FPED*#2
08500 CIFEP=C1F*EPSR
08600 225 IETRY=IETPY.1
08700 IF(IPTRY.LT.26>6O TO 235
08800 TYPE 230

*08900 230 FORMAT (I MORE THAN 25 TRIES AT ROOT')
* 09000 GO TO 420
*09100 235 BYSO=PY#*2

09200 GX3StP=C1FEP-FYSV
09300 GXISQ=CIF-PYSO

*09400 6>X3=SORT ABS 6G:3S*))
*09500 GX I SORT AF(GXc)
*09600 IF (G,'3SO) 2409250.250

09700 240 CHS3=SINHGN33.d)
09e800 CHC3=CDSHG3I3
09900 Ipc';3=1
10000 60 TO 260
1010(0 250 CH:3_=S IN (GX3.t.'3)
10200 CHC3=ccOz (GX301d13>

10400 260 CON4TINUE
I2050)0 1 F(GX S ) 27 09 8 0 ZS0

* ~~10600 20 C~=I1(X..1
10700) CHCI=C0! H(G1*(.I1)
1fl0800IPG~
10900 pxK=IHP
11000 IF:GX=l

*11100 60 TO 'S5
*11200 Z il0 C H: 1=x4G'1I I
*11 0 0 Cmc I =CO >GX.1 1)

11400 IF:GXI=-t
* 11500)

11600 FII,=IHI
11700 ZE5 CONTINUE
11300 IF(IFTG'l.EOb.1)GO TO C-90

*11900 IFGX2= (IRGX1 12
*12000 GX2=GXI

22100 O TO 300
*12200 290 1 FGN2= (IFC,%3+112

* 12300GN2=GX3
12400 300 CWS2= IRG>:2.S INH (GX2.1.2>.+ (I1- I GX2) .S IN (SX2.'2)
12500 CHC2 i Rxi.CDi. 6GX204'2) ( 1- IPsX2) OCOS (GX20U2)
12600 310 FODY'=0. 0..
12700 IF(IFR.EO.1)6O TO 320

*12800 IF(1RC'X2.EP.1)GO TO 3Z0
* 12900 C CALCULATE k-',Y TERM *

13000 P- 1 *R)'e(I-R)
13100 GL=2.00PI/GX2
13200 PAPC=1. 0- (3/'(R1.CL)).'2 '

13300 FZPRGm1.0- D.(1.CL))**2Z
13400 IF(PZARC'.LE.0. 0)P2AFGw0. 0
13500 IF(P3APG.LE. 0. 0)P3ARGw0. 0
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13600 PZ=S0zT (PZRRG)
13700 P3-SORT (P3ARG>

13800 P-* ,.OF I 4z . I -2 1 +.0P, .0p

142K, PT2-2. (to (PA.+PFIP.. 0.PC) -, (Pn*PAP-Pc**2>

14400 1 -1.0)'(1.0-RS)44.0'RS.PC'(3.0.PA)..42
14500 BOY=2. 0.1" (PT1I4PT2.PT?) -(Ri .GL)
14600 320 CONITINIUE
14700 C CALCULATE F (BETA)'Mi
14800 IF(ITEI2.EOD.2)GO TO 324
14900 FR3I$2CHS3 -v
15000 FR3D=CHC3
15100 GO TO 326
15200 324 FR3I1=CHC3
15300 FR3D=CHS3
15400 326 CONTINUE
15500 ONEPM=JRGX3
15600 IF(ITE12.E0.2)0NEPMmI.0
15700 IF(IFTGS.E.1)GO TO 330
15800 FPETA=P. (-PO'l*CH3I+CHC1) *(GX2.FP3D.CHC2
15900 1 *OIIEPM.GX3.FR3 .CH-'2> CHS1. (IRGX1.GX2.FR3I'.CH32
16000 2 *O#IEPM*GX3*FR3fi'CHCE)
16100 GO TO 340
16200 330 FI-ETR=FR3D. (lPGX3.GX.CHS1.CHS2GX1.CHC.CHC2'
16300 1 * (OtEPM.FF3IP-B.Y.FR3D) *(GX<2*CHS14CHC.2+G)-.'CHC1.Ck'2c)
164090 340 IF (I PC. EQ. DXX-FPEl
16500 IF(I?C.EQ.2)XX-BY
16600 C FOOT SEARCH ROUTWIE
16700 IF(I1FTPY.GT.I)GO TO 350
16800 345 XXMEII=XXXXDEL
16900 6O TO 390
17000 350 #(ROS-1

17100 IF(FPETA*FFODLD.LT. 0. 0)KPOS=-1

17300 IF0,ROS.GT.0)GO TO 345
17400 IRST=1
17500 XNU=X.,,
17600 XXL=X ZOLD
17700 GO TO S80

17800 355 IF (AF;C (FFETA). LT. 1. OE-04. AND. ABSZ (XX-X*NOLD). LT.

17900 1 0.001>GO TO 420
18000 360 IF(KP0OZ.LT.0cGO TO ,61'

2810 IF~<NGT.NDLI)GOTO :,70
I e20 0 6O TO 3275
133 00 365 IF(X*.GT.X:-OLD)60 TO 375
13400 370 x>xL=xx
18500 6O TO 360
16E00 375 X'<U=%X
18700 3180 XXHlEI.=X!-FFETA* <>X->XNDLrI) (FEETR-FIODLP'
18800 IF (XNNEW.. GT. X-XL. Fit il. X: H Ekl.. LT. :XXi' GO TO 390
18900 XNNffl=0. 59* (N."L+NLl*)
19000 390 F1'OLD=FI:ETA
19100 XNDLD=XX
119200 x-xlt
1Z0 0 IF(I1'C.EC.l1GD TO 295

1 94 00 FIY=XX
19500 0 O 225

19700 GO TO 220
19S00 C FOOT NlOW, KNtOWNl
19900 420 IF(IF-C.E0.2)GO TO 450
20000 FCC44:=FPEO
20100 TYPE 430*ITE129FC44Z*FOY
20200 430 FORMT-' TE(1,0) M1ODE CUTOFF FREQUENICY IN c-HZ 'F7.4'
20300 1 P-Y = F7.3)
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20400 IBC=2
20500 GO TO 160
20600 440 CONTINUE
20700 450 PYDI=.Y*RR1DI
20800 C-h0GL-360. QF.YD I
20900 FSWL=RPI *C(FREo 1. 0E 09)
21000 RGLF$=G6,L/F$t, L
21100 460 TYPE 470, FREOF YPI, , SL, FGLFS,.RGAI P.RIK
21200 470 FOPMAT (1.\-F7.3,-:-:.F='.2,31,F9.4,4.:,F8.4o,::.F ..-. l.y.Ar)

21300 IF(FREO.GE.FSTOP)GO TO 480
21400 C SET FIRST TRY BETA FOR NEW FPEVUENCY
21500 FAEW-FPEO+DELF
21600 BY=0.5e.Y.SORT ((FNEIdee.-FCGHCe2)/ (FPEQo.2-FCGHZ..2))
21700 XXDEL-£Y
21800 FREO=FNEW
21900 60 TO 210
22000 480 TYPE 490
22100 490 FORMAT (//l WISH NEL. PAPAMETERS? NONE0O ALL=t,
22200 1 CENTER LDRDING=29, FREQ=3, MODE-4 "S)

22300 ACCEPT 133,NE'RUN
22400 G0 TO(500,105,115,169,128480)tEI.IPUN+I
22500 500 CONTINUE
22600 END

PROGRAM DLDRWG

00100 C THIS IS PROGRAM DLDPlG.FOP - C. W. YOU1tG JR. - SEPT 193
00200 C THIS PROGRAM USES A SERIES MODAL EXPANSION FOR THE
00300 C FIELDSRLONG WITH APPPOPPIATE FOU1IDAPY CONDITIONS, TO
00400 C CALCULATE CUTOFF F'EOUENCIES AND PPOPAGATION VALUES AT
00500 C FREOUENCIES ABOVE CUTOFF FOR DIFFERENT WAVEGUIDE MODES
00600 C I" DOUBLY SYMMETRIC DIELECTRIC SLAB LOADED RIDGED
00700 C WAVEGUIDE (LO$:LESS APPPOdIIATIOi). IF DESIPED, POWER
00300 C BPEARKDDWN LEVELS AND ATTENUATION FACTORS MAY BE
00900 C CALCULATED FOP THE CLSE(1,0) MODE.
01000 DIMENSIOlf GYI (16) ,GYISV(If.) ,GY3(16) ,GY3S$ (16) ,PI ( 1 6 ) r.,-..
01100 DIMENSION PIS0(16) ,P2(16) PF20(16) ,P3(16) ,P3S(6).

' 01200 DIMEN1IONt GINVO(16), G1>:30S(16) HCI (16),HCZ(16),HES(16)
01300 DIMENSIOli HSPI 16),HSP2(6i),HH3(16),T"RTX(32,32)
01400 DIMENSION Z1I(16),Z12(16),Z22(16),TZII(I6,16)
01500 DIMENSION TZ12(1616),TZ21(1616)TZ22(1616)
01600 DIMENSION XXA(16),XXV(6),qAM(16)#VRP(16)
01700 DIMENSION SMEY(16,16),SMEZ(16916),SMHY(1616)
01800 DIMEN1SIGO SMHZ(16,16),CA1(32,32),QDM(16) ,0DP(16)
01900 D1MEISIO OlKAPEA (70) , VVEC (32)
02000 DIMENSION A I (16) .P1 (16) ,C1 (16) tDI (16) ,FI (16) ,G1 (16)
02100 DIMENSIOli A2P (16) ,A211(16), 2P (16) ,1:21(16)
02200 DIMENSION C2P (16-, CEM (16, 12P (16). D2M (1)
02300 DIMENSIOll F2P(16),FEM(16) ,62P(16),GM(16)
02400 DIMENSION R3(16) ,F3(16) ,C3(16), 13 (16) ,F3 (16) ,G3 (16)
02500 DIMENSION EX;AD I (I6) ,EYAP I (1) , EZAD I(1) ,HNAI, I (16)
02600 DIMENSION HYAFI (16) .HZRAI (16) ,A3R(16) 9 3F:(16)
02700 DIMENSION C3R (16) , 11P (16) , F3F (16) G, R (16)
02800 DIMENSIOti PXNI fi1) vPXti2 (16) -PXN3(16)
02900 TYPE 100
03000 100 FOPFIT(///" PROGFAM' roLPPIOG.FOR - NOV 19S3')
03100 110 NF:EPUN=0
05200o TYPE 121
03300 121 FOF:mAT(/" ALL DIE11NIOS ARE IN INCHES'/)
03400 124 TYPE 125
0S2.00 125 FOF:MAT(' "A" DIME1EiIDlI = 'I.)031. r, r READ (5, *> R AIII¢ ,;'

02.700 IF(tF-EPUftt.EO.2) GO TO 144
0::00t 12: TYPE 129
02900 12' FOP.AT(' 1"" DPIMENION = 'I)
04000 READ(5,)£lM.
04100 IF(NPEPUN.E0.3)GO TO 144
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04200 132 TYPE 133 4"

04300 133 FOpMAT( -D- DDIMENSIH = J)
04400 RERD(5 D *)IDDI M
04500 IF(REPU'N.EO.4'GO TO 144
04600 136 TYPE 137 l
04700 137 FOPAT(U 'S- DIMENSION - 'I)
04800 READC5)DM ,
04900 IF(INERL.EO.5)6O TO 144 , "
05000 140 TYPE 141
05100 141 FORMRT(' -T" DIMENSIOrt = -S)
05200 READ 5, *) TDIM
05300 144 DBIR=DDIMBDIM05400 SA RSDIMXAPIM

05500 IF (DER. GT. 1. OE-6.AtI.D P.LE. 1. O)so TO 146
05600 TYPE 162
05O700 o TO 150
052:00 146 IF(SAR.GE.O.0.AN1D.SAR.LT.1.0)GO TO 152
05900 TYPE 167
06000 150 TYPE 151
06100 151 FDRMAT(' RESUBMIT DIMENSIONS') ;ZA
06200 60 TO (124,124,124,12,132136)IRERUN+I
06300 152 IF(RERUIN.tIE.0)6O TO 203
06400 60 TD 175
06500 162 FORMAT(' D/ RATIO MUST WE POSITIVE AND UNITY UP LESS') -"
06:00 167 FOPMAT(U S'A RATIO MUST :E POSITIVE A11' LESS THAtN OI4E-
06700 175 TYPE 176 ".'"

06800 176 FORMAT(I RELATIVE DIELECTRIC CONSTANT s '5-
06900 FE AD (5. ) RDC
07000 190 TYPE 191
07100 191 FDPMAT(' DESIRED WIAVEGUIPE MODE -- QLS(E OR M),M141 I.)
07200 ACCEPT 192, EMMODE, MMDEt NMODE
07300 192 FDRMAT(AI211) %
07400 IF(EMMDDE.11E.'E'.AND.EMMrODE.ME.nM')GO TO 195
07500 IF(EMMODE.EO. 'E')MEH=I
07600 IF(EMMODE.EO. 'M)MEH=2
07700 I F (MEH. EQ. 1. AND. MMODE. GE. 1. AND. MMODE. LE. 2. AIID. HMODE
07800 1 .SE.0.AND.HMODE.LE.3)GD TO 197
07900 IF (MEH. EO. 2.1AND. MMODE. SE. 0. AtI. 1MDE. LE. 1. AND. rMOE
08000 1 .GE.I.AHD.h1MODE.LE.4)SO TO 197
08100 195 TYPE 196
08200 196 FO:MRTC' RLLOWED MODES ARE PLSE(It0 THRU 2v3) BlD
08300 1 QLSM(0,1 THRU 194)')
08400 60 TO 190
08500 197 NED= (-0 ,NMODE
082600 ME=(-1)**MMD£E
08700 IF(HRERUN.EO.9)GO TO 230
08800 200 TYPE 201
08900 201 FORMAT(' NUMBER OF HIGHEP ORDER MODES TO BE USED IN
09000 1 ANALYSIS? 0S)
09100 READ (5, .)tIHOM
09200 IF04HOM.GE. 0.Ait'. NHOM.LE. 15)60 TO 203 MSBEOIV
09300 TYPE Z02

0.4400 2-02 FOPmPT(" HtiMtP EP OF HIGHEP ORD ER MODnES MUST B E POSITIVE

09500 A Rti IS LIMITED TO 15')
09600 60 TO 200
09700 203 TYPE 204
0980l(0 204 FDRMAT (I WISH TO CHANGE AW FAIRIETEPS'? 1 1=0. YES=I
09900 I 7: "1) -'
10000 ACCEPT 210IFCP
10100 210 FOFPMAT 11)

10200 IF(IFCP.E'.I)GO TO 110

10400 HF'=D4,r ''IlM
10. 0 HI=1.0.HF - -.

10,0 JTTYPE= I
I 0700 IF (TDIfl. LE. spIM) JTTNPE=-I
10.30 IF(JTTYPE.GT.0)6O TO 220
10,7,C0 A,1=0. 5 (AI M-SPDINM)
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11000 AN2= 0. 5*(SP IM-T I M)
11100 AN3=0.5.TDIM,
11200 GO TO 230

4. 113 00 220 A NI= 0. 5 #(A I1)M- T D IM)
114010 AX2= 0. 5#(TD IM-SDI M)
11500 AX3=0. 5#SpIm
11600 C SET FPEOLIEN4CY 1IDEPENDENIT TERMS
11700 2 '0 DO 240 I=1,tITEPMS,1 . -

11900 GYI(I)mIAF.#3.I4I593rDIM
12000 GY3 <1)=GY 1(1) /MR

12200
12300 235 DO 240 !=G 1 1 *IETRM2
12300 235 DO 20 J-1)+fMDE
12400 l RA=2*HR) ''MOD

12600 SME (1, J) HRSItC Q1EOP2,jAP IA'Gq )
12700 SMEY (I tJ) =R*. SC-1E.0 IR9 JAG IAGFMR
12800 20 SMH (19.J) SIIC (NED* 0IPG JARCHP)
12800 C4 SO S FIRST -J)- FO C NE -UENCYG JF 9M
13900 C 245V FRTFC= UTFFEUEC
13000TP 24 9 FF=
13200 24PE OMT- IS 4OFF9GSAC()ORFX1? S
13200 24 CCPT(, WIMSHFUOFFE ERH()O I~) t
13400 ACCEPTF.E19MROS25
1 3400 TY (P F EO 15 O 5

* 13500 2YP1 FOtAZ CTFFFEb(H -SATSO.NCIIrT

*13700 21 FRA('.CUTOFF FPrEO GL ) SAT:TO ICEET S
13700 FREAD 5-0)\\ N&
13900 F0 TO 203
14000 255 T O Z.0

14100 256 FOPMAT(' SET LIMITS FOP FIX114G CUTOFF FREV(GHZ),
* 14200 1 LOW~EFp UPPER: 'I)

14300 READ(5..)XLLPXUL
*14400 FREO=XLL

14500 260 BDGO0.0
14600 PDGSG=0. 0.* -

14700 265 CONT IIIE
14800 IFGIRSF.EC).1)6O TO 275
14900 TYPE 270
15000 270 FOPAT(5X'FPE0'5X'FETA'I0X'DET I3'5X'P3S0(I>'
15100 1 5X'P230(1)'6X'*4H3(1)')
15200 275 FCDUtTO
15300 KFC=O
15400 IF(MMODE.EQO .AND~. IFFC.EQ. 0>KFC-1
15500 C START FREtVUEV1CY LOOP
15600 290 ONE6R=6. 283185E+09oFPEO
15700 WEFS=2.249005E-I3OtIEGA
15s800 WER-14EFS*RDC
15900 WIU=3. 191664E-OS#OMEGA
16000 GDSS=&'EF.IU
16100 GFSSO=kIEFS*WU

16200 295 BETR=LDG/57.29578
16300 C START BETA LOOP
16400 1BETAS0=PETA#PETA
16500 P.DLS=SVRT(GFSSCI*RDC)
16600 ZDLS=376. 73-'SOPT (RDC)

* 16700 HCOUIIT=tICOUT.1
16800 IF(NCOU'IT.LT.26)GO TO 310
16900 TYPE 301
17000 301 FORMAT(-*, MOPE THANI 25 TRIES AT ROOT')
17100 60 TO 245
17200 310 CONTINULE
17300c C SET MATRIX VALUES FOP K9, Pp HCP MSPo RO

17400 ?20 DO 530 J=1.FITEF'MSv1
17500 GFIXI SO (j) =f:ETAS(l+GYI (j) **2 '-

17600 GFX3S (J) =FETAS+GY3 (j) *#2
17700 P1SO(.fl=6NI1SO(J'l-GFSS0
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1 7e.00 PESO (J) =cr I SO #J) -cGPtso
1-1900 1IF (JTTYPE. LT. 0) PZ,': k.J) QG4:$('- -GF S(-
18000 P330 (j) QG~3 ~) -GD-7c1
18100 PI(Q) =SoPT (AS ( i s JQ))
18200 P2 Q> =SCORT (RE (PESO(Q>>
18 $ 0 0 P3(Q) ="L)F-, kfirS (P3-SV (J lo
19400 FiPG=P I (J) *AN1
18500 IF(PlS0W.))344, 34634E:
I1s&60 0 344 HC I(J)=COS (AFL

18700 HsPt <j) =, 1 (ApG) ,P1 (j) ... ~

1890'0 G0 TO 250
119000 346 HC1(J)=1.O
19100 HSP I(J)=AN I
19200 PXII1(J)=1.0
192(to GD TO 350
19400 343 PXHI1(J'=0.5.*EXPAPf)
19500 HCI (3)=C0,-H-AFS)
19600 HSPIQ()-ZSr1H(ARG)/P1 (3)
19700 350 RRG=PZ(J'*AXZ
19,000 IF(P2SO(J))35-4q356,-358
19900 354 HCZ(J)=CDS(ARG)
20000 HSP2 (3) =S Ii N fRG) -,P2 (J)
20100 PX142 (J) -1. 0
20200 GO TO 360
20300 356 HC2(J)=1.0
20400 HSP2(!)-RXZ
20500 PXII2(J)=1.0
2 000 GO TO 360
20700 358 PXf2 (X -0. 5*EXP (ARG)
20800O HC2Q() =CO3M (APG)
20900 HSP2 (!i ,., I H (ARG).'P2>
21000 360 AR=P3-!.R.*\:3
21100 I(3Oj>6.6,6
21200 362 HCI=COS-' (AG'
21M)C H:P?=-S I N (AFG) /P:! (J 3au
214610 PINQ) = I ID
21500 GO TO 368.
21600 364 HCt= 1. 0
21700 HSP3=-AX3
21800 PX13 Q>=I. 0
21900 GO TO 368
22000 366 Pxn3ci)w0.5*EXp(ARG)
22100 HC3=COSM (ARG)
22200 HSP3=-S I 14H (APG) ,IP3(Q)
22300 368 CONTIMIE
22400 IF(MEO.GT.D)GD TO 435
22500 HE3(J)-HC3
22600 HH3 (3)-HSP3
22700 XXA(J)=1.0
22800 XXVQ() =P3SO ()
22900 G0 TO 440
23000 435 HE3(J)=HSP3
23100 HH3(J)-HC3
23200 XXR (J) =p3SoQ)
23300 XXV(J>=1*O
23400 440 CMITINVLE
23500 IF(P23C1(J). ST. 0. 0)GO TO 445
23600 TX2P=HC2 (J) -

23700 TX2M=HSP2 (3)
23800 60 TO 450
23900 445 EP2XZ=EP (-2. 0*P2 () .AX2)
24000 TX2P=1. 0.EP2X2
24100 TX2M= (I. O-EP2X2) ' P2(Q>
24200 45 0 COnTINUE
24300 IF(JTTN*PE.LT.0)60 TO 465
24400 IF(P1SO(J).GT.0.0)Grj TO 45
24500 TXIH=HCI(J)
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* £4~00TXIE=H!PI (Q)

2 4700 60 TO 460
2 4:0l0 455 EPIXI=EXP (-2.0*P I (J) #AX1
24900 TX1H=1.0+EPIXI

251 ('0I 460 OiP (J) =FI'C.P1SO "J' T> 1E'TX 2P+F'2-C' .J) TX1H*.T'Mow
£5 10 0 OAi1 (J)=FDC.PI SO j .JTX1 E.T>:£r+T>'lI4'TX2P

£5O00 QD() =TXIH*TX2P*P2SO Q', TX1E*TX~f1
25400 OPf1(Q)=TXI E*TX2P+T>;IH*T:ZM~.
£5500 6O TO 5(00
215600 465 COliT IrIIE
25-700 IF(P2O(J).GT.0.0)6O TO 470

£5200HC2Z14=HC3
£00HZP3N=HSP?

* £6000SO TO 475
21 0 0 470 EP!3E, -. (*?Q A3

26300 HSP3N=--.1.0-EP33)/P3Q.)
*26400 475 C014TINUIE

£00IF (MEO. GT. 0) 60 TO 480
£66A00 TX3E=HC3I
26700 TX3H-HSP3N Wa

* £6800 SD TO 490
£69 00 480 TX3E=HSP3N
2 7000 TX3H=HC3N
£71 00 490 VAP (J)=TX3E.TX2P.XXA (J -RDC4P2SO (J) .TX-H.X£M

* 27200 O"AM (J) =RDC.TX3H.TX£P-TX3ETXMXXA (j)
* £7300 OP(J)-TX3H.TX£P.XXV (J) -TX3IE.TX2M'P£SO P(J)

27400 QDM (J) =TX3E.TX2P-TX3H.TX2M'XXV C!)
£7500 500 CONTINUE

-27600 KD10O
*27700 IF(KFC.EQ.1.ArID.J.EQ.1)KD1-1

£7800 PSI-PETA+KDI
2 7900 ps1so=FsI**2
2 8000 IF(JTTN*PE.LT.O)GD TO 510
-c 100R--XNA (J)/WIER

2250 IENDMZ=GHX3SV Q) 0'.DI
£~.60060 TO 520

2S.700 510 ZRu-41EFS/P1SO-(j)
* 28800 ZS=1.0/huu
* 28900 GYK=GYI C!)

29000 GYKSO=GY1SQ C!)
- 29100 DEhOMiZ=GHXISOQC) +KDI

29200 520 Z 11(J) - (Pt I SO *ZR.GYKSO* ZS) DE lOMZ
29300 ZI 2(Q) =EO.C.YK*]RSI. (-ZP+ZS),DENDOMZ

*29400 22J) - (GYKSO*ZR+BS ISOZS) 'DEtIOMZ
-29500 530 CW1TINLIE
- 29600 P3AVG=SOPT (P3(1) .P3 qITERMiS))

29700 1 F(PRV'. L T. I1. 0) P3AVG= I. 0
29800 C MATRIX VALUES FIXED

*29900 540 DO 550 J=191iTERMS91
30000 DO 550 11NTERMS91
30100 TZI 19 IJ)=0. 0
30200 TZI 19IJ)O. 0
30300 TZ21 (I vJ)-0. 0
30400 TZ22 (I vJ)=0. 0
30500 DO 550 K=IPNTERMS91
30600 IF(JTTYPE.LT.0)GO TO 545

* 30700 RHEHH=HE3 (K) 'HH3 (K)
* ~30800 TZI I (I J)-T'1(,)SE(,)PEHZ1(~S1YK!

30900 TZ12 (I J) T'Z (I,!J) +SMEZ (19 K) OPHEHHoZI2 WK) *MH7*(K. J)
31000 TZ21 (19J)=T £1 (I,J)!) IEY*(I ,)RHEHHe.Z12(K>.)1I4Y(KJ)
31100 TZ22(1,J)-TZ22(1,J)+MEY(1K)RHEHH.Z22(K).S1IHZ(K ,J
31200 60 TO 550
3 1300 545 RHHHE=HC I (K)/H.TF1 (K)
31400 TZ 11 (19J) T:: 19 J) S1HY (19K) OPHHE*Z11I(IW 0! IEZ 0. J)
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31500 T2'12 (1 .J) =TZ12(I9 J) .StIHY(I, K).RFHHHE*Z12C(K).SMEYC(KJ)
31600 TZ21 (1IJ) =T_-21 (1XJ) +SMHZC(19[)'HHHE*Z 12K)SMEZIK ,J)P31700 T22(19J) =T22 (1 J).S1ICCZIvI0).PHHHE.322'c- K)5giMEY (1, J)
31800 550 CONTINUE

3.2000 560 DO 5S5 IrIIITERIMSf1

32100 PSI=FETA
*32200 IF (KFC. EO.1. AND.I. EC.1)VSI= 1. 0

32300 GKI=NEO'GY1 (I>
32400 I F (JTTYPE. LT. 0' GK I=NEO.GY3 <CI

*32500 DO 585 J=1.H1TEF:MS,1Il
326_E.0 0 F. SJ =1:E TA -*t t%
32700 IF (KFC. EQ.1.rAND. J. EC).1)FSJ=1I. 0
32800 KDIJ=0

-32I900 IF(I. EO. J) 1D1J=1
-33000 01T211C1II vJ)

3310001TZ2I)
332-00 021=T2UJ
333 0 0 022=T2;22 (1I9JN
33400 GKJ=NEO*GY1 CJ)
33500 IF (JTTYPE. LT.0) GKJ=NEO.GV3 0)(J
33600 PSI=GMX1SO(J>
313700 IF CJTTYPE. LT.O0>PSI=GNNXSO(J)

*33800O IFCKFC.EO.1I.AND. J.EO%. IPSI=1. 0
*3390 TOIlItPSI #011 *FSJ-F1SI01 2*GKJ-GKI1.O21 BSJGF.I *02*GKvJ
-34000 TO1I2t-FS I *O11 *GIQI-PS1 *o1 2*PSJ+cKx Ioa02:EK J+61: I *OZ rS J
-34100 TO2Ix-GKI*011.FSJ+GfI.O12GJ-S I o21.p +IIt'2.c*L

*34300 IF(JTTYPE.LT.0)G-O TO 580
34400 TMATX CIj) = tORN(I) TO1 1 .IJEF' PSI4KD*IJ.OAP CJ ) -(30*FF:EO)

* 34500 TNARTX (I, J+tTEFMS) CORN (I) *T012' (PS I'ORT tIU-,IJIER) 20.FREO,)
- 34600 TMATX CI+MTERMS.J) =cDPCI) .T021 .IEF'PSI
-34700 TMATX(IeMTERMS, J.NTERNIS)- (01W (1) TC'r^22PSI-14DIJ*4U

34800 1 *ODM(J))'SCPTWU-IJER)]
34900 60 TO 585
35000 580 TMATX (ItJ) =OPP (1) *TQ11 -PSJ.+KDIJ*OAM (1) *WEF
35100 TMATX(I 9J+NTEPMS) -L4'U.OAP(I) *T012',PSI
35200 TMAT(I+t1TEPMStJ) =QPNM(I) eT021',PSI
353_00 TNAIFTX (I .NTERrS.J.NTEPMS)--WLI'O1'M U) eT0lc2PS,

*35 4 00 1 *&DIJ*0DPCX>
* 3500 CMATRIX FOP CONDITION OFTDIM LESS THAN !JDM IS riOT

:!35600 C NORMALIZED. IF A LARGE NULER OF MODAL TEPIMS IS PEC-L'IRED
3570A C THIS MAIPIX SHOULD BE NORMALIZED PY A POS-ITIVE
35800 C DEFINITE MATRIX TO AVOID NUMERICAL INSTArILITIE:.
35900 585 CONTINUE
36000 IF(MCAMP.EO.I)GO TO 600
36100 DO 590 I=1,NTERMS,1

*36200 DO 590 J=1,NTERMSi1
36300 TN1111.0/P3AvG

*36400 TM12-P3Cj)/P3AVG
*36500 TN2ICP3(NTEPMS-I.1)/P3AVG
* 36600 TN22=P3 (tTERfIS- 1+1) P3(0) 'IP3AVG -

36700 TMATX(IJ>=TMRTX(IJ)*TfjLl
36800 TMATXCI ,JMTERMS)=TMATX(I 'J.ITERMS)'TN12
36900 TMATXCI4NTERNS J) =TMATXClNTERMS, 4) 4TN21
37000 590 TMATX(I4NITEPMS, JflTERMS) =TMATXINTEPMS, J4ITERMS) 'TM22
37100 C DETEPMII4ANT OF TMATX - ZERO FOR SOLUTION
37200 600 IFCIFFC.GT.0)GO TO 625
37300 MXSIZE=NTERNS
37400 IF(MEH.EO.2)GO TO 650
37500 KIIFC=1p 37600 IF(NMODE.NE. 0)KMFC-NTERMS
37700 610 Do 620 I=1,MXSIZEeI
37800 DO 620 J=1,MXSIZE9lS.-.
37900 620 TMATX (I ) =TMATX CI+Kt1FC, J.LMFC)
38000 60 TO 650*

*38100 625 IFOR1NODE.NE.0)GO TO 640 %

38200 WXSIZE=tITERMStr*40N
38^300 DO 630 I=IvMXSIZEI
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38400 DO 630 J=19MXSIZE91
3e8500 630 TMATX (1 9J)=TtiA7X Q1,J+ 1)
38600 6O TO 650
38700 640 MXSIZE=2.flTERMS
38800 650 IF(MCAflP.NE.I)GO TO 800
38900 MVSIZE=MXSIZE-l .-

39000 a2P(1)=0.0
39100 A211(1)=0.0
39200 DO 665 1=19t1HOMP1-
393 0 0 VVEC (I) =TMATX (IvNrTEPMS)
39400 VVEC (I +NHOM) =TMATX<(1 +tITEPM~iSTEFM! )
39500 DO 665 J=1dIHOM'1I
39600 CAM( < 1 J) =TIIATX (1 J~)
39 0 0 clIF(IFFC.EV.0)GO TO 6 65

398001 CAMl (I J +NHOM) =TrIATX (I J4NTEF.t1S)
39 90 0 CAM (I +tIH0119 J) -TMAT>X (I +tITEF:II'-' J)
40000 CAM (I +HHOI1. J+t*4M) =TMAT>: (I .tTEPMtS, J.MTERP1S)
40100 665 CONT I NUE
40200 PD1=1. 0
40300 CALL LIt4VF (CAM. VVEC, 291 VZIZEp 32, DD1 DD2,ll'iAREA, ER) - -

40400 De2MO'F= I. 0'/C)RT (('U/L'EF)
40500 Dr2m (1) =-'214Opt

40700 DO 6-5 1=29NTERMIS,1
40800 A2P(I)=VVEC(1-I)
40900 A2M (1) C'AP(1)#A2P (1)4VAM (1)
41000 1F(IFFC.EQ.0)cO TO 670
411010 D2m(V=D2IOFM#VVEC (1-1 .t*Ofl)
41200 DEP (1) =oDm () *p2tM(X) QDP (1)
41300 GO TO 675
41400 670 Dr2P(J)=o.o
41500 D2m(V)0.Q
41600 675 CONITINULE
41700 680 DO 6S5 I=19NTERMS9l
41S00 ZONE-0.0
41900 1F(KFC.EQ.1.AND.I.EV.1)ZONE I.0
42000 PHI=F.ETA.Z~tiE
42100 PS-GNIlS0(I,,ZONE
42200 GYZ=HEO#GY1 (I)
42300 CEP (1)=(-PHI *AZM 1) -hlU6Y2D2P ())ePSI
42400 PZP(l)-(Y2#R2M()-t.LI.PHIDZP (1) ).,PSI
42500 FZP(I) -(PHI.IEP*R2P (1) -Y2oVZM (1)) /PSI
42600 G2P(J)=(-I,'ER.GY24A2P(1)-PHI.D2M(l))/PSI
42700 Czfl(I) -oAPS(1.2P (1) -.G2D2%'PSI
4Z'S0 0 1() (GYZ.20s(1) #A2p (1) LI1.PH I oD~m(N Pr FI
42?00 F2M (1)m(IAEPPH I A2M (I) 6y2op2cI (1) p2p (1) /p: I
4300'0 GZM (1)= (-IEP#GY2#A2ti(1) -PHI*P2SQ(1)D2P ()) ..P~ZI
43100 Rl 1) RDC#A2P (1) /(OAm () pXNIi(1) p~h2 (1))
43200 DI (I)-D2fl)l(ODP (1)#PXHI1I) *PXMz(!))
43300 EXADI (I)-AI (1) *MCI <1)
43400 HXADI (I)=DI (I).HSPI (I)
43500 BI3 (I)w(GY2#PIS0(I)#AI (J)-4IU#PHI#DI (l))'epSI
43600 C1 (I)-(-PHI#P1S0(I)#AR1(I)-WdU.GY2#DI (I)),rPS1
43700 Fl1 (1) w(WEFS*PH I *Al (1) -GY2#j1 (1)) /PSJI
43800 6I.CI)-(-WEFS#6YZ#RI (I)-PHI*Dl (1))/PSI
43900 EYADI (I)=DI(I).148P1 1)
44000 EZAD 1 (1)-C 1 (1) *HSP 1 (1)
44100 HYADI(1)wF1(I>*HC1(I)
44200 685 HIAD 1(1) -6 1(1) *MCI (1)
44300 DO 690 I=1IF1TERMSPI
44400 F3RCIVm0.0
44500 63P(1)=0.0
44600 DO 690 J21,rITER'MSPl
44700 F3r<(I)wF3R1l)+ (SMHY(I PJ) .F2P(J))
44800 690 63R(I)=G3P(I>+(Sp HZ (IJ>*2P W))
44900 DO 699 Ii1,MERMS,1
45000 20riEw0.O 0
45100 IF(IFFC.EO.0.RAND.NPIGDE.E0. 0.AND. I.E. 1)Zr.E-1.0 ow
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45200 PS I=GliX3S() ZONE
*45300 PHI=I:ETR+ZOIE J

45400 LIP=P3'0 (1)
45500 WA= 1. 0
45600 1 F(MED. LT. 0) 6 TO 69?5
45700 IJD=1. 0 ____
45800 41A:-P3scl (1)
45900 695 PMKI3=IEO.6Y%3 (1)
46000 F3 (1)=F3R (1)-HHS (1) .
46100 63(1) =63P (1)'HH3 (1)
46200 W"('1) (PHI *F3 (1) -Pf'IK3.C3 Q)>) AIIEP

46400 C3 (1) (-PHI (1) -1II.*PM1I'3*r,3 (1)) ',PSI
*46500 B3I (1(PrK*l3.'AA2"() -[.UPHI ()) /PSI
*46600 R3P(DR=3(I)*HH,3(I)

46700 13P(1) =PS (1) HE3 ,(1)
468300 C3P(I)=C3<1),PE3(1)
46900 699 1)2-P ( I)=D 3 <IHE(I)
47000 MCAr1P=0 *.* ~
47100 C **** PFINT CLIT MODAL COMPON4ENT COEFFICIEN4TS IF F[PL'El-TE['
47200 IF(1FtMCAF'.NE.1)cO TO 738

* 47300( TYPE 703
74001 703 -OMAT~ W r1'4>'E~ADI (II) 4X'EYAflI(Nr) 3X'ERDI (ti)

47500 1 3X'HXRDI (N) '3X'H)'ADI AI> 3~X HZAD I (NO)
C E-00 DO 705 I=1,t4TEPMS,1

*4770'0 705 TYPE 729,IEx:ADI(!).EYADI(l).EZAflI(I),H :AD1(I),
*47800 1 HYAD1 (I) PHZAII'1(I)

47900 TYPE 706
48000 706 FOFI-IAT(' I'XRR*'XDPF>5'3q
48100 1 5XVDSP (N) 5X'F3P (11) 15N63P (Mi)'
48200 DO 710 J=1IiMTERMSPI
48300 710 TYPE 79IRF()FRI,3(>DPI,~(>GPI
48400 TYPE 711
48500 71! FOPIAT(' Ill. 'l 7X'1XPl00EfX'C.Qo)6XDI (14)
48600 1 6NXFI(N)16X'G(t)')
48700 DO 715 I=1,tNTEPMS91
48800 715 TYPE 729,1 ,AI (1) PEI (1) PCI (1) PDI (1) PFI (1)PS ,1 )

*48900 TYPE 716
49000 7-16 FOPt1AT( Q Wh6XRA2MU1)'6X.E2MtPi)5X'C2M(aO
49100 1 5X']D2M(N)5X'F2M11)5XI62M(hl)
49200 DO 720 I-IVITERMS91
49300 720 TYPE 729,IR2t1(I),E2M(I),C2P1(I)gD2M(I),F2MO.I).G~tfl)

*49400 TYPE 721
49500 721 FOPMAT(" tV6X'R2PQI) 6X'EP(M)'SXC2PQP
49600 1 5XDZP (N) 15X'FP (N S\GZPQI (1)
49700 DO 725 I=1,r1TEPMSPI

* ~49800 725 TYPE 79IRP1, ()CPI, ()Fr1,1
4?900 TYPE 726

* ~~50000 726 FDPIflAT(, i7'3ti X3t' ;'34
*50100 S~ 6X'F:3'Fl '6>"63(N)
*50200 DO 728 11.IoTEPMS,1

50300 728 TYPE 729,IA3(I),E? (I>,C3(I),D3(I),F3(I),63(I)
50400 729 FOPMAT(13,p2El2.4v4E11.3)

*50500 TYPE 731
50600 731 FOPMATW- H5X'P1SON)'5XP2-'Q(N5XP3SQ(I)

*50700 DO 735 11ItlTERMSPI
50800 735 TYPE 7369IPlSO(I),P2SQ(I)vP3S0(I)
50900 736 FORi1RT(I393E12.4)
51000 738 CON4TINUE
51100 IF(IFPAR.IIE.I)GO TO 790
51200 SLIRFRS-SQRT (FREQ'GC4CU>.. 25E- 03
51300 61I10. 0

*51400 WL2-0.0
*51500 W1.3O. 0

51600 kIL4=0.0
51-00 IJL5-0. 0
51800 ttLDS2=0. 0
51900 LILDS3O0.0 MI"
52000 KWFI1 -0. 0
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52100 PtIRN2=0. 0
52200 PWRI13-0. 0
52300 DO75 -, nzNTEpRMS91

-52400 FlZN1=1.0
d5Z500 IF (N. EV.1) FIEM12. 0IL

52600 FOIKI=2. 0-Fl2KI -

52700 UL1-t'Ll +DIM* (F01N1*#Fl 00).'2+F12N1.GI1 (N) ..2) -'V

52800 DO 754 t11ITERMS91
* 52900 JF(li.NE.M6) TO 750
*530'(10 740 PSS1=0.5*(HSPI (M)*HCI (f0-RXI)-,PlS'0 .

*53 100 PCC1=0.5*(HsPI(h).HC1QI)AX1)

533 00 PSC2=PCS2
53400 ARG=6.283185*HP. (N-I)
53 10 0 IF~l.GT.1)cGD TO 743
53E00 ss.2=0.0

* 53700 CC2=0.5(DM-IM
5*'0 0 60 TO 745

- 53900 74? 5.5(DMP1MP't.I) -A')
*54000 CC2=0.25.(F.DIM-DDltl-DIDIM.SItiPC)'RRG)

54200 F'CC3=0. 5. (-HH3 (N) *HE? uo0+A3
* 54':0 0 FCSOA=HC 10 (t) HSP2 (N)' / AM (ft) *P:N I k.ti) *PXN2-1 W%>

54400 ~ Z~RSAHP NiC N
*54500 P.CZC'=HC I (N) *HS-'P2 00)- (OPP (M) *PX4 I 00) #PXN2 01-
* 54600 P.SSD=P.CSQP*HSP1 (rN)HCI Ut.

54S:00 1 PcC5C'Fi4FA2F(fN)* **4DC.pISO 'Il)# *PS #~AZP(HI)*
5490'0 2 R2M (N' IPZSQ00)

*55000 SEYN= 0. S.%F 1 VN1 (AX2* P 00i **2- P.-2M M) *.2)'e
* 5510D 1 00)0 +N) (GlYl 00) #2P (N).# (RPC.P1 SO (N #pssOR#F2P WN

5520(0 2 *RC:SOA#2M (N)) -IJLS.I:lETR#P2M 00 * (RSS0'I'.PP (N)
550 0 0 *RCSOI'.F.M 0N0 /P2500N)) -oGMXl SO <N))

*55400 SEZN=0.5.F01NI.(RX2(C2PH).2-(C2NN)..2)',
*555010 1 P25S0 00)) (E ETR.R2P (N) * (RDC*P I S 0(M) *RSS VA *CZP (N)
*55600 2 .RCS0A#C2M (N)) +'U'6Y1 (N) #D2M (H). (PSSVD*C2P (N)

5700 3 +RCSOD.C2M (N) -oP2so (h)))GtNISO (N))
55e00 tWLDS2N=SEXN+SEYM+SlEZM

*55900 I&'D3t=FO1 MI' (PSS3.A3 (M) **2'PCC3*C3 (h) **2)
-. 56000 1 *F12111'PCC3F3(N)'42

56100o W.L1S2=1LDS2+LILDS2N
56200 W.LDS3='L['S3+-'LDS3h

*56 l.0 0 PO'P I T=. 5DIII.(FOIN1.#A I(N) *F 1 M) PCCI
56400 1 -F I NI *11(M) *D 100 PSSI)
56500 PIJRN I =PLI *PLIP I TN
56600 PlI1R2AF- 0. 5*FO NI.h1+ e (AR2P (to) .F2P (N) -R21 (h)
56700 1 *F2Nl (M)/P2SV (N>) +R2P (N) * (PCSOR.#FZP (N0 +FDC*P1SD (M)
56S00 2 #RSTQR.F2t()'P2SV(N)))
56900 PI.IF:2FD= 0. 5.F12N 1. (RX2.- M~P (N) *D2P Nh) -V2M (N4)

-57 00 0 1 *D-,:I (N) /PZSC' (N)) .DZM (N) * (RSSOD.FZP (N) .RCSOD
5710 2 .. 211 N) -'PZZ ,(MM)

*57c3 00 P-P.2TM= 0. 5#PD 1 N (Pl-'F2RF-Pt-'K~rD>
57300 P6I'1iJ2=PI.1PN2.P&,IP2TN
57400 748 PW-FSTN= 0. 5DDIM (FOINI3 0 *F3N)*P::-
57500 1 -FI2fil#3(N) #D3Ut(10C*3m
57600 P;P113=PW.RM3.PbgR3Th
57700 HzZO= 0. 5.RX2 (G2P (N) .2- (G2M (N) '.2) P25 (N))

% 57800 H'Z1 -- 0. 5.62P (N)'(GYI (N) .EP.RCSOR.RZP (N)
57900 1 *BETR.RCSOD'D2P1(M))'GNX1S0(M)
58000 HZZ2--0. 5#621(N) * (GYl (N) .bEP*PDC*P1So (to RS!SOR
58100 1 .A2P (Nl) P250 (N) G.ETR'R5SQDDZM1(Ni)) GtiX~I 50(N)
58200 H"HM=HZZ0.HZZI.HZZ2

* 58300 tXXO= 0. W*A;,2. (D2 P(N) .2- (D2m (N4) '2),eP250 (N))
58400 HWXI 0. 5.D2M (N)* (PSSOD.Dt2P (N) .:COD.D2N(N) -P2SQ (N))
58500 HXXiII=HXXO4HX1
58600 60 TO 752
58700 750 PSSI=(HCI (t).HSPI (M)-HS;P1(tt>'4C1 (M))
58800 1 -(PIso(ti)-PlsV(M))
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58900o PCCI= (PIS("(ti)*HS-Pl ()*HC1 (M)-Pl1SQ(M)
59000 1 *HC("*HHp1(H))'o(P1S0(O-PsQ(m))
59100 QH14ll. 0-0'(PxNI (H)*PxH2 Go) *
59200 PCOAh=HC1 (H)*VNN/OARfl(H)
59300 RSOANNSP I (N) .CbNWORM (H) ___

59400 RCODN-MC I (N) #ONN/OPP (H)
59500 RSQPH=HSP1 (I1)OHHOeDP(h)
59600 QHMII= *0'(PXH1 (M) PXHZ2(M))
597.00 RCQAM=HCI (M)#QrIM/AM(M)

'0 0 RSOIAN=HSP I <Mt) *OHMfl-OAM (1-)
59900 RCCODM=HC I (M) .OHM/ODF f1>
60000 PSCDM=HSP 1 (fl) OoHm'ODP (M)
601 00 TDENOII= 1 . 0' (GNX I SO (N) * GNX 1 SO (M) # (P2"- (N)
60200 1 -P2so(H)))
60300 HZ:: 0= <6211, (N) *SEP (M) -62P (N) #62M (M)) (PESO (11)
60400 1 -P250(m))
60500 H:7Z =A2-:P (H'* *R2P (M) .tdEP#.fEP#GYI (N) #GYI (l) .PL'C* (P1 So' 00
606 00 1 *RC fi.P3 OA-PI1SO Ht) .RSOAH.*PCO~Fl> .TPEIIDII
60700 H o=t2N.4) #D21 (M> or:ETASVO. (P250D(M1) .F:COI'HPSODI
60:E:00 I -P20(1N .F:SOPN.COPM) .TPENiDM
609010 H: -=k:,P ('~11 N PT..E.Y H.(20<
61(000 1*P0HP01-1CPIO('.S f.ROi'TD4M
61100) HZ::4=A2lP (M) *D21 (N) .IETA.I.IEF#GN*I (Mi)# ..FPDC* it)5 o.

61300 HZ~tI=H Z+HZI+H:ZZS.3H--4
61400HN= I21').P(P>-P I)'21()'(20t'-20d)
61500 H>CX1 =D2fi (N) *2 P1(M) o (RscpcCoDNi-pc0pfi.F5OI'i'i 'P250( (tol
61600 1 -PZSL)(1))
61700 MNNNM=HNXO.HNN1____
61800 ARGP=3.141593#HP#(N+M-2)
61900 R6P13. 141593'HF-(H-M)
62000 SSZ=- . 25'PDIo (S INH (APSM) /AR6P1-S I (AF*GP) eAPP)
6210 01 CCZ=-O. 25#DIlN. (SIH(P11> /APS.SlN (APGP) -APc'P)
62clo0 PCC=- <P3SQ (N) *HH3 (H) *HE3 (MI) -P3SO (M)
62300 1 'HE3 (N' 'HH3 (H))' (P3SG-.di) -PSSO (1))
624010 PSS3=- (HE3 (N1*HH3 (1) -HH3 (H> 'HE3 (1))

62600 752 ONEP= (- 1. 0). - i+M)
62 700C t4lLZ=l.L2+4. 0*0NEPM# (DI (N> #DI (H)o'P55
62S00 1 *G1QO.*GI(11)OPCCI)
62900 LIL3=1L3+4. 0'ONEPfN. (HN.<NN.HZZhM)
63(000 k'L4=t.'L4*4 *(F2P (HN F2P (H> 'S2.2P (Hi) 62P (fl) CC2)
631 00 kIL5=h'L5+4. * 'EPMo (03 (H) 'P3 (M) *PCC3'C'3 kN) '63 (M) 'PSSZ!)
63200 754 CONTINUE
63300 Pl.IPH=Pl.IRN1hIPNZ+PI'RN3
63400 TYPE '756,PPIH
63500 756 FORHiRT( HOPMALLIZED POWIER - E12.4'-)
63600 ECLH=0.0
63700 DO 760 Iz1vHTEP115,1
63800 760 ECLHwECLh+ABS(B3(I))
63900 En2RPAIwv.o
64000 D 773 Ill33PI
64100 ENMRPIsO.0
64200 EVMADI-0. 0
64300 D 764 J=1.f1TER11S91
64400 6R=I1'Y (IsPP 4. 0
0-45010 EX11RDI=EXHADI'EXAI (J) .SIP(ARG)

64600 764 EYflAPZ=EYIIRDI+EYADI QJ)*CGS (APG) :
64-00 EM21=EXMRPI**2.EYMAPI**2
64;00 C .... SKIP PRINTOUT FOP MOST APPLICATIONT
64900 60 TO 770
65000 132TH~in1-I
65100 TYPE 7669EM21II32THS
65200 766 FORMAT(4X' (ETRAHS..a4 AT API - IE12.41 FOR Y 1 121 3ETHS
65300 1 OF D/21)
65400 770 CONTINHUE
65500 lF(E112I.GT.E12ADl)EM2ADImEM21
65600 773 CONTINUE
65700 PPDADI=5. 8064E,06.PWPHN'EM2ADI

135



CHARLES W. YOUNG, JR.

*65800 PPDCL-0. 001*PWIRI* (76200*BDSD-oECLI) ..2
* 65900 TYPE 7769P!EDRDIoPPDCL 4-%

66000 776 FORMAT(/' POWER CAPACITY (AIR P.REAKDOIAI) uFIO.31
66100 1 KILOWATTS'/ POWPER CAPACITY (DIELECTRIC PREAKDOW.N) - ..

66200 2 F10.3' KILOW~ATTS)
66300 WJLC (UkLZ4WIL2*WAL3*jL46WL5) .SURFRS.0.5 vi

66400 ALMC-WLC/ (2. 0*PWRfl) .'

66500 ALCIIL8. 68589ALMC*bIGL .* -

66600 ALCDEFALCDPL.12. 0'WGk'L
66700 TYPE 779, WGCIICU
66800 779 FORMlAT(/' CONIDUCTIVITY (rORMALLIZED TO COPPER) OF
66900 1 WAVEGUIJDE W.ALLS - IF4.2)
67000 TYPE 781,ALMCPALCDFPFALCDEL
67100 781 FORMAT(' ATTENIUATION FROM CONIDUCTOR LOSSES -- ALPHA '*

*67200 1 Ell.46X=-F7.5' DB/FOOT OR 'F7.5' D.PWVELEtIGTHl)
67300 FLDF=WER*DLTo- (4. 0*Pt.IRN)4%

* 67400 ALD2=WLDS2.F.DIM*FLDF -

67500 ALD3=MLDS3*DPIMi.FLDF
-~ 67600 ALDL-ALD2.ALI'3 .

67700 ALDDFF-8.68589*ALDL*12.0
-6-;00 RLDDFL=1..G.LALDDF12. 0
67900 TYPE 7859DLT
6e.000 785 FORMAT(, DIELECTRIC LOSS TANIGENT = E9.3)

- 68100 TYPE 786, ALDL9,ALDDBF, ALDIEL
*68200 786 FORMAT(' ATTENULITIOll FROMI DIELECTRIC LOSSES -- ALPHA=

6 2 1:3 00 1 lEI1.56X=F7.51 DF.'FOOT OP IF7.51 DItoIWtAVELEf1GTWI)
*68400 790 COtITIML'E
*68Z-00 IF(IFFC.E0.0>GO TO 840

6 Si.0 0 795 TYPE 796
C-8700 796 F13RMT(, W.ISH NEWI FPEOUENCY? IS)

* 6~0 ACCEPT 210oIFFREQ
690 0 IF (I FFPEP. ElD.1) S TO 875
69000 60 TO 960

*69100 800 DDI1.0
69200D CALL LIIIV3F (TMRTX, DLU1MY'v4, MXSIZE, 32, DPDD29
69300 1 bIKAREA IER)
69400 DET-DDI*2. Q..DDZ
69500 XX-FPEO

-. 69600 IF (IFFC. ECI. )XX=PFDG
69700 IFUIRSF.rlE.I)6O TO 820
69S00 I F (tCOUT. ME. 1) 6 TO e810
69900 Fhl1DET
70000 XXMEbI=XUL
70100 60 TO 818
70200 810 DRX-0.0001
70300 1 F(IFFC.EQ. 1 >DRX- 0.0 1
70400 1 F(APS (XX-XXLD . T.DR. O.AE (DETF 1) GT. 0. 0 ) 60
70500 1 TO 813

* 706(10 60 TO 831
70700 813 XXlEIXX-FOLD. (XXOLD-XX) . (FOLD-PET)
70800 IF(DET'FOLD.LT.0.0)60 TO 815
70900 IF(XX.GT.X\*OLD)XLL-XX
71000 IF(XX.LT.XXOLD)XUL-XX
7-1100 60 TO 817

*71200 815 IF (XX. ST. NNOL') XUL=XX
01300 IF(XX.LT.XNOLD)XLL-XX 'L71400 817 1IF (XXMEtI. ST. XL'L. OR. XXfIEtW. IT. XLL) XXIEtti 0. 50 (\L'L+XLL
71500 818 FOLDwDET

* .1600 XNOLD-XX

71700 60 TO 825
*71800i 920 TYPE 821,FFECII:GDETIERP3rP(l(),P2SO(1),HH?rl)

* 7190 821 FOPIIRT<2F9.3vEl3.3.14t3E12.3)
72?00 e~ IF(XX.GE.XX2)GO TO 829

*72100 XXNEUmXX+XDEL
72200 825 CONITINUE
72300 IF(IFFC.EQ.I)SO TO 828
72400 FREQuXXI4EM eW~

72500 60 TO 290
*72600 82e BDG=XXhEW
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72700 60 TO 295
72800 829 TYPE 830
72900 830 FOPMAT(o" UICH IIEW TRYS AT ROOT? )
73000 ACCEPT 21O, IftE.Xx
73100 IF(IlE.XX.EO.0)6O TO 930
73200 IF(IFFC.E0.0 GO TO 245 % -
73300 60 TO 878
73400 831 IFPROT=.
7 %500 C **.. ROOT MU' I Nli.1r4
73600 833 IF(IFFC.EO.I)GD TO 890
73700 FCGHZ=FPEO
73800 835 TYPE 836,FCGHZ
73900 836 FORMAT(/" CUTOFF FREO Ii GHZ m'F8.4)
74000 IFMCAP=0
74100 IF(MIIDDE.NE.1.OP.tlMODE.lE..OR. JTTYPE.iE.I)GD TO 840
74200 C MODAL COIPOtiENT AMPLITUDES ARE CALCULATED ONLY FOR
74300 C OLSE(190) MODES' WITH TDIM GREATER THAN SDIM.
74400 TYPE 838
74500 s3$ FOPMT(-" ZWISH MODAL COMPONE14T AMPLITUDES? IS)
746.00 ACCEPT 210,IFMCAP
74700 IF(IFtCAP. NE.I1) TO e.40
74300 IFPAA=0
74900 MCAP=--
75000 GO TO 560
75100 840 TYPE 841
75200 841 FOFrlATI DO YOU MISH CALCULATIONS FOP FPEOL'ENCIET ".
75-:00 1 RIOVE CLTOFF" NO=09 YES=l ?'S-
.5400 ACCEPT 210,IFFFEO
75500 IF(IFFPEV.EO. 1)G0 TO 843
750.0c IF(IFFFEO.E,.0)GO TO 960
75700 GO TO 840
75:-:A 0 64: IFFC="

5"? (1 A IFPAA=0
76000 IF(MH1ODE.tiE. I .OR. 'IDIIEIE. 0.OR.JTTYPE.tNE. 1)GO TO 875
7610( TYPE C:46
7620-'0 846 FOPMAT' VUi.H POWtER F.'EAI:DOWN RIND ATTENUATION? 't)
76300 ACCEPT 210. IFFAA
76400 IF(IFPAA.MtE. I)GO TO 670
76.500 3,O TYPE 851
76E.00 *51 FORMAT(' rFPEAI:DDt.I STRENGTH (RELATIVE TO THAT OF
76700 1 DRY AIR) OF DIELECTRIC: I$)
7600(0 READ (59 P-DSD
. 6900 IFFDZ'1D.GE.3.0>60 TO 85S
77000 TYPE 856
77100 856 FOFRT(' PELATIVE I:F:EAKDOL'M STREIGTH OF DIELECTRIC
77200 1 SHOULD rE UfIfTY OP GREATER')
1773(,0 GO To S50
77400 858 TYPE 861
77500 361 FOPMAT(' COI4DUCTIVITY (RELATIVE TO COPPER) OF hIAVEGUIDE
77600 1 WALLS: IS)
77700 READ (5. o) IJGCtCt'
77800 865 TYPE .66
77900 ei86 FORMRT(' LOSS TANGENT OF DIELECTRIC: IS)
78000 REA (5. o) DLT
78100 670 TYPE 872.
78200 e71 FOPMAT<' WISH MODAL COMPONENT AMPLITUDES (YES-I) ?I.)
7;??00 ACCEPT 210.IFMCAP
78400 $75 TYPE 876
7E!5(#0 76 ~FORAT t I DESIRED' FPEC-*UENCY IN GHZJ OS)
73t.00 FEAD (..*)FPE0
7o700 IF'FFE0.GT.FCL0'c.GO To 878
7:':: (1 . T',FE 577

o78900 8717 FORMAT (' FPEO.ECY MU:T FE GREATER THAN CUTOFF FPEOUEMC'
479000o GO TO 975

79100 87e TYPE e79
79200 879 FOPMRT(/" WISH PETA ,bEA;.CHkO) OP FIX(|)' IS)
79300 ACCEPT 210, MPF
79400 IF(MP:F.EO.06 O TO e0-"
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79500 IF(I1RTF.EV..1)6O TO 885
79600 60 TO 878
79700 880 TYPE 881
79800 881 FOPAT (I BETA (DEc6X1H) -- STRTsSTOPpIlCREME1T9 '1S)

N79900 READ(5q*)XXl9XX2vXDEL %
80000 BDG=XXI
80100 6o To 265
80200 885 TYPE 886 0

830 86 FORMAT(' SET LOLIERLPPEP LIMITS ON BETA (PEG'-Ir*: IS)"a
80400 READ(5,o)XLLPXUL
80500 IBDG=XLL

-80600 XIEL=0. 5o XUL-XLL)
*80700 60 TO 265
-80800 890 BDGRBI'6

80900 W661L'L36O. 0'PrDC-R
81000 TYPE 8949FRE09M1~P
81100 89 FOFMRT(6X'FPEO11IXF.ETRIFI.3F5.3)
81200 . - - . -* .J

81300 IF(IFPAR.NE.1.ANDl.IFMCAP.ME.1)6O TO 795
81400 MCAMP.=1
81500 60 TO 560
e81600 960 TYPE 9E.2
S1700 9i2 FOPMAT ('',o LIVEGUIIPE PAFAMETEPS IND?.r'Ot 1

- 81800 1 ICE"XA9'>9S9'')FP' *

*F:1900 TYPE 963,ADIM1,ID1MDDIM.SDIMTPIMFDC -

881000 1963 FOPrT7FI0.4)
s8 I1o0 TYPE 96.59EMf1IODEY t1I'1DE, t*1ODEFCGH:, PNHOM

* 6 ~-:200 961; FOFrIT".-' W~AVEGUIIUE MDE IS L'1-(I ,1')5:
823'I 'CUTOFF FFEOULENCY INl GH ='F9.4x, IILIMEP OF H16HEP 0PP

20 M IODE.- LIEtj I1N ANALYSIS - '12'1)
82500 IF(IFFFE0.EC1.0)GO TO 980

(10 980 TYPE 921
8 2 70 0 981 FOPrIAT C-"" DO YOU W1IVH A P.EPL'r47 IS)

88800 READ (59 .)PEPUN
S2900 0T(9.4I4.,3 l3.4'15 c.910
83-c0(00 1 9 91S0) F:EPLUtI+I

83100 9S4 TYPE 985
82200 985 FOFMAT TO CHAN17,E: Fi=2p 1=3, 11=4, 1=5- T=A- EP:P=7,
8130 0 1 NI.IiEP OF MIODES Ill ANALYSIS=,"*, DEEIPE' rODE=9tSTAPT
83400 1 FP0M CCRATCH=10')
03500 Go TO 9e0
81,600 999 EUD

- ~ 8;'00 F~LICTIO?1 SINC(IS1NCMFS12,KINT1T,HRHPATIO)
s o380 SCXP=1 .570796. K$INiT*KHP'HPAT JO)

82900 SCXf1 1.570796. (K INIT-KHRoNFRT 10)
* $4000 IF(KINT.I1E.0.AND.KHF.IiE.0)GO TO 1120
* S4106' IF(KIt4T.E0.0.AND1.KHR.tE.0)GO TO 1110
*S-42010 IF(KINT.E.0.A1D.I.HP.EQ.0>GO TO 1100
* 84300 SIIC=1.O 0

84400 IF<MFSl2.EO.0)SIIIC=0.0........
64500 GD TO3 1130

*84600 1100 SIC0.0
*84700 GO TO 1130
*84800 1110 SINCMPFS1*SII1(SCXP)/SCXP

* 84900 GO TO 1130
*8500f0 1120 IF(APS(SCXM).GT.1.0E-051GO TO 1125
* 85100 SINCC IN~C*SIN (SC>NP) /SCXP~..0

85Z200 60 TO 1130
-. 85300 1125 SINC=KSIhC*SIN (SC\P) /SCPS1N (CNM>-SCf1

r.85400 1130 C014TIHULE
c 8500 FETUFft
85600 ENi'

PROGRAM CROOT3

00100 C FFOSFAti (F00T3.FOF
* 020 )0 DI147tiIOr XLc3 9TD(3) ,TANGri(3) PCA(3)'CI'DC3)
* oo:'o COM1PLEX CTI9CT2vCT39C612,CG3lCG23,PG
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00400 COMPLEX CFPPGAPCGSGTCITCZ
00500 TYPE 20
00600 20 FOFMAT(l PPOGRAM CRODT3 CALCULATES THE COMPLEX
00700 1 PROPAGATION CONSTANT OF A GIVEN'/' TRANSMIS2SION LINE
00800 2 B~Y USING THE MEASURED TRANSMISSION COEFFICIENTT
00900 3 1/ OF THREE DIFFERENT LENGTH SAMPLES TO .. *

01000 4 CORRECT FOR MISMATCH EFFECTS')
01100 TYPE 21
01200 21 FOR:MAT(' WISH PRINTOUT AS ROOT IS SOUGHT?IS)
01300 ACCEPT 215. IFRSPO
01400 24 TYPE 25

*01500 25 FOPMAT(' LENGTHS APE IN INCHES')
*01600 P13 2$ 1131

01700 TYPE 27,1
01800 27 FOPMATV' LENGTH OF SAMPLE *:1: S)
01900 READ (5, 0 XL (1)
02000il 28 COINT I NUE
02100 TYPE 30
02200 30 FORT "' MEASURPED TRANSMISSION DATA IS TO BE ENTEPED

02300I A'- L05 IN ZiP. PHASE IN DEGFEES')
02400 31 TYPE 32
021100 32 FORMAMT</' FFEOIENiCY IN GHZ: 'S)

*02-:.00 READ <5 o 0FPEC
0:-00 DO0 25I1.1

* O~00TYPE 33.0XL(I)
0 2a0 0 $3 FOPt1AT(' LOSS. PHAZE OF'F6.3' INCH SAMPLE: 'S.)

03,000 PEAD (5..#NTD1.(1) 9 TANGD(Q)
03100 35 CONT INUE

* 03200 TYPE 40
03300 40 FOPMAT(' ENTER FIRST TRY VALUES FOP ALPHA. F.ETA(DEG/1NI: 'IN

*034 00 :EAZ'5..A19FDI1
03*500 T1I1AGC= ID0. 0..-TDrE(l)/20. 0)
0'3.60(0 TZr:AG=10.0.(Tl )' 0. 0)
o3'.:(1) T 3 tIA'3= 1 0. 0. -T 1F Q3 '20. o:' .-

*l 030 T I FitiPT AtiGI, (1) /57. .2 57795
*03?i'0 T2Rrr'P= TArG..p 5 .2957795

J)4(000( T3RF-rfGF=TA?11GD (3) ^5? 7. 295795
* 041 00 TF2I =T2MAG. TI r1G.COS (T2AMGP.T I rIGP)

(4200 TI21=T2MAG#T1MAC S I NT2ANGFP.T IA1GP
0430(0 TR I3=T IMAG T 3MAG*COS; (T I iVGR.TANP)
(14400 T I Z=T 1MAG.T3MAG.SIN .T1ANGR.T3AtiGP)
014500 TR22E=T2!MAG.T2NAG.#COS (TS ANGF+T2ANGP)
014600 T I 2T1A.T1A. NT3AFIGF+TZAffGP)
047010 I'L13=XL(1)-XL(O)
04SOOl I'L,2=XL (3) -XL (2)
049.00 DL21=NL(2)-XL(1)
05000o ITFY~l
0510-0 ALPHA=A1
0 520 0 I:ET=P.D I 1 72957795
053,00 50 HCAI3=Ct3SHtALPHAoDL13)
05400 HSAI3=SINH<ALPHA4DLI3)

*05500 HCA21 -CtSH (ALPHA~'LF 1)
05600 H:A21=SItH(ALPHA#DL2I)

*05700 HCA?2-:=C0SH(ALPHA#DL3-:2)
05soo HSA32=SINH ALPHA#DL32)
05900 CFI3=COS(F'ETA#I3)
06000 SFI3=SIN(FETA*DLI3)
06100 CPS1=CDS PETA*DL21)
06200 SF21=S1N(FETA*DL2I)
06300 CF32 ,C05(FETAoDL3Z)

*06400 S.F32=SIN (PETA-IDL32)
06500 HSS13=HSAI3S13
06600 HSCI3=HSAI3*CZI3

*06700 HC:S13=HCA13*St13
06800 HCC13-=HCAI3#CrI3
06900 HSSZWHSA2I#5P21

*07000 NSC21mHSA21*CBP1
07100 HCS2IfHcAeI.Sk2I
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07200 HCCZI-HCA210CB21
07300 HSS32-HSA32*S232 ,

07400 HSC32HNSR32*C3
07500 HCS32-HCA32#SB32 ai
07600 HCC32-HCA32*CB32

*077,00 FR-TR32.HSC32-TI32.HCS32.TR2I14HSC21-TI21.NCS21
07800 1 +TR13*HSCI3-TII3*NCSI3
07900 FI=TR32.HCS324TI32.HSC32,TP21.HCS21.T12I.HSC21
08000 1 *TR13*HCS13*T1139HSC13
08100 FMAG-ScVPT (FR*FR+FI*FI)
08200 IF(IFRSPC.IIE.1)6O TO 60

*081.00 TYPE 58,RLPHRvBETRFRpFI9F1AG
03400 5S FORMAT (2F 10. 5 93E 10. 3)
08500 60 CONTRINUE
08600 IF(FIRG. LT. I. OE- 07)61) TO 80
OS0700 IF(ITRY.LT.11)60 TO 70
03800 TYPE 65
03900 65 FORMAT(' MORE THANI 10 TRYS AT ROOT')
09000 60 TO 80 lw
09100 70 PFRA=DL32* TR32.HCC32-TX32.HSS32> 4DL214 (TR2I .HCC21
09200 1I -TI21.HSS21).DL13.(TR13.HCCI3-TI13*HSS13)

* 09300 PFRIP=-DL32* (TR3Z.HSS32.T132.HCC32> -4'L21.(TR21.HSS21
09400 1.TI21.HCC21)-DL13.(TR13'HSS13+TI13'HCC13)

*095100 DET=PFRR#PFPA+PFRB#PFRP
* 09600 DELA=- (PFPA*FP-PFRF*FZ)/DET

09700DELP- (PFRP*FP+PFRA*FI) ',DET
V01 ID 0 ALPHA-ALPHA+DELR
09900o PETR=1:ETA+DELP

10000ITRY=ITPY.1
10100 GO TO 50

*c 1000 so kIDI=5Z.2?57795#FETR
10?00 TYPE 90(
10400 90 FORMAT(,,/ MEAS ::-3X'LEHGETH (INi) '3XTMAG (D1P 10Z5)
I 0500 1 TANG (IEG)')
I lit. 0 Do P5 1-19391

*10700 TYPE '!919 XL (1) 9TD(1), TAfIl'(1)
I 1 0 0 94 F1DPtAT(17.pF13.4pF16.39F12.Z)
1 iooc 95 CD[*IIIUE
11000 TYPE 1009FREQ'ALPHRiEri'

*11100 100 FDRI1AT(' FREOIUEIICY(GHZ) w*F7.3vXALPHA -IF6.494W
ii~oI 1 PETA(DEG'IIICH) -lF8.2)
11 c~oo TYPE Z20

I1(1 210 zI FORzMAT("/ WISH NIEW FREQUENCY DATAF 'S)
11500 ACCEPT Z159H1RERU1
11600 215 FOPMAtT(I1)

*117(10 GO TO(225w3,-225)IRERUHgI
I I1S r0 225 ENID
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