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ABSTRACT r..

We consider distributed parameter models for vertical mixing in lake and

sea sediment cores. Finite dimensional approximation schemes are developed

for the solution of associated inverse problems. The schemes permit one to *'-

estimate temporally and spatially varying functional parameters which appear

in the parabolic partial differential equations and boundary conditions

constituting the models. Theoretical convergence results are established.

Numerical findings are presented which demonstrate the potential of the

methods. An example involving the identification of a denth dependent mixing

parameter based upon volcanic ash data from the North Atlantic is included.
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1. Y1I WJCTIOU

In this paper we develop numerical appeoximation methods for the solution

of inverse problems arising in the modeling of mixing mechanisims evidenced in

lake and sea sediment core samples. In Particular we develop methods for the

estimation of temporally and spatially varying parameters in models involving .. 9

distributed (partial differential equation) systems. Our work has been

motivated primarily by the recent interest in models involving depth dependent

mixing rates and time dependent sedimentation rates. These ideas will be LI
discussed in detail in the next section.

The approach to be described below represents a significant improvement

over an earlier treatment of the problem by the present authors (see [6j).

Indeed, based upon a weak or variational formulation of the partial

differential equation and boundary conditions which compose the model that is e.,

the focus of our study (as opposed to using a semigroun theoretic approach),

the theory developed here leads to schemes which permit the estimation of both

temporarily and spatially varying Parameters under rather mild assumptions on

the set of admissible parameters. No prior assumptions need be made about the

"shape" of the functional parameters being estimated.

Another feature of the estimation Problems that are of interest to us

here which must be considered when approximation schemes are being develoed.

is that they generally involve observations at the boundary. This Doses a

significant mathematical problem since many mixing models involve Parabolic

systems which are often formulated in the state space H0 where point

evaluation is undefined. Under rather mild regularity assumptions we are able

to argue that our state approximations converge in the stronger HI and, via

the Sobolev embedding theorem, C topologies. Consequently, our schemes are

applicable to inverse problems in which the fit to data criterion involves

r4l
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point or discrete as well as distributed observations in the spatial variable.

The general approach we take here has been used extensively to develop %

approximation methods for the solution of inverse problems involving

distributed systems arising in a wide variety of application areas (e.g.

population dispersal, physiology, large flexible spacecraft, seismic analysis, 4

diffusion through porous media, etc.). A brief description of some of the

problems and the associated approximation schemes together with a survey of

the literature and a more comprehensive bibliography can be found in [i1.

We provide a brief outline of the remainder of the paper. In Section 2

the sediment core mixing problem is described and previous modeling efforts

are discussed. A particular model involving a diffusion/advection equation is

developed in detail and associated inverse problems are posed. The

identification problem is formally stated and the weak formulation of the

partial differential equation together with existence, uniqueness and

regularity results for solutions are discussed In Section 3. In Section 4 we

describe the approximation schemes and establish convergence results.

Examples and our numerical findings are given in Section 5. Our primary

objective in this paper is to present our theoretical results. The numerical

results discussed in Section 5 are preliminary. A more complete numerical

study will be described elsewhere.

The notation we employ is standard throughout. We denote by H (a,h) the

usual Sobolev spaces of real valued functions * defined on the interval (a,b)

k-1
whose (k-l)st derivative, Dk*, is absolutely continuous and whose kth

deiaie k fiinL0derivative, Dk* is in L2 (a,b) =H (a,b). The standard Sobolev inner products

and norms are denoted by <,> and respectively. For k - H(a,b) a(k 'k(a)a

function v (topt 1) + Hk is said to be an element in HO(totl; "k) if

• :. ." " ." .. . - ,..- ... - *- .. .. :-2*...... . - - .... . .. 2 ... . ... .. . . . .-.. ... . .. .. ... .- . . .
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t 2 21v I v(t)k dr} < .

o,.... 

We shall say v i H(t 0,tl;Hk) if v posseses j strong derivatives with

v(i) i L2 (totl;Hk), 0 4 i ( J. Defining

2 I
i0 t

R fIIV (0 2 dt/21/2

j o t l  )(t)kdt ..

i0

for v E Hi(tt l;H we have that the spaces {TH(t 0 ,tl;Mk) 1 I k  are

complete. For jok, we abbreviate notation for the norm by writing

''kk~k = 'k, k . ' ..

Finally for V a Hilbert space which is densely and compactlv embedded in

Hk and v E H0 (t 0 ,t;V) we denote the weak derivative of v, an element in

H (to,t;V'), vby where V' is the dual space of V. For 4 E V we have

where the inner product in the above expression is understood to be the

extension of the Hk inner product to all of V'.

%.
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2. Inverse Problems In Lake and Sea Sediment Analysis

Sediment formation in lakes and deep seas is of great importance to

geophysical scientists who use core samples of sediment in their

investigations of the history (e.g. palaeoclimatic changes) of the earth.

Unfortunately, the stratigraphic records contained in these core samples have

". been subjected to perturbations since ocean and lake floors are in general not

*. quiescent. Two general types of redistribution of sediment are often

significant: (i) gross lateral transport via ocean and lake bottom currents,

for example, though a continuous winnowing of bottom currents or through

episodic currents such as turbidity currents; (ii) the mixing activities of

*" benthic organisms near (on the order of 2-40 cm.) the sediment-water

interface. This biological mixing of sediments by organisms (which leads to

an interesting class of inverse problems in the analysis of sediments) is

called bioturbation 1241, [7J and takes place in sediment layers in bodies of

water (lakes, estuaries, the deep oceans) in which bottom water is not

substantially depleted of oxygen. Bioturbation is effected by different kinds

of organisms such as clams, worms, crustacea, echinoderms, etc., and the

mixing activities consist primarily of burrowing (e.g., for safety) and

ingestion - excretion reworking of the sediment for its edible organic

matter. Through the use of tracers from dated events (e.g., plutonium-from

atmospheric fallout from nuclear exposions, and microtektites - tiny drops of

sculptured glass resulting from cosmic events), it can be determined that the

biological mixing of abyssal sediments is quantitatively significant and takes

place on a relatively short (in regard to geologic records) time scale (10-20

years). Furthermore, there seems to be little correlation between

bioturbation mixing rates (which are highly variable) and sediment type or

sediment accumulation rates. However, the degree of bioturbation and the

.'. .* . ... .... .. . .. .. .. . .. . . .. .. .. . . * . . . . .. . .. . .. . ... . .. .
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depth of the region in which it occurs are related to the types of organisms

inhabiting a particular area.

Since bioturbation plays such a fundamental role in the alteration of

geologic records, it is not surprising that geochemists, geologists, and

geophysicists have in recent years attempted to understand the effects of

bioturbation well enough so as to enable one to properly interpret the

information contained in core samples, thereby sharpening the details in these

geologic records. A number of increasingly sophisticated mathematical models

along with related "inverse problems" can be found in the literature 1l1 1121

1131 1151 [161 117] [18] 1191. These models typically involve some tvpe of

region or chamber (ranging from a simple well-mixed chamber to one in which

mixing rates are depth dependent) in which mixing and advection or convective

flow interact to vertically redistribute sediment particulate matter, volcanic

ash, microtektites, radioactive tracers or other substances from episodic and

nonepisodic events.

One model which, along with its variations, has enjoyed rather widespread

usage involves the assumption that one has a vertically moving chamber

(assumed uniform in horizontal directions) in which mixing and advective flow

of material takes place and is described by one-dimensional (depth) transport

equations. Depth in the chamber is represented by coordinates x, 0 4 x 4 1

and the chamber (and hence coordinate system) is assumed to be moving upward

with a velocity V- V(t) (corresponding to sedimentation rate or, equivalentlv

in this case, sediment layer buildup) so that it is always located in the
I..

top I cm. of the sediment as depicted in the figure below. Thus x 0 is

always at the water-sediment

IC.
--.. .-. *- .

%° '

.7..'
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advective
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x

Figure 2.1

interface and the bottom of the chamber at x = I is located at that deoth

beyond which (it is assumed) no further changes (i.e., no bioturbation) in the

historical records occur. The resulting configuration with upward velocity

of the chamber can be equivalently modeled by the assumption of a fixed

coordinate system for the chamber with an advective/convective flow of

material downward through the chamber with velocity V. Use of the model by

numerous investigators (e.g. see [181, [191) strongly suggests that permitting -,

a time-varying sedimentation rate in such models is important.

If u u(t,x) is the concentration of material (e.g., shards of ash,

radioactive tracer, etc.) with whose movement one is concerned and j .(t,x)

is the material flux at time t and position x in the chamber, material

conservation is represented by the classical mass balance or continuity

equation

(2.1) -+- + Au =0,at ax

where A is a decay constant for the material (A = 0 if one is dealing with a

conservative tracer such as microtektites). Of course, the important aspect

'•i -
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of any such model is the assumption one makes regarding the material flux J,

which here we assume consists of a mixing component and an advective

component. In this case one is justified in assuming that the bioturbation

(b"urrowing, ingestion, etc.) takes place over a very short time scale

(essentially instantaneous) in the chamber and hence perhaps can be

represented by a diffusive-like flux component. The advective flux is given

by V(t)u and if one assumes a Fickian flux for the bioturbation with depth

dependent "bioturbation" coefficient D= D(x), one obtains

(2.2) j- D au -

The assumption that D is a function of depth is motivated by ones

expectation that the rate of mixing is generally higher near the well-

oxygenated, densely populated surface of the sediment mixing laver; this

expectation appears to be corroborated by experimental findings 111), 112J,

[131, 1191. A more fundamental question as to whether the biological

reworking of sediment is mechanistically analogous to molecular diffusion (and

hence is consistent with the Fickian flux assumption) is not so readily

answered. A strict analogy would neccssitate the existence of an abundance of

organisms, randomly placed in the chamber, mixing the materials in a manner so

as to produce a material flux proportional to concentration gradients. While

this is not a very likely description of the mechanisms of biogenic mixing,

one might still have a plausible quantitative analogy with diffusion if the

mixing rate is rapid and sediment samples which involve a large number of 1.

independent transport events of variable duration are chosen.

For boundary conditions at the upper boundary (x - 0) of the chamber one

has the flux condition J(t,O) G(t) when G is a possibly unknown input, while

+I

........ ... ...... . #...." .- ... "~..* "..* A ". . *-.... . - ,. -.. .. -.- . -. * *..*. ....- , j.; . .- . p... • . :.. ~ .~ -c:



the total flux at the lower boundary x = I is via advective loss through the

bottom of the mixing zone and thus J(t,) = V(t)u(t,l). Using the

constitutive relationship for j from (2.2) in these boundary conditions and in

the equation (2.1), one obtains the model

p..".

(2.3) a (- Lu VM ) - Xu, 0 < x < 1, t > 0,
(2.3 ax aVx) ax

(2.4) - D(0) 1 (t,0) + V(t)u(t,O) G(t)ax

(2.5) - D(£) 2-2 (t,x) o .
--.-ax

(2.6) u(O,x) = O(x),

where 0 is the initial distribution of material in the chamber.

The appropriate initial data assumption is closely related to the

assumption one makes about the input flux G. To illustrate possibilities, we

can consider several specific situations that arise in geological

investigations. A strong argument for steady-state input flux (G(t) =

constant) can be made in the case one is investigating a tracer such as lead

(210Pb) which exhibits a rather steady production rate from atmospheric (decay

of gaseous radon - 222) and oceanic (decay of radon-226) sources. For tracers

such as plutonium (239,240 Pu) and cesium (137Cs) which result from atmospheric

nuclear weapons testing, time dependent flux is more appropriate, and in some

cases, for appropriately chosen initial times, the assumption that 4 vanishes

is appropriate. In general though, in both cases one must estimate the

initial distribution 0, either as a part of the overall inverse problem or,

through an a-priori procedure using directly earlier (i.e. deeper)

. . . . . . . . . . . . . . . . . . .. . . . . .

.a .... .a .. .J .. ~ .. '*a ~ -. a -. * o
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concentration profiles in the sediment core. Finally, in the case of truly "

episodic events (ash shards from volcanic eruptions, microtektites of cosmic 4-

origin) an impulse input is most appropriate. This can be effectively modeled

by choosing an impluse like initial function 0 in (2.6) and taking ,,

C - 0 in (2.4). The magnitude of this impulse can sometimes be rather easily

estimated directly from knowledge of the total material content of the sample.

In any case, to understand the effects of bioturbation on the

distribution of material concentrations in core samples, it is sufficient to

have values for the parameters V, V, X, and 1, and, of course, to know that

use of these parameter values in the model gives one an accurate quantitative

description of concentrations found in core samples. It can be expected that

these parameter values will vary depending on the core sample and the material

under investigation. Hence one would like to have a procedure whereby given

data from a specific core sample, one can, with some confidence, determine the

correct" parameter values. In regard to this inverse procedure, for the

model above we note that concentrations in the historical layers (where time

in kiloyears can usually be related to centimeters of thickness of core sample

e.g., see [ll) represent concentrations at various times at the bottom of the

mixing chamber (i.e. at x = £). Hence data for the Process may be given

by Z(E) where Z(E) denotes the observed concentration of tracer material at a

height of cm. above the position in the core designated as time t 0. In

this event a typical inverse problem might be stated: Given

observations Z(i), i = 1,2,...,ic at core locations Ei, i 1 l,2,...,K find,

among some class Q of admissible parameters, parameters q ( D, VX,) that

minimize

K 2
(2.7) J(q) I tZ( i) - u(T(;V),) 2

i-&i

-. . . . .. '- - . .. .. ..-.-.. '.4 r -.... .
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where u is the solution to (2.3)-(2.6) corresponding to q and

t(-; V) = rVl(1) with r (t) - ft V(s)ds.

In addition to, or in place of some of the Parameters in q, sometimes it

is also desirable to estimate G and/or 0 in the formulation above. Of

course, in some instances the data from core samples will not support such an

inclusive inverse procedure.

The model formulated above is based on the assumption that the entire

chamber is available for throughput of material and that the sedimentation

rate is the same as the material velocity through the chamber (i.e. no

compactification of sediment takes place). In many instances porosity effects

and/or compactification are important and should be included in the model. It

is also sometimes important to distinguish between tracer materials and

sediment particles. These concepts require modifications of the modeling

ideas presented above.

We again postulate the moving mixing chamber but (for reasons that will

become clear in the sequel) now we let z denote the chamber coordinates (z - 0

is the water-sediment interface, z I t is the bottom of the mixing

chamber). The porosity * is the fraction of the chamber volume that is

available for flow (throughput) so that 1 - is the fraction that is

solid. We assume that the porosity O = *(z) is depth dependent and let p

be the constant sediment particle density (in mass per unit length of

particulate matter). If we furthermore let V- V(t,z) be the sediment Particle

velocity with respect to the z coordinate system, we may write separate mass

balance equations for the sediment particulate matter and tracer. Considering

first sediment particles, we have that the particle mass density in the
chamber is given by p (1-0) and the particle mass flux is given

by Js Js(tz) = ps(1-O)V " Assuming conservative particulate matter, we

nP. - '........8_J_ .'= .. _.,... ...........'.. . " . ........ ..,.... .. .- .... . . •'' -
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obtain the sediment mass balance equation

(2.8) - (1-0) + L (P(1-)) 0.

Note that this conservation law implies is is actually independent of z.

For the tracer, we have similar considerations regarding porosity excent

the flux is more involved since we have bioturbation and convective movement -

along with decay. (The sediment particles may also be mixed (ingested, etc)

but we cannot measure (observe) this - our observations being of tracer

material. Hence the flux for sediment particles only contains a convective

movement term.) Let c denote the mass of tracer per unit mass of sediment

particulate matter. Then the tracer mass density (mass per unit length of the

chamber) is given by cp (1-$) and the tracer mass balance equation can be
5

written

(2.9) . (cps(I-)) + + X(cp(1-$)) - 0

where JT is the tracer mass flux. Denoting the tracer velocity by VT so that

the tracer mass flux is given by IT = cp (l-*)VT' we may divide the tracer

mass flux into components representing mixing (bioturbation) and convective

flux

1T - CPs(1-)(VT -V) + cps(-)V

The term M cp( VT - V) may be regarded as a "pure" mixing tracer flux

(i.e. neglecting porosity) and if we make the Fickian assumption for this flux

term ".-

-- -- '-" - --'' .- ., -_'' .." -7 .. ...- • -
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z cps

ac

the resulting mixing flux is given by -p a1-0 z' " Hence we have[z

=P (1 + CPs(1- )V/ PI

T -pl0 ac

and the tracer mass balance equation (2.9) can be written

3~c)

(2.10) (cP (1-0)) + (P (1-f)cV) = -'. (P (1-0) D-L - XP (1-)c.
at a a s s S

The sediment mass balance equation (2.8) can be used to modify the tracer

equation. Observing that

- (C-p)) 
= c i- (p(1-0)) + p (1-0) -

a at ss at

-ci- (p(t-0)V ) + p 0(1-0 L

az z atac a ac--.

Ps( 1- 0)  V z Tz- (CPsOl- )v ) +  0, -* -t "'"

and using this in (2.10), we obtain

((+ p (1-0 V L (1-f) D X (1-,)c.
(2.11) s(l-0) s az az 9 Vw 8

In the case of constant porosity, this equation reduces to

*.. .q

(2.12) ..c + V c D -3( ) -Xc,at z a2  az

* . , - ° .

"°% .,% • ,,-.,.'_z_....". . ... ".".. ." ". .'. .". .'. .""". ." ".'" """-"".'.". ."".. .".". ." ". ." ".. .' "'
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which is the same as (2.3) if c is interpreted as volumetric concentration.

Equation (2.11) can be put in a form similar to (2.3) even when the

porosity * is not constant. We define a new independent variable x - x(z) by

x f (l-)d.

Assuming that p (1- ) > 0, this defines an invertible maooing between the

chamber coordinate variable z and the new variable x which is sometimes called

the "total sediment particle accumulation". We then have 1-0) ( - and

use of this in (2.11) yields

ac ac a ac
at ax ax ax

where E (ps 2-D)) and w 5 p s(-)V is the particle mass flux (called
S S

s above). We see that equation (2.13) has the same form as (2.3) and note

that in this equation, c can be expressed either as tracer mass per unit mass

of sediment particulate matter or in the more traditional interpretation as

tracer mass per unit length of the sediment column. Also note that in (2.13)

x is no longer simply the vertical distance in the column nor is E simply the

mixing or bioturbation coefficient. Moreover, in such models where vorositv

and compactification are considered, the concept of "sedimentation rate" is

more delicate. To elaborate on this, we may define M(t), the total sediment

mass at time t by

M(t) = h(t)ps~-)

'........ ......................... ........... ......
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where h(t) is the sediment column depth measured from some fixed reference

dh
coordinate system. Note that Ft represents the rate at which the water-

sediment interface is changing relative to a fixed coordinate system and hence

is the rate at which the sedimentation layer is increasing . Thus, this is

the "true sedimentation rate" V (t) which in general differs from the rate

V (t,O) at which particles are "falling" and passing into the chamber. The

porosity is often assumed to have the form

O(z) (*0- *1)e
-bz + -

* dM
where > if compactification takes place. Moreover, since W - is

the sediment particle mass flux already defined as p (1-O)V , we see that

dh
W(t) = ps(1-0(h(t))) t= ps(l-O(z)) V(t,z).

Then for > we have

V (t) V(t,O)

or, for a thick sediment column (so that * we have

V t) = __ < Va - (tO).
- .s
I. .
__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .............* ..
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3. THE IDElTIFICATION PROBLE"

In this paper we will concentrate our efforts on the develooment of

numerical approximation schemes for the solution of the parameter estimation

problem involving the simplified bioturbation model given by (2.3)-(2.6).

Methods applicable to inverse problems for more elaborate models (e.g. those

involving porosity and/or compactification effects) are currently under

investigation and our findings will be discussed elsewhere.

In this section we give a precise formulation of the identification j.]

problem and briefly outline existence, uniqueness and regularity results for

solutions to initial-boundary value problems of the form (2.3)-(2.6) which

will be required in the subsequent development.

If we make the change of variable y - x/1 and allow for the inclusion of

a sink/source term F - F(t,x) in the oartial differential equation (2.3) we

may, without loss of generality, consider the system for states v - v(t,v) and

parameters q = (ql(y),q2 (t),f(t,y),g(t),O(y),X,t) given by

(3.1) v(t,y) - (q(y) v(t,y)) - q2(t) *y v(ty)

- xv(t,y) + f(t,y), t > 0, y E (0,1)

(3.2) -q (0) - v(t,0) + q2(t)v(t,0) - g(t), t > 0

(3.3) -q1 (1) v(t,l) 0, t > 0

(3.4) v(O,y) f *(y), y E(0,),
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where the original states and parameters appearing in (2.3)-(2.6) can be

recovered from the relations

2DCx) q W"0,

-I.. *-

V(t) = £q 2 (t), PF

F(t,x) f(t,x/X),

G(t) = Ig(t),

*(x) = (x-

and

u(t,x) = v(t,x/x).

The least squares performance index (2.7) takes the form

2(3.5) J(q;v) Z IZ(i) -v(T(E;q2),0'

where v is the solution to (3.1)-(3.4) corresponding to q.

In what is to follow we make the standing assumption that the sink/source

term f, the boundary flux g and initial conditions f are known or have been

estimated a-priori. The parameter vector q is assumed therefore to be of the

form q - (ql(y),q2 (t),),L), Treating this somewhat scaled down version of

the original identification problem will capture all of the essential features

° . - *1 -. . ' . . . . . .* - .. . * * K K * -
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of our approach and at the same time keep the presentation and discussion as M

simple as possible. In addition, this formulation is more than adeauate to

treat the identification problem corresponding to a set of observations

involving volcanic ash data which has been the primary focus of our research

to date (see 161 and Example 5.3 below). The necessary modifications to our

theory so as to allow the estimation of the input terms f and q and the

initial data * are relatively straightforward and have been discussed in

detail elsewhere (see [3], [41).

0We assume H (0,I) and that there exists a T > 0, sufficiently large

for which the mappings t + g(t) and t + f(t,.) are in H 0 ,T) and

HO(o,T;HO(0,1)) respectively.

Define

Q= C[0,11 x H (0,T) x R x R

with the usual product space topology and let Q 01 X 0 2 x A x Lc Q satisfy

the following hypotheses:

(HI) Q, is a compact subset of CjO,1J and there exist constants V and v

such that 0 < v ( ql(y) ( v, v 1 10,1J for all I Q1

(H2) Q2 is a compact (with respect to the H topology) subset of C110,TI

with 0 < ti q2(t) v V and 4q2 (t)J • v for all t i [0,TJ and all

2 Q2, 2

(H3) A is a compact subset of R with 0 A ( v for all A E A,

. . . . . .. .. 
. .

* *-* ,. 2.".
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(114) L is a compact subset of Rlwith 0 <i w 4 1 4v for all I E Lo 4

it is clear that (Hi) - (H14) above imply that Q is a compact subset of Q

Letting H - H (0,1) and V - H'(0,1) endowed with the standard Sobolev

inner products we have the usual dense embedding V c H c V. For

each t ( t0,T) and q = (q1,q2, X,L) EQdefine the bilinear

form L(t;q): V xV *R by

L~t;q)(x,*) (qDx,D*>0  q2(t)< X1D*>0

+ X <x,'F>0 + q2 (tOXMl(l), X,' E V

and consider the weak form of (3.1)-(3.4) given by

(3.6) <v(t),qi>0  L(t;q)(v(t),vP) = f(t),V')0 + (t)i,(0), t > 0,i V

(3.7) V(0)=

where v(t) =v(t,*) and f~t) =f(t,*).

Hypotheses (HI) -(H4) imply that for each t [ 0,T], q i 0 and X,* E V

I L(t;q)(X,4)il 4 4v 1XI1 1 *411

and that L(t;q)(-,.) is strongly elliptic. It follows therefore (see 1101,

Theorem 10.3.4, (211 Theorem I11. 5.A.) that it is V-coercive; that is, there

exists an a i R such that
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L t;q)(,) + a 2 2

0 l

8 > 0, for all 4 E V and t i [0,TJ. If we rewrite the terms on the right

hand side of (3.6) as

<f(t),*> 0 + g(t)0) - <f(t),*>H

where f(t) f f(t,.) + g(t)S(.) and 6(-) denotes the dirac impulse at zero,

then H0(0,T;V ' ) and standard results (see 1141, Theorem 111.1.2) yield

that the system (3.6), (3.7) admits a unique solution v E C([0,TI;H) with

0 0v i H0(0,T;V) and H (o,T;V').

Under additional regularity hypotheses on q1 , q2 ' f, g and 4, smoother

solutions to (3.6), (3.7) can be obtained (see below). When these solutions

are sufficiently smooth and ql, q2, f, g and f are sufficiently regular, they

coincide with either strong (defined in terms of evolution operators, see

[231) or classical (see 1101) solutions to the original initial boundary value

problem (3.1)-(3.4). In light of this, we formally define the identification

problem as

( P) Find q i Q which minimizes J(q;v) given by (3.5) where v is the

solution to (3.6), (3.7) corresponding to q.

As is typically the case with Ritz-Galerkin based methods, in order to

demonstrate that our approximation schemes converge, additional regularity of

solutions to (3.6), (3.7) will be required. We state the following theorem.

0.-

-I
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Theorem 3.1. Suppose C [0,T]. Let n be a function in
2q

C (10,TJ x 10,1j) which satisfies a

.6

i) n(0,y) = *y), y E (0,1)

(ii) -q1lu (0 - n(t,0) + q 2 (t)rt(t,0) g(t), t > 0

and define

h(t,y) =f(t,y) + (- ql(y) nyr(t,y)1 } 2 t ~ n(t,y) -Ari(t,y)- ntv)

If h EC (10,T] x 0,1J) and

-h(Oy) =0, yE(0,1), .1-0,1,
at1

then v, the solution to (3.6), (3.7) is an element in M1C0,T; Ml(O,1)) and it

can be identified with functions in 1 ((0,T) x (0,1)).

The proof of Theorem 3.1, which has been omitted, can be argued using

Theorem 10.6.17 in 110i.

The conditions specified in the statement of Theorem 3.1, which of course

are only sufficient conditions, are rather restrictive. However, they can he

used to derive specific and not unreasonable conditions on the initial and

boundary data ( ,g) and parameters qj1 q2 to insure regularity of solutions to

(3.6), (3.7). Although the theorem above is not the most general one

possible, it suffices, for our purposes here, to simply demonstrate the
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existence of H (0,T;H (0,1)) solutions. It is in fact the case, that while

regularity of solutions is necessary to demonstrate convergence, it has been I
our experience that it has little or no effect on the actual Performance of

the schemes when they are applied in oractice.

*1.-

I..%
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4. APPROXIATION

In this section we develop approximation schemes to solve the parameter

estimation problem (P). Fundamental to our approach is the construction of a .1
sequence of finite dimensional identification problems, each of which has a

solution that can be found using conventional techniques and readily available

software. We demonstrate that under appropriate hypotheses, solutions to the

finite dimensional problems, in some sense, approximate solutions to the

original infinite dimensional identification problem (P).

A two stage approximation process is employed. We first use a Ritz-

Galerkin approach to approximate the infinite dimensional state equation (3.6)

by a sequence of finite dimensional ordinary differential equations. The set

of admissible parameters Q, a subset of the infinite dimensional fanction

space Q is then discretized. The result is a sequence of optimization

problems involving the minimization of a least squares performance index over

a compact subset of Euclidean space subject to finite dimensional constraints.

For each N - 1,2,... let VN be a finite dimensional subspace of H

N .N k NN
satisfying VN C V. Suppose VN span and define P :H + V to be the

orthogonal projection of H onto VN with respect to the H (i.e., <.,.>0) inner

product. We make the following hypothesis about the approximating properties

K N
of the subspaces V

1-N N
(fS) For each W EH (0,I), 1*-P *1 + 0 as N with 1*-P 4I C k 1 for

some constant k independent of N and *.

The usual spaces of linear or cubic B-spline functions, among others, are

known to satisfy Hypothesis (H5) (see (201, [22J).

. ". o . .

i- -..
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The Galerkin equations in VN corresponding to the system (3.6), (3.7) are
, %.,

given by

(4.1) < >N(t),0N >0 + L(t;q)(vN(),'N) < f(t)'N>0 + g(t)* (0) t > 0, V

(4.2) vN (0) = P N

where vN(t) E VN, t ) 0.

The state approximation given by (4.1), (4.2) is the first stage of our

approach. We argue that sufficiently smooth solutions to (3.6), (3.7) are

approximated by solutions to (4.1), (4.2) with a certain degree of uniformity

in q. The standard arguments (see [31) yield the convergence of vN(t) to v(t) L

in the H0 norm for each t [ [0,TI. However, since the least squares

performance index (3.5) of particular interest to us here involves

observations which are pointwise in the spatial variable, we will require that

state approximations converge in the stronger HI norm.

Theorem 4.1 Suppose {q NI is a sequence in Q with q N+ q E 0 as N + .
N-1l

N N -'"

Let vN denote the solution to (4.1), (4.2) corresponding to qN and v the

solution to (3.6), (3.7) corresponding to q. Then if Hypotheses (HI) - (H)

1 1 1
hold, * E H (0,1) and v i H (0,T;H (0,1)) we have

lim IV (t) - v(t)I1 0

for each t E [0,T].
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Proof.

N N NN
Let q = (ql,q 2 ,,A AN ) and q = (q 1 ,q 2 ,Xt).

Now

IvNt) - v(t)11 < 1vNct - pNV(t),I + I(pN-I) v(t) 1 .

The regularity assumptions on v and Hypothesis (M1) imply that the second term

on the right hand side of the above estimate tends to zero as N + - for each

t [ I0,TI. We therefore need only to consider the term Iv N(t) - P Nv(t) 1 .

N N NLetting z (t) = v (t) - P v(t), (3.6), (3.7) and (4.1), (4.2) vield

ON N N N N N. N N
(4.3) < z (t),# N >0 + L(t;q )(z (t)' o) < (I-P )v(t)' $N >0 + L (t;q)(v(t),* N )

- L(t;qN)(PNv(t),*N), t > 0, 1 i VN

JJ

4N

(4.4) zN(0) fi0.

In order to simplify the presentation, we suporess the disnlav of explicit t

N *N%7
dependence. Choosing z z , we rewrite (4.3) as

;N2 +d N N2 id N N 2

0 2 dt I 1 2[z -1

I ;NN 2 + I % 2 d. NN.2

[ZiNi {qN <o-~- z Dz >0

+*N N N N *N Nq2 < z Dz >0 + q2 < z Dz >0

N ;N d N N
<(I- P),z >0 + -< Dz >0
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AN zN >0 +  - <  Dz *N N

1' 0 dt 2' < 2 1 >0

N,;N > d LA  N I + N N+ < >0 dt u 2 1r I 1 1+ z1

where AN(t) = q Dv(t) - qNDPNv(t) A q2(O N v(t)- q2 (t)v(t),

A N (t) - Av(t) A NpNv(t) and [w] = [w(t,.)j 1 = w(t,1).
XV

Hypothesis (H2) together with repeated application of the inequality

2 1 1* 2,

(4.5) <X , clxi +  I2 c > 0

yield

N 2 + Id N N 2 N N 2 N N 2

z0 2 dt 1 102 0

N Z v I I + _ +
DzN

T - IDzNI } +j {qz zNDzN >

{VlclNi2 + _L N~ 2 + LJN< zN N>+

N N + N N ANj N 1 +<A,Dz >0 < A2 ,Dz >0 - A2 1zN 
+

I p 2 + N2 *N 2 1 N2
4c - )o + c 02z 1 1+0 Io +. JDz1

I *N 2 1 zN 12 +I IN12 + *,N,2 +L *Nj2 + zN12+ IA210 + D + -4 X0 0 2 2 1 2

Choosing cl such that (v+2)c < 1, we can eliminate terms involving lz I

from the above expression to obtain

- "4. .
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I L VqNN 2 N, N,2 N zN ,2
?(4.6) idt 0N N N

(4.6) dt I qDz 10 + q~tz Ji+1  1

+ zN2 + y N2 (. + v 1) DzN

I 2 1 2 0 2 I *2

+ IAN,1o + [IN 21 + + q2 < zN'D)zN >0"
+ , 1( )v,,,z+- o ++ I2l

N N N N> N
+ <A D z >0 + <A - NAJ I il l .

Integrating (4.6) from 0 to t, applying Hypothesis (HI) - (H3) and recalling

(4.4) we find

NT Nt-N
" N (t) 4 K f 8 (s)ds + f P (s)ds + aN(t) - a (0)

0 0
where

eN(t) , [N(t)I2 + i(t)1 2 + IDz(t) 2  + _L,-ON.2

N 4 1 2 1 N 2 2(010

+Nt ANe- (t + [N(t)O 2"ixtl+ I0

a N(t) "q2 )  N N(t),Dz N(t) >0 + <AN (t) ,Dz N (t) >0-""C-.-
q2(t) < z 0tD 1t 0. t,

N N N N+ < (t),Dz (t) >0 - 1A2(t)Ji 1z (t)]
v+2 v 2-

and K - + -

vi 2jjc1

r ~I; '

• ° "
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Once again employing (4.5) we obtain

N N 2 0 + 2 1 N

+ ~ ~~ N 2 11_I N12 } ~

c2 IDzN 2 + 1 I 12 + 4c 2DZN0 I
+ I. 1 N 2 N 1N2

Cc2  "21 e~z1

V N2 N -N

4c Iz I~ + C3  II+
where c3  (v+2)c 2 and

+ =] I2 t  +

Choosing c2 such that c3 < 1, we obtain

1-c 

where

AN(t) p ( T + N (t) + + 1 (01
I-c 2 4 1

3 0 2

Applying the Gronwall inequalitv to (4.7), the desired result will follow

once we have shown that 8 Nt) + 0 as N + for each t [ O,T]. The assumption

that v i HI(O,T;HI(0,1)) together with standard estimates yield

TN 2 N 2 N 2
(4.8) f p s)ds < K {Iq I - 1. + q- + I xl2} v12

+ K21 0 N 2
K2 P )vI1 ea.-.
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(.)A (t) 4 K3 f Iq I q1 I~ + 14 q2 1D) IV(t)t' + K(1( P )v%

(49 41 -' 2 N N 2

and

N 2 N 1: 22(4.10) a (0) 4 K 3 {jq I- 11 + -q q 2i 1~ + K 41(1 - W I.

where Kip 1 1,2,3,4 is a constant which does not depend on N or q E0.

It is immediatelv clear from (4.8), (4.9) and (4.10) that Hyvnothesis 059)

together with the assumptions that v C H1(0,T; Hl(0,1)) and * C HR (0,1) -

T NN N
imply f pN Wds + 0, A (0) + 0 and A (t) + 0 for each t C [0,T] as N + "

0
Arguments similar in spirit to those above, although greatly simplified, can

be used to show (see 13]) IzN 20 + 0 as N + for each t j [09T]. We

conclude therefore that 0 (t) + 0 as N + for each t j t0,Tj and the theorem'

is proven.

An application of the Sobolev embedding theorem (see 1211) yields the

following corollary.

Corollary 4.1. Under the hypotheses of Theorem' 4.1 we have

Nlim {U su IV (t) -V(t))- 0 -

N- 10,11

for each t t0,T].

We consider next the second stage of approximation; the discretization of

the set of admissible parameters, Q

For each m -1,2,... we consider approximation spaces

S1 C CtO,1Jq S span and Sm and (09T), - span {im and let

m m miillt' m i-

%~
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1 2  or eachImJ m denote mappings Im  C10,11 S , 3 m or +aS m

M = (m,m) withmE Z, i 1,2 define Q C: S xl S 2 x A x L c by12 i M m IM 21 2_

(4.11) (Q M ( - x x A x L.

We shall require the following hypotheses on the mappings 1M

(H6) The mapping 14 Q + Q is continuous

(Hi) For each q i Q, 1, (q) + q as m 1 ,m2 + with the convergence .-

uniform in q i Q. .

Note that Q compact together with Hypothesis (6) imply that 0 is a comnact

subset of 0 . Note also that we do not require Q C Q.

Once again typical choices for Sare spaces of linear or cubic

spline functions corresponding to meshes A 1/m and A = T/m respectively

with the mappings Im and Jm being the usual interpolation operators. Under
m• m

appropriate assumptions on Q, it is not difficult to show that these choices

lead to discretizations which satisfy hypotheses (H6) and (W7). (See 141,

151).

We consider the system (4.1), (4.2) for qM Q 04 " We obtain the initial

k N
value problem in R given by

(4.12) MNw'N(t) + L N (t;a)wN(t) - FN(t) .

(4.13) wN(0) - ( MN)-IwN

...
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V

1 2 3 4 1 5m2 1 1where a (a a a a EIfM a compact subset of R x R xR x R

and

(4.14) 1 - N N

(4.14) M q i I f > ..% t

(4.15) L (t;c)] =E mfI I,<k D+N f N >
M j k-i m I 1 .0

V -...

m2 2 <k N N N 3 N N

(416 k1 t X <ft 2*> +(t) *Ti$ f O(1() +110)>0

(4.17) N N

i,j = 1,2,...k N and

N Nkv (t) E (00-

i-i-.°-.

We define the sequence of approximating identification problems as:

N N
P Find qE QM which minimizes over Om the functional J(q; v ) given

by (3.5) where vN is the solution to (4.1), (4.2) corresponding to q,

or equivalently:

Find a E fl which minimizes

N K kN vN N 4 '2 2 k N 2
J (a;w )  iE .-1 ((i;W k-i Xm2k )N (I

% m
.=-2
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where wN is the solution to (4.12), (4.13) corresponding to a.

It is immediately clear that for each N, M and a E M the sytem (4.12),

(4.13) admits a unique solution which depends continuously upon a. We have

therefore, that for each N and M, problem ( N ) has a solution' M

N -N
(q) QM Since M =  H(Q), there exists q E 1 0 such that

N N

'M (qN) = (q M). Now Q is compact. Therefore, there exist [Nq C fq I

and an element q E Q such that q q in Q as J,k. . This
Mk

subsequence can always be chosen so that N and (ml)k, (m2 )k + * as

j,k + . Now

N 1  NNJ * N ~
J((o1M ;v ) ; (q;v ), q

and consequently, from (4.11) , we have

(4.18) J((q )*;vJ) V J( lM(q);v 1 ), q E Q.

Hypothesis (H7) and

'qi) - qIQ q M
Mk k k MkO k Q

N *

imply (q ) + q in Q as J,k + W. Taking the limit as i,k - in (4.18)

Mk

and applying Corollary 4.1 (with an appropriate re-indexing and the assumption

that the necessary regularity conditions are satisfied) we obtain
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*J(q* ;v) 4 J(q;v), q C Q

where v denotes the solution to (3.6), (3.7) corresponding to q ;or that q

is a solution to problem ( P )

We summarize these results in the following theorem.N

Theorem 4.2 For each N -1,2,... and M E Z x Z let problem (P h e as

it has been defined above. Then if hypotheses (HO) - 0T7) hold, each problemi
N N

P has a solution (q N. The sequence f ~ N admits a Q-convergent
* 1

subsequence, the limit of which, Q, is an element of Q. Tf i M ' (0,I) and

v the solution to (3.6), (3.7) corresponding to q* is an element in H(0T

pH'(0,1)) then q* is a solution to problem (P ) Moreover, for any convergent

N N*N
subsequence {(q I )C {(q )Iwith (q + q ,N * and m~k

Mk MMkm~k

(m2)k + as J,k + and v C H (0,T;H (0,1)) we have that q is a solution

to problem (P )

%
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5. Numerical Results

In this section we present a brief summary of some preliminary numerical L

results. Our primary intent here is to simply demonstrate the feasibility and

efficacy of our approach. A more complete study involving a somewhat broader

spectrum of examples (including pathologies) and more sophisticated anproaches

to solving the approximating optimization problems will be discussed in detail

elsewhere.

We consider inverse problems for systems of the form (2.3)-(2.6)

involving the estimation of a spatially varying diffusivitv coefficient

D V(x). We assume that the advection rate V is constant in time, that there

is no boundary flux and that all parameters, with the excetion of the r

diffusivity, are known. We also allow for the inclusion of a sink/source

term, F = F(t,x) in (2.3).

Transforming both the space and time coordinates to dimensionless

variables; y = x/1, s = Vt/i, we obtain

(5.1) v(s,y) = q(y) v(s,y) v(s,y) - a v(s,v) + f(s,y), s > 0, v (O,l

(5.2) -q(O) y v(s,O) + v(s,O) 0 s> 0

(5.3) -q(l) L v(s,1) - 0 s > 0

(5.4) v(O,y) -0(y) v E (0,1)

where v(s,y)= u(Xs/V,1y), q(y) - V(1y)/V, a - W/, f(s,v) -F(1s/V,1v)/V,

, . : _ -- , .: .- -- ,. .. . . : . -. . . . , . ,. ., . ,. . . -,.,. . . , .-. . .. . . .. . . __ .
..... .... . . . ........ ... ... .'' : " , , " " " -_'". ,:' '-.-.'. ''.-."-' ' '-- ,-
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and (y) f(y)."

In addition, for our discussions here, we assume that observations

{ ij for v (equivalently, u) at times si, i f I,...,i andii i ,..., ,

positions yj, j - ,...,v have been provided and consider the least squares

performance index of the form

~ V2
J(q;v) i v(siy) - 2

where v is the solution to (5.1) - (5.4) corresponding to q.

All computations were performed on IBM 3081 processors at Brown

University and the University of Southern California. The approximating state

spaces V were chosen as the span of cubic B-splines defined with respect to

the uniform partition {0,1/N, 2/N,...,I} of the interval [0,11. The set of

admissible parameters was discretized using linear spline functions with

respect to the mesh {0,1/M,2/M,...,l}. Note that in this case we have . -

kN = N + 3 and UM = M + 1. The inner products in (4.14) - (4.17) were

computed using a composite two point Gauss-Legendre quadrature formula. The

use of B-spline bases leads to banded generalized mass (M N) and

N
stiffness (LM) matrices.

NThe finite dimensional optimization problems (P were solved using an

iterative Levenberg-Marquardt scheme as implemented in the IMSL Library

routing ZXSSQ. Gradients and Jacobians are computed by the routine using

finite difference approximation with rank one updates in each iteration. We

also attempted to solve the finite dimensional optimization problems using a

quasi-Newton algorithm, a scheme due to Broyden, Fletcher, Goldfarb and Shanno

(BFGS) (see 191), with analytical gradients computed using a co-state

formulation (see [21, [81). Our preliminary findings point to the conclusion

P -. - - -' S J. ,t V V~ t . - -- - o°
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that the latter approach is inferior. We found that it was extremely

difficult to obtain accurate search directions with the gradients computed in

this manner. However, we are continuing to investigate these ideas with the

intent of improving numerical performance.

In the examples that follow, the compactness constraints on the set of

admissible parameters Q were not explicitly enforced when the finite

dimensional optimization problems were solved. As could be exoected, this did

lead to some conditioning problems when M became large. The use of a

constrained optimization package to solve the finite dimensional oDtilization

problems is currently under study.
N
k

The initial value problems (4.12), (4.13) in R were solved in each

iteration using Gear's method (IMSL Library routine DGEAR) for stiff systems.

EXAMPLE 5.1

We consider the system (5.1) - (5.4) with

2
q(y) 1 + y

+y2  -s
f(s,y)- (2- 8y + ly2)e 2J
N*(y) 2 + 2y -

and a 0. We estimated q from observations at {(si, Vj)},f 0 1 2 . 8

generated using the true solution to the system

2 -
(5.5) v(s,y) , (2 + 2y - y )e-

where si - .251 and yj - .25J. The initial estimate for a suoplied to the

,- °,
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optimization routine was taken to be

q0 (y) 1 1, 0 ( y ( 1.

Our results with N = 32 and various values of M are summarized in Table 5.1

below. The case M = 0 corresponds to the best fit taking q to be constant

over the entire interval.

Y qo(y )  q 1 (y) q2(y) q3 (y) q4(
v ) q(v)

0.0 1.172 0.920 0.961 0.978 0.987 1.000
0.1 1.172 0.992 1.006 1.014 1.015 1.010
0.2 1.172 1.065 1.052 1.050 1.042 1.040
0.3 1.172 1.137 1.097 1.085 1.092 1.090
0.4 1.172 1.209 1.143 1.164 1.164 1.160
0.5 1. 172 1.282 1.208 1.264 1.236 1.250

0.6 1.172 1.354 1.354 1.364 1.363 1.360
0.7 1.172 1.426 1.500 1.479 1.490 1.490
0.8 1.172 1.498 1.645 1.624 1.637 1.640
0.9 1.172 1.571 1.791 1.769 1.804 1.810
1.0 1.172 1.643 1.937 1.914 1.972 2.000

-3 -4 -6 -6 -6J(qM)  6. x 10 2. x 10 4. x 10 3. x 10 3. x 10

CPU 0:49.92 1:00.53 1:29.49 2:02.02 2:35.82
(M:S)

TABLE 5.1

RKXAMNL 5.2

In this example we estimate the non-monotone, single neak function q

given by

q(y) (1 + ay)ebV

.•- . . . . ... .. . . . . . . . . . . . . . . . . . . . . . . .

*. . . . . . . .*~ . . .. . . . . . . . . . . . .
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with a 1 10.43 and b 2.43. Taking a - 0,

f(s,y) (y2 (ebY - 2ab) + y(2ab + 4a - 2b) + (2b - 2a + 2 -4e))e

and V
*(y) 2 + 2y - 2

The true solution to the system is again given by (5.5). Using the same

observation points as in the previous example, setting

0
q (y) 1.5, 0 (y 1 1

and taking N = 6 and M - 4, we obtained the fit for q shown in Figure 5.1

below.

2.00-

1.75

1.50-

1.25

1.00L
0.0 .25 .50 .75 .00

ilcum S.1I

6* -6
The residual was J((q 3. x 10

4 -
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The scheme performed well when N and M were chosen relatively small.

Increasing either N or M independently yielded some improvement initially.

However, this was followed by the onset of ill conditioning in the finite

dimensional optimization problems as the number of degrees of freedom in

either the state or the parameter space discretizations were increased.

(Based on our initial computational findings with other examples, we PI

anticipate that enforcing the compactness constraints on the set of admissible

parameters will remedy this situation.) The scheme also began to have some

• difficulty if the parameters a and b were chosen so as to cause the total

variation of q to be too large.

EXAMPLE 5.3

We estimate a depth dependent bioturbation coefficient using a set of

observations from a volcanic ash concentration profile measured in a sediment

core sample taken in the North Atlantic. We consider the model given by (5.1)

-(5.4) with a - 0 (we are dealing with a non-radioactive or conservative

tracer), f = 0 and

(5.6) 0(y) m6(y)

where 8 denotes the unit impulse at zero and m is the total mass of ash in the

sample as determined from the data.

We were provided with the estimate V- 2.5 cm/kvr for the sedimentation

rate in the region where the core sample from which our ash data came was S..

taken. In addition, by invoking (possibly inappropriately in the presence of

depth dependent mixing) the observation in [111 that the concentration-

. .'
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weighted mean depth of the ash profile in the historical layers is the depth

in the core at which the ash layer would have been observed had no mixing

taken place, we estimate Z, the depth to which mixing takes place (see (61) to

be 17.25 cm.

Using the estimates for V and I given above we are able to convert the

depth scale on which our data is specified to an equivalent s-scale. Our

observations turn out to be given at temporal locations s = .1449251,

i 0,1,2,...,16 and of course all at the spatial location v - 1.

We set N - 32 and used our scheme to estimate q for various values of

M. We approximated the impulse initial conditions (5.6) by

( -432 .

where 12 denotes the normalized (f f 1) cubic B-spline corresponding to

the uniform mesh {0,1/32,2/32,...I} which is centered over zero. This

approximation is justified by the relatively narrow support of the B-solines

and the fact that it eliminates the error which would be introduced if any

other impulse function approximation were projected onto the subsnace of

splines.

The initial estimate for q was taken to be

0q (y) - .02198, 0 4 y 1,

the optimal estimate for q obtained in 161 using this set of observations and

the assumption that the mixing intensity is constant throughout the mixed

layer.

..-::.
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The model (5.1) - (5.4) with depth dependent mixing rate vielded some,,..-

although not a significant, reduction in the residual when compared to the fit

obtained using a constant mixing rate model. (See Figure 5.2 below.)

N.-.

2o data

20- ---- .... .e model (Pconstont)
18- model (Pdepth

k shards 16- dependent)
gram '14-

10-
8-
6-
4-I
2.- -

0 5 10 15 20 25 30 35 40
(cm. up-core)

UIR 5.2

In addition the optimal mixing rate profiles produced by our scheme did not

agree with the widely accepted hypothesis that mixing is most intense near the

sea floor/sea interface and then decreases with depth (see Figure 5.3).

L ..
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2.0

\kyr /';'

1.0-

0(x)
0.0

0.0 8.625 17.25
X a- (cm.)

FIGURE 5.3

Based upon these findings, we conclude therefore that the inclusion of a

depth dependent mixing rate alone can not significantly improve our abilitv to

explain this set of observations. Other enhancements of the original model,

(e.g., time dependent sedimentation rate, porosity and/or compactification

efffects) must be considered. The scheme developed here should prove to be a

valuable tool in the investigation and evaluation of these modeling ideas.
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