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Brown University '’

Providence, RI 02912
A
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ABSTRACT

We consider distributed parameter models for vertical mixing in lake and
sea sediment cores. Finite dimensional approximation schemes are develoned
for the solution of assoclated inverse problems. The schemes permit one to
estimate temporally and spatially varying functional parameters which appear
in the parabolic partial differential equations and boundary conditions
constituting the models. Theoretical convergence results are established.
Numerical findings are presented which demonstrate the potential of the
methods. An example involving the identification of a denth dependent mixing

parameter based upon volcanic ash data from the North Atlantic is included.

(*)This research was supported in part by the National Science Foundation
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l. INTRODUCTION

In this paper we develop numerical approximation methods for the solution
of inverse problems arising in the modeling of mixing mechanisims evidenced in
lake and sea sediment core samples. 1In particular we develop methods for the
estimation of temporally and spatially varying parameters in models involving
distributed (partial differential equation) systems. Our work has heen
motivated primarily by the recent interest in models involving depth dependent
mixing rates and time dependent sedimentation rates. These ideas will be
discussed in detail in the next section.

The approach to be described below represents a significant improvement
over an earlier treatment of the problem by the present authors (see [6]).
Indeed, based upon a weak or variational formulation of the partial
differential equation and boundary conditions which compose the model that is
the focus of our study (as opposed to using a semigrouop theoretic approach),
the theory developed here leads to schemes which permit the estimation of both
temporarily and spatially varving parameters under rather mild assumptions on
the set of admissible parameters. No prior assumptions need be made about the
“"shape” of the functional parameters being estimated.

Another feature of the estimation problems that are of interest to us
here which must be considered when approximation schemes are heing develovned
is that they generally involve observations at the bhoundary. This poses a
significant mathematical problem since many mixing models involve parabolic
systems which are often formulated in the state space HO where point
evaluation is undefined. Under rather mild regularity assumptions we are able
to argue that our state approximations converge in the stronger Hl and, via
the Sobolev embedding theorem, C topologies. Consequently, our schemes are

applicable to inverse problems in which the fit to data criterion involves
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point or discrete as well as distributed observations in the spatial variable.

The general approach we take here has been used extensively to develoo
approximation methods for the solution of inverse problems involving
distributed systems arising in a wide varietvy of application areas (e.g.
population dispersal, physiology, large flexible spacecraft, seismic analysis,
diffusion through porous media, etc.). A brief description of some of the
problems and the associated approximation schemes together with a survey of
the literature and a more comprehensive bibliographv can be found in [1].

We provide a brief outline of the remainder of the paper. In Section 2
the sediment core mixing problem is described and previous modeling efforts
are discussed. A particular model involving a diffusion/advection equation is
developed in detail and associated inverse problems are posed. The
identification problem is formally stated and the weak formulation of the
partial differential equation together with existence, uniqueness and
regularity results for solutions are discussed in Section 3. 1In Section 4 we
describe the approximation schemes and establish convergence results.

Examples and our numerical findings are given in Section 5. Our primary
objective in this paper 1s to present our theoretical results. The numerical
results discussed in Section 5 are preliminary. A more complete numerical
study will be described elsewhere.

The notation we emplov is standard throughout. We denote by Hk(a,h) the
usual Sobolev spaces of real valued functions ¢ defined on the interval (a,b)
whoge (k-1)st derivative, Dk-l¢, is absolutely continuous and whose kth
derivative, Dk¢ is in Ly(a,b) = Ho(a,b). The standard Sobolev inner products

and norms are denoted by <-,->k and | respectively. For HX = Hk(a,b) a

.|k
function v : (to,tl) +> Hk is said to be an element in Ho(to,tl; Hk) if
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We shall say v ¢ H (to,tl;H ) 1f v posseses § strong derivatives with y

> v(i) < Lz(to,tl;Hk), 0<1ic<j. Defining
3j t
nvn1 . {z ftl IV(i)(t)li dt}llz
i i=0 0

for v € Hj(to,t Hk) we have that the spaces {R1(t0,tl;ﬂk), l°l1 k} are
’

1}
complete. For j=k, we abbreviate notation for the norm by writing

I-lk = I'Ik’k.

Finally for V a Hilbert space which is densely and compactlv embedded in

Hk and v € Ho(to,tl;V) we denote the weak derivative of v, an element in

Ho(to,tl;v'), by v where V' is the dual space of V. For ¢ ¢ V we have
(V(E£))($) = <o,v(e)>

where the inner product in the above expression 1is understood to be the

k

extension of the H" inner product to all of V',
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2. Inverse Problems in Lake and Sea Sediment Amalysis

Sediment formation in lakes and deep seas is of great importance to
geophysical scientists who use core samples of sediment in their
investigations of the history (e.g. palaeoclimatic changes) of the earth.
Unfortunately, the stratigraphic records contained in these core samples have
been subjected to perturbations since ocean and lake floors are in general not
quiescent. Two general types of redistribution of sediment are often
significant: (i) gross lateral transport via ocean and lake bottom currents,
for example, though a continuous winnowing of bottom currents or through
episodic currents such as turbiditv currents; (ii) the mixing activities of
benthic organisms near (on the order of 2-40 cm.) the sediment-water
interface. This biological mixing of sediments by organisms (which leads to
an interesting class of inverse problems in the analysis of sediments) is

called bioturbation [24], [7] and takes place in sediment lavers in bodies of

water (lakes, estuaries, the deep oceans) in which bottom water is not
substantially depleted of oxygen. Biloturbation is effected bv different kinds
of organisms such as clams, worms, crustacea, echinoderms, etc., and the
mixing activities consist primarily of burrowing (e.g., for safetv) and
ingestion - excretion reworking of the sediment for its edible organic

matter. Through the use of tracers from dated events (e.g., nlutonium~from
atmospheric fallout from nuclear exposions, and microtektites - tiny droos of
sculptured glass resulting from cosmic events), it can be determined that the
biological mixing of abyssal sediments is quantitatively significant and takes
place on a relatively short (in regard to geologic records) time scale (10-20
years). Furthermore, there seems to be little correlation between
bioturbation mixing rates (which are highly variable) and sediment type or

sediment accumulation rates. However, the degree of bioturbation and the
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depth of the region in which it occurs are related to the tvpes of organisms
inhabiting a particular area.

Since bioturbation plays such a fundamental role in the alteration of

\ geologic records, it is not surprising that geochemists, geologists, and
geophysicists have in recent years attempted to understand the effects of
bioturbation well enough so as to enable one to properly interpret the
information contained in core samples, thereby sharpening the details in these
geologic records. A number of increasingly sophisticated mathematical models
along with related "inverse problems”™ can be found in the literature [11] [12]
[13] [15) f16] [17) (18] [19]. These models typically involve some tvpe of
region or chamber (ranging from a simple well-mixed chamber to one in which
mixing rates are depth dependent) in which mixing and advection or convective
flow interact to vertically redistribute sediment particulate matter, volcanic
ash, microtektites, radioactive tracers or other substances from episodic and
nonepisodic events,

One model which, along with its variations, has enjoved rather widespread
usage involves the assumption that one has a vertically moving chambher
(assumed uniform in horizontal directions) in which mixing and advective flow
of material takes place and is described by one-dimensional (denth) transport
equations. Depth in the chamber is represented by coordinates x, 0 < x € &
and the chamber (and hence coordinate system) i3 assumed to be moving upward
with a velocity V= V(t) (corresponding to sedimentation rate or, equivalently
in this case, sediment layer buildup) so that it is always located in the
top £ cm. of the sediment as depicted in the figure below. Thus x = 0 is

always at the water—sediment
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Figure 2.1

interface and the bottom of the chamber at x = £ 1is located at that deoth
beyond which (it is assumed) no further changes (i.e., no bioturbation) in the
historical records occur. The resulting configuration with upward velocity

of the chamber can be equivalently modeled by the assumption of a fixed
coordinate system for the chamber with an advective/convective flow of
material downward through the chamber with velocity V. Use of the model by
numerous investigators (e.g. see (18], [19)) strongly suggests that permitting
a time-varying sedimentation rate in such models is important.

If u = u(t,x) is the concentration of material (e.g., shards of ash,

radioactive tracer, etc.) with whose movement one is concerned and i = j(t,x)

is the material flux at time t and position x in the chamber, material

T ¥
.

! conservation is represented by the classical mass balance or continuity
{t equation
E
du 93

. — e ot =
. (2.1) 4y di=o, ;
: o
N R
s A
g
. where A is a decay constant for the material (A = 0 1{f one is dealing with a :tfi
» ‘5 '
- conservative tracer such as microtektites). Of course, the important aspect =K
' . At ‘_'.
. )
.
. Lo
H S
. ol
g 3
. <. :'.-
o Y L L L A NN e e e




L R R A Sl A s oot et e

RSENAR A S IO st A e i T 22y

Al Al B s n s e o

-7- e

4

—

-

b of any such model is the assumption one makes regarding the material flux {, :xjn
oy

.

, which here we assume consists of a mixing component and an advective i:}:
‘Q-‘l.

-

.
x

*

component. In this case one is justified in assuming that the bioturbation

x“ij
Lurrowing, ingestion, etc.) takes place over a very short time scale A}nj
Ly
-
(essentially instantaneous) in the chamber and hence perhaps can be :}:
B -
N

represented by a diffusive-like flux component. The advective flux is given

R

PRI

PR A
i s

daclac’

by V(t)u and if one assumes a Fickian flux for the bioturbation with depth

dependent “bioturbation” coefficient D= D(x), one obtains

du
(2.2) j=-D-3—X-+Vu.

The assumption that D is a function of depth is motivated by ones
expectation that the rate of mixing is generally higher near the well-
oxygenated, densely populated surface of the sediment mixing laver; this
expectation appears to be corroborated by experimental findings |11), 112},
{13}, [19). A more fundamental question as to whether the bhiological
reworking of sediment is mechanistically analogous to molecular diffusion (and

hence 1is consistent with the Fickian flux assumption) is not so readilv

answered. A strict analogy would necessitate the existence of an abundance of
organisms, randomly placed in the chamber, mixing the materials in a manner so
' as to produce a material flux proportional to concentration gradients. While

this is not a very likely description of the mechanisms of biogenic mixine,

one might still have a plausible quantitative analogy with diffusion if the

3 mixing rate is rapid and sediment samples which involve a large number of
independent transport events of variable duration are chosen.
For boundary conditions at the upper boundary (x = () of the chamber one

has the flux condition j(t,0) = G(t) when G is a possibly unknown input, while
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the total flux at the lower boundary x = £ 1is via advective loss through the
bottom of the mixing zone and thus j(t,2) = V(t)u(t,). Using the
constitutive relationship for j from (2.2) in these boundary conditions and in

the equation (2.,1), one obtains the model

du 9 du du
(2.3) -ﬁ-=—a—;(0(x)ﬁ)-v(t)—a-;—>\u, 0<x<% t>0,
(2.4) - D(O) g—;’ (£,0) + V(t)u(t,0) = G(t)
du _
(2.5) - D) 5;-(t,2) =0

(2.6) u(0,x) = &(x),

where & is the initial distribution of material in the chamber.

The appropriate initial data assumption is closely related to the
assumption one makes about the input flux G. To illustrate possibilities, we
can consider several specific situations that arise in geological
investigations. A strong argument for steady-state input flux (G(t) =
constant) can be made in the case one is investigating a tracer such as lead
(210Pb) which exhibits a rather steady production rate from atmospheric (decav
of gaseous radon - 222) and oceanic (decay of radon-226) sources., For tracers

(137Cs) which result from atmospheric

such as plutonium (239’240Pu) and cesium
nuclear weapons testing, time dependent flux is more abpropriate, and in some
cases, for appropriately chosen infitfal times, the assumption that ¢ vanishes
is appropriate. In general though, in both cases one must estimate the

initial distribution ¢, either as a part of the overall inverse problem or,

through an a-priori procedure using directlv earlier (i.e. deeper)
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concentration profiles in the sediment core. Finally, in the case of trulv )
LS
P
episodic events (ash shards from volcanic eruotions, microtektites of cosmic jrj
PR
A

origin) an impulse input is most appropriate. This can be effectively modeled
by choosing an impluse like initial function ¢ 1in (2.6) and taking
G =0 in (2.4). The magnitude of this impulse can sometimes be rather easily
estimated directly from knowledge of the total material content of the samnle.
In any case, to understand the effects of bioturbation on the
distribution of material concentrations in core samples, it is sufficient to
have values for the parameters D, V, A, and £, and, of course, to know that
use of these parameter values in the model gives one an accurate quantitative
description of concentrations found in core samples. It can be expected that
these parameter values will vary depending on the core sample and the material
under investigation. Hence one would like to have a procedure whereby given
data from a specific core sample, one can, with some confidence, determine the
“correct” parameter values. In regard to this inverse procedure, for the
model above we note that concentrations in the historical layers (where time
in kiloyears can usually be related to centimeters of thickness of core sample
e.g., 8ee [11]) represent concentrations at various times at the bottom of the
mixing chamber (i.e. at x = 2). Hence data for the process may be given

by Z(E) where Z(E) denotes the observed concentration of tracer material at a

height of § cm. above the position in the core designated as time t = 0. 1In

this event a typical inverse problem might be stated: Given

-

E observations Z(Ei), i=1,2,.,..,& at core locations 51’ i=1,2,.0.,« find,
! among some class Q of admissible parameters, parameters q = (D, V,A,2) that
-
. minimize
[ . 2
X 2.7) J(q) = T J2(E) - u(r(E;3V),0)]
. i=1
!
.
y
b', A TS TIPS AN e V.
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where u is the solution to (2.3)-(2.6) corresponding to q and 1

(g V) = ral(s) vith r, (t) = jg V(s)ds. -

k

In addition to, or in place of some of the parameters in q, sometimes it

»
“‘
ar

o
.
Al

The model formulated above is based on the assumption that the entire

N
is also desirable to estimate G and/or & 1in the formulation above. Of }ﬁﬁ%
BN
4
course, in some instances the data from core samples will not support such an ﬁf*
%
inclusive inverse procedure. -
!
NN
"

chamber is available for throughput of material and that the sedimentation
rate is the same as the material velocity through the chamber (i.e. no
compactification of sediment takes place). In many instances porosity effects
and/or compactification are important and should be included in the model. It
is also sometimes important to distinguish between tracer materials and
sediment particles. These concepts require modifications of the modeling
ideas presented above.

We again postulate the wmoving mixing chamber but (for reasons that will
become clear in the sequel) now we let z denote the chamber coordinates (z = 0
is the water-sediment interface, z = £ is the hottom of the mixing
chamber). The porosity ¢ 1is the fraction of the chamber volume that is
available for flow (throughput) so that 1 - ¢ 1is the fraction that is
solid. We assume that the porosity ¢ = ¢(z) 1is depth devendent and let Pe

be the constant sediment particle density (in mass per unit length of

particulate matter). If we furthermore let V= V(t,z) be the sediment particle f EE
velocity with respect to the z coordinate system, we may write separate mass SE%?}
balance equations for the sediment particulate matter and tracer. Considering éégi
first sediment particles, we have that the particle mass density in the : 3§§§

e
chamber is given by ps(l-¢) and the particle mass flux is given 33%%

w W P

by ig = js(t,z) = ps(x-o)v » Assuming conservative particulate matter, we
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obtain the sediment mass balance equation

“..
A
'y

%6

9 9
(2.8) 5;-(05(1'0)) + 57 (p (1=-$)V) = O.

e
:'t' i
Ay A A

Note that this conservation law implies j; 1is actually independent of =z.

For the tracer, we have similar considerations regarding porosity excent

the flux is more involved since we have bioturbation and convective movement

E

along with decay. (The sediment particles may also be mixed (ingested, etc)
but we cannot measure (observe) this - our observations being of tracer
materfial. Hence the flux for sediment particles only contains a convective
movement term.) Let c denote the mass of tracer per unit mass of sediment
particulate matter. Then the tracer mass density (mass per unit length of the

chamber) is given by cps(l-¢) and the tracer mass balance equation can be

written
9 3
(2.9) 37 (ep (1-4)) + 3~ (47) + A(ep (1-6)) = 0

where jy is the tracer mass flux. Denoting the tracer velocity by VT so that
the tracer mass flux is given by jT = cps(l-¢)V , we may divide the tracer

mass flux into components representing mixing (bioturbation) and convective

flux

g = cps(l-¢)(v.r -V) + cps(1-¢)v .

The term jM = cps( VT -V) may be regarded as a "pure” mixing tracer flux

(1.e. neglecting porosity) and i{f we make the Fickian assumption for this flux

term

LA NI Y A & . B .
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9
Iy = 'D'a—z (Cps),

the resulting mixing flux is given by -ps(1-¢) 17%% . Hence we have

dc
ip = -ps(1-¢) D-a—z—+ cos(1—¢)v

Ty WY T Y Ty

[ and the tracer mass balance equation (2.9) can be written

3 3 = 2 - 3¢y _ -
: (2.10) T (cos(l ¢)) t s (os(l ¢)cV) P (ps(l ¢) Vs Aos(l ¢)c.
| The sediment mass balance equation (2.8) can be used to modify the tracer

equation. Observing that
9 3 ac
i 3 (cos(l-¢)) = <37 (ps(l-¢)) + ps(l-¢) ¢
9 dc
=-c 5= (08(1‘4’) V) + ps(l-¢) Ty

= 0 (1-4) VIS - 2 (ep (1-0)V) + o _(1-4) 32

and using this in (2.10), we obtain

dac ac ) dc
(2.11) Ds(l‘¢) It + 98(1‘4)) Vg‘; =3z (ps(l'¢) Da—z-) - )\Ds(l'Q)C-

]
L}
]
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{ In the case of constant porosity, this equation reduces to
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which is the same as (2.3) if ¢ is interpreted as volumetric concentration.

;ﬂ,.
N

F#e:

Equation (2.11) can be put in a form similar to (2.3) even when the

m

)

el

LA

porosity ¢ 1is not constant. We define a new independent variable x = x(z) hv

e
AR

'}"‘ b’ e
Y’

x = fg o, (1-¢)dE.

Assuming that ps(1-¢) > 0, this defines an invertible mapping between the
chamber coordinate variable z and the new variable x which is sometimes called
the "total sediment particle accumulation”™. We then have %; = ps(l—é) %; and
use of this in (2.11) yields

dc + dc ) 9c

= — ( E—=) =-2c

(2.13) 3t T Y  ax ax

where E = (ps(l-¢))29 and w = ps(l-¢)V is the varticle mass flux (called
g above). We see that equation (2.13) has the same form as (2.3) and note
that in this equation, c can be expressed either as tracer mass per unit mass
of sediment particulate matter or in the more traditional interpretation as

tracer mass per unit length of the sediment column. Also note that in (2.13)

x is no longer simply the vertical distance in the column nor is £ simply the

-

o

3
-

mixing or bioturbation coefficient. Moreover, in such models where porosity

and compactification are considered, the concept of "sedimentation rate™ is

more delicate. To elaborate on this, we may define M(t), the total sediment

mass at time t by

M(t) = Ig(‘)ps(l-o)ds

N F s * 7 P4 NI, s,

---------




where h(t) is the sediment column depth measured from some fixed reference
coordinate system. Note that %% represents the rate at which the water-
sediment interface is changing relative to a fixed coordinate system and hence
is the rate at which the sedimentation layer is increasing . Thus, this is
the “true sedimentation rate” ;.(t) which in general differs from the rate

V(t,0) at which particles are “"falling" and passing into the chamber. The
porosity is often assumed to have the form

$(2) = (6 - 60 % + ¢

where ¢0 > ¢1 1f compactification takes place. Moreover, since w = %% is

the sediment particle mass flux already defisied as ps(l-¢)V , Wwe see that
w(t) = p_(1-6(h(t))) 92 = o (1-4(2)) V(t,z)
s de s L

Then for ¢0 > ¢1 we have

v (t) = V(C,O)

w < w -
pg(1-¢(h(t))) ~ o _(1-4(0))

or, for a thick sediment column (so that ¢ =~ ¢l) we have

V (t) = V(t,0).

[ < o -
P (180 © p_(1=80)

:
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3. THE IDENTIFICATION PROBLEM

In this paper we will concentrate our efforts on the development of
numerical approximation schemes for the solution of the parameter estimation
problem involving the simplified bioturbation model given by (2.3)-(2.6).
Methods applicable to inverse problems for more elaborate models (e.g. those

involving porosity and/or compactification effects) are currently under

investigation and our findings will be discussed elsewhere.

In this section we give a precise formulation of the identification
problem and briefly outline existence, uniqueness and regularity results for

solutions to initial-boundary value problems of the form (2.3)~(2.6) which

will be required in the subsequent development.

If we make the change of variable vy = x/f and allow for the inclusion of
a sink/source term F = F(t,x) in the partial differential equation (2.3) we

may, without loss of generality, consider the system for states v = v(t,v) and

parameters q = (q;(y),a,(t),f(t,y),8(t),6(y),1,2) given by

3.1 a_ v(t,y) = 3y (ql(y) -g—y v(t,y)) - q,(t) :—v- v(t,y)
- av(t,y) + f(t,y), £t > 0, vy € (0,1)

(3.2) -9, (0) v(c 0) + q2(t)v(t 0) = g(t), t >0

(3.3)  -q (1) & w(e,1) =0, €50

(3.4) V(Ogy) = ¢(Y)s y € (Oal)'

~~~~~~~
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Y I
»

where the original states and parameters appearing in (2.3)-(2.6) can he

recovered from the relations

D(x) = Equ(xll),

V(t) = 2q,(t),

- F(t,x) = £(t,x/R),
b; G(t) = Lg(t),

$(x) = $(x/2)
and
u(t,x) = v(t,x/2).

The least squares performance index (2.7) takes the form

K
(3.5 J@v) = I |2(E) - v(t(E;0q,), 1)1
i=]

where v is the solution to (3.1)-(3.4) corresponding to q.

In what is to follow we make the standing assumption that the sink/source

term f, the boundary flux g and initial conditions ¢ are known or have been

estimated a-priori. The parameter vector q 1s assumed therefore to be of the

4

Pl

form q = (ql(y),qz(t),k,l). Treating this somewhat scaled down version of

the original identification problem will capture all of the essential features

- s

Pl e i §
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of our approach and at the same time keep the presentation and discussion as
simple as possible. 1In addition, this formulation is more than adeauate to
treat the identification problem corresponding to a set of observations
involving volcanic ash data which has been the primarv focus of our research
to date (see [6] and Example 5.3 below). The necessary modifications to our
theory so as to allow the estimation of the input terms f and g and the
initial data ¢ are relatively straightforward and have been discussed in
detail elsewhere (see [3], [4]).

We assume ¢ ¢ H (0,1) and that there exists a T > 0, sufficiently large
for which the mappings t + g(t) and t + f(t,s) are in HO(O,T) and
HO(O,T;HO(O,I)) respectively.

Define

Q= c[0,1] x u'0,1) x R! x R!

with the usual product space topologv and let Q = 0l x 02 x A x LCQ satisfv

the following hypotheses:

(1) Ql is a compact subset of C|0,1)] and there exist constants uw and v

such that 0 < u < ql(y) < v, v € [0,1] for all a € Q1

(H2) Q, is a compact (with respect to the nl topology) subset of Cl|0,T]

with 0 < u € qy(t) € v and |&2(:)y < v for all t ¢ [0,T] and all

(H3) A 1is a compact subset of Rl with 0 ¢ A < v for all A € A,
ey e e e e
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(H4) L is a compact subset of R! with 0 < u € 2 €£v for all £€ L.

It is clear that (H1) — (H4) above imply that Q is a compact subset of Q.
Letting H = HO(O,I) and V = Hl(O,l) endowed with the standard Sobolev

inner products we have the usual dense embedding VC H<c V'. For

each t € |0,T} and q = (ql,qz,A,L) €(Q define the bilinear

form L(t;q): VxV >R by
L(t;q)(x,¥) = <q;Dx,D¥>; = q,(t)< x,D¥>

and consider the weak form of (3.1)-(3.4) given by

(3.6)  <W(0),9>5 + L(5@v(D),9) = <F(1),45) + (DIW(0), € >0,b €V

3.7) v(0) = ¢

where v(t) = v(t,*) and f(t) = f(t,*).

Hypotheses (H1) - (H4) imply that for each t € |0,Tj, q € 0 and x,¥ € V

| LCe5a) (¥ | < 4y Ix| vl

and that L{t;q)(°,*) is strongly elliptic. It follows therefore (see [10]},
Theorem 10.3.4, [21] Theorem III. 5.A.) that it is V-coercive; that is, there

exists an a € R such that
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B> 0, for all ¢y ¢V and t ¢ [0,T). If we rewrite the terms on the right iif

’
»

‘C
o 8
s

hand side of (3.6) as

..
.
o

» 'f
AP

¥ o675

CECE), W + (W(0) = <E(6),w>,

>y

R

-~ A ‘n‘\

where f(t) = f(t,*) + g(t)8(+) and 6(+) denotes the dirac impulse at zero, i{}
then f ¢ HO(O,T;V') and standard results (see [14], Theorem IIT.1.2) vyield i{#

that the system (3.6), (3.7) admits a unique solution v € C({0,TJ;H) with L.
v ¢ 80¢0,7;v) and v € w20, T5v"). "
Under additional regularity hypotheses on ), 99, f, g2 and ¢, smoother
solutions to (3.6), (3.7) can be obtained (see below). When these solutions
are sufficiently smooth and q, 4, f, g and ¢ are sufficientlvy regular, they

coincide with either strong (defined in terms of evolution operators, see

{23)) or classical (see [10]) solutions to the original initial boundarv value

problem (3.1)-(3.4). 1In light of this, we formally define the identification

! problem as

g

- (P) Find q € Q which minimizes J(q;v) given by (3.5) where v is the
! solution to (3.6), (3.7) corresponding to q.

As is typically the case with Ritz-Galerkin based methods, in order to

A R ]

demonstrate that our approximation schemes converge, additional regularity of

solutions to (3.6), (3.7) will be required. We state the following theorem.
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Theorem 3.1. Suppose q, ¢ ¢ [0,T]. Let n be a function in f;
c2(10,T) x {0,1]) which satisfies ;E
x"’

1) n0,y) = 8(y), y< (0,1) o

LYY

(1) - (0) 35 1(£,0) + g,(E)n(,0) = &(t), &> 0 73

e

) )
(1i1) ql(l) 3y n(t,1) =0, t>0 E.i
s
D

A .'.4
and define .:&
. |

h(t,y) = £(t,y) + 3= {00 3= 00,9} = a,(8) 5= n(e,y) -Anle,v) - 3= n(e, v,

If h € ¢'(10,T) x 10,1]) and

3]
—3 h(O,y) =0, v € (0,1), §=0,1,
at
then v, the solution to (3.6), (3.7) is an element in HI(O,T; Hl(O,l)) and it

can be identified with functions in RI((0,T) x (0,1)).

The proof of Theorem 3.1, which has been omitted, can be argued using
Theorem 10.6.17 in [10].

The conditions specified in the statement of Theorem 3.1, which of course
are only sufficient conditions, are rather restrictive. However, they can be
used to derive specific and not unreasonable conditions on the initial and
boundary data (¢,g) and parameters q;,qy to insure regularity of solutions to

(3.6), (3.7). Although the theorem above is not the most general one

possible, it suffices, for our purposes here, to simply demonstrate the

O G S SRR SRR O e e e e T e T e e e T e e T T . L
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existence of Hl(O,T;Hl(O,l)) solutions., 1t is in fact the case, that while
regularity of solutions is necessarv to demonstrate convergence, it has been
our experience that it has little or no effect on the actual performance of

the schemes when thev are applied in practice.
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4, APPROXIMATION

In this section we develop approximation schemes to solve the parameter
estimation problem (P). Fundamental to our approach is the construction of a
sequence of finite dimensional identification problems, each of which has a
solution that can be found using conventional techniques and readily availahle
software., We demonstrate that under appropriate hypotheses, solutions to the
finite dimensional problems, in some sense, approximate solutions to the
original infinite dimensional identification problem (P).

A two stage approximation process 1is employed. We first use a Ritz-~
Galerkin approach to approximate the infinite dimensional state equation (3.6)
by a sequence of finite dimensional ordinary differential equations. The set
of admissible parameters Q, a subset of the infinite dimensional function
space @ is then discretized. The result is a sequence of optimization
problems involving the minimization of a least squares performance index over
a compact subset of Euclidean space subject to finite dimensional constraints,

For each N = 1,2,... let VN be a finite dimensional subspace of H

N
satisfying vNc v, Suppose VN = span {¢§}§=l and define PN:H +> VN to be the

orthogonal projection of H onto vN with respect to the H (i.e., <-,->0) inner

P

product. We make the following hypothesis about the approximating properties

I N

g of the subspaces V.

- .1 N N

. (H5) For each ¥ € H (0,1), |y-P wll +0 as N + @ with |y-P wll < kllbl1 for

i

g some constant k independent of N and v.

} The usual spaces of linear or cubic B-spline functions, among others, are
]

7 known to satisfy Hypothesis (HS5) (see [20], ([22]).

!
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The Galerkin equations in vy corresponding to the system (3.6), (3.7) are :35*
given by

4.1) < GN(t).WN >0 * L(t;q)(vN(t).wN) =< f(t),wN>0 + g(t)w"(O), t>0, v ¢ W R

(4.2) vV(0) = PV -

where WW(t) ¢ VN, t > 0.
The state approximation given by (4.,1), (4.2) is the first stage of our
approach. We argue that sufficiently smooth solutions to (3.6), (3.7) are

approximated by solutions to (4,1), (4.2) with a certain degree of uniformity

in q. The standard arguments (see [3]) yield the convergence of vN(t) to v(t)
in the HO norm for each t € [0,T]. However, since the least squares
performance index (3.5) of particular interest to us here involves
observations which are pointwise in the spatial variable, we will reaquire that

state approximations converge in the stronger Hl norm.

Theorem 4.1 Suppose {qN};=l is a sequence in Q with qN +q€Qas N> o,

N N and v the

Let v denote the solution to (4.1), (4.2) corresponding to q

solution to (3.6), (3.7) corresponding to q. Then if Hypotheses (H1) - (HS)

hold, ¢ € H!(0,1) and v € H'(0,T;0'(0,1)) we have

; 1im v\ (£) = v(©)], = 0
) N+

for each t € [0,T].

e vt -
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Proof.
N N N.N,N
Let @ = (q;,9,,2 ,2") and q = (q;,05,%,%).

Now

GRS RO TRENTCAS SR T

The regularity assumptions on v and Hypothesis (H5) imply that the second term

on the right hand side of the above estimate tends to zero as N + o for each

L S

t € [0,T]. We therefore need only to consider the term lvN(t) - PNv(t)|l. g
-y
Letting z () = v (&) - PMw(t), (3.6), (3.7) and (4.1), (4.2) vield o

. *, *

4.3) < 28, o8 >0 *+ Le;aEN ), oY = < (-PYHece), W > *+ L(t;a)(v(e),oN) .

- L(t;qyeNviey, o), t >0, % ¢ vV
(4.4) zY(0) = 0.

In order to simplify the presentation, we suppress the displav of explicit t

dependence. Choosing wN = QN, we rewrite (4.3) as

*N, 2 1 d

N._ N2 14d N, N2
1271 + 7 a0 | 79y Dz g% 5 g layfz 1y} -

LeN N2 1d ,NN2_d N  N_ N
2 Q2] g gl Vg - g (e <2002 p)
*N N N N N N
+ q, <z ,Dz >0 + q, < z ,Dz >0
N.,* N d N N
< (1L ~P v,z >0 + 3% < Al,Dz >0
",
.
>
_
e
2
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Choosing ¢; such that (v+2)cl <1, we can eliminate terms involving léwlg
from the above expression to obtain
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N N d N N N N
- < Al,Dz >O + FTa < Az,Dz >0 -< Az,Dz >O

RN R YN EUR RN N AR

where AT(t) = qle(t) - qTDPNv(t), A;(t) = qg(t)PNv(t) - q2(t)v(t),
(e = av(e) - NPNu(e) and (W] = lw(e, )] = w(e,D).

Hypothesis (H2) together with repeated application of the inequality
2 1 2
(4.5) <x,¥> < C|x| + H .wl »y ¢ >0

yield

N2 .14d N. N,2
271 + 5 g5 (Ma 0z iy +

N, N,2 N, N.,2
z ]1 + 1)z '0}

9l

v , N 2 1 , N2 1 N,2
<7 lz N+ v{i-,z ]0 + 5‘|DZ !0} +

v {clléNlé + Z%; |DzN|§} + g;-{ g < zN,DzN >0 +

<AT,DzN>O + < A‘;,nz“>0 - [A‘;jllz“jl} +

+ ﬁq 1@ = P2+ e 122+ 3 1AN2 + 1 ooeM2

+ 5 1802+ 2 joM2 7‘%-1- 1012 + e, 1N2 + 2 a2 + 1 12N
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e
N 1d [y N N2 N N2 _ N N2
E (4.6) T {lfqlbz lo * qzlz 1]+ Mz IO}
N
v+1 N,2 \ N,2 v v N,2
‘—2—[2 ll+5|z |0+(5+-——4c1+l) Dz |0
1 Nye 2 . 1 aN,2 . 1 sN 2
* 7] 11 = BOvlg + 5 1815 + 7 181
1 N2 .1 (sN2.d (N, N_N
* e 181 + 5 18,17 + 52 {q2 <z,Dz ),

N N N __N N N
+ <8;,Dz > + <8,,D20, - 18,1z Jl}.

Integrating (4.6) from O to t, applying Hypothesis (H1) - (H3) and recalling

(4.4) we find

t T
0%(e) < K [ 8V(s)ds + [ o' (s)ds + o (t) - 0"(0)
0 0

where
V) = N + 12N + 1Mo,

N 1 N, * 2 1 ,eN 2 1, N 2
p (t) ZE; (1 - P) v(t)|0 +5 |Al(t)|0 + 51 Az(t)l0

1
2

1 N 2 *N 2

T TR

N(t) = q,(t) < 2Ny, 02N (o) > *+ <AT(t),DzN(t) >

+ <85(e),02N(e) 5 - Yo, 1o

and K = e—— 4 —ee
v 2ucy >
= .
)
N o
i 2
P | '3
» 9
L. R,
b e o e T T s et § : © )
e e e S i e e T e e N e L D e e =
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Once again employing (4.5) we obtain gf*
oS
8
N 1 N, 2 N,2 1 N,2 aZy!
o <V {4c lz7 g + cZIDz |0} + 7 1815 :
2 2
N, 2 1 N, 2 N, 2
ey 1Pzl * 7c; 18200 * o 19270
1 N,2 N,2
Yo Bh tele
v N,2 N N
<4c |z |0+ c38 + A

where c3 = (v+2)c2 and

N 1 N 2 N 2 N 2
A7(t) ic, f187(e)15 + 185015 + 1 Ay () 1Tk
Choosing c, such that cq < 1, we obtain

t
=X oV(s)as
30

(4.7) oVe) < %) +

where

1

BN(t) T 1-¢

T
{ oMtoras + a0 + &Mty + 2= 1201l
j 0 2

Applying the Gronwall inequality to (4.7), the desired result will follow
once we have shown that SN(t) + 0 as N += for each t ¢ [0,T]. The assumption

that v ¢ Hl(O,T;Hl(O,l)) together with standard estimates yield

T
N N 2 N 2 2
(4.8) | oN(sras < K T1a] - a 12+ 1a) = g 13 ¢ AN - 0%} 4
0
N 2
+ Kzl(I P )vl1 .
e e e e, e e TR T T et e R .
R A R R O B e A S
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N N_ 2 N _ 2 _ N 2 N
(4.9) A7(t) < K3{|ql 9l + la, - q,] |V(t)l1 + K, (1T -P) V(t)l1 NG

and

N N 2 N 2 2 N, 2
(4.10) A7(0) < 1(3{|ql = ay iyt la, = qzl,} tol] + K, I(1 = P Sl

where Ky, 1 = 1,2,3,4 is a constant which does not depend on N or q ¢ O.

It is immediatelvy clear from (4.8), (4.9) and (4.10) that Hypothesis (HS5)
together with the assumptions that v ¢ HI(O,T; Hl(O,l)) and ¢ ¢ HI(O.I)

T
imply [ o (s)ds » 0, AN(0) + 0 and AN(t) » 0 for each t ¢ [0,T] as N » =,

0
Arguments similar in spirit to those above, although greatly simplified, can
be used to show (see [3]) |zN(t)lg +0 as N+ for each t ¢ [0,T]. We
conclude therefore that BN(t) + 0as N+ o for each t ¢ |0,T] and the theorem - .izi
]

is proven.

An application of the Sobolev embedding theorem (see [21]) vields the

following corollary.

Corollary 4.1. Under the hypotheses of Theorem 4.1 we have

.ﬁ -l' -.' '.' 4

14

1im { sup IVN(t) -v(t)|} =0
N+ [0,1]

Rs P
+ 9 € 4
e,

for each t fo,T}.

We consider next the second stage of approximation; the discretization of

the set of admissible parameters, Q.

For eachm = 1,2,... we consider approximation spaces

st c clo,1], s! = {wi}um nd §°
L | span m i=] a m

1 2 1.5m
o < H (0,T), Sm = gpan {)(m}i.1 and let
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1 1 2
1,sJ, denote mappings Im : Clo,1} » Sm . Jm : H(0,T) =+ Sm « For each
. gt N | 2
M= (ml,mz) with m €2, i =1,2 define QM &_Sml x szx AxLcQ by

(4.11) Qy IM (@ =1 (@) xJ (@) x AxL.

1 2

We shall require the following hypotheses on the mappings IM :

(H6) The mapping IM : Q+ Q 4is continuous

(H7) For each q € Q, IM (q) * q as m,m * with the convergence

uniform in q <€ Q.

Note that Q compact together with Hypothesis (H6) imply that QM is a comnact
subset of Q . Note also that we do not require QM c Q.

Once again typical cholces for S; and Si are spaces of linear or cubic
spline functions corresponding to meshes A = 1/m and A = T/m respectively
with the mappings Im and Jm being the usual interpolation operators. Under
appropriate assumptions on Q, it is not difficult to show that these choices
lead to discretizations which satisfy hypotheses (H6) and (H7). (See (4],
(50).

We consider the system (4.1), (4.2) for qy, € QM . We obtain the initial

N
value problem in Rk given by

(4.12) W Ny + L: (t;a)w’(e) = Fi(e)
(4.13) wN0) = ( M“)“wg
:.':"::;‘::F.,'::';:}.‘::.;'-}J-:;‘\ic;ﬁ .w..".-:" "'_ St ."-;" e e e ‘-‘. ' . .._:.. _\..:-- ‘:‘ N \:- N




u .
m AL
where a = (al, az, 03, al.) € QM s, a compact subset of R 1 x Rl x Rl ;:-:
b “.:f.
; and e
v
N N N A
(4.18) LM Jyy = <45:80> Fren
A
u i
™ 1,k N _.N LS
" el 1 {0
J n"‘h
b Y
3 s
. o2 x (0)1c8},61>0 - Sfel1) + &% <>, 2
k-l *m, a
o
. N N N o
g (4.16) Fi(e) = <£(t),6.5, + g(t)é, (1) o
] N o
N -
} (4.17) Vo1 = <¢,¢1>0 .
3 RO
‘ 1, = 1,2,...kN and e
N
] k
' Vi) = T wicos] .
i=]
We define the sequence of approximating identification orohlems as:
N * N -
( PM) Find ay € QM which minimizes over Oy the functional J(q; v') given
by (3.5) where wN 1s the solution to (4.1), (4.2) corresponding to a,
or equivalently:
* S
Find a ¢ ﬂM which minimizes oD
N v S
N K k
Ty e = £z - 1 wlcaeat T2 a? %) o S
i=1 =1 k=1 2 . b
i
.::;l:"
RN
:_\;
v“‘-'\
e e e e S e S e e e e
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where W is the solution to (4.12), (4.13) corresponding to a.

I

AL

It is immediately clear that for each N, M and a € QM the sytem (4.12),

o

(4.13) admits a unique solution which depends continuously upon a. We have

e

therefore, that for each N and M, problem ( P: ) has a solution

é,

N.,* —N
(qM) € QM + Since QM IM(Q)’ there exists Gy € 0 such that !&
-~ N * Ny il

IM (qy) = (qy) - Now Q is compact. Therefore, there exist {qM#} c {qM } -l
. N, i

and an element ¢ € Q such that q,° + q in Q as i,k + ®, This Sk

"

subsequence can always be chosen so that N1 + » and (ml)k’ (m2)k + ® ag

j,k + = Now

PR I R .
qu sV q;v )) q < 0

and consequently, from (4.11) , we have

N

N N
(4.18) J((in)*;v Hhest, @ivh, aca
k

Hypothesis (H7) and

g TE% D PR M . TR

X e 2 oM Mo K Q

] 3. * *

" imply (qu) +q 1inQ as j,k + = Taking the limit as i,k + *® {in (4.18)

f: and applying Corollary 4.1 (with an apvropriate re-indexing and the assumption

i that the necessary regularity conditions are satisfied) we obtain

! -:i
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hon,

TR .- ")

SO IC AT A AT R R SN A R e e - s

L P, Wi ) \...f. -..1-L-q.\_.-..'» s-..\.’..::. S, \A.y :'c;"-.'l;"-}'; -;:"':-':C* o . R — ._.'J




.
-
L
'1
.
i

L5

| i

5 R Y S AT PN

Theorem 4.2 For each N = 1,2,.., and M ¢ Z+ x z+ let problem ( PM ) be as
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* %*
J(q ;v ) € J(q;v), aq€0Q

where v* denotes the solution to (3.6), (3.7) corresponding to q*; or that q*
is a solution to problem ( P ).

We summarize these results in the following theorem,
N

it has been defined above. Then 1f hypotheses (Hl1) - (H7) hold, each problem
( F’z) has a solution (q:)*- The sequence {(q:)*} admits a Q-convergent

subsequence, the limit of which, q*, is an element of Q. 1If ¢ ¢ Hl(O,l) and
v*, the solution to (3.6), (3.7) corresponding to q* is an element in HI(O,T;

Hl(O,l)) then q* is a solution to problem (P ). Moreover, for any convergent
N N
=y N.* Nk %
subsequence {(q_ ") } € {(q,) } with (q,') *+q, N, + ® and (m),,
M M M i 1%
(“2)k +® ag j,k+® and v € H (0,T;H (0,1)) we have that q is a solution

to problem (P ).
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5. Numerical Results

In this section we present a brief summary of some preliminary numerical
results. Our primary intent here is to simply demonstrate the feasibility and
efficacy of our approach. A more complete study involving a somewhat broader
spectrum of examples (including pathologies) and more sophisticated aoproaches
to solving the aporoximating optimization problems will be discussed in detail
elsewhere.

We consider inverse problems for systems of the form (2.3)-(2.6)
involving the estimation of a spatially varying diffusivity coefficient
D= D(x). We assume that the advection rate V is constant in time, that there
is no boundary flux and that all parameters, with the excention of the
diffusivity, are known. We also allow for the inclusion of a sink/source
term, F = F(t,x) in (2.3).

Transforming both the space and time coordinates to dimensionless

variables; y = x/&, s = Vt/2, we obtain

(5.1) -g; v(s,y) = g—y- {a(y) -g— v(s,y)} ~ 2 v(s,y) - a v(s,v) + f(s,v), s > 0, v< (0,1

y dy
(5.2) -q(0) %—; v(s,0) + v(s,0) = 0 §>0
(5.3) -q(l)%—;v(s,l) =0 &> 0
(5.4) v(0,y) = ¢(y) v € (0,1)

where v(s,y) = u(s/V,2y), qly) = D(Ly)/RV, « = RX/V, f(s,v) = RF(Ls/V, Rv)/V,

SO W P T U I T WY WO W W TwIvVIYWR
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and ¢(y) = ®(Ly).

In addition, for our discussions here, we assume that ohservations

Eij}1=l,...,u for v (equivalently, u) at times s;, i = 1,...,u and
j=l,.oc v
positions yj, j=1,e¢.,v have been provided and consider the least squares

{

performance index of the form

@ = T T IvGsyayp) - £y 012
J(q;v) = vis,,y - E
i=1 j=1 L 13

where v is the solution to (5.1) = (5.4) corresponding to q.

All computations were performed on IBM 308] processors at Brown
University and the University of Southern California. The approximating state
spaces VN were chosen as the span of cubic B-splines defined with respect to
the uniform partition {0,1/N, 2/N,...,1} of the interval [0,1]. The set of
admissible parameters was discretized using linear spline functions with
respect to the mesh {0,1/M,2/M,...,1}. Note that in this case we have
kN = N+ 3 and uy = M + 1. The inner products in (4.14) - (4.17) were
computed using a composite two point Gauss-Legendre quadrature formula. The
use of B~spline bases leads to banded generalized mass (MN) and
stiffness (L:) matrices.

The finite dimensional optimization problems (Pn) were solved using an
iterative Levenberg~Marquardt scheme as implemented in the IMSL Librarv
routing ZXS8SQ. Gradients and Jacobians are computed by the routine using
finite difference approximation with rank one updates in each iteration. We
also attempted to solve the finite dimensional optimization problems using a
quasi-Newton algorithm, a scheme due to Broyden, Fletcher, Goldfarb and Shanno

(BFGS) (see [9])), with analytical gradients computed using a co-state

formulation (see [2], {8]). Our preliminary findings point to the conclusion
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that the latter approach is inferior. We found that it was extremely

-

difficult to obtain accurate search directions with the gradients computed in ;i
this manner. However, we are continuing to investigate these ideas with the Eg
intent of improving numerical performance. E;
In the examples that follow, the compactness constraints on the set of iéi

ot

admissible parameters Q were not explicitly enforced when the finite

gl

*

dimensional optimization problems were solved. As could be expected, this did

L 20 B

2T »
o LU
- P -

.
)

lead to some conditioning problems when M became large. The use of a
constrained optimization package to solve the finite dimensional ootimization
problems 1is currently under study.

The initial value problems (4.12), (4.13) in RkN were solved in each

iteration using Gear's method (IMSL Library routine DGEAR) for stiff systems.

EXAMPLE 5.1

We consider the system (5.1) = (5.4) with

q(y) =1 + vz.

- £(s,y) = (2 - 8y + Jy2)e S,

- o(y) = 2 + 2y - y°

and a = 0. We estimated q from observations at {(s,, v,6)}
1* Y4'1=0,1,2,...,8
i

0,1
generated using the true solution to the system =0,1,2,...,4

(5.5) w(s,y) = (2 + 2y ~ yz)e-s

where 8; = «251 and yj = ,25j. The initial estimate for aq suopplied to the

T Tt A A Y S LS R

A S R T A A P, e e ISR <o . N L R
SN S I S, IS R SR IR R W i-’;"n"_.\:h“ ."‘.\ \l\:.\.:-‘.-{ la i';.\";x"\“.'l" L \...- e N'n':'.'...‘r’ e




optimization routine was taken to be

Our results with N

below.

qo(y) =1, 0<y<1,

32 and various values of M are summarized

over the entire interval.

in Table 5.1

The case M = 0 corresponds to the best fit taking q to be constant

* * * * *

y qo(y) ql(y) az(y) 03(y) qa(v) q(y)
0.0 1.172 0.920 0.961 0.978 0.987 1.000
0.1 1.172 0.992 1.006 1.014 1.015 1.010
0.2 1.172 1.065 1.052 1.050 1.042 1.040
0.3 1.172 1.137 1.097 1.085 1.092 1.090
0.4 1.172 1.209 1.143 1.164 1.164 1.160
0.5 1.172 1.282 1.208 1.264 1.236 1.250
0.6 1.172 1.354 1.354 1.364 1.363 1.360
0.7 1.172 1.426 1.500 1.479 1.490 1.490
0.8 1.172 1.498 1.645 1.624 1.637 1.640
0.9 1.172 1.571 1.791 1.769 1.804 1.810
1.0 1.172 1.643 1.937 1.914 1.972 2.000

X - - - - -
Iy 6. x 1070 2. x10% 4. x100% 3. x10® 3. x10°®

0:49,.92 1:00.53 1:29.49 2:02.02 2:35.82
TABLE S.1
EXAMPLE 5.2

In this example we estimate the non-monotone, single neak function q

given by

............

ay) = (1 + ay)e P’
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with a = 10.43 and b = 2,43, Taking a = 0,

f(s,y) = (yz(eby - 2ab) + y(2ab + 4a - 2b) + (2b -~ 2a + 2 ~ 4eby))e-(s+b"),

and

¢(y) = 2 + 2y - y2.

The true solution to the system is again given by (5.5). Using the same

observation points as in the previous example, setting
0
q(y) =15, 0<y«<1l

and taking N = 6 and M = 4, we obtained the fit for q shown in Figure 5.1

below.

)*
1,75

1.50

FIGURE 5.1

6,% -6
The residual was J((q ) ) = 3, x 10 ",
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The scheme performed well when N and M were chosen relatively small.

g L

s
.
LY

Increasing either N or M independently yielded some improvement initiallv.

0

However, this was followed by the onset of i1ill conditioning in the finite

- TME,

dimensional optimization problems as the number of degrees of freedom in .

either the state or the parameter space discretizations were increased. ;:
(Based on our initial computational findings with other examples, we i-
anticipate that enforcing the compactness constraints on the set of admissible E;E
parameters will remedy this situation.) The scheme also began to have some %g

Sl

difficulty if the parameters a and b were chosen so as to cause the total

variation of q to be too large.

1

Ty W@
PN
ot e ’

EXAMPLE 5.3 "

AN
A S N

We estimate a depth dependent bioturbation coefficient using a set of

v, r
’ .
s % [
i L" ]

observations from a volcanic ash concentration profile measured in a sediment

core sample taken in the North Atlantic. We consider the model given by (5.1)

LA S R
o

AR A

= (5.4) with a = 0 (we are dealing with a non-radioactive or conservative ¥ E

tracer), f = 0 and »
N
»
v

(5.6) ¢(y) = md(y) Ig

. yo =
v

o P .

L &5 B

s
o,
]

where § denotes the unit impulse at zero and m is the total mass of ash in the

sample as determined from the data. ;}7
J
s We were provided with the estimate U= 2.5 cm/kyr for the sedimentation !E
s ol
pe rate in the region where the core sample from which our ash data came was f(j
% -
E taken. In addition, by invoking (possibly inapprooriately in the presence of i;
_ ”
; depth dependent mixing) the observation in [11] that the concentration- .ﬁ
; 3
& L= ..‘
l h@
v o~
.‘ -“I.
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o,
2% N

weighted mean depth of the ash profile in the historical layers is the depth

“ e _m .
D
oA
P

in the core at which the ash layer would have been observed had no mixing

v
.‘ 0

LA

taken place, we estimate £, the depth to which mixing takes place (see [6]) to

2

o,
RS

be 17.25 cm.

B
-, A

Using the estimates for V and 2 given above we are able to convert the

depth scale on which our data is specified to an equivalent s-scale. Our

1 observations turn out to be given at temporal locations sy = .144925i,

!‘
e
CRiR
ot
. .
.t
P

i =0,1,2,0¢.,16 and of course all at the spatial location v = 1.

We set N = 32 and used our scheme to estimate q for various values of .E:

M. We approximated the impulse initial conditions (5.6) by iij
832(y DA

~32 ~32

where ¢2 denotes the normalized (f ¢ = 1) cubic B-spline corresponding to L
0 -

the uniform mesh {0,1/32,2/32,...1} which is centered over zero. This
approximation is justified by the relatively narrow support of the B-splines

and the fact that it eliminates the error which would be introduced if any

other impulse function approximation were projected onto the suhsvace of
splines,

The initial estimate for q was taken to be

qo(y) = .02198, 0<y<«<1,

the optimal estimate for q obtained in [6] using this set of observations and
the assumption that the mixing intensity is constant throughout the mixed

layer.,
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The model (5.1) - (5.4) with depth dependent mixing rate yielded some, Cj:;
o
although not a significant, reduction in the residual when compared to the fit s

obtained using a constant mixing rate model. (See Figure 5.2 below.)

22Ar ————0 data
20 0000 a0 meeemmee- e model (2 constant)
18| — — — —a model (2 depth

dependent)

T

(k shords) 16
gram /1

10 15 20 25 30 35 a0

{cm. up-core)

FIGURE 5.2
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In addition the optimal mixing rate profiles produced by our scheme did not

1.3
Fa

.
g
Pl

agree with the widely accepted hypothesis that mixing is most intense near the

"
1)

sea floor/sea interface and then decreases with depth (see Figure 5.3).
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FIGURE 5.3
Based upon these findings, we conclude therefore that the inclusion of a
depth dependent mixing rate alone can not significantly improve our abilitv to
: explain this set of observations. Other enhancements of the original model,
(e.g., time dependent sedimentation rate, porosity and/or compactification
efffects) must be considered. The scheme developed here should prove to be a

valuable tool in the investigation and evaluation of these modeling ideas.
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