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AND DISPERSAL IN POPULATION MODELS*

H.T. Banks* and K.A. Murphy*
Lefschetz Center for Dynamical Systems
Division of Applied Mathematics
Brown University
Providence, RI 02912

ABSTRACT

We discuss techniques for the estimation of nonlinearities and state-dependent
coefficients in  parabolic partial differential equations. Applications to
density-dependent population dispersal and nonlinear growth/predation models are
presented. Computational results using parallel and vector architectures are discussed.

* Lecture presented at the International Symposium on Mathematical Biology, November

10-15, 1985, Kyoto, Japan.
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. QUANTITATIVE MODELING OF GROWTH AND

DISPERSAL IN POPULATION MODELS

H.T. Banks and K.A. Murphy
Lefschetz Center for Dynamical Systems
Division of Applied Mathematics
Brown University
Providence, RI 02912

INTRODUCTION

In this presentation we discuss mcthods for inverse or parameter estimation problems
which can be employed as quantitative modeling techniques in models for distributed
(spatially, age, Size, etc.) biological systems. In this context they may be useful in attempts
to understand, elaborate on, or further refinc details of specific mechanisms for dispersal,

s growth, interaction, etc. in wide classes of models. We have also used these techniques in a
number of biologically related problems [1] such as bioturbation [12), [l4], [15] and
climatology [19]. In addition to an overview of ideas underlying these techniques, we shall
present herc brief discussions and some findings on two specific biological problems for
which we are currently using them successfully.

A typical inverse problem entails some given or hypothesized dynamical model with
"parameters” q (often temporally and/or "spatially” or even state dependent) and “states”
u(t,x;q), 0st€T, xef, which depend on the parameters through a dynamical system of
cquations. Onc has observations or data ﬁij for u(ti,xj;q) and wishes to choose, from somc
admissible parameter set Q, parameters q 5o as to give a best fit of the model to the data.

For example, we might have a hypothesized model for transport

du 2 _ 4 du
3+ ax [V(t,x,u)u]— ax [D(t,x,u) ax ]+ F(t,x,u) )

with initial and boundary conditions also possibly depending on the unknown parameters

q=(1".D.F). Given data u.., we seek to minimize a fit-to-data criterion such as a least-squares

ij’

Ja) = Ejutxga) - o,f )

iJj
over a specified class Q of functions (1"D.F) so as to obtain a best estimate q = (P.D.F). In
addition to obtaining estimates for q, usually onc desires to analyze in some way the "goodncss”
of the modcel in describing the phenomena one is modeling. We shall elaborate on some related 2.
qucstions in this regard below. R
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The methods we discuss briefly here can be powerful modeling tools when carcfully
and correctly used. Some of the novel features of our recent efforts include the
capabilities for estimation of (i) state or density dependent dispersal coefficients such as D
above in (1), (i1) system nonlincarities such as F in (1), and (iii) boundary parameters in
both simple and not-so-simple boundary conditions (we give an c¢xample in the discussions
on size dependent modcels below).  Furthermore, there arc a number of modeling related
qucstions that onc might hope to address from a theorctical or computational (or both)
vicwpoint with thc aid of these techniques. These include:

(a) Expcrimental design [3], [4]. [5): What is the appropriate data required to support analyvsis

of a particular modcl or mechanism? E.g.,, How many time vs. spatial observations must be
made, or what type of initial data is needed to study movement patterns?

(b) Robustness of model parameters [1], [3], [8], [16). [19): Do the problem formulation and
the methods cnjoy certain stability propertics? E.g., Do the paramcter estimates and the
estimation mcthods depend continuously on obscrvation noise, initial data, amounts of
data available, problem constraints, etc.?

(c) Identifiability [18], [25): Is the map from thc parameter space to the observation
sufficiently well-behaved so that the methods can produce unique estimates?

(d) Modcl comparison [3], {5}, [19]): Can onc make evaluations regarding the importance

and type of mechanisms needed to model given phenomena? E.g, Which is more
important in particular transport phenomena: convection, diffusion, nonlinear effects,
dynamic (time varying) vs. hetcrogencous (spatially varying) terms or coefficients? What
level of refinement in modeling terms can be supported by the experimental design and
data? Do model refinements yield statistically significant improvements in explanation of
the data?

CONCEPTUAL CONSIDERATIONS

We next outline briefly certain ideas related to the problems and methods that are the focus

of this presentation. At the same time we shall indicate some questions that may arise in either

thecoretical or computational aspects of investigations using the methods. These discussions can
be made precise and mathematically rigorous, but for the sake of brevity, we shall not do that
here.

For the purposes of illustration, we return to the problem of minimizing the functional of
(2) subjecct to the system (1) relating the states and parameters. Such problems lead to the necd
for optimization techniques for constrained problems that are infinite dimensional in naturc.
One has a system with states (t,x)-u(t,x) in some infinite dimensional function space X and
parameters (t,x)-q(t,x), or (t,x,u)~q(t,x,u) if the parameciers arc state dependent, in some infinitc
dimensional function space Q. These problems can be concisely stated in a theorctical
framework using either the theory of semigroups or evolution operators, or the theory of
sesquilincar forms in Hilbert spaces. We won't pursue the details here, but refer the recader to
(2}, 17), 19), (13), (15]).

In any case, this leads to the rccognition that in order to effectively develop

computational techniques, onc must introduce approximation schemes for the state and




4 t'*lt
b parameter spaces. That is, one needs families of finite dimensional spaces XN and QM (such
: as finite clements, splines, spectral families) such that XN approximates X well as N~= and ::ﬁ::
L ' QM approximates Q as M- (We shall (imprecisely) write this as xN-x, QM*Q or simply ::“:
‘ N-= M-« in the discussions below.) One then must develop schemes to solve the ?
" approximate problems obtained when u in J of (2) is replaced by the approximate statcs ._E
uNe XN satisfying some equation approximating (1). Minimization is carried out over oM :‘. f

yiclding approximate best-fit parameters g™ Thus, the algorithms we have developed t:t::

and used (c.g. see {3}, [5), (8] for dectails) entail iterative optimization techniques combined :~

with appropriately chosen approximation schemes based on families XV, QM. F

Among the important questions associated with these approximation ideas are those of ’\:."

method convergence and method stability. In the first, one must argue that gV 'M-g as XN-X, t

QM-oQ, where q is a solution to the original problem involving (1) and (2). That is, one must ::‘_'_::

assurc fidclity of the estimates under sufficiently accurate approximation of state and !

paramcter spaces. The concept of stability is related to a continuous dependence of the {{-_‘-

estimates on the observed data, XN, and QM. More precisely, if gN™M(u) denotes solutions to the -'__;:::.

approximate problems corresponding te state space XN. parameter space QM and data G, and if _\:

(GK} is a sequence of data with GK-'G, then one desires to guarantee that EN' M(GK)-'E(G) as

NMK== where q_(ﬁ) is a solution of the original problem with data u. That is, fidelity of the

estimates will hold with sufficiently small noise in the observations as well as sufficiently N

accurate approximations of the state and parameter spaces. For further discussions see [1],
[18].

Onc can dcvelop a general theory to guarantee theoretically and computationally
well-behaved algorithms based on the ideas we have used in a wide class of problems including

the examples discussed below. The arguments rely heavily on ideas from functional analysis,

approximation theory and compactness. We refer the reader to [1}, [4], [8], [15], [18], [25] for ,’..-.'*_
further elaboration and details. We only note here that fundamental to all these convergence R
and stability results is the establishment that uN(t,x;qM)-u(t,x;Q) in some¢ sense (i.e., in an E‘:
appropriate X-topology) whenever qM-'q in an appropriate sense (i.c., in a Q-topology). For :l:::
further discussion of mathematical ideas, and implementation and testing of the mecthods, we ::
refer to the presentations in [3], [5] in addition to thosc references cited above. Here we =
discuss several projects in which these methods are playing a fundamental role and outline somc
ncw results in two areas.

. INSECT DISPERSAL/GROWTH MODEL o

We have, in collaboration with P. Kareiva (U. Washington), considered a number of aspects _.

of insect movement and growth. In several cases our quantitative methods have proved uscful ::_’:‘:.-
in planning the cxperiments as well as actually investigating various modecls. Among the ;-:',j'.-:
investigations we have pursued are: {:*

(1) quantifying "initial disturbancc" effects in dispersal rates for flca beetle movement in
mark-recapture experiments in cultivated collard patches (3], {51, {21], {22], {23];
(ii) studying the effects of density-dependent dispcrsal rates, nonlincar growth, intcraction,

and predation in multiple spccies models such as those for ladybug-aphid-goldenrod

< --.'.-.}-’l'f-.}\-‘ e N e e e S . I, T e .- e e oo e e et e e
o R I S P T e T e T S R T T S AP N I T TRl S
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experiments [10], [24);

(iii) quantifying "preferred direction® components in cabbage root fly movement in
‘two-dimensional domains [6), [31].
In regard to the investigations of (ii), we note that the methods can be used effectively to
cstimate the shape of density-dependent dispersal coefficients D and nonlincar growth terms
in models of the form

du _ Q0 du
a - on [D(t,x,u) 3 ] + f(u) (3)

where D(t,x,-) has the form depicted in Figure 1.

/‘f\p

P U."’Bﬁl -

o+ Bu

a +8&y

=

Figure 1 3]
Such dispersal coefficients represent a rate that is bounded below and above (basal and o

saturation limits) and depends linearly on the density between these bounds. Problems with #

density-dependent dispersal have reccived attention elsewhere [28], [29] (see also [26] for ::::'_
further discussions regarding the importance of such problems). .

Before using our estimation or inverse techniques in problems with experimental data, ~.:.-;
we carry out a rather careful testing of the methods with "synthetic" data on numcrous E’}

examples. This procedure involves a series of tests using "data" generated (with noise) from
a system with known (prechosen) parameters to ascertain the ability to recover the parameters

from given sets of "data”. For detailed explanations of this procedure, see for example [3], [3]. f.} J

This testing is also combined with attempts to establish convergence and stability results for the
mcthods. For problems involving systems of the type (3), such results are given in [1], [10], [11].

We present here results from two of the numerical tests we performed.

Example I: We seek to estimate D = D(u), ic., {, &,, « B in Figure I, in the system

du _4a. du 2. 1,3 - - = .
o ax[D(“)ax]* 2u é'u + F(t,x), u(t,0) = u(t,1) = 0, u(0,x) = 6x(1-x),

where F is known (computed analytically so that u(t,x) = 6x(l-x)(1+t®) is a solution

A AR S L St M S TN PRS M o e e e e .- e e T PR . . . . .
. te e e e e e Tt * . L A ST I L -t . P PR T S AT L
PR R, ‘_ﬂ"_q’, PRl LT T R R A LT, L, '_&"_*_\ AR PRI R,




corresponding to a "true” parameter D* with §,=5, { =16, «=3, B=1). *"Data" corresponding

to obscrvations at (ti,xj), ti=0,.5,l,xj=.l,.2,...,.9, were used for the inverse procedure. Results for
cstimation with N=6 and N=14 (cubic splines were used for the state approximations - sc¢
[10] for dctails) along with the initial estimate D° and true value D* are depicted in Figure
2.

£ AT TETLIL N

77

- ” s
e
p ’/ 7/
. A7 N L
o7 D* and D
4 T
— I
1 /j
_____/
- I_)"v
4
3—}

T — T T L] T \J T T 1 1 |
0.0 1.0 2.0

Figure 2

Example 2: We scck to estimate g and the nonlinearity f (we do not make any a priori
paramctrization or shapc assumption on f) in

2

aatu = q g—lg +f(u) + F(x), u(t,0) = u(t,1) = 0, u(0,x) = 6x(1-x),

X
where again F is computed so that u(t,x) = 6x(1-x)(1+t?) is a solution corresponding to truc
values g*= 3.0, f*(u) = 2u? - L ud. Results for the simultaneous estimation of f and q with
state approximation N=6 (cubic splines with mesh h= t) and parametcr approximations
(lincar splines) for  with mesh sizc h=.65 (sce [11] for further details) are presented in

Figure 3. These results for the initial estimate f° the converged value 7% and f*

correspond to initial guess q°=1.0 and converged value q%=2.9993.




L}
r
v
13
’
'
.
'
]
v
’
s
13
v
v
¥
r
v
»
v
3
t
¥
e
v
v
v
«
.

v o
.“ "
%

* Iy
: 5 - X%
L-. ?—6, ,GSN,A .\~
.- TN
.‘A

i
! 3

N

Y
]
]
3 4 ,

A
0.\-:

3
4
14 -

4
=

Z N

// T~

0+

v T T T T Al .

0.0 1.0 2.0 3.0 O
Figure 3
SIZE DEPENDENT GROWTH MODELS o
We are currently using our parameter estimation techniques in investigations that entail sizc :‘_-::
dependent population growth models. Data from experiments with mosquito fish populations in :'

rice paddies have motivated our collaborative efforts with L. Botsford (U. California, Davis). "

While the basic problems we are considering are control problems for the mosquito
fish/mosquito populations, a substantial effort is required in developing the wunderlying :-;..-

dynamics (i.e., growth models). For a more detailed description of the modcling and control _'{‘.

problems, we refer to [17], [30]. 20

A simple version of the basic modeling problem entails estimation of q=(g.m,b) in thc
system

Buy & (gu) = -mu xyx$x;, 150, u(0,x) = &x), BXIu(t,Xo)= J'x‘b(t,t)u(t.t)dz, (4) "

at x 0 1 o o
Xo rl - J
where g=growth rate, m=mortality rate, and b=fecundity are in general dependent on time t and !

size x, with x, x, the minimum and maximum observable sizes, respectively. Data for the

. A . -
system gencrally consists of observations that yield values u(t;x), Xo$x€x , so that a distributcd

lcast-squarcs criterion, e.g.,
Ja) = T]u(t,5a)- v( )| %
i L

is appropriatc.
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Since a convergence theory for the estimation problem has not appeared elscwhere, we

sketch one approach to this problem. This approach is the analogue to that given in [1], {10],
{11) for the insect dispersal model problems. We first rewrite (4) in variational or weak form.
We seck u(t)eHo(xo,xl) satisfying for all ¢eH‘(xo.xt)

<u,¢> + <mu,$> - <gu,Dé> - Hx)HR(t,u) =0, wu(0,)=19 (5)

where R(t,9) = I:' b(t, O(t)de, D = -g; , and <,> is the usual L2=HY inner product. For brevity,
0

we assume that the parameters g and m depend only on size x. The ideas we present here can
be readily modified to treat theorctically and computationally the more general case where g
and m also arc timc dependent.

We assumc that (g,m,b) arc to bec chosen from function spaces GxMxBCH‘(xo,x,)xHO(xo,
xi)xHo([O,T]x[xo,x‘]) containing only nonnegative functions g,m,b where the functions in G also
satisfy g(x,)=0 and g(xo)av1 for some positive constant V. For the approximating systems (scc

[4], [10)) we assume that subspaces ZNCH!(x(,x,) are chosen and let uM(t)eZN denote solutions to

<ulg> + <muN > - <guNDi> - Ux)R(L,uN)=0, for all Pz, uN(0)=PNe, (6)

where PN is the orthogonal projection of H%x,,x,) onto ZN. We assume that the subspaces ZN
satisfy:

(H,) For ¢eH' we have PN¢~¢ in H' while for ¢¢H® we have PN¢~¢ in HO.

A number of the commonly used approximating families (piecewise lincar, cubic splines [27])
satisfy this hypothesis. The ideas here can be slightly modified (sce the remarks in [I]) to
also include spectral families (such as Legendre polynomials - see {20]) in the state
approximation schemes for which the convergence theory presented here is valid.

We further assume that G, M, B arc compact in HY, H®, H® respectively, and that compact
approximation families GM, MM, BM for G, M, B respectively have been chosen satisfying:

(H,) For gMeGM, gM(x‘)=O, gM(xO)zvv |DgM|,,su1, and GM=i’;‘(G) where for cach geG. i‘:‘(g)"g
in H® with the convergence uniform in geG;

(H,) For mMeMM, lli,,Suz, and MM=i;‘(M) where for each meM, i¥(m)=m in H® with the
convergence uniform in meAf,

(H) For bMeBM, 1bM(t, )i<p,, and BM=i}(B) where for each beB, iM(b)~b in H® with the

convergence uniform in beB.

We next remark that to give a convergence theory it suffices (sce [8]) to arguc that
uN(t;qM)~u(t;q) in H®° for each t as N,M~= whencver (qM) is an arbitrary secquence with
aMeGMxAMxBM and qM-=qeGxAMxB. Indeed, it suffices to give these arguments in the form
uMN(r;9N)-u(t;q) whenever {gF) is arbitrary in GxMxB with qN=q in GxMxB (in the H!xH%xH®
topology in this casc). We sketch the arguments; let {qV) be arbitrary with qN=q in GxMxB
and let uN(qN), u(q) be the solutions to (6), (5), respectively, corresponding to qN=(gN,mN,bN).
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q=(g,m,b) respectively. From (H,), it suffices to argue that zN(t) = uNt;q™) - PNu(t:q)~0 in

Ho%xg.x,) for each t in (0.T).

Letting RN(1,¢) J”“ bN(1,8)¥(E)dE, we have from (S) and (6) that for ail ¢ezN
X0

<(uN-PNu)t,¢> = <u?- u, + (u-PNu)',¢>
= <(I—PN)ut,¢> + <mu-mNuN,¢> + <gNuN - gu,Dé>+ ¢(x0)ARN
where ARN=RN(,uM)-R(t,u).  With z¥ as dcfined above we have zN(0)=0 and
<z {‘f¢> = <(l-PN)ut,¢> + <mu-mNpPNu,¢> - <mNzN o>

+ <gNPNu-gu,Du> + <gNzN,D¢> + ¢(x0)ARN.

Choosing ¢=z" in this identity we find

Ld
2 dt

lzN|2 +<mMzN 22N> - NN DZN>

= <(I-PN)ut,zN> + <mu-mNPNuzN> + <gNPNu-gu,DzN> + zN(xo)ARN.
Rccalling that gN(x1) = g(x,) = 0, with intcgration by parts we find

<gNzN,DzN> = -% <DgNzNZNs é—gN(xo) 2N(x )
and
<g™PNu-guDzN> = - <D(gNPNu-gu).z™> - [gNPNu-gu](xo)zN(xo).
Hcence, we have
. 2 ,
;‘z-gr Izb‘l + <mMN N5 é <DgNzN 22N> ;- g"‘(xo)z“"(xo)z

NPN N

u,z"> - <D(gNPN

= <(l-PN)ut,zN> + <mu-m u-gu),zN> (7)

+ zN(xo) [(gu-gNPNu)(xo) + ARN].
Using the bounds from (H,), (H,) we find

N_N

<mNzN ZN

> + 2l <DgNzN ZNs & é-gN(xo)zN(xo)z 2 ulz”l2 + va(xo)2

for positive constants g, v. Standard incqualities imply that the right side of the equality (7) is

less than or equal to
L4 a-PMyu, 2 + [mu-mMPNu |7 4 |D(e"PNu-gu) |2
4¢ t

+ 3e|z"‘|2 + elz"‘(xo)l2 + ‘11: [2|(gu-gNPNu)(xo)|2 + 2|ARN12},

where €>0 is arbitrarily chosecn. From the bounds of (H4) we¢ have that IRN(t.zN):sklzN{ and
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defining 87(t) = RN(t,PNu-u) + RMt,u) - R(t,u) we may conclude that

|AR"| < k|z"| " |sN(:)’.

Using these inecqualities in (7) we obtain

é‘(k |zN|2 + [u-3e- éd] |zN|2 + (v-e)lz"'(xo)l2 < hMN(t) 8)

where

N = t {!(I-PN)udz + |mu-m“‘P“u|2 + |D(g"PNu - gu)|?
+ 2|(gu-gr“PNu)(x0)]2 + 4'6"(0"].

Choosing e=v and using zN(0)=0, we may apply Gronwall's lemma to conclude that it suffices to
argue that h™(1)=0 in L!(0,T) to obtain the desired results. Under sufficient smoothness for u(t),
this follows readily from (H ) - (H,).

While we arc still testing our methods for use with models such as (4), our initial findings

arc quite positive. We present one of our simple test examples.

Example 3: We scck to estimate g in (4) with m=2, b(x)=12xvi-x, ¥(x)=vZvi-x, x;=0, x =1
The solution corresponding to g*(x)=2(1-x) is given by u(t,x)=e‘vzvi-x. Cubic splines (ZN of
dimension N+3) were used for the state approximations while linear splines (QM of dimension
M) werc used in parameter approximations gM(x) = [ « 8 (x), where the sum is from i=0 to
1=M-1 and 2, is the usual "hat” function basis element [27] with support in ((i-1)/M, (i+1)/M). For
M=4, the truc value g* corresponds to coefficients g*~(of,a},a3,a}) = (2.0,1.5,1.0,.5). Using data
at eleven points in timec and spacec each and initial guess (1,1,1,1), we obtained the converged
values (1.998,1.498,1.000,.496) for a-cocfficients in the representation for E"“ , 1.e., with N=32,
M=4. The graphs of g* and g3%* are not distinguishable using ordinary plotting devices and

hence we do not present them,

COMPUTATIONAL CONSIDERATIONS

The problems on which we have focused in this presentation are computationally

intensive. Even simple examples such as those presented above can require from 10? to 104
scconds on an IBM 3081 and we are now using the ideas discussed here in research problems for
which use of such a sequential machine would require rather prohibitive computational
expenditures. The nccessary software packages must deal with reasonably large vector/tensor
systems and involve many repetitive routine calculations. Therefore, a substantial part of our
research efforts over the last year have entailed development of ideas, algorithms, and software
to take advantage of emerging computer architectures involving parallel and vector
computational capabilities. Use of such architectures (in our rescarch programs at Brown
University and ICASE, we are currently employing a CRAY X-MP - a widely known vector
machine - and a STAR ST-100 array processor with parallel features) has substantially enhanced
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our efforts to investigate some of the research questions in modeling outlined above. For
cxample, results for problems of the type given in Example 1 typically require from 103 to 104
scconds on the 1BM 308!, but when the algorithms and corresponding software are modificd to -

[/

R AR
AN

M

NN

take advantage of the arithmetic speed and vector capabilities of the CRAY, we can carry out
the same computational runs in 50 to 200 seconds on a CRAY X-MP.

Rescarch machines such as the CRAY are, through NSF and other research sponsoring

"

3

,"'.l

agencies, becoming readily accessible to many scientists in the US. We recognize that the o

a’e' s 3 8/

machines we are presently using for these techniques and methods are not widely available to
the world-wide biological research community. However, we firmly believe that the current
rcvolution in computer hardware development has important implications for the community. We
notc that many of the high speed, parallel and vector features of large, expensive rescarch array
processors such as the FPS-164 and STAR ST-100 and rescarch vector machines such as the
CRAY X-MP (and 1-S) and CYBER 205 are rapidly becoming available in small, relatively
- inexpensive desk-top configurations. A number of attached array processor units and boards
- arc now available for use with personal computers such as the IBM PC XT. Recently, new .
; high spced chips (e.g., INTEL 80386 - a 32 bit, 4 MFLOPS chip) have been announced and will
- be available in PC’s in 1987. We believe that the wide availability of "desk-top CRAY"
o] capability discussed in the computer science community is only several years away. If we can
successfully develop ideas further along the lines of those discussed above, the potential for a

significant impact on biological modeling and research is enormous.
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