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ABSTRACT

We discuss techniques for the estimation of nonlinearities and state-dependent
coefficients in parabolic partial differential equations. Applications to
density-dependent population dispersal and nonlinear growth/predation models are
presented. Computational results using parallel and vector architectures are discussed.
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INTRODUCTION

In this presentation we discuss methods for inverse or parameter estimation problems

which can be employed as quantitative modeling techniques in models for distributed

*(spatially, age, size, etc.) biological systems. In this context they may be useful in attempts

to understand, elaborate on, or further refine details of specific mechanisms for dispersal,

growth, interaction, etc. in wide classes of models. We have also used these techniques in a

number of biologically related problems [I] such as bioturbation [12], [141, [15] and

climatology [19]. In addition to an overview of ideas underlying these techniques, we shall

present here brief discussions and some findings on two specific biological problems for

which we are currently using them successfully.

A typical inverse problem entails some given or hypothesized dynamical model with

"parameters" q (often temporally and/or "spatially" or even state dependent) and "states"

u(t,x;q), 0<,t(T, xcfl, which depend on the parameters through a dynamical system of

equations. One has observations or data u.. for u(ti, xj;q) and wishes to choose, from sonic

admissible parameter set Q, parameters 4 so as to give a best fit of the model to the data.

* For example, we might have a hypothesized model for transport

* ~a ~ I -1It,x,u)u) 19(I~t,x~u) Dp. F(t,x,u)(Iat + x ax ax

with initial and boundary conditions also possibly depending on the unknown parameters

q=(1'.D.F). Given data u we seek to minimize a fit-to-data criterion such as a least-squares

J(q) = E I u(tx,;q) - rj.
ij -.

over a specified class Q of functions (I',D,F) so as to obtain a best estimate q = (P.AT'). In

addition to obtaining estimates for q, usually one desires to analyze in some way the "goodness"

of the model in describing the phenomena one is modeling. We shall elaborate on some related

questions in this regard below.



The methods we discuss briefly here can be powerful modeling tools when carefully

and correctly used. Some of the novel features of our recent efforts include the

capabilities for estimation of (i) state or density dependent dispersal coefficients such as D

above in (I), (ii) system nonlincarities such as F in (I), and (iii) boundary parameters in

both simple and not-so-simple boundary conditions (we give an example in the discussions

on size dependent models below). Furthermore, there arc a number of modeling related

questions that one might hope to address from a theoretical or computational (or both)

viewpoint with the aid of these techniques. These include:

(a) Experimental design [3], [41. [5]: What is the appropriate data required to support analysis

of a particular model or mechanism? E.g., How many time vs. spatial observations must be

made, or what type of initial data is needed to study movement patterns?

(b) Robustness of model parameters [I], [3], [8], [161, [191: Do the problem formulation and

the methods enjoy certain stability properties? E.g., Do the parameter estimates and the

estimation methods depend continuously on observation noise, initial data, amounts of

data available, problem constraints, etc.?

(c) Idcntifiability [18], [25]: Is the map from the parameter space to the observation

sufficiently well-behaved so that the methods can produce unique estimates?

(d) Model comparison [3], [5], [19]: Can one make evaluations regarding the importance

and type of mechanisms needed to model given phenomena? E.g., Which is more

important in particular transport phenomena: convection, diffusion, nonlinear effects,

dynamic (time varying) vs. heterogeneous (spatially varying) terms or coefficients? What

level of refinement in modeling terms can be supported by the experimental design and

data? Do model refinements yield statistically significant improvements in explanation of

the data?

CONCEPTUAL CONSIDERATIONS

We next outline briefly certain ideas related to the problems and methods that are the focus

of this presentation. At the same time we shall indicate some questions that may arise in either

theoretical or computational aspects of investigations using the methods. These discussions can

be made precise and mathematically rigorous, but for the sake of brevity, we shall not do that

here.

For the purposes of illustration, we return to the problem of minimizing the functional of

(2) subject to the system (1) relating the states and parameters. Such problems lead to the need .

for optimization techniques for constrained problems that are infinite dimensional in nature.

One has a system with states (t,x)-u(t,x) in some infinite dimensional function space X and
parameters (t,x)-q(t,x), or (t,x,u)-q(t,x,u) if the parameters are state dependent, in some infinite

dimensional function space Q. These problems can be concisely stated in a theoretical

framework using either the theory of semigroups or evolution operators, or the theory of

sesquilinear forms in Hilbert spaces. We won't pursue the details here, but refer the reader to

[21, [7], [91, [131, [15].

In any case, this leads to the recognition that in order to effectively develop

computational techniques, one must introduce approximation schemes for the state and

*k. %,% .. :!



parameter spaces. That is, one needs families of finite dimensional spaces XN and QM (such

as finite elements, splines, spectral families) such that XN approximates X well as N-- and
QM approximates Q as M-". (We shall (imprecisely) write this as XN-X, QM..Q or simply

N-, M--, in the discussions below.) One then must develop schemes to solve the

approximate problems obtained when u in J of (2) is replaced by the approximate statcs *.

uN(XN satisfying some equation approximating (1). Minimization is carried out over QM

yielding approximate best-fit parameters 1 NM. Thus, the algorithms we have developcd

and used (e.g. see [3], (5], [8] for details) entail iterative optimization techniques combined

with appropriately chosen approximation schemes based on families XN, QM.

Among the important questions associated with these approximation ideas are those of

method convcrgence and method stability. In the first, one must argue that qNM_- as XNX,
QMQ, where q is a solution to the original problem involving (1) and (2). That is, one must

assure fidelity of the estimates under sufficiently accurate approximation of state and

parameter spaces. The concept of stability is related to a continuous dependence of the

estimates on the observed data, XN, and QM. More precisely, if 4N,M( ) denotes solutions to the

approximate problems corresponding to state space XN, parameter space QM and data u, and if
{uK ) is a sequence of data with K then one desires to guarantee that N. M( K)..( ) as -

N,M,K- ®, where 4(u) is a solution of the original problem with data u. That is, fidelity of the

estimates will hold with sufficiently small noise in the observations as well as sufficiently

accurate approximations of the state and parameter spaces. For further discussions see (I],

[18].

One can develop a general theory to guarantee theoretically and computationally

well-behaved algorithms based on the ideas we have used in a wide class of problems including

the examples discussed below. The arguments rely heavily on ideas from functional analysis,

approximation theory and compactness. We refer the reader to [1], [41, [8], (15], [18], [251 for

further elaboration and details. We only note here that fundamental to all these convergence

and stability results is the establishment that uN(t,x;qM)-u(t,x;q) in some sense (i.e., in an

appropriate X-topology) whenever qM-q in an appropriate sense (i.e., in a Q-topology). For

further discussion of mathematical ideas, and implementation and testing of the methods, we

refer to the presentations in [31, [51 in addition to those references cited above. Here we

discuss several projects in which these methods are playing a fundamental role and outline some

new results in two areas.

INSECT DISPERSAL/GROWTH MODELS

We have, in collaboration with P. Kareiva (U. Washington), considered a number of aspects

of insect movement and growth. In several cases our quantitative methods have proved useful

in planning the experiments as well as actually investigating various models. Among the

investigations we have pursued are:

(i) quantifying "initial disturbance" effects in dispersal rates for flea beetle movement in

mark-recapture experiments in cultivated collard patches (3], [5], (21], (22], [23];

(ii) studying the effects of density-dependent dispersal rates, nonlinear growth, interaction,

and predation in multiple species models such as those for ladybug-aphid-goldenrod



experiments (101, [241;

(iii) quantifying "preferred direction" components in cabbage root fly movement in

two-dimensional domains [6], [31].

In regard to the investigations of (ii), we note that the methods can be used effectively to

cstimate the shape of density-dependent dispersal coefficients D and nonlinear growth terms f

in models of the form

S.D(t,x,u) + f(u) (3)
* t ax ax]

where D(t,x,.) has the form depicted in Figure 1.
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Figure 1

Such dispersal coefficients represent a rate that is bounded below and above (basal and

saturation limits) and depends linearly on the density between these bounds. Problems with

dcnsity-dependent dispersal have received attention elsewhere [281, [29] (see also [26] for

further discussions regarding the importance of such problems).

Before using our estimation or inverse techniques in problems with experimental data,

we carry out a rather careful testing of the methods with "synthetic" data on numerous

examples. This procedure involves a series of tests using "data" generated (with noise) from

a system with known (prechosen) parameters to ascertain the ability to recover the parameters

from given sets of "data". For detailed explanations of this procedure, see for example [3], [5].

This testing is also combined with attempts to establish convergence and stability results for the

methods. For problems involving systems of the type (3), such results are given in [1], [10], [i].

- We present here results from two of the numerical tests we performed.

Example I: We seek to estimate D = D(u), i.e., t o , 1, , 8 in Figure 1, in the system

.2- = D(u)&J 2 IU
t -Du8x+x2u- 2u + F(t,x), u(t,O)= u(t,l)- 0, u(0,x) = 6x(l-x),

where F is known (computed analytically so that u(t,x) = 6x(I-x)(i+t 2) is a solution

... . .. -" ... .. .. - .*., ' ' .,."::, .. : , . . . ,..,;...,.-.. ... , . , , .: . •_• ." . . .. ; -- ,., . . •..... .
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corresponding to a "true" parameter D$ with t,=.5, tl=1.6. oa=3, 13=1). "Data" corresponding

to observations at (t1,X t) t=0,.5, I,x =. ,.2... 9, were used for the inverse procedure. Results Cor

estimation with N=6 and N=14 (cubic splines were used for the state approximations -see

110] for dctails) along with the initial estimate Do and true value D* are depicted in Figure

2.

Nor.

D' ~ and A

3

0.0 1.0 2.0

Figure 2

Exampic 2: We scck to estimate q and the nonlinearity f (we do not make any a priori

paramctrization or shape assumption on f) in

=q ~2+f(u) + F(t,x), u(t,O) =u(t~l) =0, u(0,x) =6x(l-x),

wherc again F is computed so that u(t,x) =6x(J-x)(l+t) is a solution corresponding to truc
valucs q*= 3.0, f*(u) = 2U2 

-L us. Results for the simultaneous estimation of f and q with
2

state approximation N=6 (cubic splines with mesh h= -1) and parameter approximations

(lincar splines) for f with mesh size h=.65 (see [III for further details) are presented in

Figure 3. Thesc results for the initial estimate fo, the conv'erged value f~6,and f*

correspond to initial guess q0 =1.0 and converged value &6=2.9993.
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SIZE DEPENDENT GROWTH MODELS

We are currently using our parameter estimation techniques in investigations that entail size

dependent population growth models. Data from experiments with mosquito fish populations in

rice paddies have motivated our collaborative efforts with L. Botsford (U. California, Davis).%

While the basic problems we arc considering arc control problems for the mosquito

fish/mosquito populations, a substantial effort is required in developing the underlying

dynamics (i.e., growth models). For a more detailed description of the modeling and control

problems, we refer to [17], [301.

A simple version of the basic modeling problem entails estimation of q=(g,m,b) in the

system .

4at+ax g)=-u X XjXt t>0, u(0,x) =OWx, g(Xo)U(t,Xo)= ;x~b(t,tOu(t,k )dk, (4) .

where g=growth rate, m--mortality rate, and b=fecundity are in general dependent on time t and

size x, with xO, x, the minimum and maximum observable sizes, respectively. Data for the
A

system generally consists oobservatestiat in yield vac ues (tin x), Xext , so that a distributed

ileast-squar cs criterion, e.g., ar

Jgq) = u(t,, . ;q - u~t.i .

is appropriate.
("x(

-* t..x

whr..rot ae mmraiy"ae.nd-fcnit-r ngeea epneto tm n

* . ,. siz x,, with.'x.th miimumandmaxmumobsevabe.szes respectively.,:....... ...... . Data:or...
* sysem -geerall.conssts.oobsevatios.tha. yiel values.. t,,.. x0 x- ., so tha a...dist--r ..-i-..-te-



Since a convergence theory for the estimation problem has not appeared elsewhere, we
4..sketch one approach to this problem. This approach is the analogue to that given in [11, [10],

[ll for the insect dispersal model problems. We first rewrite (4) in variational or weak form.

We seek u(t)eH°(xo, X) satisfying for all OeH 1 (xo,x 1 )

<utAO> + <mur> - <gu,D4'> - O(xo)R(t,u) = 0, u(O,) = (5)

where R(t) Ef b(t, tO(k)d, D and <,> is the usual L2=H ° inner product. For brevity,
xo x

we assume that the parameters g and m depend only on size x. The ideas we present here can

be readily modified to treat theoretically and computationally the more general case where g

and m also are time dependent.

We assume that (g,m,b) arc to be chosen from function spaces GxMxBcH 1 (xo,X1 )xH0 (xo ,

x1 )xH°([0,T]x[xo,xtj) containing only nonnegative functions g,m,b where the functions in G also

satisfy g(x,)=O and g(xo)v.1 for some positive constant v,. For the approximating systems (sce

[4], [10]) we assume that subspaccs ZNcHI(xoXl) are chosen and let uN(t)(ZN denote solutions to
<uN4)> + <muN,lp> - <gUN,Di> - (x)R(t,uN)=0, for all IEZN, UN(O)=pN, (6)

where pN is the orthogonal projection of H°(xoX I) onto ZN. We assume that the subspaces ZN

satisfy:

(H) For OEH' we have pN €- 0 in H' while for OcH ° we have PN-0 in H0 .

A number of the commonly used approximating families (piecewise linear, cubic splines [27])

satisfy this hypothesis. The ideas here can be slightly modified (see the remarks in [I]) to

also include spectral families (such as Legcndre polynomials - see [201) in the state

approximation schemes for which the convergence theory presented here is valid.

We further assume that G, Al, B arc compact in H1 , H0 , H° respectively, and that compact

approximation families Gm, AiM, BM for G, AM, B respectively have been chosen satisfying:

(H) For gMEGM, gMx)=O gM(xo))V,, DgMj,( 1, 1 , and GM=iM(G) where for each gEG. im(g)-g

in H' with the convergence uniform in geG;

(H 3 ) For mMCAMM ' ImMj*, g 2 , and AJM=iM(Af) where for each mMAf, iM(m)-m in HO with the

convergence uniform in meAf;

(H 4) For bMeBM, IbM(t,);L,, and BM=iM(B) where for each beB, im(b)-b in H° with the

convergence uniform in beB.

We next remark that to give a convergence theory it suffices (see [8]) to argue that

u N(t;qM)'U(t;q) in H0 for each t as N,M-* whenever (qM) is an arbitrary sequence with
qMEGMxAIMxBM and qM--.qcGxAfxB. Indeed, it suffices to give these arguments in the form

uN(t;qN)-.u(t;q) whenever (qN) is arbitrary in GxAlxB with qN.q in GxAfxB (in the H 1 xH~xltl

topology in this case). We sketch the arguments; let (qN) be arbitrary with q N -q in Gx.lxB

and let uN(qN), u(q) be the solutions to (6), (5), respectively, corresponding to qN=(gN,mN,bN),

S.. *5~5**..... .



q=(g,m,b) respectively. From (H1 ), it suffices to argue that zN~) u~~N pNU(tq).. in

.4-. li 0 (x0 .x1 ) for each t in (0,T).

Letting RN(t,4b) 1 bNt,t)4i(t)dt, we have from (5) and (6) that for all 04EZN
XO

'-p~t O(NPu > =<ut - ut i

= ( tNu,O> + <mu-rn NuN~ gu gu,Do>+ O(x0 )1 R

whcc tRNRN~~u)-R(t,u). With zNas defined above we have zN )=o and

<Z N = <(I-pN)u, <~NpNu,4)>-

+ <gNpNU-guDu> + <g NZNDO + O(x 0 )ARN.

*Choosing O=zN in this identitv we find

2L d z N2 +<M NzNzN> C gNZNDZN>

=<(I~pN)U tZN> + <mu-mNpNu,zN> + <gNpNu-guDZN> + ZN(X 0)ARN. 4

Recalling that gN(x1 ) =g(x,) =0, with integration by parts we find

<gNzN,DZN 2 <DgN zN, ZN> 1 9 N(x 0 ) zN (x0 )2

and

<NpNU-u) <D(gNpNu~gu),zN> N
<g Pu~gDz> =- -[gNpNU..gU(XO)z xO)

Hience, we have

I d- . Ni12 + <MNzN,ZN> + I<DgNzN,zN> + 9 IOZN )

2 dt jzI 2

t- (lPutz> + <mu-MN uzN- <D(gNpNu-gu),ZN> (7)

+ ZN(x 0 ) [(gu-gN P )() + ARN.b

Using the bounds from (H2). (H 3) We find

<MNzN,zN> + I<DgNzN,ZN> + 9 N(x ))zN(x)2 gl 1 2 + VZN(X 0 )2

for positive constants gi, v. Standard inequalities imply that the right side of the equality (7) is

* less than or equal to

I... fie~1-pN)U,2 + I mu-mNP~u 2 + ID(gNpNU~gU) 1

+ 3e IzN 2 + f1 Z N(x 0 ) 1 2 + I~(2 1 (gU-gNpNUx) 1)2 + 2 1,RN 12}

where iE>0 is arbitrarily chosen. From the bounds of (H44) we have that IRN(t,zNflcklzNI and



defining BN(t) RNtPNuu) + RN(t,u) R(t,u) we may conclude that

NJ 4 kjzf . 1 N(t)f

I - Using these inequalities in (7) we obtain

2 ~ ~ i-e dtIN2+ vE)IZN(X0)1
2 (h~'t (8)

where

hN(t) t(IPN)u + 1mumNPNu Z + 1D(gNpNu gu) 2

+ 2 (gugNPNu)(x) 2 + 4 6 N(t) j 2.

Choosing E=v and using zN(O)=o, we may apply Gronwall's lemma to conclude that it suffices to

argue that hN(t)-0 in L 1(O,T) to obtain the desired results. Under sufficient smoothness for u(t),

this follows readily from (Hi,) - (H4 ).

While we arc still testing our methods for use with models such as (4), our initial findings

arc quite positive. We present one of our simple test examples.

Example 3: We seek to estimate g in (4) with m=2, b(x)=12xv--x, O(x)=A2V- Xo=0, xl-l.

The solution corresponding to g*(x)=2(l-x) is given by u(t,x)=etVTi-x. Cubic splines (ZN of

dimension N+3) were used for the state approximations while linear splines (QM of dimension

M) were used in parameter approximations gM(x) = 1 i (x), where the sum is from i=O to

i=M-I and Ii is the usual "hat" function basis element [27] with support in ((i-l)/M, (i+l)/M). For

M=4, the true value g* corresponds to coefficients * = (2.0,1.5,1.0,.5). Using data

at eleven points in time and space each and initial guess (1,1.1,1), we obtained the converged

values (1.998,1.498,1.000,.496) for u-cocfficients in the representation for p2,4 , i.e.. with N=32,

M=4. The graphs of g* and is,4 are not distinguishable using ordinary plotting devices and

hence we do not present them.

COMPUTATIONAL CONSIDERATIONS

The problems on which we have focused in this presentation are computationally

intensive. Even simple examples such as those presented above can require from 102 to 104

seconds on an IBM 3081 and we are now using the ideas discussed here in research problems for
which use of such a sequential machine would require rather prohibitive computational

expenditures. The necessary software packages must deal with reasonably large vector/tensor

systems and involve many repetitive routine calculations. Therefore, a substantial part of our

research efforts over the last year have entailed development of ideas, algorithms, and software

to take advantage of emerging computer architectures involving parallel and vector

computational capabilities. Use of such architectures (in our research programs at Brown

University and ICASE, we are currently employing a CRAY X-MP - a widely known vector

machine - and a STAR ST-100 array processor with parallel features) has substantially enhanced

', " . . . . . . . . .. . . . . . . . . . . . . . .. . .. . . . . . . . . . . . .' -: I~



our efforts to investigate some of the research questions in modeling outlined above. For

example, results for problems of the type given in Example I typically require from l0P to 104

seconds on the IBM 3081, but when the algorithms and corresponding software are modified to

take advantage of the arithmetic speed and vector capabilities of the CRAY, we can carry out -F

the same computational runs in 50 to 200 seconds on a CRAY X-MP. I

Research machines such as the CRAY are, through NSF and other research sponsoring

agencies, becoming readily accessible to many scientists in the U.S. We recognize that the

machines we are presently using for these techniques and methods are not widely available to

the world-wide biological research community. However, we firmly believe that the current

revolution in computer hardware development has important implications for the community. We
note that many of the high speed, parallel and vector features of large, expensive research array

processors such as the FPS-164 and STAR ST-100 and research vector machines such as the

CRAY X-MP (and I-S) and CYBER 205 are rapidly becoming available in small, relatively

inexpensive desk-top configurations. A number of attached array processor units and boards

arc now available for use with personal computers such as the IBM PC XT. Recently, new

high speed chips (e.g., INTEL 80386 - a 32 bit, 4 MFLOPS chip) have been announced and will

be available in PC's in 1987. We believe that the wide availability of "desk-top CRAY"

capability discussed in the computer science community is only several years away. If we can

successfully develop ideas further along the lines of those discussed above, the potential for a

significant impact on biological modeling and research is enormous.
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