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PREFACE

This is the second of a two volume report on the subject of friction damping
of dynamic systems. The first of these reports entitled "Study of Character-
istics of Dry Friction Damping" was prepared as an annual report in March 1984
and submitted to the Air Force Office of Scientific Research.

The first report contained an introduction to the topic along with a
thorough review of pertinent literature and discussion of (a) interface charac-
teristics, (b) characterization of friction forces, (c) coefficient of frictionm
and (d) dry friction damping technology. An analytical model and a corresponding
experimental set up was also presented as the basis for further research.
Possible modifications to a nonlocal law were also included. It is recommended

that the reader study the first report prior to commencing the present volume,
although this report is essentially self contained.
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This report contains results of analytical and experimental efforts related 3
2 to dry friction damping. A general time history solution is developed for a >
f multi-degree-of-freedom system which incorporates the use of nonlocal laws of RO
N friction. The formulation and the solution are entirely nonlinear and have the 50
N necessary flexibility for modelling specific engineering problems where the ?t
’ presence of friction at interfaces influences the dynamics., Two examples are i
g chosen to illustrate certain important aspects of the procedures. ;%
. A3
*
. . X . A
A friction test assembly designed and fabricated under this program served ) ¢~
» as an experimental rig. The results from a limited number of tests are presented &;
and discussed. A comparison between analytical and experimental results is P
given. =
. A
. This annual and final report covers the period between March 1, 1984 and 2:
;: April 30, 1985. The work reported here was under the sponsorship of the AFOSR lg
. under the technical direction of Dr. A. Amos. Ve
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1. INTRODUCTION

One of the most important sources of energy dissipation in built-up struc-
tures pertains to dry friction at joints and at interfaces in contact with each
other. When materials with very low inherent damping are used in environments
offering essentially no aerodynamic damping (such as, for example, in space
structural systems), the ability of the structures to withstand resonant vibra-
tion depends almost entirely on the extent of friction damping. Even in the
design of components which can generate certain levels of aerodynamic damping, it
is essential to be able to estimate accurately the levels of non-aerodynamic
sources of damping because unlike the latter, the former can be either positive
or negative. For example, the aeroelastic instabilities of aircraft structures
such as airplane wings or turbomachinery blades are attributed to negative aero-
dynamic damping developing in the system as a result of its interaction with the
air forces causing the system to vibrate. 1In such situations, escalation of
vibratory stresses to dangerous levels is prevented only through the contribution
to damping from sources such as friction. In some instances, artificial devices
are designed and introduced into the structural system with the sole purpose of
developing friction forces leading to damping when the dynamics of the component
demands it. Thus, there is a clear need to enhance the level of understanding in
the broad area of dynamics of surfaces in contact.

Among the multitude of factors contributing to the dynamics of elastic
bodies in relative motion that come into contact with each other at interfaces,
the most significant factor is the governing law of friction. It is the law of
friction that accounts for the characteristics of contacting surfaces and the
environment; and establishes the relationship among forces and resulting motion.
The success of prediction of dynamic response of a structural component depends,
to a large extent, on the choice of a realistic friction law that accurately
portrays the interfaces. The laws of friction so constructed must be adaptable
in a dynamic analysis of the structural system and directly verifiable in a care-
fully controlled test.

This report is aimed at examining different characterizations of friction
forces at interfaces. A general nonlinear theory of dynamic systems is developed
in such a way that a local or nonlocal law guided by experimental data may be
incorporated. Solution procedures are presented and discussed.

This necessarily includes an extension of simple "local" characterization of
friction for the neighborhood of a single surface asperity to a "nonlocal" or
gross characterization for an interface having a large number of asperities.

Three laws of friction that are adaptable to dynamic analysis of structural
systems are outlined and discussed below.
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2. LAWS OF FRICTION

One of the laws considered here is the simplest and represents the most
commonly used form i.e.,

F = F sgn(X)

This law is used when |X| is above a specified threshold of "sticking" and
is replaced by a "static" friction condition if the relative velocity is below
the threshold (this will be discussed further below).

A, Friction Force of Constant Amplitude
An application of this law for the system shown in Fig. 1 served as the
basis for the parametric study leading to the design of an experimental rig. The
latter will be discussed in a subsequent section but the highlights of the

analysis are presented below.

The governing equation of motion for the system shown in Fig. 1 may be
written as

Mx + K(x-X) + F sgn(x) + C(x-X) =0 . . . (2.1)

which may be written in a nondimensional form as

q+ 2tEq + t2q = - sgn(q)D - i—z ) ... (2.2)
where
Mm2 - -
q= E;— X, X = x-X, X = Xof(wt), T = wt
o

The derivatives in Eq. 2.2 are with respect to T.
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W F
cs—n’mnsﬁ’nn_’F.uN (2.3)
w M Kxo
C —
E = — Copr = 2 /KM
C
cr

The numerical solution of the governing differential equation 2 is obtained

using the Newmark integration scheme (Ref. 1) with discrete time steps, The
calculations are performed when the mass M is moving under the action of either a
sinusoidal or step input displacement function. When the block is stuck (as
indicated by the relative velocity dropping below a pre-specified threshold)
static friction conditions are imposed. A test is then made at each time step to
determine if the accelerating force on the block exceeds the static frictional
force. As soon as this occurs, dynamic conditions are imposed and the motion
parameters are calculated. A check on the magnitude of the velocity indicates
whether or not the block has become unstuck. If the velocity threshold has not
been exceeded, then static friction conditions are reimposed. This process is
repeated until the block slips.

Two points are worthy of note in this type of solution. The first point
pertains to the definition of the "stuck" condition. With the present approach,
the friction force alternates as the velocity bounces within the specified
threshold (%) region causing spurious acceleration spikes. The size of the
velocity threshold has a marked effect on the response and guidelines may need to
be obtained from test data. The second point is that the model perwmits incor-
poration of different friction models such as, for example, microslip in place of
the "stuck" condition.

As stated earlier, the model was used in the design of the experimental
setup. Figures 2 and 3 show typical results obtained.

These results were obtained using the parameters for the experimental rig
i.e. the mass, spring, normal load, applied g loads etc. correspond to those
used in the test. Figure 2 shows the input displacement and the resulting dis-
placement, velocity and phase plane plot. The flat top in the output displace-
ment characteristics, the nature of stick-slip motion evident in the velocity
characteristic all lead to the stable limit cycle shown in Fig. 2. The kinks in
the phase plane plot represent the displacements and velocities at which the
system sticks and slips. Figure 3 shows the variation of friction force as a
function of time, relative and absolute accelerations. The latter will be used
in a later section of this report for making comparisons with measurement.
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B. Friction Force Increasing with Relative Velocity

Another law that was examined in this study is of the form

v
F = F_tanh X (2.4)
Vo

This law has the advantage in that it degenerates into the simple law presented
above or the familiar viscous law with appropriate assumptions. The single-
degree-of-freedom system shown in Fig. 4, differs from that of Fig. 1 in that the
spring and viscous damping forces relate to absolute motion of the masses rather
than to motion relative to the frame. The equation of motion

M; + kx + cx=F with V_= a - x, (2.5)

can be solved numerically using a simple Euler integration scheme. Assuming

F, =0.1Ka,

w  =0.1w,, w,= /k/M
V, = 0.01 apw,

c/c, = 0.02

the computed response is shown in Fig. 5 for a typical cycle, indicating that

the assumed friction law results in a high frequency ringing. An attempt was
made to model an experimental set-up shown in Figs. 6 and 7, because test data
from this set-up had shown responses with high frequency ringing (see Fig. 8).
This had been attributed earlier to possible electronic noise. However, with the
hyberbolic tangent law it was possible to reproduce these responses by modeling
the experimental hardware as shown in Fig. 9. The elasticity in the dynamic
system is allowed in the model. The equations governing the motion of this
system are

mX1+cX1+kX1=F
(2.6)

mx2 + cXy + kX, = Posin wt - F

17‘, —',:" g
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Again, the friction law was chosen to be
X -X i
F = F_ tanh —Q-—-Lv (2.7) .

These equations were integrated using the Euler integration scheme and typical xﬂk‘
time histories of response are shown in Figs. 10, 11, and 12 for various forcing
frequencies. The viscous damping, was chosen, as before, to be 2 percent criti-

. cal with F, = 0.1 P, V = 0.01 PO//E; and f = w/w,. The ringing is clearly
evident in the response coordinate X;. The X, coordinate is a smooth sinusoid as
it is being driven by the forcing function. As the forcing frequency approaches

. resonance, the ringing disappears but relative motion at the interface persists,
resulting in damping. The results from this study show that modeling which takes
into account the elasticity of the system may produce responses that are more
realistic. Thus, in reducing data from complex structures care must be exercised
so that certain responses may be recognized as inherent to the structural system
rather than mere noise that should be filtered away.

C. Extension of Nonlocal Friction Law

Finally, the nonlocal law postulated by Oden and Pires (Ref. 2) and
discussed in the first volume of this report (Ref. 3) has been extended to
include velocity dependence for the forces at the interface and to integrate
along the path followed by the points at the interfaces undergoing relative
motion. Thus, the velocity dependence accounts for the dynamics of relative
motion at interfaces and the type of integration proposed recognizes a noniso-
tropic weighting function. The nature of this extension is presented below.

Consider two surfaces, A and B, in relative motion and assume that surface B jQ;.
is stationary. The two surfaces may have many points in contact with each other
at time t;. Let X, be the surface coordinates on B, The subscript 1 refers to
conditions when corresponding points in A and B are in contact with each other.

. Let Vl(t) be the velocity of a point A in surface A that was initially in contact

with B at time t, and position X,;. Then the relative motion of A may be written R
as . '_‘:
;‘.. B
n
c\‘:'q
.'\.b\
PSS
o T
AN
’\'-\
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+ .
XAI = xl + I Vl dt (2.8) oy J

R = - (2.9) L

and Otk

As stated earlier the point under consideration came into contact with a
corresponding point in B at time t;. As the point A moves over the contact
surface a bond will develop. The adhesive strength will depend on the extent of
time the two points were in contact with each other. The time of contact, in
turn depends upon the relative speed of the two points at the time of contact.
The adhesive strength will be proportional to the area of the bond. Let €
represent the dimension of the bond in the direction of motion. Before the two
points come in contact €=0. After they are in contact, they will deform together
until the contact is broken. The growth of this bond by diffusion may be
represented by an evolution law as follows

0 t <ty
elx),t) = . (2.10)
a v, |
2= (e-e) + 1 (ege) 2> ¢
vy "

where ag, lk, €,» €y are constants that can be chosen to represent a given

situation where either the static (subscript s) or kinematic (subscript k)

condition is expected to be predominant. The above form is chosen to allow for

the realistic growth of bond both at low and high relative velocities. -

This is illustrated by considering the steady state value for e which are
given by

LY . v . - ‘. A
B e PR
OIS N e . e -
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(2.11)

For low speeds, (i.e., V, very small),

>
Vil

a
TL > .
IV1| k

and € ~ €,

For high speeds
+
a v
L

< and € = €, (2.12)
vy |

k

The constants a, and £, can be used to account for the effect of tempera-
ture on the rate of bond growth, i.e., if Tg is the surface temperature at Ay,
and T, and Ty are activation energies then

~T_/T
= a'*s
a,e 1

TQ/TS
k- 2oe 1

will account for the rate of bond growth.

As relative motion begins and the two points move apart, the shear force at
the bond will change. At first, the shear force will increase, reach a maximum,
and as the bond continues to break, the force will decrease. The above charac-
teristics can be represented by a function ¢ as follows
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| ) 1 - R
v o = $(R/e) = —— (r/e)Pe RO (2.14)
y r(p+l)

It may be noted that the ratio R/e represents the relative length of motion in
N\ terms of bond length. This function is shown in Fig. 13 for several values of
\ the parameter p. R is along the path of motion and is > 0 by definition. Hence
¢ is finite if p > -1 which requires p > -1.

Perpendicular to the path, a second weighting function is allowed to
represent the bond area. This has been taken to be (see Fig. 14) i

"

. 2 2 -k
n e~ (n/20%) -

x4 Wi—-} = ——— (2.15) =

- p V2n

>4

where n is the distance perpendicular to the path. The shear force acting
between the two points is now made proportional to the product of ¢ and W.
- Further, the strength of the bond must also depend upon the normal stress

' °n(x1) at x,. Therefore, the proposed monlocal law for the shear force at x

1
is essentially complete with the following representation

> © 2 dx,d
T =, [ [ eR/WG/pIe (X)) 1L (2.16)
gl -0 - €o°

Recognition of the fact that the frictional shear at X will be in a direction
opposite to the relative displacement & completes the required representation as

; follows
> ] ®

> > > "S Xmdyl
> (X)) =-u, [ [ ®/eIWn/p)o (X)) o— —— (2.17) -
- -~ lu]  Gof
- :
> It will be shown that the constants present in this formulation can be related

to the static and kinetic coefficients of friction. Consider the surface A
moving at a constant velocity relative to B under a constant normal stress.
- Then, it can be shown that
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> [“
> > v
T(X) = —us T -_—10 (2.18) "‘l'
IVl \®o

where ¥ is the relative velocity. Clearly the above is a degeneration of the A
general representation to a local law. K,

For slow speeds € ~ €, and then

+ -
> <
T(X) = -u, 55— o0 (2.19) ey

n
V]

. ug can be identified with the static coefficient of friction. For high
velocities € ~ €

and 5N
> NS
+ > v €x Lod
(X)) » -u, 5= (—])o (2.20)
V] \®o
Hence the quantity u can be identified with the kinetic coefficient of

SEO

friction

i.e.,
uk = us(ek/eo)

(2.21)
Yk
€ 8 — ¢ \_,:w
ko, e

’
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o 3. DYNAMICS OF STRUCTURAL SYSTEMS WITH INTERRUPTED INTERFACES : 'w‘
o N
- .‘
A general structural system with an arbitrary number of interfaces is '
" considered. The friction forces developing at these interfaces during vibration ¢
~ are treated in such a way that the influence of different laws of friction may be ol
> examined. The solution procedure leads to a calculation of time history of the 3
~ vibratory motion either under arbitrary transient loading or as the driving W
‘ frequency is swept over a given range so that the dynamic response as well as the A
g nature of its stability can be evaluated.
s ::
)
Al )
o A. Formulation o
oy .f"b
' The governing equations of motion for the structural system may be y 3
- represented in matrix form as ool
. N
’ [m]{x}+lc]{x}+[k]{x} = {£}+{F} 3.1 o
{x} represents physical displacements f.‘_:

{£] represents forces of friction ::::.
{F} represents external forces

[m], {c] and [k] are the mass, damping, and stiffness matrices. j:::

It may be noted that some of the elements of {f} and {F] may be zero. Also, .::._

{f} represent forces at internal interfaces only, the arithmetic sum of two e

elements of {£f} = 0. y

Let [#®] represent the matrix of eigenvectors {q)} obtained from the solution

of equation (3.1) in which [c]}=0={f}={F} and [ w?] represents the corresponding o
eigenvalues. X

H

Successive transformations, as shown below, can lead to

o

{z} + [ w?}{z} = {e}+{c}-[n] (3.2)
10
SO -."x"_-."',-. ':.‘:-.':-».':-.'}."'.'f-.':-;':-.':-l"_-"'--"-Z':-:‘}Z' :*:{-‘-:“ '." :‘:-:* .
"X ."_, _,\ -\-‘ > ﬂ\.A‘.n'\.»"i.."".\. i'::'-"h.: \:.' )_.h".;“ \)\;\i‘r .‘- \4\.\-\--.;-;-,4--'.,A ATOIOAE A
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where

{2} = (01%{y}

{y} = (vm]{x}

{g} = (1T[ 1/vm ]{g} (3.3)
{c} = 117[ 1//m ] {F}

(1] = (e1T(c] 0]z}

The elements of {G] are functions of time and the elements of {g] represent the
nature of friction forces.

The ith row of Eq. (2) can be written as

'z- +w:"z. =gi+Gi-hi (3.4)

g; = 8;(z;,z;) in view of Eq. (3.3) represents the influence of friction forces

in mode 1i;

G; = G;(t) represents the generalized force in the ith mode and

h; = hi(zi) represents the influence of viscous type damping forces in the ith

mode.

B. Solution

The solution to Eq. (3.4) can be written in terms_of the complementary
solution and the particular integral, i.e., z = z” + z

. Cgl)ei“’it ¢ of?) -iwgt

z; e (3.5)

where the constants Cgl) and C§2) are determined from the initial conditionms.




3o Jadrag bt g+ [t B m a CA k. A A gy

* ,

A
ity

o

R85-956479-2
X,
The particular solution is assumed to be ,;E

P o p{D(pe i 4 p{Pere i (3.6)

P . Bgl)(t)elwit . 5%2)(t)e‘1wit . im{D(il)(t)eiwit-D§2)(t)e-iwit} (3.7) ‘1\{

As only one function can be arb1t§ary in the solution of Eq. (3.4), a
relationship between D and D( can be obtained by setting

% %

"'-.'-",f(

. iw.t (] -iw.t 4
p{a 1" 4 p{2e i =g (3.8)

-

X

Thus,

X

£ = i {ngl)(:)e""it . ngz’(:)e'“"it} (3.9)
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¥
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Differentiating Eq. 29; once more to obtain ;E and substituting in Eq. (3.4)
leads to a solution for Dil and Diz .
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where g; = g;{z;(1), ;i(T)}
H, = “i{;i(")}
G; = 6;(1)
It may be noted that cf1) and CgZ) are calculated from prescribed initial

conditions, i.e., {x} and {Xx} at t = 0. With {x} and {x] prescribed at t = 0, z;
. can be calculated from Eq. (3); i.e.,

. {z}tso = [’]T[',;]{x}tao

. _ o
{z}rap = (01T 1Vm]{x} g
which transforms the physical coordinates to modal coordinates.

C. Numerical Application

The implicit integration procedure (Eq. (3.10)) described above has been
coded on a P.C. (HP9816) and several example problems were run to verify the
procedure and the program. Only two examples are shown below to illustrate
certain aspects of the procedure including important computational steps that
need special attention in obtaining reliable results.

1. Single-Degree-of-Freedom Example

The numerical solution of a simple single degree of freedom system with a
Coulomb type of friction interface (Fig. 4) is the first example. With the
. initial conditions prescribed as X=x_, x=0 at t=0, the solution of the governing
equation mx + kx = -f sgn(x), subjected to the above initial conditions can be
shown to be

(
F NF
{xo - (2N+1) ;} cos wyt + (-1) .l: N <N,

x = { (3.11)

N, F
(-1 X, - 2N, : N>N,
\

GNP S AR A S NG T Y I e SOl IR I I T IV P I 1 A A AT R A et WCRE IR
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where N = number of half cycles completed, truncated to the greatest integer
less than

wot/w

1 [kx
N =-—{—2-1
°© 2\F

Figure 15 shows the time history of motion obtained by numerical integration
which is identical to the exact solution at all times until the mass comes to

n
rest at t = —;9-~ 11 units of time as shown in Fig. 15. Beyond this time, a very

o
slight tendency to oscillate is indicated.

The results from this example confirmed that the code is able to calculate
highly nonlinear conditions with acceptable accuracy.

2. Two-Degree-of-Freedom Example

The second example chosen is a two-degree-of-freedom system which tests some
important aspects of frictionally damped systems as discussed below.

Figure 16 is the analytical model of a 2D.0.F. which has a rigid body mode
and a flexible system mode. When mass 2 is stuck, the system degenerates into
the S.D.0.F. model discussed above. With P = P, sin wt and an assumed friction
force of uN = 3P,, the system would respond as a $.D.0.F. as long as the
driving frequency is not close to the natural frequency, YK/m. At a frequency
close to the natural frequency, the spring force would gradually build up to
overcome 3P and mass 2 will slip. However, at w = 1.14 YK/m and N = 3p,,
calculations were made using the displacement at each time as the criteria for
convergence. The resulting time history for the displacement of mass 2 and the
friction force at the interface are shown in Figs. 17 and 18 respectively. These
results are unacceptable: the mass 2 cannot begin to move because the friction
force at the interface has not reached 3P, as can be seen from Fig. 18. This
is an illustration of the influence of numerical analysis on the solution and
suggests the need to exercise considerable care in the choice of convergence
criterion.
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The convergence criterion was changed to a check on velocity at each step
and the results show some improvements as can be observed from Figs. 19 and 20.
Mass 2 moves but there is no steady drift. However the frictional force is quite
erratic. This is an important problem that points to erroneous results that
demand a careful look into modeling friction dependent systems.

3. Simplified Nonlocal Law

A final attempt was made by using a simplfied version of a nonlocal law as
shown below

uN |
-—% |F| < uN
. €
F = (3.12)
0 [F| > uN

Convergence criterion based on velocities was used and the results obtained are
shown in Figs. 21 and 22. Clearly, the displacement of mass 2 is essentially
zero until the required friction force exceeds uN. Although the friction force
shows some instability, the representation is superior to that seen earlier in
Fig. 20.

These examples illustrate the complexity of modeling friction at interfaces,
even for relatively simple systems. Representation of the friction law as well
as numerical methods have to be chosen with utmost care.
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4. EXPERIMENTAL PROGRAM 2
:.P
A. Configuration
:{
The photographs of the test assembly are shown in Figs. 23 and 24. Figure tf
24 shows the details of the test pieces. The entire friction assembly is mounted =

on a slip plate connected to the shaker so that predetemined acceleration inputs i:‘

may be applied to the system. The springs (threaded rods connected to flexures; iji

the latter are cantilever beams to the tips of which the threaded rods are con- N

: nected) offer resistance to motion of the loaded mass and friction forces mani- :}i
N fest at the interfaces. The normal load on the block may be varied by changing ) :3:
: the weight hanging from the block. o]
e

The system had been designed such that the natural frequency of vibration ’ .

- for the translational (axial) mode of interest would lie between 100 and 150 g
Hz. X

i

Details of the titanium test pieces are shown in Fig. 25. The actual fric- e

tion surfaces are 6 mil hardface coatings of tungsten carbide, as shown.

)
y o)
v B. Preliminary Modal Analysis e
v A preliminary modal analysis was performed to examine the dynamics of the “E,
i system after it was assembled in place. The predominant mode of the system is, b
- as designed, one of translation (see Fig. 26) occurring around 143 Hz, although a Y
A negligible amount of pitching and yawing modes can be present, especially when :{
. the friction interfaces are disengaged. There is a "rocking" mode of the mass at 4
) around 73 Hz with axial amplitudes considerably less than that at the mode of ~
interest. Damping in the axial mode was predicted to be ~0.003 based on a multi- i

- degree-of-freedom fit of the frequency response function. j}
2 A lateral yawing mode was found at 129 Hz and could have compromised results :}:
A if there had been any significant asymmetry in the friction forces. This did not i;
prove to be the case in the subsequent testing. &

E Upon completing the assembly with friction interfaces in place, but with an A
L) -
- external normal load of 26# on the loading cable, the modal analysis was repeated o
: and the results are shown in Fig. 27. The "rocking" and "yawing" modes have been j}
suppressed; the mode of interest was found to be almost critically damped in the -:'

vicinity of 148 Hz. hae
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Ld

C. Test Procedure -t

-

Exploratory sweeps between 130 and 160 Hz at low acceleration (< 5g) were
made to examine system response characteristics. The 4g level was found to be a
critical one at all frequencies since the response acceleration waveform became
distorted due to the onset of slipping conditions. The input level was found to
be the more sensitive parameter and hence a procedure was selected which required
the input level to be increased gradually in steps while the frequency was held
constant. This was performed at four frequencies namely, 135, 143, 150 and 155
Hz. The input level was varied from the level at which slipping was initiated,
until either a divergent condition or 10 g occurred. The input acceleration,

RO
‘B-.-
"" .

Pty

TATHEER LA, T, W WY VY RO s e e
?
:,;,, m N
-

IR 29

(]
v

.
"
-

-,

. moving-block absolute acceleration and flexure strain gage output were recorded A
- on a visicorder. A separate static test was performed to determine the constant ;f
' . of proportionality to convert the strain gage conditioner output to relative —
! displacement of the moving block. The constant was found to be approximately 1 !%
' volt per 0.001 inch. O
- e
D. Test Results NON
Typical traces of the input and responses for slipping conditions are given Pv'

in Figs. 28 and 29. Figure 28 shows the responses at 135 Hz/6g input and Fig. 29 rﬁg

shows the response for 143 Hz input frequency at 5g and 8g levels. At the 8g ::;

level a stable and an unstable condition (which occurred without warning) are g{

shown. B .

The friction surfaces were characterized before and after the series of &I
tests by means of a Sloan Dektak II profilometer. Figure 30 shows the asperity i
profiles before the test series in the x and y directions, and Fig. 31 the ;}i

changed profiles taken after the tests. The before-test profiles show an N

important component of 80 micron scale with an amplitude of 13 to 18 microns, o
apparently isotropic in the x, y coordinates. After test, the 80 micron scale ::f:
asperities are still visible but of much smaller amplitude, and with a smaller }{:

amplitude in the x direction (the direction of sliding). ’:i

s
The response at resonant frequency to an input displacement of Xo = .0002 ft -3

- in amplitude (5g equivalent acceleration) is shown in Figures 2, 3, 32 and 33 -
- where these responses are shown in dimensionless form. Since the term Mw?/K in N
. _ equation 2.3 becomes equal to 1 at_a resonance with small damping, x = q Xo. t{t
. From Figure 2, q = .15; therefore x becomes .00003 ft or .00036 inches, comparing e
well with the measured value of .00023 inches in Table 1 (5g/143 Hz). This is a -
good agreement considering the critical nature of the response at the undamped g}f

) resonant frequency of the system. e
roe

&
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At resonance, the value of ;M/KXO = ] as can be seen from Figure 3. This S
can be solved for x leading to a value of 5g for the absolute acceleration, RE
comparing closely with the 6g in Table 1. The response was also computed for v
equivalent 4g and 8g input accelerations. In the 4g case no slipping occurred

and in the 8g case divergence of the response occurred. This compares favorably >
with the results obtained from tests (see Table 1). .
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5. CONCLUSIONS “ul
: N
The following observations summarize the principal findings from the tests :
t as well as from a comparison between test data and corresponding analysis. These ai\,
X observations are to be understood as valid for the frequency and g level ranges :;{-
; tested. It must be noted that the measured acceleration is absolute and is “;:
compared with corresponding calculation. Relative acceleration from the calcula- :F‘

tions is also shown.

B

1) Slipping at the interfaces occurs at and above a certain g level
independent of the excitation frequency (see Table 1).

2) Above a certain g level the amplitudes of relative slip motion experi-

) enced divergence limited entirely by nonlinearities due to the increase !?_
in flexure stiffness at large amplitude. R
3) As the mass undergoes sticking and slipping the resulting accelerations o
are sudden and large. This creates an impulse type of input which in S
turn induces higher frequency responses seen as ringing (See Fig. 28 and 5
29). s

4) Responses can be nearly sinusoidal above certain g levels.

5) Rubbing was observed to have occurred only on a portion of the total area
. of coantact. It is likely that the engaging surfaces were not perfectly
- aligned due to machining tolerance.

6) As the input displacement reaches a maximum (Fig. 28, 32), provided the g
level is sufficiently high, slipping begins to occur and reaches a
maximum somewhat later than the time at which the input acceleration
reaches its maximum,

7) As the input displacement is returning to zero upon completing the first o
half cycle, the relative motion at the interfaces remains constant S
(i.e. the masses are stuck). i

8) As the input displacement continues to increase beyond the first half L
cycle, the masses begin to experience relative slip again and try to
follow the input, although lagging.

9) At the instant of sticking, the velocity suddenly drops to zero (Fig. 2)
y from a finite value, resulting in a sudden increase in acceleration.

This is shown by large discontinuities in the acceleration traces. Where e
the discontinuities appear several times, the interpretation is that _E}
local stick-slips continue until a full slip occurs. Y
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10) No ringing of high frequency response is evident in the analytical
results since the model is merely a single-degree-of-freedom system.
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Fig. 1 S.D.O.F. System Damping Model

- X=Xg f(wl)
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