
UCLA
OFFICE OF
ACADEMIC COMPUTING

o00 "Continued Development of Internet Protocols

under the IBM OS/MVS Operating System"

FINAL TECHNICAL REPORT

DTIC
A...LECTE
APR 2 4 198M f

Robert T. Braden "

January 25, 1985

Sponsored by "

Defense Advanced Research Projects Agency (DoD)
ARPA Order No. 4823

Under Contract MDA903-83-C-0435 issued byDepartment of Army, Defense Supply Service-Washington,
Washington, DC 20310

UNIVERSITY OF CALIFORNIA, LOS ANGELES J3

.* .-.

JW 17-. T

SECURITY CLASSIFICATIO% OF TIS P "GE .,,h-n D.re Entered

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORTUMBER . GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

OAC/TR46 -_ _ _ _ _

41 TITLE (and Subtitl") S. TYPE OF REPORT & PERIOD COVERED -

"Continued Development of Internet Protocols Final Technical Report
Under the IBM OS/MVS Operating System"- __-

S. PERFORMING ORG. REPORT NUMBER

7. AUTImOR(s) S. CONTRACT OR GRANT NUMBER(a)

Robert T. Braden MDA 903-83-C-0435 J.

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK" """ som~u;n"AREA & WORK UNIT NUMBERS
Office of Academic Computing
5628 Math Sciences Addition C0012 - UCLA Order 4823
Los Angeles, CA 90024

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency January 25. 1985
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, VA 22209 45
14. MONITORING AGENCY NAME 6 ADDRESS(If different from Contrtollin Office) 15. SECURITY CLASS. (of Shie report)

Unclassified

15a. OECLASSIFICATION DOWNGRADING
SCNEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution Unlimited - -"

'-.-.

17. DISTRIBUTION STATEMENT (of a bettc entered In Block 20. it dlifereflt from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Coninue on revere elde it neceessry and Identify by block number)

Computer Communication Protocols. ARPANET Control Program.
Internet Protocols. TCP. IP. TELNET. FTP. SMTP.
Performance Measurement.

N

20. ASSTRACT (Continue an ovorre aide Ii neceary and Identify by block number)

UCLA has developed and distributed the ARPANET Control Program (ACP),
host software for the DoD Internet Protocols to execute on an IBM 370
under OS/MVS. --:he ACP supports TELNET, FTP and SMTP. This
report describes th'* protocol features and services of ACP Release 1.5
and presents some performance figures.

DD , .N7 1473 EDITION OF I NOV 5 IS OSSOLITE
SIN 0102 LF-014-6601 StCURITY CLASSIFICATION OF TNIS PAGE ("lion Dote Entered)

.

OFFICE OF ACADEMIC COMPUTING

University of California at Los Angeles
405 Hilgard Avenue,

Los Angeles, California 90024

"Continued Development of Internet Protocols

under the IBM OS/MVS Operating System"

*O FINAL TECHNICAL REPORT

TR46

Robert T. Braden

January 25, 1985

Sponsored by

Defense Advanced Research Projects Agency (DoD)
ARPA Order No. 4823

Under Contract MDA903-83-C-0435 issued by
Department of Army, Defense Supply Service-Washington,

Washington, DC 20310.

The views and conclusions contained in this document are
those of the author and should not be interpreted as
representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency

or the US Government.

C 7°. ., . • -.' , . ,S ,. v ,, ,. "S " . " , " " . .*, , . . ." .' ' .,. ., ,. ." ', ." " .,."* . " " .' ' . " . ".... . . .". . . ' ". . .. ' - • " " -

PAGE ii 0

SUMMARY

This document is the Final Technical Report under DARPA contract
MDA903-83-0435, entitled "Continued Development of Internet Protocols
under the IBM OS/MVS Operating System". Under this contract, the
contractor has developed and distributed network software for the DoD
Internet protocols, to execute on an IBM 370 mainframe under the OS/MVS
operating system.

- The central component of this network software is a subsystem called the
. ARPANET Control Program or ACP. The ACP supports the principal

user-level protocols -- TELNET for remote login, FTP for file transfer,
and SMTP for electronic mail.

" This report describes the features implemented at all protocol levels of 0
the ACP (Release 1.50) and presents the results of performance measure-
ments on the code. Finally, there is a discussion of ACP facilities
which will require further development. '

- ii - a-

[.'Lfia', , ': '.. " -. *.*-,&- .- a .

* PAGE i ii

CONTENTS

* SUMMARY.

Chapterpe

1. INTRODUCTION.

2. STATUS OF ACP DEVELOPMENT. 4

ACP Components 5
Local Network Interface 12 .. *I

II' Implementation 13
TCP Implementation. 16
UDP 19
User-Level Protocols. 19
Operation and Maintenance 26

3. PERFORMANCE OF THE ACP 28

Network Performance 30
VTAM Interface Performance. 33
ICT performance 37 ~
Conclusions and Extrapolation..................37

4. CONCLUSIONS. 39

5. ACKNOI..LEDGMENTS. 42 .~

REFERENCES 43

Accesion For
NTIS CRA&B
DTIC TAB

Unannounced Q
..........

By
Distribution -r

Availability Codes

Avail a. d/ or
- ii -Dist Sp(!ciaI

* A-1

PAGE iv

LIST OF FIGURES

Figure pAep
,_

1. ACP Protocol Hierarchy 5

2. ACP Job Components 8

3. Terminal Sessions Using the ACP and VTAM 11

4. ACP Services 21

6. Typical TCP Performance Data31

7. Performance with K Sessions33

8. Schematic of VTAM/TELNET Loop Test 34

9. VTAM/TELNET Loopback Measurements 35

l p

i p,.

. _ .,., . ._'.• . .,_, .,'f ,• .,. .,.-,- , •. ..-....,.

* PAGE II

Chapter 1

INTRODUCTION
*I

This document is the Final Technical Report under DARPA contract
MDA903-83-0435, entitled "Continued Development of Internet Protocols
under the IBM OS/MVS Operating System". This contract was in effect
from 9/1/83 through 1/21/85.

Under this contract, the UCLA Office of Academic Computing (OAC) has
performed development work on network software to support the DoD
Internet communication protocols on an IBM 370 mainframe using the
OS/MVS operating system. The central component of this software is a
subsystem called the ARPANET Control Program or ACP.

The specific objectives of the contract were to:

* Update the prototype TCP/IP implementation within the ACP.

OAC had developed a prototype TCP/IP implementation for an IBM MVS
host under a previous DARPA contract' as part of the Internet
research effort on the design of these protocols. The prototype
implementation was grafted onto the ARPANET host software developed
at OAC beginning in 1970.

At the start of the present contract, the Internet protocols (which
had just become DoD standards) had evolved beyond the state of
development of the MVS prototype. A number of protocol features
were missing from the prototype (e.g., options, ICMP, and UDP),
while others were out of date (e.g., FTP had not been updated to
the revised specification for TCP).

Under the present contract, the prototype was to be updated to
current protocol specifications and converted to production-level
software.

* Implement Important User-Level Protocols

In particular, FTP and SNTP were required for full function.

* Improve the performance, reliability, maintainability, and

exportability of the MVS ACP.

Contract MDA903-74C-0083.

~~~~~~~~~~~~~~~~~.-. ........ .. •° . .,. . -.... -......... °.°...... . ..... o. . . . -. -



V PAGE 2

DARPA desired the MVS code to be available to government sites and
vendors, for use on the Defense Data Network (DDN). This implied a
giant step in removing obsolete code, clarifying interfaces,
simplifying the installation of the ACP, and documenting its
structure and operation.

At the end of the contract period, major progress had been made towards
all these objectives. In particular:

* The ACP has been completely overhauled and the obsolete host-host
protocol removed, creating a pure TCP/IP communication package.

* Extensive documentation has been prepared on the ACP.

* Over 25 copies of the ACP distribution tape have been shipped in
six releases of the software.

* The ACP is in operation on three DDN hosts, with more expected.
Several vendors are making the ACP the basis for their products.

This report contains two sections. Chapter 2 contains a general

overview of the ACP and a specific list of features at the present stage
of development. Chapter 3 describes a preliminary performance study on
the ACP.

We conclude this introduction with a brief history of the development of
the ACP prior to the beginning of the contract.

The ACP is the product of 15 years of development and evolution of an
ARPANET communication package for an IBM mainframe. In 1970, OAC began
development of the ACP for its IBM 360/91 under the operating system
OS/MVr [Braden77]. The most important changes in the ACP during the
succeeding 15 years have included the following:

* Hardware Change

The ACP, originally written for an IBM 360 CPU, was later moved to

an IBM 370 with an expanded instruction set.

* ARPANET Access Protocol Change 6

The ARPANET access protocol changed from 32-bit leaders (8-bit host
numbers) to 96-bit leaders (24-bit host numbers).

* Operating System Change

OAC changed its operating system from OS/MVT to OS/MVS. OS/KVT
supported batch processing and a time-sharing system called TSO,
using real memory. Although TSO under MVT was largely compatible
with batch processing, the batch and interactive environments were
quite distinct. MVT/TSO swapped users in and out of fixed
partitions of real memory. l

-2-



nw'%-V :- -. :- - 7. .- - -w w;wy

- .1

*PAGE 3

In contrast, each MVS job, either batch or interactive, executes in -
a separate 16M-byte virtual address space, managed with demand-
paging. MVS/TSO is integrated with batch processing from the
viewpoint of the operating system interfaces.

Installing OS/MVS had little effect on the much of the ACP. "''However, the ACP interfaces to the operating system and the

interprocess communication mechanisms were completely changed.

TCP/IP Development

As we mentioned earlier, OAC participated in the DARPA Internet
research program which led to the present TCP and IP protocols.
Development of a prototype implementation of TCP/IP for OS/MVS
began in 1978. The prototype implementation was inserted into the
ACP in parallel with the existing host-host protocol [FeiPos78]
implementation, with a nearly-compatible transport-service
interface for the user-level protocol modules [Braden79I.

* Full-Screen 3278 Support

Interactive terminal support under the ACP was extended to allow
full-screen 3278 operation with both User and Server TELNET. In
full-screen operation, the hardware data stream used to drive the
IBM 3278 terminals is sent transparently across the Internet, using
the binary mode of TELNET .

2

* NSW Development

OAC participated in the National Software Works (NSW) development
[MCA77,Braden76,BraLud76,BraLud8O]. Under DARPA and Air Force
research contracts, OAC developed software to make the IBM system
an NSW "Tool Bearing Host". This work included implementation of --
the transaction-oriented protocol MSG within the ACP [RivLud77].

The ACP which resulted from all these changes had accumulated a lot of
history and some unnecessary complexity. It was poorly documented and
contained features which were specifically tied to the UCLA environment.
Its installation required the updating of parameters in many modules and
a formidable sequence of assemblies and linkedits. The present contracthas addressed these problems.

w2

2 This work was supported by the Federal Systems Division of IBM.

3-
* I--



PAGE4 

Chapter 2

STATUS OF ACP DEVELOPMENT

*. The UCLA ARPANET Control Program or ACP is a communication subsystem for
the DoD Internet protocols, executing on an IBM 370 mainframe under the
OS/MVS operating system.

The ACP includes all the Internet-specific protocol code -- the local
network I/O driver, code for the host-host protocol TCP/IP, and the
programs for the user-level protocols. The ACP supports the standard
user-level protocols:

* TELNET for remote login,

* FTP for file transfer, and

* SMTP for electronic mail.

The ACP can be installed under either MVS/SP or MVS/XA with no operating
system modifications; interprocess communication is accomplished with w
IBM's ACF/VTAM.

Most of the ACP, including the TCP/IP code, is written in 370 Assembly
Language. However, the SIMTP modules and a few other components are
written in "C", and the user interface programs that execute under TSO
are written in PL/1. The "C" code was compiled using the C/370 compiler -
distributed by AT&T Bell Laboratories.

The ACP is in the public domain, with two exceptions:

* The sources for the full-screen 3278 extensions to the User and
Server TELNET programs are controlled by the Federal Systems
Division of IBM.

* The sources for some of the "C" library routines are part of the
proprietary C/370 compiler distribution, and can be released only
to sites with a valid C/370 license from AT&T.

-4-

.. '..,v" .-. ' '...,.v .*.". .- .- "...". .*...... ... ,.....-...~... '............. ,- """l.:,- .;.'.._.'-" '.: _. - '_ '_-_ -'.-: .. ', -. , "- ,_,- "" - " . .. ."." "."' . > _' ";"._, " . . . . ..- ".. . . ,-.-.. - " "



PAGE 5

2.1 ACP COMPONENTS

Figure 1 shows the Internet protocol hierarchy implemented by the ACP.
We will briefly review these protocols.

User- I. .
FTP SMTP I

Level TELNET ...
I File Transfer I Mail Transferl .

Protocols (remote Protocol I Protocol IName
I login) II

IResol-.
I ver

TRANSMISSION CONTROL U I '
Host-to PROTOCOL D C'-

(T C P) P MI
-Host P ..

Protocols -
INTERNET PROTOCOL

(I P)

-. %

Local Local Network Access Protocol
Network (e.g., BBN1822/1822J)
Access I."
Protocol

Figure 1: ACP Protocol Hierarchy

-5-

0'%.
...w -.



PAGE 6 i

* IP -- Internet Protocol PG6

IP provides datagram service in an internetwork environment, %P
sending "Internet datagrams" between hosts which may be attached to
different networks, linked by packet-switching hosts called
"gateways" [Postel8lb]. An Internet datagram consists of an IP
header followed by data.

From a host viewpoint, the IP protocol provides two principal
functions: (1) Internet host addressing, and (2) fragmentation and
reassembly of Internet datagrams, in order to accomodate networks
with diverse packet sizes.

IP does not provide error control; depending upon the properties of
the networks and gateways, a transmitted packet may be lost,
delivered out of order, or delivered in duplicate.

* TCP -- Transmsission Control Protocol

TCP is a reliable end-to-end protocol for transmitting data between
processes over connections (virtual circuits) [Postel8la]. TCP
plays a central role as the transport service protocol used by most
user-level protocols.

1. TCP sends data in messages called segments, each of which
begins with a TCP header and is sent as an Internet datagram
using IP. *1

2. TCP delivers data segments to a user reliably and in order.
The data in these ordered segments logically form an undel-
imited stream of 8-bit data bytes or "octets".

3. TCP provides flow control on each connection, using a windowing
mechanism. The sequence space is fine-grained -- each octet of
the data stream is numbered.

4. TCP uses checksums to ensure end-to-end reliability. The
receiver sends acknowledgments of correctly-received data, and
the sender does timer-based retransmission of unacknowledged
data.

5. TCP creates full-duplex connections whose ends are labeled with
16-bit numbers called ports. Thus, a TCP connection is defined
by the set of four address parameters:

C <local host address>, <local port>,

<remote host address>, <remote port> )"

TCP allows the same local port on a given host to participate
in any number of connections whose remote ends have differing lo
(<remote host address>, <remote port>) pairs.

-6-

......... . . ..-



PAGE 7

Thus, a server host's well-known port can participate in any
number of TCP connections, as long as the user host's
(host,port) pairs are each unique.

6. A TCP connection is inherently full-duplex, even if an
application needs only a simplex connection. Furthermore, a
TCP connection is allowed to be half-open indefinitely. Thus,
a close request (<FIN>) only signals the end of data
transmission in one direction; data flow can continue in the
other direction until a matching <FIN> is sent. The connection
will be fully closed and deleted only when both ends request
its close.

" ICMP -- Internet Control Message Protocol

ICMP is really an extension of IP, carrying routing, congestion
control, and error reports to hosts [Postel8lc].

" UDP -- User Datagram Protocol

UDP provides datagram service between two processes.

UDP does not define connections as does TCP. However, UDP does
have 16-bit port numbers just like TCP, and sending or receiving a
UDP datagram therefore requires the same set of four address
parameters that define a TCP connection. As a result, the UDP
implementation is a lot like that of TCP, except UDP is much
simpler.

* User-level Protocols

The three principal user-level protocols are TELNET (remote login), '
FTP (file transfer), and SMTP (electronic mail) [Postel8ld,
Postel8le]. See section 2.5.

* Domain Name Resolver

A domain name resolver [Mockap83] will be required, but it is not
included under the current contract.

We now begin to describe the ACP, which is organized in correspondence
with the protocol hierarchy of Figure 1. Figure 2 shows the principal
components of the ACP job.

• ICT Subsystem

The ACP normally executes as a batch job under the control of an
internal real-time (sub-) operating system called ICT. ICT does
multiprogramming, creating "pseudo tasks" or "ptasks" that are
really coroutines. Its non-preemptive round-robin dispatching
mechanism is often called a "commutator".

-7-

%*
- ,** *.t** .,.*. * ~*b~.* .' ii...1 ...

___ q .*.-. .... 
I

- . I



PAGE 8

--------------- VTAM

S--------- > connections to local
(ICT -- Realtime .--------- > server subsystems and
Operating System) virtual terminal

drivers.

ft.A C A P J Jo b

+ -t+ -+ :-

I I" I ULPP's I (e.g STELNET is Server I
I I I I TELNET module) -

I

ASEND I IARECV ZI I I I
I .......... I..I ........... A-Service Interface

I I Network I/O A-Services
TI TCP 1 -- TELNET and TCP I 0

I_ I programsI I ~I I +
fi

I I ~ +1 [__Ift
I[ I t.

I IPP I IP ProgramII I I__ _ _ _ _

II+
1 QUEOUTI I GETINP -I I I'"I
II......... I......... X-Service Interface .

I I I Local Network ,
IILNI I Interface
I II .-."

I
I I +

WRITE I I READI I"
+ I

EXCP-level I/O to IMP Interface -

°° .

f..."

Figure 2: ACP Job Components e

0W

... . . . . .. . . . .. .



PAGE 9

The ACP uses a fixed set of ptasks to implement the local network
access and host-host protocol layers. Additional ptasks are
started dynamically to execute the appropriate user-level protocol
modules for each active user or server session.

ICT provides a set of (sub-) system calls for operating system
functions -- e.g., module loading, storage allocation, and dynamic
file allocation. These system calls, which are actually subroutine
calls through a transfer vector, are called "P-services" [Stein84].

Technical Report TR35, "Technical Overview of the UCLA ARPANET
Control Program for OS/MVS using Internet Protocols TCP/IP"
[Braden85a] includes an introduction to the facilities of ICT.
Technical Report TR38, "ICT Version 2 -- Pseudotask Services and
Macro Instructions" [Stein84] contains information on the operation
and installation of ICT, plus a detailed description of all the
P-Services of ICT. <..'

* Local Network Interface (LNI)

The Internet protocols TCP and IP are used end-to-end, and in turn
they use the transport mechanism provided by each network which is
traversed. Hence, at the lowest level in the protocol hierarchy
(see Figure 1 again), the ACP must handle the network access
protocol (in ISO terminology, the link and network levels) for the
particular network to which it is locally attached.

An ACP component called the "Local Network Interface" or LNI is the
device driver for the hardware interface to connect the host to a
network which is part of the Internet. The LNI is described in - -

section 2.2 below.

* Host-Host Protocol Processing

IP and each of the higher-level host-to-host protocols (e.g., TCP
and UDP) are handled by distinct protocol modules. ICMP processing " "-
is performed in the IP module (also known as the IPP or "Internet
Protocol Program").

The user-level protocol programs open and close TCP connections and
send and receive data using a set of subroutine calls within the
ACP; these "A-Services" provide a tranport-service interface. The
A-services are fully documented in TR21A, "Programming User-Level
Protocol Processes for the ARPANET ACP" [TR21A].

Later sections of this document describe the current IP and TCP
implementations. " "

* User-Level Protocol Processes (ULPP's)

The ACP includes a set of programs to implement specific user-level
protocols, e.g., TELNET, FTP, and SMTP.

-9-



PAGEl 10W

These "User-Level Protocol Processes" or "ULPP's" move data streams
between the Internet (using the A-service calls) and the appro-
priate server subsystem in the host, The ULPP's are generally
tprotocol transformers" that match the Internet protocols to the
IBM conventions.

Section 2.5 describes the various user-level protocol implementa-
* tions.

* Interprocess Communication Mechanism -- ACF/VTAM

To perform its communication function, the ACP must transfer data
to and from user programs or server subsystems, each of which is
executing in its own address space. Thus, the ACP software
requires some facility for cross-domain (or "interprocess")
communication within the local system.

Under OS/MVS, IBM provides an interprocess communication mechanism
named ACF/VTAM ("Advanced Communication Function/ Virtual Telecom-
munication Access Method") [IBMvtam]. ACF/VTAM creates connections
or "sessions" between entities called "logical units" or LU's.

The original function of VTAM was to provide virtual-terminal

capability, dynamically connecting terminal drivers ("secondary
LU's") to server subsystems or "applications" ("primary LU's").
However, ACF/VTAM provides direct access to the underlying
transparent interprocess communication facility of VTAM. The ACP .
uses ACF/VTAM to provide both virtual terminal support and
interprocess communication [Rivas84].

Figure 3 shows the relationship of the ACP to VTAM.

1. The ACP acts as a secondary LU to allow a remote user to access 40
a local server subsystem, e.g., TSO or CICS. The ACP inter-
faces to VTAM as a secondary LU using an OAC-developed package
called the "Virtual Terminal Facility" or VTF,2 which provides
a simple get/put interface [Ludlam85]. The VTF creates virtual
terminals, simulating both IBM 3767 (buffered typewriter)
terminals and IBM 3278 displays.

Consider a remote-login session through the ACP to a local
server subsystem. A server ULPP passes data between the
Internet and the VTF, performing the necessary transformations
on character set and protocols. The data passes over a VTAM-
session to the appropriate server subsystem.

* In earlier documentation, the term "VLT" or "Virtual Line Terminal" n

was used instead of "VTF". VTF implies either a VLT or a VCRT
(virtual CRT).

- 10 -

.-- 5-



PAGE 11

2. Conversely, the ACP acts as a primary LU to provide the
internal communication path allowing a local user to gain
terminal access to the Internet.

An ACP process (ptask) named "VTAMAPPL" acts as a primary LU to $
VTAM, as if the ACP were itself a server subsystem [Rivas84].
A real or virtual 3767 or 3278 terminal, connected to VTbA as a
secondary LU, can establish a session with VTAMAPPL as shown in
Figure 3. A ULPP is again used to translate and transform the
data as necessary.

User and server protocols in the ACP are discussed more in Section 2.5.
The use of VTAM by the ACP is described in document TR37 [Rivas84].

< ----------- A C P ------------------>

VTAM 4.

I Secondary
LU

* * * 1 *

I <=* Server VCALL via - VTF I *_ < _'_

N > ULPP - ARPAVCB Routines *>%
*T * * * 1"

E *"* ....... ".'c. ..........."TR --------

E I Primary ,,-

T ****~******LU

<-* User * VCALL via VTAMAPPL *_ <
>*. ULPP * ARPAVCB Routines *_ >-_-_

******** **** ** ** * **

Figure 3: Terminal Sessions Using the ACP and VTAM

One facility which is not presently included in the ACP (but easily
could be) is direct access to TCP connections from application programs
in other address spaces. '

This would use VTAM connections as transparent pipes to the ACP, and a
new (but trivial) ULPP that simply passed binary data between VTAM and

- 11 .

'.... ...'-. ._ _" -. _. _._ = ="_- . ." " .- ",, . . . -. ** % .=*-" *-* ..- .. .--. " ' . ., - .* "S -S . ', [- ,"." . -"-"., .-.



WWI, V 'W V W 1

PAGE 12

the TCP connection. It would require a tiny control protocol
out-of-band from the TCP stream, to specify the TCP address, pass
status, etc. This facility has never been added simply because there
has been no use for it. Only a newly-written network-oriented appli-

* cation would be able to take advantage of such a facility.

Some operating systems incorporate TCP into their kernel code in such a
way that a TCP connection becomes simply a virtual file. Full
integration of TCP connections in this manner with the normal sequential
I/0 mechanism of MVS would perhaps be a feasible goal. However, it not
be desirable, because the ACP would then require serious operating
system changes and be unmaintainable.

2.2 LOCAL NETWORK INTERFACE

The ACP as distributed by QAC contains a Local Network Interface (LNI)
module named IMP1822. This module supports:

* The 1822 IMP-host protocol [BBN1822], and S

* EXCP-level I/O operations to one of the two alternative channel

interface boxes:

1. The ACC-IF-IMP/370 channel interface built by Associated
Computer Consultants, Inc. of Santa Barbara. This interface is
restricted to a Byte Multiplexor channel.

2. The HDH Host/IMP interface based upon an IBM Series 1, using
interface boards built by Channel Systems, Inc. of Santa
Barbara. This interface may use either a Block or a Byte
Multiplexor channel.

We call these the "ACC" and the "CSI" interfaces, respectively.

The IMP1822 module has a number of important features:

* It handles the ARPANET internal flow control mechanism ("counting
RFNM's") [BBN1822]. When output from the MVS TCP exceeds the limit
of 8 outstanding packets to an ARPANET host, further packets to
that host are queued until the RFNM count is reduced.

* Deadman Timeout Support

It is capable of sending host-IMP NOP messages at an appropriate
frequency when the interface is idle, to reset a "deadman" timer in
the interface. This allows a suitably-designed channel interface
to report to the network when the ACP is not functioning.

* Software Loopback 1P

-12-- 12 -



* PAGE 13

It can internally loop network output back into network input, so
the ACP can be tested in isolation from the local netowrk. In
particular, the ACP can be executed under control of the TSO
interactive debugger TEST, allowing breakpoints to be used.

* Raw Packet Interface ".:

It provides a "raw packet" interface, allowing packets to be sent
and received directly at the network level. The input side of the
raw packet interface, called the "NMC Intercept", provides a
general packet filter to select the packets to be monitored.

The raw packet interface is used by the TSO processor ACPEEP to
produce a real-time packet trace. ACPEEP has extensive filtering

* and formatting capabilities, providing an extremely useful
diagnostic tool.

There are a number of deficiencies in the present Local Network
Interface implementation.

* It does not support the logical addressing extension to the 1822
protocol, known as "1822L" [BBN1822L].

" The local network protocol functions are not cleanly separated from
the rest of the ACP. Modifying the existing Local Network
Interface or implementing a new one for a different local network
access protocol would affect code in a number of ACP modules. '

" There is no provision for multiple LNI instances to drive multiple
hardware interfaces. Hence, it cannot handle multi-homing or
parallel interfaces to increase bandwidth.

* Input packets are passed from the Local Network Interface to the IP
code with an unnecessary buffer copy.

We hope to address these problems in a follow-on contract.

2.3 IP IMPLEMENTATION

Within the ACP, the Internet Protocol IP is implemented by the Internet
Protocol Program or IPP. The IPP must support a number of different
higher-level protocols, each of which is implemented by a corresponding
higher-level protocol module (HLPM). The IPP accepts from the HLPM's
segments of data to be sent, and it passes to the HLPM's the complete
segments which have been received [Braden85b].

The IPP must implement the data transport functions of IP:

*'* Internet addressing

- 13 -

V



PAGE 14

* Routing transmitted datagrams

Reassembling Internet datagrams r

Demultiplexing reassembled datagrams %

* Handling ICMP Redirect messages.

In addition to these IP functions, the IPP performs some control r .
functions such as:

* Dynamically loading and deleting HLPM load modules and their

resource pools -*

* Providing a timing service for HLPM's

* Creating new ULPP's in response to incoming and outgoing logger
requests.

The design choices in the IP and TCP implementations were intended to
support operation of a large IBM system using Internet protocols.

* The design favors a large number of simultaneous connections, with
"fairness" criteria controlling the sharing of the buffer pools.4

* The IPP uses a hash table to perform demultiplexing of incoming
packets. When no reassembly is required, a single hash lookup
demultiplexes a packet directly to a particular TCP connection.
This requires a controlled violation of the strict IP/TCP layering
[Clark82a].

The various features of the IP protocol are currently implemented in the

following manner.

* Fragmentation:

The OAC implementation does not fragment, requiring its TCP to
split outgoing data into segments of size suitable for the
particular local network. Again, this requires a controlled
layering violation.

The lack of IP-level fragmentation will only be a problem if the
ACP is adapted for use on a local network with maximum packet size
less than 576. Then the use of TCP segments for fragmentation
would increase the effective overhead due to TCP headers; also, UDP
would require fragmentation for datagrams which did not fit into a O
single network message.

A Note that the existence of per-connection limits on the number of %

packets being sent has a desirable side-effect: it provides an S
implicit back-pressure on TCP when the local network flow control
stops taking packets for a given remote destination.

- 14 -

S7.%

..............................................



* PAGE 15

Reassembly:
4..E..4

The code performs reassembly of fragmented datagrams.

The present ACP reassembly code builds a linked list external to
each reassembly buffer. It could have used a more efficient
algorithm which builds the data structure within the reassembly
buffers [DClark82aJ.

Routing:

The first-hop gateway is chosen by the simplest (but most robust)
algorithm:

The ACP contains a preset table of initial gateway
choices, in order of preference. A new locally-initiated
connection is directed to the currently-preferred
gateway; ICMP Redirects will correct this choice when .

necessary. . -

If the preferred initial gateway is declared down by the
ARPANET, the next in the list is made the preferred
gateway; the list is used thus in a round-robin fashion.

For a remotely-initiated call, however, the gateway from
which the first packet came is used as the initial -"
routing choice.

If the first packet arrives with source-routing, the return route
in the packet is used as a source route for packets in the opposite
direction.

Packets may be sent with source routes; a strict source route makes
a fixed choice of first-hop gateway, which cannot be changed by a
Redirect.

* ICMP:

This discussed below.

* Options:

Both loose and strict source route options may be either sent or
received. 4,

The security, timestamp, and return-route options are not yet
supported (they are accepted but ignored).

* Identifier selection:

The IP module uses globally-unique identifiers for transmitted
segments, independent of destination.

- 15 -

• I

".".1



PAGE 16

* Reassembly timeout:

I The IP module uses a fixed value (30-60 seconds), independent of W5
the time-to-live field. Packets are discarded if their time-to-
live field is zero.

:q I,

* Gateway "pinging":

The IPP assumes it is on the ARPANET and depends upon Host V P
Unreachable messages when a neighbor gateway goes down. It does
NOT probe its neighbor gateways to discover whether they are still
up.

Most ICMP processing is performed within the IPP. The ICMP implemen-

tation has the following features:

* Redirect messages are acted upon.

• Unreachable and Source Quench messages are passed to the higher-
level protocol (i.e., TCP).

p6.

• Echo Requests are turned into Echo Replies.

* CMP Error indications are-received and logged.

* Timestamp and Information Request/Reply are not currently imple-
mented. IV

The IP input routine will send an ICMP Parameter Problem messages for
certain packet errors.

2.4 TCP IMPLEMENTATION

The ACP implementation of TCP is contained in the load module TCPMOD,
* which is a particular instance of a HLPM (higher-level protocol module).

Specific features of the TCP protocol are handled in the following
manner:

• Retransmission:

Successive retransmission timeouts use "exponential backoff", w
starting with twice the measured round-trip time. Round-trip time
is an exponentially-weighted average of the intervals between
initial packet transmission and complete acknowledgment. This
algorithm has become known as the "RSRE algorithm".

The TCP retransmits slowly into zero window, as required by the
protocol. It does not repacketize data in the retransmission
queue.

-16-

q *1.
% .'-2



PAGE 17

* Window strategy:

The TCP uses a conservative strategy, never advertising a receive
window larger than the space available in the circular buffer.

* ACK generation:

The TCP generally sends an <ACK> in response to the receipt of a

non-empty packet. However, if received data can be sent immediately
to a waiting process (ULPP), TCP tries to defer the ACK until the
window has enlarged again..

As the user process removes bytes from buffer, an optimizing
algorithm determines when to generate <ACK>'s to inform the sender
of the enlarged window. As a result, the advertised window may ___
sometimes be LESS than the available buffer space.

Push:

The "Push" bit in data being sent forces TCP to forward the last
data to the remote host. Since the Push bit is not a record
marker, the ACP may collapse successive Push bits, through a
process we call "promotion":

If there is data queued for output but not yet fully-
packetized that has the Push bit on, and if the user
process issues a new ASEND call specifying PUSH, the '

earlier Push bit will be "promoted", i.e., moved to the
new end of the queued data.

If the ACP receives TCP data containing the Push bit, that fact is
made available to a user process. This could be useful in the User
and Server TELNET ULPP's, for example, to aggregate data for
transmission through VTAM. Unfortunately, current higher-level
protocol implementations on other Internet hosts do not allow this
optimization to be effective -- FTP and SIMTP streams (ideally)
never push data (except the last packet), while TELNET implementa-
tions tend to push every packet, even when packets are part of a
burst of data.

* Data Aggregation

The algorithm used to packetize data to be sent by TCP aggregates
data from successive ASEND calls, whenever the send window size and
the Push bit allow it to do so. This provides efficient TCP
transmission even if the ULPP is sending the data in small
(un-Pushed) chunks.

* Urgent:

Urgent may be sent and received by a user process.

Initial Sequence Number:

--17 -

% -
. • - -.. . w. % . % % % - -•. -. - . - , , • ,.. ° .••- - . "° . ° ' '' •



PAGE 18

The Initial Sequence Number (ISN) for a new connection is derived .

from the system clock, as required by the protocol.0-

* Maximum Segment Size Option:

Receipt of the Maximum Segment Size option will cause larger
packets to be sent when possible (the data is available and the
window permits it).

It is recommended that the ACP be configured with TCP reassembly
buffers at or near the maximum size of an ARPANET/MILNET packet
(1007 bytes). If the reassembly buffer size is greater than 576
bytes, the ACP will send the Maximum Segment Size option when it
opens a connection, to make use of the configured buffer size.

* New Sessions:

The ACP is effectively listening at all times on the "well-known"
ports for supported server protocols. Receipt of a SYN for one of
these ports will cause the incoming logger in the IPP to spawn a
ULPP to service the connection.

In addition, a ULPP can issue a LISTEN for a partially-specified
foreign socket.

* Performance

Like the IP layer, the TCP layer is designed to handle a large
number of connections. It therefore attempts to minimize the
number of timer interrupts by TCP, since these events create
significant operating system overhead. Essentially, a timer is
used only to trigger retransmission of un-ACK'd data.

This design decision is not without its drawbacks. Since it does •
not set a timer on input, the TCP implementation in the ACP tends
to send more ACK's than necessary. A timer could also be used to
improve the "silly window syndrome" (SWS) behavior [Clark82b] of
the TCP implementation.

* Connection Errors 01.

The Internet protocols TCP and IP are designed to support communi-
cation over paths with very unpleasant characteristics, including
long delay, high packet loss rate, and massive failures of
intermediate packet switches. We say that these protocols are
"robust and survivable", to meet the requirements of a military U
environment.

One implication of these characteristics is that TCP connections
can experience "soft" failures, in which transmission is halted but
recovers fully after a (possibly long) period of time. During the
failure period, the sending host will generally be receiving
asynchronous ICMP error messages such as Destination Unreachable.

- 18 -



PAGE 19

The proper treatment of the various flavors of connection errors is
vital if the robustness and survivability of the transport
mechanism is to be carried into the user protocols. For example,
the desirable response to a particular mode of connection failure
may be different if the user process is an FTP server than if it
represents a human user doing remote login over a TELNET
connection.

In the ACP, asynchronous connection-related error messages from
ICMP or the local network are passed up to the TCP level for
analysis and reporting. The TCP level passes "soft errors" up to
the user level for further analysis and decision. .

The user level can query the detailed nature of any connection ,
errors using the ASTAT ERROR service. If the error occurs during
the opening of a TELNET connection, an asynchronous exit to the
ULPP conveys the connection error status.

The User TELNET program generally displays information on soft
connection errors to the user, so the user can make the decision on
when to give up. Server programs, however, allow a limited number
of soft errors and then abort the session.

2.5 UDP

The User Datagram Protocol (UDP) is implemented in the module UDPMOD.

2.6 USER-LEVEL PROTOCOLS

Finally, we discuss user-level protocols, levels above TCP and IP, which
provide the services to users. Figure 4 shows the user services
currently supported by the ACP. Most of these protocols are based at
least partly on TELNET, the Network Virtual Terminal protocol of the
Internet.

2.6.1 Server TELNET

The TELNET Server may be used for access to any server subsystems which
drives a supported terminal type (see below) via ACF/VTAM. At UCLA,
this includes TSO as well as the WYLBUR system marketed by Online
Business Systems.

A server subsystem is sometimes called an "application" in IBM

terminology.

- 19 .



PAGE 20

The supported (virtual) terminal types are: .1

• IBM 3767 typewriter terminals

• Locally-connected non-SNA IBM 3278 terminals

Either of these may be driven from a Network Virtual Terminal (NVT) to
provide line-at-a-time operation for the remote user. The virtual 3278
may also be used in transparent full-screen mode from a remote IBM MVS
or VM system.

When the remote user opens a TCP connection to the "well known" TELNET
Server port (23), he/she is connected to a TELNET Server process (ULPP)
in the ACP. If the user proceeds to LOGON to TSO, for example, the
TELNET Server ULPP invokes the VTF which uses ACF/VTAM to make a
cross-address-space connection to the virtual terminal handler for TSO.
The ULPP makes all necessary conversions of code and protocols.

The TELNET Server also implements a few "pre-LOGON" services within the
ACP. These include:

• HELP display

• NEWS display

• NETSTAT

The NETSTAT program provides status information regarding the ACP.
For system programmers, an alternate entry called SYSSTAT is
provided that enables the ACP control functions in NETSTAT. The ".
TELNET Server requires a local "LOGON" before allowing access to
SYSSTAT.

For detailed information on NETSTAT commands, see the TR42,

"Intallation and Operation Guide" [TR42].

.,ACTEST

ACTEST is the ICT interactive debugger. It requires a local LOGON
from the TELNET Server and is restricted to system programmers.

At the present time, there is an incompatibility between MVS and VM in
*their implementations of full-screen 3278 operation. When a user on VM

contacts the MVS ACP on port 23 and selects a potentially-full-screen t.

service such as TSO, VM is unable to negotiate full-screen operation at 1r
that point. To circumvent this problem, the distributed ACP is
configured with a special contact port (1023) which connects V. users --

directly to MVS TSO to obtain full-screen 3278 operation. The ACP
configuration can trivially be expanded to assign similar ports to other
server subsystems.

4 - 20-

. *.* ...
. . . . - ..



PAGE 21 

User-Level Service Notes
Protocol

TELNET Server Access to TSO or Applic. must support
other application 3767 or local non-SNA
service. 3278 through ACF/VTAM.

TELNET Server Help, news, ACP Implemented within ACP.
status display.

TELNET User Local user perform Access from:
remote login to * Local 3278 (SNA/not),
another Internet host * Local 3767
("passthru"). * TSO command "TELNET". ..

FTP Server File transfer server. Contained completely
within ACP job.

FTP User User initiate file TSO command "FTP".
transfers between any
two Internet hosts.

SMTP Server Receive SMTP mail. Print it, or pass thru
JES2 to UCLANAIL system.

SMTP User Send SMTP mail. Spool mail file from JES2
queue and send to Internet.

Figure 4: ACP Services

2.6.2 User TELNET

User TELNET allows local access to the Internet via the ACP. Local
access can use either of two paths, which have different properties.

Using the TELNET (or FTP) command processors under TSO. QN

The TSO TELNET processor supports both line-by-line and full-screen
terminals, but both are mapped into line-by-line NWr operation to
the remote host.

-21-

%
* .. ' . .,. "-



I. % ;- 1 .7 I - L 6

PAGE 22

There is a problem with this program from a human-factors
viewpoint: TSO supports only half-duplex locked-keyboard W
operation, making access to character-by-character hosts somewhat
awkward.

This program is written in PL/I, and it is a maintenance headache
[TR42]. To use it, an installation must have the PL/I runtime
library, an IBM Program Product. qW

On the other hand, this program has some useful features, e.g.,
saving typescripts and multiplexing simultaneous sessions.

* Directly from VTAM-supported 3767 or 3278 terminals. a

Although the ACP 3278 terminal manager does not have all the
features of the TSO TELNET program, it can access the 3278 with a
true full-duplex unlocked-keyboard protocol.

The 3278 can either be mapped into line-by-line operation as a
Network Virtual Terminal, or can operate in transparent 3278
full-screen mode to access a remote IBM MVS or VM server.

A desirable goal would be to upgrade the direct terminal entry module
(VTAMAPPL) to provide all the features of the TSO TELNET program, and
then drop the latter from further use.

2.6.3 File Transfer Protocol

The ACP supports the File Transfer Protocol (FTP).

" FTP Server

The FTP Server implementation is one of the most complete on the r
ARPANET; it includes block transmission mode, restart, and acomprehensive set of host-dependent options (such as DCB, VOL, and

SPACE parameters). It also supports "anonymous" login for
retrieval of public files.

Server FTP executes entirely within the ACP, using the dynamic
allocation provided by the PDYNAL service of ICT."

A thorough description of the FTP Server and all its features is
contained in TR44, "The DoD Internet File Transfer Protocol in the
UCLA ACP" (BraRiv84].

°'.

6 At present, the ICT dynamic allocation can only be used with OS/MVS.
It could be enhanced to work with MVT by replacing the SVC 99 calls
with a suitable user-provided allocation routine.

-22-

...-... ...... • .. -. ..- . ....- ... °



PAGE 23

* FTP User

.The user FTP command under TSO allows an OAC user to move a file

from any ARPANET host A to any other host B, where A and B both
have FTP SERVER programs; that is, it uses the "third party model".
It operates by opening User TELNET connections to both FTP servers
and sending the appropriate commands to each.

This approach is very general but not extremely convenient for the
common case that A or B is local. A more convenient user interface
to FTP should be written.

2.6.4 Electronic Mail

Some key components for supporting electronic mail using the SMTP
protocol have been developed experimentally, but require further
refinement before they can be distributed.

SMTP Receiver

The SMTP Server SSMTP receives SMTP mail and spools it into a JES2
SYSOUT class. This program is written in "C" and adapted from a
VAX UNIX 7 mail program written by the UCLA Computer Science
Department.

* SMTP Sender
%

USMTP was written as part of the ACP development under the present
contract. Like the receiver, it is written in "C". It assumes
that mail to be sent is available in cataloged datasets with a

* specific DSNAME prefix.

* Outgoing Mail Spooler

This program, called SPOOL#3, copies output from a JES2 virtual
3770 printer into cataloged datasets. It is used to pass outgoing
mail files to the SNTP sender. SPOOI43 is written in BAL and uses
the VTAM interface package called the "Virtual Remote Batch
Terminal" or VRBT [Ludlam8l]. The VRBT provides a virtual terminal
(VTAM secondary LU) for a virtual IBM 3770 remote batch terminal.

For full-facility electronic mail service, an installation will need an
appropriate user mail system. The SMTP modules in the ACP were designed
to interface through JES2/NJE with a user mail system called UCLAMAIL.
UCLAMAIL was also developed at OAC, and has interfaces to both BITNET
and to the ACP.

UNIX is a trademark of AT&T Bell Laboratories.

- 23 -

10 . .... *

- " '. ' . ,,".' ,.." .'J i ,' ,." ,' e " " : , " "S - " - " .'.' S¢ -.. -, .'.*"."*'-". . , ,'. "."."." ° .
"



PAGE 24

Without a user mail system, an ACP installation will be able to receive
messages on the line printer, but not to send messages.

2.6.5 Remote Batch

Previous to the conversion of the ARPANET to TCP, OAC received batch o
jobs over the ARPANET using a remote job entry protocol called NETRJS.'

The NETRJS protocol provided a TELNET connection for a "remote
operator", allowing the user to sign on as a (virtual) remote batch
terminal. It had a user command language for obtaining job and system
status and for controlling the operation of the session. Additional
simplex connections were opened for transmitting virtual card reader,
printer, and/or punch streams. Transmission could be in ASCII or EBCDIC
and optionally use data compression.

The NETRJS server in the ACP interfaced as a virtual 3770 remote batch
terminal to IBM's Job Entry Subsystem 2 (JES2) [IBMJES] through
ACF/VTAM, using the VRBT (Ludlam8l].

It would be feasible to convert the NETRJS server to TCP. However, this

will not be useful unless NETRJS user programs are made widely available
under a common operating system (e.g., UNIX).

.t°.

2.6.6 Common TELNET Routines

The ACP includes a standard set of TELNET routines which are used by all
ULPP's which need the TELNET protocol [Braden84]. These routines
provide the ULPP's with a GET/PUT interface for sending and receiving
character streams using the TELNET protocol. Internally, the TELNET
routines call the connection I/0 A-Services such as ASEND and ARECV.

The common TELNET routines perform a number of functions:

* Character Translation

There are standard character translation tables in the ACP, used by
all programs which need ASCII-EBCDIC translation. There is also a
mechanism to allow a particular ULPP to override the default
translation tables.

*%

. See "NETRJS Protocol", NIC 42423 in the ARPANET Protocol Handbook

[FeiPos78].

-24-

.......................... ...... . . ..-........ . ., "



PAGE 25

However, not all translation is 1:1. The most important case is
the mapping between the ASCII CR LF sequence and the EBCDIC NL
character. The TELNET routines also implement a rich set of escape
sequences to handle the "problem mappings" between EBCDIC and
ASCII.

* Output buffering
The TELNET output routine provides a ring of buffers for the ULPP,

and it handles the TCP "Push" function.

* Option Negotiation

These routines implement the state machine to do option negotiation
and sub-negotiation.

* TELNET Commands

The TELNET commands are implemented.

* Urgent Processing

These routines implement the discarding of data implied by the TCP
Urgent facility, scanning for a Data Mark.

* Binary Mode

These routines support binary transmission mode for sending data
transparently, with the escape character X'FF' doubled.

* Tab Expansion

The TELNET input routine can optionally expand a HT (tab) character
using logical tab stops in every Nth column. The default for N is
8, but a ULPP can set N to any value.

2.6.7 Miscellaneous Services
.-

The ACP contains three of the 'little' services (Echo server, Discard
server, and Character Generator) for both TCP and UDP. -

- 25 -

. 4 .... ~ .a-.-:. .-



PAGE 26

2.7 OPERATION AND MAINTENANCE

The ACP includes a number of useful tools for operation and maintenance.
Interfacing between the IBM world and Internet worlds is not simple, and
subtle problems may arise at all levels of protocol.

These tools include the following:
'S2

* Log Files

The ACP produces a historical record of its activities, errors, and
unexpected events, which it writes into a set of log files. These
log files are normally printed with the ACP job output, and can be
scanned in the running ACP using the ISPF processor of TSO.

For example, the receipt of an erroneous or unexpected packet from WI
a remote host will cause both the error text and a hex dump of the
offensive packet to be sent to the log.

* NETSTAT "

This Server TELNET processor provides useful displays of connection
and session status, and also a display of the recent messages V
written to the log files -(which cannot be seen in ISPF, because
they are still hidden in JES buffers). V

* ACPEEP

ACPEEP is a program running under TSO to format an ACP packet trace
in real time onto the terminal. It has extensive filtering
capabilities, so it can trace packets for a specific host and/or a
specific protocol level -- local network, IP, TCP, or TELNET. For
example, in the IP mode all IP datagrams are shown with the IP
header formatted. In TCP mode, the TCP header is formatted.

ACPEEP also has a number of parameters to control the display
format for the data -- ASCII or EBCDIC conversion; display in "dump
format" or as byte streams with escape sequences; and control of
the amount of data to be displayed from each datagram.

ACPEEP is written in PL/I, and uses 17AM to obtain raw datagrams
from the ACP job.

* Connection Tracing

There are several ways to capture a trace of the data on a TCP
connection into a log file. It is possible to format the trace
immediately and send it to a log file. Alternatively, the recent
data on a TCP connection can be saved in a circular buffer and only
formatted to the log file if a severe protocol error occurs.

The SH1TP programs similarly keep a circular trace buffer of their 1P
transactions. They dump this buffer to the log only if an SM1TP
protocol error occurs.

* 26-

.....



PAGE 27

There is a "trace trap" mechanism, which will trigger an immediate
log trace for a TCP connection to a selected combination of remote
host address, local port, and/or remote port numbers.

* Connection Statistics

Extensive statistics on each connection are printed in one of the
log files whenever a TCP connection closes.

* Histograms
'J. . .

The ACP has a built-in mechanism for building histograms of
interesting distributions, and a histogram display command in

* NETSTAT.

For example, histograms are kept of the (queueing) delays in
sending packets out the local network interface and of TCP -

acknowledgment times.

* * ACTEST

The interactive ICT debugger program, mentioned earlier, is a
powerful tool for diagnosing ACP bugs and for installing new
modules.

0 For debugging, the ACP can be run under TSO TEST, using the
software loopback mode of the LNI. Both TSO TEST and ACTEST are
then available. This testing can be done without disturbing the
production ACP, using alternate ACB names defined for 'TAM. The -
TSO interface programs TELNET, FTP, and ACPEEP all have parameters
to select these alternate names.

C

7.

% .,

-.
" 27 "-

..i --.



77Z * .. * -.

PAGE 28 W

* Chapter 3

"' PERFORMANCE OF THE ACP

This Chapter describes the results of performance measurements of the
ACP in operation on an IBM 3033 CPU under MVS/SP.

These measurements are particularly concerned with full-screen remote
login using the transparent 3278 full-screen operation, since any *1.
large-scale use of the UCLA ACP is more likely to use full-screen than
line-at-a-time operation.

A complete description of the performance of a communication package

like the ACP would consider several different performance measures:
S

" CPU Usage

Here we are concerned with the amount of mainframe CPU time that is

consumed to drive a given number of concurrent sessions.

* Delays

The ACP must provide acceptable delays to users at the maximum load
level.

Throughput

For some applications (e.g., file transfer) the total throughput is
more significant than delay.

The measurements reported here are mainly concerned with CPU usage, for
several reasons. First, its measurement is simplest and most unambi-
guous. Secondly, in the regime we are concerned with, CPU time should
be the primary limitation to supporting a large number of users. If we
assume an 1822 IMP connection of lOOKBits per second, this bandwidth
should be far from saturated by the terminal load we are considering.
As a result, we do not expect significant queueing delays for users,
even with a large number of concurrent sessions.

W
Our measurements are focused on answering the following specific
question: how much CPU time will be required in the ACP to support a
population of N users, employing the ACP for full-screen remote login
with TCP/IP?

In our measurements, we separated the CPU utilization into three W
categories:

- 28 -

7-1



PAGE 29

TCP Performance

* VTAM Interface and TELNET Performance.

ICT Performance.
V%.

Each of these will be described in the following sections.

These measurements are limited in a number of respects.

* They were mostly made on a single session carrying N times the
traffic of a real session, rather than setting up N sessions and
measuring the aggregate. The assumption was that the ACP
processing has only secondary dependence on the number of sessions.
In fact, measurements on N simultaneous sessions reported later
(see e.g., Figure 7) support this assumption fully.

* We considered only full-screen operation for which the ACP design

is best suited -- because it uses large packets.

* We used a single average interaction rate, using parameters based

upon typical measured user interaction rates [McKay84]. Specifi-
cally, we assumed an average interaction inputs about 200 bytes and
outputs about 1500. In projecting performance in the last section,
we will assume a rate of 0.02 transactions per second per terminal.

* We made only loopback measurements; i.e., in every case the UCLA
3033 was both source and sink for the data. That means the results
contain a mixture of user and server operation. In making
projections in the final section, we will make the untested
assumption that the two ends make equal contributions to the total
CPU time.

In spite of these shortcomings, we believe the results are consistent
and reliable and are indicative to the real performance which can be
expected. Future work on performance will serve to justify or disprove
this belief.

We will present only a small sample of the data. In general, the results
which we give are representative, and the measurements showed a great
deal of consistency from day to day and run to run.

Our CPU measurements were based upon the sum of job step CPU time and
SRB CPU time.

- 29 -



PAGE 30 W

3.1 NETWORK PERFORMANCE

We assume that the CPU time required for sending and receiving data on a
TCP connection may be written in the form:

CPU = A*S + B*N Seconds

Here S is the total number of segments processed, N is the total number
of bytes of data transmitted, and A and B are constants defining the -I performance.

In general, our measurements are consistent with this formula, and we
have been able to measure values for A and B which seem reliable.

Recent measurements have all used the following scheme: W

* A traffic generator program (L7PTEST) is invoked as a ULPP, and
told to cor t to the discard server (port 9) on the UCLA host.
This is iplished from user TELNET by simply asking for
"CCN, 9; LTPTEST".

* LTPTEST opens a TCP connection to port 9 and sends a known stream

of packets. At the end of this stream, it does a long PWAIT TIME
to allow the connection statistics to be examined in NETSTAT.
While packets are flowing, we monitor the CPU time and I/0 count.

* Data is sent using ASEND and received using ARECV; the TELNET l|

programs are not involved. Thus, the processing includes TCP and
all layers below.

Figure 6 shows some typical results.

Note that in these tests the TCP acts perfectly, sending exactly one ACK G
for each data segment. An "ACK" is regarded as a segment containing
zero data; thus, we take the total segment count S as:

S = #Segs + #ACKs.

If we plot CPU Time versus S for the first four values, we find a w
convincing straight line whose slope yields a value for the constant A
(since N is constant). Similarly, we can determine values for B from
either the intercept of this straight line, or from the second and fifth
lines of the table. One gives B=1.5"E-6, the other gives 1.9E-6.

30-

.5.,

5.. ..... [ *5'.55'5 .. 55 . . 5.. . I,•,



PAGE 31

ASEND Size Total Data CPU Time #IOR #Segs #ACKs
(bytes) (bytes) (secs)

1*74 100,000 10.24 8155 1354 1354

3*74=222 100,000 3.44 2749 453 453

10*74=740 100,000 1.26 862 138 138

50*74=3700 100,000 1.03 713 111 111

3*74=222 200,000 3.59 2750 453 453

Figure 6: Typical TCP Performance Data

From these results and a number of similar tests, we obtained an
empirical result for the 3033 CPU time needed to both send and receive S
segments containing N data bytes:

LOOPED-BACK TCP CONNECTION

(Send+Receive)

CPU = (3.8E-3)*S + (.9E-6)*N Seconds

That is, there is a cost of 3.8 milliseconds of processing time per
segment, plus nearly 2 microseconds per data byte.

Note again that this includes BOTH sending and receiving; until we make
measurements between two hosts we cannot separate the two.

Note that the S term dominates in every case. Even under optimum
conditions, N/S does not rise above 200 data bytes per segment. The N
term is never more than 100 of the total CPU time.

..31 .

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .



-- k°.- -" T 6 -

PAGE 32 W

In an attempt to understand the surprisingly high per-packet cost, we
repeated these tests with the ACP running in software loopback mode
(IMP=NO). In this mode, the I/0 operations to the IMP are simulated so 4W
there are no I/O waits. This will reveal how much of the CPU time is

* due to OS/MVS dispatching the ACP address space after 1/0 waits have
* completed. The result is: '

CPU = (l.05E-3)*S + (2.4E-6)*N Seconds

Note that sending and receiving a segment requires three I/0 event
completions: the WRITE, the READ, and the READ for the RFNM (which is
simulated even in IMP=NO mode).

* That leaves in excess of 1 millisecond of CPU time per segment that we
cannot blame on OS/MVS. %r

The next obvious question is: how much does the TCP checksum contribute?
We repeated these measurements with IMP=NO and with the TCP checksum

*. code dummied out. The result was:

CPU = (0.87E-3)*S + (I.2E-6)*N Seconds

*. That implies that the checksum contributes half of the per-byte
processing, and 20% of the per-segment processing. The latter is a
surprise; it would be desirable to make further measurements to
corroborate this result and understand why the segment processing
appeared to depend upon the checksumming.

Finally, we consider how the CPU time increases with the number of
concurrent sessions K. From the design of the ACP we would predict that

* the CPU time would increase very slowly with C; the CPU time would thus
depend almost entirely upon the total N and S, independently of how the
processing is distributed across simultaneous sessions.

In particular, two important ACP processes that depend upon K are:

* Demultiplexing Incoming TCP Packets

A single hash-table lookup demultiplexes each packet, creating a

time increasing only very slowly with K.

* Dispatching a ready ptask under ICT

ICT was designed to avoid a linear search of ptasks to determine
the next one to dispatch, using instead a queue of "Ready" ptasks.

In order to verify this, we ran the network performance test described
above using K simultaneous sessions, for a variety of values of K. That
is, there were K traffic generator ptasks, K discard server ptasks, and
K TCP connections. Each traffic generator ptask used an ASEND size of
50*74 = 3700 bytes, sending approximately 111 segments and receiving an

equal number of ACK's. The results are shown in Figure 7.

32-. ~- 32 - :3

:'."-. . . . . . . . . . . . . ......-.'-



PAGE 33

K CPU Time #IOR
(secs)

, ,

1 1.03 713 (from previous table) A.

2 1.79 1390

10 9.28 6987

32 30.39 22325

Figure 7: Performance with K Sessions

The CPU time is increasing faster than linearly; however, extrapolating
linearly from K=10 to K=32 would predict 29.47 CPU secronds; the actual
value is only 3% larger than this! We therefore feel justified in
measuring the resource usage for a single session carrying K times the
traffic of a real session and then interpreting it as a result for K
sessions.

3.2 VTAM INTERFACE PERFORMANCE
Sm

Remote login through the ACP uses either one of two interface packages
to interface to VTTAr: VTF (Secondary LU) or VTAMAPPL (Primary LU). VTAM
provides the virtual terminal communication across address spaces.

Of course, VTAM itself consumes CPU time, but we assume this depends r'.
only upon the terminal traffic, not on the identity of the programs
generating/consuming that traffic. For example, we assume that TAM_
needs the same CPU time, for either a real local terminal or the ACP
acting as a Seconday LU accessing a given application program. Thus, we
are interested only in the additional ACP CPU time needed to interface
to VrAM.

We chose to measure a single composite VTAN scenario that again uses e
internal loopback and therefore lumps together user and server
operation. Future measurements should be made of the two modes of
operation separately. We also included a network path in the scenario,
so to find the \"TAM CPU we must deduct the TCP costs derived from the %
results of the last section.

The actual scenario is as follows (see Figure 8):

- 33 -

11 . . .. . . . - . . . . - . ... ... - - -.-. -



PAGE 34 W -

+ x 0
+ < ------- ACP --------> x
+ x
+ UTPDRV/VTPGEN x
+

V + I xA
+ IfTraff-I I x__i-

T + I ic I iUser I I x R
+ IlGener-I-i TELNET < --------- >

A + I ator i _ I x P
+ II I I x A

S+ xlA --

+ xN 
+ STELNET/STELTSO x "
+ xE 
+ I I_ _ '""'
+ II I 1 xT.-"
+ II I Server I I x I

< -------- >1 VTF i-i TELNET j< -------- >
+ II II I1 x+ H_____ I I ' c.

++ x

+ \VTELTGEN
+ x

I + I xI + I I I I .-,
I + IVTAM- I--> 222 bytes I x
< ------ >1 APPLI<--1636 bytes I x+ i II I x •l

+ I__f I ___ _ 1-
+ x
+ x

Figure 8: Schematic of VTAM/TELNET Loop Test

• A test driver program (which is a slightly modified VTELNET) called
UTPDRV is started as a ULPP ("CCN;UTPDRV"). This program makes a
TELNET connection to the local TELNET Server.

• In the TELNET Server, we issue the command "ARPA CCN;VTELTGEN".
This makes a loopback connection through the %7F into VTAM as a
Secondary LU, and connects back to the ACP as a Primary LU. There 40
is invokes another modified version of VTELNET, called VTELTGEN.

-34 -

t . .- pd



-. . 4 
-  

,i. - . ..------ - . .1. * * - - ' . . -

PAGE 35

* An escape command to UTPDRV ("@GO") enters a traffic generator
(VTPGEN) which then conducts the test.

* VTPGEN generates a stream of 222 byte packets representing keyboard
input. This packet goes out to the IMP and back into the
STELNET/STELTSO ULPP's. Then it goes through the VTF to VTAM and
back out to VTAMAPPL and then to VTELTGEN.

* Each time VTELTGEN receives a 222-byte packet, it sends back to
VTAMAPPL/VTAM a 1536-byte packet representing a 3278 output screen.
This data travels through VTAM, Server TELNET, the IMP, and finally
back to VTPGEN, which just discards it.

Thus, this test involves two loop-backs: one through the IMP, and the
other through VTAM. The measured CPU time is the total of the entire
path, and represents the aggregate of a user session and a server
session simultaneously.

It is possible to conduct this test with the entire path in NVT/virtual
3767 mode, or the entire path in full-screen 3278 mode. We give one
typical result for the 3767 mode, but we are really interested in the
full-screen case. Note that the particular choice of data sizes (222
bytes in, 1536 out) is appropriate only for full-screen operation.

Figure 9 shows data on this test. In every case, the (222 bytes in, 1536 .

bytes out) sequence was repeated 50 times.

Case CPU Time #1OR S N S N
(secs) (user->srver) (srver->user)

1 3.18 1681 252 11100 302 76900

2 2.30 1084 153 11100 202 76900

3 2.75 1571 240 11100 280 76900

Figure 9: VTA./TELNET Loopback Measurements

.=.

The three cases shown in Table 9 used different conditions, as follows:

- 35 -

• S.



"VI "V RV MR -.N."... ..

PAGE 36

Case 1

VTPGEN was generating a packet every 0.5 seconds, so there was time ,
to receive each screen response before the next keyboard stimulus
was sent. While the resulting packet sequence was very orderly, we
discovered that the maximum packet size through the IMP was only
512 bytes. This was due to the choice of parameters for the TELNET
write buffer pool (4 buffers of 128 bytes each). It can be seen
that for each interaction there were 5 packets sent in one
direction and 6 in the other (this includes ACK's).

* Case 2

In this case, we increased the TELNET write buffers to 512 bytes
each. A packet trace shows that the 1536 bytes in a screen is
always sent in a maximum-sized ARPANET message (964 data bytes),

followed by a smaller message for the rest. The total of seven
segments per interaction is essentially optimum, and indeed the CPU
time is the lowest of any test.

Note that this test is going at 2 interactions per second, which is
the predicted rate for 100 terminals. However, our double-loopback
test exercises both user and server sides, so it is comparable to
100 user and 100 server sessions simultaneously.

The total bandwidth required is 3400 bytes per second, and 10
segments per second. This is well within the capability of the 1822
interface and the ACP, so no queueing took place. 1P

Case 3

In this case, we increased the rate of sending stimulus packets
from 2 per second to 10 per second. This created a demand for
throughput that exceeded the capacity of the TCP connection, so the
packet trace shows somewhat chaotic behaviour and sub-optimal
behaviour of TCP in packetizing and acknowledging the data. As a
result, the segment count and the CPU time increased.

We can now apply the empirical formula from the preceding section
to subtract from these CPU times the cost of the TCP connection.
The results are:

Case Net CPU

1 0.90

2 0.77

3 0.59

We do not fully understand the variation in this table. The CPU WE
time here is presumably due to VTF, VTAMAPPL, and the TELNET

36-

liS.

\ ' ." .'' , :".".',.' ',' ". "" "" :" ".'. " .'.,: e,:.'.'., ..'. ...' -,.-.,-, ...' ::< ,': . , .",', : ,' .,: .e.', .,



PAGE 37

processing. Note that in full-screen mode TELNET is sending binary
data; this requires a TRT and an MVC(L) for each buffer, but no
character translation.

However, we will take the worst-case figure of 0.90 seconds and 4 -
ascribe it to the VTAM interface programs. These programs were
handling 100 segments in each test -- half containing 222 bytes and 0,
half containing 1536 bytes.

We will again make an unsupported assumption that this time is
divided equally between the VTF and VTAMAPPL, and infer:

VTF + VTAMAPPL:

CPU= (9.OE-3) secs per segment '

3.3 ICT PERFORMANCE

The results above included the ICT overhead to dispatch ptasks
(pseudo-tasks), so we do not need a separate measurement. However, to
understand the region of validity we need some idea of what this
overhead is.

A simple test involves two ptasks, one PPOSTing the other that simply
loops on a matching PWAIT. This showed that each PWAIT/PPOST/dispatch
sequence requires 53 microseconds of CPU time.

3.4 CONCLUSIONS AND EXTRAPOLATION

We can extrapolate from the preceding results to predict the CPU time
required to support L terminals logged in simultaneously in full-screen -
mode.

Assuming an interaction rate of 0.02 per terminal, the rate of CPU usage
would be:

Usage= 0.02*L*( (3.8E-3)*P/2 + (1.9E-6)*1700/2 + 9.OE-3)

Here the three terms represent (roughly):

- 37 -



PAGE 38

Per-segment cost of TCP transmission for a single interaction,
assuming P IP segments are needed. The measurements earlier showed
P ranging from 7 to 10. W

• Per-byte cost of TCP transmission for a single interaction

containing 200+1500 data bytes.

* Per-segment cost for VTAM interface processing.

Working out the arithmetic (assume P=10), these three terms become
(respectively): v%

CPU Usage= 0.02*L*( 19*E-3 + 1.6*E-3 + 9.OE-3 )

= 0.6E-3 * L

For 100 terminals, this predicts 6% of the 3033 CPU.

Another interesting consideration is the amount of the CPU overhead
caused by OS I/O reqeuests and interrupts. We showed earlier that these
contributed (3.8E-3 - 1.05E-3) to the S term; in the Usage result above, f
this difference is about 0.27E-3 * L. Thus, nearly half of the total
CPU Usage is due to OS I/O overhead. We have been measuring full-screen
operation, which emphasizes big packets. With line-by-line operation,
smaller packets are likely to make the OS overhead completely dominant.

How can we reduce the OS overhead? The best approach would be to have a D
"smart" interface to the IMP, which would:

* Allow aggregation of outgoing packets

A framing would be introduced into the byte stream to delimit
packets, without using Device End for each packet.

* Aggregate incoming packets

The interface could aggregate multiple incoming packets into a
single read, again using framing to delimit packets. It is
particularly important to aggregate RFNM packets, since a RFNM is
associated with every packet which is sent, and is quite small.

-38

.I" •



PAGE 39

Chapter 4

CONCLUSIONS

During the period of this contract, the UCLA ACP was developed into an
exportable implementation of the DARPA Internet protocols for an IBM
mainframe. This report detailed the features (and dis-features) of the
current level of the ACP.

In summary:

* The ACP now includes essentially-complete implementations of all

the protocols -- IP, ICMP, TCP, UDP, TELNET, FTP, and SMTP. In
most cases, any protocol features which have been omitted are

*F unlikely to be be required for an IBM mainframe.

* The ACP is quite easily installed on any MVS system with no OS/MVS

system changes, and only the assembly of a configuration table.

" The ACP is accompanied by extensive documentation.

The successful evolution of the earlier ARPANET host software into the
present ACP was possible because of the choice of a general design
model. In particular, the internal realtime (sub-) operating system ICT
provided efficiency, flexibility and simplicity to the ACP code.

Many discussions of efficient implementations of TCP/IP have made the
assumption that the code must either be in the kernel or in user space,
and that the latter choice is doomed to inefficiency. The ACP doesn't
exactly fall into either category, although it does run entirely in user
mode. The use of ICT and careful attention to efficient algorithms in
the ACP, plus the record-oriented I/0 structure of the IBM system, have
allowed the ACP to create reasonably low overhead even though it runs in
user mode.

We have reported the results of an initial suite of performance tests on
the ACP code. Specifically, we were interested in the question: if
there are N simultaneous TELNET sessions using 3278 full-screen
operation, how much CPU time will be required on our IBM 3033 mainframe? * "

Tests with N varying from 1 through 32 showed that CPU time for TCP/IP
is very nearly linear in N; the N= 32 case exceeded 32 times the N=I CPU
time by only 31. In short, there are no linear searches over connec-
tions or processes in the ACP.

TCP/IP CPU time was consistently expressible in the form:

CPU = A*S + B*N ..

39 "

.. .°.

S S *



-. ~~ .- - . - .,- - ~ -.. ~ . . l r~ v u wg g ~ '7wY~ LZ I % I , . ' . - -- ' ' - . P2 - ; .

PAGE 40

where S is the number of TCP segments and N is the total number of data
bytes both sent and received.

This preliminary set of tests had one important limitation: all tests V'

used loop-back from UCLA to UCLA. Thus, the results always lumped
together both user and server ends of the same TCP connection. If you
assume these make equal contributions, the following results can be
divided by 2 to get the overhead for a single TCP connection on a 3033
mainframe:

Protocol processing up through the TCP level required A= 3.8 ms per
segment sent and received, and about 2 microseconds per data byte
sent and received Of the latter, about 0.8 microseconds per byte
was due to check summing. w

An elaborate loopback test was performed through User and Server TELNET,

and through ACF/VTAM, so the result for N sessions really corresponds to
N server plus N user sessions.

The result showed that processing up through TCP/IP is small compared to
TELNET and VTAM processing. Another test with the ACP running in
software loopback mode without an IMP showed that about half of the
total ACP CPU time is due to MVS overhead in processing I/O and timer
interrupts.

The tentative conclusions of this study were: U

" If you assume the rate of 0.02 transactions per second, all ACP
processing will take 6,% of a 3033 CPU for 100 simultaneous TELNET ".
sessions (now we have divided by 2, assuming user and server
sessions are equivalent).

* If you send single-character packets (as UNIX systems and TAC's

often do), you will impact the IBM system very badly.

You could improve the performance significantly by using a "smart"
1822 interface that aggregates/disperses packets using a single
READ or WRITE on the IBM channel. However, for reasonable data
aggregation (line at a time, or full-screens), there is not much
performance to be gained by moving TELNET/TCP/IP processing into a
Front End.

In the future, a number of areas of the ACP need to be addressed.

* More Performance Testing

The tests reported here have a number of limitations and a few
inconsistencies that should be explored. In addition, the testing
should be extended to include the cost of the various user-level
protocols.

-40-

.*. *.77.7



- - .- o -

PAGE 41

Under the guide of the past and future performance tests, some
performance improvements should be made in the ACP.

1. It may be possibl, to further improve the performance of the
TCP implementation, decreasing the number of ACK's which are
sent and improving the Silly Window behavior. The challenge is
to accomplish these improvements without using excessive CPU
overhead for timers.

2. A "smart" local network interface which aggregates packets
should be tried.

3. A facility for dynamically expanding the TCP buffers for a
very-long delay path should be developed.

* * Revised Local Network Interface

It will be desirable to write new LNI modules for different local
networks and interfaces. At the current ACP level (Release 1.50), %
this is difficult because the LNI is not cleanly separated from the
rest of the ACP. The LNI design and interfaces need to be
rationalized and documented. It is also highly desirable to
provide for multiple hardware interfaces, to allow multi-homing and
multiplexing of interfaces.

" Name Resolver

An Internet name resolver should be implemented and installed in
place of the current host name tables. This will require some
reorganization of the host lookup A-Services and of some of the
ULPP's which use these services.

" Remote Job Entry

Future users of the ACP are going to want to perform remote job
entry to and from remote hosts. '

We believe that the present ACP provides a general and fiexible
environment which can be adapted to a variety of special application
communication needs. It also provides the generality to allow easy
extension to new protocols or to add new features to existing protocols.

-41-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . .. . ° .

-~~~~~~~~~~~~~~~~~~~~... ........... ........ . ... .-. .... •.-.. . .- . ...... .. .-..-..-.-. '...'.-..::..



PAGE 42

l 

'J
4 -

A C N WL D M NT 

,

Chapter 5

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the dedicated efforts of OAC system
programmers Lou Rivas, Neil Ludlam, and Denis DeLaRoca. Without their
contributions, we could not have reached the present state of devel-
opment of the ACP. The masterful design and elegant implementation of
ICT/V2 by Michael Stein was also a vital contribution.

Finally, the TCP/IP developments since 1978 have been built upon the
firm design foundation for the ACP, laid by Steve Wolfe and Stuart
Feigin nearly 15 years ago.

qP

41

.

le

-42-

>." ,

.. . . .. . . .. . . . .. . . .. . . .. . . .

'S 

---.- 
-



PAGE 43

REFERENCES

BBN1822 BBN, "Specifications for the Interconnection of a Host and an
IMP". Report 1822, Bolt Beranek and Newman, Cambridge,
Massachusetts, revised May 1978.

BBN1822L Malis, Andrew G., "The ARPANET 1822L Host Access Protocol".
RFC878, December 1983.

Braden76 Braden, Robert T., "The National Software Works". Technical
Report TR9, Office of Academic Computing, UCLA, December 9,
1976.

* Braden77 Braden, R., "A Server Host on the ARPANET". Fifth Data
Communications Symposium, Snowbird, Utah, September 1977.

Braden79 Braden, R., "An IBM 360/370 Implementation of the Internet and
TCP Protocols -- Design Specification". Technical Report
TR20, Office of Academic Computing, UCLA, December 1979.

Braden84 Braden, R., "TELNET Routines in the UCLA ACP". Technical
Report TR43, Office of Academic Computing, UCLA, November
1984.

Braden85a Braden, R., "UCLA ARPANET Control Program for OS/MvS Using
Internet Protocols TCP/IP -- Technical Overview". Technical
Report TR35, Office of Academic Computing, UCLA, (revised)
January 1985. .-.

Braden85b Braden, R., "Interface Specification for Programming a Higher-
Level Host-Host Protocol Using Internet Protocol". Technical
Report TRl9, Office of Academic Computing, UCLA, (revised)
December 1985.

Braden86a Braden, R., "The Local Network Interface in the OS/MVS ARPANET
Control Program". Technical Report TR5l, Office of Academic
Computing, UCLA, January 1986.

Braden86b Braden, R., "Datagram Protocol Implementations Within the UCLA
ACP". Technical Report TR55, Office of Academic Computing,
UCLA, January 1986.

BraLud76 Braden, R., and Ludlam, H., "A Tool-Bearing Host in the
National Software Works". Technical Report TRI0, Office of
Academic Computing, UCLA, April 1, 1977.

43 -".,.



PAGE 44

BraLud80 Braden, R., and Ludlam, H., "Final Technical Report, National
Software Works Contract". Technical Report TR27, Office of V
Academic Computing, UCLA, December 1980.

BraRiv84 Braden, R., and Ludlam, H., "The DoD Internet File Transfer
Protocol in the UCLA ACP". Technical Report TR44, Office of
Academic Computing, UCLA, June 1984.

Clark82a Clark, D., "Modularity and Efficiency in Protocol
Implementation". RFC817, MIT, July 1982.

Clark82b Clark, D., "Window and Acknowledgment Strategy". RFC813, MIT,
July 1982.

FeiPos78 Feinler, E., and Postel, J., eds., "ARPANET Protocol Handbook".
NIC 7104, published for the Defense Communications Agency by
SRI International, Menlo Park, California, revised January
1978.

IBMJES International Business Machines Corporation, "OS/VS2 MVS System

Programming Library: JES2". GC23-0002 File No. S370-36

IBMvtam International Business Machines Corporation, "ACF/VTAM General

Information: Concepts". GC27-0463 File No. S370-30.

Ludlam84 Ludlam, H. C., and DeLaRoca, D. W., "Virtual Terminal Facility
(VTF) Support Package". Technical Report TR26, Office of
Academic Computing, UCLA, (revised) October 1984. S

Ludlam8l Ludlam, H. C., "Programmers' Guide to the UCLA Virtual Remote
Batch Terminal Support Package". Technical Report TR25,
Office of Academic Computing, UCLA, February 1, 1981 (latest
revision: January 1986).

MCA77 MCA staff, "The A-Level System Specification for the National
Software Works". Massachusetts Computer Associates, Inc.,
Wakefield, Mass., May 15, 1977.

Mockap83 Mockapetris, P., "Domain Names -- Implementation and
Specification". RFC883, November 1983. S

McKay84 McKay, D., Private Communication.

Postel8iA Postel, J., "The DoD Standard Transmission Control Protocol".
RFC793, September 1981.

W
Postel8iB Postel, J., "The DoD Standard Internet Protocol". RFC791,

September 1981.

Postel81C Postel, J., "Internet Control Message Protocol". RFC792,
September 1981. *

Postel8lD Postel, J., "File Transfer Protocol". RFC765, September 1981.

-44- "-4.

-~ .1g.°



PAGE 45

Postel8lE Postel, J., "Simple Mail Transfer Protocol". RFC821, August
1981.

RivLud77 Rivas, L., Ludlam, H., and Braden, R., "Implementation of the
MSG Interprocess Communication Protocol". Technical Report
TRl2, Office of Academic Computing, UCLA, May 1977. .' .

Rivas84 Rivas, L., and Ludlam, H., "ACF/VTAM Usage by the ARPANET 4'
Control Program". Technical Report TR37, Office of Academic
Computing, UCLA, (revised) October 1984.,,,

Stein84 Stein, M., Rivas, L., and Ludlam, H., "ICT Version 2 Pseudotask
Services and Macro Instructions". Technical Report TR38,
Office of Academic Computing, UCLA, (revised) December 16,
1984.

TR21A Braden, R., Rivas, L., and Ludlam, N., "Programming User-Level
Protocol Processes for ARPANET ACP (REVISED)". Technical
Report TR21A, Office of Academic Computing, UCLA, Revised
November 1984.

TR42 Rivas, L., Braden, R., and DeLaRoca, D., "Installation and
Operation Guide for the UCLA ARPANET Control Program --

Release 1.50". Technical Report TR42, Office of Academic
Computing, UCLA, Revised December 1984.

.-.

I..'- .L_

-45-


