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,'--The purpose ofth tiovttgmt is to apply response surface

methodology to a uacroeconoeetric model to facilitate better analysis

with the model. First and second degree polynomial response surface

equations express endogenous variables as functions of selected exoge-

nous variables in the Klein-Goldberger econometric model.

Second degree polynomial response functions are used to derive "

function multipliers. The function -multipliers show that the impact of

changes in exogenous variables on endogenous variables depends on the

levels of one or more other exogenous variables. The function multi-

pliers are used to conduct policy analysis and assess factor importance.

As an extension, first degree polynomial response functions are used in

an example problem to maximize gross national product subject to con-

straints on unemployment, inflation, and ranges of fiscal policy

variables. The example problem demonstrates the flexibility and value of

developing a response surface equation for complex macroeconometric

models.

The study concludes that a response surface can capture the

complexity of macroeconometric models such as the Klein-Goldberger

model. Results also show that the assumptions of linearitv for ,.-.

developing multipliers can result in misleading values when nonlinearity At

is present. Recommendations for further research include fitting a more

nonlinear model with response surfaces, and including time as an

independent variable in the response surface equations.
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AN APPLICATION OF RESPONSE SURFACE METHODOLOGY

TO A MACROECONOMIC MODEL

Introduction

This thesis deals with how macroeconomic models and response " -

surface methodology (RSM) can be brought together to provide better

analysis of a national economy. Its purpose is to demonstrate that RSM

can reduce complex relationships embodied in macroeconomutric models to 4. ":.

simple equations. The thesis also interprets the simple equations and

shows how they can be used for practical applications. This chapter

puts the research effort into perspective by briefly describing macro-

econometric models and response surface methodology suggesting possible

ways to combine the two. The chapter then outlines the research plan

including the research problem, research questions, research objectives,

scope, and general methodology for attacking the problem.

Macroeconomic Models, ,.

Macroeconomic models are a set of economic relationships expressed

in mathematical equations which allow economists to predict the perfor-

mance of a national economy. Economists have developed several types of

macroeconomic models. One type uses certain economic indicators which

have historically led cyclical changes in the economy. Another type

uses consumer attitudes and buying plans to predict economic perfor-

mance. The type of particular interest to this thesis is the econome- .

tric model. Econometric models are systems of statistically derived

simultaneous equations based on theory and historical data which predict
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economic performance.

To formulate an econometric model, economists first hypothesize

equations to describe theoretical economic relationships for sectors of

the economy. For example, in one model, manufacturing output is a

function of the amount of hours worked in the manufacturing sector, the

amount of money invested in manufacturing, and average productivity.

Money invested in manufacturing is a function of manufacturing capacity

used in the previous period, manufacturing output in previous periods,

cash flow in the manufacturing sector, and interest rates on bonds. The

number of hours worked is a function of previous period manufacturing

output, wage rates, and percent of manufacturing capacity used. Wage

rates depend on past wage rates and the cost of living, and so on

(Evans, 1969:433-442). Economists postulate the form of functions such

as these and then use historical data to estimate unknown coefficients

in the equations with statistical techniques. Finally, they put aqua-

tions representing all sectors of the economy together and solve them .

simultaneously to obtain predictions.

Klein and Evans ennumerate three major uses for econometric models

in their work entitled, The Wharton Econometric Forecasting Model (Klein

and Evans, 1968:50). First, economists can use them for prediction.

Second, econometric models can simulate the consequences of economic

policies such as tax increases, government spending, and Federal Reserve

actions for periods in the past. In many ways the most important use

for econometric models, claim Klein and Evans, is computing multipliers

for fiscal and monetary policy alternatives. Fiscal policy is manipula-

ting the economy by government spending and taxation. Monetary policy

2



is manipulating the economy through actions of the Federal Reserve such

as selling government bonds, changing the required reserves that banks

must hold against demand deposits, etc. A multiplier is a constant

which, when multiplied by a change in an econometric input variable,

gives the change in an output variable. Multipliers are especially

impor'cant because of the increasing size and complexity of econometric

models. For example, the Warton Econometric and Forecasting Unit has 53

equations and 29 identities (Evans, 1969:442). A model designed at

Brookings has over 150 equations (Evans, 1969:503). The effects of

changes in certain input variables are difficult to trace through to the

final output of such large models unless multipliers are computed.

Unfortunately, multiplier analysis does not account well for nonlinear

systems with interactions among input variables. Response surface

methodology might provide a way of overcoming these difficulties.

Response Surface Methodology

Response Surface Methodology (RSM) is an analytical tool for model-

ling a very complex or unknown process with a single mathematical equa-

tion and exploring the resulting relationship between the inputs and an

output of the process. A response surface results from plotting output

values obtained from the response surface equation against input

variables as they vary over continuous ranges. Chemical reactions are

:lassic RSM applications. Factors which affect the yield of a chemical

r-ation are temoerature. pressure, amount of reactants, and reaction

t*.Tte. If one were to set the amount of reactants at some set level and

+i;, the time the reactants are allowed to react, a set of experiments

could be conducted at various combinations of temperature and pressure.

9v recording the vieli of each exoeriment and plotting that Yield

S * *.*. .*.' t' . ... *.*,a ~ , -ft *.,* . . ft~f *•*.". . . .-.. .*



against temperature and pressure, the result would be something like the

graph of the response surface in Figure 1.1.

I r re,: -.Ir ,4.

Yield

Tempei-ature '"_

Ternpecature

Figure 1.1. Example Response Surface.

Box and Wilson first introduced response surface methodology in

their 1951 paper entitled, "On the Experimental Attainment of Optimum

Conditions" (Box and Wilson, 1951). Since then, many researchers have

profitably applied the technique to problems in chemistry, foodstuffs,

tool life testing, and other areas (Hill and Hunter, 1966:576). Smith

and Mellichamp first demonstrated that RSM could provide valuable in-

sight into complex deterministic analysis models (Smith and Mellichamp,

1979). Based on Smith and Mellichamp's work, students at the Air Force

Institute of Technology have applied RSM to several deterministic and

probabilistic models (Manacapilli, 1984; Graney, 1984; Meitzler, 1984;

Sparrow, 1984). Deterministic models are mathematical representations %

of an underlying process for which given inputs to the process yield the

same outout every time the model is run. The outputs of probabilistic

4 - .0~



1.7.

models contain random variation. Burdick and Naylor suggested applying

RSM to econometric models. They showed how to combine a simple six

equation econometric model and a utility function for economic policy

optimization by response surface techniques (Burdick and Naylor,

1969:29). However, they did not actually estimate response surfaces for

this system. Their ideas merit a more thorough development.

Applying RSM to a problem involves several steps. First the pro- 6%

blem is defined and variables of interest are specified. Next a response

surface equation, usually a low order polynomial, is selected to model

the process under study. Based on the response surface equation

selected, an appropriate experimental design is chosen which compro-

mises between economy of design points and orthogonality. Then the

experiment or model is run repeatedly at factor levels specified by the

exoerimental design. With the data collected from the experiment or

model runs, a response surface equation is estimated using ordinary

least squares. After checking for adequate fit, the response surface is

ready for interpretation and analysis. These application steps are

covered in much greater detail in Chapter III.

Several analysis methods are available for exploring response sur-

faces. Most of these methods are devised to enable the analyst to

optimize the underlying process or model that the response surface

represents, They include the method of steepest ascent, classical

optimization using calculus, Lagrangian techniques, mathematical pro-

gramming, and others. However, optimization is not the only use for

response surfaces. Examining the response surface equation itself

reveals characteristics about the underlying process or model. In

adoition, the impact of tradeoffs between inputs is easily assessed.

% 5
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These analysis techniques have potential applications for studying

macroeconometric models. For instance, constants or expressions similar

to multipliers could be estimated. These constants or expressions would

make the impact of changes in economic policy variables explicit.

Multipliers implicitly assume that the changes in response are at least

approximately linearly related to the change in input. Expressions

derived to serve as "multipliers" using the response surface technique

have no such implicit assumption. Thus alternative policy options for

nonlinear models could be evaluated more accurately. In fact, given

specific economic objectives, economic policy could be optimized. The

potential applications for RSM in macroeconomics suggest several areas

for research. Below is the specific plan for this thesis effort.

Research Plan

Problem Stat!ment. Economists have developed large econometric

models to predict the performance of national economies. Unfortunately,

because of the complexity of these models, economists have difficulty

investigating the effects of changing key input variables on economic

performance. Response surface methodology may be able to reduce key

relationships in the model to a single equation.

Research Question. How well can response surface methodology

capture the predictive power of a large econometric model and can

response surface methodology simplify sensitivity analysis of such a '-

model?

SgILd!Z Questions. Several issues related to the research

deserve investigation. '

1. Can a response surface based on a simple function accurately

capture the relationships in a large macro-economic model?

6!
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2. Is there a limit to the size of model that response '6 '
surface methodology can handle?

I.

.. v

3. How can the coefficients of the response surface
equation be interpreted?

4. Do the response surface coefficients identify economic inputs
which are most influential in driving a national economy?

5. Can one use response surface methodology to determine fiscal
and monetary policy which the model predicts will optimize
particular measures of economic performance?

!!!!r flg§1#Scive. To answer the research questions, several

objectives must be met. They are:

1. Determine how well a response surface can fit the response of
important economic variables to changes in fiscal and monetary
variables for an actual macroeconometric model. The model

should be moderatly sized, have some nonlinearities, and have
characteristics which are well known from previous analysis.

2. Verify that response surface does in fact reflect model
characteristics by comparing response surface equation para-
meters to multipliers computed for the model.

3. Interpret the response surface equations.

4. Develop applications of practical value for the response sur-

face equations.

S~oge. This study demonstrates feasibile applications for response

surface methodology techniques in macroeconomics. To make the research

effort manageable, several decisions are made. The study uses the

Klein-Goldberger macraeconometric model for the investigation. Reasons

for selecting the model are given in Chapter II. Based on previous

experience with response surface methodology, a second order polynomial

resoonse surface equation is assumed. The model is constructed to

mirror the characteristics of the national economy which changes slowly

in response to changes in policy and so a second degree polynomial

should adequately fit the model. Moreover, Goldberger argues that the

7



Klein-Goldberger model is nearly linear (Goldberger, 1959:136-138).

Response surfaces are built for three output variables in terms of five

input variables. Although response surfaces with more variables could

be constructed, no particular advantage is seen in this. Although any

econometric model is stochastic in nature, it is assumed that the

model is deterministic. Finally it is assumed that the model is a

reasonably valid representation of the economy's behavior with the

exception of deficiencies in the monetary sector which will be discussed

in Chapter II. No effort is made to evaluate the model's forecasting

record.

General Methodo~loq. The general plan of attack for accomplishing

the research objectives is:

1. Develop a computer program which solves the Klein-Goldberger
model for output variables in terms of given input variable
values.

2. Solve the model for values of input variables reqiured by the
experimental design selected.

3. Fit a second order polynomial response function to the data and

check fit.

4. Fit a first order polynomial model to data for a direct

comparison of response surface coefficients to multipliers
computed by Goldberger.

5. Interpret response surface equations and develop ways for
summarizing the information contained in the equations.

6. Develop practical applications for derived response

surfaces. Specifically, develop optimization applications.

Thesis Overi. The chapters in this thesis follow the pattern in

this chapter. Chapter II examines macroeconomic models in general and

the Klein-Goldberger model in particular. It also describes solution

techniques and methods for deriving multipliers. Chapter III describes

the steps in applying response surface methodology and discusses how RSM

Z .. o.
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can be applied to macroeconomic models. Chapter IV details methodology

for this research effort. Chapter V addresses how well the response .

surfaces fit the model, and compares first order response surface O

coefficients to Goldberg's multipliers. Chapter VI interprets features

of the derived response surfaces and develops an optimazation problem

application for the response surfaces. Finally, Chapter VII summarizes

findings and recommends further research.

kN.
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Chapter I described what macroeconometric models are and how they

are used. The chapter explained that macroeconometric models are a set

of simultaneous equations based on theory and historical data which

allows economists to predict the performance of the national economy. .;.-.

Uses for econometric models include forecasting, policy simulation in - ".

historical periods, and most importantly, for computing multipliers

which relate changes in fiscal and monetary policy to changes in

economic performance. This chapter explains aspects of a simple macro-

economic model, and uses this model to analyze how changes in fiscal

policy affect economic performance. Next the Klein-Goldberger (KG) '.

model is introduced. After discussing macroeconomic models, this chap-

ter discusses methods for solving macroeconometric models and deriving

multipliers. t
Describing how macroeconomic models are built is often the subject '

of an entire college course. The discussion of macroeconomics here is

merely meant to be a quick, simplified review of points relevant to the

research effort. The material presented is condensed from Baird and
Cassutos introductory text entitled MacEqgmics: Monetary, jtacht

and Income Theories (Baird and Cassuto, 1984). The text is thorough yet

extremely readable with plenty of helpful examples and illustrations.

The reader who is unfamiliar with macroeconomics is highly encouraged to

consult the Baird and Cassuto text or a similar text. The discussion

below begins with economic equalibrium. Then the national income

identity is used to develop the commodities market of a general

10 a
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equalibrium macroeconomic model. %;

The primary assumption behind equalibrium macroeconomic models

is that the economy always seeks an equalibrium. A rigorous argument

supporting this assertion's truth will not be attempted; however, the

proposition makes intuitive sense. Nature is full of examples of systems

which seek equalibrium. A dislodged boulder rolls down the mountainside

until is finds a valley to rest in. Chemicals react until they reach

equalibrium. Economic theory assumes that the economy will also seek

equalibrium in the absence of external disturbances. With this assump-

tion this in mind, the macroeconomic model building discussion may

begin.

The National Income Accounting IdentI ty. Perhaps the moat widely

used performance measure of an economy is the gross national product

(GNP). This number is a measure of national income. It is defined as the

dollar value of all final goods and services produced for final consump-

tion during a calendar year. Mathematically GNP can be defined as:

Y U C + I, + G + Fa (2.1)

where

Y a gross national product,

C= consumption of goods and services,

IA = actual investment,

G government expenditures, and

LLF Fe nt exports to foreign nations."'

In words, the equation says GNP is the total of a country's

expenditures on final goods and services plus the value of net exports.

.~~~~ . .-
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Double entry accounting procedures for producing firms require that the a
expenditures for producing those final goods and services be equal to

the income from the sales of those goods and services. Mathematically,

C + I^ + 6 + Fa * Yd + Sb + T (2.2)
t. 4t'

where

Yd = disposable income,

Sb = business savings, and S

T =taxes.

The left side of Eq (2.2) is total expenditures and the right side

is total income. Eq (2.2) is known as the national income accounting

identity and it forms the basis for macroeconomic model building. On the

right side, disposable income, Yd, is after tax after business saving

income. Business savings, Sb, are the portion of business net income

which firms do not distribute to owners. For this discussion, business

savings will be assumed set a fixed level, Sb. Finally taxes, T, are

income appropriated by the government. For this simple model, it will

oe assumed that taxes are fixed at T.

On the left side of Eq (2.2) are the comoonents of total

expenditure including consumption, investment, government spending, and

net foreign exports. If each of the components of GNP can be determined,

GNP can be computed. The commodities market models the relationship k "

between components of national income.

The Commodities Market. All of the analysis which follows assumes

fixea prices. A variable price model requires development of other "4,.

markets in the economy. The first component of the expenditures side of

12
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the national income accounting identity is consumption. Consumption is

in large part based on disposable income. The more income a person

receives, the more that person usually spends. Mathematically, this is

written C = C(Yd). A simple consumption function is C = C + bY. ,...

where C is autonomous consumption that occurs without income, b is the

marginal propensity to consume, and Yd is disposable income. In general

b is between zero and one because individuals divide their disposable

income between savings and consumption.

The next component of expenditures is investment. Planned invest-

ment is also a function of income because the more sales a firm receives

the more it will want to expand operations through capital investment. A

simple investment function is I = I + vY , where I is the autonomous

part of investment and v is the marginal propensity for firms to invest.

v is between zero and one because firms expend income received on

orofits, operating costs, etc., as well as investment.

The next component of expenditures is government spending. Govern-

ment spending is set by the government instead of market forces. Govern-

ment expenditures is assumed to be set at a particular level, say

The last component of expenditures is net foreign exports which is

the difference between exports and imports. For the purposes of this

analysis net foreign exports is assumed zero.

Figure 2.1 shows the relationships between components in the

national income accounting identity which together comprise the commodi- .

ties market. The vertical axis measures total expenditures, E, and the

horizontal axis measures total income, Y.

.°
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Figure 2.1. The Commodities Market

The 450 line is the national income accounting identity and must

always hold, Line DD represents the sum of consumption, expected

investment, and government expenditures known as aggregate demand. Even

though aggregate demand is the sum of consumption, investment, and

government spending, it is different from GNP because it includes

planned investment by firms instead of actual investment. It is possible

that planned investment will not equal actual investment. Included in

investment are inventories of goods produced for sale. If demand for

goods is lower than expected, inventories will increase in the short run

and actual investment will be higher than planned. The difference

between expected investment and actual investment is the unplanned

increase in inventories. Expected investment equals actual investment

only at equilibrium in the commodities market (ie., when unplanned

changes in inventories are zero and the 45) line and the aggregate t

14
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demand line intersect). In Figure 2.1 Y* is the equalibrium income and

E is the equalibrium total spending. The system of equations which

describes economic equalibrium in the hypothetical economy is .,2.

Y = C + IA + 6 (2.3) --

Y = Yd + Sb + T (2.4)

C = C + by (2.5)

I = I + vY (2.6)

6Ma (2.7)

T=- (2.9) .

Sb = Sb (2.9) tt-

G, T, and Sb are assumed fixed. In the system of equations above,

f, C, I, and Y. are known as endogenous variables. Endogenous variable

are variables which have values determined within the system. 6, T, and

Sb are exogenous variables. Exogenous variables are assumed to have a

value determined outside the system. Although the system above is a

complete system with the number of unknowns equal to the number of

equations, it is complete only because of the simplifying assumptions -"

used to formulate the equations. For instance, prices are assumed to be

constant. Since Y = PQ where P is the price level and Q is the real

output of the economy, any increases in Y are assumed to be increases in

real output, Q. Also it has been assumea that consumption and investment

are functions only of income, and that business savings are constant.
I..

The system of equations may be solved for any of the endogenous

variables in terms of constants and exogenous variables. Solving the

equations in this way gives the explicit effect of exogenous variables

r.15
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on an endogenous variable. Since the analysis has centered on .,

determinants of national income, Y is solved for. The solution is

Y I (C + i + 6 - bT - bi.) (2.10)
(U - b - v)

Eq (2.10) is known as the reduced form for Y since Y is expressed J

in terms of known, exogenous quantities. The quantity l/(l-b-t) is

known as a multiplier because is tells how many times larger the change

in Y will be in response to a change in 6, C, or 1. For instance, if b =

0.70 and v = 0.05 and 6 changes by ten billion dollars, then Y increases

($10 billion) a $40 billion
(1-0.70-0. 05)

under the assumptions set forth above. The multiplier, 1/(l-b-v) will

henceforth be denoted as m. Eq (2.10) makes the effects of changing

exogenous variables clear. For instance, if government expenditures

increase by AS, Y will increase by mAS. On the other hand, if T is

decreased by AT, Y will increase by -bmAT. Since b is less than one, bm

is less than m. An increase in government spending changes total income

by more that the same decrease in taxes. T is a lump sum tax. A tax rate

function could be introduced into the model, but it is not necessary for

this discussion and will be omitted for simplicity. Changes in Y due to

changes in the autonomous components of C and I are also easily

determined. Figure 2.2 shows the increase in Y due to an increase in G.

Increasing government spending shifts the aggregate demand line

from DD to DD'which causes income to increase from Y to Y'. In fact,

any change which causes a shift in C. I, or G will shift the aggregate

demand curve in a similar manner.

16
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Figure 2.2. Income Effects of Increased Government Spending

Changes in government spending affect more in the economy than just

the commodities market. Increased government spending increases demand

for output and labor in the short run and eventually raises prices and

interest rates in the longer term. These effects are not seen in the

simplified commodities market presented here because of simplyfying

assumptions. Most macroeconomic models develop other interrelated

markets to model the behavior of interest rates, prices, money suply,

and labor. Multipliers for larger systems are much more complex than

the simple multiplier in Eq (2.10). Multipliers must capture the

effects of all variables in the model.

The Klein-Goldber r Model

Econometric models like the Klein-Goldberger model are formulated

to include many variables in the economy. The KG model consists of 21

17

. . .. . . . . . S - •* , . ..
• '" ',". , " "" .""*, "" "' "" "" - , ," "." , .", ." ," ,, m ' .. ,..,.". . ,.',.',. .. * ".* ' ',,.',.,.



I-- ..
b• * "

simultaneous equations, 15 of which are behavioral and 6 of which are

identities relating variables. Behavioral equations such as Eq (2.5) and

(2.6) have parameters which must be estimated from historical economic

data. Parameters in the KO model were estimated using economic data

from several sources, primarily the United States Department of .

Commerce. The KG model breaks the economy into separate government,

corporate, labor, and agricultural sectors. The model characterizes the

dynamic nature of the economy through a system of lagged variables.

Lagged variables give the value of a variable in previous years.

For instance investment lagged one year is the value of investments one

year prior to the current year. Lagged variables are denoted by a

subscripted negative number which represents the number of periods the

variable is lagged. Investment lagged five years is denoted I-s.

Lagged variables together with exogenous variables are know as predeter-

mined variables. Understanding lagged variables is essential to under-

standing a central feature of the KG model.

Table 2.1 lists the 21 equations in the KG model and Table 2.2

defines the variables in the model. For a detailed discussion of the

model's theoretical development, one can consult Klein and Goldberger's

original work presenting the model (Klein and Goldberger, 1955). Another

description of the model appears in Theil's Econometrics (Theil, 1971).

Table 2.1. The Klein-Goldberger Model (Adapted from Goldberger, 1959:4-7)

C -22.26+0.551(W+W 2 -Tw)+O.41(P-Tc-Tm-Sc)

l0.34(R,+R 2 -T,) +0.26C-,+0. 072(L,)-,,Q.26N, (2.1.1l)

I a -16.71+0.78(P-Tr-TR+R2 -T, D)-,-O.O773K-, O.14(L2 )_, (2.1.2)
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Sc = -35+.2P-c+.7(cT-c--.2(s- (2.1.3)

Pa -7.60+0.68P (2.1.4)

D a7.25i0.10(K+K- 1)+0.044(9-W2) (2. 1.5)
2

Wt -1.40+0.24(Q-W 2).0.24(Q-W2)-1 +0.29t (2.1.6)

(O-W2 ) a -26.08+2.17Eh(N1.-N)+Nui+0.16(K+K-d)+2.05t (2.1.7)

w-- 4.11-0.74(NL-Nw-NEL)+0.52(P-l-P-2)+0.54t (2.1.8)

F, a 0.32+0.0060(tI-Tw-Tc-TN-TR)(P/PF)+0.81(FI)-i (2.1.9)

Rt(p/pa) = -0.36+0.054(WI+W 2-Twd+P-Tc-TN-Sc) (P/PR)V

-0.007E(WI4w2-Tw+P-Tc-Tm-Sc)(p/pm)]-l+0.012FR (2.1.10)

pau-131.17+2.32P (2.1.11)

L, z 0.14(f-TwTcTN-Sc-TR)+76.03(iL2.0) 0 ~ (2.1.12)

L2= -0.34+0.26W1-1.02i.-0.26(p-p-1 )+0.61(L2)-I (2.1.13)

iL z 2.58+0.44(i.)-3+0.26(i.L.5 (2.1.14) 5.
10 _______-t a 11.17-0.67L& (2.1.15) .

K-- I-D (2.1.16)

Uo(u- Sr (2.1.17)

WI.W 2+P+ReR2 2 (2.1.18) -

C++-txM+Tc+D (2.1.19)

h(W/P)N. a W1 +W2 (2.1.20)

Q M+Tc+D (..1
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Table 2.2. Glossary of Variables for the Klein-Goldberger Model
(Adapted from Goldberger, 1959:5-6) ,'PA.

New Brief Category 4

Symbol Definition

C Consumption Endogenous

D Depreciation Endogenous

F, Imports Endogenous

FR Farm exports Exogenous - -

G Government expenditures and
exports Exogenous

h Hours of work Exogenous

I Investment Endogenous

iL Long-term interest rate Endogenous

is Short-term interest rate Endogenous

K Capital stock Endogenous

SVs
LHousehold liquid assets Endagenous

L2 Business liquid assets Endogenous

Ls Percentage excess reserves Exogenous

M National income Endogenous

Ne Entrepreneurs Exogenous

Na Government employees Exogenous

Nt Labor force Exogenous

NP Population Exogenous

Nw Employees Endogenous

P Nonwage nonfarm income Endogenous .-*..,

Pr Corporate profits Endogenous

20 "'
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Price level Endogenous

po Import price level Exogenous

P Farm price level Endogenous '

Q Gross national product Endogenous

Rt Farm income Endogenous

R2 Farm subsidies Exogenous

So Corporate surplus Endogenous %

Sc Corporate savings Endogenous

t Time trend Exogenous

Tc Corporate taxes Exogenous

Te Indirect taxes Exogenous

TN Nonwage nonfarm noncorporate
taxes (less transfers) Exogenous

To Farm taxes (less transfers) Exogenous

Tw Wage taxes (less transfers) Exogenous

w Wage rate Endogenous

W, Private wage bill Endogenous

W2 Government wage bill Exogenous

The text below briefly describes each equation in the model.

Eq (2.1.1) is the consumption function. It gives consumption as a

function of labor, corporate, and agricultural disposable income. The

equation includes factors from the money market through the household

liquid assets (L) term. Also included is a population trend.

Eqs (2.1.2) through (2.1.5) model the behavior of the corporate

sector. The investment function, Eq (2.1.2) is similar in form to the

consumption function. The investment function depends on corporate and*

agricultural disposable income. The business liquid asset term relates

21
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invenstment to factors in the money market. Investment also depends on

capital which is the accumulation of undepreciated capital as stated in

Eq (2.1.16). Eq (2.1.3) links corporate savings to business income from

the current and previous year and business suplus from the previous

year. Corporate savings are also defined as the change in business

suplus in Eq (2.1.17). Eq (2.1.4) relating corporate profits to nonwage

nonfarm income is really just an empirical relationship used to close

the system. Depreciation naturally depends on the existing capital stock Si

in Eq (2.1.5) The second term in the equation shows that depreciation

increases when there is a high degree of capacity utilization.

Eq (2.1.6), (2.1.7), and (2.1.8) model the behavior of the labor

market. Eq (2.1.6) is the labor demand function which gives private

demand for labor as a function of private sector output. Eq (2.1.7) is

the production function which shows how labor and capital combine to

produce private output. Eq (2.1.8) is the labor supply function, but is

expressed in terms of unemployment. The lagged prices in the equation

indicate that wages are slow to change in response to price changes.

Foreign imports in Eq (2.1.9) increase when national disposable

income is high and foreign prices are low.

Eqs (2.1.10) and (2.1.11) model the agriculture sector of the

economy. Eq (2.1.10) relates farm income to domestic customer prosperity

and foreign exports. The ratio between the general price index and the

agricultural price index accounts for the terms of trade of agriculture.

Eo (2.1.11) relates farm prices to the general price level.

Eqs (2.1.13) through (2.1.15) comprise the money market. Eas

(2.1.12) and (2.1.13) are the householo and business demand for money .A

°. .- ..o . . . . .. . . . . -.- ,. . . . . . . ... .• . . . . .
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equations. The demand for money has two components: speculative demand P.

which is related to interest rates and prices, and transaction demand

which is related to income. Both components appear in Eqs (2.1.12) and r

(2.1.13). Eqs (2.1.14) and (2.1.13) show the relationship between short

term interest rates, long term interest rates, and bank excess reserves.

Long term interest rates are merely a weighted average of past period

short term interest rates. The percent change in short term interest

rates depends on bank excess reserves which are supposedly determined

outside the system. Most equilibrium macroeconomic models relate bank

excess reserves (which determine the supply of money) to other markets

in the economy through prices. The Klein-Goldberger model does not.

Goldberger suggests that this is a deficiency in modeling the link

between the money market and the commodities market. When the KG model

was linked together to make extended period forecasts with excess bank

reserves set at a constant level, interest rates increased without

bound. This caused investment, consumption, and GNP to diminish to

zero. To remedy this deficiency, Goldberger set liquid reserves (L, and

1.) equal to a constant for all studies of the dynamic nature of the

model. This measure effectively deletes the money market from the model

(Goldberger, 1959:84-85). Consequently, interest rates must be ignored k""

and the commodity and labor markets are linked directly through output

and prices.

Eqs (2.1.18) through (2.1.21) are identities relating variables in

the model. Eqs (2.1.19) and (2.1.21) together are KG model version of

the national income accounting identity.

In order to use the Klein-Goldberger model for the current state of

the economy, economists must solve the system of simultaneous eouations

23



in Table 2.1. The following section shows how econometric models are

solved and linked together to provide extended period forecasts. In

addition the section discusses how the forecasts are used to compute

multipliers.

Solving jqqqqttCc Mo~dell lad Cqqqguting ftitiALLIC1

Macroeconometric models are classified as linear or nonlinear.

Linear models are solved with different methods than nonlinear models.

The KG model is an example of a nonlinear model. Nonlinearities appear

whncurrent endogmnous variables are raised to powers other than one or

aemultiplied together. Nonlinearities appear in KG model Eqs (2.1.7),

(2. .9) (2 1.1 ), 2.1 12), (2.1. *15) , and (2. 1.20).

§glying Linear Econometric Mggej. An example of a linear model is

the Klein Model I shown in Table 2.3 below.

Table 2.3. The Klein Model I Linear Econometric Model
(Adapted from Theil, 1971:432-435)

C =l6.7S+0.021O.23P..,+0.S0(W:W'):e

X z C++

P = X-W-T

K = -+

where

C a consumption,

P = profits,

W = wage bill paid by private industry,

I net investment,
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K = capital stock,

pb X a total production of private industry, and

e, e', and e'' a random error terms.

The model predicts current endogenous variable values given current

exogenous variables and lagged endogenous values.

Linear models can be solved with matrix algebra. Any linear":'

econometric model can be put into the form

Gy + Bz E E

where

y = the m element column vector of m endogenous variables,

G z the m x a coefficient matrix with a coefficient for each of m

endogenous variables for each of the m equations

z * the n element column vector of n predetermined (lagged

endogenous, exogenous, and lagged exogenous) variables,

B = the m x n coeficient matrix with one coefficient for each of n

predetermined variables for each of the m equations, and

E = the m element error vector. .

For the Klein Model 1,

yT EC, P, W, I, K, X3

r1.00 -0.02 -0.80 0.00 0.00 0.00
I0.00 -0.23 0.00 1.00 0.00 0.00.T 1)0.(( 0.00 1.00 0.00 0.00 -0.42

1t.00 0.00 0.00 1.00 0.00 "1.00
i0.00 1.00 1.00 0.00 0.00 -1.00
LO.00 0.00 0.00 1.00 -1.00 0.0 -

Z' , P-. K-,, X-,, W , T, 8, t)
Z

r

' %
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-16.78 -0.23 0.00 0.00 -0.90 0.00 0.00 0.001
-17.79 -0.55 0.15 0.00 0.00 0.00 0.00 0.00 I

BT a 249.43 0.00 0.00 -0.16 0.00 0.00 0.00 -0.13

L 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00J

and .

ET = e, e', e", 0.00, 0.00, 0.00.

For the deterministic case, it can be assumed that E = 0. Using matrix

algebra one can solve for y.

y = -G-'Bz (2.12)

Letting D -- 'Bz, Eq (2.12) may be expressed as

y =Dz (2. 13)

Eq (2.13) gives the unknown endogenous variables in terms of linear

functions of known predetermined variables. The m by n D matrix contains

constants which, when multiplied by a predetermined variable, give the

level of an endogenous variable. These constants are known as

multipliers. Multipliers will be discussed more fully later.

The Klein Model I forecasts only the present period from past

periods and current policy. It would be useful to forecast a future

period based on the current state of the economy and the expected

external forces influencing the economy. Figure 2.3 shows how the state

of the economy evolves from period to period as influenced by exogenous

forces.

d-....
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D2 contains multipliers which give the impact of current exogenous

variables on current endogenous variables and are known as impact multi- -

pliers.

It is assumed that xo and x-, are determined outside the system by

uncontrollable events or by policy. However, y-, is the result of

previous period activity. Writing this explicitly,

yo = doD,(do +D y-+D2X-+D x-2 )+D2xo+Dx- "°I

- (I+Dt)do+D I 2 y-2+D2xo+(DiD2+D)x-+ DD3 (2.14)

By decomposing the y-2 into its components, one can express the current

state of the economy in terms of exogenous variables and endogenous

variables lagged three periods. The process is repeated to obtain fore-

casts for any number of periods in the future.

The coefficient matricies for the lagged exogenous variables

te.g.,X-L, X-2 in Eq (2.14)] are especially important for policy analy-

sis because they give the impact of exogenous variables, including

fiscal and monetary variables. They are different for each lagged period

[e.g., D,, (DO2+03) in Eq (2.14)] indicating the changing influence of

the exogenous variable over time. The numbers in the D2 and DD2-D3

matricies are known as interim multipliers.

Sqllinq Nonlinear Econometric Models. Multipliers computed by

matrix algebra completely characterize both dynamic and static aspects

of a linear system. They give the impact of exogenous changes on the

state of the economy at any point in time. Unfortunately, the national

economy cannot be accurately described by a linear system. Economic

theory prescribes inherently nonlinear functions. For example, nominal

endogenous variables are often divided by a price index to obtain real

2.
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values. The price index is itself an endogenous variable, and so @qua-

tions containing nominal values converted to real values are nonlinear.

Another example of inherent nonlinearity is production functions. Func-

tions such as the Cobb-Douglas production function and the constant

elasticity of substitution production function have proven to charac-

terize real world economics quite well. They are nonlinear. .* -

.1 %

Solving and analyzing nonlinear systems is not as simple as solving

linear systems. Nonlinear systems cannot be solved by simple matrix

algebra. Usually some numerical technique must be used. However, if the

system is agroxinmately linear, a derivative technique may be used to

linearize the system. Goldberger used this technique to linearize the KG

model. The derivations which follow are a condensation of Goldberger's

work. (Goldberger, 1959:17-20)

A Nonlinear equation in a single y and a single z can be written in

the form,

f(y,z) = 0

The total differential of the function f is also equal to zero.

df i (f/y)dy + (ff I' z)dz

Solving for dv.

dv -(f/,)z)dz (2.15)

Eq (2.15) gives the explicit dependence of changes in v on changes in z.

The expression

V 29 . -% .:
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may not be a constant, but if sample means are substituted for

variables, the expression can be evaluated at a point. If the equation

is approximately linear, this constant will be approximately correct for

a large range of z. Next, consider the nonlinear system of equations

written in the operator form,

F(y,z)=O

where F is a matrix of functional operators. Taking the total

differential and solving for dy,

dF = ()F/)y)dy + (OF/)z)dz 0

-(OF/,y) =-(F/5z)dz

dy = -( F/,y) -L (GF/r3z) (2.16)

Eq (2.16) is like the solution to the linear system in Eq (2.12)

except it is expressed in terms of differentials. Also, :'F/3y and F/)z

are not always constant matricies but can be function matricies. By

evaluating these matricies at some value, say at the sample mean of each

predetermined variable, these matricies can be converted to constant

matricies. The elements of the constant matricies are multipliers for

_f_ ale in predetermined variables. In general, they are guaranteed to

be valid only for small changes about the point at which they are

evaluated. However, if the system is approximately linear, the multi-

pliers may be approximately correct over a wide range of values. If so,

they may be used in a manner similar to the D matricies computed for

linear systems. Extended period forecasts and interim multipliers are

30
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computed in a manner analagous to the linear econometric model. Unfortu-

nately, one cannot always count on the econometric model being even

approximately linear.

If the model cannot be linearized, then a numerical technique for

solving the model is usually used. There are several numerical tech-

niques available including Newton-Raphson, Gauss-Sidel, and others. The

method chosen for this study is the Sauss-Sidel. Klein recommended the

method over the Newton-Raphson method because although the Newton-

Raphson method usually converges in fewer iterations, each iteration

requires significantly more computation than each iteration of the

Gauss-Sidel method (Klein, 1974:238-240). The Gauss-Sidel method is also

easy to program and debug and does not require the computation of a

derivative. Appendix A describes the Gauss-Sidel method in detail.

Solving the nonlinear econometric model for current endogenous in

terms of predetermined variables produces a forecast of current endoge-

nous variables. To be even more useful, a method must be devised to

produce extended period forecasts. Extended period forecasts can be

computed from current period forecasts by setting lagged endogenous

variables equal to the current endogenous solution, updating the exoge-

nous variables, and resolving the system. For example, after each solu-

tion is computed, current values of consumption, investment, etc., are

determined. To extend the forecast, the consumption, investment etc.,

variables lagged one year are set equal to the current solution for

consumption, investment, etc. Lagged exogenous variables are updated in

a similar manner. Current exogenous variables are set to whatever the

policy under investigation requires. Then the model is resolved. In this
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way, the model can be linked together to obtain forecasts for any number

of periods in the future.

Because multipliers are so valuable for policy analysis, a method

of computing multipliers for models solved by numerical techniques is

needed. Evans and Klein describe a more general method of determining

multipliers which can be used with models solved by numerical techniques

(Evans and Klein, 1968:48-49). To calculate the multipliers, a control-

led solution, y., is computed with all predetermined variables (exoge-

nous and lagged endogenous) at a given level, and with the input

variable of interest set at, say, x. Next, a new solution, yd, is

computed with x at a disturbed level, xd. The multiplier, m, is then:

m = yd - yC (2.17)
Xd - XC

A generalized multiplier such as m can be computed for a "package" of E.
changes in predetermined variables. However, they are valid only for the

changes and variable levels used to estimate them. A separate run for

each combination of input variable changes must be made to estimate each

multiplier. .'.'.'.'

Limitations of Econometric .odels and Mltiair Ankl is.

The limitations of econometric models and multiplier analysis are

summarized below.

1. Linear econometric models can be constructed which are easily
solved and analyzed: however, they do not accurately reflect
the national economy in theory or in practice.

2. Near linear models more accurately predict the performance of
the national economy, and they may be anlayzed with minor
accuracy degadation, but they may not adequately model the
inherent nonlinearities of the actual economy.
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3. Less aggragated, more nonlinear models may be devised which
accurately predict the economy, but such models are difficult
to analyze. Multipliers may be calculated by computing control
and disturbed solutions and then dividing the difference in
these two solutions by the difference between input variables.
However these multipliers are good only for small changes about
the specific disturbed solution for which they were computed..
The model must be rerun for each policy alternative is examined.

Response surface methodology is one way of overcoming some of these

difficulties. Response surface methodology accomodates nonlinearities.

By fitting a response surface to an econometric model, one could

investigate the effects of varying one or more key input variables

singly or jointly over their entire ranges. The next chapter describes

response surface methodology and explains how it might be applied to

econometric models.

ii-
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Chapter I describes what response surface methodology is and how

it can be used. This chapter discusses the steps in applying

response surface methodology to a problem in general to provide a '

background for the methodology developed in Chapter IV. This chapter

also suggests specific ways to apply response surface methodology

to the analysis of econometric models.

Applying RSM can be divided into eleven distinct steps. The steps

are

1. Define the problem and determine that RSM is an appropriate
analysis technique.

2. Determine the input and output variables of interest.

3. Determine the operating region of interest.

4. Select a response surface equation.

5. Select an experimental design.

6. Translate the coded design points to actual factor levels.

7. Run the experiment or model to obtain responses for each set of
factor levels.

B. Regress the coded experimental design on the responses.

9. Check the response equation fit.

10. Decode the response surface coefficients.

it. Perform analysis on the fitted response surface.

The discussion below amplifies each step.

Defining the Problem

The first step in applying RSM is to define the problem and to

decide that RSM is an appropriate method for analysis. Not all problems

4 
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lend themselves to analysis by RSM. RSM relates multiple inputs to a

single output. Meyers further points out fundamental assumptions under-

lying RSM in his text, R152901! Surface Methodology (Meyers, 1976:62).

RSM is appropriate for problems in which the relationship between

input variables and output variables is either very complex or unknown,

but the variables are quantitative and continuous. Also, the functional

relationship between inputs and the response must be approximated by a

low order polynomial or other simple function whose parameters are

estimable. Finally, the input variables must be controllable and all

variables must be measured with negligible error.

Determining Variables of Interest

The second step in applying RSM is to determine the input and

output variables of interest. The input variables selected for the

analysis must include all the important factors which bear on the

problem. Properly defining the problem should make these important

factors obvious. However, the size of the experimental design required

to estimate response function coefficients increases rapidly with the

number of factors (more on this below). All important factors should be

included in the response surface equation, but the number of

experimental design points required must be considered.

Determining thg _e2qting Bgion

Once the variables of interest have been selected, their ranges

must be specified. The ranges of the input variables must be feasible

and independent of one another. In addition, the ranges should be narrow

enough so that the response does not contain too many inflection points.

Too many inflection points in the response require a complicated
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response function with higher order terms and a large experimental

design to accurately capture the input output relationship.

Selecting the Resg.n2st Surfac| lta.n-

The response surface equation selected in the fourth step is

usually a first or second degree polynomial. An example of a first

degree polynomial response surface equation with two input variables is

y 2 Bo + BIXI + 82X2

and an example of a second degree polynomial response surface equation

with two input variables is

y =Bo + B, XI2 + BIXI +B,2XIX2 +92X2 + B22X22"..'"

where

output (response) variable,

xi, = input variables, and

B, =response surface coefficients to be determined -*

(i 0 , 1, 2.).i -'

There are a number of advantages to using a low order polynomial as-"".

a response surface equation. First, the coefficients of a polynomial are

estimable by the method of least squares, the most commonly used

regression technique. Also, experience has shown that a first or second

degree polynomial works well as a response surface function because a

polynomial is a truncated form of the Taylor series (Meyers, 1976:62).

Another argument for the use of low order polynomials is that many

experimental designs have been developed for collecting data to estimate

polynomials can serve as the response surface equation. Theoretical
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considerations may dictate the use of a certain type of mathematical

function. Such functions may approximate the response very closely and

a. should be used; however, these functions should remain simple so that

aspects of the underlying process can be easily explored and interpreted

(Hill and Hunter, 1966:573).

Selecting t2 g~Eimenta 1 Design

The next step in applying RSM is selecting an experimental design.

An experimental design is a set of specifications of input variable

levels for repeated experimental runs of the process under study. Each

combination of input levels is called a design point. Table 3.1 contains

an example of a three level three factor experimental design with 27

design points. V

The design in Table 3.1 is in coded form. Factor levels are i

represented by 1, 0, and -1 for three level experimental designs and I

and -1 for a two level design. For a three level design, a I represents

the factor high level, a -1 represents a low factor level, and a 0

represents the average of the high and low values. In a two level

design the I represents the high level, and the -1 represents the low

level.
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Table 3.1. Three Factor Three Level Factorial Experimental
Design

Factor 1 Factor 2 Factor 3

-I -1 -1
-1 -1 0
- -0 -1

-1 0 0 .'.-

0 1
-1 -1 .i'

-1 1, 0
-1 1 1
0 -1 -1
0 -1 0o -1 1"" "

o 0 --
o o 
0 0 "lI'

o 1 0 ."o 1 1 .+.
1-1 -I1....0 1

1 -1 1

1 0 -1-
10 0

1 0 1
1 1 -0
1 1 0
1 1 1.7 -

By using an appropriate experimental design, one can estimate the

coefficients in the response function with a minimum number of experi-

mental runs. Economy of runs is an important criteria for choosing an

experimental design. However, the minimum number of runs required to

accurately estimate response surface coefficients depends on the type of

response surface equation. Equations with higher powers of variables

and interaction terms (products of input variables) require more runs to

estimate the unknown coefficients. As noted in the paragraph on selec-

ting variables of interest, the size of the experimental design limits

the number of variables in the response surface equation. For example,
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if k is the number of factors, a three level factorial experimental

design requires Ph experimental runs to estimate the coefficients of

main, inteaction, and squared factor effects. A 3' factorial design

requires 729 experimental runs. If it is known that some coefficients

are insignificant, some experimental runs may be eliminated. In addi-

tion, some runs may be eliminated at the expense of having some of the

variation attributed to the wrong term.

Attributing some of the variation to the wrong term is caused by

multicolinearity in the experimental design. Multicolinearity occurs

because of correlation between input variables. Ideally, the experimen-

tal design should be orthogonal, which means that there is zero correla-

tion between input variables. Most orthogonal designs require numerous

design points. Conseauently, selecting an experimental design involves a

tradeoff between economy of experimental runs and orthogonality. Box and

Benkhen devised some three level designs which make a very reasonable

tradeoff between orthogonality and economy. These designs can be found

in the paper entitled "Some New Three Level Designs" (Box and Behnken,

1960:460-463).

One additional point worth mentioning is that most experimental

designs are devised for experiments in which there is random variation

in the response due to uncontrollable factors. They contain extra .- -

points, usually center points, to estimate the size of tnis random

variation. If the response has no random variation, then these extra

ooints are redundant and may be eliminated. Work in this study assumes

that there is no random variation in the Klein-Goldberger econometric

model (i.e., it is a deterministic model), and so repetitive center
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points are not needed,

Decoding tth. E~xEZimental D~eiqnq,

Before the experiment can be run to obtain data for estimating the

response surface, the experimental design must be decoded from 1s, Os,

and -l's to actual factor levels. The range of the variables of interest

determines the factor levels for the experiment. For example, if the

range of a variable is 10 to 60, then a I in the experimental design

represents a factor level of 60, a -1 represents 10 and a 0 represents

the average of the two factors, i.e., 35.

Running t grimental Design

To obtain the input and output data necessary to estimate the

response surface coefficients, the experiment must be run at the levels

specified in the experimental design and the response recorded. This

step is straight forward. When running an actual experiment with random

variation, it is advisable to randomize the order in which the experi-

ments are run. However, when obtaining data from a deterministic ,

mathematical model, order is unimportant.

Fitting the Response Surface

Once an appropriate experimental design has been selected and the

experiment run to collect data, the response surface must be fit to the

data. The surface is fit to the data by computing the response surface

I coefficients. The method of least squares regression is the usual method

for fitting a surface to data. This method computes coefficients which

minimize the distance from the observed responses to the response sur-

face. For a more thorough discussion of least squares estimation, one

can consult a statistics textbook. One excellent source is Mathematical

Statistics with Agglications by Mendenhall, Scheaffer, and Wackerly
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(Mendenhall, Scheaffer, and Wackerly, 1981:425). Response surface coef-

ficients are estimated by regressing the coded experimental design

matrix an the response variable. Using the coded design matrix preserves

orthogonality.

Checking Eit

Once the response surface has been constructed, it must be checked

for proper fit. There are at least four ways to check the fit of the

response surface. They include checking the R2 values, checking the sum

of squares error (SSE), checking the residuals of the design points, and

checking the residuals of random points. The RI value gives the fraction

of total variation explained by the response surface equation. R2

always increases with the number of factors in the response surface

equation. SSE gives much the same information as R2 , except it may

increase with the number of factors after a certain point. The R2 and

SSE criteria are the easiest and quickest way to check for fit.

Another way to check fit is to examine residuals. By dividing the

residual by the actual resoonse value, a measure of the error can be

computed. These errors can be averaged for all the design points and

then subtracted from one to give a value similar to R2. Mathematically,

this relation is

percent fit 100 % -_ Iv, y ..

where

y, =macroeconometric model output for input combination i,

Y, = response surface output for input combination i, and

n number input combinations.
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It is perhaps even more useful to look at the largest errors to

determine where the greatest lack of fit occurs. Residual plots are also

helpful in determining where lack of fit occurs.

As a final check of the response surface fit, experiments with A

random factor levels can be run and the responses compared with

responses predicted by the response surface. An error measure similar to

the error measure based an residuals can also be computed. The advantage

of checking random points is that it may reveal anomalies in the

response which were missed by the experimental design.

The four measures of response surface fit mentioned here are used _v-

to determine whether or not the response surfce fits well enough for the

purpose intended. If the response surface does not fit well enough, a

new response surface equation is usually postulated. Steps 4 through 9

are repeated until the fit meets requirements.

Decoding ftt Eq~gnsg Surf ace Equati

Once an acceptable response surface is obtained, the response

surface equation is decoded. The equation requires decoding because the

response equation computed in step eight was computed from coded input

variables. To make the response surface equation interpretable it must

be expressed in terms of the original variables. Let x... be the high

factor level for the ith factor, x.... be the low factor level for the

ith factor level, and xo be the decoded factor level for the ith

factor, and x'.- be the coded factor level for the ith factor. By

substituting the expression

x,c = xi. -(x....+x.,,)/2 (3.2)

4 2
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in the coded response equation for the ith coded variable and collecting

terms, the equation is decoded. Decoding equations in this manner by

hand is tedious and prone to error. To make the job easier, a second

order polynomial response surface equation can be decoded using matrix

algebra. (See Appendix C) 2

8on ling th _I2Ponse Surface -

The final step in applying RSM is analyzing the response surface.

The methods available for analysis are discussed in detail in the

section below. But first, a few prelimiary comments are in order. -.,

Obtaining a good response surface equation fit implies that the response

surface is an accurate representation of the underlying process or

model. More faith can be placed in the validity of the response surface

if the check of random points confirms a good fit. However, the response A

surface is only valid for input variable values within the ranges , 4

originally used to estimate the response surface. A response surface

fit to a deterministic model may fit well, but the response surface is

only as good as the underlying model used to construct it. If the model

does not capture the process it is supposed to represent, the response

surface will not either.

There are several well developed uses for response surfaces. The

most commonlv used technique is optimization. The explicit form of the -

response surface equation giving the response variable as a function of
SEEM

known, controllable input variables lends itself to optimization prob- I

lems. Moreover, Granev showed how several response surfaces could be

combined for constrained optimization problems (Graney, 1984). Another -.-

use of response surfaces is for performing "what if" analysis. One can K
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determine the impact of changing input variables individually or jointly ,5a

without running the model or experiment. In addition, tradeoffs between

factors can be displayed to decision makers graphically for valuable

insights into the problem. Response surfaces can also be used to make -

predictions. One must remember that the predictions made are only valid

if independent variables not in the response surface equations actually .-

assume the levels that they were at when the response surface was .. -A.

estimated. us
Agglications for Macroeconometric Models

These uses suggest several applications for macroeconomic models.

Multiplier analysis completely captures the input-output relationship of

linear models well, but it cannot handle nonlinear models as well. RSM .'..

should be able to capture input-output relationships in nonlinear models

for key variables easily. Response surfaces describing key economic

performance variables such as gross national product, inflation, and

unemployment could be used to assess the impact of changing iiscal or

monetary policy variables such as government spending, taxes, and money

supply. The response surface could be used to answer "what if" questions

,n policy simulation. Optimal policy for obtaining specific economic

goals could be determined. All of this analysis could be done using a

limited number of experimental runs. A response surface captures the

relationship between variables of interest over the entire region of

interest. The controldisturbed solution method of comouting multipliers

only characterizes how specific changes in input variables affect output

variables. Every time a new combination of policies is considered, the

model must be rerun and a new multiplier comouted.

This chapter describes the general procedures for generating
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response surfaces and suggests ways of applying RSM to the analysis of

macroeconomic models. Chapter IV describes how the general application

steps are actually applied to the Klein-Goldberger econometric model in

this study.

10
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Introduction

This thesis effort proposes to bring together concepts from two

areas, response surface methodology and macroeconometric modeling.

Chapter I lists the specific objectives to be met by this research

effort. They include determining whether RSM can accurately fit a

macroeconometric model, reproducing multipliers for the macroeconometric

model via RSM, interpreting the response surface equations, and

developing RSM applications for the response surface equations. This

chapter develops the methodology by which these objectives are achieved.

To accomplish the research objectives, a scheme must be developed

for generating and checking response surface equations from the Klein-
-.

Goldberger model. The scheme used here follows the general steps for

applying RSM to any problem as discussed in Chapter III. This chapter
'9

discusses each step in detail.

Generating gnd ghleking B9 gale Surfaces

Defining the Problem and Selecting Variables of Interest.

Determining which variables to use in the response function depends on

the specific purpose for which the response surface is to be used.

Because applications developed are geared toward determining the best

economic policy for the federal government, the exogenous variables

selected for manipulation are corporate taxes (Ta), wage taxes (Tw),

government nonwage spending (G), government wage bill (W2 ), and number

of government employees (NG). These variables are instruments of federal

policy which are broken out in the KG model. It is also desirable to see .

how the economy can be manipulated through monetary policy as well.
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Unfortunately, Goldberger admitted that while the KG model did an .

adequate job of forecasting current monetary variables (such as short

term interest rates, long term interest rates and liquid assets), it did

a poor job of simulating economic changes further in the future

(Goldberger, 1959:84-85). Goldberger claimed that short term interest

rates would increase without bound. In addition, the model failed to

capture the relationships between the model's monetary sector and the

other sectors adequately. Consequently, the monetary sector of the model _.

is omitted from further consideration.

There are several possible endogenous variables for which response

surfaces could be built. Economic performance indicators commonly used

to asses the health of the national economy include percent growth in

gross national product, percent unemployment, and percent inflation.

Other measures are interest rates and federal deficits. The KG model

does not include federal deficits. Because of limitations mentioned in

the preceding paragraph, the model cannot be used to study the dynamic

properties of interest rates. In this study, response surfaces are built

for gross national product (Q), total number of workers employed (Nw),

and the price index (p).

InSe tinq tht f nse SufCe1g utio . Once the variables of

interest have been selected, the next step, selection of the response

surface equation can be accomplished. Because of the arguments enumer-

ated in Chapter III, a second order polynomial has been selected as the

response surface equation. Since Goldberger argued that the model was

nearly linear (Goldberger, 1959:136-138), a second order oolynomial

should have no difficulty approximating model ouputs. In addition, if

there are any significant interactions between variables or second order

47tereaeay gni ntratinseenaraes seonode
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effects, the second order equation will pick them up. If the second

order polynomial does not fit well enough, a higher order polynomial can

be used.

Because one of the objectives of the study is to reproduce

multipliers, the first order polynomial is also of interest. It can be

shown that coefficients computed for a first order response surface for

linear econometric models are mathematically equivalent to the

multipliers derived in Chapter II (see Appendix B). Because the KG

model is nearly linear, the coefficients of the variables in the first

order decoded response surface should compare quite closely with

multipliers computed by Goldberger.

S thu EateCteental Desisn. Selecting the variables of ".'

interest and the form of the response equation narrows the choices of ,-

experimental designs. A three level full factorial design with five

factors would require 35 = 243 runs of the KS model just to build

response functions for period zero. For each succeeding period, another

set of 243 runs would have to be made. A more economical design is found

in Box and Behnken's 1960 paper entitled, "Some New Three Level Designs

for the Study of Quantitative Variables" (Box and Behnken, 1960:460).

Box and Behnken's five factor design has only 46 design points. Of

these, five are redundant center points which can be eliminated for a

deterministic model. The design is highly orthogonal with only a slight

correlation oetween the squared and intercept terms. The Box and

Behnken design works especially well for variables with small variance.

Since the K-S model is deterministic without error terms, the output has

no variance. Consequently, this design is especially appropriate. The U

48

7,°

4B 'as-

- • -.

* °. -,2 -'.i°'U



Box and Behnken design is meant for use with a second degree polynomial,

but the design can be used for the first order model because the main

effects are uncorrelated. Using a three level design to estimate a first

order model has the added advantage of enabling assessment of second

order effects not accounted for in the first order model. If other

models with terms higher than second degree are used as response e.

equations, another design must be selected. Appendix D shows the five

factor Box and Behnken design with extra center points deleted.

2gtterininqR _ oQq i !Rndent Varia_.es. The next step in RSM-
--p

application is to determine the range of the independent variables. In

this study, several different ranges are appropriate. To check whether a

second order response function can fit the model output, the entire

range of data for the years over which the model was estimated is

appropriate. For those exogenous variables in the response surface

equation, the maximum, minimum, and average of maximum and minimum

sample values comprise the three levels used in model runs. Variables

not in the response equation are set at the sample mean. The objective

of these runs is to get the best fit possible.

Goldberger's multipliers were computed at the sample mean for unit

changes in the predetermined variables. For runs reproducing

multipliers, the sample mean plus or minus one unit are used as

factor levels.

For runs used to evaluate specific policies, response surfaces

should be constructed for exogenous variable levels which are considered

politically feasible by the decision makers using the analysis. All

predetermined variables not included in the response surface equation

should be set to current or forecast values so that predicted values for
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endogenous variables will be reasonable.

qoding the ExEp_ lntaL Qt|Lga• Once the factor levels have been

specified, the coded experimental design must be decoded. The decoded

design specifies the actual exogenous variable values for which a solu-

tion is to be computed. To reduce drugery, save time, and decrease

arithmetic errors, a FORTRAN program was developed to automate the

task. The program reads a coded design file and writes a decoded version

of the experimental design to a new file. The actual code for this

program is in Appendix D.

qqo_ _ing Model Runs. Creating a file with factor levels

specified is one prerequisite for the next step in developing a response

surface, solving the model for each design point. Also needed is a file

specifying the values of the other predetermined variables. Once these

are specified, the model becomes a system of twenty-one equations in

twenty-one unknown endogenous variables. Since the system is large

and nonlinear, a numerical approach to solving the system is used.

Because of the arguments set forth in Chapter III regarding the best

method to solve a maroeconometric model, the Gauss-Sidel method is

selected as the algorithm for solving the KG model. Appendix A discusses

the mathematical aspects of the method and contains the FORTRAN

implementation of the method as applied to the KG model. The program

reads data from five data files including the coded desion file. the

decoded design file, a file containing predetermined variable values not

included in the experimental design, an initial trial solution file, and

a file containing control language for the program. The program has the "

capability to link solutions together to produce extended period

*..o. 5 p. .* * -- . .'. .
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forecasts. The program produces a data file .hich includes the coded

experimental design, a sequential case number for each design point, the

period number for each solution, and the solution for all twenty-one

endogenous variables. This output file may be read directly by the BMDP "

statistical package.

Fitting thR Data. Once the data sets are generated, response

functions are fit using BMDP's stepwise regression routine. The BMDP

package is used for this research project because it has all the

capabilities needed for fitting response surfaces, is familiar to the

researcher, and is available to the researcher. Stepwise regression is

used because it brings in independent variables one at a time in order

of influence on the dependent variable.

The second order response surface equations have higher order

terms. To estimate the coefficients for these terms, appropriate

transformations are made in BMDP's control language. One point to

reiterate is that regressions are made in terms of the coded variables

to preserve orthogonality. The coefficients computed by BMDP must

therefore be decoded (except in the case where multipliers are

reproduced). Before decoding the coefficients, however, it is convenient

to check the fit of the response surface.

tLinq the Fit. The four methods of checking the response func-

tion fit, R2 , SSE, residuals, and random points are all useful for this

study. The R2 and SSE values are given automatically for each step in

the stepwise regression procedure. The R2 value is the primary criteria t €

for deciding which variables to keep in the response surface equation

used in this study. However the SSE is checked to insure that it is not

increasing as more variables are brought into the response surface

51
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equation. Variables which reduce the R2 negilgibly (less than 0.0001)

can be omitted from the response surface equation.

'While the R2 value gives a good overall average measure of fit, it

is also useful to examine the percent deviation of the response surface

equation from the KG model solution for each design point. This quantity

is computed from the residuals by dividing the residual by the actual

response value and multiplying by 100 percent. Of interest are the

largest percent deviations and where those deviations occur.

Finally, the most stringent test of response surface fit is the

percent deviation between the model responses and response surface

responses for random points. If a coded random experimental design with

random values on the interval (-1,1) for design points is created, the

random design can be treated just like a regular experimental design.

This random design can be used to compute new data points. The resulting

data file can then be appended to the data used to fit the response

surface. If the random points are given a weight of zero in BMDP,

residuals are computed for the random points, but the points are not .

used to compute response surface coefficients. The percent error is

computed from the random point residuals to provide another assessment

of response function fit.

If the response surface fits well, (within 98 percent) the

coefficients may be decoded and analysis can begin. If not, a new

response surface function and experimental design must be selected and

the 4itting procedure repeated until a satisfactory fit is obtained.

Decoding the response surface coefficients is simply a straight

application of the procedure discussied in Chapter III.
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Once response surfaces have been fit satisfactorily and decoded,

the response surface equations must be interpreted. Some important

questions about the response surface equations follow.

1. What does the response function imply about the
relative contribution of each input and the relation-
ship between inputs? Do these implications make economic
sense?

2. If there are significant higher order or interaction .
terms, why do these occur? Can economic theory explain?

* "3. Now do the response surface coefficients compare with
multipliers?

4. The K-6 model is composed of mostly linear equations
with some products of input variables. How does
this affect the response function?

If the response surface equations appear valid, applications for

the equations may be developed. Chapter III suggests several uses +or

response surfaces fit to a macroeconomic model. They include policy

simulation, trade off analysis, and optimization. Describing the details

of these applications is deferred until Chapter VI.

The methodology outlined in this chapter describes what steps must

be taken to meet the research objectives set forth in Chapter I. The

Gauss-Sidel numerical method of solving simultaneous nonlinear equations

is implemented in a computer program to solve the KG model. Second order

polvnomial response surfaces are built for important economic indicators

to asses how well response surface can fit the macroeconomic model. A

first order response surface is estimated and the coefficients compared

to Goldberger's multipliers. Finally, the response surfaces are

interpreted and applied.
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V. Results

Introduction

Chapter IV described what data are required to achieve the research

objectives and outlined analysis to be performed with the data. Computer 0,

runs were made on the Air Force Institute of Technology's VAX 11/780

computer to collect required data. Appendix A contains the actual

FORTRAN code used to obtain the data. This chapter summarizes results of

the regression and comments on significant aspects of the results. It

also discusses research objectives one and two in light of the results.

Second Order Model Fit

The first research objective is to see how well a second degree

polynomial can aoproximate the output of the KG model when five factors

are changed jointly. To satisfy this objective, the KG model is solved

for oeriod zero and period five at factor levels required by the Box and -

Bennken experimental design. (For a discussion of the Gauss-Sidel

numerical technique used to solve the Klein-Goldberger model, see -
,...

Apoendix A.) Second order polynomial coefficients are estimated for

number of workers employed (Nw), price index (p), and gross national

roduct (Q) in terms of wage taxes (Tw), coroorate taxes (Ta), govern-

ment nonwaqe spending (G), government wage bill (W2 ). and number of

iovernment workers (Nn) using the BMOP 2R program, stepwise regression.

The general form of each equations is
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TC ano+aoTc+ao2Tw+aoSG+ao4W2+aoSNB+at2TcTw+atTcG+at4TCW2

+asTcNs+a73TWG+a24TW2+a2 sTwN.+a 3 46W 2+a3sGN+a4sW 2NN+a TcZ

+a22TwZ+a3 3 G2+a 4 4 W2
2 +assNsz

N= boo+bosTc+boTw+bo3+boW 2+boaN+b 12 TcTw bt3TcG+bt1 TcW 2

tb15TcN+b 2 3 TwG+b2 4 T-W2 +b2 sTwN0 +b3 4 GW2 +b38N-+b4 5 W2 NG+b 1 T C 2

+b 22Tw
2+b 3 3G+b .4 W2

2+bsN2 .

p = coo+coTc+co2Tw+co3G+Co4W2+Co5NG+Ci2TcTw+ciTcGciTcW2

*ct5TcN+c:T.G+c 24 TWW2 +czsTwN6 +c3 46W2+c35GNGtc 45 W2Ne+c,,Tc2

+C22Tw1+c aG2+c44W21 c-sNa =  --.

where a.,, b.,, and c., are the coeffecients to be determined. The -

following conditions are applied in estimating the coefficients.

1. The three factor levels for corporate taxes (Tc), wage taxes
(T), government nonwage spending (6), government wage bill
(W2 ), and number of government employees (Nn) are the maximum
sample value, the minimum sample value, and the average of the
maximum and minimum samole values.

2. The Box and Behnken five factor three level design discussed in
the methodology chapter with redundant center points deleted is - -

used.

3. All other predetermined variables are set at sample mean values.
In computing sample means for lagged variables, the appropriate
data values from the periods 1923-1951 are used. (e.g., the
sample mean for the price index lagged one year includes the
price indicies for 1928 and 1944, but excludes the price
indicies from 1940 and 1952.)

4. For each design point, all current (nonlagged) exogenous
variables are held fixed for extended period forecasts (beyond
period zero). Lagged variables are updated with new values
after each period's forecasts are computed.

5. The monetary sector is suppressed by excluding the liquidity
forecasting equations, Eqs (2.2.12) and (2.2.15). This step is
necessary to match Goldberger's analvsis. .-A.

o. The time trend variable is updated by one each year.

Tables 5.la-4 summarize the results of steowise regression for eachl
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response function. They include step number, entering variable, multiple

R and R1, and change in R1.

Table 5.1a. Summary Table of Stepwise Regression Results for
Number of Workers Employed in Period Zero

Step Variable Multiple Change
No. Entered R R 2  in R 2

1 3 6 .9091 .8264 .8264
2 5 No .9681 .9372 .1108
3 1 Tw. .9843 .9689 .0317
4 4 W2  .9993 .9985 .0296
5 2 TC 1.0000 1.0000 .0015
6 41 6W2  1.0000 1.0000 .0000
7 31 G2 1.0000 1.0000 .0000
8 42 SNo 1.0000 1.0000 .0000
9 35 Tw.G 1.0000 1.0000 .0000

10 36 T1M2  1.0000 1.0000 .0000
11 38 Tc6 1.0000 1.0000 .0000

Table 5.lb. Summary Table of Stepwise Regression Results for
the Price Index in Period Zero

Step Variable Multiple Change
No. Entered R R2  in RI

1 3 G .6919 .4787 .4787
2 4 W2 .9107 .e294 .3507
3 5 N0  .9887 .9775 .1481
4 1 Tw. .9979 .9959 .0184
5 32 W2

2  .9991 .9981 .0023
6 2 Tr .9995 .9990 .0008
7 43 W2Nn .9997 .9994 .0004
8 31 62 .9999 .9998 .0004
9 41 GW2  1.0000 .9999 .0002

10 35 TwG 1.0000 1.0000 .0000
I1 33 Nn2 1.0000 1.0000 .0000
12 42 GNG 1.0000 1.0000 .0000
13 36 TwW7 1.0000 1.0000 .0000
14 38 TcG 1.0000 1.0000 .0000
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Table 5.1c. Summary Table of Stepwise Regression Results for
Gross National Product in Period Zero

Step Variable Multiple Change
No. Entered R R2  in R2

1 3 G .9738 .9484 .9484
2 1 Tw .9923 .9847 .0363
3 4 W2  .9992 .9983 .0136
4 2 Tc 1.0000 1.0000 .0017
5 5 NG 1.0000 1.0000 .0000
6 41 GW2  1.0000 1.0000 .0000
7 31 G2 1.0000 1.0000 .0000
8 42 GN9 1.0000 1.0000 .0000
9 35 TwG 1.0000 1.0000 .0000

10 36 TwW 2  1.0000 1.0000 .0000
11 38 TcG 1.0000 1.0000 .0000

12 37 TwNG 1.0000 1.0000 .0000
13 30 Tcz 1.0000 1.0000 .0000

Table 5.1d. Summary Table of Stepwise Regression Results for
Number of Workers Employed in Period Five

Step Variable Multiole Change
No. Entered R R i in R-"

1 3 G .9286 .8622 .8622
2 2 Tc .9605 .9226 .0604
3 1 Tw .9903 .9807 .0581
4 5 NG .9951 .9903 .0096

5 4 W2  .9990 .9981 .0078
6 31 6 2 .9996 .9993 .0012
7 35 Tw6 .9997 .9995 .0002
8 38 TcG .9998 .9997 .0002
9 41 GW2  .9999 .9998 .0001

10 42 GN6  1.0000 .9999 .0001
11 36 TwW 2  1.0000 .9999 .0000
12 39 TcWv 1.0000 .9999 .0000 6z
13 34 TwTc 1.0000 1.0000 .0000
14 40 TcNa 1.0000 I.0000 .0000
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Table 5.1e. Summary Table of Stepwise Regression Results for
the Price Index in Period Five

Step Variable Multiple Change
No. Entered R R2  in R2

1 3 6 .9852 .7836 .7936
2 4W 2  .9268 .8590 .0754
3 5 No .9554 .9128 .0538
4 1 T. .9806 .9617 .0489
5 2 Tc .9991 .9982 .0365
6 32 W 2

2  .9993 .9986 .0004
7 43 W2 N, .9995 .9990 .0004
8 41 GW 2  .9997 .9994 .0004
9 42 GN, .9998 .9996 .0002

10 33 NG2  .9999 .9997 .0001
11 38 TcG .9999 .9998 .0001

Table 5.1f. Summary Table of Stepwise Regression Results for
Gross National Product in Period Five.

Step Variable Multiple Change
No. Entered R R2 in R2

1 3 G .9305 .8658 .8658
2 2 Tc .9701 .9411 .0753
3 1 Tw .9990 .9980 .0569
4 31 G2 .9995 .9990 .0010
5 5 N, .9997 .9993 .0003
6 35 TwG .9997 .9995 .0002
7 38 T0 G .9998 .9996 .0001
8 41 6W2  .9999 .9998 .0002
9 4 W2  .9999 9999 .0001

10 42 GN6  1.0000 .9999 .0000
11 36 TwW2  1.0000 .9999 .0000 %
12 39 TcW2  1.0000 1.0000 .0000
13 34 TwTc 1.0000 1.0000 .0000
14 40 TcN. 1.0000 1.0000 .0000
15 37 TWNG 1.0000 1.0000 .0000
16 43 WNAG 1.0000 1.0000 .0000

The data in the Tables 5.1a-f yield two important conclusions.

First, for both period zero and period five, the response surfaces tit

.-.-

the data well as reflected by the R2 column. In no case does the R2  .-.

exceed 0.9983. A secono check of fit is the oercent error for the design

ooines. Table 5.2 lists the design points with the largest cercent error
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for each response surface as computed from the residuals.

Table 5.2. Design Point Fit Check for
Second Order Response Surface.

Resid- Predict Pet Factor Levels
ual Value Error Tw Tc 6 W2  Ne

Period Zero

Nw -0.0041 42.69 0.0097 1.0000 -1.0000 0.0000 0.0000 0.0000

p 0.1631 95.00 0.1717 0.0000 0.0000 -1.0000 1.0000 0.0000

a -0.0059 88.30 0.0067 1.0000 0.0000 -1.0000 0.0000 0.0000
-$.'

Period Five

N4 -0.1745 14.06 1.2567 1.0000 0.0000 -1.0000 0.0000 0.0000

p 3.1580 35.53 8.1627 0.0000 0.0000 -1.0000 1.0000 0.0000

-0.4030 46.91 0.8140 1.0000 0.0000 -1.0000 0.0000 0.0000

The data in Table 5.2 imply good fit. With the exception of price

index in period five, design point error is less than 1.3 percent. Price

index in period five has a larger percent error of 8.16 percent. Fifty

random points in the operating region were also run to check fit. The

points with the largest percent error for each surface are shown in

Table 5.. The lack of iit is extremely pronounced for period five price

index (26.22 percent).
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Table 5.3. Random Point Fit Check for
Second Order Response Surface

Resid- Predict Pct Factor Levels
ual Value Error TW Tr G W2 NB.

Period Zero b

Nw -0.0053 19.38 0.0116 0.9154 -0.8486 -0.2112 -0.8846 0.8269

p -0.2690 111.7 0.2291 0.1516 0.9346 -0.8707 -0.8653 -0.8905 :

a 0.1082 91.54 0.0118 0.1516 0.9346 -0.8707 -0.8653 -0.8905

Period Five

Nw 0.8136 19.38 4.0290 0.8024 -0.7953 -0.9008 0.9026 -0.7324

p 6.262) 17.62 26.2206 0.2778 0.1031 -0.9972 0.8670 -0.4157 6%

0 2.0090 74.96 2.6101 0.8024 -0.7953 -0.9008 0.9026 -0.7324

The large percent errors are evidence that the resoonse surface

does not fit the price index response for the entire operating region

saecLfied. Of all the response surfaces, one might expect the response

surface for p to be the most difficult to fit. Of the six nonlinear

equations in the KG model, p appears multiplied with other endogenous

variables in Eqs (2.1.9), (2.1.10), and (2.1.20). If one were to solve

for o in terms of the other endogenous variables, an endogenous variable

would be in the denominator. Perhaps a higher order polynomial or

logrithmic function can provide a closer approximation for the p

response surface. Although the response surface theoretically should fit

the response throughout the whole region, it is interesting to note that

large errors for p occured at small values of p. The design points and

the random points with the largest percent error also had the smallest

values for p. In fact, for the point with the largest percent error, the

00)
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value for p was 23.88, but the smallest sample value for p from the

1929-1952 data was 90.7. In addition, other values of exogenous

variables were extremely far removed from the sample data for this case.

It seems unlikely that real world analysis would be conducted in this

region of the response surface. The largest percent error for any design

or random point with a p value over 90.0 was 0.83 percent indicating a

good fit in the range of real world response.

Apparently, the output of the KG model can indeed be approximated

by a low order polynomial. To be absolutely certain on this point,

response surfaces would have to be built for all endogenous variables --

which included all predetermined variables for all periods. For practi-

cal applications, however, if closely fitting response surfaces can be

built for the endogenous variables of interest which include the prede-

termined variables of interest and which cover the time frame of inter- -

est, this is all that is necessary to proceed with analysis. Further-

more, there is no reason to believe that other closely fitting response

functions cannot be developed for any endogenous variables in terms of "

any predetermined variables.

The second major conclusion to be drawn from Tables 5.1a-f is that

first order terms account for most of the variation in the data. Table

5.4 lists the percent of variation explained by first order terms for

each resoonse surface equation. These values were obtained by fitting a -"

first order model to a second order Box and Behnken experimental design

(Box and Behnken, 1960:460)

.'. .%
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Table 5.4. RI Values for The First Order Response ,
Surface Equation.

Period Period
Zero Five

Nw 1.0000 0.9981

p 0.9967 0.9982

0 1.0000 0.9985

The high R2 values indicate that the model is very nearly linear.

One might expect price index to show significant nonlinearity. Of the

six equations in the KG model which contain nonlinearities, price is

involved in three. Although the response function for price index in

periods zero and five are more nonlinear than either number of employed

workers or gross national product, 99.7 percent of the variation is

explained by linear terms. These observations are consistent with Gold-

bergers argument that the model is very nearly linear and that

multipliers that he computed at the sample mean are accurate for a

large range of time series data.

Multipjiers and Response Surface Coefficients Compared

The second research objective is to reproduce Goldberger's multi-

pliers using a first order response surface equation. To do this, runs 1

are made with the following conditions:

I. The three factor levels of corporate taxes, wage taxes,
government nonwage spending, government wage bill, and number
of government employees are the sample means plus or minus one
unit.

2. The experimental design used is the Box and Behnken five r
factor three level design discussed in the methodology chapter

with redundant center points deleted. 4.

. .%

. . . . . . . . . .-. ]*
. - o ._,_. . .' - o.... ,. . . . . .., -. .. " -. .. -,..'.,,,.'. - '- . . ....-. _. -... . . .



3. All other predetermined variables are set at sample mean
values. For lagged variables, the appropriate data values from
before the periods 1929-1940, and 1945-1952 are used. (e.g., the
sample mean for the price index lagged one year includes the
price indicies for 1928 and 1944 but excludes the price
indicies from 1940 and 1952.)

4. For each design point, all current (nonlagged) variables are
held fixed for extended period forecasts (beyond period zero).
Lagged variables are updated with new values after each
period's forecasts are computed.

5. The monetary sector is suppressed by excluding the liquidity
forecasting equations. This step was necessary to match
Gol berger's analysis.

6. The time trend variable is not updated since Goldberger

computes a separate multiplier to account for the time trend.

The conditions were applied to correspond to the assumptions made

by Goldberger in developing his multipliers. Tables 5.5a and 5.5b sum-

marize the results. They show multipliers computed by Goldberger for a

unit increase in government spending and the corresponding response

surface equation coefficients. Multipliers are taken from Table 5.2 of

1mpaqt Mult_liers and Dyamic ProRerties of the Klein-Goldberqer Me -,

(Goldberger, 1959:88).

Table 5.5a. Multipliers for Unit Increase in Government Spending.

Period

0 1 2 3 4 5

Nw 0.611 1.214 1.628 1.842 1.899 1.835

1.500 3.L34 4.631 5.911 7. 04 7 a.023

O 1.386 2.807 3.884 4.565 4.887 4.992
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Table 5.5b. Response Surface Coefficients for
a Unit Increase in Government Spending.

Period
0 1 2 3 4 5 .4

Nw 0.611 1.214 1.621 1.829 1.962 1.772

p 1.505 3.147 4.673 6.0734 7.302 8.312

Q 1.385 2.804 3.871 4.521 4.795 4.766

The two sets of numbers compare quite closely for period zero, but

diverge somewhat for extended period forecasts. Goldberger used the

linearized model to generate interim multipliers. Since the model does

have some nonlinearity, the linearized model used by Soldberger would

tend to accumulate error as each subsequent solution is computed based

on previous approximate solutions.

The results presented in this chapter satisfy research objectives

one and two. The data indicate that the KS model can be approximated by

a low order polynomial. Furthermore, linear response surface coeffi-

cients are approximately equivalent to multipliers computed by linear-

izing the model. Further analysis requires that the coded response

surface coefficients be decoded. Appendix E contains tables listing

coded and decoded response surface coefficients of the first and second

order response surfaces fit in this chapter. The next chapter addresses

the final two research objectives. The chapter includes coefficients for

any response surface used in analysis.

64 -.



V1. Respose Surface Analysis

In t roduct i on )

Chapter V demonstrates that a response surface can indeed fit the

output of the KS model with a low order polynomial with a high degree of

accuracy. Further, RSM verifies that the model is very nearly linear

with first order terms accounting for over 99 percent of the total

variation for all response surfaces generated. Since these surfaces fit

so well, one may conclude that they are accurate representations of the

model's characteristics and may be used as an approximation to the model ,.

for analysis. This chapter examines what the response surfaces mean and

exolores some analysis possibilities emphasizing practical applications.

_!sonse Surface Intergretation

The response surfaces generated for the Klein-Goldberger Model "I'.

summariz:e relationships in the model presenting the impacts of predeter-

mined variable changes on current endogenous variables explicitly. An

example serves to illustrate. For period five, the decoded response

surface equation for gross national product (Q) in terms of wage taxes

(Tw), corporate taxes (T.), government nonwage spending (6), government

K- wage bill (W2 ), and number of government employees (NG) is

%= 54.4254 - 4.0951T% - 4.3058T, + 5.08496 - 0.5864W7 - 0.4145Ne

- 0.013462 + o.0244TG + 0.0226TrG + 0.01756GW2  6.1)

The coefficients in Eq (6.1) are computed by stepwise regression.

*.. It is assumed that the accuracy afforded tv Eq (6.1) is sufficient for

purposes of discussion. The R2 value for this response surface is

0.*9998.
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What is the significance of Eq (6.1)? First, the equation gives

what the KG model grediction will be for any combination of T., To, 6,

W2 , and No in the operating range of interest. The equation does not

claim to make any predictions about the economy that the original model

could not make. The response surface is only as good as the underlying

model. The response surface also only purports to characterize the gross -

national product in terms of the predetermined variables in Eq (6.1)

with other predetermined variables at their sample means. There very

well could be interactions between variables not included in Eq (6.1)

(e.g., gross national product, investment, and prices from the previous

period) and the variables appearing in Eq (6.1) (i.e., T., Tc, 6, W 2 ,

and No). For analysis using a response surface, the predetermined

variables not included in the response surface equation should be set at

values close to what they would be for the particular economic simula-

tion under study. For instance, if a study is to be made of the effects

of government spending and taxes on gross national product two years in

the future, then the macroeconomic model used to generate the response

surface should have lagged endogenous and exogenous variables set at

their appropriate current levels or what they are expected to be. What

Eq (6.1) does give is the relationship between T r, T-, 6, W2 , and No,

and Q in the Klein-Goldberger model in the operating region of interest

for a period five years in the future with all other predetermined

variables at sample means.

Eq (6.1) contains interaction and squared terms. These terms

suggest that the change in Q due to a change in a particular predeter-
°--p

mined variable is dependent on its own or another variable's level. For S

example, one may want to know the effect of increasing corporate taxes

b..%
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on gross national product five years in the future. Taking the first

partial derivative of Eq (6.1) with respect to Tc yields an expression

relating the change in 0 to a change in Tc.

aQ = -4.3058 + 0.02266 (6.2)

The right hand side of Eq (6.2) is a nonconstant "multiplier". Eq

(6.2) suggests that the change in 0 due to a change in T0 is dependent

on the level of 6 as shown in Figure 6.1. It is important to note that

Eq (6.2) is valid only for the ranges of T. and 6 used to build the

response surface (T. ranges from $ 0.40 to $ 11.88 billion and G ranges

from S 11.5 billion to $ 41.7 billion).

5.0C

4.0-

3.0.

2.0.

I4.o '''

11.5 41.7
G "

Figure 6.1. Dependence of aQ/ Tr, on G in Five Years

It is of interest to determine why the change in Q due to a change

in Tr should depend on G. Corporate taxes directly effect gross
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national product through consumption and investment in Eqs (2.1.1),

(2.1.2), (2.1.19), and (2.1.21). However, corporate taxes also affect
'.1*

another element of gross national product in Eq (2.1.9), foreign im- "'...

ports. It is important to note that it is not corporate taxes alone

that affect foreign investment, but the 2[.4ut_ of the price index and

corporate taxes. Economic theory asserts that government spending has a

strong effect on prices. Consequently, there is an interaction between

corporate taxes and government spending in determining foreign imports

and hence gross national product. Eq (2.1.10), which models the deter-

minants of farm income, also has a similar interaction between corporate

taxes and prices. One way to visualize the magnitude of the TcG interac-

tion term is to plot Q versus Tc at different levels of G. Figure 6.2

shows Q. at the five year point, as a function of Tc for three levels of

G. The Tc6 term causes a change in slope at different G levels. The

change in slope is barely discernable.

5.0

(I.'-'

Figure 6.2. Relationship Between On. and Tc at
Different Levels of G in Period Five.
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To generate Figure 6.2, all predetermined variables except Tc and 6

are set at sample means.

gQUt_ 2 tM~t!ple!rs

Chapter Five shows the close correspondence between multipliers ..

and decoded first order response surface coefficients. In fact, Appendix

B shows that they are equivalent for linear systems. Since both RSM

and the derivative method yield essentially the same numerical values
for multipliers, Goldberger's extensive analysis applies to RSM derived.

multipliers as well.

If the KG model were more nonlinear, interaction and squared terms

would become more significant. It is here that response surface methodo-

logy provides an advantage over multiplier analysis. By using response

surfaces, one can detect interactions between predetermined variables as

noted in the last section. To generate "multipliers" from response
.:.

surface equations, one computes the partial derivative of the response

surface equation with respect to the variable of interest. The last

section computed a multiplier for changes in Q due to changes in Tc.

This multiplier together with other multipliers computed from Eq (6.1)

are listed below.

80 -4.3058 + 0.02266 (6.2)

bg = -4.0951 + 0.0224G (6.3)

bQ.= 5.0894 + 0.0244T% + o.0226Tc - 0.02686 + 0.0175W2  (6.4)

NQ * -0.5847 0.01756 5)
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c) 9 -0.4145 (6.6)
6 No

Eqs (6.2) through (6.6) give "function" multipliers which capture the

relationship between O and T., To, 6, W2 , and No more accurately than

traditional multipliers.

Policy Simulation

Using the multipliers computed above, economists can answer "what

if" questions easily. For instance, if an economist wants to know the

impact on gross national product in five years of increasing government

spending by five billion dollars and paying for it with a five billion

*. dollar increase in wage taxes, he can use the multipliers to forecast

the answer. Assuming, for illustration purposes, that

T. = $8 billion

Tr = $10 billion

G = $40 billion

W. = $16 billion

and all other predetermined variables are at sample means, then the

multiolier relating changes in T. to changes in Q is

-4.0951 + 0.0244(40) -3.1191

from Ea (6.3). The multiplier relating changes in G to changes in Q is

5.0894 + 0.0244(8) + 0.0226(10) - 0.0268(40) + 0.0175(16) = 4.7186

from Eq (6.4). The assumed values for Tw, Tc, G, ana WT are close to 1952 samole

values from the data used to estimate the model (Klein and Goldberger,
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1955:131-132) and all other predetermined values are at sample means. A

five billion dollar increase in wage taxes changes gross national

product by ($5 billion)(-3.1191) = -$15.60 billion. A five billion

dollar increase in government spending increases gross national product

4 by ($5 billion)(4.7186) = $23.59 billion. The net change is $23.59 p

billion - $15.60 billion = $7.99 billion.

It is interesting to compare the multiplier computed above to

Goldberger's multipliers and the corresponding first order response

surface coefficients (see Table 5.5). As an example, Table 6.1 compares

the three types of multipliers for changes Q due to changes in G in

period 5.

Table 6.1. Multiplier Comparisons for Changes in Q
Due to Changes in G in Period 5.

Goldberger's Multiplier ..................... 4.922

First Order Response Surface Multiplier ..... 4.766

Second Order Response Surface Multiplier .... 4.718

The difference shown between Goldberger's multiplier and the first order

response surface coefficient is the accumulated error from the way in

wnich Goldberger linearized the model. The difference between the first

order response surface coefficient and the second order multiplier is

that the first order multiplier is computed at the sample mean but, the

second order multiplier is computed at values given in the example

above. If the other variables in Eq (6.1) had been at different levels,

the second order response surface multiplier would also have been

different. If the KG model were more nonlinear the difference would have
U

oeen more pronounced. Figure 6.3 shows the difference between the
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multipliers graphically. Depicted are multipliers for the full range of

6 with other variables fixed at the levels specified above.

5.0 Godberger 
I:

4 0 2nd ist

3.0 -

2.0

1.0

.. _ .s 4:.7 .-

Figure 6.3. A Graphical Comparison of Multipliers for Changes in Q

Due to Changes in G in Period Five.

By using response surfaces and multipliers generated from multi-

pliers, economists can answer many questions without repeated runs of

the macroeconomic model. Furthermore, interaction and squared terms are

identified with response surfaces, but not with traditional multiplier

analysis. There are still other valuable uses for response surfaces.

Factor Imgortance

Response surface equations can be used to evaluate factor impor-

tance in determining the response variable value. P.W. Smith and J. M.

Meilicnamp show how to evaluate factor importance for a nuclear exchange

model in their paper entitled "A Methodology for Multidimensional Impact

Analysis for Military Problems" (Smith and Mellichamp, 1979). In this

paper the authors point out that the size of the factor coefficient
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gives the relative impact on response per unit of factor. The factor f_

with the largest coefficient has the most influence per unit of factor.

* The relative magnitude of coefficients in the response surfaces

*generated for the KG model do give some measure of the influence of

factors which are measured in the same units. For instance, the first

order coefficients presented in Appendix E indicate that for each dollar

increase in government spending, gross national product increases by

4.5208, but for each dollar decrease in wage taxes, gross national

product increases by 3.1234 in period five. Goldberger pointed out that

determining which factors are most influential in causing endogenous

variable changes from an historical point of view also involves the .

amount by which the factor changes from period to period. Two factors

with the same response surface coefficient or multiplier do not have the

same influence on an endogenous variable if one changes by only a small

increment and the other changes by a large increment. To measure the

relative importance of predetermined variables in determining endogenous

variable values Goldberger formulated an index which was equal to the

appropriate multiplier multiplied by the sum of the absolute values of

the changes from one period to the next during the sample period and -.

divided by the number of periods (Goldberger, 1959:72-73). Computing an

eouivalent index with response surface coefficients is certainly

oossi3le. Such an influence index is useful in quantifying the histori-

cal impact of predetermined variables on endogenous variables. However,

from a policy simulation point of view, another measure might provide

more useful information.

If a policy maker has influence to change economic oolicv variables

:. ~7:- '-
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over a limited, politically feasible range, then the policy maker would

be interested in which policy variable at his disposal would be most

influential in bringing about desired objectives. If the policy maker .

built a response surface using the maximum and minimum politically

feasible values as factor levels in the experimental design, then the

coded coefficient gives another measure of influence of that policy '.-

variable. For example, if a policy maker feels the maximum government

expenditures that Congress will approve is $200 billion, while the

minimum is $170 billion, then he could build a response surface using an

experimental design with $200 billion and $170 billion as factor levels

for running design points through his econometric model. Factor levels

for other policy variables of interest would be formulated in the same

way. The resulting coded coefficients give the amount of change that

could be brought about by varying the policy variable over its

politically feasible range.

_pimization Applications

The explicit form of the response surface equation with the unknown

endogenous variable on one side of the equation and known predetermined

variables on the other side of the equation suggests further agplica-

tions. Because response surface equations have the form that they do and

are expressed in terms of actual levels instead of changes (as in Gold-

berger's linearized KG model) economic optimization problems can be

easily formulated and solved. An example serves to illustrate.

Suppose the year is 1952. The Klein-Goldberger model has just been

estimated and an elected policy maker wishes know what combination of

fiscal policies will maximize economic growth (GNP), while holding

inflation and employment at or below acceptable levels. The official

74

2.~~'~ - * - - - - - -* .



would like these conditions to be realized in about three years. The KS

RSM model can provide some guidance.

To solve this problem, several response surfaces must be generated.

As shown in Chapter II, the KG model can be linked together to obtain

forecasts for several periods in the future by solving the model,

setting lagged variables equal to the current variable values, and then

resolving the model. It is assumed that changes in fiscal policy

variables made in period zero are sustained until period three. Solving

the problem requires construction of three response surfaces, one for

gross national product (Q), one for price level (p), and one for number

of workers employed (Nw) for a time period three years in the future.

The fiscal policy variables available for manipulation are government

nonwage spending (6), wage taxes (Tw), corporate taxes (Tc), and

government wage bill (W2 ).

To generate the response surfaces needed, all predetermined

variables except the four fiscal policy variables are set at expected

constant levels, then the policy variables are set at the levels

required by an experimental design, and the forecasts are computed. From

the resulting data, stepwise linear regression is used to estimate the

coefficients of first order response equations for each economic per-

formance indicator. Shown below are the equations generated from the KG

model with the predetermined variables set at selected levels, based on

1952 data which were the most current data used to estimate the model

(Klein and Goldberger, 1955:131-133). -..

0 = 51.4040 - 3.1087T% - 3.3323Tc + 4.5025G - 0.2854W2 (6.7)

NW = 13.1882 - 1.2541T% - 1.2567Tc + 1.80216 - 0.50208W7 t6.8)
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p = 143.6616 - 4.6051T%, - 4.1155Th + 6.68166 - 5.6552W 2  (6.9) P-.

Since the quantitative relationships in the KG model are approxi-

mated quite adequately by linear functions (See Table 5.4.), a two

level four factor factorial design was used to estimate the coefficients

in Eq (6.7), (6.8), and (6.9). Design variables were varied over a

limited politically feasible range ($5.63-11.63 billion for Tw, $7.14-

13.14 billion for Tc, and $37.7-61.7 billion for G, and $13.82 to $21.82

billion for W2 .) These ranges were set by looking at the historical

record of change over the sample period and then making a reasonable

guess as to possible ranges of change.

From the feasible ranges and response surface equations above, one

can formulate a linear programming problem as follows.

Maximize

= 51.4040 3.1087T% 3.3323Tc + 4.5025G - 0.2854W2  (6.10)

Subject to

NW 13.1882 - 1.2541T% - 1.2567Tc

+ 1.8021G - 0.50198W2 = 58.71 (6.11)

p = 143.6616 - 4.6051T% - 4.1155Tc

+ 6.6816G - 5.6552W2  _ 207.714(I.05)
-  (6.12)

Tw < 11.63 (6.13)

Tw 5.63 (6.14)

Tr 13.14 (6.15)

Tr. 7.14 (6.16)

G < 61.7 (6.17)

6 37.7 (6.18)
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W 2  < 21.82 (6.19)

W2 ) 13.82 (6.20)

The objective function, Eq (6.10), is simply the response surface r

for Q. The first constraint, Eq (6.11), is derived as follows. 1952 data

indicate the number of workers in the labor force (NL) is 66.6 million,

the number of workers employed (Nw) is 56.0,the number of self employed

workers (N) is 6.3 million, and the number of farm workers (Ne) is

4.0 million. Klein and Goldberger define the number of unemployed

persons (Nu) to be (Klein and Goldberger, 1955:19):
... --- p

Nu = NL - .Nw + NE + N-)

For the 1952 data Nu is 0.3 million workers. This translates to an

unemployment rate of 0.45 percent (this figure is clearly unrealistic).

The number of self employed and farm workers together have been

decreasing by about one percent per year, and the total labor force has

been growing by about one and one-half percent per year. Projecting

these trends forward three years,

(NE + NF) 3  = (6.3 + 4.0)(.99)3 = 9.99

(NL) 2  = (66.6) (1.015)7' 69.64

where the subscript 3 denotes three years in the future. If the accept-

able rate of unemployment is set (arbitrarily for this example) at one

percent, an expression for the unemployment rate in three years can be

written

(N.)-(N +N_)__-_N_ 0.01 'o(N,.) -

* .M .
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Solving for (Nw)3 yields

(Nw)-= (1-O.01)(NL)S - (NE + NF) 3

= (1-0.01)(69.64) - (9.99)

= 58.71

Setting the response surface equation for Nw equal to this value yields

Eq (6.8).

The left side of the second constraint, Eq (6.12), is the response

surface for the price index. The right side of the inequality is the

currently forecast price index multiplied by a five percent per year

increase for each of three years. This constraint keeps inflation below

an average of five percent per year. The remaining constraints, Eqs

(6.13) through (6.20), are the political constraints on fiscal policy

variables. The right hand side values of the inequalities are 1952

levels of the exogenous variables plus or minus the amount by which the

variables can be feasibly changed.

Solving this linear programming problem gives the optimal fiscal

policy to be followed by the policy maker. Table (6.2) shows the solu-

tion.

Table 6.2. Optimal Fiscal Policy for the Example Problem

Maximum Attainable Q:

$185.8 billion

Fiscal Policy Variable Values

Tw = 11.63

Tr = 7.14
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G =44,55

W2 = 21.82

The model forecasts gross national product to be $172.0 billion at

the end of the current year. The maximum attainable gross national

product, 185.8, translates to an average growth rate of 2.6 percent over

three years. The average inflation rate is 4.2 percent, which means that

there is "slack" in the inflation constraint. Appendix F contains the

output from the linear programming computer routine for this problem.

This solution suggests that the best fiscal policy is to cut

corporate taxes, raise wage taxes, hire more government employees (or

just pay them more) and increase government expenditures slightly. This

solution sounds fairly plausible, but one might wonder why this particu-

lar solution is optimal. Furthermore, one might wonder if the optimal

solution for the linear programming problem is in fact the optimal

solution for the actual Klein-Goldberger model.

The answer to the first question requires an examination of the

coefficients in Eqs (6.7), (6.8), and (6.9). The employment constraint

is always binding because it is met with equality. Economic theory and

Eqs (6.7) through (6.9) indicate that either decreasing taxes or

increasing government spending raises gross national product, employ-

ment, and prices. Increasing government wage bill decreases gross

national product, employment, and prices according to Eqs (6.7) through ...

(6.9). This is counter intuitive, but Goldberger explained somewhat

unconvincingly that increases in W2 with 6 constant represented "a shift

in the composition of government expenditures from business produced

goods to purchases of labor services." (Goldberger, 1959:30) Because
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the inflation constraint is not the limiting factor, it is ignored for

the moment. The objective, then, is to find the feasible combination of

fiscal policy vaiables which maximizes GNP for a given level of employ-

ment. To do this one would want to change the fiscal policy variable I..."

with the largest increase in gross national product per unit increase in

employment, the fiscal policy variable with the next largest increase,.-.:

and so on until the required employment level is reached. For example,

the change in Q per change in Nw brought about by changes in government

spending is

___ 39 )G5 (6. 21)
a Nw 6 B Nw

Earlier in this chapter it was shown that the quantity Q/ G is simply

the coefficient of G in the 0 linear response function, Eq (6.7). In

addition, G/ N% is the reciprocal of the G coefficient in the N.

response surface equation, Eq (6.8). For example the ratio between the

G coefficient in Eq. (6.7) and the S coefficient in Eq (6.8) is

3Q = 4.5025 = 2.4985 (6.22)
)G 3Nw 1.8021

• ,...

The number 2.4985 gives the increase in 6 which occurs when G increase

enough to raise Nw by one unit. Similar ratios can be computed for the

other factors.

-, ) .. -3.1087 = 2.4788

5T~ i -1.2541

6 'T -3. 323 2.6516
,3Tc N -1.257

;Q *Nwz -0.2854 0.5633

. -0.. . . . .



Gross national product increases most for a given level of employ-

ment by a cut in corporate taxes, then by an increase in government 4 5

spending, then by a cut in wage taxes, and finally by a cut in the

government wage bill. The optimal solution sets corporate taxes at the

lower limit, government spending at an intermediate level, and wage

taxes and government wage bill at the high limits. Thus the given opti-

mal solution for the linear programming problem does seem reasonable.

However, a question still remains as to whether the optimal solution

for the linear programming problem is optimal for the actual Klein-

Goldberger model.

Chapter V shows that the response surfaces do in fact closely

approximate what is going on in the model over the entire range of data.

Furthermore, higher order terms are not necessary to obtain a good fit.

Therefore, what is optimal for the response surface model of the economy

should be optimal for the KG model. Verifying this assertion requires

searching the area around the alleged optimal solution to see if further !0--

gains might be made with an alternate policy. This search is to be done

with the original model. If the solution given for the linear program-

ming problem is not the optimal then one should be able to increase

gross national product and satisfy the constraints by adjusting Tw, To,

G. or W-d. The table below shows the results of running the KG model

with the fiscal policy variables set at values slightly different than

the optimal policy determined by the response surface derived linear

programming problem.

S......-,
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Table 6.3. Klein-Goldberger Model Solutions in the Area of ""

the Alleged Optimal Solution

58.71 240.5
max max

Tw Tc 6 W 2  Nw p

11.63 7.14 44.54 21.82 56.5 222.5 186.2
10.63 7.14 44.54 21.82 57.7 226.6 189.3*
11.63 8.14 44.54 21.82 55.2 217.6 182.8
11.63 7.14 43.54 21.82 57.3 215.0 181.6
11.63 7.14 45.54 21.82 58.3 228.7 190.8*
11.63 7.14 44.54 20.82 57.0 222.5 186.6*
10.63 8.14 44.54 21.82 56.5 222.5 186.0
10.63 7.14 43.54 21.82 55.9 219.9 184.8
11.63 8.14 45.54 21.82 57.0 224.5 187.4*
11.63 8.14 45.54 20.82 57.6 229.5 187.7
5.63 13.14 44.54 21.82 56.5 224.6 185.0
11.63 13.14 61.70 16.82 82.4 337.3 245.0

The first line in Table 6.3 is the alleged optimal solution.

However, the starred solutions yield greater gross national product

values than the supposed optimal solution. The solution computed by the

linear programming algorithm is not optimal because the value of Nw

forecast by the response surface function was four percent too low. The

four percent error is not unreasonable because although the linear

approximation to the KG model is good, it is not perfect.

All is not lost, however, because the response surface coefficients

can be used to "tweek" the solution to optimality. As pointed out

above, economic theory and Eqs (6.7), (6.8), and (6.9) indicate that

when corporate or wage taxes decrease, gross national product increases, "

Prices increase, and employment increases. The effect of increased

government spending is the same. Increased wage bill has a small down-

ward effect on gross national product and employment, and a substantial

downward effect on prices according to Eqs (6.7), (6.8), and t6.9).
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To increase Q, one could decrease taxes or government wage bill or

increase government spending. However, the same measures which raise Q ,6

also raise Nw and p. Nw must increase by 58.71 - 56.50 = 2.21 to

satisfy the employment constraint with equality and p may increase by

240.5 - 222.5 a 18. The best variable to alter is the variable which

increases Q the most for the required change in Nw without violating the

price index constraint. The discussion above shows how to compute the -

ratios for tradeoffs between employment and gross national product. For

example, if Nw must increase by 2.21 to meet the employment constraint,

then the total change in Q due to a change in G is (2.4985)(2.21) =

5.5217 using the ratio computed in Eq (6.22). To find how much 5 must 4..

increase to raise Nw to the required level, one can divide the required -'

change by the S coefficient in Eq (6.8) (i.e., 2.21/1.8021 = $1.226

billion). By Eq (6.9) this increase in S induces a price index increase

of (1.226)(6.6816) = 8.194. Since this increase in G would only '

increase the price index to 222.5 + -8.194 = 230.694, this solution is

feasible because this price index is below the 240.5 value allowed by Eq

(6. 12).7%

To find the best factor to change, tradeoff ratios for Tw and W7

must be compared to the G tradeoff ratio. The factor with the largest

tradeoff ratio which does not cause the price index to exceed its maxi-

mum is the best. Because Tr is already at the lower limit, it need not

be investigated for alteration. Table 6.4 summarizes the data required

to select the best factor to adjust. The first column is the tradeoff

ratio. The next column is the change in Nw required to satisfy the

emolovment constraint. The 0 column is simply the product between the
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first and second columns. It is the change in Q resulting when the

factor is altered enough to bring about the required change in NW. The

F column is the change in the factor required to increase Nw by 2.21.

It is equal to the Nw column divided by the factor's coefficient in Eq

(6.8). The p column is the increase in p caused by the increase in the

factor. It is equal to the F column times the factor's coefficient in

Eq (6.10). Finally the p column is the new price index brought about by

changing the factor to its new level. If the figure in the p column

exceeds 240.5, the solution is infeasible.

Table 6.4. Data for Selecting the Best Variable to Alter

Q/ Nw Nw Q F P p

Tw 2.4788 2.21 5.4781 -1.7622 8.1151 230.6

G 2.4985 2.21 5.5217 1.2263 8.1936 230.7
W 0.5685 2.21 1.2563 -4.4026 24.897 247.4

A quick scan of Table 6.4 reveals that increasing G by $1.2263

billion increases Q by $5.5217 billion while a decrease in T. of $1.7622

billion increases Q by only $5.4781 billion. Decreasing W2 by the

amount required to increase Nw by 2.21 million workers causes the price

index to exceed the maximum. Thus, the adjusted optimal solution is

Tw = 11.63

T. = 7.14

G = 45.78

W, = 21.82

A single solution for a linear programming problem is rarely very
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, useful without sensitivity analysis. Fortunately, sensitivity analysis

for linear programming problems is very well developed. For instance the

*. shadow prices tell how much the objective function will change if the

right hand side of a constraint is changed. Table 6.5 shows shadow

prices for each binding constraint.

Table 6.5. Shadow Prices for the Fiscal Policy Problem.

Constraint Objective Function Change

Maximum Tw 0.0254

Maximum W2  0.9688

Minimum Tw 0.1925

Minimun W2  2.4985

Another option for conducting sensitivity analysis for this example

linear programming problem is (believe it or not) response surface

methodology. A new response surface can be built for Q in terms of TW,

T,, 13, W 2 , inflation and unemployment by varying right hand sides of the

constraints in accordance with an experimental design and solving the

linear programming problem (Smith and Mellichamp, 1979).

Because the KG model is nearly linear, first order response surface

equations fit the model fairly well. The linear objective function and

constraints make it oossible to formulate an optimi:ation problem as a

linear program. If the model were not so linear and the response sur-

faces mad higher order terms, an optimi:zation problem could still be

formulated and solved using nonlinear ootimi:ation techniques available.

One comouter implementation of nonlinear techniques is the Sequential

Unconstrained Minimization Technique (SUMT) package. The program handles

nonlinear objective functions and constraints with inequalities. The
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SUMT program allows one to exploit a key advantage of RSM in studying

macroeconomic models, which is the capability to derive a reduced form

equation (one endogenous variable expressed as an explicit function of ,

predetermined variables) equation for nonlinear macroeconometric models.

For a description of the SUMT package, the reader may consult Mylander's

text, A Guide to SUMT-Version 4.

This chapter interprets and applies response surfaces derived

from the Klein-Goldberger econometric model. Computing the partial

derivatives of response surfaces with respect to variables of interest

yields multiplier functions for those variables. These multiplier

functions may characterize nonlinear functions better than the

traditional constant multipliers over a wide range of data. Both the

coded and decoded response function coefficients give information on the

relative importance of factors. Finally, this chapter shows that

response functions readily adapt themselves to optimization problems.

.V.
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This study has uncovered much about what can and cannot be done in

applying response surface methodology to a macroeconomic model.

Response surface methodology is a useful tool which can be used to

investigate the properties of a macroeconomic model as long as the

limitations of the method are kept in mind.

The research demonstrates how to generate response surfaces from a

macroeconomic model. First, the problem to be addressed is defined and

a determination is made that response surface methodology is the appro-

priate tool for solving the problem. Next, variables of interest are

selected and their operating ranges specified. The form of the response

surface equations is decided upon and an appropriate experimental design

selected. After translating the coded experimental design to actual

predetermined variable values, the modeL is solved for each combination

of predetermined variable values specified by the experimental design.

The data generated are used to estimate response surface coefficients in

terms of the coded experimental design to preserve orthogonality. The

response surface fit is checked and the response surface equation is

decoded so that it is expressed in terms of the original variables.

After generating the response surface, analyses may begin.

This study shows that a low order polynomial can indeed fit the

responses of the Klein-Goldberger econometric model. The near linearit.

of the model is confirmed. The coefficients from a decoded first order

response surface fit to the Klein-Goldberger model are compared to

multipliers computed by Goldberger and found to correspond quite

67 ','/,'-
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closely.

Economists use multipliers extensively to characterize the static

and dynamic properties of econometric models and to conduct policy

simulations. Techniques for generating multipliers include lineariza-

tion of the econometric model through the derivative method and comput- ..

ing control and disturbed solutions. Response surface methodology

offers another alternative for computing multipliers. .-

Multipliers are derived from response surface equations by taking

the partial derivative of the response surface equation with respect to

the variable of interest. The result may or may not be a constant.

Higher order terms in the response surface equation cause multipliers to

be deoendent on the level of one or more variables. Consequently,

mult:oliers obtained from response surfaces are most useful for investi-

gating nonlinear econometric models.

The advantage of response surface derived multipliers over multi-

pliers derived by model linearization is that the model does not have to V..

be linear or near linear for multipliers to be valid over a wide range

of variable values. In addition, significant interactions and higher

order effects can be identified. The advantage of resoonse surface

multipliers over control-disturbed multipliers is that they more

completely characteri:e the relationships in the model and reduce the

number of runs required to estimate multipliers. Also, multipliers

comouted by the control-disturbed method do not identify interactions

ano nigher order effects. These multipliers are only valid for small

ranges of the predetermined variables.

Pesoonse surface multipliers can be ised in the same ways that
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multipliers derived by other techniques are used. Uses include policy

simulation and determining most influential factors in the economy.

Response surfaces can be used for more than just computing multi-

pliers. They can also be used to formulate optimization problems. The

explicit nature of the response surface equation giving endogenous

variables in terms of predetermined variables facilitates optimization

problem formulation. Chapter VI gives an example problem in which gross

national product is maximized while holding unemployment and inflation

at or below acceptable levels. The problem is formulated as a linear

programming problem and solved. Optimization problems with nonlinear

response surface derived constraints and objective functions can also be

formulated and solved using optimization packages such as SUMT.

Applying response surface methodology to macroeconomic models is

not without limitations. Computing multipliers using response surface

methodology is more cumbersome than existing methods for deriving multi-

oliers from linear or near linear models. Separate response surfaces

must be computed for each response variable for each time period for

each subset of predetermined variables. For nonlinear models, response

surface multipliers which are functions better characterize input-output

6, relationships than traditional multipliers. However, special care must

be taken to insure response surface fit before drawing inferences about

the :nodel based on the response surface generated.

A limitation which detracts irom using resoonse surfaces for

orediction is the few number of factors which can be inducted in the -

response surface function. The number of variables which can be

included in the response surface equation is limited by the size of the

exper:mental design. Of particular concern are interactions between

I'I



exogenous variables included in the response surface and lagged endoge-

nous variables not included in the response surface. It is quite possi-

ble that the effect of exogenous changes depends on the current state of

the economy. If variables are omitted from the response surface equa-

tion, then the response surfaces only capture model relationships at the .,.

specific levels assumed in generating the response surface. The other

On balance, the limitations of response surface methodology do not

preclude it from being a valuable tool for analyzing certain aspects of

macroeconomic models.

Recommended Further Research

There are several areas available for further research. First, it

has been assumed that a low order polynomial could adequately fit an

econometric model more nonlinear than the Klein-Goldberger model. This

assumption needs testing. Second, including more variables in the model

by using larger experimental designs has vet to be explored. Large

exoerimental designs could be developed by computer algorithm. A final

improvement of the research presented in this thesis would be to include

time as an independent variable in the response surface equation.

including time in the response surface equation would eliminate the need -t.

to generate response surfaces for each period. Preliminary attempts to

fit response functions with time as an independent variable to the

Klein-Goldberger model yielded R2 values of 0.9lO +or number of workers

emoioved. 0.9858 for price index, and ).?630 for gross national product.

To generate these resoonse surfaces, a second order polynomial includin.

waae ta;:es. coroorate taxes, government nonwage expenditures. aovernment

.• ..
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wage bill, number of government employees and time was fit to data from

periods zero through five. Developing response surfaces with time as an
9L

independent variable would reveal time delay aspects of the econometric

model which could prove quite valuable.
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* Appendix A: SoL nq t.e nt _ eL

Introduction

Because the Klein-Goldberger model is not linear and has no simple

analytical solution, solving the model requires an solution approxima-

tion technique. Goldberger used a derivative method to obtain a linear

approximation to the model formulated in terms of variable changes. He

then derived impact and interim multipliers from the linear approxima-

tion. This thesis requires a method for solving the Klein-Goldberger

model without linearizing it. Economists commonly use some sort oi

numerical technique for solving nonlinear econometric models. Klein

recommended the Gauss-Sidel numerical method for solving econometric

models (Klein, 1974:238). The method is a simple iterative procedure

whicn does not reouire derivative computations. This appendix describes

the method, illustrates it with an example, and shows how the method was

applied to solve the Klein-Goldberger model for this research effort.

Gauss-Sidel Method Description

Klein describes the Gauss-Sidel method in his text, A Textbook of

Econometrics (Klein, 1974:238-239). The material below restates Klein's

description. An econometric model with n current endogenous variables,

n endogenous variables lagged up to p periods, and m exogenous variables

lagged up to p periods can be written in the form

, ., _,_ ) e , t (A .1 )

= (l,2,...,nl ",

where

," ~92 .'-'
Ile::
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one of n current endoenous variables,

= one of n endogenous variables lagged p periods, -

x.,t =one of m current exogenous variables,

x,.-,_ = one of m exogenous variables lagged p periods, and

ei.t =a random error term.

In words, Eq (A.1) says that each equation in the model gives a single

current endogenous variable (which must be solved for) as a function of

the other current endogenous variables, lagged endogenous variables, and

exogenous variables. Lagged endogenous variables together with current

and lagged exogenous variables are known as predetermined variables.

With a few exceptions, the Klein-Goldberger model in Table 2.1 has the

4orm of Eq (A.1). It is usually possible to rewrite Eq (A.1) in the

iorm

',v . = x( . y . , , . . t . . x . , .. _, - )+e,.t (A.2)

= (!,2.... n) - - ,

Eq A.2) is the same as EQ (A.1) except in Eq (A.2) y,.* aopears on both

sides of the eauation. Omitting the error term, e,, and inserting

suoerscripts in accordance with the Gauss-Sidel method converts Eq (A.2)

to an algorithm.

g ,A..3.

P . l.z .... . ..."Y.-it",y. •

where

. ' the value of the ith current enoogenous variable from

the r+Itth iterti on of tne method, and

* t- ;'-.--.
-~-- -.. - ..
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1 6, .

z the value of the ith current endogenous variable from the

rth iteration. a.

* Iterations are performed until

-yi.t','I( tolerance

A simple example illustrates the confusing notation in Eqs (A. 1), (A.2),

and (A.3). The system of nonlinear equations,Pk

x = -4z + 2w + 6 (A.4)

y z 4x -1/z +B (A.5)

z =x/y - 2w(A6

where a

x, Y. z =variables to be solved for, and

w a variable whose value is known,

is in the 4orm of Eq (A.1). Eqs (A.4) throuoh (A.6) can be rewritten in

the form of Eq (A.2) by multiplying both sides of the equations by a

constant, say Ci.5, and then adding (1-0.5) times the left-hand side

variables to both sides of the equations.

x 0.5(-4z + 2w + 6) 0.5x (A.7)

0 .5(4x' 8) + 0.5v (A.8)

z 1). 5 (x/y -2wi 0 .3z (.9

Bv arranging terms and inserting superscripts denoting iterations, Eqs

(A.71 through kA.i) become algorithms for computing a solution.

Mb4



a 0.5x"'- 2z"' + 1w + 3 (A.10)

Y(11 = 2X-1 /
3

(r-1) + 0.5y(,) + 4 (~1

=0.5(x''
1 )/Y'' 1 ') - w + 0.5z'") (A.12)

The Gauss-Sidel method requires an initial solution, a specification for

w, and a specification of the error tolerance. If x10) 0, y'O' 0,

z) 0, w=5, and tolerance=.0l then the first iteration of algorithm

Eqs (A.10) through (A.12) is 4

x"' (0.5)(0) -2(0) +1(5) +3 8

y(I 2(8)-1/3 + (0.5)(0) + 4 34

= L 0.5(8/4) - 5 + (0.5)(0) = -4

ai y"1' 4 -4

The second iteration is

x =) (0.5)(8) -2(4) *5 *3 =4

y' 2 (-8)'' + (0. 5) (4) + 4 =2

0.5(-B/-l) -5 + (0.5)(-4) -3

=4 y'~=2 z'=-3

Iteraticns continue until

Kxo , X ) 0.01 -( .1''-11 0.01

and

The alaorithm is not guaranteed to converge for all forms of Eq kA.2)

and for all trial solutions. There are convergence conditions for the

Gauss-Sidel method. but often the convergence conditions are extremely

difficult to comoute. In oractice. trial and error usually reveals



simple forms that converge.

The method described above computes a solution for current

endogenous variables given lagged endogenous variables and exogenous-.

variables. The method easily adapts to compute extended period

forecasts. Once the method yields a solution, lagged variables are

updated with current variable values and exogenous variables are set to .-

values dictated by the policy under investigation. Then the model is

resolved. In the notation of Eq (A.1),

v. * -,k = . *:,. -< for all i=1,2,...,n and k=1,2,.. , t.

. - = x1.t-, for all i=l,2,...,m and k=l,2,...,p -1

The Klein-Goldberger model was solved using the Gauss-Sidel method. The

Klein-Goldberger model equations in Table 2.1 were out in the form of Ea

(A.') with one current endogenous variable expressed as a function of

the other current endogenous variables, lagged endogenous variables, and

exogenous variables. For the sake of simplified discussions, Eq A.1)

can oe abbreviated,

,= g, A. 13)

where a. is a function of the other current endogenous variables, lagged

encogenous variables, and exogenous variables. Performing some simple

algebraic manipulation converts Eq (A.13) to the form of Eq tA.Z). If a

is a constant,

ay = a g. A.14)

av, (l-aly, = ag. + (l-a)y, (A.15)

and

96.1
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Y, ag, + (1-a)y, (A.16)

The approach given in Eqs (A.14), (A.15), and (A. 16) was used to convert

Klein-Goldberger model equations in the form of Eq (A.1) to the form of

Eq (A.2). For at2, and a starting solution equal to the endogenous

variable sample means, the method diverged. The method converged for

a-0.5. The number of iterations required to reach a solution appears to

depend on the value of the constant a. Runs with other forms of the

model were not attempted, but the number of runs required for solution

miaht be considerably reduced by using another form of the model.

Shown below is a FORTRAN program for solving the Klein-Goldberger

model with the Gauss-Sidel method. Program inputs are files containing

control language, an initial trial solution, values for predetermined

,ariaoles to be included in the response surface equation, values for

predetermined variables not to be included in the response surface

equation, and coded values (-1, 0, or 1) for the variables to be in-

cluded in the response surface equation. The program outputs a file

containing the coded variable values, a case number, the forecast period

number. and the solution for endogenous variables. The output file may

be read directly by the BMDP statistical package for resoonse surface

coefficient estimation.

The orogram first reads and echoes the control language contained

-n the file "kg.ctl." After initializing arrays. the program enters a

loop wnich solves the r-lein-Goldberger model for each set of variaole

,evels soecified case by case for the number of oeriods soeci ied. The

orogram first reads one set of coded values (-1, 0, or 1) for variables

to oe included in the response surface eouation (variables which will
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henceforth be referred to as design variables). Subroutine setbas reads

predetermined variable values into the arrays P, IS, and P1. Array P

contains exogenous variable values and endogenous variable values lagged

one period. IS and PI contain values of short term interest rates and

prices lagged more than one period. Setbas also reads a trial solution

into XO. Next, subroutine setdes resets the design variables to the .

levels specified in the file "design.cod." Subroutine solve calls "'''

subroutine iterate in a loop to compute Gauss-Sidel iterations of the

Klein-Goldberger model until the solution converges within tolerance.

If the control language specifies that intermediate period solutions are

to be printed, the program writes the coded design variable levels, case 1=

number, period number, and the intermediate solution to the file

"kg.out." The last period's coded design variable levels, case number,

period number, and solution are always printed. If the control language

specifies that extended period forecasts are to be made, subroutine

uodate updates lagged variables and a new solution is computed. The

program stops when solutions are computed for the number of periods

specified for each set of design variable level specifications.

program kgsolv

* Solves the Klein-Goldberger model using the Gauss-Sidel numerical
* technique ,

double precision XO(21),Xl(21),P(44),IS(5),PI(2)
real tol. CDDDES(5)
integer dl, d2, i, icase, ipriod, iiter, ncase. npriod, itmax,

prtall, guessi, bascas. design, kgout, kgctl, codes
open(l,file= 'guessl.dat )
rewind( l)
ooent2,file= bascas.dat )

98'S
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rewind (2)

open(3,filew 'design.dat')
rewind (3)
open(4,filex 'kg.out',statuss'new')
open(8,filen 'kg.ctl')
rewind (9)
open(9,file- design.cod')
rewind(9)
guesslal
bascas=2
design=3
kgout=4
kgctl=-
codes=9

* Initialization

• Read and echo control language

write(*,*)' CONTROL DATA'
read(kgctl,*)prtall
write(*,*)' PRINT EACH PERIOD DATA? (1YES) ,ortall
read(kgctl ,*)ncase
write(*,*)' # CASESs ',ncase
read(kgctl ,*)npriod
write(*,*)' # PERIODS =  ',npriod
read (kgctl ,*) tol
write(*,*)' TOLERANCE = ',tol
read (kgctl,*) itmax
write(*,*)' MAX ITERATIONS= ,itmax
icaseul
ipriod=O
iiter=l

* Initialize arrays

do 100 i=1,21
X0 (i ) 0'
X 1 (i ) =0

100 continue
do 200 i=1,44

P(i ) 20
200 continue

* Strip of data dimensions with dummy variables.

readicodeso*)dl. d2

* M ain Program

* While the current case is less than the last case

400 if icase.le.ncase) then

99
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rewind (guesul)
rewind (bascas)

* Read coded design variable levels .

read (codes,W*)CODDES Ci),im1, 5)

* Read predetermined variable levels

call setbau~quessi ,bascas,XO,P, I9,PI)

* Read design variable levels

call setdes(design,P,IS,PI)

ipriodc0

* while current period is less than or equal to the forecast period

300 if (ipriod.le.npriod) then
call solve(XO,Xl,P,icase,ipriod,itmax,tol ,iiter)
if (prtall.eq.l) then

write (kgout,1020 ICCODDES (i),i=1,5)
write(kgout,*) icase, ipriod
write(kgout,1020)(Xl(i),i=1,21)

else if (ipriod.eq.npriod) then
write(kqout,1020)(CODDES(i),i=1,5)
write(kqout,*) icase, ipriod
write(kqout,1020) X1(i),i=1,21)

end if
10210 format(lx,5Fl2.6)

call update(X0,XI,P,IS,PI)-"U

zpriodzipriodtl
qoto 300

end if
* end while (ipriod)

casevicase. I
goto 400

endi f
* end while (icase)

write (*.*)
write(*,*)' PROGRAM COMPLETE, RESULTS IN KG.OUT

stop

end

4 0 4 4
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subroutine setbas(guessl,bascas,XO,P,IS,PI)

* Reads initial guess solution and bas case predetermined data.

double precision XO(21), P(44), IS(5), PI(2)
integer i, guessi, bascas

* Read initial guess at solution.

read(guessl,*)(XO(i),i=1,21)

* Read base case predetermined data

read(bascas,*)(P(i),i1t,44)

* Set up variables with more than one year lag.

IS(I)=P(29)
IS(2)=(P(29)+P(30))/2
IS(3)=P(30)
IS(4)=(P(30) P(31))/2
IS (5) P(31)
PI(1)=P(35)
PI(2)=P(36)

return
end L

subroutine setdes(design,P,IS,PI)

* Reads changed predetermined data for a new case

double precision P(44), IS(5), PI(2)
integer design

Read in design variable values

read(design,*)P(2),P(3),P(6),P(7),P(13)

*P(2)=TW, P(3)=TC, P(6)=G, P(7)=W2. P(13)NG

* ~Set up variables with more than one year lag

IS(7)=tP('29)+P(30))/2 .*~a

IS(3)=P(30) %

IS(4)=(P(30)+P(31))/2
IS(5)=P (31) ."I

P I(1,) P(35)
PI( )=P(3 -6)
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return
end

subroutine solve(XO,X1,P,icase,ipriod,itmax,tol,iiter)

* Computes a numerical solution to the Klein-Goldberger model

double precision XO(21) ,Xl(21) , P(44)
real tol, ERROR(21),arrorO
integer i, icase, ipriod, itmax, iiter

* Compute numerical solution

iiter-O
, Repeat until error < tolerance
400 continue

if (iiter.lt.itmax) then
* call iterate subroutine

call iterat(XO, P, Xl)
iiteraiiter+l

else
write(*,*)'CASE ',icase, PERIOD ',ioriod,

& FAILED TO CONVERGE AFTER
write(*,*)iiter, ' ITERATIONS. PROGRAM STOPPED.'
stop

endi f
* Check current iteration for tolerance

errorOO.
do 200 iz1,21

ERROR(i)=abs((XI(i)-XO(i))/XO(i))
if (ERROR(i).gt.errorO) then

errorO=ERROR(i)
endi f

2,00 continue
if (errorO.gt.tol) then

do 300 i=1,21
XOU()zXl(i1

00 continue
goto 400

*(Do another iteration until error below tolerance)

else
write(*,*) CASE ,icase, PERIOD ',ipriod, &

S',iiter,' ITERATIONS'

return ..
end% °
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subroutine iterat(XO, P, Xl)
%4b

aPerforms Gauss-Sidel iterations

integer i

double precisio C,I,SC,PC,D,Wl,NW,WR,F1,RI,PR,1 ,L2,ILIS
& K,SB,PY,M,PI,g

* double precision C1,I1 ,SC1 ,PCl,Dl,WI1,NI,WRI,FII,RlI,PRI,
* & LII,L21,ILI,ISl ,KI,SBI,PYl ,MI,P11,Q1

double precision TE,TW,TC,TN,TR,G,W2,R2,T,H,NP,NL,N8,NE,FR, ::
& PF,LB A

double precision CLI,SCLI,PCL1IDL1 ,WlLl,WRLI,FIL1,RLIl,PRLI,
& LiLI ,L2Ll , SLI, ISL3, ISL5,KLI ,SBLI ,PLI ,PILl ,PIL2,QLI

double precision TELl ,TWLI,TCL1 ,TNLl ,TRL1 ,W2LX ,R2Ll

double precision XO(21),P(44),XI(21)

*Initialize variables in the Klein-Goldberger model

*ENDOGENOUS VARIABLES

C =X0(I)
I =XO(2)
SC=XO (3)
PC=XO (4)
D =XO(5)
Wl:XO (6) S

NWzXO(7)
WR= XC?(8)
F 1=XO?(9)
RIMXO (10)
PR:K0 (11)
L1=XO(12)
L22X0(13)
ILXO (14)
IS=XO( 15)
K =XO(16)
SB: XO?(17)
PY=XO (1Is)
M 20(1q)
PI=XO)(20)

d* EXOGENOUS VARIABLES

TE=P (1)

WxP (2l)



WN T W!,.0.P

TC=P (3)
TN=P (4)
TR=P (5)
G zP (6)
W2=P(7)
R2=P (8)

* ~T uP (9)...
H xP(10)
NPzP ( 11)
NLzP (12)
NGzP ( 13)
NEuP( 14)
FR=P ( 15)
PF=P ( 16)%
LBxP ( 17)

*LAGGED ENDOGENOUS VARIABLES

CLI zP(18)
SCLI.P (19)
PCLI=P(20)
DLI =P(21)
WIL1=P(22)

* WRLI=P(23)
FILI=P (24)
RILI=P(25)
PRLI=P(26)
LILlzP(27)
L2LI=P(28)
ISL1:P(29)
ISL3=P(30)

* ISL5=P(31)
KLI =P(32)
SBL=P (33)
PLI =P(34)
PIL=P (35)
PIL2=P (36)
OLI =P(37)

*LAGGED EXOGENOUS VARIABLES

TELI=P (38)
TWLI=P 39)
TCLI=P(40)
TNLI=P(41)
TRL1=P (42)
W2L1:P(4-)
R2LL=P(44)

*THE KLEIN-GOLDBERGER MODEL

Cmiu.5*(-22.26..5*(W1+W2-TW)0.41.PY-TC-TN-SC)
+0.34* (RL+R2-TR) +0. 26*CL1+0. 072.LILI*0). 26.NP) +0. 5*C
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1.0. 5*(-16.71.0.78i(PLI-TCLI-TNLI+RILI.R2L1-TRLI+DLI)
& -O.073*KLI.O.14*L2L1)+0.5*I

5C0.3* (-3. 53.0. 72* (PC-TC) .0. 076' (PCLI-TCLI-SCL ) -0. 026*SDLI)
& +0.5*SC

#4
PCu0. 5* (-7. 60+0. 68*PY) +0. 5*PC

*5
D.O.5*(7.25+O.10*(K+KLI)/2.O.044*(Q-W2)).0.5*D

*6
W1=0.5*(-1.40.0.24*(Q-W2).0.24*(QL1-W2L1)+0.29*T)+0.5*Wl

*7
* NWSO.5.((tQ-W2)+26.0B-0.16*(K+KLI)/2.-2.05*T)/2.17-NE)/H.NG)

*6 & +O.5*NW 
R

WR=0.5* (4. 11-0. 74* (NL-NW-NE) +0. 52* (PIL i-PIL2) +0. 54*T+WRLI)
& +0.5*WR

*9 .

FI=0.5*(0.32+0. 006*(M-TkJ-TC-TN-TR)*PI/PF+0.81*FILI)+0. 5*FI

*10
R1=0.5*(PR/PI)4'(-0.36.0.054*(WI+W2-TW+PY-TC-TN-SC) *PI/PR

& -0.007*i(WILI+W2L1-TWLI.PLI-TCLI-TNLI-SCLI)*PILI/PRLI)
& .0.012*FR)+0.5*R1

PR=0.5*(-131. 17+2.32.PI)+0.5*PR

*The monetary sector is omitted (See Chapter IV)

C L1=0.5*(0.14*(M-TW-TC-TN-SC-TR)+76.03*((IL-2.0)**(-0.84f))
C & +0.5*L1
*13
C L2=0.5* (-0. 34.0. 26*W1-1 .02*IS-0.26* (P1-PILl) .0. 61*L2L ) +0. 5*L2

*14
IL:0. 5* (2. 56+0. 44*ISL3+0. 26*ISLS) +0. 5*IL

IS20.5*(100*ISLI/(100-11.17+0.67*LB)l+0.5*IS

K=0.5* (I-D+KL1 +O. 5*K
*17

SBzO.5*(SC+SBL ) +0. 5*SB

PY0. 5* (M-WI-W2-RI-R2) .0. 5*PY
*19

Mmi0.5*(C.I.6-FI-TE-D).0.5*M -C*

*20
PI.0.5*((H*NW*WR)/(W+W2fl.0.5*PI

#21
QOr1).5* (M+TE.D) +0. 5*Q



C SET XI =NEW VALUES

X (1) C 

b
Xl (2)z1
Xl (3)=SC
Xl (4)=PC O
Xl (5)=D N
XI (6)=W 1
XI (7)NW *

Xl (S)=WR
X1 (9)mFI
XI (IO)=RI
XI (ll)=PR
XI (12)=L1
XI (13)=L2
XI (14) sIL
XI (15)=15
X1 (16)=K
X I (17)353
Xl (1B)3PY
Xl (l9)ZM
Xl (20)3PI
X1 (21)zQ

RETURN
END

subroutine update(XO, XI, P, IS, P1)

* Updates values for linking forecasts together

double precision XO(21) , XI (21), P(44) , 15(5), P1(2)

* Update lagged endogenous variables

IS (5) 1 ( 4)
IS(4) =IS (3)
IS (3):IS (2)
IS (2') :5(1)
15(1)2K IC15)

P1 (2ZPP I) ~ '

PI1 1KI (20)

#CLI 0

P(18)=X (.1)
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*PCLI a .

P(20)zXI (4) s
*DL 1

P(21)xX1(5)

*W 1Li d
P(22)=X1 (6)

*FI* R I P(23)aX1(9)

P(24)=X1 (9)
*RILL.

P(25)zX1(10)

*PiLl

PLI P(26)=XI (11)
*I P(27)X1(12)

*LZLI
P(29)=Xi(13)

*ISLiS

p (30) =15(3)
#ISL5

P (31) =15(5)
#KLI

P(32)=Xi (16)
*SDLI

P(33)=X1 (17)
*PLi

P(34)=K1 (19)
OP!Ll

P235) =PI (1)
*PIL2

P (36) =PI (2)
*QLl

P(37)rX1(21)

Unaolagged exogenous variables

*TCLL
P (40 = P (3) -S

* ?NLI I A.-

* rRL I
P 42. P(5)

*W2'L 1
P (431) =P(7)

*RZLI
r Pt44=P8S)
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*IETREND (Suppretsed for torn, runt)
*C P(9)=P(9)+l

*Ut. X1 at new ttartingq guesst

*do 100 i=1,2i
* X0(i)=XI(i)

*100 continue 4

return
end

17.
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Appendix B. Egqsvalencu 2f Muli kitt la tjlj qqiq qoefticien -

for Line ar SXsttem

Chapter II showed how the coefficients of a first order response

surface equation could estimate multipliers for a linear system. Here

least squares coefficient will be shown to be equivalent to the

multioliers.

Let

Y the n by m response matrix containing n observations on m
endogenous variables

X the n by k predetermined variable data matrix with k
predetermined variables and n observations.

0 the k by m multiplier matrix

Then the linear system can be written

V XD

Let B be the k by m least squares coefficient matrix. 8 is defined as

a (X'XV-X'Y

-(X'X)-
1 (X'X)D

-ID

B D

Therefore, the least squares coefficients computed for a tirst order

response surface fit to a linear model are identical to the multipliers

ior the same oerioa.
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Appendix C. Decoding Secona Order Resgonse Surface Coefficients

After estimating response surface coefficients in terms of the

coded experimental design, the response surface equation must be re-

expressed in terms of the original variables. Decoding the coded

response surface coefficients for a second order response surface equa-

tion is time consuming, tedious, and prone to errors. This appendix

outlines a method for decoding coded coefficients using matrix algebra

which simplifies the decoding process. If a computer with routines

caoable of matrix inversion and multiplication is available, decoding

can be made much easier.

Chapter II gave the formula for translating the ith original

decodea variabie to coded form.

Xi, xn . (X3....:)/- /

4ners

xc, = the coded x value,

, the original, decoded x value,

= the maximum factor level, and

x.,- = the minimum factor level.

Let

,.a-_,..

Ec >3.2) can be rewritten

The coded second order response surface quation is a Quaaratric

1 10

kaha.
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form which can be written

y =bc, Xc- (C. 2)
Jj

whereU
y = the response variable,

Xc, and xc, = the ith and jth coded independent variables,

bc., = the coefficient of the product of the ith and Jth coded

variables,

k = the number of factors,

xco = 1, and

br~o = the intercept term.

In regression program outputs bc., and bc, are summed because xc, =

Xc,. Consequently bc., in Eq (C.2) is half the value appearing as a

regression coefficient in a regression package output.

By defining appropriate vectors and matricies, Eq (C.2) can be

written in matrix form. If k is the number of factors (independent

variables) in the response surface equation, then let xn be the k+l

element column vector whose first element is one and the remaining

elements are the k decoded independent variables. Similarly, let X: be

the k+I element column vector whose first element is one and the

remainino elements are tne k coded independent variables. For example,

X X
Xci

:(n X n Xc = X r

X~kJ Xc. •

.. ~Ill.'.-
Lx D

- '-.

" - ''---''''..-'''.-..''':- '"---- - -,- -"-- -. -'---- -"---" " -" " "" " ."' '." - - -- -' - -- ' .-- "-- -'.-.-. -. """ - .-
r _ , , - ' " " " " . , U " , ' t . ,' ': i . . .' . . % " .- A - ° - , . ' -.!.'-. - ,' , - . "' ',,



Let Bc be the matrix whose elements are bc,, and So be the matrix whose

elements are bo,,. Then Eq (C.2) can be rewritten

ay = xc~cx. S'.

SimilIarly,

It follows that

XcTBCXC = xOTBxo (C.3)

So contains the coefficients of the decoded independent variables which

are desired. It is convenient to solve for SD in terms of Bc, xt, and

x.. Let A be the matrix which transforms xo to xc.

Axo = xc

tnen Eq (C.3) can be rewritten

xjTSCxc Z (AxD)BDAxDO

= x0 T (A
T BcA)xo

X T

Then it follows that

So ATBcA

It will be demonstrated but not Proven that

A = C (I-xu T )  fC.4)

w"-ere

A z the transformation matrix,

C = a K + by k+I diagonal matrix whose ith diagonal element is x,

(define xo = 1),

I = a k~l by k+l identity matrix.

• ' z~~~ 1 : '.

~~7i



x a k+l element column vector whose first element is zero and the

remaining elements are x,, and

u - a k+1 element column vector whose first element is one and the

remaining elements are zero.

An example demonstrates the validity of Eq (C.4). If k=2 then

= x X = _ =1 0 0]

L O 0 & x U' 
.-' ,

0- [1IQ 03 0 0

0 X 0 0 [- . = 00

El 07 JL 0 CF 1 0
-0 0 1u I - x 0 0 = -X 2 1 -

0 00

C~ ~ x 2 /. 0""o1 o 1 l o ,! :::
00

X' I U T )  = 0 /Z LX 0 . - , 
,. .-

137-- A

L-I.



L%, .**

100

= -Xz/&Xs 1/Ax 1  0 J

7X 2 /AX 2 0 1/1AX 2 -el

C'iI- XU)Xn0 01

X2A2 0 1 /AXJ2

+ 0 + 0

X 1 /Ax I + XD 1 /hX 1 +X 0 /

X2 /AX2 + 0 +X2&

- f(Xdt - X,)/Ax1

Lxd? - .4/&.

by Eq (C.1)I Then

BD C C (I-xu q)] TBCCC-' (I-xu T) ) (C.5~)

which is the desired result. Eq (C.S) is used to decode coded resconse

suriace coefficients in this thesis. It saves time and effort.
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Appendix D. Dgeoding the merimtal QUL"

Coded experimental designs are used to collect data for fitting

response surfaces. In order to determine what factor levels to run an

experiment or model at, the experimental design must be decoded from

l's, O's, and -I's to actual factor levels. Below is a FORTRAN program

which accomplishes this task. The program reads the coded experimental

design and factor levels from user specified files, and writes the coded

experimental design, factor levels, and decoded experimental design to a

user specified file. At the end of this section is sample output. The

output contains the Box and Behnken three level five factor coded

experimental design used so extensively in this research effort. The

output also contains the factor levels which are the design variable

niah and low sample values. After the factor levels is the decoded

experimental design. 5.

PROGRAM DECODE

# Translates a coded two level or three level experimental
* design matrix to a design matrix with actual factor levels.
* The factor level file must have MAXIMUM values followed by
* MINIMUM values.IMPORTANT' The data in each of the input
* design files must have the array dimensions (m n) as the
* first line.

*DECLARATIONS*

integer mD, nD, mF, nF, maxm, maxn,
& runitl, runit2, wunit

oarameter (maxm=ZQ0, axn=50)
double precision Dtmaxm,maxn), F(maxm,maxn)
double orecision Dc(maxm,maxn)
character*24 expdes. faclev, outfil
runit1=l

115"-
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wunit=3

*USER INPUT*

call getdat(expdes, faclev, outfil)
open (runitl, file = expdes, status = 'old'
rewind (runiti)
open (runit2, file = faclev, status z 'old')
rewind (runit2)
open (wunit, file a outfil, status = 'new')

*END OF USER INPUT*

call mread(runitl, 0, mo, nD, maxm, maxn)
write(wunit,l)
format(' EXPERIMENTAL DESIGN MATRIX')
call mwrite(wunit, D, mD, nD, maxm, maxn)
call mread(runit2, F, mF, nF, maxm, maxn)
write(wunit,*)' FACTOR LEVEL MATRIX'
call mwrite(wunit, F, mF, nF, maxm, maxn)
call switch(D, mD, nD, F, maxm, maxn, Dc)
write(wunit,*)' DECODED MATRIX'
call mwrite(wunit, Dc, mD, nD, maxm, maxn)
write(*,*)' All done!'
stop
end

***************** U**** * *N******************* ***** * * *** ****** e-

subroutine getdat(expdes, faclev, outfil)

* DESCRIPTION: Requests experimental design file name,
* factor level file name, and output file
* name from user at terminal.

* INPUT: Input and output file names supolied bv the user.
* OUTPUT: Variable values for expdes, faclev, and outfil.

cnaracter*24 e:,Ddes, faclev, outfil

write(*.*)' Enter coded experimental design file name.'
read(.0O) exoaes

. format(ad24)
write(*,*)' Enter factor level file name.
read(*,1O) faclev
write(*,*)' Enter output file name.'
read(*,lo) outfil

.0 format(Il)
return

11[6
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end

subroutine mread(runit, A, m, n, maxm, maxn)
4 DESCRIPTION: Reads dimensions and values for matrix
, A.
, INPUT: Values for dimensions and values for elements
* of matrix A from a file. Max size from calling
* program.
* OUTPUT: Matrix A, dimensions m, n to calling program.

integer runit, m, n, maxm, maxn, i, j
double precision A(maxm, maxn)

4 . ,

read (runit, *) m, n, ((A(i, j), j 1, n), i = 1, m)
return
end

*********! 44*4**4**4*i44!44,4*4***tll~tiitii*4l*~*4*****444444i****4 -'

subroutine mwrite(wunit, A, m, n, maxm, maxn)
* DESCRIPTION: Writes m, n, and then the matrix A in - -
* rows.
* INPUT: Array A with dimensions m, n and max size maxm, maxn
r. 4 from calling program.
4 OUTPUT: Values for m, n, and elements of A to
4 standard output.

integer m, n, maxm, maxn, i, j, wunit
double precision A(maxm, maxn)

write(wunit, 1000) m, n ::,T

1000 format( ',12,' BY , 12) ''.

do 1150 1 = 1, m .. '
writelwunit, 1100) (A(i, j), j 1 , n) :

1100 +ormat (' ' ,5E14.5) . -"
1150 continue :

write(wunit,*) ¢"

return
end

suOroutine switch(Dc, mO, n0, F, maxm, maxn, Dd)

117
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* DESCRIPTION: Creates a new array containing factor levels in
place of coded values from the design matrix.

INPUT: Coded design matrix, Dc, with dimensions mD by nD,
.* maximum array dimensions maxm, and maxn

* OUTPUT: Decoded design matrix, Dd

4' integer mO, nD, maxm, maxn, i, j
double precision Dc(maxm,maxn), F(maxm,maxn), Dd(maxm,

+ maxn)

do 40 i = 1, mD

do 30 i = 1, nO
Odl i0j)( F( 2,j) /2.Dc(ij)*(F(1,J)-F(2,J)

30 continue
40 continue

return

end

* End of FORTRAN code.

. °
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Sample Output Of DECODE (Box and Behnken Threm Level
Five Factor Design.

EXPERIMENTAL DESIGN MATRIX
41 BY 5

0. e+00 0. e+00 0. e+00 0. e+00 0. 0+005%
0.10000e+O1 0.10000ei+01 0. .+00 0. e+00 0. 0+00
0.10000e+01 -0.10000e401 0. 9+00 0. 6.00 0. 0+00

-0. 10000e+01 0.10000e+01 0. e+00 0. 6+00 0. .+00
-0.10000e+01 -0.100000+01 0. 0+00 0. e+00 0. .+00I
0. e+00 0. e+00 0.10000e+01 0.10000+01 0. .+00
0. e+00 0. e+00 0.10000e+01 -0.10000e+01 0. e+00
0. e+00 0. e400 -0.10000.401 0.10000.+01 0. e+00
0. e+00 0. .100 -0.10000e+01 -0.10000u+01 0. e+00
0). .+00 0. 10000e+01 0. e+00 0. .+00 0.10000e+01
0. e+00 0.10000e+01 0. 0+00 1). .400 -0. 10000e+01
0. e+00 -0.10000.401 C). .+00 0. e+')0 0. 10000e+01
0. .400 -0. 10000e401l 0. e+00 0. e+00 -0.10000e+01
0. 100008+01 0. e+00 0.10000.401 0. 9+00 0. e+00
0.10000e+01 0. 9+00 -0.10000.401 0. e+00 0. e+00
-0.10000e401 0. e+00 0.10000e+01 0. e+00 0. .+00
-0.10000e+01 0. e+00 -0.10000.401 0. e+00 0. 0+00

0. e+00 0. e+00 0. e+00 0. 10000e+01 0.10000.+01
1). e+00 0. e400 0. e400 0.10000e+01 -0.10000e+01
1). e+00 0. e+00 0. e+00 -0.10000e401 0.10000e+01
0). e+00 0. .+00 0. .+00 -0.10000.+01 -0.10000.401
o). e400 0.10000e+01 0.10000e+01 0. e+00 0. @+01)
1). e+00 0.10000e+01 -0.10000e+01 0. .+00 0. .+00
0. e+00 -0.10000e+01 0.10000e+01 0. e+00 0. e+00
0. e+00 -0. 10000e+01 -0. OOO0e.01 0 eeoo 0. e+00
0.10000e401 0. e400 0. e400 0.10000.401 0. e+00
1). 1ItOO)(e4Ol1 0. e+00 0. e400O -0. 10000e+01 0. e+00
-0. 10000e+01 o. e+01) 0. e+00 0. 100 0 e + )l 0. e~o0
-0). 10000e401 0. e+00 0. 6400 -0. 10000e+01 o). e00

r C. e~oO 1). e + 1) .10000e+01 0. e40O0 C. 1 000e + 1
0. e+(00 1). e+')Iv 0. 10000e401l C. e+00 -0. 10000e+01

C. e+01) 0. e+0.0 -0). 1 0000e+0 1 0. e+00) 1). 10000e+01
C. e+00 0. e+00 -0.10000e+01 C). e+00 -0.10000e+01

0). 1 ()(00e+,) I ). eC0 0. e.C)o0 . e~o0C)0. 10000e401l
0. 0 e) + C)00 1 1). e~v0 C) eeOC0 ). e+00) -0. 10000.401

-o). 1 1 )0 0e +0 1 0. e+00) C) e+9()o C. e+00 0). 10m0e+01
-0 (.)O+ 0041 0). e+,)() C. 94W) C e~oo oU. 10000e+01

e4( + 00 1 0000ie4C) 1 i). e+00 C). 1 C000e~o 1 1). e+o)O

I

t). eev, ' . 1 000e+01 o. e+00 -0). 1 000)0e-C) 1 0. e+00

I.'.
F7'. I'

eFi)1)-)v1)0e Factor1De 1) . II 0( +01 0. e0

FACTOR LEVEL MATRIX

. 0.e0 O. ie0 O. eO0 ). e+) ). 10400e-Ou2
5. tOOO~e 0 OO.714(e' e O20. 0 .2C0e O0 e Z 1 ) eO +0 Z
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DECODED MATRIX
41 BY 5

0.86300e+01 0.10140e402 0.497009+02 0.17820e+02 0.10400e+02
*0.11630.e.02 0.131409+02 0.49700e+02 0.17820.+02 0.10400e+02
*0.11630@402 0.71400.401 0.49700@+02 0.17820e+02 0.10400e+02

0.363000+01 0.13140e+02 0.49700@+02 0.17820e+02 0.10400.+02
0.56300w401 0.71400.401 0.49700.+02 0.17820e+02 0.10400e+02
0:.86300e401 0.10140.402 0.61700e+02 0.21820.402 0.10400e+02
0.86300u401 0.10140e+02 0.61700e+02 0.13820e+02 0.10400e402
0.863000+01 0.10140e*02 0.37700e+02 0.21820.402 0.10400e402
0.86300.401 0.10140e402 0.37700e+02 0.13820e+02 0.10400e402
().86300e+01 0.13140e402 0.49700e+02 0.17820e402 0.10400e+02
0).86300.401 0.13140e+02 0.49700e+02 0.17820e+02 0.10400e402
0.86300e401 0.71400e+01 0.49700e+02 0.17820e+02 0.10400e+02
0.86Z009+01 0.71400e401 0.49700e+02 0.17820e+02 0.10400e402
0.11630e402 0.10140e+02 0.61700e+02 0.17820.402 0.10400.402
().11630.402 0.10140e+02 0.37700e+02 0.17820e+02 0.10400e402
0.56300e+01 0.10140.402 0.61700e+02 0.17820e+02 0.10400e402
0.56300e+01 0.10140e402 0.37700e+02 0.17820e402 0:.10400e+02
0.863000+01 0.10140.+02 0.497009402 0.21820e+02 0.10400e402
v.a6300e401 0.10140.402 0.49700.+02 0.2'1820.402 0.10400e402
':.863006401l 0.10140.+02 0.49700e+02 0.13820.402 0.10400.402
0.863000+01 0.10140.402 0.49700.402 0.13820e402 0.10400.402
0.863006401 10.13140e402 0.61700e+02 0.17820.402 0.10400e402
0.86300e401 0.13140e402 0.37700@+02 0.17820.402 0.10400e402
0.8637006401l 0.71400.401 0.61700e402 0.17820e+02 0.10400.402
0.86300e+01 0:.71400e401 0.37700e+02 0.17820.402 0.10400e402
0.11630e402 ().10140e+02 0.49700e+02 0.21820.402 0.10400e+02
0.1163:0e402 Q.10140e+02 0.49700e+02 0.13820.402 0.10400.402
0.56300e+01 0.10140e+02 0.49700e402 0.21820.402 0.10400e+02
(. .56'00e401 0).101406402 0.49700e402 0.13820e402 0. 11400e+02
0).86300,401 10.10140e402 0.61700e+02 0.17820.402 0.10400e402
0.86300e+01 0. 10140e+02 O.ol700.+02 0.17820.402 0. 10400e+02
0.86300.401 0.10140e402 0.37700.402 0.178206402 0.10400.402
0.600e*01 0.101406402 0:.37700.402 0.17820e642 0.104006402
0.1163J0.402 10.101406402 0.497006402 0.178206402 0. 10400.+02
0.11630,402 0. 10140e+02 0. 49700e+02 0. 17620e+02 0. 10400e+()2
!). 560(0e40 I 0.1114o6402 0. 497ooe402 0.17820e402 ). 1040oe*02
0.!6N0e.(01 0. 10140e+02 0.49700e+02 0. 17820e+02 0. 10400e402
).a26:Oo)0i01 0. 131406)e401)2 0).49700e402 (1.21820e+02 '.1:0.402
0). 86Z00e+01I ). 1314(0e402 0. 49700e+02 10.13820.402' 0. 10400e+02

8i. 200e401l 0.7 1400e401 0).497006402-' 0.1820e*02 0. 10400e+02
8.6~zo0e+401 7. 14o0e+0 1 0. 49700ie.0)2 0. 1'8720e4U2' 0. 10400e+02



Appendix E. Response Surface Coefficients

Tables E.la-k below contain both coded and decoded coefficient

matricies for the second degree polynomial response surface equations

described in Chapter V. The matrix algebra method in Appendix D

was used to decode the coded coefficients. Consequently, off diagonal

elements in Tables E.la-k are half of the value normally given as a

coefficient for a polynomial (See Appendix D.). The column and row

marked with a I contain first degree term coefficients. The upper right

hand corner element in the tables is the intercept term.

Table E.Ia. Coded Second Order Polynomial Response Surface Coefficients
for Number of Workers Employed in Period Zero

(R2 = 1.0000, Adjusted R2 a 1.0000)

I Tw Tc G W2 N0

1 44.1080 -0.9029 -0.1937 4.6116 -0.8731 1.6890

Tw -0.9029 0.0000 0.0000 0.0039 -0.0033 0.0000

Tc -0.1937 0.0000 0.0000 0.0026 0.0000 0.0000

G 4.6116 0.0039 0.0026 -0.0088 0.0069 -0.0042

W-2 -0.8731 -0.0033 0.0000 0.0069 0.0000 0.0000 I
No, 1.6890 0.0000 0.0000 -0.0042 0.0000 o.0000
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Table E.lb. Decoded Second Order Polynomial Response Surface Coefficients

for Number of Workers Employed in Period Zero

(R2 a 1.0000, Adjusted R
2 = 1.0000)

I T. Tc 6 W2  No

1 25.2089 -0.1686 -0.0345 0.3059 -0.1366 0.4989

T, -0.1696 0.0000 0.0000 0.0000 -0.0001 0.0000m

Tc -0.0345 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.3059 0.0000 0.0000 0.0000 0.0001 -0.0001

.2  -0.1366 -0.0001 0.0000 0.0001 0.0000 0.0000

NG 0.499 0.0000 0.0000 -0.0001 0.0000 0.0000

Table E.1c. Coded Second Order Polynomial Response Surface Coefficients

for Price Index in Period Zero

(R2 = 1.0000, Adjusted R
2 = 1.0000)

.-.1

1 Tw Tc G W2 NG

1 134.5839 -2.1629 -0.4619 11.0416 -9.4508 6.1408

Tw -2.1629 0.0000 0.0000 0.1592 0.0776 0.0000

Tc -0.4619 0.0000 0.0000 0.0398 0.0000 0.0000

G 11.0416 0.1592 0.0398 -0.7819 -0.4222 -0.1191

Kw- -9.4508 0.0776 0.0000 -0.4222 1.8014 -0.6453

N e a.1408 0.0000 0.0000 -0.1191 -0..6453 0.168

-I.22
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Table E.ld. Decoded Second Oroer Polynomial Response Surface Coefficients
for Price Index in Period Zero

(R2 x 1.0000, Adjusted R2 = 1.0000)

I Tw Tc G g7 Nr

1 100.3344 -0.4786 -0.0927 0.842 -1.5949 2.0708

Tw -0.4786 0.0000 0.0000 0.0020 0.0022 0.0000

Tc -0.0927 0.0000 0.0000 0.0005 0.0000 0.0000

6 0.8742 .o0o0o 0.0005 -0.0034 -0.0043 -0023

W- -1.5949 0.0022 0.0000 -0.0043 0.0431 -0.0294

N, 2.0708 0.0000 0.0000 -0.0023 -0.0294 0.0144

Table E.Ie. Coded Second Order Polynomial Response Surface Coefficients
for Gross National Product in Period Zero

(R- = 1.0000, Adjusteo R2  = 1.0000)

1 Tw T~ c G___7____

1 113.3169 -2.0454 -0.4398 10.4517 1.2531 -0.0251

T, -2.0454 0.0000 0.0000 O.0088 -0. 0073 ,. 0044

T, -0.4398 0.0000 -0.0008 0.0051 0.0000 0. 0000

G 10.4517 0.0088 0.0051 -0.0186 0.0151 -0.,)094

W7 1.2531 -0.0073 0.0000 0.0151 0.0000 0.0000

N -0.0251 0. 0044 0.0000 -Q.0094 0.0000 0.0000

'.- ..- °
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Table E.If. Decoded Second Order Polynomial Response Surface Coefficients
for Gross National Product in Period Zero

(R2 = 1.0000, Adjusted R2 a 1.0000)

1 Tw Tc 6 W2  N --

1 70.6007 -0.3836 -0.0780 0.6933 0.1904 -0.0033

Tw -0.3836 0.0000 0.0000 0.0001 -0.0002 0.0002

Tr -0.0780 0.0000 0.0000 0.0001 0.0000 0.0000

6 0.6933 0.0001 0.0001 -0.0001 0.0002 -0.0002

W- 0.1904 -0.0002 0.0000 0.0002 0.0000 0.0000

Na -0.0033 0.0002 0.0000 -0.0002 0.0000 0.0000

Table E.Ig. Coded Second Order Polynomial Response Surface Coefficients
for Number of Workers Employed in Period Five

(R2 = 1.0000, Adjusted R2 = 0.9999)

I Tw Tc G W2  N-

1 49.4412 -3.4778 -3.5475 13.4030 -1.2750 1.4146

T, -3.4778 0.0000 -0.0939 0.4135 -0.1006 0.0000

T, -3.5475 -0.0939 0.0000 0.4108 -0.0934 0.0750

G 13.4030 0.4135 0.4180 -1.2752 0.3521 -0.2912

W7 -1.2750 -0.1006 -0.0934 0.3521 0.0000 0.0000

N0; 1.4164 0.0000 0.0750 -0.2912 0.0000 0.0000

14
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Table E.lh. Decoded Second Order Polynomial Response Surface Coefficients *

for Number of Workers Employed in Period Five

(R2 = 1.0000, Adjusted R = 0.9999)

I 6w T W2  NQa

1 10.3560 -0.7353 -0.7372 0.9930 -0.2682 0.5433

Tw -0.7353 0.0000 -0.0030 0.0051 -0.0029 0.0000

Tr -0.7350 -0.0030 0.0000 0.0047 -0.0025 0.0038

G 0.9925 0.0051 0.0048 -0.0056 0.0036 -0.0057 -,

W2  -0.2682 -0.0029 -0.0025 0.0036 0.0000 0.0000

Nr0  0.5439 0.0000 0.0038 -0.0057 0.0000 0.0000

Table E.Ii. Coded Second Order Polynomial Response Surface Coefficients
for Price Index in Period Five

(R2  0.9998, Adjusted R2  0.9997)

I Tw T r G W2  Nr, I j
1 185.6951 -14.8952 -12.8819 59.6286 -18.4974 15.2612

Tw -14.8952 0.0000 0.0000 0.0000 0.0000 0.0000

Tr -12.8819 0.0000 0.0000 0.8976 0.0000 0.0000

G 59.6286 0.0000 0.8976 0.0000 -2.5389 1.9044

w,- -18.4974 0.0000 0.0000 -2.5389 4.0012 -2.5593

N3 15.o212 0.0000 0.0000 1.9044 -2.5593 2.3429
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Table E.lj. Decoded Second Order Polynomial Response Surface Coefficients
for Price Index in Period Five

(RI = 0.9998, Adjusted R2 a 0.9997)

1 Tw Tc 6 W2 Ne

1 23.1609 -2.7764 -2.5197 3.8950 -2.3456 3.2888

Tw -2.7764 0.0000 0.0000 0.0000 0.0000 0.0000

Tr -2.5197 0.0000 0.0000 0.0104 0.0000 0.0000

G 3.8950 0.0000 0.0104 0.0000 -0.0260 0.0371

W2 -2.3456 0.0000 0.0000 -0.0260 0.0957 -0.1164

NG 3.3947 0.0000 0.0000 0.0371 -0.1164 0.2027

Table E.Ik. Coded Second Order Polynomial Response Surface Coefficients .

for Gross National Product in Period Five

(R2 = 1.0000, Adjusted R2 = 1.0000)

I Tw Tc G w2 N 1

1 141.3628 -9.2409 -10.6323 36.0425 -0.3852 0.7046

T, -9.2408 0.0000 -0.2276 0.9903 -0.2246 0.1707

Tc -10.6323 -0.2276 0.0000 0.9796 -0.2342 0.1769

G 36.0)425 0.9903 0.9796 -3.0659 0.8543 -0.7019

W2  -0.3852 -0.2446 -0.2342 0.8543 0.0000 0.1568

NG 0.7046 0.1707 0.1769 -0.7019 0.1568 0.0000
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Table E.ll. Decoded Second Order Polynomial Response Surface Coefficients %

for Gross National Product in Period Five

(R2 z 1.0000, Adjusted R2 = 1.0000)

I Tw Tc 62 No

1 43.4207 -1.9947 -2.1269 2.6404 -0.2824 0.4108

Tw -2.0001 0.0000 -0.0074 0.0122 -0.0065 0.0094

Tc -2.1269 -0.0074 0.0000 0.0113 -0.0063 0.0091

G 2.6404 0.0122 0.0113 -0.0134 0.0088 -0.0137

W2 -0.2805 -0.0071 -0.0063 0.0088 0.0000 0.0071

Ne 0.4108 0.0094 0.0091 -0.0137 0.0071 0.0000

Tables E.2a-e contain decoded coefficients for first order

polynomial response surfaces. They may be compared directly to

multipliers computed by Goldberger (Goldberger, 1959).

Table E.2a. First Order Response Surface Coefficients for a Unit
Increase in Tw.

Period

0 1 2 3 4 5

Nw -0.3367 -0.7538 -0.1081 -1.2729 -1.3347 1.2937 "

p -0.8293 -1.9435 -3.0677 -4.1201 .0475 -5.8117 C,

0 -0.7631 -0.1738 -2.5663 -3.12342 -3.4011 -3.4391
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Table E.2b. First Order Response Surface Coefficients for a Unit
Increase in Tc.

Period

0 1 2 3 4 5U

Nw -0.6769 -0.5968 -0.1038 -1.2756 -1.3243 -1.2333

p -0.1671 -1.4552 -2.6269 -3.5301 -4.1661 -4.5498

a -0.1532 -0.1418 -2.5847 -3.3451 -3.6914 -3.7003

Table E.2c. First Order Response Surface Coefficients for a Unit
Increase in G.

Period

0 1 2 3 4 5

Nw 0.6110 0.1214 0.1621 1.8268 1.8623 1.7715

p 1.5050 3.1437 4.6727 6.0734 7.3022 8.3124

0 0.13848 0.2804 3.8707 4.5208 4.47952 4.7662

Table E.2d. First Order Response Surface Coefficients for a Unit
Increase in W2.

Period

0 1 2 3 4 5

Nw -0.2705 -0.4465 -0.5115 -0.5069 -0.4599 -0.3919

p -2.9658 -4.5079 -5.Z932 -5.9814 -6.4147 -6.7606

0 +0j.3867 -0.3642 -0.2389 -0.2863 -0.2314 -0.1149
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Table E.2e. First Order Response Surface Coefficients for a Unit

Increase in No.

Period

0 1 2 3 4 5

Nu 0.9940 0.9776 0.9500 0.9127 0.8679 0.8218

p 3.6989 5.8267 7.3436 8.5786 9.6579 10.6483

a -0.0137 -0.5117 -0.1159 -0.2063 -0.3170 -0.4369
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Apendix F. Optimization Problem Solution

Shown below is the output file of the linear programming package

for the optimization problem formulated in Chapter VI. The output

includes a problem specification, optimal basic variable values,

shadow prices, and the objective function value. WW
.

Problem Specified for Solution

Maximize

TW TC S W2
* X I X 2 X 3 X 4 8 19

Obi
-3.11 -3.33 4.50 -0.29 54.40

Constraint 1 - max TW type is le
1.00 0. 0. 0. 11.63

Constraint 2 - max TC type is le
0. 1.00 0. 0. 13.14

Constraint 3 - max G type is le '--

0. 0. 1.00 0. 61.70

Constraint 4 - max W2 type is le
0. 0. 0. 1.00 21.82

Constraint 5 - inflatn type is le
-4.61 -4.12 6.68 -5.66 96.79

Constraint 6 - unemploy type is eq
-1.25 -1.26 1.80 -0.50 45.77

Constraint 7 - min TW type is gt
1.00 0. 0. 0. 5.63

Constraint 8 - min TC type is gt
0. 1.00 0. 0. 7.14

Constraint 9 -sin type is gt
0. 0. 1.00 0. 37.70 ,

Constraint LO - min W2 type is gt
0. 0. 0. 1.00 13.82

Activitv variables I through 4
Slack variables (S) 5 through 9
Surplus variables (P) 10 through 13
Arti4icial variables (A) 14 through 18

17.0
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Answers:

Basic Variables Value
X 1 : TW a 11.6300
X 2 : TC = 7. 1400
X 3 : a * 44.549-
X 4 : W2 - 21.8200
S 6 : max TC = 6.0000
S 7 : max 6 = 17.1511
S 9 : inflatn = 5.4738
SlO : unemploy= 6.0000 r
S12 : mn TC = 6.8489
S13 : mn 6 = 8.0000

Increase in Obi. Function for unit increase in
right hand side of constraints

Shadow Prices Value

Y 1 : max TW = 0.0246
Y 4 : max W2 = 0.9688

Y 7 : min TW = 0.1925
Y10 : min W2 a 2.4985

The value of the objective function is: 185.8114
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