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The purpose of this investigation is to apply response

surface methodology to a macroeconometric model to facilitate
“ better analysis with the model. Second degree polynomial response
) functions are used to derive function multipliers for the Klein-
Goldberger econometric model. The function multipliers show that
the impact of changes in exogenous variables depends on the levels
of one or more other exogenous variables. The function multipliers
are used to conduct policy analysis and assess factor importance.
As an extension, first degree polynomial response functions are
used in an example problem to maximize gross national product
subject to constraints on unemployment, inflation, and ranges of
fiscal policy variables. The example problem demonstrates the
flexibility and value of developing response surface equations for
camplex macroeconometric models.

The study concludes that a response surface can capture the
camplexity of macroeconometric models such as the Klein-Goldberger
model. Results also show that the assumptions of linearity for
developing multipliers can result in misleading values when non-

! linearity is present. Recammendations for further research include
fitting a more nonlinear model with response surfaces, and including
time as an independent variable in the response surface equations.
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k»«ﬁ)Thc purpose of -the-itnvestigztion is to apply response surface
aethodclogy to & macroeconometric model to facilitate better analysis
with the model. First and second degree polynomial response surface
equations express endogenous variables as functions of selected exoge-
nous variables in the Klein-Goldberger econometric model.

Second degree polynomial response functions are used to derive
function multipliers. The function multipliers show that the iapact of
changes in exagenous variables on endogenous variables depends on the
levels of one or more other exogenous variables. The function multi-
pliers are used to conduct policy analysis and assess factor impartance.
As an extension, first degree polynomial response functions are used in
an example problem to maximize gross national praduct subject to con-
straints on unemployment, inflation, and ranges of fiscal policy
variables. The example problem demonstrates the flexibility and value of
developing a response surfacg equation for complex macroeconometric
models. (ff____~ﬂ-_w“_mﬁ.“_*w__,_m

The study conciudes that a response surface can capture the
complexity of macroeconometric models such as the Klein-Goldberger
model. Results also show that the assumptions of linearity for
developing multipliers can result in misieading values when nonlinearity
1s present. Recommendations for further research include fitting a more

nonlinear model with response surfaces, and including time as an

independent variable in the response surface equations.
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AN APPLICATION QF RESPONSE SURFACE METHODOLOBY

TO A MACROECONOMIC MODEL

I. The Regearch Probles

This thesis deals with how aacroeconoaic models and response

surface methodology (RSM) can be brought together to provide better

analysis of a national economy. [ts purpose is to demonstrate that RSM
can reduce complex relationships embodied in macroeconometric models to
simple equatians. The thesis also interprets the simple equations and

shows how they can be used for practical applications. This chapter

puts the research effort into perspective dy briefly describing macro-
econametric models and response surface methodology suggesting possible
wavs to combine the twa. The chapter then outlines the research plan
including the resesarch problem, research guestions, research objectives,
scope, and general methodology for attacking the prablem.
Macroeconomic models are a set of economic relationships expressed
1n mathematical equations which allow economists to predict the perfor-
mance of a national econamy. Economists have develaped several types af
macroeconomic models. One type uses certain econamic 1ndicataors which
have historically led cyclical changes in the econamy. Another type
uses consumer attitudes and buying plans to predict econaomic perfar-
mance. The type aof particular 1nterest to this thesis is the econome-
tric model. Econometric models are systems of statistically derived

simultaneous equations based on theory and historical data which predict
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econamic performance.
To formulate an econometric model, economists first hypothesize
) equations tao describe theoretical econamic relationships for sectors of
H the econoay. For example, in one model, manufacturing output is a
function of the amount of hours worked in the manufacturing sector, the

amount of money invested in manufacturing, and average productivity.

Money invested in manufacturing is a function of manufacturing capacity
used in the previous period, manufacturing output in previous periods,
cash flow in the manufacturing sector, and interest rates on bonds. The
number of haours warked is a function of previous period manufacturing
autput, wage rates, and percent of manufacturing capacity used. Wage
rates depend on past wage rates and the cost of living, and so on
(Evans, 1969:433-442)., Economists postulate the faorm af functions such
as these and then use historical data to estimate unknown coefficients
in the equations with statistical techniques. Finally, they put egqua-
tions representing all sectors of the economy together and solve them
simultaneously to obtain predictions.

Klein and Evans ennumerate three major uses for econometric models
1n their work entitled, The Wharton Econometric Forecasting Model (Klein
and Evans, 1968:50). First, economists can use them for prediction,
Second, econometric models can simulate the consequences of econamic
policies such as tax increases, government spending, ang Federal Reserve
actions for periods in the past. In many wavs the most i1mportant use
tor ecanometric models, claim Klein and Evans, 1s computing multipliers
tor ¢iscal and monetary policy alternatives. Fiscal policy is manipula-

ting the ecanomy by gavernment spending and taxation, Monetary palicy
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is manipulating the econamy thraugh actions of the Federal Reserve such
as selling government bonds, changing the required reserves that banks
aust hold against demand deposits, etc. A multiplier is a congstant
which, when multiplied by a change in an econometric input variable,
gives the change in an output variable, Multipliers are especially
impor¥ant because of the increasing size and camplexity of econometric
models., For example, the Warton Econametric and Forecasting Unit has 33
equations and 29 identities (Evans, 1969:442), R model designed at
Brookings has aver 150 equations (Evans, 1969:503). The effects of
changes 1n certain input variables are difficult to trace through to the
final output of such large models unless multipliers are computed.
Unfortunately, multiplier analysis does not account well for nonlinear
systems with interactions among input variables. Response surface
nethodology might provide a way of overcoming these difficulties.
kResponse Surface Methodology (RSM) is an analytical tool for madel-
ling a very complex of unknown praocess with a single mathematical equa-
tion and exploring the resulting relationship between the inputs and an
output of the praocess. A response surface results from plotting output
values aobtained from the response surface equation against input
variables as they vary over continuous ranges. Chemical reactions are
classic RSM applications., Factors which affect the yield of a chemical
r2atien are temoerature, pressure, amount of reactants, and reaction
t.ne. If one were to set the amount of reactants at some set level and
+1: the time the reactants are allowed to react, a set of experiments

could be conducted at various combinations of temperature and pressure.

2y racording the viela of each evperiment and plotting that vield
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against temperature and pressure, the result would be something like the

graph of the response surface in Figure 1.1.

Yield

! -y

f tressurd <

& -_ - 'J
Temperature ’

5\.{'.:

Figure 1.1. Example Response Surface, Ko

P

Box and Wilson first introduced response surface methodology 1in !!;%
their 19351 paper entitled, "On the Experimental Attainment of Optimuam ;t;,

Conditions" (Baox and Wilson, 1931)., Since then, many researchers have
profitably applied the technique to problems in chemistry, foodstufés,
tool life testing, and other areas (Hill and Hunter, 1966:5746). Samith
and Mellichamp first demonstrated that RSM could provide valuable in-
si1ght into complex deterministic analysis models (Smith and Mellichaamp,
1979). Based on Smith and Mellichamp's work, students at the Air Farce
Institute of Technology have applied RSM to several deterministic and
probabilistic models (Manacapilli, 1984; Granev, 1984: Mertzler, 1984;
Sparraow, 1984), Deterministic models are mathematical representations
of an underlying process for which given inputs to the process vield the

same output every time the model is run. The outputs of probabilistic

o
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models contain random variation. Burdick and Naylor suggested applying
RSM to econometric models. They showed how to combine a simple six
equatian ecaoncmetric model and a utility function for economic policy
optimization by response surface techniques (Burdick and Nayler,
1969:29). However, they did not actually estimate response surfaces for
this system. Their ideas merit a sore thorough developaent.

Applying RSM to a problem involves several steps., First the pro-
blem is detined and variables of interest are specified. Next a response
surface equation, usually a low order polynomial, is selected to aodel
the process under study. Based an the response surface equation
selected, an appropriate experimental design is chosen which compro-
nises between economy of design points and orthogonality. Then the
experiment or model is run repeatedly at factor levels specified by the
experimental design. With the data collected from the experiament or
madel runs, a response surface equation is estimated using ordinary
least squares. After checking for adequate fit, the response surface 1s
ready for interpretation and analysis. These application steps are
cavered in much greater detail in Chapter III.

Several analysis methods are available for exploring response sur-
faces. Most of these methods are devised to enable the analyst to
optimize the underlying process or model that the response surface
represents, They include the method of steepest ascent, classical
gptimization using calculus, Lagrangian techniques, mathematical pra-
gramming, and others. However, optimization is not the only use for
response surfaces. Examining the response surface equation i1tsel¢
reveals characteristics about the underlying process or model. In

aggition, the impact of tradeoffs between 1nputs 1s easily assessed.
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These analysis techniques have potential applications for studying —

] macroeconometric models. For instance, constants or expressions siailar e
to multipliers could be estimated. These constants or expressions would iy

make the impact of changes in economic policy variables explicit.

Multipliers implicitly assume that the changes in response are at least }%}f

approximately linearly related to the change in input. Expressions

derived to serve as "multipliers” using the response surface technique

have no such 1mplicit assumption. Thus alternative policy options far O

e
: nonlinear models could be evaluated more accurately. In fact, given gf;g
; specific economic objectives, economic policy could be optimized. The ;;;
ﬂ; opotential applications for RSM 1n macroeconomics suggest several areas 35?
f for research. Below 1s the specific plan for this thesis effagrt. E;il

Research Plan ,;
. Froblem Statement. Economists have developed large econometric >{:i
: models to predict the performance of national economies. Unfortunately, ‘iti
. because of the complexity of these models, economists have difficulty - Q&Ei
: investigating the effects of changing key input variables on econonmic 5;%
E performance. Response surface methodology may be able to reduce kaey Eii
- AL N
" relationships in the model to a single equation. };:

Research Question. How well can response surface methodolagy

capture the predictive power of a large econometric model and can

response surface methodology simplify sensitivity analysis of such a i;:

model? “5F

. A
- A -\'.
- Subsidiary Questions. Several 1ssues related to the research gu;
X . ,-\._", ‘
deserve investigation. 3;’

. ) \
1. Can a response surface based on a simple function accurately --Ft

capture the relationships in a large macro-economic madel?
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2, 1ls there a limit to the size of model that response
surface aethodology can handle?

3. How can the coefficients of the response surface
equation be interpreted?

4, Do the response surface coefficients identify economic inputs
which are sost influential in driving a national econoay?

5. Can one use rasponse surface amethodology to determine fiscal
and monetary policy which the model predicts will optimize
particular measures of economic perfaormance?

Research Objectives. To answer the research questions, several

objectives must be met, They are:

1. Deteraine how well a response surface can fit the response of
important econemic variables to changes in fiscal and monetary
variables for an actual macroeconometric amodel. The sodel
shaould be moderatly sized, have some nonlinearities, and have
characteristics which are well known from previous analysis.

2. Verify that response surface does in fact reflect maodel
characteristics by comparing response surface equation para-
meters to multipliers computed faor the model.

3. Interpret the response surface equations.

4, Develop applications of practical value for the response sur-
face equations.,

Scope. This study demonstrates feasibile applications for response
surface methodology technigues in macroeconomics, To make the research
effaort manageable, several decisions are made. The study uses the
Klein-Goldberger macroeconometric model for the investigation. Reasons
for selecting the model are given in Chapter [I. Based on previous
experience with response surface methodology, a second order polynomial
response surface aquation is assumed. The model is caonstructed to
mirror the characteristics of the national economy which changes slowly
in response to changes in policy and so a second degree polynomial

should adequately fit the model. Moreover, Goldberger arques that the
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( Klein-Goldberger model is nearly linear {(Goldberger, 1959:136-138).
Response surfaces are built for three output variables in teras aof five
input variables. Although response surfaces with more variables could
be constructed, no particular advantage is seen in this. Although any
econometric model is stochastic in nature, it is assumed that the
é model is deterministic. Finally it is assumed that the model is a
5 reasonably valid representation of the economy’'s behavior with the
exception of deficiencies in the monetary sector which will be discussed
- in Chapter II. No effort is made to evaluate the model 's forecasting
: record.
General Methodology. The general plan of attack for accomplishing
the research objectives ist
1. Develop a computer program which solves the Klein-Goldberger
maodel for output variables in terms of given input variable

values.

2. Solve the model for values of input variables reqiured by the
experimental design selected,

- 3. Fit a second order polynomial response function to the data and
check fit,

4, Fit a first arder polynomial model to data for a direct
N comparison of response surface coefficients to multipliers
computed by Goldberger.

5. Interpret response surface equations and develop ways for
summarizing the information contained in the equations.

6. Develop practical applications for derived response
surfaces. Specifically, develop optimization anplications.

. Thesis Qverview. The chapters in this thesis follow the pattern 1n

this chapter. Chapter Il examines macroeconomic models in general and

the Klein-Goldberger model in particular. It also describes solution

[ NPV Y S

techniques and methods for deriving multipliers. Chapter [ll describes

the steps in applving response surface methodology and discusses how RSM
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can be applied to macroecanoaic models. Chapter IV details aethodology
for this research effort. Chapter V addresses how well the response
surfaces fit the model, and compares first order response surface
coefficients to Goldberg's multipliers. Chapter VI interprets features
of the derived response surfaces and develaps an optimazation problea
application for the response surfaces. Finally, Chapter VI! summarizes

findings and recommends further research.
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1. Macroecenosic Models 24

o

? Introdyction WAl
' Chapter | described what macroesconoaetric sodels are and how they tjb‘k
are used. The chapter explained that macroeconometric models are a set E{ktL
of siaultaneous equations based on theory and historical data which $ "

allows economists to predict the performance of the national econoay. i

Uses for econometric models include forecasting, policy simulation in -

historical periods, and most importantly, for computing multipliers !!E
which relate changes in fiscal and monetary policy to changes in Sﬁfz
ecanamic performance. Thig chapter explains aspects of a simple macro- E;E;
economic model, and uses this model to analyze how changes in fiscal :\;?f
: policy atfect economic perfarmance., Next the Klein-Goldberger (KG) i?&:}
' model 1s introduced. After discussing macroeconomic models, this chap- :gﬁi

aa

ter discusses methods ¢for solving macroeconometric models and deriving ;:
multipliers. %;S;
Describing how macroeconomic models are built is often the sudbject tiié
of an entire college course. The discussion of macroeconomics here is _VTE

merely meant to be a quick, simplified review of points relevant to the

research effart. The material presented is candensed from Baird and

extremely readable with plenty of helpful examples and 1llustratiaons. ::{3
The reader who is unfamiliar with macroeconomics is highly encouraged to o

consult the Baird and Cassuto text or a similar text. The discussion

below begins with economic equalibrium. Then the national income

.’:
e

identity is used to develap the commodities market of a general
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equalibrium amacroeconcaic model.
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A Simple Equalibriue Hodel

The primary assumption behind equalibrius macroeconomic models
is that the econoay aiways seeks an equalibrium., A rigorous arguaent
supporting this assertion’'s truth will not be atteapted; however, the
propasition makes intuitive sense, Nature is full of examples of systeas
which seek equalibrium. A dislodged boulder rolls down the mountainside
until is finds a valley to rest in. Chemicals react until they reach
equalibrium. Economic theory assumes that the economy will also seek
equalibrium in the absence of external disturbances. With this assuap-
tion this in mind, the macroeconomic model building discussion may
begin.

The Natignal Income Accounting ldentity. Perhaps the most widely
used performance measure of an economy 1s the gross national product
(GNP). This number is a measure of national tncome. It is defined as the

dollar value of all final goods and services produced for final consump-

tion during a calendar year, Mathematically GNP can be defined as:

g
L’..

Y=(C +1la+0 ¢+ Fc (2.1

o
(]

where

’

T

gross national product,

o R
=<
L]

consumption of goods and services,

y l'l'l
0.

o

"

"o

Ia

actual investment,
6 = government expenditures, and

Fe = net exports to foreign nations.

- NERIATA AL JER

In words, the equation says GNP is the total of a country’'s e
. . _ —y
expenditures on final goods and services plus the value of net exports, .
NUONL
- %
. SRR
. 11 ASEN
i s
: &
l‘:. . -‘\. -1
o K.
b...~~. AR -‘.'-....\..\*\1'-‘.'-..-."‘-,.~‘~.~'-'.‘...‘ B R S R ) e '-_.v e T e et et AR .‘..'.'-._.-_,.--_.-- BRAE
‘J}_A‘?A.‘J.Y.A.!..A.P)'h‘-?,n'l..‘..'m;\;l.},_; LN A',a_. .,',; .'z?.f;_‘_f,. '.\_.'_3:_.3,[,_\‘;_;.", e N ;'_!"'41’:::"4- : _p.'_': '_r-'_ ".-\ '_-‘ '.::'."A' _‘-_'.' A'J}.Pi'.’_%.‘t‘f.'."‘ AR .‘_.."-'}




Double entry accounting procedures for producing firas require that the
expenditures far producing those final goods and services be esqual to

the income from the sales of those goods and services. Mathematically,

C+la+G +Fc= VYo G +T (2.2)
where
Ys = disposable income,
Se = business savings, and

T = taxes.

The left side of Eq (2,2) is total expenditures and the right side
is total income. Eq (2.2) is known as the national incaome accounting
identity and 1t forms the basis for macroeconomic model building. On the
right si1de, disposable income, Y«, i€ after tax after business saving
income. Business savings, So, are the portion of business net income
which firms do not distribute to owners. For this discussion, business

savings will be assumed set a fixed level, 55. Finally taxes, T, are

income appraopriated by the government. For this simple model, it will AN

be assumed that taxes are fixed at f.

On the left side of Eq (2.2) are the components of total E;:é'
expenditure including consumption, i1nvestment, government spending, and ;;:ii
net foreign exports. If each of the components of GNP can be determined, :

GNP can be computed. The commodities market models the relationship if: i

between components of national 1ncome,
The Commodities Market. All of the analysis which faollows assumes

tixed prices. A variable price model requires development of other

markets i1n the econamy, The first compaonent of the expenditures side of

12

]
. - . - - T e e « e T - P - . - T .. . - - - - A D -“
P T I T P T Tt S S T T P A R P L B SN NI RS
PP iatsantadhd ot JIPS R T WA W N AT TR W W A 1 £y ) L PSR AT P B9 AL W Y AR DS DR AL I ST 1%, T W, T DL, D DR




Lt A LA R A St Al Al S Rl Al Al et M s a6 e 404 4 e AN AR LA IM A MM A DA A B0 04~ 45 800 Bla By Bhe alom S sl abing o) int Ml iad md Ll L d ot g

the national income accounting identity is consuaption. Consuaption is
in large part based on disposable income. The more income a person
1 receives, the more that person usually spends. Mathematically, this is
written C = C(Yal. A simple consumption function is C = C + bY¥s
where C is autonomous consumption that occurs without income, b is the
marginal propensity to consume, and Ys is disposable income. In general
i b 1s between zero and one because individuals divide their disposable
income between savings and consumption,

The next component of expenditures is investment., Planned invest-

ment 15 also a function of income because the more sales a firm receives

the more it will want to expand operations through capital i1nvestment. A
simple 1nvestment function 1g [ = i + vY , where I is the autonomous
part of 1nvestment and v 1s the marginal propensity for firms to invest.
v 15 between zero and one because firms expend i1ncome received an
orofits, operating costs, etc., as well as i1nvestment.

The next component of expenditures is gavernment spending., Govern-
ment spending is set by the government instead of market forces. Gavern-
ment expenditures 1s assumed to be set at a particular level, say
G.

The last component of expenditures i1s net foreign exports which 1s
the difference between exports and impaorts. For the purposes of this
analysis net foreign exports is assumed zera.

Figure 2.1 shows the relationships between components in the
national i1ncome accounting identity which together comprise the commodi-
ties market. The vertical axi1s measures total expenditures, E, and the

haorizontal axis measures total i1ncome, VY.
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Figure 2.1, The Commodities Market

The 45° line is the national income accounting identity and must
always hald, Line DD represents the sum of consumptiaon, expected
investment, and government expenditures known as aggregate demand. Even
though aggregate demand is the sum of consumption, investment, and
government spending, it is different from GNP because it includes
planned investment by firms instead of actual investment., It is possible
that planned investment will not equal actual investment. Included in
investment are inventaries of goods produced for sale. [f demand for
goods 15 lower than expected, inventories will increase in the short run
and actual tnvestment will be higher than planned. The difference
between expected investment and actual investment 1s the unplanned
increase in inventaories. Expected investment eguals actual investment
only at equilibrium in the commodities market (ie., when unplanned

changes i1n tnventaories are zero and the 45° line and the aqgregate

14
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demand line intersect). In Figure 2.1 Y* is the equalibrium income and a;g
E* is the equalibrium total spending. The system of equations which 3j§
describes economic equalibrium in the hypothetical econamy is :5;3
oo

Y=C+1la+6 (2.3) !!Q

Y 2 ¥+ 8, 47T (2.4) :
C=C+ by (2.5 A

- e

1 =1+ vy (2.68) !E,

6 =8 (2.7) o

- s

T=17 (2.8) $:q

- o]

Se = Se (2.9) E]

Ny

ol

G, T, and S. are assumed fixed. In the system of equations above, }};3

e

¥, C, I, and Y4 are known as endogenous variables. Endogenous variable

are variables which have values determined within the system. 6, T, and

S. are exogenous var:ables. Exogenous variables are assumed to have a
value determined outside the system. Although the system above is a ;i?l
complete system with the number of unknowns equal to the number of

equations, it 1s complete only because of the simplifving assumptions

used to formulate the equations., For instance, prices are assumed to be

constant. Since Y = PQ where P is the price level and Q is the real
gutput of the economy, any i1ncreases i1n Y are assumed to be 1ncreases in

real output, Q. Also 1t has been assumed that consumption and investment

are functions only of income, and that business savings are constant, !Eﬂ
The system of equations may be salved for any of the endogengus fijj

T

variables 1n terms of constants and exogenous variables. Solving the {;«
S

equations 1n this way gives the explicit effect of exogenous variables

15
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on an endogenous variable. Since the analysis has centered an
determinants ot national income, Y is solved for. The solution is
Y= 1 (C+1+6-=-0bT-nbSa) (2.10)
(1 - b - v)

Eg (2.10) is known as the reduced fora for Y since Y is expressed
in terms of known, exogenous guantities. The quantity 1/(1-b-t) is
known as a multiplier because is tells how many times larger the change
in Y will be in response to a change in 5. E, or 1. For instance, if b =
0.70 and v = 0,03 and G changes by ten billion dallars, then Y increases
by

($10 billion) = $40 billion
(1-0,70-0.0%5)

under the assumptions set forth above. The multiplier, 1/(l-b-v) will
henceforth be denoted as m. Eqg (2,10) makes the effects of changing
exogenous variables clear. For instance, if government expenditures
increase by AG, Y will increase by mAG. On the other hand, if T is
decreased by AT, Y will increase.by -bmAT. Since b is less than one, bm
is less than m. An increase in gavernment spending changes total income
by more that the same decrease in taxes. T is a lump sum tax. A tax rate
function could be introduced into the model, but it is not necessary for
this discussion and will be omitted for simplicity. Changes in Y due to
changes in the autonomous components of C and I are also easily
determined. Figure 2.2 shows the increase in Y due to an increase in G.
Increasing government spending shifts the aggregate demand line
from DD to DD’'which causes income to increase fram Y* to Y', In fact,
any change which causes a shift 1n E. f. or G will shift the aggregate

demand curve in a similar manner.
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Figure 2.2. Income Effects of Increased Government Spending

Changes in government spending affect more in the econoay than just
the commodities market. Increased government spending increases demand
for output and labor in the short run and eventually raises prices and
interest rates in the longer term. These effects are not seen in the
simplified commodities market presented here because of simplyfying
assumptions. Most macroeconomic models develop other interrelated
markets to model the behavior of interest rates, prices, money suply,
and labor. Multipliers for larger systems are auch more complex than
the simple multiplier in Eq (2.10), Multipliers must capture the
etfects of all variables in the model.

Econometric models like the Klein-Goldberger model are foramulated

to include many variables in the econamy. The KG model consists of 21
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sinultaneous equations, {3 of which are behavioral and & of which are rad
s identities relating variables, Behavioral equations such as Eq (2.3) and 5:
y A J:.
! (Z.6) have parameters which sust be estimated froa historical economic hﬁi
h Gy
data. Parameters in the KG model were estimated using econoamic data DS
from several sources, primarily the United States Department of .3§;
7: :‘Tn
Coamerce. The KG mcdel breaks the econoamy into separate government, ,i?}“

carporate, labor, and agricultural sectors, The model characterizes the
dynamic nature of the economy through a systea of lagged variables.

Lagged variables give the value of a variable in previous years.

For instance investment lagged one year is the value of investments one
year prior to the current year. Lagged variables are denoted by a
subscripted negative number which represents the number of periods the
variable is lagged. Investment lagged five years is denoted l-s.

Lagged variables together with exagenous variables are know as predeter-
mined variables., Understanding lagged variables is essential to under-
standing a central feature of the KG model.

Table 2.1 lists the 21 equations in the KG model and Table 2.2
defines the variables in the model. For a detailed discussion of the
model ‘s theoretical development, one can consult Klein and Goldberger's
ariginal work presenting the model (Klein and Goldberger, 193%5). Another

description of the model appears in Theil's Econometrics (Theil, 1971).

Table 2.1. The Klein-Goldberger Model (Adapted from Goldberger, 1959:4-7)

C = -22,26+0.55 (W +W2-Tw) 40,41 (P=-Tc-Tn-5c)
+0.34 (R +R2-T) +0,26C-140.072(L1}-1+0.26Ne (2.1. 1)
I = =16,73+0.78(P=Te=TutRi*+R2=To+D) - 1=0,073K_:+0.14(L>) -, (2.1.2)

18
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Sc = ~3,5340.72(Pc-Tc)+0.076(Pc-Tc-8c)-1-0.028(8s) -,

Pe = -7.60+0.68P

D = 7,25+0.10(K+K-.1)+0.044(Q-Wz)
2

Wi = =1.40+0.24(Q-W=2)+0.24(Q-N2)-4+0.29¢

(Q-W2) = -26.08+42,17Lh(Nu=-Na) +Nc1+0. 16 (K+K-1)+2,05¢
2

WeW_-: * 4,11-0,74(N -Nu-N)+0,52(p-1~p-2)+0.54¢t
Fr = 0.3240,0060(M-Tw-Tc=Tu=Ta) (p/pr)+0.B1(F:) -,
Ri(p/pr) = =0,36+40.054 (N, +Wo-Tu+P=-Tc-Tu-Sc) (p/pr)

“0. 0070 (Wi +W2-Tu+P-Tc=-Tu~Sc) (p/pn)1-,+0.012Fr
Pr = =131.17+2,.32p

Li = 0.14(M-Tu=Te=Tn=Sec-Tr)+76.03(i ~2.0) -9+

L2 =0.34+40.26W1-1.,021a=-0.26(p~p-1)+0.61(L2)-:
e = 2.58+0.44(i4)-3+0.26(ia)-=

100(ia~(ial-1] = 11.17-0.67Ls
ia

K=K-. = I-D
Se-(Sel) -y = S¢

Wi+Wo2+P+R,+R> = M

Cri+G=Fr = M+Te+D

h(W/PINe = WytW2

Q@ = M+Te+D

----------
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Table 2.2. Glossary of Variables for the Klein-Goldberger Mode!l
(Adapted from Goldberger, 19359:3-6)

New Brief Category
Syabol Definition
c Consumption Endogenous
D Depreciation Endogenaous
Fr laports Endogenous
Fr Farm exports Exogenous
] Government expenditures and
exparts Exogenous
h Hours af work Exogenous
I Investment Endogenous
ic Long-term interest rate Endogenous
is Short-term interest rate Endogenous
K Capital stock Endogenous
L Household liquid assets Endogenous
L= Business liquid assets Endogenous
Le Percentage excess reserves Exogenous
M National incaome Endogenous
Ne Entrepreneurs Exogenous
Na Government employees Exogenous
N¢ Labor force Exogenous
Ne Population Exogenous
Nw Employees Endogenous
P Nonwage nonfarm income Endogenous
Pe Corpaorate profits Endogenous

e e T e

I RIS



p Price level Endogenous
Pe Iaport price level Exogenous
pPr Fara price level Endogenous
"] Gross national product Endogenous
Ry Farm income Endogenous
R2 Farm subsidies Exogenous
Se Corporate surplus Endogenous
Se Corporate savings Endogenous
t Tiae trend Exogenous
Te Carporate taxes Exagenous
Te Indirect taxes Exogenous
Tw Nonwage nonfara noncorporate
taxes (less transfers) Exogenous
Ta Farm taxes (less transfers) Exogenous
Tw Wage taxes (less transfers) Exogenaous
W Wage rate Endogenous
" Wy Private wage bill Endogencus
W2 Gaovernasent wage bill Exogenous

The text below briefly describes each equation in the model.

€q (2.1.1) is the consumption function. It gives consumption as a

function of labor, corporate, and agricultural disposable income. The

N equation includes factors from the money market through the household

liquid assets (L.} term. Also included is a population trend.

Eqs (2.1.2) through (2.1.5) model the behavior of the corporate

sector. The i1nvestment function, Eq (2.1.2) 1s similar in form to the

consumption function., The investment function depends on corporate and

agricultural disposable i1ncome. The business liquid asset term relates
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invenstment to factors in the amoney sarket. Investment also depends on
capital which is the accumulation of undepreciated capital as stated in
Eg (2.1.16). Eq (2.1.3) links corporate savings to business income from
the current and previous year and business suplus from the previous
year. Corporate savings are also defined as the change in business
suplus in Eq (2.1.17), Eg (2.1.4) relating corporate profits to nonwage
nonfarm income is really just an empirical relationship used to close
the system. Depreciation naturally depends on the existing capital stock
in Eq (2.1.3). The second tera in the equation shows that depreciation
increases when there is a high degree of capacity utilization.

Eq (2.1.6), (2.1.7), and (2.1.8) aodel the behavior of the labor
market. Eg (2.1.6) is the labor demand function which gives private
demand for labor as a function of private sector output. &g (2.1.7) 1s
the production function which shows how labor and capital combine ta
produce private output. Eq (2.1.8) 1s the labor supply function, but is
expressed 1n terms of unemployment. The lagged prices in the equation
indicate that wages are slow to change in response to price changes.

Fareign imports in Eg (2.1.9) increase when national disposatle
tncome is high and foreign prices are low.

Egs (2.1.10) and (2.1.11) model the agriculture sector of the
economy. Eg (2.1.10) relates farm 1ncome to domestic customer prosperity
and foreign exports. The ratio between the general price i1ndex and the
agricultural price index accounts for the terms of trade of agriculture.
Eg (2.1.11) relates farm prices to the general price level.

Eas (2.1.13) through (2.1.1%) comprise the money market. Eas

{2.1.12) and (2.1.13) are the household and business demand $or money
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equations. The demand for money has two components: speculative demand
which is related to interest rates and prices, and transaction demand
which is related to income. Both components appear in Eqs (2.1.12) and
(2.1.13). Eqs (2.1.148) and (2.1.15) show the relationship hetween short
term interest rates, long term interest rates, and bank excess reserves.
Long term interest rates are merely a weighted average of past periad
short term interest rates. The percent change in short term interest
rates depends on bank excess reserves which are supposedly determined
outside the system. Most equilibrium macroeconomic models relate bank
excess reserves (which determine the supply of money) to other markets
in the econaomy through prices. The Klein-Goldberger model does not.
Goldberger suggests that this is a deficiency in modeling the link
between the money market and the commodities market. When the K6 model
was linked together to make extended period forecasts with excess bank
reserves set at a constant level, interest rates increased without
bound. This caused investment, consumption, and GNP to diminish to
zera. To remedy this deficiency, Goldberger set liquid reserves (L. and
L-) equal to a constant for all studies of the dynamic nature of the
model. This measure effectively deletes the money market from the model
(Goldberger, 1959:84-85). Consequently, interest rates must be ignored
and the commodity and labor markets are linked directly through output
and prices.

Eqs (2.1.18) through (2.1.21) are identities relating variables 1in
the model. Egs (2.1.19) and (2.1.21) together are KG model version af
the national 1ncome accounting identity.

In aorder to use the Klein-Goldberger model for the current state of

the economy, economists must solve the system of simultaneous eguations
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in Table 2.1. The following section shows how econometric models are ::"-.

E solved and linked together to provide extended period forecasts. In N

: addition the section discusses how the forecasts are used to compute :j-..'-

Y LR

E multipliers. f:::\

F Solving Econometric Models and Computing Multipliers RAS

Macroeconometric aodels are classified as linear or nonlinear. CF:

t Linear models are solved with different methods than nonlinear models. '.'.:j{"

Y '.:_;.'

i The KG model is an example of a nonlinear model. Nonlinearities appear oo

when current endogenous variables are raised to powers other than one or

e

are multiplied together. Nonlinearities appear in KG model Eqs (2.1.7),

+

(2.1.9), (2.1,10), (2.1.12), (2.1.15), and (2.1.20), ..4

s

Solving Linear Econometric Models. An example of a linear model is o

N

the Klein Model [ shown in Table 2.3 below. bes]

Py

.-

Table 2.3, The Klein Model I Linear Econometric Model =

B (Rdapted from Theil, 1971:432-43%) GG,

:',' \‘..\

4 u.:_\

v (NS

& C = 16,78+40,02+0,23P-+0,.80(W+W') +e DAY

Ny N

o

i I = 17.79+0,23P+0,55P_,=0.15K_,+e’ ‘.""

E W= 1,60+0,42X40,16X-(+0,13(T-1931)+e"" ‘:-::f:

:f X = C+1+6 f.:::.;

] P = X-W-T \

=

g K s K-1+l .

'[‘. where 5

:

i C = consumption, ™l

<5

E P = profits, }::x

il ’...'\

o-' W

I; W = wage bill paid by private industry, S

».‘_’\

i I = net investment, N

24 S

: o

e L e e e b e e B e il i




Pl
P

e 2,
+

A ‘A TS
A

a e

Ko ol il ot AN
Ay Ay 2g %
s

K = capital stock,

ﬁ

. X = total production of private industry, and

- ' -
g A
ﬁ e, o', and e’’' = randoa erraor teras. Pitd
? RA]
.in".l

i The acdel predicts current endogenous variable values given current [ ¥
4 ”,"
I“.-

. exogenous variables and lagged endogenous values. f};}
: Linear models can be solved with matrix algebra. Any linear :}}
l ecocnometric model can be put into the form !E
Gy + Bz = € S
- here h
i whe %;;
’; y = the » eleaent coluan vector of a endogenous variables, 1
ﬁ G = the m x a coefficient matrix with a coefficient for each of a ;?
R endogenous variables for each of the a equations fi
! 2 = the n eleaent column vector of n predeterained (lagged . ;
' :-:':\
y endogenous, exogenous, and lagged exogenous) variables, -“}:
] .
I Wy
" B = the m x n coeficient matrix with one coefficient for each of n :"E:
! predetermined variables for each of the m equations, and _,:
- E = the m element errar vector. :j%:
. .
i For the Klein Model I, e
- yT = I[C, Py W, I, K, X .
- 1,00 ~0.02 -0.80 0.00 0.00 0.00 i
' 0.00 -0,23 0,00 1.00 0.00 0.00 A
! BT =2]0.00 0.00 1.00 0.00 0.00 -0.42 Y
) 1.00 0.00 0,00 1.00 0.00 -1.00 ?:a
>, 0.00 1.00 1,00 0.00 0.00 -1.00 S
. 0,00 0.00 0,00 1.00 =1,00 0.00 o
. AN
2" = (1, Poyy Koyy Xouy Wy T, G, t) N,
?
- N
N
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~16.78 =0.23 0,00 0,00 -0.80 0.00 0.00 0.00
| -17.79 -0.55 0.15 0.00 0.00 0.00 0.00 0.00

! By =}249,43 0.00 0.00 -0.16 0.00 0.00 0.00 -0.13
\ 0.00 0.00 0.00 0.00 0,00 0.00 1.00 0.00
: 0.00 0.00 1.00 0.00 0,00 0.00 0.00 0.00
i and
, Evr = [e, e, &', 0.00, 0,00, 0.001
E For the deterministic case, it can be assumed that E = 0. Using matrix
l algebra cne can solve for y.
f y = -67'Bz (2.12)
i Letting D = -G-'Bz, Eq (2.12) may be expressed as
y = D2 (2.13)
l Eg (2.13) gives the unknown endogenous variables in terms of linear

: functions of known predetermined variables. The m by n D matrix contains
constants which, when multiplied by a predetermined variable, give the

l level of an endogenous variable. These constants are known as
multipliers. Multipliers will be discussed more fully later.

The Klein Model 1 forecasts only the present period fram past
periods and current policy. It would be useful to forecast a future
periad based on the current state of the ecanamy and the expected
external forces influencing the economy. Figure 2.3 shows how the state

of the economy evolves from peri10od to per:od as influenced by exogenous

faorces.
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Figure 2.3. The Evalving Economy

The solution for an extended forecast can be found by decoaposing
Eq (2.13) into its components. Far example, in the case where there are

only one periad lags, &g (2.13) can be rewritten,

y = do + Diy-1 ¢+ Daxa + Dax-y

Yo = vector of current endogenous variables to be solved for,
y-+ = vector of endogenous variables lagged one vear,

Xo = vector of current exagenous variables,

i-1 = vector of exogenous variables lagged one year, and

doy D1y, D2, and Dx = coefficient matricies.
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D> contains multipliers which give the impact of current exogenous

variables on current endogenous variables and are known as impact multi-
pliers.

It is assumed that xo and x-. are determined outside the systea by

uncontrollable events or by policy. However, y-. is the result of

previous period activity. Writing this explicitly,

~
[+]
"

do+Di(do*Diy-2+4Dax-1+Dsx-2)+D2xo+D3x-

(I+D1)do+D 2y_2+D2xo+(DyD2¢Dx)x-1+ D,Ds (2.14)

By decomposing the y-> into its components, aone can express the current
state of the economy in terms of exogenous variables and endogenous
variables lagged three periods., The process is repeated to obtain ¢ore-
casts for any number of periods in the future.

The coefficient matricies for the lagged exogenous variables
le.g.yx-1, x-2 1n Eq (2,14)] are especially important for policy analy-
s1s because they give the 1mpact of exogenous variables, 1ncluding
tiscal and monetary variables. They are different for each lagged periad

{e.g., Dz, (D:D2+Ds) 1n Eg (2.14)] indicating the changing influence of

the exogenous variable over time. The numbers i1n the D> and D,D=z+Ds
matricies are known as interim multipliers.

matrix algebra completely characterize both dynamic and static aspects :?:;:
of a linear system. They give the impact of exogenous changes on the “e
state of the economy at any point in time. Unfortunately, the national

econamy cannot be accurately described by a linear system. Ecanamic

theory prescribes inherently nonlinear functions. For example, nominal ot
endogenaus variables are often divided by a price i1ndex to obtain real i}ﬂ:
RO
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values. The price index is itself an endogenous variable, and so equa-
tions containing nominal values converted to real values are nonlinear.
Another example of inherent nonlinearity is productian functions. Func-
tions such as the Cobb-Douglas production function and the caonstant
elasticity of substitution production functiaon have proven to charac-
terize real world economics quite well. They are nonlinear.

Solving and analyzing nonlinear systems is not as simple as solving
linear systems, Nonlinear systems cannot be solved by simple matrix
algebra. Usually some numerical technique must be used. However, if the
linearize the system. Goldberger used this technique to linearize the KG
model. The derivations which follow are a condensation of Goldberger's
work. (Goldberger, 1959:17-20)

A Nonlinear equation in a single y and a single z can be written in

the +form,

fly,z2) =0

The total differential of the function f is alsoc equal to zera.

df = (/3y)ldy + (0f/+2)dz

Solving for dyv,

dy = -(9¢/02)dz (2.15)
(Y /3y)

Eq (2.13) gives the explicit dependence of changes i1n y on changes in 2.

The expression
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(S /dy}
may not be a constant, but if sample means are substituted for
variables, the expression can be evaluated at a point. If the equation
is approximately linear, this constant will be approximately correct for
a large range of 2, Next, consider the nonlinear system of equations

written in the operator form,

Fly,2)=0

where F is a matrix of functional operators. Taking the total

differential and solving for dy,

dF = (OF/Jdy)dy + (OF/dz)dz = 0
~(dF/ay) = =(3F/dz)dz

dy = = (dF/Ay) -t (OF/32) (2.16)

Eq (2.14) is like the solution to the linear system in Eg (2.12)

except it is expressed in terms of differentials. Also, YF/)y and OF/Az
are not always constant matricies but can be function matricies. By
evaluating these matricies at some value, say at the sample mean of each
predetermined variable, these matricies can be converted to constant :ﬂ%>f
matricies. The elements of the constant matricies are multipliers for
changes in predetermined variables. In general, they are guaranteed to
be valid anly for small changes about the point at which they are
evaluated. However, if the system 1s approximately linear, the multi-
pliers may be approximately correct over a wide range of values, If so,
they may be used in a manner similar to the D matricies computed for

linear systems. Extended period forecasts and interim amultipliers are
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computed in a manner analagous to the linear econometric aodel. Unfortu-
nately, one cannot aluayg count on the sconometric model being even
approximately linear.

1f the model cannot be linearized, then a numerical technique for
solving the model is usually used. There are several numerical tech-
niques available including Newton-Raphson, Gauss-Sidel, and others. The
method chosen for this study is the Bauss-Sidel. Klein recommended the
method over the Newton-Raphson method because although the Newton-
Raphson method usually converges in fewer iterations, each iteration
requires significantly more computation than each iteration of the
Gauss-Sidel method (Klein, 1974:238-240). The Gauss-Sidel method is also
easy to program and debug and does not require the computation of a
derivative, Appendix A describes the Gauss-Sidel method in detail.

Solving the nonlinear econometric model for current endogenous in
terms of predetermined variables produces a forecast of current endoge-
nous variables. To be even more useful, a method must be devised to
produce extended period forecasts. Extended period faorecasts can be
camputed from current period forecasts by setting lagged endogenous
variables equal to the current endogenous solution, updating the exoge-
nous variables, and resclving the system. For example, after each solu-
tion is computed, current values of consumption, investment, etc., are
determined. To extend the forecast, the consumption, investment etc.,
variables lagged one year are set equal to the current solution for
consumption, investment, etc. Lagged exogenous variables are updated in
a similar manner. Current exogenous variables are set to whatever the

policy under 1nvestigation requires, Then the model is resolved. In this
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way, the model can be linked together to obtain forecasts for any nuaber

of periods in the future.

Because multipliers are so valuable for policy analysis, a method
of camputing multipliers for models solved by numerical techniques is
needed. Evans and Klein describe a acre general amethod ot deteraining
rultipliers which can be used with models solved by numerical techniques
(Evans and Klein, 1948:48-49), To calculate the aultipliers, a control-
led salution, y., is computed with all predetermined variables (exoge-
nous and lagged endogenous) at a given level, and with the input
variable of interest set at, say, xc. Next, a new solution, ya, is

computed with x at a disturbed level, xs. The multiplier, a, is then:

N = Ya = Ye (2.17)

A generalized multiplier such as a can be computed for a "package" of
changes in predetermined variables. However, they are valid only for the
changes and variable levels used to estimate them. A separate run for
each combination of input variable changes must be made to estimate each
multiplier.

The limitations of econometric models and multiplier analysis are

summarized belaw.

1. Linear econometric models can be constructed which are easily
solved and analyzed: however, they do not accurately reflect
the national ecaonomy 1n theary or in practice.

2. Near linear models more accurately predict the performance of
the national ecanamy, and they may be anlayzed with aminor

accuracy degadation, but they may not adequately model the
inherent nonlinearities of the actual econonmy.
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’ 3. Less aggragated, aore nonlinear models may be devised which -i}L
i accurately predict the economy, but such models are difficult KALs
to analyze. Multipliers may be calculated by computing control !!i
and disturbed solutions and then dividing the difference in ﬁi:
" these two solutions by the difference between input variables. N
b However these amultipliers are good only far small changes about :{;:
2 the specific disturbed solution for which they were computed. N
v The model aust be rerun for each policy alternative is examined. v
? Respanse surface methodology is one way of overcoming some of these 5
. difficulties. Response surface methodology accomodates nonlinearities. .
By fitting a response surface to an econametric model, one could
i investigate the effects of varying one or more key input variables
E singly or jointly over their entire ranges. The next chapter describes
¥ response surface methodology and explains how it might be applied to
)
" econometric models.
(4
4
1 [ 4
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I11. Applying Response Surface Methodology

Chapter | describes what response surface methodology is and how
it can be used. This chapter discusses the steps in applying
response surface aethodology to a problea in general to provide a
background for the methodology developed in Chapter IV. This chapter
also suggests specific ways to apply response surface methodology
ta the analysis of econometric models.

Applying RSM can be divided into eleven distinct steps. The steps
are

1. Define the problem and determine that RSM is an appropriate
analysis technique.

2, Determine the input and output variables of interest,

3. Determine the operating region af interest.

4. Select a response surface equation.

5. Select an experimental design.

6. Translate the coded design paints to actual factor levels.

7. Run the experiment or model to obtain responses for each set of
factor levels.

8. Regress the coded experimental design on the responses.
9. Check the response egquation fit.
10, Decocde the response surface coefficients.
11, Perform analysis on the fitted response surface.
The discussion below amplifies each step.
The first step in applying RSM 1s to define the problem and to

decide that RSM 1s an appropriate method for analysis. Nat all probiems
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lend themselves to analysis by RSM. RSM relates multiple inputs to a
single output. Meyers further points out fundamental assumptions under-
RSM is appropriate for problems in which the relationship between

input variables and output variables is either very complex or unknown,
but the variables are quantitative and continuous. Alsa, the functianal

relationship between inputs and the response must be approximated by a

low order polynomial or other simple function whose parameters are

estimable. Finally, the input variables must be controllable and all

SN R AR

variables must be measured with negligible error.

E2 R TR -E RAR RN cEeeRelits Ze ZaocatemZa

The second step in applying RSM is to determine the input and

output variables of interest. The input variables selected far the
analysis must include all the important factors which bear on the
problem. Properly defining the problem should make these impartant
factors obvious. However, the size 0f the experimental design required

to estimate respaonse functiaon coefficients increases rapidly with the

o

SN

number of factors (more on this below). All important factors should be :{t-
included in the respaonse surface equation, but the number of j:f:
\.‘ \'

experimental design points required must be considered.

¥

Once the variables of interest have been selected, their ranges
must be specified. The ranges of the input variables must be feasible
and i1ndependent of one another. In addition, the ranges should be narrow
enough so that the response does not contain too many 1nflection points.

Toc many inflection points in the response require a complicated
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response function with higher order terms and a large experiaental
design to accurately capture the input output relationship.

The response surface equation selected in the fourth step is
usually a first or second degree polynomial. An example of a first

degree polynomial response surface equation with two input variables is

y 2 Bo + Bix;: + Bzx2

and an example of a second degree polynomial response surface egquation

with two input variables is

y ® Bo * Bi1X12 + ByXx: #Bi2xiX2 +B2x2 + Ba2x2?
where
y = output (response) variable,
X1y, X2 = input variables, and

B.

response surface coefficients to be determined

(i =0, 1, 2.).

There are a number of advantages to using a low order polynomial as
a response surface equation, First, the coefficients of a polynomial are
estimable by the method of least squares, the most commonly used
regression technique. Also, experience has shown that a first or second
deqgree polynomial works well as a response surface function because a
polynomial is a truncated form af the Tavylor series (Meyers, 1976:62).
Anather argument for the use of low aorder polynomials 1s that many
experimental designs have been developed for collecting data to estimate
the coefficients of polynomials. However, functions other than

polvnomials can serve as the response surface equation, Theoretical
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R considerations may dictate the use of a certain type of mathematical \f§
j function, Such functions may approximate the response very closely and 55;
2 should be used; however, these functions should remain simple so that gsf:
: aspects of the underlying process can be easily explared and interpreted .:.

: (Hill and Hunter, 1966:373), :Qfﬂ
Selecting the Experimental Design
. The next step in applying RSM is selecting an experimental design. TE
- An experimental design is a set of specifications of input variable )
% levels for repeated experimental runs of the process under study. Each gi;
- combination of input levels is called a design point. Table 3.! contains E:E:
. an exanple of a three level three factor experimental design with 27 &;?
‘:E design points. :'}.:
. e

A

The design in Table 3.1 is in coded form, Factor levels are ;;f
% represented by 1, 0, and -{ for three level experimental designs and 1
% and -1 for a two level design. For a three level design, a | represents
- the factor high level, a -! represents a low factor level, and a 0 '“#
represents the average of the high and low values. In a two level Hﬂb
design the | represents the high level, and the -1 represents the low :2{2
level. i{?
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Table 3.1. Three Factor Three Level Factorial Experimental
Design

Factor 1

Factor 2 Factor 3

-1
-1
-1
-1
-1
-1
-1
-1
-1

—pn et g b = = = O O OO OO OOCO

By using an appropriate experimental design, one can estimate the
coefficients in the response function with a minimum number of experi-
mental runs. Econaomy of runs is an important criteria for choosing an
experimental design. However, the minimum number of runs required to
accurately estimate response surface coefficients depends on the type of
response surface equation. Equations with higher powers of variables
and interaction terms (products of input variables) require more runs to
estimate the unknown coefficients. As noted in the paragraph on selec-
ting variables of interest, the size of the experimental design limits

the number of variables in the response surface equation. For example,

- - » = - » D S T S - - e tata.
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if k is the number of factors, a three level factorial experimental ;li
design requires 3* experimental runs to estimate the coefficients of ::b
main, inteaction, and squared factor effects. A 3* factorial design 55::
_::\ 3
requires 729 experimental runs. If it is known that some coefficients =
are insignificant, some experimental runs may be eliminated. In addi-~ s
A
tion, some runs may be eliminated at the expense of having some of the A

variation attributed to the wrong ternm.

Attributing some of the variation to the wrong term is caused by

sulticolinearity in the experimental design. Multicolinearity accurs iz%j
because of correlation between input variables. Ideally, the experimen- ?E;.
tal design should be orthogonal, which means that there is zero correla- :??
tion between input variables. Most orthogonal designs require numerous :

design points. Conseaquently, selecting an experimental design involves a Eéi
tradeoft between economy of experimental runs and orthogonality. Box and l;; 
Benkhen devised some three level designs which make a very reasonable -?E;

tradeotf between arthogonality and economy. These designs can be found

1n the paper entitled "Some New Three Level Designs"” (Box and Behnken, v o.

1960:460-4563) .

One additional point worth mentioning 1s that most experimental ;;;
desi1gns are devised for experiments in which there i1s random variatian F?!
in the response due to uncontrallable factors. They contain extra L;i:
paints, usually center points, to estimate the size of this random §}£~
variation. [f the response has no random variation, then these extra :}éﬁ
points are redundant and may be eliminated. Work in this study assumes Eii
that there is no random variation in the Klein-Goldberger econometric ;é;
model (1.e., it 1s a deterministic model), and so repetitive center .‘
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Decoding the Experimental Desiagn [ 3

. Before the experiment can be run to obtain data for estimating the C‘{i

N

X response surface, the experimental design must be decoded from i's, 0's, e
and -1’'s to actual factor levels. The range of the variables of interest liFi

l determines the factor levels for the experiment. For example, if the -

. range of a variable is 10 to 40, then a | in the experimental design ,%‘
represents a factor level of 40, a -1 represents 10 and a 0 represents ‘
the average of the two factors, i.e., 35. ji-

. Running the Experimental Design L

To obtain the input and output data necessary to estimate the ':;%

~ R

. response surface coefficients, the experiment must be run at the levels S

f specified in the experimental design and the response recorded. This jff'

' step is straight forward. When running an actual experiment with randam 53‘

) variation, it is advisable to randomize the order in which the experi- Gﬁf.

- '."n:

3 ments are run. However, when obtaining data from a deterministic ﬁ}:

" mathematical modei, order 1s unimportant. 7:t

3

Once an appropriate experimental design has been selected and the
experiment run to collect data, the response surface must be fit tao the

data. The surface is fit to the data by computing the response surface

zoefficients. The method of least squares regression is the usual method

for fitting a surface to data. This method computes coefficients which
r. mianimize the distance from the observed regponses to the response sur-
tace. For a more thorough discussion of least squares estimation, one

can cansult a statistics textbook. One excellent source 1s Mathematical

P2 23 2P P ¥ ¥
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(Mendenhall, Scheaffer, and Wackerly, 1981:425). Response surface coef-

ficients are estimated by regressing the coded experimental design
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matrix an the respaonse variable, Using the coded design matrix preserves jif:
orthogonality. Bﬁ&,
Checking Fit e

Once the response surface has been constructed, it must be checked E%Z%
far proper fit, There are at least four ways to check the fit of the :i?i
response surface. They include checking the R® values, checking the sum ggsi
of squares errar (SSE), checking the residuals aof the design goints, and TEFQ
checking the residuals of random points. The R? value gives the fraction ;iﬁ
of total variation explained by the response surface equation. RZ ‘?Ei

always 1ncreases with the number of factors in the response surface
equation. SSE gives much the same information as R*, except it may
increase with the number of factors after a certain point. The R? and

SSE criteria are the easiest and quickest way to check far fit.

Another way to check fit is to examine residuals. By dividing the s
' T
residual by the actual response value, a measure of the error can be Ay

computed. These errors can be averaged for all the desiagn points and

then subtracted from one to give a value similar to R, Mathematically, :F;'
this relation is ﬁa,
percent fit = 100 %l ~ | :?;Iv. - Q.I ;?j
ni= | Y1 1 |'..-_.
where .
y. = macroeconometric model output for i1nput combination 1, ﬁ}j
V. = response surface output for i1nput combination i, and ;?j‘
n = number i1nput caombinations. !Ei
S
S
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It is perhaps even more useful to look at the largest errors to

determine where the greatest lack of fit accurs. Residual plots are also
helpful in determining where lack of fit occurs,

As a final check of the response surface fit, experiments with
random factor levels can be run and the responses compared with
responses predicted by the response surface. An error measure similar to
the error measure based on residuals can also be computed. The advantage
ot checking randam points is that it may reveal anomalies in the
response which were missed by the experimental design.

The four measures of response surface fit mentioned here are used
to determine whether or not the response surfce fits well enough for the
purpose intended. If the response surface does not fit well enough, a
new response surface equation is usually postulated. Steps 4 thraugh 9
are repeated until the fit meets requirements.

Once an acceptable response surface is abtained, the response
surfiace equation is decoded. The equation requires decoding because the
response equation computed 1in step eight was computed ¢rom coded input
variables. To make the response surface equation interpretable it must
be expressed in terms of the original variables. Let Xx.~.. be the high
tfactor level for the ith factor, %x.m.~ be the low factor level for the
tth factor level, and x.o be the decaoded factor level for the ith
factor, and x.c be the coded factor level for the ith factor. By
substituting the expression

Xie = X_l_:'l -(x\mnn*x(mxn)lz (3.2)
(X;m.n_x\m\n)/z
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in the coded response equation for the ith coded variable and collecting
terms, the egquation is decoded. Decoding equations in this manner by
hand is tedious and prone to error. To make the job easier, a second
order polynomial response surface equation can be decoded using matrix
algebra. (See Appendix C)

The final step in applying RSM is analyzing the response surface.
The methods available for analysis are discussed in detail in the
section below, But first, a few prelimiary comments are in arder.
Obtaining a good response surface equation fit implies that the response
surface is an accurate representation of the underlying process or
model. More faith can be placed in the validity of the response surface
if the check of random points confirms a good fit. However, the response
surface is only valid for input variable values within the ranges
ariginally used to estimate the response surface. A response surface
fit to a deterministic model may fit well, but the response surface is
only as good as the underlying model used to construct it, [f the maodel
does not capture the process it is supposed to represent, the response
surftace will not either.

There are several well developed uses for response surfaces. The
most commonly wused technigque is optimization. The explicit form aof the
response surface equation giving the respanse variable as a function of
known, controllable i1nput variables lends 1tselt to gptimization prob-
lems, Moreover, Granev showed how several response surfaces could be
combined for constrained optimization problems (Graney, 1984). Anather

use of response surfaces is for perfarming “what if" analysis. One can
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determine the impact of changing input variables individually ar jointly
without running the model or experiment. In addition, tradeoffs between
factors can be displayed to decision makers graphically for valuable
insights into the problem. Response surfaces can also be used to make
predictions. One must remember that the predictions made are only valid
if independent variables not in the response surface equations actually
assume the levels that they were at when the response surface was
estimated.

These uses suggest several applications for macroeconomic models.
Multiplier analysis completely captures the input-output relationship of
linear models well, but it cannot handle nonlinear models as well. RSM
should be able to capture input-output relationships i1n nonlinear mogels
tor key variables easily. Response surfaces describing key economic
performance variables such as gross national product, inflation, and
unemployment could be used to assess the impact of changing fiscal or
monetary policy variables such as government spending, taxes, and money
supply. The response surface could be used to answer “"what if" questions
tn policy simulatiaon, Optimal policy for obtaining specific economic
goals could be determined. All of this analysis could be done using a
limited number of experimental runs. A respaonse surface captures the
relationship between variables of i1nterest over the entire region of
interest, The controldisturbed solution method of computing multipliers
anly characterizes haow specific changes in input variables affect output
variablies, Every time a new combination 0f policies 1s considered, the

model must be rerun and a new multiplier computed.

This chapter describes the general procedures for generating

44

stata N . RIPICIARY . Ceet
et - R I I P ST TR It PR T,
SUTX Y XTI TR Yy 3y ST U Y N PRI Ik

S e e T R A
LI LI SN I VR U VNPT SN oV . N Y




Y T TR W T . - M—
A Q‘ n\ »‘ .‘ - .\ - " - P r- hal R - - . P s 2 N . . - - - - - _ Iy - W - . - [Vl - 1 ‘BN Aty - . Y
. wo
.
- » Xa
RIS
- o

respanse surfaces and suggests ways of applying RSM to the analysis of
macroeconamic models. Chapter IV describes how the general application e uod
steps are actually applied to the Klein-Galdberger econometric model in 52

this study. Ay

LS

’
o e

ey I
G

Vasit ik
bt te et te e ]

3 '!;, K .'.’

,

8 s
v

’

v ll ’
> a_ & "..\' l‘

..J,:.I'-"":l”:'ll
St




o 3o o

N, e, -

I RIS W

Tt

R A R T TR
ad ad aland ol el oo oo

IV. Methodology

This thesis effort proposes to bring together concepts from two
areas, response surface methodology and macroeconaometric modeling.
Chapter | lists the specific objectives to be met by this research
effort., They include determining whether RSM can accurately fit a
macroeconometric model, reproducing multipliers for the macroeconametric
model via RSM, interpreting the response surface equations, and
developing RSM applicatiaons for the response surface equations. This
chapter develops the methodolagy by which these objectives are achieved.

To accomplish the research objectives, a scheme must be developed
for generating and checking response surface a2quations from the Klein-
Goldberger model. The scheme used here follows the general steps for
applying RSM to any problem as discussed in Chapter III. This chapter

discusses each step in detail.

2R - PP B ,—a semRsaa= masEecals Scaamas=s

Determining which variables to use in the response functian depends on
the specific purpose for which the response surface 15 to be used.
Because applications developed are geared toward determining the best
economic policy far the federal government, the exogenous variables
selected for manipulation are caorporate taxes (Tc), wage taxes (Tu),
government nonwage spending (G), government wage bill (W=z), and number
of government employees (Ne). These variables are instruments of federal
palicy which are broken out in the KG model. It is also desirable to see

how the economy can be manipulated through monetary policy as well,
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Unfortunately, Goldberger admitted that while the KG model did an
adequate job of forecasting current monetary variables (such as short
term interest rates, long term interest rates and liquid assets), it did
a poor job of simulating economic changes further in the future
(Goldberger, 1959:84-83). Goldberger claimed that short ters interest
rates would increase without bound. In addition, the model failed to
capture the relationships between the model 's monetary sector and the
other sectors adequately. Consequently, the monetary sectaor af the model
is omitted from further consideration,

There are several possible endogenous variables for which response
surfaces could be built. Economic performance indicators commonly used
to asses the health of the national econamy include percent growth in
gross national product, percent unemployment, and percent inflation.
Other measures are interest rates and federal deficits. The KG model
does not include federal deficits. Because of limitations mentioned in
the preceding paragraph, the model cannat be used to study the dynamic
properties of interest rates. In this study, response surfaces are built
far gross national product (Q), total number of warkers employed (Nw),
and the price index (p).

Selecting the Response Surface Equation. Once the variables of
interest nave been selected, the next step, selection of the response
surface equation can be accomplished. Because of the arguments enumer-
ated 1n Chapter IIl, a second arder polynomial has been selected as the
response surface equation. Since Goldberger argued that the model was
nearly linear (Goldberger, 1959:136-138), a second order polynomial
should have no difficulty approximating model ouputs. In addition, if

there are any significant interactions between variables ar second order

47

. - e L T LT St S St T ST S S LR Y
et e . ‘4."\,’-“»"-"."."""-‘ T WU \'-.‘-.'-. o S

- ote "
RN RGN B AR
PONPRF AR JL VK PR PR YRR PR,y LN P AR




;r,;v"_v\r.“r‘f, LN A R A i A il " st CANESME A S e ol R e e o SRR N A NS A (- g s Lt gt AN ai oM prl st aPl ot sl phe aai
.
b
J
\
)

effects, the second order equation will pick them up. [f the second
order polynomial does not fit well enough, a higher order polynomial can
be used.

Because one of the objectives of the study is to reproduce
sultipliers, the first order polynomial is also of interest. It can be
shown that coefficients computed for a first order response surface for
linear econometric models are mathematically equivalent to the

multipliers derived in Chapter Il (see Appendix B). Because the KG

model is nearly linear, the coefficients of the variables in the first

order decoded response surface should compare quite closely with

multipliers computed by Goldberger, :iuT

Selecting the Experimental Design. Selecting the variables of '{1
interest and the form of the response equation narrows the chaices of isﬁ‘
experimental designs. A three level full factaorial design with five !!ig

factors wauld require 3% = 243 runs of the KG model just to build

response functians for period zero. For each succeeding period, another ;;uA
o g
set of 243 runs would have to be made, A more economical design is found s

in Box and Behnken's 1960 paper entitled, "Some New Three Level Designs
far the Study of Quantitative Variables" (Box and Behnken, 1960:460),
Box and Behnken's five factor design has only 44 design points. Of
these, five are redundant center points which can be eliminated for a

deterministic model. The design is highly orthogonal with only a slight

correlation petween the squared and intercept terms. The Box and

Behnken design warks especially well for variables with small variance.

E
:

Since the K-G model is deterministic without error terms, the output has

no variance., Consequently, this design is especially appropriate. The

¢ T

N .
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Box and Behnken design is meant for use with a second degree polynomial,
but the design can be used for the first order model because the main
effects are uncorrelated. Using a three level design to estimate a first
order model has the added advantage of enabling assessaent of second
order effects not accounted for in the first order model. If other
models with terms higher than second degree are used as response
equations, another design must be selected. Appendix D shows the five
tactor Box and Behnken design with extra center points deleted.

Deteraining Range of lndependent Variables. The next step in RSHM
application is to determine the range of the independent variables. In
this study, several different ranges are appropriate. To check whether a
second order response function can fit the model output, the entire
range aof data for the years over which the model was estimated is
appropriate. For those exogenous variables in the response surface
eguation, the maximum, minimum, and average of maximum and minimum
sample values comprise the three levels used in model runs. Variables
not in the response equation are set at the sample mean. The aobjective
of these runs 1s to get the best fit possible.

Goldberger 's multipliers were computed at the sample mean for unit
changes 1n the predetermined variables. For runs reproducing
multipliers, the sample mean plus ar minus one unit are used as
tactor levels.

For runs used to evaluate specific policies, response surfaces
should be constructed for exogenous variable levels which are considered
politically feasible by the decision makers using the analysis. All
predetermined variables not included 1n the respaonse surface equation

should be set to current or forecast values s0 that predicted values for
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andogenous variables will be reasonable.

Decoding the Experimental Design. Once the factor levels have been
specified, the coded experimenta]l design must be decoded. The decoded
design specifies the actual exogenous variable values for which a solu-~
tion is to be computed. To reduce drugery, save time, and decrease
arithmetic erraors, a FORTRAN program was developed to automate the
task. The program reads a coded degign file and writes a decoded version
of the experimental design to a new file. The actual cede far this
program is in Appendix D.

Completing Model Runs. Creating a file with factor levels
specified is one prerequisite for the next gtep in developing a response
surface, solving the model faor each design point, Also needed is a file
specifying the values of the other predetermined variables. Once these
are specified, the model becomes a system of twenty-one equations in
twenty-one unknown endogenous variables. Since the system is large
and nonlinear, a numerical approach to solving the system is used.
Because of the arguments set forth in Chapter IIl regarding the hest
method to solve a maroeconometric model, the Gauss-Sidel method is
selected as the algorithm for solving the KG model. Appendix A discusses
the mathematical aspects of the method and contains the FORTRAN
implementation of the method as applied to the KG model. The programs
reads data from five data files including the coded design file, the
decoded design file, a file containing predetermined variable values not
included in the experimental design, an initial trial solution file, and

a file containing control language for the program. The program has the

capability to link solutions together to produce extended period
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forecasts. The program produces a data file which includes the coded
experimental design, a sequential case number far each design point, the
period number for each solution, and the solution for all twenty-one
endogenous variables. This output file may be read directly by the BMDP
statistical package.

Fitting the Data. Once the data sets are generated, response
functions are fit using BMDP's stepwise regression routine. The BMDP
package is used for this research project because it has all the
capabilities needed for fitting response surfaces, is familiar to the
researcher, and is available to the researcher, Stepwise regression is
used because it brings in independent variables one at a time in order
of influence on the dependent variable.

The second order response surface equations have higher aorder
terms. To estimate the coefficients for these terms, appropriate
transformations are made in BMDP's control language. One point to
reiterate is that regressions are made in terms of the coded variables
to preserve orthogonality. The coefficients computed by BMDP must
therefore be decoded (except in the case where multipliers are
reproduced). bBefore decoding the coefficients, hawever, it is convenient
to check the fit of the response surface.

Checking the Fit. The four methods af checking the response func-
tion fit, R?, SSE, residuals, and random points are all useful for this
study. The R® and SSE values are given automatically for each step in
the stepwise regression procedure. The R* value is the primary criteria
for deciding which variables to keep in the response surface equation

used in this study. However the SSE is checked to insure that it is not

lncreasing as more variables are brought i1nto the response surface
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equation, Variables which reduce the R2 negilgibly (less than 0.0001)
can be omitted from the response surface equation.

~While the R? value gives a good overall average measure of fit, it
is also useful to examine the percent deviation of the respanse surface
equation from the KG model solution for each design point. This quantity
is computed from the residuals by dividing the residual by the actual
response value and multiplying by 100 percent. Of interest are the
largest percent deviations and where those deviations accur.

Finally, the most stringent test of response surface fit is the
percent deviatiaon between the model responses and response surface
responses for random paints. If a coded random experimental design with
random values on the interval (-1,1) for design points is created, the
random design can be treated just like a regular experimental design.
This randaom design can be used to compute new data points. The resulting
data file can then be appended to the data used to fit the response
surface, If the random points are given a weight of zero in BMDP,
residuals are computed for the random points, but the points are not
used to compute respanse surface coefficients. The percent error is
computed ¢rom the random paint residuals to provide another assessment
of response function fit,

If the response surface fits well, (within 98 percent) the
coetficients may be decoded and analysis can begin. I not, a new
response surface function and experimental design must be selected and
the fi1tting procedure repeated until a satisfactory fit is obtained.
Decoding the response surface caefficients is simply a straight

application of the procedure discusssed in Chapter III.
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Once response surfaces have been fit satisfactorily and decoded,
the response surface equations must be interpreted. Some impartant
questions about the response surface equations follow.

1. What does the response function imply about the

relative contribution of each input and the relation-

ship between inputs? Do these implications make economic

sense?

2. 14 there are significant higher order or interaction
terms, why do these occur? Can economic theory explain?

3. How da the response surface coefficients compare with
multipliers?

4. The K-G model is composed af mastly linear equations

with some products of input variables. Haw does

this aftfect the response function?

If the response surface equations appear valid, applications for
the equations may be developed. Chapter IIl suggests several uses tar
response surfaces fit to a macroeconomic model. They include policy
simulation, trade off analysis, and optimization. Describing the detatils
ot these applications is deferred until Chapter VI,

The methodology outlined in this chapter describes what steps must
be taken to meet the research objectives set forth in Chapter I. The
Gauss-Sidel numerical method of solving simultaneous nonlinear equations
is implemented in a computer program to solve the KG madel. Second arder
polvnomial response surfaces are built for important economic indicators
to asses how well response surface can fit the macroeconomic model. A
tirst order response surface is estimated and the coefficients compared

to Goldberger 's multipliers. Finally, the response surfaces are

interpreted and applied.
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V. Results

Introduction

T

Chapter IV described what data are required to achieve the research

objectives and outlined analysis to be performed with the data. Computer

runs were made on the Air Force Institute of Technology's VAX 11/780

computer to collect required data. Appendix A contains the actual

FORTRAN code used to obtain the data. This chapter summarizes results of

the regression and comments an significant aspects of the results. It

also discusses research objectives one and two in light of the results.

Second Order Model Fit

The first research objective is to see how well a second degree

polvnomial can approximate the output of the KG model when five factars

are changed jointly. To satisfy this objective, the KG model is solved

faor oeriod zerao and period five at factar levels required by the Bax and

Bennken experimental design, (For a discussion of the Gauss-Sidel

numerical technique used to solve the Klein-Gaoldberger model, see

Appendix A.) Second order polynomial coefficients are estimated for

number aof workers employed (Nw), price index {(p), and gross national

aroduct (@) 1in terms of wage taxes (Tw), corporate taxes (Tc), govern-

ment nonwage spending (B), government wage bill (W=2). and number of

Jovernment workers (Ns) using the BMDP ZR praogram, stepwise regression.

The general form of egach egquations 1is

-----
.............
__________________
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@ = 3aco*tdoiTetaozTutdosBtacallztaosNeta12TcTutaisTeltai1aTcl2
+tai1sTecNatazzsTubtazaTul2%32sTuNGtas«BW2tassBNataasizNatas s Tc?

taz2Tw?+assB%+asaWN22+assNg?

Nu = bootboiTctbozTuthosBthoaWatbosNath i 2TcTuth isTcBtbhiaTcW2
tbisTcNetbasTuBtbzaTul2th2sTuNatbsaGW2+bssBNatbasWzNatbs 1 T2
+b22Tw +b33G +baal22+bssNG?

P = CootCoi1Tc?*Co2TutCosB+Coal2tClosNatCi2TcTutCisTcB+C1aTclz

+CisTcNetCzsTawl+C2a Tul2tCoasTuNGtE 34 GW24CssONgtCasWaNatC  (Tc?

+C22Tw?+Cs30%+CaaWz2+CsaNa”

where a.;, b:,, and c., are the coeffecients to be determined. The
tollowing conditians are applied in estimating the coefficients.

{, The three factor levels for corporate taxes (Tc), wage taxes
{Twl, government nonwage spending (G), government wage bill
(Wz), and number of government employees (Nm) are the maximunm
sample value, the minimum sample value, and the average af the
maximum and minimum sample values.

2. The Box and Behnken five factor three level design discussed in
the methodology chapter with redundant center points deleted is
used.

3. All ather predetermined variables are set at sample mean values.
In computing sample means for lagged variables, the appropriate
data values from the periods 1923-195! are used. (e.g., the
sample mean for the price index lagged one year includes the
price indicies for 1928 and 1944, but excludes the price
indicies from 1940 and 1932.)

4, For each design point, all current (nonlagged) exogenous
variables are held fixed for extended period forecasts (bevond
period zero). Lagged variables are updated with new values A
after each period’'s forecasts are computed. 5;5-

S. The monetary sector 1s suppressed bv excluding the liquidity
forecasting equat:ions, Eqs (2.2.12) ang (2.2.13). This step 1s
necessary to match Goldberger 's analvsis.

6., The time trend variable 1s updated by ane each year,

Tables S5.la-4 summarize the results of stepwise regression for eacn
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response function, They include step number, entering variable, multiple

R and R2, and change in R=,

Table S.1a. Summary Table of Stepwise Regression Results for
Number ot Workers Employed in Periad Zera

Step Variable Multiple Change
No. Entered R R® in R®
1 36 L9091 .8264 .8264
2 S Ne 9681 .9372 .1108
3 1 Tu 9843 .9689 .0317
4 4 W2 9993 .9985 .0296
S 2 TC 1.0000 1.0000 .0019
6 4t GH-= 1.0000 1.0000 .0000
7 31 G2 1.0000 1.0000 .0000
8 42 GNs 1.0000 1.0000 .0000
9 35 Tub 1.0000 1.0000 .0000
10 36 Tul2 1.0000 1.0000 .0000
11 38 Tcb 1.0000 1.0000 .0000

Table S.1b. Summary Table of Stepwise Regression Results for
the Price Index in Period lero

Step Variable Multiple Change

No. Entered R R= in R*
i 36 .6919 .4787 .4787
2 4 W2 9107 .8294 .3507
3 3 Ns .9887 .977% .1481
4 1 Tu 9979 .9959 .0184
S 32 W2® 9991 .9981 .0023
6 2 Te .9995 ,9990 .0008
7 43 WzNa .9997 .9994 .0004
8 31 G2 L9999 .9998 .0004
9 41 GW= 1.0000 .9999 .0002
10 35 Tub 1.0000 1.0000 .0000
11 33 Ne* 1.0000 1.0000 .0000
12 42 GNs 1.0000 1.0000 .0000
13 346 Tulz 1.0000 1.0000 ,0000
14 38 Teb £.0000 1,0000 .0000
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Gross National Product in Period lero

Table S.1c. Summary Table of Stepwise Regression Results for

Variable Multiple Change
Entered R R2 in R=
1 3G .9738  .9484 9484
2 1 Tu 9923 .9847 .0363
3 4 W2 L9992 ,9983 .0136
4 2 Te 1,0000 1,0000 .0017
5 S5 Ne 1.0000 1.0000 .0000
& 41 GW2 1.0000 1.0000 ,0000
7 31 G2 1.0000 1,0000 .0000
8 42 GNe 1.0000 1,0000 .0000
9 33 TuG 1.0000 1,0000 .,0000
36 TuMz 1.0000 1,0000 .0000
38 Tc6B 1.0000 1,0000 .0000
37 TuNe 1.0000 1.0000 .0000
30 Te= 1.0000 1.0000 .0000

Table 3.1d. Summary Table of Stepwise Regression Results far
Number of Workers Employed in Period Five
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Variable Multiple Change
Entered R R= 1n R=
t 36 .9286 .8622 .8422
2 2 Te .9605 ,9226 .0404
3 1 Tw L9903 .9807 .0581
4 3 Ne L9951 .9903 .009¢6
3 4 W2 L9990 .9981 .0078
6 3! G2 .9996 ,9993 .0012
7 35 TG .9997  .9995 .0002
8 38 TcG .9998 ,9997 .0002
9 41 GW2 .9999 .9998 .,0001
42 GNg 1.0000 .9999 .0001
36 TuM2 1.0000 .99%99 ,0000
39 TcM= 1.0000 .9999 .0000
34 TuTe 1.0000 1.0000 .0Q000
40 TcNa 1.0000 1.0000 .0000
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Table S.le. Summary Table of Stepwise Regression Results for
the Price Index in Period Five

Step Variable Multiple Change
No. Entered R R= in R2
1 36 .B852 ,78346 .7834
2 4 W2 .7268 .835%0 .0754
3 S5 Ne .9554 .9128 .0538
4 1 Tu 9806 9617 .0489
5 2 Te 9991 .9982 ,0365
& 32 W2* .9993 .9986 .0004
7 43 W2Ne L9995 .9990 .0004
8 41 GWz L9997  .9994 0004
9 42 GNe L9998 ,9996 . 0002
10 33 Ng2 L9999 .9997 .0001
1t 38 Tc6 9999 .9998 .0001

Table S.1f. Summary Table of Stepwise Regression Results far

Gross Natjonal Product in Period Five.

Step Variable Multiple Change
No. Entered R R= in R?
1 36 9305 .B658 .8458
2 2 Te L9701 .9411 0753
3 1 Tu 9990 (99680 .0549
4 31 G* 9995 .9990 .0010
b S Ng L9997  .9993  .0003
6 33 TuB L9997  .9995 .0002
7 38 Teb 9998 .9996 .000t
8 41 GW» L9999 .9998 ,0002
9 4 W2 L9999 .999¢ . 0001
10 42 GNe 1.0000 .9999 ,0000
11 36 Tulz 1.0000 .,9999 .0000
12 39 TcWe 1.0000 1.0000 ,0000
13 34 TuTe 1.0000 1,0000 .0000
14 40 TcNes 1.0000 1.0000 .0000
15 37 TuNs 1.0000 1,0000 ,0000
16 43 Wale 1.0000 1.0000 ,0000

The data i1n the Tables 3.la-f yield two important caonclusians.
First, for both period zero and periad five, the response surfaces tit
the data well as reflected by the R® column. In no case does the K2
exceed 0.9983. A second check of fit 15 the percent error for the design

goints. Table 5.2 lists the design paints with the largest percent error
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far each response surface as computed from the residuals. S
Table 3.2. Design Point Fit Check for At

Second Drder Response Surface. Cot

o

Resid- Predict Pct Factor Levels A,

ual Value Error Tw Te 6 W2 Na 3

Periad lero ff:
Nu -0,0041 42,69 0.0097 11,0000 =-1.0000 0.0000 0,0000 0.0000 ::it
p 0.1631 95,00 N.1717 02,0000 0.0000 -1.0000 1,0000 0.0000 F
a ~0.0039 88.30 0.0067 1.0000 0.,0000 -1.0000 0.0000 0,0000 gﬁj
Period Five oy
Loy

Nu -0.1745 14,06 1.2567 1.,0000 0.0000 -1,0000 0.0000 0.0000 .?F?
L

p 3.1580 35.53 8.1627 0,0000 0.0000 -1,0000 1.0000 0,0000 ffij
2 ~0.4030 46,91  0.8140 1.0000 0.0000 -1.0000 0,0000 0.0000 R
The data in Table 5.2 imply good fit. With the exception af price o
index 1n period five, design point error is less than 1.J percent. Price ;i}:
index in periad five has a larger percent erraor of B8.16 percent. Fifty ?i“f
random points i1n the operating region were also run to check fit., The :{Lf
o

points with the largest percent error for each surface are shown in :-ﬁi
Table 5.3. The lack of it 1s extremely pronounced for period five price fif{
tndex (26.22 percent). RO
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X Table 5.3. Random Paint Fit Check for Eﬁ:
Second Qrder Response Surface Ay
Resid- Predict Pct Factor Levels Y
ual Value Error Tu Te & W2 Ne NG
h}.'\\
L Period lera :_fﬁ
K Nu -0.0033 19.38 0.,0116 0.9154 -0.8486 -0.2112 -0.BB4&6 10,8269 :,(;
< P -0.2690 t11.7  0.2291 0.1516 0.9346 -0.8707 -0.8653 -0.8905 G
. N e
- '.'\‘.
- 8 0.1082 91,354 0.0118 0.1516 0.9346 -0.8707 -0.8653 -0,8905 e
Period Five R
Nu 0.8136 19.38 4,0290 0.8024 -0.7953 -0.9008 0,9026 -0.7324 3j:
o ’,;r""
: p 6.2620 17.62 26,2206 0.2778 0.103! -0.9972 0.8470 -0.4137 i:g
s _.l‘
X 2 2.0090 74,96 2.6101 00,8024 -0.7953 -0.9008 0.9026 -0.7324 St
3 The large percent errors are evidence that the response surface iif
e
4 does not fit the price index response for the entire operating region .
:2 sgecitfied. Of all the respanse surfaces, ane might expect the response -:}i
N surface for p to be the most difficult to fit. Of the six nonlinear sy
* :A‘
A equations 1n the KG model, p appears multiplied with other endogenous —
% variables in Egs (2.1.9), (2.1.10), and (2.1.20)., If aone were to solve Lff:
3 tar o 10 terms af the other endogenous variables, an endogenous variable :jf;
; wauld be 1n the denominator. Perhaps a higher arder polvnomial or sf?
N logrithmic function can provide a closer approximation far the p ‘jii
f respanse surface. Although the response surface theoretically should fit ';:;
the respanse thraughout the whole regiaonr, it is interesting tao nate that "3;
_; large errars for p occured at small values of p. The design points and ﬁ}f;
: the random points with the largest percent error alsc haa the smallest ;Qi
i e
N calues for p. ln fact, for the point with the largest percent error, the -
3 3
._' ..c ..-‘
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value for p was 23.88, but the smallest sample value for p from the
1929-1932 data was 90.7. In addition, other values of exaogenaus
variables were extremely far removed from the sample data for this case.
It seems unlikely that real world analysis would be conducted in this
region of the response surface. The largest percent error for any design
or random point with a p value aover 90.0 was 0.83 percent indicating a
good fit in the range of real world response.

Apparently, the output of the KG model can indeed be approximated
by a low order polynomial. To be absolutely certain on this point,
: response surfaces would have to be built for all endogenous variables
which included all predetermined variables for all periods. For practi-
cal applications, however, if closely fitting response surfaces can be
built for the endogenous variables of interest which include the prede-
termined variables af interest and which cover the time frame of inter-
est, this is all that is necessary to proceed with analysis. Further-
more, there 1s no reasan to believe that other closely fitting response
tfunctions cannot be developed for any endogenous variables in terms of
any predetermined variables.

The second major conclusiaon to be drawn from Tables S.1la-f is that

tirst order terms account for most of the variation in the data, Table

5.4 lists the percent of variation explained by first order terms for

each response surface equation., These values were obtained by fitting a ;}:c
N\
first arder model to a second order Box and Behnken experimental design N

(Box and Behnken, 1960:4640)
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Table 5.4. R? Values for The First Order Response
Surface Equation,

Period Period
lero Five

Ne 1.0000 0.9981
P 0.9947 0.9982

Q 1.0000 0.9985

The high R® values indicate that the model is very nearly linear.
One might expect price index to show significant nonlinearity., 0f the
six equations in the KG model which contain nonlinearities, price is
tnvolved in three. Although the response function for price index in
periods zero and five are more nonlinear than either nuamber of employed
workers or gross national product, 99.7 percent of the variatiaon is
explained by linear terms, These observations are consistent with Gold-
berger 's argument that the model is very nearly linear and that
multipliers that he computed at the sample mean are accurate for a
large range of time series data.

The second research objective is to reproduce Goldberger's multi-
pliers using a first order response surface equation. To do this, runs
are made with the following conditions:

1. The three factor levels of corporate taxes, wage taxes,

government nonwage spending, government wage bill, and number

of government employees are the sample means plus or minus ane
unit,

"~

The experimental design used 15 the Box and Behnken five
factar three level design discussed in the methodology chapter
with redundant center points deleted.
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r 3. All other predetermined variables are set at sample mean
values. For lagged variables, the appropriate data values fronm
before the periods 1929-1940, and 1945-1952 are used. (e.g., the
sample mean for the price index lagged ane year includes the

. price indicies for 1928 and 1944 but excludes the price

. indicies from {940 and 1952.)

R

4. For each design point, all current (nonlagged) variables are Ve,V
held fixed faor extended periad farecasts (beyond periad zeroil. !-[‘

Lagged variables are updated with new values after each AR

period’'s farecasts are computed. e
3. The monetary sector is suppressed by excluding the ligquidity fﬂ;?

forecasting equations. This step was necessary to match ;i*

Galdberger 's analysis. ‘._

4. The time trend variable is not updated since Goldberger ,“_2

computes a separate multiplier to account for the time trend. 'I{:

. SN
The conditions were applied to correspand to the assumptions made é;};
) =

by Goldberger in developing his multipliers. Tables 5.5a and S.5b sum- SIS

; marize the results. They show multipliers camputed by Goldberger for a :}f%
unit i1ncrease in government spending and the corresponding response g;}:

surfacs equation coefficients. Multipliers are taken from Table 5.2 of 35;

A Impact Myltipliers and Dynamic Broperties of the Klein-Goldberger Model ;:53'2::
C) s-‘:-r‘
¥ (Goldberger, 1959:88). IR
Table 5.3a. Multipliers for Unit Increase in Government Spending. -f:i‘

¥ Period R
0 1 2 3 4 S ot
Nuw 0.611 1.214 1.4628 1.842 1.899 1.835
o 1,500  3.134 4,831  5.911  7.043  §.023 D

@ 1.386 2.807 3.884 4.565 4.887 4.992 Ve




Table S5.5b. Respanse Surface Coefficients for
a Unit Increase in Government Spending.

Period
0 1 2 3 4 S
Nu 0.611 1.214 1.4621 1.829 1.862 1.772
. p 1.505 3,147  4.473  6.0734 7,302 8.312
8 1.385 2.804 3.871 4,521 4,795 4,764

The two sets of numbers compare quite closely for period zero, but
diverge somewhat for extended period forecasts. Goldberger used the
linearized model to generate interim multipliers. Since the madel does
i have saome nonlinearity, the linearized model used by Goldberger would
. tend to accumulate error as each subsegquent solution is computed baged
on previous approximate solutions.

The results presented in this chapter satisfy research objectives
gne and two. The data indicate that the KG model can be approximated by

a laow order polynomial. Furthermore, linear response surface coeffi~

cients are approximately equivalent to multipliers computed by linear-

. izing the model. Further analysis requires that the coded response
surface coefficients be decoded. Appendix E contains tables listing
coded and decoded response surface coefficients of the first and second
arder response surfaces fit in this chapter. The next chapter addresses
the final two research objectives. The chapter includes coefficients for

any response surface used in analysis.

.
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Vl. Response Surface Analysis

meabEtess fTamcads awsessas

Chapter V demonstrates that a response surface can indeed fit the
output of the KG model with a law order polynamial with a high degree of
accuracy. Further, RSM verifies that the model is very nearly linear
with first order terms accounting for aver 99 percent of the total
variation for all response surfaces generated. Since these surfaces fit
so well, one may conclude that they are accurate representations of the
model 's characteristics and may be used as an approximation to the model
tor analysis. This chapter examines what the response surfaces mean and
explores some analysis possibilities emphasizing practical applications.

The response surfaces generated for the Klein-Goldberger Madel
summarize relationships in the model presenting the impacts of predeter-
mined variable changes on current endogenous variables explicitly. An
example serves to illustrate. For period five, the decoded response
surface equation for gross national product () in terms of wage taxes

{Tu), corporate taxes (Te!), government nonwage spending (G), government

4

i.

wage bill (W2), and number of government employees (Ns) 15

- TR

B@s = 34,4254 - 4,0951Tu - 4.3038T: + 5.0849G - 0.5864Hz - 0.4143Na

- 0.01346% + 0.0244TwG + 0.0226TcG + 0.01756W=2 (6.1)

K LA

T W w - —
27T

The coefficients 1n Eq (4.1) are computed by stepwise regressian.
) -
'-.l
e It is assumed that the accuracy afforded oy Eq (46.1) is sufficient far
)
) »
ﬁ: purposes of discussion., The R% value for this response surface is
' 00,9998,
-:’
o
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What is the significance of Eq (&4.1)? First, the equation gives
W=, and Ne in the operating range of interest. The egquation does nqt
claim to make any predictions about the economy that the original model
could not make. The response surface is only as good as the underlying
model. The response surface also only purports to characterize the gross
national product in terms of the predetermined variables in Eq (é.1)
with other predetermined variables at their sample means. There very
well could be interactions between variables not included in Eg (6.1)
(e.g., gross national product, investment, and prices from the previous
period) and the variables appearing in Eq (é6.1) (i.e., Tu, Tc, 6, W=z,
and Ne). For analysis using a response surface, the predetermined
variables not included in the response surface equation should be set at
values close to what they would be for the particular economic simula-
tion under study. For instance, if a study is to be made of the effects
of government spending and taxes on gross national product two years in
the future, then the macroecononmic modél used to generate the respanse
surface should have lagged endogenous and exogenous variables set at
their appropriate current levels or what they are expected to be. What
Eq (6.1) does give is the relationship between Tu, Tc, G, W2, and Na,
and @ in the Klein-Goldberger model in the operating region of interest
tor a period five years in the future with all other predetermined
variables at sample means.

Eq (6.1) contains interaction and squared terms, These terams
suggest that the change in Q@ due to a change in a particular predeter-
mined variable is dependent an 1ts own or anather variable’'s level, For

example, one may want to know the effect 0f increasing corporate taxes

L1}
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an gross national product five years in the future. Taking the first
partial derivative of Eq (4.,1) with respect to Tc yields an expression
relating the change in @ to a change in Te.
9@ = -4,3058 + 0,02266 (6,2)
aTe
The right hand side of Eq (6.2) is a nonconstant “"multiplier®. Eg
(6.2) suggests that the change in Q due to a change in Tc is dependent
on the level of G as shawn in Figure &4.1. It is important to note that
Eg (6.2) is valid anly for the ranges of T. and G used to build the

response surface (T. ranges from § 0,40 to ¢ 11.88 billion and G ranges

from ¢ (1.5 billion to ¢ 41.7 billion).

Q/
O
S

Q/
-3
oo
o
[]

11.5 41.7

Figure 6.1. Dependence of 3Q@/dTec on G 1n Five Years

It 1s of interest to determine why the change in Q@ due te a change

in T~ shaould depend on G. Corporate taxes directly effect qross

&7
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national product through consumption and investment in Eqs (2.1.1),
(2.1.2), (2.1.19), and (2.1.21). However, carporate taxes also affect
another element of gross national product in Eq (2.1.9), foreign im-

ports. It is important to note that it is not corporate taxes alone

P2 1 3 2

corporate taxes. Economic theory asserts that government spending has a
strong effect on prices. Consequently, there is an interaction between
corporate taxes and government spending in determining foreign imports

and hence gross national product. Eg (2.1.10), which models the deter-

minants of farm income, also has a similar interaction between corporate s
taxes and prices. One way to visualize the magnitude of the TG interac-
tion term is to plot @ versus Tc at different levels of G. Figure 6.2

shows @, at the five year point, as a function of Tc for three levels of

G. The TcB term causes a change in slope at different G levels. The

change in slope is barely discernable. 'E:fs

w
o
I

(e

Figure 5,2, Relationship Between Q- and Tc at
Diftferent Levels af G 1n Feri1od Five,
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To generate Figure 4.2, all predetermined variables except Tc and G

are set at sample ameans.

Chapter Five shows the close correspondence between multipliers
and decaded first order response surface coefficients. In fact, Appendix
B shows that they are equivalent for linear systems. Since both RSM
and the derivative method yield essentially the same numerical values
for multipliers, Goldberger 's extensive analysis applies to RSM derived
multipliers as well,

If the KG model were more nonlinear, interaction and squared terms
would become more significant. It is here that response surface methodo-
lagy provides an advantage over multiplier analysis. By using response
surtaces, ane can detect interactions between predetermined variables as
noted in the last section. Tao generate "multipliers" from response
surface equations, one computes the partial derivative of the response
surface equation with respect to the variable of interest. The last
sectian computed a multiplier faor changes in Q due to changes in Tec.
This multiplier tagether with other multipliers computed from Egq (4.1)

are listed below.

3@ = -4,30358 + 0,02246 (4.2)
dTe
__a_Q__ = =4,0951 + 0.02246 (6.3)
dTuw
30 = 5.0894 + 0.0244Ty + 0,0226Tc - 0.02686 + 0.017SW= (6.4)
96
A3 = -0,9847 + 0.01756 (6.5)
QW=
. 69

. R PR D L A L O L Pt S P S S R P L )
RIS & W U O, S R A U M OO L S Y

- o e e

N
ot -
alaa




aQ = -0.4145 (6.6)
doNa

Eqs (6.2) through (6.6) give "function” multipliers which capture the
relationship between Q and T., T., G, W=, and Ne more accurately than

traditional multipliers.

Using the multipliers computed above, economists can answer “what
1¥" questions easily. For instance, if an economist wants to know the
impact on gross national product in five years of increasing government

. spending by five billion dollars and paying for it with a five billion
dollar increase in wage taxes, he can use the multipliers to forecast

the answer, Assuming, for illustration purposes, that

Tu = %8 billion NS
Te = $10 billion N
..‘-.\‘
PaLh)
6 = $40 billion -.;3
Wz = $16 billion

and all ather predetermined variables are at sample means, then the

.
RN
o7,

E "'_",./,..,.

multiplier relating changes i1n Tw to changes in @ is

~4,0951 + 0.0244(40) = -3, 1191

4

Bt a L' a4

¢
a,

I TeT e e « . LI

e, FLELIN oot

A ] oL
PRI N RN

trom Ea (46.3). The multiplier relating changes in G to changes in Q is

S.0894 + 0.0244(8) + 0.0226(10) - 0.,0268(40) + 0.0175(16) = 4,7184

from Eq (4.4), The assumed values for Tu, Te, G, and W- are close to 1952 sample N
values from the data used to estimate the model (Klein and Goldberger, @{ﬁ

. ~ . - . . - - N
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1955:131-132) and all other predetermined values are at sample means. A
five billion dollar increase in wage taxes changes gross national
product by ($3 billion) (-3.1191) = -$15.40 billian. A five billion

dollar increase in government spending increases gross national product

% | RRARNIAN 1Y

by ($3 billion) (4,7186) = $23,59 billion. The net change is $23.59

Y
Lo ' ¢
PR AR AR

billion - $15.40 billion = $7.99 billion,

It is interesting to compare the multiplier computed above to
Goldberger's multipliers and the corresponding first order response K
surface coefficients (see Table 5.35). As an example, Table 6.! compares

the three types of multipliers for changes @ due to changes in G in

R
. ety T e e

period 3.

e r s

.t.'--.':l.,r‘n. '_%.-‘

Table 4.1, Multiplier Comparisons for Changes in @
Due to Changes in G in Period §.

»

Goldberger 's Multiplier..eeivininnnnnnnnnnes 4,922
First Order Response Surface Multiplier.....4.746

Second Order Response Surface Multiplier....4.718

a0 P S M A
.® L A

L,
LA

The difference shown between Galdberger’'s multiplier and the first order

L3

response surftace coefficient is the accumulated error from the way in

«

«

wnich Goldberger linearized the model. The difference between the first v
arder response surface coefficient and the secaond order multiplier is

that the #tirst order multiplier 15 computed at the sample mean but, the f;

second order multiplier is computed at values given in the example -
ataove. [f the other variables in Egq (&.1) had been at different levels,
the second arder response surface multiplier would also have been

different. [f the KG model were more nonlinear the difference would have

Jeen mgre gronounced. Figure 6.3 shows the difference between the
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multipliers graphically. Depicted are multipliers for the full range of

6 with other variables fixed at the levels specified above.

0
oG
5.0 yoldberger
1st?
4.0 ano s
3.0
2.0
1.0 {
1L.5 4.7 ‘

Fiqure 46.3. A Graphical Comparison of Multipliers for Changes in @

Due to Changes in G in Period Five,

By using response surfaces and multipliers generated from multi-
pliers, economists can answer many questions without repeated runs of
the macroeconomic model. Furthermore, interaction and squared terms are
identified with response surfaces, but not with traditional multiplier
analysis., There are still other valuable uses for response surfaces.

Response sur+ace equations can be used to evaluate factor impoer-
tance 1n determining the response variable value. P.W. Smith and J. M.
Meilichamp show how to evaluate factor i1mportance for a nuclear exchange
mode! in their paper entitled "A Methodology for Multidimensianal Impact
Analysis for Military Froblems" (Smith and Mellichamp, 1979). In this

paper the 3suthors point out that the si1ze of the factor coefficient
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gives the relative impact on response per unit of factor. The factor
with the largest coefficient has the most influence per unit of factor.

The relative magnitude of coefficients in the response surfaces
generated for the KG model dao give some measure of the influence of
factars which are measured in the same units. For instance, the first
order coefficients presented in Appendix E indicate that fcr each dollar
increase 1n government spending, gross national product increases by
4.5208, but tor each dollar decrease in wage taxes, gross national
product increases by 3.1234 in period tive, Goldberger pointed out that
determining which factors are mast influential in causing endogenous
variable changes from an histaorical point of view alsc invelves the
amount by which the factor changes from periecd to period. Two factors
with the same response surface coefficient or multiplier do nat have the
same influence on an endogenous variable if one changes by only a small
increment and the other changes by a large increment. To measure the
relative importance of predetermined variables in determining endogenous
variable values Goldberger formulated an index which was egqual to the
appropriate multiplier multiplied by the sum of the absolute values of
the changes from one period to the next during the sample periocd and
divided by the number of periods (Goldberger, 1959:72~73). Computing an
eaquivaient i1ndex with respaonse surface coefficients 1s certainly
possiole., Such an influence index is useful in quantifying the histori-
cal i1mpact of predetermined variables on endogenous variables. However,
trom a policy simulation point of view, another measure might provide
more useful i1nfarmation.

[+ a policy maker has influence to change econamic policv variables




d

over a limited, palitically feasible range, then the policy maker would

be interested in which policy variable at his disposal would be most
influential in bringing about desired objectives. If the policy maker
built a response surface using the maximum and minimum politically
feasible values as factor levels in the experimental design, then the
variable. Faor example, if a policy maker feels the maximum governament
expenditures that Congress will approve is %200 billion, while the
minimum 15 $170 billion, then he could build a response surface using an
experimental design with $200 billion and %170 billion as factor levels
tor running design points through his econometric model. Factor levels
for ather policy variables of interest would be formulated in the same
way. The resulting coded coefficients give the amount of change that
could be brought about by varying the policy variable over its
politically feasible range.

The explicit form of the response surface equatian with the unknown
endogenous variable an one side of the squation and known predetermined
variables on the other side of the eguation suggests further applica-
tians. Because response surface equations have the form that they do and
are expressed in terms of actual levels instead of changes (as in Gold-
berger 's linearized ¥G model) economic optimization problems can be
easily formulated and solved. An example serves to illustrate.

Suppose the year 1s 1952, The klein-Goldberger model has just been
estimated and an elected policy maker wishes . know what combination of
fiscal policies will maximize ecaonamic grawth (BNP), while holding

inflation and employment at or below acceptable levels., The official
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would like these conditions to be realized in about three years. The K& MV
RSM model can provide some guidance. 5{:
*::’ -1
To solve this problem, several response surfaces must be generated. ﬁ‘.
R
As shown in Chapter [I, the KG model can be linked together to abtain dd

forecasts faor several periods in the future by solving the model,
setting lagged variables equal to the current variable values, and then
resolving the model. It is assumed that changes in fiscal policy
variables made in period zero are sustained until period three. Solving
the problem requires construction of three response surfaces, one for

gross national product (Q), one for price level (p), and one for number

T

A A

PR AT LN

’
a LA

a8 s a

ot

of workers employed (Nw) for a time period three years in the future,
The fiscal policy variables available for manipulation are government
nonwage spending (G6), wage taxes (Tuw), corporate taxes (Tc), and
government wage bill (W2).

To generate the response surfaces needed, all predetermined
variables except the four fiscal policy variables are set at expected
constant levels, then the policy variables are set at the levels
required by an experimental design, and the forecasts are computed. Fronm
the resulting data, stepwise linear regression is used to estimate the
coefficients of first order response equations for each economic per-
farmance indicator. Shown below are the equations generated fram the KG
model with the predetermined variables set at selected levels, based on
1952 data which were the most current data used to estimate the model

(Klein and Golidberger, 1935:131-133).

[ ]
1]

51,4040 - 3.1087Tw - 3.3323Tc + 4.50256 - 0.2854W: (6.7}

NW

13,1882 - 1.2541Tw - 1.2567Tc + 1.B0216 - 0.50208M= 16,8
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p = 143.56616 - 4.60351Tw - 4,1135Tc + 6.6B166 - 5.65520= (4.9)

Since the quantitative relatianships in the KG model are approxi-
mated quite adequately by linear functions (See Table 5.4.), a two
level four tactor factorial design was used to estimate the coefficients

in Eq (6.7), (6.8), and {(4.9), Design variables were varied over a

Y

limited politically feasible range ($3.63-11.643 billian for Tu, $7.14-

13.14 billion far Tg, and $37.7-61.7 billion for G, and $13.82 to $21.82
billion for Wz2.,) These ranges were set by looking at the historical
recard of change over the sample periaod and then making a reasonable
guess as to possible ranges of change.

From the feasible ranges and response surface equations above, ane

can farmulate a linear praogramming problem as follows,

Maximize
2 = 51.4040 - 3.1087Ty - 3.3323Tc + 4.50256 - 0.2B54W: (6.10) e
Nl
Subject to B
NW = 13,1882 - 1.2541Tw - 1.2567Tc ':*"\
+ 1.80216 - 0.50198W= = 58.71 (6.11) 5‘.~fff
p = 143.446146 - 4,46051Tw - 4.1155Tc

+ 6.68166 - 5.6352W=2 ¢ 207.714(1,05)° (6.12)

Tw ¢ 11.63 (6.13)

Tw & 5.63 (6.14)

Te ¢ 13.14 (6.15)

Te » 7.14 (6.16)

G { 41.7 (6.17)

8z 37.7 (6.18)
78
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W2 ¢ 21.82 (6.19)

’ 13.'1'r
W2 2 13.82 (6.20)
fa
‘ The objective function, Eq (4.10), is simply the response surface ,_Q:
ALY
for Q. The first constraint, Eq (4.1!), is derived as follows. 1952 data o
indicate the number of workers in the labor force (N.) is 66.6 million, unfi
\\t-
the number of workers employed (Nu) is 56.0,the number of self employed :":j:'_'.
i workers (Ne) is 6.3 million, and the number af farm workers (Ne) is N
4.0 million. Klein and Goldberger define the number of unemployed ;%;;
J* Lot
3 persons (Nu) to be (Klein and Goldberger, 1955:19): :::-\.:f
v 'J:'
Nu‘NL'(.Nu'.’Ne"’NF)
. .\ o
";t'.
Far the 1952 data Ny is 0.3 million workers. This translates to an :-5\ '
Oy
Ny
unemployment rate of 0.45 percent (this figure i5 clearly unrealistic). f::‘;
The number of self employed and farm workers together have been '
decreasing by about one percent per year, and the totali labor force has
been growing by about one and one-half percent per year. Projecting
these trends forward three years,
(Ne + Neds = (6.3 + 4,00 (.99)5 = 9,99 e
(NO's = (86.6) (1,015)% = 69,64 ek
where the subscript 7 denotes three years in the future. 14 the accept-
able rate of unemployment is set (arbitrarily for this example) at one '—'.'_‘jlfs
percent, an expression for the unemployment rate i1n three years can be L
e
written ::j-:'.
S0
::‘-:,:.'r
(N = (Ne#Ned z= (Nw)s = 0,01 ol
(N s 4
N
R
o)
R
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Solving for (Nu)s yields

Cp N A

-

(Nuds = (1-0.01)(N_)s - (Ne + Nels

e

L

= (1-0.01)(69.64) - (9.99)

= 38.71

Setting the response surface equation for Nu equal to this value yields
Eq (4.8).

The left side of the second constraint, Eq (4,12), is the response
surface far the price index. The right side of the inequality is the
currently forecast price index multiplied by a five percent per year
increase for each of three years. This constraint keeps inflation belaow
an average of five percent per year. The remaining constraints, Egs
(4.13) through (6.20), are the political constraints on fiscal policy
variables, The right hand side values of the inequalities are 1952
levels of the exogenous variables plus ar minus the amount by which the

variables can be feasibly changed.

Solving this linear pragramming problem gives the optimal fiscal N x
paolicy to be fallaowed by the policy maker. Table (6.2) shows the salu-

tion.
Table 4.2, QOptimal Fiscal Palicy far the Example Problem

Maximum Attainable Q@:

$185.8 billion

Fiscal Policy Variable Values ::3:
;':‘-«':

= &

Tw = 11,63 &

)

Te = 7.14 W
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G = 44,35

W2 21.82

The model forecasts grass national product to be $172.0 billion at
the end of the current year. The maximum attainable gross national
product, 183.8, translates to an average growth rate of 2.6 percent over
three years. The average inflatiaon rate is 4.2 percent, which means that
there is "slack" in the inflation constraint. Appendix F contains the
output from the linear programming computer routine for this prablem.

This solution suggests that the best fiscal palicy is to cut
carporate taxes, raise wage taxes, hire more government employees (or
just pay them mare) and increase gavernment expenditures slightly. This
solution sounds fairly plausible, but ane might wonder why this particu-
lar solution is optimal. Furthermore, one might wonder if the optimal
solution ¢or the linear programming problem is in fact the optimal
solution for the actual Klein-Goldberger model.

The answer to the first question requires an examination of the
coefficients in Egs (6.7), (4.8), and (6.9). The employment constraint
i1s always binding because it is met with equality. Economic theory and
Eqs (6.7) through (4.9) indicate that either decreasing taxes or
increasing government spending raises gross national product, employ~
ment, and prices. Increasing government wage bill decreases gross
national product, employment, and prices according to Eqs (4.7) through
{(6.,79). This is counter intuitive, but Goldbherger explained somewhat
unconvincingly that increases in Wz with G constant represented "a shift
in the compasition of government expenditures from business produced

goods to purchases aof labor services." (Goldberger, 1959:30) Because

79
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the inflation constraint is not the limiting factor, it is ignored for
the moment. The abjective, then, is to find the feasible combination af
fiscal policy vaiables which maximizes GNP for a given level of employ-
ment. To do this one would want to change the fiscal policy variable

with the largest increase in gross national product per unit increase in

DA VASILRMIM Y LS LRt s | )

emplayment, the fiscal policy variable with the next largest increase,
and so on until the required employment level is reached. Far example,

the change in Q per change in Nu brought about by changes in government

YR TR i S
LR T T Ty ]

spending is

]

3@ = Jd@ O6 (6.21)
9 Nu aG aNu

8 e,

Earlier 1n this chapter it was shown that the quantity @/ G is simply
the coefficient of 6 in the @ linear respanse function, Eg (4.7). In
addition, G/ Nw is the reciprocal of the G coefficient in the Nu
response surface equation, Eq (4.8). For example the ratio between the

6 coefficient in Eq.(6.7) and the G coefficient in Eq (46.8) 1is

Y VMR OORAIRMIAE )

SW2 AN -0.3019

‘ 38 OB = 4.5025 = 2.498S (6,22}
£; )G HNu 1.8021

E The number 2,.4985 gives the increase in @ which occurs when G increase
i

o enough to raise Nw by one unit. Similar ratios can be computed for the
:k other factors.

g 28 2Te = -3.1087 = 2.4788

t. (\JTw ANw -1.2841

~ \

. 30 OTc = -3,3323 = 2.651¢4

o 3Te Nw  -1,2567

b 30 ‘Wz = -0,28%4_ = 0.5633

-

&
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Gross national product increases most for a given level of emplaoy-
ment by a cut in carporate taxes, then by an increase in government

b spending, then by a cut in wage taxes, and finally by a cut in the

government wage bill. The optimal solution sets corporate taxes at the
lower limit, government spending at an intermediate level, and wage
taxes and government wage bill at the high limits. Thus the given opti-
mal solution for the linear programming problem does seem reasanable.
Hawever, a question still remains as to whether the optimal solution
for the linear programming problem is optimal for the actual Klein-
Goldberger model.

Chapter V shows that the response surfaces do in fact closely
approximate what is going an in the model over the entire range of data.
Furthermore, higher order terms are not necessary to obtain a good #$it.
Therefaore, what is optimal for the response surface model of the economy
should be optimal for the KG model. Verifying this assertion requires
searching the area around the alleged optimal solutiaon to see if further
gains might be made with an alternate policy. This search is to be done
with the original model. 1f the solution given for the linear orogram-
ming problem is not the optimal then ane should be able to 1ncrease
grass national praoduct and satisfy the constraints by adjusting Tw, Tc,
G, or W>. The table helow shows the results of running the KG model
with the fiscal policy variables set at values slightly different than
the optimal policy determined by the response surface derived linear

gragramming problem.
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Table 6.3. Klein-Galdberger Model Solutions in the Area of
the Alleged Optimal Solution

58.71 240.S

max max
Tu Te 6 W2 Nuw B 2]
N 11.63 7.14 44,54 21.82 S54.5 222.5 186.2

10.63 7.14 44.54 21,82 57.7 226.6 189.3%
) 11.63 8.14 44,54 21.82 S55.2 217.5 182.8
X 11.63 7.14 43,54 21.82 5§7.3 215.0 1B1.4
b 11.63 7.14 45.54 21.82 58.3 228.7 190.8+#
11.63 7.14 44,54 20,82 57.0 222.5 1Bb.b#%

R 10.63 8.14 44,34 21.82 56.5 222.5 184.0
. 10.63 7.14 43.34 21.82 S§5.9 219.9 184.8
5 11.63 8.14 45.54 21.82 57.0 224.3 187.4+
. 11.63 8.14 45.354 20.82 57.6 229.5 187.7

S.63 13.14 44,54 21.8B2 S56.5 224,46 185.0
11.63 13.14 61.70 146.82 B82.4 337.3 245.0

The first line in Table 4.3 is the alleged aptimal solution.
However, the starred solutions yield greater gross national product
values than the supposed optimal solution. The solution computed by the
ﬂ linear programming algaorithm is not optimal because the value of Nu

forecast by the response surface function was faur percent too low. The

faur percent error is not unreasonable because althaugh the linear
approximation to the KG model is good, it is not perfect.

All 1s not lost, however, because the response surface coefficients ﬁé:’
can be used to "tweek" the solution to optimality, As pointed out % :5

above, economic theorvy and Eqs (6.7), (6.8), and (4.9) indicate that

when corporate or wage taxes decrease, gross national product increases,
prices increase, and employment increases. The effect af increased
jovernment spending is the same, Increased wage bill has a small daown-
ward eftfect on gross national product and employment, and a substantial

downwarc effect on prices according to Eqs (4.7), (6.8), and (4.9),
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To increase @, one could decrease taxes or government wage bill or
increase government spending. Haowever, the same measures which raise @
also raise Nu and p. Nu must increase by S8.71 - 56.30 = 2,21 to
satisfy the employment constraint with equality and p may increase by
240.5 - 222,93 = 18, The best variable to alter is the variable which
increases Q the most for the required change in Ny without viglating the
price index constraint, The discussian above shaws how to compute the
ratios for tradeoffs between employment and gross national product. For
example, it Nw must increase by 2.2!1 to meet the employment constraint,
then the total change in Q@ due to a change in G is (2.4985)(2.21) =
5.5217 using the ratio computed in Eq (6.22). To find how much G aust
increase to raise Nu to the required level, one can divide the required
change by the B coefficient in Eg (6.8) (i.e., 2.21/1.8021 = $1.226
billion). By Eq (6.9) this increase in G induces a price index increase
of (1.226)(6,6814) = 8,194, Since this increase in G would only
increase the price index to 222.95 + 8.194 = 230.694, this solution is
feasible because this price index is below the 240.5 value allowed by Eq
(6,12},

To find the best factor to change, tradeoff ratios for Tu and W=
must be campared to the G tradeoff ratio. The factor with the largest
tradeott ratio which does not cause the price index to exceed its maxi-
mum ts the best. Because Tc 1s already at the lower limit, i1t need nat
be 1nvestigated for alteration. Table 6.4 summarizes the data reguired
to select the best factor to adjust. The first column is the tradeoff

ratio. The next column is the change 1n Nw required to satisfyvy the

emolovment constraint, The & column is simply the product between the
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first and second columns, It is the change in @ resulting when the
factor is altered enough to bring about the required change in Nu. The
F calumn is the change in the factor required to increase Nu by 2.21.

It is equal to the Nw column divided by the factor's caoefficient in Eq
(4.8). The p column is the increase in p caused by the increase in the
factor. It is equal to the F column times the factor’'s coefficient in
Eg (6.10). Finally the p column is the new price index brought about by
changing the factor to its new level. 1If the figure in the p column

exceeds 240.3, the solution is infeasible.

Table 6.4. Data for Selecting the Best Variable to Alter

8/ Nu Nuw 8 F P P
Tw 2.4788 2.21 5.4781 ~1.7422 8.1131 230.86
G 2.498S5 2.21 5.5217 1.22463 8.193% 230.7
Wz 0.3685 2.21 1.2363 -4,402¢ 24.897 247.4

A guick scan of Table 6.4 reveals that i1ncreasing G by $1.2243
billion 1ncreases Q@ by $5.5217 billion while a decrease in T. of $1.7622
billion increases @ by anly $35.4781 billion, Decreasing Wz by the
amount required to increase Nw by 2.21 million workers causes the price

1ndex to exceed the maximum. Thus, the adjusted optimal solution 1s

Tw = 11,63
Te = 7.14
G = 45.78

W- = 21,82

A single solution for a linear programming problem is rarely very
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useful without sensitivity analysis. Fortunately, sensitivity analysis
for linear programming protlems is verv well developed. For instance the
shadow prices tell how much the objective functiaon will change if the
right hand side of a constraint is changed. Table 6.5 shows shadow

prices for each binding constraint.

& Table 6.5. Shadow Prices for the Fiscal Palicy Problenm,
& Constraint Objective Function Change
Maximum Tu 0.0254
Maximum Wz 0.9688
Minimum Tu 0.1925
Minimua W= 2.49835

Angther option for conducting sensitivity analysis for this example
linear programming problem is (believe it or not) response surface
methodology. A new response surface can be built for @ in terms of Tu,
Tey Gy Wz, 1nflation and unemployment by varying right hand sides of the
constraints 1n accorgance with an experimental design and salving the

linear programming problem (Smith and Mellichamp, 1979).

Because the KGO model is nearly linear, first order response surface
!i equations fit the model fairly well. The linear objective function and
constraints make 1t possible to formulate an optimization praoblem as a

linear program. [f the model were not so linear and the response sur-

‘aces nad higher order terms, an aptimization problem could still Ge
formulated and solved using nonlinear ootimitation technigues available.
Une computer implementation of nonlinear techniques 1s the Sequential
Unccnstrained Minimization Technique (SUMT) package. The program handles

nonlinear aobjective functions and constraints with itnequalities. The
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SUMT program allaows aone to exploit a key advantage of RSM in studying
macroeconomic models, which is the capability to derive a reduced forn
equation (one endogenous variable expressed as an explicit function of
predetermined variables) esquation for nanlinear macroeconometric models.
For a description of the SUMT package, the reader may consult Mylander's
This chapter interprets and applies response surfaces derived
trom the Klein-Goldberger econometric model. Computing the partial
derivatives of response surfaces with respect to variables of interest
yields multiplier functions for those variables. These muitiplier
tunctions may characterize nonlinear functions better than the
traditional constant multipliers over a wide range of data. Both the
coded and decoded response function coefficients give information on the
relative importance of factors. Finally, this chapter shows that

response functions readily adapt themselves to optimization problems.
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VII. Congluding Remarks

This study has uncovered much about what can and cannot be done in
applying response surface methodology to a macroeconomic model.

Response surface methodology is a useful tool which can be used to
investigate the properties of a macroeconomic model as long as the
limitations of the methaod are kept in mind.

The research demonstrates how to generate response surfaces from a
macroeconomic model. First, the problem to be addressed is defined and
a determination 1s made that response surface methodology is the appro-
priate tool for solving the probleam. Next, variables of interest are
selected and their operating ranges specified. The form of the response
surface equations is decided upon and an appropriate experimental design
selected. After translating the coded experimental design to actual
predetermined variable values, the mode. is solved for each combination
of predetermined variable values specified by the experimental design.
The data generated are used to estimate response surface coefficients in
terms of the coded experimental design to preserve arthogonality. The
respanse surface fit is checked and the response surface equation is
decoded so that it is expressed in terms of the original variables.
After generating the response surface, analyses may begin,

This study shows that a low order polvnomial can indeed fit the
responses of the Klein-Goldberger econometric model. The near linearity
of the model is confirmed. The coefficients from a decoded first arder
respaonse surface fit to the Klein-Goldberger model are compared to

multipliers computed by Goldberger and found to correspond guite
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‘ closely.
Economists use multipliers extensively to characterize the static

and dynamic properties of econometric models and to conduct policy

simulations. Techniques for generating multipliers include lineariza-

’

3
- ]
aln..

r

tion of the econometric model through the derivative method and comput-

)

s

ing control and disturbed solutions., Response surface methodalogy
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offers another alternative for computing multipliers.

Multipliers are derived from response surface equations by taking

o

the partial derivative of the response surface equation with respect to
the vari1able of interest. The result may or may not be a constant,
Higher order terms in the response surface equation cause multipliers to
be dependent on the level ot one or more variables. Consequently,
multipliers obtained from response surfaces are most useful for investi-
gating nonlinear econometric models.

The advantage aof response surface derived multipliers over multi-
pliers derived by model linearization is that the model does not have to
be linear or near linear for multipliers to be valid over a wide range

E of variable values. [n addition, significant interactions and higher
graer effects can be identified. The advantage of response surface
multipliers over control-disturbed multipliers 1s that thev more
completely characteri1ze the relationships 1n the model and reduce the
number aof runs required to estimate multipliers., Also, muitipliers
computed by the control-disturbed method do not identify 1nteractians
ana nigher order effects. These multipliers are anlv valia for small

ranges of the predetermined variables,

Response surface multipliers can be used i1n the same wavs that
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multipliers darived by other techniques are used. Uses include policy
simulation and determining most influential factors in the econoamy.

Response surfaces can be used for aore than just computing multi-
pliers., They can also be used to formulate optimization probleas. The
explicit nature of the response surface equation giving endogenous
variables in terms of predetermined variables facilitates optimization
problem formulation. Chapter VI gives an example prablem in which gross
national product i1s maximized while holding unemployment and inflation
at or below acceptable levels. The problem is formulated as a linear
programming problem and solved. Optimization problems with nonlinear
response surface derived constraints and objective functions can also be
formulated and salved using optimization packages such as SUMT,

Applying response surface methodology to macroeconomic models is
not without limitations. Computing multipliers using response surface
methodology is more cumbersome than existing methods for deriving multi-
pliers fraom linear or near linear models. Separate response surfaces
must be computed for each response variable for each time peri1od for
each subset of predetermined variables. For nonlinear models, response
surface multipliers which are functions better characterize input-output
relationships than traditional multipliers., However, special care must
be taken to insure response surface fit before drawing i1nferences about
the model based on the response surtace generated.

A limitation which detracts from using response surfaces for
orediction s the few number of factars which can be i1nducted i1n the
response surface function. The number of variables which can be
includee 1n the response surface eguation i1s limited by the size of the

exper:mental design. Of particular concern are i1nteractions between
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exogenous variables included in the response surface and lagged endoge-
nous variables not included in the response surface., It is quite possi-
ble that the effect of exaogenous changes depends on the current state of
the econamy. If variables are omitted from the response surface equa-
tion, then the response surfaces only capture model relationships at the
specific levels assumed in generating the response surface. The ather
methods of computing multipliers suffer from this deficiency too.

On balance, the limitations af response surface methodoleqy do nat
preclude it from being a valuable tool for analyzing certain aspects of
macroeconomic models.

There are several areas available for further research. First, 1t
has oeen assumed that a low order polynomial could adequately fit an
econometric model more nanlinear than the Klein-Goldberger model. This
assumption needs testing. Second, including more variables in the model
by using larger experimental designs has yet to be explored. tLarge
experimental designs could be developed by computer algorithm. A final
1mprovement of the research presented in this thesis would be to 1nclude
ti:me as an independent variable 1n the response surface eguation.
Including time 1n the response surface equation would eliminate the need
to generate respanse surfaces for each per:iod. Preliminary attempts to
$1t response functions with time as an i1ndependgent variable to the
klein-Goldberger model yielded R- values of 0.9al0 for number of workers
ampioved, ©.9858B for price index., and ©,%430 for gross national product.
To generate these response surfaces, a second order polvnromial including

wage taues. coroorate taxes, government nonwage expengltures, government
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wage bill, number of government employees and time was fit to data from

periods zero through five. Developing response surfaces with time as an

Pl of
.~_'_.-_
independent variable would reveal time delay aspects of the econometric :}:f
.~,~.r.
model which could prove quite valuable. S
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Because the Klein-Goldberger amodel is not linear and has no simple
analytical solution, solving the model requires an solution approxima-
tion technigue. Galdberger used a derivative method to obtain a linear
approximation to the model formulated in terms of variable changes. He
then derived impact and interim multipliers from the linear approxima-
tion. This thesis requires a method for solving the Klein-Goldkerger
model without linearizing it. Economists commonly use some sort of

numerical technique for solving nonlinear econometric models. Klein

recommended the Gauss-Sidel numerical method for solving econometric

models (Klein, 1974:238). The method 1s a simple iterative procedure

whicnh does not reaguire derivative computations. This appendix describes
the methaod, illustrates 1t with an example, and shows how the method was ’:f:
Ny
applied to solve the Klein-Goldberger model tor this research effort. e
Y
RSt

Econgmetrics (Klein, 1974:238-239). The materi1al below restates Klein's
description. An econometric model with n current endogenous variables,

n endogenous variables lagged up to p perinds, and m exogenous variables

lagged up to p periods can he written i1n the form

Yi.oe =gl(Vl,kg:o-|V\~-l.tgyxoi.t|occ\'n,t|Vl,¢—(y-l-Vr\.f—o’l--'
Xt ,tq0ve¥m, t-plt@ ¢ (R. 1)
1 = (1y2400.,0)

where

. - .o DI e C gl et e et et e et e e e e e e e s .
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Y, = one of n current endoenous variables,

Yi.t-» = one of n endogenous variables lagged p periods,
X..,e 3 one of m current exogenous variables,

X:,e-» = One of m exogenous variables lagged p periods, and

@,,« = a random error ternm.

In words, Eq (A.1) says that each equation in the model gives a single

current endogenous variable (which must be solved for) as a function of

exogenous variables. Lagged endogenous variables together with current
and lagged exogenous variables are known as predetermined variables.
With a few exceptions, the Klein-Goldberger model in Table 2.1 has the

farm of Eq (A.1). It 1s usually possible to rewrite Eq (A.l) in the

tarm
..\ T -
Vior 2 @i lVi,eqeaeYn,e sVt , e-tgsasYn,t-prasegXi . tyessfm.t-pl+€i ¢ (R.2) RSLS
.“.-h\.-
. R
1 = {1edeeaayn) .\:_‘.:_
CRAE
» \¢

M
D )

Eg tA.2) 1s the same as Eq (A.1) except in Eq (A.2) vy,.. appears on both
sides of the equation. Omitting the error term, e., and 1nserting
superscripts in accordance with the Gauss-Sidel method converts Eq (A.2)

to an algorithnm,

RTPE LR T IO O A S O T AL LY S P S
Vi.t-t1eess¥n,t-ps Xt1.tvaseXmot-p) (A.3)
IO S SN %,
whera
va.e'm "t = the value of the 1th current endgogenous variable fronm

the (re+lith 1teration of the method, and
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o
Yi.e'"' = the value of the ith current endogenous variable from the 157

rth iteration,

Iterations are pertormed until

ePe e 8% " s

by ,e"*2 = y, ‘"l ¢ tolerance
] I Vt.c(” I

. A simple example illustrates the confusing notation 1n Eqs (A.1}), (R.2),

and (A.3). The system of nonlinear equations,

b X = =4z + 2w + b (A.4)
i y = 4x */> + 8 (A. 9)
- z = x/y -~ 24 (A, 8)

where
Xy V. 2 = variables to be solved for, and

w = a varilable whose value is known,

1s 1n the form of Eq (A.1). EqQs (A.4) through (A.6) can be rewritten 1n
the form of &g (A.2) by multiplying both sides of the eguations by a
constant, sav 0.3, and then adding ({-0.5) times the left-nand side

variables to both sides of the egquations.

=
"

0.5(=42 + 2w + 6) + 0,5« (A7)

= 0.,5(4x -7 + 8) + 0,5v (A, 8)

~<
]

(2]
"

D.5(x/y - 2wi * 0,32 (R.9)

v arranging terms and inserting superscripts denoting i1terations, Egs

(R.71 through (A.3) become algorithms for computing a sclution.
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Xr*1) oz O.5xr> = 227 4 tw + 3 {(A.10)
yirstr 2 2g-1/3¢ret 4 0 5y + 4 (R.11)
2t = 0, 5(xrti/yire) - W ¢ 0,52 (A.12)

The Gauss~Sidel method requires an initial solution, a specification for
w, and a specification of the error tolerance. If x'° =0, y‘®’ =0,
z'°’ = 0, w=5, and tolerance=,01 then the first i1teration of algorithm

Egs (A.10) thraough (A.12) is

x‘l)

(0.9)(0) - 2(0) + 1(5) +3 = 8

2(8)-t“3 + (0.5)(0) + 4

n
F

BN
\)

ztl)

0.5(87/4) - 5 + (0.3)(0)

(1]
]
P -3

x¢1 = 8 yer = 4 2 ¢1?

"
[]
-

The second i1teration is

x(2)

(0.5)(B) - 2(4) + 5 + 3 = 4

2(-8)t/3 + (0.5)(4) + &4 =

.
~

3]
u

~

= 0.5(-B/~1) - 5 + (0,5)(~-4) = -3

~

13

-
[{

x(::) = 4 y(;:: = 2 z(:) = _3
[teraticns continue until

oty = xe2b <0001yttt - verl 0.0t

. ' Ktr: l I v(l‘l l
and

lzero? 2l v 0001
;

The alaorithm 1s not guaranteed to converge for all forms of Eq (A.2)
ang for all trial solutions. There are convergence conditions faor the
v 5auss-Sidel method., but often the convergence conditions are extremelyv

gifficult to compute. In gractice. trial ang error usually reveals
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simple forms that converge.

The method described above computes a solution for current
endogenous variables given lagged endogenous variables and exogenous
variables. The method easily adapts to compute extended period
forecasts. Once the method yields a solution, lagged variables are
updated with current variable values and exogenous variables are set to
values dictated by the policy under investigation. Then the model is

resolved. In the notatian of Eg (A.1},

Vi.t-cks = Yy e-cuss for all i=1,2,...4n and k=1,2,...,p

Ar.t-ckr T Xy, (ke1d for all i=1,2,...,m and k=1,2,...,p

The Klein-Goldberger model was solved using the Gauss-Sidel method. The
Klein-Goldberger model equations in Table 2.1 were put i1n the form of Eaq
(A, 1) with ane current endogenous variable expressed as a function of
the other current endogenous variables, lagged endogenous variables, and
exogenous vartables. For the sake of simplified discussions, Eq (A.1l)

can be abbreviated,

Y = Q. (A 13)

where g, ts a function ot the other current endogenous variables, lagged
engogenous variables, and exogenous variables, Performing some simple
algebraic manipulation converts Eg (A.13) to the form of Egq (A2}, If a

1s a constant,

ay. = a 9. (A.14)

ay, + (l-a)y, ag, + (l-aly, (R.15)

and
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Y. = ag, + (l-aly, (A. 16)

The approach given in Eqs (A.14), (A.15), and (A.16) was used to convert
Klein-Goldberger model equations in the form of Eq (A.1) to the form of
Eq (A.2). For a=2, and a starting solution equal to the endogenaus
vari1able sample means, the method diverged. The method converged for
az=0.3. The number of iterations required to reach a solution appears to
depend on the value of the constant a. Runs with other forms of the
maodel were not attempted, but the number o0f runs required for solution
might be considerably reduced by using another form of the model.
Shown below is a FORTRAN program for solving the Klein-Goldberger
model with the Gauss-Sidel method. Program inputs are files containing
contraol language, an initial trial solution, values for predetermined
sarirables to be included in the response surface equation, values for
oredetermined variables not to be included in the response surface
and coded values for the variables to be 1i1n-

equation, (-1, 0, or 1)

cluded 1n the response surface equation. The program outputs a file
containing the coded variable values, a case number, the forecast period
number., and the solution for endogengus variables. The output file may
be read directly by the BMDP statistical package for response surface
coefficient estimation.

The program first reads and echoes the control language contained
tn the fi1le "kg.ctl." After 1ni1tializing arrays., the program enters a
loop wnich solves the rlein-Goldberger model ¢for each set of variaole
.evels specified case bv case for the number of periods specified. The
(~t{, 9, or 1}

program first reads one set of coded values for variables

ty be i1ncluded 1n the response surface equation (variables which will
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hencetaorth be referred to as design variables). Subroutine setbas reads

predetermined variable values into the arrays P, IS, and PI. Array P
contains exogenous variable values and endogenous variable values lagged

one period. IS and Pl contain values of short term interest rates and

a"a's 8 4 4

prices lagged more than one periond. Setbas also reads a trial solution
intec X0. Next, subroutine setdes resets the design variables to the
levels specified in the file "design.cod." Subroutine saolve calls
subroutine iterate in a loop to compute Gauss-Sidel iterations of the
Klein-Goldberger model until the solution converges within telerance.

[+ the control language specifies that intermediate period sclutions are
to be printed, the program writes the coded design variable levels, case
number, period number, and the intermediate solution to the file
"kg.out." The last period’'s coded design variable levels, case number,
2 period number, and solution are always printed. [f the centrol language
specifies that extended period forecasts are to be made, subroutine

uodate updates lagged variables and a new solution is computed. The

Loy N e AR

program stops when solutions are computed for the number of periods

specified for each set of design variable level specifications.

- R Ry Ly Y Yy Y Y YT Y Y Y R R R R estl
program kgsalv

# Solves the Klein-Goldberger model using the Gauss-Sidel numerical
+ technigue

PO S )

double precision X0(21),X1(21),P(44),18(5),PL(2)
real tol, CODDES(S)
integer dl, d2, i, icase, ipriod, iiter, ncase. npriod, ttmax,
% prtall, guessl, bascas, design, kgout, kgctl, codes
open(!,file= 'quessi.dat’)
rewind (1}
~ ovent2,file= 'bascas.dat’)

s,
LR .. ‘- ‘l ‘I »
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rewind(2)
open(3,file= ‘'design.dat’)
rewind(3)

open(4,files 'kg.out’',status='new’)
openi(8,file= 'kg.ctl’)

rewind(8)

open(9,file= ‘'design.cod’)
rewind(9)

guessi=|

bascas=2

design=3

kgout=4

kgctl=8

codes=9

# Initialization
* Read and eche contral language

write(#,#)" CONTROL DATA’
read(kgctl,#)prtall

write(#,#)  PRINT EACH PERIOD DATA? (1=YES) ,ortall
read(kgctl,#)ncase

write(#,#)  #% CASES= ',ncase
readt(kgctl,#)npriaod

write(#,#)' # PERIODS= ',npriead
read(kgctl,#) tol

write(#,#)° TOLERANCE= ',tol
read(kgctl,#)itmax

write(#,#)' MAX ITERATIONS= ',jtmax
icase=i

ipriodso0

1iter=1

* Initialize arrays
do 100 i=1,21
X0(i)1=0
X1{(i)=0
100 continue
do 200 i=1,44
pPir=0
200 continue
* Strip off data dimensions with dummy variables.
readicodes,#)dl, d2
+ Main Progranm

¢ While the current case is less than the last case

440 1f (1case.le.ncase) then

99
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rewind(guessl)
rewind(bascas)

* Read coded design variable levels
read(codes,*) (CODDES(i),i=1,5)
* Read predetermined variable levels
call setbas(guessi,bascas,X0,P,I5,P1)
* Read design variable levels

call setdes(design,P,1S5,PD)

ipriod=0
* while current period is less than or equal to the forecast period
300 if (ipriod.le.npriod) then

call solve(X0,X1,P,icase,ipriad,itmax,tol,iiter?

if (prtall.eq.i) then
write(kgout,1020) (CODDES(i),i=1,5)
write(kgout,*) icase, ipriod
write(kgout,1020) (X1(i),i=1,21)

else ifl(ipriod.eq.npriod) then
write(kgout,1020) (CODDES(i),i=1,5)
write(kgout,#) icase, ipriod
write(kgout,1020) (X1¢(i),i=1,21)

endif

1020 format ({x,SF12.6)

hadlih i ahe aan o

o Ani auik AmE SR g

call update(X0,Xt{,P,IS5,PD)

ipriod=ipriod+!
goto 300
endit
+ end while (ipriod!
1casesicaset!
goto 400 ]
end1f DA
» end while (icase) AR
write(#,#) _{;;3
write(«,#)  PROGRAM COMPLETE, RESULTS IN KG.OUT" e’ al

btk R e

stop

e wYEpYeTY Y vV

f end
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subroutine sethas(guess!,bascas,X0,P,IS5,PD)
* Reads initial guess solution and base case predeterained data.

double precision X0(21), P(44), IS(3), PI(2)
integer i, guess!, bascas

* Read initial guess at solution.
read(guessl,#) (X0(i),i=1,21)

\ Read base case predetermined data
read(bascas,*) (P(i),i=1,44)

* Set up variables with more than one year lag.
IS(1)=P(29)
IS(2)=(P(29)+P(30))/2
IS(3)=P (30}
[S(4)=(P(30)+P(31))/2
IS(5)=P(31)

PI(1)=P(39)
PI(2)=P(36)

return
end

FREREEBERBERERRBREREFPRRRRRREERERRRERRRREFERERRERRRERARERERBRRR RN

subroutine setdes(design,P,IS,PI)
* Reads changed predetermined data for a new case

double precision P(44), [S(3), PI(2)
integer design

+ Read 1n design variablie values
read(design,#)P(2),P(3),F(6),P(7),P(13)
* P(2)=TW, P(2)=TC, P(&)=G, P(7)=W2, F(13)=NG
* Set up variables with more than one year lag
[S(1)=F(29)
IS(2)=(P(29)+P(30)) /2
IS(3)=P(30)
[S(4)=(P(30)+P(312)/2
IS{S)=P(31)

PICLI=P(35)
PI(2)=P(38)

101

« o o e o -
‘ g & .'-' N
ook e
PR PR
DA

,
D
RN

‘
'

alalale nls e A

MO

> e e e
DR A R

------



4 E'-'!'E'!'C"."-"'.':'."FWE'V‘M"LTT".“v\v.Y"' it i it Tl 10 Say et 2o Sanca Lt e Tl S

return
end

{QOiiQQQQ!llll’iili!ii’ﬁiiiQilii&lilii|§il’ii!ifi*#ll!iiiﬁl*i.il
subroutine solve(X0,X1,P,icase,ipriod,itmax,tol,iiter)

» Computes a numerical solution to the Klein-Goldberger model
double precisian X0(21) ,X1(21) , P(4&)
real tol, ERROR(21),error0

tnteger 1, 1case, ipriod, itmax, iiter

# Compute numerical solution

titer=0
* Repeat until error ¢ tolerance
400 continue

1f (iiter.1t.itmax) then
+ call iterate subroutine
call iterat(xo, P, X1)
iiter=ziiter+!

else
write(#,#) 'CASE ',icase,  PERIOD ",ipricd,

% " FAILED TO CONVERGE AFTER
write(#,#)iiter, ' ITERATIONS. PROGRAM STOFPED.’
stap

end1 ¢
+« Check current iteration for tolerance
error(Q=0

da 200 i=1,21
ERROR (i) =abs ((X1(i)=X0(i})/XO(i)}
if (ERROR(i).gt.error9) then
error0=ERROR(1)
andi f
00 continue
1§ (error0.gt.tol) then
do 300 i=t,2!
X0(1)sX1 (i)

360 continue
goto 400
* (Do another iteration until error below tolerance!
else
write(#,%)  CASE ',1case,  FERIOD ",1priod,
% - “,iitter,’ ITERATIONS’
end1i ¢
return
end

!**iiil’ii’*i!**ilii!***Q*QQ**QQ**Qlii**ii!**i!!i***QQ*QGQDQ’*Q!
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subroutine iterat(xo, P, X1}

%+ Performs Gauss-Sidel iterations

integer j

double precision C,I1,SC,PC,D,W1,NW,WR,FI,R!,PR,L1,L2,IL,IS,
K,SE,PY,M,Pl,Q

double precision C1,I1{,SC1,PCY1,D1,W1!,NWL,WRT1,FI1,R11,PRY,
L1g,L2¢,ILL,151,K1,581,PYL, ML,PIL,08

double precision TE,TW,1C,TN,TR,G,W2,R2,T,H,NP,NL,NG,NE,FR,
PF,LB

double precision CL1,SCLL,PCL1,DLL1,WILY,WRLY,FILY,RILI,PRLYL,
LiLt,L2L1,ISLL,E8L3,18L5,KLE,SBLL,PLL,PILL,PIL2,QL1

double precision TELL,TWLL,TCLI,TNL1,TRLI,W2LY,R2L1

double precision X0(21),P{(44),X1(21}

* Initialize variables in the Klein-Goldberger model

# ENDOGENQUS VARIABLES

¢ =x0(1)
[ =X0(2)
5C=X0(3}
PC=X0(4)
D =X0(5)
Wi=x0(6)
NW=X0(7)
WR=x0(8)
Fl=x0(9)
R1=X0(10)
PR=X0Q (1)
Li=x0(12)
L2=X0(13)
IL=X0(14)
[S=X0(15)
b o=X0(14&)
§B=X0(17)
PY=X0(18)
M=ol
PI=X0(20)
@ =x0(21)

+ EXQGENOUS VARIABLES

.....
......

TE=P (1)
Tw=2P (2)

Al A A
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LA
2
~
o
TC=P(3) Y
TN=P (4) 0
TR=P (5)
G =P (&) A
W2=P (7) ﬁ?
R2=P (8) D2
T =2P(9) :
H =P (10) W
NP=P (11)
NL=P (12) Y.
NG=P (13) o
NE=P (14) BN
FRaP (15) L
PF=P (16) hoS
LB=P (17)

# LAGGED ENDOGENDOUS VARIABLES

n .m

PR .

[ A 3
. . o
. v’
AR

CLt =P(18) A
SCL1=P(19) RO
PCL1=P (20) o
DLI =P(21) s
WiL1=P(22) ]
WRL1=P(23) R
FIL1=P(24) DAY
RIL1=P(25) AN
PRL1=P (26) e
LiL1=P(27) ey
L2L1=P(28) 583
ISL1=P(29) L
ISL3=P(30) g
1SLS=P(31) QQf
KLl =P(32) ey
SBL1=P(33) o
PLL =P(34) ﬁ§&
PIL1=P(35) =3
PIL2=P (36) A
aLt =P(37) -t
.'.-\"
+ LAGGED EXOGENOUS VARIABLES b ]
TEL1=F (38) O
TWLL=P(39) e
TCL1=F(40) s
TNLL1=P (41) DAY
TRL1=P (42) N
WZL12P (43) D
R2L1=P(44) e
X

+ THE wLEIN-GOLDBERGER MODEL R
L 3! N
C=0.,9#(~22,26+0,55#(W1+W2=TW)+0, 41 #(PY-TC-TN-50) T ®

% +0.J4# (RI+R2-TR)+0, 26#CLL+0,072#L1LL1+0, 2644#NP)+0, 5#C s
1084 -
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R
R
Py
*2 et
120.5%(-16.7140.78#(PL1-TCL1-TNL1+R1L1+R2L1-TRL1+DL1) !
& =0.073#KL1+0, 14#L2L1) +0, 5% 1
*3 T
SC=0.5#(-3.53+0,72#(PC-TC)+0.076#(PCL1-TCLL-SCL1)-0,028#5BL1) :{}
% +0.5#SC o
*4 :: ~
PC20.5#(-7,60+0,6B8#PY)+0,S#PC s
*5 "
D=0.5#(7.25+0, 10# (K+KL1)/2+0.044% (D-W2))+0,5#D
*4
W1=0.5#(-1,40+0.24# (Q-W2)+0.24% (QL1-W2L1)+0.29#T)+0.5+W!1
*7
NW=0.5# ((((R-W2)+26.08-0.16% (K+KL1)/2.-2.05%T)/2.17-NE) /H+NG)
& +0.5#NW
*8 .
WR=0.5#(4.11-0.74% (NL-NW=-NE)+0,52% (PIL1-PIL2)+0.54#T+WRLYL) o
% +0.5*WR NS
*3 u';:-::
F120,.54(0,32+0,006% (M-TN-TC-TN-TR)*#P1/PF+0,B14FIL1)+0,5#F1 N
+10 g
R1=0.5# (PR/PI)#(=0.36+0.054% (W1 +W2-TW+PY-TC-TN-SC)#P1/PR 573
% =0, 007#((WILL+W2L1-TWL1+PLL-TCL1-TNL1-SCL1)#PILL1/PRLY) R
% +0.0122FR)+0. S#R1 RN
#1] -

Voot

.
Rio o

R

PR=0.5#(-131.17+42.32#P1)+0.5#FR
AR AR R AR R R AR RN R R R RN RN AR R AR RN R R R R RN R PR R SR RARRERRRIRRRAN NS

.
PR

N ir

et I

# The monetary sector is omitted (See Chapter IV)

TR

12 e
c L1=0.5#(0.14%# (M-TW=-TC-TN-8C-TR)+76,03# ((IL=2.0) ##(~0.84))) G
c % +0.5#L! el
*13 . o
c L2=0.5%(-0,34+0.26#W1-1.02#15-0.26#(PI-PIL1)+0.61#L2L1)+0,5#L2 o
PRRRRERRRBERRERBBRRREBRERRBRRFRBRRRBRRRERRRRERERRRERREBABREERRREHERERRIRS _.‘-:_.“
“14 o
IL=0.5%(2.58+0.44#1SL3+0.26#I5L5)+0,.5¢IL o
*13 Ya
1620.5#(100%I5L1/(100-11,1740.674LB))+0.5#18 A
*15 Ry
K=0,5%([-D+KL1)+0.5#K SRR
17 :-:;:-f
SB=0.5%(SC+SBL1)+0.5+SB N
#18 e
PY=0.5% (M-W1-W2-R1=R2) +0,5#PY .
+19 A
M=0.5# (C+T1+6-FI-TE=D) +0.5#N S
220 '_.;:.
PI=0.5# ((HANW#WR) / (W1+W2)) +0.5#P1 o
*21 N
Q20,34 (M+TE+D) +0, 520
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- S R_v e L - . FORTY G R Ta T TaY = -

C SET X! = NEW VALUES

{ X1(1)=C

» X1(2)al

X1(3)=8C
X1(4)=PC
X1(5)=D

X1(6) =Wt
X1(7)=NW
X1(8)=WR
X1(9)=FI
X1(10)=Rt
X1(11)=PR
X1(12)sL1
X1(13)=L2
X1(14)=1L
X1(15)=18§
X1(16) 2K
X1(17)=5B
X1(18)=PY
X1(19) =M
X1(201 =PI
X1(21)=0

M IR S Mk sia e

- eaarT

RETURN
END

ARRRRRERRRERRERERRERRERERRRRAEREBRRRRRRRRAERRRRERRRERREERRERRRER
subroutine update(Xo, xit, P, IS, PI}
* Updates values for linking forecasts together nC
double precision X0(21), X1¢(21), P(44), I1S(5), PI(2)
# Update lagged endogenous variables
IS(5)=15(H
15(4)=15(3)
IS =[S L
[st2y=1s(1) A
[IS(hH=x101% Coe

PI(21=Pl (1)
FI(1)=X1(20)

-
(]
-
—

"l
.
HY !

T s
Ay

Pi18)=X1(1)

.

P19 =x1 (3} A

-
w
o
-
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*PCLI
P(20)=X1(4)
#DL1
P(21)=X1 (S)
*Wibl
P(22)=X1 (6}
#WRL1L
P(23)=X1(8)
*FILL
P(24)=X1(9)
#RILL
P(23)=X1 (10)
*PRLIL
P(26)=X1(11)
#LILL
P(27)1=X1(12)
#L2L1
P{(28)=X1(13)
#ISL1
P(29)=[S(1}
#[SL3
P(30)=1S5(3)
#[SL3
P(31)=15(5)
+KL 1
P(32)=X1(16)
+5BL1
P(331=X1(17)
#PL1L
P(34)=X1(18)
+PILL
FL3I3)=PI (1)
sFIL2
P(36)1=P1(2) AT
*QL 1 G
P(37)=x1(21) e
+ yUpcate lagged exogenous variables fi.iz
v "e
+TEL{ m
Fi38)=P (1) _E}kh
Tl ]
F139)=P(2) S
eTCLL T
Pd0r=F (3
¢TNL1
Pidl=P(4d)
#TRLI
Ft42)=F(35)
WLl
FLa3)=2F(7)
eRZLY
Fidd)=F (8)
107
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+TIME TREND (Suppressed for some runs)

c

P(9)=P(9)+1

» Use X1 as new starting guess

#100

AR RERRRRRERRE R R AR R RN LR R R R R R R RN R R R R RRR RS R R RN RN RS RN RRRRRE

do 100 i=t,21
X0(i)=sX1(i}
continue

return
end
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Appendix B. Eguivalence

Chapter 11 showed how the coefficients of a first order response
surface equation could estimate multipliers for a linear system. Here
least squares coefficient will be shown to be equivalent to the

multipliers.

Let

Y = the n by o response matrix containing n observations on m
endogenous variables

X = the n by k predetermined variable data matrix with k
predetermined variables and n observations.

D = the k by m multiplier matrix
Then the linear system can be written
Y = XD
Let B be the k by m least sguares coefficient matrix., B is defined as
B = (XX X'y
= (KXY (X' x)D
= 1D

B =10

Therefore, the least sguares coefficients computed for a tirst order
response surface fit to a linear model are i1dentical to the aultipliers

tor the same perioag.
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Appendix C. Decoding Second Order Response Surface Coefficients ux

After estimating response surface coefficients in terms of the
coded experimental design, the response surface equation must be re-
expressed in terms of the original variabies. Decoding the coded
response surface coefficients for a second order response surface equa-
tion is time consuming, tedious, and prone to errors. This appendix
gutlines a method for decoding coded coefficients using matrix algebra
which simplifies the decoding process. I[f a computer with raoutines !!!?-
capable of matrix inversion and multiplication is available, decoding %;ﬁzi
can be made much easier,

Chapter 11 gave the formula for translating the 1th original
decoded variabie to coded form.

Xes % Xos o ™ (K\m..*X.m.n)/Z (3.2)
(K|m-u-x\m|n,/2

Ahere

Xc¢, = the coded x value,

Yo, = the original, decoded x value,

“max = the maximum factor level, and

<
n

Mmn the minimum facter level.
Let
X2 = (Ximaxt¥aminl/2
AY, T (K.max="Ximinl!/2
Eg (3.2) can be rewritten
Xer % Xpa - : .

The coded secand order response surface quation ts a gquadratric
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tarm which can bhe written
y = : : bcisXeiXe, (C.2)
150 )=

y = the response variable,

where

: *c., and Xc, = the ith and jth coded independent variables,

; bci, = the coefficient of the product of the ith and jth coded
variables,

k = the number of factoars,

Xco = 1, and

Scon = the intercept ternm.

N In regression program outputs be., and be;, are summed because Xec, =
- ¥c,. Consequently be,,; in Eq (C.2) 1s hal+ the value appearing as a
regression coefficient 1n a regression package output.

By defining appropriate vectors and matricies, Eq (C.2) can be
.. written in matrix farm. If k is the number of factors (i1ndependent

variables) in the response surface equation, then let xo be the k+i

S element column vector whose first element is one and the remaining
5 elements are the k decoded i1ndependent variables. Similarly, let x. be

the k+1 element calumn vector whose first element 1s gne and tne

remaining elements are tne ¢ coded independent variables. For example,

1] [ 1]

o X

.° Ao = Xn7 Xr = Xeo
. . .
. . .
2 . .

A [ XD w Xk
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Let Bc be the matrix whose elements are bec:i; and Bo be the matrix whose

elements are boi,. Then Eg (C.2) can be rewritten

y = gcbexg

Similarly,

It follows that

xc"BeXe = to'BoXo (C.3

Bo containg the coefficients of the decoded independent variables which
are desired. It is convenient to solve for Bo in terms of Be, Xi, and

Xi. Let A be the matrix which transforms %o to %c.

Axo = %e

tnen Eg (C.3) can be rewritten

(AXD)TBDﬁKD

&cYBcﬁc

to" (ATBcA) Xo
= xo"Boxo
Then it follows that

Bo = ATBCcA

It will be demonstrated but not proven that

A= 0ot (l-gu") (C.4)
wnere
A = the transformation matrix,
C = a «x+l bv k+! diagonal matrix whaose i1th diagonal element i1s «x,
(define xo = 1),
I = a k+#l by k+l i1dentity matrix,
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a k+! element coluan vector whose first element is zero and the

F 3
n

remaining elements are x., and

a k+1 element column vector whose first element is one and the

([~
[}

remaining elements are zero,

An example demonstrates the validity of Eq (C.4). 1Ilf k=2 then

: 1 0 0 0
c=lo ax,0 X 2 X u = {10 0)
0 0 axz ;
)
| Ol NS WD 0 0 0
: 1w’ =|x, = x. 0 0
[ X2 = 0 0

y 1 0 0 0 0 { 0 0
? I - xu’ = 0 1 ol - 0 o] = |-x. 1 0
i o 0 1 o 0 %z 0 1
{

[ 1/8%a 0 0

E cr=| o0 1rax, 0

! 0 0 1/8%z

{ 1 0 0 1 0 0
| Cl - gw) = |0 1/ax. 0 |, |, 1 0
E 0 0 1/ax - x> 0 i
i

]
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i 0 0

slexi/ax:  1/8x, 0
~X2/8%2 0 1/ax2

1 0 0

C-(1 - ig*)gn N N ST YIS T 0
“xz/8K2 0 t/ax

1 + 0 + 0

zlex, /%1 * Xpi1/AX, *+ 0
“Xz2/8%2 * 0 + Xoz2/8%2
{
2 HXay = X4)/6%;
(Xa2 = xz2)/8%2
= Ec

by Eq9 (C.1). Then

Bo = (€ *(I-xy™)17BclC *(I-xu™)] (C.5)
which 1s the desired result., Eg (C.9) is used to decode coded response

surface coefficients in this thesis. It saves time and effort.
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Appendix D. Decoding the Experimental Design

ey

Coded experimental designs are used to collect data for fitting EE%
response surfaces. In order to determine what factor levels to run an :izz
experiment or model at, the experimental design must be decoded from E: :
l'sy, 0's, and -1's to actual factor levels. Below is a FORTRAN program EEE
which accomplishes this task. The program reads the coded experimental ;i;;
design and factor levels from user specified files, and writes the coded iig

experimental design, factor levels, and decoded experimental design to a
user specified file, At the end of this section is sample output. The
gutput caontains the Bax and Behnken three level five factor coded s

experimental design uged so extensively in this research effort. The

,_
'l

N -:‘
NS
sutput also contains the factor levels which are the design variable 2r;ﬂ
o\‘-'
.-...u'
nigh and laow sample values. After the factor levels 1s the decoded 323
experimental design. b v
ot
".“J‘.<
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FPRKOGRAM DECODE

' .'.':l::'
PRI » %0 e
o ' o

* Translates a coded two level or three level experimental

* design matrix to a design matrix with actual factor levels. R

¢ The factor level file must have MAXIMUM values followed by e

# MINIMUM values.IMPORTANT' The data in each of the 1nput o
. R . =, v

+ design f1les must have the array dimensions (m n) as the et

* |

$1rst line.

¢DECLARATIONS*

- M -
. L .
"M‘“. -

7| et e e

integer aD, nD, mF, nF, maxm, maxn,
% runitl, runi1t2, wunit

parameter imaxm=200,maxn=50) 'S
. doublie precision Di(maxm,maxn), Fi{maxm,maxn} Lvﬁ
=
- double precitsion Dcimaxm,maxn) o)
character+24 expdes, faclev, outfil !
” runitlist ¥
E. runit2=2 o
Ej 145 .
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wunitsd

#JSER INPUT#

call getdat{expdes, faclev, outfil)

open (runitl, file = expdes, status = ‘old’ )
rewind (runiti)

open (runit2, file = faclev, status = 'old’')
rewind (runit2)

open (wunit, file = outfil, status = '‘new’)

+END OF USER INPUT+

call mread(runiti{, D, mD, nD, maxm, maxn)

write(wunit,l)

1 format (* EXPERIMENTAL DESIGN MATRIX')
call mwrite(wunit, D, mD, nD, maxm, maxn)
call mread{runit2, F, moF, nF, maxm, maxn)
write(wunit,*) ' FACTOR LEVEL MATRIX'
call mwrite(wunit, F, aF, nF, maxm, maxn)
call switch(D, mD, nD, F, maxm, maxn, Dc)
write(wunit,#)  DECODED MATRIX’
call mwrite(wunit, Dc, mD, nD, maxm, maxn)
write(#,#) " All done!’

stap
end ”
R AR R R R R RNt n A rtSUBROUTINE SR Rt A A R R R R R R R AR R R AR R L RN R AR R R ERRRRRAER ;:}:
RSN
CATN
subroutine getdat(expdes, faclev, outéil) AP
DESCRIFTION: Requests experimental design file nanme, :fj:;
factor level file name, and ocutput file {}i_
name from user at terminal. RS

INPUT: Input and output file names supplied by the user. K
QUTPUT: Variable values for expdes, faclev, anc autfil. Cd
character#24 e:xpdes, faclev, outfil LN

write(%,#}  Enter coded experimental design file name.

read(+,10)

read{+,10)

read(+,10)
format(Il)
return

format(az4)
write(s, &)’

write(*,#)’

expdes

Enter factor level file name.
faclev

Enter output fi1le name.’
outfil

.....
- o
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end

(2222222222 X2 22222 X2 2222222222 222 22222222222 22 X2 2222222222222 2]

subroutine aread(runit, A, m, n, maxm, maxn)

# DESCRIPTION: Reads dimensions and values for matrix

* A.
b * INPUT: Values for dimensions and values for elements
r * of matrix A from a file. Max size from calling
[ * program.
F * QUTPUT: Matrix A, dimensions m, n to calling progranm,
A *
| integer runit, m, n, maxm, maxn, 1, )
' double precision A(maxm, maxn}

L ]
A
) read (runit, *) m, n, ((Ali, 3)y, 3 =1, M)y 2 = 1, m
! return

end
*
*

(22222222222 RS2 XXX R22 22222 XXX XSRS X X

subroutine mwrite(wunit, A, m, n, maxm, maxn)

* DESCRIPTION: Writes m, n, and then the matrix A in
* rows.
» INPUT: Array A with dimensions m, n and max size Maxm, Mmaxn
* tram calling program.
* QUTPUT: Values for m, n, and elements of R to
+ standard output.
*
integer a, n, maxm, maxn, i, 3, wunit
double precision A(maxm, maxn)
*

write(wunit, 1000) m, n
1000 tormat( ',I12," BY ', I2}
do 1150 1+ = 1, m
write(wunit, 1100) (ACGi, ), J = 1, n)

1100 format (' °,5E14.95)
118¢ continue
write(wunit,*)
return
end

+
*
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)
;s
E
!
!

subroutine switchtDc, mD, nD, F, maxm, maxn, 0d)
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* DESCRIPTION: Creates a new array containing factor levels 1in
* place of coded values from the design matrix.
* INPUT: Coded design matrix, Dc, with dimensions aD by nD, !Ii
* maximua array dimensions maxm, and maxn }:
* OUTPUT: Decoded design matrix, Dd ok
-
integer mD, nD, maxm, maxn, i, j e
double precision Dc(maxm,maxn), F{maxm,maxn}, Dd(maxam,
+ maxn)
do 40 i =1, mD
do 30 j = 1, nD
DA (i, )= (F{1,)+F(2,3))/2+¢Dc(i,3)#(F(1,3)=Fi2,3))/2

30 continue
40 continue

return

end

+ End of FORTRAN code.
ERPREEBERRERRBERRRBRRRRERRERBERRRRRRERRRRRREREERERRRREREFERRRRERRERERERER
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0. e+00
0.10000e+01
0.10000e+01
-0.10000e+01
-9.10000e+014

Q. e+Q0
0. e+00
Q. e+00
0. e+
D e+00
Q. e+00
0. a+00
0. e+00

0.10000e+01
0.10000e+01
~0.10000e+01
-0.10000e+01

U a+00
D e+0)0
BN e+00
Q. e+00
0. e+00
0. e+Q0
0. e+00
Q. e+Q0

0.10000e+01
0.10000e+01
-0,10000e+01
-0,100008+01

0. e+l
9, e+uo0
9. e+
9. a+)0

0.10000e+01
D, 10000e+01
=0, 10000e+01
=0,10000e+01

DR e+00
0. e+0)0
0, e+un
. e+00

FACTOR LEVEL

2 BY 3§
D.11630e+02
D.Seline+nl

EXPERIMENTAL DESIGN MATRIX
41 BY 3§

0. e+00
0.10000e+01
-0.10000e+01
0.10000e+01
-0.10000e+01

0. e+00
0. e+00
0. e+00
0. e+00

0.10000e+01!
0.10000e+01}
-0.10000@+01
=3.10000e+01

0. e+00
0. e+00
. e+00
0. e+00
0. e+00
0. e+00
0. e+Q0
0. e+00

0.10000e+01
0.10000e+01
=0.10000e+01¢
=0.10000e+01

0. e+00
Q. e+Q
0. e+0u
0. e+00
. e+0(
D e+00
Q. 2+00
0. e+00
0. e+00
0. e+00
9. e+00
0. e+un

0.10000e+01
0.,10000e+01
-0,10000e+01
-0, 10000e+0

MATRIX

D.13140e+02
D.714000+0]

0. e+00
0. e+00
0. e+00
0. e+00
0. e+00

0.10000e+01
0.10000e+01
-0.10000e+01
-0.10000e+01

Q. e+00
Q. e+00
0. e+00
Q. e+00

0.10000e+01
=0.10000e+0t
0.10000e+0!
=0.10000e+01

0. e+Q0
0. e+00
0. e+0
0. e+00

0.10000e+01
=0.10000e+01
0.10000e+01!
=0.10000e+01

0, e+Q0
0. e+00
0. e+00
0. e+00

0.10000e+01
0.10000e+01
-0.10000e+01
-0.10000e+01

0. e+v0
N e+00
DR e+
0. e+00
2. e+00
0, e+00
D a+()n)
V. e+0u

0.61700e+02
3.37790e402

119

Sample Output 04 DECODE (Box and Behnken Three Level
Five Factor Design.

0. e+00
Q. e+00
0. e+00
0. e+Q0
0. e+Q0

0.10000e+01
=0.10000e+01
0.10000e+01
-0.10000e+01

0. e+00
0, e+00
0. a+)0
0. e+00
0. 2+Q0
0. e+(0
0. e+00
0 e+0Q0

0.100Q00e+01
0.10000e+01
-0.10000e+01
-0.10000a+01

0. e+00
0. e+00
0. e+Q0
0. LX)

0.10000e+01
=0.10000e+01
0.10000e+01
-0.10000e+01

Q. e+yn
0. 2+00
0. a+)0
0. e+00
9. 2+00
N e+00
0. 2+00
0. e+(0

0,10000e+01
-0, 10000e+01
0. 10000e+01
-0,10000e+01

D.21820e+02
0.13820e+02

0. e+00
0. e+00
0. e+00
0. e+00
0. e+00
0. e+00
0. e+00
0. e+00
0. e+00

0.10000e+01
=0.10000e+0!
0.10000e+01
«0.10000e+01

0. e+00
0. e+00
N, e+00
0. e+00

0.10000e+01}
-0.10000e+01
0.10000@+01
~0.10000e+01

0. a+J0
0. e+00
2. e+00
0. a+00
0. e+00
0. e+00
0. e+00
0. e+00

0.10000e+01
-0.10000e+01
0.10000e+01
-0.10000e+01!
0. 10000e+01
-3.10000e+01¢
2.10000e+01
-).10000e+01

2, e+00
DN e+00
U. a+Q0
e e+00

0. 10400e+0u2
0. 10400e+02



’

DECODED MATRIX
41 BY S

0.86300e+01!
0.11630e+02
0.11430e+02
0.56300e+01
0.56300e+01
0.86300e+01
0.86300e+01
0.846300e+0!
0.86300e+01
0.84300e+01
0.86300e+01
0.88300e+01
0.86300e+01
0.11630e+02
0.11630e+02
0.56300e+01!
0.56300e+01
0.86300e+01
0.86300e+01
0.86300e+01
0.86300e+01
0.363008+01
0.86300e+01!
0.86300e+01
0.86300e+01
J.11630e+02
0.11630e+02
0.56300e+01
0.36700e+01
0.86300e+01
0,86300e+01
0.,863000+01
0.86300e+01
0.11630e+02
0.11630e+02
J.36300e+0]
D.56300e+01
.36300e+01
0.86%00e+01
0.386300e+01
J.88300e+01

0.10140e+02
0.131400+02
0.,71400@+01
0.13140e+02
0.71400e+01
0.10140e+02
0.10140@+02
0.10140e+02
0.10140e+02
0.13140e+02
0.13140e+02
0.71400e+01
0.71400e+01
0.10140e+02
N0.10140e+02
0.10140e+02
0.10140@+02
0.10140e+02
0.10140e+02
0.101402+02
0.10140e+02
0.13140e+02
0.13140e+02
0.71400e+0}
0.71400e+01
0.10140e+02
0,10140e+02
0.10140e+02
0.10140e+02
N.10140e+02
0.10140e+02
0.10140e+02
0.10140e+02
0.10140e+02
7.,101400+02
J.10140e+02
D.10140+02
0.13140e+02
0.13140e+02
0.714008+01
0.71400+01

0.49700@+02
0.49700@+02
0.49700e+02
0.49700e+02
0.49700e+02
0.61700e+02
0.61700e+02
0.37700e402
0.37700e+02
0.49700e402
0.49700e+02
0.49700e+02
0.49700e+02
0.61700e402
0.37700e+02
0.61700e+02
0.37700@+02
0.49700e+02
0.497000402
0.49700a+02
0.49700e+02
0.61700e402
0.37700e402
0.61700e+02
0.37700e+02
0.49700e+02
0.49700e+402
0.49700e+02
0.49700e+02
0.61700e4+02
0.61700e+02
0.37700e+02
0.37700e+02
0.49700e+02
0.49700e+02
0.49700e+02
0.49700e+02
0.49700e+02
0.49700e+02
0.49700e+02Z
0.49700e+02

el Rl e dia pha ala AT a0ty R taty abo-atesaf ui Sat taf i A Sot L Bl Al AR Gl & KA A £ S e

0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.21820e+02
0.13820e+02
0.21820e+02
0.13820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.21820e+02
,21820e+02
0.13820e+02
0.13820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.21820e+02
0.13820e+02
0.21820e+02
0.13820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0.17820e+02
0. 17820e+02
0,21820e+02
n.13820e+02
7.21820e+02
0.127820e+02

0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0.104000+02
0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0.,10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0,10400e+02
0.10400@+02
0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0.10400e+02
0,10400e+02
0.10400e+02
4.10400e+02
0.10400e+02
0.108000+02
0.10400e+02
0.104008+02
0.104000+02
0.10400e+02
0.10400e+02
0,10400e+02
0.10400e+02
D,10400e+02
0.10400e+02
0,104008+02
0.10400e+02
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Appendix E. Response Surface Coefficients

Tables E.la-k below contain both coded and decoded coefficient
matricies for the second degree polynomial response surface equations
described in Chapter V. The matrix algebra method in Appendix D

was used to decode the coded coefficients. Consequently, off diagonal

elements in Tables E.la-k are half of the value normally given as a

coefficient for a polynomial (See Appendix D.). The column and raow
marked with a | contain first degree term coefficients, The upper right

hand corner element in the tables is the intercept tera.

Table E.la. Coded Second Order Polynomial Response Surface Coefficients
for Number of Workers Employed in Period lero

(R = 1,0000, Adjusted R= = 1.,0000)

1 Tw Te G W2 Ne

44,1080 -0.9029 =-0.1937 4.6116 -0.8731 1.6890
=0.9029  0,0000 0.0000  0.0039 -0.0033 0.,0000
-0.1937 0.0000 0.0000 0.0026  0.0000  0.0000
4.6116 0.0039 0.0026 -0,0088 0.0069 =-0.0042
-0.8731 -0.0033 0.0000 0.0069 2.0000 0.0000

1.6890 0.0000 0.0000 -0,0042 0.0000 0.,0000




Table £.1b. Decoded Second Order Polynomial Response Surface Coefficients
far Number of Workers Employed in Periad lero

(R2 = 1,0000, Adjusted R= = 1.0000)

i Tw Te G W2 No

l 25.2089 -0.1686 -0.0343 0.3039 -0.1366 0.4989
Tu -0.14686 0.0000 0.0000 0.0000 -0.0001 0.0000
Te -0.0345  0.0000 0.,0000 0.0000 0.0000  0.0000

G 0.3059  0.0000 0.0000 0.0000 0.000! =-0.0001
Wz -0.1366 -0.0001 0.0000 0,000t 0.0000  0.0000

Ne 0.4989  0.0000  0.0000 -0.0001 0.0000  0.0000

Table E.ic. Coded Second Order Palynomial Response Surface Coefficients
for Price Index in Period lero

{R® = 1,0000, Adjusted R= = 1.0000)

1 Tw Te G W2 Ne

i 134.5839 -2.1629 -0.4619 11.0416 -9.4508 4.1408

Tu -2.1629 0.0000  0.0000 0,1592 0.0776  0.0000

Te -0.4619  0.0000 0.0000 0,0398  0.0000  0,0000
7] 11.0416 0.1592 0.0398 -0.7819 -0.4222 -0.1191
-9.4508 0.0776 0.0000 =-0.4222 1.8014 -0,4433

Na 6.1408 0.0000 0.0000 =0.1191 =-0.6453 0, 1668
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Table E.ld.

Tu

Te

Ne

E.le.

1

R ,:"...» ..-_ .

AR WA P N

Decoded Second Order Folynomial Response Surface Coetficients
far Price Index in Period lero

@ I il B R P D A A i B AR B S e A St Sha Sie i -2 B Aaia e Al

Coded Second Order Polvnomial Response Surface Coefficients
_for Gross National Product in Period lerc

(R* 1.0000, Adjusted RZ 1.0000)
l Tu Te W= Ne
100.3344 -0.4786 -0.0927 -1.5949 2.0708
~0.4786 0.0000 0.0000 0.0022 0.0000
-0.,0927 0.0000 0.0000 0.0000 0.0000
0.8742 0.0020 0.0003 =0.0087 =0.0023
-1.9949 0.0022 00000 0.0431 =-0.0294
2.0708 0.00900 0.0000 ~0.0294 0.0144

(R* 1.0000, Adjusted R= 1.0000)
1 Tu Te Wo N
117.3169 -2.0454 -0,4398 1.2521 -0.0281
-2.0454 0.0000 0.0000 -0,0073 VIR Y )
-0.,4398 2.0000 =0.,0008 Q.0000 2.0000
10,4317 0.0088 D.0051 0.0151 -0.2094
1.2531 0.0073 D.0000 0.0000 J. 0000
-0.0251 0D.0044 0,5000 0. U000 00000
H
B e B g A v e e 4 A e e




Table E.14. Decoded Second Order Polynomial Response Surface Coefficients :i*i
tar Gross National Product in Period lera "

(R= = 1.0000, Adjusted RZ = 1,0000) o

S

1 Tw Tc 6 Wz Ne :f:f:

{ 70,6007 -0.3836 -0.0780 0.4933  0.1904  -0.0033 S
Tu  -0.3836  0.0000 0.0000 0.0001 =0.0002  0.0002
Te  -0.0780  0.0000 0.0000 0.0001 0.0000  0.0000
6 0.6933  0.0000  0.0001 =0.0001 0.0002  =0.0002
Wa 0.1904 -0.0002  0.0000  0.0002 0.0000  0.0000
Ne  =0.0033  0.0002 0.0000 =-0.0002 0.0000  0.0600

Table E.lg. Coded Second Order Polynomial Response Surface Coefficients
for Number of Workers Employed in Period Five

(R = 1.0000, Adjusted R* = 0,9999)

1 Tu Te G W= Ne

l 49.4412 -3.4778 -3.5473 13,4030 -1.2730 1.4146
Tu -3.4778 0.0000 -0.0939 0.4133 =~0.1006 0.0000
Te -3.5475 -0.0939 0.0000 0.4108 -0.0934 0.0730

5 13.4030 0.4135 0.4180 -1,2782 0.3521 =-0,2912
W =1.2750 =0.1006 -0.0934 0.3521 0.0000 0.0000

Ne 1.4164 0.0000 0.0730 -0.2912 0.0000 0.0000
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Table E.lh. Decoded Second Order Polynomial Response Surface Coefficients
for Number of Workers Employed in Period Five

(R = 1.0000, Adjusted R® = 0.9999)

) Tu Tc ] Wz Ne

1 10.3560 =-0.7353 -0.7372 0.9930 -0,2682 0.5433

Tw -0.7353 0.0000 -0.0030 0.0051 -0.0029 0.0000
Te -0,7350 -0.0030  0.0000 0.0047 -0.0025 0,0038
G 0.9928 0.0051 0.0048 -0.0056 0.0036 -0.00357
W= -0,2682 -0.0029 =-0.00235 0.0036 0.0000 0.0000 :
No 0.5439  0.0000  0.0038 -0.0057  0.0000  0.0000 ;;?f
Table E.li. Coded Second Order Polynomial Response Surface Coefficients :::f
tor Price Index i1n Period Five iia

(R* = 0,9998, Adjusted RZ = 0.9997)

l Tw Te 6 W= Ne

l 185.6931 -14.8952 -12.88B19 59.6284 -18.4974 13,2612

Tw -14,8952 0.0000 0.0000 0.0000 0.0000 0.0000

Te -12.8819 0.0000 0.0000 0.8976 0.0000 0.0000

G 59.62868 0.0000 0.8974 0.0000 -2,3389 1.9044

b
n

Wz -18.4974 0.9000 0,0000 -2,3389 4.0012 -2.8893

r
C

Na 15.0212 0.0000 0.0000 1.9044 -2,5393

rJ
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Table E.lj. Decoded Second Order Polynomial Response Surtace Coefficients
for Price Index in Period Five

(R= = 0,9998, Adjusted R® = 0.9997)

1 Tuw Te ] W2 Ne

| 1 23.14609 -2.7764 -2.5197 3.8950 -2.3456  3J.2888

Tu =2.7764  0.0000  0.0000 0.0000  0.0000  0.0000

i Tec -2.5197 0.0000 0.0000 0.0104  0.0000 0.0000
6 3.8930  0.0000 0.0104  0.0000 -0.0260 0.0371

i W= -2.3456  0,0000  0.0000 =-0.0260  0.0957 -0.1164
Ne 3.3947  0.0000 0.0000 0.037t -0.1164 . 2027

Table E.lk. Coded Second Order Polynomial Response Surface Coefficients
for Gross National Product in Period Five

,
. .‘
v
ll "
[N .

(R® = 1,0000, Adjusted R® = 1.0000) i

! Tu Te 5 Wz Ne =y
I 141.3428 -9.2409 -10.4323 36.0425 -0.3852  0.7046 oo
{or
Tu  -9.2408  0.0000 =-0.2276 0.9903 -0.2246  0.1707 JOSR

L.
. 7 " '\.:
Te  -10.6323 -0.2276  0.0000 0.9796 -0.2342  0.1769 2
6 36.0425  0.9903 0,979 -3.0659  0.8543 -0.7019 s
W  -0.3852 -0.2446 -0.2342  0.8543  0.0000  0.1568 :

Ne  0.7086  0.1707  0.1769 -0.7019  0.1568  0.0000
.
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Table E.ll. Decoded Second Order Polynomial Response Surface Coefficients
far Gross National Product in Period Five

,

ite

(R* = 1.0000, Adjusted R= = 1.0000)

>
vy

l'{
&

E:{dff
A .A.J‘:I

a1

1 Tu Te 6 Wz Ne

1 43.4207 -1.9947 -2,1269 2.46404 -0.2824 0.4108

S
s xxil

Tu =2.0001 0.0000 -0.0074 0.0122 -0.0065 0.0094

.

'l

Te =2.1269 -0.0074 0.0000 0,0113 -0.0063 0.0091

,-
o,

G 2.56404 0.0122 0.0l!3 -0,0134 0,0088 =-0,0137

X0 ke

W2 -0.2805 -0.0071 -0.0063 0.0088 0.0000 0.0071

....

. ‘e
B DA
AR

A
.l

"pA 'l"'l‘ 'I‘

Ne 0.4108  0.0094 0.0091 -0,0137 00,0071 0.0000

Vs
{ jo

v v v

»

oy
F

.

-

Tables E.2a-e contain decoded coefficients for first order

BACAAA
S S

U R )
oy ot v LY

polynomial response surfaces. They may be compared directly to

LT
|

multipliers computed by Goldberger (Goldberger, 1959).

Table E.2a. First Order Respanse Surface Coefficients for a Unit ;—._:::::
Increase in Tu. B

l‘.‘...'

Period et

v
.

P

0 1 2 3 4 S

R e e T
'b-

il
ria
Nu -0.3367 -~0.7538 -0.1081 -1,2729 -1.3347 1.2937 :.‘-:.'.‘-
p -0.8293 ~-1.9435 -=3.0677 -4,1201 .0475 -S5.8117 ':.:1
Q -0,7631 =-0.1738 =2.5663 -3.12342 -3.4011 -3.439% .j::::
" T
2 o
Py ;:-A
]
~»
e y
l:’ N 4
by 1
'“ \

v

e
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Table E.2b. First Order Response Surface Coefficients for a Unit
Increase in Tc.
Period
0 1 2 3 4 S
Nu -0.6769 -0,5968 -0.1038 -1,2756 -1.3243 ~-1.2333
! p -0.1671 -1.4332 -2.6269 -3.5301 =-4.1661 -4,3498
Q -0.1532 -0.1418 -2,5B47 -3,.3451 -3.6%914 -3,7003
Table E.2c. First Order Response Surface Coefficients for a Unit ‘ii§
Increase in G. !*i
ey
Perind Sl
ST
0 1 2 3 4 5 L
LN
Nu 0.6110 0.1214 0.1621 1.8268 1.8623 1.771% -
p 1.5050 3.1437 4.6727 6.0734 7.3022 8.3124 :§§ﬂ;
5 S
3 2] 0.13848 0.2804 3.8707 4,5208 4,.47952 4.7662
Table E.2d. First Order Response Surface Coefficients for a uUnit
Increase in W=.

b

.

]

1 Periad

! 0 1 2 3 4 )

y

E Nu =0.2705 -0,44463 ~-0.5115 -0.5069 -0.4599 -0.3919

t p -2.9638 -4,3079 ~-5.3932 -5.98!4 -4,4147 -4.7406

g

! a +0,3867 -0.3642 -0.2389 -0.2863 -0.2314 -0,1149

E

p

i

b

b

s

» e

v el
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table E.2e. First Order Response Surface Coefficients for a Unit RYa)
Increase in Na. foxy

3
Period ;E;i%
o,

0 1 2 3 4 5 oY

Nw 0.9940 0.9776 0.9500 0.9127 0.Be79 0.8218
0 3.6989 5.8267  7.343&6 8.5786  9.4379 10,6483 A

a -0.0137 -0.5117 =0.11%9 -0,2063 =-0.3170 ~-0.4349
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] Apendix F. Optimization Problem Solution DAY
= r'}.‘
Shown below is the output file of the linear programming package E:_
M e
"'; for the optimization problem formulated 1n Chapter VI. The output :",::':
] N
‘ includes a problem specification, optimal basic variable values, :":'
* shadaow prices, and the objective function value. Fay
o s
> Froblem Specified for Solutian i:i
: Maximize é
- W C 6 W2 el
; X 1 X 2 X I X 4 B19 Sy
- 0b3 i
v -3.11 -3.33 4,50 -0.29 54,40 \
Caonstraint { - max TW type is le _
1,00 0. 0. 0. 11.63 2
Constraint 2 - max TC type is le j-j.::
0. 1.00 0. 0. 13.14 e
Constraint 3 - max G type is le e
0. 0. 1.00 0. 61.70 Lot
" Constraint 4 - max W2 type is le 3
. 0. 0. 0, 1,00 21.82 O
- Constraint 5 - inflatn type is le }‘{:
' -4.6t -4.12 6.68 -5.66 96.79 L
Canstraint & - unemploy type is egq AR
/ -1.25 -1.26 1.80 -0.50 45.77 )
) Constraint 7 - min TW type is gt n
. 1.00 0. 0. 0. 5.63
N Constraint 8 - min TC  type is gt :{({1
- 0. 1.00 0. 0. 7.14
5 Constraint 9 - min G type 1s gt R
2 0. 0. 1.00 0. 37.70 ]
o Canstraint 10 - min W2  type is gt m
: 0, 0. 0. 1.00 13.82 S
Activity variables ! through 4 2
Slack variables (8) 5 through 9 e
‘s Surplus vartables (P) 10 through 13 ad
Artifi1ci1al variables (A) 14 through I8
N
.
N
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Angswers:

Basic

U U > >x >
~N O BN e

5¢9
§10
S12
§13

TV EY Y.

Y
Y
Y
4

The value of

(= I e

T A

Variables Value

: TW = 11.6300
s+ TC = 7.1400
: G = 44,5489
T W2 s 21.8200
: max TC = 4.0000
: max 6 = 17.1511
t inflatn = 5.4738
! unemploy= 6.0000
{ min TC = b.848¢%
s min B = 8.0000

max
max
min
min

TW
W2
™
W2

the

Value
= 0.0246
= 0.9488
= 0.19235
= 2.4985
objective function is:

______

Increase in 0Obj. Function for unit increase in
0 right hand side of constraints
R Shadaw Prices

185.8114

O‘-'~'.‘
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