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GEOMETRIC PROPERTIES OF THE MONOTONIC LOGICAL GRID
ALGORITM1 FOR NEAR NEIGHBOR CALCULATIONS

1. Background

This paper analyzes an efficient algorithm for keeping track of "near neighbor" rela-
tionships among a large number of nodes, i.e. locations, objects or particles, in a region of
3D space. The need to treat "near neighbor' interactions applies to any system where:

1) The node positions change due to particle velocity, local luid velocity or changing
view point. The neighborhood of each node is subject to continual change as some
nodes move closer and others away.

2) Nearby node pairs interact. The interaction could be an interparticle force or the rate
of exchange of some quantity. Other relationships include geometric obscuration or
graphical hidden line removal.

3) One can define a "cutof' separation or radius R, according to the type of interac-
tion considered. For intermnode separations greater than R. the interactions may be
neglected, computed through some other approximation, or included through interac-
tions with nearer nodes.
For a large system of N nodes, it is advantageous to compute the interactions of each

node with only a relatively few near neighbors. Pairwise interactions are only computed
when the relative separation of the two nodes is less than the "cutoff radius".

It follows, for each node in a system of N nodes, that one must make X - 1 "cutoif''
tests when no algorithm is available to identify the near neighbors. Consequently, the op-
eration count for this distance checking orocedure scales as N2 . Even when an interaction

* is neglected because 'R, - Rjj > R,, checking the separation distance requires about 10
floating point operations per pair, a substantial fraction of the work needed to calculate
the entire interaction.

The operation count to identify near neighbors can be reduced significantly when
node coordinates are ordered such that cutoff separation tests need only be performed

* over a small subset (,V,) of the total number of nodes in the system. Scalar sorting
procedures have been developed for th.;s purpose with operazion counts scaling linearly
with X .,:o. Because of the relatively slow scalar operations recuired in these algorithms
to keep tr.ack of near neighbors, however, zhe computational cost 's still prohibitive for :arge
3D systems using vector oriented or synchronous. parallel processing super computers. The

" communicatons and data struc-ures for these sca'az algorithms are also not optimum for
the fastest computers available.

Neighbor list techniques *6 which are vectorizable have been developed, however, the
structure of these algorithms have large storage requirements and aze thus not applicable
to large systems.

Boris and Bor:s and Lambrakos "I have develooed an algor:hm for keeping track of .
near neighbor interac:ions and geometric relazionships which scales as V and is structured
to permit optimized vector and parallel processor implementations. This development
Manuser:pt approvea January .9 Q 3 6.

-.. 1



followed from efforts on the "nearest neighbors" problem begun with Dr. K.V. Roberts [7]
at Culham Laboratory in the context of gravitationally attracting stars. There we choose
a field-solver approach to finding the forces not only because of the long range nature of
the gravitational force but also because of the long range nature of the gravitational force
but also because a good nearest neighbors algorithm was lacking.

The new algorithm uses a Monotonic Logical Grid (MLG) for indexing the geometric
positions and other dynamical attributes of the moving nodes in computer memory. The
indexing ensures that nodes which are adjacent in real space are given MLG indices which
are also very close. When two adjacent nodes pass each other in real space, relative to
the chosen coordinate direction, their indices are exchanged or "swapped" in the MLG by
moving the data for each node from its original indexed location to the indexed location :-..
of the other node which it passed in space. The data for the nodes are *swapped" in the
computer memory cells. This local "swapping" maintains a monotone mapping between
the instantaneous positions of the nodes in real space and their MLG indices. The ordinal
node locations within the compact, regular MLG arrays are the same as the ordinal node Ik
locations in space. Node positions or any node attributes indexed in computer memory
according to this scheme are said to be in "MLG order".

The speed of the MLG algorithm depends on 1) its easy vectorization; 2) the rapid
convergence of the "swapping" procedure, to restore the MLG; 3) the average distance the
nodes travel between MLG reorderings being large; 4) the number of interactions for each
node; and 5) the computational cost of computing them. In our tests and applications to
date the cost in computer time of swapping iterations scales as C1 x N x log2(N) while
the cost of calculating pair interactions scales as C2 x Y. So much work is done per node
to calculate the pair interactions, however, that C, x log2.(N) is of order 0.04 x C2 for

=-..

V = 512. When V = 262,144, log,.(N) is a factor of two larger and the cost of resetting
the NILG increases to V,% of the interaction calculations.

This paper presents an analysis and statistical results of the MLG algorithm applied
to the random motion of point nodes in a cubical domain which is oeriodic in X and Y and
bounded in Z by t-vo reflecting walls. The nodes are non-interacting and have a random %
distribution of initial velocities. The two major aspects of the MLG algorithm considered
here are the convergence of the "swapping" algorithm to maintain MLG ordering and the
spatial properties of the particular near neighbor indexing grid we have used, the 'skew--
periodic" .LG designed to facilitate long vector operations. This paper examines an
MLG comprised of NZ identical logical pianes. Node locations within each k-plane are
indexed via a "skew-periodic" two-di ensional grid. The skew periodic indexing scheme
is described and anaiyzed in §4.

'Swapping" to maintain the =onotone mapping is an iterative process. Its conver-
gence rate depends on the e::tent to which relative node positions a-e perturbed between
restoration of the ILG. i.e. how far the nodes move, and on the size of he grid. Anal-
ysis of "swapping" iteration level frequencies show a better integrated convergence rate
for -'!arge" changes in the positions of the nodes, i.e. long timesteps resulting In signif-
icant NILG distortion. This result is extremely encouraging as it implies that the MLG
swapping procedure is also a good way to order completely disordered nodes. This pa-
per presents frequency distributions of 'swapping' iterations and 'swapping" convergence
characteristics for diferent timestep sizes and system sizes.

2S.
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The MLG algorithm is adaptable to a wide range of applications including important
problems in astrophysics, molecular dynamics and fluid dynamics which require calculation
of near neighbor interactions for a large number of nodes whose relative positions can
change in a variety of ways.

2. Near Neighbors Template for Monotonic Logical Grid
Consisting of Indexed Planes

The "order N" scaling of the MLG algorithm is effected by restricting the compu- .,
tations of node-node interactions to a finite set of small index offsets in the MLG which
correspond to the near neighbors in space. The size and configuration of this set of index
offsets, termed the Near Neighbors Template (NNIT), influences the coefcient of the MLG
cost which scales with N.

The .NNT can be visualized as a cluster of nodes, the near neighbors, surrounding a
'target node" (TN). If a particular node is taken as the target, the remaining nodes of
the "template" define a local "pattern" in the MLG corresponding to the relative index
offsets of what can be assumed to be near neighbors of the target node. Typical N.NTs with
different upper bounds for the logical displacement of near neighbors (i.e. shells) are shown
in Fig. 1. Only index offsets larger than zero need be considered since all interactions with
nodes having a negative address offset will have been calculated previously when those
nodes were target nodes. Three shells of interaction are defined in Fig. 1 corresponding,
(approximately) to neighbors at different probable separations. The 16 neighboring nodes
indicated with squares form the closest shell. The 30 triangle nodes are on average further
away and the 16 circle nodes are yet further away. The full 5 x 5 x 5 cubical template shown
in Fig. 1. nominally includes 125 nodes. Since the 1arget node does not interact with itself'
and each interaction does not need to be counted twice. there are = 62 interactions
considered for each node. To complete the shell of circle points requires considering nodes
still further from the target cell than two layers in each direction.

In general, there should be a correlation between the size of an NNT, in terms of
the number of nodes included in the logical near neighborhood, and the average distance
between nodes in the system. However, the NNT size and configuration is controlled by
the probability, as a function of MALG index, of a neighboring node having a separation
less than R,. The NNT should be taken large enough that the likelihood of a nearmiss,
that is a node which is outside the template being found within R, of the target node, is
acceptably small.

The characteristics of a Near Neighbors Template will depend on the particular mono-
tone mapping implemented between the spatial locations of nodes and the corresponding
,ocations In the computer =emory. When -he average node separation in Z, for example,
is half of the average separation in X or Y, the NNT probably should reach more MLG
index layers in the k direction (aicng Z). Li fact, there usually exists more than one MLG "_-'
defining a monotone space-:o-1.dex mapping. This property of MIGs provides latitude for
fur:her optimization wih respect to particular problems. For example. an ootimum *MLG
for one problem may minimize distances to near ne-gbors. i another problem, the MLG
inay be ootimized wvzten thtthe shortest distance to ncn-near neighbhors is maxcimized.
This paper examines the properties of a simple *NNT of the ype shown in Fi1.. applied
to a skew--er'cdic MLG. NW .
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The statistical analysis of near neighbor locations which follows is discussed in terms
of the (NNT) described below. This analysis considers the following questions:
(1) What is the correspondence between relative index offsets of nodes in the MLG and

the corresponding relative spatial positions? What is the average separation in space

of two nodes which are logically adjacent? How does this average depend on the offsets
of the MLG indices between the two nodes?

* (2) How does the necessary configuration and size of a NNT depend on the specific type
of MLG used for indexing node positions, i.e. the specific indexing scheme? In par- %
ticular, what characteristics of a skew-periodic MLG might require or benefit from a
modification of the NNT configuration?

(3) For a given MLG, what methods are available for optimizing the configuration of an
.NYT and how does node motion affect this optimization? For example, for nodes
moving randomly in 3D space the probability distribution for the relative separation

* of near neighbors is spherically symmetric.

This symmetry can be used to reduced NNT size without inhibiting the accuracy of
an algorithm to compute interactions based on a particular MLG.

The appropriate NNT of course depends on the specific MLG scheme selected. The
MLG considered in this analysis is a skew-periodic grid as described in S4. It consists of 8
logical planes each consisting of 64 logical cells arranged in an S x S array. For this MLG,,. -"

the number of node-node interactions computed each timestep depends on the number of
inter- and intraplane interactions indexed by the NNT for each "target node'. An example
of the computational cost coefficient in front of the order N scaling of the MLG algorithm
is given in the appendix.

3. Statistical Analysis of Near Neighbor Positions
for Points in 3D Ranidom Motion

Interpreting statistical information concerning spatial relationships and correlations
between positions in the MLG requires specifying the parameters which affect these posi-
tions each timestep. For any system of nodes some of the major paraimeters are:
(1) The size of the spatial domain relative to the number of nodes compris.ng the system,

i.e. the node density.
(2) The nature of the motion of the node system. e.g. random or nonrandcm, rotational,

compressional. anisotropic, etc.
(3) The logical structure of the MLG used to index the node positions.

The statistical analysis described in this section considers a system of 512 non-
interacting points. The velocities of these points wa randcm and iniforml-: dlst:r,bute"
Ln each coordina'e fThm -1 x I0" cm, sec 0o " 7 cm,'sec . The spa:ia! domain, I
30 A:<0 Ax8O A, corresponds to an average separaticn of adacent nodes ofapproxima:e1y
10 .A in each coordinate, roughly the density of gas near STP.

Useful statistical information about neighbor positions is obtained v analyzing the
occupaton frequency and distribution of neighbor-target node separations For the d.Ferent
NNT offsets. These distributions are accumulated over a su Rcien:iv az.-e number cf
t.mesteps that 3uctuations have become small. For th.e system cor.nsidered here. we define
a frequency distribution function f(RP:iJ.), where

.....
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f(R; i,j, k) -Frequency for a near neighbor node (with

NNT offsets i,j, k) having a separation (3.1)

from the target node contained in the shell
extending from radius R to R + DR..

The distance classification interval DR is adjusted according to the number of timesteps
used.

Shown in Fig. 2. are probability distributions for neighbor separations corresponding
to two NNT offsets. In computing these distributions all 512 nodes were sampled. The
distance classification interval DR for each of these distributions was .3 A. The time
sampling interval used in computing f(R;ij4 ) for each of the NNT offsets consisted of five
hundred timesteps of length 2.5 x 1016 second. This time interval is sufciently long that
the high velocity nodes easily traverse the spatial domain, i.e. 80 A, several times. Fig. 2.
shows a correlation between the mean value of f(R;ij,k) and the NNT offsets. The peak
of the distribution moves approximately i0 A toward larger separations (from 21 A to 31
A) when one more node is added between target node and the interaction node.

Shown in Fig. 3. are frequencies for neighbor separations at short range corresponding
to an NNT cell having a relatively large index offset from the target node, i.e. the prob-
ability distribution in Fig. 2. corresponding to NNT offset (-3,1,0). As can be seen, even
for relatively large index offsets from the target node there is a small but finite probability
for a not so near neighbor coming quite "close". It is these rare "near miss" events which'

r determine the required NNT size.
Additional information concerning neighbor positions is provided by cumulative in-

tegrals over f(R;ij,k) from 0 to a given separation from the target node. These integrals
give the probability the field nodes with a given offset from their target node come within
a particular distance of the target node in space, a statistical "near miss" probability.
Such information .provides a criterion for optimizing (or minimizing) the NNT based on
the 'cutoff radius" R, for the particular system. NNT optimization is effected via analysis
-of the nea miss frequency for each NNT offset, i.e. the cumulative probability of finding-"

a node idexed outside the NNT but within a distance R, of the target node. Shown
- in Fig. 4. are the near miss probabilities as a function of NNT offset for the particu-
. lar case R= = 3A. These probabiliies were computed with the same sampling used for
. the frequency functions shown in Figs. 2 and 3. N.NT optimization based on near miss

probabili-y is discussed in §3.

For the system of nodes represenzed in Fig. 4, i.e. a system where the cutoff radius
R, = 3A, ail NN NT cells more than three Lndex offsets from tAe "ta . get cei!" i- any direction
have zero probabiii:v of recording a "near miss', i.e. coming wthin 3 .3 of he target cell.
For this system a suitable upper bound on the logical separation 'nciuded in the Near
Neighbors Templa:e s therefore N = 3. For this case (refe rng to the appendix) the
total number of node-noade interactions computed each timestep for a MLG cf size N ;s

Computed Interactions = 171 < N - 294 x (.i). (3.2'[ The NNT corresponding to (3.2) was selected on the basis of an upper bound, N,, on
the MLG location of "nearest neighbors'. H-owever, as seen In Fig. 4, further deletio of
NNT cells is possible using an NNT which is more ne-ary sphericai. This aspect of NNToptimization :s examined present',y for the vector compaible" .skew-periodic MLG.

--,.
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4. A "Skew Periodic" MLG for Indexing the Geometric Positions
of Nodes in Computer Memory

More than one type of MLG for indexing nodes within a. given spatial domain exists.
In particular, for nodes in a 3D spatial domain with periodic boundary conditions, a 'Mono-lPW
tonic Logical Grid can be constructed which permits more efficient vector manipulaticn. of _

node attributes than the regular perilodic grid. This so called "skew periodic' MILG also
results in an average partitioning of the computational domain in cells of equal statistical
volume. -N

"Position skewing" is a statistical property of a system of nodes such that the average
relative Location of neighbor nodes is a function of the direction of the MLG coordinate

* offrset relative to the taet node. These properties follow rom the asymmetric constraints
of indexing node positilons in a skew periodic lattice. In a skew periodic MLG the mapping
between the spatial coordinates of the neighbors and thei MG indices 1sno eaty
aligned, as shown clearly in Figs. 749 and 8. It is shown presently that position skewing
depends on the MLG conflguation and diminishes withi incr-eased size of the node system.

Given N nodes randomly located in a region of 3D space, one can associate with
each node not only its spatial coordinates (X, Y, Z) 'out also a set of NMG indices (i ;,.k).
A useful mapping, which we have named a "Monotonic Logical Grid, obtains when :h e
node locations in space and the node indices in the computer memory satisfy a set of
:nonotonicity conditions.

X (i, j, k) < X(i- 1j, A) L 1< i < XX- I
Y(i,j, k) < Y(i.j - I, k) 1 < I< NY - 1 (4.1)

and Z i 2 k) < Z A; .- 1) 1< k < NZ -1.

Here NV, the total number of nodes. equals XVX x NY *<NZ. Note that the average
separation of neighbors, is ot ndependent of the die,:on of their' ML ndex dispiacer-ent
since the metri:cs of the X. Y and Z coordinates In th'-e spatial domain need not be ecal

(ncrevenor~hgona).!Te M.%LG con-d'tions defi~ned in (4.1), aithoug.h rahia 'ly
satisiact:r 'cr orzanizing -andom locations In space. is not optimal for mapping ncc-e
p)ositi-ons into a vector comp:uter memory.. A skew jer~odic MLIG is desczibed in 4 which
is more e Rcient.

The MILG is comprised of a set Of iogiail 0'LantS , NZ, wh:i:ch, are each skew-jerlcdic.
Thus. "or al' nodes ir, th-e svstern there w], 'be one Soace coordtnate. -av Z, and one MLG

* plane index, say *.wchiutaisythe inonctoricit: condItilon Z(~< Zk- or
< k< N Z 1 GVenat :. x NYK< x N.eac.1 .ogical : aeof -He MLG w'.l

*inicex _XX x< NY Modes 7anuOM": .cca-.ed ;n 2D spaace. Compl)et.e compact vectorization
of each; ?Iane :s hnen en:ec~ec by :ncex:ng =cinnoronic orcer the :oca..Ions Oz' :He -"rst'
XXY neces and selected_ p)er:c..c :mages of -he cther . x NY -1no-des .v*-cni are
all at a-s-tgn-ed distances ro m 'h e ac--,ai node pos:-ticrs. This indeXingC zCh:eMe :pro'-o

*a mapping of' 2D space )nrtoz a smngie continuous %ILC- ccordinate a&,is. Sluch a na-ppin-
* ~satisdes s~g~ydi Feren:, icnocornicit-; zn~~n rm41

Y (ji k < Y., - 2)X.I < :, < N**\ <; 4.2

and _V~ 7 < 1kX .
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To emphasize vector indexing the combined index ij is used instead of i and j. The
point is that the entire plane of VX x NY nodes are now meaningfully contiguous. A
statistical analysis of position skewing resulting from this MLG follows.

Consider NX x NY nodes located in a doubly-periodic 2D region of space having an
area Lx x Ly. Letting .X and NY equal 3 here for presentation purposes the VX x NY
regularly spaced nodes and their periodic images are shown in Fig. 5.

The MLG indices in circular brackets, i.e. (ij), represent the location of the nodes " "Z
which form the Regular Periodic Monotonic Logical Grid. The square brackets, i.e. [ij.
represent the locations of some of the node images, each of which is a distance L = '

((mLz) 2 + (nLy)2 ) (i, n = 0, 1,...) from their corresponding system nodes. Note q.
that extra images, also called "ghost" nodes, must be added to all four boundaries to
represent the images in locations where vector operations expect to find them. The ghost
nodes in the X direction (horizontally in Fig. 5) interrupt the adjacency of data in computer
storage and hence interrupt numerical optimization through vectorization. The Skew- -
Periodic Monotonic Logical Grid is formed by the nodes and node images whose spatial
locations satisfy the modified constraints (4.2). This is depicted in figure 6.

The system of 512 random points was used to investigate the relative spatial positions
of nodes and node images indexed by a skew periodic MLG. The positions in X and Y of the
"first " NX points and the monotonically ordered positions of the images of the remaining
(NX) x NY - 1 points were fit to a straight line using least-squares. The configuration
sketched in Fig. 6 suggests that the nodes will lie, on average, along a skewed line which
moves up one cell in Y each time the system is traversed in the X direction.

The calculated slopes of this least squares line fluctuated between 0.12 and 0.13. This
"s consistent with an 8 x 8 logical plane since - = 0.125. The correlationa NX x DX
coef~cient for each least-squares fit was approximately 0.95. A typical plot of positions
indexed by the skew periodic MLG for a logical plane is shown in Fig. 7. Also shown in this
figure are the corresponding node positions as would be indexed by a regular periodc MLG.-
That is, the nodes labeled "B", whose positions are indexed by the regular periodic MLG,
correspond to the nodes labeled "2", whose positions are indexed by the skew periodi.c
MLG. This same correspondence holds between the nodes labeled "C" and "3", -D" and
44", etc.

The "position skewing" resulting from the average area partitioning a-sociated with a
2D skew periodic 'ILG is described using Fig. S. The average Y coordinates of neighbors
in the direction of decreasing X is smaller than the average Y coordinate cf ne;ighbors in
the opposite direction. This results directly from the indexing which moves up one row of
nodes for each time the sy:stem engt in the X direco ; raversed.

The average relative soatial ocsit:on of logical neighbors s a -unc:ion of tHe .ILG
•:ndexing scheme. We would like to know where, relative to the target ceil. a node having
a particular MLG offset is likely to be. For a regular periodic MLG the overall volume
partitioning is essentially cubical. For a skew-periodic MLG the statistical volume elements
have the shape of parailelepipeds. For a 2D skew-periodic MLG. i.e. a logical plane. this
is equivalent to an area partitioning in parailelograms. That 's, the average locations of
four adjacently located random nodes (i,j), (i - 1,j), (iJ- 1), and (i - 1.j - 1) is a
parallelog:am.

- * .--.



The average distance of neighboring nodes fr~om the target node is recorded in Fig.
9a for the system of 512 points with random positions. Note that each NNT node has an
average R.MS distance to the target node which is only about a factor of V2~ longer (or

less) than -he corresponding distance in a perfectly regular Eulerian grid. Shown in Figs.
9b and 9c are the average separations of neighbors in X and Y, respectively. The average
X separation is exactly what we would expect, 10 A. It is seen in these figures that only M-1
the average Y separations are affected by skewing as we expect.

Indexing the N"NT locations using coordinates (ij) and taking the target node (TN)
as the origin, "position skewing" is examined by taking divided differences between the Y
components of neighbors. From Fig. 9c, for a 8 x 8 x 8 system of nodes having random
velocities (top number in each cell),

lY(3,3) -Y(-3,3)! (33.75 -26.25)

60 60

=0.125 N Y___ _ _ 
(4.3)I 'NX X NY'

where the average node separation in eachAr direction is 10 A. Because "position skew-
inal") ~ sclsa its affect diminishes as th-e system size inicreases. This is a relatively

smal piceto pay 'or more efficient data storage and vectorizatilon. From Fig. 9c, for a
sma6 pr16xce system of nodes (bottom number in eac h cell shw)having randomn velocities,

'Y('., 3) - Y(-3. 3):_ (31.88 - 2S.iZ)

60 60 (4.4)
1

=.0625 = 1

* as expect ed.

5. Discussion

The non-orthiogonal. Ekew-periodic ndexing, sclaeme work~s well in the MLG case be-
cause the local gZid in .Ahe various index directions could not be c-.hogonai in any case

* because hne nodes are Lagr-angian. Thus. t.here is no advantage to maintaining orthogac:
*nalitv, In node indexinga when. actual spjatial or-Hogorna:ity is not oossibie.

-1 large systems there is th4-e possibility -- aat t-e X _oordina-,es may lose some ac-
macI :ecause =na-y system :e-.gths hnave to be added to te Xs coordinate wnen using -he __

ecnoeWltln one big 3JD system. H skew jer:c':~c'tv were :-e~ng, used in a 100 Y C0O I 1CC
svstem. the ;ma-e o irt "O(.C.0) woudlbe 10.JGC system 'en-.ths away, -)r 10' t -,'DC a. t,?,7'

*spacings. Cearly 32-bit p)recision wcuid not be adequate. In sucn a .,arge sy:stem However.
one would not want to use th1-is technique .i ail -Irections. Wh'en the vector-s become crig.,
enougha. -vector1iing 1 i two dimension~s at once ls no . nge: So a::r-c-tive. On a C.-av, for
examnpie. -,actors of 'ength 64 are org enough.

On arrays of oarallel Drocessors. actUal .vraparourd 's -scmetimes imnoernente!d in
nradware and sktew. :er~oc*,c connect;,,-.-. :s zten exeninec to- a numner ot raun-ens ,ors In

t he hv' ercube ar-chitectur:e. In -hese cases -.ihe ciclisadcosts overcomre ':y t.-e skew -

D eriodic NfLG in many convent ona: -vec-tor and i :,e:uned c r-cesscrs wcuid'( be ab"Ert sZo
"Sing the 7eglal-: pEriodic grc igte Sim'=E7.



Although the physical system being described in the two representations, i.e. Figs. 5
and 6, are identical, the data being stored to describe each system is quite different because

different images of the nodes are active in each case. The X and Y coordinates of nodes
1, 2 and 3 are the same in both representations. In the regular periodic grid the nodes
4, 5 and 6, and for that matter 7, 8 and 9, all lie in the same periodic domain as above
the nodes 1, 2 and 3. In the skew periodic arid, each successively higher row of nodes (in
this case NY = 3 rows) is displaced a full system width Lz in the X direction. Instead of
following node 3 with the image of node 1, as in the regular periodic grid, node 3 is followed
directly by node 4. Similarly, node 6 is followed in the skew periodic MLG by node 7, not
the image of node 4 as in the regular grid. By adding the system length to each succeeding
row of X positions, all nodes are automatically positioned properly for separations to be
calculated directly without concern for whether the node in question is on the bounda-y"
of the domain. The boundaries of the computational domain have therefore disappeared
in the X direction.

The number of exttra storage locations needed to provide enough ghost nodes is much
smaller in the skew periodic grid since ghost nodes are only needed at the "ends" of the
system, not at the ".sides". The "hiccups" at the beginning of each row in the regula-
periodic representation have been eliminated in the skew periodic representation. As
shown in Fig. 10a, when the index offsets for the N.NT extend to the third layer in
all directions, as we must do in some of our molecular dynamics calculations, the 31 cells
in the principle domain an-d the 8 extra domains are necessary to set up enough ghost
cells to allow vector operations which span the entire 2D cross-section without boundar.
interruptions or special boundary corrections. In this case., as shown in Fig. lOb, the skew
periodic grid agan uses many rewer ghost nodes. Three extra rows plus three extra points
on each end of the system gives 12 ghost cells at each end. The total number of points is
thus 33 rather than SI, a substantial savings in computer memory.

If skew periodicity is used in all three dimensiouis, t.he number of ghost cells at each end
is three planes (27 points) plus t-.-ee rows (9 points) plus 3 points. Thus the skew periodic
3D grid has 105 points altogether of which 27 are active. The same system represented In
a regular periodic grid needs a total of 729 points of which only 27 are active. Of course
the reiative difference is smaller when the active MLG is !arger than 3 x 3 x 3 but he total
amount of wasted storage increases rapidly with the size of the system.

6. N.NT Optimization and Vectorization Based on
the Near Mi.ss Probability

The discussion of ".Near .isses 9 presented here concerns the node system descr'.bed :n
33. The system of .512 noninteracting points reDresents a worst case ior N.NT optimization
;n signifcan, -pp'cations cf near neighbor algorith-ms. or example. i.n molecular dynamics
studies the interaction is a :orce which becoines repulsive at small separations. It is more
unlikely that a oazticle several NNT cells away will be within R, of the i"target particle'
if it is a finite-s ze particle rather than zero sized. There is zero probability for more thanl

one molecule to occupy tHe same position in space. A system of non-interacting points
demonstrates two significant asoects of MLG indexing: 1) One is able to construct an
optimal *NT in terms of the average volume about the target node containing nearest
neighbors, i.e. an approx'mate sphere; and 2) That N'NT indexing via offsets relative to -

the target cell, permits the computa:ion of node-node in-erac:Ions using v:ector and Da:alle
processing methods.

9
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The first stage of NNT optimization, i.e. minimal scaling in terms of (3.2), is to
determine via statistical analysis an upper bound on the MLG index offsets of nearest
neighbors. Such an analysis is shown i Fig. 11 for the 512 node system for an interaction
cutoff radius R, = 4A. Because of symmetry, only a portion of the NNT is considered for
each of the logical planes.

Figure 11 shows that for nodes in the logical plane k = 3 there is essentially zero
probability for a "near miss". Further, for the logical planes k = 0, 1 and 2, the contours
of constant probability are seer. to be roughly circular. The next stage of NNT optimization
is to consider only those logical nodes for which the indexing of "close" nodes is possible.
For the system desribed in Fig. 11, this would suggest using an NNT having roughly
the shape of a hemisphere. The NNT shape can be selected by storing in separate data
arrays both the logical and spatial offsets of near neighbors defined according to the skew

periodic indexing scheme and the desired NNT shape. The spatial offsets are the a.xed
separations of the periodic image nodes. This procedure is described in Fig. 12a. In
this flgure the array containing the index offsets, IJOFF(IPT,K2), is computed outside
the timing loop. A similar array is defined for the spatial offsets which are used in the
interaction calculations.

In Fig. 12a, IJN is the maximum node index in the skew-periodic grid in logical plane
k and NPT is the maximum number of nodes indexed by the NNT in logical plane K2. The
procedure in Fig. 12a, however, is not optimum for vector oriented computers and does not
utilize 'he vector compatibility of -he skew-periodic indexing scheme. Vector processors
are designed such that the inner DO-loops of a computing procedure are "vectorized". The
procedure shown in Fig. 12b is equivalent to that shown in Fig. 12a but is structured -o
take full advantage of the vector attributes of skew periodicity.

7. Analysis of Swapping (Random Motion) ....

There are two important measures of 'swapping" for a given node system. These
are: (I) The total number of "swaps" per timestep, a.d (2) the convergence rate for t.he
swapping", i.e. the average number of "swapping iterations required to reorganize the

MLG each timestep. These features depend on the extent to which -he MLG indices are
pertrdbed from monotonicity each timestep. The amount of work to restore monotonicity
* by swapping' is tlherefore a function of (1) the times:ep and (2) the number of nodes

In the system. An increase :n. t:mestep results in a larger perturbation of the monotone
indexing. An increase in system size increases the upper bound on the amount of total"
:eordering required to restore =onotonicity.

The statistical results presented here for swapping axe for node systems consisting of
non-interacting points. A qualitative analysis of -he dependence of swapping on "inter-
action stren' was undertaken by "ntroduc'ng central forces between the system nodes.
The swapping required was found to be less than that for non-interacting nodes because
now nodes often rebound without passing. Thus, for applications such as molecular dy-
namics, a system of non-interac:ing nodes represents a worst case.

A quantitative description of the convergence :ate of swapping ierations for a system
of non-in:eracting nodes is given in Figs. 13 and 14. Shown in -ig. 13 are dis:ributions
of swapping lterations for three d;fferent timesteps which differ by a factor of 4. As
expected, the relatively larger tiimesteps require more "sivaps, to restcre the *ILO indices
to monotonicity. A sixteenfoid increase in tiimestep, however, occasions onmy a factor or
vo increase ln the number of -terations. Thus. to :ntegraze *or a :,en ::=e. -- e ion-er

timesteps are ac:uaily much more encient.

10. . .. .e...- . . . . ...... . ...-..,



. - - 77- --

Shown in Fig. 14 are distributions of swapping iterations for systems having (16 x 16 x
16) and (32 x 32 x 32) nodes, respectively. The larger system, as expected, requires more
"swaps" to maintain MLG order for a given timestep. However, for the larger system, the
convergence rate for swapping is still comparable to that for the smaller system.

For molecular dynamics and other manybody problems the timesteps used in the
calculation of Figs. 14 and 15 are unrealistically large since the question of accuracy for
real orbits has not been addressed. An analysis of the "swapping" iteration was undertaken
for timesteps having sizes suitable for such applications. For these cases no swapping was
observed for a significant fraction of the time increments. For those timesteps where swaps
were required, the maximum swapping iteration level was about 2.

The Nlog2 (NV) scaling of the number of swapping iterations is demonstrated in Fig.

15 for three different timesteps.
"'I3

Appendix

Derivation of (3.2), an example of the linear scaling of the total number of pair inter-
actions with the size of the system. The coeffcient of this scaling is a function of NNT
size.

Let the MLG indexing nodes in the system consist of Ng logical planes each consisting
of N 7 x N2 logical cells arranged in an N., x N, array. Next, let the spatial domain be
doubly periodic in X and Y and bounded in Z by two reflecting end walls. ad finally,
let .V be the upper bound on logical offsets included in the NNT. Given these conditions,
hie number of node-node interactions computed each timestep can be described using the

following semitriangular array of logical plane index, k, pairs.

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) Ng N 2 4

(1,2) (2,3) (3,4) (4,5) (5,6) . . . (N- ,(1,2) (2.3) ... (v- I, N7

(1,3) (3,5) (4,6) ... (- 1,N 2 )

' ( C -1) (N7 - .v,)
(A.1)

These index pairs represents all possible inter- and intraplane node-node interaction
calculations. The number of different inter- and intraplane k index pairs are (.N x .N -.N, (.V -z .1.

-2_ ) and .V;, respec:ively. For each k index pair corresponding to interpiane caicula-
tions, i.e. (kl,k2) where ki k2, one can asscciate .(2NV 1) , x . interceil calculations.
Similarly, for each k Index pair Iklk2) where k! = k2, one can associate X. -2. .rN.
interceil caculations. 14 follows that :he total number of node-node .-'eractions computed
each timestep is

(A.2)

V (N~ 1). ,

Letting .V represent t e total number of nodes. i.e. N = follows o (A.2)
setting N, = 3.
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