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GEOMETRIC PROPERTIES OF THE MONOTONIC LOGICAL GRID
ALGORITHM FOR NEAR NEIGHBOR CALCULATIONS

1. Background

This paper analyzes an efficient algorithm for keeping track of “near neighbor” rela-
tionships among a large number of nodes, i.e. locations, objects or particles, in a region of
3D space. The need to treat “near neighbor” interactions applies to any system where:

1) The node positions change due to particle velocity, local Suid velocity or changing
view point. The neighborhood of each node is subject to continual change as some
nodes move closer and others away.

2) Nearby node pairs interact. The interaction could be an interparticle force or the rate
of exchange of some quantity. Other relationships include geometric obscuration or
graphical hidden line removal.

3) One can define a “cutoff” separation or radius R. according to the type of interac-
tion considered. For internode separations greater than R. the interactions may be
neglected, computed through some other approximation, or included through interac-
tions with nearer nodes.

For a large system of .V nodes, it is advantageous to compute the interactions of each
aode with only a relatively few near neighbors. Pairwise interactions are only computed
when the reiative separation of the two nodes is less than the “cutoff radius”.

It follows, for each node in a system of NV nodes, that one must make .V — 1 “cutoff®
tests when no algorithm is available to identify the near neighbors. Consequently, the op-
eration count for this distance checking procedure scales as .V2. Even when an interaction
is neglected because 'R, — Rs| > R., checking the separation distance requires about 10
floating point operations per pair, a substantial fraction cf the work needed to calculate
the entire interaction.

The operation count to identify near neighbors can be reduced significantly when
node coordinates are ordered such that cutoff separation tests need oniy be performed
over a small subset (V,) of the total number of nodes in the system. Scalar sorting
procedures have been developed for :liis purpose with operation counts scaling linearly
with .V '1,5. Because of the relatively slow scalar operations required in these aigorithms
to keep track of near neighbors, however, the computational cos? is stiil pronibitive for large
3D systems using vector oriented or synchronous, parailel processing super compurers. The
communications and data strucsures for these scalar algorithms are also not optimum for
the fastest computers available.

Neighbor iist techniques 6! which are veciorizable have been developed, however, the
structure of these algorithms nave large sterage requirements and are thus not appiicable
to large systems.

Boris ‘2! and Boris and Lambrakos '3' have developed an aigorithm for keeping tracx of
near neighdor interacticns and geometric relationships which scales as .V and is structured
to permit optimized vector and parallel precessor implementations. This developmens
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followed from efforts on the “nearest neighbors” problem begun with Dr. K.V. Roberts [7]
at Culham Laboratory in the context of gravitationally attracting stars. There we choose
a field-solver approach to finding the forces not only because of the long range nature of
the gravitational force but also because of the long range nature of the gravitational force
but also because a good nearest neighbors algorithm was lacking.

The new algorithm uses a Monotonic Logical Grid (MLG) for indexing the geometric
positions and other dynamical attributes of the moving nodes in computer memory. The
indexing ensures that nodes which are adjacent in real space are given MLG indices which
are also very close. When two adjacent nodes pass each other in real space, relative to
the chosen coordinate direction, their indices are exchanged or “swapped” in the MLG by
moving the data for each node from its original indexed location to the indexed location
of the other node which it passed in space. The data for the nodes are “swapped” in the
computer memory cells. This local “swapping” maintains a monotone mapping between
the instantaneous positions of the nodes in real space and their MLG indices. The ordinal
node locations within the compact, regular MLG arrays are the same as the ordinal node
locations in space. Node positions or any node attributes indexed in computer memory
according to this scheme are said to be in “MLG order”.

The speed of the MLG algorithm depends on 1) its easy vectorization; 2) the rapid
convergence cf the “swapping” procedure, to restore the MLG; 3) the average distance the
aodes travel between MLG reorderings being large; 4) the number of interactions for each
node; and 3) the computational cost of computing them. In our tests and applications to
date the cost in computer time of swapping iterations scales as C; x .V x logz(.V) while
the cost of calculating pair interactions scales as Ca x V. So much work is done per node
to calculate the pair interacticns, however, that C; x loga(.V) is of order 0.04 x C; for
¥ = 512. When .V = 262,144, log2(.V) is a factor of two larger and the cost of resetting
the MLG increases to 8% of the interaction calculations.

This paper presents an analysis and statistical results of the MLG algorithm applied
to the random motion of point nodes in a cubical domain which is periodic in X and Y and
bounded in Z by two reflecting walls. The nodes are non-interaciing ané have a random
distribution of initial velocities. The two major aspects of the MLG algorithm considered
here are the convergence of the “swapping” algorithm to maintain MLG ordering and the
spatial properties of the particular near neighbor indexing grid we have used, the “skew-
periodic” MLG designed to facilitate long vector operations. This paper examines an
MLG comprised of .VZ identical logical pianes. Node locations within each k-plane are
indexed via a “skew-periodic” two-dimmensional grid. The skew periodic indexing scheme
is described and anaivzed in §4.

“Swapping” to maintain the —onotone mapping is an iterative process. s conver-
gence rate depends on the extent to which reiative node positions are perturbed between
restoration of she MLG, i.e. how far the nodes move, and on :he size of the grid. Anal-
ysis of “swapping” iteration level {requencies show 2 better integrated convergence rate
for *large” changes in the positions of the nodes, i.e. long timesteps resulting in signif-
icant MLG distortion. This result is extremely encouraging as it implies that the MLG
swapping procedure is also a good way to orcder completely disorcered nodes. Thais pa-
per presents {requency distributions of “swapping’ iteraticns and *swapping” convergence
characteristics for different timestep sizes and system sizes.
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The MLG algorithm is adaptable to a wide range of applications including important
problems in astrophysics, molecular dynamics and fluid dynamics which require calculation
of near neighbor interactions for a large number of nodes whose relative positions can
change in a variety of ways.

2. Near Neighbors Template for Monotonic Logical Grid
Consisting of Indexed Planes

The “order N” scaling of the MLG algorithm is effected by restricting the compu-
tations of node-node interactions to a finite set of small index offsets in the MLG which
correspond to the near neighbors in space. The size and configuration of this set of index
offsets, termed the Near Neighbors Template (NNT), influences the coefficient of the MLG
cost which scales with V.

The NNT can be visualized as a cluster of nodes, the near neighbors, surrounding a
“target node” (TN). If a particular node is taken as the target, the remaining nodes of
the “template” define a local “pattern” in the MLG corresponding to the relative index
offsets of what can be assumed to be near neighbors of the target node. Typical NNTs with
different upper bounds for the logical displacement of near neighbors (i.e. shells) are shown
in Fig. 1. Only index offsets larger than zero need be considered since ail interactions with
nodes having a negative address offset will have been calculated previously when those
nodes were target nodes. Three shells of interaction are defined in Fig. 1 corresponding
(approximately) to neighbors at different probable separations. The 16 neighboring nodes
indicated with squares form the closest shell. The 30 triangle nodes ace on average further
away and the 16 circle nodes are yet further away. The full 3 x 3 x 3 cubical template shown
in Fig. 1. nominaily includes 125 nodes. Since the target node does not interact with itself
and each interaction does not need to be counted twice, there are m%l = 62 interactions
considered for each node. To complete the shell of circle points requires considering nodes
still further {rom she targes cell than two layers in each direction.

In general, there should be a correlation between the size of an NNT, in terms of
the aumber of nodes included in the logiczl near neighborhood. and the average distance
Detween nodes in the system. However, the NNT size and configuration is controiled by -
the probability, as a function of MLG index, of a neighboring node having a separation T
less than R.. The NNT should be taken large enough that the likelihood ¢f a nearmiss, e
that is a node which is outsice the template being found within R. of the target node, is _t_'.j'.'
acceptably small. |

The characteristics of a Near Neighbors Tempiate will depend on the parsicular monce-
tone mapping impiemented detween the spatial lccations of ncdes and the corresponding
[ locations in the computer memory. When the average noce separation in Z, for example,
is haif of she average separation in X or Y, the NNT probabdiy shouid reach mere MLG
index layers in the k direction {aleng 7). In fact, there usuvaily exists more than one MLG
defiring a monotone space-:o-index mapping. This property of MLGs provices latitude for
furzher optizization with respect to particular problems. For exampie. an optimum MLG
for one problem may minimize distances to near neigbors. In another problem, the MLG
may be optimized when that the shortest distance 10 ncn-near neighbors is maximized.
J This paper examines the properties of a simple NNT of the :ype shown in Fig. 1., applied -
to a skew-pericdic MLG.
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The statistical analysis of near neighbor locations which follows is discussed in terms
of the (NNT) described below. This analysis considers the following questions:

(1) What is the correspondence between reiative index offsets of nodes in the MLG and
the corresponding relative spatial positions? What is the average separation in space
of two nodes which are logically adjacent? How does this average depend on the offsets
of the MLG indices between the two nodes?

(2) Bow does the necessary configuration and size of a NNT depend on the specific type
of MLG used for indexing node positions, i.e. the specific indexing scheme? In par-
ticular, what characteristics of a skew-pericdic MLG might require or benefit from a
modification of the NNT configuration?

(3) For a given MLG, what methods are available for optimizing the configuration of an
NNT and how does node motion affect this optimization? For example, for nodes
moving randomly in 3D space the probability distribution for the relative separation
of near neighbors is spherically symmetric.

This symmetry can be used to reduced NNT size without inhibiting the accuracy of
an algorithm to compute interactions based on a particular MLG.

The appropriate NNT of course depends on the specific MLG scheme selected. The
MLG considered in this analysis is a skew-periodic grid as described in §4. It consists of 8
logical planes each consisting of 64 logical ceils arranged in an 8 x 8 array. For this MLG
the number of node-node interactions computed each timestep depends on the number of
inter- and intraplane interactions indexed by the NNT for each “target node”. An exampie
of the computational cost coefficient in front of the order N scaling of the MLG algoritam
is given in the appendix.

3. Statistical Analysis of Near Neighbor Positions
for Points in 3D Random Motion

Interpreting statistical information concerning spatial relationships and ccrrelations
between positions in the MLG requires specifying the parameters which affect these posi-
tions each timestep. For any system of nodes sce of the major parameters are:

(1) The size of the spatial domain relative to the number of nodes comprising she system,

i.e. the node density.

(2) The nature of the motion of the node system. e.z. random or zonrandem, rciational,
compressional, anisotropic, etc.
(3) The logical strucsure of the MLG used to index the node positions.

The statistical analysis described in this section considers a system of 312 non-
interacting points. The velocities of these points vas randem and uniformiy distsibuted
in each coordinate from -1 x 107 c¢m,sec to 1 x 107 cm/sec . The spatiai domain,
20 1:<80 A% 80 A, corresponds to an average separaticn of adjacent noces of approximasely
10 A in each coordinate, roughly the density of gas near STP.

Useful statistical infcrmation about neighbor positions is obtained by analvzing the
occupation {requency and distribution of neighbor-target node separations for the diferent

NNT offsets. These distributions are accumulated over a suficientiy large aumber cf

timesteps that Suctuations have become small. For the system consicered here. we define
a frequency disiribution function {{R:i,j.x), where
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N
B ) f(R;i,j,k) =Frequency for a near neighbor node (with ‘R
b NNT offsets i,j, k) having a separation ' 3.1) :;
) from the target node contained in the shell ) Ay
A o
N extending from radius R to R + DR. i
The distance classification interval DR is adjusted according to the number of timesteps iy
med. -:.::: !
Shown in Fig. 2. are probability distributions for neighbor separations corresponding _:_‘
to two NNT offsets. In computing these distributions all 512 nocdes were sampled. The Ny

. distance classification interval DR for each of these distributions was .3 4. The time
sampling interval used in computing f(R;i,j,x) for each of the NNT ofsets consisted of five
hundred timesteps of length 2.5 X 10~1® second. This time interval is sufficiently long that
the high velocity nodes easily traverse the spatial domain, i.e. 80 A, several times. Fig. 2.
shows a correlation between the mean value of f(R;i,j,k) and the NNT offsets. The peak

F T

L5 2
L

‘

. of the distribution moves approximately 10 .4 toward larger separations (from 21 4 to 31 F
- A) when orne more node is added between target node and the interaction node. o
- Shown in Fig. 3. are frequencies for neighbor separations at shors range corresponding i
to an NNT cell having a relatively large index offset from the target node, i.e. the prob- fj?i;'
ability distribution in Fig. 2. corresponding to NNT offset (-3,1,0). As can be seen, even o
for relatively large index offsets from the target node there is a small but finite probability

for a not so near neighbor coming quite “close”. It is these rare “near miss” events which
determine the required NNT size.

Additional information concerning neighbor positions is provided by cumuiative in-

tegrals over f(R;ij.k) from O to a given separation from the target node. These integrals e
give the probability the Seld nodes with a given offset {from their target node come within E_

a particular distance of the target node in space, a statistical “near miss” probability.
Such information provides a criterion for optimizing (or minimizing) the NNT based on
the “cutoff radius® R, for the particular system. NNT optimization is effected via analysis .
of the near miss {requency for each NNT offset, i.e. the cumulative probability of inding
a node indexed outside the NNT but within a distance R. of the target node. Shown
in Fig. 4. are the near miss probabilities as a function of NNT offset for the particu-
lar case R. = 3A. These probabilities were computed with the same sampling used for e
the frequency functions shown in Figs. 2 and 3. NNT optimization based on near miss
probabiiity is discussed in §3.

For the sysiem of nodes represenied in Fig. 4, i.e. a system where the cutoff radius
R. = 21, ail NNT cells more than shree index offsets ‘rom the “target ceil” in any direction CL
have zero probadility of recording a *near miss”, Le. coming within 3 A of she target cell.
For this system a suitable upper bound on the logical separation inciuded in the Near N
Neighbors Template is therefore .V, = 3. For this case (referring to the appendix) the "
total number of node-node interactions compuzed each timestep for a MLG cof size V is

o f ? .l B

s“.'

- -“-'

Computed Interactions = 171 x .V — 294 x (N ¥). (3.2, :j;j.

g

The NNT corresponding o (3.2) was selected on the basis of an upper bound, V¢, on N ::;-_::

the MLG loca:ion of *nearest neighbors”. However, as seen in Fig. 4, further cdeletion of 5
NNT cells is possibie using an NNT which is more nearly sphericai. This aspect of NNT S
optimization is examined presen:ly for the “vector compatible” skew-pericdic MLG. ;Z;:;}:
3
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) 4. A “Skew Periodic” MLG for Indexing the Geometric Positions
of Nodes in Computer Memory

More than one type of MLG for indexing nodes within a givea spatial domain exists.

o In particular, for nodes in a 3D spatial domain with periodic boundary conditions, a Mono- ‘
, tonic Logical Grid can be constructed which permits more efficient vector manipulaticn of Ry
N node attributes than the regular periodic grid. This so called “skew periodic” MLG also NN
N results in an average partitioning of the computatioral domain in cells of equal stazistical "::_::
> volume. _‘\
- “Position skewing” is a statistical property of a system of nodes such that the average 3
A relative iocation of neighbor nodes is a function of the cirection of the MLG coordinate =3
2 offset relative to the target node. These properties foilow ~om the asymmetric constraints O
: of indexing node positions in a skew periodic lattice. In a skew periodic MLG the mapping Zj"-;_',
perween the spatial coordinates of the neighbors and their MLG indices is not exac:ly e
v aligned, as shown clearly in Figs. 7 and 8. It is shown presently that position skewing i'
cepends on the MLG configuration and diminishes wita increased size of the node svstem. el
Given .N nodes rancomiy located in a region of 3D space, one can associate with o
each node not only its spatial coordinates (X, Y, Z) but also a set of MLG indices (ij,X). "
A usefu]l mapping, which we have named a2 Monotonic Logical Grid, obtains when the e
. node locations in space and the node indices in the computer memory satisfy a set of
monotonicity conditions,
;. X(5,5.k) < X(i+1,5,k) ; 1<i<NX-1 S
- Y{,5,) <Y{s, 7 - 1,k) : 1<j<NY -1 (1) .

and Z(i,1.k) < 2(t,3,£=1) : 1<k< NZ-1.

Here .V, the total number of neodes. equals VX x ¥Y < NZ. Note tha: the average

R separation of neighbors is not independent of the direciion of their MLG index dispiacement

" since the metrics of the X, Y and Z coordinates in tize spatial dormain need 20t be egual

Y {(ncr even orthcegonai). The MLG conditions defined in (4.1}, aithough mathematicaily

sasisiactery fcr crganizing random locations in space. is not optimal for mapping ncce

- pcsitions into a vector computer xemory. A skew periodic MLG is cescribed in 34 which
X is more eficient.

The MLG is comprised of a set of logical pianes, VZ, which are each skew-pericdic.

! Thus. for all noces in the svsterm there wil be one sp e coordinate. zay 7, and one MLG

p Diane index. say &. wiich must satis{y the moncionicity condition 2 \,,) < Zix—1 for 1

-

t- <3< NZ-1.Civen :hat &V = VX < NY x V2, =ach cgical zlane of the MLG wiil '-'-f-;:‘.
¥ incex VX x V1" noces randomiy ‘ccated in 2D space. Complete compact vectorization
- of each plane is then efected v incexing in monotenic order the locations of the ~5rsi”
VX ncces and selected pericdic images of the other VX)) « VY — 1 nodss wlich are
all a3 assxg'xed distances from the 2ctual nede pesiziens. "“*'s indexing scneme provic

a mappi :g of 2D space onis 2 sing ntinuous ML G ccordinate axis. Such a mapping
tisfies siightiy diferent menotonicity conditicns frem (4011,
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To emphasize vector indexing the combined index 1 is used instead of i and j. The
point is that the entire plane of NX x NY nodes are now meaningfully contiguous. A
statistical analysis of position skewing resulting from this MLG follows.

Consider VX x NY nodes located in a doubly-periodic 2D region of space having an
area Lz x Ly. Letting VX and VY equal 3 here for presentation purposes the NX x NY
regularly spaced nodes and their periodic images are shown in Fig. 3.

The MLG incdices in circular brackets, i.e. (tj), represent the location of the nodes
which form the Regular Periodic Monotonic Logical Grid. The square brackets, i.e. [ij],
represent the locations of some of the node images, each of which is a distance L =
((mLz)? = (nLy)®)}¥ (m, n =0,%1,...) from their corresponding system nodes. Note
that extra images, also called “ghost” nodes, must be added to all four boundaries to
represent the images in locations where vector operations expect to find them. The ghost
nodes in the X direction (horizontally in Fig. 3) interrupt the adjacency of data in computer
storage and hence interrupt numerical optimization through vectorization. The Skew-
Periodic Monotonic Logical Grid is formed by the nodes and node images whose spatial
locations satisfy the modified constraints (4.2). This is depicted in figure 6.

The system of 512 random points was used to investigate the relative spasial positions
of nodes and node images indexed by a skew periodic MLG. The positions in X and Y of the
“first” VX points and the monotonically ordered positions of the images of the remaining
(¥X) x NY - 1 points were fit to a straight line using least-squares. The confguration
sketched in Fig. 6 suggests that the nodes will lie, on average, along a skewed line which
moves up one ceil in ¥ each time the system is traversed in the X direction.

The calculated siopes of this least squares line Suctuated between 0.12 and 0.13. This
s consistent with an 8 x 8 logical plane since % = ﬁxy—of = 0.125. The correlation
coefiicient for each least-squares §t was approximately 0.95. A typical plot of positions
indexed by the skew periodic MLG for a logical plane is shown in Fig. 7. Also shown in this
figure are the corresponding node positions as would be indexed by a regular periodic MLG.
That is, the nodes labeled “B”, whose positions are indexed by the regular periodic MLG,
correspond to the nodes labeled “2”, whose positions are indexed by the skew periodic
MLG. This same correspondence holés between the ncdes labeled “C” and “3”, “D” and
“47, etc.

The “position skewing” resulting from the average area partitioning associated with a
2D skew periodic MLG is cescribed using Fig. 8. The average ¥ coordinates of neighbtors
in the cirection of cecreasing X is smailer than the average Y coordinate cf neightors in
the opposite direction. This results directly from the indexing which moves up one row of
nodes for 2ach time the svstem length in the X direction is traversed.

M aa o

The average relative spatial pesition of logical neighbors is a funciion of the MLG
indexing scheme. We would lise 0 know where, relative to the target ceil. a node having
a particular MLG offset is likely to be. For a regular pericdic MLG the overail volume
partitioning is essentially cubical. For a skew-periodic MLG the statistical volue elements
have the shape of parallelepipeds. For a 2D skew-periodic MLG, i.e. a logical plane, this
is equivalent to an area partitioning in paraileiograms. That is, the average locations of
four adjacently located random nodes (5,), (i — 1,7}, {t,; —=1),and =1,/ ~1)isa
parallelogram.

~1

P S S S
DU _‘-.-‘-.‘. _‘-.\.._:

R
AT
't Canat n_'NA‘c&'..AL.-_S'... -




The average distance of neighboring nodes from the target node is recorded in Fig.
Qa for the system of 512 points with random positions. Note that each NNT node has an
average RMS distance to the target node which is only about a factor of +/2 longer (or
less) than the corresponding distance in a perfectly regular Eulerian grid. Shown in Figs.
9b and 9¢ are the average separations of neighbors in X and Y, respectively. The average
X separation is exactly what we would expect, 10 1. It is seen in these figures that only
the average Y separations are affected by skewing as we expect.

Indexing the NNT locations using coordinates (i, j) and taking the target node (TN)
as the origin, “position skewing” is examined by taking divided differences between the Y
components of neighbors. From Fig. 9¢, for 2 8 x 8 x 8 system of nodes having random
velocities (top number in each cell),

Y(3,2) - Y(=3.3)]  (33.75 — 26.25)
60 60 oy (43)
=0.125 = ———————
NX XNV’

where the average node separation in each direction is 10 4. Because “position skew-
ing” scales as ?V_!?, its affect diminishes as the system size increases. This is a relatively
small price to pay ‘or more efficient data storage and vectorization. From Fig. OS¢, for a
16 x 16 X 16 system of nodes (bottom number in each cell shown) having randor velocities,

'Y(2,3) - Y{-3.3)} {31.88 —238.13)
60 60

(4.4)

as expected.
3. Discussion

The non-orthogonal, skew-periodic incdexing schieme worxs we:l in the MLG case be-
cause the local grid in the varicus index directions couid not be crihogonal in any case
because the nodes are Lagrangian. Thus. shere is no a.dva 1tage 0 maintaining orthego-
nality in node incdexing when actual spatial orthogora:ity is not p ssibne.

Ia large svstems there is the possibility that she X voo'd nalas may lose sore accu-
Tacy Secause many sysiem .engths have to De adced 10 iR ( cocrdinate when using the
tecanique with one big 3D system. If skew dericdicity "vere being used in 2 100 ~ ‘CO < lf'C
system. the image cf point {0.0.0) wou.d be 10.CC0 system leng:}:s away, o1 10° typical 5.-:

spacings. Clearly 32-tit precision .vomc uOu De aaequac A0 SuCh a iarge system howev
one would nct want to use this technique in ail directions. When the vectors become iong
nough. vectorizing in swo dimensions at once s no icnger so aiiractive. On a Cray, for
Xampie. vactors of .eng:h A4 are long enough

M (b

On arrays of parallel processors, actual wraparound is scrmetimes impiemented in
hardware and skew periodic connectivity is often extenced o a nu:::'::er of d’.::ens‘.ons in
the hvpercube architecture. In these cases tne ai .ies and
periocic MLG in many cenventiona: -'ec’o.' and pipeiined processcrs weuld de alsent 50
using the regilar periodic gric might e simpie
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L

g Although the physical system being described in the two representations, i.e. Figs. 3
[ and 6, are identical, the data being stored to describe each system is quite different because
N different images of the nodes are active in each case. The X and Y coordinates of nodes
) 1, 2 and 3 are the same in both representations. In the regular periodic grid the nodes
4, 3 and 6, and for that matter 7, 8 and 9, all lie in the same periodic domain as above
the nodes 1, 2 and 3. In the skew periodic grid, each successively higher row of nodes (in
this case NY = 3 rows) is displaced a full system width Lz in the X direction. Instead of
following node 3 with the image of node 1, as in the regular periodic grid, node 3 is followed
directly by node 4. Similarly, node 6 is followed in the skew periodic MLG by node 7, not
the image of node 4 as in the regular grid. By adding the system length to each succeeding
row of X positions, all nodes are automatically positioned properly for separations to be
calculated directly without concern for whether the node in question is on the boundary
of the domain. The boundaries of the computational domain have therefore disappeared
in the X direction.

The number of extra stecrage locations needed to provide enough ghost nodes is much
smaller in the skew periodic grid since ghost nodes are only needed at the “ends” of the
system, not at the “sides”. The “hiccups” at the beginning of each row in the regular
periocic representation have been eliminated in the skew periodic representation. As
shown in Fig. 10a, when the index offsets for the NNT extend to the third layer in
all directions, as we must do in some of cur moiecular dynamics calculations, the 81 cells
in the principle domain and the 8 exira domains are necessary to set up enough ghost
cells to ailow vector operations which span the entire 2D cross-section without boundary
interruptions or special boundary corrections. In this case, as shown in Fig. 10b, the skew
pericdic grid again uvses many fewer ghost nodes. Three extra rows pius three exira poiats
on each end of the system gives 12 ghost cells at eack end. The total number of points is
thus 33 razher than 81, a substantial savings in comnputer memory.

If skew periodicity is used in all three dimensiois, the number of ghost ceils at each end
is three planes (27 points) plus three rows (9 points) plus 3 points. Thus the skew periodic
3D grid has 105 pcints altogether of which 27 are active. The same system represented in
a regular periocic grid needs a total of 729 points of which only 27 are active. Of course
the reiative difference is smaller when the active MLG is larger than 3 x 3 x 3 but the total
amcunt of wastec siorage increases rapidly with the size of the system.

.

8. NNT Optimization andé Vec:orization Based on
the Near Miss Prooability

33. The system of 312 noninteracting points represents a worst case for NNT cptimization
in significant appiications ef near neighbor algorithms. For exampie. in molecular ¢ynaxmics
studies the interaction is a ‘orce which beccmes repuisive at smail separations. It is —ore
unlikely that a particle several NNT ceils away wiil be within R, of the “target particie”
if it is a Snite-size par:icie rather than zero sized. There is zero probability for more than
one molectle 10 cccupy the same position in space. A system of non-interacting peints
demonstrates two significant aspects of MLG indexing: 1) Orne is able to construct an
optimal NNT in terms of the average volume about the target node containing nearest
neighbors, i.e. an approximate sprere; and 2) That NNT indexing via ofisets reiasive 0
the target cell, permits the computation of node-node interac:ions using vector and parallsi
processing methods.

p
E The discussion cf *Near Misses” presented here concerns the nocde svstem described in
b
3
1
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The first stage of NNT optimization, i.e. minimal scaling in terms of (3.2), is to
determine via statistical analysis an upper bound on the MLG index offsets of neares:
neighbors. Such an analysis is shown in Fig. 11 {or the 512 node system for an interaction
cutoff radius R, = 4. Because of symmetry, only a portion of the NNT is considered fer
each of the logical planes.

Figure 11 shows that for nodes in the logical plane k = 3 there is essentially zero
™, probability for a “near miss”. Further, for the logical planes kX = 0, 1 and 2, the contours
Y of constant probability are seer: to be roughly circular. The next stage of NNT optimization
' is to consider only those logical nodes for which the indexing of “close” nodes is possible.
For the system desribed in Fig. 11, this would suggest using an NNT having roughly
the shape of a hemisphere. The NNT shape can be selected by storing in separate data
arrays both the logical and spatial offsets of near neighbors defined according to the skew
periodic indexing scheme and the desired NNT shape. The spatial offsets are the fixed
separations of the periodic image nodes. This procedure is described in Fig. 12a. In
this Sgure the array containing the index offsets, IJOFF(IPT,K2), is computed outside
the timing loop. A similar array is defined for the spatial offsets which are used in the
- interaction caiculations.

In Fig. 12a, IJN is the maximum node index in the skew-periocic grid in logical plane
x and NPT is the maximum number of noces indexed by the NNT in logical plane K2. The
procedure in r'ig. 12a, however, is not optimum for vector oriented computers and does zot
utilize *he vector compatibility of the skew-periodic indexing scheme. Vector processors
o are designed such that the inner DO-loops of a2 computing procedure are “vectorized”. The
procedure stown in Fig. 12b is equivalent to that shown in Fig. 12a but is structured ‘o
A take {ull advantage of the vector attributes of skew periodicity.

PN S

7. Analysis of Swapping (Random Motion}

There are iwo important measures of “swapping” for a given node system. These
. are: (1) The total number of “swaps” per timestep, and (2) the convergence rate for the
“swapping”, i.e. the average number of “swapping” iterations required to reorganize the
: MLG each iimestep. These ‘eatures depend on the exzen: to which the MLG indices are

perturbed from monotonicity each timestep. The amount of work to restore menotonicity
. by “swapping” is therefore a function of (1) the timestiep and (2) the number of nodes
n the system. An increase in timestep results in a larger perturbation of the monotone
indexing. An increase in system size increases the upper Sound on the amount of iotal
recrcéering recuired to restore monotonicity.

The statistical results presented here for swapping are ‘or nocde sysiems consisting of
non-interac:ing points. A qualitative analysis of the dependence of swapping on “inter-
action sirength” was undertaxen by introducing ceniral forces between the system nodes.
The swapping required was found o be less than that for non-interacting nodes because
now nodes often rebound without passing. Thus, for applications such as molecular dy-
namics, a system of nen-interacting nodes represents a worst case.

A quantitative description of the convergence rate of swapping lterations for a system
of non-interacting nodes is given in Figs. 13 and 14. Shown in Tig. 13 are cistributions
of swapping iterations for three diferent timesteps which differ by a factor of 4. As

1%

fave @ s a B eV

t0 monotoaicity. A sixteeniold increase in iimestep, however, cccasions oniy a factor of
wwo increase in the number of iteraticns. Thus. to integrate Jor 2 given :ime. the longer

timesteps are aciuaily much more efficient.
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Shown in Fig. 14 are distributions of swapping iterations for systems having (16 x 16 x

16) and (32 x 32 x 32) nodes, respectively. The larger system, as expected, requires more LS
“swaps” to maintain MLG order for a given timestep. However, for the larger system, the ;_j;
convergence rate for swapping is still comparable to that for the smaller system. j_\;-.i

For molecular cdynarics and other manybody problems the timesteps used in the AN
calculation of Figs. 14 and 15 are unrealistically large since the question of accuracy for K |
real orbits has not been addressed. An analysis of the “swapping” iteration was undertaken R

for timesteps having sizes suitabie for such appiications. For these cases no swapping was
observed for a significant fraction of the time increments. For those timesteps where swaps
were required, the maximum swapping iteration level was about 2.

The Nlog,(V) scaling of the number of swapping iterations is demonstrated in Fig.
13 for three different timesteps.

Appendix

Derivation of (3.2), an example of the linear scaling of the total number of pair inter-
tions with the size of the system. The coeficient of this scaling is a function of NNT
size.

Let the MLG indexing nodes in the system consist of .V, logical planes each consisting
of .Ny x .V, logical cells arranged in an N, x N, array. Next, let the spatiai domain be
doubly periodic in X and ¥ and bounded in Z by two reflecting end walls. And fnally,
let .V, be the upper bound on logical offsets inc!uded in the NNT. Given these conditions,
the number of node-node interactions computed each timestep can be described using the
following semitriangular array of logical plane index, k, pairs.

(1, 1) (2, 2) (3, 3 (4, 4) (5, 5) (s, 6) .o (.Vg,.Vg)
(L2) (23 (3.4) (4.3 (5.6) (¥, -1, ,)
(1,3) (24 (35 (4.6 .. (¥,-2.N,)
1L,¥e=1) ... (N,-N.N,)
(A1)

These index pairs represents ail possible inter- ané intraplane node-node interaction
calculations. The number of different inter- and intraplane k index pairs are (V. x .V, —
_:~ V—Q;"—n) and .V,, respec:ively. For each 1 index pair corresponding to interpiane calcula-
. tions, i.e. (k1,k2) where k1 = k2, one can associase (2.V.—1)7!x ..V} intercell calculations.
Similariy, for each k index pair {x1,x2) where k1 = k2, one can associate 2.N? =2V, x '\4;’
intercell caiculaticns. It ‘oilows that the tctal aumber of node-node interactions ccmputed
each timestep is

;? V(N =1) s )

x Computed Interactions = .V, x .V, — {2V = 1)77 < VS (4.2)

. SN NS Ay A

. = Ngi2Ng = 2.V < VL

3 Letting .V represent the total number of ncdes, Le. N = V2, 3.2) foliows from {4.2) by -
N setting .V, = 3.

C4
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FIG. 10a. Schematic representation of ghost cells required for an NNT having maxi-
mum index offsets of three when node positions are indexed via a regular periodic MLG.

>

e e e e e R N T T S
oo R S el e B T P U AR
S R S R S 3N et T T T Lt e R N N S e b i




-

Rl i 2 s i

LRI AN B e\ B e

b tput

Pt

3
[\

ey

S

CABCEL I g e p

-

DTN dtpotsad majs v viA paxapui aze suotjisod apou uaym aa1) Jo £1AS[JO Xapug tinui
-ixews Jugavsy NN ue 10§ pasinbas sa 1501 jo wopejuasardas appmuaag GOt A

Av. ..Ap O
O 0V

O 0 O
o

OO0

O 0O O




ion

YWin R, = 41 as a funct

-
-

g wi

.

«
1
-

hbor com

Il
1
1

FIG. 11. Near miss % probability of 2 ne
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: FIG. 12a. Steps of interaction calculation between two logical pianes. "

o

i
v A
: oo
. BN
:I !;“';

o

AR
. o~

-~

’T"."... ,.
AP AL




W W N TS

Select logical Planes K and K2
where K2 2 K.

J
Initialize IPT

>
- I ’!

Select Target Cell IJ in

”

e

Plane K. Z;Z‘_ R

J s

i N

P — Select NNT Cell 1J2 In c—

Plane K2 AU
{ e

J2 = |J + LJOFF(IPT.K2).

Compute [nteraction between
Nodes Indexad by !J and 1J2

(YES)

(YES)

PT «

FIG. 12b. Steps of interaction calculation between two logical planes optimized ‘or
vector processing.
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