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ABSTRACT

{he energy-state approximation was applied to a subsonic,
propeller-driven aircraft using both a sawtooth climb analysis proce-
dure and a level acceleration method.

.The‘fesults showed that energy techniques, i.e.,-the correlation
between sawtooth and level acceleration methods, are a valuable support
tool to the previously isolated potential energy (sawtooth climb)
method. Data demonstrated a test time savings of approximately seven-
to=ome with a variance in overall correlation that, although not with-
in acceptable standards, is believed to be reducible with a more
dedicated instrumentation selection. Data corre1ation»did;§uggest€ :
very good agreement on best rate-of-climb speed determination. How-
ever, this should be an asset in reducing the time previously required
for the determination of excess Tﬁrust Ha}sepower. Further testing,
specifically with the level acceleration method, using higher resolu-
tion data acquisition equipment (with possibly an accelerometer) would

fully demonstrate the extent of unaccountable losses and resulting

disagrz2ement between the two methods.-: .-
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I. INTRODUCTION AN

c’\
The accurate prediction and verification of weapon system capa-

bilities and performance has always been of prime importance to the
aerospace research and development community. In today's world of

. expensive and time-critical test and evaluation procedures the prac- ;i

E ticing flight test engineer has an urgent need to use accurate but %;?
time-saving techniques. As is well documented, a shortened flight 5;;
test approach to supersonic aircraft analysis has been used for g%ﬁ

; approximately thirty years employing a study of an aircraft's shift-

ing ratio of kinetic and potential energies. This method uses an

independent variable that considers altitude (potential energy) and
speed (kinetic energy) separately. This separation enables two flight

test methods to be used to demonstrate an energy increase by constant

speed climbing or by accelerating at a single altitude. This approach
is more suited than the previous method of simply climbing to an alti-

tude to describe an aircraft climb performance. This is because an

~ver-ambitious climb may reduce flight speeds (kinetic energy) to the
extent that the aircraft is temporarily ronmaneuverable. This climb
would therefore not demonstrate an optimum, usable flight path.
Theoretically, the energy-state approximation has always been

applicable to subsonic aircraft. However, the climb of early, rela-

tively slow vehicles consisted of increasing the potential energy of
the aircraft, with any changes in kinetic energy being small and,

therefore, customarily eliminated from the analysis. With the newer,
higher wing-loaded, greater thrust-to-weight ratio, and specifically

1
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jet propelled aircraft came greater climb speeds which legitimized

potential/kinetic energy transfers. This ability to interchange ?j
i
kinetic and potential energies made attractive the interchange of 2*

altitude and airspeed and led to the use of specific energy and

specific energy rate as important indicators of flight capabilities.

Aircraft performance optimizations have been investicated

rogorously in past years and have been analyzed using varying param-

..
-
-
IS
S
[

5

R L SORARE

eters. Rutowski [1]1 and Davy [2] each considered the minimum-time

.
v

.

and minimum-fuel climb using a graphical approach. Lush [2] and

(a1
PRV PR A
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ry

Bryson [3] studied time-to-climb problems using digital gradient
methods. Others have studied minimum fuel and minimum time paths,

minimum fuel-cruise, and maximum range problems using energy state

....,
Vs ;"-"
L e

approaches [1,3,7,8,9,11,1]. Energy management techniques have also

'

been undertaken to optimize tactical and maneuvering performance [14]

LR
ir

e v .
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on military fighter aircraft. This approach has included the design

] . 3
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and construction of on-hoard instruments or systems that attempted to
implement the total energy concept at the operational level [15].
This thests examines the validity of using the energy technique

on propeller-driven aircraft during a climb analysis. The study will

h gl

[
Y

#g ' compare an accepted subsonic aircraft climb analysis method (pure
potential energy increase) with an acceleration analysis procedure
(pure kinetic energy increase) that has been a subject of criticism
when used within a subsonic flight test program because of aircraft

power limitations and flight test assumptions.

]Numbers in brackets refer to similarly numbered references in
the Bibliography.




IT. BACKGROUND

The climb performance of an airplane, whether subsonic or super-
sonic, is generally described in terms of its maximum sea level rate
of climb, its service or operating ceiling, and the time to climb to
a given altitude. The most feasible approach to climb performance
testing is achieved when one considers the time to climb to a given
energy level rather than to a given altitude. If an airplane
approaches an altitude with a very low airspeed, an additional amount
of time is required to reach a usable maneuvering flight velocity.

The total energy concept allows an ideal (and close to actual) flight
path to be flown and can provide a climb schedule that permits an
aircraft to be maneuverable at all times.

Although "energy height" management, or the total energv concept,
is viable for subsonic, propeller-driven aircraft [6], the best rate
of climb for propeller-driven aircraft was always obtained by using a
"sawtooth" climb method of flight testing. The sawtooth climb was used
since the total energy concept for propeller-driven aircraft is "not as

satisfactory for piston engine aircraft as for jets" [6]. This was

demonstrated by examining the differences in flight path speeds of pro-
peller and jet engine aircraft [6]. In most cases the flight path
speeds for jet aircraft are much greater than for propeller-driven air-
craft due to the inherent propulsive characteristics of the propeller
and the Timitation of brake horsepower available from an internal
combustion/reciprocating or turbine engine. This variance in propul-

sive capabilities and resulting differences in speeds are directly

3
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i linked to the aircraft's limited thrust-to-weight (T/W) ratio. The -
- conservative T/W ratios of most propeller-driven aircraft did not per- Eﬁ
. . X : . . .
. mit rapid transfers of engine power for altitude or velocity and made :ﬁ
3

s -
i questionable the accuracy of exchanging the two components of kinetic !E
- and potential energies. The value and correctness of the total =

energy approach to subsonic flight vehicles arose from the concern
that the technique would incur excessive losses due to complicated
and possibly unaccountable pilot/aircraft interactions. The trading

back and forth of the energy components is greatly influenced by

pilot technique and aircraft movements during the lower speed flights :;
with possible losses comprising a large percentage of the total power E;{
provided during a test. Ei;

The purpose of conducting either sawtooth or acceleration runs %;
is to determine the variation of excess power with airspeed. In saw- ;g’
tooth climbs the resulting data are used to evaluate climb character- &E
istics. In acceleration runs the data may determine climb character- i

istics, level acceleration traits, maximum level flight airspeed, and
estimates of level flight turning performance. In addition to the
expanded information available from the level acceleration test pro-

cedure the method has a dramatically shorter flight procedure.
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[II. THEORY

A

X An energy state approximation for an aircraft is most appropria-
tely beqgun with an examination of the production and use of energies
as the vehicle is translated or rotated while performing its mission.

For a propeller-driven airplane the energy for propulsion, derived

)

from the heat content of the stored fuel, is initially converted to 522
o]
mechanical energy by the powerplant. The effectiveness of this trans- ifi
by,

fer is the product of the powerplant propulsive and thermal efficien-

A

cies and is termed the overall powerplant efficiency. The overall

'’

A
haa. a8 & o & R bha ..

N PR R
. [ S AT
v el .

. » . L
O v

efficiency and resulting engine power capability may be strongly

affected by other variables after the engine is designed. These

*

include intake and exhaust system conditions, cooling tendencies, and

e DAL DAL P Y

secondary engine-driven devices. The basic power equation for an

internal combustion engine using a torquemeter testing procedure may

R o R
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be represented as:
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v

BHP = GQLRPM][K] (1)

The test procedure for determining brake horsepower of an internal

combustion engine in flight include the following methods:

.« .
e .
AR
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LR DAL

1) Engine Power Charts -
2) Torquemeter Method &
3) Fuel Flow Method
A1l three are reviewed within the AGARD Manual [2,5,6] and by Kimberlin
o
[18]. Each have strengths and hinderances which may preclude them from "o
being used by test organizations. The tradeoffs of all three tech-
niques are complexity versus accuracy. The previous listing presents

in sequence the simplest and least accurate procedure (power chart) o~

5
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6
to the most accurate and complicated method (fuel flow). Interested
readers should find that References [2,5,6] and [18] explore the sys-
tems used in flight test organizations. The method used within this
thesis was the engine power chart procedure chosen because of its
simplicity.

With propeller-driven aircraft the energy acquired through the
burning process is converted to thrust by rotating airfoil(s) and it
is this force that is used to propel the aircraft. The effectiveness
of this transfer of brake horsepower to thrust force is dependent on
the changing efficiency of the propeller as the airscrew blades change
pitch and rotationa: speecs, the downsiream flow resulting from the
aircartt shape, the aircraft's forward speed and operating flight alti-
tude. At constant altitude the maximum brake horsepower available
from the engine is virtuzliy independent of forward speed and is
therefore considered constant. The efficiency of the propeller, how-
ever, is not. At low speeds, the efficiency of & variable pitch pro-
peller increases quickly with velocity. This tendency is consistent
even at higher speeds, although tne ircrease is not as rapid. The
efficiency of the propeller is defined as the ratio of the power out-
put to the power input. Their relationship may be fully understood

by the following equation:

3
|

y = Powerout/Powerinput (2)

n

Fr/ladQ = Fry/f2(7)nQ

Thus the overall thrust horsepower obtainable from a reciprocating

engine and propelle: combination increases with speed. These varying

« . . .
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interaction effects greatly hinder the flight test determination of
the thrust/drag of an aircraft, both of which are the cornerstones of
required input parameters to quantify an aircraft's performance capa-
bilities [18]. Any thrust which is in excess of the thrust required
to balance the sum of profile and induced drags, or total drag, may
be used to increase the total energy of the aircraft. An aircraft's

total energy may be expressed as:

E; = PE + KE = Wh + W%/2g = k(n + v%/2g), or

2 (3)
E/W = h + V5/2g

In calculating the differing optimal flight paths of an aerospace
vehicle, varying dynamic models may be used to describe the aircraft
motion. These models may range from a simple point-mass, quasi-steady
representation to a more complex study involving aircraft deflections,
changing weight (and the corresponding center of gravity) or other
variables. Unfortunately, consideration of every possible aircraft
dynamic effect would lead to problems of such computational complexity
that the effort required to obtain their solution might never be
warranted for preliminary performance estimations. It is at this point
that many authors of performance optimization techniques differ in
their approach or even acceptance of subsonic aircraft with the total
energy approximation. Bryson, et al. [3] use a quasi-steady approxi-
mation on subsonic aircraft and an energy-state (energy-climb) approxi-
mation with supersonic aircraft. Their argument is that with subsonic
aircraft kinetic energy cannot be traded back and forth in zero time

without loss of total energy. They state that only with an aircraft
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flying at supersonic speeds is the kinetic energy comparable to its
relative ground gravitational potential energy. Ardema [19] examined
the energy state, two-state, and modified two-state approaches and out-
lined the improvement in accuracy of each approximation procedure,
5 ) along with their respective penalties in added complexity. The two-
E state approximation treats both velocity and altitude as state vari-
i ables, making them continuous, and uses the flight path angle as the
control variable. The modified two state is an extension of the two-
state method but incorporates drag due to 1ift and accounts for the
time reguired to change flight path angle. The next most ambitious

estimation is to treat velocity, altitude, and flight path angle as

state variables with angle of attack as the control variable, and mass

P approximated as a function of time [3]. Varying approaches may be
undertaken in minimum-climb analysis; however, the scope of this exami-

- nation was a possible flight test analysis/validation of the energy

. technique for propeller-driven aircraft. Interested readers should

refer to the papers listed in the bibliography, as individual techniques

- are outlined with their differences and limitations examined in detail.

. This analysis is an energy state/point-mass study of a propeller-
driven airplane that includes the acceleration component. In the study
the energy is treated as a state variable and altitude or velocity is

N ' used as a control variable. In this method, necessary boundary con-

ditions are satisfied by adjoining constant energy paths to the optimal

path. This widely used approximation, while believed optimistic with

calculated climb times by Ardema [19], has been found to be adequate




for the performance prediction in a vertical plane and eliminates

unacceptable computational difficulties and expenses. Referring to

7 o N W v W

Figure 1, the equations of motion for this model are:

i Er = PE + KE = uh + (W/2g)V* (4)
EZ Dividing by the weight and defining energy height yields:

: e 1

- Eh = ET/W =h+ V- /29 (5)
! This energy height, or specific energy, may be interpreted as the

altitude which could be attained if all the kinetic energy were con-
verted to potential energy, or the maximum airspeed that could be
attained if all the potential energy (height) was converted into
kinetic energy. This assumes that the aircraft is rigid and so a
point-mass analysis may be undertaken.

To fully define an aircraft's performance capabilities, however,
it is necessary to demonstrate its ability to change its energy level
in a given time. Differentiating Equation (5) with respect to time

gives:
dE,/dt = dh/dt + (v/g)(dv/dt) (6)

Using a small angle approximation for the aircraft's angle of attack,
and zero-1ift to thrust axis variation, enables the following assump-

tions:

sin{fa + ¢) = (o + ¢c) and cos (x = ¢) =1
Using an assumption that thrust is along the flight path, and that the
aircraft mass is constant during the individual data runs, simplifies :Eﬁ

testing procedures. These assumptions make possible an analysis with !i
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existing aircraft and test equipment. The supposition that thrust is
along the aircraft flight path eliminates complications encountered
when 1ift other than that produced by the wing from airfoil pressure
interactions (i.e., thrust vectoring) is taken into account. This dis-
tinction in the ways 1ift may be derived is critical during the low-
speed operating envelope of the airpliane, when induced drag (a param-
eter dependent on coefficient of 1ift) is the predominant influence on

an aircraft's performance. With these assumptions it follows that:

F

tota] = d(mV)/dt = ma = (W/g)(dv/dt) (7)

F =F -0 -Wsina= (Wg)(dv/dt) (8)

total

Rearranging (8) yields:

sin a = (dh/dt)/V (9)
Substituting (9) into (8) and multiplying by V produces:

dh/dt + (V/g)(dv/dt) = [V(F - D)]/W = dE /dt (10)

The right-hand side of the equation is the specific excess power. The
two left-hand terms show the relation of linear acceleration and verti-
cal speed or rate of climb.

1f the thrust and drag characteristics of the airplane are known,
Equation (10) may be used to determine the rate of change of specific
energy by either demonstrating the maximum acceleration at a constant
altitude or by performing a constant speed maximum rate climb (both with
full power engine settings) and thereby demonstrate the performance
capabilities of the aircraft. Using a succession of different altitude

values, curves as in Figure 2 may be constructed. Note that as altitude
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...........................
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13
increases the excess thrust falls and dEh/dt is reduced at all values
of velocity. The specific excess power reduction occurs because brake
horsepower, and therefore thrust horsepower, is dependent upon air den-
sity. A review of elementary physics reaffirms that altitude (pres-
sure) and temperature are key parameters in determining the air's mass-
to-volume ratio. By repeatedly selecting differing values of dEh/dt
and plotting their corresponding values of h versus V the graph of
Figure 3 may be constructed. Superimposed on this figure is a set of
curves showing the variation of h with V at constant energy heights,
obtained by taking a particular value of energy height and substituting
it in Equation (5). Also placed on this figure is a hypothetical super-
sonic aircraft flight regime. As is well expounded by Rutowski [1],
and may be visually obvious after examination, this elongated perfor-
mance envelope makes attractive an energy approach to high performance
aircraft, since higher energy levels are obtainable past the transonic
drag rise. Interestingly, to achieve the minimum time path, a super-
sonically capable aircraft would have to, in theory, ascend subsoni-
cally to a given altitude, then go supersonic by diving along the
specific energy curve, and continue supersonic through a climb until
its maximum energy point is attained. This optimum flight plan, of
course, does not hold completely true in practice. Construction of
Figure 3 assumes that the aircraft is infinitely maneuverable, and that
kinetic and potential energies can be instantaneously interchanged with-
out any losses whatsoever, and this is understandably incorrect. How-
ever, as was the initial intent of this thesis analysis, the method

will give an acceptable indication of the aircraft's performance
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(i.e., the best practical flight plan), which will often approximate
the ideal.

As previously stated, a more classical and rigorous climb equation
can be used which takes into account such variables as changing air-
craft shape and unsymmetrical thrust to longitudinal acceleration vec-
tors. However, the resulting complex climb equation would require a
numerical analysis approach using a calculus of variations method or a
similarly theoretical analytical or computational approach [19].
Unfortunately, that approach does not provide an intuitively physical
understanding of the model and therefore is not within the scope of

this study.
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IV. SAWTOOTH CLIMB METHODS

The sawtooth test procedure is the oldest flight test method in

Se e v

v 4

current use to determine the variation of excess power with airspeed.

“a "»
"

¢ 7

= -

This flight method consists of flying in a steady climb while main-

taining a constant calibrated airspeed and a full-power engine setting.

\,
»

!E;
e
.

P )

In essence, this vector approach attempts to maintain a constant cali-
brated airspeed, thereby eliminating the acceleration term from Equa-
tion (10) while increasing by a maximum amount the aircraft's potential
energy component.

The right-hand side of Equation (10), after multiplication by the
weight term, may be expressed as total thrust horsepower available to
the aircraft minus the required thrust horsepower needed to overcome

aircraft drag. This quantity, as shown in Figure 4, is the thrust

horsepower in excess and is the usable surplus power capable of trans-

lating or rotating the aircraft. These curves define the aircraft's

total performance capabilities. Equation (10), after weight multiplii- N
cation and elimination of the acceleration term, results in: !E!
W(dh/dt) = THP1.n exCess (1) :ij
The relationships of Figure 4 may be understood through the following &i;
equation: }
THPaV = THpreq + THP1.n excess - (BHPaV)np (12)

The brake horsepower available and the propeller efficiency are
key parameters to overall performance. Understandably, the brake
horsepower supplied by the engine to the propeller is limited by its

16
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design. The propeller is not a perfectly efficient mechanism, as free-
stream density and velocity affect its capabilities. Because of these
density and velocity changes the absolute efficiency of the propeller
is never perfectly calculated. Therefore, thrust horsepower available,
which is highly dependent on propeller efficiency, is difficult to
determine.

As previously stated the THP hereafter denoted THPex’

in excess’
may be obtained from either a sawtooth climb or level acceleration
analysis. A THPeX-versus-Equiva]ent Airspeed plot, as shown in Figure
5, denmonstrates how the excess power varies with airspeed. The Rate of
Climb versus Equivalent Airspeed as shown in Figure 6 may then be con-
structed using Equation (11). From it may be determineq the Best Angle-
of-Climb Speeds (speed for maximum angle of climb), and Best Rate-of-
Climb Speeds. The speed for maximum angle of climb is found by drawing
the tangent from the origin to the excess power-versus-velocity curve.
The best rate-of-climb speed is the velocity that corresponds to the
maximum excess power (i.e., the top point on the excess power-versus-
power curve). Extracting data from this figure enables a plot of Best
Rate-of-Climb Speed versus Altitude and Best Angle-of-Climb Speed

versus Altitude to be constructed. The observed climb performance is
strongly affected by variations in power (or thrust) available and by
changes in aircraft total weight. In propeller-driven aircraft, varia-
tions in ambient temperature create changes in power, or thrust avail-
able, that are virtually constant with airspeed change. These power
available changes therefore influence just the value of the rate of

climb and not the airspeed at which it occurs. Changes in aircraft
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weignt influence climb performance capabilities by increasing the
induced drag. This is because weight changes affect the influence that
CL has on an aircraft through its induced drag component. As shown in
Figure 4, the induced drag component alters the power/thrust required
curves and thus affects the airspeeds at which maximum rate of climb
and maximum climb angle occur. Both the minimum drag and the minimum
drag speed tend to increase with aircraft weight. Fortunately for low
fuel consumption (i.e., normally-aspirated reciprocating engine) air-
craft these changes are trivial if small deviations from standard air-
craft weight are maintained.

Although the actual flight technique involved with sawtooth test-
ing is not difficult, it is important that the test runs be accom-

plished in calm air, with neither wind gusts or temperature inversions.

ﬂi The sawtooth technique involves performing a stabilized climb and

- was accomplished in the following manner:

1) At an altitude below the test altitude (300 to 500 feet
below) the aircraft is trimmed to maintain the indicated airspeed
which is desired in the climb analysis.

2) While maintaining the desired airspeed, the climb is initiated
through throttle advancement until the rated power of interest for the
analysis is attained. To minimize wind effects each climb is repeated
in opposite directions and always conducted crosswind. It should be
noted that it is not imperative that the climb airspeeds exactly match
the planned airspeed goal. As stated in Reference [4], an attempt
should be made to attain the smallest deviation in airspeed possible,
with a one knot spread around the initial value as a goal. To ensure
good results it is also suggested that the airspeed at the end of the
climb be identical with the airspeed at the beginning of the climb.
This aids in demonstrating the overall linear tendency of the data.

3) Data are recorded every thirty seconds from test band entry
to test band exit. Data consist of engine speed (RPM), engine torque
pressure (Q) or ambient engine manifold pressure (MAP), outside air
temperature (OAT), altitude (h), time (t), and airspeeds (V). Refer
to Figure 7.
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Data

Acquisition

Band Test Altitude

Every thirty seconds record: Elapsed tizne

Pressure Altitude
Outside Air Temperature
Engine RPM
Msnifold Pressure

Stabilized Climb Accomplished

Record Fuel Quantity
for weight determination

Figure 7. Sawtooth Climb Flight Procedures
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4) Procedures 1 through 3 are repeated using differing airspeeds
to gather sufficient data to map complete single altitude performance
capabilities. Different altitude bands are then accomplished in the
same manner.

This flight procedure demands a smooth pilot flying technique without
wasteful control surface deflections and no outside energy input from
temperature or dynamic wind gradients. The effect of parameters which
change thrust or weight, both of which influence the time to climb,
should be understood.

After gathering data, plots of pressure altitude versus time are
made for each airspeed and altitude as shown in Figure 8. Plots of
Rate of Climb versus Altitude, per airspeed, are then constructed
using the slopes of the averaged two-direction data runs from this
figure. The complete set of plots were previously shown in Figure 6.
As stated earlier, this figure will provide the Best Angle-of-Climb
Speed (Vx) and Best Rate-of-Climb Speed (Vy), respectively, as shown
in Figure 9.

With all raw flight measurements, the plotted data must be reduced
into usable information. The reduction methods that are accepted by
the Federal Aviation Administration (FAA) for propeller-driven aircraft
are defined separately for constant-speed and fixed-pitch propellers.
Each of these has their limitations and specified applications. There-

fore, a decision as to which method to use must be made. The three

methods are:

1. PIW vs CIW Method
2. Density Altitude Method
3. Equivalent Altitude Method

Of these three methods, only the density altitude procedure is limited

R
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to a constant speed propeller. On constant speed propellers, the blade
pitch is designed to vary automatically and maintain a constant rota-
tional speed. The benefit of constant speed/variable pitch propellers
is that they enable an elongated band of higher efficiency to be
obtained. This is accomplished by changing the blade angle of attack
during changes in airspeed, thereby expanding the optimum propeller
efficiency peak over several velocities. The fixed pitch propeller,
however, is only capable of performing at optimum efficiency at a
single airspeed.

Depending on the reduction procedure used, the reduced data may
need to be expanded into a form that is usable to the pilot in varying
flight conditions. This expansion is required because some reduction
procedures are limited to standard sea level test conditions at stan-
dard weight. Of the three FAA reduction methods, only the PIW versus
CIW method requires expansion to non-standard conditions. Although
all three nethods are relatively straightforward, the Density Altitude
Method requires that an estimated propeller efficiency be chosen and
iterated within the reduction procedure. This estimate can add to the
complexity and uncertainty of the results. The iteration requirement,
coupled with the fact that the PIW versus CIW procedure is the most
familiar to the author, prompted it to be the method used in this
study. A synopsis of the PIW versus CIW data analysis technique with
applicable equations is presented on Figure 10.

While sawtooth climbs have been used for many years and, in fact,
are the mainstay of the FAA test procedures, there are many disadvan-

tages associated with this technique. The climb technique is not
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Reduce observed rate of climb to values of Piw
and Ciw using the following equations:
© - Tamb/268.16 Tamb in degrees K
Tamb = OAT + 273,16 OAT indegrees C 1/2
c:=6/0 BHPt = BHPc [Ts/Tambl
1/2 3/2
BHPiw = [BHPt(C )  )/[wt/Ws)

R/C tc = [(R/C obs)(Tamb)}}/Ts 172 1/2
Ciw = [(R/C teX Q) )/ [wit/ws]

Plot Piw versus Ciw and expand to standard day
conditions using the procedures as exhibited with
the raw data.

Figure 10. PIW versus CIW Reduction and Expansion
Procedures for the Sawtooth Climb Method
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Acquire raw/indicated data to include: Airspeeds :f':i'
Elapsed Time (for weight determination) Z
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Pressure Altitude e

Manifold Pressure o

Engine RPM E

Calculate aircraft test weight for each climb run
and determine each dH/dt (obs) from individual i
indicated pressure altitude versus time plots.
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practical with high rate-of-climb aircraft since a large altitude range

must be covered on each climb to acquire acceptable data. Also, the

y G SIS S T T T AR T .

data may be affected by pilot inconsistencies and wind aradients

-

(which may be alleviated through crosswind flight paths). Of the above
mentioned problems, the latter is objectionable enough to be the pri-
mary driving force in studying the level acceleration method for

propeller-driven aircraft.
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V. LEVEL ACCELERATION METHODS

The level acceleration test procedure simplifies or eliminates
several of the problems associated with sawtooth climbs. The tech-
nique's greatest shortcoming is that a higher level of skill is
demanded of the pilot. However, this can be remedied through practice
of the test technique.

The flight procedure in the level acceleration test consists of
maintaining a constant altitude while smoothly accelerating the air-
craft from its near minimum airspeed to the maximum level flight air
speed. This procedure yields a specific energy increase by maintaining
constant potential energy while increasing the kinetic energy. The
assumptions are that no thrust is diverted to generate lift, and that
the gross weight of the aircraft does not change appreciably during
the data run. A well executed flight using an aircraft with a low
fuel consumption reciprocating engine meets these conditions.

Returning to Equation (10) and holding the height constant pro-

duces the general equation:

THPex = (H/g)(dV/dt)VT (13)

The acceleration term, (dV/dt), may be obtained for each airspeed

from the line slopes of true airspeed (V,)-versus-time plot(s) for

T
each altitude run. Having this information, data reduction may be

undertaken. Equation (13) may be manipulated for propelier-driven

aircraft analysis by using:

THP, = [(W/9)(dV /dt){V;)/550] (14)

29
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THP oy (1w) = (THPex)(0)1/2/(WT/NS)3/2 (15)
dh/dt = THPG 1,y (550)(60)/kg (16)

By plotting rate-of-climb versus airspeed as in the sawtooth climb

wethod (see Figure 6), we may obtain both maximum rate of climb and

o S ST ST

climb speeds. A synopsis of the test procedure and the equation

0 involved are presented on Figure 1l.

! The level acceleration flight test procedure is a nonequilibrium

f test point method capitalizing on the elimination of the constant
height term of Equation (10) to determine specific excess power, (PS).
This method, like the sawtooth climb procedure, takes into account
changes of thrust made available from the powerplant but assumes that
the propeller is operating at an optimum efficiency. This assumption
is not as fundamentally acceptable as it is in the climb technique
due to the variance in airspeed (and therefore propeller efficiency)
as the aircraft accelerates. While it would be convenient to assume
that the propeller is pitched to acquire the optimum efficiency, in
reality only a close approximation can be achieved by the twisting
mechanism.

The procedure consists of:

1) At the test altitude of interest, and as close to V as

possible, full throttle is applied to produce the maximum acléferation
along the longitudinal axis.

2) While holding level flight through constant retrimming of the
aircraft, the data consisting of hpi’ Vi’ t, OATi, RPM, MAP, and fuel
are recorded continuously.
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3) The procedures are repeated at other altitudes, as in the
climb technique, to fully define performance boundaries.
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At Ymin sirspeed record Qutside Air Tempereture end Aircrsft
rieight

Arter full throltle inttiation record elapsad lime st 2gch 5-10
yrol indicsled airspeed increase. Record times fram mimimum
stable {light speed to marirnum level flight speed. Facord
Eriyine RPM and Menifold Pressure st run conclusion

Repeot Level Acceleralion Runs al eech siiitude in opposite
direciions

DATA INTERPRETATION

Plat TAS yersus Time and obtain slopes. Calculeie Thrust
Horsepower in Excess [THPex) and Thrust Horsepowar in
Ercess weight correcied [THPek we) using the follawing
squaticns:

THPrC = [Wt/glldY/dt)ITAS]ASS5Q

THPxc e = [THPxc)/[Wt/Wsl 32

DENSITY ALTITUDE DETERMINATION

Calculate density retio for each sltitude and determine
density eltitude of each test run using the Tollovwing
equations:
© =Ti/Tsal = QAT + 459.7)¢/518.7
where: QAT is in deqrees ' 5187 i3 Tssl in degreesR
-8
S = Pt/Pasl= (10 - 6.87535K 10 (Hac)!

S :Ptymel= /O

5.2561

RATE OF CLIMB DETERMINATION

RFlot corrected Thrust Harsepower in Excess versus
Calibrated Airapeed and determine maximum THPer we far
egch altitude and calculeie the marimum rate of climb at
each density altitude using the {ollowing equations:

dh/dt = [THPexr we)[SS0)[60)/ e

where: gh/dt is rate of climb in feet/minute

Figure 11. Data Reduction Procedure as Used by the Level

Acceleration Method
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As with the sawtooth climb procedure, the level acceleration method
attempts to measure an aircraft's total energy increase (in this case
kinetic energy) in an effort to demonstrate the aircraft's performance.
Although good pilot technique and automated data acquisition are

required to gather acceptable data, the method's shortened flight times

o rTyvry

and increased data are impressive. Pilot technique is pertinent

because the test method demands the aircraft be flown from near stall
to a maximum level airspeed while maintaining a single altitude. This
minimum to maximum condition is attained by the aviator introducing a liﬁ
full throttle setting at near the stall. Recorded data runs are 55;3
required since the rotation of the aircraft from the near stall con- .
dition to a level attitude changes flight parameters rapidly. The
increase in power and resulting aircraft rotation additionally inhibits
a precise, constant altitude to be maintained. This change in altitude

greatly influences the acceleration.




VI. TEST PROCEDURES

The data used to compare the sawtooth climbs to level accelera-
tion runs were acquired from the Davidson and Hodgson 1958 Cessna
310 report {16] and the August 1985 flight test data from The
University of Tennessee Space Institute's (UTSI's) Cessna 310
(=N22UT) aircraft. Data comparisons were initially performed between
the 1985 UTSI sawtooth climb and level acceleration runs. The older
USAF data from Reference [16] were included following complete reduc-
tion and expansion of the newer data. It was not used as a quideline.

The Cessna is a twin-engine, all metal, low-wing monoplane with
fully retractable tricycle landing gear. It is capable of comfortably
seating two crew members (dual controls) and two passengers. The air-
craft is powered by two six-cylinder, horizontally-opposed, air- )
cooled, normally-aspirated Continental 0-470-M engines rates at 240
horsepower each at sea level. Each engine supports a two-bladed
Hartzell HC 82XF-2/8433-4 constant-speed, full-feathering propeller.

A full listing of the aircraft's specifications is presented in
Figure 12.

The UTSI flight test plan and corresponding analysis were desianed
to coincide as closely as possible with the velocity, altitude, and
weiaght variables of the 1958 Air Force report. Although sawtooth and
level acceleration methods can be performed with any landing gear and
flap configurations, this study examined only the applicability of the
energy technique in a clean configuration. The entire UTSI flight

program consisted of eleven flights and was designed to acquire the
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Design information and general dimensions of the airplane, taken
from Cessna specification Number 15015, are as follows:

Airplane:

Length 26.98 ft

Height 10.46 ft

Span 35.77 ft

lieight - max. take off 4830 1b
ing Group:

Area (Total) 175 sq ft

Type Full cantilever
Chord:

at root 67.5 in.

at construction tip 46.18 in.

mean aerodynamic 61.0 in.
Airfoil (centerline) NACA 23018
Airfoil (tip) NACA 23009
Airfoil (nacelle) NACA 23015
Incidence (root) + 2 deg 30 min

Incidence (tip) - 0 deg 30 min
Dihedral 5 deg
Taper Ratio 1.517
Aspect Ratio 7.3
Flap:
type Split
area 22.9 sq ft
angular travel 45 deg down
Aileron:
Area (total) 13.4 sq ft
Aileron tab area 0.55 sq ft
Span 69 in.
Movement (aileron) 20 deg up,
20 deg down
Movement (aileron 20 deg up,
tab) 20 deg down
Epennage Group:
Stabilizer
span 170.0 ft
area (to elevator 32.15 sg ft
hinge)
chord MAC 41.1 in.

Empennage Group - continued:

airfoil (root) NACA 0009
airfoil (tip) NACA 0006
incidence, normal -1 deg 45
min

dihedral 0 deg
aspect ratio 5.2
Elevator:

area (totatl) 22.10 so ft
Span 7.0 ft
trim :ab area 1.25 sq ft

movement (elevator) 25 deg up,
15 deg down

movement (trim tab) 20 deg up,
28 deg down

\ertical Tail:

Area (total) 25.86 sq ft
Fin area (includ- 14.08 sq ft
ing dorsal)

Rudder area(total) 11.78 sq ft

Trim area 0.66 sq ft
Chord MAC 50.7 in.
Airfoil (root) MACA 0009
Airfoil (tip) NACA 0006
Aspect Ratio 1.55
Movement(rudder) 25 deg each
side of
neutral
Movement (rudder 26 deg left,
tab) 20 deg right

Fuel Capacity(total) 132-1/4

Fuel Capacity(UTSI) 160

Aircraft {Usable)

0il1 Capacity (each 3 gallon
engine)

Figure 12. Cessna 310 General Aircraft Specifications
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most reliable data with the limited funds available for testing.

The test program studied and mapped the aircraft performance envel-
ope at 3000, 5000, 8000, and 10,000 feet altitudes for both sawtooth
climb and level acceleration methods. The sawtooth climb procedure
included climbs at 85, 95, 105, 115, and 125 knots indicated air-
speeds.

Both 1958 and 1985 sawtooth climb data were obtained using a best
power mixture setting. To obtain smooth air, all flights were con-
ducted during the early morning hours. To keep from violating reduc-
tion procedure assumptions (that the aircraft does not drastically
change its weight during the acquisition of data) flights were held
to a maximum of one hour. This time 1imit was deemed necessary to
keep the test weight within three percent of the maximum gross weight.
(The Cessna 310 aircraft's fuel consumptidn rate was previously
determined to be approximately 24 gallons per hour.) The aircraft was
additionally ballasted to produce a maximum weight, maximum forward
center of gravity condition. The aircraft loading lessened the effects
of inaccuracies in the data extrapolation procedures. The forward
center of gravity provided an end of the scale standardization from
which to base trim drag effects and is known to be most critical for
performance testing. The UTSI level acceleration data were recorded
on video tape to acquire the changing parameters that affect perfor-
mance measurement. The sawtooth climb data were recorded manually
due to the Tong (thirty seconds) data acquisition rate. The total

UTSI flight program of eleven flights dedicated 465.5 minutes to saw-

tooth climbs and 71.8 minutes for level acceleration runs.
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VII. FLIGHT TEST SIMPLIFICATIONS AND ERROR
ANALYSIS PROCEDURES

To fully comprehend the possible causes of data errors and the
reasoning that prompted the suggestion for further testing, a thorough
description of the simplifications and assumptions that were used dur-
ing the flight test program and thesis analysis should be presented.

0f all the parameters that were present during the flight test
analysis five variables were believed the most influential to the out-
come. These factors in order of believed influence are: aircraft
instrumentation and resulting data acquisition, human curve fairing
interpretation, actual powerplant horsepower delivery, actual test air-
craft gross weight, and pilot technique. It is believed that a dis-
tinct breakdown of these parameters would benefit other students and

are presented below:

1. Aircraft instrumentation and the resuliting data acquisition process.

The UTSI Cessna 310 aircraft is equipped with analog instruments
that use either pressures or voltages to measure the performance
parameters. Since the majority of the important instruments,
(i.e., altimeter, airspeed indicator, and manifold pressure), use
pressure variances to determine their readings, it shall be the
focus of this section. Whenever dynamic pressure or static pres-
sure are being measured there will undoubtedly be errors from
hose lines, internal frictions, and deteriorating calibrations.
Because of the instrumentation situation the reading and record-
ing of data were subject to the limitations of the gauge/dial
increments, fluctuations from flight vibrations, device frictions
and possible "stick points”. The precision believed attained for
this thesis on instrument interpretation was the following: mani-
fold pressure, RPM, and airspeed meters were distinguishable to
two-tenths of each respective unit (i.e., one inch of mercury,
one hundred revolutions per minute, and two knots indicated air-
speed); the altimeter was distinguishable to ten feet increments
over the entire scale; and the air temperature probe to a half of
a degree Celsius. This distinguishability is with respect to the
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A

s

front seat observer and are at least doubled for the rear seat ‘¥
(where the video camera was mounted). These inaccuracies com- !s
pound the inherent error in the measurement process. X

i. N

-

2. Human curve fairing or interpretation. K

This condition is in reality an offshoot of the previous problem
and its simplification and assumptions. This problem occurs
because poor instrumentation and/or data recording could create
more highly scattered data points. This increased scatter will
demand more subjectively in data fairing and could widen the dis-
agreement of final results. This widening of data scatter could
occur because the performance plots are constructed using pre-
vious data interpretations (slopes of previous data plots). The
use of statistical methods in data reduction would help deline-
ate the nature of this widened disagreement.

3. Actual powerplant horsepower delivery.

As stated in Chapter III, there are basically three approaches to
determining the power which an aircraft engine is producing.
During this study the method that was used was the engine power
chart procedure, chosen because of its ease of use and the fact
that the UTSI test organization does not possess engine cali-
bration equipment. These charts are constructed by the engine
manufacturers from both actual engine testing and thoery. The
charts assume that internal fuel flows to each cylinder are equal
and that other variables such as uneven engine cooling and lubri-
cation tendencies are not encountered. In practice, this is not
always true, and so these simplifications effect the accuracy of
the horsepower available to the propeller. This method is reli-
able and would only be a factor if engine performance changed
from run to run. However, if an engine is not given all the
power that is expected, a noncorrelation in data during a test
analysis could result.

4. Actual test aircraft gross weight. E:ﬁ

To fully understand this simplification it is important that the

influence that weight plays in aircraft performance be understood. ~
Since this parameter is addressed within another chapter, it would s
be advisable to explain how UTSI calculates aircraft total test )

gross weight. Although several methods are available to account - .1
for the varying fuel weight (e.g., fuel metering) the UTSI pro- !E%
cedure is to fill the gas tanks at takeoff and to refill the tanks 3
upon test completion. A linear burnoff (i.e., weight reduction) ::$

is then assumed. Although this is a common method and usually

gives acceptable results, it should be stated that the aircraft
is not flown at a steady power setting, and this assumption is a
simplification. It should be additionally noted that during the
UTSI flicht program different individuals filled the tanks. On
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one occasion the fuel usage was unusually high suggesting a dis-
crepancy in "top-off" procedures among the attendants. At a
weight of six pounds per gallon of aviation gasoline, with the
Cessna 310 using an average of approximately one-half gallon of
fuel every minute, it is possible to be in total error as much as
ten pounds per total weight of 4830 pounds. This will slightiy
affect data accuracy.

5. Pilot technique.

As previously stated, the sawtooth climb and level acceleration
flight techniques attempt to increase the aircraft's total energy
by increasing its potential or kinetic energy. Unfortunately, the
optimum isolated increase in either altitude or airspeed can be
affected by the pilot's flying skill. As inferred earlier, a
small tradeoff of height for speed (and vice versa) can misrepre-
sent an actual performance measurement. It is therefore important R
that a pilot be able to fly a constant speed climb or a constant NN
altitude level acceleration run. k.

The above mentioned conditions are important factors that should be

understood by all students who attempt to undertake a flight test j?iF

analysis. ATlthough none of these parameters introduce large errors in
themselves, the sum of their influence could create relatively sub-
stantial errors. These errors lessen data confidence. Following a
discussion of terms and definitions, the examination of error analysis
is deemed pertinent. As stated by Baird [22], the nature of measure-
ment, in our case flight data parameters, is a procedure which is com-
plicated by the individuality of every experimenter. The exposition
of any result can never be termed exact but should be concluded with a
restatement of an experimenter's definitions and believed attained
precision. This is in direct agreement with Baird's definition that a
measurement is "a statement of the results of a human operation of
observation." Only after a concerted effort to understand and reduce

errors, or non-exactness of observations, should the methods that
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estimate the uncertainty of results be implemented and analvzed [23].
Sources of measurement perturbation are categorized into basically two
types of errors: random and systematic. Random errors are said to be
present when repeated measurements of the same guantity give rise to
differing values. Systematic errors are in reference to a perturbation
which equally influences all measurements of a particular quantity.
While these terms are easily understood, in practice the labeling and
reduction of a perturbation is difficult to perform. That is, an error
which is systematic under one system of measurement may become appar-
ently random if the mode of interpretation is changed. Baird's factors

of limited precision and categorization include:

a) Instrument calibration - systematic
b) Instrument reproducibility - random
c) Observer skill - random

d) Miscellaneous errors such as voltage fluctuations, vibration
of instrument supports, etc. - random

e) Fineness of scale division - systematic

As can be drawn from the previous listing of uncertainties, the realis-
tic assessment of errors and their consequences can be monumental. The
approéch used to examine and quantify the possible errors that have

materialized during an experiment include the employment of theoretical
distribution curves (e.g., the Gaussian or normal distribution), which
rely on a statistical analysis to determine the data variance, stan-

dard deviation, and probable errors. These errors are estimated using

laws (e.g., chi-square) derived by statisticians from probability
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theory that have been thoroughly examined and mathematically modeled.
The use of these approaches infer that repeated measurements have been
taken and placed within a histogram to demonstrate fluctuations of
data. The repeated readings do not necessarily improve the accuracy
of the measurement but rather make known an estimate of the precision
attained. Ideally, all experimental work should be undertaken only
after an understanding of the "error generators" has been solidified.
Only when an understanding is accomplished may the researcher weigh,
average or reject readings.

An understanding of the problem may be attained from an example.

Suppose that a measured flight quantity Z was considered to be a func-

tion of total aircraft 1ift coefficient CL' That is:

1= f(CL)

Then an estimate of the error:
- o
YA [aZ/acL]scL i
requires knowledge of the partial derivatives, 3Z/3C . The error in ¢ Eﬁf,
can be estimated on the basis of the small angle approximation and the -

1Y
assumption of constant aircraft weight. These assumptions imply that ﬁﬁ:%
2

L = W = constant, therefore C ~ V°° if V is the flight path velocity.

Continuing the derivation yields:

v-::w.wz-’
i " Lt .
Xt T

‘ e

- 14
5C ~ -2v'3r5v
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An estimate can then be made of &V from the airspeed calibration error
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3V/V was approximately 1.6 knots/100 knots on the Cessna 310 (22UT)
aircraft during the test program. Of course the parameter of interest
(e.g., Z) could be a function of several variables and may not be com-

pletely definable without sophisticated instrumentation. Consequéntly,

A ST . N Y RV, Ty ST R .

it is not possible to precisely define the data scatter band which is
believed more prevalent at the lower altitude test runs. Suffice it to
say that the errors which present themselves during any measurement are

important and difficult to define, and that an error analysis of the

N TR

flight vehicles owned by the Institute would be a wise investment for

5 further performance or stability tests.
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IX. RESULTS

Sawtooth-climb and level acceleration data were collected during
the month of August 1985 at the UTSI Flight Test Engineering Facility

at the Tullahoma Municipal Airport. After correcting for instrument

and position errors using accepted procedures, the Cessna 310 cali-
brated data spreadsheets were constructed.

Sawtooth data were reduced and plotted with the resulting data
displayed as Figures 13-17. As became apparent throughout the entire
sawtooth/acceleration analysis, a judicious approach was required when
interpreting, weighing or eliminating data points during curve "fair-
ing". The first plots within the sawtooth climb reduction procedure
(Figures 13 through 16) displaying Pressure Altitude versus Elapsed
Time initiated the requirement to account for the influence of outside
variables (in this case wind and changes in velocity). The figures
which were used to determine the observed rate of climb (i.e., line

slope), demonstrated measured changes in performance when altitude was

traded for velocity. The slopes were determined using both manual

curve fairing and a numerical linear regression technique. It was
found that as much as a ten percent variance in slope determination
could be produced with the Tower altitudes most susceptible to slope
fluctuations. It was also of consequence that a variance in linearity
could be perceived between the data acquired from the two pilots,
reemphasizing the importance of precise flight techniques. As demon-
strated in Appendix A, these results were reduced and expanded to

account for equation simplifications. As shown in Figure 17, the Rate
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of Climb versus Calibrated Airspeed was plotted to enable the maximum
climb rate versus airspeed for each altitude to be available for com-
parison with level acceleration data. Of particular interest in

Figure 17 is that while the curve peaks are at expected airspeeds, the

RS 7w gy M AP AR A R R AR AR

»

two lower altitude bands (the upper two curves) show that 95 knot cali-

r
s

brated airspeed data peaked somewhat higher than expected. Additional

scrutiny of raw indicated flight data showed an incremental tradeoff

v
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of kinetic energy for potential energy, i.e., the aircraft lost air-

o
speed and exhibited over-optimistic climb performance. This occur- &ﬁ
L":,.
rence is important in that it increased the rate of climb by as much EE

as 100 feet per minute. As will be shown, this increase widened the
disagreement between the sawtooth climbs and the Tevel acceleration

data. i.j

The level acceleration data, as with the sawtooth climb data, ;kﬁ

were also pivotal on raw data analysis, and it became apparent that
plot fairing and interpretation was crucial to producing reasonable ﬁ
results. The initial graphs of True Velocity versus Elapsed Time

were highly susceptible to a damped harmonic fluctuation caused by

altitude changes as the aircraft was rotated from its near stall con- ‘:
dition. This change from a minimum speed/high pitch altitude to a iﬁ;
maximum speed/level attitude complicated the fairing of the line ;;;
slopes. As shown in Figures 18-25 the acceleration term had a wide ’ii
data scatter band and, as inferred within the development of the EE
governing eguations, is the driving parameter in constructing the ;5
climb capabilities of an aircraft using a level acceleration technique. Eé
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57
As shown in Appendix B the calibrated data were manipulated to pro-
vide the Thrust Horsepower in excess from the flight program. As g;
plotted in Figure 26 the corrected power versus calibrated airspeed E?
gave the first indication of the climb performance as provided by }:

the level acceleration method. Of paramount concern within this

plot is the substantial scatter of the data, particularly at the

Tower two altitudes (the upper two curves). This was directly attri-
butable to the higher fluctuations of the lower altitude dV/dt plots.
As in the sawtooth procedure, however, this figure provided best rate-
of-climb speeds which were reasonable. The maximum weight-corrected
Thrust Horsepower in excess from these figures was then manipulated

to provide the Density Altitude-versus-Rate of Climb plot of Figure
27. Although a linear regression analysis was used on this figure,

it should be understood that a different fairing of the data of

Figure 26 would change the climb performance of the aircraft (i.e., gi
the "domino" effect). The resulting comparison of the sawtooth §;
climb to the level acceleration methods is presented on Figure 28. !Ei
Additionally placed on this plot are the corrected 1958 Air Force Eiﬁ
flight test data of Reference [16]. Of greatest concern is the lack %g

of correlation of the level acceleration data to either sawtooth

climb results. It is felt, however, that the time savings of approxi-

mately seven-to-one to obtain virtually the same best rate-of-climb
speeds is an important fact that should be well received within the
flight test community. What was quite surprising was the correlation

between the two sawtocth climb analyses. It should be stated,
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however, that the twenty-year difference in aircraft ages between
the two separate studies caused questioning of the significance
of the two climb tests. As inferred within the preceding chapter it

is also believed that the test simplifications imposed due to finan-

d

b

’l.
N
N
n
N
i
N

cial and time limitations had the effect of reducing correlation
between the energy methods.

Following a detailed examination, it may be stated that the
acceleration test is a less accurate procedure for determining the
excess power in low thrust-to-weight aircraft due to the following
considerations:

1. The sawtooth climb technique eliminates the dV/dt term from
the energy equation and measures dh/dt by climbing at constant
velocity and constant (full) power engine setting. The drag
of the aircraft will then be essentially constant if the
altitude change is not too large (i.e., if the Reynolds number
change, due to altitude induced kinematic viscosity changes,
is small), since the velocity is constant. Also, the drag
component due to propeller slipstream will be constant as the
engine power and aircraft velocity are constant.

2. The acceleration technique measures dV/dt directly at con-
stant altitude. This is accomplished by increasing thrust
horsepower and propelling the aircraft to greater speeds.
However, the rapid increase in velocity weakens earlier
suppositions, most notably the assumption that propeller
efficiency is always at the optimum value. Additionally, the
Targe angle variation(s) of the aircraft with respect to the
flight path introduces complications (C_ and drag changes)
that may not be discernible with less sophisticated equipment.
The increase in speed also changes the aircraft C_, and there-
fore, the induced drag is not constant. As V changes, the
Reynolds number will also change (creating a non-constant Cp).
Lastly, the propeller slipstream is significantly affected
by the pitch altitude which implies changes in the slipstream
drag. It is believed these influences of increased airspeed
and altitude changes make less acceptable the level accelera-
tion flight test method on low thrust-to-weight vehicles.

As discussed previously, it is not possible to completely quantify

the errors inherent in the two techniques.
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X. CONCLUSIONS AND RECOMMENDATIONS

This thesis has presented an experimental analysis which
assesses the accuracy of applying the energy technique to propeller-

driven airplanes. The following conclusions were derived from this

study. 5
=
=

Conclusions ]

1) The two methods did not correlate well in the determination ij

of rate of climb. Attributable factors include the flight test L

simplifications delineated in conclusions 2 and 3. Unaccountable ﬁi

factors include errors from data measurement procedures and incre- Ea
o
mental losses during the transfer of energy components. ]

2) Level acceleration data showed large fluctuations in dv/dt
during the level acceleration runs. These fluctuations appeared to

be caused by:

a. Inadequate instrumentation and ineffective data
recording.

b. Failure to account for altitude deviations during
the level acceleration runs, and

c. Other factors such as propeller efficiency.

3) This study showed that good pilot technique, and smooth,
clear, stable air is essential for performing flight tests of this
nature. Unnecessary control deflections and outside energy inputs
lessen reliability of performance demonstrations.

4) Confidence in some climb data is Tow due to an insufficient
sample size. Data were collected and averaged from two, opposite-

62
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direction flights at each airspeed and altitude. The impact of a
single run was therefore substantial.

5) In spite of the problems enumerated in previous conclusions,
the level acceleration technique reduces the flight test time required
to determine climb speeds. A time savings of seven-to-one was noted
in the comparison of the level acceleration method to the sawtooth
climb method. Additionally, the level acceleration method provided
a greater amount of performance data.

6) The level acceleration method did show good agreement with
the sawtooth climb method when used to determine best rate of climb
and best angle of climb speeds. Interpreted data presented a five
percent variance in these values.

7) The two methods show better data correlations as the test
altitudes are increased. The rate of climb variance at 3000 feet
was approximately 25 percent while the variance at 10,000 feet was

approximately 5 percent.

Recommendations

Suggestions for improved data correlation include the following:

1) Prior to any future flight tests a thorough error analysis
is deemed necessary. The determination of measurement errors for
each instrument would enable a reduction of unaccountable data dis-
agreement.

2) 1t is suggested that for research purposes a more dedicated
instrument panel be constructed for level acceleration runs. To help

alleviate the large fluctuations in dV/dt during level accelerations
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and pin down the actual Thrust Horsepower that is usable for per-
formance, an open or closed loop accelerometer is suggested.

3) I* is suggested that all flights be performed at davbreak
and every attempt be made to avoid humid and turbulent weather con-
ditions. It is also suggested that one well-experienced pilot fly
the entire flight test program.

4) It is suggested thac future test programs be undertaken to

include more data runs.
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APPENDIX A (continued)
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APPENDIX B (concluded)
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VITA

Douglas Bruce Youngblood was born in Philadelphia, Penn§y1vania
on March 27, 1958. He attended elementary schools in that city and
graduated from Central High School in June 1976 with an honorary
Bachelor of Arts Degree. The following year he entered Embry-Riddle
Aeronautical University in Florida with a full Air Force scholarship.
In April 1981 he graduated with Distinguished Military Honors, received
a Bachelor of Science degree in Aeronautical Engineering, and was
commissioned as a Second Lieutenant in the United States Air Force.

After a three year tour of duty at Wright-Patterson Air Force Base
in Dayton, Chio as a research and development officer in Wind Tunnel
and Computational Research, he was selected to enter The University of
Tennessee Space Institute, Tullahoma, for full-time graduate study.
Upon complietion of studies in December 1985, Captain Youngblood
received a Master of Science degree in Aerospace Engineering and

returned to active duty as a military flight test engineer.
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