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Abstract

A classification scheme is presented for traveling wave solutions of

reaction diffusion systems of the form xt = x=t + VV(x) where t, a c P,

x C An and V: * -. R The important assumptions on V are that

lim V(x) = -" that the set (x IV(x) > - Q) is convex for Q sufficiently

large, that V has a finite number of critical points, and that if MI and

M2 are critical points of V then V(M) ' V(M 2).

The primary tools used are the Conley index and connection matrix. The

classifications are given via paths in graphs whose vertices and edges arc

connection matrices. These results are then used to prove the existence of an

infinite number of traveling wave solutions for a specific example.

. .-
%
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Introduction

Many chemical and biological systems have been modeled by systems of

reaction-diffusion equations. A simple system of this type is

XT =Xa + VV(x) (0.1)

where 04T C P, x e An  and V: n -- R A typical problem is to prove the

existence of a special type of solution called a traveling wave. A traveling

wave solution to (0.1) is a non constant bounded solution of the form x(XT)

= x(t) where t = a + or. This solution must satisfy the non-linear system of

O.D.E.'s

Xi= y (0.2)

Yi 0y- DiV(x) dt I.

with boundary conditions that 1 im (x(t),y(t)) = (Mi90) and lim (x(t),y(t)) =
t-** --= "o

(Mj,O) where M. and M. are critical points of the potential function V.

Such a solution is called an Mj M. connection and is said to occur at the

wave speed G. This paper presents a method for classifying the possible

traveling wave solutions to (0.1) which relies only on information about the

critical points of V. The necessary assumptions on V are given in Section

2.1.

The primary tools used for the classification are the Conley index and

connection matrix. The Conley index, h(.), associates to each critical point

U..]
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of V a pointed k-sphere denoted Ek. We call a connection M i  M. a

degree I connection if h(M i) _ Ek and h(Mj) - Ek+I. The connection

matrix gives information about degree -1 connections and, in some sense, is

stable under perturbation. However, the traveling wave solutions of (0.1)

which are of primary interest are degree 0 connections and hence correspond

to non-transverse heteroclinic solutions to (0.2). As such they will in general

only occur for a discrete set of 0 values. What will be shown is that the

connection matrix changes precisely at the wave speeds for which degree 0

connections occur. This in turn can be used to determine the possible degree

0 and degree -1 connections at various wave speeds for a fixed potential

function V.

This paper is divided into four sections. The first, consists of a brief

review of the Conley index and a short discussion of the connection matrix.

Sources for some of the material in 1.1 are Conley [l], Conley-Zehnder [21 and

Salamon [8]. For a discussion of the index filtration and connection matrix

the reader is refered to Franzosa [3), [4]. The second section presents the

simple analytic results for (0.2) and two other related systems which will be

studied. In addition, the results are translated into the language of Conley.

The third section applies the connection matrix techniques to the three systems

of interest and integrates these various results to develop the classification

scheme. Also, the question of how to interpret the results is discussed. The

classification is given in terms of elementary transition graphs. This was 02-
.".

motivated by the work of Terman [9] who studied (0.1) where x e R His
1=

results are more geometrical in nature and limited to the I-dimensional

problem but many of them can be reproduced via the elementary transition

.-.. ..... ...... ...-.. ,.. . - - . . . . ,, .. ,, -. . ... . . .,. . ....... ... ... .. ... . ... . . . .



graphs. The fourth and final part consists of two examples. In 4.1, several

elementary transition graphs are constructed. In 4.2, one of these graphs is

used to conclude the existence of an infinite number of wave speeds for

which certain degree 0 connections occur.

This problem was suggested to me by Charles Conley and many of the

results were motivated by many enjoyable conversations with him. I would

also like to thank Jim Reineck and Liz Mansfield for sharing their ideas with

me.

,-.,

.o'.
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1.1 Conley Index

Let the continuous map orA x A~ -A denoted by O(z,t) z zt be a

f low, i.e. z-0O z and (z.t).s = z*(t+s) for all z 6E W~ s,t e Given

A C An, its w and w0 limit sets are given by

w(A) =r) ci (A [t,-))

O(A) r 0 cl (A*-,I

t).o

where cl(X) is the closure of the set X.

N Definition J1 A Partially ordered set is a pair (P,>) consisting of a set, P,

7. along with a partial order relation, >, satisfying:

1) ni > ni never holds for ni e P

2) If l> fl and fl'> W then n > nl'

In the applications it is often clear what order relation is being assumed

and hence one often writes P instead of (P,>).

An interval in P is a subset, I C P, for which fle' I and n > nI'

> nl implies that nl' e I. An attracting interval in P is an interval, I,

such that l elI and nl > 11 implies nI' el1. Now let l and J be

disjoint intervals, then (IJ) is an adiacenL.Rail of intervals if:

1) J U I is an interval.

2) Fl il and I'eJ implies 17 171l.



Definition 1.2. A set S C W is invariant if S*JA S. S is an

isolated invariant set if there exists a compact neighborhood, N, of S such

that S is the maximal invariant set in N. In this case, N is called an1

isolating neighborhood of S.

Definitio 2.. Lt S n be compact invariant sets. C(S1,S2)

(zIw*(z) C S, and g)C S2 )- C(S 1,S2) is called the connecting set from

S1to 2

Def inition 1.4. Let S be a compact isolated invariant set. A Morse

decomooRsitio of S is a collection, M = (M(fl nI 1e (IP~, o f compact

invariant sets in S. Furthermore, the sets M(fl) and the partial order are

related in the following manner. Let z c S\( u M(fl)). Then there exists
ne P

flJI' i P with nl' > nl such that z c C(M(fl),M(rl)). The individual sets,

M(l1), are called Morseset.

It is important to recognize that given S there may be different

collections (M(l1)} which give rise to a Morse decomposition. In addition,

each collection may have several admissable orders. For example, let S be

a s i n Figure 1 . The possible collections of Morse sets are

Xf - (M(a),M(b),M(c)), M2 =(M(a) U M(b) U C(M(a),M(b)), M(c))

M3 - (M(a) U M(c) U C(M(a),M(c)), M(b)) or M4 = (S).

Given M1, admissable orderings for P =(a,b,c) are a > b > c; a > c > b

or a > b, a > c. 5
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INSERT FIGURE 1.

Never-the-less, given the collection of Morse sets, there is a minimal

ordering which is admissable. This is called flow defined partial order, >F,

and is obtained by setting n > l' if and only if there exists a sequence of

distinct elements of P, n' = noo", 1n = n such that C(M(rlk),M(-lkl)) ; 0 for

all k = 1,..., n.

Let I be an interval in P. Define
, -

M(I) (zlwKz) c M(n), 0(z) c M(') where nn' e 1)

It is easily checked that M(1) is an isolated invariant set.

Definition 1.5. Let N be compact. A subset K C N is positively

invariant in N if z c K, t 0, and z-[0,t] C N implies z-t c K.

Definition 1.6. Let S be an isolated invariant set. A pair (N,N o) of

compact sets is an index pair for S if:

1) cl(N1 \No) is an isolating neighborhood of S

2) N o is positively invariant in N.

3) If z e N1  and z-O,) C Np then there exists a t > 0 with

z.[0,E] C N1 and z-t e No.

Given an index pair, (N1,No), No  is called the exit set and (3) implics that

any orbit which leaves N1  in positive time has to go through N0 .

Definition 1.7. Let M - (M(fl)IflEP) be a Morse decomposition of the

-" -

.. . . . . . . . . . . . . . . . . . . . . . ... .~... . .

r' -- •.. . . . ."-. . . . .
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isolated invarient set S. An index-filtration for M is a collection of

compact sets, N = (N(1)}, indexed by the set of attracting intervals and

satisfying:

1) If I is an attracting interval then (N(1),N(o)) is an index pair for

M(I).

2) If I and 12 are attracting intervals then N(1 1) r) N(1 2 ) = N(1 1 (l12 )

and N(1 1) U N(1 2 ) - N(IIU2).

Franzosa [3] showed that an index filtration for M can always be

constructed. Furthermore, he showed that if (1,J) are an adjacent pair such

that IUJ is an attracting interval then (N(IUJ), N(I)) is an index pair for

M(J).

Let (N 1 No) be a compact pair and define an equivalence relation, ~,

on N1  by

z -z if z e N 1  and z- z if z,z' N0 .

then N(/N o a {zlzcN,\No) U (NO). If p: N, -. N1 /N o  is the obvious

projection map then NI/N o  can be topologized by letting U C NI/N o  be

open if and only if p'(U) is open in N V

Definition 1.8. Let S be an isolated invarient set with index pair (N1 ,NO).

The Conlev index, h(S), is the homotopy type of (N 1 /N o, NO).

Conley [1] proves that this index is well defined. For purposes of computation

• -.
*** ~ * . * .. ... . .- * . . . . . .-... °



it is much easier to use a homology or co-homology theory rather than a

homotopy theory. Using Cech co-homology one has that

H*(h(S)) Z H*(N 1, NO).

where (N 1, NO) is any index pair for S. Using this theory one could define

a degree 1 connection matrix which is a co-boundary operator. For the

author, however, singular homology theory is more intuitive and leads to an

easier geometric understanding of the results. In order to have H*(h(S))

H*(N 1 , NO) for singular homology it is necessary to restrict the set of possible

index pairs such that No  is an absolute neighborhood retract of N1  (See

Munkres [5]).

Definition 1.9. An index pair is regular if the function T NJ -0M

defined by

[sZ) up (t > Olz.[O,tJ C N1\N0 ) z cE 1N

is continuous. A regular index filtration is an index filtration such that for

every attrating interval, I, (N(I),N(0)) is a regular index pair.

If (N1 ,No) is a regular index pair for S then H*(h(S)) H*(N 1 ,No).

Let I be an interval in P. I will always denoted an interval such
A A

that (1,I) is an adjacent pair and I U I is an attracting interval in P. In
A A

general I is not unique, however, given I, I always exists. The following

.,.. ..

l ni , ,, i
' ''

.-n - - - - --u l - --
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lemma will be needed in the proof of theorem 1.11. P

Lemma 1.10. (Salamon 181) Let (N1,N0 ) be an index pair for S. Then thereL

exists a continuous Lyapanov function g :N, - [0,1] such that:

1) g(z) = 1 if f z-[0,-) C N1  and t~z) C S.

2) g(z) =0 if f ZENo.

3) if t > 0, 0 <g(z) < 1, and z.[O,t] C N1  then g(z t) < g(z).

Furthermore, if e > 0 and NE(NO) E(z e N~lg(z) e ) then (Nl,N,) is a

regular index pair for S.

Proposition 1.1 1. There exists a regular index filtration such that given 1, an
A A

interval in P, (N(I U 1), N(I)) is a regular index pair for M(l).

Proof. Let N 0= N(I)II an attracting interval in P) be an index

f iltration. Using lemma 1.10, a regular index filtration N =(N(I) I an

attracting interval in P) will be constructed. Let K C P. Def ine B(K)
k-i k

{n eK if n' cKthen n n,). Let L, B(P), Lk B(P\ uLj),Xk U Li

and Tk P\r Notice that Tk is an interval in P and hence

(N(P),N(Zk)) is an index pair for M(Tk).

By definition of an index filtration, (N(P), N(0)) is an index pair. By

lemma 1.10, (N(P), NE(O)) is a regular index pair for S. Similarly,

(N(P),NE(Zl)) is a regular index pair for M(T,). Let N(O) -N(().

Let nfc EL. Define N(nI) =(z c NE(Zil t 0, z-t c N(nl)) u NE(P).

Notice that N(n1) r) N(fl') -N(O) if n1 n f. Furthermore N(nl) is

compact.
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Let To: R(P) [0,] be as in definition 1.9 for the index pair
A

. (R(P),N(0)). Let I C L1  then N(1) = U N(n). Given I, 1 C L1  define
A IE I

. N(I U 1)" [0,- ] by ..

A A

sup (t > Olz.[O,tJ N(I U I)\N(I) if z c N(I U I)\N(I)
C(Z) A

0 if z e N(I)

A A

Showing that a is continuous gives that (N(I U I'), N(I)) is a regular index

pair. There are three cases to consider.

A A A A A

Case 1. (zo e N(I U I)\N(1)). N(I U I)\N(I) is open in N(I U I), hence there
A A

exists an open set U, such that z c U C N(I U I)\N(I). Now let z e U

then z c N(fl) where 11 c I. The orbit of z passes through N(Q)

without passing through N(I). Thus olu= Tol u . Thus a is continuous

at z0"

A A A

Case 2. (zo c N(I)\N(0)). N(I) n N(I) = N(I nl I) = N(0). We can choose U

open, zo e U so that U r) N(I) C N(0). To see this, assume not, i.e. assume

there exists a sequence (z,), such that zn  N(I)\N(0) and zn zo, then
A 

A

zo E cl(N(I)\N(o)) hence zo E N(0). Thus U C N(I). If U c N(I) then
A A

olu = Tol U . But N(I) is a neighborhood of N(I) by construction, thus we

can choose U C N(I).

Case. (zo e N(0)). Let U be open, zo 6 U. By the previous examples we

are only concerned with z c U A3 (N(I)\N(0)). But again U can be chosen

such that lU T- l.i

" . - ' . . " -'' 'v . ' .. , ' . : ' . - - - - - .-. . . . .. . . . . . . . . . . . .' . --. . -.. . . . -. . . - . . . . ".. .. . . . . .. .
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We are now ready to perform the induction step. Let I C Zk be an
A A

interval in P. Assume that (N(I U I), N(I)) is a regular index pair of I. We

need to show that the same holds for any interval contained in k+r  As .

before (N(P), NlE(Zk+l)) is a regular index pair for M(Tk+l). Let n E Lk+l.

Define

N(n) = (z e N((rk+l)I t ;k 0, z-t E N(rn))\N(rk).

Let I C Zk+1 be an interval in P. Then there exists a unique interval Jq m

C Zk such that I U f7i U J where Hi e Lk+l for i = -....q. Define N(l)
q i=.

=U N(n) U N(J).

Let Tk: N(P) -. [0,0] be the function in definition 1.9 for the index
A

pair (N(P), N(rk)). Define o. N(I U I) - 10,-] by

A A A A

sup (t [ 0 z [O,t] C N(I U I)\N(I) if z E N(I U I)\N(I)
o(Z) = A

10 if z c N(l).

The proof that o is continuous is as for the previous case. IN

We finish this subsection by computing the Conley index for a L,
hyperbolic critical point.

Examole 1,12. Given z = f(z) a differential equation in Rn, let zo  be a

hyperbolic rest point of the resulting flow, (i.e. f(z o) = 0 and all the

eigenvalues of Df(zo) have non-zero real part). There exists a neighborhood,

U, of zo  with coordinates such that for any E U the flow can be .

. . .. . . . . . . . . . . . . . . . . . . .,
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written as ~ t = (;,e ts...,I;ket, ;k+ le-t,...,qtne-t) where =0 corresponds to z0.

I-Ek+1,Ek+l] x ... x I-,E,l C ZN then (NpSN 0 ) is an index pair for S =(zo).

Thus h(S) Ek a pointed k-sphere and

Hj(,,NZ 2if j =k

10otherwise
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1.2 Connection Matrix

Let S be an isolated invariant set. Then, in general, there are various

Morse decompositions and orderings thereof, which one can associate with S,

and for each possible Morse set there is a topological invariant, namely, the

Conley index. The connection matrix is a method for organizing this

information. To be more precise, given S and a regular index filtration

N = {N(I)), the connection matrix extracts some of the information determined
A A

by H,(N(I U I), N(I)), i.e. the homology of the index for each possible Morsc

set of S. The idea behind the connection matrix is surprisingly simple and

elegant. Unfortunately, because there are so many possible index pairs,

constructing the connection matrix is, in general, quite complicated. Therefore,

before proceeding with the general definitions we give the following

elementary but important example of a connection matrix.

Let No C N, and No C N,. A map between pairs f:(N1 ,No)
I I I I

(N 1 ,N o ) means that f: N, - N, continuously and f(No) C NO.  2

Definition 1.13, Let S be an isolated invariant set with a Morse

decomposition (M(a),M(b)). If b > a then M(a) is called an attractor and

denoted, A, while M(b) is called a reoeller and denoted, A*. Together

(A,A*) is called an attractor-repeller Pair for S.

One can check that if I C P is an attracting interval then M(I) is an

attractor and M(P\I) is the corresponding repeller. Furthermore, if (1,J) is

an adjacent pair of intervals then M(l) = A, M(J) A* is an attractor 1A

• * e "e . . • . . . % . % % . * . % • .. * % . . . . . - . * . . . . . ° . . • . .. . o' ° . ' .- . .. ° . . -. . , .. .A ;
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repeller pair in M(I U J).

Given an attractor-repeller pair (A,A*) of S there exists a regular

index filtration N o C NJ C N2  such that (N 2,N), (N1 ,No), and (N2 ,N1 ) are

regular index pairs for S, A, and A* respectively. This leads to the

sequence of maps

(NJINo) - (N2 ,No) -j (N2,N1)

I

where i and j are inclusion maps. Passing to homology one has the long

exact sequence

Anin n An "
.... Hn(N 1,No) -- Hn(N 2,No) - Hn(N 2,Nl) -- Hn.(NrNo) .

or equivalently

H*(h(A)) H*(h(S))

H*(h(A*))
-7-

A is the connection matrix for this example.-.-

Examcg Lgle .14 Consider the case where (A,A*) is an attractor-repeller pair 4

~~~for S and C(A*,A) 0= . Then there exists a regular index filtration NO C "

' ~N1, N0 C N2  such that N1 r3 N2 = N0  and (N1 U N2, No), (N1 ,No), and.-."

'"(N 2,No) are regular index pairs for S, A, and A*, respectively. Now, a.-"

. . . . . . .. .. .
....**. * ** . .
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consider the maps

(N1,No) -- (N1  N2, N0)

(N1 U N2, NO)

Passing to homology, one can check that k,: H(h(A)) H(h(S)) is an

isomorphism, thus i, is an injection and j, a surjection. Exchanging N1

and N2  gives that the corresponding k*: H(h(A*)) H(h(S)) is an

isomorphism and hence, i, is an injection and j, a surjection. Thus in

the long exact sequence (1.1) A is a zero map. Thus we have proved

Theorem 1.15. If (A,A*) is an attractor-repeller pair in S and S A U

A* then the flow defined boundary map A: H,(h(A)) H,(h(A)) is trivial.

In application the contrapositive will be used.

Corollary 1.16, If A is not a trivial map then S P A U A*, i.e.

C(A*,A) 0 0.

The connection matrix has been shown to exist if one uses homology (or

cohomology) with field co-efficients. For our purposes it will suffice to use

the field Z 2. Also, since we are only interested in the homology of the index

of M(I) and not the homology of M(I) we will write H(I) or H(M(l))

in place of H*(h(M(I)); Z2).

.-.:
S . ~ . t.4t C.. ~ .. . .'.. N . > . ~ . . *
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Example 1.17. Let S be an isolated invariant set such that H(S) = 0, i.e. -

Hi(S) = 0 for all i. Assume that A and A* are hyperbolic critical

points with Conley index Ek and Ek+I respectively. From the long exact .. ..

sequence, we have that Ak+I: Hk+(A*) -. Hk(A) is an isomophism. Thus by

Corollary 1.16 there exists a connecting orbit from A* to A. Because Ek

and Ek+l have only one non-zero homology group and because we are using

Z2  coeficients we can write " H*(A) 0 H*(A*) H*(A) * H*(A*) in the

form of a matrix as

A A*
A [ 1]

A* 0

With this example in mind we now begin defining the connection matrix.

Let I be an interval in P, then ..

A(l): * H(i)-. 0 H(i)

Since H(i) = H,(h(M(i); Z2), it is a graded vector space and thus E H*(i) is

a graded vector space. Thus A(I) is assumed to be a linear map and is

represented by a matrix

whr)ah I()),j H(j) o H(i).

where each A(I)ij is a linear map from H,(j) to H,(i).,...'
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Definition 1.18 (i) A(I) is strictly upper triangular if A()ij = 0 for i , j.

(ii) A(I) is a boundary map if A(I)i j is of degree -1 and

A(I) 2 =O.

Let I and J be intervals in P. Define CA(l) = * H(i) and A(J,I):i El

CA(J) CA(I) where

A(pI) fi A(Pi j  ""

such that iel and jeJ. If A(P) is a strictly upper triangular boundary

map then given I an interval of P one can define a chain complex

(CA(I), A(I)). Of course, this chain complex generates homology groups which

we denote HA(I). If (I,J) is an adjacent pair of intervals then one can define WI
the exact sequence

0 CA(I) CA(J U I) - CA(J) - 0

where i and j are the obvious inclusion and projection maps. Passing to

homology we get the long exact sequence

- HkA(I) Hk&(I U J) HkA(J) - HklA() (1.2)

b..|



-18-

Definition 1.19. An upper triangular boundary map (P) is a connection

matrix for the Morse decomposition (M(n)IfnE(P,>) of S if there exists

isomorphisms 0(I): HA(1) -. H(l) for any interval I in P such that:

(i) For every nEP, (nl): H(n) - H(n) is the identity

(ii) For every adjacent pair of intervals (1,J) the following diagram

commutes

'(J-I).. .HA(1) --. HA(I U J) -. HA(J) -- HA(1). ...

10() 0( U J 00J) 04(l)

.. .H(I) H(I U J) H(J) H(1)

where the top line is (1.2)

Franzosa [3] showed that using field co-efficients a connection matrix

exists for any isolated invarient set S with Morse decomposition M =

(M(rl) n E (P,>)). It should not be assumed that the connection matrix is

unique, in fact, for many interesting examples it is not. Reineck [7] proved

the following uniqueness theorem.

Theorem 1.20. Let (M(n)ln c P) be a Morse decomposition of S such that

each M(rl) in a hyperbolic critical point. If W(M(n)) W'(M(rl)) for all

TI TI I then the connection matrix is unique with respect to the flow defined

partial order.
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The obvious question at this point is what kind of phenomena results in

a non-unique connection matrix? There is still no satisfactory answer to this.

However, the following example is enlightening.

INSERT FIGURE 2.

Example 1,21, Assume we have a parameterized family of flows whose phasc

plane portrait at values -1,0, and +1 are as shown in figure 2. Theorem 1.20 _.

says that the connection matrices CM(l) and CM(-l) for the Morse

decompositions M1  and M 1, respectively are unique. It is easy to check

"5 that they can be written as ,

MI M2 M3 M 1 M2 Ms
I I M 1 0 10

CM() fM 2 0 0 , CM(-1) =M 2 0 0 0

M3 0 0 M 3 0 0

What about CM(0)? Franzosa [31 showed that CM(-I) and CM(l) are both

connection matrices for M o  and that they are the only possible connection

matrices. The non-uniqueness comes about because in M0, 3 and 1 are not

adjacent under the flow induced partial ordering and because we have a

non-transverse saddle-saddle connection which can perturb to M 1  . -

We can ask another question, given CM(*l), is it possible to determine

CM(0)? Again, in a general setting the answer is not clear (see Reineck [7]).

However, for the classification project addressed in this paper it is sufficient

, t'
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to be able to answer the following question. Given CM(l) and M O  is it

possible to determine CM(-I)? With suitable restrictions the answer is yes, as P

will be seen by the use of connection matrices of special systems called

transition systems.

A final comment on the isomorphisms 0(I): HA(I) H(I). Since HA(I)

is generated by the chain complex (CA(I), A(l)), the isomorphism 0(I) imposes

algebraic restrictions on A(l). These algebraic restrictions will be referred to

as the rank condition.

i;j

% *. ..-
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2.1. Assumptions

As the introduction indicated, we are really only concerned with finding

solutions to the non-linear system of ordinary differential equations

xi  y (s(e))

Yi= Yi DiV(x)

In order to apply the connection matrix to this problem we need a compact

invariant set S, i.e. we want the set of bounded solutions to (S(e)), denoted

by SS(O) to be compact. The following two assumptions guarantee this.

(Al) There exists Q0 such that if Q < Qo then the level surfaces

(x I V(x) = Q) are convex.

(A2) lim V(x) =
IlxII"®

It should be mentioned that (Al) can be weakened without losing the fact that

SS(e) is compact. (See Conley [1]).

(A3) V has only non-degenerate critical points. These will be denoted by

Mii = 1,...,q and let V(Mi+x) < V(Mi).

This assumption merely simplifies the presentation of results. Notice that

M, is the absolute maximum of V.

*. * . .. . *. - . . .- .. o
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An important assumption that might go un-noticed is in the P.D.E.

originally considered. A more general form of (0.1) is

XT = DAx + V(x) (2.1)

where D is a diagonal matrix with entries \i Again, restricting our

attention to traveling wave front solutions reduces (2.1) to the system of

O.D.E.'s
x. =Xi = Yi "

i = /1 . i" V1i(x) (2.2)

/X4j

The important difference between (S(e)) and (2.2) is that for (S(e)) there

exists a global Lyapanov function, something which in general does not occur

for (2.2). The Lyapanov function is used to determine the Morse decomposition

of SS(o) and to limit the number of possible connection matrices for various

wave speeds e. This is not to say that the techniques developed here are of

no use in (2.1). Rather, one will have to pay closer attention to the structure

of the Morse sets, and some of the questions asked at the end of Section 1.2

will have to be better understood, before the connection matrix leads to a

classification scheme.

H.MO

• • - - • " " " ." ." . " • .• . . ._ _ .. . . _ " . ._ '_.." _. . . . " . . . , '_ " 2 . ' '.' L ' s. -I : -
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2.2. Basic Results for Traveling Wave Systems

This section translates simple analytic results for the traveling wave

system S(e) into the language needed to apply the Conley index and the

connection matrix. Unless it is important to specify the wave speed we let S "

S(G) and denote the set of bounded solutions to S by SS. Though

slightly different from the standard definition we call H: Ipn -p a

LiaDanov function for a system of O.D.E,'s if either d ; 0 or dM < 0

(but not both) along all solutions of the O.D.E..

Proposition 2.1. If e 0 0 then H(x,y)= - <y,y> + V(x) is a Liapanov

function for S.

Proof. On solutions of S one has that

dB= <y,y> + <VV,y> = <y,y> U
dt

rollarv 2.2. If e >0 then ~, 0 and if 8 < 0 then d i 0 along
Crlay_..I e>0thndt dt

solutions.

If e = 0 then S(0) reduces to a Hamiltonian system with

Hamiltonian function, H. It is the author's opinion that an understanding of

the set of bounded solutions to the Hamiltonian system should give information

on bounded solutions of S(e) for e sufficiently small and, vice versa,

-. " S."S -.. . . . -. .. * ., •.•.-.
-- : . .*,.-) ,.. ..- .... - *.. -",".% ', . .. , , ' , . ° , . , ., -, ... . '. ; . '° . . .. , . , ' - . ... ,-- '-. - _L.J._.. .. .. . -'X% ' ,-' , . .. ' ' " -'";'' " " " h , "-"'...S ="-' ' " -- " " "*'"'.'"..* "..."
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given any sequence O 0 for which SS(%n) is understood one should be

able to draw conclusions about the structure of the set of bounded solutions to

the Hamiltonian problem. This question will be taken up in a future paper

(see Mischaikow [6]).

It is easily checked that

Proposition 2.3. The only critical points of S are ((Mi, 0))= 1.

Proposition 2.5. For e 0, SS(e) consists of the critical points ((Mi,0))91= 1

and heteroclinic orbits connecting these critical points. Furthermore, given an

Mi  M connection then:
(a) e > 0 implies V(Mj) > V(M) i.e. j < i

(b) e < 0 implies V(M,) < V(M) i.e. j> i

Sketch of proof. This follows from proposition 2.1 and an easy computation

showing that the only orbits along which H is constant are the critical

points. (a) and (b) are restatements of corollary 2.2, i.e. if e > 0 then the

"energy", H, is increasing and decreasing if 0 < 0. .

Definition 2.6. Let n(Mi) be the number of negative eigenvalues of

D2 V(Mi ).

Proposition 2.7. If nl(Mi) = k and 8 > 0 then the dimension of the

unstable manifold at (Mi,0) is 2n-k. If 8 < 0 then the dimension of the

unstable manifold is k.

".I.
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Proof. Let A -D
2V r- [8y- i]. Since A is a symmetric matrix, there

exists B and B-1  orthogonal real matrices such that B'IAB = A where

A is a diagonal matrix with non-zero real entries Xp .... Xn. Notice that

[ o] -[:°B-] [0 I [B 0]

Thus the eigenvalues can be found by solving

t = det xI 2
(xo)1[

nX 2-ex-x.
n xl x
i=i x

l'(x 2 -0x - ') = 0
i=i

This gives x* = 2- (0 *:W24Xi).

For e > 0:

If X > 0 then 2+ 4 i > e, hence xt > 0 and x- < 0.

If Xi < 0 then 1 2 +4 i < O, hence xi > 0.

For G < 0:

If X > 0 then >+4 i > iel, hence xt >0 and x" <0. W

if Xi < 0 then /e2 < le,, hence xt < 0. U

Restating these results in the language of Conley gives:

" , • . . . .. . .. . . ., . - . , . • ,, . . . . .. "
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Theorem 2.8. (a) SS(O) is an isolated invariant set with a Morse

decomposition ((M.,0)}q.. for 8 0 0. If 8 > 0 then 1 < 2 < ... < q is *

always an admissable ordering. If 8 < 0 then q < q-1 < .... < I is

always an admissable ordering.

(b) Let '1(Mi) k. If 8 > 0 then h(Mi,0) - E2n k. If 0 < 0 then

h(Mi,0) _ Ek.

(c) h(SS(e)) - En.

Proof. (a) This follows directly from propositions 2.4 and 2.5.

(b) This follows from proposition 2.7 and example 1.12.

(c) Let N = ((x,y) V(x) k Q0  and I lYl I K). In the proof of

proposition 2.4, Conley shows that for K large enough, N is an isolating

neighborhood of SS(e). Now define a homotopy W: An x I A satisfying:

(i) W(x,0) = V(x) ..7

(ii) If x E RI such that V(x) 4 Q0  then W(x,s) = V(x) for all

s ( [0,1]

(iii) W(x,l) - U(x) where U has a non-degenerate, unique critical point, P.

Clearly, P is an absolute maximum since lim U(x) lim V(x) , -. Now

define ,

X =y

y = ey - VU(x).

By proposition 2.5, the set of bounded solutions is P. But since U=V for

(x V(x) = Qo) , h(P) - h(SS(0)). n(P) - n hence (b) implies (c). "

0, *°.. . . . . .
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It is important to notice that (a) does not imply that the total orderings

given are the only possible orderings on the Morse decomposition. In fact, as

will be shown, the flow induced partial order in much weaker.

Simple substitution gives:

Provosition 2.9. The transformation 0 - Y =-y ,T =-t leaves S(e)

invarient.

The importance of this proposition is that it allows us, for the time

being, to restrict our attention to S(e) where 8 > 0. In fact there exists a

strong symmetry about e 0. If z(t) a lSS(e) with e > 0 is a.

connection M. then there exists a solution F(t) c SS(-e) which is a

connection Mi Mi. This symmetry can be exploited to translate information

from the Hamiltonian system to the traveling wave systems (see Mischaikow

From now on, unless explicitly stated otherwise, it is assumed that

e > 0.

Proposition 2.10. Let Mi and Mi be different local maxima of V. If

e > > T is large enough then there does not exist a connection Mi M

eing, Let z(t) (x(t), y(t)) be a solution to S(0). The total change in
dH

energy, H, along z(t) is given by f - (9)) d t. Let z be a curve on

. .-..

stheonsy tyabiod o = f Mit) Sic () ,it h mus b> tha for al t..e

connectiont) Mi - Mj then tr exist , oltion + (t)) e S().wihi "

b,-"

connctin M " i .  hissymetr ca be xplite totraslae iforatin -

rrmteHmloinsse otetaeigwv ytm seMshio .-.
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M i is a local maximum thus there is an e > 0 such that for all x where

, M i " xll < e and x * M i , V(x) < V(Mi). In particular, there exists 5 > 0

and to such that if z(t) is a connecting orbit from (Mi,O) to (M,,O) then

V(x(t 0 )) = V(Mi) - 6, i.e. <y(to), y(to)> 26. Since y is continuous there

exists K > 0 such that K < <y,y>dt. Thus

V(M) V(M) = = e <y, y>dt > eK
dt

But V(Mj) V(Mi) is fixed while OK-.- as e-.- .

The final result of this section says that the structure of SS(e) becomes

fixed for e sufficiently large.

Pronosition 2.11. For fixed V, there exists e > > I such that there exists

a connecting orbit from (M,O) to (Mj,0) satisfying S(e) if and only if there

exists a corresponding solution from (Mi0) to (M 0) satisfying i = VV(x).

Sketch of Proof. Let denote gradient with respect to x. Then S(o)

can be written as x = y, y = 6y -VV(x). Let x = /e then S(e)

becomes

S=ey

y = 4(y - . F-

For 0 > > I it was implied in the proof of the previous proposition that if

z(t) = (x(t), y(t)) is a bounded solution to S then Ilyll must remain

', - . -....
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small, hence II'Imust remain small, thus Ily -x 0. Therefore we

are looking for solutions to ic 6 , V.(x). But since we want non-constant

bounded solutions to S we need to reparameterize t. Let 'T t /6  and

d /d then x'= - 'V(x). PC



-30-
1/V

2.3. Transition and Perturbation Systems

Our classification scheme depends on being able to use G as a

parameter. With this in mind we introduce the transition system

Xi =yi

=j eyj - DiV(x) T(80,8 1)

e=cE(e -e 0 )(e -0 1) l> >E>0, e < Go

Let the set of bounded solutions to T(80,81) be denoted by ST(eO0 1). Again,

when no confusion arises we shall drop the 80 and 61. Unless otherwise

stated assume 00 > 81> 1. Figure 3 shows what the phase portrait of

TAe 0,e1) is like. Notice that at 6 8, we have the system S(8,) and at

0 80 we have S(e0 ).

INSERT FIGURE 3

Lemma 2.12. The only critical points of T(e0,81) are {(Mj,0,e 0)) and

To save writing, when 6o and S, are known let Mi (Mi,O,6 0) and

Mi (M1,0,0 1). Furthermore, M1  M. denotes a solution, Z(t), of

T(00,81 ) such that w(z) =M, and w*(z) =M 1. Let H(x,y,e) =H(x,y).-. '~
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Lemma 2.13. On solutions of T, dH t= 8(t0 ) <y(t0 ), y(t0 )> 0, i.e. H is

a Liapanov function for the transition system.

Lemma 2.14. ST is compact.

Proof, If (z(t), 6(t)) e ST then 6l 4 6(t) 4 60. The proof of proposition

2.4 shows that for every fixed e there exists K(G) > 0 such that N(e)

((x,yjV(x) Q0  and IIyIt 4 K(6)) is an isolating neighborhood of SS(8). Let

K = max K(8). Then one easily checks that for N ( (x,y)IV(x)
0e 81., 6 0+ C

80, I~ll K) ,N x [e,80 +cJ is an isolating neighborhood for ST(e0 ,e1 ). U

Lemma .2,15, If ;(t) - (x(t),y(t),e(t)) is a non constant bounded solution of

T(e0,e1) then C(t) is a heteroclinic orbit of one of the following forms.

(a) M-.Mj 1 >j and e(t)-eo0 ttR

(b) Mi M >j and 6(t)-e 1 Vt f.

Wc Mi-.Mj i '0 j .Furthermore i-j if and only if ;(t) =(M,,O,6(t))

Vt e R

P~roof, (a) and (b) are restatements of proposition 2.5.

(c) If 8(t) e (ei,eo) then e < 0 hence Jim ; (t) =M. and lim ~t

-Mi. Since dfl ) 0 ,V(M 3) 4 V(M.) thus i ;k j. Clearly, if (0)=
d t

(M1,0,8(0)) then ;(t) - (M1,0,(t)) for all t. On the other hand, if there

exists to where ;(to) =(x(t 0 ), y(t0 ), 8(t0 )) and xt),yt) (MO)for

k=I1,...,q then the total change in H over ;(t) is f6(t)<y(t), y(t)>dt > 0.

Thus M. 0 M.
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I We can collect the information of the previous lemmas as follows: -

Theorem 2,16. (a) ST( 0,8) is an isolated invariant set with a Morse

decomposition (Mi) U (Mr) and i,i = 1,....q. If >0 and >1 are admissable

orderings for the Morse decompositions of SS(Oo) and SS(O,), respectively,

then an admissable ordering for ST(e 0,eO), >, is given by

.-

i > j if i >0 J

>j if >1 J "

i >j for all I, j

(b) If r7(Mi) k then h(Mi) -2n-k+l and h( 1i) -2n-k

(c) h(ST)-O.

Proof. (a) This follows from lemmas 2.14 and 2.15.

(b) The unstable manifold of M!i has not been changed while that

of Mi  has been increased in dimension by I. Now apply example 1.12,

proposition 2.7 and theorem 2.8.

(c) One can either compute this directly, i.e. N , the isolating I

neighborhood, has been given above, thus one can determine No  and check

that h(N/N 0,,) - 0 or one can notice that ST( 0,e1) can be "continued" (see

Conley [1] or Salamon [8]) to a flow without critical points and hence h(ST)

~°°. U

As will be seen the transition system is helpful if one knows S(e) for

some particular value of e. Given any potential function, V, however, it is

.- .

. .- _. "a_"h.. ... _. . _" ' , t. L .,a%.m. ,a .,.a.. . . . . . . . . .. . . . . . . . . . . . . . . . . . . .".. . . . . . . . ." . . . . .." "- •S"
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not clear how to f ind a 8 for which S(e) can be analyzed. To some

extent we can get around this problem if there exists a V0  for which S0(8)

is known and if there exists a reasonable homotopy from V0  to V. With

this in mind we make the following definition.

Definition 2.16. V: EF" x [-6,1+61 A~ , > 0 is a critical poinlt oreserving

smooth tnarameterized family of potential functions if for all sc[-6,l+6]

(i) V(x,s) = V (x) E3p X[-,+J)

(ii) V. has q non-degenerate critical points denoted by Mi(s) iI qI.(iii) V,(Mi(s)) = V0(Mi(0)) and 17(Mi(s)) - 7)(M1(O))
.i)V(X) =VO(X) if X C (X IDo(x) < Q0).

Let V be a critical point preserving family of potential func tionss.

Then we have a Perturbation system given by

y 8 y1 - D1V.(x) P

5 -Es(s-l) 0 < f -C < I,0> >

Let M = (Mi(O),0,0) and Mi (M1(1),0,1). Let SP denote the set of

bounded solutions to P. As far as the index theory is concerned P and

T are similar systems thus we have the following theorem.

Theore.m.2,17 (a) S P i s a n isolated invarient set with a Morse

decomposition (M1) U (M,) for i,i-=l..q If >0 and >1 are admissablc

- . . .,-7
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p orderings for the Morse decomposition of SS for V o  and V1  ,

respectively, then an admissable ordering for SP, >, is given by

i > j if i >0 J

> j if i >1 J

I > j for all 1, -

(b) If n(Mi(O)) = k =(Mi(l)) then h(Mi) -2n-k+1 and h(Mi) -

i_2n-k

(c) h(SP) - 0.

I---

However, as in the previous cases, we want slightly more detailed

information as to the nature of the possible heteroclinic orbits.

Proposition 2.18. Let ;(t) = (x(t), y(t), s(t)) be a solution to P. Then there

exists a solution such that lim ;(t) = M and lim ;(t) = M i.

Proof. For fixed s, consider the system

xi =i

y= 8yi DiV,(x)

(Mi(s),O) is a hyperbolic critical point for this system. Let r'(Mi(s)) - k.

(Notice that k is independent of s). Via proposition 2.7 and example 1.12

one has that under a suitable change of coordinates there is an isolated

O ° I
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neighborhood N(s) of (Mi(s),O) with exit set No(s) as in Figure 4. Now

consider the system e with e < < 1.

. -.

INSERT FIGURE 4.

Since V is a smooth family of potential functions we can define a set N

which contains the arc (Mi(s),O,s) for s e [-6/2, 1+5/2] and furthermore for

fixed s, N restricts to N(s) with NO(s) the exit set for N restricted to

s. Let N o  U No(s) 0  N(1+6/2). One can check that (N,N o) is an index

pair for some isolated invariant set, S. Furthermore, h(S) - 0. Now refering

to example 1.17 we see that the connection matrix for S is

In otherwords, there exists a connection from M i to Mi.

This proposition as it stands is not global enough for our purposes. We

are interested in the set of connections from M i to M1i which are contained
area

in all of SP not just N. It might be possible that there is another

connection from M i to Mi which lies outside of N. It is to eliminate this

possibility that the restriction e > > I is included.

Proposition 2.A9. Let ;(t) = (x(t), y(t), s(t)) be a solution of P such that

lim (t) - Mi and lir (t) M i. If G > > 1 is sufficiently large then

lies in N as defined in proposition 2.18.

d.1!

.. '
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Proof. If we had a Liaponov function the theorem would be easy, e.g. lemma

2.15 (c). However, if H(x ,y,s) L~yy + V(x,s) then along solutions of P

dH a
dt = ~~> as

is not a Liaponov function. Never-the-less, along t(t) we must have

0 OD a*

=r d H raY.
0 -dt e f<(t), y (t)>dt + -s dt

j<Y as

If ;(t) leaves N for some values of t, say t c (a,b), then there exists a

lower bound K1 such that

b C

o < K1 < J<y,y> dt < f<y,y> dt
a -

thus

rraas

But for s 6 [0,1] there exists a maximum for IIcall it K2. Then

0<K1 < K2 f L- dt =K 2

Letting e . makes the inequality impossible.
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Corollary 2.20. If M1  and Miare an adjacent pair in an admisable

ordering of a Morse decomposition of SP or ST then the connection matrix

f or (M1,M1) is

M mi

I lk
M 0
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3.1 Connection Matrix for SS(e),

We begin with a rough sketch of what are the possible connection

matrices for SS(e). It is always assumed that the set of Morse sets for the

Morse decomposition of SS(O) is ((MiO) i--I....q. Again let Mi = (Mi,O). As

was mentioned in Section 1.2 there need not be a unique connection matrix

associated to this Morse decomposition. This motivates the following

definition.

Definition 3.1. e is a standard wave steed for S if there exists a unique

connection matrix, CM(O), for the isolated invarient set SS(e).

Recall that if two Morse sets, Mi and M,, are adjacent i.e. (i,j) is an

adjacent pair, then the ij entry in the connection matrix is flow determined

and hence uniquely determined. Thus for 8 to be a standard wave speed it

is sufficient that, if h(Mi) - Ek+1 and h(Mi) _ Ek then Mi and M are

adjacent Morse sets. This is only a slightly weaker condition than that of

theorem 1.20 but suffices since Ai. = 0 if h(M.) - Ek, h(M1) - E and
Uj h 3 -Ea an

k- 0 1.

In order to describe the typical connection matrix, CM(e), it is useful to

partition (Mi) into subsets of the same index. The following notation will

be used throughout the paper. Partition (1,...,q) into subsets Jk where Mi

f Jk if and only if h(Mi) - E n 'k. Let ;Lk be the cardinality of Jk"

Notice that it is possible for Jk 0 0 for some values of k. However, J0

0 since V always has an absolute maximum and hence M Jn.

i',7" 51
'° ° % % " " " % " .% ." " -' ' "' - .* % % °' " a*' " % "' % * % "" "- % " "- - ' ". % '% "- °°% -' "' " ' ',
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Examole 3.2. The condition that V(Mi+1) < V(M1) imposes mild restrictions

on the set of possible partitions. For example, consider V: JR -~ R with five

critical points. In this case n=l, hence k=O, I and q=5. There are only

two possible partitions J 1  (1,2,3) and Jo = (4,5) or J; = (1,2,4) and

J= (3,5). The partitions can be realized by potential functions V and

V, respectively. See figure 5.

INSERT FIGURE 5

Recall that the connection matrix is a degree -1 homomorphism. Thus

A..: H(i) H(j) is zero unless i e J and j E kl Hence for any 8 0 0,

in in- . . 0 .R. O
CM(6) inJ 0 An(") 0....

in-1  0 An-1 (8) 0

0

(3.1)

ii 0 A1(e)

Jo 0

where (i) Ak(O) is a OkX ILkl matrix

* (ii) Ak(e) :0 H(i) -. 0H(j)
lijk-i jeik

(iii) Ak(S) o Ak l(e) =0

If no confusion can arise let Ai = A(O)
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Protposition 3.3. The rank of CM(G) is -,(q-1) and hence q, the number

of critical points of V, is odd.

Proof, The rank condition implies that

HA((1,...,q)) zH(h(SS(O))) (n

by theorem 2.8. But H(1..q) is generated by the chain complex
q

(e9 H(i), CM(e)) i.e.

KerCM/I()

Since H(P~) has a unique non-trivial 1-dimensional vector space it must be

that Ker CM(6) -Rank CM(e) =1. Now CM(S) is a q xq matrix hence

the rank is -1(q-1).

Protposition 3.4. For f ixed V there exists 6(V) such that, if 8 > 6(V)

then CM(G) =CM(6(V)).

This proposition f ollows f rom proposition 2.11. We will denote

CM(e(V)) by CM(-) =CM(-,V).
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3.2 Transition Matrices

.'.' *

Given a potential function V and a wave speed Go we have said

nothing yet as to how to compute CM(e 0). However, assume that CM(80) is

known, can we determine the set of possible CM(e) for 0e (o,-)? To

answer this we turn to the transition system T(80,81).

Let CMT(e 0,e1) be a connection matrix for ST(e%01 ). Theorem 2.16

implies that CMT(00,01 ) is a 2q x 2q matrix. Because the isolated

invariant sets SS(e0 ) and SS(ej) are isolated invariant sets in ST(e0,e1 )

we can write

CMTTe 0,e1 )

CMT(0,e0 = [M~i)]

where CM(e0) and CM(S1) are the connection matrices for SS(e 0) and

SS(e), respectively. T( 0 ,81) is called a transition matrix from CM(Mr) to

CM(e1).

ProGosition 3.5. Rank CMT(o n) eq.

noof, H(h(ST(ee))) 0 is trivial, hence Ker CMT( 0 ,t 1 ) Rank

CMT(e0,ej).

From now on we assume that o and 81 arc standard wave speeds

when we consider T(80 ,81). If it is clear from the context what e and

01, we let T(e, 1 ) = T, CMT( 0 ,O1) =CMT, etc..
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The Morse decomposition of ST(eo,e 1) is indexed by {I,....q,l,2....q}.

There exists the obvious partition of this set given by (Jk}J=o and ( k)0

where i E ak if and only if h(M i) - E2n 'k+l and ' E Jk if and only if

h(Mj) -2n-k. (See theorem 2.16).

in .................. J o

in 0 n  0 .................
Provosition 3,6. (a) T = where Tk is a ;LkX ;k matrix.

0 T n -1:: :'

J'o 0 To  '................... ..........T 0 .'

(b) CM(6 1) o T + T o CM(O0 ) 0

(c) Tk is upper triangular with diagonal entries equal to 1.

Proof. (a) Any element of T represents a degree -1 map from H(j) to

H(i). Thus if t. is an element of T and h(Mj) - Ek+l then tij - 0

unless h(M1) - k. By theorem 2.16 it must be that r7(Mi) = ?(M,) and thus

tij c T I , 0 4 I 4 n.

(b) This is just a re-statement of the fact that CMT( 0 ,81 ) is a

connection matrix and hence a boundary map, i.e. CMT 2  0.

(c) That Tk is upper triangular follows from lemma 2.15(c). In

addition, since we are assuming eo and 81 are standard wave speeds, Mi

and M 1  are adjacent Morse sets in the flow induced partial ordering. Hence,

the fact that there exists a unique Mi to Mi connection implies that the ..

diagonal entries are .

.-. '

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . .

'"". "'"' """"""' ". ".". .". .".""""""."""'"" . .* . . . . . . . .'-, -"-_... ';.. ". ". "; ' 5*".:""""., .2',. ,= '. .. ''
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The point of view that we want to adopt is that CM(e 0 ) and T are

known and CM(e 1) is to be found.

Prooosition 3.7. CM(eo) T o CM(O) o T- 1.

Proof. T is triangular with non zero diagonal entries and hence invertible.

The result now follows from proposition 3.6(b). U

There are two problems with using arbitrary transition matrices. First,

even a small number of critical points leads to a large number of transition

matrices. Second, and more importantly, it is not always easy to gain

information on the types of connections which exist from a general transition

matrix (see Section 3.3). With this in mind we introduce the following class

of special transition matrices.

Definition 3.7. An elementary transition matrix, E(ij), is a transition matrix

of the form I + A,, where I is the identity matrix and A.i has only one

non zero entry, the jih.

Definition 3.8. A transition stranh is a connected graph whose vertices are

connection matrices for S and whose edges are transition matrices.

Furthermore, if CM(Oo) and CM(S1 ) are vertices connected by the edge

T(eo,e) then

0: CM(O)l

IL

, -7.. ..
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is a connection matrix for ST(eo,el). If each T(80 ,O1 ) is an elementary

transition matrix we have an elementary transition araDh. P.

Remark 3.9. This definition is purposely ambiguous. As will be seen, paths

in the elementary transition graph classify the traveling wave solutions to (0.1)

and as such there is a natural way to present the graph. For other

applications, different presentations may prove to be more useful. In this

paper, the vertices, i.e. the connection matrices, will be taken as unique though

each vertex may have several names. To be more precise, assume 8o  is a

standard wave speed, then CM(60 ) is unique and because of the continuity

property of the connection matrix (See Franzosa [3]) there exists e > 0 such
-4.-

that for all G e (Go - c, 0o + E) , CM(O) - CM(eo). Thus in the transition

graph there will be the CM(e). However, this vertex could also be called

CM(e') for any 8' c (80 - c, 60 + e). If in addition there is another

standard wave speed, e", such that je" - el is large but CM(e") - CM(e)

then the vertex corresponding to CM(O) could also be called CM(6").

With regard to the edges, different edges may have the same name. For .""

example,

if and

are connection matrices for ST, but B 0 B and A A then between

vertices A and B, and A and B lie different edges, but both are called

T.

B- .



For the purposes of classification we will always want to use a

maximal" elementary transition matrix. However, there are at least two ways

to define maximal. The first relies completely on the algebra. Notice that

combining (3.1), propostions 3.3, 3.5 and 3.6 gives a set of algebraic conditions

which the connection matrices and transition matrices must satisfy.

Furthermore, these conditions are completely determined by the partition

Definition 3,10. Given (Jk)ki' an aluebraically maximal transition gratoh is a

transition graph such that if CM(00) is a vertex of the graph and

"M(O1) T ."

[0~i CM(eo)]

is an algebraically permissable connection matrix for the abstract system ST

then CM(O1) is a vertex of the graph and T is an edge connecting

CM(6 0) to CM(8 1).

On the other hand, it might be that one has additional information

which precludes cetain connection matices, CM, or certain transition matrices,

T.

Definition 3.11. Given {Jk)n=l and apriori restrictions on the set of possible

connection matrices, CM, and transition matrices, T, a realizable maximal

transition graoh is a transition graph such that if CM(eo) is a vertex of the

graph and
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M(e1) T

0 CM(o)

is a realizable connection matrix, CMT(80 ,O1 ), then CM(e1 ) is a vertex and

T is an edge connecting CM(eO) and CM(81 ).

Assuming that we know CM(eO) for some value e eo, we can

construct the maximal transition graph by using propostion 3.11 and

concatenating. In otherwords, given CM(O) we can generate a set of

possible connection matrices, CM = (CM(Oi)ji=l ,...,p). An obvious question is,

do we generate the same set of connection matrices if we restrict to

elementary transition matrices? The answer is yes as will be shown in what

f ollows.

Given elementary transition matrices, Ek, let

I"n 1 ,

1l Ek= E n oEn1 o...o E 2 o E1  and fl Ek E 1 o E 2 o-..o En.

k=1 k=n

Let

I if i=j% =j
[ ( otherwise

It is simple to check that

Lemma 3.2,_ E(ij) =E(ij) 1

.1..

I
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This says that in the case of elementary transition matrices, proposition

3.7 can be written as

CM(e,) =E(ij) CM(e 0) E(ij) . '~

Thus, the following lemma will be useful.

Lemma 3,13. Let A [ akil then

E(ij) o A A + E (Sik aki) A~ and

A o E(ij) =A + E (akI 16j Aki.

Pro osition 3.14. Let

T= T[ T]

be a transition matrix. Let ti e Tk. Then E(ij) o T T' where

Pr-f. By the previous lemma E(ij) o T -T + E ti,1AJ. But tit 0

unless tit Tk.



.- 0 -- , . ..- 4.0 -_-,, --,

II

%p

-48-

Definition 3.15. Let T be a connection matrix. An elementary
decomposition of T is an ordered sequence {Ek = E(ikJk)} of elementary

transition matrices where T = IT Ek.

k k

Proposition 3.16. Let Tk be a block in T, a transition matrix. Then either
,0-

Tk ; I or there exists an elementary decomposition of Tk.

Proof. By the previous proposition we need only consider E(ij) such that

tij c Tk. Since Tk is a ;Lk x 9tk matrix we will consider E(ij) to be a

Igk x ILk matrix. (This merely simplifies the notation.) The proof of the

proposition is by induction on the size of Tk.

Assume Tk is a 2 x 2 matrix. Then Tk - I or Tk - E(2,1). So

assume Tk is an n x n matrix. Let Tk = [tij] where f'ij = ti, for all

j < n and let fin = sin i=n' .... n. Notice that Tk satisfies the restrictions

of proposition 3.6. Assume that there exists an elementary decomposition of T.

Let
A [E(ni) if tin = I
E (n,i) = "'if =

I if tin = 0 -'

Lemma 3,17. Tk - (n E(n,k)) o T
k=n- d

AAProof. The proof is by induction. If E(n,n-l) - I then t- n - f- "

If E(n,n-l) -- E(n,n-l) then ""

0 0i

0.. ,...* . .'-.- , - .. '. .""' .'' '.*'0.•.... , " .' .,.'- "0.*'. . . . . . . . ..,',-- " -.. ."." .:, -k . ',= - -. . . . . "
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E(n,n-l) o T = T + E (Bnk k|) An-l,1

- T + An-I,.

- r-1 ..
Now after r-1 steps assume one has T + E tnkn Ankn Consider

k=1

E(n,n-r) o (T + E tnlkn An~k,n) = E(n,n-r) o T + E tnkn E(n,n-r) Ankn
k=1 "

r-1 r-
- T + E ( fnkrkI)Anr,I + E tn-kfn An-k,n + tn'kn An'rn An-k'nI | k=1 k=1

r-I
- T + E tn A n-r, + r: tn-k,n Ankn

I k=1

+ r

tn-k,n n-k,n
k=1

The lemma gives an elementary decomposition of Tk.

Proposition 3,18. Let T be a transition matrix. Then T has an

elementary decomposition.

Proof, Let

T 0"

0 TI-

7L
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By propostion 3.14 if Em(k) is an elementary transition matrix in an

elementary decomposition of Tk then Em(k) has no effect on Tj, j 0 k.
n

Thus T =kr 17I Em(k) where (Em(k)) is an elementary decomposition of Tk. 4.

k=1 m

It is important to notice that transition matrices do not have unique

elementary decompositions.

Example 3.19. (a) Let T = I then T - II EkE 1. Also E = E o E o E.
k k

(b) Let T = [T2 0 with elementary decompositions for T2  and T1  .

given by (Ek( 2 )) and (Ek(l)) , respectively. Then

1l Ek(2) o IT Ek(l) = rl Ek(l) o 11 Ek(2 )
k k k k

(c) Let T 0 1 1 then T =E(2,1) o E(3,2)
0 1 .

= E(3,2) o E(2,1) o E(3,1)

The last example suggests that elementary transition matrices do not

commute. The next proposition makes this precise.

Proosition 3,20. E(2,k) o E(ij) E(ij) o E(J,k) if and only if i k and

I ;I I

": . • .. +,,,-... .. . -- '

--------------------------------



!, 7,-,5S.

Proof. E(I,k) o E(ij) = E(ij) o E(i,k)

E(I,k) = E(ij) o E(Ik) o E(ij)
5,

I + Ak = (I + Aji) 0 (1 + AkI) 0 (1 + Aj)

= + Ak + AkfAji + AjiAkI + AjiAk Aji

Thus we need to know the conditions under which

AkIAji + AJiAkR + AjiAkRAji = 0

This is the same as

SjIAki + Sikijf + jikAji -O

which holds if and only if i 0 k and j 0 1. U
'--S

Definition 3.21. E(ij) ID E(I,k) I + A.. + Ak"1 +.

Corollary 3.22. (a) E(ij) WD E(I,i) $ E(ij) o E(i,i)

(b) E(i,i) Q E(ij) = E(Ii) M E(ij).

Proof. (a) follows from the proposition. (b) By proposition 3.6, 1 > i > j

thus 1 0 j. The rest follows from simple calculations. 0

Corollary 3.23. Recall that (Jk)k.o is a partition of {1....q). Let I Jk

and m~ € Jk where k 0 k Then -

a d c J

'S1
" " ' ' " ""'.-S" , . , : ., ' .,- .; ' .: ' -' - ." -' ' ' : .' , - ; " .' - ) ( " ; , .." -. i ' / . . , i .. : i . . .
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E(J,m) W9E(ij) E(i,m) o E(ij) E(ij) o E(i,m).

We now consider the types of paths that lie in the elementary transition

graphs.

Provosition 3.24. Let[C e) Me)]

be a connection matrix, CMT(8O,8,,). Let T IT1 Ek. Then
k=1

*CM(e 0 ) El1 CM(e1) E2 CM(02 ) E= -a-- F

is a path in the elementary transition graph of CMOO).

Proof. By definition CM(ek) =EkCM(ekl)Ek. So we need only check that

CM(e~) T ' Ek) CM(%0 ) ( 1 E~)=TMe)T
k=1 k=M k C(0 -

This proposition says that given any CM(e 0) and any transition matrix

TM(e0 ,el), the connection matrix CM(ej) lies in the elementary transition

graph. Furthermore, Cm(e,) can be found by tracing the path in the graph

determined by any elementary decomposition of TMe,e 1 ).
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Corollary 3.25. If [ M(01)E

0 CM(e0)

is a connection matrix where E is an elementary transition matrix then so is[ M(e0) E
o CM(e1)]

Proof, Let T 1 , recall I =E o E and apply the proposition.

This implies that the elementary transition graphs are not directed. In

otherwords, a path along the graph can consist of

E M~ E
CM(e0) - Me)-CM(e 0 )

Proposition 3.26. Let CM(8) =A =[a 1)] and E =E(ij) be an elementary
E

transition matrix. A D is a subgraph of an elementary transition graph if

and only if 0 =aik =aki for k=l,...,q.

Proof. Let T 1 , recall I =E o E and apply the propostion.U
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3.3. Interoretine Transition Matrices

Consider the system T(eoeO), but let e = 0. Let e denote the flow

generated by S(e), then the flow on Wn x IR generated by T(60 ,6 1) and

denoted by satisfies

(z,O) t = (z t,8) 0L

In otherwords, pen x (e) is an invarient subset under the flow and the flow

on this subset is determined by S(e). Assume that for some value

.* i (e1 ,O) there exists a connecting orbit from (Mi,,0*) to (M,,0,e*)

where i,j E Jk* Now let 0 < e < < 1. Figure 6 suggest what the new flow

" looks like. In particular, one expects that there exists a connection M i - M."

One might in turn hope that ti = 1 where tji c T(0 0,e1 ).

INSERT FIGURE 6. a.

Since we are assuming T( 0 ,eO) known, it would be nice if the

following conjecture were true. Assume that for all c - (0,E),

[.M(8) T(eo,e 1 1
CMT(o,0o1 ) =

0- CM( 0 ).

is a connection matrix for ST(Oo,O1 ). Let ti - 1 ,i j and ti c T(Oo,0 1 ).
ji-

Then there exists O* c (eo,81) such that there is a connection M i - , a

solution to S(0*). Unfortunately, in this generality the conjecture is false.
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To see why, recall example 3.19 (c) and consider figure 7 which gives a

schematic representation of how the two different elementary decompositions

could be realized by the flow. One now sees that if the connection M3 -. M2

preceeds the connection M2  M1  then in the flow with E > 0 it is

possible for the connection M. -- I to occur.

INSERT FIGURE 7.

In order to state a correct version of the conjecture we make the following

definition and restrictions. For fixed V. Let

W = W(V) = {e > 01 e is not a standard wave speed).

From now on we only consider potential functions which satisfy the following

two assumptions:

(A4) W is a discrete subset of (0,*)

(A5) Let O* c W, then there exists a unique i,j and k such that

i,j C Jk and there is a unique connection Mi - M. which is a

solution to S(e*).

Definition 3.28, Let e A > eB > 0. ({A,eB) are an adjacent pair of wave

steeds if 8A  and 8B  are standard wave speeds and W r) (eB,eA) = .

Theorem 3,29, (Reineck [71) Suppose that for E E (0,c0 ) , M, and M. arc

adjacent in the T( 0,e) flow defined partial order and that 1 = tji E

T( 0 ,el). Then there are 6 2'.....k c (81,eo) and Mi = Mm M...M%= M. such

2' -'kI



-56-

that mp >p mp+1, p-!,...,k, where >p is the flow defined partial order in
Wed.t

Provosition 3.30. Let (AB) be an adjacent pair of wave speeds. If

" "C~M(%) T(GA,%)]

CMT(A,)(eA)

is a connection matrix for ST(A,AB) then T(eA,%B) i E(i,j) an elementary

transition matrix. The converse is also true. Given {eA,8 B) an adjacent pair

with

CM(%) E(k,I)

CM(0A)

the connection matrix for ST(eA,8B), then there exists e* e (eeA) such

that e* E W and there exists a connection Mk -. M, a solution of S(e*).

Proof. This is just a special case of theorem 3.29. U

Because we will work with elementary transition matrices rather than the

more general transition matrices, we have not attempted to correct the

conjecture in the most general sense possible. However, it may be worth

noticing that for a transaction matrix T, the correspondence between ti I

and the existence of e* corresponding to the connection Mj -Mi will ,

occur only if

.- ..
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T =E n M] EA_1 19 ... 19 E 1

where (Ek) is the elementary decomposition of T realized by the flow.

Several comments are in order concerning (A4) and (A5). (A4) seems to

be a generic assumption, though the author claims no proof of this. It would

be interesting to have examples of potential functions, V, which fail (A4) in

the following three ways.

1) W is dense on some interval in (0,-).

2) W contains an interval.

3) W has a positive limit point. (There are many interesting cases

where 0 is the limit point of W, namely those which have an infinite

number of traveling wave solutions.)

(A5) also appears to be a generic assumption, however it raises different

questions. Let (GA,%) be an adjacent pair and let eo* be the unique

element of W n (OB,eA), but assume that there exists more than one

heteroclinic solution to S(6*) between critical points in the same partition.

Furthermore let

T(eA,%) 0 1 1

Do there exist perturbations of V which realized the diagrams in figure 7?

....-. ...-..
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3.4 Transition Matrices for SP

It should not come as a surprise that the connection matrices for some

potential functions are easier to determine than for other potential functions.

The perturbation system, P, can be used to gain information about difficult to

analyze potential functions from simple potential functions, i.e. ones with strong

symmetries. Theorem 2.17 allows one to conclude that the connection matrix

*, for SP is of the form

CM(l) T

0 CM(0)

where CM(l) and CM(O) are the connection matrices of the potential

functions V1  and Vo, respectively, at the wave speed e > > 1. T is

again called the transition matrix.

Proposition 3.30. (a) T = 0 0 where Tk is a Ilk / k -0 Tn. 1  0 ,''

0" 0
X0 To

matrix.

(b) Tk is upper triangular with diagonal entries equal to 1.

Proof. (a) For Tk, k=0,...,n-! the argument is the same as for proposition

3.6(a). In the case of Tn, however, proposition 2.10 says that for e

.N .~. .% '* % *--*
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sufficiently large there does not exist a connection Mi -. M if ij € J .

Now, if an element of Tn  is non zero for all e C-(, 0 ) then there exists

at least one connecting orbit of the above type (see theorem 3.29) for some

potential function V. , s E (0,1).

(b) If there exist tij e Tk  with i > j then by theorem 3.29, for some

value of s, s e (0,1), proposition 2.5(a) is contradicted for V.

Notice that no assumption is made that the transition matrix be an

elementary transition matrix. However if tij c Tn  then there exists an

elementary decomposition of T which does not contain E(j,i). -.

j-.-
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4. Examples - .

e%.

This section consists of simple examples to demonstrate how the

elementary transition graphs can be used to obtain information about the set

of possible bounded solutions to S(e) for various values of e. For the

following discussion it must be kept in mind that if eA and e B  are an

adjacent pair of wave speeds then it is possible that CM(8A) = CM(eB). (See

remark 3.9)

Definition 4.1. For fixed V the 2ILh from 6A to in the elementary

transition graph is the path

E EE
CM(OA) = CM( 0) M() E _e E CM(Ok+l) = CM(eB)

where ({i,8i+l) are adjacent pairs, i=0,1,...,k.

Assumptions (A4) and (A5) assure that given GA > GB > 0 there exists

a path from eA to 8B. By proposition 3.4, for each V there exists a

CM(-,V) which can be taken as the starting point of the path. The total

vath of V is the maximal path beginning with CM(m,V).

°°I-
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4.1 A Simple Potential Function

Let V: A2 - 5 with q=5 and assume Jo  0. Thus we are

partitioning the set (1,2,3,4,5) into J2 and J11 It can be shown that the

only possible portions are J 2  (1,2,3) and J, = (4,5) or J2 = (1,2,4) and

J= (3,5). As the reader can check, in what follows the results for the

partition J2,J1  are contained in the results for J2,J. Hence we shall only

consider the latter case. (3.1) says that a connection matrix for SS(G) must

be of the form

* J2 11 1 2 3 4 5 .

CM(8) J J2 0 A 2(e) 12 0 0 *.-'':.

3 00 -

J1 0 4 00 0 0 0..
5 [ ] 0 0 0 *

where * denotes an unknown entry. Proposition 3.3 implies that the rank of

CM(S) is 2 hence the rank of A2(O) is 2. Since we are using Z2

coefficients there are 42 matrices A2(8) which satisfy this restriction. As

will be shown we can do much better. To save space we shall no longer write

out the complete 5 x 5 matrix but rather the matrix A2(e) and call it

CM(G).

As was remarked before, the perturbation system, P, can be used to

determine the elementary transition graph for a general potential function if

there exists a simple potential function which is related to it by a smooth

critical point preserving homotopy. We call a potential function V: WI -A

co-linear if all the critical points of V lie on a straight line. Since we are

. . . . . . .

-,,4
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I considering V: A2 A and Jo= 0 it is easy to find a critical point

. preserving homotopy of V to V where V is co-linear. (The homotopy

consists of sliding the critical points along the contour lines). Furthermore,

this co-linear potential function V is equivalent, for our purposes, to a

potential function mapping A to R For the moment then, assume
V' : A - A , q=5, J, = (1,2,3) and Jo = (4,5). (Notice that the subscripts

changed because the dimension of the system S(e) dropped from 4 to 2.).

Proposition 3.4 gives the existence of CM(SV). Let

CML (=) f (CM(SV)IV: A - , q=5, J, = (1,2,3) and Jo = (4,5)).

Provosition 4.2.

CM,,(-) 0 1l 1 0

, 1, , 1 , 0 , 0 1 1 , 1

Proof. Since V: AR -. I the critical points of V must line up as follows

Mi M. M. M.
'1 2 Mj2 M'3

where i k IE J1  and ik CJ 0 - Using proposition 2.11 or Terman [9] one

concludes that for 0 sufficiently large the only connections are the unique

; i '. '. ..-, _' .-' , ..., ..', . .i .. ., .- 'L I " .iL ,. .. " . .. . . ..-.' " , ...,. , . ... .' i .i ' .-' -
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connections M. M. , M.. M M M and M. M Considering
1 4 2 i2 '2 '3 M oniern

all possible permentations of the Mi's and Mi's gives the result. 0

Proposition 3.6 implies that the set of possible elementary transition

matrices is ((E(2,1), E(3,1), E(3,2), E(5,4)). Since V: A - IR we can exclude

E(5,4). Finally each Mi has a 1-dimensional stable manifold. In the case
k

of M. or Mi at least one of the orbits on the stable manifold is

unbounded in backwards time. Thus the number of non zero entries in

CM(O) must be lcss than or equal to 4. Using these restrictions we can

generate the realizable maximal transition graphs shown in Figure 8. Because

the Conley index and connection matrix is stable under perturbation (See

Conley [1], Franzosa [3]) we have the following:

Theorem 4.3. Let V: An - be sufficiently close, in a suitable metric, to

the potential function V: D- I discussed above. Then the total path of V

lies in either G,, G2 or G3 •

INSERT FIGURE 8.

An EJ) division of a transition graph G, are the subgraphs of G

obtained by deleting all E(i,j) edges. In the case of the elementary

transition graphs G, i= 1,2,3 an E(2,l) division always results in two

, disjoint subgraphs. We can denote the subgraphs by 71i and 1i where none

of the vertices of Li are elements of CM(-).

For V: A - P a simple shooting argument shows that there exists a

unique wave speed e* such that the connection M s2 - M1  is a solution to 7

..... ~....... . . ..
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S(O*). Therefore, if e < *, CM(O) is a vertex of Li. If CM(oo,V) is

....

or

then for 6 < 8*, CM(6) is a vertex of Z L2  is a particularly simple

graph. Notice that the two vertices differ only in the 2,4 and 2,5 entries.

One can show (See Terman [9]) that given 8o > 0 it is not possible for

S - M2 or M -. M2 to be a solution to S(e) for all e e (O,eo]. This

forces the path of V to keep alternating between the two vertices of L2

for 8 < 8*. Hence we can conclude that there exists an infinite number of

elements of W(V) for which an M. - M2 connection is a solution. In 4.2

we shall attempt to repeat this proof in order to show that there exists an

infinite number of M 3 M2 connections for a particular V: IR2 -. JR To see

an alternative proof of the result for V see Terman [9].

We now return to the original problem, V: IR2 -. R and show how the

elementary transition graphs of V are related to those of V. Because

V: R -, we were able to restrict the set of possible edges and vertices, and .-

hence, the graphs Gi are not algebraically maximal. Dropping these

restrictions, the graphs G i=1,2,3 become the algebraically maximal graphs

Gj, j=1,2, shown in figure 9.

It still needs to be shown that G,, j=l,2, are the only possible elementary

transition graphs. But given V, it is related to some V: R2 -. R a co-linear N-

potential function via a critical point preserving family of potential functions.

Thus CM(*,V) and CM(*,V) are the same or are connected by an E(5,4)

o .. .. . ..- .
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edge. Refering to G we get that CM'(-) =CML(-) where

CM(-) (CM(- V) V: 'R2 "5 q J 2 =(1,2,3), and J1  (4,5))

Thus we have

Theorem 4.4. Given V: A2? A* q~,=5, J2 =(1,2,3) and J, (4,5), the total

path of V lies in G,, i=1,2.

It is worth noting that this theorem does have content to it. The

algebraic restrictions allowed for the possibility of 42 connection matrices.

Theorem 4.4 says that at most 24 are realizable for any system S(e).

INSERT FIGURE 9.



-66-

4.2. Existence of an Infinite Number of Traveling Waves L.

We are interested in showing how the results of 4.1 can be applied to a

specific system. The goal is to show that there exists an infinite number of

wave speeds for which an -- M2 connection occurs. The proof is similar

to that given for the 1-dimensional potential function, V, of Section 4.1. The

assumptions on V are made in order to emphasize the connection matrix

techniques and to minimize the otherwise necessary computations. Let

V: P2 A have contour lines as shown in figure 10.

As before we assume that V satisfies assumptions (Al) - (A5). In

addition we assume the following.

(A6) K is a gradient line of V, i.e. if x e K then VV(x) is

tangent to K.

(A7) The stable manifold of (M4.0) (note that it is one dimensional)

projects to the right of L for all 8 > 0.

(A8) There exists a unique homoclinic orbit at (M ,0), for the system

S(O).

(A9) Let V(M) < h < V(M2 ). Let z(t) = (x(t), y(t)) be a bounded

solution to S(0) such that H(z(t)) = h. Then there exists (tk)k=. , tk co

and x(tk) r) K 0 0, i.e. x(t) crosses K infinitely often.

(AIO) Fix 6. Then the unstable manifold of (M,,O) j=4,5 and the

stable manifold of (M2,0) cah intersect each other non-transversally along at

most an odd number of connecting orbits.
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INSERT FIGURE 10.

Theorem 4.5. Let V be a potential function as above, then there exists an

infinite number of wave speeds for which an MS - M2  connection is a

solution.

The rest of this section details the proof of this theroem. The above

assumptions will be explained as they are used. We begin by using (A6) to

prove the following proposition.

Proposition 4.6. CM>V) [ -.]

Proof. One can construct a critical point preserving homotopy from V to V,

a co-linear potential function where the critical points are arranged as

M1  M5  M3  M4  M.

Clearly,

CM( ,V) 0

Notice that the homotopy can be performed without violating (A6) for any of

the potential functions along the homotopy. But (A6) makes it impossible for

an M5 -. M4  connection to occur for any wave speed. An E(5.4) is the

only edge which can be realized in the perturbation system for this problem.
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Thus, CM(.,V) = CM(-,V). U

Corollary 4.7. The total path of V lies in the E(5,4) division of G2

which contains CM(,,V).

Proof. As was mentioned above, (A6) implies that E(5,4) cannot be an edge

in the path of V. U

Proposition 4.8. There exists an odd number of wave speeds for which there

exist M 2  M i connections.

For a proof of this the reader is refered to Mischaikow [6]. The result

follows from (A8) in a non trivial manner, which requires comparing

CMT(-e,e) for small and large values of . For the co-linear problem a

simple shooting argument is sufficient to give this result. Clearly, this is not

the case for the 4-dimensional system.

Corollary 4.9. There exists a wave speed 8 such that the path of V

corresponding to 8 < 0* lies in the graph:

E(3,1) E(3,1)
• 4.

* . 1 1E ( 3 ,2 ) ; --

01i7

'I.K"

.1•°*

5,2
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Proof. By proposition 4.8 there exists a least wave speed 0* such that an

M2 -# M, connection occurs. Because an odd number of E(2,1) edges lie on

the total path of V, the portion of the path corresponding to 8 < 8* must

lie in L. (L 2  is defined in the equivalent manner as L 2)" Including the

E(5,4) division of corollary 4.7 gives the desired graph. U

Co iecture. For e < 8*, CM(OV) is a vertex of L2'

A nice fact about this approach is that we are still able to prove

theorem 4.5 without having to resolve this conjecture. By examining the graph

in Corollary 4.9 one sees that a M. -, M2 connection occurs if and only if

either an M. -5 M2 connection occurs and an M4  M2 connection stops or

an M5  M2 connection stops and an M- M2 connection occurs. Thus we

need to be able to show that M. M2  and M4  M 2 connections cannot

persist for all e E (0,8*).

With this in mind we define

Zj: ( 8 A,%) x [0,1] p4  j=4,5

a continuous map with the following properties.

Zj(e) (e) [0,11 A4

where Z,(o) (0) = (Mj,0) , Zj(O) (i) (M 2,0) and Z,(e) (0,l) corresponds to

a connection M - M2 for the system S(e).
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If, for example, 8 is a standard wave speed and

cm(e) M 0 i

then Zj(e) can be defined. The interesting question is, given 6, what is

the maximal interval (GA,8B) on which Z. can be defined.

Let n: A4- R be the projection fl(x,y) = x. Let e E (eA,eB).

Define v(,e)to be the number of points in which fl(Z3(e)[0,I]) intersects

K.

Prorposition 4.10. V(Zj) %(Z,(8)) for 8 e (eA'%B) is well defined, i.e. v

is independent of 6.

Proof. If eG'eE (GA' 8 B) and v(Zj(e)) % vZ.(e')) then there exists 0'

such that fl(Z,(S")(0,l)) is tangent to K. But Zj(O")(O, 1) represents a

solution to S(e"). Since K is a gradient line, (A6), any solution whose

projection under n is tangent to K lies entirely on K. Thus Z1(EV") (0) ;1

(M,0). Contradiction.

Corollary 4.11. X.4Z,) is odd and %(Z4) is even.

Protnosition -4.1-2. %(Zj(6)) -. *as 68-

Proof. Because Z (e) is a path f rom (MJO) to (M 2 90) there exists e e

(0,1) such that H(Z1(6)(C()) C (V(M 3). V(M 2)) for all or (u*,l). Thus for

8 sufficiently small Z,(O)(U*+(, 1-c) I1>> c > 0 can be approximated by a
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solution of S(0). (A9) implies that fl(Z,(e)(ct+c, 1-E) can be made to

intersect K arbitrarily often for e sufficiently small. U %

%a

Corollary 4.13. if Zj(e) (eA'6B) x [0, 1] P4 is as defined above then

SA > 0.

This proves the theorem since (AlO) implies that at each GA the 2,j

entry of the connection matrix must change.
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