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Abstract

A classification scheme is presented for traveling wave solutions of

reaction diffusion systems of the form x, = x

N ax t YV(x) where t, « € R

xe RR and V: R* - R The important assumptions on V are that
lim V(x) = -» | that the set {x|V(x) > - Q) is convex for Q sufficiently
-
lll;dlrge, that V has a finite number of critical points, and that if M, and
M, are critical points of V then V(M,) # V(M,).
The primary tools used are the Conley index and connection matrix. The
classifications are given via paths in graphs whose vertices and edges arc

connection matrices. These results are then used to prove the existence of an

infinite number of traveling wave solutions for a specific example.
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Many chemical and biological systems have been modeled by systems of

reaction-diffusion equations. A simple system of this type is

Xy = Xgo + VV(x) 0.1)
where o«T ¢ R x ¢ R and V:R" - R A typical problem is to prove the
existence of a special type of solution called a traveling wave. A traveling
wave solution to (0.1) is a non constant bounded solution of the form x(«7)
= x(t) where t = « + ©T. This solution must satisfy the non-linear system of

O.D.E’s
X, = v (0.2)

Y, = eyi - DiV(X) to= gt—

with boundary conditions that 1lim (x(t),y(t)) = (M,;,0) and lim (x(t),y(t) =
oS -

(Mj,O) where M, and Mj a:e critical points of the pote:ltial function V.

Such a solution is called an M; - M connection and is said to occur at the

wave speed ©. This paper presents a method for classifying the possible

traveling wave solutions to (0.1) which relies only on information about the

critical points of V. The necessary assumptions on V are given in Section

2.1.

The primary tools used for the classification are the Conley index and

connection matrix. The Conley index, h(-), associates to each critical point
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of V a pointed k-sphere denoted I¥X. We call a connection M - M a
degree t connection if h(M,) ~ £* and h(Mj) ~ T**!  The connection
matrix gives information about degree -1 connections and, in some sense, is
stable under perturbation. However, the traveling wave solutions of (0.1)
which are of primary interest are degree 0 connections and hence correspond
to non-transverse heteroclinic solutions to (0.2). As such they will in general
only occur for a discrete set of © values. What will be shown is that the
connection matrix changes precisely at the wave speeds for which degree 0
connections occur. This in turn can be used to determine the possible degree
0 and degree -1 connections at various wave speeds for a fixed potential
function V.

This paper is divided into four sections. The first, consists of a brief
review of the Conley index and a short discussion of the connection matrix.
Sources for some of the material in 1.1 are Conley [1], Conley-Zehnder [2] and
Salamon [8). For a discussion of the index filtration and connection matrix
the reader is refered to Franzosa [3], [4) The second section presents the
simple analytic results for (0.2) and two other related systems which will be
studied. In addition, the results are translated into the language of Conley.
The third section applies the connection matrix techniques to the three systems
of interest and integrates these various results to develop the classification
scheme. Also, the question of how to interpret the results is discussed. The
classification is given in terms of elementary transition graphs. This was
motivated by the work of Terman [9] who studied (0.1) where x ¢ R His

results are more geometrical in nature and limited to the I1-dimensional

problem but many of them can be reproduced via the elementary transition
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graphs. The fourth and final part consists of two examples. In 4.1, several
elementary transition graphs are constructed. In 4.2, one of these graphs is
used to conclude the existence of an infinite number of wave speeds for
which certain degree 0 connections occur.

This problem was suggested to me by Charles Conley and many of the
results were motivated by many enjoyable conversations with him. [ would

also like to thank Jim Reineck and Liz Mansfield for sharing their ideas with

me.
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1.1 Conley Index

Let the continuous map ¢ R* x R - R* denoted by ¢zt) = z-t be a
flow, i.e. z-0 = z and (z-t).s = z-(t+s) for all z ¢ R*, s;t ¢ R Given

A CR", its w and w* limit sets are given by

WA) = N cl(A-[t,%)
t>0

Ww*A) = N cl(A-(-=t)])
t>0

where cl(X) is the closure of the set X.

Definition 1.1 A Partially ordered set is a pair (P,>) consisting of a set, P,
along with a partial order relation, >, satisfying:
1) nM>nN never holds for M e P

2) If I>mn and N > n'' then n> n''.

In the applications it is often clear what order relation is being assumed
and hence one often writes P instead of (P,>).

An jintervalin P is a subset, I C P, for which nn'e I and m> n''
> ' implies that N'' € I. An attracting interval in P is an interval, I,
such that N ¢ 1 and N > N’ implies N' € I. Now let I and J be
disjoint intervals, then (I,J) is an adjacent pair of intervals if:
1) J UI is an interval.

2) Mel and N’ ¢ ] implies 1 ¥ n’.

e
(e g

-~
R

PRl ot I A
e 2 A
EAROROA S

- X

RIS
« ¢

D

[N

K

L

W

LY

v




NS
f:}fl
-
L | &
. Definition 12. A set S C R js jnvariant if S-R = S. S is an ”,
Y isolated invarijant set if there exists a compact neighborhood, N, of S such E‘
: ) that S is the maximal invariant set in N. In this case, N is called an ::E
d ‘ isolating neighborhood of S. L;
Definition 1.3, Let S, and S, be compact invariant sets. C(§5,S;) =
' (zlw‘(z) €S, and w(z) C S, C(S,,S,) is called the connecting set from :‘—:;
. S; to S, E‘
%
- ) Definition 14, Let S be a compact isolated invariant set. A Morse
) decomposition of S is a collection, M = (M (N )| ne(Py), of compact o
invariant sets in S. Furthermore, the sets M(N) and the partial order are

related in the following manner. Let z € S\{ v M(n)). Then there exists .
5 nn' ¢e P with nN' > N such that z ¢ C(M(I'll'.[)e,ll:d(n)). The individual sets, ::
‘ M(m), are called Morse sets. ‘ﬁ‘
, P
- It is important to recognize that given S there may be different :-;.j
_ collections ({M(m)} which give rise to a Morse decomposition. In addition, t-
.' each collection may have several admissable orders. For example, let S be :
- as in Figure 1. The possible collections of Morse sets are §
i_'. M, = (M(a)M(b),M(c)}, M, = (M(a) U M(b) U C(M(a),M(b)), M(c)} {1:}3_.
Mg = (M(a) U M(c) U C(M(@a),M(c)), M(b)} or M, = {S).
N b Given M,, admissable orderings for P = {abc) are a > b > ¢ a>c¢c > b .:
or a>b an>c }\_
) .:w
"ZE -
e e
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- Never-the-less, given the collection of Morse sets, there is a minimal ) {{-_

b

> ordering which is admissable. This is called flow defined partial order, >, A

H XA

and is obtained by setting N > M' if and only if there exists a sequence of

Co Y

T distinct elements of P, M’ =M, .., N =N such that C(M(T),M(N, ,)) # ¢ for
n all k=1, ., n

Let I be an interval in P. Define

M) = {z|w(z) C M(I), w¥(z) C M(I') where nA' ¢ I).
It is easily checked that M(I) is an isolated invariant set.

Definition 1.5, Let N be compact. A subset K C N is positively

invariant in N if z ¢ K, t 30, and z-[0,t] C N implies z-t ¢ K.

Definition 1.6. Let S be an isolated invariant set. A pair (N)N;) of

compact sets is an index pair for S if:

1) cI(N,\N,) is an isolating neighborhood of S

2) N, is positively invariant in N.

3) If z ¢ N, and z-[0,») C N,, then there exists a t 2 0 with
z-[0,e] CN; and z-t € N,

Given an index pair, (N,Ng), N, is called the exit set and (3) implics that

any orbit which leaves N, in positive time has to go through N,

Definition 1.7. Let M = (M(n)lneP} be a Morse decomposition of the
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- isolated invarient set S. An index-filtration for M is a collection of
compact sets, N = {N(I)}, indexed by the set of attracting intervals and

satisfying:
1) If 1 is an attracting interval then (N(I),N(@)) is an index pair for
M(I).

2) If 1, and 1, are attracting intervals then N(I,) N N(I,) = N(,nl,)

and N(I,) U N(I,) = N(1,Ul,).

Franzosa [3] showed that an index (filtration for M can always be

- constructed. Furthermore, he showed that if (I1,J) are an adjacent pair such

- that IUJ is an attracting interval then (N(IUJ)), N({I)) is an index pair for
MQJ).

Let (N,Nj) be a compact pair and define an equivalence relation, ~,

on N, by

z~z if ze N, and z ~ 2' |if z,z' € N,

then N,/N, (z|zeNl\No} U (Ng. If p. N, - N//N, is the obvious
projection map then N,/N, can be topologized by letting U C N,/N, be

open if and only if p}(U) is open in N,

Definition 1.8, Let S be an isolated invarient set with index pair (N.Ny).

o The Conlev index, h(S), is the homotopy type of (Ny/Ng, Ny

Conley [1] proves that this index is well defined. For purposes of computation
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it is much easier to use a homology or co-homology theory rather than a

homotopy theory. Using Cech co-homology one has that

H*(h(S)) = H*(N,, N,).

where (N;, N;) is any index pair for S. Using this theory one could define
a degree 1 connection matrix which is a co-boundary operator. For the
author, however, singular homology theory is more intuitive and leads to an

easier geometric understanding of the results. In order to have Hs«(h(S)) =

H#(N,;, Ny) for singular homology it is necessary to restrict the set of possible
index pairs such that N; is an absolute neighborhood retract of N, (Sec

Munkres [5]).

Definition 1.9. An index pair is regular if the function 7 : N, - [0,%]

defined by

sup {t > 0|z-[0,t] C N,\Ng) z € N\N,
T(z) =
0 z € Ny

is continuous. A regular index filtration is an index filtration such that for

every attrating interval, I, (N(I),N(@)) is a regular index pair.

If (N,,N;) is a regular index pair for S then Hu(h(S)) = H«(N,N().
Let I be an interval in P. I will always denoted an interval such
that (I,I) is an adjacent pair and I U1 is an attracting interval in P. In

A

A
general I is not unique, however, given I, I always exists. The following

.........
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- lemma will be needed in the proof of theorem 1.11.

Lemma 1.10. (Salamon [8]) Let (NpNo) be an index pair for S. Then there

exists a continuous Lyapanov function g : N, = [0,1] such that

1) 8@ =1 iff z-[0) CN, and w(z) CS. Py
D“h
2) gz =0 iff z e N, )

YR i
.

3) if t>0,0<g(z) <1, and z:[0,t)] CN;, then g(z-t) < g(2).
Furthermore, if € > 0 and N (Ng) = (z € Nllg(z) ¢ €) then (N ,N.) is a

regular index pair for S.

Proposition 1,11. There exists a regular index filtration such that given I, an
» A A

interval in P, (N(I U I), N(I)) is a regular index pair for M(I).

Proof. Let N = {FJ(I)|I an attracting interval in P} be an index

filtration. Using lemma 1.10, a regular index filtration N = (NI an

attracting interval in P} will be constructed. Let K C P. Define B(K) =

k-1 k
{ne K| if " € K then N ¥ n'). Let L, = B(P), L, = B(P\ VL), ¥ =VL,

i=1 i=1
and T, = P\I. Notice that T, is an interval in P and hence

(N(P),N(%,)) is an index pair for M(T,).

By definition of an index filtration, (FI(P), Fl(ﬂ)) is an index pair. By
lemma 1.10, (I:I(P), ﬁe(ﬂ)) is a regular index pair for S. Similarly,
(N(P),N(£))) is a regular index pair for M(T,). Let N(9) = N(9).

Let N e L. Define N( = (z € N(2)| t 2 0, z-t ¢ N} U N(@).
Notice that N(M N N(M') = N@ if nm # n'. Furthermore N(M) is

compact.
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Let T4 t:I(P) =+ [0,] be as in definition 19 for the index pair
(I:I(P),N(fb)). Let 1 €L, then N(I) = U N(m. Given I, 1 C L, definc
A Nel

o Nivh -[0~ by

A A

sup {t > 0|z-[0,t] NI UVINN{I) if z e N(TU f)\N(f)

O(Z) = A
0 itz e N(I)

A A

Showing that o is continuous gives that (N(I U I'), N(I)) is a regular index
pair. There are three cases to consider.

Case 1. (z5 ¢ N(I1 U D\N(D)). NI v D\N(I) is open in N(I U I), hence there
exists an open set U, such that z, ¢ U C N(I U D)\N(I). Now let z ¢ U
then 2z € N(IT) where N el The orbit of 2z passes through N(f)

without passing through N(I). Thus o|U= T°|U' Thus o is continuous

at Z,.

Case 2. (z5 ¢ N(D\N(@)). N{I) n N(I) = N(I nI) = N(@#). We can choose U
open, z, € U so that U N N(I) C N(§). To see this, assume not, i.c. assume
there exists a sequence {z,), such that z € N(I)\N(®) and z, = 2z, then

z, € CI(N(I)\N(P)) hence 1z, ¢ N(@). Thus U C N(f). If UC N(;) then

o| =T But FI(I) is a neighborhood of N(I) by construction, thus we

u °|U'
can choose U C N(I).

Case 3. (z; € N(@)). Let U be open, z, ¢ U. By the previous examples we
are only concerned with z € U n (N()\N(@)). But again U can be chosen

such that o|U = TOIU‘

RS ] I
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We are now ready to perform the induction step. Let I C £ be an
A

interval in P. Assume that (N(I U I), N(I)) is a regular index pair of 1. We
need to show that the same holds for any interval contained in L. As
before (E(P), ﬁe(tkﬂ)) is a regular index pair for M(T,,,). Let melL,,.

Define

N() = (z € N(2,,)| t 20, zt € NOIN(E,).

Let 1 C ¥ be an interval in P. Then there exists a unique interval J

k+1

q
C L, such that 1 =UILUJ where I e L, ,, for i= 1.,3 Definc N(I)
q i=1
= U N(1) U NQJ).
i=1

Let 7. N(P) - [0,) be the function in definition 1.9 for the index

pair (N(P), N(%,)). Define o NI v f) = [0,*] by

sup {t > C|z-[0,t] C N(I U DAN() if z e NI u ;)\N(Al)

o(z) = A
0 if z e N(I).

The proof that o is continuous is as for the previous case. [ ]
We finish this subsection by computing the Conley index for a

hyperbolic critical point.

Example 1.12. Given z = f(z) a differential equation in R", let 1z, be a
hyperbolic rest point of the resulting flow, (ie. f(zy)) = 0 and all the
cigenvalues of Df(z,) have non-zero real part). There exists a neighborhood,

U, of 1z, with coordinates such that for any { € U the flow can be
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written as  {-t = ({,et..feh0, et 0 e®) where [ = 0 corresponds to Zq
Define N; = [-€,¢,] x .. x [-ep€,] € U and Ny = {2€)) x .. x {z€,) x
[€xr1€ppr] X o X [-€,6 ] C ON, then (N,Ny) is an index pair for § = {z,).

Thus h(S) ~ ¥ a pointed k-sphere and

z, if j=k

H; (h(S); Z;) = H{(N,NGZ,) =
0 otherwise

]
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. 1.2 Connection Matrix ‘
-3

I.\

A

Let S be an isolated invariant set. Then, in general, there are various :.:

o..\

Morse decompositions and orderings thereof, which one can associate with S, o
and for each possible Morse set there is a topological invariant, namely, the ';f:'-
Conley index. The connection matrix is a method for organizing this :j:j
information. To be more precise, given S and a regular index filtration :
= {N(I)}, the connection matrix extracts some of the information determined
by Ha«(N(I U I), N(I)), i.e. the homology of the index for each possible Morse ,;'_'
) set of S. The idea behind the connection matrix is surprisingly simple and 1
-t

elegant. Unfortunately, because there are so many possible index pairs, e
constructing the connection matrix is, in general, quite complicated. Therefore, :::j:
before proceeding with the general definitions we give the following o
elementary but important example of a connection matrix. N
il

’ . S

Let N, € N, and N, C Nl'. A map between pairs f:(N,;,Nj) - o

st

’ ' ' A
(N;,Ny;) means that f: N, = N, continuously and f(Ngy) € N,. .
.“.

W

N

Definition 1,13, Let S be an isolated invariant set with a Morse N
SO

decomposition (M(a),M(b)}. If b > a then M(a) is called an attractor and »
W

denoted, A, while M(b) is called a repeller and denoted, A*  Together o
(A,A*) is called an attractor-repeller pair for S. o
. ped
One can check that if 1 C P is an attracting interval then M(I) is an S

A

attractor and M(P\I) is the corresponding repeller. Furthermore, if (1)) is :::'4
an adjacent pair of intervals then M(I) = A, M(J) = A* is an attractor :';:
-3

N

=
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repeller pair in  M(I U J).

Given an attractor-repeller pair (A,A*) of S there exists a regular
index filtration N, C N, € N, such that (NuNp), (N, Ny), and (N,N,) are
regular index pairs for S, A, and A®* respectively. This leads to the

sequence of maps
i j
(N;,Ng) = (Ny,Ng) = (N,,N,)
where i and j are inclusion maps. Passing to homology one has the long
exact sequence

ln n A

§ n
= H(Ny,Ng) —H (N;,Ng) — H(N,,N;) = H, ;(NNg) —---

or equivalently

Hae(h(A)) H«(h(S))

A I (1.1

He(h(A*))

A is the connection matrix for this example.

Example 1.14. Consider the case where (A,A%) is an attractor-repeller pair
for S and C(A*A) = 0. Then there exists a regular index filtration N, C
N,, N, € N, such that N, n N, = N, and (N, U N,, Ny, (N,Ng), and

(N;,Ng) are regular index pairs for S, A, and A%, respectively. Now
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consider the maps

i
(NJNg — (N, N, N

L

(N, UN,, Ny

Passing to homology, one can check that ke H(h(A)) — H(h(S)) is an
isomorphism, thus is is an injection and js a surjection. Exchanging N,
and N, gives that the corresponding ks: H(h(A*)) — H(h(S)) is an
isomorphism and hence, is is an injection and je a surjection. Thus in

the long exact sequence (1.1) A is a zero map. Thus we have proved

Theorem 1.15. If (A,A%*) is an attractor-repeller pair in S and S = A U

A* then the flow defined boundary map A He(h(A)) = He(h(A)) is trivial.
In application the contrapositive will be used.

lary 1.1 If A is not a trivial map then S # A U A* je.

C(A*,A) £ 0.

The connection matrix has been shown to exist if one uses homology (or
cohomology) with field co-efficients. For our purposes it will suffice to use
the field Z, Also, since we are only interested in the homology of the index

of M(I) and not the homology of M(I) we will write H(I) or H(M(I))

in place of He(h(M(D)); Z,).
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Example 1.17. Let S be an isolated invariant set such that H(S) = 0, ic. A

' ;
o 'y
1

H(S) = 0 for all . Assume that A and A®* are hyperbolic critical
points with Conley index I* and I*Y' respectively. From the long exact
sequence, we have that 4, . Hk+l(A.) - H(A) is an isomophism. Thus by
Corollary 1.16 there exists a connecting orbit from A* to A. Because Tk
and I**1 have only one non-zero homology group and because we arc using
Z, cocficients we can write A Has(A) © Ha(A*) = He(A) ® Ha(A*) in the

form of a matrix as

A A*
A 0 1 }
A= -
A* 10 0

With this example in mind we now begin defining the connection matrix.

Let 1 be an interval in P, then

A(l: @ H(i) ~ @ H(i)
i€l i€l

Since H(i) = He(h(M(i); Z,), it is a graded vector space and thus @ lH:(i) is
i€
a graded vector space. Thus A(I) is assumed to be a linear map and is

represented by a matrix

am = | amy |z [HG |~ | HG)

where each A(I)i‘i is a linear map from Hsx(j) to Hs(i).
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Definition 1.18 (i) A1) is strictly upper triangular if &), = 0 for i € j. =5
(ii) &) is a boundary map if A(I); is of degree -1 and 3

o~

-’
-
'

Y

a2 = o.

Let 1 and J be intervals in P. Define CA(l) ='°;1H(i) and aQJ,I):
1

Ca(J) = CA(I) where

A(Jl) = A(P)ij

such that i€l and jeJ. If AP) is a strictly upper triangular boundary
map then given 1 an interval of P one can define a chain complex
(Ca(l), a(l)). Of course, this chain complex generates homology groups which
we denote Ha(I). If (I,J) is an adjacent pair of intervals then one can define

the exact sequence

0 — CAl) — Cag U T) 2 cag) — o0

where i and j are the obvious inclusion and projection maps. Passing to

homology we get the long exact sequence

au.n
— H,A(I) — HA( U J) — HA(J) —— H,_,a(0) — ... (12)
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Dcfinition 1,19. An upper triangular boundary map A(P) is a connection
matrix for the Morse decomposition (M(l‘l)|ne(P,>} of S if there exists
isomorphisms &(I): HA(I) = H(I) for any interval I in P such that:

(i) For every neP, &m): HA(M) - H(M) is the identity

(ii) For every adjacent pair of intervals (I,J) the following diagram

commutes
A1)
- — HA(I) — Ha(I v J) — Ha(J) — Had) — ...
14’(1) l«’(l vl l¢(1) 14’(1)

ALl
-+ H(I) — HQI v]J) — HJ) —'H{I) — --.

where the top line is (1.2)

Franzosa [3]) showed that using field co-efficients a connection matrix
exists for any isolated invarient set S with Morse decomposition M =
{M(n)ln € (P,>)). It should not be assumed that the connection matrix is
unique, in fact, for many interesting examples it is not. Reineck (7] proved

the following unigueness theorem.

Theorem 1.20. Let {M(n)|n € P} be a Morse decomposition of S such that
each M(M in a hyperbolic critical point. If WY(M(M)) wi(M(n)) for all

I # ' then the connection matrix is unique with respect to the flow defined

partial order.
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o'y

. The obvious question at this point is what kind of phenomena results in

t.:" e

a non-unique connection matrix? There is still no satisfactory answer to this.

“5

ALK

However, the following example is enlightening.

INSERT FIGURE 2.

(..

Example 1,21. Assume we have a parameterized family of flows whose phasc
plane portrait at values -1,0, and +1 are as shown in figure 2. Theorem 1.20

says that the connection matrices CM(1) and CM(-1) for the Morse

decompositions M,; and M, respectively are unique. It is easy to check

that they can be written as

M, M, M M, M, M,
M [0 11 M o 170
CM() =M, |0 0 0, CMC-1) =M, [0 0 0O
Mglo 0 0 Mg [0 0 0

What about CM(0)? Franzosa [3] showed that CM(-1) and CM(l) are both

connection matrices for M, and that they are the only possible connection

matrices. The non-uniqueness comes about because in M, 3 and 1 are not

adjacent under the flow induced partial ordering and because we have a
non-transverse saddle-saddle connection which can perturb to M,,.

We can ask another question, given CM(#%l), is it possible to determine
CM(0)?

Again, in a general setting the answer is not clear (see Reineck [7)).

However, for the classification project addressed in this paper it is sufficient
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to be able to answer the following question. Given CM(l) and M, is it
possible to determine CM(-1)? With suitable restrictions the answer is yes, as
will be seen by the use of connection matrices of special systems called
transition systems.

A final comment on the isomorphisms &(I): HA(I) = H(I). Since HA(I)
is generated by the chain complex (CA(I), A(I)), the isomorphism &) imposes
algebraic restrictions on A(I). These algebraic restrictions will be referred to

as the rank_ condition.
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2.1.  Assumptions

As the introduction indicated, we are really only concerned with finding
solutions to the non-linear system of ordinary differential equations

X, =, (S())

ey, - D,V(x)

=<
n

In order to apply the connection matrix to this problem we need a compact
invariant set S, i.e. we want the set of bounded solutions to (S(8)), denoted

by S$SS(®) to be compact. The following two assumptions guarantee this.

(Al) There exists Q, such that if Q < Q, then the level surfaces

{x | V(x) = Q) are convex.

(A2) lim
x|

V(x) = -=

It should be mentioned that (Al) can be weakened without losing the fact that

SS(8) is compact. (See Conley [1]).

(A3) V has only non-degenerate critical points. These will be denoted by

M, i = 1,.,a and let V(M) < V(M).

i*

This assumption merely simplifies the presentation of results. Notice that

M, is the absolute maximum of V.

et ‘.t M - . - .
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An important assumption that might go un-noticed is in the P.D.E.
originally considered. A more general form of (0.1) is

xp = Dax + V(x) (2.1)

where D is a diagonal matrix with entries ). Again, restricting our
attention to traveling wave front solutions reduces (2.1) to the system of

O.D.E.’s

2.2) )

yi = '/ 8y - Vo)

The important difference between (S(6)) and (2.2) is that for (S(©)) there
exists a global Lyapanov function, something which in general does not occur
for (2.2). The Lyapanov function is used to determine the Morse decomposition
of SS(6) and to limit the number of possible connection matrices for various
wave speeds ©. This is not to say that the techniques developed here are of
no use in (2.1). Rather, one will have to pay closer attention to the structure
of the Morse sets, and some of the questions asked at the end of Section 1.2
will have to be better understood, before the connection matrix leads to a

classification scheme. j
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) 2.2. Basic Results for Traveling Wave Systems
\
)
a}
" This section translates simple analytic results for the traveling wave
o
system S(8) into the language needed to apply the Conley index and the
connection matrix. Unless it is important to specify the wave speed we let S
= S(@) and denote the set of bounded solutions to S by SS. Though
slightly different from the standard definition we call H: R* - R a
[ - Liapanov function for a system of O.D.E/s if either g{i 2 0 or g{l £0

(but not both) along all solutions of the O.D.E..

Proposition _2.1. If © # 0 then H(x,y) = 2L <y,y> + V(x) 1is a Liapanov

function for S.

Proof. On solutions of S one has that

dH

dt - <y,).r> + <VWW,y> = © <y,y> | |

Corollary 22. If © > 0 then g{i >0 and if ©< 0 then $H <0 along

solutions.

k - If © = 0 then $(0) reduces to a Hamiltonian system with

Hamiltonian function, H. It is the author’s opinion that an understanding of

the set of bounded solutions to the Hamiltonian system should give information

on bounded solutions of S(®) for © sufficiently small and, vice versa,

" L . T T S .
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v N N P NV I T T Y N A Y Y L O AR Y A I TR

1.

“ e n e
) % %

S
£ A

N,



A0

AR AR N e st e ntaal

e 'l' [4 ;’

!

given any sequence 6 - 0 for which S§S5(®)) is understood one should be -
able to draw conclusions about the structure of the set of bounded solutions to

the Hamiltonian problem. This question will be taken up in a future paper

(see Mischaikow [6]).

It is easily checked that

Proposition 2.3. The only critical points of § are ((M,, 0)}_,.

Proposition 2.5. For © # 0, §SS(®) consists of the critical points ((Mi,O))?=1
and heteroclinic orbits connecting these critical points. Furthermore, given an
M, = M connection then:

(a) © > 0 implies V(Mj) > V(M) e j<i.

(b) © < 0 implies V(Mj) < V(M) e j>i.

Sketch of proof. This follows from proposition 2.1 and an easy computation
showing that the only orbits along which H is constant are the critical
points. (a) and (b) are restatements of corollary 2.2, i.e. if © > 0 then the

*energy"”, H, is increasing and decreasing if © < 0. ]

Definition 2.6. Let n(M;,) be the number of negative eigenvalues of

D*V(M).

Proposition 27, If n(M) = k and © > 0 then the dimension of the
unstable manifold at (M,0) is 2n-k. If © < 0 then the dimension of the

unstable manifold is k.

.
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2

Proof. Let A = D?V = [39—%;-] Since A is a symmetric matrix, there
o0

exists B and B! orthogonal real matrices such that B-!AB = A  where

A is a diagonal matrix with non-zero real entries ),..,) . Notice that

1 BloO 0 I B O

A el o B!l |A e| |0 B

Thus the eigenvalues can be found by solving

. xI -1 x] -1
det | _ = det 2 .
A (x-9)] 0 L—ﬁxx—h
2
- x“'l"l x4-0x-),
i=1 X

This gives xF = 1 (8 tvg?_gy ).
1
For © > 0O

If )\ >0 then Ve_’_+4_x—i > 6, hence x>0 and x] < 0.
If % <0 then ve_zj,ﬁi_ < @, hence x} > 0.
For © < O
If ) >0 then '/e_"’_MT > 101, hence x' > 0 and x{ < 0.
If ) <0 then ‘/m < 101, hence x¥ < 0. [ ]

Restating these results in the language of Conley gives:
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Theorem 2. (a) SS(© is an isolated invariant set with a Morse
decomposition ((Mi,O))?=1 for e #0. If 6> 0 then 1 <2 < --- < q 18
always an admissable ordering. If‘ © <0 then q < g-1 < ---- < 1 s
always an admissable ordering.

(b) Let n(M) = k. If ©> 0 then h(M,0) ~ Ik If © < 0 then
h(M,0) ~ =X

(c¢) h(SS(e)) ~ I

Proof. (a) This follows directly from propositions 2.4 and 2.5.

(b) This follows from proposition 2.7 and example 1.12,

(c) Let N = ((x,y)|V(x) 3 Q and ||y|| ¢ K} In the proof of

proposition 2.4, Conley shows that for K large enough, N is an isolating

neighborhood of SS8(6). Now define a homotopy W: R* x I - R satisfying:

(i)  W(x,0) = V(x)

(ii) If x ¢ R* such that V(x) € Q, then W(x,s) = V(x) for all

s € [0,1] |

(ii1)) W(x,1) = U(x) where U has a non-degenerate, unique critical point, P.

Clearly, P is an absolute maximum since lim U(x) = lim V(x) = -, Now
x|}~ lix||-+=

define

X =y
y = 6y - VU(x).

By proposition 2.5, the set of bounded solutions is P. But since U=V for

{le(x) = Qg} , h(P) ~ h(§85(0)). n(P) = n hence (b) implies (c). A

o
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It is important to notice that (a) does not imply that the total orderings
given are the only possible orderings on the Morse decomposition. In fact, as
will be shown, the flow induced partial order in much weaker. -

Simple substitution gives:

Proposition_29. The transformation e=-0,Y = -y , T = -t leaves S§(©)

invarient.

The importance of this proposition is that it allows us, for the time
. being, to restrict our attention to S(6) where © > 0. In fact there exists a
strong symmetry about © = 0. If z(t) ¢ SS(® with © > 0 is a
connection M, -~ M‘i then there exists a solution z(t) ¢ SS(-6) which is a
connection Mj - M, This symmetry can be exploited to translate information
from the Hamiltonian system to the traveling wave systems (see Mischaikow
(61
From now on, unless explicitly stated otherwise, it is assumed that

e > 0.

Proposition 2.10, Let M. and Mj be different local maxima of V. If

© > > 1 is large enough then there does not exist a connection M, - Mj.

Proof. Let z(t) = (x(t), y(t)) be a solution to S(6). The total change in
s g ® dH )

energy, H, along z(t) is given by f —d-t £ dt. Let z be a curve on

the unstable manifold of M, Since g? 3 0 it must be that for all t ¢ R

H(z(t)) = H(x(1), y(1)) = F<y(1), y(t)> + V(x(1)) 3 V(M)

e T e T T et T e et e et T e LT e T T T e e e . e Lot e e
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M, is a local maximum thus there is an € > 0 such that for all x where ;
::: M; - xlf < ¢ and x # M, , V{x) < V(Mi). In particular, there exists % > 0 ’_‘:-
::j and t, such that if z(t) is a connecting orbit from (M,0) to (M;,0) then :::E
W Vix(ty) = V(M) - 8, ie. <y(ty), y(tp)> 3 28, Since vy is continuous there F
N exists K > 0 such that K < [ <y,y>dt. Thus '3
-" -® \.:
S s
< - - »
vy - Vo) = [ Bac =6 [<y, yoat > ek 3
But V(M) - V(M) is fixed while OK ~ = as © == = . '
A The final result of this section says that the structure of SS(8) becomes E'.'_:
= fixed for © sufficiently large. :;:',
' Pr ition 2,11, For fixed V, there exists © > > | such that there exists j:Z:'
- -
o a connecting orbit from (M;0) to (M;0) satisfying S(6) if and only if there o
" exists a corresponding solution from (M,0) to (Mj,O) satisfying % = VV(x). "
' ketch of Proof. Let V., denote gradient with respect to x. Then S(6)
‘;_ can be written as %X =y, ¥y = 6y - 9V V(x). Let x = t/e then S(©) A
becomes @ s
) £ =6y
' y = &y - V(%/g) . :
r‘.‘:“
1 r.:.
1 r-,"
‘o For © > > 1 it was implied in the proof of the previous proposition that if :
b~ [N
i z(t) = (x(t), y(t)) is a bounded solution to S then || must remain k-
K _::-f:
] i B
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. small, hence {jyll must remain small, thus |ly - inV(g/e)ll ~ 0. Therefore we

are looking for solutions to x = 1/8 V. (x). But since we want non-constant

.
.-
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.
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P
k.

bounded solutions to S we need to reparameterize t. Let T = !/g and

' o= d/dt then x' = V _V(x). [ ]
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2.3. Transition and Perturbation

Our classification scheme depends on being able to use © as a

parameter. With this in mind we introduce the transition system

X, =
v, = ey, - DV(x) 7(e,.8,)

é=e(e-eo)(e-el) 1>>€¢e>0 6 <86
Let the set of bounded solutions to 7(6,6,) be denoted by S7(6,6,). Again,
when no confusion arises we shall drop the ©, and 6,. Unless otherwise
stated assume ©, > ©, > 1. Figure 3 shows what the phase portrait of
T(8,,8,) is like. Notice that at © = ©, we have the system S(6,) and at

© = §, we have S(6,).
INSERT FIGURE 3

Lemma 2.12. The only critical points of 7(,0,) are ({(M,0,8)} and

((M,0,0)} i=1,..q.

To save writing, when ©, and ©, are known let M; = (M;0,6,)) and

M = (M,,0,8,). Furthermore, M. - de denotes a solution, Z(t), of

T(©,6,) such that w(z) = de and w*(z) = M,. Let H(x,y,8) = H(x,y)

.. C et C et e e e Talt T .t PP P B Tt At o et PR UL I AP B Lt et e . RN et et DRI
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dH
Lemma 213, On solutions of T, zt = O(t)) <y(ty), y(tg)> 3 0, ie. H is
=¢0

a Liapanov function for the transition system.

Lemma 2.14. ST is compact.

Proof. If (z(t), &t)) € ST then O, € O(t) € 8, The proof of proposition

2.4 shows that for every fixed © , there exists K(8) > 0 such that N(©) =

((x,yIIV(x) » Q, and |lyl € K(©)) is an isolating neighborhood of SS§(6). Let

= max K(©). Then one casily checks that for N = ((x,y)lV(x) 2
©¢[6,-€,6,+¢€)

6, llyll € K} , N x [6,-€,8,+€¢] is an isolating ncighborhood for S7(8,6,). a

Lemma 2,15 If {(t) = (x(t),y(1),6(t)) is a non constant bounded solution of
7(8,,8,) then {(t) is a heteroclinic orbit of one of the following forms.
(a M, -M ,i>j and &t) =6, Vt ¢ R
(b) M, ~M, ,i>j and &t) = © Vt ¢ R
M

(c) . M ,i3 ) . Furthermore i=j if and only if {(t) = (M,,0,8(t))

Proof., (a) and (b) are restatements of proposition 2.5.

() If ©t) ¢ (8,,8,) then © < 0 hence lim {(t) = M, and Lim (1)
= M, Since g:H > 0, V(M) € V(M) thus G i Clearly, if t-';(.(;,) -
(M,,0,6(0)) then §(t) = (M;,0,6(t)) for all t. On the other hand, if there
exists t, where {(tg) = (x(ty), y(tp), &(ty) and (x(ty), y(ty) # (M,,0) for
k=1,..,a then the total change in H over {(t) is fe(t)<y(t), y(t)>dt > 0.

Thus M, # Mj. [ ]
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We can collect the information of the previous lemmas as follows:

Theorem 2,16 (a) S7(6,©) is an isolated invariant set with a Morse
decomposition (M} U {K/Il-} and i,§_= l,...a. If >, and >, are admissable
orderings for the Morse decompositions of S8(8;) and SS5(8,), respectively,

then an admissable ordering for ST7(®,9,), >, is given by

i>j i i

i>3 it i)

for all i, ]

(b) If n(M) = k then h(M) ~ I?*k+1 and h(M) - Ik .

(¢) h(ST) ~ 0.

Proof. (a) This follows from lemmas 2.14 and 2.15.

(b) The unstable manifold of ITAi has not been changed while that
of M; has been increased in dimension by 1. Now apply example 1.]2,
proposition 2.7 and theorem 2.8.

(c) One can ecither compute this directly, ie. N , the isolating
neighborhood, has been given above, thus one can determine Ny and check
that h(N/Ngs) ~ 0 or one can notice that 87(8,,8,) can be "continued" (sce
Conley [1] or Salamon [8]) to a flow without critical points and hence h(ST)
-3 .

As will be secen the transition system is helpful if one knows S(8) for

some particular value of © Given any potential function, V, however, it is

. .
A
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v not clear how to find a © for which S(©) can be analyzed. To some !f
: extent we can get around this problem if there exists a V, for which §y(6) ;::
) - b
{ is known and if there exists a reasonable homotopy from V, to V. With o
) u‘
i this in mind we make the following definition. g
; "‘.’
Definition 2.16. V: R* x [-6,1+6] -~ R, & > 0 is a ¢ritical point preserving S

smooth parameterized family of potential functions if for all se[-5,1+8)] : o
(i) V(x,;8) = V(x) € CHR" x [-8,1+6],R)
(ii) V, has q non-degenerate critical points denoted by M(s) i=l....q. _l-
(iii) V (M(s)) = V4(M(0)) and n(M(s)) = n(M;(0))

(iv) V(x) = Vy(x) if x € (leo(x) < Qg

Let V be a critical point preserving family of potential functions. Zas

Then we have a Perturbation system given by

X =Y

LR VYEEEY Y VOV T OV ST s VTV Y TV YV ¥ Y W v Y ammmw vVw w @
e
.
3 .

y, = 8y; - D,V (x) P

§=-es(s-l) 0O<cec<c<]l, ,0>5>1

Let M, = (M(0),0,0) and ﬁi = (M(1),0,1). Let SP denote the set of

bounded solutions to P. As far as the index theory is concerned P and ::Lﬂ'-:
Yo
T are similar systems thus we have the following theorem. =y

Theorem 2.17. (a) SP is an isolated invarient set with a Morse

decomposition {M;} U (Kd;} for i,i_= l,..a. If >, and >; are admissable

TTAVEEREETW T W I, T AR ™ YTy . Y Y Yty Y vw
. «®

T Iy Y. T T

. . . L e e T . SRS - .
R Y . T B PR . AT TR AT T A
& PV T TR & T W TV LA WL L

Loz
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v 'D'lv
. ‘s

orderings for the Morse decomposition of SS for V, and V

= respectively, then an admissable ordering for SP, >, is given by
.

."-

l\‘ . . . . .

~ 1> if i>1]

'x i > ; if i_->1 _|_

P_.

-

. - -

o i>j for all i, j .

(b) If nM0) = k = n(M(1)) then h(M,) ~ %1 and hM) -~

z2n-k

() h(SP) ~ 0.

However, as in the previous cases, we want slightly more detailed

information as to the nature of the possible heteroclinic orbits.

Proposition 2.18. Let §(t) = (x(t), y(t), s(t)) be a solution to P. Then there

exists a solution such that lim {(t) = M. and lim {(t) = M,

| tad ! t—= - ®

Proof. For fixed s, consider the system

X =Y

3"i 8y; - DV (x) .
(M(s),0) is a hyperbolic critical point for this system. Let n(M(s)) = k.

(Notice that k is independent of s). Via proposition 2.7 and example 1.12

one has that under a suitable change of coordinates there is an isolated
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neighborhood N(s) of (M;(s),0) with exit set Ny(s) as in Figure 4. Now

consider the system © with € < < |,
INSERT FIGURE 4.

Since V¥V is a smooth family of potential functions we can define a set N
which contains the arc (M(s),0,s) for s ¢ ['5/2, l+8/2] and furthermore for
fixed s, N restricts to N(s) with Ny(s) the exit set for N restricted to
s. Let Nj = lsJ Ny(s) v N(l+5/2). One can check that (N,Ny) is an index
pair for some isolated invariant set, S. Furthermore, h(S) = 0. Now refering

to example 1.17 we see that the connection matrix for S s

i

Mi
1

"
Mi

0 0

In otherwords, there exists a connection from M to M, |

This proposition as it stands is not global enough for our purposes. We
are interested in the set of connections from M, to K/Ii which are contained
in all of SP not just N. It might be possible that there is another

connection from M, to l_\'ii which lies outside of N. It is to eliminate this

possibility that the restriction © > > 1 1is included.

Proposition 219 Let [(t) = (x(t), y(t), s(t)) be a solution of P such that

lim {(t) = M, and lim §(t) = M, If @ > > 1 is sufficiently large then {

t t— -®

lies in N as defined in proposition 2.18.
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A VVERILEY

L0

Proof. If we had a Liaponov function the theorem would be easy, e.g. lemma

2.15 (¢). However, if H(x,y,s) ;-<y,y> + V(x,s) then along solutions of P

]
S
.

N

dH av_ .
0 <y,y> + =% s
dt ¥y Os

, R
LA AR

is not a Liaponov function. Never-the-less, along {(t) we must have

¢
>

Pl

’

(=]
(]
8e—ys
2|2

[--3 Oav )
dt = © I<y(t), y (t)>dt + Ig‘ s dt .

If ¢g(t) leaves N for some values of t, say t € (a,b), then there exists a

lower bound K, such that

b @
0 <K, < I<y,y> dt < I<y,y> dt e
a k-]

thus

0<eI<y,y>dt=-J—§dt.

But for s € [0,1] there exists a maximum for |g¥a|, call it K,  Then

Letting © - <« makes the inequality impossible. [ ] v -

- . . - - . . . . . - B '_‘- .-~ R o, ‘_. RS ' 0y
R P . P G Y LY Ly G L RISl . S TS K B i,
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. orollary 220. If M; and M, are an adjacent pair in an admisable

RPN

o 4 9

ordering of a Morse decomposition of SP or ST then the connection matrix

«’e
O

42"
.

.
e
(]

for (M,M) is

- =
‘w ® ¥
X

l»"’!
N

I

< X
o [=] ZI
<o

.. - - . " s - - » - " - - M . -
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1 nnection Matrix for e .
'r:.
"
. .
. "_"u
N We begin with a rough sketch of what are the possible connection L
] X}
bk
‘ matrices for SS(8). It is always assumed that the set of Morse sets for the .
s
Morse decomposition of SS(€) is ({(M,0) i=I,..q. Again let M, = (M,0). As 3
A
5 was mentioned in Section 1.2 there need not be a unique connection matrix "
i associated to this Morse decomposition. This motivates the following !
definition. o
Definition 3.1. © is a standard wave speed for S if there exists a unique - g
- connection matrix, CM(8), for the isolated invarient set SS(©). '
& Recall that if two Morse sets, M; and Mj, are adjacent i.e. (i,j) is an "-“
< -'.‘\-
- adjacent pair, then the 1ij entry in the connection matrix is flow determined :
N RS
¥ and hence uniquely determined. Thus for © to be a standard wave speed it -:
-
- S
is sufficient that, if h(M; ~ I**! and h(M) ~ I* then M, and M, arc
N,
adjacent Morse sets. This is only a slightly weaker condition than that of >

theorem 1.20 but suffices since Aij = 0 if h(Mj) ~ Ik h(M)) -~ ! and
k-2 #1. q
- In order to describe the typical connection matrix, CM(9), it is useful to o ;

partition (M} into subsets of the same index. The following notation will

be used throughout the paper. Partition (l,..,q) into subsets J, Wwhere M,

€ J, if and only if h(M) ~ Ik Let u  be the cardinality of J,.

Notice that it is possible for J, = @ for some values of k. However, I, ¢

9 since V always has an absolute maximum and hence M, ¢ J .
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: Example 3.2. The condition that V(M, ;) < V(M) imposes mild restrictions _;_
on the set of possible partitions. For example, consider V: R = R with five g:

critical points. In this case n=I, hence k=0, and q=5. There are only p\:

a
=

two possible partitions J, = {1,2,3}) and J, = {4,5} or Jl' = {1,2,4) and
Jz' = {3,5). The partitions can be realized by potential functions V and

V', respectively. See figure 5.

INSERT FIGURE 5

Recall that the connection matrix is a degree -1 homomorphism. Thus '_:‘.'-

8y H(i) = H(j) is zero unless i ¢ J, and jeJ Hence for any © # 0,

k+1

cMe) = I T Al o .t

el

(=]
>
3
0
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e
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where (i) A (®) is a w x g, matrix

) (ii) A(®) : ® H() - @& H(j) '
‘ . ieJ, , ey E

(i) A,(8) o A,_,(6) = 0. =

If no confusion can arise let A; = A(®)
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Pr ition The rank of CM(8) is 4(q-1) and hence g, the number

of critical points of V, is odd.

Proof. The rank condition implies that

HA((1....,q)) =~ H(h(85(8))) = H(E")

by theorem 2.8. But  HA({l,..q)) is generated by the chain complex
q
(® H(i), CM(e)) i.e.

i=1
HA((1,..,q)) = KerCM(®), ImCM(e)"
Since H(X"™) has a unique non-trivial 1-dimensional vector space it must be

that Ker CM(®) - Rank CM(©) = 1. Now CM(®) is a q x g matrix hence

the rank is %(q-1). [ ]

Proposition 34. For fixed V there exists ©(V) such that, if © > &V)

then CM(€) = CM(&(V)).

This proposition follows from proposition 2.11. We will denote

CM(&(V)) by CM(®) = CM(=V).

Teta e el
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. 3.2 Transition Matrices

Given a potential function V and a wave speed ©, we have said
nothing yet as to how to compute CM(®,). However, assume that CM(8)) is
known, can we determine the set of possible CM(6) for © ¢ (0,2)? To
answer this we turn to the transition system 7(6,,0,).

Let CMT(e,6,) be a connection matrix for ST(6,6,). Theorem 2.16
implies that CMT(6,8,) is a 2q x 2q matrix. Because the isolated
invariant sets SS(6,) and S§(9,) are isolated invariant sets in ST7(8,,8,)
we can write

CM(e,) T(e,9,)

CMT(eo,el) =
0 CM(OO)

where CM(9;) and CM(®,) are the connection matrices for SS(®,) and
$5(6,), respectively. T(©,0,) is called a transition matrix from CM(8,) to
CM(9)).

Proposition 3.5. Rank CMT(eo,el) = q.

Proof. H(h(ST(8,8,)) = O is trivial, hence Ker CMT(6,6,) = Rank

CMT(8,,9,). "

From now on we assume that ©, and ©, are standard wave speeds

when we consider 7(6,6,). If it is clear from the context what 6, and

9,, we let T(8,06,) = T, CMT(8,6,) = CMT, etc..

PRI LR T T G S R S A i
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The Morse decomposition of S7(6,0,) is indexed by (I.,...,q,-l-,f,...,a).
There exists the obvious partition of this set given by (J i, and {'Tk}::()
where i ¢ J, if and only if h(M) ~ E***! and j € J, if and only if

h(M;) ~ T2k (See theorem 2.16).

) SR Iy
1 [T, 0 e
Proposition 3.6. (a) T = . : where T, is a g xp, matrix.
: 0 Tn-l
i 0
Jo b s 0T,

(b) CM(®) o T + T 0 CM(8,) = 0

(c) T, is upper triangular with diagonal entries equal to 1.

Proof. (a) Any element of T represents a degree -1 map from H(j) to

HG). Thus if t; is an element of T and hM) ~ I**! then t; = 0

unless h(M,) ~ IX By theorem 2.16 it must be that n(M) = n(M,) and thus
tijeT,,OSI < n.

(b) This is just a re-statement of the fact that CMT(8,6,) is a
connection matrix and hence a boundary map, i.e. CMT? = 0.

(c) That T, is upper triangular follows from lemma 2.15(c). In

addition, since we are assuming 6, and ©, are standard wave speeds, M,

and Kdi are adjacent Morse sets in the flow induced partial ordering. Hence,

the fact that there exists a unique M; to M, connection implies that the

diagonal entries are 1. [ |
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The point of view that we want to adopt is that CM(6,) and T are

known and CM(6,) is to be found.

.'l" "
e

he v in

Proposition 3.7. CM(®,) = T o CM(8,) o T

Proof. T is triangular with non zero diagonal entries and hence invertible.

The result now follows from proposition 3.6(b). [ |

There are two problems with using arbitrary transition matrices. First,
even a small number of critical points leads to a large number of transition
matrices. Second, and more importantly, it is not always easy to gain
information on the types of connections which exist from a general transition
matrix (see Section 3.3). With this in mind we introduce the following class

of special transition matrices.

Definition 3.7. An e¢lementary transition matrix, E(i,j), is a transition matrix
of the form 1 + A where 1 is the identity matrix and b8 has only one

non zero entry, the jith

Definition 3.8. A transition graph is a connected graph whose vertices are
connection matrices for S and whose edges are transition matrices.
Furthermore, if CM(8)) and CM(®,) are vertices connected by the edge
T(8,,©,) then

CM(e,) T(8,6,)

0 cM(e,)

. . C e . e ‘»- - W - - . - e - M < - -7 ]
P U T e Sl N Sa e e LR T AP
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is a connection matrix for S7(6,6,). If each T(©,,8,) is an clementary

transition matrix we have an ¢lementary transition graph,

Remark 39. This definition is purposely ambiguous. As will be seen, paths
in the elementary transition graph classify the traveling wave solutions to (0.1)
and as such there is a natural way to present the graph. For other
applications, different presentations may prove to be more useful. In this
paper, the vertices, i.e. the connection matrices, will be taken as unique though
each vertex may have several names. To be more precise, assume 6, is a
standard wave speed, then CM(€,) is unique and because of the continuity
property of the connection matrix (See Franzosa [3]) there exists € > 0 such
that for all © ¢ (8, - ¢, & + ¢) , CM(6) = CM(e,). Thus in the transition
graph there will be the CM(®). However, this vertex could also be called
CM(e') for any ©' ¢ (8, - ¢ 6, + €). If in addition there is another
standard wave speed, 6", such that |e" - 9| is large but CM(e") = CM(e)
then the vertex corresponding to CM(®) could also be called CM(e").

With regard to the edges, different edges may have the same name. For

example,

are connection matrices for S7, but B # B and A # A then between
vertices A and B, and A and B lie different edges, but both are called

T.

T S G I S Y
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For the purposes of classification we will always want to wuse a
"maximal” elementary transition matrix. However, there are at least two ways
to define maximal. The first relies completely on the algebra. Notice that
combining (3.1), propostions 3.3, 3.5 and 3.6 gives a set of algebraic conditions
which the connection matrices and transition matrices must satisfy.
Furthermore, these conditions are completely determined by the partition

{Jk): =1"

Definition 3.10. Given (J, )}p_,, an algebraically maximal transition graph is a

transition graph such that if CM(e,) is a vertex of the graph and

CcM(e,) T

0 CM(@®)

is an algebraically permissable connection matrix for the abstract system ST
then CM(e,) is a vertex of the graph and T is an edge connecting

CM(8, to CM(®)).

On the other hand, it might be that one has additional information

which precludes cetain connection matices, CM, or certain transition matrices,

T.

Definition 3.11. Given (J,);_, and apriori restrictions on the set of possible
connection matrices, CM, and transition matrices, T, a realizable maximal
transition graph is a transition graph such that if CM(®,) is a vertex of the

graph and
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cMee) T )

0 CM(e))

is a realizable connection matrix, CMT(8,,6,), then CM(e,) is a vertex and

T is an edge connecting CM(6,) and CM(e)).

ARSI AN S TS TR

Assuming that we know CM(6) for some value © = 6, we can

construct the maximal transition graph by using propostion 3.11 and

i
N

[T
v v Ty
»

concatenating. In otherwords, given CM(§,) we can generate a set of

o'
)
]

possible connection matrices, CM = {CM(ei)|i=l,...,p). An obvious question is,
do we generate the same set of connection matrices if we restrict to
elementary transition matrices? The answer is yes as will be shown in what
follows.

Given elementary transition matrices, E,, let

n 1
NE =E, 0E _;o0---0E 0oE and NE =E oE 0---0FE_.
k=1 k=n
Let
1 if i=j
Sij = )
0 otherwise
It is simple to check that .

Lemma 3.12. EGij) = EG.)™? .

'.‘ AR Y " "—' -'\ '.- -. e . e - o - - =
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This says that in the case of elementary transition matrices, proposition
3.7 can be written as

CM(®,) = E(i,j) CM(8) E(i.j) .
Thus, the following lemma will be useful.

I Lemma 3.13. Let A = [a,,] then
E(i,)) o A=A + L (8, au) b, and
P i

A 0 E(i,j) = A + I (3, 8) By
k

Proposition 3.14. Let

| .
2 0
N T,
i -
; 0 T,

be a transition matrix. Let t; € T, Then E(,j) oT = T' where

!

Proof. By the previous lemma E(i,j) o T = T + f. t;g8;4. But t, = 0
. unless t, € T, a
!
!
NS AP A -

IV I ORI SNSRI IS A TR S5 RN, NS
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Definition  3.15. Let T be a connection matrix. An c¢lementary
decomposition of T is an ordered sequence (E, = E(ij)} of elementary

transition matrices where T = l'l! E,.

Proposition 3.16. Let T, be a block in T, a transition matrix. Then either

Ty, = 1 or there exists an elementary decomposition of T,.

Proof. By the previous proposition we need only consider E(i,j) such that

t; € T, Since T, is a p x  matrix we will consider E(i,j) to be a

u, x i matrix. (This merely simplifies the notation.) The proof of the
proposition is by induction on the size of T,.
Assume T, is a 2 x 2 matrix. Then T, =1 or T, = E(Q2,1). So

assume T, is an n x n matrix. Let T, = [f;] where T = t; for all

j<n and let T, = 8§, i=l,..,n Notice that T, satisfies the restrictions

of proposition 3.6. Assume that there exists an elementary decomposition of T.

Let
A E(n,i) if t_ =1
E (n,i) =
I if t.. =0

1 2 ~
mm 17. T, = £n lE(n,k)) oT.

=n-

Proof. The proof is by induction. If E(n,n-1) = I then t =T

n-1,n n-1,n"

If E(n,n-1) = E(n,n-1) then

. - . ool . e e e R
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E(n,n-1) o T

[}
-1
+

- ™M
o~
o
=)
=
b
"
)
e’
>
o
1
=
[ -3

-~ r-1 .
Now after r-1 steps assume one has T + Lt , 4 , . Consider
k=1

-~ -1 ~
E(n,n-r) o (T + rZ tkn An_k'n) = E(nn-r) o T+ L thkn E(n,n-r) 8

,n
k=1
. -~ r-1 r=1
) =T+ L (snkrkl)Amr,l + L tn-k,l’t An-k,n + X tn-k,n An-x-,n An-k,n
R k=1 k=1
-~ r-1
=T+1LX rn! An-r,R +1 thkn An\-k,n
2 k=1
~ r
=T+ Z tn-k,n An-k,n B
k=1
The lemma gives an elementary decomposition of Ty B

Proposition 3.18 Let T be a transition matrix. Then T has an

elementary decomposition.

Proof. Let

..

Vet e e e e
NI AR A SIS T e




=50~

By propostion 3.14 if E_(k) is an elementary transition matrix in an E
elementary decomposition of T, then E_(k) has no effect on Tj , J # k. :::;:
e
n O
Thus T .—_kn I E (k) where (E_(k)} is an elementary decomposition of T, NS
=1 m .
. "
23
It is important to notice that transition matrices do not have unique :{:\
elementary decompositions.
Example 3.19. (a) Let T =1 then T =1 EE,. Also E=EoE oE
(b) Let T =[32 %} with elementary decompositions for T, and T,
given by (E(2)} and (E(1)}, respectively., Then .
ME(2) ol E(1) = ME (1) o ME(2) .
k k k k
111
(c) Let T= (011 then T = E(2,1) o E(3,2)
001
= E(3,2) o E(2,1) o E(3,1) .
i
The Iast example suggests that eclementary transition matrices do not .,'.;-
commute. The next proposition makes this precise. ',~l'_',-:

Proposition 3.20. E(2,k) o E(i,j) = E(i,j) o E(2,k) if and only if i # k and

j# o

»
£
b
3
o
b
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g it

Proof. E(#,k) o E(,j) = E(i,j) o E(8,k)

E(2,k) = E(,j) o E(4,k) o E(i.))

I+ 8,

a1+ Aji) o(l + 4., ol + Aji)

I+ Au + A“A.ii + AjiAu + AjiAk!Aji .
Thus we need to know the conditions under which

Bghy + BiByg + Bydypby = 0 .

This is the same as

Bigly; + Bybjp + BjgBudy; = 0

which holds if and only if i # k and j # 1.

Definition 3.21. E(i,j) 8 E(2,k) = 1 + A, + By

Corollary 3.22. (a) E(i,j) B E(8,i) # E(i,j) o E(4,i)
(b) E(a,i) B EG,j) = E(4,i) B EG,))

Proof. (a) follows from the proposition. (b) By proposition 36, 2 > i > j

thus 2 # j. The rest follows from simple calculations. [ ]

Corollary 3.23. Recall that (J )i _, is a partition of (l,..q}. Let 2 € J,

and m e Jk. where k # k'. Then

JO S T R ST S S
o, 0, W S
.
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E(2,m) BE(,j) = E(4,m) o E(i,j) = E(,j) o E(2,m).

We now consider the types of paths that lie in the elementary transition

graphs.

Proposition 3.24. Let

CcM@e,) T

0 cM(e,)

m
be a connection matrix, CMT(eo,em). Let T =kH1Ek' Then

E E E
CM(g) —1- CM(e,) —2- CM(8,)) — - - - —B- CM(8,)
is a path in the elementary transition graph of CM(8y).

Proof. By definition CM(§) = E,CM(8, ,)E,. So we need only check that

m 1
CM(e,) = (I E,) CM(e) (T E) = TCM(e) T! . n

This proposition says that given any CM(e,) and any transition matrix
TM(6,,8,), the connection matrix CM(®,) lies in the clementary transition
graph. Furthermore, CM(®,) can be found by tracing the path in the graph

determined by any elementary decomposition of T™M(9,,9,).
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- Coroliary 3.25. If
: CM(e,) E
] 0 CM(ey)

5 is a connection matrix where E 1is an elementary transition matrix then so is *

- cMe) E 3
0 cMe)| . i"‘

: X

3 e

2 S

. Proof, Let T =1, recall I = E o E and apply the proposition. [ | o

-:j This implies that the elementary transition graphs are not directed. In

:& otherwords, a path along the graph can consist of

N E E

. CM(g)) — CM(g,) — CM(e,) .

Proposition 3.26. Let CM(®) = A = [a;;) and E = E(i,j) be an eclementary

E
transition matrix. A D is a subgraph of an elementary transition graph if

and only if 0 a, = a,; for k=l..q.

)

Proof, Let T =1, recall 1 = E o E and apply the propostion. |
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3. Interpreting Transition Matri

Consider the system T(6,©,), but let ¢ = 0. Let g denote the flow
generated by S(6), then the flow on R™ x R generated by T(,8,) and
denoted by - satisfies

O -t = - t,0) .

(z,9) (z 6 )
In otherwords, R?® x {8} is an invarient subset under the flow and the flow
on this subset is determined by S§(6). Assume that for some value
©* ¢ (9,,8,) there exists a connecting orbit from M,,0,6%) to (Mj,O,e*)
where i,j € J,. Now let 0 < ¢ < < 1. Figure 6 suggest what the new flow

looks like. In particular, one expects that there exists a connection M - MJ..

One might in turn hope that t; = 1 where t

€ T(e,9,).

INSERT FIGURE 6.

Since we are assuming T(6,,©,) known, it would be nice if the

following conjecture were true. Assume that for all ¢ € (0,¢,),

CM(e,) T(8,8,)
CMT(8,8,) =
0 CM(ey)

is a connection matrix for ST(6,,8,). Let 4 = 1 ,i#j and t; € T(8,,9,).

Then there exists ©* ¢ (©,0,) such that there is a connection M, - MJ., a

solution to §(8*). Unfortunately, in this generality the conjecture is false.
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- To see why, recall example 3.19 (¢) and consider figure 7 which gives a B
schematic representation of how the two different elementary decompositions ?‘E
could be realized by the flow. One now sees that if the connection M; -~ M, :::E
preceeds the connection M, -~ M, then in the flow with € > 0 it is
possible for the connection Mg - K'll to occur.
INSERT FIGURE 7.
In order to state a correct version of the conjecture we make the following
. definition and restrictions. For fixed V. Let
W= WYV)={(6> 0| © is not a standard wave specd).
From now on we only consider potential functions which satisfy the following
two assumptions:
(Ad) W is a discrete subset of (0,%)
(A5) Let ©* ¢ W, then there exists a unique 1i,j and k such that
i,j € J, and there is a unique connection M; - Mj which is a i
solution to S(6%).
N

Definition 3.28. Let 6, > 63 > 0. (6,865} are an adjacent pair of wave Z'_'-,1

speeds if ©, and € are standard wave speeds and W N (65,8,) = ©*

Theorem 3.29. (Reineck [7]) Suppose that for € € (0,¢)) , M, and M, arc

adjacent in the T7(®,0,) flow defined partial order and that 1 = t; €

(6,,9y). Then there are 6,,..6, € (6,,8)) and M, = Mm oy "‘kI M such
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that my, >, mg, p=1....k, where > 18 the flow defined partial order in

SS(ep).
Proposition 3.30. Let ({©,,85) be an adjacent pair of wave speeds. If

CM(8y) T(8,,8y)
CMT(e,.8) =
0 cMm(e,)

is a connection matrix for S7(©,,6g) then T(6,,8;) = E(i,j) an elementary
transition matrix. The converse is also true. Given {©,,65) an adjacent pair

with

CM(ey) E(k,1)
0 CM@®,)

the connection matrix for S7(®,,85), then there exists ©* ¢ (6,8,) such

that ©* ¢ W and there exists a connection M, = M, a solution of S(6*).
Proof. This is just a special case of theorem 3.29. ]

Because we will work with elementary transition matrices rather than the
more general transition matrices, we have not attempted to correct the
conjecture in the most general sense possible. However, it may be worth
noticing that for a transaction matrix T, the correspondence between 4= 1
and the existence of ©* corresponding to the connection Mj - Kdi will

occur only if
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. T=E BE,,B - BE

where (E,) is the elementary decomposition of T realized by the flow.

Several comments are in order concerning (A4) and (A5). (A4) seems to
be a generic assumption, though the author claims no proof of this. It would
be interesting to have examples of potential functions, V, which fail (A4) in
the following three ways.

1) W is dense on some interval in (0,%).

2) W contains an interval.

) 3) W has a positive limit point. (There are many interesting cases
- where 0 is the limit point of W, namely those which have an infinite
number of traveling wave solutions.)

(AS5) also appears to be a generic assumption, however it raises different
questions. Let (8,65} be an adjacent pair and let ©* be the unique
element of W N (6g06,), but assume that there exists more than one
heteroclinic solution to S(6*) between critical points in the same partition.

Furthermore let

T(6,,8p) =

OO

Q =
P S s

Do there exist perturbations of V which realized the diagrams in figure 7?
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4 Transition Matri for SP N
=
)
B
It should not come as a surprise that the connection matrices for some -.'.
¥
potential functions are easier to determine than for other potential functions. %
The perturbation system, P, can be used to gain information about difficult to
analyze potential functions from simple potential functions, i.e. ones with strong
symmetries. Theorem 2.17 allows one to conclude that the connection matrix E
for SP is of the form e
cM(1) T e
0 CM(0) |, . 3
W,
[ e
w
where CM(1) and CM(0) are the connection matrices of the potential "‘
functions V, and V,, respectively, at the wave speed © > > 1. T s o
again called the transition matrix. s
Proposition 330. (a) T = [0 0 ... where T, isa u x g, e
0T,, O )
. L
0 -0
0T, a
matrix. .
(b) T, is upper triangular with diagonal entries equal to 1. ‘;".
r
RSN
Proof. (a) For T,, k=0,.,n-1 the argument is the same as for proposition :-_'-f'.:
3.6(a). In the case of T, however, proposition 2.10 says that for © ’ :*;'l_
B
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sufficiently large there does not exist a connection M, - Mj if 1,j € J.
Now, if an element of T_  is non zero for all ¢ €0,¢;) then there exists
at least one connecting orbit of the above type (see theorem 3.29) for some
potential function V_, s € (0,1).

(b) If there exist t; € T, with i > j then by theorem 3.29, for some

value of s, s ¢ (0,1), proposition 2.5(a) is contradicted for V_ B

Notice that no assumption is made that the transition matrix be an

elementary transition matrix. However if tij € T, then there exists an

elementary decomposition of T which does not contain E(j,i).
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4, Examples

This section consists of simple examples to demonstrate how the
elementary transition graphs can be used to obtain information about the set
of possible bounded solutions to S(8) for various values of ©. For the
following discussion it must be kept in mind that if ©, and 6y are an
adjacent pair of wave speeds then it is possible that CM(8,) = CM(8p). (See

remark 3.9)

Definition 4.1. For fixed V the path from ©, to ©g in the elementary

transition graph is the path

CM(e,) = CM(8,) —2 CM(®)) S oM, +1) = CM(&p)

where (6,0,,,] are adjacent pairs, i=0,l1,...k.

Assumptions (A4) and (AS5) assure that given ©, > €5 > 0 there exists
a path from e, to ©g By proposition 3.4, for each V there exists a
CM(»,V) which can be taken as the starting point of the path. The total

path of V is the maximal path beginning with CM(=,V).

............................
.......
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. 4.1 A Simple Potential Function
23
38
Let V: R - R with q=5 and assume J, = § Thus we arc :‘_é_
¥ -
N
.
partitioning the set (1,2,3,4,5} into J, and J,. It can be shown that the Wi

only possible portions are J, = (1,2,3} and J, = (4,5} or Jz' = {1,2,4) and

Jl' = {3,5). As the reader can check, in what follows the results for the

VY VW

.. o . .
partition J,,J;, are contained in the results for J;J;- Hence we shall only
consider the latter case. (3.1) says that a connection matrix for SS(8) must

be of the form -

-.‘\
o
E I, I, 12345

CM®) =], |0 A®|=1|000"** o

21000 %=
3/1000** N

J, |0 0 4 00000 ;.‘;:‘

5100000 Y

o

where * denotes an unknown entry. Proposition 3.3 implies that the rank of \“‘
CM(®) is 2 hence the rank of A,®) is 2. Since we are using Z, ~.'.;L:'
coefficients there are 42 matrices A,(6) which satisfy this restriction. As :_:ji'
will be shown we can do much better. To save space we shall no longer write )
out the complete 5 x § matrix but rather the matrix A,(®) and call it __
CM(e). Rt
PR

As was remarked before, the perturbation system, P, can be used to .-:;:f.
determine the elementary transition graph for a general potential function if v
N =R
there exists a simple potential function which is related to it by a smooth O
L

critical point preserving homotopy. We call a potential function V: R® - R j‘.:{:
co-linear if all the critical points of V lic on a straight line. Since we arc .:,..
N
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considering V: R’ =~ R and Jo = § it is easy to find a critical point

-
4

P
0

preserving homotopy of V to V where V is co-linear. (The homotopy .

1

consists of sliding the critical points along the contour lines). Furthermore,
this co-linear potential function V ois equivalent, for our purposes, to a
potential function mapping R to R For the moment then, assume
V: R~ R » q=5, J; = {1,2,3) and J, = {4,5). (Notice that the subscripts
changed because the dimension of the system S(©) dropped from 4 to 2.).

Proposition 3.4 gives the existence of CM(*,V). Let

CMy (=) = (CM(=V)|V: R~ R, a=5, J, = (1,3} and J, = (4,5)).

where i, € J, and j, € J, Using proposition 2.11 or Terman [9] one

concludes that for © sufficiently large the only connections are the unique
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connections Mjl - Mil , Mjl - Miz , sz - M‘z and sz - M‘a' Considering
all possible permentations of the M/s and Mj’s gives the result. a
Proposition 3.6 implies that the set of possible elementary transition
matrices is {(E(2,]), E(3,1), E(3,2), E(54)). Since V: R = R we can exclude
E(5,4). Finally each Mik has a 1-dimensional stable manifold. In the case
of Mil or Mis at least one of the orbits on the stable manifold is
unbounded in backwards time. Thus the number of non zero entries in
CM(e) must be Icss than or equal to 4. Using these restrictions we can
generate the realizable maximal transition graphs shown in Figure 8. Because

the Conley index and connection matrix is stable under perturbation (See

Conley [1], Franzosa [3]) we have the following:

Theorem 43. Let V: R* - R be sufficiently close, in a suitable metric, to
the potential function V: R -~ R discussed above. Then the total path of v

lies in either (_71, 52 or G,.
INSERT FIGURE 8.

An E(@.j)) division of a transition graph G, are the subgraphs of G
obtained by deleting all E(i,j) edges. In the case of the elementary
transition graphs Ei i=1,2,3 an E(2,1) division always results in two
disjoint subgraphs. We can denote the subgraphs by ﬁi and Zi where none
of the vertices of Zi are elements of CM(*).

For V: R~ R a simple shooting argument shows that there exists a

unique wave speed ©* such that the connection M, - M, is a solution to

o v
o
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S(6*). Therefore, if © < 6% CM(©) is a vertex of L. If CM(=V) is

then for © < ©* CM(6) is a vertex of 22. L, is a particularly simple

graph, Notice that the two vertices differ only in the 2,4 and 2,5 entries.

One can show (See Terman [9]) that given 6, > 0 it is not possible for

M- M, or Mg - M, to be a solution to S(€) for all © ¢ (0,8,]. This

forces the path of V to keep alternating between the two vertices of L,

for © < ©* Hence we can conclude that there exists an infinite number of

elements of W({’) for which an Mg = M, connection is a solution. In 4.2

we shall attempt to repeat this proof in order to show that there exists an

infinite number of Mg » M, connections for a particular V: R* = R To see

an alternative proof of the result for V see Terman 9]

We now return to the original problem, V: RZ2 = R and show how the

elementary transition graphs of V are related to those of V. Because

V:R =~ R, we were able to restrict the set of possible edges and vertices, and

hence, the graphs Ei are not algebraically maximal. Dropping these

restrictions, the graphs G, i=1,2,3 become the algebraically maximal graphs

Gj, j=1,2, shown in figure 9.
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It still needs to be shown that Gj, j=1,2, are the only possible elementary

v e

transition graphs. But given V, it is related to some V: R = R a co-linear
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- edge. Refering to G.i we get that CM(*) = CM;(*) where

CM(=) = (CM(=v)|V: R* = R q=5, J, = {1,2.3}, and J, = {4,5)).

Thus we have

Theorem 44. Given V: R -~ R, g=5 J, = (1,2,3) and J, = (4,5}, the total

path of V lies in G, i=1,2.

It is worth noting that this theorem does have content to it. The
algebraic restrictions allowed for the possibility of 42 connection matrices.

Theorem 4.4 says that at most 24 are realizable for any system S(©).

INSERT FIGURE 9.
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4.2, Existence of an Infinite Number of Traveling Waves

We are interested in showing how the results of 4.1 can be applied to a
specific system. The goal is to show that there exists an infinite number of
wave speeds for which an M, = M, connection occurs. The proof is similar
to that given for the Il-dimensional potential function, {’, of Section 4.1. The
assumptions on V are made in order to emphasize the connection matrix
techniques and to minimize the otherwise necessary computations. Let
V: R2 = R have contour lines as shown in figure 10.

As before we assume that V  satisfies assumptions (Al) - (AS5). In

addition we assume the following.

(A6) K is a gradient line of V, ie. if x € K then VV(x) is
tangent to K.

(A7) The stable manifold of (M,,0) (note that it is one dimensional)
projects to the right of L for all © > 0.

(A8) There exists a unique homoclinic orbit at (M,,0), for the system
S(0). |

(A9) Let V(My) < h < V(M,). Let z(t) = (x(t), y(t)) be a bounded
solution to S(0) such that H(z(t)) = h. Then there exists {tk)l‘f:1 N
and x(t,)) N K # 0, ie. x(t) crosses K infinitely often.

(Al0) Fix e. Then the unstable manifold of (Mj,O) j=4,5 and the
stable manifold of (M,0) can intersect each other non-transversally along at

most an odd number of connecting orbits.
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. INSERT FIGURE 10.
Theorem 4. Let V be a potential function as above, then there exists an

infinite number of wave speeds for which an M, - M, connection is a

solution.

The rest of this section details the proof of this theroem. The above
assumptions will be explained as they are used. We begin by using (A6) to
prove the following proposition.

01
Proposition 4.6, CMi=V) = |1 0
11

Proof. One can construct a critical point preserving homotopy from V to V,

a co-linear potential function where the critical points are arranged as

Clearly,
_ 01
CM(=V) = |1 0
11
Notice that the homotopy can be performed without violating (A6) for any of
the potential functions along the homotopy. But (A6) makes it impossible for

an M, - M, connection to occur for any wave speed. An E(5.4) is the

only edge which can be realized in the perturbation system for this problem.
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Thus, CM(=,V) = CM(=V). n

Corollary 4.7. The total path of V lies in the E(5,4) division of G,

which contains CM(*,V).

Proof. As was mentioned above, (A6) implies that E(5,4) cannot be an edge

in the path of V. [ ] =
g'_l
Proposition 4.8. There exists an odd number of wave speeds for which there o

exist M, - M, connections. é

For a proof of this the reader is refered to Mischaikow [6]. The result
follows from (A8) in a non trivial manner, which requires comparing
CMT(-6,0) for small and large values of ©. For the co-linear problem a
simple shooting argument is sufficient to give this result. Clearly, this is not

the case for the 4-dimensional system.

Corollary 49. There exists a wave speed ©* such that the path of V

corresponding to © < ©* lies in the graph:

E(3,2)

— —
-0 O

-0 0
— - O
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Proof. By proposition 4.8 there exists a least wave speed ©* such that an

R .

M, = M, connection occurs. Because an odd number of E(2,1) edges lie on

R *
Ny

the total path of V, the portion of the path corresponding to © < ©* must

v kg
O

lie in L, (L, is defined in the equivalent manner as Z,). Including the

E(5,4) division of corollary 4.7 gives the desired graph. |

Conjecture. For © < ©* CM(6,V) is a vertex of Z,.

A nice fact about this approach is that we are still able to prove
theorem 4.5 without having to resolve this conjecture. By examining the graph
in Corollary 4.9 one sees that a M, - M, connection occurs if and only if
either an Mg = M, connection occurs and an M, - M, connection stops or
an M; -~ M, connection stops and an M, - M, connection occurs. Thus we
need to be able to show that My - M, and M, = M, connections cannot
persist for all © ¢ (0,6%).

With this in mind we define

Z; (8,,9g) x [0,1] ~ R j=4,5

a continuous map with the following properties.

Z(®) : (8} x [0,1] = Rt

where zj(e) ) = (Mj,O) . Zj(e) (1) = (M;,0) and zj(e) (0,1) corresponds to

a connection Mj ~ M, for the system §(6).
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If, for example, ® 1is a standard wave speed and

0
1
1

then zj(e) can be defined. The interesting question is, given 6, what is

CM(e) =

=

the maximal interval (©,,8;) on which Zj can be defined.
Let n: R* - R® be the projection TM(x,y) = x. Let © € (8,6
Define v(Zj(e)) to be the number of points in which n(Z,(e)0,1] intersects

K.

Proposition 4.10. v(Zj) E v(Zj(e)) for © € (6,,65) is well defined, ie. v

is independent of .

Proof. If e,e' € (6,,8g) and v(zj(e)) # v(Zj(e')) then there exists ©"
such that n(Zj(e")(O,l)) is tangent to K. But Zj(e")(O,l) represents a
solution to S(©"). Since K is a gradient line, (A6), any solution whose
projection under M is tangent to K lies entirely on K. Thus Zj(e") 0) #

(Mj,O). Contradiction. [ |
Corollary 4.11. WZ;) is odd and WZ,) is even.

Pr ition v(Zj(e)) ~® a5 O = &

Proof, Because zj(e) is a path from (Mj,O) to (M,0) there exists o* ¢

(0,1) such that H(Zj(e)(a)) € (VMy), V(M,)) for all « € («*1). Thus for

© sufficiently small Zj(e)(a'+e, l1-¢) 1 > > € > 0 can be approximated by a

P AL S O e i MO R R s SNIE N utin it it bt iat el
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solution of S(0). (A9) implies that ﬂ(Zj(e)(d"-O-e, 1-¢) can be made to

intersect K arbitrarily often for © sufficiently small. | )

Corollary 4.13. If Z(6) : (8,85 x [0.1] - R* is as defined above then

e, > 0

This proves the theorem since (A10) implies that at each 6, the 2,

entry of the connection matrix must change.
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