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1. Introduction '

_he Kalman filter (KF) has become an important and powerful tool for the

statistician. Recently, many authors have exploited the state-space model and 6

KF recursions for estimation and prediction of time series. For example, Jones

(1980) and Harvey and Pierse (1984) use the KF to obtain maximum likelihood

estimates of the parameters of ARMA processes when observations are missing. It I-.

has been suggested by Morrison and Pike (1977) and others (cf. Kendall (1973)) that

the KF model provides an appropriate setting within which to parametrize smoothing

and forecasting problems.

To be specific, we suppose that a pxl vector time series y t; t 0,+,+2....

is being generated by the following dynamic system

Y t = x t +  v t( i )- '.

where xt is an unobservable zero mean, pxl vector stationary stochastic signal, and

v is pxl Gaussian white noise, v ~N(O,R). The dynamics of the stationary signal

is given by

xt t-xft + w (1.2)

where 0 is the pxp transition matrix and w t is pxl Gaussian white noise, w N(O,Q).
t t

Furthermore, {v } and [w } are mutually independent and we assume that the system
t t

and the filter have reached steady state. We remark that the superficially more

general model in which (1.1) is replaced by

yt Mx + v
t t

where M is a nonsingular known design matrix may be reduced to (1.1) by an

appropriate change of bases.

Given the parameters of the model, namely, 0, Q and R, one may obtain the

minimum mean square error filter and forecasts for the system via the KF recursions.

-7 ?::.,
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However the parameters are rarely known and hence must be estimated. Moreover,

since the forecasts are based on the estimate of the state transition matrix 0,

the precision of the estimate must be evaluated. We propose the bootstrap as a

method to evaluate the precision of the transition parameter estimates, in partic-

ular, to provide robustness against departure from normality in the Gaussian state

and observation errors, and to assist in estimating forecast errors.

In most cases, parameter estimation for the KF model has been accomplished

by maximum likelihood techniques involving the use of scoring or Newton-Raphson

techniques to solve the nonlinear equations which result from differentiating the

log-likelihood function (cf. Gupta and Mehra (1974)). Several examples have been

given, notably by Ledolter (1979) and Goodrich and Caines (1979), which demonstrate

the feasibility of these methods for several specific cases. Maximum likelihood

estimation of parameters in the autoregressive moving average (ARMA) model express-

ed in state-space form has been considered by Harvey and Phillips (1979) and Jones

(1980). The methods in the above references typically involve using a set of

recursions for the derivatives of the log-likelihood and require that one invert

a matrix of partial derivatives at each step. When the matrix of partials (or its

expectation) is well behaved, the Newton-Raphson and scoring procedures enjoy

quadratic convergence in the neighborhood of the maximum and one has a ready-made ,..

estimator for the covariance matrix of the parameters. We discuss the Newton-

Raphson procedure for the KF model in Section 4.

Another maximum likelihood technique uses the EM algorithm to estimate the

parameters of the KF model (cf. Shumway and Stoffer (1982)). Although this pro-

cedure is relatively simple and always increases the likelihood, the matrix of

partials is never computed so that it is not available for providing estimates of

the standard errors. However, the bootstrap may be able to augment this procedure

by providing an approximation to the distribution of the parameter estimates.
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The maximum likelihood techniques mentioned above require that one supply

initial estimates (or starting values) which are sufficiently close to the true

parameters. As will be seen, we shall require initial consistent estimates of 0,

Q and Rwhich converge faster that n- 4  Such estimates have been given by

Anderson et. al. (1969). Their estimates, which are computationally simple to

obtain, are discussed in Section 4. Further in Section 4, it is shown that when

the aforementioned initial estimates are used, the one-step Newton-Raphson yields

an efficient estimate of the transition parameter 0 when the noise processes are

Gaussian, We make bootstrapping the Newton-Raphson estimate of 0 appealing by

showing, in Section 5, that the bootstrap gives the right answers with large samples.

That is, the bootstrap is at least as sound as the conventional asymptotics.

Finally, in Section 6, we give emperical evidence of the bootstrap's im-

portance in Kalman filtering by comparing the bootstrap to the Newton-Raphson in

the cases when the likelihood is Gaussian and when the likelihood is contaminated

Gaussian.

Our goal is to estimate the precision of the parameter estimate of 4 as well

as the precision of the forecasts n+lxn+2,..Xn+k. The techniques used here

are based on the bootstrap (cf. Efron (1979)) and the methods used in bootstrapping

least squeares estimates discussed in Bickel and Freedman (1981), Freedman (1981)

and Freedman and Peters (1984). It is noted in the above references that in

regression models (static or dynamic), it is appropriate to resample the centered

residuals after estimating the parameters. This is not possible in the present

model (1.11 and (1.2) since the signal is not observable. However, we may base

the procedure on the innovations which are obtained by taking the conditional

expectation of the signal given the data. The bootstrap procedure will involve the

resampling of the innovation sequence

t-i t-l
r t Yt - t (1.3)

*.S~.* ***~*~.*.~*.* .****.*. ** ..7.: ~ *. . . . . .'2-."2]
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where by xt , we mean E(x t coure t- will be obtained re-
t t

cursively via the KF.

Under the conditions stated in the next section we will be able to put this
*: %

problem into the nonlinear regression context as discussed in Efron (1979,

Section 7). That is, we may write %

Yt= gt.(OQRxt'Yt-l'Yt + t.1

where e are iid zero mean random vectors (namely, the innovations) and gt ( ) is

a particularly complicated, but known, nonlinear function of the parameters 0, Q,

t-1
and R, the signal xt. and the data yt-lYt_2, In particular, g - xt

the filtered value of the signal.

In the next section we give conditions under which we are able to bootstrap

the innovations, (1.3). The bootstrap procedure is given in Section 3.

2. The Steady-State Innovation Sequence

Throughout the remainder of this paper we make the following assumptions on

the pxp parameter matrices: (Al) Q and R are positive definite, and (A2) 0 is

nonsingular with spectal norm, ( less than unity. These conditions ensure the

asymptotic global stability of the KF (cf. Deyst and Price (1968)).

The steady-state KF recursions are given by (cf. Jazwinski (1970))

K =P(P+R) -l(2.1la)

P =,(P-P(P+R) -P]' + Q, (2.1b)

t xtt (2.1c)Xt+l...

t t-l t-lxt =x + K(y t  x t ) (2.1d).-'..

In the KF above, K is the steady-state gain matrix, P is the steady-state

t-l t-1 , t-lprediction error, P - E{(xt-x )(xt-x t  ) }, and xt  E(x ly is the
t ttt

* 4.; .
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steady-state filter estimate of xt based on the data yt-1,Yt_2,

Lemma 2.1 Under steady-state and optimal filtering, the pxl vector innovation

sequence

rti Y ti (2.2)

is a zero-mean, white Gaussian sequence with covariance matrix P+R.

t-1 t-i-
Proof Write rt  = et + vt where et = xt - xt  and note that E(et) - E(vt) - 0.

t t tt tt-l

The rt  are Gaussian since they are linear combinations of Gaussian random vectors.

To establish the orthogonality of the innovations, it is easy to see that while

t-l t-1 t-1rt (= t t) is in the linear space spanned by {ytYt-l,.. 1, rt ( - e+ v d

is orthogonal to the linear space spanned by {yt-l'Yt-2'"}. Hence, for s < t,

_, s-I t-1' 1-E tl'I-;

E(rs rt ) E{rs t E(r 'ys-y ' '')}= 0.

Also, since et and vt are uncorrelated we have that

t-1
Cov(rt ) - Cov(et) + Cov(vt) - P+R. 0-3

As a final remark, we note that via (2.1c), (2.1d), and (2.2) we may write y

in terms of the steady-state innovations as

j rt- j - + rtrt +

J l _t-i t 0 (2.3)

which follows from the fact that I II - 0 exponentially fast as j - since

' o(l) < 1, where IH 1 2 = trace('). This result will be useful in establishing

the bootstrap procedure.

.7 .|
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3. The Bootstrap Estimate of Precision
.-.

As previously mentioned, the bootstrap technique will be employed by resampling_ S"5

the steady-state innovation sequence. Recall that under optimal filtering the

innovation sequence r -1  t-l, ,n is pxl Gaussian white noise, rt -  N (0,P+R)

where P is the steady-state error covariance matrix given in (2.1b).

The bootstrap procedure begins by estimating the parameters = {,Q,R} of the

model (1.1), (1.2) by the procedures mentioned in the Introduction. We shall dis-

cuss the particulars in Section 4. Call these estimates e {4,Q,R}.

From these preliminary estimates obtain a suboptimal innovation sequence by

filtering (cf. 2.1) under e. Call this innovation sequence rt  . Make the se-

quence tA t=l independent and identically distributed with distribution equal
- t-i .

to the emperical distribution by putting mass n on each innovation rt  , t1,...,n.

*t -l
Next, draw a "bootstrap sample" of innovations, rtt, t=l,.. .,n by independent

-t-l .t-lrandom sampling of the residuals r-t That is, sample the rt , n times, with

-0 -1 -n-l
replacement from {rr rn} From this we obtain a "bootstrap sample" of

21~. .. 9

data y,. ..,y by setting (cf. 2.3)

• *t-1 t-1 J -*--
Yt rt + 1j-l Kt- t1l,...,n (3.1)

where K is the estimated gain matrix obtained via filtering under parameters ®.

We make the following suggestions before proceeding with step (3.1). First, L
-t-l

as suggested in Freedman (1981), one should center the residuals rt before~

resampling them so that the emperical distriubtion puts mass n on rt- where-
-l nt-'

- n tl r1. Second, we suggest checking whether the innovations are nearly

white. It is known that a suboptimal filter produces correlated innovations (see,

for example, Mehra (1970)) and hence this is a check on the "goodness" of the

estimates. Various methods are available for testing the whiteness of the innova-

tions many of which are listed in Mehra (1970).

12
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Now, suppose that the bootstrap data {Y',...,Yn} come from the model
*1 n

Yt - xt + vt t > 1, (3.2a)

xt z€xt_1 + wt, t > 1, (3.2b)

where vt is pxl Gaussian white noise v *N(O,R ) and is independent of w which is
tt t

pxl Gaussian white noise wt-N(O,Q ). Assume the parameters 0 = {4 ,Q ,R } are

unknown and to be estimated.

The parameters 0 are then estimated by the initial optimal procedure to pro-

duce estimates 01 - {¢I,QI,RI. Then, the suboptimal innovation sequence is

resampled and the bootstrap procedure is reiterated.

The entire process is repeated some large number "L" of times obtaining L

bootstrap replications 01.02,...,0L . The distribution of the errors

€ -~ +(3.3)

are then computed to give an approximation as to the distribution of

- *. (3.4)

The bootstrap distribution of the errors (3.3) may then be used to obtain confidence

regions and tests of hypotheses about the parameters D. Justification of this

procedure is given in Section 5.

nForecasting k steps into the future, say x = E(x n+j yn yn -, . . . ) j-1,2,...,k
n+j n-jn'nljl2..,

is easily accomplished via the filter equations (2.1), namely

x n+j i Jn j=l,... ,k. (3.5)

The suboptimal forecasts will be obtained via the KF under parameter estimates

so that

-n - J,.
x $ x , (3.6)n+j n
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will be the actual forecasts. If at each bootstrap replication we obtain

-n* -n* (1) -n* -n* (L)
n+l,... OXn+k ,.,n+l1Xn+k' (3.7)

we may extract the emperical distribution of the forecast residuals

.n* -n

xn+j - Xn+j, =l,...,k (3.8) Mr

which can then be used to approximate the distribution of the actual forecast

errors

-n n
X Xn+j jl k (3.9)n+j j

From the distributions of (3.8) we may obtain prediction regions for the forecasts

(3.5).

4. Parameter Estimation

In this section we give the details of the consistent and efficient estimation

of the parameters of the KF model (1.1), (1.2). Recall that the system is in

steady-state and the parameters 0 = { ,Q,R} satisfy the conditions (Al) and (A2)

given in Section 2. First, we discuss the initial consistent estimates given in

Anderson et. al. (1969) and give related results. Second, we discuss the Newton-

Raphson procedure for the KF model and in particular we show that the procedure is -. t.

sound for the given model. We note that the assumption of normality of the error

processes is not needed to establish the results of this section.

4.1 Initial Consistent Estimates

The following estimates are given in Anderson et. al. (1969). Let

n = ( t f 3 y t y t - 2) ( t - 3 y t - l y t - 2) , n>3(•)....

where by + we mean generalized inverse. Further, define

........................................-....... ... ...
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n -3 n ( -i t -i

and set=-

,- "{n (1) + B (2l$(1) (4.2)

and

= (1) -R - R ' (4.3)
.

- provided that n is invertible.n

Anderson et. al. (1969) show the strong consistency (n - c) of 0n' Qn' and Rn

for 0, Q and R, respectively, under the model assumptions (1.1), (1.2). To

establish the bootstrap principle in Section 5, we need the following results which

* exhibit the behavior of the suboptimal filter and forecasts (see Anderson et. al.

(1969), Theorems 2.4, 2.5 and Corollary 2.4). Denote positive (semi)-definite by

p.(s.)d.

Result 4.1. If Q is p.d. and if $ncn ft are strongly consistent estimates ofn nspsd nraln ,te

O,Q,R, respectively, for which n is p.d. and R is p.s.d. for all n > 1, then
n n *-

P- P and k - K a.s. as n where P and K are the estimates of the steady-
n n n n

state filter covariance and gain matrices, respectively.

Result 4.2. Let the hypotheses of Result 4.1 be satisfied, and suppose p(P) < 1.

If in addition, E{llIk < and E{[wtk < c for some k > 1, then

li n -1 In t _t k " "

-ml - ftfit - 0 a.s.

and
I n. Z A t k b

l n) n t 'xtZ_''t =0 a.s.

t+9. n

for any integer Z > 1.

Anderson et. al. (1969) do not establish the asymptotic normality of the esti-

mates given in (4.1), (4.2) and (4.3). This, however, is easily accomplished via

o • bI

*&.i:*-.--.. .. .
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the following theorem which may be found in parts in Hannan (1970, Chapter 4).

First, we need some definitions. If Ut -. = 1 1 1I < -, and the

Et are independent and identically distributed with mean vector zero and finite

covariance matrix G, then we say that u is generated by a linear process. Define

the sample autocovariance function of ut from a sample of length n to be

-l~nn(h) = n L l ut U ; h=0,1,2,... (4.4)C t=h+l Ut t-h""" -

and the autocavariance function of ut to be P(h) - E{utu_}.-

Theorem 4.1 Let u t be generated by a linear process and suppose the fourth

cumulant of e is finite. Let ci(h) and YiW(h) denote the ijth element of Cn(h)

and r(h), respectively. Then (a) C(h) r(h) a.s. as n for any h, and
n

(b) for any integer H > 0 and integers Z(h), the joint law of

n {c. .(Z(h)) - y. (Z(h))} i,jl,...,p; h1,....

converges (n - =) to that of a zero-mean normal with asymptotic covariances

n Cov(c (in), c (h))ij k2.

r_ {Y (r)y (r+h-m) + y (r+h)y i(r-m) + ik (0,m,r,r+h)} (4.5)
r= ik j.Z iz ij ik

where Ki is the fourth cumulant function of u m, h E {Z(1),.,g(H)} The

fact that K ijkk is absolutely sumnable follows from the finiteness of the fourth

cumulants of E (cf. Hannan (1970) p. 211 for details). Note that if u is

Gaussian the fourth cumulants vanish.

It is clear from Theorem 4.1 that since yt given by (1.1) is generated by a

linear process (cf. 2.3), the estimates given in (4.1), (4.2), and (4.3) are in

fact strongly consistent: Simply note that r(h)= h o + where 6 is
0

the Kronecker 6. Moreover, since the estimates are linear combinations of the

asymptotically jointly normal variates Cn(h), it is clear that n n - n Q),

n.. . .,



and rn CR - R) are asymptotically normal with covariance matrices determined via
n

(4.5). This establishes the desired rate of convergence needed for the Newton-
, - - - ~ ~~(-/4) . ent f .

Raphson. That is, (in 0) On - Q) and (A n - R) are all op 1 We note
".o'V.

that we shall use the same order notation, o and 0, for matrix as well as vector

variates, no confusion should arise from this.

* 4.2 The Newton-Raphson Procedure

In this subsection we demonstrate the soundness of the Newton-Raphson pro-

cedure for the given KF model. The techniques used in this section will also help

us establish the bootstrap principle in the next section.

So that we may explicitly exhibit a Newton-Raphson iteration we reparametrize
-1u

the problem. Let P be as defined in (2.1b) and let W (P+R) be the inverse of

the covariance matrix of an innovation. We then consider the problem of estimating

(D,P,W) via Newton-Raphson. Note that our original parameters ($,Q,R) are easily

identified from (0,P,W), namely Q P -O[P-PWP]O' (cf. 2.1b) and R W -1 P. In

this manner we may write (2.3) as

tY =1 tJPWrtj +'r"
(4.6)

t i PWr + rt-1 
tx0

where we have dropped the superscript t-l from the rt 's

Let 60 be the kxl vector containing the distinct parameters of (D,P,W) and note

2
that k = p(2p+l) since 0 contains p , P contains p(p+l)/ 2 , and W contains p(p+l)/2

distinct parameters. The Newton-Raphson procedure considers minimizing

1 1 l2 ,
(e)= -n ,2 -

°  2 t - t(o -  (4.7)

where 6 is an initial estimate of 8O, rt t - x-i where -i is obtained by

running a KF under parameter estimates 6, and t is the pxk matrix of partials
t

. .. . . . .
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V

3r /a6 evaluated at e 6 . G may be explicitly obtained via equation (4.6) by
t t b

considering the model in canonical form. Specifically, let E be the nonsingular

matrix for which E -1E is block diagonal. Then, let st E_1 t et =E1 t

=t E and nt E Ev~ in which case we transform the model (1.1), (1.2) to

zt t

and

st =As + e

where A =E- 1 $E is block diagonal. Then we may consider writing z~ in the form of

(4.6) in which case AJ has a nice form (see Fuller (1976) p. 49).

In view of (4.7), the one-step Newton-Raphson estimate of 60is given by

0 + [n- Inl a;Wat 1 tJ1n In G'Wr] (4.8)

In the examples of Section 6, we shall consider the univariate case, pl.

Thus, it is worthwhile to give the explicit Newton-Raphson procedure for that case

here:

1. Estimate 0, Qand R via (4.1), (4.2) and (4.3), respectively. Call the estimates

~,(and ft.

2. Run a KE under ~,Q ,and io 0 to obtain P, k' and io ..- 9 Obtain the

- t-1innovations it Yt y x t t1,'... ,n.

3. Calculate the partials via (4.6):

t jI t-j1 dl t-j j-J

for t=2,...,n, G1  [0,0,01; where I~=(4WR

4. Update via (4. 3):

+1 In A 11
= ~t-2 GtGtI [It:- 2 d#'it*1W. _W
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We now establish the asymptotic properties of the Newton-Raphson estimate

given in (4.8)..

Theorem 4.2, Let 0, Q, and R satisfy assumptions (Al) and (A2) given in Section 2.

Let ns Qn' and Rn be the initial consistent estimates given in (4.1), (4.2), and

(4.3), respectively, and let 6, as defined above, consist of these estimates.

Further, let i° be an estimator of x° which is bounded in probability, and assume

that rt has finite fourth cumulant. Then

~0)L 1l
n CO e°)  Nk(0,B- (60))

B(0 ° n

where is defined in (4.81, k p(2p+l), and B(8)= plim n Int. GjWGt where

Gt and W are defined in (4,7).

Proof. The proof parallels the proof of Fuller (1976, Theorem 8.3.1). See also

Fuller (.1976, Theorem 5.5,1 and Corollary 5.5.1). One must simply note that the

elements of the matrices of first, second and third order partials of rt with res-

pect to 6 converge to linear processes as t and Theorem 4.1a applies. One

may then show that

I' ion- n o' + n-i/2) "..
80)- [n-I r Gt WG0 - [n- t G Wrt +o,-

tl t t G-l Wr t

where is the pxk matrix ar t/a evaluated at 6 0 ,and that

oI In'1
V [n-i tl G t Wr t] N Nk(0'B(O°))"

* The result of the theorem then follows. 0"

* '.
° 
.-

I:..
- ,I
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5. The Bootstrap Principle

In this section we justify the techniques established in Section 3. Throughout -

this section we replace the normality assumptions with the assumption that the

noise processes wt and vt have finite fourth moments so that the observations yt

satisfy the conditions of Theorem 4.1. As in the previous section we drop the
t -i -.l

superscript t-l from the innovations rt .
t

Before proving the bootstrap principle given in Section 3, we state the follow-

ing useful lemmas. First some notation is needed. If Rp is a p-dimensional space

equipped with the Euclidean norm I"* and a > 1, then dP(p,v) is the distance be-
a

p (''a l.a
tween probability measures v and v in R defined as the infimum of EIU-.VII

over all pairs of random vectors U with law p and V with law v (cf. Bickel and

Freedman (1981)).

Lemma 5.1 Let 0 = (D,Q,R) and n 6 ($n'QnR ) satisfy the conditions of Result

4.2. Let F be the emperical distribution function (e.d.f.) of the suboptimaln

innovations rt, t-l,...,n generated by n and let F be the e.d.f. of the optimal
n n

innovations rt t-l,...,n generated by 0. Then dP(FnFn) - 0 almost surely (a.s.)

as n - .

Proof Noting that r - t- and it i  t- in view of Result 4.2, we have
Pro._ f Ntig ht t Yt-Xt Yt-t,.

dP(i n F n 4 n _ 14I---"4
<n t=l rt - r "I

-1 n t-i ^t-if4 ..
=n It-1 Ixt -xt , -0 a.s.

as n-. "

Lemma 5.2 Let Fn be the e.d.f. of the optimal innovations, rt. t-l,...,n and

let F be the common distribution of rt. Then d-(F F) 0 a.s. as n -.
t 4 n

%-.

--- " - - '- . "' - " " - . ', " - - . -. .. . v ' "' •-' . - , ' " . . .
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Proof Since the optimal steady-state innovations are lid (cf. Proposition 2.1)

with finite fourth moments, this follows from Lemma 8.4 of Bickel and Freedman

(1981). 0 '

Now, ltC(h) be the sample autocovariance function of the observations y~
n

(cf. 4.4). Let ija(FM be the law of C n(h) when the law of r tis F. Metrize the

* 's by dpxp and the F's by dP. Then we have the following lemma which is similar

* to Freedman (1984, Lemma 6.3), however, for the sake of completeness, we provide

a proof.

*Lemma 5.3 The tk (F) are equiuniformly continuous functions of F on
n,h

S-{F: fJR Ir dF(r) < a

* Proof. Fix F and F* in S. Construct iid random vectors rt, r; tinl ...,n, so

* that rt has law F and rt has law F*, and

dp (F,F*) 2 Efjr -r~l21
2 t t

See Bickel and Freedman (1981, Lemma 8.1). Build y~ from the r~ and yfrom the
*

ras in (2.3). Then, for h > 0

(F, (* E{jl (y~.-jt.h

SE{ yI~t*~ h l _t h1} + E~iy _ -Y'I.y 1}. (5.1)

We concentrate on the first term in (5.1), the second being treated similarly.

Now, by the Cauchy-Schwartz inequality and the fact that y~ is a linear process,

E{I~I. y5-Y1l 2 <E{Iy I2  E~y-Y 12}

~2 E~y-~ 2}

E( I y....
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Using the fact that if U are independent random vectors, then

*.tE{JE 1 21 < E{JU 12 } + E{U }I

we have that in view of equation (2.3) a'?

E{Iy-y1 2  - V{1' 1 Oj K(r._jr* ) + (r sr*)1 2

SE{[ 126 + E{I 6 2k + {(_ + 1] (5.2)
21-p

where

6 -rl-r, 3- 11011 < 1, and k IKI.

It is clear that (5.2) is small if F and F are close in d2 . 1

Now, let starred variables denote those obtained via the bootstrap sample
{* , ,

YI"'" .,yn }. In this manner we denote

Cn(h) n- th+l YtYt-h' h > 0

as the bootstrap counterpart of C (h). Furthermore, let E, E* denote expectationn

under F, Fn' respectively. Let Zij(th) - ytiYt-h,j - E(Ytiyth j ) and let

Zi (th) Y - E (ytY i,jel,...,p; h-0,l,..... Then Z (h)-

n1 l Zij(th) will have the same ergodic properties as (ci (h) - Yij(h)}ti1 (h) "'-"
(Hannan (1970) calls the matrix whose elements are n(h), (h) - r(h), and shows

that C (h) and C (h) as we've defined it have the same limiting properties). Forn n

details see Hannan (1970, p. 208 and p. 228).

We now state the following theorem.

Theorem 5.1. Let yt satisfy the conditions of Theorem 4.1. Then, along almost

all sample sequences, as n - =, conditionally on the data, for any integer H > 0

and integers Z(h),

. e%.

..
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(1) C (M(h)) -r r(£(h)) in conditional probability, andn

(2) the joint conditional law of n 2 (L(h)) merges with the joint unconditional

law of Vn' ij(z(h)), i,jil,...,p; h-l,2,...,H.

Proof. The proof of part (1) follows from Lemmas 5.1, 5.2, and 5.3. That is, the

conditional law of C (h) given the data differs little in the sense of dpxp from
n I

the unconditional law of C (h) by Lemma 5.3, because the e.d.f. of the suboptimal
n

innovations, Fn' differs little in the sense of d from the law of the optimaln 2

innovations, F, by the combination of Lemmas 5.1 and 5.2.

We prove part (2) by showing that as n - ®, the joint conditional law of

vn Z(2((h)) is the joint law described in Theorem 4.1.
ij * * *

Let rt be iid't (appropriately centered) and let yt be generated by (cf. 2.3)
t ~n

~trtl K + r

where $ and K are the consistent estimates of * and K described in Section 4 such
n n

that p($n) < 1. For convenience, define pxp matrices A(J) -, jl,2,..., andn n n

A(0) I. Then for all h,

Etyth } - EQ(J.0 A(J)r (k0 A(k)rh-k)

" o A(j+h) E (rtrt ) !'(J)

A(J+h) (n1') (5.3)

Since by Lemmas 5.1 and 5.2, d2(F' F) 0 a.s. as n , it follows that given the

data, E (rtr t ) Cov(r t) P+R a.s. as n ( Ccf. Bickel and Freedman (1981), .
t t t

Lemma 8.3). Hence, we conclude from (5.3) that conditional on the data, as n -,

E(ytYt) * r(h), all h.

Note that for a,b,c,d, ij,kvZl,...,p, and t,u,v,w-0,+l,+2,...,

J , . -.. -. . .... . ,- ."," ',. % - .". .. -. -. .. . , , .'. . .. .. . . ., , - - , . . -. -, , ,. -. , .. , , .. , %
J/
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E (r r r r - n - . ~ r r )(n- tuvw equal in pairs
Smm md but not all equal

0 otherwise

where a,b and c,d correspond to the pairs of subscripts which are equal (e.g., if

t - u and v w, then a - i, b = J, c k, d = 2). It is clear that the fourth

cumulants of the rt are finite and hence, so is the fourth cumulant function of the

Yt" Thus, the yt satisfy the conditions of Theorem 4.1. That is, if yl,''" Ym is

a (bootstrap) sample of size m, the joint law of rm Z (L(h)), i,j=l,...,p;
ij

h-l,...,H, H > 0 integer, converges (m - =) to a zero-mean normal law with asympto-

tic covariances evaluated as in (4.5). Hence, part (2) follows if the conditional

moments E (ytYs) y .(t-s) and fourth cumulants i (0,t,u,v) E(YsiY+j
ti sj i' ijk sktt~

Y- Yij(t) (v-u) - Y -ikiu)v)Yt) (V) (u-t), converge (n - =)

a.s. to the unconditional values yij(t-s) and Kijkt (O,t,u,v), respectively. We
have already seen that (t-s) Y j(t-s) a.s. as n * . Also, by Lemmas 5.1 and

5.2, d (nF) -* 0 a.s. as n from which it follows that the fourth conditional4 n

moments of yt converges (n -* =) a.s. to the fourth moments of yt (cf. Bickel and
* .4

Freedman (1981), Lemma 8.3) which completes the proof. -

Let 0n, n and denote the bootstrap initial estimates of 0, Q and R, res- . -.n' n n

pectively, obtained by evaluating (4.1), (4.2), and (4.3), respectively, with y* '4* 4* *

replaced by yt" In view of Theorem 5.1, we have that %n' %, and Rn are consistent

for 4, Q, and R, respectively, in conditional probability with the desired con-

vergerwe rate of o *(n -/4). By o*(n-1  ) we mean a variate which is of smaller
p p

order in conditional probability than n-l '4  These facts, of course, parallel those .-

given in Section 4.1 for the original data yt

.*
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Next, we establish the appropriate asymptotics for the Newton-Raphson procedure -..

involving the bootstrap data yt; paralleling the results of Section 4.2 for the

original data yt. Recall that in the realm of the bootstrap the data yt are

generated via (cf. 3.1)

yt IJ K r rt (5.4)Yt i- =rt-j

where and K - are the Newton-Raphson estimates obtained via (4.8); i yt-xt

where - is obtained via the KF under parameters 0, and rt is obtained, as des-

cribed in Section 3, by resampling the rt" "

Let 8 be the kxl vector containing the appropriate elements of n' Pn' and Wn -

The Newton-Raphson estimate of 8 based on a bootstrap sample of size n is thus

8 - +[n- Gt WGt] [n-i t., GtWnrt] (5.5)

-* * ^t-l* ^t-l*
where rt  - xt , xt  is obtained via filtering under parameter estimates

8 , and is the pxk matrix of partials af*/A evaluated at We now state
t t

the bootstrap principle in the following theorem.

Theorem 5.2 Let 8 be the kxl bootstrap estimate given in (5.5) and let e be given

by (4.8). Then, along almost all sample sequences, as n - ®, conditional on the

data, the law of n (* - ) merges with the law of rn (8 - 0) as given by

Theorem 4.2.

Proof. The proof of this theorem will parallel that of Theorem 4.2. That is, in

view of (5.4) the elements of the matrices of the first, second, and third order

partials of rt with respect to are linear processes and we may show that con-

ditional on the data

1 -I[n'l -i G[n-lIn 6ttr] + Op(n- I/2)  (5.6)
b~~. En..= tW
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since 0n, Q and R have the desired convergence rate previously established. In
n n n

(5.6), 6 is the pxk matrix ar /36 evaluated at 6 f e. Moreover, since ( ) - °)
t t

is op (n and n- I  ti GtWGt W 0 p(1), we have that conditional on the data

[n 0'=1-1 -1 n 0 t o -1/2 1/
- G= WGI G Wi + o (n- ) + (n (57)

t t t t p p

Next, following Lemmas 5.1 and 5.2 we may show that dp(n, F) "" 0 a.s. as n + ,

where P is the e.d.f. of the r and F is the common distribution of r Hence wen t t*

may easily establish (by paralleling Theorem 4.2) that conditional on the data,

as n +

,- 1 in a' l L 0n n-  G Wr] Nk(O,B(eO

from which, in view of (5.7), the theorem follows. U

6. Examples

In this section we submit two examples, The first example considers the

bootstrap for the univariate KF model when the noise processes are Gaussian. In

the second example, we consider the case when the noise processes are contaminated

normals. For the sake of clarity, we first provide the step-by-step bootstrap . -

procedure for the KF:

Given the data yl,...,yn

1. Obtain the initial consistent estimates of 0, Q, and R via equations (4.1),

(4.2) and (4.3), respectively.
n'n ndRto obtain Pn K n' and rt Y tlxt I  '

2. Filter (cf. 2.1) under 1 and Rn ra P y a

t1,t... ,no

3. Obtain the Newton-Raphson estimates 8 via (4.8). Also, see the discussion

below (4.8). %
~.*t-1

4. Filter under and obtain the innovations rt = Yt - ; til,...,n. Centert t

the r".

. ....

t

..
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5. Sample with replacement, n times from {rl...r } to obtain {r
n

6. Obtain the bootstrap data y1 ,...,y n via (3.1).

7. Repeat steps 1, 2 and 3 using the bootstrap data yielding 61, the first boot-

strap estimate of

8. Repeat steps 5, 6. and 7 a large number "L" of times to obtain

Example 6.1 In this example we generated n-250 Gaussian observations from the

KF model (1.1), (1.2) with parameters 0 = 0.8, Q = 4.0, and R - 1.0. The one-

step Newton-Raphson estimates were then bootstrapped L = 250 times and we com- 5

pared the Newton-Raphson estimate of the standard error of 1, based on the

asymptotics of Theorem 4.2, to the bootstrap estimate of the standard error of 0.

The summary results of 30 such runs are given in Table 6.1. Also included in

Table 6.1 is the emperical standard error of the Newton-Raphson estimate of -

obtained from 2000 generated samples of length n - 250 observations from the model. .-"

TABLE 6.1 Standard Error of t

Mean Standard Deviation Bias

Bootstrapa 3.933 x 103 0.651 x 103 -0.166 x 10--

b b
Newton-Rapshon 1.380 x 10-  0.479 x 10-

10_c  0_ c , e -..,

Emperical 3.605 x 10 -0.026 x 10

Table 6.1: Summary of the estimates of the standard error of the Newton-Raphson

estimate of D in the KF model with Gaussian noise for samples of length n - 250.-

a: Based on L - 250 replications d: Average bias relative to the
corresponding Newton-Raphson

b: Based on 30 runs estimate

c: Based on 2000 runs e: Bias relative to the true value

of D.

J , --

-° *
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Example 6.2 In this example we generated n 250 contaminated normal observations
from the KF model (1.1), (1.2) with parameters $ - 0.8, Q = 4.0 (90%) + 16.0 (10%) '

5.2 and R = 1.0 (90%) + 9.0 (10%) - 1.8. That is, the state noise is N(0,4) with

probability 90% and N(0,16) with probability 10%, while the observation noise is

N(0,1) with probability 90% and N(0,9) with probability 10%. The one-step Newton-

Raphson estimates were then bootstrapped L = 250 times and we compared the estimates

of the standard error of the state transition parameter estimate as in Example 6.1.

Table 6.2 gives the summary of 30 runs and compares these with the emperical stand-

ard error based on 2000 runs.

TABLE 6.2 Standard Error of "

Mean Standard Deviation Bias-- 0_ b  0- b  -- l _b,d  ,"

Bootstrapa 4.662 x 1 0  1.044 x -0.464 x 10-

-3b i-3b
Newton-Raphson 1.871 x 10 0.778 x 10-

Emperical 4.197 x 10- 3
c  -0.068 x 10-

3c e  "

Table 6.2: Summary of the estimates of the standard error of the Newton-Raphson

estimate of D in the KF model with contaminated Gaussian noise for samples of

length n 250

a: Based on L = 250 replications d: Average bias relative to
corresponding Newton-Raphson

b: Based on 30 runs estimate

c: Based on 2000 runs e: Bias relative to the true value
of 4D.
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In each example, the advantage of the bootstrap is clear. In both examples,

the bootstrap estimate of the standard error of ; tended to be slightly larger r

* than the emperical standard error, whereas the standard error of obtained via

the larger sample theory of the Newton-Raphson was always considerably smaller than

*" the emperical value. Thus, the bootstrap has the desired property that the con-

fidence and prediction regions obtained via the bootstrap will tend to be conservative.

The bootstrap is clearly a perfect complement to the Newton-Raphson procedure.

'.9-:

I.
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