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1. Introduction

The Kalman filter (KF) haé become an important and powerful tool for the
statistician. Recently, many authors have exploited the state-space model and
KF recursions for estimation and prediction of time series. For example, Jones
(1980) and Harvey and Pierse (1984) use the KF to obtain maximum likelihood
estimates of the parameters of ARMA processes when observations are missing. It
has been suggested by Morrison and Pike (1977) and others (cf. Kendall (1973)) that
the KF model provides an appropriate setting within which to parametrize smoothing
and forecasting problems.

To be specific, we suppose that a pxl vector time series {yt; t =0,+1,+2,...}

is being generated by the following dynamic system

Ve = %, + Ve (1.1)

where X, is an unobservable zero mean, pxl vector stationary stochastic signal, and
v, is pxl Gaussian white noise, vt~H(0,R). The dynamics of the stationary signal
is given by

X, = ¢xt_1 + L (1.2)

where ¢ is the pxp transition matrix and L is pxl Gaussian white noise, wt~N(O,Q).
Furthermore, {vt} and {wt} are mutually independent and we assume that the system
and the filter have reached steady state. We remark that the superficially more

general model in which (1.1) is replaced by

yt = ch + vt
where M is a nonsingular known degign matrix may be reduced to (1.1) by an
appropriate change of bases.

Given the parameters of the model, namely, ¢, Q and R, one may obtain the

minimum mean square error filter and forecasts for the system via the KF recursioas.
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However, the parameters are rarely known and hence must be estimated. Moreover,
since the forecasts are based on the estimate of the state transition matrix ¢,
the precision of the estimate must be evaluated. We propose the bootstrap as a
method to evaluate the precision of the transition parameter estimates, in partic-
ular, to provide robustness against departure from normality in the Gaussian state
and observation errors, and to assist in estimating forecast errors.

In most cases, parameter estimation for the KF model has been accomplished
by maximum likelihood techniques involving the use of scoring or Newton-Raphson
techniques to solve the nonlinear equations which result from differentiating the

log-likelihood function (cf. Gupta and Mehra (1974)). Several examples have been

given, notably by Ledolter (1979) and Goodrich and Caines (1979), which demonstrate
the feasibility of these methods for several specific cases. Maximum likelihood
estimation of parameters in the autoregressive moving average (ARMA) model express-
ed in state-space form has been considered by Harvey and Phillips (1979) and Jones
(1980). The methods in the above references typically involve using a set of
recursions for the derivatives of the log-likelihood and require that one invert

a matrix of partial derivatives at each step. When the matrix of partials (or its

s %

expectation) is well behaved, the Newton-Raphson and scoring procedures enjoy

N
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quadratic convergence in the neighborhood of the maximum and one has a ready-made
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.

L
R

estimator for the covariance matrix of the parameters. We discuss the Newton~
Raphson procedure for the KF model in Section 4.

Another maximum likelihood technique uses the EM algorithm to estimate the
parameters of the KF model (cf. Shumway and Stoffer (1982)). Although this pro-
cedure is relatively simple and always increases the likelihood, the matrix of
partials is never computed so that it is not available for providing estimates of
the standard errors. However, the bootstrap may be able to augment this procedure

by providing an approximation to the distribution of the parameter estimates.
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The maximum likelihood techniques mentioned above require that one supply
initial estimates (or starting values) which are sufficiently close to the true
parameters, As will be seen, we shall require initial consistent estimates of ¢,
Q and R,which converge faster that n-l/a. Such estimates have been given by
Anderson et, al. (1969), Their estimates, which are computationally simple to
obtain, are discussed in Section 4. Further in Section 4, it is shown that when
the aforementioned initial estimates are used, the one-step Newton-Raphson yields
an efficient estimate of the transition parameter ¢ when the noise processes are
Gaussian, We make bootstrapping the Newton-Raphson estimate of ¢ appealing by
showing, in Section 5, that the bootstrap gives the right answers with large samples.
That is, the bootstrap is at least as sound as the conventional asymptotics.

Finally, in Section 6, we give emperical evidence of the bootstrap's im-
portance in Kalman filtering by comparing the bootstrap to the Newton-Raphson in
the cases when the likelihood is Gaussian and when the likelihood is contaminated
Gaussian.

Our goal is to estimate the precision of the parameter estimate of ¢ as well
as the precision of the forecasts in+1’ﬁn+2""’in+k' The techniques used here
are based on the bootstrap (cf. Efron (1979)) and the methods used in bootstrapping
least squeares estimates discussed in Bickel and Freedman (1981), Freedman (1981)
and Freedman and Peters (1984). It is noted in the above references that in
regression models (static or dynamic), it is appropriate to resample the centered
residuals after estimating the parameters. This is not possible in the present
model (1.1) and (1.2) since the signal is not observable., However, we may base
the procedure on the innovations which are obtained by taking the conditional
expectation of the signal given the data. The bootstrap procedure will involve the

resampling of the innovation sequence

t-1 t~1
r Yo = % (1.3)
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t-1 t-
where by X, =~ we mean E(xtlyt-l’yt—z""’)' Of coures X, 1 will be obtained re-

cursively via the KF,
Under the conditions stated in the next section we will be able to put this
problem into the nonlinear regression context as discussed in Efron (1979,

Section 7). That is, we may write
yt = gt(¢9Q,R’xt’yt_1;yt_2,-.‘.) + €t

where €, are iid zero mean random vectors (namely, the innovations) and gt(-) is
a particularly complicated, but known, nonlinear function of the parameters ¢, Q,

t-1l
and R, the signal Xe» and the data Yoy Ypogoter * In particular, gt(-) X, s
the filtered value of the signal.

In the next section we give conditions under which we are able to bootstrap

the innovations, (1.3). The bootstrap procedure is given in Section 3.

2. The Steady-State Innovation Sequence

Throughout the remainder of this paper we make the following assumptions on

the pxp parameter matrices: (Al) Q and R are positive definite, and (A2) ¢ is

nonsingular with spectal norm, o(%), less than unity. These conditions ensure the

asymptotic global stability of the KF (cf. Deyst and Price (1968)).

The steady-state KF recursions are given by (cf. Jazwinski (1970))

K = P(P+R) 1, (2.1a)
P = 6(P-P(P+R) 1P]0’ + Q, (2.1b)
x§+l = ¢x§, (2.1c)
xt = xz-l + R(y, - x:_l). (2.1d)

In the KF above, K is the steady-state gain macrfk, P is the steady-state

t-1
t

- _t-1 _ ' t-1 _
prediction error, P E{(xt X, )(xt x, '}, and X, E(xtfyt_l,yt_z,...) is the
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steady-state filter estimate of X, based on the data Yea1Vpa2?" " *

Lemma 2.1 Under steady-state and optimal filtering, the pxl vector innovation

sequence

(2.2)

is a zero-mean, white Gaussian sequence with covariance matrix P+R.

t-1 t-1
Proof Write r, e, * v, where e, =X =X/ and note that E(et) E(vt) 0.
The rt-l are Gaussian since they are linear combinations of Gaussian random vectors.

To establish the orthogonality of the innovatioms, it is easy to see that while

r§_1(= Ye = x:-l) is in the linear space spanned by {y,,y hox

t-l,o-o

is orthogonal to the linear space spanned by {yt-l’yt-Z""}’ Hence, for s < t,

t t t

- - 1] - <1
s lrt 1 ) = E{rs lE(rt 1

E(rg 'r, s t

|ys,ys_1,...)} = Q,

Also, since et and v, are uncorrelated we have that

Cov(rz-l) = Cov(et) + Cov(vt) = P+R, O

As a final remark, we note that via (2.1lc¢), (2.1d), and (2.2) we may write Ye

in terms of the steady-state innovations as

Jte L f, t=j=l  _t-l
Y, Zj_l L I
_oct=l 4, t=j-1 _ t-1 _ ,to
Lj=l 3K rt-j + r, + 9 X (2.3)

which follows from the fact that !|¢Jl| + 0 exponentially fast as j + « since

o(%) < 1, where II@IIZ = trace(9¢'¢). This result will be useful in establishing

the bootstrap procedure.
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3. The Bootstrap Estimate of Precision s 4
RO
As previously mentioned, the bootstrap technique will be employed by resampling ALY

the steady-state innovation sequence. Recall that under optimal filtering the

LAY
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innovation sequence rt-l, t=1,...,n is pxl Gaussian white noise, rt-l ~ Np(O,P+R) :{:
LN
where P is the steady-state error covariance matrix given in (2.1b). o
b The bootstrap procedure begins by estimating the parameters © = {¢,Q,R} of the M

i model (1.1), (1.2) by the procedures mentioned in the Introduction. We shall dis-

cuss the particulars in Section 4. Call these estimates © = {&,Q,R}.

From these preliminary estimates obtain a suboptimal innovation sequence by o
filtering (cf. 2.1) under ©. Call this innovation sequence Et-l. Make the se- i;::
quence {?E-l}2=1 independent and identically distributed with distribution equal {i;
to the emperical distribution by putting mass n-l on each innovation Ez_l, t=1,...,n, ji;;

Next, draw a "bootstrap sample' of innovations, r:t-l, t=1l,...,n by independent iﬁig
random sampling of the residuals Ez-l. That is, sample the Ez-l, n times, with %;J
replacement from {;2,;;’...’;:-1}. From this we obtain a "bootstrap sample" of gi;
data yI,...,y: by setting (cf. 2.3) i;i

y: - ~:t-1 + z;'i ¢j r*E;j 1’ t=1,...,n (3.1 :ié
where K is the estimated gain matrix obtained via filtering under parameters 0. ﬁgi:

We make the following suggestions before proceeding with step (3.1). First, éif
as suggested in Freedman (198l), one should center the residuals Et_l before ;jgl
resampling them so that the emperical distriubtion puts mass ol on E:_l - ﬂn where g;;‘
in = n_l :=l ;E-l. Second, we suggest checking whether the innovations are nearly .ii
white. It is known that a suboptimal filter produces correlated innovations (see, ﬁi;
for example, Mehra (1970)) and hence this is a check on the "goodness’ of the Eis

A
estimates., Various methods are available for testing the whiteness of the innova- ‘ﬁg
tions many of which are listed in Mehra (1970). ?ii
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< Now, suppose that the bootstrap data {yl,...,yn} come from the model Y
s ~
y ~
o'
A * + * > 1 3.2 3
Yo = X, * Ve t>1, (3.2a) E
. * * v
; x = $ xt:_—l + W t>1, (3.2b) :.::
: * * * *
where v, is px1 Gaussian white noise vt~N(O,R ) and is independent of v, which is
» . * * % x k % ~
X p*xl Gaussian white noise wt~N(O,Q ). Assume the parameters @ = {¢ ,Q ,R } are >
3 3
~ unknown and to be estimated. ]
- * L
= The parameters © are then estimated by the initial optimal procedure to pro- [
~% <k ~k % .
~ duce estimates 61 = {¢1,Q1,Rl}. Then, the suboptimal innovation sequence is . -
\ resampled and the bootstrap procedure is reiterated. :::j'.
A <.
The entire process is repeated some large number "L" of times obtaining L 5
X Kk .k ~ % 3
- bootstrap replications 91,62,...,®L. The distribution of the errors _'.
. Y - N
¢ -9 (3.3) -
- are then computed to give an approximation as to the distribution of \
y ~ e
~ 0 - Qo (3.4) -:,
%
The bootstrap distribution of the errors (3.3) may then be used to obtain confidence
N regions and tests of hypotheses about the parameters ¢. Justification of this :':::
:'~. procedure is given in Section 5. i
n o
Forecasting k steps into the future, say xn+j E(xn+j]yn, n-l"")’ j=1,2,...,k o
is easily accomplished via the filter equations (2.1), namely ',':7:.
. n . s
; Xoag = % 37k (3.5) -
v 0 .
The suboptimal forecasts will be obtained via the KF under parameter estimates & :::f-
: %
. so that 'y
X0 = 33D ge=1,....k (3.6) "
n+j n’ e

&
-
-
»
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will be the actual forecasts. If at each bootstrap replication we obtain

~n% ~n* (1) ~n¥ ~n* (L)
{xn+1""’xn+k} ,...,{xn+1,...,xn+k} (3.7)
we may extract the emperical distribution of the forecast residuals
-n* ~n
n+j " xn+j’ j=1l,...,k (3.8)

which can then be used to approximate the distribution of the actual forecast

errors

j=1,...,k. (3.9)

From the distributions of (3.8) we may obtain prediction regions for the forecasts

(3.5).

4. Parameter Estimation

In this section we give the details of the comsistent and efficient estimation
of the parameters of the KF model (1,1), (1.2). Recall that the system is in
steady~-state and the parameters 0 = {9,Q,R} satisfy the conditions (Al) and (A2)
given in Section 2., First, we discuss the initial consistent estimates given in

Anderson et. al, (1969) and give related results, Second, we discuss the Newton-

Raphson procedure for the KF model and in particular we show that the procedure is 0
sound for the given model. We note that the assumption of normality of the error .

processes is not needed to establish the results of this section.

4,1 1Initial Consistent Estimates

The following estimates are given in Anderson et. al. (1969). Let

2 . n t n [} +
= Qenyy Vi) Qpas¥emrVe-p) » 023 (4.1)

where by + we mean generalized inverse., Further, define

----------

.........




~ = -1l en _*i _“i (] - -
By (1) =07 [ sy, ~ by D -8y, ) n2>3, 1=1,2 e

s,

e e
. .

» and set

Ro=28 ) + 87 B () - B (2187 (4.2)
n 2 n n n n n :
:n

"' and

PO _ & _ .
Qn Bn(l) Rn QanQn (4.3)

- &y ¥ B 3y R _P W &
'H: ‘."‘-:- b o "!“
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- provided that @n is invertible.
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Anderson et. al. (1969) show the strong consistency (n + «) of én’ Qn’ and ﬁn

-, for ¢, Q and R, respectively, under the model assumptions (1.1), (1.2). To
establish the bootstrap principle in Section 5, we need the following results which

exhibit the behavior of the suboptimal filter and forecasts (see Anderson et. al.

- (1969), Theorems 2.4, 2.5 and Corollary 2.4). Denote positive (semi)-definite by L

:'- p.(s.)d.
Result 4.1. If Q is p.d. and if sn’dn’ﬁn are strongly consistent estimates of

“o

%,Q,R, respectively, for which Qn is p.d. and Rn is p.s.d. for all n > 1, then =34

- ' 3:\

- ﬁn + P and ﬁn + Ka.s. as n > = vhere P_ and K_ are the estimates of the steady- <

. )

J state filter covariance and gain matrices, respectively. .%

i: Result 4.2. Let the hypotheses of Result 4.1 be satisfied, and suppose p(¢) < 1. lf

If in addition, E{Ivt[k} < = and E{thlk} < » for some k > 1, then oot

-1 en gt otk o

lim @ Ztsl‘xt-xt 0 a.s. T

and i%

-1 n t .t K Lo

lim 0 zt=1 X e~ 0Xe 0 a.s. . ?}

for any integer 2 > 1. o

Anderson et. al. (1969) do not establish the asymptotic normality of the esti- b:

mates given in (4.1), (4.2) and (4.3). This, however, is easily accomplished via S;

S

oa
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the following theorem which may be found in parts in Hannan (1970, Chapter 4).
First, we need some definitions. If u_= Z;=_w Ajet-j’ zfm llAj]] < », and the
€, are independent and identically distributed with mean vector zero and finite

covariance matrix G, then we say that u, is generated by a linear process. Define

the sample autocovariance function of u, from a sample of length n to be

C(h) = a7t J7 h=0,1,2,... (4.4)

\J .
e=h+1 Yt Yt-h °

}.

and the autocavariance function of u, to be T(h) = E{utué_h

Theorem 4.1 Let u, be generated by a linear process and suppose the fourth
cumulant of €, is finite. Let cij(h) and Yij(h) denote the ijth element of Cn(h)
and r(h), respectively. Then (a) Cn(h) + I'(h) a.s. as n » = for any h, and

(b) for any integer H > 0 and integers #(h), the joint law of

/n {cij(z(h)) - yij(z(h))} i,j=1,...,p; h=l,...,H

converges (n -+ =) to that of a zero-mean normal with asymptotic covariances
n Cov(cij(m),ckl(h))

> X:=_m {yik(r)yjz(r+h-m) + Yil(r+h)Yij(r—m) + Kijkl(o,m,r,r+h)} (4.5)

where Kijkl is the fourth cumulant function of u_; m, h e {2(1),...,2(H)}. The

t

fact that Kijkl is absolutely summable follows from the finiteness of the fourth
cumulants of € (cf. Hannan (1970) p. 211 for details). Note that if u, is
Gaussian the fourth cumulants vanish.

It is clear from Theorem 4.1 that since e given by (1.1) is generated by a
linear process (cf. 2.3), the estimates given in (4.1), (4.2), and (4.3) are in

© : s !
fact strongly consistent: Simply note that T(h) = @h Ej=0bJQ¢J + SSR where § is

the Kronecker §. Moreover, since the estimates are linear combinations of the

asymptotically jointly normal variates Cn(h)’ it is clear that va (in -9, /o (Qn -Q),

R ARt B A Y Dt A i R Al T A B T A N S S Tl




and /n (ﬁn - R) are asymptotically normal with covariance matrices determined via
(4.5). This establishes the desired rate of convergence needed for the Newton-

-1/4). We note

Raphson. That is, (5n -9, (Qn - Q) and (ﬁn - R) are all op(n
that we shall use the same order notation, op and Op, for matrix as well as vector

variates, no confusion should arise from this.

4.2 The Newton-Raphson Procedure

In this subsection we demonstrate the soundness of the Newton-Raphson pro-
cedure for the given KF model. The techniques used in this section will also help
us establish the bootstrap principle in the next section.

So that we may explicitly exhibit a Newton-Raphson iteration we reparametrize
the problem. Let P be as defined in (2.1b) and let W = (P+R)-1 be the inverse of
the covariance matrix of an innovation. We then consider the problem of estimating
($,P,W) via Newton-Raphson. Note that our original parameters (¢,Q,R) are easily
identified from (¢,P,W), namely Q = P -¢[P-PWP]%' (cf. 2.1b) and R = W-l - P. In

this manner we may write (2.3) as

= T 4]
y, = Zj=1 tlevr, _ + T

t t

t-1 _j t o
Zj=l 4 PWrt_j tr, + ®7x,

where we have dropped the superscript t-1 from the rt's.
Let 8° be the kx1 vector containing the distinct parameters of (¢,P,W) and note
that k = p(2p+l) since ¢ contains p2, P contains p(p+1l)/2, and W contains p(p+l)/2

distinct parameters. The Newton-Raphson procedure considers minimizing
1 1

Qo) = a7t [P IE, - 6,(%-0) 1@ [

-~ o A~
. - ct(e -8)1]1} “.7n

t

where § is an initial estimate of 8°, ¢ =y, - 2571 vhere i1

¢ ¢ ¢ N is obtained by

running a KF under parameter estimates 6, and Ct is the pxk matrix of partials




art/ae evaluated at 8 = §. ét may be explicitly obtained via equation (4.6) by
considering the model in canonical form. Specifically, let E be the nonsingular
1 1 1

¢E is block diagonal. Then, let s_ = E ' x ,e =E w,

matrix for which E t t t t

= E-lyt and ne = E-lvt in which case we transform the model (1.1), (1.2) to

Ze
=
+
Ze TS T e

and

1¢E is block diagonal., Then we may consider writing z, in the form of

where A = E
(4.6) in which case Aj has a nice form (see Fuller (1976) p. 49).

In view of (4.7), the one-step Newton~Raphson estimate of 0° is given by

1. (4.8)

In the examples of Section 6, we shall consider the univariate case, p=l.

Thus, it is worthwhile to give the explicit Newton-Raphson procedure for that case

here:

1. Estimate ¢, Q and R via (4.1), (4.2) and (4.3), respectively. Call the estimates

~ A

$, Q and R.
a an~-1

2. Run a KF under &, Q, R, and ig = 0 to obtain P, K, and ﬁi,...,xn . Obtain the

~ At-l
innovations r, =Y, =X ;3 t=1,...,n.

3. Calculate the partials via (4.6):

6, = - 1oy 9897, - D0T) 8N, - D50y e, )
for t=2,...,n, él = [0,0,0]; where W = (§+ﬁ)-l.
4. Update via (4.3):
5 ¢
Pl-| 8]+ Iy S80I, iR
%) %)
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We now establish the asymptotic properties of the Newton-Raphson estimate §

given-in (4,8).

Theorem 4.2, Let ¢, Q, and R satisfy assumptions (Al) and (A2) given in Section 2.
Let $n, én’ and ﬁn be the initial consistent estimates given in (4.1), (4.2), and
(4.3), respectively, and let 8§, as defined above, consist of these estimates.
Further, let ﬁg be an estimator of xg which is bounded in probability, and assume

that r, has finite fourth cumulant, Then
i G- 6% 5 n,00,576%)

N o -l on 2454
where © is defined in (4.8), k = p(2p+l), and B(8°) = plim  _ n Zc-l GIWG,_ where

A A

Gt and W are defined in (4.7).

Proof. The proof parallels the proof of Fuller (1976, Theorem 8.3.1). See also
Fuller (1976, Theorem 5.5.,1 and Corollary 5.5.1). One must simply note that the
elements of the matrices of first, second and third order partials of r, with res-

pect to 6 converge to linear processes as t - » and Theorem 4.la applies. Onme

may then show that

~ o -1 en o' 0.,-1 . -1 en o' ~1/2
(6§ - 6°) = [n t=q Cp W61 [m zt_l Gy Wr 1 + op(n Y,

where Gg is the pxk matrix art/ae evaluated at 8 = 6°, and that

-1 ¢en o' L o
/(a7 Ji., Of Wl 3 N, (0,B(6%)).

The result of the theorem then follows. g e

B AN - X e T i e e
B . I e AN A R R LN SRS LN . -t Lt e et -
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5. The Bootstrap Principle

[

In this section we justify the techniques established in Section 3. Throughout

this section we replace the normality assumptions with the assumption that the

noise processes w_ and v, have finite fourth moments so that the observations Ye

t
satisfy the conditions of Theorem 4.1, As in the previous section we drop the
superscript t-1 from the innovations rt-l.

Before proving the bootstrap principle given in Section 3, we state the follow-
ing useful lemmas. First some notation is needed. 1If Rp is a p-dimensional space
equipped with the Euclidean norm I'l‘and a > 1, then dg(u,v) is the distance be-

tween probability measures py and v in RP defined as the infimum of E{[U-.V[a}llOl

over all pairs of random vectors U with law p and V with law v (cf. Bickel and

Freedman (1981)).

Lemma 5.1 Let 06 = (¢,Q,R) and én = (@n,dn,ﬁn) satisfy the conditions of Result
4.2. Let ?n be the emperical distribution function (e.d.f.) of the suboptimal
innovations ;t’ t=1l,...,n generated by én and let Fn be the e.d.f. of the optimal

innovations T, t=l,...,n generated by 0. Then dz(?n,Fn) + 0 almost surely (a.s.)

e 5
. -1, - .t-1 L
Proof Noting that T, = Y.°X, and T, = Ye~X in view of Result 4.2, we have Se
P 4 -1 ¢n - 4 e
d4(Fn’Fn) n t=1 lrt rtI S
_ =lcn t-1 At=1,4
=n - Jiglxg  =x17 >0 as.
as n > =, ad

Lemma 5.2 Let Fn be the e.d.f. of the optimal innovations, r_, t=l,...,n and

t

let F be the common distribution of .. Then dz(Fn,F) +0 a.s, as n + =,

»
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Proof Since the optimal steady-state innovations are iid (cf. Proposition 2.1)

NS
4 i

¥y v

with finite fourth moments, this follows from Lemma 8.4 of Bickel and Freedman

-

(1981). O

& L4

Now, let Cn(h) be the sample autocovariance function of the observations Ye
(cf. 4.4). Let Yy h(F) be the law of Cn(h) when the law of r, is F. Metrize the
*
v's by dgxp and the F's by dg. Then we have the following lemma which is similar

to Freedman (1984, Lemma 6.3), however, for the sake of completeness, we provide

a proof.
Lemma 5.3 The wn h(F) are equiuniformly continuous functions of F on
9

S = {F: J lrl2 dF(r) < a? < «}.
rP
*
Proof. Fix F and F* in S. Construct iid random vectors T Tos t=l,...,n, so

*
that r, has law F and L has law F*, and
2 * 2
) (F,F")” = E{|r,~r |}

*
See Bickel and Freedman (1981, Lemma 8.1)., Build Ve from the r_and Ye from the

t

%
r, as in (2.3). Then, for h > 0

P*P * ~1 ¢n AL
dj [wn,h(F),wn,h(F )] < E{|n tehtl TeVeon ytyt_h)l}

| x %'
= E{ lytyt-h-ytyt-hl }

* * *
< Elly o lypyeonlt + Elymy e ly 13 LD

We concentrate on the first term in (5.1), the second being treated similarly.

Now, by the Cauchy-Schwartz inequality and the fact that Y, is a linear process,

*, .2 2 *,2
Elly | 1yg=y )" < Blly, |} Elly -y [}
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Using the fact that if U, are independent random vectors, then

3

2 2 2
E{|ZjUj| }<z E{|Uj| } o+ Izj E{Uj}l

3

s
h 5"-,

’\

i

SN

we have that in view of equation (2.3)

S

w A0
*,2 - o j * * 2
E{lys-ys[ } E{Izj_1 ¢ K(rs_j-rs_j) + (rs-rs)| } .
.\h\
2 2, ok 2 ok 2 RN
< E{|s |} + E{|6 | }—2+|E{6 H () +1] (5.2)

1-p P

where
*
§ = =Ty, P = |l¢|| <1, and k = ||K|].
It is clear that (5.2) is small if F and ' are close in d2' g

Now, let starred variables denote those obtained via the bootstrap sample

* *
{yl,...,yn}. In this manner we denote

* -1 cn * &kt
C,(h) =n )

¢=htl YeYe-n® B 20

*
as the bootstrap counterpart of Cn(h). Furthermore, let E, E denote expectation

) and let :’ﬁ{-

(€h) = ¥eiYen,3 = BeiVeon,j

under F, ﬁn’ respectively. Let zij

2 (t,h) =y y £y .y 1 he=0, 1 Then Z, , (h :
= - - . = = LN,
1360 = YeiYen,j (VegYeen,y? 123Ls--0op; b=0,1,... . Then Z,,(h) N
Farla

-l fan
n t=1 Zij(t,h) will have the same ergodic properties as {cij(h) Yij(h)} :‘3:
(Hannan (1970) calls the matrix whose elements are 213(“)' 5n(h) - T'(h), and shows 2;{]
that En(h) and Cn(h) as we've defined it have the same limiting properties). For E?ii
details see Hannan (1970, p. 208 and p. 228). ﬁiﬂg
We now state the following theorem. l':
sk

e
Theorem 5.1. Let Ye satisfy the conditions of Theorem 4.1. Then, along almost Qﬁ:ﬁ
\}'\:

all sample sequences, as n + «, conditionally on the data, for any integer H > O }{hf
%
and integers %(h), PSS
PONEN

LY

;ist

e . ]f
o Te b 4 100

'l'l
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*
(1) Cn(l(h)) + I'(2(h)) in conditional probability, and

—%
(2) the joint conditional law of vn Zi (2(h)) merges with the joint unconditional

3

law of /a Z_, (1(h)), 1,j=1,...,p; h=1,2,...,H.

3

Proof. The proof of part (1) follows from Lemmas 5.1, 5.2, and 5.3. That is, the

*
conditional law of Cn(h) given the data differs little in the sense of dgxp from

the unconditional law of Cn(h) by Lemma 5.3, because the e.d.f. of the suboptimal

P

innovations, ﬁn' differs little in the sense of d2 from the law of the optimal

innovations, F, by the combination of Lemmas 5.1 and 5.2.

We prove part (2) by showing that as n + «, the joint conditional law of

~%
/n Zij(z(h)) is the joint law described in Theorem 4.1.

* . *
Let T, be iid ?n (appropriately centered) and let Ye be generated by (cf. 2.3)

where 6n and ﬁn are the consistent estimates of ¢ and K described in Section 4 such
that p(@n) < 1. For convenience, define pxp matrices A(j) = égﬁn' j=1,2,..., and

A(0) = I. Then for all h,

* X %! R oo -~ * @ N %*
By Yept = B (Ljag AT ) Qg AT, )"

- z;_o A(j+h) E*(r:r: ) A'(3)

Tr ") A'(Y). (5.3)

o 2 -1
- zj_o AGg#h) (7 Dt !

Since by Lemmas 5.1 and 5.2, dg(fn,F) + 0 a.s. as n + =, it follows that given the

x k *x
data, E (rtrt ) » Cov(rt) = P4R a.s. as n + » (cf, Bickel and Freedman (1981),

Lemma 8.3). Hence, we conclude from (5.3) that conditional on the data, as n + =,
* Kk Rk
E (ytyt-h) -+ I'(h), all h.

Note that for a,b,c,d, i,j,k,2=1,...,p, and t,u,v,w=0,+1,42,...,

T R R ]
RS

Y

m

B SRR

N

30

i Peaen
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-1 en A A A &
n zm-l rmirmjrmkrm2 t=ys=sys=y
X kx k %k % -l en ~ - -1 n N
E (rtirujrvktwl) 4 (n m=1 rmarmb)(n =1 rmcrmd) t,u,v,w equal in pairs

but not all equal

0 otherwise

L

where a,b and c,d correspond to the pairs of subscripts which are equal (e.g., if
t=uandv=w, thena =i, b=3j, c =k, d=1). It is clear that the fourth
cumulants of the r: are finite and hence, so is the fourth cumulant function of the
y:. Thus, the y: satisfy the conditions of Theorem 4.1. That is, if yI,...,y; is

_*
a (bootstrap) sample of size m, the joint law of /m Zi (e(h)), i,5=1,...,p;

3

h=1,...,H, H > 0 integer, converges (m + =) to a zero-mean normal law with asympto-

ric covariances evaluated as in (4.5). Hence, part (2) follows if the conditional

k %k %

x k * “ - -
moments E (ytiy ) = Yij(t—s) and fourth cumulants « (0,t,u,v) = E (ysiys+t,j

sj ijke
* - - a ~ - -
y:m,kysw,m) - Yij(t)vu(v-U) - Yik(u)yjl(v-t) - Yu(V)vjk(u-t). converge (n -+ =)

a.s. to the unconditional values Yij(t—s) and « (0,t,u,v), respectively. We

ijke
have already seen that ?ij(t-s) -+ yij(t-s) a.s. as n + », Also, by Lemmas 5.1 and

5.2, dz(?n,F) + 0 a.s. as n + » from which it follows that the fourth conditional
*
moments of y, converges (n » =) a,s. to the fourth moments of Ye (cf. Bickel and

Freedman (1981), Lemma 8.3) which completes the proof. 0

A *
Let ¢n’ Qn’ and ﬁn denote the bootstrap initial estimates of ¢, Q and R, res-

pectively, obtained by evaluating (4.1), (4.2), and (4.3), respectively, with Ve
* S S A%
replaced by Ve In view of Theorem 5.1, we have that ¢n, Qn' and Rn are consistent

for ¢, ¢, and R, respectively, in conditional probability with the desired con-

-1/4

* x -
vergence rate of op(n ). By op(n 1/") we mean a variate which is of smaller

1/4

order in conditional probability than n_ . These facts, of course, parallel those

given in Section 4.1 for the original data Ve
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Next, we establish the appropriate asymptotics for the Newton-Raphson procedure ;

n involving the bootstrap data y:; paralleling the results of Section 4.2 for the 5;
X original data Ve Recall that in the realm of the bootstrap the data y: are ' :iJ
E generated via (cf. 3.1) 3:.
ye = I3a1 ¥ & E:_j + £ (5.4) -
5 where ¢ and K = PW are the Newton-Raphson estimates obtained via (4.8); Et = yt~§§-1, i;
% where iz-l is obtained via the KF under parameters §, and E: is obtained, as des- :;;
cribed in Section 3, by resampling the ;t' g;

E Let é* be the kx1 vector containing the appropriate elements of $n’ fn, and ﬁ:. .?E
f The Newton-Raphson estimate of § based on a bootstrap sample of size n is thus ;E:
. ﬁi
O O SCAR i Rl A R (5.5) i

where f: = y: - it_l*, ﬁt-l* is obtained via filtering under parameter estimates g?

é*, and C: is the pxk matrix of partials 8?2/35 evaluated at & = 6. We now state ,.

5 the bootstrap principle in the following theorem. ;Si
v Theorem 5.2 Let 5* be the kxl bootstrap estimate given in (5.5) and let 6 be given .;
i by (4.8). Then, along almost all sample sequences, as n - «, conditional an the -é
2 data, the law of va (5* - 3) merges with the law of /n (§ - 8°) as given by .EZ
Theorem 4.2. :i

f Proof. The proof of this theorem will parallel that of Theorem 4.2. That is, in ;i
E view of (5.4) the elements of the matrices of the first, second, and third order ;g,
- partials of E: with respect to 8 are linear processes and we may show that con- ﬁ?
- ditional on the data :‘.
S . . - Ve = - Tk * -1/2 5“
b (6" - 8) = (a7t a1 8.6, Ll Iay G 1 + NGy (5.6) ‘




RER AN A A A A R A A RNl S S A S atadiad Sl S0 T W N T PN T e e

20

A

ko k
since °n’ Qn’ and Rn have the desired convergence rate previously established. In

(5.6), ét is the pxk matrix Brt/BG evaluated at 6 = §, Moreover, since (§ - e°)

-1l/4 - P
is op(n / ) and n 1 z:=1 GCWGt = Op(l), we have that conditional on the data

3* _ 3y 2 -l gm o' 0,-1 -1 ¢n o! ~% * =1/2
(8 §) = [n ) Gy WG 17" [n Zt=l G, Wr) + op(n

tel y+o . 5

Next, following Lemmas 5.1 and 5.2 we may show that dg(?n,F) + 0 a.s, as n + »,

- %
where Fn is the e.d.f. of the rt and F is the common distribution of rt. Hence we

may easily establish (by paralleling Theorem 4.2) that conditional on the data,

as n +
-1 en o' % [ o
/mln T L, G WE] S N_(0,B(8%))
from which, in view of (5.7), the theorem follows. g
6. Examples

In this section we submit two examples, The first example considers the
bootstrap for the univariate KF model when the nmoise processes are Gaussian. In
the second example, we consider the case when the noise processes are contaminated
normals. TFor the sake of clarity, we first provide the step-by-step bootstrap
procedure for the KF:

Given the data Yyseses¥y

1., Obtain the initial consistent estimates of ¢, Q, and R via equations (4.1),
(4.2) and (4.3), respectively.
A A A A A ~ “t-l
2, Filter (cf. 2.1) under ¢n’ Qn’ and Rn to obtain Pn, Kn’ and T, =y, =X 3
t.l, s0e ,n'

3. Obtain the Newton-Raphson estimates 6 via (4.8). Also, see the discussion

below (4.8).

~ ~t-1
4, Filter under 8 and obtain the innovations T, =Y. =X 3 t=l,...,n., Center
the Toe
Lo e ORI T T L NN S e T e e e D N
T S N, S, PO, a PN 2 agt et T et S AL VOV A MYV AL LA L AL N
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. 5. Sample with replacement, n times from {rl,...,rn} to obtain {tl,...,rn}.

* *
6., Obtain the bootstrap data YyseeesY, via (3.1).

ok
l 7. Repeat steps 1, 2 and 3 using the bootstrap data yielding el, the first boot-
:i strap estimate of 8.
~ * *
™ 8. Repeat steps 5, 6, and 7 a large number "L" of times to obtain 51,...,§L.

Example 6.1 1In this example we generated n=250 Gaussian observations from the
KF model (1.1), (1.2) with parameters ¢ = 0.8, Q = 4.0, and R = 1.0. The one- x
step Newton-Raphson estimates were then bootstrapped L = 250 times and we com- .
pared the Newton-Raphson estimate of the standard error of 5, based on the
asymptotics of Theorem 4.2, to the bootstrap estimate of the standard error of 3.
The summary results §f 30 such runs are given in Table 6.1. Also included in
Table 6.1 is the emperical standard error of the Newton-Raphson estimate of ¢

obtained from 2000 generated samples of length n = 250 observations from the model.

TABLE 6.1 Standard Error of ¢

Mean Standard Deviation Bias
-3b 3P _ab,d
Bootstrap® 3.933 x 1072 0.651 x 1072 -0.166 x 1073 "
-3P -3®
Newton-Rapshon 1,380 x 10 0.479 x 10 ——
-3¢ -3Cee
Emperical 3.605 x 10 —_— -0.026 x 10

Table 6.1: Summary of the estimates of the standard error of the Newton-Raphson

estimate of ¢ in the KF model with Gaussian noise for samples of length n = 250.

a: Based on L = 250 replications d: Average bias relative to the
corresponding Newton-Raphson

b: Based on 30 runs estimate

¢: Based on 2000 runs e: Bilas relative to the true value

of ¢,

R NN
y 'xi\‘s'_'.‘i;y&'.’.f L, T LA A TR
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Example 6.2 1In this example we generated n = 250 contaminated normal observations
from the KF model (1.1), (1.2) with parameters ¢ = 0.8, Q = 4.0 (90%) + 16.0 (10%) =
5.2 and R = 1,0 (90%) + 9.0 (10%) = 1.8. That is, the state noise is N(0,4) with
probability 90% and N(0,16) with probability 10%, while the observation noise is
N(0,1) with probability 90% and N(0,9) with probability 10%. The one-step Newton-
Raphson estimates were then bootstrapped L = 250 times and we compared the estimates
of the standard error of the state transition parameter estimate as in Example 6.1.
Table 6.2 gives the summary of 30 runs and compares these with the emperical stand-

ard error based on 2000 runs.

TABLE 6.2 Standard Error of &

Mean Standard Deviation Bias
a -3° -3P 3%
Bootstrap 4.662 x 10 1,044 x 10 -0.464 x 10
_3b _3b
Newton-Raphson 1.871 x 10 0.778 x 10 —
_3C _3c,e
Emperical 4,197 x 10 ——— -0,068 x 10

Table 6.2: Summary of the estimates of the standard error of the Newton-Raphson
estimate of ¢ in the KF model with contaminated Gaussian noise for samples of

length n = 250

a: Based on L = 250 replications d: Average bias relative to
corresponding Newton-Raphson

b: Based on 30 runs estimate

ct Based on 2000 runs e: Bias relative to the true value

of ¢,
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In each example, the advantage of the bootstrap is clear. In both examples,
the bootstrap estimate of the standard error of % tended to be slightly larger

than the emperical standard error, whereas the standard error of 3 obtained via

the larger sample theory of the Newton-Raphson was always considerably smaller than
the emperical value. Thus, the bootstrap has the desired property that the con-

fidence and prediction regions obtained via the bootstrap will tend to be conservative.

The bootstrap is clearly a perfect complement to the Newton-Raphson procedure.
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