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* Introduction

-1 This work is devoted to the development of the Ito's calculus for

a class of functionals defined on the Wiener space which are more general

objects than semimartingales. In doing this, we begin by an extension

of the It6 formula for finite dimensional hypoelliptic It6 processes to V

the tempered distributions.' In [14], S. Watanabe has defined the composition

of a tempered distribution by a hypoelliptic Wiener functional with the

help of the Malliavin Calculus. Here we go a little further and give an

It6 formula by using the same method. Let us note that when the It pocess

is the standard Wiener process, the Ito formula has already been extended

to the tempered distributions with the use of the Hida calculus (cf. [2],

[4]); we give here a different approach which works for more general processes

than the standard Wiener process. In the extended It6 formula, the Lebesgue

integral part can be interpreted as a Bochner integral in some Sobolev space

on the Wiener space (cf. [3] and the notations); however the remaining part

is not an ordinary stochastic integral, despite the fact that it corresponds

to a functional in some Sobolev space on the Wiener space. This situation

suggests an extension of the It6 stochastic integral to the objects which

are not necessarily stochastic processes. This extension is realized in the

third section, first by showing that the It6 integral is an isomorphism of

the space of smooth processes onto the space of smooth Wiener functionals,

.. ) -......,.. •...+.°., ........... . . ...
".....
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then by extending it to continuous linear forms on the space of the smooth

processes. Further applications we give also the energy inequalities

corresponding to the Sobolev norms of the distribution-processes and their

stochastic integrals. As an immediate consequence of this extension, we

obtain an It6 Representation Theorem for the distributions on the Wiener

space, which gives a Haussmann-Clark type formula (cf. [1], [9]) for

second order Wiener distributions.

In the last section we discuss the integration by parts formula for -. '-

Wiener distributions in which the directional derivatives are taken in .

the direction of Random Cameron-Martin vectors. In order to do this, we

first prove that these random directional derivatives map the space of

smooth Wiener functionals into itself. However, this is not sufficient

to extend the integration by parts formula to the space of distributions

on Wiener space. Curiously, for this extnesion we need a hypothesis of non-

anticipation of the Lebesgue density of the random Cameron-Martin vector. n

With this supplementary hypothesis, we show that the integration by parts

formula with random directional derivative can be extended to the space of

distributions on Wiener space.

Let us note that some of the results of this work have been announced

in the note [13].

RC
Research partially supported by AFOSR Contract No. F49620 85 C 0144. -
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I. Notations and preliminaries

Let 0 be the Wiener space C([O,1]R d) and H be the Cameron-Martin

space, i.e., the set of absolutely continuous functions on [0,1] with

d
values in ER having a square integrable density and U will denote the

standard Wiener measure on Q. (Ft; te [0,1]) denotes the canonical

increasing family of c-algebras on Q, completed with respect to the

Wiener measure p. We provide H with its usual Hilbert space topology

and identify its dual by itself. The infinitesimal generator of the

Q-valued Ornstein-Uhlenbeck process is denoted by A (cf. [5], [6]) and

the operator v -A will be representated by C. r is the bilinear form

defined as r(fg) = A(fg)- fAg - gAf for smooth functionals f and g defined

Saon Q. We define higher order gradients by the following recurrence

* relation (cf. [8]):

Sr(f,f) = r(f,f)

rP(f,f) = (1/2) A rk(f,f) - Tk(f,Af) - k rk(f,f).

In fact, 1 k(f,f) is nothing but the Hilbert-Schmidt norm of the k-linear

k k
operator D f on the Cameron-Martin space H where D f denotes the k-fold

weak H-derivative of the smooth functional f (cf. [11]). Dpk denotes
p. k

the Banach space which is the completion of the following normed space

{fE LP(p): I tjliflIp 11} .,

i<k LP(0j) +0

and D is the space of the test functionals:

D = n Dpk
pk

- , °
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equipped with its projective topology. We recall that D is an algebra

(cf. [7]). D' will denote the continuous dual of D and its elements are

called the distributions on the Wiener space S1.

Similarly, for the stochastic processes we define the following space:

Dp,k is the completion of the normed space (p> 1, kE IN)

{hE L0 (dt x dW): h is adapted and

": 1 [2 P/
SE[( f Aih(s,w) ds) ] IhIID < +Oo

i< o p,k

Afterwards we define D as

~~~D =n Dp :i
.5 p,k 0Pik .

equipped with the projective limit topology and D' denotes its continuous

dual.

II. An extension of It6's formula

In [14] S. Watanabe has defined the composition of an hypoelliptic

d d
R -valued smooth Wiener functional with a tempered distribution on R

using Malliavin's calculus. Here we propose to go one step further

extending his method. First we shall treat an almost (but not completely)

trivial case: Suppose that (xt; te [0,1]) is an It6 process with values

in R (we work with d=l), i.e., a semimartingale such that

dx (w) =b(t,w) dt + o(t,w) dW(t,w)

and let f be a continuous, bounded function on R with a bounded, continuous -/

first derivative, but, suppose that its second derivative in the sense

of the distributions is worse than a measure. Let (fn) be an approximating

sequence of f in the space of rapidly decreasing, C -functions S(IR) such

...o . .- -° ... . ° -% . °. . . .o-% * . . . . .. . . ..... . . .,,.. . .. -. ..-

8- °° • ~~~~~~~~~~.. .•. •. .. . .. . . . °. . . . . .... . . .... •. . . . ,. .. ... . . . ,.. . . .
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that (3f) coverges to af uniformly and hence (3-f )converges ton n

a f in the space of the tempered distributions SI(R) . Using It6's

* formula, we have

f (x(t)) - fn(x(O)) - fn (s) x)=(12 fas)3fn (~)d
0 0

2*where a(s) =6 (s). Furthermore, as in [141, we have

2

*Supposing that r- (x(t, x(t)) exists, we obtain

a 2 xt) -I(x(t), x(t)) [A(x(t) 3f (x(t))) -x(t) AHf (x(t))nn

Using this identity, for any test functional E D, we have

t 2
(11.1) E[P f a(s) a f n(x(s)) ds]

0

t1
=f E[a(s) r (x(s), x(s)) {A(x(s) H n (x(s))) H nf (x(s))Ax(s)-

0

-x(s) A(3f (x(s)))Ihpjds.

2
Using the fact that A is seif-adjoint on L (Pi) we see that (01.1) is

equal to

t -
f [<X(s) af (x(s)), A(F (x(s), x(s)) a(s)ip)>

* n

-< H n (x(s)) Ax(s), a(s) F P (x(s), x(s))iP>

- af (x(s)), A(x(s) a(s) r (x(s). x(s)) p)>]ds.
4n
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Consequently, if Wxt); tc [0,1]) is "sufficiently smooth" and if

I' (x(t), x(t)) is "sufficiently integrable" with respect to dtx d,

then the following limit

ti 2 t 2li f ipa(s) a f n (x(s))ds = lim < pf a(s) f ~n (x(s))ds>
n-)- 0 n- ~ 0

exists for any test functional y c [D and the corresponding continuous linear

*form on D can be written as a weak or Pettis integral:

2
f a(s) D f(x(s))ds. -

Therefore, modulo some regularity hypothesis on (x(t); tE roione

has the following relation:

t 2
f (x (t)) - f (x (0)) -f af(x(s)) dx(s) =(1/2) f a(s) a f(x(s))ds

0 0

where the right hand side is a continuous process but it is not an

ordinary integral, it is a vector valued integral converging in D'.

In fact D' is too large and we can refine the calculations to find a

smaller Sobolev space in which the integral converges. For this we have

to study the three bilinear forms of the equality (11.1) as a linear

form on D. For the first one, using the short-hand notations, we have

< x 9f (x), A (pr_ (x, x) a) > < .slx 9f (x) 11,, JIA(IP aF_ (x,x)) 11V <
2,0 2,0

<lix afx) 11D ~ (x'x)) 11D i~~a~ (x'x)) 11D
2,0 2,0 2,0

+ 111a v1 (x,x)k4 0 1

11/4
3iix a(x) 11 411i D ~ ~ )F(x(s), x(s)) 11D d)

2,0 4,1 o 4,1

agl



where we have used the inequalities of H6lder combined with the inequality

I~l/ (, )I L~v<: c ilJAf L (P (cf. [6], [7], (8]). For the second and

third linear forms, using the same method, we obtain:

1 4 d 11 4

2,0 4,1 o 4,1

di (f (x 11ilf1x(s)a(s) r (x(s), Xs)1 s
2,0 4,1 o 4,1

*where c and d are some constants independent of ~.We have proved:

* Proposition 11.1

* Suppose that

1 1 4
*~~~ ~f (x) Axl ixaxll + f l1a(s) r~ (x(s), x(s))liD, ds +

2,0 2,0 0 4,1

+ f lix(s) a~) 1(x(s), X(s)) 4 d<o
0 4,1

* then the integral

f a(s) a f(x(s))ds
0

is an element of (D4 ) D 2/ and it is strongly convergent, i.e.,

Bochner integrable in this Sobolev space.

*Remark: We did not try to find the smallest Sobolev space but just gave *

* an example to illustrate how to determine it.

What we have done above can be generalized to the space of the

tempered distributions:
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Theorem 11.1

Suppose that x is a d-dimensional It6 process:

dx (t) = b i(t, w) dt +~ c ,..(t, w) dW3 (t, w), il, ... ,d,

* with

I E f 1{IA k 0 ..(s)JP + JA kb i(S)IP + Ir- (x '(s), xi(s))IP1ds +

1,3 0 1

1,V,

k

* (ij) of the inverse of the matrix {'(x (t), xp(t)); k,l=1,...,d}

d
*Then, for any tempered distribution T1c S I(R ), the mapping t-*T ox(t)

* is a well defined, c(D',D)-continuous mapping and it can be represented

* as the sum of two functionals:

t

T(x(t)) - T(.x(O)) = (t) + J [bi(s) 3.T(x(s)) + (1/2) a. .(s) . .T(x(s))]ds
1,3 0 3 1

where the integral is taken in D' as a Bochner integral, J(t) is an

*element of DI such that, for any ipD which is F -measurable with s'< t,
5

one has

Proof:

*Before to proceed to the proof, let us note that, using Doob and H8lder

* inequalities, we have

1 k
SE J A x (s) IP ds ,

ijj o

for any k EN andp >l1

For the proof let us remark that {I'(x (t), x (t)); i, j< d, tE [0 ,1 1)
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is a matrix-valued It6 process hence it has continuous trajectories.

In fact, we have (cf. [7], (12]): - .i

t
r(x t), x~(t) W x(O), xi(O) + I f [r(xj(s), aik(s)+

k o

+ r(x C s), Oj~s) dW k(s) +

t
+ f [r(x2(s), b.(s)) + r(xj(s), b (s)) + a..(s) +

0

+ I rG,.k(s), ajk(s))]ds .
k

r (x,x) exists dtx dp -a.s., since I'(x(.,w), x(.,w)) has almost surely

continuous trajectories, a continuity argument shows that pi-almost surely

for any t, F(x(t), x(t)) is invertible with continuous trajectories and

* using Cramer's rule, Ita's formula, Doob's and H6lder's inequalities

(- (x,x)) is also an Ito process) we see that, for any t E [0', .

r- 1 x. M xi(t)) blnsto LP1)for any p>l1. Using the same inequalities

* we see also that, for any tE [0,1], X (t) belongs to D for i=l,...,d.

Consequently, the hypothesis of [14] to define To x(t) are satisfied.

* As in [14], since T is a tempered distribution, there exists some

da> c0 such that TE S where S is the completion of S(R) with respect

to the norm '' f 11 1 (-A + Ix 2 .f1 Let m> 0 be such that

(-A + lxi2)r (SQ C (Rd

where C 2(I d) denotes the space of the continuous functions whose first

d* two derivatives are continuous and bounded. Since S(IR is dense in S

there exists (f c ScRd converging to T in Sa ..
n~ -cc

*~~~ EN *

-.. *
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Consequently

On= (-A i 2)-m fn 0 (-A + 1xl 2 ) -
T =

2 d
in Cb(R ) . Let K(s) be the random partial differential operator

K(s,w) = bi(s,,W) i + (1/2) ai j(s,'W)ij.

For any I E D, we have

12 2
J <(K(s)(-A + lxi )mn)(X(S)), > ds =

o L M(i)
.p..

J <4)n(X(S)), p(s,W) > ds
L'" 0

* using the Malliavin Calculus (cf. [14]), where

p(s,) - i+ H. (A(... (A(H. A(Hi (sp)'...)

ill... Ii <+00 1r-1 m
il m

1 i
and H. (s) is a polynomial of r (xi(s), x (s)), x (s), Ax (s), a ij(s),

b.(s), j (s). By the hypothesis, we have

1 kj

E f IA p(sM)Ip ds < +
0

For any p and k, hence the limit when n tends to infinity exists it is

equal to

I f < Wxs)), p(sM >  ds.
2 d

o L2()

Because of the Bochner integrability of s - p(s,) in L2Gj) and the

0ni)nd uth

boundedness of s - (x(s)) in L(.) we see that the continuous functionals

on D

t
- f < 4(x(s)), p(s,) >ds ,

0

. ... . .

. . :.. . c.. ... . .. . .. ..........................: - ". ". "*.. '......."."..." "
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defined for each t, are continuous with respect to t for each fixed

test functional W eD. Hence the weak integral, so defined, is

o(D',D)-continuous with respect to tE (0,1]. In fact, the integral

exists in the sense of Bochner in some Dp,-k by the hypothesis and the

continuity with respect to t is valid in the strong topology of D'.

Let us now define J(t) as

t
J(t)= T ox(t) - T ox(O) - f K(s) T(x(s))ds

0Pk

The mapping t J J(t) is also cD',D)-continuous with values in D'.

To prove this assertion it is sufficient to prove the weak continuity

of the mapping t - T o x(t): For any ED, we have

< T o x(t), >= < Wxt)), q(t,9)>

where

q(t,p) =+C Gi (A(... (A(G. A(Gi (t) ) ... )1l. . m + it - .-.j

and G. (t) is a polynomial of rI (x(t), xJ(t)), xi(t), Ax (t), consequently,

using Doob and H~lder inequalities and the hypothesis we see that the

mapping t <T ox(t), W> is continuous for any E gD.

Let us now look at the functional J(t) more closely: By construction,

for any test functional E ED, we have

t
<J(t), p> = lim < f .ij(s) 3if (x(s)) dW(s), W>

n-Ko 0 i'in

= lira < jn(t), W>

n
where, for any n EIN , (J (t); t E[0,1]) is a square integrable martingale.

Consequently, if WE D is F -measurable with s < t, we have

-7 .7- -
°~~~~~~~~~~~~.. . . .. ... .. . . ..•-. . . . ..-. . . . . . ., .-. °. .•. .• •. .- , •• + . . , .. . • . % . . o . % -".,_
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n n

<Jt), P>= lir <Jn(t), p>= lim <Jn(s), p> = <J(s), i>n-o n-Ko .

and this completes the proof of the theorem. -

///Q.E.D.

Remarks:

i) The objects as (J(t); tE [0,1]) will be called the pseudomartingales

and their structure is studied in the next section.

ii) What we have done can also be explained in the following way: Let

(hn; nE IN) be the canonical basis of S,(Rd) consisting of the Hermite
n

functions. If T is any tempered distribution, we have the following

representation:

T = X .h."""
i= 1 l

where (Xi) is a scalar sequence in some KFthe space depending how bad T .

is. Define To x(t) formally as

T o x(t) = .h. o x(t)i 1 'i,.

develop hi o x(t) using It6's formula for each i, commute the integrals

of It's formula with the summation and then justify all this using

Malliavin's calculus and the space of the Wiener distributions. In [10]

this idea has been employed to obtain It&'s formula when (x(t); tE [0,1])

is the standard Brownian motion and the justification is done with the

help of Hida's calculus (cf. also [4]).

• .'-

• "-' " . , . - -. .. .. - .- .. .. - .. . ..-.. -. ' -. -: .. .. . -. .. .- . - ., .. .. -, .' . ., .- - . ..' .,-.. . . -. - '- . ....- ...- .-. ., ".

,; .......... w 3h= ... 2 ...-. ,- _ '' ,
'

.;, - . -" ......... - . . . . "-. _ . . •- ,
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III. The extension of It's stochastic integral

In the preceeding section we have seen that the weak limit of a

sequence of stochastic integrals satisfies a restricted martingale

property, where the restriction comes from the fact that the martingale

property has to be tested on the smooth Wiener functionals. Consequently,

it is natural to ask if we can represent the limiting distribution as

a kind of stochastic integral as we represented the limit of Lebesgue ".-

integrals as a D-valued Bochner integral. In order to answer this

question, it is evident that we have to look for an extension of the

stochastic integral of It6 to the elements of D'. This amounts up to

characterize the stochastic integral as an isomorphism between the space

of smooth Wiener functionals (or the test functionals) D and the space

of the smooth processes D (cf. Section I for the notations). In the

following we shall work with d=l. However, all the results are true for the

higher dimensions under some obvious modifications.

Let us recall some well-known facts: The famous representation

theorem of It6 says that any element F of L2 (o) with zero expectation can

be represented as the stochastic integral of a dt x do -almost surely

2uniquely defined, adapted process in L (dtx do), which will be denoted by

a F and let us note that we confound as usual the equivalence classes

*ith their elements. In fact the mapping F - 3WF is nothing but the

adjoint of the isometry of It$ defining the stochastic integral. We

can now announce

Lemma 111.1

Let be a Wiener functional with zero mean. p belongs to D if and only -elf

if a W belongs to V.

:.:.....

. . o • . °° -. ', -, ° , • , • , ° . . • ° . °°" •. ° * . P.° ° .° ". ** . ° , . , " Z " , - - .o . .• o , , ' ° • ° o .. o °
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Proof:

k%
If ip belongs to D then, for any k E IN , u =((1/2)1 - A) ipbelongs

also to D. It8'1s representation theorem implies that the functional u

can be represented as

u =J (au)(s) dW(s) =((1/2)I-A) J Np) (s) dW(s)
0 0

where

E(f1( I u)(s)I2 ds) p/ 2 ] < + c

0

* for any p> 1 since u belongs to all of the I1P-spaces of the martingales

*(cf. [6]). We have

=((1/2) 1- A) -k u ((1/2)I-A)- kJ (3 u)(s) dW(s)
0

f (I -A)- (3Wu)(s) dW(s)

0

where the last equality follows from the commutation relations of A

with the stochastic integrals (cf. [6], Theorem 2). Since aO is

* uniquely defined, we have

-k
=(I -A) a~u dtxdpi -a.e.,

consequently i~
[(k ( 12 d )p, 21 E[( u s 2 d )P/2 < +

E(f (I -A) ap (sP fs la 3 ~)~d) ]~~
0 0

by what we have explained above. Since p and k are arbitrary, this

*proves that a~i belongs toPD.

* ~if Y~i belongs to 0, then it is straightforward to see that iPbelongs

to D with the help of the inequality of Burkholder-David-Gundy.

///Q.E.D.

% %.
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Let us denote by D the closed subspace of D defined by
0

V

Do I ~-'~>; tD}.%S

We have

Theorem 111.1

The mapping a D 0~ D is a topological isomorphism.

Proof:

According to the representation theorem of It36, a., is one-to-one. The

fact that is is onto follows from Lemma 111.1. Since D and D and Frichet
0

spaces, an algebraic isomorphism is also topological.

///Q.E.D.

Corollary 111.1

The mapping J: D - D defined by
0

3(h) =J h(s) dW(s)
0

is a topological isomorphism. .P 1

Proof:

J is the inverse of the mapping 3 .

///Q.E.D.

The following theorem gives the extension of J to the distribution processes:

* Theorem 111.2

The mapping J: D -~ D has a unique extension, denoted again by J,

as an isomorphism from DI onto D' where D' is the closed subspace of DI
0 0

defined by

DI {F < <F, I> F D'} I
0

I.
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Proof:

Let h be any element of D' and (hn n E IN)c D a sequence converging N

to h in the weak topology aj(P',V). If 'p is any element of D 1we have

where <<.,.>> denotes the bilinear form corresponding to the dual pair

(V,V'). Hence, by the hypothesis, the limit

n

exists for any 'ED 0 We denote the corresponding linear form (on D 0)

*as J(h). It remains to define J(h) on the constant functionals as

* being zero. It is evident that such J is uniquely defined. If J(h) =0,

then, for any 'pEDP we have

0 < J (h), >= <<h, DW >

* and Theorem 111.1 implies that h= 0, hence the mapping J: D'- D' is one-
0

to-one. To see that it is onto, let F be in D', then, there exists a

sequence (F ; n EIN) in D0 converging to F in u(D',D). Consequently, for

* any ip ED .,we have
0

=F lim <F Jim> <<@ «~F, a
Wn

*so, by Theorem 111.1, the weak limit of F n EN~) exists and it is

uniquely defined. Let us denote it by aF We have

<J0 a F), 1P> 'F aW> li <<aW «wn' w

l im <Fn 0t> = F,'p>

for any 'pED (we define 3' as D.(p <ip,l>)), therefore

F ow

and this completes the proof.
///Q.E.D.



We have also proved

Corollary 111.2 (ItSo representation theorem)

Let F be any element of D'. There exists a uniquely defined element

of D' such that

F =<F,l> +*0F

Proof:

It is sufficient to apply Theorem 111.2 to F <F1>

* Remark:

*One can see better that the operator J is the extension of It6's

integral by defining Dp and D by the following norms:

p~k Lr( k

11hI 11 11c f 1((3/2)1- A) kh(s)j ds)11 1
p,k 0 Pp

then we have the following energy relations which are the consequences

of the Burkholder-David-Gundy inequalities:

c(p) 11h 11D <IIJJ(h) "ID < c'(p) llh 11D
p,k pyk p,k

where c(p) and c'(p) are some universal constants depending only on p.

*For p= 2 we have the equality:

11 hl1 = IJ(h)
2,k 2,k

and for p = 2, k = 0, we obtain the classical integral of It8.

Let us give a simple application of these results to Haussmann-

Clark's formula: Suppose that F is any element of i 2k' There

k=o
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exists some m> 0 such that (I-A)-mF= G belongs to D (for example).

Clark's formula says that (cf. [9]), we have

d
G = <F,l> + J E[ -- [DG]()I1F-ldW(r)

0

where DG represents the weak H-derivative of G (cf. [11]). We can

calculate then DivF of Corollary 111.2, by applying (I-A)m to this

relation:

F <F,I> + (I-A)m  E[ [DG](T)IF ]dW(T)
od

- <F,I> + f E[((3/2)I-A)m di [DG](-)IF f]dW(T)

and by the uniqueness result of Corollary 111.2, we have

(T) E[((3/2)IA) -d [DG](T) J. dTxdp -a.s.W d-T T

Let us remark that the conditional expectation of an element of D' is

well defined since A commutes with the conditional expectations (c.f. [71).

IV. An extension of integration by parts formula

Suppose that is an element of the Cameron-Martin space H; then

the directional derivative operator (in the direction of ) defined by

V f = (Df,C), f eD, where Df is the weak H-derivative of f and (.,.)

denotes the scalar product in H, is a linear operator mapping D into

itself (cf. [6]). Moreover, using, for instance, Girsanov-Cameron-Martin-

formula and a limiting procedure we see that (cf. [1], [5], [9])

< V f, > + < f,V = < f,p f (s) .dW(s) >
0

* for test functionals f, *D where iis the Lebesgue density of ~ .
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If F is any element of D' then we can extend the above relation by the ~

usual limiting procedure to define V EF as

< V F1 > < F, IP > +1 < F, * J(b>

*Note that, since D is an algebra and J(1) belongs to D, ,VF is well

defined. In this section we want to extend this relation to the case

* where the vector is random. In order to do that we need the following

* Lemma IV.1

Let Q- H be a random variable such that U

f IC (s)ljd
0

*belongs to all LP(vi) for p > 1, for any k EVI. We than have the following

- inequalities:

11 JID k 111 p( 1 c(p)(E[( f 1 ck (s) I 'ds) P' ])11 <

<c(p)[111 IIDk ClII 11 + 11 1 [1 H 1

p >1, k c1N , where c(p) and c' (p) are some universal constants and

k klID 1'S denotes the Hilbert-Schmidt norm of the k-linear form D on H.

Proof:

This result is an extension of Theorem 2 of (81 to the vector case and

*the classical method of the proof is the use of the Rademacher series as

2 it is indicated in (6] and [8]. First note that, using a complete,

orthonormal basis (en) in H, we have

JDk& 12 r ,(~e)
jj 'HS n! 0 k(( d' d

*and obviously, it is sufficient to show that the L p/2(p) -norm of this

.1 . S *

*~~ ~ ~ e 5* ~



random variable can be controlled by

Gop

Let (r (t)) be the Rademacher's random variables on [0,1] and define

(at :he beginning we can suppose that depends only on finitely

manycoodintesandthe wecanpass to the limit). Let us also define

theopeato G s (Vf; E N k fo smooth functionals f, where

V af V(X a V af i a (alp ....a k) V a Ve We have

f 1jrk / (h(t), h(t)) fIP dt
0 LP(.i)

0 n z

where is the Hilbert space k ..x (k-times). Using Khintchine's

inequality, we see that the right hand side of the above equality is

equivalent to

E[ I GC ,e n )1122 )p/2] E[( (V (x ),2p/
n ~ kn k 'k IN

=E[( I rk(( ,e n) CE,e n)P'I
n

On the other hand we know that (cf. [8], [3])

/2 (l~2 h(t), h~t))lIJP dt <c~p f 'kh~t) 11P dt
0 LP(jj 0 LP(pj)

c~p) E[ f 11 r n(t) C. (&,e n -~t

0 n

.............. ..............................
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and from the Khintchine's inequality the last term is equivalent to

c(p) E[( I (C(E,e n)) 2)
p / 2 ]

nn

and this finishes the proof the first inequality, the second is proved

with exactly the same method so we omit it.
///Q.E.D.

We can now announce

Theorem IV. 1

Let be as in Lemma IV.1, then V maps D into itself.

Proof:

It is sufficient to prove that AkV belongs to all LP(p) for any ED

k
and k EN. If we apply A to V we have the sums of the following type

r Fk( e i, (,en)), r k_(i+j)(A'Ve A(,e n)),•
n n n n

n AiVe* * A( ,en), i + j < k.
n n

With the help of Lemma IV.l, using H61der's inequality the LP-norms of

these series can be controlled by the Dp k-norms of P and the seminorms

of defined as in the hypothesis of Lemma IV.1.
///Q.E.D.

Remark:

The above proof shows in fact that V is a continuous operator on D.

* Let us now come back to the integration by parts formula: If

F E D' then there exists (F n) cD converging to F in the weak topology .'.

* a(D',D), and we have for a as in the Lemma IV.l, provided thatc is .'..:

nonanticipative,

at'
-- .L

, ~~~~ .*. ,,,.-.. ;; .,.. .. ........- ... . * ,..-, ,.: . > - .. -.-......
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<V F i~P> =-<F 'V +$i <F+N
Sn n n

where J(b) is the stochastic integral of Z and it belongs to D by

*Corollary 111.1. By Theorem IV.l, the limit as n tends to infinity

* exists:

lim < V F nP p> =-<F,Vp> <F, J(Z)ip>

* Consequently V F can be defined by

V F =-V*F + J( F

*Let us note that, in spite of the fact that V*F is defined for anticipative

* Z, in order to define V F we have to suppose that Z is nonanticipative.
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