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Introduction

~ This work is devoted to the development of the Ité's calculus for
a class of functionals defined on the Wiener space which are more general

objects than semimartingales. In doing this, we begin by an extension

~—

of the Itd formula for finite dimensional hypoelliptic Ité processes to

the tempered distributions./f;£ [14], S. Watanabe has defined the composition
of a tempered distribution by a hypoelliptic Wiener functional with the

help of the Malliavin Calculus. Here we go a little further and give an

Ité formula by using the same method. Let us note that when the ItgP;;ocess

is the standard Wiener process, the Itd formula has already been extended

to the tempéred distributions with the use of the Hida calculus}(cf. [21,

[4]); we give here a different approach which works for more general processes {“;
than the standard Wiener process. In the extended It6 formula, the Lebesgue 3:5
integral part can be interpreted as a Bochner integral in some Sobolev space T{;f

! > —
on the Wiener space (cf. [3] and the notations); however the remaining part e
is not an ordinary stochastic integral, despite the fact that it corresponds

to a functional in some Sobolev space on the Wiener space. This situation

<
suggests an extension of the It0 stochastic integral to the objects which iﬁf
are not necessarily stochastic processes. This extension is realized in the E;E
third section, first by showing that the Itd6 integral is an isomorphism of 3;#
¥

the space of smooth processes onto the space of smooth Wiener functionals, :“ﬁr

< ur-v/v o 'f z".’{ l) 7 A FC (: ,
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then by extending it to continuous linear forms on the space of the smooth
processes, Further applications we give also the energy inequalities
corresponding to the Sobolev norms of the distribution-processes and their
stochastic integrals. As an immediate consequence of this extension, we
obtain an It6 Representation Theorem for the distributions on the Wiener
space, which gives a Haussmann-Clark type formula (cf. [1], [9]) for
second order Wiener distributions.

In the last section we discuss the integration by parts formula for
Wiener distributions in which the directional derivatives are taken in
the direction of Random Cameron-Martin vectors. In order to do this, we
first prove that these random directional derivatives map the space of
smooth Wiener functionals into itself. However, this is not sufficient
to extend the integration by parts formula to the space of distributions
on Wiener space. Curiously, for this extnesion we need a hypothesis of non-
anticipation of the Lebesgue density of the random Cameron-Martin vector.
With this supplementary hypothesis, we show that the integration by parts
formula with random directionaliderivative can be extended to the space of
distributions on Wiener space.

Let us note that some of the results of this work have been announced

in the note [13].

Research partially supported by AFOSR Contract No. F49620 85 C 0144,
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I. Notations and preliminaries

Let Q@ be the Wiener space C([O,I]RA) and H be the Cameron-Martin
space, i.e., the set of absolutely continuous functions on [0,1] with
values inIRd having a square integrable density and u will denote the

standard Wiener measure on Q. (F,; te [0,1]) denotes the canonical

t
increasing family of g-algebras on ), completed with respect to the
Wiener measure u. We provide H with its usual Hilbert space topology

and identify its dual by itself. The infinitesimal generator of the
Q-valued Ornstein-Uhlenbeck process is denoted by A (cf. [5], [6]) and

the operator v -A will be representated by C. T is the bilinear form
defined as T(fg) = A(fg) - fAg - gAf for smooth functionals f and g defined
on . We define higher order gradients by the following recurrence

relation (cf. [8]):

I (f,6) = T(£,9)
FkH(f,f) = (1/2) A Pk(f,f) - Tk(f,Af) -k Fk(f,f).

In fact,Fk(f,f) is nothing but the Hilbert-Schmidt norm of the k-linear
operator Dkf on the Cameron-Martin space H where Dkf denotes the k-fold
weak H-derivative of the smooth functional f (cf. [11]). Dp,k denotes
the Banach space which is the completion of the following normed space
(fetPy: 7 |lalg] < +w)
i<k LP(u)

and D is the space of the test functionals:

B e ST, .
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equipped with its projective topology. We recall that D is an algebra
(cf. [7]1). D' will denote the continuous dual of D and its elements are
called the distributions on the Wiener space 2.
Similarly, for the stochastic processes we define the following space:

Dp x is the completion of the normed space (p>1, ke N)

{ he Lo(dt}<du): h is adapted and

14 2 Ty
Y E[( [ JA'h(s,0)|“ds) ‘] = Ihfly < +e}.
p.k

i<k o

Afterwards we define D as

D= n 0
pk DX

equipped with the projective limit topology and D' denotes its continuous T
dual. . :;
. _4.'4

25

-

\?

II. An extension of Itd's formula

In [14] S. Watanabe has defined the composition of an hypoelliptic
Rd~valued smooth Wiener functional with a tempered distribution on Rd
using Malliavin's calculus. Here we propose to go one step further
extending his method. First we shall treat an almost (but not completely)
trivial case: Suppose that (xt; te [0,1]) is an Itd process with values
in R (we work with d=1), i.e., a semimartingale such that

dxt(w) = b(t,w) dt + o(t,w) dW(t,w)

and let f be a continuous, bounded function on R with a bounded, continuous
first derivative, but, suppose that its second derivative in the sense

of the distributions is worse than a measure. Let (fn) be an approximating

sequence of f in the space of rapidly decreasing, c”-functions S(R) such




\
that (afn) coverges to of uniformly and hence (a'fn) converges to

azf in the space of the tempered distributions S'(R) . Using Ité's

formula, we have

t

t
£(x(1)) - £(x(0) - [ O£, (x(s)) dx(s) = (1/2) [ a(s) 8°F (x(s))ds
o] [o]

where a(s) = 62(5). Furthermore, as in [14], we have

P(x(t), 9f (x(1))) = 3% (x(1)) T(x(1), x(1)).

Supposing that F'l(x(t, x(t)) exists, we obtain
0% (x(t)) =T M (x(1), x(t)) [AX(D) Of, (x(2))) - x(t) A (x(1))
-Bfn(x(t))A x(t)]
Using this identity, for any test functional Ye D, we have

t
(11.1)  E[y [ a(s) 82fn(x(5)) ds] =
o

t
[ E[a(s) F'I(X(S), x(s)) {A(x(s) Bfn(X(S)))— Bfn(X(s))AX(S) -

0

- x(s) A(afn(x(s)))}w]ds.

Using the fact that A is self-adjoint on Lz(u) we see that (II.1) is

equal to

t
[ [<x(s) 3 (x()), AT (x(s), x(5)) a(s)¥) >

(o)

- <3f (x(s)) AX(s), a(s) T™1(x(s), x())¥>

- <Af, (x(s)), A(x(s) a(s) T™M(x(s), x())¥)>1ds .
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Consequently, if (x(t); te [0,1]) is "sufficiently smooth" and if
F-l(x(t), x(t)) is "sufficiently integrable” with respect to dt x dy,
then the following limit
t 2 t 2

lim E [ ypa(s) 3 £ (x(s))ds = lim <y, | a(s) 3 £ (x(s))ds >

o o n-o o
exists for any test functional y< D and the corresponding continuous linear
form on D can be written as a weak or Pettis integral:

t 2

[ als) 3°f(x(s))ds.
o

Therefore, modulo some regularity hypothesis on (x(t); te [0,1]), one

has the following relation:
t t 2
f(x(t)) - £(x(0)) - [ 9f(x(s)) dx(s) = (1/2) [ a(s) 3°f(x(s))ds
o o

where the right hand side is a continuous process but it is not an
ordinary integral, it is a vector valued integral converging in D‘.

In fact D' is too large and we can refine the calculations to find a
smaller Sobolev space in which the integral converges. For this we have
to study the three bilinear forms of the equality (II.1) as a linear

form on D. For the first one, using the short-hand notations, we have

| <x o£00, AW 08 > | < lx 2y llAw ar lex,) |,
2,0 2,0

<llx 35Gallp HIPG s 1ol «llvaG el

’

+lla rhoonmlly, 1<
2,0

ds)1/4

1 4
<slxateally el p el rlx(s), JOMN P
, , ) s
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where we have used the inequalities of Holder combined with the inequality
1/2
T2, 0
LP

< CPHAfII (cf. [6], [7], [8]). For the second and

LP

(W) (u)

third linear forms, using the same method, we obtain:
[ <aypT 1(x,x), 3f (x)Ax >| <

1
c||Ax E)f(x)]lv2 . Hw[lD4 . Cf lla(s) F'l(x(s), x(s)[lg4 1d5)1/4
b} ’ o »

| <AGx va THx,x), 3E()>] <
1
dll s lly vl O lIx(s)als) rlxes), x(S))”g as) V!
2,0 4,1 o 4,1

where ¢ and d are some constants independent of Y. We have proved:

Proposition II.1

Suppose that
1 4

I3 £(x) Ax|| sllx 3E)ll,  + J llats) - x(s), x(s)) |, ds+
) ) D
2,0 2,0 o 4,1

’

1
+ [ lIx(s) aws) TTHx(s), x(s)y Iy ds<ew
o 4,1

then the integral

1 2
J a(s) 3°f(x(s))ds
0

is an element of (D }J' =D and it is strongly convergent, i.e.,
4,1 4/3,-1

Bochner integrable in this Sobolev space.

Remark: We did not try to find the smallest Sobolev space but just gave
an example to illustrate how to determine it.

What we have done above can be generalized to the space of the

tempered distributions:
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;f Theorem II.1
e B ——
»: Suppose that x is a d-dimensional It6 process:
dx'(t) = b, (t,w)dt + 055(tsw) awl (t,w), i=1,...,d,
4,
») with

1 . .
| § e[ (A 055 [P + 1A%, ()P + |17l (s), X3 () Pyas +
s 1,) o

. K i ; . .
. + 7 el P+ rid, o P
.. for any p>1, ke N, where P‘l(xl(t), xJ(t)) is the element indexed with

(i,j) of the inverse of the matrix {T(xk(t), P(t)); k,1=1,...,d} .
Then, for any tempered distribution Te S'(Rd), the mapping t-+T ox(t)
is a well defined, ¢(D',D)-continuous mapping and it can be represented

as the sum of two functionals:

t
T(x(t)) - T(x(0)) = J(t) + § | [by(s) 3,T(x(s)) + (1/2) aij(S) BijT(x(s))]ds

< 1)J o
Ca
: where the integral is taken in D' as a Bochner integral, J(t) is an
- element of D' such that, for any y D which is Fs-measurable with s<t,
o one has
3 <I(1),h> =<I(s),¥> .

Proof:
N Before to proceed to the proof, let us note that, using Doob and Holder

inequalities, we have

1%
! EJ [A'x (s)lp ds,

X i,j<d o
- for any ke N and p>1.

For the proof let us remark that {T(xl(t), xJ(t)); i, j<d, te (0,11}
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is a matrix-valued It6 process hence it has continuous trajectories.

In fact, we have (cf. [7], [12]):

. . . . t .
rextee), x)(2) = (x'(0), x)(0)) + 1J [TGI(s), o5, (s) +
o
¢ TGMS), 05, (1)) AWK(s)

. {: (G (), by () + TG (s), by(s) + a (s) +

+ E T4 (s), cjk(s))]ds.
F'I(x,x) exists dt xdy -a.s., since I'(x(.,w), x(.,w)) has almost surely
continuous trajectories, a continuity argument shows that p-almost surely
for any t, T'(x(t), x(t)) is invertible with continuous trajectories and
using Cramer's rule, Itd's formula, Doob's and Holder's inequalities
(T~1(x,x)) is also an Ito process) we see that, for any t ¢ [0,1],
F-l(xi(t), xj(t)) belongs to LP(u) for any p>1. Using the same inequalities
we see also that, for any te [0,1], xi(t) belongs to D for i=1,...,d.
Consequently, the hypothesis of [14] to define To x(t) are satisfied.
As in [14], since T is a tempered distribution, there exists some
a> 0 such that Te S-a where S_@ is the completion of.S(Rg) with respect

to the norm ||f|| o " | (-2 + |x |2)'af|| ) . Let m>0 be such that
- L”(dx)

o+ xH™ (s o it

where Ci(Rd) denotes the space of the continuous functions whose first
two derivatives are continuous and bounded. Since S(Rd) is dense in S-a’

there exists (fn) c S(Rd) converging to T in S_a.
n eN
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LY K ]
N Consequently S;t
N A
s o = -4+ x|DPE > (o x]HTT =y ko
2 n n oo A
) 3
;i in Ci(R@) . Let K(s) be the random partial differential operator ifﬂ
& ) ;{?
e K(s,w) = b (s,w)3; + (1/2) aij(s,w)aij . ..:\..
3

N For any ye¢ D, we have SN
» 1 o -
- J <K(s)(-8 + [x])Te ) (x(s)), ¥> , ds = L
0 L7(n) E

- 1 :»-'::f
- = | <¢,(x(s)), p(s,y) >ds s
- . o Tt
! using the Malliavin Calculus (cf. [14]), where e
3 Do
: p(s,y) = Y H, (AC...(AGH; A(H, (s)y)...) RO
i,,00.,1 <40 1 m-1 m e
1 m re
- . . . . © BT
and H, (s) is a polynomial of T'l(xl(s), xI(s)), x*(s), Ax(s), aij(s), IE;

- b, (s), aij(s). By the hypothesis, we have _%:%
:: [o] .;\:‘
% For any p and k, hence the limit when n tends to infinity exists it is :%::

»
7,
.
-‘..
.'ll

equal to

T

1
[ <e&x(s)), p(s,¥)> , ds.
° L™(w)

Because of the Bochner integrability of s + p(s,y) in Lz(u) and the

boundedness of s =+ ¢(x(s)) in Lw(u), we see that the continuous functionals

-" LA
W
-
..'.-
B

- on D ::-.:
" t :i;.'
- v+ [ < o(x(s)), p(s,¥) >ds, :
. (o]

«
v 'I.E
-~
]
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- defined for each t, are continuous with respect to t for each fixed

test functional Y eD. Hence the weak integral, so defined, is

o(D',D)-continuous with respect to te [0,1]. In fact, the integral
exists in the sense of Bochner in some Dp,-k by the hypothesis and the
continuity with respect to t is valid in the strong topology of D'.
Let us now define J(t) as
t
J(t) = Tox(t) - Tox(0) - [ K(s) T(x(s))ds.
o
The mapping t » J(t) is also 0:D',D)-continuous with values in D',
To prove this assertion it is sufficient to prove the weak continuity
of the mapping t - T °x(t): For any ¢ ¢D, we have
<Tox(t), y>= < ¢(x(t)), q(t,y) >

where

q(t,y) = ) G, (AC...(A(G, A(G, (D)W)...)

i ,000,1 <#oo 1 m-1 m
1’ *“m

and G, (t) is a polynomial of F-l(xl(t), xJ (1)), x*(v), axt(y), consequently,
k

using Doob and Hilder inequalities and the hypothesis we see that the
mapping t + <T ox(t), ¥> is continuous for any y eD.
Let us now look at the functional J(t) more closely: By construction,

for any test functional y €D, we have

t .
<J(t), v> = lim < | 0;5(8) 3;f, (x(s)) aw’ (s), v>
(o]

N~

= lim < J"(v), v>

n-oe

where, for any n ¢N, (Jn(t); t €[0,1]) is a square integrable martingale.

Consequently, if ye D is Fs-measurable with s<t, we have

....... -. . '. o " - - - - . . g . . . . . . v ~ -~ - ~ . Lt N - . - - - * T et
0 Rt At e Tt e el w et ettt T e T e T e LA A A M TS S St A AR S e
LI A e T e T U I R A L S D T A I SR R S A Y it e e
CCPC S, AP L PE, P8, PR PO TP RO PR PP A PGPS P VL AR PRV P AT S R VI W R W VAR VAT W R W Y v o
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<J(t), v>= lim J"(t), y>= lin <J"(s), ¥> = <J(s), ¥>
- N~
and this completes the proof of the theorem.
///Q.E.D.
Remarks:
i) The objects as (J(t); te [0,1]) will be called the pseudomartingales
and their structure is studied in the next section.
ii) What we have done can also be explained in the following way: Let
(hn; ne N) be the canonical basis of S'(R@) consisting of the Hermite
functions. If T is any tempered distribution, we have the following

representation:

where (Ai) is a scalar sequence in some Kfthe space depending how bad T

is. Define T° x(t) formally as

Tox(t) = ] Ah,ex(t),
i

develop hi o x(t) using Ito's formula for each i, commute the integrals
of It?'s formula with the summation and then justify all this using
Malliavin's calculus and the space of the Wiener distributions. In {10]
this idea has been employed to obtain Itd's formula when (x(t); te [0,1])

is the standard Brownian motion and the justification is done with the

help of Hida's calculus (cf. also [4]).
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111. The extension of Itd's stochastic integral

In the preceeding section we have seen that the weak limit of a
sequence of stochastic integrals satisfies a restricted martingale
property, where the restriction comes from the fact that the martingale
property has to be tested on the smooth Wiener functionals. Consequently,
it is natural to ask if we can represent the limiting distribution as

a kind of stochastic integral as we represented the limit of Lebesgue

integrals as a D'-valued Bochner integral. In order to answer this

.,
*
B

- “1' ."'. ' \ T'] ’11
'_'.;'1- .:r', A e 4‘

question, it is evident that we have to look for an extension of the A

»
LA
A L

stochastic integral of Itd to the elements of D'. This amounts up to
characterize the stochastic integral as an isomorphism between the space

of smooth Wiener functionals (or the test functionals) D and the space

of the smooth processes D (cf. Section I for the notations). In the
following we shall work withd=1. However, all the results are true for the
higher dimensions under some obvious modifications.

Let us recall some well-known facts: The famous representation
theorem of Ito says that any element F of Lz(u) with zero expectation can
be represented as the stochastic integral of a dt xdu -almost surely
uniquely defined, adapted process in Lz(dt><du), which will be denoted by
BWF and let us note that we confound as usual the equivalence classes
with their elements. In fact the mapping F -+ BwF is nothing but the

adjoint of the isometry of It? defining the stochastic integral. We

can now announce

Lemma III.1

Let ¢ be a Wiener functional with zero mean. ¥ belongs to D if and only

if wa belongs to D .
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ot

1f ¢ belongs to D then, for any k ¢ N, u = ((1/2)!--A)k Y belongs

’

also to D. Itd's representation theorem implies that the functional u
can be represented as

1 1

us ) () M) = (/DT-NF ] () dH(s)
o (o]
where ..
‘ i
E(C J 1(awu)(s)|2ds)P’2] <+ G
[o]

A
My
e
.

for any p>1 since u belongs to all of the Hp-spaces of the martingales

Yy
)
1

AXE <"'-
e f

&

(cf. [6]). We have

1

b= (/21-0 0 = (/21-07F [ G s) dNes)
o
1 N )
= f (I-A) (Bwu)(s) dW(s)
o

where the last equality follows from the commutation relations of A
with the stochastic integrals (cf. [6], Theorem 2). Since wa is

uniquely defined, we have

g = (1-A o dtxdu -a.e.,

wu

consequently

1 1
e/ la-m¥ oy 917 a0y B [3, us12 a9 <r s,
(o] (o]

by what we have explained above. Since p and k are arbitrary, this
proves that 3,y belongs to D.
1f 3ww belongs to D, then it is straightforward to see that y belongs

to D with the help of the inequality of Burkholder-David-Gundy.

///Q.E.D.

“n
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Let us denote by Do the closed subspace of D defined by

LRARRRAS,
o

I..’-"'

D, = {y-<y,1>; yeD}.

Ly

W

¥
" _n

We have

7

XX
‘l'

Theorem I1I.1

I

The mapping 3,;: D, > D is a topological isomorphism. _

v %
T

Tty
-

Proof:

According to the representation theorem of Itd, 3, is one-to-one. The ‘.

W

fact that is is onto follows from Lemma III.1. Since Do and D and Fréchet

spaces, an algebraic isomorphism is also topological.

///Q.E.D.
Corollary 1I1.1
AT
The mapping J: D » Do defined by Q:{ﬁ
1 R
J(h) = [ h(s) dW(s)
° :‘:::?'
e
is a topological isomorphism. Q;:'
MAS
Proof: ]
J is the inverse of the mapping 3. e
///Q.E.D. i
Rt
PR P
The following theorem gives the extension of J to the distribution processes: e
Theorem I11.2 5;{:
The mapping J: 0 ~+ Do has a unique extension, denoted again by J, :iﬁé}

as an isomorphism from D' onto D; where Dé is the closed subspace of D'
defined by

D; = {F - <F,1>; FeD'} .




Let h be any element of D' and (hn; ne N)c D a sequence converging

to h in the weak topology o(D',D). If ¢ is any element of Do’ we have

<J(hn)’ P>= << hn’ aw\p»

where <<.,.>> denotes the bilinear form corresponding to the dual pair
(D,D'). Hence, by the hypothesis, the limit

lim <J(hn), V>

n-»co
exists for any ¢ eDo . We denote the corresponding linear form (on Do)
as J{(h). It remains to define J(h) on the constant functionals as

being zero. It is evident that such J is uniquely defined. If J(h) = 0,

then, for any ¥ eDo, we have
0 =< J(h), y>= <<h, aw Y>>

and Theorem III.1 implies that h=0, hence the mapping J: D'~ Dé is one-
to-one. To see that it is onto, let F be in D;, then, there exists a
sequence (Fn; neN) in D(J converging to F in o(D',D). Consequently, for

any y eDO, we have

<F,y> = lim <F_,¢> = lim <<QF , 3 ¢>>

n-co n-o
so, by Theorem I1I1.1, the weak limit of (aan; neN) exists and it is

uniquely defined. Let us denote it by awF . We have

<J(awF), V> =<<qu, d>> = liw <<3an, aww»

nN-oo

= lim <F_,y> = <F,y>
n-eo n

for any ¢ ¢D (we define aww as Bw(w— <y,1>)), therefore

F = (3,F)

and this completes the proof.

///Q.E.D.
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We have also proved 'f:'

Corollary III.2 (Itd representation theorem)

Let F be any element of D'. There exists a uniquely defined element N

awp of D' such that N
F = <F,1> + J(BWF) g

Proof:

It is sufficient to apply Theorem III.2 to F - <F,1>,
///Q.E.D,

Remark:

One can see better that the operator J is the extension of Itd's

]

integral by defining Dp X and Dp X by the following norms: .

k LS
el = 1la-a7f e
Dp,k IILp(u) #‘} :

» - “.\

1
inlly = 1IC] l(3/21- 0% n()|? 412
0 - LP() RS

P,k
then we have the following energy relations which are the consequences EL

of the Burkholder-David-Gundy inequalities:

c(p) ||l <lloml < c'(p) b
Dp’k Dp:k l “Dp,k :-._.:.

where c(p) and c'(p) are some universal constants depending only on p.
For p=2 we have the equality: L\iﬁ

Il nil = |lam ||
P2,x !

» 1
and for p=2, k=0, we obtain the classical integral of Itd.

Let us give a simple application of these results to Haussmann-

oo
Clark's formula: Suppose that F is any element of
k=0

]
Dz,k' There

ATIATICIL A BT T T Tt . g
Lo et LI e R T A T T P RN
P A A PR e, .. RS
[ NIY L I I L I R

RS " x : _‘;‘ R R AT -.“,.\.'.a-'. e AR ORI el ERR TR . . IO .
XV AT L YER U U DSV B AR K B, L O, Dt S I O T b G ot L L T T S St G L R R L SN
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-16-
exists some m>0 such that (I-A) F=G belongs to D, 4 (for example).

Clark's formula says that (cf. [9]), we have
1 4
G= <F,1> + | E[-H- [DG] (1) |F_]dW(7)
0 T T

where DG represents the weak H-derivative of G (cf. [11]). We can -

calculate then awp of Corollary 1I11.2, by applying (I-A)™ to this

relation:
! d
F= <F,1> + (I-A)" [ E[ 3= [DG](1)|F 1dW(1)
0
1
- <F1> + [ E[((/2D1-A" £ [06] (1) |F_JdN(T)
0

and by the uniqueness result of Corollary III.2, we have
m d
3, F(1) = E[((3/1-A)" 3= [DG](T)[FT]. dtxdy -a.s.

Let us remark that the conditional expectation of an element of D' is

well defined since A commutes with the conditional expectations (c.f. [7]).

IV. An extension of integration by parts formula

Suppose that £ is an element of the Cameron-Martin space H; then
the directional derivative operator (in the direction of £) defined by
Vg f = (Df,£), f eD, where Df is the weak H-derivative of f and (.,.)
denotes the scalar product in H, is a linear operator mapping D into
itself (cf. [6]). Moreover, using, for instance, Girsanov-Cameron-Martin

formula and a limiting procedure we see that (cf. [1], [5], [9])

1

<V f,y> + <£,V, 9> = <£f,y f £ (s) » dW(s) >

for test functionals f, y D where é is the Lebesgue density of &.
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If F is any element of D' then we can extend the above relation by the

usual limiting procedure to define VEF as

<V 0> = -<F94> + <F,pJ(&)> .

- Note that, since D is an algebra and J(é) belongs to D, VEF is well
defined. In this section we want to extend this relation to the case

where the vector £ is random. In order to do that we need the following

Lemma IV.1
Let £ : Q+H be a random variable such that
1
k ¢ 2
J e & (s)]|“ds
0
belongs to all Lp(u) for p > 1, for any ke N. We than have the following

- inequalities:

1
I HDkt’,llelle < c(p)(E[( jo Ik Es) |2as)P 2P <

<e @I no“auHSanm 0l p )
‘ p>1, k e N, where c(p) and c'(p) are some universal constants and
5 “DREHHS denotes the Hilbert-Schmidt norm of the k-linear form Dkg on H. B
"
i Proof: ;t;i

This result is an extension of Theorem 2 of [8] to the vector case and

the classical method of the proof is the use of the Rademacher series as

) it is indicated in [6] and [8]. First note that, using a complete, R
orthonormal basis (en] in H, we have *ff

N

‘ o \:.::.
k 2 - " e

: o ellis = nZO I ((Ee), (E,e)) IR
d 4
- ie s . p/2 . N
: and obviously, it is sufficient to show that the L (y)-norm of this N
15
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e
random variable can be controlled by RS
o ':,-
k Ny
ELC T € e, e nHP TP
n=0 E;
ot
Let (rn(t)) be the Rademacher's random variables on [0,1] and define :—__'
o
. RS
h(t) = ] r (1) (E,e) Y
n
. RN
(at the beginning we can suppose that { depends only on finitely N
many coordinates and then we can pass to the limit). Let us also define \
the operator G as f » (Vaf; o€ Nk) for smooth functionals f, where 7
- vE=V, Vo oo Y £ if o= (o,...), Vy. =V, . We have e
- 1 72 k i i i
¥ 1 23
1/2 ¥,
[T @, ke P, ar - o
0 LP(w)
'.-:'-b
! S
=e[ [ dt]] ¥ r () 6(¢,e )P, ] R
0 n n 22 «
n k &f
where Q,i is the Hilbert space 22x...x22 (k-times). Using Khintchine's . '_-:::
inequality, we see that the right hand side of the above equality is .\-
: AT
equivalent to -
2 N
E[C Tl 122 = e1( T T (7 (5, e 09P/F My
n 2k n yk o
LS
= E[(] T ((E.e), (E,e)P/?
! n k**=*"n"? '“n :
On the other hand we know that (cf. [8], [3])
- 1 1/2 1 '.‘.i:;.'l‘
fn/ 2w, ben Pyt e lickn(e) P, et .
’ 0 L* (w) 0 L* () NN
4 e
. =c(p) E[ [ |} r (t) C7(g,e )| dt] R
I 0 n ."\i
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and from the Khintchine's inequality the last term is equivalent to

- Y YW

e EC] € E,e D2
n

and this finishes the proof the first inequality, the second is proved
with exactly the same method so we omit it.

///Q.E.D.

We can now announce

. Theorem IV.1

Let £ be as in Lemma IV.1, then V_ maps D into itself.

3

Proof:
It is sufficient to prove that Angw belongs to all Lp(u) for any Y eD

and ke N. If we apply Ak to ng, we have the sums of the following type

i j

S I A'vp - Al(ge), ivj <k,
N e n -
N n n
]
With the help of Lemma IV.1, using Holder's inequality the LP-norms of
' these series can be controlled by the Dp -norms of Y and the seminorms
of £ defined as in the hypothesis of Lemma IV.1.
///Q.E.D.
Remark: el
) T
The above proof shows in fact that Vg is a continuous operator on D. ;ids
* . Let us now come back to the integration by parts formula: If §:§f
: F ¢ D' then there exists (Fn) cD converging to F in the weak topology :j::
; o(p',D), and we have for a £ as in the Lemma IV.1, provided thaté is 1525;
1 vA
. ®
. nonanticipative, 'y
. s
Aoyt
LAY
. ..A-
. "’ e

R,
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SVEFL¥> = - <F V>« <F, J(E)y>

where J(é) is the stochastic integral of é and it belongs to D by
Corollary III.1. By Theorem IV.1, the limit as n tends to infinity

exists:

lim <V.F ,y> = -<F,7y>+ <F, J()y>

n-ee 2

£

Consequently VgF can be defined by

VgF = - VEF + J(E)F.

Let us note that, in spite of the fact that ViF is defined for anticipative

£

F we have to suppose that £ is nonanticipative.

é, in order to define V

£
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