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* PefLace

This paper applies the simple Taylor series ap-
b

proximation to the intricate problem of correcting

inaccurate probe-positioning in planar, near-field scanning.

This is not to imply that the implementation is as

simple as the concept. Throughout the past eight months I

have learned that simple concepts can be quite difficult to

implement.

There are many subtleties that the student new to this

area encounters. Dealing with the minor differences between

todays modern main-frame computers alone can delay

indefinitely the more improtant development and

interpretation of the computer analysis.

There are several individuals who helped me overcome

these differences. Particular thanks goes to my sponsor,

Dr. Arthur D. Yaghjian, RADC/EEC, Hanscom AFB. Without

his help this thesis would not have been possible. Thanks

also goes to my thesis advisor, 1Lt Randy Jost, for his

guidance and patience to the point of correcting my

spelling mistakes.

Finally, I would like to acknowledge Allen C. Newell,

of the National Bureau of Standards, as the one who first
.

proposed this method of probe position compensation., ,
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AFIT/GE/ENG/85D-34

In recent years, near-field antenna measurement

techniques have gained a good deal of acceptance. There

are several errors in the computed far-field patterns caused

by measurement inaccuracies in the near-field data. This

paper deals with deterministic errors introduced by probe-

positioning errors in planar, near-field scanning.

By utilizing basic near-field theory, as well as a

knowledge of the positioning errors, it is possible to

estimate the fields at the correct probe position. A

computer program which lessens the effect of probe

positioning errors by means of a truncated Taylor series

expansion is used to demonstrate this improvement.

To simulate inaccurate probe positioning, a database of

calculated near-field values for a linearly polarized,

uniformly illuminated, circular aperture was used. Next,

the position correction program was applied to computer

generated inaccurate data. Finally, far-field patterns

were calculated, and compared using both the corrected and

uncorrected data. Results of the comparisons are presented.

Limitations, and areas of application of this routine are

discussed.
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Near-field scanning techniques are quickly becoming

accepted as an efficient, and accurate method for the

determination of antenna patterns [9:4921. Near-field

techniques offer many advantages over conventional antenna

measurement facilities including: all weather operation,

reduced ambient interference, and security for delicate, or

classified apparatus [11:101]. To further enhance the

reliability of antenna parameters predicted by this

procedure, any source of error must be acknowledged and

limited where possible. k,
Near-field scanning requires the measurement of probe

output, in both phase and magnitude, over a predetermined

scanning surface such as a sphere, circular cylinder, or

plane [7]. This is accomplished by positioning a probe at a

point on the scanning surface through the use of mechanical

devices. Since mechanical devices, such as positioners,

are not infinitely accurate, some error in the probe

positioning exists. Inaccurate probe position specification

leads to erroneous far-field patterns, calculated from the

incorrect data gathered by the probe.

Problam Statement

This thesis will examine sensitivity to inaccurate

probe positioning, as well as a possible method for reducing

';'W" " -".-' -'",
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that sensitivity by means of a truncated Taylor series

approximation of the near-field data.

A computer program, created to generate the near-field,

transverse electromagnetic fields on a plane in front of the

antenna is used as a data base for the computation of far-

field antenna patterns. Inaccuracies in probe positioning

are simulated by the manipulation of this program. This

data set is used to calculate the far-field pattern of the

test antenna using planar scanning techniques explained in

Chapter II. The resulting pattern is then compared to the

pattern from a perfect scan for various degrees of
-. ..

inaccurate positioning.

Also, the position correction routine is used to

compensate for erroneous probe positioning and again the

far-field pattern is calculated. This "corrected" pattern

is compared to the uncorrected pattern as well as the r

pattern from the perfect scan, to determine whether or not

any improvement has occured. This procedure is also

repeated for various degrees of positioning error.

Assumptions
To lessen tfhe number of the computations, and to

conserve computer time, two assumptions are made:

1) The simulated positioning errors are discrete in

nature, and consist of a single displacement at the center

line of the scanning surface.

2



2) The hypothetical probe used is an ideal electric

dipole sampling the electric fields.

General Appronsh

This research effort began with a review of the

development and theoretical formulation of planar, near-

field scanning techniques. The results of this review that

are pertinent to this presentation are given in Chapter I1.

After an understanding of the basic theory of planar,

near-field scanning was obtained, a data base of near-field

values was needed to investigate the effect of probe

positioning errors. A computer program that calculates the

fields of a circular aperture, linearly polarized antenna as

| G xa function of frequency, aperture radius, and distance from

the antenna was used to generate this data. A description

of that program is presented in Chapter III.

Next, a program which calculates the far-field pattern

of an antenna from its near-field values was created to

examine the effect of inaccuarate probe positioning. The

position correction routine is an integral portion of this

program. Both procedures are explained in detail in

Chapter IV.

Finally, the effect of positioning errors, as well as

the effectiveness of the position correction routine in

limiting these errors is examined through a computer

analysis of the far-field patterns produced. This analysis,

and the results it provided are presented in Chapter V.

3
S.



II. THEORETICAL DFVFQPMRNT

In this chapter, the basic theory behind planar, near- 4.

field measurements is developed. The definitive analysis in

this area was performed by D. M. Kerns [12]. The approach

used involves the expansion of a set of measured field

values into a summation of its elementary, planar wave

functions.

The following is a list of the variables and the
* --

notations that will be used throughout the theoretical

development of this report.

E( F) = The electric field, magnitude and phase of each
component, as a function of position.

= The vector amplitude, magnitude and phase of each
component, as a function of propagation direction.

= The position vector x ax + y a y + z az .

= The propagation vector kx ^ + ky ay + k az"

Ca) = The frequency in rad/sec.

S= The permittivity of the propagation medium.

/ = The permeability of the propagation medium.

R = The tangential position vector x a + y ay.-

= The tangential direction vector kx ax + ky ay.

dK = The two dimensional elemental patch in*
k-spacedkxdky.

'R =The two dimensional elemental patch in

real space, dxdy.

k = The phase propagation constant 2r/X,.

Z'.". = k ar •

4



The propagation of electromagnetic waves within free-

space is described by Maxwell's equations. These equations

lead directly to the vector Helmholtz equation [13:1241.

V2 j- (r) + k 2 E (r) = 0 (1)

The simplest, non-trivial solution to equation (1) for

a homogeneous, isotropic, source free region (z > 0) is

given by [1:1451:

E (r) = W (O) e - i "k7 (2)

where: T is the position vector

k is the direction of propagation

A(k) is the vector amplitude
of the wave as a function of the
direction of propagation.

By substituting equation (2) into equation (1), we obtain 11
[1:1441:

kx2  + k 2 + k 
2  k3.2

An interesting property of equation (3) is that given two

components of the propagation vector, say kx and ky, the

third component, kz , is specified.

kx 2 + ky 2 + kz 2 = w2 PC (4)

All values of kx, and ky which yield a real value for kz

define the propagating modes. However, modes for which

equation (4) produces a complex result are evanescent, or

5



non-propagating. Still these evanescent modes must satisfy

the convergence condition, namely [5:374]:

im (V) e- i kF = 0 (5)
rw

It is for this reason that we choose the following [1:146;

10:4991:

I (k2 - K2 ) K2,K k2

kz  =(6) ,-

-i vi (k2 - K2) K2 > k(6

Note that kz is either positive real, or negative imaginary.

Since we have assumed a source free region, Maxwell's

equations require that [13:112]:

. g (F) = 0 7)

substituting equation (2) into equation (7) yields:

• Ak) = 0 (8)

Equation (8) implies that given the direction of

propagation, and two components of the vector amplitude, the

third component is uniquely defined as:

Az :- (Axkx + Ayky) (9)

For any complex system, the complete electric field, at

any point in the source free region, can be expressed as a

6



summation of the elementary wave functions over all possible

propagation directions [5:374; 15].

- -f 4 o- -i T - r( 0
E(r} =is _. JaA(k)ei r. r (10)

If !(R) in equation (10) is expressed in rectangular

components, the integral can be reduced to three scalar

expresions, corresponding to each of the unit vector

components. I

Ex fL A Ax 7r

Ez

A closer examination of the integral expressions given

in equation (11) reveals that they are the two dimensional

Fourier transforms of the components of X(k) (4:381]. The

inverse relation is given by (5:375; 15]:

K .-i-f." J 7(,e i W (12)

By specifying the x and y components of the electric

field over a plane defined by z=zo we can determine from

equation 12 the x and y components of '(), and by using

equation (9) we can uniquely specify the remaining

component Az.

7
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Ax 2  f E. +1 J

(13)

Given A(k), the electric field is known for all space

by equation (10). Generally, this equation must be

performed on a computer. However, for the case of the far-

field pattern, equation (10) can be evaluated analytically

using the method of steepest descent [5:375; 3:1675; 6:253].

EFF(r) = i 2a kzo K(k-o) e-(kr) (14) 5r

where: ko = k ar

a.r =sin( )eos()x+ sin( )sin( ) cos(O)z

Finally, note that since kxo 2 + kyo 2 = k2 sin 2 (0 ) < k2  1

equation (14) involves only the spectrum of the propagating

modes.

The foregoing development assumed that the tangential

field was known over a plane defined by z=zo . It is

impossible to create a perfect measuring apparatus,
5,

therefore some error is always present in the form of

inaccurate probe positioning. This error can occur in two

distinct forms:

8
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1. Random error in-troduced by loose machinery,

temperature variations, or ground vibrations.

2. Deterministic positioning errors due to limited

machine accuracy.

The first is time variant, and can be eliminated by making a

statistical average of several scans. For a given system,

the deterministic errors can be measured with greater

accuracy than the positioning machinery is capable of

achieving, and it is this type of positioning error that is

the topic of this investigation.

The deviation of the probe from the theoretical plane

of measurement will introduce errors in the far-field

patterns. To counter this we will use the spatial deviation

measured and a knowledge of the dependence of the tangential

fields on variations in the z direction to estimate the

value of the fields at the theoretical plane of measurement.

We will consider errors in the z direction only.

To estimate the value of the tangential electric

fields, we will make use of a truncated Taylor series

expansion. The general form of the Taylor series is given

by [18, 3051:

" " " O -( 3:,IZO
' °) (15 )

9
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If we assume that the higher orders of the series are

dominated by the first and second terms we can say:

E(z) o !r(zo) + d~ E(Z)IAz (16)
I ZZO

By examining equation (10) we can see that:

d [(z (-iKz) 'I () e -i (17)

SzI.z ) 2w

o= X. + yay + 0a2

So, if we knew the vector amplitude function of a perfect

scan, A(i), we could determine the first partial of the

electric field with respect to z and approximate the value

of the fields on the plane z=zo . A(k) is not yet known, but

we can approximate Ak) by using equation (13) to calculate

a Aolk) which is the vector amplitude function calculated

using the measured data, and neglecting the positioning

errors.

KO(") z2w e + (ze ( 118)

Therefore, our equation for the tangential fields on the

theoretical plane of measurement becomes [17:24]:.X

_4
~ (zo) mE (zi) J -r. (

Az A-i Kz A0 (k)e-(9
2w-m -

In general, Az = (zI - zo ) is dependent on the x, y
coordinates of the point in question.

. 4"

~10
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III. THE DATARASE

Before a study into probe positioning errors can begin,

aldatabase of near-field electric field values along with

their accompanying far-field patterns must be obtained. For

this investigation, the database must include flexibility of

the positioning discrepancies as well as a reliable degree

of accuracy so as not to mask the outcome of any correcting

routines used. Finally, since the database will be accessed

repeatedly, it should be as easy to use as possible.

For these reasons, a computer program that calculates

the tangential electric fields in the near-field of a

Z linearly polarized, uniformly illuminated, circular aperture

antenna was chosen as a source of raw data over actual

measurments. The original analysis and program was written

by Dr. Arthur Yaghjian RADC/EEC, Hanscom AFB, and

provides data based on parameters supplied by the user.

The main parameters are, ka (i.e. 27ra/ ) and z/a where z

is the distance to the plane of computation.

IF .W

%'

11
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General Outline

To create the database program, the fields of the test

antenna were expanded into elementary spherical harmonies

[8]. This was accomplished by first examining the

corresponding acoustical problem of the two-sided piston

radiator. Since the differential equations of acoustics are

only slightly different from those governing

electromagnetics, similar radiating systems yield similar

results. By expanding the acoustical pressure pattern of

the two-sided piston radiator into spherical harmonics, an

expression is obtained that can be used as a starting point

o'.-
for the more difficult electromagnetics problem. This

process leads to an equation that is an infinite sum of

individual spherical modes, an equation that lends itself to

computation by computer.

The geometry that the database program is based on is

given in figure 1.

V
A A

r''X

".-'. Figure 1. Hypothetical Test Antenna Geometry.

12



The equation which yields the electric field values for

all points outside the source sphere (i.e. 17I > a) is given

by [8:13]:

Ex(r) - (ka) 2 L Z (+)CsPI Lj (2)
= 2r B1  [ (1+1(Cose Pt - Pt+lh

even (2) (2)
+ Cosa (1h, - kr hj1 )p1

B1 = (21+1) 2 (L-1-2,4)1I(1-1+2q].3(-l) -4 (20)

21+1 q 1 ( (1. -q)I (1 +q) (

'2
X (jq (ka) j-q (kw)

+ J,(ka) (-1) 2

21

Note that all of the summation constants, Bg , are real.

Therefore the phase information is given by expressing the

Hankel functions as:

h(2) ( 1
hn = Jn (W) - nn (x) (21)

At first glance it would appear that this equation

would supply both the near-field values, and the far-field

values. Practically, this is not the case due to the fact

that as the computation surface is moved away from the test

antenna, the number of terms needed to insure accuracy

becomes prohibitivly large. Fortunately, this is not a

13
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ilk
problem since the far-field pattern of this system can be

expressed in closed form. The far-field pattern is given by

[2:417]:

* E (8) N 2 J (kaSinU)
T ka SIn0 (22)

Near-Field Computation

The near-field database program addresses each

component of equation (20) separately. There are, however,

four special functions that are common through out the

computational procedure of a single data set. These special

*. functions are calculated in subroutines called by the main

program and they include:

1) The Factorial Function
Calculated in the subroutine Fact

2) The Fac-Factorial Function
Calculated in the subroutine Facfact

3) The Spherical Bessel Functions
Calculated in the subroutine Sphebe

4) The Legendre Polynomial Functions
Calculated in the subroutine Legend.

Each subroutine is governed by recurrence relations

that define the special function that it calculates.

The Subroutine Faet

This subroutine is a simple algorithm that calculates

the factorials of the first N integers where N is a limiting

value supplied by the main program. The equation used to

14
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calculate these values is given by:

P
P! - 1 n (0! 1) (23)

n=i

The Subroutine Facfact

This routine calculated the double factorials of the

first 2N+1 integers where N is a maximum value supplied by

the main program, and is based on the parameters supplied by

the user. The expression used to calculate these values is

given by:

P
(2P+1)I I R (2n+11

n-i (24)

The Subroutine Sphehe

This routine is slightly more complex than the

preceding two, since it must calculate the spherical Bessel

functions of an arbitrary order and arbitrary arguments.

That is, it must calculate the ordinary spherical Bessel

functions as well as the spherical Neumann functions. The

equation used is:

2n+I_fn1 (x) + fn+ (Ix) = f---£n(x) (25)n-1 (25.)

All cases use known forms of Jn(x) and nn(x) or the ...

above recurrence relation.

For Jn(x) we use a descending computation starting at

N>n and set JN(x) = 0, JN. (X) =6, 161 << I

For nn(x) we use an ascending computation using the

15
,.:... :'. -..
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known forms of the first two Neuman functions.

The Subroutine Legend

This routine calculates the Legendre Polynomials up to

order N, and for argument cos(O), where N, and cos(O) are

provided by the main program. The algorithm is based on the

equations:

(2n+0 x P(n)(x) (n+l) P(n+l)(X) + n P(n-W)(X)

PO (Cose) = 1 (26)

P1 (Cost) = CosO

The Main Program

The main program begins calculation of field values by

first calculating the summation constants BC given in

equation (20). Next, the program calculates the phase and

magnitude of the fields. This is done by taking full

advantage of the radial symmetry of the geometry. Examining

equation (22), it is noted that the far-field pattern is

symmetric about the z-axis. Therefore, the program only

needs to calculate the near-field values on any ray normal

to the z-axis, and lying in the plane of computation. This

reduces the number of values to be calculated and the time ~'P'

of computation.

The main program introduces a variable R, which is the

distance off of the bore sight of the antenna on the plane

of computation. It then calculates the phase and magnitude

of the electric field at that point. The equation for

16
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these values is given by [8:15]:

/ s =~h \ +(ka) 2
Im 2 o 2kr - =o B'B ( + 1)(Cose p& - P+jI) jt, (kr)

even

+ Cose (Ijt (kr) krj(t+l) (kr)PL) .%

x (ka) 2
Re ( 11) (1)(CosO Ppt Pj + 1) nL (kr)

IIIeven (27)

+ Cosd (Int(kr)-kr n(,+1) (kr) P)

Magnitude = e2 +m 2

Phase = Tan - ' (ImR..)
Re

Finally, the program writes these values to a data file

which is used as the input data to the Far-Field

Transformation Program.

17



IV. THE TRANSFORMATION ROUTINES

Once a database of unprocessed values has been obtained

for the test antenna, the next step is to create programs '.

which reduce this data into a form suitable for comparison.

This is accomplished through Transformation Routines.

These programs use the near-field values calculated in

the database program to compute the vector amplitude

function, A(k) through a numerical evaulation of equation

(13). This data is then used to evaluate equation (17)

which yields the first partial derivative of the electric

field with respect to tne variable z, at the plane of

measurement. Next, the original near-field data is combined

with its first partial by implementing equation (19) and the

vector amplitude function is recalculated using this

corrected data set. Finally, the far-field pattern is

plotted as a function of 0, and compared to the pattern

calculated from a perfect scan. Figure 2 is a block diagram

of this procedure.

18
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str

GENERATE

DATABASE

CALCULATE r.'. A(k)

equation(13)

CALCULATE

aequao( 17)

PROXIMATEV

equation(19)

GENERATE

FAR-FIELD

PATTERN

Figure 2. Block Diagram of Computation Procedure.

19
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Program Descriptions

The process depicted in figure 2 is performed in four

steps. This is necessary due to hardware limitations on

the maximum job size presented by the main frame computer

used. Each step represents a separate computer program, and

each program evaluates one of the equations outlined in

Figure 2. The programs, in order of operation, are:

1) The Transformation Program, TRPROG

2) The Derivative Program, DRPROG

3) The Combination Program, COMPROG

4) The Output Program, OUTPROG

The following is a detailed description of each program.

This program evaluates equation (13) by first reading

in the near-field data, and then performing the double

integral for each point in the transform space (K-space)

where a value for the vector amplitude function is required.

There is a complication in reading the near-field

values supplied by the database. As described in Chapter

II, the database program calculates the near-field values

for a linearly polarized, uniformally illuminated, circular

aperture antenna. It accomplishes this taking full

advantage of the cylindrical symmetry of the problem.

Consequently, the final output of the program is in

cylindrical coordinates. Before this data can be used by

the TRPROG, it must be expressed in cartesian coordinates.

20



If N

To acheive this, the program first creates a two dimensional

array into which the data is to be read. This array

represents a scanning plane, and each storage location has

associated with it, a pair of cartesian coordinates

(xi, yi)• Next, TRPROG reads the cylindrical data from the

database and stores it in two one-dimensional arrays, one

for the phase, and one for the magnitude. Each storage

location of the one dimensional arrays has a radial

coordinate associated with it. Since the electric field of

the test antenna is circularly symmetric about the z-axis,

only the radial component is required to specify the field
.i- ".'

values for a given location. Finally, using the cartesian

coordinates associated with each storage location, the

radial distance is calculated. The phase and magnitude

values from the database whose associated radial dimension

most closely matches this calculated radial dimension is

read into the storage location as a complex value, see

f igure 3.

A.. k,/iT'r

Figure 3. The Coordinate Transformation Process.

21
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After the near-field data has been read, TRPROG

performs the double integration of equation (13). This

entails a double integral for each value of the vector

amplitude function to be calculated. If one examines

equation (17), the next equation to be implemented, it is

evident that a plane of vector amplitude values will be

required for the next computation. This determines which

vector amplitude values must be calculated in TRPROG. The

simplest, and most direct method of computation is to create

a two dimensional array similar to that containing the near-

field data and associate each storage location with a pair

of coordinates from K-space.

Computation time is a major concern in choosing a

method for calculating the double integrals of equation

(13). If one simply uses a double summation over all of the

near-field data for each K-space point the computer time

quickly becomes exceedingly large. Another less time

consuming method is to create an intermediate step in the

calculation. This requires two loops, the first sums over W

one of the near-field coordinates for each value of the

remaining near-field coordinate, and for each value of one

of the K-space coordinates. The second loop sums over the

remaining near-field coordinate for each K-space coordinate

pair [15; 4:381].
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S(ym,kx) = E(xnym) e(+ikxxn)
n

e (+kzZo )dxdy (28)

A(kx ky) = 2n F S(ym, kx) e(+ikyYm)

This method of numerical integration is analagous to

taking the one dimensional Fourier Transform of the x

variable for each value of y, and then taking the one

dimensional Fourier Transform of the y variable for each

value of kx [14:118; 1:75; 7]. The last function of TRPROG

is to load the calculated vector amplitude values into a

data file for retrieval by the DRPROG.

DRPPR G

This program calculates the first partial of the

electric field with respect to z by implementing equation

(17). The values of the vector amplitude function CJ

calculated by TRPROG are read into a two dimensional array.

Since the coordinate transformations were performed in

ThPROG this is a considerably easier task. Next, the double

integral of equation (17) must be computed. A method very

similar to that used in the previous program is used.

Again, an intermediate step is introduced into the

computation. The first loop sums over all values of one of

the K-space coordinates for each value of its real space

counter-part, and for each value of the unused K-space

coordinate. The second loop sums over all values of the

remaining K-space coordinate for each value of its real

space counter-part, and for each value of the first K-space

23
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coordinate used [151.

S(kym'x-) = eA(kxnkyn() e-ikznm') e(-ikxn-v)

E(xy) dkxdk S( ) e(-ikymy) (29)

21 m kym )

The major difference between DRPROG and TRPROG is that

DRPROG will only sum over the vector amplitude values of

propagating modes, because the evanescent modes of the

hypothetical test antenna are assumed negligible at

z = Z0 > a in front of the aperture.

The combination program evaluates equation (19). It is

an extremely simple routine which is separated only to

accommodate the hardware limitations discussed previously.

Also, to reduce the need for large storage blocks, the near- .

field data originally read into TRPROG, is re-read into

COMPROG.

The output program re-calculates equation (13). At

first glance it would appear that needless programming went

into the creation of OUTPROG, however there is one major

difference between TRPROG, and OUTPROG. TRPROG, by

necessity, calculated the vector amplitude function for a

grid of points, equidistant from each other, in K-space.

This format, however, is not conducive to presentation as a

graph. The vector amplitude, or far-field, pattern is

usually presented as a function of the spherical, angular
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coordinates 0, and . Therefore, OUTPROG calculates

the vector amplitude function for points equidistant in

spherical coordinates. Also, there is no need to calculate

a complete grid of data, as a single cut in the 0 direction

for a fixed value of 0 will yield all of the information

required for comparison. This is due to the fact that the

far-field pattern of the test antenna is circularly

symmetric.

OUTPROG calculates vector amplitude values for

* 27/4 and theta ranging from -300 to +30° in increments

of 1/30 , equation (14) gives the functional relationship

between the K vector and 9 and 4 . The computation

portion of OUTPROG is identical to TRPROG.

Positioning Error Simulation

To simulate errors in the positioning of a probe, a

slight modification is made in the data read by TRPROG.

Two sets of near-field values are calculated by the database

program. One is a slight distance in front of the

theoretical plane of measurement and the other is a slight

distance behind the theoretical plane of measurement. As

long as the x coordinate of a storage location is negative

TRPROGwill read the data from the further plane. When the x

coordinate is positive TRPROG will read the data from the

closer plane, (see figure 4).

.. 1
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This is a convenient model for positioning errors due

to its ease of implementation and due to the predictability

of the effects these errors will have on the far-field

patterns.

For small displacements at the y-axis, the magnitude

difference between the two halves comprising the near-field

data will be negligible. The phase difference created by

propagation will not, however, be negligible (17:24). This

system can be approximated by a two element linear array,

and the theory of linear arrays leads one to expect a shift

in the position of the main beam. Indeed, this shift is

observed in the computation of the far-field patterns.

27
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V. THEDATA

This chapter will present the data produced by the

correction routine. Included is a discussion of the

validity of the simulation used to model probe positioning

errors, as well as an evaluation of the performance of the

transformational programs, TRPROG, and DRPROG.

As outlined in chapter IV, the model used to simulate

erroneous probe positioning consists of a discrete jump,

equal to 2, z, in the measurement plane at the y-axis (see

figure 4). It can be argued that this is not a realistic

simulation of the positioning errors found in an actual

measurement facility. While this is true, the errors

represented by this model are, most probably, more severe

than those of a real near-field system. Thus, if these

exaggerated errors do not present undo difficulties to the

correction procedure, the program can reasonably be expected

to perform at least as well when confronted with the,

relatively, benign inaccuracies of a high precision near-

field measurement system.

The only limitation presented by this particular

correction routine is that the mean z position of the probe

be equal to the theoretical measurement plane z=zo . This

ensures a proper phase reference for the far-field pattern.

.2
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Computation Procedure

The general procedure for the computation of a

corrected far-field pattern is outlined in chapter 111,

figure 2. The presentation of the data for comparison,

however, requires that the far-field pattern be computed

neglecting any positioning errors. This is accomplished by

supplying the program OUTPROG with the raw data before it is

processed by the correction routine. The generation of a

complete set of data that facilitates the comparison of the

corrected, and uncorrected patterns is outlined in figure 5.

W1"

'"

* I..: ..

Figure 5. Computation Procedure for Data Presentation.
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Date presentation

The computer simulation was performed for an antenna

whose diameter is two meters and is operating at 2.4 GHz.

Data sets were generated for two values of the parameter

z. The first set, shown in figures 6 and 7, is for a

positioning error of /25 (5 mm). Figure 6, shown

below, is a comparison plot of the far-field pattern

computed from a perfect scan (i.e. no positioning errors),

versus the plot of the far-field pattern computed from a

scanning .plane distorted as shown in figure 4. The plot is

of a cut made along the ., = /4 contour. The main lobe

has been shifted by approximately 1/3 degree.
CA

j--- UNCORRECTED
I "__ PERFECT

CY

Fiur 6.PretScnPtenvs norctdPten

30

I

6: '1

o ' THETA

-30 -20 -10 0 10 20 30
Figure 6. Perfect Scan Pattern vs. Uncorrected Pattern.

, z = / 25 :
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The shift in the main lobe closely matches the shift

predicted for a two element, linear array. The theoretical

shift, along the = f'/4 cut line is given by:

-1/4 7r/25 \\

SIN -SIN c = 0.40 (30)

Figure 7 is a plot, made over the same contour, of the far-

field pattern of a perfect scan versus the far-field pattern

of the corrected scan. It is evident that the main lobe has

been moved back towards the undistorted position.0

--- CORRECTED
j PERFECT

(0

C3

1"°

0 THETA .

-30 -20 -10 0 10 20 30
Figure 7. Perfect Scan Pattern vs. Corrected Pattern.

Az = X /25
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Figures 8 and 9 are similar plots for A z= X /10 (12.5 mm).

Figure 8 shows the effect of the distorted scan, and again

the main lobe has shifted away from the z-axis in this case,

however, the shift is approximately I degree. In this

example, the level of the sidelobes has risen slightly.
c3

-- UNCORRECTED a-

PERFECT

I N-Co
I i , ..

I
6 I

30 -2 "100-"2 3
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Figure 8. Perfect Scan Pattern vs. Uncorrected Pattern.
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The predicted shift in the main lobe is given by:

0 SIN( COS('4) = 1.010 (31)

still very close to the observed shift.

Figure 9 plots the perfect pattern versus the corrected

pat tern.*
o

--- CORRECTED~PERFECT

)--I= ! I' -

i _
(0 :

-30 -20 -10 0 1020 30

Figure 9. Perfect Scan Pattern vs. Corrected Pattern.
Az = A/io
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To fully understand the correction procedure, one must

observe what happens to the near-field magnitude, and phase

patterns of the corrected, and uncorrected scans.

Figures 10 and 11 are plots of the corrected and

uncorrected phase paterns of the near-field scans. Figure

10 is a cut of the near-field phase distribution as the

probe moves in the x direction on the distorted scan surface

vs. the same cut made on the perfect scan. Note that the

jump in phase across the origin is due to the distorted

scanning plane.

(di UNCORRECTED
V h $ I _ PERFECT i!|  It"-

L;A i ,1 -I

, , ,, , , . .. if,, !, i"1| I 1 I '! / " '1 " . i "

DISTANCE OF OEIH

I' 2

DISTANCEOFF BORESIGHT

Figure 10. Near-Field Phase, Uncorrected Scan.

Az =x /10
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Figure 11 shows the effect of the correction procedure. The

phase jump at the origin has been reduced to a negligible

value and the phase is, roughly constant across the face of

the antenna. Since the theoretical scanning plane was taken

to be an integral number of wavelengths, zo = 1.125 m, the

approximate 00 phase across the main beam of the near-field,

shown below, is expected.
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Figures 12 and 13 are plots of the magnitude

distributions in the x direction on the distorted scan

surface. Figure 12 is the magnitude pattern of the near-

field scan before the implementation of the correction

routine.
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In figure 13 the corrected magnitude pattern is shown,

again as the probe moves in the x direction along the '
distorted scan surface vs. the same contour on the perfect

scan. It can be seen that the pattern differs from the

uncorrected scan in that the curve appears to follow the

perfect scan slightly more closely with the exception of a

constant shift for all values over the main beam of the

near-field pattern. Since the far-field patterns calculated

from this data were normalized with respect to the main

beam, this constant shift does not seriously affect the far-

field patterns.
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Fure 13. t ear-±ield Magnitude, Corrected Pattern.
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Evaluation of the Programs

There are two main components of the transformation,

and correction process, the program TRPROG, and the program

DRPROG. Both routines share a common disadvantage in that a

complete grid of data must be computed in order to implement

the correction routine. This is due to the fact that, for

this model, positioning error corrections must be performed

for each point. The consequence of this is that the

computation time is greatly extended. This could be avoided

by using a more efficient transformation algorithm, such as

a Fast Fourier Transform, and setting some tolerance

threshold, that is only correct those measurements that are

determined to be excessively inaccurate. This can be done

using these techniques since the correction procedure is

point by point in nature. In this way, the derivative of the

near-field values would only have to be computed at the

points where it is needed most.

Another point to consider, Is the accuracy of the

presented data. The far-field patterns were computed at

increments of 0 = 1/3 degree, then normalized to the largest

value computed. In this way some error is introduced into

the output. If the actual maximum of the far-field pattern

occured between two data points, the program would tend to F

mask the fact. This data spacing was chosen to expedite the

execution time while still providing reliable accuracy. If

~ for a given utilization, the main lobe was all that needed

38
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to be considered, the data spacing could be substantially

reduced.
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V 1. RESULTS AND REnMMF.NDAT IONS

The main goals of this investigation were accomplished

in that the effects of probe positioning errors were

investigated and found to be significant, even for errors

much less than a wavelength. The viability of the

correction routine was investigated and determined to

adequately correct the errors introduced by Inaccurate probe

positioning given that those errors are small in comparison

to a wavelength.

At first glance, the cases studied in this report may

seem to represent an extreme case of inaccurate probe

positioning. This is not the case since the errors were

represented with respect to wavelength. If the test antenna

had been operating at 30 GHz instead of 2.4 GHz, a

positioning error of A/25 would represent a distance of

0.4 mm, a very fine tolerance when it has to be maintained

over a space of two meters!

The use of this correction routine could reduce the

need for extremely accurate, and therefore expensive, :" .

positioners without sacrificing reliable far-field patterns. >2

Several questions remain to be answered, however, before

this routine could be implemented. What is the relationship

between the correction routine, and errors in the magnitude

distribution of the corrected near-field scan? Is the

correction routine responsible for the magnitude errors, or

are they due to the crude integration algorithms used?
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Can the routines be modified so that they can be used in

conjunction with scanning geometries other than planar?

Along with these technical questions, there are several

problems involved in the application, and optimization of

this procedure. The programs need to be reworked using a

more efficient Fourier transformation algorithm. Probe

correction needs to be taken into consideration. The

problem of the presence of noise in a real data set needs

to be investigated. These questions represent a valuable

source of research opportunities which require detailed

investigations and could lead to follow on theses for future

AFIT students.

ON
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APPENDIX A: Program -istingn

The following is a listing of the programs used for

this thesis. They are presented in the order of operation

as outlined in the text.

THE DATABASE

C CX3MPUTES THE NEAR-FIELD VALUES FROM THE FAR-FIELD
C PATTERN OF A PISTON RADIATOR USING SPHERICAL

C HANM)NIC EXPANSION (FOR Z=WDNSTANT)
C
C

DIMENSION PN(1000)
DIMENSION PNLOG(1000)
DIMENSION PKROKZ(1000)
DIMENSION PHASE(1000) ~-
DIMENSION XJKA02(500)
DIMENSION XJMKA2(500)
DIMENSION XJKR(1000) -

DIMENSION XNKR(1000)
DIMENSION PL(250)
DIMENSION BL(250)
DIMENSION F(500)
DIMENSION FF(500)

C

C INITIALIZATION

C
PI=4.*ATAN(1.)
XLIM=1.2
XKWA= (8.*000001 )*2 . P

C

c ZOA=1.*1375

ZK=XKWA*ZOA
MKR=3.* XKWA
RNGEPN=-20.
LMAX2=XLIM*XKWA/2.
LMAX=LMAX2 *2+9
LMAXPI1=LMAX+ 1

C -
C
C

CALL SPHEBE((LMAX+1)/2,XKWA/2.,RES,XJKA02) *
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CALL SPH&EBE(-(LMAX+1)/2,XKWA/2.,RESgXJMKA2)CAL0C(LAFF
CALL FCACT(MAXX),FF)
CALFFC(2LMX1,FF

C

C

C THIS ROUTINE CO)MPUTES THE SUMMATION CONSTANT, BLI IF(LMAX.LT.1) 00 TO 100
I, C

DO 20 L1=1,LMAX,2
L=Ll-l
L02 =LI 2
SQP=(FF(L+1)/F(L02+1)*XJKAO2(l) )**2*(-1)**LO2
IF(L-1) 40,40, 50

50 CONTINUE
IF(L02.LT.1) 00 TO 105

DO 30 IQP=lL402
F1=FF(L+1-2*IQP)/F(LO2-IQP+l)
F2=FF(L+1+2*IQP) /F(L02+IQP+1)
ISUB= IQP41
FJ=XJKAO2( ISUB)*XJMKA2( ISUB)
QP=2 . F1F2*FJ* (-1) * (L02+IQP+2)
SQP=SQP+QP

30 CONTINUE
C
105 CONTINUE
40 CONTINUE

BL(LI)=(2.*L.1)/2.**(L+1. )*SQP
20 CONTINUE
100 CONTINUE
C
C

DO 200 IKRT=1,501
XKRT=MKR*(IKcRT-1.)/500
XWR=SQRT(XRT2+ZK**2)

THETA=AOOS (ZK /XKWR)w
CALL SPHEBE(LMAXP1 ,XKWRtRES,XJKR)
CALL SPH.EBE(-LMAXP1 ,XKWR,RES ,XNKR)
IF(LMAXP1.LT.1) 00 TO 115

DO 10 l=1,LMAXP1
XNKR(I )=XNKR(I+1)*(-1)**I

10 CONTINUE
FC
115 CONTINUE

CALL LEGEND(LMAXP1,THETAtPLLtPL)
SUM1=0.
SUM2=0.
IF(LMAX.LT.1)C30 TO 120

43

Ia



C
DO 90 L1=1,LMAX,2

L=Ll-l
TLI1=L1*(ZK/XKWR*PL(L)-PL(Ll+l) )*XJKR(LI)
TL12=(L*XJKR(L1 )-XKWR*XJKR(L1+l) )*PL(LI)
CSTHTA=ZK/XKWR
TL1 2=TL12 CSTHTA
SUM1=(TL11+TL12 )*BL(L ) +SUM1
TL21=L1*(ZK/XKWR*PL(L1)-PL(Ll+l) )*XNKR(L1)
TL22=(L*XNKR(Ll)-XKWR*XNKR(Ll+l))*PL(Ll)
TL2 2=TL2 2*CSTHTA j~

SUM2=(TL2I+TL22)*BL(L1 )+SUM2
90 CONTINUE
C
120 CONTINUE

OEF=.5*XKWA**2/XKWR
POEF*SQRT(SUM1**2+SUM2**2) '

* PN( IKRT) =P
PNLOG( IKRT)=20 .*ALOG10 (PN( IKRT))
PKROKZ( IKRT)=P*XKWR/ZK
PHASE( IKRT)=ATAN2(SUM2 ,SUMl)

200 CONTINUE
C

OPEN(UNIT=10,FILE='DAT2')
C

DO 18 1=1,501
XI=(3./500. )*(I....)
WRITE(10,17) PHASE(I),PN(I)

18 CONTINUE
C
17 FORMAT(E20.7,IOX,E20.7)

ENDFILE 10
CLO)SE(UNIT= 10)
STOP

ENDOUIN FACT(NpFvFMTRX)

c THIS ROUTINE COMPUTES 0 TO N FACTORIAL, AND STORES
* C IN THE MATRIX, FMTRX .'

C
DIMENSION FMTRX(500)
FMTRX(1)=1.0

* IF(N)11,11,20
20 IF (N.LT.1) 0O TO 100
C

DO 10 1=1,N
FMTRX(I+1)=FMTRX(I)*I

10 CONTINUE
C
100 CONTINUE
11 CONTINUE

F=FMTRX(N+1)
RETURN
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11CONTINUE
F=FMTRX(N+1)
RETURN
END
SUBROUTINE FCFACT(N, FF ,FFMAT)

C COMPUTES THE FIRST N FAC-FACTORIAL AND STIORES IN FFMAT
C

DIMENSION FFMAT(1000)
FFMAT(1)= 1.0
IF(N) 11l, 1,20

20 IF(N.LT.1)GO 'TO 100
C

DO 10 1=1,N,2
FFMAT( I+2)=FFMAT(I )SI

10 CONTINUE
C
100 CONTINUE
11 CONTINUE

FF=FFMAT(N+2)
RETURN
END
SUBROUTINE SPHEBE(LELX,RESULT,T)

C COMPUTES SPHERICAL J OF ORDER 0 '10 LEL AND STORES IN
C T
C

DIMENSION T(2500)
1 IF(X)18,12,18
12 IF(LEL)16,13,14
13 RESULT=1.O

T(1) =RESULT
RETURN

14 RESULT=0.0
T(1)=1.0
LELP 1=LEL+ 1
IF(LELPI.LT.2) 00 T10 100

C
DO 40 I=2,LELP1
T(I)=0.0

40 CONTINUE
C
100 CONTINUE

RETURN
16 RESULT=1.0E+300*(-1)4*(LEL+1)

T(1)=1.0
MI =-LEL+1
IF(MI.LT.1) 0O TO 105

C
DO 30 I=2,MI
T( I)=1 .0E+300*(-1)**I

30 CONTINUE
105 CONTINUE

RETURN
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18 IF(LEL)55,51,19
19 MO=LEL

JO=2*IFIX(X)

2 MO = JO
21 MD=NrD+ll
22 T(NID)=O.

T(MO-1)=l.OE-285
LO=MD-2

23 F=2*(MD-1)
231 MD=MD-3

12=1W)
232 F=F-2.O

T(12+1)=(F+1.)/X*T(12+2)-T(12+3)
IF( 12)4,3,4

4 12=12-1
0010O232Ol

3 F=SIN(X)/X/T(1)
IF(lW).LT.1)00 TO 110

DO 5 J-1,IWJ
5 T(J)=F*T(J)
C
110 CONTINUE

RESULT=T(LEL+1)
RETURN

51 RESULT=SIN(X)/X
T(1)=RESULT
RETURN

55 WL-EL+1
T(1)=SIN(X)/X

IF(LO.LT.3)00 10 115

DO 6 J=3,LD
6 T(J)=(-2.*FLOAT(J-2)+1)/X*T(J-1)-T(J-2)
C
115 CONTINUE

RESULT=T (LO)
RETURN
END
SUBROUTINE LEGEND(N,TIIETA,P,PMTRX)

C COMPUTES LEGEND POLY OF ORDER 0 10 N AND STORES IN PMTRX
C

DIMENSION PMTIRX(500) 
6

X=COS (THETA)
PMTRX (1) =1 *

PMTRX(2)=X
NP 1=N+ I
IF (N-I)I 110,11

11 CONTINUE
'S IF(NPI.LT.3)GD 10 100
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DO 20 I=3,NP1

xI=I

+ PMTRX(I-2))/(XI-1.)
20 CONTINUE
CI
100 COlNTINUE
10 CONTINUE

P=PMTRX(NP1)
RETURN

END
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'I.

PROGRAM TRPROG
C
C THIS PROGRAM IS DESIGNED TO CALCULATE THE FAR-FIELDS
C ANTENNA PATTERNS OF AN ARBITRARY TEST ANTENNA, FROM
C THE NEAR-FIELD VALUES ON A SCANNING PLANE A
C SPECIFIED DISTANCE FROM THE ANTENNA
C

C
C ,:5--:

REAL PHS1(550)
REAL PHS2(550)
REAL PNI(550)
REAL PN2(550) ..
REAL KO
COMPLEX EX1(151,151)
COMPLEX A1(100,100)
COMPLEX SM(155,100)
COMPLEX XI,XMI
COMPLEX CSUM
COMPLEX KT
COMPLEX KZ
REAL DELTAZ
REAL ZO
REAL LAMBDA
REAL KA

C
LAMBDA=1 .0/8.0
PI=4.*ATAN(1.)
DELTAZ=. 005
ZO=1. 125
XI=(0. ,1.) "'
XMI =(0. ,-1. )'..

KO=2*PI /LAMBDA
DK=(1.0/40.0)*KO
DX=4/116.0

C
C
C
C
C
C
C THIS LOOP WILL READ IN THE NEAR-FIELD DATA
C
C

C

OPEN(UNIT=10,FILE=i'DATI')
OPEN(UNIT=9,FILE='DAT21)
REWIND(UNIT=10)
REWIND (UNIT=9)
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C
DO 12 1=1,501
READ(1O,17) PHS1(I) ,PNI(I)
READ(9,17) PHS2(l),PN2(1)

12 ONTINUE
C
17 FORMAT( E20.7,IOX,E20.7)

CLOSE(UNIT=10)
CLOSE(UNIT=9)

C
DO 45 1=19117

C
DO 40 J=1,117
JL=J-1
IL=I-1
R=SQRT((-2+JIDX)*2.+(-2+LDX)*02.)
IQ=INT(R*1000. )-10*INT(100.*R)
TNR=500./3.
IF( IQ.GE.5) IR=INT(R*TNR+1)
IF( IQ.LT.5) IR=INT(R*TNR)
IR= IR+l
IF(JL*DX-2.LE.0.0)GOT0 37
ER=PN1( IR)*COS(PHSl( IR))
ElI=PN1( IR)*SIN(PHS1(IR))
00O TO 3 9

37 ER=PN2(IR)*COS(PHS2(IR))
to EI=PN2( IR)*SIN(PHS2( IR))

39 EXI(J,I)=CMPLX(ER#EI)
OPEN(UNIT=I0,FILE='NDAT')
WRITE(109117) REAL(EX1(J,I)) ,AIMAG(EXI(JvI))

117 FORMAT( E20.7,1XE20.7)
40 CONTINUE
C
45 CDNTINUE
o
o
C THIS LOOP CALCULATES THE APPROXIMATE VECTOR AMPLITUDE
C USED IN TliE DDZEXI ROUTINE
C

S. C
c
C

DO 60 I=1081
C

DO 55 J=1,117

c CSUM=(0. ,0.)

DO 50 M=11117

KT=CMPLX(0. ,KA)
CSUM=CSUM+EX1 (M,J)*CEXP(KT)

+ *DX**2.
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50 CONTINUE

SM(J,I )=CSUM
55 CONTINUE
C
60 CONTINUE
C

DO 75 I1,81

DO 70 J=1981
CSUM= (0. ,0.)

DO 65 M=1,117

IF(KA.GT.KO**2) 00 TO 65
IF(KA.LE.KO*2 )KZ=SQRT(KO**2-KA)
KT=CMPLX(O.,(-2+(M-l)*DX)*(-Ko+(1-1)*DK))
KT=KT+KZ*Zosxi
CSUM=CSUM+SM(MJ)*

+ CEXP(KT)/(2.*Pl)
65 CONTINUE
C

A1(J, I)=CSUM
OPEN(UNIT=79FILE='FRST')
WRITE(7,150) REAL(Al(J,I)) ,AIMAG(AI(J,I))

70 CONTINUE
C
75 CONTINUE

10 FORMAT( E20.7,1XE20.7)

STOP
END
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PROGRAM DRPROG
C THIS PROGRAM WILL CALCULATE THE DIRIVATIVE OF THE
C TANGENTIAL NEAR-FIELDS WITH RESPECT TO Z.
C
C

COMPLEX AI(100,100)
COMPLEX DDZEX1
COMPLEX SM(155,155)
COMPLEX CSUM
COMPLEX XMI
COMPLEX KX,KYKZ,KT
REAL REA
REAL IMA
REAL ZO
REAL LAMBDA
REAL KA
REAL PI
REAL KO
REAL DK
REAL DX

C

C INITIALIZATION
C
C

LAMBDA= I.0/8.0
PI=4.0*ATAN(1.0)
XMI=(0. ,-1I.0)ZO=I. 125 '"

KO=2.0*PI /LAMBDA
DK=(1.0/40.0)*KO
DX=4/116.0

C
C *.

C THIS LOOP WILL READ IN THE APPROX. VECTOR AMP.
C

OPEN(UNIT=7,FILE-'FRST')
REWIND(UNIT=7)

C
DO 12 1=1,81

C
DO 11 J=l 81
READ(7,17) REA,IMA
AI(J, I )=CMPLX(REA, IMA)

11 CONTINUE
C
12 CONTINUE
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17 FORMAT( E20.7,1X,E20.7)
C

CLOSE(UNIT=7)
C
C
C THIS LOOP WILL CALCULATE THE ACTUAL DERIVATIVE
C
C

DJO 30 1=1,117
C

DO 25 J=1,81
CSUM=(O. ,0.)

C
DO 20 M=1,81
ML=M-l
IL=I-l
JL=J-1
KA=(ML*DK-KO)**2.+(JL*DK-KO)**2.
IF(KA.GT.(.75)*KO**2.) GOTO 20
IF(KA.LE.(.75)*KO**2.) KZ=SQRT(KO**2.-KA)
KX=CMPLX(0.,-(IL*DX-2)*(ML*DK-KO))
KT=KX+KZ*ZOOXMI
CSUM=CSUM+Al(M,J)*XMI*KZ*CEXP(KT)/(2 .P1)

20 CONTINUE
C

SM(I ,J)=CSUM
25 CONTINUE
C
30 CONTINUE
C J

C
DO 45 1=1,117

C
DO 40 J=1,117
CSUM=(0. ,O.)

C
DO 35 M=1081
ML=M-1
IL=I-1
KY=CIWPLX(O.,-(ML*DK-KO)*(IL*DX-2))
CSUM=CSUM+SM(J ,M)*CEXP(KY)DK**2.

35 CONTINUE
C

DDZEX1 =CSLJM
OPEN(UNIT=9 ,FILE='THRD')
WRITE(9,100) REAL(DDZEX1) ,AIMAG(DDZEX1)

40 CONTINUE
C
45 CONTINUE
100 FORMAT( E20.7,1X9E20.7)

STOP
END
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PROGRAM COMBN

C
C
C THIS PROGRAM WILL COMBINE THE ORIGINAL NEAR-FIELD DATA,
C WITH THE CALCULATED DERIVATIVE OF THE NEAR-FIELD DATA,
C AND OBTAIN AN APPROXIMATION OF THE NEAR-FIELDS ON THE
C THEORETICAL PLANE OF MEASUREMENT.
C
C

COMPLEX EX1(155,155)
COMPLEX DDZ(155t155)
COMPLEX EXO
COMPLEX SUM
REAL DER,DEI
REAL DELTAZDX
REAL PHSI(550)
REAL PHS2(550)
REAL PN1(550)
REAL PN2(550)

C
C

DELTAZ=(1.0/8.0)*.1
DX=4/ 116.0

C 9

C
C THIS LOOP WILL READ IN THE NEAR-FIELD DATA
C
C

OPEN(UNIT=10,FILE='DATII)
OPEN(UNIT=9,FILE=tDAT2f)
REWIND(UNIT=10)
REWIND (UNIT=9)

C
DO 12 1=1,501
READ(10,17) PHS1(),PN1(I)
READ(9,17) PHS2(I),PN2(I)

12 CONTINUE
C
17 FORMAT( E20.7,1OX,E20.7)

CLOSE(UNIT=1O)
CLOSE(UNIT=9)

C
DO 45 1=1,117

C
DO 40 J=1,117
JL=J-1
IL=I-1
RfSQRT((-2+JL*DX)**2.+(-2+IL*DX)**2.)
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IQ=INT(R*1000. )-1o*INT(1oo.*R)
TNR=500./3.
IF( IQ.GE.5) IR=INT(R*TNR+1)
IF( IQ.LT.5) IR=INT(R*TNR)
IR=IR+1
IF(JL*DX-2.LE.0.0)0OTO 37
ER=PN1(IR)*COS(PHS1( IR))
EI=PN1( IR)*SIN(PHS1( IR))
0O TO 39

37 ER=PN2(IR)*COS(PHS2(IR))
EI=PN2(IR)*SIN(PHS2(IR))

39 EX1(JI)=CMPLX(ER,EI)
OPEN(UNIT=8,FILE'lNDAT')
WRITE(8,35) REAL(EXI(J, I)) ,AIMAG(EX1(J, I))
CIDSE(UNIT=8)

40 CONTINUE

45 CONTINUE

C THIS LOOP WILL READ IN THE FIRST DERIVATIVE.
C
C

OPEN(UNIT=9 ,FILE='THRD')
REWIND(UNIT=9)

DO 15 J=19117

C
DO 10 1=1,117
READ(9,21) DER,DEI
DDZ( I J)=CMPLX(DER,DEI)

10 CONTINUE
C
15 CONTINUE
C

CLOSE(UNIT=9)
21 FORMAT( E20.7,1XvE20.7)
C
C
C THIS LOOP WILL COMBINE EX1(XY) AND DDZ(X,Y)

C

DO 25 J=19117
C -

DO 20 1=1,117
I L=I-i
IF((IL*DX-2).LE.0.0) 0O TO 18
SUM=EXI1 J)-DELTAZ*DDZ(I ,J)
GO TO 19 S

1s SUM=EXI(19J)+DELTAZ*DDZ(I,J)
19 EXO=SUM

~ OPEN(UNIT=7,FlLE='EXOUT')
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WRITE(7,35) REAL(EXO) ,AIMAG(EXO)
20 CONT INUE
C
25 ONTINUE
C
35 FORMAT( E20.7,1XE20.7)

STOP
END

4'.
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OUTPRO

PROGRAM OTPROG
C
C
C THIS PROGRAM WILL CALCULATE THE FAR-FIELD PATTERN
C OF THE TEST ANTENNA AND PRESENT THE MATERIAL IN A
C FORM SUITABLE FOR VIEWING.
C
C

COMPLEX EXO(155,155)
COMPLEX AO(375)
COMPLEX KA
COMPLEX CSUM
COMPLEX XI
COMPLEX K1,K2
REAL EFF(500)
REAL KXtKYKZDXPI LAMBDAKO,PHI,DTZO
REAL ER(155,155) ,EI1155,155)

C
C INITIALIZATION
C

DX=4/116.0
BIG=0.0
PI=4.0*ATAN( 1. 0)
LAMBDA= 1 .0/8.0

KO=2.0*PI /LAMBDA
ZO=1.125
Xi=(0.,1.0)
PHI=PI/4.0
DT=PI/540

C
C

C THIS LOOP WILL READ IN THE NEAR-FIELD DATA
C
C

OPEN(UNIT=7,FILE='SCND')
REWIND(UNIT=7)

C
DO 12 1=1,117

C
DO 11 J=1,117
READ(7,17) ER(J,I),EI(J,I)
EXO(J,I)=CMPLX(ER(Jl),EI(J, I))

11 CONTINUEC '

12 CONTINUE
17 FORMAT( E20.7,1X,E20.7)

CLOSE(UNIT=7)
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C
C
C CALCULATE THE OUTPUT OF THE THESIS!1!!
C
C

DO 30 M=1,181
ML=M-l
CSUM=(O. ,0.)

DO 25 1=1,117 .
IL=I-l

C
DO 20 Jz1,117
JL=J-1
KX=KO*XOS(PHI )*SIN(ML*DT..(P1/6.))
KY=SIN(PHI )*(KX/CDS(PHI))
KZ=KOWCS(MLDT-(Pf/6.))
K1=XIOKX*(JLDX-2.)
K2=XI*KY*(IL*DX-2.)
KA=(Z*XI *ZO+K1 +K2
CSUM=CSUM+EXO(J, I)*CEXP(KA)*DX**2./(2.*PI)

20 WONTINUE
C
25 CONTINUEK

AO(M) =CSUM

EFI=CABS(AO(M))
EF2=CABS(AO(M) )*KX/KZ
EFF(M)=SQRT(EF1I*2+EF2**2)
IF(BIG.LE.EFF(M) )BIG=EFF(M)

30 WDNTINUE
C
C
C LETS OUTPUT SHALL WE?
C
C

DO 35 M=1,181
ML=M-1
THETA=FLOAT(ML)*(1 .3. )-30.
OPEN(UNIT=10,FILE='LASTI)
WRITE(10,100) THETAEFF(M)/BIC

35 WDNTINUE
100 FORMAT( E20.7t1XE20.7)

STOP
END
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