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Breface

This paper applies the simple Taylos series ap-
proximation to the intricate problem of correcting
inaccurate probe-positioning in planar, near-field scanning.

This is not to imply that the implementation is as
simple as the concept. Throughout the past eight months I
have learned that simple concepts can be quite difficult to
implement.

There are many subtleties that the student new to this
area encounters. Dealing with the minor differences between
todays modern main-frame computers alone can delay
indefinitely the more improtant development and
interpretation of the computer analysis.

There are several individuals who helped me overcome
these differences. Particular thanks goes to my sponsor,
Dr. Arthur D. Yaghjian, RADC/EEC, Hanscom AFB. Without
his help this thesis would not have been possible. Thanks
also goes to my thesis advisor, 1Lt Randy Jost, for his
guidance and patience to the point of correcting my
spelling mistakes.

Finally, I would like to acknowledge Allen C. Newell,
of the National Bureau of Standards, as the one who first

[
proposed this method of probe position compensation.

A Ml P g AT R gl g S Ml S G s N R A e N L U N R R O O R RN RN R L N N R S L S )

P D}styibuti\p(“m_
Availobility (celo8
e H'A'v’l.lil 'O::'a\ﬁj'(‘l.'

EDist Specizl

il g lﬂl‘ }

{’
ok

gttt




Iable of Contents

page

Pref8Ce ..eeeceesscctesossosacsscsenscsnsscscssssccsonasncs ii
List of FiguUres ..cccecococscscescssvsccsscssccssosnnss iv
ADStr8cCt .c.ccecesccccsceccscoccsctcnsaccsscccrsncnsos v
I. Introduction ..ccecccccsececececacacacccsacanses 1

11. Theoretical Development ..ccccceccececcccascscns 4

lll' The Database ® & 9606660 060 000 006000 00 0O O O OO RO EPE ST SDS 11
General outline ® 0 9000 09000 0000V SOOI S OOO OSSR 12
Near-Field Comput.t‘on ® 0 0 000 0 ¢ OO SO0 O OG0t EROOIOES 14

The subroutine F.ct ® 0 & 9 ¢ & 60 5900000060t 14 a K
The subroutine F.CFact ® 5 & © 0 00 OO0 00 OO0 O PSS 15 :‘1':
The subroutine sphebe ® 6 0 09 9 00 00T OO S OO e a0 e 15 :“
The Subroutine Legend ..cccocccccecccccccns 16 oy
The Main Progf‘m e00ce0e0eese0eesss000s v 16 ‘f"""

@ IV. The Transformation Routines ....ccceescccccccsss 18 Pl
Program Descriptions .cccececscecscecscccocacsns 20 2‘5%
umG PR X R B B B B B B BN B BN AR BN BN BN N U NN R RN Y B AN Y BN S B NN B BN A 4 20
mpm A EEREEREENEIN NN I N I I I B R B N A BN N S BN R B B BN BN BE BN BN 2N J 23 ‘.
s

mMPm ® 0 9 8 6060 0 0 000008 OO0 0T OOT OSSOSO 24
OUTle T3 SN B BN IR B B B B N B N B NN BN BN B BN BB BN B R BN BN B B BN R N BN S 24

Positioning Error Simulation ..cccececcccccccccs 25 &S%

V. The Data ® 0 060 060 0 000 0O 0 PP E OO OO0 E OO OO 0 0NE OO0 SOOI 28 ;
The Model 9 0 0 0000 00000 0050 0000 G800 OGSO G EI OSSO IS 28 .."‘
Computation Procedure .cccccececoccscossososcsscs 29 F¢~
Data Presen‘ation @ 0 0 06 00 ¢ 0 0 2000 0580900 G S EE O 30 .E::Q
Evaluation of the Pl‘ogl‘ams ess0essresceer s 38 ‘_:-‘:.:

RSy

Vlo Results and Recomendations 00 00008 0B OCEPIOOIOEOIETIS OIS 40 t..‘t"'!

Appendix A: program Llstings 9 0 00606 ¢ 0 50 600500 E OO OGO PSS 42 Qt
Bibliography A ENFEEEREREENENEI I I I B A I B I NCEC R RCEC N N R R B R 2 B A 4 58 ":-

Vita U9 00 00 000 0 0 00000 Q00000 S0P T RSO 00080 SOSIE OO ENRSS 60 -‘i’i

T

'Y
\,r’

i i i \"_q'\

P L P TR O3 NI N S N R e S I PEASIEN
SO SE AU CRN N GRSk 5 A I R R VORI

P R S -t
SR SN




e ¥

L

Cant o aut i) sk g

g ™

List of Fi

Figure page
1. Hypothetical Test Antenna Geometry ...ccccocosces 12
2. Block Diagram of Computation Procedure ....ceccee 19
3. The Coordinate Transformation Process ...ccecccecs 21

4., Modeled Probe Positioning Errors ...ccoceccoccccs 26
5. Computation Procedure for Data Presentation ..... 29

6. Perfect Scan Pattern vs. Uncorrected Pattern
Az= A/zs L I B B N N B NE NE BN NN BN RN BN NN BN NE NN NN NN NN BN BN B B BN ] 30

7. Perfect Scan Pattern vs. Corrected Pattern
Az= A/zs ® @ 0 0 © 0 0 9 OO O OO O OO OSSO LSOO SIS 31

8. Perfect Scan Pattern vs. Uncorrected Pattern
Az= A/lo ® 99 OO O P OO OSSO PP e 0 SO 0SB SO e : 32

9, Perfect Scan Pattern vs. Corrected Pattern
Az= A/lo ® 0 0 & ¢ 0 0 ¢ 00O OO 6O OO PO BSOSO NS 33

10. Near-Field Phase, Uncorrected Scan
Az= A/10 ® @ 0 0 0 60 000 00 O 0 ¢ TS OO O E OO OO e 34

11. Near-field Phase, Corrected Scan
Az= A/lo 9 60 0 0 0 0 00 0 0 0 600 5SSO OO OO O 0N 35

12. Near-Field Magnitude, Uncorrected Scan
Az= A/lo ® 0 0 6 6 08 0000 %0 0000 PO Ce S Se 38

13. Near-Field Magnitude, Corrected Scan
Az= A/lo ® 0 0 0 90 0 0 090000 00 %000 000 0o e 37

iv

Yy > u’.‘-‘s

&2

AN PO
PR MO



(P e

. T L AN LA PL A SIS R TR AR Y . ! X L 08 MY AR 0, Y 2N T, LR e 2P A -

AF1T/GE/ENG/835D-34 o

Abstract

In recent years, near-field antenna measurement
techniques have gained a good deal of acceptance. There
are several errors in the computed far-field patterns caused
by measurement inaccuracies in the near-field data. This
paper deals with deterministic errors introduced by probe-
positioning errors in planar, near-field scanning.

By utilizing basic near-field theory, as well as a
knowledge of the positioning errors, it is possible to

estimate the fields at the correct probe position. A

computer program which lessens the effect of probe

]

positioning errors by means of a truncated Taylor series ;;é
expansion is used to demonstrate this improvement. ﬁﬁ-
QY
A

To simulate inaccurate probe positioning, a database of

’

calculated near-field values for a linearly polarized,

PR RIS
ﬁ
Pt

uniformly illuminated, circular aperture was used. Next,

the position correction program was applied to computer T;
generated inaccurate data. Finally, far-field patterns t;l
S
were calculated, and compared using both the corrected and R
uncorrected data. Results of the comparisons are presented. XN
Limitations, and areas of application of this routine are 32
» ',::
discussed. : i
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Background

Near-field scanning techniques are quickly becoming

accepted as an efficient, and accurate method for the
determination of antenna patterns [9:492). Near-field
techniques offer many advantages over conventional antenna
measurement facilities including: all weather operation,
reduced ambient interference, and security for delicate, or
classified apparatus [11:101]. To further enhance the
reliability of antenna parameters predicted by this
procedure, any source of error must be acknowledged and
limited where possible.

Near~field scanning requires the measurement of probe
output, in both phase and magnitude, over a predetermined
scanning surface such as a sphere, circular ecylinder, or
plane [7]). This is accomplished by positioning a probe at a
point on the scanning surface through the use of mechanical
devices. Since mechanical devices, such as positioners,
are not infinitely accurate, some error in the probe 'w@

positioning exists. Inaccurate probe position specification L

leads to erroneous far-field patterns, calculated from the fi:
incorrect data gathered by the probe. P
o

Problem Statement ki
e

This thesis will examine sensitivity to inaccurate ‘L*ﬂ

0

probe positioning, as well as a possible method for reducing f'j
N

S

1 R
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that sensitivity by means of a truncated Taylor series
approximation of the near-field data.
Scope

A computer program, created to generate the near-field,
transverse electromagnetic fields on a plane in front of the
antenna is used as a data base for the computation of far-
field antenna patterns. Inaccuracies in probe positioning
are simulated by the manipulation of this program. This
data set is used to calculate the far-field pattern of the
test antenna using planar scanning techniques explained in
Chapter Il. The resulting pattern is then compared to the
pattern from a perfect scan for various degrees of
inaccurate positioning.

Also, the position correction routine is used to
compensate for erroneous probe positioning and again the
far-field pattern is calculated. This "corrected" pattern
is compared to the uncorrected pattern as well as the
pattern from the perfect scan, to determine whether or not
any improvement has occured. This procedure is also
repeated for various degrees of positioning error.
Assumptions

To lessen the number of the computations, and to
conserve computer time, two assumptions are made:

1) The simulated positioning errors are discrete in
nature, and consist of a single displacement at the center

line of the scanning surface.
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2) The hypothetical probe used is an ideal electric
dipole sampling the electric fields.
General Approach

This research effort began with a review of the
development and theoretical formulation of planar, near-
field scanning techniques. The results of this review that
are pertinent to this presentation are given in Chapter II.

After an understanding of the basic theory of planar,
near-field scanning was obtained, a data base of near-field
values was needed to investigate the effect of probe
positioning errors. A computer program that calculates the
fields of a circular aperture, linearly polarized antenna as
a function of frequency, aperture radius, and distance from
the antenna was used to generate this data. A description
of that program is presented in Chapter I1I.

Next, a program which calculates the far-field pattern
of an antenna from its near-field values was created to
examine the effect of inaccuarate probe positioning. The
position correction routine is an integral portion of this
program. Both procedures are explained in detail in
Chapter 1V.

Finally, the effect of positioning errors, as well as
the effectiveness of the position correction routine in
limiting these errors is examined through a computer
analysis of the far-field patterns produced. This analysis,

and the results it provided are presented in Chapter V,
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11. THEORETICAL DEVELOPMENT

In this chapter, the basic theory behind planar, near- E.%

; field measurements is developed. The definitive analysis in gué
this area was performed by D. M. Kerns [12]. The approach ’%;

' used involves the expansion of a set of measured field S%
{ values into a summation of its elementary, planar wave ég
LAAN

functions.

”
.

The following is a list of the variables and the

:‘.\::

. notations that will be used throughout the theoretical :Ef
. w .,,'-'
development of this report. . =

E(F) = The electric field, magnitude and phase of each ﬂ?l

component, as a function of position. 55

o -— - A
qij A(k) = The vector amplitude, magnitude and phase of each =3
component, as a function of propagation direction. AN

— - a2 A Pal P '-l':.'t

. r = The position vector x'a, + y ay + z ag. Y
& LW,
- - : o~ ~ n -

k = The propagation vector ky ay + ky ay + kz ag: o

w = The frequency in rad/sec. e

. € = The permittivity of the propagation medium. ﬁ;:
! M = The permeability of the propagation medium. Efﬁ
_— .

R = The tangential position vector x ﬁ} +y ﬁ;. Ny
X K = The tangential direction vector Ky ﬁ; + ky‘GE. ﬁ?{
; dK = The two dimensional elemental patch in BsS
k-space,dkxdky. -

dR = The two dimensional elemental patch in =3

real space, dxdy. s
233

k = The phase propagation constant 27/A . N

* e —— - A . “:
;::;: ko - k ar . - ‘t‘
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The propagation of electromagnetic waves within free-
space is described by Maxwell's equations., These equations

lead directly to the vector Helmholtz equation [13:124].

VZE (F) + kz E- (F) = 0 (1)

The simplest, non-trivial solution to equation (1) for
a homogeneous, isotropic, source free region (z > 0) is

given by [1:145]:
E(T) =R (k) e=i kT (2)

where: T is the position vector
"k is the direction of propagation
A(XK) is the vector amplitude
of the wave as a function of the
direction of propagation.

By substituting equation (2) into equation (1), we obtain

[1:144]:

2 2 2 - 2
kx + ky + kz k

(3)
An interesting property of equation (3) is that given two
components of the propagation vector, say ky and ky, the
third component, kz,-is specified.
kg2 + ky? + kz? = wlue (4)

All values of k,, and ky which yield a real value for k,
define the propagating modes. However, modes for which

equation (4) produces a complex result are evanescent, or
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non-propagating. Still these evanescent modes must satisfy

the convergence condition, namely [5:374]:
lim & (k) e= 1 kT = ¢ (5)
r’ﬂ

It is for this reason that we chogse the following [1:146;
10:499]: o
V(? - k%) K2 « k? =

“z = -i V(kZ - k%) K% > k? ®) oY
Note that k, is either positive real, or negative imaginary. anY oo
Since we have assumed a source free region, Maxwell's ;;

equations require that [13:112]: . E}
Y T.E(D) =0 (1) =
substituting equation (2) into equation (7) yields:
| kK« &(k) =0 (8) o,

Equation (8) implies that given the.direction of

propagation, and two components of the vector amplitude, the ¥
third component is uniquely defined as:
-1
A; = ——(Agky + Ayky) (9)
z

-
D

’
’!

For any complex system, the complete electric field, at

[4

A
“r"'x T

any point in the source free region, can be expressed as a
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summation of the elementary wave functions over all possible

propagation directions [5:374; 15].
- f" f" .
E(r) =2 J_ J__ Alk)e™? krax
If A(k) in equation (10) is expressed in rectangular

components, the integral can be reduced to three scalar

expresions, corresponding to each of the unit vector

By ’:J—j: [:Ax CLRT R

1 —y - -
—.[:'[:Ayeibrﬁ

components.

1 '/’ ;o —
E = . PR
z . _Z.-. A, e‘l-ﬁl‘dx

A closer examination of the integral expressions given
in equation (11) reveals that they are the two dimensional
Fourier transforms of the components of A(k) [4:381]. The

inverse relation is given by [5:375; 15]:

A = F Ehet k*© dR 12
A(k) P LB(” dr (12)

By specifying the x and y components of the electrie
field over a plane defined by z=z, we can determine from
equation 12 the x and y components of X(E), and by using
equation (9) we can uniquely specify the remaining

component A,.




'J'

R

NN
&\'\\Aq..;'x-.LA .

(13)

fa el k'r gy

Given A(k), the electric field is known for all space
by equation (10). Generally, this equation ‘must be
performed on a computer. However, for the case of the far-
field pattern, equation (10) can be evaluated analytically

using the method of steepest descent [5:375; 3:1675; 6:253].

- = P -4
Epp(r) = i 2n k4 A(ko) sﬂ (14)
r
where: ¥, = k &y
ir = sin(6 )eos( @)X + sin(@)sin(@)y + cos(6)z

Finally, note that since kxoz + kyo2 = k2 sin2(g) < k2
equation (14) involves only the spectrum of the propagating
modes .
Rrobe Positioning Errors

The foregoing development assumed that the tangential
field was known over a plane defined by z=z,. It is
impossible to create a perfect measuring apparatus,
therefore some error is always present in the form of
inaccurate probe positioning. This error can occur in two

distinet forms:
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1. Random error introduced by loose machinery,

R LY
AR A,

temperature variations, or ground vibrations.

»
n

2. Deterministic positioning errors due to limited

G

machine accuracy. ‘hﬁi
. . !i e
The first is time variant, and can be eliminated by making a e

statistical average of several scans. For a given system,

the deterministic errors can be measured with greater ﬁ%g
accuracy than the positioning machinery is capable of 3?
achieving, and it is this type of positioning error that is ’g%%
the topic of this investigation. %g?
The deviation of the probe from the theoretical plane ?i?
iib of measurement will introduce errors in the far-field fﬁg
patterns. To counter this we will use the spatial deviation :gss
measured and a knowledge of the dependence of the tangential ?%
fields on variations in the z direction to estimate the VL:f
value of the fields at the theoretical plane of measurement. E&ii
We will consider errors in the z direction only. gg?
To estimate the value of the tangential electric jﬁi
fields, we will make use of a truncated Taylor series E; :

()
l'r“ *
N PR A A )

expansion. The general form of the Taylor series is given

PION
.c’

by (18, 305]:
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If we assume that the higher orders of the series are

dominated by the first and second terms we can say:

Ez) = Bzo) * & | B2 |22 (16)
- & el

By examining equation (10) we can see that:

(E

e

[ (-iKp) R (R) e P KTgr  (17)

(zilsz:)zr
T, = xay + y;\y + zog\z

So, if we knew the vector amplitude functionof a perfect
scan, A(k), we could determine the first partial of the
electric field with respect to z and approximate the value
of the fields on the plane z=z,. A(k) is not yet known, but
we can approximate A(k) by using equation (13) to calculate
a 'A-o(l?) which is the vector amplitude function calculated

using the measured data, and neglecting the positioning

errors.

Ky = _'..__ - +i _k°-r.
A, (k) . /-: /:: E (z1)e AR (18)

Therefore, our equation for the tangential fields on the

theoretical plane of measurement becomes [17:24]:

E (zo) *E (z1) - Ef. f f(-i Xz) A, (kle ~ ko gz (19)
] -

In general, 4z = (zy - 2z,) is dependent on the x, y

coordinates of the point in question.

10
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111. THE DATABASE —

a,;'.

Before a study into probe positioning errors can begin, ,

a*database of near-field electric field values along with :

their accompanying far-field patterns must be obtained. For ’ ;f{

this investigation, the database must include flexibility of ._“.'

Wi

the positioning discrepancies as well as a reliable degree f"'

of accuracy so as not to mask the outcome of any correcting
routines used. Finally, since the database will be accessed
repeatedly, it should be as easy to use as possible.
For these reasons, a computer program that calculates
the tangential electric fields in the near-field of a
; @ linearly polarized, uniformly illuminated, circular aperture
antenna was chosen as a source of raw data over actual
measurments. The original analysis and program was written
by Dr. Arthur Yaghjian RADC/EEC, Hanscom AFB, and
provides data based on parameters supplied by the user.
The main parameters are, ka (i.e. 2ma/A) and z/a where 2z

is the distance to the plane of computation.
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General Outline

To create the database program, the fields of the test

antenna were expanded into elementary spherical harmonics
[(8). This was accomplished by first examining the
corresponding acoustical problem of the two-sided piston
radiator. Since the differential equations of acoustics are
only slightly different from those governing
electromagnetics, similar radiating systems yield similar
results. By expanding the acoustical pressure pattérn of
the two-sided piston radiator into spherical harmonics, an
expression is obtained that can be used as a starting point
for the more difficult electromagnetics problem. This
process leads to an equation that is an infinite sumof
individual spherical modes, an equation that lends itself to
computation by computer.

The geometry that the database program is based on is

given in figure 1.

Figure 1. Hypothetical Test Antenna Geometry.
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@ﬁﬁ The equation which yields the electric field values for
. all points outside the source sphere (i.e. [T] > a) is given

by [8:13]:

s Ex(r) -(ka)2 ¥ 2
; T, " Tike -k Br [ (841)(Cost By g ) by
. even

; (2

g + Cos® (thy a kr h&i%)pg ]

2
(28+1) 22/ (412 - -
By = L22+1) ((z 1-24) 11 (2-1+24) 11 1)2‘+1> (20)

2'.4" =1 L I3
q Li-q)! L2+q)!

x (3q (xa) 3-q (ke))

p (-1)11 2 L1
A + ([ — (ka -1y 2
K . (‘i" Jo 1_9, (=1)

‘E; 2

Note that all of the summation constants, By , are real.

Therefore the phase information is given by expressing the

i Hankel functions as:
2
2 hp = jp (x) - i np (x) (21)
IE At first glance it would appear that this equation
g would supply both the near-~field values, and the far-field
) values. Practically, this is not the case due to the fact
éA that as the computation surface is moved away from the test
jy antenna, the number of terms needed to insure accuracy
X T becomes prohibitivly large. Fortunately, this is not a
\' "5:;
3 13
)
\
'b
5
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: d§§ problem since the far-field pattern of this system can be ‘\ﬂ
-

' expressed in closed form. The far-field pattern is given by Y
] l'tfi
‘ [2:417]: o
) E (e)l - 2 J,_}kaSine) :i

¥ o T e A g rd

Near-Field C tati

a
w'.'-"i*' 2

The near-field database program addresses each

component of equation (20) separately. There are, however,

g four special functions that are common through out the
computational procedure of a single data set. These special :f
. v
S functions are calculated in subroutines called by the main s
' ']
- program and they include: Ry
- X
| & K
1) The Factorial Funetion -3
. Calculated in the subroutine Fact §\
Y -
< 2) The Fac-Factorial Function 3
2 Calculated in the subroutine Facfact i
- 3) The Spherical Bessel Functions )
. Calculated in the subroutine Sphebe oy
> 4) The Legendre Polynomial Functions ff
Calculated in the subroutine Legend. Ml
ket
“ r:o
« Each subroutine is governed by recurrence relations L\
N ‘ N
) that define the special function that it calculates. o
& x
The Subroutine Fact o
f This subroutine is a simple algorithm that calculates ﬁi
. ~
‘ the factorials of the first Nintegers whereNis a limiting h
L NG
value supplied by the main program. The equation used to E
e oo
R 3,

4 14 ‘:?:\j
: ;
) e

.
o~
o~

-~

> u
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calculate these values is given by:

Pt = [T n (O!z 1) (23)

This routine calculated the double factorials of the
first 2N+1 integers where N is a maximum value supplied by
the main program, and is based on the parameters supplied by

the user. The expression used to calculate these values is

given by:
11
2P+1)1! = (2n+1)
( n=1 (24)
The Subroutine Sphebe

This routine is slightly more complex than the
preceding two, since it must calculate the spherical Bessel
functions of an arbitrary order and arbitrary arguments.
That is, it must calculate the ordinary spherical Bessel
functions as well as the spherical Neumann functions. The

equation used is:

2n+l f (x)

Ea-1 (X) + £q4q (X) = (25)

All cases use known forms of j,(x) and n,(x) or the
above recurrence relation.

For j,(x) we use a descending computation starting at
N>n and set jn(x) = 0, jy-1(x) =4, [8] << 1

For n,(x) we use an ascending computation using the

15
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ﬁﬁ; known forms of the first two Neuman functions. t”
*- R
This routine calculates the Legendre Polynomials up to “%
F(k;
| order N, and for argument cos(f), where N, and cos(@) are hER
provided by the main program. The algorithm is based on the }fﬁ
equations: li§
3
(2p41) x P(p)(x) = (n+1) P(peq)(x) + n P(po1)(x) S
PO {Cosf) =1 (26) ;
X Py (Cos8) = Coseé _ :
. Ihe Main Program ax

The main program begins calculation of field values by

(4]
P
Sty
."

first calculating the summation constants By given in

s

equation (20). Next, the program calculates the phase and E%’

‘E; magnitude of the fields. This is done by taking full ,f?
advantage of the radial symmetry of the geometry. Examining &ﬁ

equation (22), it is noted that the far-field pattern is ui

. symmetric about the z-axis. Therefore, the program only ;Q
} needs to calculate the near-field values on any ray normal T?f
to the z-axis, and lying in the plane of computation. This éé

. reduces the number of values to be calculated and the time ‘ff
E of computation., Eé
3 The main program introduces a variable R, which is the - _i,
3 distance off of the bore sight of the antenna on the plane v
A of computation, It then calculates the phase and magnitude gf
5 of the electric field at that point. The equation for :{1
“D v it

-~ i
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o ,
&‘"’ these values is given by [8:15): {‘;

8

X +(ka) : 3%,

S ———— = ——— . - . k h' ;

Im 2 g, ke 1doBrl(r + 1)(Cos8 Py = Pgyq) g (kr)

even ‘

t + Cos® (2jy (kr) = krj(gs1) (kr) Py) }:
A%

53

L

d

E (c) ~(xa)?
Re igo = E(Ea ioB!.'(lH)(Cose Pg -~ Py + 1) ng (kr)

o -
eve (27)

TETATVTy YR T
PP AR

R A ARA )

P s

+ Cosd (&ng(kr)-kr n(g41) (Kr) Py)

<
itude = ' .t":*-
Magnitu %ez . 12 v

1 (Im ) _}‘:

Phase = Tan~
Re N

Finally, the program writes these values to a data file
which is used as the input data to the Far-Field

Transformation Program.
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92" IV. THE_TRANSFORMATION ROUTINES ok
Once a database of unprocessed values has been obtained

for the test antenna, the next step is to create programs &:.'-\-

which reduce this data into a form suitable for comparison. 12

This is accomplished through Transformation Routines.

These programs use the near-field values calculated in "}
the database program to compute the vector amplitude ffj::'\.':
funetion, A(k) through a numerical evaulation of equation
(13). This data is then used to evaluate equation (17) Lx.,
which yields the first partial derivative of the electric ::::Sf»
field with respect to the variable z, at the plane of :
measurement. Next, the original near-field data is combined E:t::.{

.. with its first partial by implementing equation (19) and the Ei;.
“' vector amplitude function is recalculated using this 2 ;
corrected data set. Finally, the far-field pattern is Eﬁ..
plotted as a function of 6, and compared to the pattern ""5.;
calculated from a perfect scan. Figure 2 is a block diagram '
of this procedure. :-'
N
Y
oF
o

e V" e e - B Lo
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by GENERATE ot
>

DATABASE LS
: &%
ta

CALCULATE e
: A(k)
equation(13)

oy
A

aCAI..CUI.‘\'I'E‘
' “:r’ —a-z E(z)
B equation(l]ﬂ

N
Py

g

-
(3

g
%

XRP00

X WPPROXIMATE
' > E(z)

equation{19) :bf
N N
g o4
. ek
= ot

GENERATE

4

g FAR-FIELD p N
PATTERN o
- I.‘s.‘
3 auN
4 ‘l‘-'@‘.
:' o \
)
- "i-
- S
At
. ¢
AR . ’
S Figure 2. Block Diagram of Computation Procedure.
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g5 Program Descriptions
The process depicted in figure 2 is performed in four
steps. This is necessary due to hardware limitations on
the maximum job size presented by the main frame computer
used. Each step represents a separate computer program, and
each program evaluates one of the equations outlined in
Figure 2. The programs, in order of operation, are:
1) The Transformation Program, TRPROG
2) The Derivative Program, DRPROG
/ 3) The Combination Program, OCOMPROG
4) The Output Program, OUTPROG
The following is a detailed description of each program.
N i IRPROG
‘Eb This program evaluates equation (13) by first reading
in the near-field data, and then performing the double
integral for each point in the transform space (K-space)
where a value for the vector amplitude function is required.
There is a complication in reading the near-field
values supplied by the database. As described in Chapter
11, the database program calculates the near-field values
for a linearly polarized, uniformally illuminated, circular
aperture antenna. It accomplishes this taking full
advantage of the cylindrical symmetry of the problem.
Consequently, the final output of the program is in
3 cylindrical coordinates. Before this data can be used by

the TRPROG, it must be expressed in cartesian coordinates.
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To acheive this, the program first creates a two dimensional
array into which the data is to be read. This array
represents a scanning plane, and each storage location has
associated with it, a pair of cartesian coordinates
(x{, yij). Next, TRPROG reads the cylindrical data from the
database and stores it in two one-dimensional arrays, one
for the phase, and one for the magnitude. Each storage
location of the one dimensional arrays has a radial
coordinate associated with it. Since the electric field of
the test antenna is circularly symmetric about the z-axis,
only the radial component is required to specify the field
values for a given location. Finally, using the cartesian
e coordinates associated with each storage location, the

radial distance is calculated. The phase and magnitude

values from the database whose associated radial dimension
most closely matches this calculated radial dimension is
read into the storage location as a complex value, see

figure 3.

(x.v) X

/

sal/ads v

!ll.‘ll' t('.l

<"+ TN

7 Figure 3. The Coordinate Transformation Process.
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After the near-field data has been read, TRPROG
performs the double integration of equation (13). This
entails a double integral for each value of the vector
amplitude function to be calculated. If one examines
equation (17), the next equation to be implemented, it is
evident that a plane of vector amplitude values will be
required for the next computation. This determines which
vector amplitude values must be calculated in TRPROG. The
simplest, and most direct method of computation is to create
a two dimensional array similar to that containing the near-
field data and associate each storage location with a pair
of coordinates from K-space.

Computation time is a major concern in choosing a
method for calculating the double integrals of equation
(13). If one simply uses a double summation over all of the
near-field data for each K-space point the computer time
quickly becomes exceedingly large. Another less time
consuming method is to create an intermediate step in the
calculation. This requires two loops, the first sums over
one of the near-field coordinates for each value of the
remaining near-field coordinate, and for each value of one
of the K-spacé coordinates. The second loop sums over the
remaining near-field coordinate for each K-space coordinate

pair [15; 4:381].
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ax .
eﬁg S(ypmrky) = Z; E(xp,¥p) e(+ikyxy)
(+k,2z,)
e\ "Xz2Z0/dxdy (28)
Alky,ky) == - 2 S(ypmoky) el *ikyym)

This method of numerical integration is analagous to
taking the one dimensional Fourier Transform of the x
variable for each value of y, and then taking the one
dimensional Fourier Transform of the y variable for each
value of k, [14:118; 1:75; 7]. The last funetion of TRPROG
is to load the calculated vector amplitude values into a
data file for retrieval by the DRPROG.

DRPROG
This program calculates the first partial of the

electric field with respect to z by implementing equation

<

(17). The values of the vector amplitude function
calculated by TRPROG are read into a two dimensional array.
Since the coordinate transformations were performed in
TRPROG this is a considerably easier task. Next, the double
integral of equation (17) must be computed. A method very
similar to that used in the previous program is used.
Again, an intermediate step is introduced into the
computation. The first loop sums over all values of one of
the K-space coordinates for each value of its real space
counter-part, and for each value of the unused K-space
coordinate. The second loop sums over all values of the
remaining K-space coordinate for each value of its real

Zﬁi space counter-part, and for each value of the first K-space
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coordinate used [15].

S(kym’X') = zﬂ:A(kxn,kym) e('ikznmzo') e(-ikxnx.)
dk,dk (29)
E(x,9) = ———F 5(kyp,x) e(~ikym¥)

The major difference between DRPROG and TRPROG is that
DRPROG will only sum over the vector amplitude values of
propagating modes, because the evanescent modes of the
hypothetical test antenna are assumed negligible at
z = 25 > a in front of the aperture.

QOMPROG

The combination program evaluates equation (19). It is
an extremely simple routine which is separated only to
accommodate the hardware limitations discussed previously.
Also, to reduce the need for large storage blocks, the near-
field data originally read into TRPROG, is re-read into
OOMPROG.

QUTPROQG

The output program re-calculates equation (13). At
first glance it would appear that needless programming went
into the creation of OUTPROG, however there is one major
difference between TRPROG, and OUTPROG. TRPROG, by
necessity, calculated the vector amplitude function for a
grid of points, equidistant from each other, in K-space.
This format, however, is not conducive to presentation as a
graph., The vector amplitude, or far-field, pattern is

usually presented as a function of the spherical, angular
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coordinates @, and ¢. Therefore, OUTPROG calculates

the vector amplitude function for points equidistant in
spherical coordinates. Also, there is no need to calculate
a complete grid of data, as a single cut in the @ direction
for a fixed value of @ will yieldall of the information
required for comparison. This is due to the fact that the
far-field pattern of the test antenna is circularly

symmetric.

OUTPROG calculates vector amplitude values for
¢ =7m/4 and theta ranging from -30° to +3¢° in increments
of 1/3o , equation (14) gives the functional relationship
between the K vector and ¢ and ¢ . The computation
portion of OUTPROG is identical to TRPROG.
Positioni E Simulati

To simulate errors in the positioning of a probe, a
slight modification is made in the data read by TRPROG.
Two sets of near-field values are calculated by the database
program. One is a slight distance in front of the
theoretical plane of measurement and the other is a slight
distance behind the theoretical plane of measurement. As
long as the x coordinate of a storage location is negative
TRPROG will read the data from the further plane. When the x
coordinate is positive TRPROG will read the data from the

closer plane, (see figure 4).
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This is a convenient model for positioning errors due
to its ease of implementation and due to the predictability
of the effects these errors will have on the far-field
patterns.

For small displacements at the y~axis, the magnitude
difference between the two halves comprising the near-field
data will be negligible. The phase difference created by
propagation will not, however, be negligible (17:24). This
system can be approximated by a two element linear array,
and the theory of linear arrays leads one to expect a shift
in the position of the main beam. Indeed, this shift is

observed in the computation of the far-field patterns.
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V. THE DATA X

3

This chapter will present the data produced by the J

5 R
' correction routine. Included is a discussion of the ﬁh

e
¥k

validity of the simulation used to model probe positioning

errors, as well as an evaluation of the performance of the ,::
; transformational programs, TRPROG, and DRPROG. %%}
§ ,;Q
b As outlined in chapter IV, the model used to simulate Ri
N erroneous probe positioning consists of a discrete jump, ;i

equal to 24z, in the measurement plane at the y-axis (see

,;‘i.’ .

figure 4). It can be argued that this is not a realistic'

o
[/
P et

simulation of the positioning errors found in an actual

NG

measurement facility. While this is true, the errors E”j
represented by this model are, most probably, more severe ::f
than those of a real near-field system. Thus, if these :§§
exaggerated errors do not present undo difficulties to the ;i
correction procedure, the program can reasonably be expected ;t'
to perform at least as well when confronted with the, Eh‘
relatively, benign inaccuracies of a high precision near- E&*
field measurement system. :j%
The only limitation presented by this particular E&
correction routine is that the mean z position of the probe gﬁ
be equal to the theoretical measurement plane z=2,. This »i?
ensures a proper phase reference for the far-field pattern. 3¥A
‘i
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Computation Procedure

The general procedure for the computation of a

"
> X4

v
: A J
Bt g o]

corrected far-field pattern is outlined in chapter I1I,

figure 2. The presentation of the data for comparison, N
e
however, requires that the far-field pattern be computed Et;
e
neglecting any positioning errors. This is accomplished by o
supplying the program OUTPROG with the raw data before it is e
processed by the correction routine. The generation of a 5?
[
3
complete set of data that facilitates the comparison of the Ry
corrected, and uncorrected patterns is outlined in figure 5. A "
N,
o
2
GENERATE 3 ,:; %
DATABASE { ‘
SENERATE A
e ﬂ'ﬂ:! PASE \'.‘:
CALCULATE >4
k)
eguation(1) GENTRMTE
Sl uCoARECTED e
nor o’
-’rﬂlt)t ":‘_: l
equation(17) e .
hrrmxute -
Te,) A .
uation(19) .
GENEMITE )
FAG, & PMASE ". .
'.):-
o
N
‘fd. f‘
3
o Figure 5. Computation Procedure for Data Presentation. =
R
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Data Presentation 3
l The computer simulation was performed for an antenna \-..":
is:
whose diameter is two meters and is operating at 2.4 GHz. 1:2{:
Data sets were generated for two values of the parameter ‘g
z. The first set, shown in figures 6 and 7, is for a ‘Ev{
positioning error of /25 (5 mm). Figure 6, shown :.“
SN
. e
below, is a comparison plot of the far-field pattern
computed from a perfect scan (i.e. no positioning errors), !C’,‘{
AR
versus the plot of the far-field pattern computed from a N
e
scanning plane distorted as shown in figure 4. The plot is ',';
of a cut made along the -+ = /4 contour. The main lobe '
1.:’
has been shifted by approximately 1/3 degree. w5
. o and /1'. p..q-
ﬁ) - /4' W -—- UNCORRECTED -
o ___ PERFECT |
@ oy b
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« il 1 e
o i | %
é oo Ry
i i] ate
q‘ r%‘ .!‘ “! 8
o I i
= !‘l h -
i s N
oL i h R
o ‘: '.‘ win
\,’ ||‘ \ -
| \ o
1 b\ s
o \ THETA | 7 \y7
d 1 1 ] 1 f 1 N
-30 -20 -10 o 10 20 30
Figure 6. Perfect Scan Pattern vs. Uncorrected Pattern. .
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The shift in the main lobe closely matches the shift
predicted for a two element, linear array. The theoretical
shift, along the @ = 7 /4 cut line is given by:

~1/4m725 . o
a6 = sw (S=—)cos(™) = 0.4 (30)

Figure 7 is a plot, made over the same contour, of the far-
field pattern of a perfect scan versus the far-field pattern
of the corrected scan. It is evident that the main lobe has

Efen moved back towards the undistorted position.
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Figure 7. Perfect Scan Pattern vs. Corrected Pattern.
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Figures 8 and 9 are similar plots for
Figure 8 shows the effect of the distorted scan, and again
the main lobe has shifted away from the z-axis in this case,

however, the shift is approximately 1 degree.
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In this

example, the level of the sidelobes has risen slightly.

o

L]
v
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A4z= A /10 (12.5 mm).
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Figure 8., Perfect Scan Pattern vs. Uncorrected Pattern.
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The predicted shift in the main lobe is given by:
_ ~1f4m/10 n
A0 = SIN <2" ""1) cos( ,4) = 1.01° (31)

still very close to the observed shift.

Figure 9 plots the perfect pattern versus the corrected

pattern,
Q
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Figure 9. Perfect Scan Pattern vs. Corrected Pattern.
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To fully understand the correction procedure, one must
observe what happens to the near-field magnitude, and phase
patterns of the corrected, and uncorrected scans.

Figures 10 and 11 are plots of the corrected and
uncorrected phase paterns of the near-field scans. Figure
10 is a cut of the near-field phase distribution as the
probe moves in the x direction on the distorted scan surface

vs. the same cut made on the perfect scan. Note that the

jump in phase across the origin is due to the distorted
scanning plane,
m
\
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Figure 10, Near-Field Phase, Uncorrected Scan.
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Figure 11 shows the effect of the correction procedure. The

-

-
s

il =™

phase jump at the origin has been reduced to a negligible "

value and the phase is, roughly constant across the face of 50

- x%) K

the antenna. Since the theoretical scanning plane was taken
to be an integral number of wavelengths, 2z, = 1,125 m, the
approximate 0° phase across the main beam of the near-field,

shown below, is expected. é
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Figures 12 and 13 are plots of the magnitude
distributions in the x direction on the distorted scan
surface. Figure 12 is the magnitude pattern of the near-
field scan before the implementation of the correction

routine.
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In figure 13 the corrected magnitude pattern is shown,

again as the probe moves in the x direction along the

distorted scan surface vs.

scan.

the same contour on the perfect

It can be seen that the pattern differs from the

uncorrected scan in that the curve appears to follow the

perfect scan slightly more closely with the exception of a

constant shift for all values over the main beamof the

near-field pattern,

Since the far-field patterns calculated

from this data were normalized with respect to the main

beam, this constant shift does not seriously affect the far-

field patterns.
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Evaluation of the Programs )
There are two main components of the transformation, _;i

and correction process, the program TRPROG, and the program 33
DRPROG. Both routines share a common disadvantage in that a ___
complete grid of data must be computed in order to implement ﬁ;
the correction routine. This is due to the fact that, for gs
this model, positioning error corrections must be performed ?J
for each point. The consequence of this is that the h:i
computation time is greatly extended. This could be avoided gg
by using a more efficient transformation algorithm, such as tl
a Fast Fourier Trensform, and setting some tolerance $:
threshold, that is only correct those measurements that are E.
determined to be excessively inaccurate. This can be done _:;
using these techniques since the correction procedure is ‘Q:
point by point in nature. In this way, the derivative of the gi
near-field values would only have to be computed at the %f
points where it is needed most. f\$
Another point to consider, is the accuracy of the Ei;
presented data. The far-field patterns were computed at il
increments of 6 = 1/3 degree, then normalized to the largest é%
value computed. In this way some error is introduced into i;
the output. If the actual maximum of the far-field pattern §i
occured between two data points, the program would tend to :;i
mask the fact. This data spacing was chosen to expedite the ;E;
s

execution time while still providing reliable accuracy. If

for agivenutilization, the main lobe was all that needed
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to be considered, the data spacing could be substantially

reduced.
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vi. RESULTS AND RECOMMENDATIONS

The main goals of this investigation were accomplished

in that the effects of probe positioning errors were
investigated and found to be significant, even for errors
much less than a wavelength., The viability of the
correction routine was investigated and determined to
adequately correct the errors introduced by inaccurate probe
positioning given that those errors are small in comparison
to a wavelength. |

At first glance, the cases studied in this report may
seem to represent an extreme case of inaccurate probe
positioning. This is not the case since the errors were
rep}esented with respect to wavelength. If the test antenna
had been operating at 30 GHz instead of 2.4 GHz, a
positioning error of A /25 would represent a distance of
0.4 mm, a very fine tolerance when it has tobe maintained
over a space of two meters!

The use of this correction routine could reduce the
need for extremely accurate, and therefore expensive,
positioners without sacrificing reliable far-field patterns,
Several questions remain to be answered, however, before
this routine could be implemented. What is the relationship
between the correction routine, and errors in the magnitude
distribution of the corrected near-field scan? Is the
correction routine responsible for the magnitude errors, or

are they due to the crude integration algorithms used?

40

N A A A R T S R R T T S S T S
O AR SURYSIR, AR S R OAA N i TR L GG AL R O GRRY

T e .‘.‘:\;;-.:.i.

Al

Z

LT

-
&
-

e

T .,
NN -
4 AR 2

P o
b ‘

BOAIAAY &

)

P

+ CAADPLA A

c
R -
i)



.- el LA L Spa V2 bas I e L R g e S g 8o Aara. A g - r o QW g L B~ s g

Can the routines be modified so that they can be used in
conjunction with scanning geometries other than planar?
Along with these technical questions, there are several
problems involved in the application, and optimization of
this proceduré. The programs need to be reworked using a
more efficient Fourier transformation algorithm. Probe
correction needs to be taken into consideration. The
problem of the presence of noise in a real data set needs
to be investigated. These questions represent a valuable
source of research opportunities which require detailed
investigations and could lead to follow on theses for future

AFIT students.
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APPENDIX A: Program Listings

The following is a listing of the programs used for
this thesis. They are presented in the order of operation

as outlined in the text.

IHE DATABASE

PROGRAM DTPROG

OOMPUTES THE NEAR-FIELD VALUES FROM THE FAR-FIELD
PATTERN OF A PISTON RADIATOR USING SPHERICAL

HAMONIC EXPANSION (FOR Z=CONSTANT)

anaoaooan

DIMENSION PN(1000)
DIMENSION PNLOG(1000)
DIMENSION PKROKZ(1000)
DIMENSION PHASE(1000)
DIMENSION XJKAO2(500)
DIMENSION XJMKA2(500)
DIMENSION XJKR(1000)
DIMENSION XNKR(1000)
DIMENSION PL(250)
DIMENSION BL(250)
DIMENSION F(500)
DIMENSION FF(500)

INITIALIZATION

aoaa

PI=4,*ATAN(1.)
XLIM=1,2
XKWA=(8.000001)*2,.*PI

Q

Z0A=1.13175

ZK=XKWA*ZOA
MKR=3 , *XKWA
RNGEPN=-20.
LMAX2=XLIM*XKWA/2.
LMAX=LMAX2*2+9
LMAXP1=LMAX+1

aaa

CALL SPHEBE((LMAX+1)/2,XKWA/2.,RES,XJKAO2)
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50

30

105
40

20
100

10

115

CALL SPHEBE(-(LMAX+1)/2,XKWA/2.,RES,XJMKA2)
CALL FACT(LMAX,XF,F)
CALL FCFACT((2*LMAX-1),XFF,FF)

THIS ROUTINE OOMPUTES THE SUMMATION OONSTANT, BL
IF(LMAX.LT.1) GO TO 100

DO 20 L1=1,LMAX,?2
L=L1-1

LO2=L/2

SQP=(FF(L+1) /F(LO2+1)*XJKAOD2(1))**2%(-1)**L0O2
IF(L-1)40,40,50

CONTINUE

IF(LO2.LT.1) GO TO 105

DO 30 IQP=1,L02

F1=FF(L+1-2*1QP) /F(LO2-1QP+1)
F2=FF(L+1+2*1QP) /F(LO2+1QP+1)
ISUB=1QP+1

FJ=XJKAO2 (ISUB)*XJMKA2(ISUB)
QP=2.*F1*F2*FJ*(-1)**(LO2+1QP+2)
SQP=SQP+QP

CONTINUE

CONTINUE
CONTINUE
BL(L1)=(2.*L+1)/2.**(L+1.)*SQP
CONTINUE
OONTINUE

DO 200 IKRT=1,501
XKRT=MKR* ( IKRT-1.)/500

XKWR=SQRT (XKRT**2+ZK**2)
THETA=AQOS (ZK/XKWR)

CALL SPHEBE(LMAXP1,XKWR,RES,XJKR)
CALL SPHEBE(-LMAXP1,XKWR,RES,XNKR)
IF(LMAXP1.LT.1) GO TO 115

DO 10 I=1,LMAXP1
XNKR(I)=XNKR(I+1)*(-1)**1]
CONTINUE

CONTINUE

CALL LEGEND(LMAXP1,THETA,PLL,PL)
SUM1=0.

SUM2=0.

IF(LMAX.LT.1)G0 TO 120
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DO 90 L1=1,LMAX,2
L=L1-1
TL11=L1%*(ZK/XKWR*PL(L1)-PL(L1+1))*XJKR(L1)
TL12=(L*XJKR(L1)-XKWR*XJKR(L1+1))*PL(L1)
CSTHTA=ZK / XKWR
TL12=TL12*CSTHTA
SUM1=(TL11+TL12)*BL(L1)+SUM1
TL21=L1*(ZK/XKWR*PL(L1)-PL(L1+1))*XNKR(L1)
TL22=(L*XNKR(L1)-XKWR*XNKR(L1+1))*PL(L1)
TL22=TL22*CSTHTA
SUM2=(TL21+TL22)*BL(L1)+SUM2
OONTINUE

OONTINUE
OOEF=,5*XKWA** 2 /XKWR
P=COEF*SQRT(SUM1**2+SUM2%#%2)
PN(IKRT) =P
PNLOG(IKRT)=20.*ALOG10(PN(1KRT))
PKROKZ ( IKRT) =P*XKWR / ZK

PHASE ( IKRT) =ATAN2 (SUM2, SUM1)
COONTINUE

o o,
AP L
[ 3

PR

TR SO
s "'. ., iri L Y "

OPEN(UNIT=10,FILE="DAT2"')

>, o,
o
K

""‘ . »

DO 18 1=1,501
XI=(3./500.)*(1-1.)
WRITE(10,17) PHASE(I),PN(I)
CONTINUE

‘\ I
=
~
2
K
>

FORMAT(E20.7,10X,E20.7)

ENDFILE 10

CLOSE(UNIT=10)

STOP

END

SUBROUTINE FACT(N,F,FMTRX)

THIS ROUTINE COMPUTES 0 TO N FACTORIAL, AND STORES
IN THE MATRIX, FMTRX

DIMENSION FMTRX(500)
FMTRX(1)=1.0
IF(N)11,11,20

IF (N.LT.1) GO TO 100

DO 10 I=1,N
FMTRX(1+1)=FMTRX(I)*I
CONTINUE

CONTINUE
CONTINUE
F=FMTRX(N+1)
RETURN

N e % " B RTa " ."a b bR tacs"
“,l"’_ R CR TR | ".‘",‘.'-- . '._J'..":-‘. o
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i
;a*
SN
@%? 11  CONTINUE EQ
ey F=FMTRX (N+1) %5
RETURN =
’ END 9
! SUBROUTINE FCFACT(N,FF,FFMAT) r
; C COMPUTES THE FIRST N FAC-FACTORIAL AND STORES IN FFMAT A
4 C , o
{ DIMENSION FFMAT(1000) PN
| FFMAT(1)=1.0 ¥
s IF(N)11,11,20 RN
Y 20 IF(N.LT.1)GO0 TO 100 05
3 C SN
) DO 10 1=1,N,2 e
' FFMAT(1+2)=FFMAT(1)*I 7
10 CONTINUE :
C e
100  CONTINUE e
11 CONTINUE s
FF=FFMAT(N+2) R
RETURN S
END =
SUBROUTINE SPHEBE(LEL,X,RESULT,T) e
o COMPUTES SPHERICAL J OF ORDER 0 TO LEL AND STORES IN B
¢ T )
DIMENSION T(2500) ]
1 IF(X)18,12,18 =
12 1F (LEL)16,13,14 .-
13 RESULT=1.0 R
T(1) =RESULT X
RETURN i
14  RESULT=0.0 DX
T(1)=1.0 =
LELP1=LEL+1 o
IF (LELP1.LT.2) GO TO 100 ]
C - ._-. -
DO 40 1=2,LELP1 S
T(1)=0.0 o
éo CONTINUE ~
100 OONTINUE L
RETURN
16  RESULT=1.0E+300%*(-1)**(LEL+1) o
T(1)=1.0 o
MI=-LEL+1 =
IF(MI.LT.1) GO TO 105 o
¢ iy
DO 30 1=2,MI ]
T(1)=1.0E+300%(-1)**] S
30 CONTINUE o
105  OONTINUE 5
RETURN s
45 T
e
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A
o~ '§|§
Q&,- 18 IF(LEL)55,51,19 e
19 MO=LEL P4
JO=2%IF1X(X) X
IF(MO-J0)2,21,21 o
2 MO=JO v

21 MO=MO+11 123

22 T(MO) =0, %g'.%'.
T(MO-1)=1.0E-285 o
LO=MO-2 *

23 F=2%(MO-1) G
231 MO=MD-3 Ry
12=MO t
232 F=F-2.0 t{"
T(I2+1)=(F+1.)/X*T(12+2)-T(12+3)

1F(12)4,3,4 3

4 12=12-1 e

GO TO 232 he

3 F=SIN(X)/X/T(1) e

C ‘v

DO § J=1,~D “reeh
g T(J)=F*T(J) 2%

110  CONTINUE -
RESULT=T(LEL+1) Y

.. RETURN w
(Y 51  RESULT=SIN(X)/X z
T(1)=RESULT S
RETURN o

55 LO=-LEL+1 b
T(1)=SIN(X)/X R

T(2)=008(X)/X o

IF(LO.LT.3)G0 TO 115 :

C o

DO 6 J=3,L0 o

6 T(J)=(-2.*FLOAT(J-2)+1)/X*T(J~1)-T(J-2) :
c

115  CONTINUE 2

RESULT=T(LO) —

RETURN .

END S

SUBROUTINE LEGEND(N,THETA,P,PMTRX)

c OOMPUTES LEGEND POLY OF ORDER 0 TO N AND STORES IN PMTRX :;:;

C

DIMENSION PMTRX(500)
X=00S (THETA) NG

PMTRX(1)=1.0 S

PMTRX(2) =X T

NP1=N+1 ~oN

1IF(N-1)10,10,11 o

. 11 CONTINUE .
"' I.."
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DO 20 I=3,NP1

XI=1
PMTRX(I1)=((2.*XI-3.)*X*PMTRX(I-1)-(XI-2.)*
PMTRX(1-2))/(XI-1.)

CONTINUE

OONTINUE
CONTINUE
P=PMTRX(NP1)
RETURN

END

' x4

s
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-
: g;;
: o
&Y P
| &% TRPROG b
) PROGRAM TRPROG 5
) C l..}
! c THIS PROGRAM IS DESIGNED TO CALCULATE THE FAR-FI1ELDS NE
Cc ANTENNA PATTERNS OF AN ARBITRARY TEST ANTENNA, FROM e

c THE NEAR-FIELD VALUES ON A SCANNING PLANE A i
, c SPECIFIED DISTANCE FROM THE ANTENNA |~
- C )
c -

REAL PHS1(550) ey

REAL PHS2(550) 2

REAL PN1(550) -

REAL PN2(550) RN

REAL KO e

COMPLEX EX1(151,151) o

COMPLEX A1(100,100) e
COMPLEX SM(155,100) S

| OOMPLEX X1 ,XMI =
- COMPLEX CSUM N

’

. COMPLEX KT e
; OOMPLEX KZ 7
< REAL DELTAZ g
ﬁ} REAL ZO
REAL LAMBDA =
REAL KA ey
C b
LAMBDA=1.0/8.0 ¢
. P1=4.*ATAN(1.) w3
. DELTAZ=.005 o
Z0=1.125
XI=(0.,1.) :":"
XMI=(00’-1.) ’:._"-
KO=2*P1/LAMBDA =
DK=(1.0/40.0)*KO N
DX=4/116.0 o
C ey
¢ Y
C RN
c NN
C b
C bur
C THIS LOOP WILL READ IN THE NEAR-FIELD DATA i
;: G 5
j OPEN(UNIT=10,FI1LE="DAT1') N
OPEN(UNIT=9,FILE="DAT2') N

; REWIND(UNIT=10) N
... REWIND (UNIT=9) 3




, e
. o,
;r'
¥ 2
X . "\
: 5 C '}5
‘ DO 12 I=1,501 all
; READ(10,17) PHS1(1),PN1(1) -
. READ(9,17) PHS2(1),PN2(1) ok
12 CONTINUE o
C (RS
17 FORMAT( E20.7,10X,E20.7) b
CLOSE(UNIT=10) S
N CLOSE(UNIT=9) 7
o
N DO 45 I=1,117
N C
" DO 40 J=1,117
) JL=J-1
. IL=1-1
5 R=SQRT((-2+JL*DX)**2.+(-2+IL*DX)**2.)
Y 1Q=INT(R*1000.)-10*INT(100.*R)
! TNR=500./3.
1 IF(1Q.GE.5) IR=INT(R*TNR+1)
' IF(1Q.LT.5) IR=INT(R*TNR)
. IR=IR+1 i
' lF(JL‘Dx'z-LE.o-o)mm 37 :-‘..
) ER=PN1(IR)*COS(PHS1(IR)) -
: EI=PN1(IR)*SIN(PHS1(IR)) s
G0 TO 39 £roe
‘Ei 37 ER=PN2 (IR)*COS(PHS2(IR)) ]
EI=PN2(IR)*SIN(PHS2(IR))
39 EX1(J,1)=CMPLX(ER,EI)
OPEN(UNIT=10,FI1LE="NDAT"')
WRITE(10,117) REAL(EX1(J,1)),AIMAG(EX1(J,1))
117 FORMAT( E20.7,1X,E20.7) Lo
40 CONTINUE i
. c : .
. 45 CONTINUE e
- C e
5 C "
o THIS LOOP CALCULATES THE APPROXIMATE VECTOR AMPLITUDE 3
c USED IN THE DDZEX1 ROUTINE 'q;
C X
C O
: c R
C Ry
2 DO 60 I=1,81 '
L) C ——:
DO 55 J=1,117 N
: CSUM=(00,00) ‘-".
: C R
: DO 50 M=1,117 e
: KA=(-2+(M-1)*DX)* (-KO+(I-1)*DK) 3
KT=CMPLX(0.,KA) 1)
. CSUM=CSUM+EX1 (M, J) *CEXP(KT) :
; + sDX**2, ne
y :-:
y o
‘ 49 :.:_‘.
: o
f':w

! £
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50 CONTINUE

(@]
7
"rw’Y

SM(J,1)=CSUM
55 CONTINUE

-

J
i I
. W] g

o

60 CONTINUE

LA

v
v

Q
2

DO 75 1=1,81

s

2™

. &

DO 70 J=1,81
CSUM=(0.,0.)

. N
o Mol

DO 65 M=1,117
KA=(-KO+(J-1)*DK)**2.+(-KO+(I-1)*DK)**2,
IF(KA.GT.KO**2) GO TO 65
IF (KA.LE.KO**2 )KZ=SQRT(KO**2-~KA)
KT=CMPLX(0.,(-2+(M-1)*DX)*(-KO+(1-1)*DK))
KT=KT+KZ*Z0*XI
CSUM=CSUM+SM(M, J)*
+ CEXP(KT)/(2.*PI)
65 OONTINUE

o [

e ' LY A SE
A A -
B B

@]
- w e
P A XY
%,

A1(J,1)=CSUM

OPEN(UNIT=7,FILE="'FRST')

WRITE(7,150) REAL(A1(J,1)),AIMAG(A1(J,1))
70 CONTINUE

YT T, R
l‘l‘l.' L 2 :
g, g e
R -t

8 X

75 OONTINUE

 d
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150 FORMAT( E20.7,1X,E20.7)

Q=0
Y
¥ »

AAL

e

STOP
END
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@ DRREOG 4
PROGRAM DRPROG e

C THIS PROGRAM WILL CALCULATE THE DIRIVATIVE OF THE e

C TANGENTIAL NEAR-FIELDS WITH RESPECT TO Z. i%‘i:

C ﬂ*iﬂ

C

COMPLEX A1(100,100) o

COMPLEX DDZEX1 i

, COMPLEX SM(155,155) by
\ COMPLEX CSUM ;é»
COMPLEX XMI 2

OCOMPLEX KX,KY,KZ,KT e

REAL REA

' REAL IMA o9

3 REAL ZO ey

g REAL LAMBDA ' bt

: REAL KA "

REAL PI

REAL KO -

REAL DK i,

REAL DX t

C o4

C .7: :

6; C INITIALIZATION
C a

C :::{:
LAMBDA=1.0/8.0 o

PI1=4.0*ATAN(1.0)

: Z0=1.125 e
y XMI=(0.,’1.0) ,'
DK=(1.0/40.0)*KO o

DX=4/116.0 D

C i

C '::.¥

C THIS LOOP WILL READ IN THE APPROX. VECTOR AMP. o

C o

C R
OPEN(UNIT=7,FILE="'FRST') :~‘.33:

REWIND(UNIT=7) Y

C N

DO 12 I=1,81 s

C -

DO 11 J=1,81 e

READ(7,17) REA,IMA -‘.::;"

A1(J,1)=CMPLX(REA, IMA) RN

11 CONT INUE {

C

12 CON =

e TINUE R
(\.':- S
51 R
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e

Pad
| »l“?
P
@ 17 FORMAT( E20.7,1X,E20.7) R%Y;
C N
CLOSE(UNIT=7) o

C 5
C : O3
c THIS LOOP WILL CALCULATE THE ACTUAL DERIVATIVE W

o

g :.!"}'?a
DO 30 I=1,117 i~
C QLA
DO 25 J=1,81 o
CSUM=(0.,0.) R

C

DO 20 M=1,81 L

ML=M-1

IL=1-1 e
JL=J-1 el

KA=(ML*DK-KO)*#*2,+(JL*DK-KO)**2, o

IF(KA.GT.(.75)*KO**2.) GOTO 20 a3
IF(KA.LE, (.75)*KO®**2.) KZ=SQRT(KO**2,-KA)
KX=CMPLX(0.,-(1L*DX-2)*(ML*DK-KO) ) ey
KT=KX+KZ*ZO*XMI st
CSUM=CSUM+A1 (M, J ) *XMI *KZ*CEXP (KT) /(2.%*PI) b
20 OCONTINUE A%
C 5
ﬁ SM(1,J)=CSUM %
’ 25 CONTINUE &

C g
30 CONTINUE N
C e
c O
DO 45 1=1,117 e

C N
DO 40 J=1,117 R
CSUM=(0.,0.) '-:2'-

C e

DO 35 M=1,81 DR

ML=M-1 =2
IL=1-1 .
KY=CMPLX(0.,-(ML*DK-KO)*(I1L*DX-2)) ]

CSUM=CSUM+SM(J ,M) *CEXP (KY) *DK**2 ., Py

35 CONTINUE e

c N
DDZEX1=CSUM Y,
OPEN(UNIT=9 ,FILE="'THRD') o

WRITE(9,100) REAL(DDZEX1),AIMAG(DDZEX1) N

40 CONTINUE .

C ..:'.:}
45 OONTINUE oY

100 FORMAT( E20.7,1X,E20.7) ity

STOP

o _
&= END 53
X
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Lo

, o

e COMPROG e

' £
: PROGRAM OOMBN Tl
) c F.
: C s
C THIS PROGRAM WILL COMBINE THE ORIGINAL NEAR-FIELD DATA, i

C WITH THE CALCULATED DERIVATIVE OF THE NEAR-FIELD DATA,

; C AND OBTAIN AN APPROXIMATION OF THE NEAR-FIELDS ON THE R
C THEORETICAL PLANE OF MEASUREMENT. n%

C e

C {23:“'

COMPLEX EX1(155,155) o

OOMPLEX DDZ(155,155) :

COMPLEX EXO ™

OOMPLEX SUM , 025

; REAL DER,DEI %‘{-1
\ REAL DELTAZ,DX b
REAL PHS1(550) . 52

REAL PHS2(550)

. REAL PN1(550) A«
: REAL PN2(550)
! c
c
DELTAZ=(1.0/8.0)%.1 ool

ﬁ DX=4/116.0 =

C g_:

C

C  THIS LOOP WILL READ IN THE NEAR-FIELD DATA :_:.5_:

c
OPEN(UNIT=10,FI1LE="'DAT1') -

OPEN(UNIT=9 ,FILE="DAT2"') o

REWIND(UNIT=10) I’

REWIND (UNIT=9) e

C 'tr!'

DO 12 1=1,501

READ(10,17) PHS1(I),PN1(1) i3

: READ(9,17) PHS2(1),PN2(1)
: 12 CONTINUE o
C :,\:.

17  FORMAT( E20.7,10X,E20.7) ok

CLOSE(UNIT=10) PG

CLOSE (UNIT=9) |

DO 45 I=1,117 =

[N

DO 40 J=1,117

JL=J-1

. IL=1-1 -
xR R=SQRT((-2+JL*DX)**2, +(-2+IL*DX)**2.) R
>, N

n'\"‘

S 1
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1Q=INT(R*1000.)-10*INT(100.*R) ?E’f"-
TNR=500./3. e
IF(1Q.GE.5) IR=INT(R*TNR+1) s
IF(1Q.LT.5) IR=INT(R*TNR)
IR=IR+1
1F(JL*DX-2.LE.0.0)GOTO 37
ER=PN1(IR)*COS(PHS1(IR))
EI=PN1(IR)*SIN(PHS1(IR)) —
GO TO 39
; 37 ER=PN2 (IR)*00S (PHS2 (IR)) el
EI=PN2(IR)*SIN(PHS2(IR)) Whe
39 EX1(J,1)=CMPLX(ER,EI) 'a\
OPEN(UNIT=8,FILE="'NDAT') i
WRITE(8,35) REAL(EX1(J,1)),AIMAG(EX1(J,1)) ek
CLOSE(UNIT=8) "
40 OONTINUE oo
C g
45  CONTINUE %!
o ']
C g
c THIS LOOP WILL READ IN THE FIRST DERIVATIVE. e
o) :
. c
z OPEN(UNIT=9,FILE="THRD')
' REWIND(UNIT=9)
C
65 DO 15 J=1,1117
c o 1)
DO 10 1=1,117 %
READ(9,21) DER,DEI .
: DDZ(1,J)=CMPLX(DER,DEI)
‘ 10 OONTINUE
C
15 CONTINUE Lo
C pey
CLOSE(UNIT=9) 53
21 FORMAT( E20.7,1X,E20.7) 1
C T
C 2
! o) THIS LOOP WILL COMBINE EX1(X,Y) AND DDZ(X,Y) &\;
C %
C a:':;'
. DO 25 J=1,1117 e
DO 20 1=1,117 )
IL=1-1 .:\.'
IF((IL*DX-2).LE.0,0) GO TO 18 e
SUM=EX1(1,J)-DELTAZ*DDZ(1,J) v
G0 TO 19 b
18 SUM=EX1(1,J)+DELTAZ*DDZ(1,J) Wy
19 EXO=SUM .
A OPEN(UNIT=7,FILE="'EXOUT"')
‘\" o
o4 2
=
o
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3, ;j”“
D v

Qﬁ@ WRITE(7,35) REAL(EXO),AIMAG(EXO)

AT
-
LR

20 CONT I NUE e
| C =
] 25  CONTINUE 7
J C ﬁ'gv
: 35  FORMAT( E20.7,1X,E20.7) L

k STOP
: END

X
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e
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QUTPROG -
. e,
; 5:;:{
: PROGRAM OTPROG -
[ ] C I.p'l
; c e
[}
] C THIS PROGRAM WILL CALCULATE THE FAR-FIELD PATTERN -
, C OF THE TEST ANTENNA AND PRESENT THE MATERIAL IN A o
: C FORM SUITABLE FOR VIEWING. o
C Bt
: OCOMPLEX EXO(155,155) lo%:
OOMPLEX AO(375) “
| OCOMPLEX KA &
. OOMPLEX CSUM AR
: OCOMPLEX XI bl
; OOMPLEX K1,K2 ry
: REAL EFF(500) 3%
» REAL KX,KY,KZ,DX,PI,LAMBDA,KO,PHI,DT,Z0 =
\ REAL ER(155,155),E1(155,155) ;
c &
4 c INITIALIZATION e
S C L-‘T{x
X C L.i
ﬁ!j DX=4/116.0
! B1G=0.0 : =
3 P1=4,0%ATAN(1.0) =
: LAMBDA=1.0/8.0 3
- KO=2.0*P1/LAMBDA b
Z0=1.125 e
XI=(0.,1.0) et
, PHI=PI1/4.0 o
: DT=P1/540 3
. c &%
: C e
" C THIS LOOP WILL READ IN THE NEAR-FIELD DATA 3
C e
C T
- OPEN(UNIT=7,FILE="'SCND"') 3]
N REWIND(UNIT=7) NG
. ¢ %
\ DO 12 I=1,117 N
h C x..‘
- DO 11 J=1,117 o
; READ(7,17) ER(J,1),EI(J,1) h
: EXO(J,1)=CMPLX(ER(J,1),EI(J,1)) =
: 11 OONTINUE o
! C Y,
: 12 OONTINUE h
‘,$. 17 FORMAT( E20.7,1x,E2°|7) ‘
R CLOSE(UNIT=7) Vi
§ N,
.,‘ [}
| 56 3
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k4
5
r'l
‘ . ¢
N, ll
Fﬁ? g .3:’,
c CALCULATE THE OUTPUT OF THE THESIS!!!!! F%
C v
c o
DO 30 M=1,181 S
ML=M-1 i
CSUM=(0.,0.) .
C JE
DO 25 1=1,117 o
IL=1-1 Ny
C F:I; ;
DO 20 J=1,117 T
JL=J-1 b
KX=KO*COS (PHI )*SIN(ML*DT-(P1/6.)) =
p KY=SIN(PHI)* (KX/00S (PH1)) A
. KZ=KO*OOS (ML*DT-(P[/6.)) <
y K1=XI1*KX*(JL*DX-2.) 28
K2=XI*KY* (IL*DX-2.)
' KA=KZ*X1*ZO+K1+K2 )
CSUM=CSUM+EXO(J,1)*CEXP(KA)*DX**2./(2.*Pl) "
20 CONTINUE ARG
C peed
25 CONTINUE k;
C *,
. }"o
6 AO (M) =CSUM
. EF1=CABS{AO(M)) =
’ EF2=CABS (AO(M) ) *KX/KZ o
g EFF(M)=SQRT(EF1**2+EF2%**2) S}
] 1F(B1G.LE.EFF (M) )BIG=EFF (M) N
i 30 CONTINUE E{4
C ad
c .
C LETS OUTPUT SHALL WE? S
C Y
C 3
DO 35 M=1,181 <L
ML=M-1 S
THETA=FLOAT(ML)*(1./3.)-30. 3
OPEN(UNIT=10,FILE="'LAST') RN
WRITE(10,100) THETA,EFF(M)/BIG 0
35 CONTINUE N
100 FORMAT( E20.7,1X,E20.7) 3
STOP <
END -
. o
[ H':
N .‘\
N
EO A
& <
: 3
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In recent years, near-fleld antenna measurement S

techniques have gained a good deal of acceptance. There s

, are several errors in the computed far-field patterns caused {ﬁg
3 by measurement inaccuracles in the near-field data. This i
paper deals with deterministic errors introduced by probe- K3

positloning errors in planar, near-field scanning. L

)

» i*
. By utilizing basic near-field theory, as well as a xé%
R knowledge of the positioning errors, it is possible to t{f
. estimate the fields at the correct probe position. A i
computer program which lessens the effect of probe .

positioning errors by means of a truncated Taylor series "N

expansion is used to demonstrate this improvement. }ﬁ

ot

, To simulate inaccurate probe positioning, a database of b
- calculated near-field alues for a linearly polarized, "-'
. uniformly illuminated, circular aperture was .sed. Next, ®
. the position correction program was applied to computer o
" zenerated inaccurate data. Finally, far-field patterns -
. were calculated, and compared using both the corrected and A
v uncorrected data. Results of the comparisons are presented. o
- Limitations, and areas of application of this routine are -
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