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Preface %

The ultimate goal of this study and the follow-on studies which will

use the circuits I have designed is to calculate the error detection and

correction performance of different concatenated coding schemes. Bounds

for the error rates of these different coding schemes can be calculated;

however, these bounds are not tight enough to be useful. The actual -
'

error rates may be two or three orders of magnitude better than the

calculated bound. Thus, given an adequate model for the errors on a

channel and a specific concatenated coding scheme, the actual error rate

for a given situation can be determined.

While working on this project, I have received a great deal of help

and support from others. First, I thank my Lord Jesus Christ for

sustaining me. "Unless the Lord builds the house, they labor in vain who

build it" (Psalm 127:1). I also thank my advisor, Captain Glenn

Prescott, for his patience with me and for his valuable assistance. And

I thank Major Ken Castor for his insights to coding theory and for

helping me get started on this project. Special thanks to Mr. Orville

Wright for helping me with the circuit boards. A word of thanks to Mr.

Frisky for his counsel and support. Finally, a special thanks to my

loving wife Betsy for her understanding and her prayers, and for typing

and editing my thesis. "An excellent wife, who can find? For her worth

is far above jewels. The heart of her husband trusts in her, and he will

have no lack of gain" (Proverbs 31:10,11).

Peter W. de ^raaf
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Abstract

This study describes the hardware implementation of a concatenated

error correcting encoder/decoder. Individual burst and random error

correcting coders were implemented using standard TTL integrated circuits

and Z-80 microprocessors. The circuits handle input and output

operations with a three line handshake. Thus, data transfer between

circuits is asynchronous, and the coders may be concatenated in any

order.

Reed-Solomon. BCH, .3olay, interleaving, and convolutional codes were

considered. Of these codes, the BCH encoder/decoder, the 3olay

encoder/decoder, the interleaver/deinterleaver, and the convolutional

encoder were all implemented in hardware. The Reed-Solomon

encoder/decoder and the convolutional decoder will be implemented in a

follow-on study in software.

This study is the first part of a group of studies which will

ultimately determine the actual error detection and correction

performance of various concatenated coding schemes. ""
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HARDWARE IMPLEMENTATION OF A CONCATENATED ENCODER/DECODER

I. Introduction

Background

Digital communications have significantly improved our ability to

transmit large volumes of data in a short amount of time. However,

digital communication systems are susceptible to noise. Specifically,

noise in the communication channel causes errors by changing the values

of the transmitted digits. For example, assume that a transmitted

sequence is 01000011. This is the binary ASCII code for a "C". If an

,_ error occurs in the first bit position, the received sequence is

01000010. This is the binary ASCII code for a "B". Without additional -"

bits for error detection, the receiver has no way to know that an error

has occurred, and it accepts a "B" when it should have accepted a "C".

Several codes have been developed to detect and correct errors which

occur during transmission. There are two basic types: random error

correcting codes and burst error correcting codes. Random errors are

single digit errors which occur randomly in the transmitted digits, and

burst errors are groups of errors which occur randomly in the transmitted

digits. Each type of code works well for correcting one of these types

of errors. However, no single code has been developed that works well

for correcting both types of errors.

This report is the first part of a study which will determine the

L_* specific capabilities of concatenating burst and random error correcting

1 "°.'
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codes. The overall approach is to use hardware and software encoders to

encode a sequence of bits, transmit the encoded bits over a software

simulated channel, and decode the received bits using hardware and ,

software decoders. The decoded sequence will then be compared to the

original sequence, and the error correction capabilities of the coding OL

will be calculated.

Problem and Scope

The purpose of this study is to design and build a hardware

encoder/decoder that uses concatenated burst and random error correcting

codes. The encoder will be set up as a burst error correcting encoder

followed by a random error correcting encoder. The decoder will be set

,.

up as a random error correcting decoder followed by a burst error

correcting decoder. Reed-Solomon, BCH, 3olay, Viterbi, and interleaving

codes will be considered in this study. The codes not implemented in

hardware will be implemented in a follow-on study using software

- techniques. Evaluation of the encoder/decoder's performance will not be

- accomplished in this study. A follow-on study will analyze the burst and

random error correcting capabilities of the encoder/decoder. o

Assumptions

The encoder/decoder will be implemented as a binary symbol channel

encoder/decoder. The input to the encoder is assumed to be the binary

sequence from the output of a source encoder. Thus, the encoder will not

implement the source coding algorithm. This is a valid assumption since

error correction is handled by the channel encoder and is not affected by

the source coding algorithm.

2 '



Approach

Each code will be evaluated to see how easily it can be implemented

using hardware techniques. Those codes which require complex encoding

and decoding algorithms will be implemented in a follow-on study using

software techniques. The hardware encoder/decoder will run at a higher

data rate than the software encoder/decoder, allowing more data to be

collected in a given amount of time. Thus, as many of the codes as

possible will be implemented using hardware techniques.

The encoder/decoder circuits will be implemented using standard

digital logic circuits and microprocessor controllers. Circuit

development will be accomplished using protoboards. When circuit -:- -

development is complete, the circuits will be implemented on a printed

circuit boards.

The purpose of this report is to explain how these circuits work and

how they can be connected to operate in a concatenated coding scheme.

Also, a brief explanation of the theory for each code is presented. A

list of references which explain the. coding theories in detail is

presented in the bibliography. Not all of these references are cited in

this report, but they are included to provide a more complete list of

reference material.

Chapter II contains a brief description of the theory behind each

code and an explanation of which codes will be implemented in hardware.

Chapter III is an explanation of how each.circuit works. Chapter IV

describes how the circuits work in a concatenated scheme. Chapter V

contains conclusions and recommendations for follow-on projects.

3
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Materials and Equipment

All of the components and equipment necessary to build the

encoder/decoder are available in the communications laboratory.

. ,
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II. Code-Selection

Criteria

The selection of which codes will be implemented in hardware is

based on two criteria. First, the coding and decoding algorithms must be

compliant to a hardware implementation. Some algorithms require many

conditional branches and decisions and are too complex to be implemented

in hardware. Second, the implementation of the coding and decoding

algorithms must be flexible enough to allow selection of different code

parameters, such as input block length, output block length, character

size, and generator coefficients. The coding and decoding algorithms

which do not meet these criteria will be implemented in software in a

follow-on study.

Binary BCH Codes

The BCH codes are a generalization of the Hamming codes for multiple

* error correction (1:141). As defined in [11, for any positive integers m

(m > 2) and t (t < 2""), a binary (n,k) KZH code has a block length n

(equal to (2" - 1)), (n - k) parity-check bits, and a minimum distance d

(greater than or'equal to (2t + 1)). This code can correct any t or

fewer errors in an n-bit block (1:142).

The binary BCIH codes have a simple encoding algorithm (1:141). For

an (n, k) code this algorithm can be implemented around a binary shift

register of length (n - k). The outputs of the shift register cells

which correspond to the non-zero coefficients of the generator polynomial

are summed (modulo two) to form the output. To change any of the code

parameters requires only a change in the taps from the shift register

5.
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cells to the summer circuit. Thus, theencoding algorithm can be

implemented in a circuit which allows selection of different code

parameters.

There are many different decoding algorithms for binary BCH codes.

Some of these algorithms, such as the Meggitt algorithm (1:104-8), will

achieve the complete error detection and correction capabilities of the

BCH codes. However, refinements are necessary for practical

implementation of these algorithms (1:125). Error-trapping decoding is

one such variation of the Meggitt algorithm. The error-trapping

algorithm can be implemented with combinational logic circuits and a

microprocessor controller. This algorithm is very effective for decoding

single error correcting codes, short double error correcting codes, and

burst error correcting codes (1:125). The error-trapping decoder can be
- 6.

built around a divider circuit with feedback taps set to correspond to

the coefficients of the code's generator polynomial. Thus, similar to

the encoding algorithm, the decoding algorithm can be implemented in a

circuit which allows selection of different code parameters.

3ola Code

The Golay code is a cyclic binary code which is similar to the BCH

codes. It is a (23,12) code and the. only known multiple error correcting

binary perfect code which can correct any combination of three or less

errors in a block of 23 bits (1:134). The only difference between the

3olay code and the BCH codes is the coefficients in the generator

polynomials. Thus, both the encoding and decoding algorithms can be

implemented in hardware exactly as the BCH codes.

* However, it is important to note that there are two algorithms for

i o " o" *o .J ." -" J ." o" =" .' , - * *. . . .. ;.. .. . .. . . . . * . . . * . ~ . -. . <. . . . . ... : :
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decoding Golay codes which will achieve the. complete error detection and

correction capabilities of these codes. These are the Kasami (1:135) and

systematic search (1:138) algorithms. The Kasami algorithm requires

multiple arithmetic and logical operations, and the systematic search

algorithm requires complex clock and timing circuitry. Both of these

algorithms would require extensive programming of the microprocessor

controller in the decoder circuit. Thus, these are best implemented in

software and may be implemented in a follow-on study.

Reed-Solomon Codes

Reed-Solomon codes are a type of non-binary (q-ary) BCH codes

(1:170). As defined in [i], a t error correcting Reed-Solomon code has a

block length of n characters (equal to (q - 1)). (n - k) parity-check

characters (equal to 2t), and a minimum distance d (equal to (2t + 1)).

The encoding and decoding algorithms are similar to those for the

binary BCH codes with one major difference: all of the arithmetic for

the q-ary codes is done modulo q. Thus, all of the adding, multiplying,

dividing, and shifting operations are done on a character-by-character

basis instead of a bit-by-bit basis. This would require very complex and

extensive circuitry to implement in hardware. Also, each code would

require a separate circuit. Thus, the Reed-Solomon encoder and decoder

are best implemented in software.

Binary Convolutional Codes

An (n,k,m) convolutional code differs from an (n,k) block code in

that the n bits out of the encoder at any given time depend on both the k

input bits at that time and the previous m input bits (1:287).

7
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Basically, the information bit sequence is convolved with the (m + 1) ..-

coefficients of the n generator sequences, using k bits per shift.
4l

The binary convolutional codes have a simple encoding algorithm

(1:287-95). For an (n, 1, m) convolutional code this algorithm can be

implemented around a binary shift register of length m. The outputs of

the shift register cells which correspond to thenon-zero coefficients of

the code generators are summed (modulo two) to form the n outputs. To

change any of the code parameters requires only a change in the taps from

the shift register cells to the summer circuit. Thus, the encoding

algorithm can be implemented in a circuit which allows selection of

different code parameters.

The decoding algorithm for convolutional codes selects the bit

sequence which was most likely the transmitted sequence (1:313-22). This

decision involves many conditional branches and requires the decoder to

keep track of multiple paths through a trellis diagram. Thus, the

convolutional decoder can only be implemented in software.

Interleaving/Deinterleaving

Interleaving is a process used to spread the. n output bits of any

code over a sequence of bits much larger than n. Essentially, this

spreads a burst error over a number of codewords instead of just one

codeword.

Both the interleaver and deinterleaver involve simple algorithms

(1:271-2). Both can be implemented around a storage register and a

microprocessor controller. The assembly language program required to run

the controller is very short. Thus, both the interleaver and

A
deinterleaver will be implemented in hardware.

'V.. 8
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III. Circuit Descriptions A ,

BCH and Golay Encoder

As stated in Chapter II, the BCH and 3olay encoders can be

implemented by the same circuit design. The only difference is in the

coefficients of the generator polynomials. Figure 1 is a diagram of the

+. controller circuit, and Figure 2 is a diagram of the encoder circuit.

The heart of the controller is the Z-80 microprocessor. The 2718

E PROM stores the assembly language routine which runs the Z-30. Since

RAIM is not used in this circuit, the MREQ* signal (the "*" indicates an

.* active-low signal) is connected directly to the CE* of the 2716. Thus,

". the 2716 is enabled on any memory operation. The RD* signal is connected

to the OE* and is used to gate the memory contents onto the data bus

during a memory read operation. Address lines AO through A1O are

connected directly to the 2716. This provides 2048 memory locations

(OOOOH to 07FFH) for the assembly language routine. Data lines DO

through D7 are connected directly to the.2716. The clock signal is

provided by a crystal oscillator. The. output of the oscillator is a 2.45

MHz square wave.

All of the control functions are implemented through input/output

(I/O) ports. The IORQ* signal is connected to the 32A* enable of the

°138 (three to eight line decoder). Thus the °138 is enabled on any

input or output operation. Address lines AO through A2 are connected to

the three line input on the 138. This provides control for eight I/O

ports (OOH to 07H).

The following is a step-by-step description of how the controller

works. When a reset signal is received, the Z-80 starts the program from

9
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memory location O000H. The assembly language routine which runs the Z-80

is shown in Appendix A.

Step 1. The controller strobes I/O port YO*. This clears the input

data request flip-flop U2 and clears the. registers in the encoder

circuit.

Step 2. The controller inputs the. value for n from I/O port YS*.

This value is preset to the desired output block length (in binary) by

jumpers before encoding operations begin.

Step 3. The controller inputs the value for k from I/O port Y7*.

This value is preset to the desired input block length (in binary) by

jumpers before encoding operations begin. a..

Step 4. Data bit DO is input from I/O port Y5*, and its value is

checked. This is the output data request signal. If DO is zero, step 4

is repeated. If DO is one, the program proceeds to step 5.

Step 5. The controller strobes I/O port Y1*. This clears the input

data ready flip-flop U1 and sets the. input data request flip-flop U1.

Step 6. Data bit DO is input from I/0 port Y2*, and its value is

checked. This is the input data ready signal. If DO is zero, step 6 is

repeated. If DO is one, the program proceeds to step 7.

Step 7. The controller strobes I/O port Y3*. This clocks the data

bit into the encoder circuit and sets the. output data ready flip-flop U2.

Step 8. The controller checks the total number of data bits clocked

into the encoder circuit. If this is less than k, the program goes back

to step 4. If this is equal to k, the program proceeds to step 9.

Step 9. The controller strobes I/O port Y4*. This disables the

data gate flip-flop U2 so that the input to the encoder circuit is a zero.

12
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Step 10. Data bit DO is input from I/O port Y5*, and its value is

checked. This is the output data request signal. If DO is zero, step 10

is repeated. If DO is one, the program proceeds-to step 11.,4

Step 11. The controller strobes I/O port Y3*. This clocks the zero

bit into the encoder circuit and sets the output data ready flip-flop U2.

Step 12. The controller checks the total number of data bits

clocked into the encoder circuit. If this is less than n, the program

goes back to step 10. If this is equal to n, the program goes back to

step 1.

Thus, the basic functions of the controller are to handle the

interfacing with the other circuits and to insure that k information bits

followed by (n - k) zeros are clocked through the encoder.

The encoder circuit is a series of D flip-flops (U15, U24, U18, U21)

with their outputs jumpered to an exclusive OR summer circuit. These

jumpers (30 through 331) are set to correspond to the binary coefficients

of the desired generator polynomial. Each of the inputs to the exclusive

OR gates has a pull-down resistor to provide a zero input when the input

is not jumpered (i.e., the corresponding generator coefficient is zero).

This prevents the input from floating when it is not connected tothe

output of a flip-flop. The RESET, CLOCK, and DATA IN signals all come

from the controller circuit, as previously explained. The DATA OUT

signal goes to the next encoder circuit.

S81H and Golay Decoder

Just as the BCH and 3olay encoders are implemented by the same

circuit, so are the BCH and 3olay decoders. Again, the only difference

is in the coefficients of the generator polynomials. Figure 3 is a

13
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diagram of the controller circuit,.Figure 4 is a diagram of the jumper

registers, and Figure 5 is a diagram of the syndrome register.

The controller in the decoder circuit is set up similar to the

controller in the encoder circuit. The. only major difference is that the

controller in the decoder circuit uses a RAM working memory in addition

to the EPROM.

For the EPROM, address lines AO through AlO are connected directly

to the 2716. The output from ORing A14 and MREQ* is connected to the CE*

- of the 2718. RD* is connected to the OE. This set-up provides 2048

memory locations (O000H to 07FFH) for the assembly language routine.

Data lines DO through D7 are connected directly to the 2716. For the

.. RAM, address lines AO through Ag are connected directly to both 2114's.

The output from ORing A14* and MREQ* is connected to the CS* of the

-- 2114's. This provides 1024 memory locations (4000H to 43FFH) for the

* Z-aO to use. The WR* signal is connected to the WE* signal of the

2114's. This controls the read/write operations in the RAM. Data lines

DO through D3 are connected to one 2114, and D4 through D7 are connected

. to the other 2114. Since each 2114 has only a 4-bit memory word, this

* provides a full 8-bit memory word for RAM operations. The clock signal

for the Z-80 is provided by the crystal oscillator. The output of the

* oscillator is a 2.45 Mflz square wave.

All of the control functions are implemented through the I/O ports.

Address lines AO through A3 are connected to both '154's (four to sixteen

. line decoder). A4 and IORQ* are used to enable the first 154, providing

" control signals 00* through OF*. A4* and IORQ* are used to enable the

second 154, providing control signals 10* through 1F*. Thus, control of

14
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32 I/O ports (OOH to lFH) is possible.

The jumper registers provide the Z-80 with the values for n, k, and

t. They also provide the locations of the k information bits within the

n-bit codeword. These values are all set before circuit operations

begin. The values for n, k, and t are set in binary. The positions of

the information bits are set by jumpering the appropriate locations for

positions RO through R31.

The syndrome register is set up as a divider circuit. The feedback

taps to the shift register are set to correspond to the coefficients of

the generator polynomial. Thus, as the received codeword is shifted into

the syndrome register, it is divided by the generator polynomial. Four

125's (tri-state buffers) are used to gate the contents of the syndrome

register onto the data bus. This provides the Z-80 access to the

syndrome register.

The following is a step-by-step description of how the decoder

circuit works. When a reset signal is received, the Z-80 starts the

program from memory location OOOOH. The assembly language routine which

runs the Z-80 is shown in Appendix B.

Step 1. The controller strobes I/O ports 05* and 16*. This clears

the input data request flip-flop Ul and the syndrome register flip-flops.

Step 2. The controller inputs the value for n from I/O port lF*.

This value is preset to the desired input block length (in binary) by

jumpers before decoding operations begin.

Step 3. The controller strobes I/O port 06*. This clears the input

data ready flip-flop U1 and sets the input data request flip-flop Ul.

Step 4. Data bit DO is input from I/O port 04, and its value is

'i 18



checked. This is the input data ready signal. If DO is zero, step 4 is

repeated. If DO is one, the program proceeds to step 5.

Step 5. Data bit DO is input from I/O port 03* and stored in

memory.

Step 6. The controller checks the total number of data bits stored

in memory. If this is less than n, the program goes back to step 3. If

this is equal to n, the program proceeds to step 7.

Step 7. The controller strobes I/O port 15*. This turns on the

syndrome register feedback gate, causing the syndrome register to

function as a divider circuit.

Step 8. The controller shifts each of the received bits stored in

memory into the syndrome register one at a time. The bits are shifted

into the syndrome register by strobing I/O port 17*.

Step 9. The controller inputs the contents of the syndrome register

from I/O ports 18* and OB*. From these bits the controller calculates

the weight of the syndrome register.

Step 10. The controller inputs the value for t from I/O port 19*.

If the value for t is greater than or equal to the weight of the syndrome

register, the program goes to step 14. If tho value for t is less than

the weight of the syndrome register, the program proceeds to step 11.

Step 11. The controller checks the total number of times the

syndrome register has been rotated after the initial n bits were shifted

into the syndrome register. If this number is equal to n, the program

goes to step 20. If this number is less than n, the program proceeds to

step 12.

Step 12. The controller strobes I/O port 15*. This turns on the

19
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" syndrome register feedback gate, causing the syndrome register to

function as a divider circuit.

Step 13. The controller outputs a zero bit to I/O port 17*. This

causes the contents in the syndrome register to rotate. The controller

also rotates the received data bits in memory at the same time. Then the

program goes back to step 9.

Step 14. The controller inputs the. value for k from I/O port IC*

and the value for n from I/O port lF*. These values are used to locate

the (n - k) bits in memory which correspond to the contents of the

syndrome register.

Step 15. The controller strobes- I/O port 14*. This turns off the

syndrome register feedback gate, causing the syndrome register to

function as a shift register.

Step 16. Data bit DO is input from I/O port 09*. This is the last

bit in the syndrome register. This bit is XORed with the corresponding

bit in memory.

Step 17. The controller strobes I/O port 17*. This shifts the

contents of the syndrome register.

Step 18. The controller checks how many bits have been input from

the syndrome register. If this value is less than (n - k), the program

goes to step 16. If this value is equal to (n - k), the program goes to

step 19.

Step 19. The controller rotates the bits in memory back to their -i

original positions.

Step 20. The controller inputs the-locations of the information

bits from I/O ports 1E*, 1D*, 1B*, and lA*. These values are input one

20
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at a time, and the corresponding information bits are located before the

next value is input to the controller.

Step 21. Data bit DO is input from I/O port 02*. This is the

output data request line. If DO is zero, the program repeats step 21.

If DO is one, the program proceeds to step 22.

Step 22. The next information bit is output to I/O port 01*. This

sets the output data ready flip-flop U2 and shifts the information bit

into the output data flip-flop U2.

Step 23. The controller checks the-total number of information bits

output to the next circuit. If this value is less than k, the program

goes back to step 21. If this value is equal to k, the program goes back

to step 1.

Thus, the controller handles the. interfacing with other circuits and

uses the syndrome register to decode the. n-bit codeword into a k-bit

information sequence.

Interleaver/Deinterleaver

The interleaver and deinterleaver are implemented by the same

circuit and the same assembly language routine. The interleaver takes in

100 bits and retransmits these in groups of ten bits each. The first

group is bits 0, 10, 20, . . . , 90; the second group is bits 1, 11, 21,

,91; . . . ; and the tenth group is bits 9, 19, 29, . . . , 99.

Thus, the groups are formed by taking every tenth bit from the original

100 bits, starting with each of the first ten received bits. If this

_ process is repeated using the sequence formed by the ten groups of bits

as the 100 bits to be interleaved, the resulting sequence will be the

original 100-bit sequence. In other words, the interleaver will also 3

21
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* 7 deinterleave its own output. Therefore, the same circuit design is used

for the interleaver and the deinterleaver.

The interleaver/deinterleaver is completely implemented by the Z-80

and its associated memory. Figure 6 is a diagram of the

interleaver/deinterleaver circuit.

For the EPROM, address lines AO through A1O are connected to the

2718. The output from ORing A14 and MREQ* is connected to the CE* of the

2716. RD* is connected to the OE*. This set-up provides 2043 memory

locations (O000H to 07FFH) for the assembly language routine. Data lines

DO through D7 are connected directly to the 2716. For the RAM, address

lines AO through A9 are connected to both 2114's. The output from ORing

A14* and MREQ* is connected to the. CS* of the 2114's. This provides 1024

memory locations (4000H to 43FFH) for the Z-80 to use. The WR* signal is

connected to the WE* of the 2114's. This controls the read/write

operations in the RAM. Data lines DO through D3 are connected to one

2114, and D4 through D7 are connected to the other 2114. Since each 2114

has only a 4-bit memory word, this provides a full 8-bit memory word for

RAM operations. The clock signal for the Z-80 is provided by the

crystal-controlled oscillator. The. output of the oscillator is a 2.45

MHz square wave.

All of the control functions are implemented through the I/O ports.

Address lines AO, Al, and A2 are connected to the 138 (three to eight

line decoder), and IORQ* is used to enable the 138. This provides

control signals for eight I/O ports (YO to Y7*)..F'

The following is a step-by-step description of how the

All interleaver/deinterleaver works. When the reset signal is received, the

22
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Z-80 starts the program from memory location O000. The assembly

language routinc which runs the Z-80 is shown in Appendix C.

Step 1. The controller strobes I/O port Y3*. This clears the input

data ready flip-flop Ul and sets the input data request flip-flop Ul.

Step 2. Data bit DO is input from I/O port Y2*, and its value is

checked. This is the input data ready signal. If its value is zero,

step 2 is repeated. If its value is one, the program proceeds to step 3.

Step 3. Data bit DO is input from I/O port Yl and stored in

memory. The data bits are stored sequentially as they are received.

Step 4. The controller checks the total number of bits received.

If this value is less than 100, the program goes back to step 1. If this

value is equal to 100, the program proceeds to step 5.

Step 5. The controller sets a memory pointer to the location of the

first received bit and an offset index to zero.

Step 6. Data bit DO is input from I/O port y4*, and its value is

checked. This is the output data request signal. If its value is zero,

step 6 is repeated. If its value is one, the program proceeds to step 7.

Step 7. The bit in the memory location indicated by the memory

pointer plus the offset index is output to I/O port Y5*"

Step 8. The controller checks the number of bits in the present

group that have been transmitted. If this value is less than ten, then

ten is added to the memory pointer, and the program goes back to step 
6.

If this value is equal to ten, the program proceeds to step 9.

Step 9. The controller checks the total number of bits transmitted.

If this value is less than 100, the memory pointer is set back to the

_ location of the first received bit, the offset index is incremented, 
and

.2
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the program goes back to step 6. If this value is equal to 100, the

program goes back to step 1.

Thus, the interleaving and deinterleaving are handled by the Z-80

using RAM to store and rearrange the bit sequences.

Convolutional Encoder

Figure 7 is a diagram of the controller for the convolutional

encoder. Figure 8 is a diagram of the convolutional encoder.

The 2716 is the only memory used in this circuit. So the MREQ*

signal is connected to the CE* of the 2715. This enables the 2716 during

any memory operation. The RD* signal is connected directly to the OE*

and is used to gate the contents of the memory onto the data bus.

Address lines AO through A1O are connected to the 2716 to provide 2048

* memory locations (OOOOH to 07FFH) for the assembly language routine.

Data lines DO through D7 are connected directly to the 2716. The clock

signal is provided by a crystal oscillator. The output of the oscillator

is a 2.45 MHz square wave.

All of the control functions are implemented through the I/O pcrts.

The IORQ* signal is used to enable the "133 (three to eight line decoder',

during I/O operations. Address lines AO, Al, and A2 are connected to the

three line input on the '138. This provides control signals for eight

I/O ports (YO* to Y7*).

The following is a step-by-step description of how the controller

* works. When a reset signal is received, the Z-80 starts the program fr .

memory location O00OH. The assembly language routine which runs the Z-.

is shown in Appendix 0.

Step 1. The controller strobes I/O port YO*. This clears the input

25
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data request flip-flop Ul and the register cells in the encoder.

Step 2. Data bit DO is input from I/O port Y7*, and its value is

checked. This is the output data request signal. If DO is zero, step 2

6 is repeated. If DO is one, the program proceeds.to step 3.

Step 3. The controller strobes I/O port Yl*. This clears the input

data ready flip-flop U1 and sets the input data request flip-flop U1.

Step 4. Data bit DO is input from I/O port Y2*, and its value is

5 checked. This is the input data ready signal. If DO is zero, step 4 is

repeated. If DO is one, the program proceeds to step 5.

Step 5. The controller strobes I/O port Y3*. This clocks the data

bit into the encoder circuit.I Step 6. The controller strobes I/0 port Y4*. This sets the output

gate to pass the first output bit.

Step 7. The controller strobes I/O port Y6*. This sets the output

data ready flip-flop U2.

Step 8. Data bit DO is input from I/O port Y7*, and its value is

checked. This is the output data request signal. If DO is zero, step 8

is repeated. If DO is one, the program proceeds to step 9.

Step 9. The controller strobes I/O port Y5*. This sets the output

gate to pass the second output bit.

Step 10. The controller strobes I/O port Y6*. This sets the output

data ready flip-flop U2. Then the program goes back to step 2.

By the previous steps, the controller handles the input and output

operations for the encoder. The encoder itself is a shift register and

two modulo two adder circuits. The inputs to the adder circuits are the

jumpered outputs of each cell of the shift register. The jumpers for

28
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each adder circuit are set to correspond to the coefficients of the

generator sequences for the desired code. This circuit will implement

any (2. 1. m) convolutional code for m < 9.
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IV. perations

Data Transfer

The circuits have been designed to operate in an asynchronous

manner. Each circuit has its own microprocessor controller and clock

generator. Thus, the internal operations (as described in the previous ,i

chapter) are independent of the other circuits. Data transfer between

the circuits is handled through three interface signals: data, data

request, and data ready.

Data transfer between circuits is handled in the following manner.

6"1

Consider two circuits A and B, and assume data is to be transferred from

circuit A to circuit B. First, circuit B sets the data request line to

+5 V. This clears the data ready line and notifies circuit A that

circuit B is ready to accept the next data bit. The data ready line is

cleared so that circuit B will not see the data ready signal until

circuit A has acknowledged this specific data request. After circuit A

has received the data request and when it is ready to transfer the next

data bit, it sets the data ready line to +5 V. This clears the data

request line and notifies circuit B that a valid data bit is ready to be

transferred. Circuit B then latches the. data bit from the data line, and "

the cycle will start again when circuit B is ready to request another

data bit.

The only other signal which is connected between the circuits is the

reset signal. This signal is generated by the computer controlling the

input and output of data to and from the concatenated coding set-up.

When this signal is reset to 0 V (idle state is +5 V), each circuit in A

41. the system is cleared. When a circuit is cleared, all registers are set

30
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to zero. all data request lines are set to 0 V, and the controller

initializes the circuit.

3eneral Configuration

Because each circuit functions independently of the others, the

encoding and decoding circuits may be concatenated in any order. Of

course the decoders must be connected in an order which will properly

decode the output from the encoders. In other words, the order in which

the decoders are connected must be exactly opposite the order in which

the encoders are connected. After each circuit has been configured for

the desired codes (as described in Chapter III), they can be concatenated

by connecting the interface and reset signals of the adjacent circuits.

Thus, once the circuits are connected to form the concatenated encoder,

* . the flow of data into and out of the system is controlled by the

: computer.

The basic set up will use the computer as the source of data bits.

These bits will be transferred from the computer to the concatenated

encoders. The output from the encoders will be transferred to the

computer simulated channel, and the output from this channel will be

transferred to the concatenated decoders. The decoded output will be

transferred back to the computer for processing.

31
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V. Conclusions and Recommendations

Conclusions F

Of the codes considered, the BCH encoder and decoder, the 3olay

encoder and decoder, the convolutional encoder, the interleaver, and the

deinterleaver were all implemented in hardware. The Reed-Solomon encoder

and decoder and the Viterbi decoder were not implemented.

Recommendations

The Eclipse computer should be interfaced to the encoding and

decoding circuits via serial I/O ports. The following software should be

implemented on the Eclipse computer:

1. Reed-Solomon encoder and decoder

2. Viterbi decoder

3. Random bit generator to generate the bit sequences to be
transmitted through the system

4. Error channel simulator

5. Error performance calculator -

Additionally, as stated in Chapter II, a Kasami or systematic search

decoder may be implemented on the Eclipse computer.
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* -Appendix A

BCH/Golay Encoder Assembly Language Routine

START: OUT(OOH),A clear data request and encoder, enable
data gate

IN A,(08H) load n (output block length)
LD B,A B = output block length
IN A,(07H) load k (input block length)
LD CA C = input block length

LOOP: IN A,(05H) check data request
AND 01H mask bit
JP ZLOOP no request, check again
OUT (01H),A send request, clear ready line

NEXT: IN A,(02H) check data ready
AND 01H mask bit
JP ZNEXT not ready yet, check again
OUT (03H),A clock in data, send data ready
DEC B B = B -1
DECC C=C-1
JP NZ,LOOP not k bits yet, get next bit
OUT (04H),A set data gate to zero

CHECK: IN A,(05H) check data request
AND 01H mask bit
JP Z,CHECK no request, check again

S -OUT (03H),A clock zero into encoder, send data ready
DEC B B = B-1
JP NZ,CHECK not n bits yet, send next bit
JP START done, start again

33
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Appendix B

BCH/3olay Decoder Assembly Language Routine

STARTUP: OUT (05H),A clear data request line .Q
OUT (16H),A clear syndrome register
LD SP,4200H initialize SP to 4200H
IN A,(lFH) load n into A
LD CA set index C to n
LD BA set index B to n
SUB O1H A -n-
LD EA load n -i into E
LD HL,4100H initialize memory pointer to 4100H

LOAD: CALL LOADBIT load in a data bit
DEC B decrement index
JP NZ,LOAD not n bits, get next bit
CALL CALC n bits, calculate syndrome

WEIGHT: LD D,OOH clear D
IN A,(18H) load SO-S7
CALL CHECK check weight.
IN A,(OBH) load $8-S15
CALL CHECK check weight
IN A,(19H) load threshold value t
SUB D A = t - (syndrome weight)
JP M,3RTR check sign of t - (syndrome weight)
JP ADDER t is greater or equal to syndrome weight
DEC C decrement index counter
JP MSETUP check for n total rotates

* RTR: CALL ROTATER rotate received bits
CALL ROTATES rotate syndrome register
JP WEISHT check syndrome register weight again

ADDER: IN A,(lCH) load A with k
LD D.A load D with k
IN A.(lFH) load A with n
SUB D A = n - k
SUB O1H A = n - k - 1
LD E,A E = n - k - I
LD D,OOH clear D
SBC HLDE HL = HL - (n - k - )
OUT (14H),A set syndrome register to shift

LOOP: IN A,(OH) input syndrome bit
AND OIH mask off bit
XOR (HL) A = received bit XOR syndrome bit
LD (HL),A store result in memory
INC HL point to next received bit
DEC E check for last bit
JP MREADY done, set up for output

OUT (17H),A shift syndrome register
JP LOOP get next bit
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READY: DEC HL set memory pointer
NEXT: DEC C check total number of rotates

JP M,SETUP n rotates made, find info bits
CALL ROTATER rotate received bits
JP NEXT check for n rotates

SETUP: LD DE,4005H set memory location to 4005H
IN A,(lFH) load A with n
LD CA load C with n
IN A,(IEH) load A with info set 1
CALL FIND find info bits in received bits
IN A.(lDH) load A with info set 2
CALL FIND find info bits in received bits
IN A,(lBH) load A with info set 3
CALL FIND find info bits in received bits
IN A,(lAH) load A with info set 4
CALL FIND find info bits in received bits
JP STARTUP restart routine

LOADBIT: OUT (06H),A send data request
LDBA: IN A,(04H) check data ready

AND 01H mask bit
JP ZLDBA not ready, check again
IN A,(03H) input data
AND 01H mask bit
LD (HL),A store bit in memory
DEC HL point to next position in memory
RET return to main program

CALC: OUT (13H),A set syndrome register to rotate
CLCA: INC L set memory pointer

LD AL load L into A
SUB 01H A - L - 1
JP ZCLCB check for last received bit
LD A,(HL) load received bit
OUT (17H),A shift received bit into syndrome register
JP CLCA get next bit

CLCB: DEC L reset memory pointer
RET return to main program

CHECK: LD B,08H set index to 08H
CHKA: RRA check next bit

JP Z,CHKB if zero, skip add
INC D increment weight value

CHKB: DEC B decrement index
JP NZ,CCHKA if not zero, check next bit
RET return to main program

ROTATER: LD DOOH clear 0
SBC HLDE HL - HL - (n - 1): point to bottom of

.l. memory
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LD A,(HL) load bit into A
ADC HLDE HL - HL + (n - i): point to top of

memory

INC HLL point to top of memory plus one
LD (HL),A store bit in memory

, RET return to main program

ROTATES: OUT (15H),A set syndrome register to rotate
AND OOH clear A
OUT (17H),A rotate syndrome register
RET return to main program

FIND: LD B,08H set index to 08H
FNDA: DEC B decrement index

JP M,FNDC check for last bit
DEC C decrement counter
JP M,FNDD check for n bits
RRA check next bit position
JP NC,FNDB if zero, check next bit
LD 4000HA store A in memory (4000H): store info

set
LD A,(HL) load A with received bit
LD (DE),A store bit in memory
INC DE increment memory pointer
LD A,4000H load A with info set

- *.,. FNDB: DEC HL point to next received bit
JP FNDA check for next info bit

FNDC: RET return to main program
- FNDD: IN A,(lCH) load A with k

LD B,A load B with k
LD DE,4005H set memory pointer to info bits starting

location
FNDE: CALL SENOBIT output info bit

DEC B decrement index
JP NZFNDE if not zero, send next bit
RET return to main program

SENOBIT: IN A,(02H) check data request
AND OIH mask bit
JP Z,SENDBIT no request, check againF
LD A,(DE) load A with info bit
INC DE point to next bit
OUT (OlH),A output info bit
RET return to main program
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Appendix C

Interleaver/Deinterleaver Assembly Language Routine

STARTUP: LD HLo4100H set memory pointer
LD SP,4200H set stack pointer
LD D,64H set index to 100
OUT (03H),A request data

CHECK : IN (02H),A check data ready bit
AND OIH mask bit
JP Z,CHECK not ready, check again
CALL LOADBIT input data bit
DEC 0 decrement index
JP ZOUTPUT 100 bits in, go to output
JP CHECK not 100 bits

OUTPUT: LD HL,4100H set memory pointer
LD C,OOH clear low pointer
LD D,OAH set offset
LD B,OAH set group index

NEXT: LD E,OAH set bit index
LOOP: IN A,(04H) input data request

AND O1H mask bit
JP ZLOOP no request, check again
LD A,(HL) get bit at memory pointer
OUT (05H),A output bit
LD A,L get low order memory
ADD D add offset to low order memory
LD L,A set new value in memory pointer
DEC E decrement bit index
JP Z,ONE if group done. check total bits
JP LOOP group not done, send next bit

ONE: DEC B decrement group index
JP Z,STARTUP 10 groups done, start again
INC C increment low pointer
LD L,C set low order memory
JP NEXT send next group

LOADBIT: IN A.(OlH) get data bit
LD (HL),A store bit in memory
INC HL increment memory pointer
RET return to main program
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* °." Appendix D

Convolutional Encoder Assembly Language Routine

OUT (OOH),A clear input data request
CHECKi: IN A,(07H) get output data request

AND 011i mask bit
JP Z,CHECK1 no request, check again
OUT (01H),A request data

CHECK2: IN A,(02H) input data ready
AND 01H mask bit
JP Z,CHECK2 not ready, check again
OUT (03H),A clock in data
OUT (04H),A set output to code bit 1
OUT (08H),A send data ready

CHECK3: IN A,(07H) get output data request
AND 01H mask bit
JP Z,CHECK3 no request, check again
OUT (05H),A set output to code bit 2
OUT (08H),A send data ready
JP CHECK1 set up for next input bit

.-
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