-‘RD-A167 069 HARDNARE INPLENENTATION OF R CMQTEHTED
ENCODER/DECODER(U) fllR FORCE INST TECH
SCHOOL OF ENGINEERING
UNCLASSIFIED P II GRﬂﬂF DEC 05 RFIT/BE/ENG/OSD-!. /G

Y

.
L]
e

3

‘\ r:‘.‘-
- .-' Ty aT
TNV

A & A bt
"o
B
R
RS
>
o
Clh

¥ e A

)
uv
J.
{ . .
. Y] ")
2 & 2_ Nm mﬁ M: m
r,
==
EEEFE
===, 4._____
EEEFFETI =il
——
W Oo T—) [
3 — — o g
. C
. = == = S
W ———— —— ——— =
&
2
7 K
? h
5
A
N
s
P S
’.. n_J
el-&;
.‘ S
' &

A i

a0

T,

. - o ? -4 e v e e - .- CI . - . . - - .
I L3 A el - D’ -....--... ‘Y LIPLPAFRAEAL S ' AN AN DRI AL ‘n

AERNCEAY o S i R AL DA Ste Dt e

(RSt d Yol AR i+ St 0 -l Sl Sl il Tl g T

*

AD-A167 069

e L e e mait . e -

HARDWARE IMPLEMENTATION OF A
CONCATENATED ENCODER/DECOJER

e

THESIS

Feter W. de Sraaf
Captain, USAF

i;: AFIT/SE/EN3/83D- 12

o

= : ep—— DTIC
Wy DISTRIBUTION STATEMENT & ELECTE
o/ e Dalimited MAY 1 2 1068
| M

— v

= DEPARTMENT OF THE AIR FORCE B

AR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

86 5 12 92¢

LA
- et

WA SRS S G S O A SR A ST

Aprr/sz/znc/ssy—/&

HARDWARE IMPLEMENTATION OF A
CONCATENATED ENCOC™.3/DECODER

THESIS

Peter W. de Graaf
Captain, USAF

- AFIT/GE/ENG /85D~ 12

Approved for public release; distribution unlimited

. DT T T ae e vl e s el
R SRR L A A
.

DTIC

\-LECTE
MAY 1 2 1988

v B

LS LA T e T ., w Al At da alie s At ined fadadl st Trwrxrywewy B gt g A

o AFIT/GE/ENG/85D-12

HARDWARE IMPLEMENTATION OF A CONCATENATED ENCODER/DECODER

THESIS

Presented to the Faculty of the. School of Engineering
of the Air Force Institute of Technology
Alr University
o In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Peter W. de Graaf, B.S.

Captain, USAF

December 1385

-,
) Approved for public release; distribution unlimited
i
e e T L g [et s g

--..,
PP
PO

PAAERED)

r'"o', .

N

oL F SR s
SO
LPLIR B 7, ST .
l-,',-’.r S .

»

. (R
KR """'.-

R u\.'v :' 4':' ‘Y ., .-
AR e A

4

AN -

¢
Y Preface N
u

u The ultimate goal of this study and the follow-on studies which will

use the circuits I have designed is to calculate the error detection and ;,

correction performance of different concatenated coding schemes. Bounds

for the error rates of these different coding schemes can be calculated;

however, these bounds are not tight enough to be useful. The actual e

error rates may be two or three orders of magnitude better than the

calculated bound. Thus, given an adequate model for the errors on a

channel and a specific concatenated coding scheme, the actual error rate

for a given situation can be determined. iiﬁ‘

while working on this project, I have received a great deal of help

and support from others. First, I thank my Lord Jesus Christ for

sustaining me. "Unless the Lord builds the house, they labor in vain who

build it" (Psalm 127:1). I also thank my advisor, Captain Glenn

Prescott, for his patience with me and for his valuable assistance. And

I thank Major Ken Castor for his insights to coding theory and for

helping me get started on this project. Special thanks to Mr. Orville

Wright for helping me with the circuit boards. A word of thanks to Mr.

Frisky for his counsel and support. Finally, a special thanks to my

loving wife Betsy for her understanding and her prayers, and for typing

and editing my thesis. "An excellent wife, who. can find? For her worth

is far above jewels. The heart of her husband trusts in her, and he will

have no lack of gain" (Proverbs 31:10,11).

Peter W. de Graaf

AP 2 5 2 8

‘l"l LI B

<
rd
&
*
K

a
e &

(‘ [

Prefacé

Table of Contents

List of Figures « « « + o ¢ o o ¢ o s o o o o o =

Abstract

I. Introduction « ¢ &« « & ¢ ¢ ¢ o o o o o & o

II L] Code Selection L] L] . L] L4 L L] L] L4 . . L] . L] L]

Criteria . e e e

Binary BCH Codes e e« o e & e & o o o & e
\.‘lolay COde)) . L) -) .
Reed-Solomon Codes e & 8 s & e e s s e« o o
Binary Convolutional Codes « . « ¢« ¢« o« o o o+
Interleaving/Deinterleaving e o e & o & & o
ITII. Circuit Descriptions . .« ¢ ¢« ¢« o« ¢ o ¢ o o o =
BCH and Golay Encoder e ¢ o & s s e e s e
BCH and Golay Decoder + « + + « o o « s o
Interleaver/Deinterleaver . ¢ + ¢ ¢« o o + o o
Convolutional Encoder e o s o o & e e s e @

IV. Operations e s s e s s s e & & e & o o e

Data Transfer . « « ¢« ¢ ¢ « o o o o o o =
General Configuration . .« ¢« « ¢« ¢« o « « o

V. Conclusions and Recommendations e e e e & e e e e

Appendix A: BCH/Golay Encoder Assembly Language Routine . . .

Appendix B: BCH/Golay Decodsr Assembly Language Routine . . .

Appendix C: Interleaver/Deinterleaver Assembly Language Routine

Appendix D: Convolutional Encoder Assembly Language Routine . .

Bibliography L] . . 3 . a . . L]

Vita .

ii4

Page
ii

iv

ONNOOOWY, (&)

w0

13
21
25
30

30
31

32

33

343

38

39

40

+
r

x

N
X

LA A
|
Al -

v
Myt Ve

S

,
¥
)

5!l‘flf.

ity

AR a4
IR
.

.
l'<

P
F R

e,
v
{J:
-

J:

N T T YT e T T WL T LA WL TS [(T vy -
e 3 a2 S i A A AR s e e St e T T LY TN T W TN T L TR TN WIS Ty TR W T L

List of Figures

Figure | Page
1. BCH/Golay encoder controller circuit e & ¢ o e e e« 10
2. BCH/Golay encoder circuit . .« « ¢ ¢« ¢ o ¢ o« o o 11
3. BCH/Golay decoder controller circuit e s e+ & o e & o 15
4. BCH/Golay jumper registers . . .« . .« « =+ +« « « « 16
5. BCH/Golay syndrome register . .« .« =« ¢ « « o« « o 17
6. Interleaver/deinterleaver circuit 23
7. Convolutional encoder controller circuit 26

8. Convolutional encoder circuit . . .« « ¢ ¢« o ¢ « o o 27

o mmg——
e N

R

t Aeeecssticn v ;
R R S
.i ;s.‘..n ":.v\ Al)

P
, Dhie T
Unrnue s

Abstract.

This study describes the hardware implementation of a concatenated
error correcting encoder/decoder. Individual burst and random error
correcting coders were implemented using standard TTL integrated circuits
and Z2-80 microprocessors. The circuits handle input and output
operations with a three line handshake. Thus, data transfer between
circuits is asynchronous, and the coders may be concatenated in any
order.

Reed-Solomon, BCH, Golay, interleaving, and convolutional codes were
considered. Of these codes, the BCH encoder/decoder, the 3olay
encoder/decoder, the interleaver/deinterleaver, and the convolutional
encoder were all implemented in hardware. The Reed-Solomon
encoder/decoder and the. convolutional decoder will be implemented in a
follow-on study in software.

This study is the first part of a group of studies which will
ultimately determine the actual error detection and correction

performance of various concatenated coding schemes. ST
. ,‘/, ~ ’) N) 3 - ' h]

’ . .) A .

. . ’/I"/ ; \

__________ -t e . R . : . . .,
..

N A O R L T IO N I W

HARDWARE IMPLEMENTATION OF A CONCATENATED ENCODER/DECODER

I. Introduction

Backg;ound

Digital communications have significantly improved our ability to
transmit large volumes of data in a short amount of time. However,
digital communication systems are susceptible to noise. Specifically,
noise in the communication channel causes errors by changing the values
of the transmitted digits. For example, assume that a transmitted
sequence is 01000011. This is the binary ASCII code for a "C". If an
error occurs in the first bit position, the received sequence is
01000010. This is the binary ASCII code for a "B". Without additional
bits for error detection, the receiver has no way to know that an error
has occurred, and it accepts a "B" when it should have accepted a "C".

Several codes have been developed to detect and correct errors which
occur during transmission. There are two basic types: random error
correcting codes and burst error correcting codes. Random errors are
single digit errors which occur randomly in the transmitted digits, and
burst errors are groups of errors which occur randomly in the transmitted
digits. Each type of code works well for correcting one of these types
of errors. However, no single code has been developed that works well
for correcting both types of errors.

This report is the first part of a study which will determine the

. specific capabilities of concatenating burst and random error correcting

TvT

s weams - » +» 7 - 7

- et et aT g™ . .« L . - - el e e - R
P AT P , ‘et s et e T IR R R R .

[
R IO AE aA A T
N et e e 'L:'.r RN SIS

0 S R BRI AC O KN IO S e S R SR ST ML A e —

XA

N codes. The overall approach is to use hardware and software encoders to

e e
P
3

encode a sequence of bits, transmit the encoded bits over a software

simulated channel, and decode the received bits using hardware and

software decoders. The\decoded sequence will then be compared to the
original sequence, and the error correction capabilities of the coding

will be calculated.

Problem and Scope

The purpose of this study is to design and build a hardware
encoder/decoder that uses concatenated burst and random error correcting
codes. The encoder will be set up as a burst error correcting encoder
followed by a random error correcting encoder. The decoder will be set
up as a random error correcting decoder followed by a burst error
correcting decoder. Reed~Solomon, BCH, 3olay, Viterbi, and interlesaving
codes will be considered in this study. The codes not implemented in
hardware will be implemented in a follow-on study using software
techniques. Evaluation of the encoder/decoder s performance will not be
accomplished in this study. A follow-on study will analyze the burst and

random error correcting capabilities of the encoder/decoder.

Assumptions

The encoder/decoder will be implemented as a binary symbol channel

encoder/decoder. The input to the encoder is assumed to be the binary

sequence from the output of a source encoder. Thus, the encoder will not
implement the source coding algorithm. This is a valid assumption since

error correction is handled by the channel encoder and is not affected by

-~ the source coding algorithm.

...... e, v e N R . SIS At e ra el Ag AT Gl e i g g gl 2rh g gk il Bal

RS

S Approach

Each code will be evaluated to see how easily it can be implemented
using hardware techniques. Those codes which require complex encoding
and decoding algorithms will be implemented in a follow-on study using
software techniques. The hardware encoder/decoder will run at a higher
data rate than the software encoder/decoder, allowing more data to be
colleéted in a given amount of time. Thus, as many of the codes as
possible will be implemented using hardware techniques.

The encoder/decoder circuits will be implemented using standard
digital logic circuits and microprocessor controllers. Circuit
development will be accomplished using protoboards. When circuit
development is complete, the circuits will be implemented on a printed
circuit boards.

- The purpose of this report is to explain how these circuits work and
how they can be connected to operate in a concatenated coding scheme.
Also, a brief explanation of the theory for each code is presented. A
list of references which explain the. coding theories in detail is
presented in the bibliography. Not all of these references are cited in
this report, but they are included to provide a more complete list of
reference material.

Chapter II contains a brief description of the theory behind each
code and an explanation of which codes will be implemented in hardware.
Chapter III is an explanation of how each.circuit works. Chaptér IV
describes how the circuits work in a concatenated scheme. Chapter V

contains conclusions and recommendations for follow-on projects.

IO S N N A A L A S LR
h - .. " -. * " .. 'l -I - .‘ » . T -
PPN A L I S SN RO ;..';~.‘.~“" Ay

LR AT W AR e e S A Aoy Sriee g 4

.o Materials and Equipment

All of the components and equipment necessary to build the

.."A'

s

encoder/decoder are available in the communications laboratory.

v e
r

LI BN

PG

. ﬂ:!: r,
e s

AN
I P

s
.
Vb
LRI

S T T e o W W I T . o
- - - - . - - - ~ . AN P e - o [- - - - [S . -

L

A
L
:

s 8
N

e | R

o)

i;?' II. Code Selection 35

ﬁ:

Criteria =

) o
The selection of which codes will be implemented in hardware is &:

& based on two criteria. First, the coding and decoding algorithms must be ;‘;
compliant to a hardware implementation. Some algorithms require many %f

conditional branches and decisions and are too complex to be implemented E;

in hardware. Second, the implementation of the coding and decoding i;

algorithms must be flexible enough to allow selection of different code i?

[parameters, such as input block length, output block length, character i;
size, and generator coefficients. The coding and decoding algorithms i;

which do not meet these criteria will be implemented in software in a Eﬁ

follow-on study. E

The BCH codes are a generalization of the Hamming codes for multiple !i

error correction (1:141). As defined in [1], for any positive integers m B

(m >2) and t (t < 2M-'), a binary (n,k) B8CH code has a block length n 'é:

; (equal to @™ - 1)), (n - k) parity-check bits, and a minimum distance d !5
Z; (greater than or ‘equal to (2t + 1)). This code can correct any t or :ii
p - R
’F ' fewer errors in an n-bit block (1:142). E:

i: The binary BCH codes have a simple encoding algorithm (1:141). For : i

an (n, k) code this algorithm can be implemented around a binary shift

register of length (n - k). The outputs of the shift register cells <.
which correspond to the non-zero boefficients of the generator polynomial
are summed (modulo two) to form the output. To change any of the code o

parameters requires only a change in the taps from the shift register a

:

. .._‘_.." .v",‘_'s_’_-.'.-.' «.'.- KU . R RS
SRS TSN PEIALI IRV WY TR S, 9.

,!"'&:3’#-‘?-@, Pl O G LG AN 000,958 I B g et S at Batet 7 L, B Bl 4 R

)

‘l ..‘

o

N cells to the summer circuit. Thus, the. encoding algorithm can be
implemented in a circuit which allows selection of different code
parameters.

There are many different decoding algorithms for binary BCH codes.
Some of these algorithms, such as the Meggitt algorithm (1:104-5), will
achieve the complete error detection and correction capabilities of the
BCH codes. However, refinements are necessary for practical
implementation of these algorithms (1:123). Error-trapping decoding is
one such variation of the Meggitt algorithm. The error-trapping
algorithm can be implemented with combinational logic circuits and a
microprocessor controller. This algorithm is very effective for decoding
single error correcting codes, short double error correcting codes, and

burst error correcting codes (1:125). The. error-trapping decoder can be

a .

- built around a divider circuit with feedback taps set to correspond to
the coefficients of the code’s generator polynomial. Thus, similar to
the encoding algorithm, the decoding algorithm can be implemented in a

circuit which allows selection of different code parameters.

Jolay Code
The 3olay code is a cyclic binary code which is similar to the BCH

codes. It is a (23,12) code and the. only known multiple error correcting
binary perfect code which can correct any combination of three or less
errors in a block of 23 bits (1:134). The only difference between the
3olay code and the BCH codes is the coefficients in the generator
polynomials. Thus, both the encoding and decoding algorithms can be

implemented in hardware exactly as the. BCH codes.

However, it is important to note that there are two algorithms for

’-f- K3 b Mm NN N o)

YL LY Fot gl 0u® Wl N 6% B'u Big Al Lhe AtaPhe o ahet

A.'

b ved &

L)

e

T ry v
[ACAERCR
"-'-'-’n'

m

A

< "
~

AL
e e T

M

i

o % "4 % e %o e °

R
ikl et

el s

")Y TR
7 S g,) v S IR .- ® v . -
L&x_‘_&;ﬂ, . :) —a 0 AL D S S E TS GE LR X -4 Pl i

20 IR

L2

R decoding Golay codes which will achieve the. complete error detection and :ﬁtg
-,

s

correction capabilities of these codes. These are the Kasami (1:135) and NN

, systematic search (1:138) algorithms. The Kasami algorithm requires
multiple arithmetic and logical operations, and the systematic search
algorithm requires complex clock and timing circuitry. Both of these
algor;thms would require extensive programming of the microprocessor

controller in the decoder circuit. Thus, these are best implemented in

software and may be implemented in a follow-on study.

Reed-Solomon Codes

Reed-Solomon codes are a type of non~binary (q-ary) BCH codes
(1:170). As defined in [1], a t error correcting Reed-Solomon code has a
block length of n characters (equal to (q - 1)), (n - k) parity-check
characters (equal to 2t), and a minimum distance d (equal to (2t + 1)).

The encoding and decoding algorithms are similar to those for the
binary BCH codes with one major difference: all of the arithmetic for
the gq-ary codes is done modulo q. Thus, all of the adding, multiplying,
dividing, and shifting operations are done on a character-by-character
basis instead of a bit-by-bit basis. This would require very complex and

extensive circuitry to implement in hardware. Also, each code would

require a separate circuit. Thus, the Reed-Solomon encoder and decoder

are best implemented in software.

Binary Convolutional Codes

An (n,k,m) convolutional code differs from an (n,k) block code in '?ﬁ:

Y

that the n bits out of the encoder at any given time depend on both the k i:{:

)

A Y input bits at that time and the previous m input bits (1:287). NN

i T R
:
SR |

r SN
2 te Ve
f 7 T
) "

IO, £ G T oA e O T A O A AP o
. o e L . - -

I i A 8 Lnted X Bl S e e Tanith S SR AIC I P DA A A R YR L Aot W, wih At gl A, DA S ke T D e s Piha i

& Basically, the information bit sequence . is convolved with the (m + 1)
coefficients of the n generator sequences, using k bits per shift.
The binary convolutional codes have a simple encoding algorithm
" (1:287-95). For an (n, 1, m) convolutional code this algorithm can be
implemented around a binary shift register of length m. The outputs of
the shift register cells which correspond to the. non-zero coefficients of
the céde generators are summed (modulo two) to form the n outputs. To
change any of the code parameters requires only a change in the taps from
the shift register cells to the summer circuit. Thus, the encoding
algorithm can be implemented in a circuit which allows selection of
different code parameters.
The decoding algorithm for convolutional codes selects the bit
sequence which was most likely the transmitted sequence (1:313-22). This
o decision involves many conditional branches and requires the decoder to
keep track of multiple paths through a trellis diagram. Thus, the

convolutional decoder can only be implemented in software.

Interleaving/Deinterleaving

Interleaving is a process used. to spread the.h output bits of any
code over a sequence of bits much larger than n. Essentially, this
spreads a burst error over a number of codewords instead of just one
codeword.

Both the interleaver and deinterleaver involve simple algorithms
(1:271-2). Both can be implemented around a storage register and a
microprocessor controller. The assembly language program required to run
the controller is very short. Thus, both the interleaver and

deinterleaver will be implemented in hardware.

. e T T g T Dadiares i

L

SRR

% A..z'%i

AR A
Aygh
Py

ITI. Circuit Descriptions

L]
‘s

<,
‘v’

ale

BCH and Golay Encoder

: J
s

55

’
'y

As stated in Chapter II, the BCH and Jolay encoders can be

l"l"
)
ol

R 4
[

£

implemented by the same circuit design. The only difference is in the

coefficients of the generator polynomials. Figure 1 is a diagram of the

-

'

controller circuit, and Figure 2 is a diagram of the encoder circuit.

PRI

L

»
’

The heart of the controller is the Z-80 microprocessor. The 2713

o~ e
e . B
SR
. .
ot

EPROM stores the assembly language routine which runs the Z-80. Since

RAM is not used in this circuit, the MREQ* signal (the "#*" indicates an
active-low signal) is connected directly to the CE* of the 2716. Thus,
the 2716 is enabled on any memory operation. The RD¥* signal is connected
to the OE* and is used to gate the memory contents onto the data bus
during a memory read operation. Address lines A0 through Al10 are
connected directly to the 2716. This provides 2048 memory locations
(000CH to 07FFH) for the assembly language routine. Data lines DO
through b? are connected directly to the 2716. The clock signal is
provided by a crystal oscillator. The. output of the oscillator is a 2.45

MHz square wave.

All of the control functions are implemented through input/output

(I/0) ports. The IORQ* signal is connected to the G2A* enable of the m
. ' o
“138 (three to eight line decoder). Thus the "138 is enabled on any)

input or output operation. Address lines AQ through A2 are connected to

the three line input on the "138. This provides control for eight I/0 E
MDY

ports (OOH to 07H). :::
N

The following is a step-by-step description of how the controller lgg

Y

works. When a reset signal is received, the Z-80 starts the program from .3
r»j.:

o

.\ -‘

9 R

E;

R A PR T P TR YA T L A R I LY R L = -
. AR PR PR S PR . -
e U PP W U Ul W WGP . W i WP UL CRF AP W, W R PO AR LA M M R
" . DA SRIE TR SRS R .

Ay &, NS ® . ¥ H .w.{h— -. - .,.u : .n.b. .A-...‘u.‘- “- . ..\ o L. . - .- i ... AR
n-u.ln\t.-nm.».mb E\-ﬂnhpqnﬂ‘n . X2 L ..”r\u AR u.\nf‘ 3 3 .4.\... e g .—r I .-..\-.q- % 3 it
3TNOJTO JBTTOJZUOD J8poouUd Aetof/HOg °*T oandiy
u
wo L9 — %0 Uon dip}— Aso
ASe — , Ase —{ 27 .C.L 2
™ sy, (x5, 9Lz ©
] W - v 2] L0 - 90 Lo, Y-y !
LY H\Q
L. 9 b
-\\ :‘\A —{F
o8 wm¥
[2) - V- W U 1
ASe £ !
L SAT
ans3y sy 08-Z f
[wwe Doy
AS¢
A0 Ve 2 u
»J.S 2%y 7 w ® I
yrrees ”)
8%y, n
dshoN
o % BRI @ 4 O vim
SE— |
Aty3y vive :
5 Lovay
(vaeorwd at) u>07> & . Viw
B N in ’
O O a5t T
e M
zn
] g O ‘
o a)
....... - I Cravors i) 1oem —1
< .-,
o)
» -..-.- o .-.-...~. "8 Yy % RN R + DN 4

P

l\‘;‘\h‘\\lv A A

.
o et lats e I
S et e,
T Al

10

o Th .

”

at e

“w
st g 2 g =

RN
L PRy

el

h- .
.

'l'l
o -

v ¢

e
P

3

W

v
)

*2

‘.' .' .' g

ey

B e e ¢ & 2N
g
” - .

AN |

D)

: (4] &S &6 67
) ' -v ? Cuock v Q Q eex

oy

" Y

DA

© DATA IN

) 20 11 S 17 16 IS 1Y 13 12 N o mm 7 nmie 320
S Towms 213 uzy %3
+ 23 ¥ S6 782 1 2 3 45T ETM

: - LL
: | me— EH‘OIEJ wer— §

>) t‘m ﬂ: 612

o)

Yo
’,

, M

..

. 66 G7 &t 610 & @& o oo
‘o oV ? O — CLOCK -V Q — Lok . ; %

. | \ } . .
H am % R
- 20 @ 17 1Y 16 1S 4% 13 13 0 20 M 18 17 % 1S 14 13 a1 .:_..-
o wig 3 uz| 273 Do
. NEEEEENER "\ 23 %5672 %nm N
I L T ‘ o
" & G» 6 G2 a7 &% az: Gy O

S 3 o0—— C/c/;‘ -
: . 14 % , .
i 04TA ov —_@M u9 , uiq, uzoql_/\ u;o _{;o ‘ .

Figure 2. 3CH/3olay encoder circuit . ':7

memory location O0O0OH. The assembly language routine which runs the Z-80
is shown in Appendix A.

Step 1. The controller strobes I/0 port YO*. This clears the input
data request flip-flop U2 and clears the. registers in the encoder
circuit.

Step 2. The controller inputs the. value for n from I/0 port Y&*.
This value is preset to the desired output block length (in binary) by
Jumpers before encoding operations begin.

Step 3. The controller inputs the value for k from I/O port Y7*.
This value is preset to the desired input block length (in binary) by
jumpers before encoding operations begin.

Step 4. Data bit DO is input from I/O port ¥Y5*, and its value is
checked. This is the output data request signal. If DO is zero, step 4
is repeated. If DO is one, the program proceeds to step 5.

Step 5. The controller strobes I/0 port Y1*, This clears the input
data ready flip—flop Ul and sets the. input data request flip-flop Ul.

Step 6. Data bit DO is input from I/O port Y2*, and its value is
checked. This is the input data ready.signal. If DO is zero, step 6 is
repeated. If DO is one, the program proceeds to step 7.

Step 7. The controller strobes I/0 port Y3*. This clocks the data
bit into the encoder circuit and sets the. output data ready flip-flop U2.

Step 8. The controller checks the total number of data bits clocked
into the encoder circuit. If this is less than k, the program goes back
to step 4. If this is equal to k, the program proceeds to step 9.

Step 9. The controller strobes I/0 port Y4*. This disables the

data gate flip-flop U2 so that the input to the encoder circuit is a zero.

2

4 &)

4

7
'.
.

l’.f
Ny

P
e
A4

,‘-‘
I,

oS

AR
NN I

L

LAY
>

[A

v
.
L]
.

0
P

0

SIS
.'3 .l"l O "’v

PRy

B D2

N ol

.' -l '.l

0

s Step 10. Data bit DO is input from I/O port Y5*, and its value is

SaA
e

‘..)
L4

checked. This is the output data request signal. If DO is zero, step 10

n

5|

is repeated. If DO is one, the program proceeds.to step 11.

v ' ’:l":l

Step 11, The controller strobes 1/0 port Y3*. This clocks the zero

'.
p

’,

bit into the encoder circuit and sets the. output data ready flip-flop U2.

Step 12. The controller checks the total number of data bits
clocked into the encoder circuit. If this is less than n, the program
goes back to step 10. If this is equal to n, the. program goes back to
step 1.

Thus, the basic functions of the. controller are to handle the
interfacing with the other circuits and to insure that k information bits
followed by (n - k) zeros are clocked through the encoder.

The encoder circuit is a series of D flip-flops (Ul5, U24, U138, U21)

. with their outputs jumpered to an exclusive OR summer circuit. These
jumpers (30 through G31) are set to correspond to the binary coefficients
of the desired generator polynomial. Each of the inputs to the exclusive
OR gates has a pull-down resistor to provide a zero input when the input

is not jumpered (i.e., the corresponding generator coefficient is zero).

Ay

This prevents the input from floating when it is not connected to the -:?

’

g o

output of a flip-flop. The RESET, CLOCK, and DATA IN signals all come
from the controller circuit, as previously explained. The DATA CUT

signal goes to the next encoder circuit.

BCH and Golay Decoder

Just as the BCH and 3olay encoders are implemented by the same
circuit, so are the BCH and Golay decoders. Again, the only difference

is in the coefficients of the generator polynomials, Figure 3 is a

" 13

. - . . . ' - o - - ” = * ~ -

Lt T e e e e e e L e e e

. ._-'L.'.._.'; 'L‘-‘ _-L'_- ‘p;.. .. -.,\.. - ~': -, -1_ RIS S L RSP T N PRI AR >

Y - PR PRV (IO SN AR SR SR e P At gL J T R VR N Tl T TR S
LTV AT AP P P P P P U A A A S S L S S SR SIS SN P R S

UNCA BB A Sl SRS B Deiiiuid sheibgliin) NAASLS WS W oy ‘2 T~ i e

K3

s
LAY
4 A
(s

“~

b
)
k A
»

diagram of the controller circuit,.Figure 4 is a diagram of the jumper
registers, and Figure 5 is a diagram of the syndrome register.

The controller in the decoder circuit is set up similar to the
controller in the encoder circuit. The only major difference is that the
controller in the decoder circuit uses. a RAM working memory in addition
to the EPROM.

éor the EPROM, address lines AO through Al10 are connected directly
to the 2715. The output from ORing Al4 and MREQ* is connected to the CE*
of the 2715. RD* is connected to the OE*. This set-up provides 2048
memory locations (OOOCH to O7FFH) for the assembly language routine.

Data lines DO through D7 are connected directly to the 2715. For the

. RAM, address lines A0 through A3 are connected directly to both 2114°s.
The output from ORing Al4* and MREQ* is connected to the CS* of the

o 2114°s. This provides 1024 memory locations (4000H to 43FFH) for the
2-30 to use. The WR* signal is connected to the WE* signal of the

2114°s. This controls the read/write operations in the RAM. Data lines

DO through D3 are connected to one 2114, and D4 through D7 are connected
to the other 2114. 3ince each 2114 has only a 4-bit memory word, this
provides a full 8~bit memory word for RAM operations. The clock signal
for the Z-80 is provided by the crystal oscillator. The output of the
oscillator is a 2.45 MHz square wave.

All of the control functions are implemented through the I/O ports.
Address lines AO through A3 are connected to both “154"s (four to sixteen
line decoder). A4 and IORQ* are used to enable the first “134, providing

control signals 00* through Of*. A4* and IORQ* are used to enable the

p second 154, providing control signals 10%* through 1F*. Thus, control of
v:: .
V.
% 14
e e g g T s P e e

o e Belin B, “iied

i o SN W

TR N S N

DAY

.‘7

b 0% ~Rie A8 e i T Ty
P ARSI R4

D S S

L B TR A Sk

~

[L -

L T

A AT TN TR NI TR YOWT

X%]
By

. R
| PR A AR
e s
.........

4TNOITO JOTTOJ3UOD Jopodep KeTof/HOB

*c 0IN3TY

| [

| 1

. .
.....

............

g & e W v (R " by -
A9 ==g I ?‘04 2 ase ar
hit2 L1114 pse =4 > LT
w-» 2 n 0-%1 @2 W S -9 L1
3 i l
L h
VA
- \r
_/
~ i W- S by Y ewr-w pra i g
Nt oaw e ase
5
o8-2 I’
1959y ~————1 4S¥
_ 1% W Y- o
L1000 VIR > uA_.l L1 mn
ﬂ“||||m&
-
su‘u ll_ —\] 4
p 2 tew o-v 2 tfew o-v u @
= ase —m are — 2
0 hsi, hst,
vy VI ——id , 4 t..m - -
RS IR

N \l

sy %

Ll
[

.....

15

e

A Al e e e

L e R
WG S PR PV P .-

ot
S R
W SR S . X

[
Iq .- *

[

S AL 0

t..- P
Ay

.

sHd

DAL 3
R ek

(R R

¢

594?

MMM

118 1Y

140 K

199

o LY

s
15V -ney

o SRR o

sxo381dea Joedunf ALerodn/HOo4

o

‘'t 8andt4

o>

- -y
% ¢ 9
54-1? s8=?
na v gy
-6 £4—H6
K s
84. 240
i LS q 8!10 Q

i s
e sy

'
1 1

-y SL.
n-{¢ 3Lm
x-? uL..
-1y Lok
wc w4
w3 uy
We n—d
o.lﬁu 9 ‘l\v h]
a oAk w oae
T RO

€0

9~
LB

skd

oo
1+

Ly-oy

16

. B
PN

PR

Y
PO UCUAEY

O W

a, .
LR IR
n

-
~

. cnt
A

D)

.

<.t

et e
WALV

T
-, .
akaloibold

\

-,
hih o

Job 3 N

PURRE S NEDRIS W OX A

\J

AN 4 e e

L e

Wy
A Ly

......

X93S1804 ewoupuds Lerod/Hog °*°S eandy

. > PN .‘ n...r vt
I A R TP TR
N .l\.. -t REACIAEIAR I

L - 99 L9 - ot
Leos | {eov | o
w - % w - w - o
(zx) MN-\ AN-\ MN—s “-\\.
2 - % 2 o -9
_ D _ — — K] _
gp S5 - IS 8l L5 -~ er

o
o
"

~
w

>O

—b o

us os

g up—
T L

e
Om

..........

o e, e 9 o o P N R e 1 P T B i o . . DR) T L
. v AT Py v DNy] oL, e R A L R . IARARKN RN AR RN

4 -~
“w
P S
N
Y
N
N
%
N
“~
y.
.
-
-
ag
-
POACAC A
R R AR

T T e e

32 I/0 ports (OCH to 1FH) is possible.

The jumper registers provide the 2-80 with the values for n, k, and
t. They also provide the locations of the k information bits within the
n-bit codeword. These values are all set before circuit operations
begin. The values for n, k, and t are set in binary. The positions of
the information bits are set by jumpering the. appropriate locations for
positions RO through R31.

The syndrome register is set up as a divider circuit. The feedback
taps to the shift register are set to correspond to the coefficients of
the generator polynomial. Thus, as the received codeword is shifted into
the syndrome register, it is divided by the generator polynomial. Four
"125"s (tri-state buffers) are used to gate the contents of the syndrome
register onto the data bus. This provides the Z-80 access to the
syndrome register.

The following is a step-by-step description of how the decoder
circuit works. When a reset signal is received, the Z-80 starts the
program from memory location OOOOH. The. assembly language routine which
runs the Z-80 is shown in Appendix B.

Step 1. The controller strobes I/0 ports 05* and 18*. This clears
the input data request flip-flop Ul and the syndrome register flip-flops.

Step 2. The controller inputs the value for n from 1/0 port 1F*.
This value is preset to the desired input block length (in binary) by
jumpers before decoding operations begin. '

Step 3. The controller strobes 1/0 port 06*. This clears the input
data ready flip-flop Ul and sets the. input data request flip-flop Ul.

Step 4. Data bit DO is input from I1/0 port 04*%, and its value is

18

- L. LU I R
........... e n w e

" Y

PR
™

- _"_-" AT e -'\-«_.‘- e e 4.‘.“‘. AN
RO P S, - - CR AT A " " RN
FPOPP TSI T VL AN I VL P VAL VR oA N PRI v e K RGO

%
a'ite

PRAEATN
. s -

Sl

Pl

L] u’.' .
NPT

=

I

Ay
.

AL

WL

WS wL LY w e ey e T "
f CAE Wi el A4 e o b
Y el Lt DAY

~ RS Y N UL RS AR Al . el - S
e dsd il sl la e S sema? e hee s meatnd FOSEN A R e St i e S e o ok SR SN . 1 WL S DR S S A 45 3

i
o

& 2

Yo |rs

Yy
P
a

v
P

.
SR

checked. This is the input data ready signal. If DO is zero, step 4 is

repeated. If DO is one, the program proceeds to step 5.

S

Step 5. Data bit DO is input from I/0 port 03* and stored in

memory. ;ﬁ:

3

Step 6. The controller checks the total number of data bits stored 534

in memory. If this is less than n, the program goes back to step 3. If :Qx
N

7 2 s
b
AR

PR
A

this is equal to n, the program proceeds to step 7.
Step 7. The controller strobes I/0 port 15*. This turns on the
syndrome register feedback gate, causing the syndrome register to

function as a divider circuit.

L

Step 8. The controller shifts each of the received bits stored in

W

memory into the syndrome register one at a time. The bits are shifted
into the syndrome register by strobing 1/0 port 17*%.

Step 9. The controller inputs the. contents of the syndrome register S
from I/O ports 18*% and OB*. From these bits the controller calculates
the weight of the syndrome register. R

Step 10. The controller inputs the value for t from I/O port 13%, o
If the value for t is greater than or equal to the weight of the syndrome SRS
register, the program goes to step 14. If the value for t is less than
the weight of the syndrome register, the. program proceeds to step 11. -

Step 11. The controller checks the total number of times the
syndrome register has been rotated after the initial n bits were shifted
into the syndrome register. If this number is equal to n, the program el
goes to step 20. If this number is less than n, the program proceeds to .

step 12.
Step 12. The controller strobes I/0 port 15*. This turns on the

19

o

syndrome register feedback gate, causing the. syndrome register to

o

function as a divider circuit.

Sla

IRy

[

Step 13. The controller outputs a zero bit to I/0 port 17%, This

[
a_r s

i,

causes the contents in the syndrome register to rotate. The controller

[AR)
(e

P

)X

also rotates the received data bits in memory at the same time. Then the
program goes back to step 2.

Step 14. The controller inputs the. value for k from I/0 port 1C*

E
At
s
B
." »

and the value for n from I/0 port 1F*, These values are used to locate
the (n - k) bits in memory which correspond to the contents of the
syndrome register.

Step 15. The ccntroller strobes 1/0 port 14%. This turns off the
syndrome register feedback gate, causing the syndrome register to
function as a shift register.

Step 15. Data bit DO is input from I/0 port 03*. This is the last
bit in the syndrome register. This bit is XORed with the corresponding
bit in memory.

Step 17. The controller strobes I/O port 17#. This shifts the
contents of the syndrome register.

Step 18. The controller checks how many bits have been input from
the syndrome register. If this value is less than (n - k), the program
goes to step 16. If this value is equal to (n - k), the program goes to
step 13.

Step 19. The controller rotates the.bits in memory back to their
original positions.

Step 20. The controller inputs the. locations of the information

bits from I/O ports 1E*, 1D* 1B*, 6 and 1A*, These values are input one

20

’.
-

M Aol el

AR S e Sl el el o) wad ed and Nad ot el A -y

at a time, and the corresponding information bits are located before the
next value is input to the controller.

Step 21. Data bit DO is input from I/0 port 02*. This is the
output data request line. If DO is zero, the program repeats step 21.
If DO is one, the program proceeds to step 22.

Step 22. The next information bit is output to I/0 port Oi*. This
sets fhe output data ready flip-flop U2 and shifts the information bit]
into the output data flip-flop U2. |

Step 23. The controller checks the. total number of information bits

output to the next circuit. If this value is less than k, the program

goes back to step 21. If this value is equal to k, the program goes back
to step 1.

Thus, the controller handles the. interfacing with other circuits and
uses the syndrome register to decode the.n-bit codeword into a k-bit

information sequence.

Interleaver/Deinterleaver

The interleaver and deinterleaver are implemented by the same
circuit and the same assembly language routine. The interleaver takes in
100 bits and retransmits these in groups of ten bits each. The first
group is bits 0, 10, 20, . « . , 90; the second group is bits 1, 11, 21,
« e+ ,91; .. . and the tenth group is bits 9, 19, 23, . . . , 99.
Thus, the groups are formed by taking every tenth bit from the original
100 bits, starting with each of the first ten received bits. If this
process is repeated using the. sequence formed by the ten groups of bits
as the 100 bits to be interleaved, the resulting sequence will be the

original 100-bit sequence. In other words, the interleaver will also

21

€

cat . .
Pl ° [T L LA
® ., 0

) P
LS YA WA

deinterleave its own output. Therefore, the same circuit design is used
for the interleaver and the deinterleaver.

The interleaver/deinterleaver is completely implemented by the 2-80
and its associated memory. Figure 8 is a diagram of the
interleaver/deinterleaver circuit.

For the EPROM, address lines AO through Al0 are connected to the
2715. The output from ORing Al14 and MREQ* is connected to the CE* of the
2715. RD* is connected to the OE*. This set-up provides 2043 memory
locations (00Q0H to 07FFH) for the assembly language routine. Data lines
DO through D7 are connected directly to the 2716. For the RAM, address
lines AO through A3 are connected to both 2114°s. The output from ORing
Al4* and MREQ* is connected to the. CS* of the 2114°s. This provides 1024
memory locations (4000H to 43FFH) for the Z-80 to use. The WR* signal is
connected to the WE* of the 2114°s. This controls the read/write
operations in the RAM. Data lines D7 through D3 are connected to one
2114, and D4 through D7 are connected to the other 2114. Since each 2114
has only a 4-bit memory word, this provides a full 8-bit memory word for
RAM operations. The clock signal for the Z-80 is provided by the
crystal-controlled oscillator. The. output of the oscillator is a 2.45
MHz square wave.

All of the control functions are implemented through the I/0 ports.
Address lines A0, Al, and A2 are connected to the “138 (three to eight
line decoder), and IORQ* is used to enable the “138. This provides
control signals for eight I/0 ports (Y0 to Y7*).

The following is a step~by-step description of how the

interleaver/deinterleaver works. When the reset signal is received, the

22

cu

.\.' -

o
Sa s aSa'r 2t e

L

(5] o/ RN

”

k.| A

&:l;“; L "1 N
“.f ‘. "-4 ’ .l_

e

»
¥

B

SRR RARR
A
€, 0
l_t_‘v'

B
.

1

A4
o0

»
BT L

Y

PRSI P RS-t NG G ISR Tl

PP AR

ey g
.....MMM Aoy

T € RGOS
et fefe Te 0 T

[A

e

31041

JOARDTI “JUT P/ IDALOT.IO3UT

c0 sarZ1y

A3 —

N
»

1

- oY we - ase etﬂ oy -y
Ass = 3 A3 4 v-?
AT hiiz 9/LY
-4 R 2 fa-90 §2 ™ -0 2 2 T~»
—]
L Ah%: P o
- " ilule-
e L ouy o
P—— ‘ 1
G - QW W & W W) a.x“ i
A L%E b maadd S SHT
- o8-¥ §
daspe ——— 5
] v eV Swy
199003y viVG > Ase
T A
21
2 8 v ae @i E
ot in
Asé A
8¢, 1530037
AS+ ,
] ARSI TIAd viw
e’ J
0n ‘
Atvpy W@ ————® 4, @ L 3 AWy
MI) vive
n
lﬂll I
Asé
%\ o vive
...AF. ") .L.‘.--I..LM -.n. n.-..-.—-.-..-..-..

P T I T e e c st some- > —
{\.&.‘.w—;‘km.-u..- T e e L 2 i aaipons - + ke ok oinia” ™ LY

o N
' .. \‘
' -
b
". --
ke
§
,
! L
;

crum v s

B et Lo . T V. S

1-80 starts the program from memory location O0O00H. The assembly
language routine which runs the Z-80 is shown in Appendix C.
Step 1. The controller strobes I/0 port Y3*. This clears the input
data ready flip-flop Ul and sets the input data request flip-flop Ul.
Step 2. Data bit DO is input from I/O port Y2*, and its value is
checked. This is the input data ready signal. If its value is zero,
step 2 is repeated. If its value is one, the program proceeds to step 3.
Step 3. Data bit DO is input from I/O port Y1* and stored in
memory. The data bits are stored sequentially as they are received.
Step 4. The controller checks the total number of bits received.
If this value is less than 100, the. program goes back to step 1. If this
value is equal to 100, the program proceeds to step 5.

Step 5. The controller sets a memory pointer to the location of the

. first received bit and an offset index to zero.

Step 6. Data bit DO is input from I/O port Y4*, and its value is
checked. This is the output data request signal. If its value is zero,
step 6 is repeated. If its value is one, the program proceeds to step 7.

Step 7. The bit in the memory location indicated by the memory
pointer plus the offset index is output to I/0 port Y5*.

Step 8. The controller checks the number of bits in the present
group that have been transmitted.. If this value is less than ten, then
ten is added to the memory pointer, and the program goes back to step 8.
If this value is equal to tén, the program proceeds to step 3.

Step 9. The controller checks the total number of bits transmitted.
If this value is less than 100, the memory pointer is set back to the

location of the first received bit, the offset index is incremented, and

24

e e e T A T e e e e e e e e e

A T TN e e -
St ol abalnlade e R W WA SRR

T T S L
R T T T PR D R oty e e T T ettt

L S

%
Ay
o

VR
PR
b el

“
!

...........

the program goes back to step 6. If this value is equal to 100, the

program goes back to step 1.

Thus, the interleaving and deinterleaving are handled by the Z-80

using RAM to store and rearrange the bit sequences.

Convolutional Encoder

Figure 7 is a diagram of the controller for the convolutional
encoder. Figure 8 is a diagram of the convolutional encoder.

The 2715 is the only memory used in this circuit. So the MREQ*
signal is connected to the CE* of the 2715. This enables the 2715 during
any memory operation. The RD* signal is connected directly to the QE*
and is used to gate the contents of the memory onto the data bus.

Address lines AO through AlO0 are connected to the 2716 to provide 2043
memory locations (OQO0OH to 07¢FH) for the assembly language routine.

Data lines DO through D7 are connected directly to the 2715. The clock
signal is provided by a crystal oscillator. The output of the oscillatcr
is a 2.45 MHz square wave.

All of the control functions are implemented through the I/0 pcrts.
The IORQ*® signal is used to enable the. 133 (three to eight line decoder:
during I/0 operations. Address lines A0, Al, and A2 are connected to the
three line input on the “138. This provides control signals for eignht
1/0 ports (YO* to Y7%).

The following is a step~by-step description of how the controller
works. When a reset signal is received, the 1-80 starts the program frc
memory location O00CH. The assembly language routine which runs the c-:.

is shown in Appendix D.

Step 1. The controller strobes I/0 port YO*. This clears the input

REABPNRT-

3
! g
..
1 g
) A
y S
m. ...A
“, JTNOJTO JOTTOJIUOD JOpOOUS TBUOTFANTOAUO) /. 8andty o
: e
y ...__
3 ,L
. ..‘
:
- -
m ﬁeﬁ b ase L
L AZe —f P . ‘ol

Y. ILZ
p B .
m_ 10-90 Sweew D ’ ..‘
4 . P
, s 2 o s
s+T o +T1 ..”..n
oy o "
* S
[o d ... 4
...‘

o

W-% ov-w o W X
As L » W ShT
190 o os-2 [}

. T~
“ -~
P P

2
:
2
]

26

Bade ol

L%
~
ad

Lt
o

A n 15anery
ol A of—— vive

5
]
B

.

ASe —{

"o~

-
(.4
"
-~
-
Al

A59M09) v

i

£ - AQV -
nuﬁ v

O

TT—

L?
E-Ja.
T
¢

A e

-~
e e .
et et R
LW S AT, ¥)

'

!
2 :
§

.
2,

T

Crvermy al) Won W g

e

Cooormd o) i) ~—i
Coavorns o) vivo ®

B

-‘v‘.'-',;-_f‘-f Te e

Q-Js

- - .
LN

TR T T T
-
o

W

-

Cete

SR .~. .n
PPN
e f

. (A

LRI 407 P, (N
X as P \ P .
M -.‘f AARAAL. F u-.. ‘ DEN LN E. i

st e

3TNOJITO JQPOOUS [BUOTINTOAUO) °g eJndTy

anro VIVG

27

h
i

i

ala

N

v
A
a ta

g9

[-

.
-

.« o
2 0

L

30 8w

3
2
5
]
?

“ e

o
-~

e T e

e te et

~ L

.-
PR T P

o
PN TN

WY

e

e

el

NIV N W

T e DB S S

‘ﬁi< data request flip-flop Ul and the. register cells in the encoder.
Step 2. Data bit DO is input from I/0 port Y7*, and its value is
checked. This is the output data request signal. If DO is zero, step 2
is repeated. If DO is one, the. program proceeds.to step 3.

Step 3. The controller strobes I/0 port Y1*. This clears the input

1 A A RNAAPLIS BN

data ready flip~flop Ul and sets the input data request flip-flop Ul.

A

Step 4. Data bit DO is input from I/O port Y2*, and its value is
checked. This is the input data ready signal. If DO is zero, step 4 is
repeated. If DO is one, the program proceeds to step 5.

Step 5. The controller strobes I/O‘port Y3*. This clocks the data

AR -
SERAN N

bit into the encoder circuit.
Step 6. The controller strobes I/0 port Y4*. This sets the output

gate to pass the first output bit.

ol Step 7. The controller strobes I/0 port Y8*. This sets the output
data ready flip-flop U2.
Step 8. Data bit DO is input from I/0 port Y7*, and its value is
checked. This is the output data request signal. If DO is zero, step 8
is repeated. If DO is one, the program proceeds to step 3.

Step 9. The controller strobes I/O port Y5*. This sets the output

gate to pass the second output bit,

Step 10. The controller strobes I/0 port Y6*. This sets the output

data ready flip-flop U2. Then the program goes back to step 2.

By the previous steps, the controller handles the input and output

: operations for the encoder. The encoder itself is a shift register and
E two modulo two adder circuits. The inputs to the adder circuits are the
] - jumpered outputs of each cell of the shift register. The jumpers for

28

T, L S e

NN N et i i S

£
Y each adder circuit are set to correspond to the coefficients of the E:}

generator sequences for the desired code. This circuit will implement

s

any (2, 1, m) convolutional code for m < 3.

T
v

-
-’

)
]

conn R

:'.;
RS N
"

(ARG]

S

P

DN AR IRIRE Y DR aadugn, oo g JBal o 0 Rl
-
)

29 N

'..'.'l'.fl_.' NN, Y T, FV Y o T v T @B\,
o
o,
1]

I T T R e T e el 24 i B i e

-
¥

WO

Sy Y N T N ™ o T W s s ™y vy y Ty Ty

ToTeTe AN 5 .-

e IV. Operations

o

R AR S PP S

Data Transfer

The circuits have been designed to operate in an asynchronous
manner. Each circuit has its own microprocessor controller and clock
generator. Thus, the internal operations (as described in the previous
chapter) are independent of the other circuits. Data transfer between
the circuits is handled through three interface signals: data, data
. request, and data ready.

Data transfer between circuits is handled in the following manner.
N Consider two circuits A and B, and assume data is to be transferred from

i
, circuit A to circuit B. First, circuit B sets the data request line to

+5 V. This clears the data ready line and notifies circuit A that

e e .
f'-lll.“
et

circuit B is ready to accept the next data bit. The data ready line is

|2

cleared so that circuit B will not see the data ready signal until

circuit A has acknowledged this specific data request. After circuit A

TeTaT TR T LT, T .
Sl - A Lt
(.

has received the data request and when it is ready to transfer the next

data bit, it sets the data ready line to +5 V. This clears the data

[T Y} el

request line and notifies circuit B that a valid data bit is ready to be

=4

Circuit B then latches the. data bit from the data line, and

transferred.

» v

- .
~

the cycle will start again when circuit B is ready to request another

data bit.

5 The only other signal which is connected between the circuits is the

|]

B reset signal. This signal is generated by the computer controlling the

2 input and output of data to and from the concatenated coding set-up.

ﬁ When this signal is reset to O V (idle state is +5 V), each circuit in

! 4%7 the system is cleared. When a circuit is cleared, all registers are set

Y 30

A

:._.‘-):.‘,"-.." AT .:.',1- .t -";.'"_‘.;.‘-_,'-.;_'.';. . ‘ .’ ,v‘_ : .’_ '. o . e e _...' e e

A VLU, W SR ST AL S A .
* - N ISR STRI N SRS PP EP ITOT I N ST AT AT AT CRI T I ¥y

R O A A B s - RCAARA T Al B S S o A o a a0y

A M R A A 0 0 b SRS

to zero, all data request lines are set to 0 V, and the controller

initializes the circuit.

3eneral Configuration

Because each circuit functions independently of the others, the
encoding and decoding circuits may be concatenated in any order. Of
course the decoders must be connected in an order which will properly
decode the output from the encoders. In other words, the order in which
the decoders are connected must be exactly opposite the crder in which
the encoders are connected. After each.circuit has been configured for
the desired codes (as described in Chapter III), they can be concatenated
by connecting the interface an& reset signals of the adjacent circuits.
Thus, once the circuits are connected to form the concatenated encoder,
the flow of data into and out of the system is controlled by the
computer.

The basic set up will use the computer as the source of data bits.
These bits will be transferred from the computer. to the concatenated
encoders. The output from the encoders will be transferred to the
computer simulated channel, and the output from this channel will be
transferred to the concatenated decoders. The decoded output will be

transferred back to the computer for processing.

......

Sl Tt 4 P AW AW e e RTINS

V. Conclusions and Recommendations

Conclusions

Of the codes considered, the BCH encoder and decoder, the Golay
encoder and decoder, the convolutional encoder, the interleaver, and the
deinterleaver were ail implemented in hardware. The Reed-Solomon encoder

and decoder and the Viterbi decoder were not implemented.

Recommendations

The Eclipse computer should be interfaced to the encoding and
decoding circuits via serial I/O ports. The following software should be
implemented on the Eclipse computer:

1. Reed-Solomon encoder and decoder

2. Viterbi decoder

3. Random bit generator to generate the bit sequences to be
transmitted through the system

4, Error channel simulator
5. Error performance calculator .

Additionally, as stated in Chapter II, a Kasami or systematic search

decoder may be implemented on the Eclipse computer.

..........

..
s, s,

4

.-
.
2
B
L

%

[

O
1 ;.~ I‘

»
L]
ate 1Y

A3

o le G fa

5 s,

N LR
«

S

I
e
.y

r .

” r‘n'v SR
) .
NP e . N
DRICAOR RO

& 4 4 4 27 A7
1

s START:

LOOP:

NEXT:

CHECK:

Appendix A

BCH/Golay Encoder Assembly Language Routine

OUT(OOH) ,A

IN A, (08H)
LD B,A

IN A, (O7H)
LD C,A

IN A, (O3H)
AND O1H

JP Z,LOOP
OUT (O1H),A
IN A, (02H)
AND O1H

JP Z,NEXT
OUT (03H),A
DEC B

DEC C

JP NZ,LOOP
OUT (04H),A
IN A,(O3H)
AND O1H

JP Z,CHEC
OuT (03H),A
DEC B

JP NZ,CHECK
JP START

clear data request and encoder,

data gate

load n (output block length)

B = output block length

load k (input block length)

C = input block length

check data request

mask bit

no request, check again

send request, clear ready line

check data ready

mask bit

not ready yet, check again

clock in data, send data ready
=B -1

C=C-1

not k bits yet, get next bit

set data gate to zero

check data request

mask bit

no request, check again

clock zero into encoder, send data ready

B=B-1
not n bits yet, send next bit
done, start again

33

A N T O Ny Y W W W O WO Y O

enable

1200 A i e

C ol 4

N W WL

STARTUP:

LOAD:

WEIGHT:

ADDER:

LOOP:

Appendix B

BCH/Golay Decoder Assembly Language Routine

OUT (O3H),A
OUT (18H),A
LD SP,4200H
IN A, (1FH)
LD C,A

LD B,A

SUB O1H

LD E,A

LD HL,4100H

CALL LOADBIT
DEC B

JP NZ,LOAD
CALL CALC

. LD D,OOH

IN A, (18H)
CALL CHECK
IN A, (OBH)
CALL CHECK
IN A, (139H)
SUB D

JP M,3RTR

JP ADDER

DEC C

JP M,SETUP
CALL ROTATER
CALL ROTATES
JP WEIGHT

IN A, (1CH)
LD D,A

IN A, (1FH)
SUB D

SUB O1H

LD E,A

LD D,00H
SBC HL,DE
OUT (14H),A
IN A,(02H)
AND O1H
XOR (HL)

LD (HL),A
INC HL

DEC E

JP M,READY
OUT (17H),A
JP LOOP

clear data request line

clear syndrome register

initialize SP to 4200H

load n into A

set index C to n

set index B to n

A=n-1

load n -~ 1 into E

initialize memory pointer to 4100H

load in a data bit
decrement index

not n bits, get next bit
n bits, calculate syndrome

clear D

load S0-37

check weight.

load S8-313

check .weight

load threshold value t

A = t - (syndrome weight)

check sign of t ~ (syndrome weight)
t is greater or equal to syndrome weight
decrement index counter

check for n total rotates

rotate received bits

rotate syndrome register

check syndrome register weight again

load A with k
load D with k
load A with n

A=n-~-k
A=n-~k-1
E=n~k-1
clear D

H.=HL - (n ~ k - 1)

set syndrome register to shift
input syndrome bit

mask off bit

A = received bit XOR syndrome bit
store result in memory

point to next received bit
check for last bit

done, set up for output

shift syndrome register

get next bit

34

READY 3
NEXT:

SETUP:

LOADBIT:
LDBA:

CALC:
CLCA:

CLCB:

CHECK
CHKA:

lal
v H

ROTATER ¢

DEC HL

DEC C

JP M,SETUP
CALL ROTATER
JP NEXT

LD DE,4003H
IN A, (1FH)
LD C,A

IN A, (1EH)
CALL FIND
IN A,(1DH)
CALL FIND
IN A,(1BH)
CALL FIND
IN A, (1AH)
CALL FIND
JP STARTUP

OUT (OBH),A
IN A, (04H)
AND O1H

JP Z,LDBA
IN A, (O3H)
AND O1H

LD (HL),A
DEC HL

RET

OUT (13H),A
INC L

LD A,L

SUB O1H

JP Z,CLCB
LD A, (HL)
OUT (17H),A
JP CLCA

DEC L

RET

LD B,08H
RRA

JP Z,CHKB
INC D

DEC B

JP NZ,CHKA
RET

LD D,00H
SBC HL,DE

Py

EiaiE S A A i At A A A A M A S G Sal vl A A T N S e TLFoITNTwLY T

set memory pointer

check total number of rotates
n rotates made, find info bits
rotate received bits

check for n rotates

set memory location to 4005H
load A with n

load C with n

load A with info set 1

find info bits in received bits
load A with info set 2

find info bits in received bits
load A with info set 3

find info bits in received bits
load A with info set 4

find info bits in received bits
restart routine

send data request

check data ready

mask bit

not ready, check again

input data

mask bit

store bit in memory

point to next position in memory
return to main program

set syndrome register to rotate

set memory pointer

load L into A

A=L-1

check for last received bit

load received bit

shift received bit into syndrome register
get next bit

reset memory pointer

return to main program

set index to 08H

check next bit

if zero, skip add
increment weight value
decrement index

if not zero, check next bit
return to main program

clear D

HL = HL - (n - 1): point to bottom of
memory

35

o
X

AL

P

S
I.-
>

r
’

ROTATES:

FIND:
FNDA:

FNDB:

FNDC:
FNDD:

FNDE:

SENDBIT:

...........

LD A, (HL)
ADC HL,DE

INC HL
LD (HL),A
RET

OUT (13H),A
AND OOH

OUT (17H),A
RET

LD B,08H
DEC B

JP M,FNDC
DEC C

JP M,FNDD
RRA

JP NC,FNDB
LD 4000H,A

LD A,(HL)
LD (DE),A
INC DE

LD A,4000H
DEC HL

JP FNDA

RET

IN A, (1CH)
LD B,A

LD DE,4003H

CALL SENDBIT
DEC B

JP NZ,FNDE
RET

IN A,(O02H)
AND O1H

JP Z,SENDBIT
LD A, (DE)
INC DE

OUT (O01H),A
RET

load bit into A

HL = HL + (n - 1): point to top of
memory

point to top of memory plus one
store bit in memory

return to main program

set syndrome register to rotate
clear A

rotate syndrome register
return to main program

set index to O8H

decrement index

check for last bit
decrement counter

check for n bits

check next bit position

if zero, check next bit
store A in memory (4000H): store info
set

load A with received bit
store bit in memory
increment memory pointer
load A with info set

point to next received bit
check for next info bit
return to main program
load A with k

load B with k

set memory pointer to info bits starting
location

output info bit

decrement index

if not zero, send next bit
return to main program

check data request
mask bit

no request, check again
load A with info bit
point to next bit
output info bit

return to main program

36

L3
v
LI

v re s
l'l"'l
AR

v
% 4 v
e L' a

00

L

LIE ot SR o SN
R e
S0y

P

Bl

- "4

S— - TR T eT————— - T —~
Frx WL S R 250 P b AR S A VA A ST A oA A M T oA A et A S A A ol Sl e AV I, . S Ay S e SR U

(N
A
N

RN
s »jﬂ
e Appendix C S
Interleaver/Deinterleaver Assembly Language Routine &g;
B
STARTUP: LD HL,4100H set memory pointer por.
LD SP,4200H set stack pointer KA
LD D,64H set index to 100 f
OUT (O3H),A request data '
CHECK : IN (O2H),A check data ready bit X
AND O1H mask bit ol
JP Z,CHECK not ready, check again Tl
CALL LOADBIT input data bit
DEC D decrement index
JP Z,0UTPUT 100 bits in, go to output
JP CHECK not 100 bits
OUTPUT: LD HL,4100H set memory pointer
LD C,00H clear low pointer
LD D,0AH set offset
LD B,0AH set group index
NEXT: LD E,OAH set bit index
LOOP: IN A, (O4H) input data request
AND O1H mask bit
JP Z,LO0P no request, check again
S LD A,(HL) get bit at memory pointer
- OUT (O3H),A output bit
1D AL get low order memory
ADD D add offgset to low order memory
1D L,A : set new value in memory pointer
DEC E decrement bit index
JP Z,0NE if group done, check total bits
JP LOOP group not done, send next bit
ONE: DEC B decrement group index -
JP Z,STARTUP 10 groups done, start again el
INC C increment low pointer -
LD L,C set low order memory :{
JP NEXT send next group T
P
LOADBIT: IN A,(O1H) get data bit &
LD (HL),A store bit in memory : L
INC HL increment memory pointer T
RET return to main program o
Y
T
':‘;.'
.'\j
-~ w
37 :'_',:::
E»

...............................
...................

------- S T e e T T A e e e e T T e e e e e e e
: i’ FIREES AR A SICRI) S, P I V)

o OB B\ S e Bt F 00 i e e A et o' _Bet b ot ot Betula ' Jhe* Awl g Aa’ BE' J1at A e JBa sln ote Ae'my- ol h o™t wts, o' PRl

\ P
\ a7
’v' r
%
. : N
" Appendix D ' fb?
[i -
Convolutional Encoder Assembly Language Routine .f
5 =
S "
y OUT (OOH),A clear input data request =3
. CHECK1: IN A,(O7H) get output data request e
) AND O1H mask bit o
JP Z,CHECK1 no request, check again .
OUT (O1H),A request data B
IN A, (02H) input data ready e
AND O1H mask bit ’
JP Z,CHECK2 not ready, check again
OUT (O3H),A clock in data
OUT (04H),A set output to code bit 1 .
OUT (OGH) A send data ready _$
CHECK3 : IN A, (07H) get output data request <0
AND O1H mask bit T
X JP Z,CHECK3 no request, check again v
- OUT (05H),A set output to code bit 2
§ OUT (OGH),A send data ready g
JP CHECK1 set up for next input bit s

. oA R 2 - —
mn e R A A I At VA, AN A AT e e Tl B iR A arhe Aoc e R 0A L e 0he Sl Smitube ah.noboted %l Sad Sl Ak b n

s
e

y

:t .. ﬁ
SO Bibliography "“
oo

Cited Reference E

K 1. Costello, D. J. and Lin, S. Error lontrol Coding: Fundamentals and :i;
- Applications. Englewood Cliffs, NJ: Prentice Hall, Inc., 1333. Ko
{ | M)

X Supplemental References !5
N Blahut, R. E. Theory and Practice of Error Control Codes. United :Zi
- States of America: Addison-~Wesley Pub. Co., 1333. -

Sallager, R. G. Information Theory and Reliable Communication. United
States of America: John Wiley and Sons, Inc., 1368.

oo

.'-','i'r'
I 30 AR
. .)

.y

Pless, V. Introduction to the Theory of Error Correcting Codes. New e

York, NY: Wiley Interscience, 1382. -

.
~\ Loy
~ =4
“ : ".-
. N
; R D

e _.
- o

>
'
-

% v AR

- .
%
o P
' ~
.
::' :_x'
\ S
.
| ‘l‘ 'h
AN
T - o
. AN
. o
. S
2 33 =~

Y Y
.5‘;) VITA

Captain Peter W. de Graaf received his commission in May 1381. His
first assignment was as a student in the Communications-Electronics
Engineer Course at Keesler AFB. In January 1982, he was reassigned to
the 1815 Test and Evaluation Squadron at Wright-Patterson ArB. While
with the 1815th, he served as an evaluation team engineer and worked in
the AFCC Systems Evaluation School. After his assignment with the

1815th, he entered the School of Engineering in June 1384.

Permanent address: RD1 Box 272

Dingman’s Ferry, PA 18323

40

-t .

ate

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

i;ﬂ ZPORT SECURITY CLASSIFICATION 1b. AESTRICTIVE MARKINGS
“UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

. DECLASSIFICATION/DOWNGRADING SCHEDULE
20 distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERI(S)
AFIT/GE/ENG/85D-12
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(1 applicable)
School of Engineering AFIT/ENG
" 6¢c. ADDRESS (City, State and ZIP Code)) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

- 8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
% ORGANIZATION (If applicable)
) Foreign Technology/DLvision | FTD/TQCS
8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
FTD ELEMENT NO. NO. NO. NO.

Wright-Patterson AFB, OH 45833
11. TITLE (Include Security Classification)
See Box 19

12 PERSONAL AUTHORI(S)
~?eter W. de Graaf, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
MS Thesis FROM TO 1985 December 48

16. SUPPLEMENTARY NOTATION

17 COSAT! CODES 18. SUBJECT TERMS /Continue on reverse if necessary and identify by dlock number)

"EAL_D GROUP Sus GR. Concatenated Error Coding, Block Coding
= cy Convolutional Coding, FError Detection and Correction

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: HARDWARE IMPLEMENTATION OF A CONCATENATED ENCODER/DECODER

Thesis Advisor: Glenn E, Prescott, Capt, USAF
Professor of Electrical Engineering
oved lt xﬁG relowss; IAW AFR “w'
ﬁ?’wouvn 1 omtd
Dean to.t Reseatch and Protessional Development
Als Porce Institute of Techuolo@¥ (e
Wroght-Patterson AFB Ot W3
o
X
ISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION >
-
UNCLASSIFIED/UNLIMITED & same as reT. C oTic users O UNCLASSIFIED
222. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22¢c OFFICE SYMBOL
tinclude Area Code
Clenn E. Prescett, Capt, USAF (513) 255-=3576 AFIT/ENG
R _
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
- e e L A WV EXNE VPR WP Y S YR T, , U, Y N VY VAT YA A '1;.LA.~ .!. 'Ar.'l:“l..'l..'l..'ll.'\"-_‘.';;’;’.‘;.;.'p~"1‘~";‘..\._\1';‘_\-.':~_'-‘-'-‘-\‘A\{'-A

-

T T e R

AR A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

This study describes the hardware implementation of a
concatenated error correcting encoder/decoder, Individual
burst and random error correcting codes were implemented
using standard TTL integrated circuits and Z-80 microprocessors.
The circuits handle input and output operations with a three
line handshake., Thus, data transfer between circuits is
asynchronous, and the coders can be concatenated in any order.

Reed-Solomon, BClH, Golay, interleaving, and convolutional
codes were considered, Of these codes, The BCH encoder/decoder,
the Golay encoder/decoder, the interleaver/deinterleaver, and the
convolutional encoder were all implemented in hardware. The
Reed-Solomon encoder/decoder and the convolutional decoder will
be implemented in a follow-on study in software.

This study is the first part of a group of studies which
will ultimately determine the actual error detection and correction
performance of various concatemated coding schemes.

—

UACLASSIBIFD

SECURITY CLASSIFICATION OF THIS PAGE

- .-
AOUNOMAMALY. 1o A FArAy

