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ABSTRACT

Coherent Cerenkov radiation has been investigated previously

in the time domain for an infinite path. The present calcula-

tions for a finite path length show an effect analogous to

diffraction (in the frequency domain) in which radiation fields

appear both at Cerenkov angles and at other angles. The latter

have previously been named electromagnetic pulse fields.
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I
I. INTRODUCTION

Cerenkov radiation occurs when charge moves faster than

radiation in a medium. Most work 1-4 is concerned with optical

radiation produced by a point charge, and involves the Fourier

spectra of these fields. Here, in contrast, we explore the time

I€ dependence of the radiation fields, using our earlier 5

- formulation to describe the radiation from a bunch of electrons

passing through an infinite medium; however, now the medium has

- finite length, which causes diffraction so that the radiation Is

.. produced at other angles than the usual Cerenkov angle. This

spreading by diffraction was investigated earlier in the Fourier

expansion approach, 6 - 8 but using the present time dependent

fields, new Insights are developed, and for shorter paths, the

Cerenkov fields are related to other forms of radiation, namely,

what is referred to as electromagnetic pulse (EMP) 9 , transition

and ordinary dipole radiation. It is much easier to understand

Cerenkov radiation from a finite-size charge than from a point

charge; in the former case, the Cerenkov fields remain finite but

become singular for a point charge.
1 0

II. TIME DEPENDENCE OF FIELDS

Let all charges within a bunch move along the z-axis with

the same velocity v, which is larger than the velocity c of

radiation in the medium. Let co be the velocity of radiation in

-2-



vacuum, let s2 - x2.y 2 , and assume the volume charge density Pv

has the form

pv(r. t) - p0 (z-vt)6(x)6(y) (1)

where pc represents an arbitrary line density. Following our

earlier work 5 , the vector potential is

i(R,t)= -P- f R Po(u)dz- (2)
0

where the variable u - z -vt" becomes

u - z - Vt * [c I s 2  +(z-z') 2 1 2  (3) 

Retardation is included by the form of u in Eq. 3. The magnetic

field B has radiation terms resulting from taking the derivatives

of p0 in Eq. 2. This leads to B in the 0 direction of

cylindrical coordinates, with a magnitude

V2  (4)
B - '-p(u)dz-

cc0  
2 0

An approximate evaluation of Eq. (4) proceeds as follows: u(z')

is plotted as a function of z'. For further calculation assume

p8 has linear rising and falling ramps, of width a, separated by

a distance b. Then p6 consists of two opposite polarity square

-3-
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pulses. For early times, the u curve is high (see Reference 5

Fig. 1) and the integrand is zero for all values of z'. As time

increases, the u curve drops and the minimum intersects the p

* pulse, and contributes to the integral in Eq. (4). The field E p

may also be calculated; in Ref. 5 it was shown that E is

perpendicular to B and to Rm, and Rm, the vector from the

*particle (at the retarded time) to the observer, is at an angle

of -c to the z-axis. Then E/B =c/c 0 ; both the fields fall off

as R-1 /2  appropriate for radiation from a cylindrical source,

and the total energy radiated agrees with the Fourier approach.

The two opposite pulses of the radiation field have the same

* separation as the front and rear slopes of the current pulse.

We now calculate the radiation fields for the case of a

finite path. The physical situation shown in Fig. 1 is one in

which a beam emerges at z' - 0 from an accelerator, passes

* through a dielectric medium and at z' - Z, stops in an absorber.

The path (usually air) from z' - 0 to Z is the radiator. The

beam bunch has a linear rising ramp of length a, is then constant

*and has a linear decrease of length a, with an effective length

b, from the midpoint of the rise to the mid point of the fall.

The calculation of the fields is based on Eq. (4) for B;

corresponding results will hold for E. We again assume that s/R2

is about constant in the range of integration and may be factored

out. Then s/R -sin 0 and we have

-4-
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The main difference between the calculations below and those done

previously 5 is that the range of z' is finite, from 0 to Z, to

represent a finite length (Z) of radiation source. The results

of the integration depend on the relation of various parameters.

A. Outside the Cerenkov Cone, Z Long

Fig. 2 represents the situation involved in evaluating -

Eq. (5). The u(z') curve moves down in time (Eq. 3). For early

times, the integrand is always zero. Later the u curve moves

down and intersects the dotted rectangle representing the region

of u and z' where the integrand is constant. In the situation

shown, the integral builds up to a peak value in a time interval

a/v, and the integral saturates at the value pohz " po a/slope

of u-curve. From Eq. (3), the slope is

- -- ,

az" c A ls 7 7: _ - -

:1-- cos B ,.-

Furthermore p~a is the peak value of po which is Ioco/v, where I o

is the peak current.

. . . . . .. . . . . . . . . . . . . . . . . .



Thus the integral saturates at

I0I

C-..
vsat. 1  1o  (7) ..

4 1 - v coa 6 '-
Pc

where R is measured from the start of the source, z' 0, to the

observer, and it makes an angle 0 to the z-axis.

The rise time was a/v, a similar fall time occurs, and the

duration of the pulse is given by Z(slope of u curve)/v or

Z(- cos 0)/v. Because this combination appears often, we
C

define the effective length

(8) .
V L.

Z 2Z(1 -- C0s )
6C

The significance of Ze is that it yields the time

- difference for two signals emitted by a given charge at two

points separated by a distance Z in the lab. Note that Ze - 0 at

the Cerenkov angle, as expected, because signals emitted at 8c

from all parts of the path reach a distant observer at the same

time.

Thus we have, for the leading ramp of the current pulse, a

field at the observer of value given by Eq. (7) with lengths

shown in Fig. 3a. Here the lengths are times multiplied by v.

Also shown is the negative field pulse caused by the back ramp of

the current pulse. The two pulses combine to give the symmetric:.
pulse of Fig. 3b, with a separation that is the larger of Ze or

b, and a duration that is the smaller of Ze or b.

-6- ,
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B. On the Cerenkov Cone

If the observer is in the Cerenkov region (region B in

Fig. 1), the rectangular region of integration in Fig. 1 is

centered about the minimum in the u(z) curve. If Z is large,

the integral for the field is the same as in our earlier paper.

The pulse starts when the u(z') curve, as it advances down in

time, becomes tangent to the rectangular integration region. The

integral increases as t 112 until the u curve is tangent to the .k.

lower boundary, and then decreases, again proportional to t1 / 2 .

The result is

V2  1 sin __:-_

5max CZ 2~ 0~n'2

The positive and negative pulses have rise and fall times

of a/v and are separated by b/v. The field falls as l/Rm as one

proceeds outward at a fixed angle with s- Rm sin 0c.

.-.

If the path is short, the B field pulse, as a function of

time, increases as t1 / 2 as noted above, but the maximum value of

the integral for Eq. (5) occurs when the u(z') curve first

intersects the vertical limits (0 and Z) of integration of the

rectangular region in the u-z" plane. Then the maximum magnetic

field becomes

V2  1n C 
"

-aax "cc R c (u)Z.

v2 sin 8, z
CCo Rm a (10)

-7-
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Eliminating Po in terms of Io yields:

Elmiatn 31 0 in
vma sin ec  (1 1)B a x 2 1

In this case, positive and negative pulses of width a have

a separation b, which is the same as for the long radiator, but

the pulses have flat tops.

If the observer moves out along the Cerenkov cone, the long

path case changes into the short path case. In the former, the .-

source is long and the observer sees a field associated with

cylindrical symmetry. But as the observer moves out, the

radiator of length Z appears to be short, leading to the R-1

field of Eq. (10) instead of the R - (cylindrical) field of Eq.

(9). The transition from the cylindrical wave to the spherical

wave occurs when 2Az (defined in Eq. (18) of Ref. 5) is equal

to Z. This yields for the value of s, denoted by ss

v 2 2 (12)

3 cz tan3 a

That is, for s > ss [where ss satisfied Eq. (12)] the wave

becomes spherical and decreases as R-1 or s- 1 .

C. Outside the Cerenkov Cone, Z Short

In the previous sections, cases were considered in which Ze >

b > a, but other situations are possible. Because a is the rise

-8-



and fall length of the current pulse, and b is the width measured

between the half-maximum points, we must have b > a. We could

then have b > Ze > a and b > a > Ze cases. For the latter the

field is again obtained by evaluating Eq. (5). The horizontal

range of integration is short so that the range of the variable z'

is always Z, if we are off the Cerenkov cone. The result is

v2 sin 6B: (13)
cco  R

v

Noting that -- poa = Io, the peak current in the pulse, we find
0

(14)
v sin e ZB Z Io  -
c R 0 a

The field pulse at the observer will have a rise and fall

time Ze/v, the pulse length is a/v, and it will be followed by a

similar negative pulse at a time b/v later.

III. SEMI-INFINITE PATH

Let the beam emerge from the accelerator window at z - 0

and traverse a path, which is idealized to be infinitely long.

Starting from the point where the beam emerges, define a cone

with apex angle Oc relative to the beam. If the observer is

anywhere inside the cone, the minimum of the u(z') curve will

-9-



intersect the p'(u) pulses, and the radiation field will be the

same as found in Ref. 5 and described in See. II. B. The

radiation fields will have a positive and negative pulse

separated by a distance b. This region is dominated by Cerenkov

radiation. Pr

Now let the observer be outside the Cerenkov cone. The

situation is somewhat like that described in Sec. II., except

that the horizontal range of integration is infinite in the

positive direction. The rising part, or h(!.:.. f zhe current

pulse leads to fields which are essentially constant, whereas the

following tail gives an opposite field delayed by a time b/v.

We thus have a field pulse in the region outside the Cerenkov

cone of length b but only of one sign. This is EMP, and in the

above model, both EMP and Cerenkov radiation exist. The field

lines are shown qualitatively in Fig. 4.

IV. JUSTIFICATION OF MODEL .* "

The model using a finite path is supposed to represent

radiation from a bunch of electrons, emerging from an accelerator

system at z' - 0, and stopped by some means at z' - Z. No

specific account has been made for these boundaries; radiation by

return currents has been neglected. Consider the following -

model: the charge that suddenly appears at z' - 0 in all the -*_-

cases is furnished by a source electron pulse of lower velocity

vs which moves in the region z' < 0 and meets the previously

specified pulse at z - 0. To conserve charge at all times at ",

VS V S
z'- 0, bs - b -, as - a - and Ios - Io, where Ios, as , and bs

-10-
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are the current, rise, and width parameters for the slow pulse

* approaching the boundary from negative z'.

The radiation pulse from the slow incoming electrons is

given by Eq. (7) with the appropriate lower velocity vs

substituted. By inserting a very low value of vs the field

becomes small, and because bs becomes small, the time in which

the field pulse occurs becomes short, so that the radiated energy

becomes very small. Thus we conclude that inclusion of source

and return currents, required to conserve charge, contribute

little to radiation fields calculated, and may be neglected.

V. DISCUSSION

Cerenkov radiation has been described above and in Ref. 5 in

terms of time dependence of the radiation fields caused by finite

charge distributions such as are realized by bunches emitted by

an accelerator. In the usual Fourier-expansion formalism, either

a finite size of the charge or dispersion in the medium limits

the radiated power at the high-frequency end of the spectrum, and

a finite length of path in the medium produces diffraction of the

angle of the emitted radiation about the Cerenkov angle.

The present time-dependent field formulation reveals the

following properties of Cerenkov radiation: A. The radiation is

associated with dI/dt at the leading and trailing parts of the

pulse. B. The Cerenkov radiation (for an infinite path)

consists of positive and negative pulses separated by a distance,

which is the pulse length. C. For a semi-infinite path,

Cerenkov radiation appears within a cone of angle Oc, whose apex



is at the start of the path. An EMP pulse appears outside that

cone. D. For a finite path of length Z, both Cerenkov and EMP __

appear, the latter dominating as Z becomes smaller. For Z short

and 8 small, the sin 0/(1 - 8 cos 0) dependence of the EMP pulse

becomes sin 0; thus the fields at low 8 becomes essentially a

single pulse of dipole radiation.

Finally it should be noted that Cerenkov radiation is not a

different radiation to be added on to other forms of radiation

when v > c (medium) but should appear naturally in a correct

calculation of the radiation. If v<c, radiation also occurs but

without the characteristic shockwave-like character of Cerenkov

radiation.
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FIGURE CAPTIONS

Fig. 1. For a finite path length Z, an observer in regions A or

C finds EMP radiation, shown in Fig. 4 and developed in Secs.

II.A and II.C. In region B, a Cerenkov field pulse described in

See. II.B occurs.

Fig. 2. The variable u plotted as a function of z'. As time

increases, the curves are displaced downward. The derivative of

the current pulse is shown. When the u(z') first intersects the

p6 pulse, the integrand of Eq. (4) becomes nonzero, and the

Cerenkov pulse starts (See. II).

Fig. 3. The field pulse outside the Cerenkov cone for finite

path length. Curve (a) shows the positive and negative pulses

- separately, whereas (b) shows the composite field. The

separation S is the larger of Ze or b, whereas the duration D is

the smaller (Sec. II.A and II.C.)

Fig. 4. A qualitative representation of field lines for an

electron bunch traversing a semi-infinite path. As the position

of the observe changes, the pulse form changes as shown in the

inset. Cerenkov radiation occurs at the lower right; EMP pulses

occur to the upper left.
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