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\\$>To make this multifactor approach economical, the experiment is run
initially using only one subject per experimental condition. The obvious
confounding of the subject and configuration effects in the performance
scores creates a concern regarding biased results and the risk of mis-
interpreting them.

Computer simulations and analyses were performed to better understand
the anatomy of the subject-related bias problem and to evaluate ways to
reduce it. It is shown how the bias problem is not unique to the holistic
approach néi_a consequence of using only one subject per cell; instead it
is common to all experiments in which different subjects are tested on
different experimental conditions. Selecting and assigning subjects at
random to experimental conditions does not eliminate the problem; it
ensures it. Edquations are provided to relate the variability of the sub-
ject population to expected biases.

Seven techniques that may be used singly or in combination to reduce
the dangers of subject-related bias are described and evaluated. Depen-
ding on how much information is available regarding subjects' abilities,
the investigator can (with some information): (1) include suspected sources
of subject variability as factors in the experimental design; (2) partial
out subject effects using a.covariate; (3) use more homogeneous subjects;
(4) use covariate information probabilistically to reduce interpretation
errors; and (with no information): (5) add more subjects per condition;
(6) keep the holistic design undersaturated; (7) expand the fractional
factorial design. Equations are provided to quantify the effects the
above techniques have on the reduction of subject-related bias.

In the appendices, special topics are treated: (A) Computer programs
are provided that can be used to determine expected values, their stan-
dard deviations, and the proportion of variance accounted for at each rank.
(B) The tables for the expected values of order statistic from a normal
distribution are given along with support data for experiments containing
31, 63, and 127 experimental effects. (C) The use 6f "normal order plots"
is presented as a means of evaluating the significance of a set of experi-~
mental effects when no independent estimate of error is available. (D) The
requirements and inadequacies of covariate scores as a means of reducing
subject-related bias are discussed. (E) Tables are provided to give the
probabilities that a true bias effect will actually be where the covariate
bias effects indicate that it is, depending on the number of effects being
considered, the validity of the covariate, and the size of the experiment.
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SECTION I '

H INTRODUCTION -
bR

Transfer of training experiments were being conducted RS

before the turn of the century. These experiments are intended 15

to answer some form of the question: How well does training on y:’

one task facilitate performance on a second task? P

Transfer studies have been made in many contexts. For 13}

f
example, can a motor skill acquired by one part of the body be p
transferred to another part of the body? Will learning one list ;
of words make the learning of a second list easier? Does o
training on one perceptual-motor task speed the learning of a -
second perceptual-motor task? Will solving one set of

intellectual problems facilitate the solution to another set of ejc
intellectual problems? Associated with each of these questions &%,

is an interest in the characteristics that create positive and o

; negative transfer. ol
&=

Much of the early practical work on transfer was done by N

those evaluating educational methods. With the advent of the ﬂ;

. second World War, research began to focus on finding better ways

q to train people to use highly complex equipment associated with ¢

the defense effort. Subsequently, transfer experiments were re;

employed to measure and compare the relative effectiveness of "

alternative training procedures and/or devices on the subsequent
performance of operational tasks.

v r

As the cost and complexity of training devices increased -- gﬂi
keeping pace with the operational systems -- it was no longer x;
sufficient to conduct research primarily to evaluate completed o
systems. Experimental data were needed early in the —
developmental phase of system design before the final Y
configuration was chosen to determine which simulator features o
were responsible for the greatest amount of positive transfer as &5.
the trainee moved from the simulator to the operational oy
equipment. . kN

To date, this simulator research has not provided the )
definitive answers expected or required. That simulators as a I?ﬁ
group are cost-effective tools for flight training is generally R
accepted today, but determining which factors are responsible S
for this effectiveness still generates considerable controversy I
(Caro, 1977; Orlansky, 1982). Typically, one finds meager (i
experimental data supporting either side of the more N
controversial issues of simulator design. Much of this RS

N
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empirical ambiguity can be traced directly to the narrow limits 3{
: of the experiments and the methodologies employed. Although the .
purpose of many transfer of training experiments has shifted
from postdevelopment evaluation to predevelopment design
recommendations, conventional experimental paradigms employed
half a century ago continue to be used although they are no
longer appropriate.
In this report, the inadequacies of the traditional 5:
X paradigm will be discussed. A new, more effective transfer of [
; training paradigm for equipment design research used at the £t
Naval Training Equipment Center will be described. Solutions to Eﬁ:
certain problems of data interpretation that derive from testing EeR:
a different subject (or subjects) on each experimental condition ]
will be presented. ey
CONVENTIONAL TRANSFER OF TRAINING DESIGNS E:j:',
r.:.»:'
[

Campbell and Stanley (1963), in their classic book on
experimental designs, offer criteria and deficiencies in designs —
primarily suited for transfer of training research. Although
they suggest that more elaborate designs are possible, the L
paradigms actually employed by behavioral scientists in most
transfer of training experiments have traditionally been some
minor variation on the design shown in Table 1.

1Y )
TABLE 1. CLASSIC TRANSFER OF TRAINING PARADIGM i
Pre-test Training Post-test ;i
Experimental Group E 2 X ] SO
1 2 L"‘}
Control Group E 01 ﬂz g
Each group contains a number of subjects, presumably drawn :3§
from a representative population, the exact number quite 3
frequently being determined by logistic rather than statistical P
considerations. Depending on the number of groups involved, the o
number of subjects per group has tended to range between three RN
and ten. Each group performs the sequence depicted above. The #-
E indicates that some effort is made to equate critical —
differences In subject ability among the groups by assigning AN
subjects in some quasi~random manner, by matching, or by some N
postexperimental statistical manipulation. }ﬁt
The X shows that the experimental group receives some %
special training not glven to the control group. 1In some ~,%
experiments, the investigator may decide to include more than Ll
one experimental group, each receiving a different training ST
2
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procedure or configuration. At times, when an old and a new

. treatment, device, or process are being compared, both groups
may receive training appropriate to the condition being studied.
The use of the control in that case is often eliminated. 1In
some studies, the multiple experimental configurations can be
dimensionalized to form a factorial design, thereby enhancing
the information made available. Until recently the total number
of experimental conditions (whether dimensionalized or not) has
seldom exceeded eight.

h LY
b W25
s The Os in the above design indicate that performance is N
) measd?EE,gg the criterion (transfer) task both before (i.e., 01) }?
) and after (i.e., 0,) training for the experimental group, and éﬁ
twice (but without the intervening training) for the control.
In some training studies, however, particularly when extremely P
y complex tasks are to be learned (e.g., flying an aircraft), ro
3 pretests are not carried out since it is presumed that the Qp
. subject cannot perform the task at all without training. -
h *'“y-',
LIMITATIONS OF THE TRADITIONAL PARADIGM o
The traditional experimental paradigm is most effective 5¢
when it is employed to examine completed systems. It is most ot
suited for answering questions of the type: Is performance on &&
‘h g

criterion task, @, better than that obtained by the control
group after operators have been trained on task X? Will it be
cost effective to substitute a new training system for an old
one? Does the training effectiveness of an expensive system 3
justify its added costs over a less expensive version? The :
simplistic nature of the experimental design makes it necessary
to assume -- unjustifiably -~ that the same answer will hold
under a variety of environmental conditions or when critical
factors held constant in the experiment take on different values
in the operational situation.

IS
[ARIES

=Ty
. ' . »

The traditional transfer paradigm that compares whole
systems is not cost effective when one wishes to examine the
transfer effectiveness of simulator components under a variety
of operational conditions. 1In some studies, several components
have been varied, but far fewer than the number likely to affect
task performance. This limitation is imposed by an
inappropriate methodology which makes larger multifactor
experiments too costly to consider. Unfortunately, it is from
the results of these very limited experiments that investigators
and system engineers have drawn inferences regarding the designs
of new simulators.
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WEAKNESS OF FEW-FACTOR EXPERIMENTS

Because the traditional approach has made it prohibitively
expensive to study many factors at a time, most behavioral
scientists have been content to perform a series of partially
overlapping few-factors—at-a-time experiments. Implicit in such
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. experiments is the assumption that the experimental results and oy
the interpretations of these studies will not be influenced by N

any of the potentially critical factors held constant. Qé

X

But this is not necessarily so. The factors held constant Q%

do not just disappear. When they are held constant, they must \%

be held at some specific value. Whether selected in a haphazard A

i or purposeful fashion, the value used can markedly affect the i
! experimental results obtained from the factors that were varied b
t and may lead to incorrect generalizations when the results are ﬁ&
) applied to field situations not falling within the experimental §Q}
i‘ Space . ::_‘.::
p e A
Erroneous conclusions may be drawn from experimental o
results when: o
J ‘}-. s
y l. Unrevealed interactions exist between the g
' constant and varied factors. N
2. The overall level of task difficulty forces 'fé

performance into asymtotic limits. TN

: These are illustrated in Figure 1. ﬁ&
DX

5%

i
—

o
N
Question: Does Level 1 or 2 of Factor A yield the higher performance? 35.

Dy

o WY

Factor A (Varied) Factor A (Varied) N

1) 2) 1) 2)

- () :-

"Factor Level 1) 5 10 1) 5 10 "

B '.u:
. held or or g
constant y L

at Level 2) 10 ] 5 2) 5 5 -

CASE I: Factors Case II: Factor B Affects Over- Eﬁi

A and B interact all Difficulty Level (oo

10 1 10 e

B )

: o
p 5 2 5 =4
" T A 2 R
) Figure 1. Effetts of factors held constant. t'k
# £.

r
P




. Note how the conclusion regarding Factor A would differ
depending on whether the level of Factor B were fixed at Level 1
or Level 2. In the first example, the investigator would have
no knowledge of the interaction between A and B and would draw
conflicting conclusions depending on the level at which Factor B
had been held constant. While it might be argued that an
investigator must recognize that it is dangerous to extrapolate
the results beyond the experimental space, in practice, the
"situation specific" nature of human behavior is usually
forgotten, and results are frequently generalized to situations
to which they do not apply. (Just contemplate the information
applied to the training of experienced pilots flying
high-performance jet aircraft that came from studies using a
simplified version of a Link trainer flown by inexperienced
pilots.)

In the second example, no real interaction exists. sStill
the value at which Factor B is held constant can influence the
size of Factor A's effect. The value of Factor B will affect
the level of overall task difficulty. If the task becomes too
easy or too difficult, then performance can hit a ceiling or
floor (as in Case 1I, Figure 1) where potential differences
between two conditions of Factor A are no longer apparent.

When we consider the fact that there are usually not one
but a great many factors held constant, often without careful
planning on the part of the investigator, the potential for
misinterpreting the data increases unless prudent procedures are
followed. Furthermore, unless the values for the factors held
constant in the experiment correspond to those encountered in
the real world, attempts to predict real<world performance will
be biased by the differences.

THE NEED FOR MULTIFACTOR TRANSFER EXPERIMENTS

If we wish to obtain valid and generalizable data on the
transfer effectiveness of a large number of system components, a
truly multifactor experiment is needed with ranges of values
that cover the space of concern in the real world. Some form of
factorial study is needed to detect interactions and to measure
the components in combinations that will reflect those
interactions. One must attempt to include "all" of the
potentially critical factors in the same experiment to make
valid generalizations to the operational situations.

In the early 1950's Williams and Adelson (1954) were asked
by the Air Force to examine the requirements for fidelity in a
flight simulator used for pilot training., As part of their
analysis, they describe a transfer of training experiment to
determine the relative savings for various simulator
confiqurations involving 34 simulator characteristics. 1In their
report, the investigators explained the rational process they
went through in planning such an experiment. They wished to

o . % LWL
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vary each of the 34 simulator characteristics over five values
to map the function interrelating these characteristics,
However, noting that a factorial experimental plan would involve
5.8 x 10°° combinations, they stated that "it is manifestly
impossible to conduct a transfer of training experiment for each
[of the conditions of the full factorial), since there would be
neither sufficient time nor enough subjects to complete the
project® (p.8). They then explored the possibility of looking
at each factor individually and testing 28 pilots at each level.
Since this also proved to be too expensive to be practical, they
considered limiting their investigation to "only the important®
factors. To this, they concluded: "But here a dead end is
encountered for there is no a priori way to decide which are the
important characteristics that should be studied" (p.8). They
noted that they had already selected the important factors and
had kept the number at a minimum. Furthermore, they pointed out
that even if such a study were possible, it would be limited to
only a few flight tasks and a specific aircraft simulator. For
these reasons, they wrote, "one hesitates to recommend purchase
of a variable characteristic simulator for the purpose of
studying fidelity of simulation” (p.9). No experiment was ever
conducted.

This case exemplifies the dilemma faced by psychologists
concerned with an empirical determination of training simulator
requirements. On the one hand, dimensionalizing transfer of
training experiments adds markedly to the validity of the
information obtained. On the other hand, for large multifactor
experiments, the size of the data collection effort using the
traditional experimental paradigm becomes too prohibitive to be
practical.

A HOLISTIC EXPERIMENTAL PARADIGM

A holistic paradigm for conducting large multifactor
experiments has been described irn several reports by Simon
(1977b, 1979). It enables a great many factors, i.e, 18 or
more, to be investigated in an integrated, sequential data
collection effort at far less cost than would be achieved when
studying even three or four factors at a time using the
traditional approach. This paradigm has already been employed
in experiments at the Naval Training Equipment Center in which
immediate simulator performance by experienced operators was the
primary criterion (Westra, Simon, Collyer, and Chambers, 1981;
Westra, 1982).

The same philosophy, strategy, and many of the techniques
of the holistic paradigm can be applied to transfer of training
experiments using inexperienced operators. The term "holistic"®
has been used by Simon to identify a particular paradigm
composed of a philosophy, strategy, and bundle of techniques for
conducting large scale, multifactor, controlled experiments
economically. It is not an experimental design but a practical
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methodology for the design of experiments. 1t provides a

* pragmatic, empirical description of performance on a designated
task throughout the multifactor (and multivariate) space, ;
properly protected against such sources of bias as lack-of-fit '
of the experimental model along with time and subject bias
effects. The holistic approach has the same advantages for
transfer experiments as it does for immediate-performance
experiments insofar as quantity, quality, and costs of
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information are concerned. However, an additional strain is put Kok
on the size of any experimental effort in transfer experiments P
over that experienced with the immediate-performance studies. %5%
This is due to the additional time required to train subjects on e ¢
different configurations, the introduction of the transfer task, ng

and the fact that a different subject is being tested on each
training condition. Still, if the problem is important enough, ;\

Y

the effort is justified. E"
APPLYING THE HOLISTIC PARADIGM TO A TRANSFER EXPERIMENT ,:'
Simon and Roscoe (1981) conducted a laboratory experiment —
to demonstrate the advantages of the holistic approach to o,
transfer of training experiments. A quasi-~transfer of training K e
study was carried out in which both training and transfer were o
measured on different configurations in the same simulator. The N
task was a horizontal tracking test, and a total of 8¢ college %
students were used as subjects in the experiment. The —
investigators trained a different subject on each of 49 ——
different simulator configurations in an experimental design .
that permitted both training and transfer performance to be z'
mapped over a seven~dimensional space. 2,
P 48
The seven factors were: vehicle control order, display =0
lag, tracking mode (percent pursuit versus compensatory), .
prediction time, control gain, training trials, and difficulty RO
-- at three levels ~~ of the criterion (transfer) task. Three )
control groups, one for each criterion task, were tested. The R
experimental design is shown conceptually in Figure 2. The bgj
cost-to~information ratio exhibited by this data collection plan “L;
is a marked improvement over anything possible using traditional '
transfer of training designs. &ﬁ&
o
Westra (1982) employed a similar plan in an in-simulator f%ﬁ
experiment to study the transfer effectiveness of six simulator o
design features for training two types of pilots (with no prior -
carrier-landing experience) to land on a simulated aircraft -
carrier. The six features were field of view, motion, scene !
detail, turbulence, glideslope rate cuing, and approach type. o)

An experimental design made up of 32 training configurations was
used to evaluate the transfer effectiveness of all critical
combinations of the seven factors (including pilot types) and
their two-factor interactions. A single criterion task -- a
simulator configuration judged to have the highest fidelity to a
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real aircraft carrier~landing task —-- was used. A different
subject was trained on each configuration.

B Using the Simon and Roscoe experiment as the primary
§ example, the items listed below illustrate the power and some of
' the advantages of using a holistic approach in transfer of

: training experiments:

: 1. Informative: The data from the 48 subjects/training o
configurations were sufficient to estimate all main and Tt
! two-factor interaction effects for six training factors and e
) three transfer confiqurations for training and transfer %
performance. By adding eight more subjects at the center point i
of the experiment, the probable presence of some higher-order s
' effects could be tested. N
2. Precise. By taking advantage of the "hidden ii:
replication” in the factorial-type design, all estimates of an tf‘

equipment factor's main performance were based on 24 performance

scores, and all estimates of main and two-factor interaction
effects were based on the differences between 24 pairs of

values., Estimates of transfer means were each based on 16 . d
performance scores. At

S ". .I b (
. .'J

3. Generalizable. An analysis of the data produced an rnl

equation that provides an estimate of the transfer effectiveness -
a of any training configuration within the boundaries of the ¢:
experimental space -- whether empirically studied or not -- on AN
the performance on three criterion (transfer) configurations. ;Q;
» by
{ 4. Economical. For screening purposes, the training "
' configurations that yield the greatest amount of transfer to any -
of the criterion tasks can be identified (within the confidence (B
limits of the experiment) without ever testing a control group. :&
This makes an already cost-effective design still more =3
economical. This is so because an adjustment for a control 3?
A group merely removes a constant from all the transfer scores. e
Thus, relative performance is known whether the control data are =
: involved or not. (Control data need be collected only to s
4q estimate savings, a step that should be delayed until the system v
) evaluation phase begins. At that time, the few training S0
. configurations tentatively identified during the screening phase o
4

would be examined more stringently.)
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SECTION 1II
THE PROBLEM

In multifactor transfer experiments involving 32, 64, or
more conditions, the need to train different subjects on each
experimental condition can frequently put a strain on subject
availability, however economical a design may be. Furthermore,
with the extended training sessions and additional transfer
trials, the overall time to do a transfer of training experiment
is markedly increased over that for a simpler, immediate-
performance study using the same basic experimental design. For
these reasons, to avoid having to reduce the number of
potentially critical factors being investigated, the
experimenter initially will use a single subject per training
condition. Then only after examining his data will he exercise
the option to add more subjects per condition, if necessary.

Two arguments against using only one subject per condition
are frequently raised, although neither is crucial to our
experimental goals in the early stages of the research program.
The first is that one subject per condition does not provide a
very reliable estimate of performance on a single training
configuration, The second is that with one subject per cell, no
within-cell variance estimate is available as an error term for
testing the significance of the effect. .

The first argument misses the point of the screening
experiment (Simon, 1977a). At this stage of an investigation,
the experimenter seeks empirical data which can help him
identify the few truly critical factors out of a great many
candidates for the task at hand. He is only casually concerned
with precise estimates of performance on individual
configurations, although in fact the estimate from a properly
designed screening study will be quite precise. Each main- and
two-factor interaction effect in these two-level designs is the
mean difference of N/2 values, with N being the total number of
observations in the experiment. An estimate of the error
variance in these experiments can also be expected to be based
on at least N/2 degrees of freedom. For holistic experiments of
64 conditions or greater, the reliability of the estimates
should compare quite favorably with those obtained in studies of
typical human performance.

The coefficients of the factors identified as critical can
be written in equation form and used to estimate performance on
any configuration within the total experimental space whether
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actually studied or not. While these estimates will be Ve
relatively reliable, one might better limit their use to the -
‘ primary purpose of the screening design -- determine the g
¥ critical factors and localize a much more limited space within sl
i which a more stringent investigation would focus. Absolute it
¢ performance values are better obtained in the evaluation stage e
. of the investigation, where the configurations selected from the ;ﬂﬂ
screening data are studied in depth, preferably in an —3
. operational environment. baxt,
; 2
: The second argument, that using one subject per condition ﬁ i
Y provides no measure of within-cell variability (to be used as an Eﬁ‘
estimate of the error variance), is true in fact but false in L3
implication. There are a number of alternative techniques
“ available for estimating error variance that do not require a oy
4 total replication of the design. Center point replication and fﬁ
¥ other forms of partial replication techniques have been oy
: discussed (Simon, 1973). The normal-order plots (Daniel, 1959, >
1976; Simon, 1977a) used to estimate the statistical Y
significance of an experimental effect also provides a —
reasonable measure of the error variance when the larger (C > iy
64) experimental designs are involved even for unreplicated data Ny
(see Appendix C). \§
While neither of the above objections represents a serious 3&
cause for concern, a third, more surreptitious problem relating e
: to subjects does exist in the transfer of training paradigm _C
y described earlier and could assume unacceptable proportions if ;ﬂ
) not properly handled. This is the bias that inevitably occurs P{,
whenever a different subject (or subjects) is randomly assigned hax!
to each of the experimental conditions. B
BIAS FROM INDIVIDUAL DIFFERENCES -
That individual differences can complicate the conduct and E.
. interpretation of human performance research is well recognized. ey
) Although differences among subjects are merely one of many N,
potential sources of variance and bias in experiments, the =
unique characteristics of human beings present special problems .
that distinguish behavioral science research from that of the b
physical sciences. This is not because the paradigm for e
experimental designs, per se, will be different; it is just Ly
that in general "human factors" are less identifiable, less : }
measurable, less manageable, and less understood than those (0N
ordinarily investigated in physical science experiments. -
e
When individual differences are not the primary focus of an :;5
experimental investigation, the investigator may try to control e
them in various ways: e
W
o by using the same subjects across all (or blocks of) '
conditions, o
i
P
ra
12 ’:,E
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o by assigning subjects so as to equate abilities across
conditions,

o by assigning subjects at random to the experimental
conditions,

o by removing subject differences statistically after
the experiment has been completed.

In transfer of training experiments, certain limitations
occur. It is ordinarily not feasible to train a subject on more
than one configuration or training procedure. Frequently, the
specific ability of the subject who is about to be trained to
perform the task for the first time is neither known nor
measurable, making equating essentially impossible. The use of
one subject per cell to economize when a great many conditions
are being studied makes it still more difficult to equate among
the cells for individual differences. The use of covariates
will be discussed in another section, while the inadequacy of
randomization is discussed below.

BIAS VS VARIABLE ERROR. When different subjects are distributed
randomly among the experimental conditions, the effects of
individual differences can both bias the experimental effects
and contribute materially to the size of the error variance
term. Traditionally, more concern has been given to the
variable error component created by individual differences,
particularly as it affects the power of the tests of statistical
significance. 1In this report, the effects of bias error will be
the point of focus.

To say that individual differences bias the effects means
that the differences in performance between different levels of
an experimental factor have been confounded with mean
differences in ability of the groups assigned at random to the
factor levels. While this is nothing new in performance
experiments, the holistic approach exposes this bias more
vividly. 1In the traditional approach the problem tends to
remain submerged and muted by the excessive redundancy of the
data collection., The luxury of considerable replication is not
a viable choice with the holistic paradigm.

Just how the effects of individual differences distribute
themselves in a single data collection sample is shown in the
following familiar equation, representing the F-ratio employed
in a test of statistical significance:

B/Cell Var. (i.e., Factor Var. + Subj. Var. b/cells + Error Var.) (Eq. 1)

F =

W/Cell Var. (i.e., Subj. Var. w/cells + Error Var.)
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. All sources of variance within each set of brackets are -
confounded; that is, they cannot be independently measured nor i
isolated. Subject variability is confounded with factor NI
variability in the numerator and inflates the true error = )
variance in the denominator. We must not be tempted to forget oy
that subject variance is not a source of random error or unknown a
variance; it is a known source of variance that cannot be
isolated in this application, ,{3
a6
In Table 2, a fictitious example is given to illustrate g ]
what is happening in Equation 1, For this example, the eight 3;
experimental conditions of a 29 factorial design will represent i
different equipment configurations. The three tables show the Sy
contributions to each cell made by the subjects (2.1), the -
equipment configurations (2.2), and the two sources combined e
(2.3). Beneath each table, the total between and within cell e,
variances for that table are presented. ]
A
The data shown in the tables were obtained as follows: %
Sixteen performance values were chosen to approximate that which ==
would be expected had 16 subjects of different abilities been 5
selected at random from a normal population with a mean of zero s
and a standard deviation of one.* These numbers were assigned at P
random to the eight experimental conditions, two to a cell Eag
(Table 2.1). The sum of both subjects' scores within a cell |{s E%w
shown. The breakdown of variances between and within cells is =
shown below each table. For this sample, the total subject >
variance was approximately .92 (close to but not exactly the T
population variance of one), and total subject variability was 22
distributed unevenly between and within cells, ’:’
Theoretically, when subjects selected randomly from a )
normal population are assigned at random to the experimental S
conditions, the expected between- and withinecell subject KRS
variances are equal to each other and the population variance. Pl
Because the sum of within- and between-subject sums of squares &i\
equal 100% of the total subject sums of squares, any differences Eota
between these sources behave reciprocally. Thus, if subject e
bias gets larger, error variance due to subjects gets smaller, NN
and vice versa, and significance tests will be distorted either "o
way. Assigning an error probability of .85 to the Fetest of ﬁk-
statistical significance does not escape the problem as some P
would like to believe. It helps us little to know that our oy
chance of drawing erroneous (Type 1) conclusions is five in 109, .
u‘-’.;
S8
Y
*Throughout this report, the notation: N[@,1]) is used to f}?
describe a population with a mean of zero and a variance (and ~ﬁ‘
standard deviation) of one. The same notational form but with *:7
different numerical values will be used for normal populations NACAK
with a different mean and variance. ;}ﬁ
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TABLE 2. THE ANATOMY OF SUBJECT-FACTOR CONFOUNDING (Fictitious data)

lgr

43

e

: . $
N Exptl. Design: (1) o a b ab c ac bc abc §;
Cell: . 1 2 3 4 5 6 7 8 :“.‘;

2.1 SUBJECT ABILITY (N[0,1]) : bt

‘ Score a. .76 -.99 -.08 1.77 .08 .57 -.23 -1.28 e
X b. 1.28 .23 .40 -.76 .57 -1.77 -.40 .99 E,.
Sum/Cell: 2,04 -.76 .32 1,001 -.49 "-1,20 -,63 .-.29 o

; VARIANCE ANALYSIS-- TOTAL: .916; B/Cells: .573; W/Cells: 1.22 =
: . | %
) 2.2 EQUIPMENT CONTRIBUTION ke
Score a. .23 .86 .3 .14 .75 .92 .17 .08 '

! b. .23 .86 .36 .14 .75 .92 A7 .08 "s
' Sum/Cell: .46 1.72 .72 .28 1.50 1.84 .34 .16 ’fﬁ
LY

VARIANCE: ANALYSIS-- Total: .113 B/Cell: .243 W/Cell: 0 33

=}

>

2.3 CONFOUNDED PERFORMANCE | o

Score a. .99 -.13 .28 1.91 .83 1.49 -.06 -1.20 %

b. 1.51 1.09 .76 -.62 .18 -.85 -,23° 1.07 s

Sum/Cells: 2.50 .96 1.04 1,29 1.0 .64 -.29° -.13 "

; VARIANCE ANALYSIS-- Total: .825 B/Cell: .378 W/Cell: 1.22 - %.;
; . L.:..‘
! 2.4 EFFECTS FROM ANOVAs OF SUBJECTS, CONFIGURATIONS, AND COMBINED  SCORES
E Source Subjects + Configurations. = Combined o

» Mean .00 .88 .88

§ A -.62 324 "'038 o:::
B .20 -1000 --80- !"

! AB 1.13 - .55 .58 -
‘h' c -1-30 016 -]0]4. y

b AC .43 -.16 .27

' BC .18 -.4 -.23 D,
ABC -.6] .29 -.32 o

. o~
b Y%
-

.Y

- 'r"r’ I‘.I .
L/
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since we cannot know where they are in practice. If one is Wy
trying to solve realwworld problems of import, then we are on 3
dangerous ground by putting our faith in a statistic after the o
fact rather than anticipating and compensating methodologically )
for the problem beforehand. ?@’
v‘": N

As has been frequently noted, by these standards, and SO
taking journal rejection rates into consideration, more than 5% ]
of the experiments published by psychologists are expected to )
arrive at the wrong conclusions. If one stops and ponders what }(&
L this really means for serious investigations of realeworld -{j
b problems, one cannot be content. Even if one had valid and A
reliable knowledge of subjects' abilities to use to assign N
subjects to the cells, and thus be able to minimize the biases 3
or minimize the error variance as we wish, we still could not do AN
both in the same experiment. Consequently, however we may S
assign our subjects to cells, the problem of bias error can be b
serious. s
N Y

In Table 2,2, the contribution of each equipment —
configuration is shown. While only one configuration is A
represented in each cell, its value is shown twice to parallel 3%1
the subject values with which it will be combined. From this bt
table, it is obvious why configurations only contribute to the AR
betweeen cell variance; there is NO variance within cells. RO
(Note: To keep the discussion simple, no error variance is .
included in this example.) -
In Table 2.3, the subject and configuration contributions ﬁﬂ:

are combined. This table of confounded performance scores ot

constitutes the information that would be obtained when the
experimental data are collected.

ANOVA, When we identify the eight cells as experimental
conditions cf a 23 factorial design =- they are named at the top
of Table 2 -- and perform an analysis of variance, we obtain the
seven effects shown in Table 2.4 for the data in Tables 2.1,
2.2, and 2,3. Note how the confounded effects are the
arithmetic sum of the effects due to subjects and to
configurations individually. Note also the effect of the
confounding. For example, in Table 2.4, the effect of Factor C
is the smallest of the unbiased equipment configuration
estimates, but when biased by the subject effects, the

investigator would perceive it to be the largest effect (even ?
with a different sign). Other distortions due to the -
confounding are also apparent, The results reveal what was ;3ﬁ
expressed in Equation 1l; namely, that the within-cell variance N
is primarily composed of the within-cell subject variance while et
the betweenrcell variance is a combinatien of factor and subject \*
variance. Aot
P 4

This example illustrates two important generalizable Efﬁ
points: R
e

B
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Point 1. Randomization does not eliminate this txge of bias, 2
but in fact ensures it. (This will be quantified in the next 3
section.) :;
el

pPoint 2. Using more than one subject per cell does not R:
eliminate this type of blas. w&
. Nt

When we use only one subject per cell -- a decision usually 3
made because of the need for economy -- we eliminate the N
denominator of the equation, leaving: wd
LS

Between Cell Var. (i.e., Factor Var. + Subj. Var. b/Cells + Error Var.) (Eq. 2) -
As previously noted, no conventional F-test can be carried out :ﬁi
since only the numerator remains. The data from the different b
cells treated as a 2° factorial design can be analyzed, however, pﬁ.
and any bias due to subject variability will still be present. g
Bias, not the error variance (or lack of same), is therefore our ﬂg
primary concern. Neither randomization nor replication provides gy
a complete solution to this problem. -
~ -:\

Figure 3 graphically summarizes the process described in fﬁ

this section, showing how subject variability is carried through )

the steps: population to sample to calculated effects. ‘ﬁg
ESTIMATING THE SIZE OF THE BIAS FROM SUBJECT-FACTOR CONFOUNDING .

Experimenters do not need to be told that subject bias &
exists., They need to know where it exists, how much exists, L?a
when it is likely to be disruptive, and what to do about it. T
Certainly in the fictitious example given above it had a serious

effect. ™
Computer analyses, including Monte Carlo studies, were J:ﬁ
employed to obtain some general answers to these and other I

questions regarding subject-related bias*. A fictitious normal
population of subject abilities having a mean of zero and a "
variance of one was created and sampled at random by the R
computer. N subject ability scores were sampled from the -
defined population and assigned at randon to the C conditions of

a 2 k-p factorial design of corresponding size, initially with Eﬂ;
one subject per condition. These numbers were treated as data e
and subjected to an analysis of variance from which (C-1l) = K s

independent main and interaction effects could be estimated.

§ -’a" "-""'-"
WX XXX

Ly
LR

*Information regarding the computer programs used to prepare the
material in this paper may be found in Appendix A.
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Figure 3. How fndividua] differences confound with equipment
configurations to bias equipment factor effects.
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. These subject effects, i.e., the mean difference between two '

\ levels of subject abilities for each effect, were ranked in :
) ] magnitude with rank one being the largest positive effect and i
‘ rank K being the largest negative effect that was obtained. ﬁﬁ
Theoretically, these values are symmetrical around zero with o

opposite signs for each half. o
The above process was repeated ten thousand times and the ‘:§

mean of the subject effect (i.e., expected bias), the standard Sy

deviation of the bias (s-bias), and the proportion-of-total- §Qi
variancewaccounted~for were obtained for each of the K rank oL,
positions. The results of this for N = 16, K = 15 are shown in ;s§

Table 3. o

) TABLE 3. ESTIMATED SUBJECT BIAS EFFECTS FOR K = 15, N = 16 ;‘..3
(16,000 TESTS, RANDOM SELECTION, AND ASSIGNMENT FROM iy

' AN N[0@,1) SUBJECT POPULATION) -

LY

) A B c D E =
K Rank Expected Stand. Dev, Prop. . >
; by Size Size of Bias Total var, z=-score e
1 .87 .27 .237 1.74 Ky

2 .62 .21 .120 1.24
3 .47 .19 .070 .94 =

4 .36 .17 .041 0.72 o

5 026 017 0621 ﬂ.sz ‘v

6 017 .16 .009 0.34 ::

7 .08 .16 .002 .16 A

8 .00 .16 .000 .09 e

9 *,.08 .16 .0802 »0.16

. 10 ~.17 .16 .009 -0.34 S
. 11 ~-.26 .17 .021 *0.52 N
5 12 ~.36 .17 .041 0,72 i
13 ».48 .19 .876 »0.96 R

14 ~.62 .21 .120 ~1.24 r{L

15 -.87 .27 .237 ~1.74 e

< o
” (SN,
. Ny
X The mean of the 10,000 mean differences at each rank is an L\’
estimate of the expected bias due to subjects from the N(0,1] et
population for that rank. The standard deviation of the c:

expected bias at each rank shows how much the sample biases may S

g vary in size around the expected value. The proportion of 'Q:
variance provides a measure of the relative contribution the NS

bias at each rank makes to the total variance. AN

] When subjects from the normal population are assigned at ﬁi
/ random to the N experimental conditions, the K biases determined }3ﬁ
! by the above analysis will be confounded in some manner with the e
.',N
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. K experimental effects. Any experimental effect may be
| . confounded (biased) by a positive or a negative subject effect
which, in turn, may be relatively large or small.

Thus we are able at this point to estimate the biases that
§ will occur when subjects are chosen and assigned at random from
a normally distributed population (N[d,1]), but we have no way
of knowing in a real experiment with which of the K experimental
effects each bias will be confounded, or for that matter, what
size the single sample bias will actually be,

o - >

Expected biases can be expressed in standardized form
, (z-scores). These can be obtained in the conventional way by
subtracting the average bias (which in this example was zero)
from an expected bias (i.e., mean difference) at any rank and
dividing the result by the expected standard error of the
subject mean difference. This standard error of the mean
differences is obtained by multiplying the population standard
deviation (in this case equal to one) by the square root of the
quantity four over N, where N is the total number of independent
observations in the experiment. The equation for this is:

Expected z-score Expected bias for Population [4 (Eq. 3)
of bias effect = rank i of K cases —— |Standard o [—

for rank i of from a population Deviation N

K cases N(0,1)

where K cases are the number of independent effects being
. seriously examined in a 2 k-p experiment, one subject per
condition.

In practice, the subject variance and standard deviation
X will probably not be equal to one, as in the fictitious
population. To complete the equations, the investigator must be
able to estimate the population standard deviation, which is
usually done using data from other similar experiments or is
estimated from empirical data obtained from the subjects in the
- ongoing study.

The z~-score values in Table 3 are the standardized scores
of the expected biases. Such z-values for various "N"s are
b published in tables of "expected values for order statistics
from a normal distribution™ (Beyers, 1961; Harter, 1961; Owen,
1962). If no table for a particular "N" can be found, the
computer programs provided or referenced in Appendix A can be
used to generate expected values. Tables of expected values for
"N" = 31, 63, and 127 along with support data are published in
Appendix B.

N N

The expected scores found in the published tables of order
statistics for normal distributions can be converted into the

L s S & 8 &
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expected bias values for any particular 2k-p experiment using a
rearrangement of Equation 3:

Expected bias Expected z-score. Population 4 (Eq. 4)
for rank i of = for rank i of K , {Standard ./ —
K cases cases from popu- Deviation N

lation N(0,1)
Similarly:
Standard devia- Standard deviation Population 4 (Eq. 5)
tion gf bias for = of the z-score for , |Standard ./ — 9.
rank i of K cases rank i of K cases Deviation N

The proportion of variance for each rank is obtained as follows:

Proportion of (z-score at rank i)2
variance for =

rank i of K Sum of (z-scores)? (Eq. 6)
cases

Proportions at several ranks may be accumulated to determine the
expected proportion of variance accounted for purely by chance
by combinations of the largest effects (either positive or
negative or both).

Let us illustrate briefly how the data in Table 3 might be
used. For example, when 16 subjects are drawn at random from a
population in which subject abilities are distributed N(0,1] and
assigned at random among 16 experimental conditions, i.e., one
subject per cell, the K=15 estimable effects from an analysis of
variance will also be distributed randomly and the largest
expected positive bias will be 9.87, which is in units of
subject population standard deviation. 1If we did not expect
many real effects to be larger than one, for example, then we
must do something about the bias since if a +1 effect happened
to be confounded with a «.87 subject bias, they would
essentially neutralize one another and a real effect would not
be detected. Or, with a standard deviation of the largest
expected bias (rank one) equal to #.27, there is a .16 chance
that the obtained actual bias might be greater than 1.14 which
could cause a trivial effect to appear quite important.

If for whatever reason an investigator does not intend to
examine all 15 estimable effects, then he would look at a table
of normal order statistics for the "N" (in the table) equal to
the number of effects (K) that he does intend to examine. The
zevalues in that table would then be converted into the
appropriate bias values, as shown in Equation 4, using the
original N of 16 subjects.
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For comparison purposes, the four largest positive expected
biases (ranks 1,2,3,4) and z-values for K=31, 63, and 127 are
shown in Table 4. The largest corresponding expected negative
biases are of the same magnitude. The standard deviation of
each z-value (s of z) along with the proportion of the variance
(Prop.) accounted for by each, and the corresponding largest
effects in a 2 %P experiment with one subject per cell, are also
given. The complete tables of these expected values are given
in Appendix B, the only known published source of tables for
K=127. The bias values shown in Table 4 will not be found in
Appendix B, but can be calculated using Equation 4. Note in
Table 4 that while the larger effects from larger samples are
further from the mean (i.e., larger z=values), the biases
actually get smaller.

TABLE 4. EXPECTED VALUES AT RANKS 1 THROUGH 4 OF ORDER
STATISTICS FROM A NORMAL DISTRIBUTION FOR
K=31, 63, and 127

Rank z=value s of 2z Prop. Bias*

v~ C———

1 2.056 .494 .148 727
2 l1.632 .369 .893 «577
3 1.383 .319 .0867 .489
4 1.198 «292 .050 424

1 2.338 .452 .091 584
2 1.956 .330 .063 .489
3 1.739 .281 .0506 «435
4 1.582 «254 .041 «396

1 2.592 .419 .054 .458
2 2,242 .300 .040 .396
3 2.048 .253 .034 .362
4 1.909 .225 029 .337

* These bias values are specific to two-level experiments with
one subject per condition, where the numbers of conditions
are 32, 64, and 128, respectively. Complete tables for the
other values of normal order statistics for these Ks can be
found in Appendix B.

In the aforegeoing discussions, we have shown that:

Point 3: When different subjects of different abilities are
selected and assigned at random to the various conditions of the
2k-p experiment, the maximum amount of expected bias from
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subject variability depends on the subject population variance,
the number of estimated effects, and the size of the sample.

Point 4: Subject-related bias will occur to some degree in all
experiments in which different subjects are assigned at random
to the cells.

NON~NORMAL DISTRIBUTIONS. Throughout this report, the
assumption has been made that subject populations are normally
distributed. 1In practice we may encounter distributions which
depart considerably from the normal. Fortunately, the central
limit theorem (Hays, 1963) is operating here. Even with subject
population distributions that are considerably skewed or
otherwise nonbell-shaped, expected biases will not be seriously
altered. Regardless of the abnormalities that may exist in the
parent population, the distribution of the means of samples
drawn from that population will tend toward normality. (Once
again, this reminds us that the tables in this report are means
-~ what is expected ~~ although any single experiment may not
reflect that value exactly. That is why the standard deviations
are given in the tables of expected values.)

Two of the more common non-normal distributions are those
that are skewed (Bl), i.e., being nonsymmetrical, yielding more
measures at one end than another; or kurtotic (B2), i.e., being
symmetrical but being relatively peaked (leptukurtic) or flat
(platykurtic) in the neighborhood of the mode. For normal
distributions, Bl=@ and B2=3. When Bl deviates from @, the data
is skewed. For B2 >3, the data is peaked and <3, the data is
flat.

Using a Monte Carlo simulation with 10,080 runs, the bias
values for a K=31, N=32 experiment were obtained for

.distributions with different amounts of skewness and kurtosis.

The results of these efforts; that is, the eight largest ranks,
are reported in Table 5 along with the values for the normal
distribution.

The skewed distributions were created by raising the
discrete values from a table of order statistics to the second
(Skewed 2) and fourth (Skewed 4) powers. The new numbers were
then scaled so that the variance would be equal to one and then
used to obtain the estimated mean values shown in Table 5. In
the skewed distributions, a leptokurtic element is also present.

The kurtotic distributions were created as follows: The
leptokurtic (peaked) distribution was obtained by cubing the
discrete values from a table of order statistics and adjusting
the new numbers so that their variance equalled one. From
these, the expected mean values for a peaked distribution shown
in Table 5 were obtained. This data is symmetrical, though
peaked. The platykurtic data was obtained by taking the cube
root of the discrete values on the table of normal order
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statistics and adjusting them to have a variance of one. From
these, the expected mean values for a flattened distribution
shown in Table 5 were obtained.

Overall, since some extreme cases of non-normal
distributions were used for our examples, Table 5 supports the
central limit theorem by showing no serious deviations in the
expected mean values for any shaped distribution.

It should be noted that subject outliers that might distort
distributions could occur with serious consequences. These
subjects, however, could not be considered part of a
well-defined distribution and should be dealt with directly. An
investigator should not let the robustness for non-normality, as
expressed in the central limit theorem, decrease his vigilance
in detecting true outliers.

SUBJECT BIAS: HOLISTIC VERSUS FEW-FACTOR EXPERIMENTS

I1f, in fact, all experiments with different subjects per
cell bias the experimental results to some degree regardless of
whether one or more subjects are tested on each condition, why
should we suddenly become concerned with this matter when
conducting holistic experiments? Why wasn't there equal concern.
when the more conventional few-factor experiments were being
conducted?

TABLE 5. EFFECTS OF NON-NORMALITY ON THE LARGER BIAS
EFFECTS (K=31, N=32) (All distributions are scaled
to have a variance of one.)

Normal Skewed 2 Skewed 4 Peaked Flattened
{81,B2]) [@,3) {2.8,5.1) (7.6,9.8] (0,8.4] (6,1.3)
Rank 1: .73 .70 .63 .67 .74
Rank 2: «58 «57 «55 «56 «58 Toes
Rank 3: .49 .48 .48 .48 .49 o
Rank 4: .42 .42 .43 «37 .42 P
Rank 5: .37 .37 .37 .33 .37 od
Rank 63 032 032 033 029 032 ’:\i\;
Rank 7: .28 .29 .29 .25 .28 i
Rank 8: .25 .25 .26 .21 .25 =
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Several answers can be given. First, there has always been
concern about this bias. That is why an effort is frequently
made to equate (or match) subject groups. Second, because

3

l

psychologists frequently plan experiments somewhat casually, :Gﬁi
generally using stylized "cookbook" designs, there has not been }jﬁ
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the pressure to understand the nature and magnitude of this
problem. Randomization and replication have been the methods
used to deal with problems created by subject variability
although, in fact, randomization does not eliminate the problem
at all, and the amount of replication needed to meaningfully
reduce the bias threat may often be too costly to employ. 1In
that regard, the experimenter who expends his resources
replicating the few-factor experiment to reduce the effect of
subject variability is generally exchanging one form of bias for
another, i.e., for that which occurs when critical factors are
held constant to keep the size of the experiment small.

Third, the holistic approach tends to saturate the
experimental design in order to optimize the iInformation-to-cost
ratio. This imposes a much greater demand for the cleanliness
of each data point. The holistic experiment uses most of its
degrees of freedom estimating main- and two-factor interaction
effects while tentatively ignoring higher order interaction
effects on the working assumption that these latter effects will
prove trivial (Simon, 1977b), a matter that will eventually be
tested empirically. A few-factor experiment, on the other hand,
generally employs a full factorial design that distributes most
of its degrees of freedom among the higher-than-two-factor
interaction effects and/or replications. For example, with 32
conditions and no replication in either case, a fully saturated
holistic experiment could theoretically estimate 16 main effects
and 15 strings of two-factor interactions, while a full
factorial design could theoretically study five main effects and
ten two-factor interactions. The remaining 16 degrees of
freedom would be used to estimate higher-than-two-factor
interactions. Therefore, under these conditions, in the
holistic experiment we can expect some main- and two-factor
interaction strings to be biased by the largest expected subject
effect while the chances are about half for that to occur with
the full factorial. Thus, for any fixed number of estimable
effects, the probability of a large subject-bias value being
confounded with a critical effect is much greater with a
saturated or near saturated design of a holistic experiment than
with the full-factorial of the few-factor study.

Finally, holistic experimental designs employ selective
confounding to achieve their economy. For example, in the
design described in the previous paragraph, all main effects
would be aliased (confounded) with three-factor interaction
effects. While there exists the calculated risk that this
confounding may result in biased estimates of the main effects,
in practice the risk is generally low when proper precautions
are taken in planning many-factor experiments (Simon, 1977b).
still, when subject effects are also confounded with both
higher-order effects and main effects, we only increase the
chances that the results will be misinterpreted.
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One might ask why the greater concern with subject-factor
confounding than with three-factor interaction confounding. The
reason is that when confounding occurs between factor-related
effects we not only know what effects have been confounded with
one another (and should have purposefully selected the
combinations), but we also have techniques for isolating them if
necessary. When there is bias from subject effects, while we
know the approximate magnitude of the bias being distributed
among the experimental effects, we do not know with which
effects the larger biases will be combined.

Do these weaknesses argue against the use of holistic
experiments and for the continued employment of the traditional
approach? A detailed response to this is beyond the province of
this report. However, it suffices to say that:

Point 5. Given a specified number of factors to be
investigated, and fixed resources with which to investigate
them, one will obtain more and better quality information at
less cost using the holistic approach than using any series of
few-factor experiments (Simon, 1979).
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SECTION III

TECHNIQUES FOR REDUCING RISK OF BIAS FROM SUBJECT/FACTOR CONFOUNDING

We have seen how the severity of the bias resulting from
subject-factor confounding is a function of the size of subject
variability. Techniques for reducing bias must in one way or
another decrease the amount of this variability within the
experiment.

While no amount of bias should be acceptable, a "pragmatic
empirical®™ orientation is the cornerstone of the holistic
approach. In equipment design research, there are at least two
circumstances in which an investigator may not wish to take the
additional steps required to reduce this subject-related bias
from his results, The first would be when the investigator has
a priori knowledge that subject performance variability (on the
specific task) is small relative to that of the experimental
factors and, therefore, does not justify the expenditure of time
and money to reduce it further. The second would be when the
investigator is only interested in identifying factor effects
that significantly exceed the effects of individual differences.

"ACCEPTABLE" BIAS

How can one determine whether the expected amount of bias
is acceptable or not? 1In statistical terms, this question is
asking the experimenter to determine the power of his
experiment. Considerations regarding power are too extensive to
be treated here and have been covered adequately elsewhere
(Cohen, 1969). Basically, we are concerned that large
individual differences might, as with any irrelevant source of
variance, mask the effects of interest. Just how large an
effect must be detected can only be determined by the
investigator in the context of the question he seeks to answer

in the real world. This in turn will determine how large a oY
subject variance can be tolerated. Quite frequently, a precise R
measure of subject population variability for the particular ok
task is not available prior to the experiment. Still, if e
similar studies have been performed, their results may give N
clues regarding the subject variance. Whenever possible, it is Nt
recommended that a rough empirical estimate of between-subject Ry
variability be obtained as a standard procedure during the NN

pre—experimental exploratory stage. Also, one may wish to el
determine whether their subject sample is truly homogeneous, "
f.e., a single population, by obtaining a measure of both "

between -- and within -- subject variance on the task in s
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question and seeing if they differ significantly from one g§
’ another. —
%
' . Eventually, an estimate of subject variance will be "5
. obtained from the sample data after they have been collected. : &
As a characteristic of the sequential strategy of holistic ck
experiments, it is generally wise to conduct a j&
single-replication experiment first and examine the results T
! before collecting more data. In one-subject-per-cell holistic b
i experiments, there are two sources from which the subject Ve
! variance may be estimated. One such source, found in holistic Qk
; experiments with a built-in lack~of-fit test (Simon, 1977a, iyt
: 1977b), would come from the replicated center points, each )
! replication being the performance of a different subject. ;
Another estimate of the "error® variance of the sample (which bt
4 for all practical purposes can usually be interpreted as subject N
\ variance) can be obtained in all 2K-p holistic experiments from -
N the slope of the points in the center portion of the normal o
A order plot. This technique is discussed by Daniel (1959) and e
Zahn (1975a, 1975b). The use of normal plots are discussed —
briefly in Appendix C. This information, in conjunction with o
N the rest of the data, may provide the clues needed to decide ?@
E whether or not additional replications are needed. ;}
N In man-machine system research, individual differences in \%
i ability -- albeit unmeasured and unmeasurable ~- may be a major [
_ source of variance, generally a major component of the "error” -
2 variance and at times greater than the variance from marginally N
a critical equipment factors (Simon, 1976; Westra, 1982). For ﬁ&
3 this reason, without knowledge to the contrary, the investigator ti:
~ should be prepared to take steps to reduce the bias created by SQ
i subject-factor confounding, if only as a precautionary measure. Ca
5 SOME TECHNIQUES FOR REDUCING SUBJECT-RELATED BIAS Foy
; i
3 There are a number of procedures an investigator may employ {ﬁ
N to reduce subject variability and, consequently, the risks of o
2 subject-related bias. These divide into two classes depending o
l on what is known regarding the subjects' abilities that ?5
- critically affect task performance. Among these are: ;’-
* e
2 When some information is known regarding subject ability: R
" o
% l. Treat identifiable and relevant sources of subject ».!
] variance as factors in the experiment. -
ol
E 2. Use an independent covariate to partial out subject R
' ability. g
' 4
E 3. Restrict the subject sample to a highly homogenous set. ﬂ%'
¢ 4. Use covariate information probabilistically to reduce v
A intepretation errors. _ ~
;
f -\":
l‘\'(
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When nothing is known regarding subject ability: et
1. Add more subjects per condition. ?"i"
2. Enlarge the experimental design (new fraction). s
3. Avoid a saturated design. @33
Of course, an appropriate combination of these alternatives will AR
probably be the most successful and economical way to minimize gt
subject variability. The selection of any procedure will depend YR

on a number of considerations, to be discussed as each is 7 )
examined in more detail. I
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SECTION 1V $:.
0N
“".3
HANDLING SUBJECT BIAS WHEN INFORMATION "5
IS AVAILABLE REGARDING ABILITIES g?\
2
The amount of information one may have regarding the Kl
subjects' abilities to perform a given task at a given time can P
vary considerably. Even with a great deal of effort on the part R
of the investigator, knowledge of each subject's true ability "L
under the particular set of circumstances demanded for YQQ
subject~bias reduction is likely to be, at best, marginal. When e
doing human performance research, it is safer to assume that any "
independent estimate we may have of subject ability (for a 35{
particular task and time period) will be inexact. =

For purposes of "handling subject bias" in experiments, "
only a relative measure of individual ability is needed, i.e., 22
an ordering of subjects according to their ability to perform 5

the task at the time of the experiment. Just how inexact these
measures actually are would be represented by the correlation 53
between the scores the subjects. have obtained on a selected test -
of their abilities and the "true"™ measures of their abilities. e
Naturally, this correlation will only be an estimate, at best, Coe
4 since had we the true values we would need no other information, ]
Thus, whatever effort we may make to obtain a valid independent
estimate of subject ability, we must expect it to be a degraded
estimate; this reduces whatever effectiveness that information O,
may have. N

The techniques below for reducing subject variability (and gfi
the bias from confounding) differ in the amount and/or quality .
of information required regarding the subjects' abilities. No ——

2 single technique may be sufficient; the use of one technique
does not necessarily exclude the use of another. If they are S
used judiciously, and in combination, subject bias can probably e
be reduced to a tolerable level at a reasonable cost. Since, as N

'y R
.

v v o .
a

) has been shown, the risk of bias is usually present to some S

degree in any experiment, these techniques may be applicable to o

other than holistic experiments whenever different subjects are s

3 employed in the different cells. vx

Vo

‘ TECHNIQUE 1: INCLUDE SUSPECTED SOURCES OF SUBJECT VARIABILITY F;:

IN THE EXPERIMENT AS FACTORS bﬁ,

Even though we may not be able to quantify individual ‘;i

. abilities, we frequently are able to classify subjects into A

) categories that previously have been found to have a critical v
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effect on the performance under investigation. For example,
pilots might be divided into those with and those without jet
experience, or into groups with different amounts of experience,
or different amounts of carrier landing experience, or any
combination of these categories along with many other relevant
dimensions that are likely to affect pilot performance on a
particular task. Subjects performing perceptual motor tasks
might be broken into groups on the basis of sex and/or age,
since these factors have often been found to result in
significant differences in performance.

Thus, if we can identify suspected sources of subject
variability that have a better than average chance of affecting
the performance under investigation, and make them experimental
factors, we will not only have broadened the generalizability of
our results, but we will have also reduced the unidentified
subject variability and, therefore, the size of the expected
bias from subject-factor confounding. Westra (1982, pp. 37-38)
used this technique in an experiment to determine how much
transfer a number of simulator parameters accounted for when
military pilots were being trained to land on an aircraft
carrier.

In that experiment, the pilots (subjects) were divided into
two groups on the basis of their prior training (a combination
of flight hours and experience piloting a particular type of
aircraft). This one factor accounted for approximately 20% of
the total variance in that experiment. Westra suggested that if
even one large effect can be identified that accounts for much
of the variability among subjects, "it is reasonable to assume
that most of the other estimable effects in the experiment ([will
be}] only trivially biased by subject differences"™ (p.38). Of
course, an investigator is not limited to isolating only one
subject factor.

Whether and how to include these identifiable sources of
variance in the experiment will not be discussed here. Simon
(1977, pp. 53-55) provides some points to be considered when
incorporating subject dimensions into holistic experimental
designs. Whether or not a subject factor should be a part of
the fractional factorial design or introduced orthogonally to
the design depends considerably on the factor's complexity and
measurability, whether it is quantitative or qualitative, and
ultimately the limitations set by time and money.

TECHNIQUE 2: PARTIAL OUT SUBJECT EFFECTS USING A COVARIATE

1f it were possible to obtain an independent set of
measures representing the relative ability of each subject at
the time the critical performance occurred, devoid of
differences due to other factors, this could be used to partial
out subject ability from the confounded performance scores and
leave values that more faithfully represent the effects of the
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experimental factors. This independent set of measures will be
referred to as the "covariate scores"” and the test task used to
obtain them, the "covariate." A covariate was employed in both
the Simon and Roscoe (1981) and Westra (1982) studies to isolate
subject effects.* The equation used to partial the covariate
score from the corresponding score in the confounded
experimental data is:

Performance score Performance “f sX . Covariate (Eq. 7)
with covariate = Score —1r — Score
effect removed (X) YX\ sy (Y)

where ryy is the estimated correlation between the performance
data and the covariate data. The s stands for the standard
deviations of the designated data group, either the performance
(X) or the covariate (Y).

Once ability has been partialled out, the remainder scores
(which theoretically -- if error variance is trivial --
represent the contributions of the equipment configurations)
will be analyzed in the same way the original confounded scores
would have been. In any subsequent test of statistical
significance, however, one degree of freedom is lost from the
error term to cover the use of the covariate.

HOW LARGE SHOULD THE COVARIATE'S VALIDITY COEFFICIENT BE? When
covariate scores are partialled from the confounded data, the
reduction in bias due to subject variability is directly related
to the size of the validity coefficient. Expressed in equation
form this is:

Adjusted bias , (Eq. 8)
(covariate = Original Bias °*\/1-r ¢
effectiveness) y

where the validity coefficient, Lyt is the correlation between
the covariate scores (Y) and the "true" measures of subjects'
abilities (T). The reduction in the bias effect as a function
of different size validity coefficients are given in Table 6.

*Comments and criticisms of the Simon and Roscoe and the Westra
transfer of training experiments can be found in Appendix D
along with considerations regarding the development of an
adequate covariate for subject blas reduction,
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The percent reduction in bias can be calculated for any
adjusted bias using this equation:

Adjusted Bias ,
Percent bias = 1 — ewo= [1-/1 ""‘ytz e 100 (EQ. 9)
reduction Original Bias

TABLE 6. REDUCTION IN EXPECTED BIAS AS A FUNCTION OF THE
SIZE OF THE COVARIATE VALIDITY COEFFICIENT (ryt)

Percent Reduction

vValidity Coefficient " in Expected Bias
15 l1.1%
.30 4.6%
50 13.4%
.65 24.0%
.88 40.0%
.85 47.3%
.90 56.4%

The numbers in Table 6 show that for a covariate to have
much effect, its correlation with the "true" measure of subject
ability must be quite high, higher than is usually found in
practice. If subject bias is to be reduced by one-half, the
covariate scores must correlate .866 with the "true®" values. 1If
the bias is to be reduced by only one-quarter (i.e., to be 75%
of the original), then the correlation must be .661.

vValidity coefficients between covariate tests and a
criterion task seldom exceed .50 and usually are smaller as the
criterion task becomes more complex (e.g., flying an aircraft).
Cohen (1969, pp.75-78) provided the following subjective labels
-~ with qualifications -- for certain correlation values found
in the "soft"™ behavioral sciences: .10 is a "small" A
correlation; .30 is a "medium" one; and .50 is a "large" one.
These numbers are not out of line with the validity coefficients
found in many pilot selection tests used today, even those
including several covariates.
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When one considers the time and cost to develop a covariate
that is likely to have at best marginal effectiveness, and
realizes that a new one may need to be developed with each
moderate shift in the criterion task, one must severely question
whether the use of covariates can ever be cost effective.

While psychologists have been content to accept covariates
with low validity coefficients when they are used to reduce the
size of the error variance, the same levels are not acceptable
when the covariates are used to reduce bias. The reason is that
even if we are not successful in reducing the "error" variance
much by this covariate method, the presence of a large overall
error variance at least warns the investigator that the data
must be interpreted cautiously. On the other hand, even when we
recognize that the data may be heavily biased, we have no way of
knowing where the different amounts of bias are distributed.
Consequently, we are more likely to draw erroneous conclusions
regarding the effects, and in particular, tend to make more Type
II errors, eliminating real effects that should have been
detected in a screening study.

TECHNIQUE 3: USE MORE HOMOGENEOUS SUBJECTS (BITRUNCATION)

The covariate in Technique 2, to be effective, should be
allied as closely as possible to the task and the subjects*®
ability levels at the time the confounded data were generated
(see discussion in Appendix D). Technique 2 is employed at the
analysis stage of a research effort after the data have been
collected. We may, however, employ covariates in another manner
and at another time, i.e., during selection and prior to data
collection. .

If there are readily available measures likely to be
associated with performance on the task, but not suitable for
inclusion in the experimental design (Technique 1), then these
might be used during subject selection to create a more
homogenous group of experimental subjects. Without a costly
evaluation of the effectiveness of this material--they might
come from personnel records that have a bearing on the task at
hand--we may use this material as follows:

l. Select more subjects than you intend to use.

2. Obtain the most relevant data regarding each subject's
abilities and order the subjects accordingly.

3. Truncate the list equally at both ends to arrive at the
number of subjects needed for the experiment (e.g., a
bitruncation of 30% means that 15% of the subjects were
eliminated from each end of the distribution).

Basically, bitruncation of a reasonably normal subject
population will result in a reduction of experimental subject
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S variability and a corresponding reduction in bias. The amount
of reduction in variability and bias depends on the validity of
the data used to rank and select the subjects for truncation.
For example, if the correlation between the ranking data and
subject ability on the experimental task were zero, no variance
and bias reduction would be achieved, even though the subjects

with the largest and smallest scores were removed from the ]

sample. -

=

The following equation determines the new expected bias *}ﬁ

. when covariate scores representing subject ability are used to 7
. eliminate subjects equally at both ends of the distribution: -2y

[ (Eq- 10)
Adjusted bias = Original bias :J/ﬁ —_— rytz E>
(bitruncated)

where ryt is the estimated correlation between the covariate

- -
o

:
*s
% *

s,

»
o

i

.
0
"

scores used to rank the subjects prior to truncation (Y) and the NG
subjects' true abilities (T), i.e., the validity coefficient, R
and P is the proportion of variance reduction due to Sﬁ;
bitruncation or P = [l1-(new variance due to bitruncation divided 3
by old variance)]. For example, if the variance of the subject o
population were originally 1, and after bitruncation were .75, S
then the proportion of variance reduction, P, would be [1 - {;k
.75/1.88) = .25. Or if the original variance were 4.56 and the }tﬁ
new variance were .99 after truncation, the P would be [1 - 9\$

.98/4.5) = .80. P is the maximum reduction possible due to
bitruncation.

oo
Coed L
AR A »

At this time no equation is available for détermining the
reduction in variance from a normal population as a function of

percent bitruncation. Therefore, values for a range of cases ‘3
were obtained using a Monte Carlo computer simulation. B
Beginning with a normally distributed population of subject =
abilities with a variance of one, the distribution of abilities oA
were bitruncated 25%, 50%, and 75%. In these cases, with the N
. original population variance of one, the population variance is ;H;
a reduced to .377, .15, and .841, respectively. Were the square tii

root of these values inserted for the population standard
deviation in Equation 4, the reduction in expected bias would be
considerable. However, these values are valid only if the
covariate used to rank the subjects correlated perfectly with

SHEE |

the "true® criterion. P

As discussed previously, to assume that the covariate would EE

y be this perfect, or anywhere near it, is unreal. Therefore, a A
. correction must be made in the P value for the degradation in T
the relationship between the ability scores used for truncation S

v
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and the "true" ones; that is, for the estimated validity
coefficient of the covariate. This is taken care of in Equation
1a.

P

-1l Y % o,

. 2

S Mo NN
-y [ ~

The proportion of original bias reduction -~ that portion
of Equation 1¢ under the square root sign -- for several
percentages of bitruncation and several degrees of validity
coefficient degradation are given in Table 7. It must be
remembered that we are using bitruncation in lieu of actually
knowing how effective our covariate is, without actually having
to determine its validity coefficient. 1It is always better to
use the covariate if it is known. The term is included in
Equation 1¢ to show relationships and to enable the reader to
judge what to expect from bitruncation when he assumes -~ from
past experience ~- how valid his covariate is likely to be.

-
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The data in Table 7 reveals that while bitruncation itself
achieves considerable reduction in variance, the validity of the
covariate used to rank and eventually select the scores on
either end of the distribution severely limits this capability.
Since in practice we would be fortunate to find a covariate with
a validity coefficient greater than .5, the procedure would
appear to have limited utility. Still, since bitruncation
without the need to validate a covariate is inexpensive to
employ, it can be used. It won't hurt and it may help.

TABLE 7. PERCENT EXPECTED BIAS REDUCTION AS A FUNCTION OF
PERCENT BITRUNCATION AND DEGRADED COVARIATE

Percent Bitruncation*

25% 50% 75%

Correlation of
covariate with

true abilities Percent Bias Reduction b

.80 22.5 32.4 37.9 b

.65 14.2 19.9 22.9 E':':

-45 6.5 9.0 10.2 X

.30 2.8 3.9 4.4 -

b

*A 25% bitruncation means that 12.5% of the scores have been gf

removed from each end of a normal distribution, leaving the &%

center 75%. The variances of the 25%, 50%, and 75% bitruncated <
populations, assuming the original N(9,1) population, were

«377, .151, and .@41, respectively (as estimated from a =

computer simulation). o
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It should be noted that a bitruncated sample is, of course, e
no longer strictly normal nor strictly random and, therefore, s
would technically place some restrictions on inference 38
procedures. However, in view of what is known about the effect e
of non-normal populations, and considering the fact that the S
bitruncation procedure is likely to get rid of "outlier E
subjects,” in practice, it is believed that this concern with
non-normality is trivial. x
M
TECHNIQUE 4. USE THE COVARIATE INFORMATION PROBABILISTICALLY TO ‘
REDUCE INTERPRETATION ERRORS it;‘
s Yy
: The first three techniques all reduce the effects of bias %%
by reducing subject variability. This technique seeks only to '
reduce the risk of an interpretation error by using covariate <Ay
information regarding subject ability to identify which factor b
effects are likely to have been biased by the larger subject Y
bias effects. A variation on this approach was used by Westra ,
(1982) in a multifactor transfer~of-training experiment. N
The covariate data regarding subject ability would be used g
) in this way. After subjects have been randomly assigned to oy
< experimental conditions, their covariate ability measures would K&
. be treated as performance scores and subjected to the usual . fﬁ
s analysis of variance. This would show for this sample the -}R
factor effects with which the largest subject (covariate) bias =
effects are confounded, but only to the degree that the e
covariate scores are valid representations of the subjects' true fz;
abilities, .
LR AT L) 3
When covariate validity is poor, the largest true bias ' 3?‘
effect may not actually be located where the largest -
\ covariate~determined bias effect indicates. Since in a RS
N real-world experiment we have only the covariate data to work ‘ Q?
-, with, it is valuable to know what the chances are that the o
larger true blas effects are actually being represented by the e
larger covariate bias effects. hf
To obtain this information, the following Monte Carlo oy
computer simulation was performed. Subjects with "true" ability ko
scores drawn from a normal distribution were randomly assigned h:
to the experimental conditions and an analysis of variance was b
performed on these scores. The factor effects associated with -
the eight largest positive subject effects were recorded. Then .
a second set of "covariate" scores based on ryt and normal A
sampling theory were generated. An analysis of variance was RN
performed on this second set of data (assigned to the same set qk
of conditions as the first), and the eight largest positive X
covariate subject effects recorded. The matches between the N
first and second set of data for all combinations of the eight »
largest effects from each set were noted. This procedure was 5
repeated 10,000 times and summarized for different numbers of g)-
)
%
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effects (K) and for covariates with different validity
coefficients (ryt).

The probability that the largest true positive or negative
biases would occur where the largest positive covariate biases
were located was determined for various combinations, i.e., (1)
the probability that the largest true positive or negative bias
occurs where the largest corresponding covariate effect is
found, (2) the probability that the largest positive or negative
true bias will occur among the two to eight largest positive
covariate effects, and (3) the probability that multiple sets of
the largest positive true biases will occur within multiple sets
of positive covariate effects.

In Table 8, for several values of K and ryt , the
probabilities that the largest positive true bfas is represented
by the first or as many as the first eight largest positive
covariate bias effects are given. More complete tables are
given in Appendix E.

Table 8 is read as follows. For example, when there are 63
effects and the validity coefficient is .38, the probability is
only .96 that the largest true positive bias is actually
confounded with the factor effect indicated by the location of
the largest positive covariate effect. This probability only
increases to .32 that the true bias effect will be represented
by any one of the first eight positive covariate bias effects.
The chances improve considerably when the validity coefficient
for the covariate equals .71 (actually .767); in that case, the
chances are .5 that the largest true bias effect will actually
be confounded with one of the factor effects to which the
largest three positive covariate bias effects are confounded.

TABLE 8. PROBABILITY THAT THE LARGEST TRUE POSITIVE SUBJECT
BIAS EFFECT WILL BE CONFQUNDED WITH THE FACTOR EFFECTS
ASSOCIATED WITH THE LARGEST POSITIVE COVARIATE BIASES

Number of Largest Positive Covariate
Bias Effects Involved

1 2 3 4 5 6 7 8

K ry PROBABILITIES

31 .38 89 .17 .24 .30 .35 .46 .45 .49
31 .71 .31 .48 .59 .67 .73 .78 .82 .85
63 .38 <06 .11 .16 .20 .23 .26 .29 .32
63 .71 e26 .40 .50 .57 .63 .68 .72 .75
127 .30 .04 .07 .16 .13 .15 .17 .19 .22
127 .71 .22 .34 .42 .49 .54 .59 .62 .66

39




LB 7 Ve £AEP Ly MINEP Ju 3N A0y D Ky S0y & 3u Fig 3 - Yok a Nk V4 TV g XERBKE Y w . Vo Foum Bt Ls- -yt 3 Y

€. P
e e Pa ki ta il ets

When one inspects the data in Table 8, as well as those in

Table E-1 (Appendix E), certain conclusions can be drawn about ,r*
the use of covariate subject ability data to identify which -hq
factor effects are likely to be severely biased. When all other bkh’
things are equal, we can say that: fﬁ?
N

1. The probability that the location of any true bias is Sl
likely to be where the covariate biases are located 2
increases as more of the covariate biases are involved. Yﬁt

&

2. The largest true bias has a greater chance of being Lt

found where the largest positive covariate bias is
found when fewer effects (K) are being investigated.

3. As the validity coefficient increases, the higher the jﬁ
probability that the true bias and the covariate bias E

effects will coincide. ,FET

o

None of the above observations is too startling. The most ﬂ:ﬁ
important revelation from Tables 8 and E~l1 is the general ==
impracticality of using covariate scores to represent the Ko
subject's true ability for purposes of identifying which factor A
effects are likely to be biased. They can be used, and probably nYe.
should be used, but only as a precautionary tool. This rather N
disconcerting condition occurs because in life we seldom find o
covarjate validity coefficients that exceed .56. The usefulness bid
of this technique which depends on covariate data must be o
considered limited. (See Appendix D.) GQ:
N

But what are the chances that if the covariate measures are e
used, we might locate a large positive bias where, in fact, the oY
true bias was a large negative one? Error of direction, .
particularly when larger subject biases are involved, can affect e
the interpretation of the data. For example, if we see no Y
effect when a large positive one was expected, we might suspect &;-
that a large negative bias had cancelled out a large positive Pv‘
effect if we also discover a large negative covariate score gﬁ;
could probably be associated with that effect. On the other e
hand, we might be more willing to accept the lack of an effect -
when a large positive one had been expected if a large positive ;5§
covariate score could probably be associated with that location. i§§~
Some probabilities regarding directional confusion of bias ;'3
effects for K=31 and several covariate validity coefficients are ——
shown in Table 9. The probabilities indicate that the chances R
are relatively small that a large true negative bias would exist A
where one of the eight largest positive covariate scores were D
located. For example, with a validity coefficient (r ) of ﬂ;
.38, there is only a .85 chance that the largest true negative .;p

bias would be confounded with any factor associated with one of
the five largest positive covariate bias effects. As the
validity coefficient increases, the chances of such a reversal

e -
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of direction in the bias effects become even less likely. The »%
same is true as K increases. ]
: TABLE 9. PROBABILITY THAT THE LARGEST TRUE NEGATIVE SUBJECT ?5‘
A BIAS EFFECT WILL BE CONFOUNDED WITH THE FACTOR EFFECTS -!f.»»gi;‘
ASSOCIATED WITH THE LARGEST POSITIVE COVARIATE EFFECTS (K=31) he
]
Number of Largest Positive Covariate Bias Effects Involved e
!
1 2 3 4 5 ° 6 7 8 £33
Tyt Probabilities 'f
.66 .03 .67 .18 .13 .16 .28 .23 .26 [.06)*
: X
¢
.30 .91 .61 .82 .94 .05 .06 .08 .18 [.B1}* {‘5
’I
.45 .96 .21 .01 .61 .82 .03 .83 .04 e
.65 .08 .00 .00 .08 .00 .00 .81 .0l s
1
g *Probabilities in brackets are chances that two true largest negative
o bias effects will be confounded with the factor effects at which any of :
the eight largest positive covariate biases are located. —§
; Thus, with only a little information about subject ability, ;;f
' we can reduce our chances of misinterpreting the data with ke
J regard to the direction of the largest subject bias effects by a s
cautious examination of a priori expectations about experimental e
. factor effects ~- an important step in pre-experimental analysis o
¢ -- and the probabilities of direction associated with the Ny
L largest covariate scores. Ey-
: ™~
A4 *s‘l
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SECTION V ss’
e
HANDLING SUBJECT BIAS WITH NO INFORMATION REGARDING ABILITIES >;g
gyt
!
» : Even when no information is available regarding subject .ﬁﬁ-
: variance, there are still steps we may take to reduce the risks PO
) of misinterpretation from subject bias. While we cannot control s,

the variability of our subject sample in this case, we can
reduce the bias effects and/or the risk of misinterpretation.
. These techniques, of course, are also useful when the
: information regarding subjects' abilities is poor.

The following techniques, while not totally independent, }
can be used for this purpose: =i

l. Add more subjects per condition (cell). liﬂ

2. Avoid saturating the holistic design.

o,
3. Enlarge the experimental design by adding a -
new fraction. , f

Let us examine the advantages and disadvantages of each of ,i

: these. N
TECHNIQUE 5: INCREASE THE NUMBER OF SUBJECTS PER CONDITION e

2 The sizes of the expected biases in a specific experiment oy
! in which subjects are selected and assigned at random decrease &%
4 as the number of subjects increases. This relationship is shown 7o
d by the equation: o
- Nt
: . . . o 1 (Eq. 11) RS
-, Adjusted bias = Original Bias - AN
X Number of Replicates Ros
v

: where replicates equals the number of subjects per cell. },
, With 16 experimental conditions and 15 effects, for éy‘

3 example, the largest expected bias would be £.8679 with one 2;
subject per cell (N = 16) but only 8.6137 with two subjects per Ay
2 cell (N = 32). By doubling the number of subjects, the bias was ;%'
reduced approximately 29%. s

ﬁ The following equation describes the arithmetic f3§
relationship between expected bias reduction and replication: §$

. R
' A
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Percent bias reduction = |1 —\/1I/n | ® 100 (Eq. 12) i~
. (replication) ?i
:
where n is the number of times the original design is ]
1 replicated, i.e., using n different subjects on every &5
| experimental condition. Q'
This equation tells us that when the number of subjects per %}
cell are doubled, the size of the biases at all ranks are ke
reduced to .787 of their original sizes. That is a 29.3% :
3 reduction. Thus, if we start with one subject per cell, we must s
4 increase the number to four subjects per cell before the bias is h;
. cut in half. If we had increased from one to three subjects per -
. cell, the biases at all ranks would have been reduced to .577 of k;
2 their original sizes. hed
This simple solution to bias -~ i.e., increasing the number b
: of subjects per cell -- so flagrantly employed by those doing e
; few-factor experiments -- is not viable in large-scale, -
4 many-factored experiments. Since the number of subjects et
» required to fill the cells of even a one-subject-per-cell b1
holistic transfer of training experiment will frequently strain B
X the limit of subject availability in the first place, trying to !
) increase that number may easily exceed that limit. Faced with hﬁ
h the prospect of finding more subjects may also cause the g
. experimenter to extend the boundaries of his subject source,
N thereby increasing subject variance with a less homogeneous 3
sample. -
. n
i TECHNIQUE 6: KEEP THE HOLISTIC DESIGN UNDERSATURATED :§
Arithmetically, an unreplicated Resolution IV design of the s
2 k-P type frequently employed initially in holistic experiments x
allows a maximum of N/2 main effects to be estimated e
(independently of any two-factor interaction effects) out of N-1 A
. estimable effects in a design with N conditions. The remaining ﬁ:-
y (N/2 - 1) effects are strings of two-factor interactions (i.e., o
. 2fi) that are aliased with one another within strings, but vy
: independent of any other main or two-factor interaction string N
effects. Main effects are confounded with higher odd-ordered
) interactions effects and the two-factor interaction strings are T
. confounded with higher even-ordered interactior effects. For ot
N example, with 32 conditions, one subject per cell, we are able ﬁl
" to estimate 31 effects of which 16 can be main effects clear of e
by : two-factor interactions, and the remaining 15 effects being -,
strings of two~factor interactions. With 64 conditions, of the =
63 possible effects, we can estimate up to 32 main effects. .

s 2 0.8 -

1
o
[N

44 o

a A&

. R . . . N P P P S TR TR RSN
.'. ";“ ) ')' » AL S ‘rq' h "(‘I' '.'\"\'\f‘f'-' \{ .' \' '\' ~..q“_. ..q..- \'\ 4 -.‘g*"d_ \(.F\.:‘. DA o . ‘.' .\- D




et W g

L UL N W Ry

Pt PN

“af il NN

% NN

LA il S

S Sl & RTINS A s, N R ¥ N 0 0 B L SRR L i g e iR Al g R g g Y

When all N/2 main effects are to be studied, the design is said
to be "fully saturated.”

Insofar as the bias problem is concerned, it is simple
arithmetic to see that when given a 32 condition design with one
subject per cell, 31 subject effects will be confounded with 31
factor effects. Were we to study only 12 factors instead of the
possible 16, for example, with this design our chances are only
12/31 (or 39%) in the unsaturated design versus 16/31 (or 52%)
in the saturated design that the largest bias effect will be
combined with a main effect. Thus, if bias is an important
concern, one trade off requiring no increase in the number of
subjects would be to avoid fully saturating the design.

However, the idea of reducing the number of factors being
investigated from 16 to 12 to solve a problem is contrary to the
holistic philosophy that "all potentially critical factors
should be included in the experiment." To make this reduction is
to expose oneself to one of more serious criticisms leveled at
investigators who do few-factor experiments, who adjust the
informational requirements to the design, rather than vice
versa. We must find a way of not saturating the design while
not sacrificing the inclusion of any potentially critical
factors.

A 32-condition design is, at best, marginal in size for any
serious holistic experimentation. A 64-condition design is a
more comfortable size from the standpoint of flexibility in
design and reliability in the analysis. If the design were that
large, then we would no longer be deciding between 16 or 12
candidate factors but between 32 or some smaller number.
Experience suggests that it is extremely unlikely that there
will ever be as many as 32 factors of practical importance in
accounting for performance on any specific task. It is more
likely that the bulk of the performance variance will be
accounted for by a much smaller number of factors. Except in
some unusual exploratory effort, it is difficult to imagine that
one could not reduce 32 candidate factors to 28 or so after a
careful and thorough pre-experiment analysis (Simon, 1977),
without doing serious damage to the experiment or to the
integrity of the holistic philosophy.

TECHNIQUE 7: EXPAND THE FRACTIONAL FACTORIAL DESIGN

One may enjoy the benefits of both Techniques #5 and $6 and
at the same time increase the information in an experiment by
doubling the size of the minimum experimental design with a
second fraction of the full factorial. This is equivalent to
doubling the size of the screening design. Even though we
continue to use only one subject per cell, this technique
doubles the size of our N. From Equation 12, we know that as
long as we continue to study the same number of factors, the
expected bias at every rank is decreased proportional to the
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- reciprocal of the square root of the number of times the
original design is replicated.

When the number of factors being investigated is fixed, and
the same number of subjects is to be employed in either case, an
experimenter has to decide whether: he should increase the
number of subject per cell n times with a minimum design, or
increase the size of the experimental design with 4 new
fractions of the total factorial keeping one subject per cell
where n=d. Let us compare the information content and expected
bias in the two plans with the following example.

If the same number of factors -« say 12 -- are to be
investigated in a typical 32 condition, two subjects per cell,
holistic design or a 64 condition, one subject per cell,
holistic design, the degrees of freedom in these designs might
be partitioned as shown in Table 10.

TABLE 10. COMPARING THE ALLOCATION OF DEGREES OF
OF FREEDOM (df) WHEN TECHNIQUES #5 and #6 ARE EMPLOYED

Sources Design I: Design 1I:
32 cond., 2 S/cell 64 cond., 1 S/cell
af df
Main Effects 12 12
2~fi strings 15 [ 5 2fi/per string] 31 (3 2fi/per string]
3-fi strings 4 {14 3fi/per string] 20 {7 3fi/per string]
Within cell 32 ]
Total 63 63

Note: Numbers of 2fi/3fi per string shown here are representative
values. Actual values may vary slightly, depending on which
columns are involved.

If an investigator decides that every estimable effect
(whether in strings or not) should be examined, i.e., 31 for
Design I and 63 for Design I1I, then the largest expected bias
effects for a N[O,1) population would be .514 and .584,
respectively. That is, with the same number of subjects, the
biases are somewhat smaller with the smaller design, provided
the investigator intends to study all estimable effects. On the
other hand, he may seriously only consider the main and
two-factor interaction string effects or 27 for Design I and 43
for Design II. 1In that case, the largest bjiases would be .500
and .548, respectively, still slightly favoring Design I.
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. But the size of the bias is not the only criterion for A2
selection, and the differences observed here may be of small -
practical consequence. There are other considerations. lﬁﬁ

t
Ty
Thus: é?ﬁ
1. TIME AND COST. Since both designs require the testing A
of 64 subjects, the effort provided to collect the data will be I
essentially the same for each. The larger design (II) may R
require some additional time to prepare the hardware and/or g}y
software for the additional experimental conditions. N

2. INFORMATION. The larger design (II) provides more i
information about the factors. It enables assumptions regarding .
some three~factor interactions to be more easily tested. Ay

?N;.:‘

3. INTERPRETATION CLARITY. The larger design (II) reduces R?Z
the problems of confounding from two sources: (a) interaction L
effects, and (b) trends. There are fewer three-factor L
interactions confounded with one another within each string or =

with the main effects. Similarly, there are fewer two-factor L
interactions confounded with one another within each string. :}F

This reduction in confounding makes interpretation as well as N
eventual isolation easier to achieve. : AN
- ’-- A
The larger designs, being more robust to linear, quadratic, g

and cubic trend effects (Simon, 1978), also reduce those sources .
of confusion. In addition, the larger design allows the e
investigator greater freedom to assign potentially critical .
effects to the most trend-resistant columns in the design. By o
increasing the number of columns in the entire experiment, the o
investigator has more freedom in assigning factors in a way that i

facilitates interpretation and reduces the task of later N
isolating aliased effects (Simon, 1974; 1977). O
N
4. ERROR ESTIMATES. Design I with two subjects per cell L
provides an independent estimate of the within-cell variance (32 Sh
degrees of freedom) which conventionally is used as the "error" B
term; Design II does not. However, experience has shown that s
at least half of the estimated effects in Design II (also 32 re
degrees of freedom) are likely to be chance. Thus, the straight it
portion of the normal ordered plot will generally provide a Ny
tentative approximation of "error variance" (see Appendix C). o
S
S. BIAS. The expected values indicated in Appendix B are .f‘
valid only when the investigator seriously intends to consider =
all of the estimable effects., If a priori, through outside R
knowledge and a careful pree~experiment analysis, he can say he A
will not be interested in the threewfactor interaction strings RN
-~ they're error «+ or in those two-factor interaction strings 3
that occur in columns that are not trend resistant, then he ~
33
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reduces the effects being investigated and the sizes of the
expected biases. In practice (in any pragmatic empirical
approach such as this one), we do not expect even half of the’
possible effects to be other than error, although we may inspect
them all,

In summary, while it is useful to obtain an indication of
how large the expected bias might be if it can be realistically
determined, and it is imperative that we do whatever is
practically possible to reduce it, whether we know what it is or
not, we do not want to get caught up in a numbers game in which
the presumption of precision is made unrealistically.
Ordinarily, the differences between biases .580 and .548 are not
likely to be of practical importance in a human performance
experiment, On the basis of the information presented above,
when feasible, the rule is to opt for the larger design with one
subject per cell rather than the smaller design requiring the
same N with more subjects per cell.
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CONCLUSIONS ]

DS

For strategic and economic reasons, data collected in ;33

holistic multifactor experiments initially include only one t};

Y subject per cell. This condition per se, it has been shown in g&i
t this report, does not pose a serious threat to the effectiveness L3
of the approach. The bias due to subject and configuration s

3 confounding is not unique to the holistic approach nor to the NS
3 testing of a single subject on each configuration. SN
- Subject-related bias of this type will be found in any human b
performance experiment in which different subjects are selected Y

and assigned at random to the different experimental ﬁf'
configurations. b

—.‘ ‘:

It is the "individual differences" (i.e., subject :}’

population variance) that produce both bias and variable o
subject-related error in any experiment. Of these two sources, A

the bias problem is particularly disturbing in holistic research o

with its high information-to-cost ratio, for it is more subtle,
less identifiable, and more likely to lead to a
misinterpretation of the results than would the variable error. Y
While traditional concern has been focused on the variable
error, this report was oriented toward the reduction of
subject-related bias error. AN

Since size of the bias is related to the size of the s

subject variance and the number of subjects in the experiment,
efforts to minimize bias and keep the experiment's size within i
practical bounds must reduce the sample variance in some manner :

s without markedly increasing the number of subjects. Risks of

. misinterpretation can also be reduced by increasing the ratio
between the degrees of freedom in an experimental design and the
effects of interest. Frequently the available techniques for
minimizing the seriousness of subject-factor confounding must be
employed blindly without knowledge of the subjects' true
abilities. 1In this report, a number of such techniques for
reducing the bias from subject-configuration confounding were
suggested.
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While the few-factor experiment can more readily afford to
? reduce subject bias by employing experimental designs with many
: replications (i.e., many subject per cell), its limited sampling
of the many dimensions of a real-world problem can itself
frequently produce other, more insidious biases between the ks
experimental results and equivalent conditions in the real e
; world. Unless the factors being held constant are set at values -
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that place the experimental space within the limits of interest
in the real world, the experimental results can be seriously
distorted. Generality of experimental results can only occur
when the data is sampled over a broad, multifactor space. Once
a large number of factors have been jidentified as critical in a
particular investigation, the holistic approach will provide
more superior information -- both in quality and quantity --
which will be obtained more economically than is possible with
any series of few-factor experiments regardless of the
randomized assignment of one subject per cell to help achieve
this goal.
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APPENDIX A

B _,ﬁ,‘.'"..;'":y:'x_ vr.

-

COMPUTER PROGRAMS

The computer programs presented here were used to identify
and verify various relationships described in this report. '
These programs were written in standard FORTRAN IV to run on a
VAX 11/780 computer.

Program A-l, written by William Dunlap and Susan G. Brown,
Department of Psychology, Tulane University, New Orleans LA,
76118, computes a direct evaluation of equations for expected
values of normal order statistics as well as their variances and
the expected percent-variance-accounted-for for the ith ordered
value of a sample of size N drawn at random from a N[0,1]
population. The equations on which this program was based can
be found in Beyer (1966, pp. 258 and 260). The values obtained
with this program can be used to calculate expected biases for
any size experimental design of the 2 k-p class discussed in this.
report. The values may also be used in the construction of
normal plots. The program is accurate to at least five places
and was used to generate the data in Tables 3, 4, 7, and 10.

Program A-2 was written by Daniel P. Westra ‘(modifying
material submitted by William Dunlap) and provides a Monte
Carlo~type simulation to estimate expected values of ordered
mean differences and related statistics for 2 K-P experimental
designs with one or more subjects per cell. This program was
used to determine the effects of non-normality on expected
biases shown in Table 5 in the body of this report. 1In that
case, a finite discrete population was defined using the order
statistic expected values computed by program A-1 with "N" equal
to the number which must eventually be drawn to fill an
experimental design. These values were sampled at random and
replaced prior to the next selection. Since the order statistic
values from the normal population with variance of one do not
actually have a variance of one, the values were adjusted to
make their variance equal one. Results from this program are
accurate to at least two decimal points. This program also was
used to produce Tables 8, 9, and E-1.

There are several shorter programs and algorithms available
for computing normal-order statistics for which some accuracy
may be sacrificed. An algorithm with an accuracy sufficient for
many purposes is used in the BMDP program PS5D. There are also
tabled values of order statistics from a normal population for a
limited number of "N"s in Beyer (1966), Harter (1961), and Owens
(1962) .
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. For further information regarding these programs and
techniques the reader may contact Daniel P, Westra, Essex
Corporation, 1640 Woodcock Road, Suite 227, Orlando FL 32803.
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'» APPENDIX B x3
Pl
EXPECTED VALUES, STANDARD DEVIATIONS, AND _%
PROPORTION-~OF VARIANCE~ACCOUNTED-=FOR i
o
Computer program A-)l supplied in Appendix A was used to é?'
compute the expected values for z (the standardized bias score), il
for s (standard deviation for each bias score), and the e
! proportionrof=totalevarianceraccounted«for at each of K ranks. -
These are given for "N" = 31, 63, and 127 in Table B-1 that o
| follows. The values are accurate to five places. For "N" = 15 N
y see Table 3, p.19. 359
. '
iy The notation "N" is used to more directly relate these e
. tables to similar ones found in other sources where the notation S
) N is used for a number of cases, rather than C or K. 1In the KX
. context of experimental results, as used here however, the ji?
- odd-value tables with "N" equal to 31, 63, and 127 would t{;
‘ ordinarily be used for determining the expected mean of biases Y
of the K effects in experimental designs in which C and N are Z

32, 64, and 128, §Still, there is no mathematical reason why the
tables supplied here need be limited to “"experimental effects."

" Proportion-ofsvariance~accounted-for at any rank can be
obtained by squaring the expected z value at that rank and
dividing by the total sum of squares (TSS) of the z values,

) following Equation 6 on page 21 . The TSS for each set of e
: expected values is given at the bottom of the appropriate ga
2 subtable., A period (.) is placed below the rank at the point 0%
: where the cumulative proportion of variance exceeds 9.30 for the Fv
y positive zwscores. X
. =
K Other tables for "N" values less than 89 can be found in e
: Harter (1961). This is the only known table for "N" = 127, ?-
;r':_':_'
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TABLE B-1. EXPECTED VALUES FOR ORDER STATISTICS

.“N“ = 3] "'.N" = 63

g

2-VALUE STD. DEV. PROP. VAR 2-VALUE STD. DEV, PROP. VAR

Z2.05647 T.49302 T.34C13 2,33761 C.45186 0.09554
1.63167 £.36880 0.09326 1.95626 0.32967 0.06340
1.28269 £.31944 0.06697 . 1.7290% £.28116 0.85010
1.19884 £.29170 c.05c28 1.58178 0.2535} 0.64145
1.84709 £.27363 c.03848 1.45635 0.235C3 0.038512
£.91609 £.26083 £.02945 3.34981 £.2218¢ I ETIY
€.20065 £.25)33 0.02245 1.256%8 €.21161 0.C2617
£.£9418 €.24406 0.€1689 1.17388 €.20356 0.0228)
3.59545 £.2384) c.01242 1.0982¢ £.1969¢ 0.01998
€.50206 8.23398 e.00883 1.22833 £.19148 5.61752
£.41287 £.230%3 0.82597 €.96317 £.1868) 0.01537
0.3253%6 £.22789 €.0037¢ 9.90188 8.12283 0.01347
£.24322 £.22593 0.00207 0.84388 £.17939 £.£1179
0.16126 €.22458 £.00891 £.78844 6.17639 c.01030
c.cerl? £.22379 £.00023 £.73539 0.17378 0.808896
o.eecHe £.223%3 0.08008 . 8.68436 £.17145 6.00776

-£.08037 £.22379 0.0C023 0.63504 £.16941 €.00668
~2.16126 £.22458 s.00093 6.58724 0.16757 2.0087)
-0.24322 £.22593 8.80207 ©.54073 0.16598 0.80484
- =8.32686 0.22789 0.8837¢ £.49536 0.16456 £.C0406
-£.41287 9.23053 0.00597 £.45101 0.16330 5.00337
-0.50206 0.23398 8.90883 £.40753 £.16218 £.0827%
~0.59546 0.23041 €.01242 €.3648C £.1612) £.00220
-8.59438 0.24406 0.01689 0.32273 0.160236 e.02173
-8.20866 0.25133 8.02245 ) ¢.28122 0.15963 0.c0131
-e.91688 £.2608) 0.0294S 8.24019 £.15902 6.80096
-1.C47€9 f.27363 D.0384¢ 0.1995%7 0.15850 0.00066
~1.198¢4 €.29171 0.05028 . €.15927 £.15809 0.008042
-1.38269 8.31944 0.06697 €.11923 0.15777 £.0002¢
-1.63167 6.36880 6.09326 €.67938 0.15754 8.80010
-2.£5547 £.49362 0.14813 9.03966 0.15741 8.00003
0.02000 -  0.15736 . s.00000
28.54883 ~8.£3966 6.15741 0.00003
~0.07938 £.15754 0.00010
~£.11923 0.151M £.00024
~0.15927 9.15889 5.00842
-8.19957 0.15858 8.08066
-0.24019 0.15902 9.90096
~0.28122 £.15963 s.08131
-~8.32273" £.16836 8.00173
-2.36488 6.1612} 0.00220
~0.40753 £.16218 £.00275
~0.45101 £.16330 6.66337
~0.49537 0.16456¢ 8.00407
~0.54073 0.16598 0.00484
-0.58724 6.16758 6.08571
<0.63504 6.16941 0.00668
-p.68436 0.17144 9.00776
~0.73539 © €.17378 8.00896
~0.78844 8.17638 8.01030
~0.84388 0.17940 0.01179
. ~-0.90188 e.18284 6.81347
~0.96317 £.18683 0.01537
~1.02834 8.19147 €.01752
~1.09820 6.19695 0.01998
~1.17388 £.20356 €.02283
~1.25699 5.21)60 0.02617
~1.3498) e.22180 £.03018
~1.456085 0.23582 £.03512
~1.58179 0.2535¢ 0.04145

«1.72905 0.28116

~1.95626 0.32968

-2.3370) 0.45106

©8.30559
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P " . Table B-1 (Continued)

"N = 127

P

T

¥ . RANK Z-VALUE STD. DEV. PROP. VAR &
]
' b 2.59185 C.41902 0.05408 63 0201971 0.11103 s.conco e
2 2.2¢250 6.29997 0.04049 64 g.coens 9.11103 c.08092 P
, 3 12.04752 £.25275 6.£3375 (13 ~-0.£1971 6.11104 0.00800 e
! .4 1.98881 0.22545 6.02932 66 -0.C1942 8.11106 s.0ce0) ¢ s
) 1.79873 £.20737 €.02605 . 67 -0.65914 0.11118 g.coe03 :
¢ 6 1.725698 0.19476 8.02346 68 -£.87889 0.11118 £.80005 {
7 1.62778 £.18469 0.02133 69 -8.c9868 0.11122 o.occee
8 1.55775 9.17619 0.81954 70 -0.11850 e.11131 e.0e01)
9 1.49449 £.16979 9.01798 r2) -£.13837 0.11141 e.0801%
hy Y 1.43678 0.16441 0.81662 72 ~-0.15829 8.11153 e.0082¢8
N 1) 1.38340 £.15958 2.01541 73 -0.17828 £.11167 8.0002G
. 012 1.33375 0.15548 8.081432 KL -0.19833 p.11182 8.08032
. 13 1.28722 0.15174 0.81334 75 ~0.21847 0.11199 0.00e38
J 14 1.2¢333 0.14842 0.61245 76 -0.23869 e.11218 e.00046
. 15 1.2€17) 8.14543 8.01163 m -0.25902 c.11238 8.0205¢
! 16 1.16205 8.14288 8.01887 76 -8.27947 0.11269 £.00263
* 17 1.12413 £.14062 0.01017 79 ~0.30000 0.11286 6.00072
. 18 1.08776 £.13854 0.£0953 T -£.32068 0.11312 c.00083
19 1.65286 8.13638 0.80892 81 -0.34149 0.1134} 8.0009¢ e
o 20 1.€1915% 0.13454 0.00836 82 ~0.36245 8.11371 p.0e106 haX
! 21. £.98651 8.13361 0.00784 83 ~0,.38359 0.11402 0.08118 h;ﬂ
2 22 £.95497 £.13133 0.08734 84 -8.40488 £.11438° £.0€132 -
. 23 £.92427 0.13008 0.00688 85 -B8.426135 . 8.11478 €.00146 . .
; ) 24 £.89451 £.12862 2.00644 86 . -0.44805 0.11518 8.80162 \
oM 25 £.86544 8.12751 2.00603 87 ~0.46995 0.11557 9.00178
. . 26 £.83714, 0.12628 0.00564 88 -2.49207 0.11882 0.0019S .
. 27 8.80948 0.12521 e.C0528 89 -0.51443 6.11652 8.00213 E
. 28 £.78239 8.12430 9.00493 %0 -0.53704 0.11706 0.08232 0%
Y 29 £.75589 0.12337 2.20460 . 91 -0.55997 0.11757 £.00252 P
; 3e 8.72997 8.12233 0.06429 92 ~-£.58317 8.11815 0.00274 A
- 3l £.78447 0.32155 p.00400 93 -8.68669 P.11875 e.cc296 A
> . 32 £.67941 #.12081 £.00372 94 ~p.63858 0.1193% s.0832¢ -
b 33 €.65479 e.l2009 0.080345 95 ~-0.65478 s.12e19 £.00345 .
- 34 £.63058 8.11936 8.00320 96 ~8.67941 0.12081 0.80372 Iy
n .38 £.68678 0.11873 P.008296 - 97 ~0.70447 9.12155 8.00¢00 A,
) 36 2.58317 £.11814 0.00274 98 -0.72996 9.12236 €.00429
kb 0.55997 0.11756 8.00252 99 -9.75589 0.12337 0.80460 .
. 38 £.53704 8.11707 6.09232 180 -8.78239 8.1243) 'o.
: 29 £.51443 0.1165) £.00213 101 -0.80947 . 0.12523 r.
N T £.49208 0.116£1 0.008195 le2 -8.83714 0.12628 t:-
. q1 ©.46994 - £.131558 p.02178 103 -0.B86544 £.12751 o
K 42 8.44805 6.11515 £.00162 104 -0.89449 0.12867 LA
: 43 0.42636 £.11477 0.008146 105 -6.92428 0.1300% P
‘ 4 0.40489 0.11437 8.06132 ’ 106 -0.95496 0.13137 N
2 45 0.38360 p.11401 0.08118 187 -0.98658 0.13306 .
T 2.36245 0.11371 0.00166 le8 -1.01913 6.13459 ~
- 47 €.34150 0.11340 p.20B94 109 -1.85286 0.13638 b
. 48 0.32068 0.11311 0.00083 118 -1.08776 0.13858 vt
-, 49 £.30000 0.11285 2.00072 111 =1.12418% 8.14055 v
‘. se £.27947 0.11268 £.00063 112 ~1.16284 0.14294 v
. s1- €.25903 8.11238 6.20054 113 -1.20171 0.14543 e,
. 52 0.23870 0.11218 B.80046 114 =1.2433) 0.148487 D
. $3 £.21847 0.11199 0.00038 115 ~1,28721 £.15176 Cv
) 54 £.19833 - p.11182 0.00832 116 -1.33376 0.15542 }‘
55 €.17828 £.11167 0.00026 117 -1.383238 0.1596% "
s6 £.15829 £.11153 0.00020 118 ~1.43669 £.16446
57 8.13837 0.11141 0.00015 119 -1.49458 0.16972 On
58 p.l1ese 8.1113 #.80011 129 -1.55772 e.17630 e
: 59 £.09868 g.11122 6.00008 121 =1.62779 0.18467 ~,
’, 60 e.07889 9.11115 8.00005 122 =1.70781 0.1946S <
- 61 £.05914 0.11110 2.00003 123 -1.79870 9.20747 ..
¢ 62 £.€3942 © 0.11106 p.00001 124 ~-1,908849 9.22554 .
:, 125 -2.84751 0.25276 -
126 -~2.242589 0.29997
127 -2.59188 8.41992 0.05408

TSS = 124,2125%
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APPENDIX C

NORMAL ORDER PLOTS

While an extensive discussion of normal~order plotting is
beyond the scope of this report, this section will provide those
readers unfamiliar with the process with some knowledge of its
advantages and disadvantages and how it is used to interpret
data from many-factored holistic experiments with one or more
subjects per cell,

The mechanics for setting up a plot are as follows: (1)
Prepare an effects (i.e., mean differences) scale on the
abcissa; (2) mark off the critical probability values on the
ordinate using the probabilities equivalent to the z-score
values in a table of normalrorder statistics for the K effects
in the particular analysis; (3) plot the effects (mean
differences) from the analysis of variance in order of
magnitude, the largest positive effect being at rank one and the
largest negative effects being rank K. An example is shown in
Figure C-1,

If the observed differences among the effects (mean
differences) in the sample are due only to chance, they will
fall approximately along a straight line. Even the largest
positive and the largest negative effects, usually more than two
standard deviations from the mean of all effects, will fall on
the line at opposite ends of the plot since deviations that
large can be expected by chance.

If one or more effects at either end of the normal plot
fall far enough off the line in the appropriate direction, then
this suggests that the effects are larger than would be expected
by chance. 1In a screening experiment, when this is observed,
the sources of these effects would be subjected to the greatest
scrutiny and investigated further.

Confidence limits (called "guardrails") at each rank can be
assigned, based on the expected normal distribution around the
expected values for the normal~order plots and the number of
effects being examined. The probability values for these
quardrails can be adjusted to reflect the level of confidence
the investigator wishes to use to avoid Type I and Type II
errors., At this time, two papers by Zahn (1975a, 1975b) have
the best discussion regarding the construction of gquardrails for
half-normal plots; this can be generalized to the case when
normal plotting is employed,
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5 FACTORS, 2° FACTORIAL
K =.31 (Fictitious data)
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Internretation: YN
Factors B and E and Interaction BE are critical. Q%
Factor C is marginal; more data is needed to be
certain. Factors A and D had no effect. P

Figure C-1. Example of an ordered normal plot. A




NORMAL OR HALF-NORMAL PLOTS?

In his early work, Daniel (1959) proposed that
*half-normal"” plots be used rather than normal plots for these
purposes. With half-normal plots, the signs of the mean
differences are ignored when the data are plotted; with normal
plots, the signs are retained. Both forms of plotting are based
on the same principles. The normal plot used the total
probability scale from minus infinity to plus infinity, while
the half-normal plot uses only half the scale from .58 to plus
infinity and requires that the probability values at which the
data would be plotted be adjusted. 1In a more recent book,
Daniel (1976) expressed the opinion that he preferred to use
normal plots, believing that the information provided by the
signs made it a more useful technique. Simon (1977a) has
summarized Daniel's and Zahn's (1975) papers on the use of
half-normal plots.

But whether to use a normal or a half-normal plot to test
the statistical significance of an effect is not completely
arbitrary. When Daniel used half-normal plots, his examples
were mainly ones in which the plot served as a quasi-test of
significance for the effects from an analysis of variance. When
he used the normal plot, he was actually evaluating residuals.
However, a more fundamental basis for selecting one or the other
exists.

POINT 7: WHETHER ONE USES NORMAL OR HALF-NORMAL PLOTS DEPENDS
ON THE NATURE OF THE HYPOTHESIS BEING TESTED. 1IF THE HYPOTHESIS
IS A TWO-TAILED TEST -- I.E., DOES A DIFFER FROM B REGARDLESS OF
DIRECTION ~- THEN THE HALF~NORMAL PLOT SHOULD BE USED. IF THE
HYPOTHESIS IS A ONE-TAILED TEST ~~ I.E., IS A LARGER THAN B —--
THEN THE NORMAL PLOT IS APPROPRIATE.

While psychologists generally have made more use of
two-tailed tests, not necessarily chosen on a rational basis, in
most equipment/system design studies we are usually concerned
with whether one system or device is better than another, a
directional question, in which case a normal plot is more
appropriate. On the other hand, if one has no expectations
regarding direction, i.e., which level of a factor should be
better, then the half-normal plot should be used. In mixed
cases, use the normal plot.

When there is concern for subject-related bias, as in this
report, it is important to retain the signs of the effects in
our analysis. The bias from subject effects will be both
positive and negative. It is recommended as part of the
pre-experimental analysis to try to arrange the factor levels in
the experimental design so that the coded values, +1 and -1, are
consistently assigned to the level more likely to yield the
larger and smaller performance values, respectively. When
results turn out to be the opposite of that which had been
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. anticipated prior to data collection, this warns that a large a;
negative subject bias may have been confounded with that effect. o
While not definitive, th%s approach helps facilitate the Ay
interpretation of the data. Rt
' T
| ADVANTAGES AND DISADVANTAGES o

2

Evaluating experimental results with normal or half~normal
plots has advantages and disadvantages. Among the advantages
s are: (1) A test of statistical significance can be made when no
: independent source for estimating the error variance is
' available. (2) An automatic adjustment is made for multiplicity
(i.e., examining a great many effects at once). (3) The slope
of the line in the middle range of the normal plot or the lower

,<
4 )
v
. f
bt P

fiall

. end of the half-normal plot provides a means of estimating the -
; "error" standard deviation. (4) Absurdities in the shape of the %ﬁ
. plot can warn of peculiarities in the basic data. Normal-order g
plots can and should be used even when an independent error term :?

is available. S

Among the disadvantages of normal~order plots are: (1) The 2$

mathematics of normal=order plots for identifying critical <11

factors is not fully developed (Birnbaum, 1959; 2Zahn, 1975). oL

(2) The experimenter must still make certain subjective gi

judgments and assumptions regarding how many factors he expects -t

might be significant and what a suitable overall significance %

level should be. However, such problems as these are neither ;n‘
overwhelming nor unique to normal~order plots. Since these o

multifactor experiments are conducted in the screening stage,
one does not expect that all decisions be made with statistical
precision. An investigator at this time should lean toward
liberal interpretations of the results so as not to discard a
potentially critical factor. Cautious interpretation of eyeball
examination of the normal plot without guardrails will usually
suffice for that purpose.
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Though there is still much more to be learned about the Pt

effective application and interpretation of normal-order plots, h:E

they are already a useful tool for interpreting the results from e

holistic experiments. Even with all the uncertainties, they {}

probably are more effective than the traditional method used by N
behavioral scientists to test for statistical significance. As A

Daniel (1976) wrote: "The standard form of the ‘'analysis of O

variance' which is widely used in summarizing factorial designs N

with factors at many levels does not seem to me to be useful for e

[2 ) data. All the contrasts from a [2X]) data set must be o

examined together. Their order, their distribution, and their R

signs are all lost in the standard analysis of variance table, )

The habit of summarizing the results in such a table (manifested W

in so many textbooks that it would be unkind to name) has had a 1

. tranquilizing effect with much information lost" (p. 128). §¢
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b - APPENDIX D

CONSIDERATIONS REGARDING THE USE OF COVARIATES
FOR SUBJECT-BIAS REDUCTION

Séi

5 x3
‘ \.i *:
! Simon and Roscoe (1981) and Westra (1982) used covariates o
: to partial out of their experimental data the bias that results Lt
when subjects of different abilities are randomly assigned to N

the cells of the experimental design. In retrospect, the 3

adequacy of a covariate approach for this purpose must be NN

questioned. 1In the main body of this report, it was shown that 4

for a covariate (or battery of covariates) to be more than i

trivially effective, its validity coefficient, i.e., the X

correlation of the covariate with the true criterion, must be Hw'

much higher than has been typically achleved when complex tasks =

g are involved. %
v ~ 24
Here we will briefly describe what some of the i

characteristics of covariates for bias reduction must be, L

distinguish between covariates for that and other purposes, and e

finally discuss why obtaining an adequate covariate for bias g

reduction is unlikely to be cost effective. e

ek

' CHARACTERISTICS OF COVARIATES FOR BIAS REDUCTION 4
LS

At the end of a transfer-of-training experiment in which a .Sv

different subject is tested on each training condition, the -
investigator is faced with a set of performance scores, each POSA
representing the combined effect of subject ability at the time ﬁf

the task was performed and the difficulty of the experimental N0
condition. Since the purpose of the experiment is to learn }i”

about experimental factor effects, the investigator must find a NSy

way to remove the effects due to subject differences from the -y

confounded performance scores. To do this with covariates, he —

must find an independent set of measures that will reflect the '?i

‘ rank order of the subjects' abilities on the task at hand at the M
a time the performance data were collected. g-
4 .‘ .
Thus, the two primary characteristics of a viable covariate n

- for bias reduction are: ¥
. 1. The independent measure of subject ability must be made ﬁ:
. - on a task comparable in complexity and difficulty to the one K
A being investigated and involving essentially the same critical jﬂ;
skills. o
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2. Subjects' abilities must be at essentially the same e

s W N g

. level they were at the time the critical experimental trials e
were being performed, not what they might have been before the N
skills were developed nor necessarily after they were fully s
1 developed. .;Z
o &t
Y Psychologists have frequently been content to use a task §H
d without those characteristics, arguing that the covariate task i
they are using has been found to correlate significantly with =z
the "true" task (which presumably has those characteristics). o
i Unfortunately, they have often been remiss in two ways, i.e., N
¢ (1) failing to recognize that correlations that are ?g.
¢ statistically significant may not be of practical significance, oot
v and (2) failing to validate their covariate against a task with J;
those properties. %
h * 3
. COVARIATES FOR BIAS REDUCTION VS ERROR REDUCTION EF
s o
2 : A covariate test suitable for bias reduction will not Eﬁ'
9 necessarily be the same as one intended to remove subject e
differences from the error term so as to improve the sensitivity =
A of the test of statistical significance. While isolating T
X individual differences from the error estimate and reducing the ﬁk;
- subject-induced bias are both accomplished by the same covariate -
) effort, the criterion for effectiveness will differ. ;E
When purifying the error term, we may be content with the “3

attitude that “any improvement will do;" that attitude is not
appropriate where bias is concerned. 1If a covariate is not
terribly effective in reducing the error variance, the visible

1 presence of a large error term should at least make the

b experimenter more cautious about his interpretation of the data. J
Oon the other hand, biases are less visible and only a few of the i

X k effects will be critically confounded with the largest biases, .
: While we may be aware that overall the biases are there, we do ..
- not know with which effect each hidden bias is confounded, its R
\ direction, nor if it is large enough to matter. Chance o
. combinations of the larger bilases with experimental effects in A
the single experiment can make a marginal effect appear —
3 significant or a large effect appear trivial. For these et
. reasons, it is important that the covariates used primarily for t?;
: bias reduction be more effective than those used primarily for 2]
: error variance reduction. 'f
L .\
COVARIATES FOR BIAS REDUCTION VS SELECTION 2
: A covariate for selection purposes also has different e
W requirements from that for bias reduction. For selection o
. purposes, covariate tests must be administered before the RO
F critical period, before skills have been developed to any N
degree, since its purpose is to predict future performance. s
This i{s not the case with the covariate for bias reduction which ,fﬁ
xS
3 :'::\
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{theoretically, at least) may be administered at any time
provided the essential requirements are met.

If the covariate must be given before a skill has been
developed, the selection battery will usually have to be
composed of tasks markedly different from (and simpler than) the
training and criterion tasks. For effective bias reduction, the
more similar the critical elements of the task and the covariate
are, the better.

B _—
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L

T

Selection tests ordinarily are intended to predict ultimate
ability. For bias reduction, we are concerned with subject
ability at some crucial point in the learning curve, not
necessarily the final stage.

AT
f?ﬁﬁa,

Sl

Finally, regarding certain practical and financial
considerations, since selection tests are intended to be used
over an extended period of time and with numerous applications,
the great deal of time and money required to develop them may be
justified. On the other hand, one must weigh the costs when one
considers that the covariate for bias reduction may be used only
once, normally being experiment~specific.
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FINDING A SUITABLE COVARIATE

A covariate test (or battery of tests) may be derived from
essentially the same task as that employed in the experiment, or
it may be derived from simpler tasks which in aggregate presume
to measure skills required to perform the criterion task.

COVARIATE TASK = CRITERION TASK. In the first case, if the
covariate task is some variation of the criterion transfer task,
then the skills involved and measured in both cases will be
essentially the same. Ordinarily, no formal validation effort
would be required. As the correspondence between the covariate
task and the transfer task begins to diverge, e.g., if only a
component or simplified version of the criterion task were used
in place of the total task, then some estimate of the validity
coefficient is probably necessary.

COVARIATE TASK = SIMULATOR TASK. If the covariate task is
measured in the simulator rather than under the operational
conditions of the criterion task, a frequent practice, then some
empirical evaluation of how faithful the critical elements of
the simulator are to the real world seems imperative.
(Investigators sometime perform quasi-transfer experiments in
which the criterion task is performed on another condition in
the training simulator. Under the assumption that that latter
task is sufficiently "similar"™ to the real world task, results
are interpreted as if they were equivalent to carrying out the
transfer phase of the study under operational conditions,
Because the simulator cannot really be used with any confidence
as a substitute for the real world without a considerable

b k3

A

--
R
e

71

"avRl A

A L S R S D L i T A S LR R VDR CGL AL SR LG T



validation effort, we will not consider that condition in this
report.

This requirement again raises in a different context the
unresolved question of how much and what kind of fidelity must
be built into the simulator. Wwhen used as the covariate task,
it must be faithful enough to measure most of the critical
abilities employed in the criterion task and not require others
that are not important operationally.

Unfortunately, such a rule is too vague to provide the
information needed by either the engineer who wishes to build
the least expensive, most effective simulator, or the
experimenter who must decide whether the simulator is an
adequate medium for the covariate task. Too often, the
faithfulness of the simulator is determined by “face validity."
This is not enough; fidelity for both purposes must be
empirically demonstrated. To date, the empirical procedure
employed for that purpose has been inadequate since it has been
limited primarily to measuring overall transfer from simulator
to the criterion task. In most cases, although the results have
been positive, this procedure will not detect the fact that some
critical components of the simulator may actually result in a
negative transfer effect which has been hidden by a larger
positive transfer effect from the other components. Information
regarding component transfer is what our research and simulator
evaluation efforts should provide in order to build better
simulators and to be able to use them for the covariate task.

When using the simulator task for the covariate, one must
use a configuration that was not used during training. The
condition at the center of the experimental space was used by
the experimenters cited earlier. However, with categorical
variables that is not possible. Furthermore, if subjects have
been tested at the center of the experimental space to obtain
data to evaluate the lack of fit of a linear model, using that
same configuration for the covariate test raises questions of
the purity of such measures,

COVARIATE TASK = TEST BATTERY. When the covariate task is not
some variation of that actually used in the experiment, we
distance ourselves still further from the criterion task. While
one school of thought among psychologists has been that a
battery of simple tasks each measuring a different ability
factor can represent more complex tasks, in practice the success
of such a philosophy has been marginal at best. The reason for
this can be more readily appreciated if one perceives
performance on a complex task as the linear sum of the effects
of a great many factors and possibly some of their interactions.
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Y = xl + x2 +..' ...xn + x1x2 + xlxa... ...xmxn

each with a coefficient reflecting their relative weights.

While simple tasks may be found requiring the abilities
used in some elements of the complex task, still, because of
that complexity, it is not likely that enough simple tasks would
be found to cover all of the important skills, and particularly
their interactions or those required to handle the complexity
itself. Certainly the skills which psychologists are able to
label are only a part of those required to do the task since
they are too frequently selected because they are easy to name
and to identify and often lack precise definitions; the more
difficult to measure and microscopic features are frequently
ignored. Other complexities of interskill relationships, being
rationally unfathomable, are seldom considered. As a result,
there are many components that will not be measured. The
proportion of the total number of components (properly weighted)
that are accounted for reflects the size of the validity
correlation. The proportion that is not accounted for is
associated with the "error" (residual) variance that frequently
is much larger than the predicted. In this model, we can see
why the more similar the covariate is in content and complexity
to the criterion task, the better the predictor it will be. One
should not underemphasize the tremendous part of this unwritten
and unknown equation that never surfaces. When the factors even
in simple experiments fail to account for 4% to 5¢% of the
total variance (Simon, 1976), then it should be evident that
what the psychologist is capable of labeling and measuring is
usually only the tip of the iceberg.

If the covariate task is a battery of simpler tasks
presumed to tap the skills affecting the performance of the
criterion task, then empirical verification is imperative.
verification in this case must show that most (all?) of the more
critical skills required to perform the operational task are
represented and at the skill level present at the time when bias
is to be removed. How large a validity coefficient must be to
have an effective covariate test or test battery is shown in
Table 6 in the main text. Since, to be truly effective, these
values must be higher than are usually obtained in practice, one
must question the viability of this approach when using a
covariate for bias reduction. To add to the difficulty when
using indirect covariate tasks is the cost involved: (1) to
find enough representative tasks, and (2) to validate them when
changes in the experiment change the skill requirements.

While one may argue that if a validation test finds that
the two tasks do in fact show a high correlation then one could
safely use the simpler task. That may well be, if a high enough
relationship can be found and if that correlation is obtained
when the subjects' skill levels approximated those expected at
the critical period in the experiment. But if history tells us
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anything, the probability that both of these conditions will be %’
. met are low indeed and with the costs of developing and oty
validating covariates, which must be reexamined each time the 3
subject and task characteristics change, the viability of the oM
use of covariates to reduce a bias, except as an adjunct %{
technique, appears moot. 5@
b7

CONSIDERATIONS REGARDING THE TIME WHEN COVARIATE MEASURES ARE ﬁ;

TAKEN

When the criterion task is used as the covariate, it must 258
be used after the subjects have been trained sufficiently to ';%
meet the skill level requirement cited earlier. This means that E$
these measures should be taken shortly before or after the
transfer period. This may contaminate the experimental data in

several ways: (1) If taken under operational conditions before e
the criterion measure is made, but after the training, the o
effects of training can carry over (transfer) to the covariate N
measures distorting them. The presence of the covariate between f
training and transfer could also have unknown carryover effects ~“f
to the measures of the experimental transfer trials. (2) If =2
taken after the transfer data have been obtained, the covariate .
measures may be contaminated by transfer effects from the ?ﬁ;
criterion task to the covariate task. A
If the covariate test is given in the simulator just after wed
the training sessions, then there could readily be carryover E
(transfer effects) from training to the covariate task in the ‘$f
same way it is expected to occur to the criterion task. While AR
there is often no good way of knowing whether these dangers e
occur, it is not unreasonable to believe that they can and do ~§:
and, therefore, steps should be taken a priori to have them e
reduced or avoided. —
If covariate measures are taken in the simulator after the o)
transfer phase is complete, and if the different subjects have e
shown different transfer effects due to difference in training, 33’
then unless one is careful (and can demonstrate that there is no Qg;
danger), these differences may continue to carry over to the t;g
covariate measures. One solution to this problem might be to "y
run a number of buffer trials between the last criterion and o
first covariate trials; how many depends on numerous o
characteristics which cannot be known until the experiment has =X
been run. If too many trials are introduced as buffer trials, 5y
one may increase the subjects' abilities markedly beyond what it B
had been when the criterion task was performed, a condition not e
acceptable when the covariate is to be used for bias reduction 50
purposes. )
- S
This "Catch 22" only furthers the argument that the use of S
covariates to reduce subject bias is fraught with problems that s
reduce their effectiveness for subject bias reduction.
e
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" INTERPRETING THE MEASURES '%ﬁ
: ot
: When some form of the task itself is used as the covariate, 1
! an empirical demonstration of "validity" will probably not be o
N necessary. The test has an inferred validity. What does it r}
» mean then if it turns out that such a test correlates poorly &{
= with the experimental performance scores from which ability is q@
y to be partialled? It does not mean that the validity of the N0
covariate derived from the task itself is invalid. It merely 3
! means that for the specific set of data from which ability is ey
s being partialled, only a small amount of whatever the covariate el
J measures -- subject ability -- is actually present. The square 71
. of the correlation is the proportion of total variance accounted 1
r. for by individual differences in that single case. 1
: RELIABILITY el
4 B
N The low correlation in the example above might be due to 2
. the poor reliability of the data employed. If either set of
1 scores is unreliable, the usefulness of a covariate is impaired.
The corrective measures for this possibility must be considered
3] carefully; however, solutions to problems of unreliable
- measures should properly be resolved before the experiment is
Y begun, not after it is over.
P
: If the covariate task yields unreliable measures, then it
is appropriate to use multiple measures to obtain a reliable
average series of scores for ranking subjects according to -
j ability. On the other hand, it may not be appropriate to use et
< the average of performance measures made over several trials in Y
the experiment. o
o DA
One cannot toy with the performance scores from which cal
. subject ability is to be isolated. If the investigator intends Ay
2] to use only one set of measures from each subject to evaluate }}}
: the experimental training or transfer effects, however &Q
) unreliable that performance may be, those are the scores from }?,
¢ which the covariate must be partialled. 1If one is dealing with 3
real-world problems, one may want to predict or understand s
per formance on the single trial (whereby a poor performance may =
negate the possibility of ever having a second trial, e.g., e
carrier landing). b
G o~
" Nor should the correlation between the covariate and &:
: performance be adjusted statistically to correct for poor al
reliability when that value is to be used to partial out .
X ability. The new value would represent what the validity of the hY:
3 covariate ought to be, rather than what it was at the time the L
3 experimental data were being taken., Of course, if the e
performance scores have low reliability, it will not be possible ;;
! to remove any effective amount of subject variability. nd
N \4
: N
. : ;“
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EVALUATION t§\;

- oy

In the two holistic transfer of training experiments by 3

Simon and Roscoe (1981) and Westra (1982), the covariate method '%s

was used to partial out subject bias. The appropriateness of o

that approach must now be questioned. é,

e

Simon and Roscoe (1981) used as their covariate the median aﬁi

score of three trials taken at the beginning of the experiment 3

: on a common experimental condition at the center of the ees
ﬁ experimental space. Since the experiment was a quasi-transfer )

study with both training and transfer performed in the
simulator, the validity of the covariate task was axiomatic. R

The covariate they used, however, does not meet the ™
requirement regarding the level of subject skill. Considering Yy
the unstable nature of performance when an operator is starting ;
to learn a complex task, the ordering of subjects on their e

r

EIIT

ability when tested early in the training program need not ‘32;
correlate well with that after learning has taken place. In e
addition to the exploration and testing of varied techniques =
that an operator often attempts early in a training program, one A,
might also expect that some factors affecting skill at the end ﬂ:\
of the training phase may not even be operating at the ;;k
beginning. The covariate used in this study may not have .:l
provided a relative measure of subject skill as it was at the ;;3
time when the critical training and transfer trials were being .;

performed.

In the Westra (1982) experiment, an Atari Air Combat
Maneuvering game was used as the covariate. The validity of
this task was never seriously investigated. It is certainly a
much simpler task than that of carrier landing and there is no
way in which to equate performance on it with skill level at a
particular time during carrier landing training. After the A
fact, correlations between .49 and .55 were found between the ool
Atari performance scores and the transfer scores of the o
different subjects, presumably after whatever transfer from the
different training conditions that did occur had dissipated. —
How this was determined was never explained. -

For both studies, the correlations from which the validity o
of the covariates were inferred were all below .55. Even at Lo
that level, the correlation would barely account for 20% of the 0

subject bias. Any of the inadequacies discussed earlier may 59
have been responsible for the correlations not being higher. =
Even if a high correlation had been found between the covariate o
and a validation score (during some preexperimental development ;g
phase), accepting it merely because it was numerically high -
overlooks the possibility that the correlation might be due to D
the presence of a third variable which affected both measures A
which were themselves unrelated. That variable may not be .
present under operational conditions. N
' A3
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SUMMARY

Developing a covariate that suitably measures subject
ability on a particular task at a particular time is difficult
and expensive to achieve. Historically the validity
coefficients obtained have been too low to be effective for
removing subject bias. If a high correlation were ever
achieved, it still would be necessary to reevaluate the validity
coefficients when the situation context changes in another
: experiment or for a different subject population.
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APPENDIX E

[

b
b
!
l

PROBABL.E LOCATION OF THE TRUE SUBJECT BIAS EFFECTS
WHEN LOCATIONS OF COVARIATE BIAS EFFECTS ARE KNOWN

Qe |

The results of the Monte Carlec simulation for Technique 4

L R g

described in Section IV of the text are presented in Table E-l :?

below. The following examples illustrate how these tables are v
interpreted:

N

1. Table E~l1.A, K = 31, r = .38, Row 1, Column 1 e

e

There is a .99 probability that the largest positive true
bias effect will actually be confounded with the same factor
effect as the largest positive covariate bias effect.

2 {3

] 'l
iy X

[}

2, Table E«l.A, K= 31, r = ,65, Row 1, Column 4

AN

2

AN

There is a .60 probability that the largest positive true
bias effect will be confounded with one of the four factor
effects that are confounded with the four largest positive

covariate bias effects. Which one is not known.

-
[l
’

A

3. Table E»l1.A, K= 31, r = ,707, Row 2, Column 8

There is a .64 probability that the two largest positive
true bias effects will be confounded with two of the
eight factor effects that are confounded with the eight largest
positive covariate bias effects. Which two are not known.

L I

4, Table E-1.B, K = 63, r = ,45, Row 2, Column 8

~,
‘T‘-

v
F a0

There is a .17 probability that the two largest positive
true blas effects will be confounded with two of the eight
factor effects that are confounded with the eight largest
positive covariate bias effects. This probability drops to .06
if the largest four covariate bias effects are used (Row 2,
Column 4).

e <

AL ge
)

e
P AR
' I )

. ‘/\'_ﬁ'{...:. ‘{. - y

¢
Pd

5. Table E~-1.C, K = 127, r = .30, Row 1, Column 8

There is a ,22 chance that the largest positive true bias
effect will be confounded with one of the eight factor effects
confounded with the eight largest positive covariate bias
effects. That does not provide much effective use of the
covariates to interpret confounded factor effects unless the
number of covariate effects considered are increased.
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) Note that there is not always the same number of rows in P
¥ every subtable. This is because no row is shown when all of its :
probabilities are less than .10 (when only eight or fewer
covariate effects are being considered).
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TABLE E-1. PROBABILITIES THAT TRUE SUBJEJCT BIAS EFFECTS ARE CONFOUNDED
WITH FACTOR EFFECTS INDICATED BY THE LOCATION OF COVARIATE
BIAS EFFECTS.*

NUMBER OF LARGEST POSITIVE COVARIATE BIAS EFFECTS

R L 2z 3 4 5 & 1 8
A

K=31; r=.30
.09 .17 .24 .30 35 .40 .45 .49

Qo1 .04 .07 .10 .13 .17 .21
K=31; r=.45

.03 .07 .12 .17 .22 .27 .33
01 .02 .05 .07 .11 .14

K=31; r=.65
1 27 .41 .52 .60 .67 .72 .77 .81
2 .08 .17 .26 .35 .43 .50 .57
3 03 .08 .15 .21 .28 .35
4 .01 .14 .08 .13 .18

K=31; r=.707
31 .48 .59 .67 .73 .78 .82 .85
12 .23 .34 .43 .51 .58 .64
05 .12 .19 .27 .35 .42
.02 .06 .12 .18 .25
01 .04 .07 .12

NUMBER OF LARGEST POSITIVE TRUE BIAS EFFECTS

N & W N

*Rows are discontinued when al) probabilities are less than .10,

8l
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Table E-1 (Continued)

NUMBER OF LARGEST POSITIVE COVARIATE BIAS EFFECTS

X

”

=
AT
if o u. g0

RAK L 2z 3 &4 5 6 1 8

-}
ke

K=63; r=.30

2

—
.
[=}
[+2]
.
Py
-
.
[
[<4]
.
N
o
*
N
w
[
N
N
L ]
.
w
N
- ~\w- g
\ '.l"‘v'n f

K=63; r=.45
.11 .19 25 .30 .35 .39 .43 .47
2 02 .04 .06 .10 .12 .14 .17

,w,rva
- »
:ﬁ;??y;.

K=63; r=.65

e

& .22 .34 .43 .50 .56 .61 .65 .69 o
e 05 .12 .18 .24 .30 .35 .39 R
& .02 .04 .08 .11 .14 .18 2
v --
= K=63; r=,707 NS
s 1 .26 .40 .50 .57 .63 .68 .12 .75 S
= 2 .08 .16 .23 .30 .37 .42 .48 B4y
= 3 02 .06 .11 .16 .21 .25 ¥
> 4 .01 .03 .05 .08 .11 3
S ,
B X
g K=127; r=.30 {I}
w 1 .04 .07 .10 .13 .15 .17 .19 .22 o
& K=127; r=.65 o
5 1 A8 .28 .36 .42 .47 .50 .54 .57 P
.03 .07 .2 .15 .19 .23 .2 N

3 .0l .02 .04 .06 .08 .10

K=127; r=,707 -I

22 .34 .42 .49 .54 .59 .62 .66 S

05 .11 .17 .21 .26 .31 .34 RN

0L .04 .06 .09 .12 .15 ~

Seet

PO

82

i

'. ’ :F‘ ‘l l 4' ,(..,
< Ji% . 2

L e, "
L)
-l




FRYOE Y I I S Y Y N N T N T T R W Y S N Y T X R T O Y YK ™~

A S

NOTATIONS AND TERMINOLOGY

-k i S o

Symbols

Bl Measure of skewedness = (Ix?)2%/N2s®

St om .

B2 Measure of kurtosis = Ix*/Ns®

K, c Number of different experimental conditions in the
experiment. 1In the basic design of holistic
experiments, C = 2k-p conditions.

.y
) K Number of estimable effects in the experiment.
‘ K= 2k-p -1 =cC-1,
*
k Number of factors to be investigated in an experiment.

: Maximum possible in Resolution IV design, k = C/2,.

N Total number of independent observations or, total number
of subjects in an experiment. N = nC = n2 7P

"N" Used to differentiate the use of the N in published

x tables in order statistics from the use of N above,

, where "N" in published tables is equivalent to either
C or K, depending on whether it is conditions or
effects the investigator is relating to chance values.

n Number of subjects in every cell of the experiment.
Equals number of replications.

N[#,1)] The underlined N is used to represent a normally
distributed population, and in this example, with a mean
of zero and a variance of one. Other values might be
substituted for the mean and variance.

L Ve lg SN\ %

P Reduction in population variance due to percent bi-
truncation, P = (1 -~ New variance due to bitrunca-
tion divided by 01d variance].

s s

P Indicates what fraction of a full factorial for k
factors the fractional factorial, 2K-P , is. The
fraction equals to 1/(2P) of 2K conditions.

Rj Rank position i in any ordered set of values,

Lyy Correlation coefficient between performance and
covariate scores,
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Tyt Validity coefficient; correlation coefficient between
covariate and "true® ability scores.

s Standard deviation s 1/6-
T, t Theoretical "true” ability measurements.
v variance. V = s2
X, x Performance scores
Y, Y Covariate scores
] Symbol for multiplication process in equations.
Designs
Between-subjects

Different subject tested on each experimental condition.
Within-subject

Same subjects tested on all experimental conditions or all
conditions within blocks of the full experiment.

Fully saturated
When the number of independent main and interaction effects
being studied is one less than the number of experimental
conditions (i.e., K= C - 1),

Fractional factorial

A selected portion of a factorial design. 1In the context <

{5

of this report, fractional factorials are in the form ;55

Of 2 k-po !‘.:.:
Holistic g

A design that embodies the philosophy and strategy of a
holistic approach: 1i.e., evolutionary and economical;
accounts for all potentially important sources of variance
whether of interest or not; provides tests of assumptions
and lack of fit; emphasizes elimination of irrelevant
effects.
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¥ . e
g
: Resolution IV ;f
¥ ’ ’ v
- Experimental design in which all main effects are isolated -
N from each other and from all two-factors interaction o
N . effects, while aliased two-factor interaction effects occur cﬂ;
I in independent strings. o
¥ nht;
‘ Experiments ' g?
3 Few-factor , fﬁ
L/ ’ o
3 Looks at fewer than five factors in an experiment ,f?
% generally using a complete factorial design. %
N
Many-factor
3 Looks at at least seven but generally more factors in a o
C b
3 single experiment using economical designs. }%
.l v
: . o,
Statistics (49
. Sample subject (bias) effect .
: . ey
; The mean difference between abilities of groups of subjects . {'&
y assigned at random to the two levels of a factor in a 2 k-p agh
4 design. Effect is confounded with a factor effect. o
Expected subject (bias) effect R
. Same as subject bias effect except that it is the average
T (mean) over many samples.
z-score (of bias) or z-value
; Standardized form of the bias at any rank. :5:
g Population variance and population standard deviation R
variance of abilities to perform a designated task for a alls
- theoretical subject population, estimated from the scores .%§
: obtained in a finite sample. Standard deviation equals AR
s square root of variance. L
s Subject sample variance Eg»
A
Used to estimate population variance. Square root of e
variance, or standard deviation, can be estimated using o
selected values in a normal-order plot (Zahn, 1975). t§~
Nt
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Bias variance

vVariance of all possible bias effects (mean differences
between the two groups of randomly assigned subjects for
each source of variance with one degree of freedom). 1Is
equal to the population variance times (4/N) where N is
equal to the total number of subjects. Standard deviation
of this value is often referred to as the standard error
of the mean difference.

Standard deviation of bias
Standard deviation of an individual bias effect at rank i
is equal to the standard deviation of the z-score for
rank i of k cases times the population standard deviation
times the square root of (4/N).

Analysis and Interpretation

Normal Order Plot

A plot of data on normal probability paper used to judge
whether or not observed effects are likely to have .
occurred by chance.
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LIST OF EQUATIONS é.:fi
- (A4
) B/Cell Var. (i.e., Factor Var. + Subj. Var. b/cells + Error Var.)
1 -

W/Cell Var. (i.e., Subj. Var. w/cells + Error Var.)
where F = F ratio; B/ and W/ = Between and Within; and Var. = Variance

-~

2) Between Cell var. (i.e., Factor Var. + Subj. Var. b/Cells + Error Var.)

3) Expected z-score Expected bias for Population 4
of bias effect = rank i of K cases = |[Standard o« [—
for rank i of from a population Deviation N
K cases N(0,1)

where K cases are the number of independent effects being seriously
examined and N is the total number of subjects used.

4) Expected bias Expected z-score |Population 4
for rank i of = for rank i of K , |[Standard « / —
K cases cases from popu- Deviation N

lation N(0,1)

— -
5) Standard devia- Standard deviation Population 4
tion of bias for = of the z-score for , |Standard +/ —
rank i of K cases rank i of K cases Deviation N

— -

6) Proportion of (z-score at rank i)?
variance for =
rank i of K Sum of (z-scores)?
cases
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List of Equations (Continued)

7)

8)

9)

10)

11)

12)

Performance score Performance sX Covarfate
with covariate = Score = vy | = ).« Score
effect removed (X) y sy / (Y)

where s = standard deviation and ryx is correlation between X and Y

Adjusted Bias 2
(covariate = Original Bfas ¢ /1 — fyt'

effectiveness)

where ryt is the correlation between the covariate scores (Y) and
the “true” measures (T) of subject ability.

Adjusted Bias
Percent bias reduction = 1 — « 100
Original Bias

Adjusted bias = Original bias 1 — (r t? . %)
(bftruncated) _ -J y

where P is the proportion of variance reduction due to bitruncation,
i.e., P = (1 — New varfiance due to bitruncation/01d variance).

N original

Adjusted Bfas = Original Bias *°
(replication) [N orig. <« No. Replicates]

Percent bias reduction = [} -— \/I/n :] *« 100

(replication)

where n is the number of times the original design was replicated.
This n also equals the number of subjects per experimental condition.
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