
UCLA
OFFICE OF
ACADEMIC COMPUTING

In
In

to "Continued Development of Internet Protocols
U "' under the IBM OS/MVS Operating System" *

FINAL TECHNICAL REPORT

TR55

Robert T. Braden

March 10, 1986

Sponsored by

Defense Advanced Research Projects Agency (DoD)
ARPA Order No. 4823

Under Contract MDA903-85-C-0130 issued by
Department of Army, Defense Supply Service-Was hinkton,
D p t n o W a s h i n g t o n , D C 2 0 3 1 0 . .- I- -

AP 1986 7-.

*1 -.
":-.''.' :

W UNIVERSITY OF CALIFORNIA, LOS ANGELES 8 6 4 20 0 1 1
" . . . . . . . . . . . . . . . .

. . . . ". . ".. . -'. - " . --...... 
. .. "



SECURITY CLASSIFICATION OF T !S PAGE f~ll- nfat iFnte-d

REPORT DOCUMENTATION PAGE FORE COMPLETING FORM
I. REPORT NUMBER 2.GV CCESSION NO. 3. RECIPIENT'S CATALOG NUMBER I.

QACTR55 .D( oS _______ ___

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

"Continued Development of Intetnet Protocols FiaTehclRpot.A.
Under the IBM OS/MVS Operating System??.%

6. PERFORMING ORG. REPORT NUMBER w

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(A)

Robert T. Braden MDA 903-85-C-0130 ~

9. PERFORMING ORGANIZATION NAME AND ADDRESS S0. PROGRAM ELEMENT. PROJECT. TASK

office of Academic Computing AREA & WORK UNIT NUMBERS J

5628 Math Sciences Addition C0012 -UCLA Order 4823 .-

Los Angeles, CA 90024
I I. CON TROLLING OFFICE N AME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency Mrh1,18
1400 Wilson Boulevard .NUBROPAE

Arlington, VA 22209 6
Is. MONITORING AGENCY NAME & AOORESS(iI different from Controlling 0Office) I.SCRT LS.(fti eot

Unclassified

IS&. DECL ASSI FI CATION, DOWN GRADIN G
SCHEDULE . 3

16. DISTRIBUTION STATEMENT (of this Report)

Distribution Unlimited

17. DISTRIB3UTION STATEMENT (of Ihe abstract entered in Block 20. if different from Report)

III. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rover** side if necessary and identify by block number) A

Computer Communication Protocols. ARPANET Control Program.

Internet Protocols. .TCP. IP.

20. ABSTRACT (Continue on reveroe side It necessary and identify by block number)

This report covers progress in the. UCLA ACP, host software for the DoD
Internet protocols for an IBM OSIMVS system. The Local Network
Interface, the use of "IC" code, other features of Release 1.6 of the ACP,
and areas for future development are presented.

DD 7 1473 EDITION OF I NOV 65 IS OBSOLETE *.

S/N 0102 LF 014 6601 _______________________ *j

SECURITY CLASSIFICATION OF TIS PAGE (Whten Dots Entered .

N5-

. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .



OFFICE OF ACADEMIC COMPUTING >$. V
University of California at Los Angeles

405 Hilgard Avenue,
Los Angeles, California 90024

"Continued Development of Internet Protocols

under the IBM OS/MVS Operating System"

FINAL TECHNICAL REPORT Accession For."-"*

NTIS GRA&I
DTIC TAB
Unannounced ["
JustificatioTR55 , - ' -

By
Distribution/ ..-

Robert T. Braden Availability Codes .

Avail and/or
March 10, 1986 Distl Special

Sponsored by ". ' [-

Defense Advanced Research Projects Agency (DoD) I Qi'
ARPA Order No. 4823 .-ci,

Under Contract MDA903-85-C-0130 issued by
Department of Army, Defense Supply Service-Washington,

Washington, DC 20310.

"The views and conclusions contained in this document are
those of the author and should not be interpreted as
representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency

or the US Government."

. •

°"%" -% .

,% "° - *-° .*

, •• - °

"." . o . '"--*-.***" .'-. .. *.* .. , ......." .." %" ," ."'-% ... ,'"• ''. >'...-.- ., - . ..



PAGE ii

SUMMARY
S"

-This document is the Final Technical Report under DARPA contract
MDA903-85-C-0130, entitled "Continued pvelopment of Internet Protocols
under the IBM OS/MVS Operating System . -

Under this contract, the contractor continued the development and
distribution of network software for the DoD Internet protocols, to
execute on an IBM 370 mainframe under the OS/MVS operating system. The
central component of this network software is a subsystem called the
ARPANET Control Program or ACP.

This report covers the major areas of development of the ACP under this
contract: revision of the Local Network Interface, the introduction of
name resolver code, and the use of thenc'language within the ACP.
Finally, it summarizes the most important features of the latest ACP
distribution, Release 1.6, and lists areas for future ACP development.

9.>

.5 %

- ii - .-J

* . _ _ . . p - . . .. .. + *. S



PAGE ii i

CONTENTS

SUMMARY. ........................... .. .. .. . ..

Chapter je

1. INTRODUCTION. ............................

*Local Network Interface. .................... 1
Name Resolver. ......................... 4
Preparation of ACP Release 1.6 .. ................ 5

2. LOCAL NETWORK INTERFACE .. ..................... 7

*LNI Requirements .. ...................... 7
Overview of the LNI Design. ................... 16
Control and Debugging Facilities. ................ 26

3. HOST LOOKUP MECHANISMS ....................... 27

*GETHBY Service. ......................... 27
GETHBY Implementation ...................... 29
Multihoming and Address Sorting ................. 31

4. C PROGRAMMING IN THE ACP ...................... 33

*The Language Choice ....................... 33
Procedure Calls ......................... 35
Reentrancy. ........................... 38
Storage Allocation. ....................... 41
I/O System. ........................... 42
Porting Difficulties. ...................... 47

C5. RELEASE 1.6 FEATURES ........................ 50

6. CONCLUSIONS. ............................ 57

REFERENCES ............................... 60



PAGE iv

LIST OF FIGURES

Figure page I

*1. Local Network Connection Using the ACP...............2

-2. ACP Job Components.........................8

3. Ptask Tree Structure ....................... 10W

*4. Interface Data Structures. .................... 20

5 . Multiple LNI's .......................... 23

6. Host Lookup Routines ....................... 30

*7. C/370 stack-frame. ........................ 36

.iv



FINAL TECHNICAL REPORT March 1986
UCLA OAC TRSS

Chapter 1

INTRODUCTION

This document is the Final Technical Report under DARPA contract
MDA903-85-C-0130, entitled "Continued Development of Internet Protocols
under the IBM OS/MVS Operating System", in effect from 4/4/85 through
2/28/86.1 Under this contract, the UCLA Office of Academic Computing
(OAC) continued its participation in the Internet research effort of

* DARPA.

OAC's effort has been focused on host software to support the DoD
Internet communication protocols on an IBM 370 mainframe using the
OS/MVS operating system. The central component of this software is a
subsystem called the ARPANET Control Program or ACP [Braden86D].

We will now sumarize the major areas of ACP development during this
contract: revision of the Local Network Interface, the introduction of
name resolver code, the use of the "C" language within the ACP, and the
preparation of Release 1.6. Later chapters of the report will supply
greater technical detail, and the Conclusion will list fruitful areas

* for future ACP development.

1.1 LOCAL NETWORK INTERFACE

Using the Internet Protocol (IP) [Postel8lB], packets are sent from a
source to a target host through one or more networks interconnected by
gateways. Each IP packet is a datagram which is routed individually by
the gateways, using the destination host address in the IP header. To
send a segment of data, the source host prefixes it with an IP header,
supplies the framing necessary for the local network to which it is
connected, and sends the packet through that network to the first
gateway. The gateway removes the local network framing, makes a routing
decision, adds the local network framing for the next network, and
forwards the IP packet. This process is repeated until the packet
reaches the target host. The target host removes both the local network
framing and the IP header to recover the original data segment.

1 This contract was a follow-on to DARPA contract MDA903-83-C-0435

[Braden85A], in effect 9/1/83 through 1/21/85.

,. . . . ... :,.. . . .

,-. -.- - ~ .:. ,.. .... .-. . .,.. ... ....... .. ' -..-."" ." . .".- -".-"-."- -"-" - , - .:



V.%FINAL TECHNICAL REPORT March 1986
UCLA QAC TR55

Within the UCLA ACP, the component called the Local Network Interface or
LNI handles the interface to the local network. The basic LNI functions
are to:

* Add the local network framing for an IP packet to be sent

* Remove the framing from a packet received from the local network

* Function as the I/O driver for the hardware interface to the local
network.

Figure 1 illustrates the function of the LNI as an I/O driver for the
channel interface hardware used to connect to the local network.

IBM Mainframe

0
S I

I II IV.IL-'I
V L ;)

Network IBM S
S---- > I > N -

Access (Channel I Channel 1-
.. .I I- I I

I Interfacel lInterfacel I

I . I

Figure 1: Local Network Connection Using the ACP

During this contract, the LNI component of the ACP was repackaged with
redesigned interfaces to the rest of the ACP. The objectives of this w
effort were to:

* Provide Local Network Transparency

The details of the LNI are necessarily dependent upon both the
network access protocol for the local network, which defines the
framing, and upon the particular I/O path used to reach the

/ -2-

JVA

- ,\

• "- t. '



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

interface hardware. The I/O path might use the low-level "Execute .,
Channel Program" (EXCP) facility of OS/MVS, or it might use an .
existing access method such as IBM's VTAM.

The ACP was written originally as an I/0 driver for specific
channel interface hardware2 connected to an 1822 host interface on
an ARPANET IMP, and using the EXCP I/0 path. 1

The Internet transport protocol set TCP/IP provides universal
connectivity, independent of the particular local network to which
a host a attached. There is now a variety of local network access
protocols and interfaces for ARPANET/MILNET, and some sites wish to
interface IBM MVS hosts directly to LAN's, particularly Ethernets.
As a result, there was a need to generalize the ACP to support
different local network interfaces.

To meet these requirements, the LNI in the ACP has been repackaged
to separate the processing of the local network protocol from
Internet protocol processing. We refer to this separation as local
network transparency, since the choice of local network interface
and protocol is transparent to the code which processes IP and TCP.
That is, all dependence upon (1) the particular I/0 path to the
network interface and (2) the local network access protocol is now
isolated within the LNI code. Conversely, an LNI now makes minimal
assumptions about the structure of the rest of the ACP.

This modularization of the ACP along the protocol boundary between
IP and the local network will facilitate the development of new
LNI's for different network connection arrangements.

• Support Multiple Concurrent LNI's

It is possible for a host computer to have two or more channel
interface units like that shown in Figure 1. In that case, the ACP
will need an LNI instance for each interface. There are two
possibilities for these multiple paths:

1. Multihomed Host

Each access path may have a different IP address, with the set
of addresses being on the same or different networks. The host
is then said to be "multihomed".

2. Multiplexed Access

The access paths may have the same IP addresses (although the
Local Network Addresses may or may not be the same). We refer
to this as multiplexed access to the local network.

2 The IF/370 channel interface built by ACC, Inc.

-3-* IE2



FINAL TECHNICAL REPORT March 1986pUCLA OAC TRS5 

For example, the logical host capability [BBNl822L] of P
ARPANET/MILNET, which allows a set of parallel interfaces to ,
have the same (logical) network address, could be used to
provide multiplexed access. The advantages would be higher 4
total bandwidth and increased reliability.

The repackaged LNI will support an arbitrary combination of
multihoming and multiplexing of the local network interfaces, in a
manner transparent to the rest of the ACP. In particular:

a) Output is load-shared among multiplexed interfaces.

b) Any interface that is down is ignored, with the load being
taken by those equivalent (multiplexed) interfaces which are
up.

* Document the LNI

To allow other organizations to write new LNI's, we documented the
interfaces and requirements for writing new LNI modules in
Technical Report TR51, "The Local Network Interface in the OS/MVS
ARPANET Control Program" [Braden86A].

Increased Efficiency

The efficiency of the LNI was improved by removing an unnecessary
copy of every input packet. The IMP READ buffers are now handed U
directly to the Internet Protocol code.

* Improved Control and Debugging Facilities

These facilities will be listed later.

An overview of the LNI design will be presented in Chapter 2, which is
adapted and condensed from TR51.

1.2 NAME RESOLVER

The Internet research community is installing a system of name resolvers
and name servers [Mockap83] to replace static tables of Internet hosts.
However, the static host tables are still in use in the non-research
segment of the Defense Data Network (DDN).

Under this contract, we worked towards the introduction of a name
resolver for host lookup functions, as an alternative to searching the
static host table.

-4-

7774
* * : '..t .t., -a-.,....s......a...t...L.<



* FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

* The host lookup services of the ACP were revised to provide a
compatible interface to either the existing host table lookup code
or the planned name resolver module.

Several versions of the Berkeley "BIND" name resolver code, written
in "C" for UNIX,3 were "ported" into the ACP.

The BIND name server/name resolver package is large and complex, %,,
and porting it was not trivial. A subset of the Berkeley UNIX
network I/O facilities had to be emulated, for example. This .
effort led to significant revisions and additions to the interface
subroutines used between "C" code and the ACP.

* Fitting this "C" package gracefully into the ACP also led to a
number of minor changes and additions to ACP facilities themselves.

For example, the BIND name resolver communicates with the name
server using the User Datagram Protocol (UDP). The original
A-Service interface to UDP had been constructed in strict analogy
with the transport-service interface for TCP, simply replacing the
TCP connection with a UDP association.' To support the name
resolver/name server code, a "datagram" UDP interface, less
connection-oriented and more single-shot in charaGter, was needed.
Technical Report TR54 [Braden86B] describes the datagram-oriented
interface built to satisfy this requirement.

Chapter 3 of this report describes the new name lookup structure
and the present state of development of the name resolver code.
Chapter 4 describes the general problems and solutions for running
"C" code in the ACP.

1.3 PREPARATION OF ACP RELEASE 1.6

The results of the development effort under this contract are reflected
in Release 1.60 of the ACP, which was prepared at the termination of the
contract. The features of this release are thoroughly described in the
overview document:

TR48, "Introduction to the ACP -- Internet Software
for OS/MVS" [Braden86D].

TR48 is an expansion and revision of Chapter 2 of the Final Technical
Report from the preceding contract [Braden85A], and replaces and
obsoletes document TR36.

• UNIX is a Trademark of AT&T Bell Laboratories.

Thus, a ULPP (see later section for a definition) was responsible for
opening" and "closing" an association.

-5-

- - -. .- .. -...



FINAL TECHNICAL REPORT March 1986 re
UCLA OAC TR55 'I

Other new documents included with this release are:

TR49, "SMTP Implementation within the ACP" [Braden85C].

TR51, "The Local Network Interface in the OS/MVS ARPANET
Control Program" [Braden86A]. "

TR52, "'C' Code Within the ACP" [Braden85B]. lp4 a

TR54, "Datagram Protocol Implementation" [Braden86B].

Release 1.6 incorporates many improvements throughout the ACP, to
enhance functionality, to simplify and clarify interfaces, to improve
reliability, and to fix bugs. For details, see the DOCUMENT (CHANGES)
member on the distribution tape. There were two driving forces behind
most of the changes: the operational experience with the ACP at UCLA and
at several other sites, and the development areas listed above.

Chapter 5 describes the significant areas of change in Release 1.6.

6.-

* .6* .".



. - - . - ".°." -4 .

FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

.-o i.

Chapter 2

LOCAL NETWORK INTERFACE

2.1 LNI REQUIREMENTS

This section describes in a general way the functions of an LNI and its
interface to the rest of the ACP, as implemented in Release 1.6 of the
ACP. The next section will present an overview of the LNI structure
designed to provide these functions.

2.1.1 ACP Structure

Figure 2 gives a schematic overview of ACP operation, showing the
relationship of the LNI to the rest of the processing [Braden86C. The
arrows indicate the flow of data.

The major components are as follows:

ICT

The ACP contains a local real-time operating system called ICT
(Interactive Control Task). ICT creates processes or
"pseudo-tasks" (ptask for short). For each active ptask, there
is a process control block called a "PTask Area" or PTA.

The ICT services, known as P-Services, are invoked with macros
described in [Stein84].

ULPP

For each active user/server session in the ACP, there will be
at least one User-Level Protocol Process ("ULPP") ptask 'S .%

executing under ICT. When there are multiple ULPP's for a
single session, they form a ptask sub-tree whose root is called
the primary ULPP for the session.

* A-Services %.

-7-
• II_3

S - s...-* ,-- *



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

--------- > VTAM

.------- > connections to local
1*------- > server subsystems and

(Realtime I I virtual terminal
Operating i I drivers.
System) II I

ACP JII Job

S i __ __

I ULPP's I (e.g STELNET is Server -
I I I I Telnet module) "

III I" ,°I
IC I +

ASEND I I ARECVIII I-- "
T ...... I....... A-Service Interface "

I I I I Network I/0
II I TCP I A-Services and TCP "
I I I _____ _ Iprocessing

+
II I-- _ _

1 IPP l IP Program J SII I i"_"_ _"

I + I
QUEOUTI I GETINP IiIII"" I

II.......... I........ X-Service Interface .
+I I I

I I Local Network
I LNI j InterfaceII I I N. ,,II I I__ ___ ___ ___

I I 1+.v
I I

WRITE I I READ"

+1

EXCP-level I/O to IMP Interface

Figure 2: ACP Job Components

-8-
.. "°1°

• 8 """ -' "°°
-*-. .*..**'%*%"*%*"* *.'*



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

?,, -4.:.

ULPP's obtain communication access to the Internet by issuing
subroutine calls known as the A-services. A-Service
subroutines are called via a transfer vector (ATRV) whose
address is contained in each ULPP PTA. These calls are made
using macros described in [TR21A].

For example, the ASEND service is used to send data across a
(TCP) virtual circuit, while ARECV is used to receive data.

': TCP

Most ULPP's use virtual circuits created by the TCP protocol. ok
However, there are alternative protocols at this level (e.g.,
UDP and ICMP).

" IPP

The IPP (Internet Protocol Program) implements the Internet
Protocol IP.

" LNI

The Local Network Interface (LNI) program handles all aspects
of protocol and I/0 to the local network. Figure 2 illustrated
an EXCP-level I/0 interface to the network. This interface
requires the caller to build chains of channel command words
("CCW's") which specify hardware READ and WRITE operations.

4 X-Services

Some lower-level service subroutines and data structures are
located indirectly from the ATRV via an auxiliary transfer
vector called 'ACPX'. The services on ACPX, known as X-Ser-
vices, are generally invoked by the ACPX macro.

The LNI services, used to invoke the LNI from the rest of the
ACP, are X-Services.

-9-

-" - "



*FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

* Figure 3 shows the ACP ptasks which concern the LNI design.

ILOGGER

LNI Instances
v v I(PATTACH)

LNI III

V. ._V . V_ V

* .1 I. I IOther.

* .1 . I I Permanent
LNIIN IIINPTASK I Ptasks

LN I tL-

Inere Sesion

At intaizto time I crae thI C ot pak kon a
"Lggr.1 Logge ise the PTAH -ri cet raesbiir
ptsk . Reeae use ofITHcetsa(eeaie)te tutr

performed ~ ~ udrIP K inpri la , thPP s fore t h roesn
of pcket recivedfr Itenetok Sess o pu ispoesd)ne h

ptasks tarenated se fcet PTAHcetes a (geneoralied) treg. strucr

acknowledgment packet). 
I

-10-

7...................... . . . . . . . . . . . .



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

As Figure 3 illustrates, Logger creates both INPTASK and the LNI
ptask(s) as direct descendants, and INPTASK in turn creates the ULPP's
for active user sessions. The LNI and INPTASK ptasks are "permanent";
if they terminate Logger will restart them.

There will be an LNI instance for each channel control unit for a local
network interface. Concurrent LNI instances are distinguished by an
integer index (1,2,...) called the Local Network Identifier (LNID).

The local network interface hardware is normally full-duplex, allowing
concurrent input and output. It is therefore convenient and natural to 0%
use a separate ptask for each direction, although a single-ptask LNI
could certainly be written. We suggest that every LNI use the ptask
structure illustrated in Figure 3 -- Logger creates the input ptask
LNIIN, which itself creates the output ptask LNIOUT.

2.1.2 Addressing

There are two levels of network addressing of concern to an LNI.

• Local Network Address

The network access interface shown in Figure 1 is a port into a
particular packet network. The network will assign to this port a
unique address whose form depends upon the particular network. For
example, a 24-bit address is required for an ARPANET host port,
while an Ethernet interface uses a 48-bit address.

. Internet (IP) Address

The Network Access Interface also has a unique 32-bit Internet or
* IP address which is used in IP headers.

An IP address is divided into a network number and the "Rest"
field. The latter is used to choose a particular host on the
designated network. A variable-length encoding scheme is used to
provide network numbers of 7, 14, or 22 bits (1, 2 or 3 bytes),

V" leaving "Rest" fields of 24, 16, or 8 bits, respectively.

There will be a one-to-one mapping of local network addresses onto the
"Rest" values of the IP addresses for that network. This may be as
simple as a fixed mapping of bit fields (e.g., for the ARPANET); on the
other hand, the mapping may be dynamically determined using some local
protocol (e.g., Address Resolution Protocol or ARP used over an
Ethernet).

The LNI is responsible for performing this address mapping. Thus, when
the IP send routine hands a packet to the LNI for transmission, it
passes the "Rest" field of the IP address of the target host or gateway

* on the local network. The LNI must map this into the actual local
network address in order to build the local network framing. Upon

-11 -. 4

% U• .... I



JV. 7

FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

receipt of a packet from the local network, the LNI similarly maps the
source local network address (if available) into the "Rest" field of the
corresponding IP address, for use by the IP input routine.5

I .
2.1.3 Back Pressure

0P
Long-haul networks such as the ARPANET generally have internal flow
control and/or congestion control mechanisms which may exert "back
pressure on the host output. For example, the 1822 access protocol has
a window limiting the number of outstanding packets 6 to a particular
remote host. An X.25 network interface will have a similar window-based
flow-control across its host (DTE) interface.

However, within the ACP the LNI provides only a reliable datagram
service to the IPP. Thus, there is no (explicit) provision for flow
control between the LNI and the IPP and therefore no way for the LNI to
pass the network back pressure up to the IPP.

However, the design of the host-to-host protocol implementations in the
ACP provides an implicit form of back pressure by imposing a limit on
the number of outstanding WRE's for a given connection (or its
equivalent for datagram protocols). This limit also enforces an
approximate "fairness" among distinct connections to the same remote
host.

2.1.4 Software Failure Recovery

A fundamental design goal in the ACP is robustness against software
failures. The protocol processing it performs is often complex, and
obscure bugs sometimes create program checks.

ICT detects a program check or other abnormal event and turns it into a
pseudo-ABEND7 ("pabend") of the particular ptask in execution. This V
terminates the ptask abnormally and frees all its resources, allowing
ICT and the rest of the ACP ptasks to continue to execute. Ptasks can

5 The local net address of the source of a packet is not strictly
required by IP, but it is useful for providing a hint on routing
return packets to the same Internet host and for trouble diagnosis.

6 Currently the limit is 8, but a planned improvement to the IMP program
will increase this limit.

7 In IBM terminology, "ABEND" refers to the abnormal termination of an
OS/MVS process or "task". The equivalent function within the ACP,
terminating a pseudo-task, may be called a "pseudo-ABEND".

-12- V....

*i".



FINAL TECHNICAL REPORT March 1986
• UCLA OAC TR55

also be forced to terminate "normally" by system-programmer intervention
(see TR42 [TR42] for details).

Referring again to Figure 3, it must be possible for any of the LNI
ptasks, any ULPP, or INPTASK itself to terminate normally or abnormally
without disturbing other parts of the ptask tree. The difficulty comes
with pointers to buffers and other data structures which are passed
between the IPP and the LNI. If the ptask that owns the storage
containing these data structures terminates, the storage will be freed;
the other ptask may then get a program check if it continues to process
that data.

The mechanisms used in the LNI to provide cleanup in case of ptask

termination are described in TR51.

2.1.5 Local Network Transparency

If a host running the ACP has more than one hardware access path to
local network(s), the ACP will need multiple LNI instances.

Local network transparency is preserved in this case by a "thin layer"
of program inserted between the IPP and the LNI(s). The IPP makes
service requests which are independent of the number and choice of LNI's
in a particular configuration, and the thin layer selects the appro-
priate LNI(s) for each service request. The exact function of the thin
layer will be described below.

S.1'

2.1.5.1 Subsetting Local Network Functionality

In general, the IPP uses only a subset of the services provided by any
particular local network. For example, all IP traffic uses a particular
value (155) of an ARPANET parameter called the "Link Number". The
question is: where should the LNI parameters be bound in order to subset
the network services, in the LNI or in the IPP?

In order to provide transparency the IPP/LNI interface must be the same
for all networks. Therefore, each LNI must map that interface into the
appropriate subset of its capabilities; thus, an ARPANET LNI must set
the link number to 155. This implies that the free parameters must be
bound within the LNI.

On the other hand, when we write an LNI for a local network we want to
provide a completely general interface to that network's capabilities,
to allow for future developments and experiments.

As a solution to this dilemma, the LNI has been designed with both (1) a
standard (transparent) interface for IP and (2) an extended "raw
network" interface for future applications. Thus, the parameter area

- 13 -

. . .-... °.,.



FINAL TECHNICAL REPORT March 1986 0UCLA OAC TR55

. used for sending an output packet to the network includes an "extended
*. interface" flag bit. This bit is off for the standard interface. If the

bit is on, the parameter area is extended to include the additional wz
"raw" parameters (e.g., the link number for an 1822 interface to
ARPANET). The standard parameter list is universal for all LNI's, but
the format of the extended parameter list is necessarily dependent upon

* the particular local network access protocol.

2.1.5.2 ARPANET Uncontrolled Packets

The IMP subnetwork is capable of sending messages with subnormal
reliability and subnormal delay using "Subtype 3" or "Uncontrolled" mode
(see Appendix A). The Uncontrolled mode has not been extensively used
because it poses the threat of uncontrolled congestion in the network,

* but future IMP software development may make the use of Uncontrolled
packets desirable.$

In the Internet Protocol model the choice of message subtype (and any
other network parameters [Poste8lB]) is be based on a field in the IP
header called Type of Service (TOS). It is supposed to be used by the
hosts and gateways to select appropriate parameters for each network

"' which is the packet traverses.

The LNI provides for Subtype 3 packets while preserving local network
transparency by including the TOS in the standard parameter area used S
for network output. An appropriate subset of values of the TOS field
will cause the 1822 LNI to send a Subtype 3 packet.

However, Subtype 3 may only be used if the packet is shorter than 113
bytes. Thus, the maximum packet size ("Maximum Transmission Unit" or
MTU) is dependent upon the TOS chosen. To make general use of Subtype
3, the TCP and IP layers would need a more dynamic way to choose the MTU
than they have presently; there is currently a single MTU per LNI.
Fortunately, planned improvements in the IMP software will remove the - -

low MTU for Subtype 3 packets.

For use in a military environment, the precedence bits in the TOS also
need to be mapped into appropriate parameters for the local network.

The original ACP implementation of TCP/IP was designed to support
uncontrolled messages primarily. There were mechanisms for selecting
the message type on a per-host basis, for example. To date, all ACP
operation has used standard messages.

14 -

" . '. '. ." '[ °. . • , • • - . _ • " " " , ' T • T_ '_ "- t , " " " " ' ' " '- " " . " .



FINAL TECHNICAL REPORT March 1986
_ UCLA OAC TR55

2.1.5.3 ISO IP

A future version of the ACP may support the ISO IP protocol [ISOIPJ in
addition to the present Internet IP. ISO IP will use a different
ARPANET link number, but otherwise should use the standard (transparent)
interface parameters. However, the standard interface will have to be
reformatted for ISO IP to accomodate a variable-length destination host
address.

We suggest that a new flag bit be defined in the standard interface to
indicate ISO IP.

2.1.5.4 NMC Intercept/Packet Trace

The LNI within the ACP has historically had a network-level packet
intercept mechanism known as the Network Measurement Center (NMC)
Intercept. The A-Service ANMOC may be used to define a filter to select
which packets are to be copied into a circular buffer. A particular
filter element may be active for input or output or both. The filter
selects only on the local network header.

The NMC intercept is used by the packet trace display program ACPEEP
[TR42]. ACPEEP may be used to trace packets at the local network level,
the IP level, or the TCP level. For the higher-level traces, ACPEEP
calls ANMOC to set up an NMC Intercept filter that captures all IP data
packets; ACPEEP then filters the packets itself.

Note that ACPEEP is passed the entire packet as received from the local
network, including the local network framing (leader) and possibly the
IP header, TCP header, and user data. ACPEEP must know how to parse all
these header levels, and ACPEEP therefore must contain local-network-de-
pendent code. To enable ACPEEP to parse alternative formats of local
network framing, the NMC Intercept mechanism sets a 'leader format' byte
in the header which precedes each captured packet.

The facilities of ACPEEP have been extremely useful for diagnosis of
problems at all protocol levels, and we would strongly recommend that
the developer of a new LNI include the NMC Intercept mechanism and
extend ACPEEP to parse the new network framing.

Although ACPEEP is to remain explicitly network-dependent, the ANMOC
service has been modified to achieve local network transparency. The
local-network-dependent part of the processing was moved into the LNI
(see the SETNME service below). "'

There is a problem in designing the ANMOC parameter list NMPARM: we want
to be able to specify filters for IP in a form independent of the
particular local network format; conversely, we want to be able to
specify arbitrary filters for particular local networks. This problem
is analogous to that discussed earlier under "Subsetting Local Network
Functionality", and an analogous solution was adopted. NMPARM may

- 15 -

°- ..



FINAL TECHNICAL REPORT March 1986

UCLA QAC TR5 S

specify either "standard" filter parameters, appropriate to IP and
universal to all LNI's, or else "raw" filter parameters, which are
necessarily dependent upon the particular LNI and network header.

2.2 OVERVIEW OF THE LNI DESIGN

2.2.1 X-Service Calls

We begin by describing the X-Service calls to the LNI. These calls
define the input and output interfaces to the LNI(s) from the rest of
the ACP (in particular, from the IPP).

All of these calls are pseudo-disabled, i.e., no other ptask is allowed
to execute while they are in progress.

2.2.1.1 QUEOUT -- Queue Output Request

label ] ACPX QUEOUT,wre-address

To send a packet, an ACP routine (normally, the IPP) builds a parameter
list and queue element called a Write Request Element or WRE, and calls
ACPX QUEOUT. - •"

The RE defines the data to be sent, the destination host address (as

the "Rest" field of the IP address), and the source host address. The
host addresses are specified indirectly by the address of a control
block called an "ICB" [Braden86C]. The WRE defines the data to be sent
by a list of (address, length) pairs or extents. Thus, output is
transmitted to the LNI by reference, and the LNI must perform a
gather-write operation.

The QUEOUT call will add the WRE to an internal LNI queue and if
necessary awaken the LNIOUT ptask to send the data. The "Complete" flag
bit (WREF2COM) in the WRE will be turned off by QUEOUT, and it will be
turned back on by LNIOLr when the data has been sent.

-16-

S-*-.-'.:



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

The WRE may also specify the address of a Write Completion Exit routine,
which the LNI will call when the data has been sent. This exit routine
can include code to signal a semaphore in the ptask that called QUEOUT.

The caller must not change or reuse the WRE or any of the packet buffers
until the WRE has been marked "Complete", with one exception: the
caller may turn on the "Purged" bit (WREPIPRG) at any time. If the WRE
has not yet been sent when the Purge bit is turned on, it will not be
transmitted when its turn comes, but will be marked "Complete" (and
Purged) and the Write Completion exit will be called normally.'

If the caller needs to free the storage containing the WRE or packet
buffers, it must first call the HALTIO service routine see below),
specifying the ICB address contained in the original WRE.

2.2.1.2 HALTIO -- Purge Output Requests

label ] ACPX HALTIO,argument

This service is required to allow a ptask to terminate safely while it
has pending WRE's queued in the LNI, or has a busy input buffer. HALTIO
has different calls for purging input and output operations.

* Argument = ICB Address

All WRE's specifying this ICB address will be dequeued and marked
"Purged".

* Argument = complement of P3CB Address "

The READ buffer which is currently "busy", i.e., has been handed to
INPTASK via a GETINP call, will be freed.

9 This facility was inserted to provide TCP with a way to suppress
redundant empty-ACK packets while they are waiting in the LNI output
queue.

" 17

I. '--.



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

2.2.1.3 GETINP Request Input Buffer """

I I label ] ACPX GETINP,Prev-buff-addr,P3CB-addr

This service returns in RI the next input buffer address, or zero if
there is no new buffer available.

Each call to GETINP has the side effect of freeing the buffer returned
in the previous call; this buffer address is 'Prev-buff-addr' which must
be specified as zero in the initial call to GETINP.

Whenever a new input packet becomes available, the LNI will awaken the "
IPP ptask (INPTASK) by issuing a PPOST for its INPUT semaphore. When
the IPP ptask is awakened, it will call GETINP repeatedly and process
each buffer which is returned. When GETINP returns zero, all available P

input buffers will have been processed and freed.

Note that the buffers from the LNI headware READ pool are passed
directly to the IPP, and that the IPP must process these buffers one at
a time, promptly, and in order. This allows the LNI to use a simple
ring of hardware READ buffers and to pass them directly to the IPP 1P
without copying a buffer. In fact, the IPP immediately copies the
packet into a reassembly buffer, which may be queued at the IP or TCP
level; the LNI READ buffer is then immediately freed (by the next call
to GETINP).

The buffer addresses in this call actually point to a buffer header, W
which is followed in storage by the complete packet as received from the
network interface hardware. Within the buffer header there is a flags
field. If the "Host Dead" flag bit is on, there is no data in the
buffer; instead, it is an asynchronous indication from the network that

a previously-sent packet was undeliverable. The IPP will note the bit
and immediately call GETINP for the next buffer. S

2.2.2 SETNME -- Setup NMC Intercept Filter

SI p...

1 [ label J ACPX SETNME,NMPARM-addr,NME-addr 1 , -

*i

18 -

co
,.-

• " " " o ' - " ' " " " " ' ," ° " " " ' " - , , * . * , -" ", - ." -" - " -. '• -' ' '' , ". "-"--" " . . - " "-"-" ' .
'.'- ... '.'-," '- . .",'.- " " . "- ". ". : e.,' "- " ".-","" ."/'- ":'- ",-" ,""- "- "'" " " ," -' - -:,", ,". ="• " " "



FINAL TECHNICAL REPORT March 1986
0 UCLA OAC TR55

This service is used internally by the ANOC A-Service to perform the
local-network-dependent portion of setting up a packet intercept filter.

2.2.3 LNI Module and Data Structures

This section describes the general structure of an LNI module and the
control blocks used to interface an LNI with the rest of the ACP.

The LNI code and data are packaged in a separate load module. The name
of this module is specified in the installation configuration module
ACPCONFG [TR421; we will use the generic name LNIMOD in this chapter.

Figure 4 illustrates the principal communication areas used between
LNIMOD and the rest of the ACP."

* LNIROOT

LNIROOT is a non-volatile data area which is assembled into the ACP
resident module ARPAMOD. LNIROOT consists of a set of double-word
"slots", numbered 0, 1, 2.... Each LNI instance is assigned a
unique LNID, which also designates its slot number in LNIROOT.

* There is no LNID=O; slot 0 of LNIROOT contains the address of the
ptask (INPTASK) whose INPLT semaphore the LNI must PPOST when a
packet is received. Beginning with slot 1, each slot contains: the
address of the LNI Control Area for the LNI instance; flags which
indicate the up/down status of the LNI; and a 3-byte area used by
the LNI as non-volatile storage.

". LNICA

For each LNI instance, there is a control block known as the LNI
Control Area or LNICA, which is link edited into LNIMOD.' 1  The
LNICA address must be the entry point of LNINOD.

10 This Figure omits one small complexity: the Logger Control Area

pointer is actually indirect through the ACPX transfer vector.

, LNIHOD cannot be reentrant if the LNICA is link edited with it. Lack

of reentrance is not a serious a problem; to configure an ACP with
with two instances of the same network interface type, simply link
edit two copies of LNINOD with different names.

*However, this is only a choice of convenience; it is certainly
possible to write a reentrant LNI which creates its LNICA dynami-
cally.

19

"..... ............................. . ........ .



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55 w

* 1-

A-Service
TransferVector
(ATRV) -------------

I I Logger I
I I I Controll [ l Area l

LNIROOT

_INPTASK PTAI
+188 *-------------- > Address [ //// I

I__ _I _ _ _ I I_ _.._ _,

I I I I LNI I
... LNID= I LNICA AddrIFgj privatel

I LNICA Addrl I LNI I
LNID=k * [FgI privatetI _ _ _ I _ _ _ I I "--_

LNIMOD

........... < --------------------

... (TRV) .... "-
.......... I

LNICA I

Code and <
private I
data for .

I I I- -

I I.
I I -

Figure 4: Interface Data Structures

- 20 -

4,.



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

The LNICA begins with a transfer vector, used to reach the LNI
service subroutines that other ACP modules may call. No ACP
routine outside LNIMOD depends upon the LNICA format, except for

*O the transfer vector.

When LNIMOD is PATTACHed by Logger, execution of the subptask
begins at the LNIMOD entry point, which is the transfer vector word

at offset +0. This word must contain a branch to the LNI initiali-
zation routine.

* Logger Control Area

The Logger Control Area is a resident communication area. In
particular, it contains the Logger Flags (LFLAG) and the Logger PTA
address (LOGTPA).

Logger Flag bits are used to pass execution-time parameters to the
LNI(s), to signal the rest of the ACP when the up/down status of
the interface changes, and to request control and status functions
from the LNI(s).

One of the functions of the LNIMOD initialization program is to plant
the LNICA address into its slot in LNIROOT. Furthermore, it must
establish a PDEBUG exit to clear out this pointer if the LNIIN ptask
terminates.

To invoke an LNI service subroutine, an ACP routine codes an an ACPX
S macro to call an X-Service routine. The X-Services are implemented as

resident stubs. These resident stub routines use the pointer chains
illustrated in Figure 4 to locate and call the appropiate LNI service
subroutine(s) through the LNICA transfer vector.

However, the resident stubs are more than simple indirect linkages.

* They handle the case of an LNI (instance) not active, or the
corresponding interface not operational.

When a particular LNID is selected, the resident stub checks that
the corresponding slot in LNIROOT has a non-zero pointer to an

t LNICA; if not, the LNI is not active, and the stub must respond
appropriately. Even if the LNI is active, its flag byte in LNIROOT
may indicate the corresponding interface hardware is malfunc-
tioning; in this case, too, the stub will abort the action.

* The stubs hide a mechanism which makes the rest of the ACP
independent of the LNI configuration.

In particular, they hide the use of multiple LNI's from the
X-Service callers, using a mechanism which will be described in the
next subsection.

Thus, the resident stubs constitute the "thin layer" between the IPP and
the LNI which was mentioned earlier. In some cases the stubs alter the

- 21 -

i'i



FINAL TECHNICAL REPORT March 1986 -

UCLA OAC TR55

calls, so there are slight differences between the LNI service calls to
the resident stubs and the calls as finally seen within LNIMOD.

2.2.4 Multiple LNI's %

Within the ACP, there is a control block known as the P3CB for each IP
address by which the ACP is known [Braden86C]. The P3CB contains the
local IP address (field P3MIHOST) and also the set of LNID's of
corresponding LNICA's. This set is restricted to a range of adjacent
integers, and the P3CB specifies the set by giving the first and last in
the range. For example, in the simplest case of a single LNI, the P3CB
will specify the LNID range (1,1).

The address of the appropriate P3CB is a parameter to the calls to the
LNI service stubs. These stubs use the LNID range to choose the the
appropriate LNID(s). This is illustrated by Figure 5. The configu-
ration information shown in the P3CB's in this Figure is taken directly
from ACPCONFG at ACP startup time.

2.

,..

p-o"

" 22 "-'-

. . . . . . . . . . . . . . .. . . . .



*FINAL TECHNICAL REPORT March 1986
UCLA OAC TR5 5

S1) M UL T IHO0M ED HO0S T

LNICA's PC'

I ID=1 MIHOSTh
H: -> I10.1.0.1

I I I LNID range=

I LNID=2 I MIHOST I
1<-- -- > I26.5.5.5

1 1 1 LNID range=I
I(2,2)

(2) !U L T I L EX ED A CC ES S

LNICA's

I LNID1 I
P3GB

IMIHOST I
C. I 10.1.0.1

____________ NID range=
I(1,2)

I LNID=2 I

Figure 5: Multiple LNI's

-23-



- -. - - - - Rr-- :. V I

FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

- 'I.
I

2.2.5 Resident Stub Algorithms

We can now describe the algorithms used by the resident stubs to hide
the existence of multiple LNI's from the rest of the ACP, and define
more accurately the services provided by the LNI service routines
QUEOUT, GETINP, HALTIO, and SETNME.

2.2.6 QUEOUT Service

* LNI Service: QUEOUT( WRE )
. I I" -

%w

When ACPX QUEOUT calls the resident QUEOUT stub, the WRE will contain
- the ICB address. The resident stub in turn calls a QUEOUT service

routine in an LNI, passing the same WRE. The LNI will treat the ICB
address in the WRE as an uninterpreted "purge handle" for use in HALTIO.

The QUEOUT stub locates the P3CB from the ICB and saves (in the P3CB)
the last LNID used for output. Using this value and the LNID range, it
rotates among the LNID's in the range for successive calls. This

. provides equitable load-sharing across equivalent interfaces in a manner
" transparent to the rest of the ACP.

If a selected LNI instance is not active or not up, the stub tries the
next LNID. If none of the LNI's in the range are active and up, the

'* stub returns an error code (8) in R15.

If the WRE address is zero, the stub assumes it is a control/information
call, and passes it to ALL of the LNID's in the range. The LNI's then
examine bits in the Logger Control Area to determine the function that O
is desired.

2.2.7 GETINP Service w

I LNI Service: next-buffer = GETINP

-24-

U **'p~*~. . . . .. . . . . . . . . . . . . . . . . . . .



* FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

The GETINP stub calls each of the GETINP services for the LNID's in the
range of the given P3CB, until it finds an available input buffer. It
returns this buffer, or zero when no LNI in the range (is active and up
and) has a buffer available.

2.2.8 HALTIO Service

LNI Service: HALTIO( purge-handle )
* I or

HALTIO( neg-number ) s

When it is called with: ACPX HALTIO,<ICB address>, the resident stub
uses the ICB address to locate the P3CB; when it is called as ACPX
HALTIO,<-P3CB address>, the stub complements the argument to obtain the
P3CB address.

The HALTIO stub loops through ALL of the (active and up) LNI's in the
range of the P3CB, calling the corresponding LNI HALTIO service routines
with the original argument as a parameter.

Given a negative parameter, the LNI HALTIO service frees a busy input
buffer. If the parameter is not negative, the LNI HALTIO service treats
it as an uninterpreted "purge handle", removing from its output queues
all WRE's containing that value in their "purge handle" (ICB address)
field.

2.2.9 SETNME Service

LNI Service: SETNME( NMPARM-list, NME-addr )

This service is used to set up a filter element (NME) for the NMC
intercept. SETNME contains the local -network-dependent parts of the
ANMOC service.

The resident stub obtains the LNID number from the NMPARM list and
simply calls SETNME in that LNI.

25 -

*" -I.'



-;' '-b ' - o. /

FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55 W

2.3 CONTROL AND DEBUGGING FACILITIES

Finally, we will mention the various facilities for controlling and
debugging an LNI which are built into the existing IMP 1822 LNI. We
strongly recommend they be carried into any other LNI implementation.

* Software Loopback

The LNI (and therefore, the ACP) can be operated without any
channel interface hardware, looping output packets back to the %.

input within the LNI. This provides a very powerful debugging
facility for the ACP, which can be executed under the TSO TEST
processor in software loopback mode.

The loopback is implemented at the lowest possible level -- the
WRITE channel program is interpreted and used to build a packet in
a READ buffer. Therefore, it provides a reliable test of the
entire ACP mechanism (except for timing effects, of course).

Specifying IMP=NO in the execution parameters used to start up the

ACP will put the LNI(s) into software loopback mode. b

* Test Mode

To test the channel interface hardware, it is useful to physically
loop back the IMP side of the interface. This is possible because
the 1822 protocol is symmetrical between input and output, except
for the flow-control messages (RFNM's) which normally flow from the S
IMP to the host.

To support this testing requirement, the LNI has "test" mode, in
which RFNM's are not required. Specifying TEST=YES in the
execution parameters used to start up the ACP will put the LNI(s)
into test mode.

Tracing I/O

For debugging the LNI, it may be useful to keep a full trace of all
local network packets sent and received. The trace is sent to the
TEST log dataset, and it is enabled by specifying TRACE=YES in the S
execution parameters used to start up the ACP.

* Packet Trace

We have already described the packet trace program ACPEEP.
Tw

Like the software loopback, the packet trace operates at the lowest
(channel command chain) level. Unlike software loopback, the
packet trace mechanism incorporates a filter to selectively trace
packets and operates on both the input and output streams.

-26-
7-



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

Chapter 3

HOST LOOKUP MECHANISMS

This chapter will describe the changes which were made to support the
new domain names and name server/name resolver system [Mockap83]. The
general approach was to build a new name lookup service in a form
appropriate for a name resolver and then recast the existing mechanism
as a subset.

3.1 GETHBY SERVICE

A new host lookup A-Service, GETHBY, ("Get Host by. . "), has been
implemented [TR21A). The basic GETHBY forms:

GETHBY NAME: Maps Host name -> Host number

GETHBY NUMBER: Maps Host number -> Host name

are modelled on the lookup routines gethostbyname() and gethostbyaddr()
which are included in the BIND name server package for Berkeley UNIX.

GETHBY provides a more general interface for host lookup than the
previous IHOST service. GETHBY returns the principal host name, alias
names (nicknames), and multiple IP addresses (for a multihomed host) in
one call. This generally corresponds to the information which may be a-
returned in the response to one host name query to a name server.
GETHBY is now considered the fundamental service, so the IHOST NAME and
IHOST NUMBER services have been rewritten to call GETHBY internally.

GETHBY returns the address of a 256-byte area obtained with PCORE and
called a HOSTENT(ry) block. A HOSTENT block contains a vector of
pointers to name strings, the name strings themselves, and a vector of
IP addresses. The caller is generally expected to issue PCORE FREE for
the area after using the information.

The forms of GETHBY are as follows:

• GETHBY NAME,hostname-addr

The argument is the address of a host name string, which is
terminated by a zero byte. The name can be the principal name or a .%.
nickname for the host, but an exact match is required. Case is
irrelevant.

- 27 -

,.:;..:: ,-..-'..--.-.:.:.. .;..,, ,:.-.:..:.-.'...-....-......,.....-........- ;....-.......-...................-.....,.....-.........-.......-..............-.. ,-..... -



FINAL TECHNICAL REPORT March 1986
UCLA QAC TR55 I-

* GETHBY ADDRESS ,host#-addr ,host#-length

The arguments are the address and length for a 32-bit IP host -

number. The length should always be 4; it is included to allow
future generalization to other classes of host addresses.

*i * GETHBY NEXT,last-HOSTENT-addr

This form may be used to sequence through some set of host entries.
In the host table version, this set is all hosts in the table. In
the name resolver version, this command could be used to display
the current cache contents (but has not yet been implemented).
The argument to each call is the HOSTENT pointer returned by the

preceding call, or zero in the first call.

GETHBY UNAME,hostname-addr

Similar to GETHBY NAME, UNAME will return the unique name which is
the "best" match, if no exact match can be found. In the nameresolver case, this will result in a CQUERYU query.

GETHBY MNAME,hostname-addr .-.

MNAME is similar to UNAME, but MNAME may return multiple names
which begin with the specified argument string. In the name
resolver case, this will result in a CQUERYM query.

If this call returns multiple names, each will be in a separate
HOSTENT block, and the HOSTENT blocks will be chained into a list
using an internal word.

Each of these calls has a single argument, which is passed to the GETHBY -

A-Service in Rl. RO contains a value which implies the call form:

RO= n > 0: GETHBY NUMBER, n= length (always =4)

RO= -1: GETHBY NAME

RO= -2: GETHBY NEXT

RO= -3: GETHBY UNAME

RO= -4: GETHBY MNAME

28



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

3.2 GETHBY IMPLEMENTATION

o The GETHBY A-Service routine is actually a resident stub that calls a
transient lookup module; see Figure 6. The A-Service uses PCORE to
obtain a stack area and PLOAD to fetch the transient module, and then
calls the lookup module at its entry point (also named GETHBY).

The calling conventions for the transient module are compatible with "C"
procedures (see the next chapter and especially Figure 7). Thus, the
parameters are passed in the beginning of the first stack frame. n

The USMTP module, which is written in "C", calls GETHBY using a
C-compatible call. This means that the transient host lookup module
could be link-edited with USMTP. This might seem appropriate because
USMTP will be the most frequent consumer of GETHBY services. However,
it has two possible disadvantages: both modules are very large, and
they would use the same stack. We have therefore chosen at present to
link edit with USMfTP a trivial BAL stub routine, named GETHBY# but with
entry point GETHBY, that turns the C-compatible call into an A-Service
call. This is illustrated in Figure 6.

There are two alternative but compatible transient lookup modules;
configuring an ACP installation with one or other other will require
little more than a module rename.

* GETHBY -- Host Table Version

Release 1.60 is distributed with a transient lookup version (also
named GETHBY) that searches the existing static name tables. These
tables are linkedited with the transient GETHBY routine, as Figure
6 illustrates.

In previous ACP versions, the AHSCAN A-Service provided a database A
access method for searching the static host tables. Since it is
dependent upon the host tables, AHSCAN has been withdrawn as an
A-Service (although the code is actually incorporated into the
GETHBY transient lookup module).
The only ACP routine which used the AHSCAN service was OISUMH

(NETSTAT host summary display) within module OPFORMAT; this has

been rewritten to use GETHBY instead. The new OISUMH has
additional functionality, displaying all the names and numbers
associated with a specified host. The command to display all hosts
uses GETHBY NEXT.

* GETHOST -- Name Resc'ver

The alternative transient lookup module, named GETHOST, is a name
resolver. GETHOST is implemented as a "C" module, adapted from the
Berkeley BIND routines listed above. It has not been distributed
in Release 1.60.

29 "
*%h



-~~~~; -.. 7.- q4N' - - -

a FINAL TECHNICAL REPORT March 1986 W
UCLA OAC TR55

mUrP ULPP :

GETHBY#
I_ _I

V V V

(resident in I GETHBY IHOST I V,

ARPAMOD)--> A-Service I A-Service I

PLOAD and call
V

I one of Io'--..
Transient
Modules GETHBY I I GETHOST

_____V V_____

GETHBY w
module Name -

Resolver -
AHSCAN Module "code""

("C" code) "
ARPINAMS 60I-I
Static I-I
Host I'I
Table I.

Figure t: Host lookur Rou, ines

67"

r The BIND package includes boi[ a rmame spe,,e: amd a name resolver,

which are assumed to execute oi ther i , t The name resolver
is very simple, having ne F he ct .w.\, ,O'.rk; !apabi I ity.
Instead, the resolver ,.erds a " . .:.c. ,,r .h
does have these capabi i, a, -. v. .hv resolver 4

r-.



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

The name server executes under a permanent ptask named NAMSERV.
GETHOST formats name server query packets and sends them to NAMSERV
using UDP, and NAMSERV returns the result via UDP. 1

2

The partial-match forms UNAME and MNAME have not yet been implemented in
either the table or the name resolver version. Both require the
specification of a target domain, which corresponds to the tail
(right-hand end) of the domain name string. We propose that this -
specification be made either explicitly or implicitly.

The parameter string to GETHBY may be of the form:

<arg name>?<target domain>

to specify the target domain explicitly. For example,

GETHBY UNAME,"oac?edu"

should return a HOSTENT for "oac.ucla.edu".

* If no argument string appears, a default argument will be taken
from ACPCONFG. This will allow efficient lookup of hosts within
the local domain. For example, at UCLA the default target would be
"ucla.edu".

In the static table version, the AHSCAN routine will have to be able to
search for a partial match with both the head and the tail of the domain
name.

3.3 MULTIHOMING AND ADDRESS SORTING

Internet electronic mail is generally delivered using addresses of the
form:

user @ host

where 'user' is some string defining a mailbox at the Internet host with
(domain) name 'host'. The User SMITP program (USMTP) must map each such
host domain name into a 32-bit Internet host number in order to deliver
the mail.

Some hosts are multihomed, which means that the name-to-address mapping
will yield more than one 32-bit address. Multihoming is something of an
embarassment to the Internet architecture, since it assigns multiple
addresses to the same entity (host). However, for a variety of reasons

12 As a later optimization, it would be desirable to short-circuit the

network I/O for these UDP packets when source and destination hosts
are both local.

-31-

I-



, FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55 -

multihoming is not unusual in the Internet.

How is USMTP to handle a list of 32-bit addresses? One of the reasons
for multihoming is to provide reliable service when one network W

interface is down. For this to succeed, USMTP must be willing to try
the alternative addresses, one after another, until one of them succeeds
in accepting the mail.

However, in many cases there is a preferred order for trying the e

addresses. In almost every case, it is better to use an address on a
network to which the sender is also connected, if possible. If there is
a choice of long-haul and LAN networks, it will generally be preferable
to try the high-bandwidth LAN first.

In general, the best ordering depends upon the network numbers of the
addresses and must be chosen with a knowledge of administrative and
technical constraints in the Internet neighborhood of the sender. If
the target is many networks away from the source, it is impractical and
probably unnecessary to worry about the choice of order.

These considerations determined the provisions in the ACP to handle
multihomed hosts:

• USMTP calls GETHBY NAME to map a target host name into its

address(es). GETHBY returns up to four alternative IP addresses
for the host.

The ACP configuration module ACPCONFG contains a fixed table of IP

network preferences. GETHBY uses this table to sort multiple
addresses into a preferred order. Normally, the network local to
the ACP should appear first in this table.

• USMTP then tries each of the the alternate IP addresses of a
multi-homed host, in turn, until it is successful in sending the
mail.

W

-32

*. . -

. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .



FINAL TECHNICAL REPORT March 1986
* UCLA OAC TR55

Chapter 4

C PROGRAMMING IN THE ACP

4.1 THE LANGUAGE CHOICE

* The first version of the UCLA ACP was written (starting in 1970) in IBM
Basic Assembly Language (BAL). Since that time the ACP has evolved
continuously, adapting to both a different operating system environment
(OS/MVS replacing OS/MVT) and a new host-to-host protocol (TCP/IP
replacing NCP). However, the basic ACP structure has been maintained
throughout this period, and until recently BAL has been the only
programming language used within the ACP job.

Although the advantages of a higher-level language over assembly
language are well known and undeniable, there were a number of reasons
for our remaining with BAL for so many years.

OAC had available a highly-skilled stafff of system programmers,
comfortable with writing and maintaining complex system programs in
BAL. Furthermore, program debugging and diagnostic tools were
included in the ACP to make BAL programming relatively effective.

* Prior to the installation of a virtual memory operating system
(OS/MVS) at UCLA in 1978 there was a severe main storage constraint
on the ACP. Programs written in a higher-level language typically
require three to five times as much main storage as the equivalent
BAL program, which made the use higher-level languages impractical.

* There were no good candidates for languages or compilers.

IBM refused to release to customers their PL/I-like development
language. Wirth's PL/360 could have been adapted, but it would
have required the development of new system interfaces and had
other serious limitations.

PL/I was used extensively for developing components of the National
Software Works (NSW) code that ran under TSO and outside the ACP
region. However, PL/I has some severe disadvantages for use within
the ACP. The most important problem is the large and complex
runtime environment used by PL/I; to modify that environment would
have exposed us to a maintenance problem with every compiler
release.

- 33 -



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

.

Under OS/MVS, the ACP executes in its own virtual memory address space,
currently about 2M bytes. The relaxation of the memory constraint and K
the requirement to develop new user-level protocol modules (e.g., SMTP
sender and receiver) led to a reconsideration of the introduction of
higher-level language programming into the ACP.

Over the past year, we have incorporated into the ACP new modules
written in the "C" programming language [KernRi78] and compiled using
the AT&T C/370 compiler. This effort has been highly successful, and we
would hope that many future extensions to the ACP will be done in "C" '"
rather than BAL [Braden85B].

The "C" language and the C/370 compiler have several attributes favoring
their use within the ACP.

• The "C" language is heavily used within the DARPA Internet research
community, giving it an important advantage over any other choice
(e.g., Pascal, PL/I, PL/360, ADA, ...): there is a lot of relevant
software available in "C". Furthermore, the designers of "C" paid
careful attention to the requirements for writing portable code
[JohnRi78].

As a result, we have been able to "port" several large and
important "C" programs from a VAX environment into the ACP with 40
little effort and few changes.

* "C" is really a higher-level assembly language; i.e., it falls

between assembly language and a true higher-level language like A

Pascal or PL/I. With "C" the prgrammer is still close to assembly "'
language, since "C" does not interpose a complex environment. The
time and space costs of using C/370 are significant but tolerable
for many applications.

• Most of the "C" environment consists of a library of subroutines
which are themselves written in "C" [KernRi78]. The general
structure of this library is fairly well documented and the
routines are easy to modify and adapt as necessary.

* The structure of the C/370 compiler lent itself to modification of
the environment. In particular, C/370 produces assembly language
which is assembled by the standard IBM Level H assembler in a later
jobstep. This allowed us to modify the procedure call environment
for a "C" module by simply changing BAL macros used in the assembly W

step.

This chapter will describe some of the design choices and programming

rules used to incorporate "C" code into the ACP.

... 5

. .... . .. . .

-34 - .

,. -%



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

4.2 PROCEDURE CALLS

The C/370 compiler generates code for a linear execution-time stack.
Since the natural coding style in "C" makes heavy use of subroutine
calls and even recursion, a linear stack is the only reasonable choice.

C/370 requires that the stack be a single contiguous segment, and of
course it must be large enough for the deepest call chain. Within the
ACP, we normally allocate a 15*256 byte (3.8K) stack area for each "C"
execution instance. This is more than adequate for most programs.
However, a program which requires a larger stack"' can call the
subroutine _bigstak() to expand the stack.

Figure 7 shows the format of a single "stack frame", the region of the
stack used by a particular procedure invocation. In this picture, the
stack grows downward.

Fortunately, the C/370 compiler produces code with procedure call
conventions which are nearly compatible with normal OS/MVS call '..
conventions, and hence with the ACP. In particular, upon entry to the
subroutine:

R13 points to an area into which registers may be saved.
R14 is a return address
R15 is the address of the called subroutine.

0 However, there are two compatibility problems: (1) parameters are passed
differently, and (2) within the ACP, R11 must contain the PTA address
before an ACP service can be called.

The solutions to these problems will be described in the next two
sections.

oI." -

* For example, the Berkeley BIND name server is explicitly recursive
and allocates very large areas of automatic storage in each recursive
call.

35 -

40

7. . . -



FINAL TECHNICAL REPORT March 1986

UCLA 0AC TR55

(R12)--> I I
I Parameters to my call

(Rl2)+p-->
Register Save I

Area
(16 fullwords for I

RO, ... R) 
(R12)+p+ --_ _

64 --> -

Automatic -

Variables
III "

I A(PTA)I I _ _ _ _ _ _ _ _ _

(R13)-->
(next stack frame)

* II
Here: p = number bytes of parameters

* I'

Figure 7: C/370 stack-frame

4.2.1 PTA Address Preservation

When a "C" program executes within the ACP, it must be able to call
A-Services and P-Services, and these calls require that Rl contain the
PTA address. It might seem easy to write interface subroutines in BAL
which can be called from "C" programs to restore the exact register
environment that the A- and P- services expect. However, the C/370
compiler has already allocated all 16 of the general-purpose registers, W
so there is a problem locating the necessary PTA address from within an
interface subroutine. In order to allow porting and to simplify coding,
we did not want to require that the PTA address be explicitly carried
down through a nest of "C" subroutines.

- Our solution was to 'hide' the PTA address in the stack, at the end of 4P
each stack frame (see Figure 7 above).

- 36 -

~~~~~~~~~~~~~~. . . . .. . .... . . ..• , • . . . . . ,, .. -. .. -.. . .- • . •_•...." .'. .- " ..- "



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

Of course, the compiler makes assumptions about the format of a stack
frame, and we could not modify the compiler. Fortunately, all the
manipulation of stack pointers by a C/370 object program is performed by
BAL macros. By simply changing these macros we could add the PTA
address to the stack and augment the standard entry sequence with
instructions to copy the PTA address from the preceding stack frame into
its hiding place in the current frame (see TR52 [Braden85B] for
details).

In any call from a "C" program, the PTA address can therefore be found
at address (R13)-4. This allows us to write interface routines in BAL
to call A-Services and P-Services from "C" programs.

4.2.2 Interface Subroutines

The following two functions are used to call A- and P-Services which
have standard calling sequences (parameters and results in the two
registers RO and Rl, and a return code in R15):

* acall()

* pcall()

However, it was necessary to develop specific little BAL interface
routines for some services, either because they had a non-standard
calling sequence or because some additional bookkeeping was necessary to
maintain a clean interface in "C". For example, the following tiny BAL
routines are available:

* aborto -- Call PABEND

* afetch() -- Return value from ATRV

* delayo) -- Call PWAIT

* ihostcnv -- Call IHOST CNV# .-

" inet addr -- Call IHOST NUMBER

* palloco) -- Call PCORE GET

* pattach() -- Call PATrACH

" pcgive() -- Call PCORE GIVE A

" pexit() -- call PEXIT

* pfreeo) -- Call PCORE FREE

" ppost() Call PPOST

37.
- 37 "

.-.. :J ..-. ... . . .. % %**;*-.-.*".
% ,4" """ ""

° "
" " " '"

- %
" 

% °", 
k 

"



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55 w

* ptaaddr -- Return current PTA address (from its hiding place in the

stack).

For a full list of interface routines and a complete specification of .
their calling sequences, see TR52. at

4.3 REENTRANCY
0*

Much of the code within the ACP may be concurrently executed by multiple
ptasks and must therefore be pseudo-reentrant. That is, when a
particular ptask issues an A-Service or P-Service call which will allow
another ptask to run, there must be a private copy of all variable data
used by the suspended ptask. Pr

Unfortunately, there are serious reentrancy problems with C/370. The
C/370 compiler assembles all static and external variables into
addresses which are bound at assembly or link-edit time. A happy result
is that access to these variables is very efficient; however, these
variables prevent reentrancy.

A natural and efficient programming style in "C" depends upon the use of
external and static variables for communication among subroutines;
without these variables, all communication must be performed via
explicit parameters.

A number of possible solutions to this problem were considered.

* Separate Code Copies

Under UNIX, for which "C" was originally designed, each new process (P
has its own copy of the code and data areas. Presumably, we could
use an analogous technique in the ACP, fetching a new copy of a "C"
program module into (real and virtual) storage for each execution
ptask executing it.

Unfortunately, ICT does not presently support the fetching of
multiple copies. It assumes that all load modules are reentrant,
fetching a single copy for all concurrent execution instances. It .

would be possible to extend ICT to fetch multiple copies of modules
which are not marked "REENTRANT", but the result would be to
increase the working set size and perhaps exhaust storage if many
copies of a large module were used. w

* Explicit Reentrance

Another choice would be to write every "C" program for use in the
ACP to be explicitly reentrant. This generally requires that every
procedure call include at least one additional parameter, the (V
address of a (reentrant) structure containing (or pointing to) all
private data.

- 38 -

.....................



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

This approach, which is also used for reentrant PL/I code, loses a .-..
little of the elegance of "C", but is feasible. We used this
approach in writing the SMTP sender program USMTP, for example.

* Serialize Execution

Unfortunately, "C" code which is ported from another system will
• inevitably make use of static and external variables. To port such

a program without massive modifications, it is necessary to
serialize the use of the program module. This approach was taken
with the SNTP server program SSMTP and with the BIND name server
code NAMED.

In order to write explicitly reentrant code, we must also ensure the
reentrancy of the required "C" library routines. In particular, there
is a major reentrancy problem in the definition of stream I/O in the
standard C/370 library: the I/O stream control variables are kept in an
array of structures (struct _iobuf) which is an external variable and
therefore link-edited with the program module. The standard I/O stream
names (stdin, stdout, stderr) are preprocessor macros which translate
into fixed offsets into this array. For use within the ACP, a more
reentrant mechanism was required.

The standard I/O routines were changed so that the iobuf structures are
allocated dynamically at execution time. The standard I/0 stream names
are then translated via preprocessor macros into calls on (very short)
BAL subroutines that locate the required structure element.

4.3.1 Reentrant Environment

A C/370 object program normally has a highest-level procedure named
"maino". When the C/370 compiler generates code for this procedure it
includes a standard CSECT of code containing a "startup" sequence to
establish the "C" execution environment. This startup CSECT is emitted
by the compiler as a series of BAL macro calls, to be expanded by the

C" assembler. By simply changing these macros we could change the program

environment for the ACP.

In particular, the startup macros included with C/370 issue GETMAIN and
FREEMAIN SVC's to obtain and free the stack area; these macros were
modified to use PCORE GET and PCORE FREE for use in the ACP. As a
result, a stack area in the ACP will be freed explicitly by normal
program termination and freed automatically in any other case.

At the beginning of the PCORE'd stack area, there is reentrant storage
for several environmental tables needed by the "C" program. To allow
the program to locate these tables, the address of the beginning of the .46

* stack area is kept in a known place in the ptask's PTA (word PTAUSER).

These reentrant environmental tables are as follows:

- 39 -

*°°]

L'. L' '- °:2o- - .L''.- ' -.z'&' . ---. " --""-v,' --.. -. - -" .'. - .. 2 - -o---. , -. .- :,k - ---.



FINAL TECHNICAL REPORT March 1986 r

UCLA OAC TR55

* Stream I/O Table

The "I/O Table" (IOTABLE) is a vector of pointers to iobuf -
structures for open stream I/O streams. The first three slots in
this vector correspond to the standard input, output, and error
units (stdin, stdout, and stderr, respectively); the other slots
are assigned as needed.

This vector is used (1) to locate the standard I/O units, and (2)
to ensure that all I/O streams are properly closed when the program
exits.

* Saved Environment

The library routines setexit() and reseto) provide a mechanism to
break out of an indefinite nest of subroutines and return to a
known earlier execution state. These routines use a 12-word
register save area (the volatile registers RO-R3 are not kept)
which is in the beginning of the stack area.

* Execution Parameters

The startup sequence calls a library subroutine (_gtargso) to
parse the execution-time parameter string before main() is called.
The ACP version of _gtargs() copies the parameter into the stack
and then parses it into a series of null-terminated strings, one
for each parameter item. gtargs() then creates "argv[ ]", a vector
of pointers to these strings, in the stack following the string. ap

* ALARM Timeout Time

The fullword BOSTIMO is used to save the next time-of-day at which
a timeout should be signalled. See the signal() subroutine in
TR52.

* Memory Pool Head
,.4.

The fullword BOSMROOT contains the head of the chain of storage
pools used by the malloc() and freeo) routines (see the next
section). IF

40

-s ..

- 40 -

r4
-S

. . . .. . . . . . . . . . . . . . . . ?.S



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

4.4 STORAGE ALLOCATION

Within the standard "C" library, the routines malloc() and free() are
used to obtain and free main storage blocks. The C/370 library
implements these using GETIIAIN and FREEMAIN. However, within the ACP we
need to use PCORE, to ensure that storage will be freed if a ptask fails
to free it.

* Within the ACP, there are two levels of storage allocation routines
available.

4.4.1 Wholesale Allocation

The routines palloc() and pfree() call the PCORE service directly to
provide efficient allocation of main storage in units of 256-byte pages.
The palloc() and pfree() routines have the same calls as malloc() and
freeo, respectively, and can be used in place of the standard routines
by changing the names:

#define malloc palloc

#define free pfree

PCORE FREE requires as parameters both the address and the length of a
block of storage. To provide this, palloc() prefixes the storage block
with a "hidden" header of two fullwords. .

4.4.2 Retail Allocation

The general storage allocation routines malloc() and free() suballocate
arbitrary-sized segments from 4K pools obtained with PCORE. If the
demand exceeds the storage pool, malloc() will call palloc() to obtain a
new 4K pool block. All 4K pool blocks are chained together, with the
start of the chain in word BOSROOT in the stack area.

The routines use a traditional first-fit algorithm with roving pointer.
Each segment is preceded by a hidden fullword header.11

C We are grateful to Robert Cole of University College London, who
supplied the malloc() and free() routines which he developed for the
MOS realtime system on LSI/lI CPU's.

- 41 -

I e .

,':-,"-~~~~~~~~~~~~~~~~~~~~~~~~~."..,-..-'.'."."..-......'...-".......-".','-..... .....-... ......- -" ..... .. '... ..



FINAL TECHNICAL REPORT March 1986 W
UCLA OAC TR55

4.5 I/0 SYSTEM

The ACP environment required rewriting many of the I/0 support routines
from the C/370 library and changing the standard #include member
"stdio.h".

It will be seen that the ACP version of the I/O library are much less
general than those of UNIX. We chose to keep it simple, implementing •
just those facilities required for the particular "C" programs of
interest. However, we have maintained the device-independent stream I/O 
capability of the standard "C" library [JohnRi78].

•..

4.5.1 Streams

In order to perform I/0 to particular external devices, a "C" ptask must
open logical devices or streams. The library subroutine fopen() is used
to open a stream. If successful, fopeno) returns a quantity called a
file pointer, which is the handle used in all subsequent I/0 calls for
this stream. A file pointer is actually the address of a 32-byte area
whose format is defined by the "C" structure _iobuf" (in BAL, the
#IOBUF DSECT). The format and function of this area are similar, but
not identical, to those of the standard "C" library routines.

The ACP version of the I/O system is built around two kinds of streams:
buffered and unbuffered. Buffered streams support the character-by-
character I/O calls getco) and putco) of the standard "C" library.
These routines implicitly call the unbuffered I/0 routines (readf() and
writefo) as necessary. For unbuffered streams, the ptask calls readf()
and writef() directly.

Note that "C" I/O in the ACP differs from the UNIX I/O interface in not
being structured into a two-level hierarchy (stream I/0 and "low-level"
I/O). In the ACP, the file pointer is used as the universal handle to
all I/0 calls, including the unbuffered I/0 calls; there is no "file
descriptor". The unbuffered readf() and writefo) routines in the ACP
are otherwise equivalent to the low-level read() and writeo) routines of
the standard UNIX interface.

A buffered stream is simplex, i.e., it may be opened for either reading
or writing, not both. Full-duplex external devices such as TELNET
connections or VTAM connections require a pair of streams, one for input
and one for output. For these devices, a single call to fopen() will o
open both streams and return the file pointer corresponding to the
output stream. Given the output file pointer, the library routine
Ginfp() will return the input file pointer.

Within the ACP, there is a major restriction on stream I/O: it is

strictly sequential. Thus, the standard "C" library routine fseek() was
not implemented within the ACP.

- 42 -

--", " . - -- - .. .. " . -- .- . . . -, ."- , - -- .....- -.- -"--.-.•.. ..-.---.-.-.-..-.-. .-.-. .----.. . .
%' - - '. ''-., . '. '' .' ' • .' '' . . " . - ,- ' .- " . - .' " . " - ' _. -2- " / *.- '.., ,' t _ . : . .- , '



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

4.5.2 1/0 Library Routines

The following list shows the most important I/O routines used by "C" 'S
routines within the ACP. Those names followed by asterisks are
compatible with routines by the same name in the standard "C" library,
in terms of call and effect but not implementation. In some cases we
have added restrictions, which are noted.

* fopeno) *

Open a stream (or full-duplex pair of streams).

* fstopen()

Open a stream to a particular standard I/0 unit (or, for a
full-duplex buffered device, a pair of streams to stdin and
stdout).

This call is necessary to force the allocation of the proper slot
in IOTABLE for the standard units; fopen() would allocate any
available slot.

" Ginp()

Given the output file pointer for a full-duplex external device,
return the corresponding input file pointer.

* fclose()

Close a specified stream. For a full-duplex pair of streams,
fclose() must be invoked for the output stream; it may (but need
not be) invoked for the input stream. Input and output streams may
be closed in either order.

For some stream types (Telnet and 1TAM connections in particular),
fclose() has no effect on the underlying connection. For disk and
sysout datasets, however, fclose() will do a PCLOSE and PDYNAL
FREE.

* fflush() *

Force buffered output to be sent to a specified output stream.

When an output stream is closed, fclose() always calls fflush()
implicitly. A ptask will need to issue fflush() explicitly for a
buffered interactive stream (e.g., a TELNET connection or a VTAM
connection), in order to force buffered data to be sent to a user.

*putc() *

Append a character to a specified output stream.

- 43 -

. . S .2 S .



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

* fputs() *

Append a null-terminated string to a specified output stream.

* getc() *

Return next character in specified input stream. If necessary, an
internal PWAIT will be performed until a character is available.

* fgetso) *

Get null-terminated string, up to next end-of-line, from a
specified input stream. If necessary, internal PWAIT's will be
performed until the call completes.

* ungetc() *

Return the most recent input character to the input stream buffer.

* writef()

Write out a buffer of data to a specified output stream. This is
the unbuffered write routine called indirectly from putc() to empty
the stream buffer; it must be called explicitly for an unbuffered
stream.

* readf()

Read in a buffer of data from a specified output stream. This is

the unbuffered read routine called indirectly from getc() to fill a .1.

%stream buffer; it must be called explicitly for an unbuffered.
stream.

The calls to these routines are described in more detail in a later
section.

4.5.3 External Device Types S

Each stream is opened to a particular "external device". The following
types of external devices are supported by the present implementation:

Telnet connection

TELNET I/0 uses a full-duplex pair of buffered streams. To support
this type, readf() issues an ATGET and writef() issues an ATPUT.
If ATGET finds no input available, readfo) issues a PWAIT for input
with a 10 minute timeout.

- 44 -

".



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

* VTAM connection

A full-duplex pair of streams can be used to perform I/0 to the
VTAMTERM (VCALL) interface to VTAM. The present implementation is
limited to virtual-3767 (line mode) access. These I/0 calls will
PWAIT internally for available input and for output to complete.

* Disk dataset

A disk dataset can be either read or written sequentially.

To open a disk I/O stream, issue:

FILE e fopen( dsnameptr, dalo _ptr )

Here "dsnameptr" is the address of a null-terminated dsname
string, and "dalo ptr" is the address of a structure containing DCB
parameters and other information. This call will make the required
PDYNAL and POPEN requests. fclose() will make the corresponding
PCLOSE and PDYNAL FREE requests.

1.0 "-
There are some significant implementation restrictions on the
dataset attributes:

1. DSORG may only be PS.

2. For input, RECFM may be FB, FBA, VB, or VBA.

3. For output, RECFM may be VB or VBA; however, there is presently
no mechanism to set the Carriage Control character (column 1)
in a VBA dataset.

* SYSOUT dataset

Output can be written to a SYSOt'T dataset with specified values for
CLASS, DEST, and COPIES.

The present implementation restricts a SYSOUT dataset to RECFM=VBA
and LRECL=137 or to RECF=VB and LRECL=84.

To open a SYSOLUT stream, issue:

FILE *fopen( "*PRIN7", sop ptr)

Here "sop ptr" is the address of a structure containing the CLASS,
DEST, and COPIES parameters.

When the stream is closed, fclose() will call PDYNAL TYPE=FREE.
This will normally have DISP=(,KEEP), causing the dataset to be
enqueued. However, the library routine fkill() will mark the
stream with a bit which will cause fclose to use DISP=DELETE,
deleting the dataset.

45 - p .



FINAL TECHNICAL REPORT March 1986 0
UCLA OAC TR55

* WTPLOG file

A buffered output stream can be opened to any of the WTPLOG files
-- ERROR, EVENT, ACCT, etc., using ITRACE.

Trace buffer ..
-J..

A buffered output stream can be opened to a circular trace buffer.

This buffer can be subsequently dumped to a WTPLOG file by calling
the ITRACE service.

* TCP connection

This is an unbuffered full-duplex I/O stream.

For input, readfo issues ARECV MOVE. If no data is available, it
issues an internal PWAIT for INPUT, CLOSE, and TIME. The timeout
is an assembly constant currently set at 10 minutes.

For output, writef() issues an ASEND and then PWAIT's for OLPUr
completion. In the current implementation, the TCP PUSH bit is 10
always set. It therefore provides poor TCP throughput unless a
very large buffer is passed to writefo.

For this type, fopen() will call the ALSTN and AOPEN services to
actively open the TCP connection, while fclose() will issue ACLOSE
WAIT.

• UDP association

This is an unbuffered full-duplex I/O stream, using the datagram-o-
riented I/O routines udpsend() and udprecv() rather than the
standard readf() and writefo.

4.5.4 Newlines and Tabs

In normal "C" usage, a newline is denoted by a LF character in a text
string. C/370 preserves this usage, except that the LF, like all

character constants, is represented in the EBCDIC code, not ASCII.

To allow easy porting of existing code, it was desirable to preserve the
convention of LF as an end-of-line character within "C" code. However,
within the rest of the ACP a newline is represented by the EBCDIC NL W
character. Furthermore, in record-oriented external devices like disk
files, there is no explicit newline character. This difference in
end-of-line conventions was handled in different ways for input and for
output.

• Input

- 46 -

*".",."v.. . ",*.*". . - i ",. , . . . - .- -. *. "-.-*..'' -.- ,-.. .. . '. ... .... .. ..- i-' ',-. - .



FINAL TECHNICAL REPORT March 1986
UCLA QAC TR55

Suppose the getc() library routine is called requesting the next
character character from an input stream. As in the standard "C"
library, our getc() is actually the macro [KernRi78]:

#define getc(p)

(--(p)->_cnt >= 0 ? *(p)->_ptr++: _fillbuf(p)) ,

This macro tries to get the next character from the stream buffer,
decrementing the counter cnt and incrementing the buffer pointer
_ptr. However, if the buffer is empty (_cnt < 0), it calls
fillbuf() to refill the buffer.

The primary function of fillbuf() is to call the unbuffered read
routine readf() to read the next chunk of data into the buffer. In
this chunk of data, an end-of-line will be represented by the . .
character NL. For a disk dataset, readf() will actually supply the
next logical record and add an explicit NL.
After calling readf(), fillbuf() calls a BAL routine ( tr()) to

translate any NL's in the buffer into LF's.

* Output

The putco) macro has been replaced by a BAL routine which performs
essentially the same function: if there is room, add the character
to the buffer, increment _ptr, and decrement _cnt. If there is not
room, OR IF the character is a LF, call the _flshbuf() routine to
empty the buffer.

flshbuf() tests the type of the stream. For a record-oriented
stream, it always calls writef() to write the next record, and
DELETES a LF. For other streams (e.g., TELNET), it calls writef()
only if the buffer is full; otherwise, it deposits the LF in the
buffer buffer and returns.Cq

4.6 PORTING DIFFICULTIES
This section will summarize the difficulties we have encountered in

porting UNIX programs into the ACP.

* Large Source Files

Unfortunately, the C/370 compiler seems to have some internal
overflow problems with very large source files, getting OC4 ABENDs
in the code generation step. We have not pinned down the exact
nature of the overflow, but segmenting the source files to less
than about 2000 lines of "C" code seems to avoid these ABENDs.

-47-



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

* Symbol Ambiguities .

C/370 has a fault inherited from its ancestors: it allows arbitrar-
y-length symbols but only distinguishes them by the first 8
characters. Where a source program contains two symbols which
differ only after 8 characters (e.g., "gethostbyname" and
"gethostbyaddr"), one or both must be changed consistently
throughout the source program.

Unfortunately, the 8-character limit is true of the C/370 prepro-
cessor step as well as the compilation steps, so macros cannot be
used to make consistent name changes where necessary.

* Operating System Differences

There are serious differences between UNIX and ICT as operating
systems. These differences ideally show up only in the highest-
level procedure of the program, which often requires significant
changes for the ACP environment.

Here are some examples of system-related problems. V

1. The UNIX fork() primitive cannot reasonably be translated into
the ACP. The ICT PATTACH service does create an independent
thread, but it cannot have its own address space. It is not
sufficient to make a copy of the caller's stack, since the
stack contains absolute addresses pointing to the original
copy.

2. UNIX programs often include file names which do not conform to
OS/MVS dataset naming conventions.

3. UNIX programs invoke each other using Shell commands, which
have no equivalent within the ACP.

4. There are unavoidable differences between the UNIX and MVS file
systems. For example, the UNIX unlink() function has no exact
equivalent. No call to fseek() can be used within the ACP; it
is not possible even to "rewind" an input or output file.

* Library Differences

The current "C" library differs in a few ways from the portable "C"

library included with C/370.

1. Printf() features.

New features appear in printf() in various versions of UNIX.
Examples we have seen are ll. Ild" , ".m" , ",r" , ",#x", and
"o"d".. We have added these features to the printf() routines

used in the ACP.

2. index()

- 48 -

'p,



F, ---

FINAL TECHNICAL REPORT March 1986 ,

UCLA OAC TR55

Berkeley has changed the name of the strchr() function to
index(), conflicting with the C/370 index() routine.

3. atoi()

This function does not exist in the portable C library,
although it can be defined trivially using the strtol()
subroutine.

* Static procedures

There seems to be a C/370 compiler bug which causes garbage labels
to be emitted for static procedures. Removing the 'static'
attributes (from the procedures -- static works fine for data)
avoids this compiler bug.

*External Symbol Conflicts

The C/370 library routines are compiled/assembled in groups, so
each load module typically has a number of entry points. This
sometimes leads to accidental conflicts between an external symbol
in the source program and some C/370 library routine that happened
to be included with a routine that was needed.

* Tab Characters

UNIX programs often use the HT (Horizontal Tab) character in their
* formatted output, assuming that the UNIX system will expand them in

a standard manner when data is sent to a printer or display device.

Within the ACP, the correct way to handle HT's would be to map them
into the appropriate number of blanks within writefo. This would
be done for certain external device types -- disk datasets, VTAM
connections, and log files. However, this would add considerable
complexity to writef(), and to date we have not implemented the
necessary mechanism; we have chosen to modify the source programs
instead. We regard HT handling as an unresolved compatibility
problem.

U %"

-49

ze

...........................................



FINAL TECHNICAL REPORT March 1986 IL
UCLA OAC TR55

Chapter 5

RELEASE 1.6 FEATURES

This chapter summarizes the major features of Release 1.60.

* LNI Revision

This has been discussed in a previous chapter.

Host Lookup Changes

Changes to prepare for a name resolver were discussed in a previous "
chapter. GO

* USMTP Update

Release 1.6 is the first to include the SMTP modules, most of which
are written in "C". During the present contract, the USMTP module
(User SMTP) was rewritten in order to:

1. Decrease the size of the load modules by obtaining most working
storage dynamically.

2. Include a complete parser for the RFC822 header syntax, to
enable the SMTP code to properly map arbitrary addresses. This V
mapping is desirable because user mail systems for IBM
equipment tend to use cryptic and non-mnemonic account names,
rather than person names, for mailboxes. The SMTP implemen-
tation is prepared to map these little horrors to/from real
person names for Internet consumption.

* Multihoming

The redesign of the LNI interfaces to allow multiple LNI's raised
the possibility of installing the ACP on a multihomed host, i.e., a
host with multiple IP addresses. To support such local multi-
homing, it was necessary to generalize the IP Program (IPP) to
effectively make the choice of local address a parameter of each
connection/association.

This generalization required the revision of a few internal
interfaces and control blocks. There was already a root control
block (P3CB) which contained the local host address. With a few
changes, it was possible to allow multiple P3CB's, one for each
multihomed address.

-50 - .-

V.,°



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

, Gateway Module

Since Rel 1.6 supports multihoming, some installations may want to
use the ACP as a dumb gateway ("dumb" because it does not support
the Exterior Gateway Protocol, EGP). To handle the variety of such
problems, Release 1.6 includes a module named GATEWAY.

When the ACP receives a packet which is not destined for the local
host (either the packet's destination address does not match any
local address, or the packet contains an active source route), the
entire packet will be passed (without reassembly) to GATEWAY.
GATEWAY is structured as a higher-level protocol module, as
appropriate for a gateway function.

The GATEWAY module that is distributed with Release 1.60 will
forward a packet if its destination network matches one of the
networks to which the ACP is locally attached; otherwise the packet
will be discarded and a message ("NO ROUT 4PKT") logged.

Obviously, more general algorithms are possible, e.g., implemen-
tation of some locally-defined "Interior Gateway Protocol" (IGP).
This must be left for future development.

" Gateway Pinging

When the ACP is used to drive a local Ethernet, it will be
necessary to "ping" local gateways to ensure that they are up. The
basic mechanism for this pinging will be a new permanent ptask,
GWYPING. This ptask has not been written yet; however, Release 1.6
contains the "hooks" which will be needed to interface to the rest
of the ACP.

We envision GWPING operating in the following manner.

I. GWYPING will be driven primarily by the dynamic table of active
Internet hosts and gateways, IHTAB. GWYPING will ping all the
gateways on this table at a slow rate (e.g., once every 20
seconds). Note that this table lists only those gateways to
which packets are actually being sent by the ACP. This
background pinging will detect gateway outage during TCP idle
periods, and it will establish average round-trip times for
each gateway.

2. If GWYPING decides that a gateway is down (it has received no
reply after a set number of successive pings), it will pass the
IP address of the gateway to the new service INTFERNET GWYDOWN.

GWYDOWN will cause the IPP to behave exactly as if a HOST DEAD
message had been received for that host from the local network.
In general, this will not kill a TCP connection; it will only
cause the normal mechanism to choose another primary gateway
from the list in the ACP.

-51-

- C .

o*



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55 "

3. When TCP does the second or later retransmission, it calls a
new service INTERNET HOSTPROB, to notify the IPP that there may
be a problem with communication to the specific remote host.

HOSTPROB turns on a "problem" bit in the IHT entry for the host
in question, and tries to issue a PPOST to awaken the GWYPING
ptask (at present, there is no such ptask, so the PPOST is
skipped).

When it is awakened and finds an IHT entry with the "problem"
bit on, GWYPING will ping that gateway at a relatively high
frequency (e.g., once every 2 seconds). The round-trip average
accumulated by the background pinging will provide a realistic
timeout criterion. Again, if it decides that the gateway is
down, GWYPING will call INTERNET GWYDOWN to force a re-routing.

If GWYPING decides the gateway is UP (e.g., it receives more
than 2 out of 5 pings back), it will simply turn off the
"problem" bit in the IHT and revert to background pinging of
that gateway.

Subnet Support

The ACP now contains the (minimal) support for subnets as defined -

in RFC 950 [JMogul85]. There is a new 32-bit mask field in the
configuration table (ACPCONFG) to define the bits corresponding to
the subnet field. This value will be OR'd with the normal network
mask to obtain the effective network mask (called "my ipmask" in q
RFC 950). If there are no subnets, the subnet mask will be zero.

* MVS/XA Compatibility

OAC recently installed the IBM operating system MVS/XA, which is .

the 32-bit addressing version of OS/MVS. The ACP is now executing I -
(in 24-bit addressing mode) under MVS/XA, but will still execute
under the earlier NVS/SP operating system. This change exposed a
few system dependencies within ICT.

* Broadcast Facility
5lm

The ACP now has a broadcast facility, which allows an operator to
send a message to all User TELNET and Server TELNET sessions, or to
a particular session. The operator interface to the broadcast
service is a a "C" program named BCAST.

* Expanded Well-known ports 1

The range of "well-known" ports was expanded from 1:255 to 1:4095,
and the private experimental ports within the ACP were set to 2021
(FTP), 2023 (TELNET), 2025 (USMTP), and 1023 (VM Full screen). A
new SETA symbol in INPCONFG defines the upper limit of the WKP
range.

- 52 -

or

.I.'



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

* Indefinite Listen Changes

To support continuous servers (e.g., USMTP and NAMSERV), several
changes were been made to indefinite listens, i.e., passive
connection requests which contain "wild" remote host and/or port
numbers. For example, the IPP was changed so a definite ALSTN call
will not match a pending indefinite listen.

* Host Unreachable Softened

The treatment of the ICMP Host Unreachable message by TCP was *1[..

changed. Previously, TCP within the ACP treated Net Unreachable as
a "soft" error, but Host Unreachable as a permanent error.
However, we had the experience of trying to do a long FTP to a host
whose network interface was bouncing up and down, resulting in
frequent but temporary Host Unreachable messages.

Host Unreachable will now prevent a new TCP connection from opening
but will not kill an existing connection (although retransmission
timeout may kill it). There will always be a log entry for the
Host Unreachable, so we can be aware of flaky interfaces.

* Saved-trace Mechanism

Over a number of years, various debugging facilities have been put
into the ACP, and those that were useful have been further
developed while those which were not useful have atrophied.

For example, the original connection trace buffer mechanism failed
to provide useful debugging information and was allowed to atrophy.
During the present contract, we developed a new approach to
connection tracing, the "saved trace". During normal operation,
the data stream is saved in binary in a circular buffer. Only if a
severe error occurs will the high-overhead operation be performed
of formatting the contents of the buffer to an ACP log. " The SMTP
user and server modules implement saved traces of their SMTP
protocol streams, while TCP implements a saved trace of its
connection data. These traces have been useful in finding both
local and remote protocol problems.

C
Exercising the saved-trace mechanism for TCP revealed both bugs and
design problems with trace buffers associated with connections/
associations. The problems had to do with race conditions at close
time.1  These problems should be cured in Release 1.60.

's This approach was actually inspired by a debugging technique in the

SMTP server developed by the UCLA Computer Science Department for use
under UNIX: write a trace history into a file, and discard the file
if no error occurs. UNIX files have low overhead, but under OS/MVS
datasets do not. However, within the ACP the use of a circular
buffer provides an analogous facility with acceptable overhead.

-53-



* FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

* Connection Statistics

Code was added to gather and report a fairly complete set of
statistics on TCP connections. The data is written into the ACP
event log whenever a TCP connection is closed.

*1

* w

~If the TRB appears ahead of the corresponding TCPB in the all-CCB
chain, the TRB will be closed first; but the process of closing the
TCPB may well result in trace entries. Conversely, trace buffers
were not always being freed.

-54-



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

The data consists of two lines, one for input and one for output.
Here are two typical lines (shown folded to fit on this page):

IN < 378=#SEG 0=#DSG 378=ACKS 0=#DSC 4=#DBY
... O=MAX O=LIM O=AVG O=QMAX

OUT> 197=#SEG 194=#DSG 3=ACKS 12=#REX 182720=#DBY
.. 964=MAX 964=LIM 941=AVG 4.33=RTT

The quantities listed here are defined as follows: h

1. #SEG '.',

The total number of segments sent/received.

2. #DSG

The number of segments that carried data octets (segments with
only SYN, FIN, or ACK bits are not counted).

In the input side, the packets which were discarded because
their sequence numbers fell outside the window are also not
counted. In the output side, each retransmission of a data
segment is counted in #DSG.

3. ACKS

The number of segments which did not carry any data octets; it
includes empty ACK packets, SYN packets, and FIN packets.
These numbers are derived: -"

ACKS= #SEG - #DSG.

4. #DSC

The number of input segments which are discarded because their
sequence numbers were "unacceptable", i.e., fell outside the
current receive window. Normally, these will represent
unnecessary retransmissions by the remote host.

5. #REX

The total number of extra (data) segments which were sent in .. V

retransmissions.

6. #DBY

55 •

."'...' . . .." .. .. . .. • . .. . . . ... .. . . .. -" . • . .- .. - . ..° . .. " . .- . .- • .



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

The total number of data bytes sent or received; it does not
*" count the octet space consumed by the SYN and FIN bits.

7. MAX

The largest number of data octets sent or received in a TCP
segment on this connection. It does not count the octet space
consumed by the SYN and FIN bits.

8. LIM

The maximum number of data octets per segment which could have
been sent or received on this connection.

In the receive side, it is the smaller of the reassembly buffer
size (less the TCP header size) and the size of the receive
circular buffer. On the send side, it is the maximum segment
size (576, unless the remote host changes it with the Maximum
Segment Size option), less the TCP header size.

9. AVG r .

The average number of data octets per data segment sent or
received.

On the receive side, this is computed as #DBY/(#DSG+#DSC). On
the send side, it is computed as #DBY/#DSG. Thus, retransmis-
sions and discarded packets tend to reduce the average. 4 "

10. QMAX

The largest depth of queuing of out-of-order segments in the
input side.

11. RTT

The measured round-trip delay (seconds) at the time the
connection was closed.

From these figures, a great deal can be inferred about the efficiency of
different TCP implementations, and about the effect of long path delays
and packet losses in the Internet.

If IP reassembly was required on the connection, there will be an
additional log line reporting the number of packets received and the
number of complete segments reassembled.

- 56 -

'oF



FINAL TECHNICAL REPORT March 1986
- UCLA OAC TR55

Chapter 6

CONCLUSIONS

Release 1.6 of the UCLA ACP represents the end of the DARPA-funded
development of OS/MVS host software for the Internet protocols. The ACP
is likely to see considerable operational usage in DDN, so continuing
maintenance and extension will be necessary.

The Internet is a continually-changing enviroment, and we already know

of a number of areas for short-term development in the ACP.

* Finalize the name resolver/name server code

Experimental modules exist, but more time and work will be needed
to make the name server/name resolver system a fully reliable and
efficient replacement for the static host tables.

* Implement MX in USMTP

The USMTP module needs to employ the name server system to look up
1 mailbox hosts, based upon MX records.

* Implement UNAME and MNAME Options in GETHBY

These options would make the ACP user interface easier to use,
since the user would be able to enter a partial host name and have

4 it completed.

* Implement 1822L Access Protocol

DDN hosts are going to need the 1822L access protocol to the DDN,

to support logical addressing and multiplexed interfaces. This

C represents a modest extension to the IMP1822 LNI module.

* Remote Job Entry

Some Internet facility for remote job entry will be needed very
shortly, to support the new scientific user community that will be
added by NSF and DARPA.

In addition, there are a number of longer-term development areas, whose
importance is difficult to assess at present.

* Gateway Pinger

- 57 -

am.'.

.......... ........... . ...... .,.. ............... ........ ,.., . . . .. .,. ..--'



-. ~~~ -.-F

FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

Earlier in this report we outlined the design for a gateway pinger
ptask (GWYPING), which will be necessary if the ACP is connected to
an Ethernet on which there are gateways to further nets.

* Gateway and EGP

As discussed earlier, the GATEWAY module of the ACP could be
expanded to have real routing functions. For this to be useful,
however, EGP (Exterior Gateway Protocol) will be needed within the
ACP. A good possibility would be to port an existing "C" EGP.

* I/0 Performance Improvements

There are several possible ways to improve the I/O performance of
the ACP. Investigation and experimentation are necessary to decide
upon the best course.

1. Use VTAM for I/O to channel interface.

A channel interface would be used that emulated an IBM control
unit, such as a 3274. VTAM's I/O may be more efficient than
the ACP's, since VTAM is "authorized". b

2. Fast-Path I/0

If an installation is willing to let the ACP run "authorized",
it may be possible for the ACP to use a more efficient form of
I/0, called "fast-path". 0

3. Packet Aggregation

If the local network interface aggregated input packets and
disaggregated output packets, the number of I/0 interrupts

-' could be substantially reduced, making a corresponding dramatic
improvement in CPU utilization in the ACP.

* Internet Congestion Control

The Internet research community cannot defer much longer a solution
for congestion. Any solution will have some impact upon the host S
software, requiring ACP changes.

A minimal approach would be to breathe life into the ICMP Source
Quench message. A more significant change would be to use "metered"
output at the IP level. The challenge within the ACP will be to
meter the output without creating unacceptable timer-event
overhead.

* User FTP Rewrite

The present User FTP processor, which runs under TSO, has a user
interface which is very general but not very convenient. l

-58-



N- 7" .

FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

An attractive alternative would be to write a new User FTP, with a
user-server model interface, in "C" to execute within the ACP.

* Direct User TELNET Enhancement

The ACP routine (VTAMAPPL) that handles direct terminal access to
User TELNET should be enhanced to support multiple sessions,
session logging, reading an input file, etc. Then the TSO TELNET
program, which is a maintenance problem, can be dropped.

* ISO Protocols

In the (not so distant) future, there will be a desire to switch
from TCP/IP to the corresponding ISO protocols. This should be

* much less disruptive a change than from NCP to TCP/IP. It will
generally only require replacing the IPP and TCP routines, leaving
most of the ACP intact.

A good possibility will be to port a "C" version into the ACP. One
serious problem will be to accomodate the variable-length addresses
of ISO IP. When we first installed TCP and IP into the ACP, we had
in mind that IP addresses might eventually become variable-length.
Although 32-bit host numbers have crept back into many internal ACP
interfaces during the succeeding nine years, a change to variable-
length addresses is far from hopeless.

-.J..

C

*I

- 59 -
'*.

.4 -~ * % ~ *~ ** .* 4* •



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

REFERENCES

BBN1822 BBN, "Specifications for the Interconnection of a Host and an
IMP". Report 1822, Bolt Beranek and Newman, Cambridge,
Massachusetts, revised May 1978.

BBN1822L Malis, Andrew G., "The ARPANET 1822L Host Access Protocol".
RFC878, December 1983.

Braden85A Braden, R., "Continued Development of Internet Protocols under
the IBM OS/MVS Operating System -- Final Technical Report".
Technical Report TR46, Office of Academic Computing, UCLA,
January 1985.

Braden85B Braden, R., "'C' Code Within the ACP". Technical Report TR52,
Office of Academic Computing, UCLA, October, 1985. -.

Braden85C Braden, R., "SMTP Implementation Within the UCLA ACP".
Technical Report TR49, Office of Academic Computing, UCLA,
December 1985.

Braden86A Braden, R., "The Local Network Interface in the OS/MVS ARPANET
Control Program". Technical Report TR5l, Office of Academic
Computing, UCLA, January 1986.

Braden86B Braden, R., "Datagram Protocol Implementations Within the UCLA
ACP". Technical Report TR55, Office of Academic Computing,
UCLA, January 1986.

Braden86C Braden, R., "UCLA ARPANET Control Program for OS/VS Using
Internet Protocols TCP/IP -- Technical Overview". Technical
Report TR35, Office of Academic Computing, UCLA, (revised)
February 1986. 4

Braden86D Braden, R., "Introduction to the UCLA ACP -- Internet Software
for IBM OS/MVS". Technical Report TR48, Office of Academic
Computing, UCLA, February 1986.

ISOIP ISO, "Protocol for Providing the Connectionless-Mode Network
Services". ISO DIS 8473, reprinted as RFC 926, December 1984.

JMogul85 Mogul, J. and Postel, J., "Internet Standard Subnetting
Procedure". RFC950, August 1985.

JohnRi78 Johnson, S. and Ritchie, D., "Portibility of C Programs and the lW
UNIX System". Bell System Technical Journal, Vol. 57, #6 Part
2, July-August 1978.

- 60 -



FINAL TECHNICAL REPORT March 1986
UCLA OAC TR55

KernRi78 Kernigan, R. and Ritchie, D., "The C Programming Language".
Prentice-Hall, Englewood Cliffs, NJ, 1978.

Mockap83 Mockapetris, P., "Domain Names -- Implementation and
Specification". RFC883, November 1983.

Postel8lA Postel, J., "The DoD Standard Transmission Control Protocol".
RFC793, September 1981. ,"

Postel8lB Postel, J., "The DoD Standard Internet Protocol". RFC791,
September 1981.

PostelSOC Postel, J., "Internet Control Message Protocol". RFC792,
September 1981.

PostelSlD Postel, J., "File Transfer Protocol". RFC765, September 1981.

Postel8lE Postel, J., "Simple Mail Transfer Protocol". RFC821, August
1981.

Rivas84 Rivas, L., and Ludlam, H., "ACF/VTAM Usage by the ARPANET
* Control Program". Technical Report TR37, Office of Academic

Computing, UCLA, (revised) October 1984.

Stein84 Stein, M., Rivas, L., and Ludlam, H., "ICT Version 2 Pseudotask
Services and Macro Instructions". Technical Report TR38,
Office of Academic Computing, UCLA, (revised) December 16,
1984.

TR21A Braden, R., Rivas, L., and Ludlam, N., "Programming User-Level
Protocol Processes for ARPANET ACP (REVISED)". Technical
Report TR21A, Office of Academic Computing, UCLA, Revised -
November 1984. -

40
TR42 Rivas, L., Braden, R., and DeLaRoca, D., "Installation and

Operation Guide for the UCLA ARPANET Control Program --

Release 1.60". Technical Report TR42, Office of Academic
Computing, UCLA, Revised December 1984. '"..

61....-.,

~. .


