~ AD-R167 0354 A GRAPHIC TOOL FOR GENERATING ADA LANGUAGE
SPECIFICRTIONS(U) AIR FORCE INST OF TECH
HT-PRTI’ERSO RFB OH D E BODLE 1983
UNCLASSIFIED HFIT-CI-NR 86-35 F/G 9/2

X R
.
A 28 B2
|,0 s E
——— “ 22
;o ow
u ks B20
l' -
== I8
1.25 lI.A 1.6
NICROCOM . CHART
|
| . - . -y . g wn - .\F- -, - q. A .~~
R R e e R R, -‘-b‘* kﬁ:v. %

a0y ‘,"\.- AN s\‘-'\

Lk

N g Yy ¢ . b 4 ")' b *p !
K “ ¥ N A 3 e 17 ‘::
Y 013 200)
‘, SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd). v
y REPORT DOCUMENTATION PAGE U apr Al ANSTRUCTIONS
' ‘; I REPORT NUMBER 2. GOVY ACCESSION [3_ARECIFIENT'S CATALOG NUMBER
i AFIT/CI/NR-86-55T
.(' % TITLE (and Subtitle) . 5. TYPE OF REPORT & PERIOD COVERED
R A Graphic Tool for Generating Ada Language
p Specifications. . THESTS/DVSSERTAAON
i 6. PERFORMING 01G. REPORT NUMBER
7. AUTHOR(s) . : 8. CONTRACT OR GRANT NUMBER(s)
N Donald E. Bodle, Jr. -
__ * 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggn{gosnt.xessr;&moégcr TASK
L) AFIT STUDENT AT:
° Kansas State University
) h 11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
1 © AFIT/WR 1985
¥ - WPAFB OH 45433-6583 13. NUMBER OF PAGES
. 135
< 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CL ASS. (of this report)
| UNCLASS
: Q 15a. DECL ASSIFICATION/ DOWNGRADING
‘ < SCHEDULE
! 16. DISTRIBUTION STATEMENT (of this Report)
. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
C ’ ELECTE
.
L] MAY 2 1088
.T H 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilterent from Report) ‘,‘," Ve ‘
;
3 3 18. SUPPLEMENTARY NOTES w/
Do : , i E. WOLAVER .
,; APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 oW . Koot -t o ofdee
t Professional Development
Doy AFIT/NR, WPAFB OH 45433-6583
: ‘] 19. KEY WORDS (Continue on reverse side I necessary and identify by block number)
. r
!
A
v
: ! 20. ABSTRACT (Continue on reverse slde if necessary and identily by block number)
, DTG FILE COPY
2. DD "S5, 1473 €oiTion OF 1 NOV 68 1S OBSOLETE
. “! SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)
‘.H.;- N S e ST BT L N TR RS .J. R ~.:_-.;_-._;.",:..‘ N A QPR N

A Graphic Tool for Génerating Ada Language Specifications

by Don Bodle

Abstract

t>Methods for specifying software systems have gained

increasing attention as the size and complexity of computer

/\ eIy ,~:
applications has grown. The purpose of this pepexr is to 54
)
present the current state of software specification gﬂ
\ »

techniques and to propose improvements in one component of 2

these techniques, the user interface.

The use of automated tools for specification is described,

D

with particular emphasis on their user interfaces. Many e

c features of these tools are highlighted. From this study, a iﬁ;
. b

proposal for a graphic interface for software system L

specification is developed, describing the desirable =

features of such an interface. Finally, a prototype of the q?
- s R
2 / ! ﬁ- 7, ~ N " -3
proposal is examined. 7%;,«,,.'1,,., . 72";/ G fA\i’"Y” - J '.,:}
- N ." ’
TG R CVq“VMJE% 7>wczyaﬁ:u. ' s
H ! [— - ’

ks

Koy

\

l,‘.'\,‘

L)

-]
@%\

<%, roy
[CINSNY WALY
s >
Pui

I"‘...

Al

SV
N
Sl

Y

)

S

.;}

e

el

N e B [T v SRR T TS e TS
f. \‘*-..’ 'y -,“.; ‘h: . \-:\‘ \' : '.0‘¢v‘°\":'¥l '.t“..'p‘"-:‘ . > h Lo

"y ..\ .)I ‘-.\‘.\.'\:1&::\‘ -:

S T, e,) Py A Y TN T N R N R R R T O T X
5,

]

PR

. '

) s .
- N

E —

- .

. A GRAPHIC TOOL FOR GENERATING ¥a
ADA LANGUAGE SPECIFICATIONS ;L

by

'i

DONALD E. BODLE, JR. 3
(C

i'

B.S., Kansas State University, 1984

A MASTER'S THESIS o

3 submitted in partial fulfillment of the N
N

requirements for the degree

o

r

MASTER OF SCIENCE =

- Ry

-

i I 5
‘ N

: Department of Computer Science e
: \

M

KANSAS STATE UNIVERSITY e

d Manhattan, Kansas s

o t-:

-) Y

fg)

1985

v

, 'c_.‘_-

A Approved by: [

: (::4’

. :x'

Major Professor <o

— $:

NSt

O\"

» .\:‘

B p.“.

» Ny

: 86 5 1 059 &

"

. R

o I..-.

NN A G ey g N T T IR e S S v e g T B v %

B VBTV

TABLE OF CONTENTS

Section
« OVERVIEW

1
1.1 REQUIREMENTS SPECIFICATIONS
1.2 LEVELS OF SPECIFICATION

1.3 GRAPHIC INTERFACES

1.4 THE PROBLEM WITH TOOLS

1.5 A MODEL FOR A GRAPHIC TOOL

2. SPECIFICATIONS

TYPES OF REQUIREMENTS SPECIFICATIONS
.1 FUNCTIONAL
.2 NON-FUNCTIONAL
CHARACTERISTICS OF SPECIFICATIONS
AREAS FOR ANALYSIS
1 FORMAL MODEL
2 SCOPE
3 LEVEL OF FORMALITY
4 DEGREE OF SPECIALIZATION
S5 SPECIALIZATION AREA
6 DEVELOPMENT METHOD
FORMAL MODELS OF SPECIFICATIONS
1 ACCESS-GRAPH MODEL
2 COMMUNICATING CONCURRENT PROCESSES
3 DATA FLOW
4 ENTITY-RELATIONSHIP MODEL
5 FINITE-STATE MACHINES
6 FUNCTIONAL COMPOSITION
7 PETRI NETS
8 STIMULUS RESPONSE PATHS
SPECIFICATION LANGUAGES

« AUTOMATED TOOLS FOR SPECIFICATION

GAMBIT

1 FORMAL MODEL - EXTENDED
ENTITY-RELATIONSHIP MODEL

.2 USER INTERFACE
.3 OUTPUT
.4 OBSERVATIONS
HOS - HIGHER ORDER SOFTWARE
.1 FORMAL MODEL - FUNCTIONAL COMPOSITION
.2 USER INTERFACE
.3 OUTPUT
.4 OBSERVATIONS

PSL/PSA
.1l FORMAL MODEL - A GENERAL SYSTEM MODEL
.2 USER INTERFACE

-

A el \;¢‘-_. gt pt : g ‘, e) AR "..(*\1,‘7:'."_..\\.-_\;‘.o;‘_-;'.'.‘—.-\

~

oN

RS

" .
" e

3.3 OUTPUT
.3.4 OBSERVATIONS

METHODOLOGY

1
2 USER INTERFACE
3 OUTPUT

4 OBSERVATIONS

GENERATION OF SYSTEMS

PROCESSES
.2 USER INTERFACE
.3 OUTPUT
.4 OBSERVATIONS
SUMMARY

SPECIFICATIONS

A FORMAL MODEL
USER INTERFACE
.1l GRAPHIC ISSUES
.2 ADA LANGUAGE ISSUES
OUTPUT
SUMMARY

. GTGALS - THE PROTOTYPE

1 FORMAL MODEL - ACCESS-GRAPH

2 USER INTERFACE

2.1 GRAPHIC DESIGN AND SPECIFICATION
2.2 SPECIFICATION VIEWING

2.3 GRAPHIC EDITING

2.4 SPECIFICATION EDITING

2.5 DEVELOPMENT

3 OuTPUT

6. CONCLUSIONS

USEFULNESS
.1 IMPLEMENTATION
.2 ADA LANGUAGE SPECIFICATIONS
.3 AUTOMATIC CODE GENERATION
APPROPRIATENESS OF THE DESIGN
.1 FORMAL MODEL
.2 USER INTERFACE
.3 OUTPUT

.1 SPECIFICATION ANALYSIS
.2 FRONT-END TO OTHER TOOLS

SREM - SOFTWARE REQUIREMENTS ENGINEERING

FORMAL MODEL - FINITE STATE MACHINE

TAGS - TECHNOLOGY FOR THE AUTOMATED

.1 FORMAL MODEL - COMMUNICATING CONCURRENT

. GRAPHIC TOOLS FOR GENERATING SOFTWARE

RECOMMENDED EXTENSIONS AND MODIFICATIONS

PR A N PR SR A R R AR P PR R Y R A R Ul P P O O I I SO Y P wm

& t [
6.4 THE NEEDS 77 —
REFERENCES 78 e
: APPENDICES i
A GTGALS PROCEDURE DESCRIPTIONS 80 —
B TURBO GRAPHIX TOOLBOX MODIFiICATIONS 85 Lﬁ‘
R C DISPLAY FILE FOR MAIN2 86 0
; D SOURCE CODE FOR A GRAPHIC TOOL FOR GENERATING 89 v, |
ADA LANGAUGE SPECIFICATIONS ¥ro
é*
LIST OF FIGURES @'
4
¢ :::
figure # page 1%
] 1.6.1 - GTGALS Access-graph 11 o
; 1.6.2 - Ada Language specification 12 t?
of figure 1.6.1 NN
2.4.1 - An Access-graph 20 &
, 2.4.2 - A Data flow diagram 21 oo
4 2.4.3 - An E-R diagram 22 v
R, 2.4.4 - A Finite-state machine 23 %5
5 2.4.5 - A Petri net graph 24 %ﬁ
e 3.1.1 - An Entity Block Diagram 29 Mo
3.1.2 - Defining relations with Gambit 30
a 3.4.1 - An R-net graph and text 38 Ly
N 3.5.1 - A Schematic Block Diagram 42 Lo
- 3.5.2 - An IORTD 43 NG
3.5.3 - A Predefined Process Diagram 44 &;
3.5.4 - An I/0 Parameter Table 45 =
] 3.5.5 - An Internal Parameter Table 45 k.
N 5.2.1 - The GTGALS Help Window 64 e
5 5.2.2 - GTGALS screen 65 .7
3 5.2.3 - GTGALS View Mode 66 "
- 5.2.4 - GTGALS Specification Edit mode 68 Ve
N 5.2.5 - Decomposition of INPUT from MAIN2 69 o
5.2.6 - Specification Entry for an object 69 =
iy 5.2.7 - Ada Language specification of MAIN2 71 T
y
3 i
i &
. {?
. :.\
. N
2 =
#! \ .* K

T R R R N N R R I R R L I T L

CHAPTER 1. OVERVIEW

Methods for specifying software systems have gained

g

increasing attention as the size and complexity of computer

1 ‘
H 3
: applications has grown. The purpose of this paper 1is to i
a review the current state of software specification ?ﬁ

6§

techniques and to propose improvements in one component of e

r“XA.

) TR
' these techniques, the user interface. ﬁ%

Basic background information on requirements specifications %ﬁ

. is provided in Chapter 2. It presents a summary of

b, characteristics of specifications and then focuses on some

of the formal models used as a basis for requirements

Sk

A2

specifications. The chapter also discusses the varieties of P

, F&
‘ Y
\ reguirements specification languages. gg
4 £
In chapter 3, methodologies such as Higher Order Software -

iy

(HOS) (Hamilton, 1976; Hamilton, 1983), Program Statement

Language/ Program Statement Analyzer (PSL/PSA) (Teichroew,

4

1977), Technology for Automated Generation of Systems (TAGS)

P

(Sievert, 1985), and Software Requirements Engineering

(]

i

. : oy

Methodology (SREM) (Alford, 1985) are reviewed for their o
- contributions to automated requirements specifications. i
' AN
¢ Additionally the tool Gambit (Braegger, 1985), though not a e
3 A
! specification tool, is reviewed for its graphic interface !

1) e
v 1
features. R

ot
) BN
! e
' -“-.
N S
L] :~‘; (]
' e
LS P P L S A P T] S A% [TR TS IR SN TR TS W T S R R PRI S A SRR AL e e T TR T’ .’;‘"o'

. () " Ay " f LAY, " . u * AL A A R) RO ¢ (o‘ (YOI o P LTSS S8 YR, | a P

23

The main contribution of this paper, a model for a graphic
tool for generating Ada language specifications, 1is
described in Chapter 4. This model draws on some of the
concepts of the tools described in Chapter 3 and adds ideas
such as "direct manipulation"™ and "spatial management"”

(Schneiderman, 1983).

Chapter 5 presents a prototype of the interface model. The
prototype is written in Turbo Pascal using the Turbo Graphix
Toolbox. This implementation is a limited demonstration of
the ideas in the developed model. The program allows
drawing and deleting of objects and directed arcs and naming
and specifying procedures and their inputs and outputs for
each object. It automatically modifies the underlying data
structure corresponding to graphic actions. The program

will create Ada language specifications from the graphic

specification, and allows saving a display file on disk

which can be retrieved and further edited. st

Chapter 6 1is wused to evaluate the model and the
implementation. It also presents recommendations for o
extensions to the model and further work in the area of S

. . ¥y O
graphic interfaces. '

1.1 Requirements Specifications E'

One of the many steps in software engineering between

- " "
K
¥ 9

b)
‘oY

27,

PR e e S h e tp eyt h ettt ettty a .-
T XN f.'.-_..-.,-")_.., POO L% ..a_. SRR I A P _\.—,'.- (-J' \-‘ N

P TS

CIREY

PGP LN Ny '-{ P et

problem recognition and problem solution is describing the
problem. As software systems became more complex, more
formal steps were defined between recognition and solution.
In the "traditional" life-cycle, the steps include
requirements analysis and definition, specification, design,
programming, verification and testing, performance,
operation and maintenance, and configuration management
(Myers, 1978). Requirements specifications consisted of
hand-drawn data flow diagrams, hierarchy diagrams, control
structure diagrams, or data structure diagrams (or any
combination of these) . Added to these were text
specifications, wusually functional in nature, and data
dictionaries to precisely describe the structure and usage

of data.

More recently a life-cycle model <called the functional
life-cycle has been offered, with four phases: define,
analyze, resource allocate, and execute (Hamilton, 1983).
Again, a combination of graphic and textual components are
used to define the system to be developed. The major
difference with this model has to do with the steps between
requirements specification ("define") and an executable

software system.

With the Department of Defense-sponsored development of the

Ada programming language, some concept of specifications has

entered directly into a high 1level 1language (DOD, 1983)

Py

'..l
Aty

2
P
[

XX
Ay

.
.

Y

AP

. .
I
)
)

I R
}"‘V‘-',. A

R AL R . R T R R, WA AT L L, oy oy, TS L) Pradh adh L P VA e Y SR AR . o 2 gk B S o gy P Ny

(Booch, 1983). Functional components in the Ada language

consist of two separate parts, a specification part and a ?ké
body. The specification part describes the interface to the ‘i%?
component but none of the implementation details. This }“;
follows the basic idea accomplished in other specification ;1_
methods, describing the "what" rather than the "how" of g?
system components. The implementation or the "how" of the %w
components can be developed at a later time. Therefore, the i;?
’ entire software system can be described using these ;}i
specification parts and these specifications handed out to ti:

many different implementors to be coded.

1.2 Levels of Specification b

The purpose of a requirements specification is to describe
as accurately as possible the elements of the problem to be
solved. These elements include the information to be
processed, the functions which are to be accomplished, and

the operating constraints under which the processing is to

take place. Most often the requirements are stated at

different levels of refinement. Each successive level is a

refinement or decomposition of the components of the

previous level. -
.*
One example of such refinement is seen in Yourdon's analysis .q;
ol
)

of a data flow diagram for a system. The diagram is divided ?;
a7y g

into the afferent, transform, and efferent components

L. Came e e e v, e mtat o e N Wt et 8% P et e Ve taT et e e am e
SIS T I TS T RO I SR W S L ; I S O I I R T R R A A TIL R
A A e e S o tiatietodinkieh ok y il ke :

(Pressman, 1982). This is the first level of refinement and
is more readily understood as input, process, and output.
These three components are then each refined into their
logical components, and this process 1is repeated until a

component 1is a single-function, coherent, easily understood

unit.

1.3 Graphic Interfaces

Requirements specifications gained importance as software
systems became larger and more complex. 1Initially they
existed as flowcharts, data flow diagrams, or other
individually-styled picture representations of the software
system. These were drawn by hand, and required text
specifications to correspond to them. Since these pictures
were non-standard, much confusion arose when someone
different than their creator was required to code the
system. Text specifications were helpful, but often
incomplete or ambiguous. This resulted in software systems
that did what the specifications required but not what was

really wanted.

In efforts to more formally and accurately describe system
requirements, new methodologies and formal languages have
been developed. These require designers to learn the
language syntax and then try to express the system in that

language. Since "a picture is worth a thousand words" and

D N R

“q‘. J‘ '&E'lo'\'--'..-

A RN
+ I
SS9 B

4

L)
S

-
b4

"‘.1.

Ty

e, T,
-5 R NENEN

> . ; - v
-»wh4!q.g§ AV

b 2N G PR
RS

¢

A

. v "",—‘ 4
ﬁq.’

g .

NS
00,
AP

a8 .

4
o

LN
.-":\'1
L

Lo A e e e

e s s W # &2

Pl e Y S g

A

,

S A Bat gt Tal Sp¥ Wet

. .--q‘- -~

»
L

-~

-
‘-

v g bt Ve ba Na A" e oS et Ba $a° 3 " 12t ba” Ak PR e ati ot el atR a's g2 b Yo g¥p ot8 b

PR -
. BUSEAEAS
S NS S

managers don't have time for a thousand words, various
styles of printed graphic representations are generated from

the specification.

As interactive graphics hardware and software have improved,
tools to wuse these <capabilities are being developed. At
least one automated tool allows interactive, graphically

developed system specification.

Requirements specification has moved from manual graphic
representations with details textually specified, to
computer analyzable formal specification languages with
graphic diagrams produced after the formal specification, to
interactive graphic specification with a corresponding text

specification.

1.4 The Problem with Tools

Commonly used specification methods begin with diagrams and
then add the details. Typically, the first diagram pictures
the entire software system as a few major components, often
the interfaces to the external environment. This diagram is
decomposed into its components, and each resulting diagram
is similarly decomposed until the components become
cohesive, single-process untis. During or after the
decomposition, the details about inputs, outputs, and other
information required for the specification are added. The

various earlier automated tools either did not allow

o~ PO . T e Tt e IR C AT
. "'._-.._\\1 (SRS ALY e e

10

(F]
A4 &
designers to work from a graphic representation to detailed

t
specification, or did not allow easy transition from one o

form to the other.

=
H Of the five automated tools presented in Chapter 3, SREM, "
: A%
3 i
! TAGS, AND PSL/PSA provide a graphic representation of the ; A
! software specification once the text specification has been :
entered. Since designers often like to pictorially define .—*
2
, the problem to be solved before adding details, these tools E:~
don't help in this area. Many designers are likely to draw -ﬁﬁ
4 .v?'
by hand the initial breakdown of the problem and then e
gg,
specify it 1in the requirements statement language of the E{E
! -I‘
tool they are using. %}?
=
2
HOS now provides interactive, graphic decomposition of the &:f
> g
system specification through its USE.IT tools (Hamilton, oy
‘.ﬁ ¥
!
1983; Martin, 1985). The recent addition of these tools Tl
moves HOS into the arena of "direct manipulation" and N
ll .
addresses many of the issues of graphic user interfaces. ~§'
¥ -.
) ?
Gambit implements many of the graphic interface features 'f?
recommended in the model presented in Chapter 4. %:é
), “‘-_\.
Unfortunately, this is a database design tool and 1is not ﬁtﬁ
i
useful in non-database applications. -
¥
l:'n‘
R
R
Ay
o
)
'-P_:.'
RIS
. "r B '(- (f’:.- o~y ,-.-'.' -'_-I." LAY $- ﬁv -..'- .':‘ﬁ-- . ..l .'-(-..-'._'.'V\ ~ $f~d‘. , \’-\"-.'q.‘.\f\':n":-.'.\'. -: — _ .';'\..:‘l'.: '.: '.:".;-' y \

L i A ML

)

s VLIS AU A RN i Ao i el et) M e R L e’ TR E I TR TN, g b

11
1.5 A Model for a Graphic Tool

The desire to “"physically"” manipulate a software system
model (graph) and at the same time correspondingly
manipulate the text specification of the system has
motivated the design of a Graphic Tool for Generating Ada
Lanqguage Specifications (GTGALS). GTGALS allows the user to
create or modify a graphic representation of a software
system (see figure 1.6.1) and 1its corresponding text

specification. (see figure 1.6.2)

Haifl i

-._._‘_‘_‘____h_._________1

guteut
[_PACKAGE

a

INpuv
PACKASE

PROCESS

" PACKAGE |

Figure 1.6.1 - GTGALS Access-graph

........ P R SRS .« L,y
y.'. m. b fa3 .® e g 0 ot - ‘-f Fa

- -

.2

- _-\ .

.f?'@vf

~ A Al
» . ¥ X
LV Yo Xty

A

-
-o%

2T Ty

A NPT A

e

v S PN

DA R ¥ 1615

12

~—-—This is the controller
with process,
1I'Iput.
output}
procedure main(in_msg 3 in msg_packety

out_msg : out msy_packet);

--This package handles all data modification
package process is
--This procedure breaks the incoming message
-=packet into its componants
procadure split_msgl(in_meg : in msg_pacikety
out_char : out character;
out_int 1 out integer;
out_string & out string;
out_float 1 out float);
-=returns the base ten ascii egquivalent
-=of the character it is applied to
function ascii(any : in character)

return integerg
end process)

-=-This packages interfaces to the "outside world"
package input is

=-=for reading entire mensage packets

procedure read_msg(got_msg : out meg_packet)
end input;s

-=This handles output intefacing to environment
package output is

-=Writes the message to the standard output file

procadure write_msgl(in_msg 3 in wsg_packet)
and outputs

Figure 1.6.2 - Ada language specification of 1.6.1
Direct creation and manipulation of a graph and its related
data structure is a primary feature of GTGALS. Drawing and
deleting objects, specifying their procedures, inputs and
outputs, designating relations between objects using

directed arrows, viewing and modifying component

T N T N N R RN N O L TR Ny Agar s s e el e v

13 ey

‘ specifications from the graph, and receiving both a graphic
. and text representation of the software system specification
are the key functions of GTGALS. The GTGALS model is

presented in detail in Chapter 4, with a prototype

o
A,

AT M
Ml

implementation presented in Chapter 5.

=

-

»
24

- o
s -
s,

A

. v

;1|50

-
g

ARSI)
Ty
2

7

o

e

\ ~f. ‘."'~'. I'..Q..v"~v\ (RTSLE *1 -, ..-'_ \:'- - -';_5"-.

<«

"' ‘. X)' .

AN JOIp '.‘*‘o' ' ¥ \;.\ Yoy »

14

CHAPTER 2. SPECIFICATIONS

Specifying software systems is a current topic of software
engineering courses, publications, and textbooks. This
chapter summarizes answers to many questions about software
specifications. These questions include : what should be
specified?; what characterizes good specifications?; what
areas are used for comparing specification techniques?; what
formal bases are used in specifications?; and how are

specifications expressed?

The majority of this information comes from a survey by
Roman (1985). The subject is also covered in textbooks such
as Pressman (1982) and chapter two of Gilbert (1983), and a

paper by Balzer (1979).

2.1 Types of requirements specifications:
2.1.1 Functional

Functional requirements describe what the software system is
supposed to do based on the interaction between the system
and its environment. The model of description has been
called a conceptual model. These requirements are an

abstraction of the problem to be solved.

o« A"

\,\ "

o N .\ ‘\:.\ » :..:-._1

. e e e e e e St
e A N T T T RSN

..
E YorAY
NN,

T 7
L.

s

MO AR
U

. v
'o'_".

-
L 4
’

v -
A
Ny by

ot

v ve
" e

By "c',.I.
.

YIDONAA) h
Lo O

» . '
Sort Sy

.

fﬂ" (]

15

2.1.2 Non-functional

Non-functional requirements describe under what constraints
the software system is required to operate. Some of these
constraints include interface constraints, performance
constraints, operating constraints, life-cycle
constraints, economic constraints, and political

constraints.

2.2 Characteristics of specifications

Several characteristics of specifications have been
identified in the attempt to define what comprises a good
specification. One such collection of these characteristics

is summarized here. (Roman, 1985)

Adaptability - can it represent many classes of
problems
Analyzability - how well can the specification be

analyzed for the characteristics described here

Appropriateness - how accurately can the model

represent the problem domain

Completeness - are all relevant aspects of the problem

domain covered

PRI

- -' ‘. -‘. \)"
L S

Lt

e e S

dha

»
o
B A

ey
L]

L
D)
0
. s

[
A
»

4

A BAN LT $ Ty R it bRy

16

Conceptual Cleanliness - how readily understandable is

the resulting specification

Consistency - are none of its parts contradictory

Constructability - what (if any) systematic approach

for developing the specification is provided

Easy modifiability - how can it be changed, and with

what results

Economy of expression - what are its storage

requirements

Executability - can the specification be machine

processed for simulation of design

Formality - to what extent is machine processing

possible

Lack of ambiguity - can the specification be

interpreted in only one way

Precision - can it be determined that the design meets

the specification

Testability - can the design be verified as meeting the

specification

Tolerance to temporary incompleteness - can the

technique handle incompleteness in the specification

B A S

-y

vy

o N
Wi

=3
"

W ¥
-
o
s

e

o

¥,

o)

|7

-—"-..
."- -" »*
I)

v
<

51"

17

Traceability - can the requirements specification be

cross-referenced with the design specification

2.3 Areas for analysis

Along with characteristics of specifications, certain areas
have been used as a basis for analyzing and comparing

different specification methodologies.

2.3.1 Formal model

The formal model is the conceptual model on which the

laand
.

. T
\n"f' sy ol ') "y

specification methodology is based. A description of many

T A M

of these models follows in 2.4.

—
€
it

2.3.2 Scope

Scope describes the type of requirements the methodology
attempts to express. This could be functional only, non-
functional only, or a combination of functional and non-

functional requirements.
2.3.3 Level of formality

The level of formality of a methodology determines the
machine processability of the information. The more formal
and well defined the language of specification, the greater
the opportunities for automated analysis of the

specification.

e e m ey e e e he e Ny n A h Cimani -
A R O RS L% S S A SR R Gt (RS TR ARG G|, R N AR AN - e

A

O W T f i & MR S A K 2 By A & e B e B AR A A A s 0 Bl €50 e R S M WoNe Smn D p S ot b b p B g s e e

18

2.3.4 Degree of specialization

The degree of specialization describes the size of the

problem domain that can be expressed in the methodology.
2.3.5 Specialization area

The specialization area defines the type of requirements
that the methodology can express. This could include
database models, sequential process models, or concurrent

process models. From a different view, this could also

describe whether the methodology can be used for
hardware, software, organizations, or some combination
thereof.

2.3.6 Development method

This area includes both how the information is collected and

managed, as well as under what basic life-cycle model it

fits.

Traditional - state requirements completely
before proceeding with design

Rapid-prototyping - build incrementally, simulate, and
redesign "on the fly"

Mixed - combination of stating requirements and

prototyping

2 SAESRS OB G S ADE ¥, S a5

M
B vl 4

.
W)

J‘z:,o"'d' 1

":9-‘7

--_--,
SAARNL FEoOwd
v S T A N

Y,
-
’

\:L 3

w

T W

A O R TR PRI . L I R TR R T NGB M phct e el et et oot [T TN e &

19

Human-interface - how the information is made accessible

to the tool and the user.

2.4 Formal Models of Specifications

Formal models of specification are models by which various
individuals have described software systems. (These models
have been used to describe much more than just software
systems. However, the emphasis of this paper is on software
applications of the models.) Either sufficient study and
formalization, sufficient publication, or sufficient
application of a model establishes it as a "formal" model.
Each model attempts to describe a problem in such a way as
to make it easy to visualize the components and structure of
the problem. The formal models discussed below are various
perspectives on how to describe a software system and 1its

environment.

2.4.1. Access-graph model

An access dgraph shows the various components within a
software system and their "access rights". Each component
will have directed arcs connected to those system components
which it 1is allowed to use. This model eésily relates the

concept of composition, building a software system by giving

- qy- St AT AT AE ’l)*.'.ﬁ'.\:\'t\..;- ..'

W "\

b ‘.‘
g
.
\\
&
20 i
3
o
new control modules access to already constructed library iﬁ:
modules. In the Ada programming language, this model would ﬁ&
] 3 :
L
: graphically describe the with clauses of the components. 1In nﬁﬁ
) Q:;’l»h
: C-Pascal, access graphs describe the access parameters of f{
—F
l processes, classes, and monitors (Hansen, 1977). Figure N
! l*4 &
] . . o3
| 2.4.1 shows a simple access-graph diagram. p%ﬁ
! v
l "}.
:_ :tt.'
f TERMINAL BuFFER PRINTER o
;

b

:
-
I TERMINAL PRoCESS PRINTER PROCESS

Figure 2.4.1 - An Access-graph

2.4.2. Communicating concurrent processes

This model describes a system as a collection of components

which run concurrently. Each component 1is seen as an
J independent object and is described by its interaction with

the environment and the processing done based on the

interaction. Interaction occurs through communication
"ports" as data input from the environment and data output

to the environment.

TSR TR I
"y
- -

PIAC AR PRI ARt XL P P T R A S v gty o -."-.' .";-"_
Colleet .‘.i.‘-.'..",f;f.z','n(AP SUNUSERAI TR DA T LA R S WO RS T)

N N ~ bt ha’ ¥a Wx* 5 g roWgF §al Mgt b CYEeC T ERTEr
oY . =] 0« T Dot Wt vaT BN : K] " & B Yt 8gt & 8.1 fh [N 2 . » [PWRT », [FREME SN] (] 03

21 :

Y

luitl 3

, 2.4.3. Data flow

£

e i -0

Data flow diagrams, or similarly requirements diagrams, &ﬁ
describe a system as a collection of processes X
{transformations;} and their connections (data). A top level
¥, diagram shows the entire system as one process, and its
interaction with the environment as arcs representing data
. flow in and out of the system. Each level is decomposed ;:
. until a process represents a logical functional unit. Each
process and arc is labeled, and further detailed in detailed
specifications, data dictionaries, and other documentation. &%

Figure 2.4.2 provides an example of a simple data flow 3

, —
diagram. . *
]
"

CUST

$ 5 'y

1/
]

Code file

N,
»

CusT

te 1y '-,:'

v

14

Acet Info

s

e Ty %
LN .l
f .

Db ail)

Account file

-,

4

v
OMR
P B
v et

Figure 2.4.2 - A Data flow diagram

L/

i'{"k [;

-_’.':;{"

A
v %o “u > BN
L

i 7

°y

- -
) .
'Eiﬁﬁb

e
)

—

\{fffu

E T T I S R R W SR T A N I G RN
FOCGRG CONURGELEEA N OO (U (R P DR O SN S Soates . .

.. . . - . e e e e
B CACRA RPN ¢ S LGRS ~.-.* ORI CR P S

v aw

T T T Y N W

g PN RN “ind Sl et V.3 LM - . IR LR T o & . ? LI WU P LRy I R D IR T X PR LGRS LI Tog] o T 4

at

"

22

1J

Y

3%

2.4.4 Entity relationship model e
e

The entity-relationship model describes a system by its data :“
n.';’ d

entities and the relationships between those entities 4
.)

(Ullman, 1982). Rather than 1looking at processes and)
sequences of processing, the E=-R model is data oriented. _:¥
-7
Since it is a model for database applications, it is assumed 23:
that all necessary processing can be accomplished if the fi
data is properly related. Therefore, an E-R diagram will ?;
show nothing of the processes accomplished. However, it is ﬁi
a useful model for conceptualizing a database design. Q?
Figure 2.4.3 shows a sample E-R diagram. 7
23

Figure 2.4.3 - An E-R diagram

2.4.5. Finite-state machines ;';

A finite-state machine expresses a software system as a
finite number of states and a set of transition functions.

In general, the machine will begin in some known state. A

™ ‘* ') Y .* “w ..(.- -« -* "_ -‘.‘v‘.--'. *, -.-,.-1,‘. -._\.‘.‘-’. T ..-‘..;{‘:,‘;‘..‘:I':,_-._-'..;...;N.;_'J-_'.;\.'.'-.... ,_(%:\' \-..‘f‘_ :'.\-" v, -r_‘: ..(..-:._‘f.\,-

o an 2 ab S S SR

23

change in states (a transition) is caused by some input,
and can produce some output. The new state is determined
by the old state and the input. Finite~-state
machines are readily represented graphically. Figure 2.4.4

shows a sample finite-state machine.

No card

Car d Qﬂc\i 4

Account

Trye3 Tey®3
Tavalid Tauvatid
Account Accows

Figure 2.4.4 - A finite-state machine

2.4.6. Functional composition

In functional composition, a system 1is a composition of
hierarchically subordinate functions. Graphically a tree
structure, each parent is a function which is a composition
of its children (also functions). Procedurally, each parent
uses its <children to accomplish its task. This is
recursive, so that all of the functionality of the system is

accomplished at the leaf nodes of the tree.

e .
B R R R R

3

)

. ,\- ',-'.-':'

a‘.
L]

.
Wt tels

t
Jo b

A v, v
0y,
L.
"

m

PR
" :
'v")"-
aa!

L

e

D'
LA

v

Y

l{, A

)
]

R b o 2R D4
v Y

__.,
X

.
<

.
A

. -
(N Yy oA
R s TS e,
Py At

", ¥ [SRR A

s
; ‘E’Z'
MY -

4

"tl.':l. o ,:l

.
. .
a_wle o

LA
S

5

X 1

T .,t,-’,'."
s 1 5
‘.A{L"'."

Y

| &
Ay
007

2

o1,
i
e-te s 2

“
LA

24

2.4.7. Petri nets

A Petri net describes a software system as a collection of
places and transitions (Peterson, 1981). Petri net graphs
include directed arcs connecting the places and transitions,
indicating inputs and outputs of the places and transitions.
The sequence of processing from inputs to outputs is defined
by the "enabling" and "firing" of transitions within the
net. A transition fires when it has available to it all of
its inputs. This model is similar to a finite-state machine
model, describing a system's current state and a next-state

function to describe the results of inputs into the system.

Figure 2.4.5 is a sample Petri net graph.

Figure 2.4.5 - A Petri net graph

- - . P s . P . >
A S L e S A T S T e e N T T

SRR, .\
b
o RS E

A

>
LA
Ay ¥y
».

.

o

25

2.4.8 Stimulus response paths

This model is almost indistinguishable from the finite state
machine model. 1In fact, Roman (1985) attributes its success
to SREM, whereas Alford (1985) writes that "The model of
software requirements on which SREM is based is that of a

highly structured finite state machine."

Many different methods have been used to express the various
formal models for human and/or computer consumption. These
methods, or languages, have included requirements diagrams,
requirements statement languages, requirements specification

documents, and many other methodology-specific languages.

2.5 Specification Languages

Though the term language causes one to think of letters,
words, and sentences, the language of specification includes
drawings as suggested by the formal model of the
specification methodology. Requirements diagrams, data flow
diagrams, state-machine diagrams, and so on exist for each
model and more. Probably the earliest, albeit low-~level,
specification language was the flowchart. In general,
designers like graphic representations of problems and their

solutions.

Prior to computer generated graphics, and even with the

availability of such graphics, diagrams have been created by

R ~ [- P LI C . Lot it I AL e + M . A X, &, 3 i) NS -
Y e A AT LY e e s em Tep Y gy DTSR, A S A S U I DT TR eke i e 4 < Y %, 3l N v 3oy N » EY . g & i, P . t

26 i

X hand. As computer graphics capabilities have increased
significantly both 1in hardware and software, the use of —

2
computer generated diagrams has slowly moved into the area §

e A

of software engineering and analysis (Grafton, 1985; Jacob, %

1985; Brown, 1985; Schneiderman, 1983).

e e 8 BN

cTevs b & 44

Y
i

i

-
-

-
X

}.

-,

(15
f. G

A

.
¢
*

ey
'o."'...'. ".t y

v i' bs.

S
L

>
Lrer.C T
s ‘oo 0
PN

% %

o

A

.:.".
A

'
L]
.'L-I.. LA e S LR

'I '-'_'l

»
. £
. .

e

- > " " K PR * . - . S P il T S ™Y -~ “n "> 3
N ¢ N AN M RO A A A A A TR S PR RFAE MR

«

-
-‘ ." Y

ST Py ;_~.}\ IR IS Y -.‘_\‘_\f '\:_\

27
)

CHAPTER 3. AUTOMATED TOOLS FOR SPECIFICATION

' Many methodologies have been developed to help formalize,
f visualize, analyze, and process software specifications.

Five sample systems are detailed in this chapter.

Four methods designed specifically for describing software
systems are examined for their features, focusing primarily
on their formal models, user interfaces, and outputs. These
are HOS, PSL/PSA, SREM, and TAGS. A fifth tool, Gambit, is
used for data base design. It is examined especially for its
graphic interface features. These systems are presented

here in alphabetic order.

T twt st e &

3.1 Gambit - (Braegger, 1985)

Though Gambit is not specifically a requirements

specification tool, it provides many features which are

P

significant for this paper. Among these features are graphic

model design of entities and relationships; interactive

PRl S i B¥ A

entry of data attributes; logical, automatic manipulation of
data from actions taken to the graphic model; and access to

data from the graphs.

The purpose of Gambit is to aid in the design of a database

schema. This process requires analysis of the enterprise's

LA

data, discovering the requirements of the database (both

functional and non-functional), and organizing the

L

information into a logical structure.

¥l "e a .

.y - g g

b

Y - - c a et - L - =y . “...
Nk 1 T A T I T g e e b e e T PN e e A N
N . B 2 - 4 d " 3 ¥ ~

£ DRy > I N - I LR SRR WL L P X T R S RSP GAN L AT PR LN LIRS L)
o a PRI N . oo p

28

3.1.1 Formal model - extended entity relationship model

A database model is largely concerned with the data to be
manipulated and the relationships between data groups (or
entities). The functional aspect of the system is more a
peripheral issue and the data organization and accessibility
is expected to support any reasonable application program.
The entity-relationship model groups data items as
attributes of entities, and then describes the relationships

between the entities.
3.1.2 User Interface

The user interface for Gambit has many useful features.
Designed for use on a single-user Lilith personal computer,
it offers graphic design of entity block diagrams, mouse

movement of a marker for object selection and placement,

windowing for data retrieval, a "dialogue" section on the -
screen for interactive entry of necessary information for 5

the design, and menu selection of different steps in the

A
design process. s
- .‘-.

O

. . . L

Entity block diagrams consist of rectangles to represent ,bﬂ
entities, 1lines to represent relationships, and text labels =
ke

to indicate names, associative cardinalities, and other fat

descriptive information. (see figure 3.1.1) el

.\.,\’

:n'..n'

o

" \..

ALY

*ava

N

e
s
e b

P
Y
»

-\'.:'(.:;:.2-‘.;\".' ALS) 'rs' FOR R S L R O AL E L O LU S LY '."r"'.'w."\"\"'n' KRR ".‘\:'Q' "-:\-."-. Lo 0y,

Figure 3.1.1 - An Entity Block Diagram
(Braegger, 1985 - IEEE TOSE)

After menu-selecting the operation to define an entity set,
the system provides the designer with a triangular marker.

Moving the mouse to position the marker, the designer types

Y
"-;- 7

»

: L :A.,:

in the name of the entity set at its desired location.

L s

Gambit then draws the rectangle around the name and
initiates a uniqueness check on the name. The designer then
steps through a dialogue, providing information about the
entity set as requested (data entry may be temporarily
bypassed) . Menu-selecting the operation to define a
relationship starts a dialogue to describe the entities
involved, and other information. Gambit then does the

appropriate line drawing and labeling. (see figure 3.1.2)

At any point in the design process, the designer "may see a
global entity block diagram with all entity sets and
relationships defined, or the verbal specification of one

entity set with all details,..." In defining global

.
e *s
“ s

P A

,.,....
)

P! . S

_ 1 2

':'f"

R '-({.r_;.-,'e\'.\‘.-_:.-,;.-_;.'.;.-,;.- P PRy '.;.:\.,.. K, N ‘_.:-\f . .‘. -

7

s
A,
iy

P P W RPLAT TR LY N PRI N R TR TR PR SRV TRT Vi O DT ISP 3) & g ar B ks e W R B Gk o RS e e SN g N VD

34
L)
‘:é
#
30 T
|, D) universey 0BCC_ s 5
1.4 : =
[I —]a.m-L"‘" J “"'::
S;gi‘
L] o
99 Olalon <<< N
1 Ruelshonehps: Ostine 3
2 Inchcase 1he fwst eniny aol Pk
. 3 IchCate an edge PONt or Ihe S6CONT enilty set y "‘
' . :uannuﬁhu-omnm e
. § Select numbaer of proieestr that are aLsocialed \
: 10 ane chwre b ¢
; 8 Typelowerbound> 1¢ Yy
¥ Type upper bound > 4< b
f 7 Thus relationship Cannot D8 repressntnd girectly kS,
8 Define on inlermaduete antey set . .
9 InCices lower ¥t COMer of ihe enbly St DOX L2
" Type name of the enity set . A
.*‘:
e
- ‘~:,'$
. C o~
Figure 3.1.2 - Defining relationships with Gambit 55_

(Braegger, 1985 - IEEE TOSE)

a2l

attributes, the designer points at an entity set. Gambit

L,

then provides a window for the description of the entity

AR

ﬁl" .

set. It automatically retrieves identification attributes

‘." eﬁﬁ

» from other entities related to the chosen set, and 3
\
} interactively allows attribute renaming or maintaining the &\#
same name for local use in the entity set being specified. f”
y &Y
:-
Fe
3.1.3 - Output ¢
id
Once a design session has been completed, Gambit generates ﬁﬁ
o N
9 an entity block diagram and the Modula/R database module bf
4 (B)
- containing the details concerning the entity sets. Further e
R interaction allows defining of data constraints, bf
- v
.I
‘ transactions, some transaction pre-assertions, and ;**
Ll .n‘ (]
a \
i
3 S
. e,
oA
4
S
; L9l
p k

N
. e en e m et aL st eT - S P SRRV R T RN e vy M At AV a e .y PR ALY
19555 LRGN A ARE A B G R R A N AL AR WA AT POy T Y sy e

T T T T T T T R RN N L T RO
LRI) CACREARN TRV IR 5 & N
;&4‘ ML IR S e 5 Vo VS IS BANERERAN TR L R

31

transaction propagation. This information is used to build
database access modules through which interactive users and

application programs must access the database.

3.1.4 - Observations

Key concepts of graphic interfacing to design tools are
applied in Gambit. The ability to start with a graphic
model and add details later is a major step in the natural
design direction. Use of a mouse to touch entities for data
retrieval, to position a marker for graphic object
placement, and for menu selection is a very "user-friendly"
feature. Easy movement from graphic representation to
textual description and back is another desirable feature of

Gambit.

The limitation of Gambit to design of Modula/R databases 1is
an unfortunate one. Databases are not the answer to all
software requirements, and the availability of a software
design tool such as Gambit would be an aid to other software
design. Also, the limited documentation provided by Gambit

may not be considered sufficient for a system specification.

3.2 HOS - Higher Order Software - (Hamilton, 1976)

Higher Order Software is a methodology based on mathematical
functions. A set of tools called USE.IT has been developed

to automate much of the HOS methodology (Hamilton, 1983;

-

v AhS
'c,:n'.- ,‘-

e,

vy

:'\-Is.

L

W 33 AAh 72, 3L CRSURRERLRAC AN -Cj

x4
s
Martin, 1985). These tools operate with the HOS design %;
"laws" enforced so that the resulting design obeys HOS 1:5
: methodology axioms. %
&
3.2.1 Formal model - functional decomposition

‘7—:—

A ST] T

HOS is based on a hierarchical decomposition of functions,

‘
et s)

o

in particular mathematical functions. One function

a&.

T
T

represents the entire software system, with input as the

7kJ.

domain of the function and output as the range of the h:ﬁ

‘ function. This function is decomposed into subfunctions. i}‘
This decomposition 1is iterated until each 1leaf of the ;53

functional tree provides "one and only one element of the ,"?

output set for a particular element of the input set."” g.i

: (Hamilton, 1977) 3&;
il

3.2.2 User Interface

5 nls,

AR
s

'ty

The HOS methodology is supported by USE.IT, a set of tools

|

oyt 4

s} MY
Y XA

developed to support the functional model of the software

A AN

life-cycle. The first phase of that 1life-cycle model is

™

definition, roughly equivalent to specification in the

—
traditional life-cycle. :Eﬁ
The tool most significant for this paper is the graphic igg
editor and its use of the specification 1language AXES ;%f
(Martin, 1985). The graphic editor operates on three Eﬁi
different images. The "display tree" mode provides an %F\‘
W
2
oo

K

T Mt st ava® AN,
A ASAEAE AR AR Y ‘..\‘.

33

overview of an HOS tree. From this mode, one can move to a
detailed representation of a selected node in the "edit"
mode. At this point the user can edit any of up to six
nodes centered on the selected node. Moving off-screen
results in a new screen with the node moved to as the center
of the diagram. The user can also move to a "display
documentation” mode which shows details and allows editing

of a textual description of the selected node.

The graphic images are annotated with the 1language AXES,
which details control structure and data for each node.
Data named on the left of a node is output data, that on the
right 1is input data. Abbreviated control structures are
displayed at the bottom of each node. An un-connected
vertical 1line going out of the bottom of a node indicates

that more of the HOS tree exists beneath that node.

The user interface is currently under improvement to include
mouse control, windows, pop-up menus, and other similar

"user friendly" features.
3.2.3 Output

The HOS methodology develops sufficiently formal output that
automatic generation of program code is possible. This is a
result of the strict design laws enforced by the methodology
and decomposition to the levels of detail necessary for code

generation.

"

an g
1]

LN

TN
.

4
3

A N
LR Y ,
4‘._v'*"*‘:,‘-,. B 1

-

[}

v

- A SRL LN
P

‘(". . l.r

g

. Py Jn i
Vx

‘r e
- "
b)

.-
",
o
’
]

fé?f

g 4D
8,

DARTR L \...n _':..‘.-, ,‘.v - $q._ \«.st_‘ . .. FUCEIR

3.2.4 Observations

The addition of the USE.IT tools to the HOS methodology may
increase its popularity. No 1longer restricted to manual
drawing of HOS trees of mathematical functions, the USE.IT
tools are rapidly moving 1in the direction of a natural,
relatively easily used method for rapidly specifying

software systems.

3.3 PSL/PSA (Teichroew, 1977)

PSL/PSA combines a Problem Statement Language (PSL} with a
Problem Statement Analyzer (PSA) to develop and analyze
systems specifications. 1Its purpose is to record in machine
readable form the data collected or developed during the
entire software life-cycle. These activities are grouped
into data collection, analysis, logical design, evaluation,
and improvements. PSL is the language used to describe a
proposed system, and may be used in batch or interactive

environments.
3.3.1 Formal model - "a general system" model

The general system model is very similar to the entity-
relationship model, and 1is specialized for information
system processing applications. It contains objects
(entities and processes), properties (attributes), and

relationships between objects.

........

ot . e .-
WA N T AT
;

.

S < .,
AR DT LI I
PRSI) - v =y prw e e

-. PO Y ‘l-‘ -I . ‘- '- . "5 '\U
e I LA A

vy vrwv. oy w
OO0
l',l' l. I' 'y R

“»
oK

- -

m‘_"Y K

% o |00 1%

B
i‘:_“r

e

o
]
>

.....,
IXEEAA | IS
- i

v %

NN

35

3.3.2 User Interface

The Problem Statement Language is the form into which
specifications are developed. The designer translates the
data collected through personal contact, interviews, forms
analysis, and other standard methods of collection into the
Problem Statement Language. This can be done either

interactively or with batch processing in text format only.

3.3.3 Output

The Problem Statement Analyzer produces four basic
classifications of reports. Database modification reports
record changes made 1in the database and any resulting
diagnostics or warnings. Reference reports provide various
ways of formatting the database information into human-
consumable products. Summary reports provide similar
information only in summary form. Analysis reports do 1/0
comparisons, process interactions, and a hypergraphic

process flow chart.

3.3.4 Observations

Though any automation is a great improvement over manual Efﬁ
specification, more could be done with PSL/PSA. 1Its major ;i
benefits are providing automated means of maintaining tgf
documentation throughout the software life-cycle. This is 53;
done by recognizing that most documents are simply different ;3;
5
o
=

LI -‘* v‘. '.-..»)--‘.’-.' ‘-)"-". -‘.'.‘_'\.'..‘... . . ‘.';(_:.';I‘:I." e '.; AR -..."'.\"'-(..‘.'\..\.-\r\': o

LR R T S LA T S

%

36

ways of expressing all the available information or
different levels of abstracting summaries of the available

information. That graphic representation of the information

is useful is reinforced by the presence of a tool to provide

such a representation, even if it 1is a rather crude

printer-character graphics method. Unfortunately, this

LS oo r
B |

comes at the end of the specification process, showing what

A

has been accomplished. It is likely that many, if not most,

users of PSL/PSA manually produce an E-R diagram, or some

N L.

3.

L
[

similar diagram, of the system to aid them in developing the

-

o

-

PSL representation of the system.

2.}

3.4 SREM (Software Requirements Engineering Methodology)

(Alford, 1985)

SREM was sponsored by the Ballistic Missile Defense Advanced
Technology Center in 1973 to formalize and automate
development of software requirements specifications. It

consists of a Requirements Statement Language (RSL), the

L

N4
J

Requirements Engineering Validation System (REVS) (a set of

¢

tools to manipulate RSL and analyze the resulting system),

5
'y

X,
[

4

ale,
’

and the SREM methodology.

..
vy
¢ 4
Yoty

vt
-
Ay ¥y

i

3.4.1 Formal model - finite state machine

X
P ;.

,

.
.,

The developers of SREM felt that the hierarchy of functions

'-"-

J.'F X '{-f

TeTe 00
ML
Y ,":'.a'-

4

i

e [
PRF N AR RIRE S T MR LA -~ Y R . F R L A
¢)t e ‘- PO ALY Ca e - RCAy v LAY e " o e

. Ao Ty RS, . a N

oo e far imdta® A b’ G B e Rt md e e A, RUTT . " CRPOCT TR TR XN

i
Tl

,.:
s Y
- ®

3,8
D K

=
-

AN

37

model of specifications was a primary cause of inadequate

R
VERILZEL. .
i

requirements specifications. They chose to use a finite

""
0
g By e

state machine model to base SREM on. "The state-machine

. model 1is wused to define processing requirements by ig
specifying a set of inputs and outputs, a set of states, and %é
: a function that maps inputs plus current state onto outputs ii
E plus updated state." To overcome some of the limitations of g?
: a finite state machine, particularly the size of the diagram o
“: of large systems, SREM structures its inputs, outputs, t;
state, and processing. E;
! Inputs and outputs are structured as message packets which ;zg
i contain the data that passes between subsystems. States are :E:
i defined by sets of information about objects in the system. ?%
‘ The processing 1is described by Requirements networks (R- 5;
é nets). An R-net "specifies the transformation of a single {%ﬁ
) input message plus current state into some number of output h*
*)
messages plus an updated state.” -;r
; 3.4.2 User Interface i?i
: >
i The requirements specification is developed in RSL, SREM's !%
- Requirements Statement Language. It consists of elements E%
y (nouns), attributes (adjectives), relationships (verbs), and EEJ
structures (processing graphs). All of these items are ::;
: maintained within a database. ;Z:
: 3
: The specification is described by 1its elements, each of hy
&
: =
f it
e e T T e A e T T T R T N e P T T o e T e S T oo

s e s e s A

«va # e LK

a o 8 2 2 &

T TTTTTTm™m TR T T T T e

38

which have attributes (such as name). The elements are
connected by different types of relationships. The
processing sequences are expressed through its R-net and

subnet structures.

This information is currently entered using simple text-
editing methods. The graphic portions (R-nets and subnets)
have language counter-parts, (see figure 3.4.1) which are
then translated into graphic representations by one of the

tools in the REVS.

, 2 R

. .I..O.""
“AND" REJOM

e e TR W .,

: J-l:u.-., i ;'. J— e
Figure 3.4.1 - An R-net graph
(Alford, 1985 - IEEE Computer)

+

b

A
3

Ty
Kl

v '{0,'
Vo .

e 4

s

L,

by RS il

39
3.4.3 Output
Among the outputs of REVS (the SREM support tools) are:

The automated database from the RSL

Consistency and completeness reports

Query type output of the data

Functional or analytical simulator of required processing

Graphical descriptions of the R-nets and subnets

3.4.4 Observations

SREM provides a method for formally describing requirements
specifications. 1Its formality allows many diagnostics to be
computer generated, and allows for concise expression of the
requirements. Also, it maintains information in a database,

allowing relatively easy retrieval.

As one of the older software engineering tools, SREM depends
heavily on text-editing input. This input 1is then
translated into graphic representations once complete.
Although an interactive forms-entry capability is under
development, the system still progresses from textual
details to graphic descriptions. Going from a graphic,
conceptual model of a system to later filling in the details

seems a more natural method of development.

e v A ot

AP i M)

-,

Pl S

o 8 s A & o W

-

o m AR Ateoa T
o ANCN

3.5 TAGS (Technology for the

Systems) (Sievert, 1985)

Automated

bt S A A B

Software specification is just part of TAGS,

software development methodology that covers
software life-cycle. The specification phase is accomplished
through use of its Input/Output Requirements
(IORL), which consists of graphs and data tables.

graphics workstation, the designer

supplied requirements in IORL.

use to aid the designer.

Four tools are available for

The Storage and Retrieval tool is used for data

placing the design into disk files and accessing the data as

expresses

Generation of

a complete

the

the

management,

required. A Diagnostic Analyzer checks for static

such as syntax errors, range

inconsistencies, and some 200 other types of
past the Diagnostic Analyzer, the Simulation Compiler finds
any dynamic errors. When successfully

designer can interactively describe a system state on which

the compiled system prototype

detected along any step of

can

the process can be corrected

using the Storage and Retrieval

continued. Finally, a configuration manager helps keep the

various releases, test versions,

outputs under control.

and

-" .J'- -¢ 'I’ y.. -._ ‘.-‘ l“. “",.1':-':!"’J‘\QI';..l'.\{.’.'\;' ..:.\:._. P

errors,

execute.

tool, and the

associated diagnostic

input/output

errors.

compiled,

Any

Language

Using a

process

40

entire

user-

errors

Once

the

errors

41
3.5.1 Formal model - communicating concurrent processes

The formal model on which this system 1is designed 1is

communicating c¢oncurrent processes., This model allows the

= NI el

specification to naturally handle systems that require
A concurrent processing as well as sequential processing. The
: "end product of the design effort manifests the basic
E components of a system or a group of parts that interact
through data links, a controlling mechanism that directs
‘ how information passes among the parts of the system, and an

. identified hierarchy within the system."
3.5.2 User interface

The specifications are represented through the use of IORL,
the Input/Qutput Requirements language. This language
combines graphic diagrams to show the systems structure
and tables to detail the data. Graphic workstations are
used to develop the elements of the language, which are

described below.

DIAGRAMS - each diagram has the system name, date, 1id,

section, and page

SBD - the Schematic Block Diagram 1is the highest
level diagram. It shows the major components of
the software system, with the first 1level SBD

usually diagraming the system with its

-------- e e A e S T e L T e e e e T T e e e e . e R AL MR Y
S e e el e e e e e, e e e e e e e e e e e e e e, .~.".-"‘¢_‘.- R SRR N R R A T A A A N A S o

-

42

environment. If necessary, the top level SBD
can be decomposed into lower level SBD's. The
primary function of the SBD is to give a
conceptual view of the system, and is useful for
seeing a quick synopsis of the design. It
describes the major structures of the system and
its major data flow.

- see figure 3.5.1

2
COMPONENT €

1)
Lamumnmmn

1

SYS:SAMPLE DATE: 18JANUARY 1984 ID:COMPONENTA SEC:SBD PAGETCL

Figure 3.5.1 - A Schematic Block Diagram
(Sievert, 1985 - IEEE Computer)

IORTD - each component of an SBD has an associated
Input/Output relationships and timing diagram to

show control flow within that SBD component.

- see figure 3.5.2

e R R S

P R S R
N e L e At

T - W W - T e TR e T T R

Figure 3.5.2 - An IORTD

(Sievert, 1985 - IEEE Computer)

Predefined Process

43

detailed

Diagrams

flow of

predefined process

referenced in an IORTD or another PPD

- see figure 3.5.3

- Data Structure Diagrams were not described

the article.

. ‘.*.{'-"\"'-r.‘-'.\‘-'h

?{~jf

N PRLAN 024 3 /N QL LE 26 QRG RS &Y

in

Py
(3]

- 4
TR

o
.‘
s
f

A
7o

OORRAODL
YN

o i

YO A S SRR

S v - ry
B A pCLS ~ 1aNg . ol e £ Lo e - ~ Iz P [
» BN, TN 2 L s . ~ e T a st ot s - ran
- I ; ;- . . vy ! s

‘g"'-.

<[¥?

44

LT

SYS:SAMME DATE 18JANUARY 1984 10:SAMPLE SEC:PPO-10 PAGE1CL L
’

Figure 3.5.3 - A Predefined Process Diagram L
(Sievert, 1985 -~ IEEE Computer) o

TABLES oY

IPT-0 - Internal parameter table 0 defines the data {nt]

that is global to the entire system. 4]

'--
i
[

10PT - an Input/Output table defines interface

-
A

variable parameters. Variables in this table are

)

)
)

RS
e

defined for both components involved in the

i
§_ 8
£

-,

interface.

4

"ﬁ

- see figure 3.5.4

e

. "
’.".‘,‘- A
PRs

XY
.

L
e s

s H
XX AA
S RARID -

TR e T e T8 T e T T N W,
-
L3 g

o, NS o
1t

T POl P P L WRP TS e me - G N R IR L I TSR -
S ol S T A A N Rl N X,

SONINE LN L PR

45

L St e o
ES

PARAMETER DESCRIPTION (DIM)
<DATAGROUP>
SCAURR-
SCAER
7| <oaracrow>

SCALER

VALUE RANGE 1 UNITS/VALUE MEANING : .

{0....,60) | 'secomos :

2. | : B
12} JAN - DEC (3]
1 %Q

Q©....@} | cours 9

DATE: 10-JAN-84 1D: SAMPLE SEC:0PT-3

PAGE4 CL

Figure 3.5.4 - An 1/0 Parameter Table
(Sievert, 1985 - IEEE Computer)

IPT-n - an internal parameter table of level n (n>0) ‘“2

defines data that is global to component n. ?g

IPT - an internal parameter table. Data defined for
an individual PPD. W

- see figure 3.5.5 I

: PARAMETER OESCRIPTION (OIM) | NAME] VALUE RANGE [UNITS/ vALUE MEANING T

. | sama, - - . SDATA{ {ALPHA} - | {1.20) X
C MATRIX - - 1OATA | R . 16 -
SjuwoeicAL 0 - |SDATA] {TRUE, ON ¥
. S : FALSE} OFF "

SYS: SAMPLE ~ ~ DATE: 18JAN-84 ID: SAMPLE SEC:iPT-2 PAGE3J CL

-

4

L4
.

i
I

3
9,

v v

s Bt G 4

: Figure 3.5.5 - An Internal Parameter Table
(Sievert, 1985 - IEEE Computer)

) I3

.
.o
R
-l"
VN

-
A2,

PPT - Pre-defined process parameter table, "Defines

v

S Y YT SR O S G AT A N o T St A S o S CA SN R

‘- - o o* .I » " » = e T
AR RS LSl SRR

TN R

46

parameters that are local to one PPD." May
include references to variables in other

sections used by the PPD.

3.5.3 Output

The Diagnostic Analyzer emits Ada templates to be used
in simulating the software system. The Simulation Compiler
creates Ada source code that links the templates into an Ada
simulation package. This package is then executed on data
and constraints interactively supplied during the process of
the Simulation Compiler. The desire 1is to allow the
designer to test the performance of different algorithms and

system configurations.
3.5.4 Observations

The graphic and tabular language of IORL is a step forward
from hand-drawn requirements diagrams and pages of data
dictionaries. As a recently available tool (commercially
available in 1979), TAGS 1is displaying the 1increasing
usefulness of graphic interfaces to software engineering
tools. The designer is able to build a graphic model of the
software system at a graphics workstation, have the
information saved on disk, and modify or add to it as
necessary during the development of the system. The
traditional data dictionary is represented by data tables,

with data entered into tabular form from the terminal.

Tl TN e T T T A S o

SART RSN
-

e
N

LR
> n

i

® 0 apl el gt ¥ el s el ek S8 oV <ak et cal ab xi -

')
.‘
K]
hgl
47 Ny
: b
E. :"‘:"
, Also, the methodology greatly aids the early detection of g&
B AE
A errors and design performance weaknesses. The Diagnostic :%
0 kN,
* Analyzer and Simulation Compiler are able to detect static g.
” and dynamic errors early in the design. Additionally, the {%
ability of TAGS to create executable prototypes is f?
!
) J 1
W significant. This allows fine-tuning to be accomplished Qf
[’:.
] early in the development stage, helping to reduce }
.
modification costs later. s
. R
. el
¢ No indication is given of any natural link from the various :;
43
®.
diagrams to their associated data tables. It would be Y
. useful to be able to easily move from one representation to "M
. LPE
the other. When developing a large system made of hundreds éi,
. pARK
Y of components, it would be helpful to be able to move f
e
; through the various levels of the Schematic Block Diagrams N
- (%0
. >,
. and, when information is needed about a certain component, tﬁ
) s
. to simply bring it up on the screen right then. Once the f;
designer learns what is needed, moving back to the SBD il
" screen should be equally simple. ﬁf
, ;
. m
, 3.6 Summary e
- Sy
4 From Gambit we see an example of "direct manipulation" and s
development from graphic representations to detailing text Eff
‘I'.
) specifications. Gambit also moves easily from graphic $Q:
]
g specification, to data entry and review, and back to '%x
; o
, graphics. In HOS's USE.IT tools we see the use of different '5;
. SN
- _-.:. d
:: ';
" e
=
_ A
",‘.'- O I Ay A i I S T AT RN LS RF NS PR U PR TR T PR RIS P \.‘;'.

1'*"' \n’

1g” £3t 80" o' Kot ts

A
Al

o™ af Rat i Ha? A Rat S’ fet $a® ¥, 5 G s JV5 a0 ote at 3 I T8 S mtE oD oty g'h pta w'i '

. - . e e
AR G (R
X , . h

48

modes such as the display-tree mode, the graphic edit mode,
and the documentation mode. Again, easy movement between
modes is provided. SREM, HOS, and PSL/PSA show the ability
to analyze specifications for inconsistencies, and PSL/PSA
gives an example of pre-graphic-workstation hypergraphic
output. SREM adds some handling of non-functional
requirements, though not graphically. TAGS adds the
dimension of generating Ada language templates. Each of
these features has a part in a good automated graphic

specification tool.

. e TR et T

e v av et el
oy \ *f ._&‘p.’

Y

RSN

49

CHAPTER 4.

GRAPHIC TOOLS FOR GENERATING SOFTWARE SPECIFICATIONS

This chapter discusses general desirable characteristics of
tools for software specifications. 1t focuses on the formal
models, user interfaces, and resulting output of such tools.
Because the desire has been to develop specifications for
Ada language software systems, the discussion of the user
interface covers general graphic oriented issues and then
Ada language oriented issues. Types of output from such a
tool are examined for their use either by themselves or as

input to other tools.

This chapter presents concepts developed from integration of
information from the literature cited in the previous three
chapters and insights acquired through development of the

prototype detailed in chapter five.

4.1 A Formal Model

Choosing a specific formal model for specifying systems is
mostly a matter of personal taste. Each model deals with
the same basic information. Functional descriptions take
the form of mathematical formulas, state transitions, text
descriptions, processes, or others. Graphically these may
be Dboxes, rectangles, circles, tree-nodes, ovals, or some

other geometric shape. Data takes the form of entities,

LN 4
L el
-®

SANESOARASANA

»

(_N
P
£
- E

I"l / “"'l

P

AR
AR

o

)

Iy
»

‘unsnﬁ\
XX
~ 'l" L4

23

=y

PR AN A

v .

, :. POt SN :;‘.:. e .h.-'_‘.:_..'..'-'.‘f NN .'{\'.-_;f .".-_;.-';.-.:." . :..--:.-. :_\._\ .;

50

BNF-1like descriptions, text descriptions, high-level-
language user-defined types, or data dictionary entries.
Graphically data may be bubbles, rectangles, labeled arcs,
or simply text names beside processes. Control information
takes the form of text cross-referencing, "uses" clauses, or
procedural calling hierarchies. Graphically control is

normally shown through some connections between components.

Two graphic representation methods are well known for use
with Ada language software systems (Booch, 1983; Buhr,
1984) . Though they take a little work to understand, they
are gquite rich in information. Both methods combine control
flow and data flow, as well as more detailed interface

information. However, they go much closer to design

specification as opposed to requirements specification than
is desired for this paper. However, a good example of a
graphic software development tool based on the design of

Buhr (1984) can be found in Buhr (1985).

An access-graph model represents very well the concept of
building software systems from existing components.
Specifically with the Ada language in mind, although other

languages offer similar concepts, building systems from a

program library of general purpose generic and non-generic

ke

. . . I

packages is one way of rapidly developing a software system. e
The access-graph model pictures such development 1in a f:f

N

. b
R =[5

conceptually clean way.

“ \'.'.‘.<‘.

1 S AR A0L 55 YA SR K, N LT AL LG O

- . P P R e o oy W g R B L T T - -
v ok jef wr) WA WO WL WU L R R Y v Y ok el v ol e s TR o LN 8. g —r

: e,

7

51 o

:$

. Top-down, step-wise refinement is a method found to some ;g

extent in almost any problem solving technique. The ;;%

; functional decomposition of HOS (Hamilton, 1976), the 'kg

' refinement of Schematic Block Diagrams in TAGS (Sievert, %;E

1985), and the hierarchical decomposition of SADT (Ross, _L&

‘: 1985) all show use of some version of step-wise refinement. :§3
Therefore, such a development methodology seems to be :E

. popular and useful. i:
% .*_.-
f Though top-down development and composition appear to be &;

E contradictory development methods, this is not necessarily é;’

the case. As a designer refines a system he/she may ;T§

é discover that the next step in the refinement requires g&

: previously designed components. Simply naming the 1library Sﬁ,

/ package and giving a component access to it completes that _ff
. refinement step. 232
E E:

4.2 User Interface

. oL
: ok
: Two main issues face the wuser interface described here. ?{
. ‘.-‘-_‘.
. These are the graphic issues such as methods of drawing, =

moving, deleting, viewing details, or otherwise manipulating
. the graphic representation, and the issues dealing with the

specification 1language of choice, the Ada language ol

specification.

2 ',.' .""‘ o)
LA
[AAAAN

£y
A

"

.

T
v -

. . R
[.

DT I T R

.- e T L TS T T T T U ST IR A TN SR T I,
C e tar ., NI S T P LT N Y T N I R .-.'-. . Ea S AN ",

3O S RSN R R e N N N N e e e L
A ;{t.':A{._{L.!.‘.'.A.{A.%AL{L‘:L&AKA_":A_':A& AP e ¢

LR P I M O L TS IS L IA R 29 giti o d g " Pht L o S et gt e B e, Rl gy pp o g

52

4.2.1 Graphic Issues

Interactive, graphic development of a system specification
is the theme of this paper. The main areas of interest are
how to draw objects, how to connect objects, how to move
objects, how to delete objects, and how to enter, view, and

edit the specification details.

Interactive drawing of diagrams can be accomplished using
many methods. One method requires the user to place a marker

(cursor) at the location of the desired object, and then

enter a one-key or one-word command for drawing the object.
This works fairly well when there are a 1limited number of
commands to remember. Two methods make use of a menu of
graphic objects. One has the user move a marker to the
desired object on the menu. Pressing a key highlights or
otherwise indicates which object has been selected. The
user then moves the marker to a chosen position on the
screen and again presses a key. The selected object is
drawn at the marker location. The second method is similar,
except that when an object is selected from the menu, a copy
of it replaces the marker and moves just like the marker
would until a "release" command is given in the form of a
command or a mouse button. (This is known as "dragging" the
object.) The latter of these methods would appear to

provide the better visual feeling desiredE of a graphic

interface. A third method requires the wuser ¢to actually

e 4 e, T T T R L P S L Sy W S T T TSN C T)
{ '.-$ > ot .':-. "‘ A S _...'_‘.. FRESEATS .u:.. '.u.. .q-‘f._. .-, RREAE AR R .

DADA 5 s G R O I T A vy

VYLD St A hNach L i 60

\'..-".'

e

L

" L%\ 2, LM R LMLIN LS N 3 4, hg 4 g * L) Vo Ry PP e P Bt “ m v, e . 1

53

draw an object physically using a mouse, "pen and pad", or
touch sensitive screen. Though this 1is great for drawing
pictures, it would detract from the formality of predesigned
objects with predefined meanings. Probably the least
desirable method is having a command line which provides the
name of the object and the X,y coordinates of the desired

location for the object.

For the application involved, each symbol has a specific
meaning. Therefore, selecting a symbol from a menu,
dragging it to the desired 1location, and releasing it
appears to be the most useful method. This does not require
knowledge of any commands, but only the buttons on the mouse

or the keys needed to move, pick up, and set down.

Connecting the objects on the screen also offers a variety
of options. In the Gambit tool (Braegger, 1985), a dialogue
is used to name the objects involved in a relationship.
Once the information has been provided, the tool decides
what kind of connection should be used, where to draw it,
and then draws it. The command-line option is available for
any graphic action. In this case the user could enter
something like "connect from object_name to to_object_name".
Another method is to enter a command indicating the first,
intermediate, and end points for an arrow. The line could
be drawn all at once after the end point is indicated, or

section by section as each intermediate point is indicated.

MEAITR 4 .._‘{. *;."". -

., e, - . - . - . EIRL TR N a e " A A T - * - . Y - DR . --"l
P e T e B I S e I YA A A R St SR

T s
LR A

S

A

R
N
Rl 2

-
- -
-

-
o
B
-

rv

.

Vel }’-‘ o

! ~ v r
1 VeSO

‘;‘d'

-,

~

-%’

.’
A

5

.
 *r "' 'I' "‘ '

)

VA

.kl.".

3o e e
L

o

.

v

*y

L

:3:5“.?
e
3
54 2
P:E
Drawing arrows could reasonably be done using a mouse or a '}é
drawing pad, which would allow for greater flexibility in :;;
object placement and provide neater diagrams. g&
e
Side issues on line~drawing include using or not using 2
"rubber-band" 1lines, lines which follow the cursor wherever é:g
it's moved, and allowing different line styles to provide ﬁ%
different meanings. Rubber-band lines are user-friendly in gﬁﬁ
u that as the line is being drawn, the user doesn't have to Tﬁ
(RN
guess if it is going to inappropriately cross other objects. 5?,
Different line styles are wuseful for providing greater 1~i
semantic meaning to the graph. ;:f
e
Once several objects have been placed on the screen, the ;ffi
need for rearrangeient may become evident. Simply erasing L%g
and redrawing objects is possible, but brings up problems of §§;
whether or not all the text specification details would have Et{
to be re-entered. A more elegant method is to select an ’Tﬁl
object and "drag" it to its new position. Similar but not g&;
gquite as visual is to select an object, move a cursor to the %F‘
desired position, and command the move. The object is then ;g;
erased from its current position and redrawn at the cursor ;hi
location. Other types of moves are possible. If the chosen §:§
model is tree-like, the user might desire to move an entire X
sub-tree, connecting it to a different 1leaf or even é;g
inserting it between two nodes. All of these moves may have §&E
great effects on the underlying data structure which must be Q{;
taken into account. 5?;
X
. e e A

D o DL B & e o R N Do e o e o e g g 2 R T e S

22

i

55 s

! it

f

: g

b '

d r'f’*

.

y Deleting objects is relatively simple, but again the effects 'g@

! -,

p 3,

) on the specification must be consistent with the action. :%?

b !‘{‘_
Issues such as the status of a sub-tree of a deleted node

‘ arise with such actions. It would be useful to be able to
get to such a disconnected subtree through some means other

than the non-existent node. In this area especially, but in

" X ~'ﬁ
o o P,

other areas also, the ability to undo an action becomes very]
, oS
: important. S$‘
: %)
1 }J
1]

Viewing comes in two different areas. These are viewing the
3 graphic representation and viewing the specification
details. For viewing the graphic representation, one method

would break the graph into several diagrams hierarchically

«J**m ')

el

such as in SADT (Ross, 1985). The user could move from %;
diagram to diagram through the logical contacts between the %é
diagrams. A more powerful method would define the IQ:
specification as a single graph through which the user could tf;
scan. The tool would provide a moving window on the entire E;
e

graph to show a selected part of the graph. Added to this fi?
would be the ability to change the scale of the information, igf
so that the entire graph could be viewed on the screen. Of ;i;
) course, the components of a large graph would be very small ;,:
when viewed all at once. .f:l
o

Finally, the need to enter, view, and edit the detailed Eé;
?ﬁ;

A
.
U

M A O R e S A S S RS A G .
L)

"-.':.- -, 'i’%"v‘"""“‘*’v"('r .'—'.'-,1. o7 X

i gy Bt T X W W W R W e WaNa e W WL o Mo LWL T T—TTTTT

A
56 A
z F
X ég;
information required such as inputs, outputs, functional ; Dy
i specifications, non-functional specifications, and interface 'E
. . e . . o
information must be satisfied. It is possible to allow all :z
.01
K)
of this in one setting, much 1like the now-familiar full §§
screen editors. However, this method could allow making ,Lﬁ
AN
" changes that could disrupt the graph-text consistency. §;
1) 1.
; Another solution is to have separate modes for each action. ?%
When an object is first drawn, an initial window would
Y
. appear allowing the interactive entry of the data needed by r:;
- P'\
P r_
. the chosen specification model. At any later point in time, fﬁ
.)
the data could be viewed or edited. Data could be displayed —
: in the viewing mode either in "raw" form such as VAR =
. var_name, or 1in some other syntax such as a high-level-
y language template. Editing of data could be done in the =
=
same way, but would best be done in raw form so the user Q)
N : . : . g
knows precisely what variable 1is being changed. An ﬁi
)
> important concept 1is to ensure either that the user cannot 2
[)
: textually modify data that affects the graph, or that any :;\
¥ Y
‘ modifications to such data automatically modifies the graph Sp
. ":- \
also. el
i
3 Y
2 o
3 4.2.2 Ada Language Issues e
, %
} U
At least three issues confront the individual or tool that "
g o
:j would specify system requirements using the Ada language. :f;
>
First is whether or not the use of only the Ada language 2
o
(5
_id
- "
; P
e
~ S
r i\ ¥ N X y-:j;-,’ ,?.'xq-_‘(_..:".-_'.-..;_'.__.:\.:\.-__.:_-.-_..-_-,-...:\ .'-'C'h ‘:‘..-...-“.: ...-_..: Rty -.':-."\‘.\"\‘.-." ,'* \ '.- \.\.: N Th \‘-‘

T T V€,

Pl Ny

RN
it

P

Fe® . 3.7 8 v v 2 |

)
2etea®a %

. 4
-

L

B N SR I N

sk .y : b T a2 e P i i P e B A gl i (s AR D S A A S Smle bR P e [F RPN U8 Ul XY

57

specification 1is sufficient to describe a software system.
Second is the ability to handle all the possible variations
of a specification declaration, which is not a small task.
Third is the development of non-procedural packages - i.e.

packages of user-defined data types.

The unfortunate answer to the first issue 1is no, an Ada
language specification 1is not sufficient in itself to
describe a system. This is born out by the work of Wolf
{1985) and Rudmik (1982). The Ada language specification
describes the interface of the specified component, but
neither the functional or the non-functional requirements
for the implementation are described in Ada language syntax.
This makes it necessary to either revert to a text
description in comment form, or add to the language as in
Wolf (1985). An ideal response would be to add a menu-
selectable choice of specification languages to be used in a
design session for functional and non-functional
requirements statements. The appropriate sequence of
specification data collection c¢ould then take place in the
same window as the Ada language data collection. The non-
Ada information would be maintained in the same manner as
Ada information. This would add the flexibility of wusing
the data collected for further analysis by tools which use

the specified data.

The complexity of the Ada language adds another dimension of

G e e A e
S T Ul S A N A N

PR LR NOS e
* v . - -

B T S ST TP,
A A ALY \'\"-.’\'

\}\J\

= ‘)\'-.:.-‘.- MR n

>,

PR,
PR L 5

-+
=

MESZSS7

Ay e
"’:‘If 7
WP ok

v
TS
eI

L2

>

/7
%)

22
ot

g O

..
Pt s
o,

v

e

L4
.

x,

5 L5
] .1',1’{_

;ﬁ;f

r
»

-,

e

Pt gt gt ol Ko o

58

difficult issues. Nesting of packages, procedures, tasks,
and functions to theoretically unlimited depth creates many
headaches for designing a graphic representation and
handling the data collection for every possible cption. The
most realistic, though somehow displeasing, response is to
make certain "stylistic" limitations on the design of Ada
language systems. The most effective of these limitations
is eliminating the nesting of packages (Clark, 1980).
Personal preferences of applying or not applying "use"
clauses is another, 1less complex issue. Should a tool
assume that all accessed packages be included in a use-
clause, that none should, or that some combination should be
allowed? A useful solution 1is to define for each user a
"user profile", which would allow personal preferences to be
maintained. When activating the tool, it would
automatically set certain decision parameters based on the
user's profile, or use defaults for those parameters
unspecified. Interactively setting or resetting of these
parameters should be available during the session as the

situation requires.

An important use of Ada packages is development of a common

pool of user-defined types. A specification tool needs to

be able to develop such packages. Once developed, the user
ought to be able to bring up a window concurrently with the
specification entry window so that he or she can be reminded

of what types have already been defined.

AL AT NI A ENOAE AR

AT
Y

B
e

X -
(R A5

a A UL A

it

59

4.3 Output

The purpose of the design 1is to provide a graphic tool
whereby a user can graphically decompose a problem,
specifying details about the procedures, inputs, outputs,
and accesses in such a way as to allow generation of Ada
language specifications. As has been pointed out, this is
insufficient to completely describe the intent of or
requirements for the underlying implementations. Even if
the designer makes excellent use of data naming, package
naming, and procedure naming, added comments are required to

describe the function of the designed system.

Many output possibilities exist including code generation,
output produced for wuse as input to other specification
analysis tools, or creation of program templates for various
high-level 1languages. This depends on how much information
is acquired and in what format during the actual

specification process.

As current program-generation technology increases, the
output possibilities of automated tools have already been
improving. The HOS methodology, along with its support tool
family called USE.IT, already does some automatic code

generation directly from its specifications (Hamilton,

e B e N e L N N T T T A T T T T

» ¥ oS e

FRIY
ey

vl

"
-

-

+

L] ‘A¢ ,‘ s
A A

L
N

l"

G Yo Rl el de® Byi N Vb teT. pRaidy gty k7 Bg 3 L) P 40 bk RN TN N YEC I 1 » ¥, LRI AR ol X . 1

K]
60 Y o]

poss

N!‘.’

¥ 1983). Many formal specification languages and accompanying AN
*

——

graphic documentations are created, as in the TAGS ’5%

methodology (Sievert, 1985). Using the proposed graphic i

X
PRSI

, interface as a front-end to these or other methodologies

would add the capability of beginning with a graphic ,Tf

specification instead of waiting for one to be generated %ﬁ

from the text specification. ?E§

: Not only could an implementation produce output suitable for Eb;
: other specification tools, it could be used to produce &Ef
various program templates. The original implementation t:%

: which instigated this research, although much less powerful EE:
. than that suggested here, created C-Pascal templates from aé
access-graphs of small programming assignments for an ii:

; Operating Systems graduate-level class. The current 12%
j implementation c¢reates Ada language specifications from an igé
' access-graph model of specifications. This could also be o
used to gather more information or re-arrange the available :E}

information to produce Ada language package body templates. %;7

: o
4.4 Summary ‘f?

*._‘:-)

3 The ideal tool would be something like the description that ;&
} follows. It should have interactive editing of a graphic o
; representation that closely corresponds to the application Eg:
: being specified (or the language to be used for coding). §$§
; For example, an access-graph might be used to represent an } f
: P
R

e

TR
' ‘s .
) Q)

s

s -~
e ey e e e N T - L T ST TR T e
"> >r S e T e T ‘~\- NI A o R A P NG A
hd R 5 E

'o -.‘.-\‘-.- ;-'»"-.‘:._.‘-'_-...--_)'.q-.\.\"."‘...'-.k". Y .“': \.,‘;"- v .J\“\.. -n

T Y
.

e

o
“l

61

F PO
s

Ada 1language specification. A menu of available symbols

pertinent to the model should be available from which the M
(3.2
. . e
user would select and drag symbols to their desired Vil
L
location. At that point a window should appear, allowing a S
I
query-response dialogue which provides gathering of the S
. .-.‘-)
detailed data required by the model in use. (The system N
should handle incompleteness in a satisfactory way when all o
details are not yet available.) The user should be able to .:
navigate through the graphic model in a way that is logical f?
o
’ to the model being used (down, up, and across trees; from "y
» diagram to diagram in refinement models, etc.). The user “ﬂ
3 should be able to retrieve to a window the detailed R
. n_\.‘
) information related to the symbol that the marker is at, 1
edit or view the information as desired, and return to the n;
- o
. graph at the point it was left. All modifications that take :iﬁ
» '%q
.k
X place in either graphic editing or text editing should cause Y
A the corresponding modifications in the other. Finally, the A
X output created by the tool should be oriented toward the 52
f L
. application being developed. A display file should be ::j
i, 3%
created which would allow retrieval and further editing at a .g?
» ‘.'-
5 later time. If other tools exist in the current B¢
s, 1{- ,
; environment, this tool should create output of use to those }§
)
other tools. =
: P
X "
* ‘{
. Y
s 3
‘ "]
e
!
. X
; 3
. e
: R
= - 5,!
; e

- ot LI W I
RO LY AN TSEIRCAY

e T AT ~-.~h:.‘ \‘- .\-'.:.-..-.. P

P Y Py S S v R T O D S G G R R

CHAPTER 5. GTGALS - A PROTOTYPE

-l
., .

e

This chapter cdescribes the prototype implementation of a

ke
Er

Graphic Tool for Generating Ada Language Specifications.
The prototype is written in Turbo Pascal using an
abbreviated version (see appendix B) of the Turbo Graphix
Toolbox. The prototype was develoded and runs on a Zenith

Z-150 micro- computer. It has 4000 lines of source code

'ﬁ ‘s "

2

(approximately 16820 lines are Turbo Graphix Toolbox code),

)
>

~w »

N

compiling to 52K bytes of object code. At th2 current limit

i

of 20 graphic objects and 100 access arrows, it requires 57K

fof
7.7

y T
v
.

bytes of data space. Some dynamic allocaticn of memory heap

-
vt

Yk

space is done. Therefore a minimum of 320K bytes cf

4§£
[

internal memory is suggested to avoid some difficulties

-\.h

2

experienced with Turbo Pascal's heap space management. The

AR A
Ly °
&, A K,
’

output of the rrogram, if the user decides to requa2st it, is

M
L

a filename.gph file and & filename.ada file. The .gph file

W,
'd

L P}
i
)

is the display file (see appendix), and the .ada file is

1Y
o

D
_.a Oy %y

the Ada Langucge specification of the developed access-graph
(see figure 5.2.7 at the end c¢f this chapter). (The
filename is supplied interactively at the end c¢f the GTGALS

session.)

After briefly reviewing the choice of the access-graph model
for the formal model, the what's and how's of the actual

program are detailed. The program allows drawing and

.
SO e O S TR AT WA AN

o ata s A L & §

‘.';. ~.':

.
-

-

-~ . & 4 e w AL TR I N o Tl T Tl Tl Nl T T A}
A T G i S A L S Ay

. g caat et e P - .
0t Py foge Gt B 6y wer ki o) U v Bt b os g Pyt thir 8.0 S A4 d e At P én WRe nig W > gty v, -

63

deleting of objects and directed arcs and naming and
specifying procedures and their inputs and outputs for each
object. It automatically modifies the wunderlying data
structure corresponding to graphic actions. The program
will create Ada language specifications from the graphic
specification, and allows saving a display file on disk

which can be retrieved and further edited.

5.1 - Formal model

The access-graph model was used to better conceptualize the
building of software systems from existing programs such as
in an Ada program library (DOD, 1983). 1t has been modified
for graphic reasons; fitting a large system on one diagram
would cause reading problems. Top-down, step-wise
refinement 1is the recommended method of development using

this implementation. However, a bottom-up, compositional

method could be used.

5.2 - User Interface

The key concepts of GTGALS lie in 1its graphic interface.
Its purpose 1is to allow the designer(s) to graphically lay
out the software system, interactively providing as much or

as little detail as available initially.

..~.|.‘.“\¢"\.-.\
AR €t -
P TR NN

v
AR IR
W .

AR I R R A TS Y e AT
e

Fa i P N e R Ot S » w0 - e Nk g 2 -y

M

B

o

by

64 N

R

5.2.1 - Graphic Design and Specification :
2 .

The user first moves a cursor to the location on the screen cé;
&,vk

for drawing an object. Objects include packages, ﬁﬁ
» '.'

subprograms, deneric packages, and generic subprograms. m%
Hy

Pressing "p", "s", '"gp", or "gs" will, respectively, draw }4'
P

the symbols for these objects. At any time that another

window is not on the screen, pressing "h" will bring up a

A
) help window. This window contains the commands with a brief i;f
' description of what they do. (see figure 5.2.1) ;i
+ ‘ L. !:
H3 in2 1 o

: : wELF INFORRRTICN . . e e - .'.:‘
‘ ST e | LR
DRAR COMMANDS L . -
a - defines origin_and midpoints of access arrows o
e - defines end-point of access arrows &

p - draws package, s - draws subprogram_ ok

gp - draws generic package; gs - generic subprogram Lo

:z- :gg:g :atog obuecttss!ected b¥ cggsog pofxtxoa oy

- o parent diagram of o e

EDIT COMMANDS P ! gr ect selecte ;

e - enters component specification editing mode R

ga - Se{e%es agsesi arfoatosl inating at t e cursoer =

0 - deletes ohject selecte cursor positio ! .

DISPLAY COMMANDS . Y po n************* : v

h - "HELP" describes commands o * i b

v - displays selected object specification % \ ends pgn i 2y
i ..1:.:!!

e

— ‘ ! L
Press any key to return to access graph :gg

- Figure 5.2.1 - The GTALS Help Window R
. Vt‘-.
- Interactive prompt-response sequences then allow the bﬁ
3 AN
: designer to indicate for each component its name, procedure ﬁ>
—aiiils
A names, and the inputs and outputs for each procedure. The i}i
n‘:‘:“
’ user can provide comments for the entire component as well e
‘e
as for each interface procedure or function. As little or *g

:'..Q_:
:{:{;ii_f{;f?a;sja{a;sz‘f?;“::a:akrk:?:k»;r?:?v?-?e’;}a“a“:lu.: Sl e B R AR A I TN

65

as much of this information as desired can be provided.
After specifying several objects, access of object "B" by
object "A" is accomplished by drawing an arrow from object A
to object B. This is done by placing the cursor at the edge
of object "A" and pressing "a" (for arrow). The cursor is
then moved to the edge of object "B" and "e" (for end arrow)
is pressed. If necessary, intermediate points can be
established to draw around objects by pressing "a" at each
intermediate point. Pressing "e" draws the last section of
the arrow, plus the arrowhead. This automatically includes
object B as an access parameter for object A. In fact,
access parameters can only be identified in this manner.
Therefore the data accurately reflects the graph, and the

graph accurately pictures the data. (see figure 5.2.2)

Heih2 1

e = o e o = e e s e e

HAINZ
SUBPRDGRAN

|

1

INPUT outeUY

FACKASE PRCKAGE
—

PROCESS
TALRAGE

Figure 5.2.2 - GTGALS screen

>

.

—~v-r

-

o
»-

’_’i.; ~y

5y Ay
PRI

P
o
a

PRI
‘\"l %

«t
v

ke
v

. .
‘.’ .‘.ﬂ'
IA‘ %

F A

. -
sttt

’a'A'.'. e

e

AAKKAS
|
AP

oy
L)

R IR RE SNV L U i)} I RILCIAZLAS Y n8 RAMR SN2 ISR NRT

66
5.2.2 - Specification Viewing

Another feature is that there is direct access to a
component's specification from the graph. By moving the
cursor to a component and pressing "v" (for view), the
system creates a window and displays the data for that
component. The data is displayed in Ada language
specification syntax and is shown thirteen lines at a time.
Only forward movement through a specification 1is currently
supported. The designer can view the data and then return

to the access-graph. (see figure 5.2.3)

Haih2

o graxesr ...
'_—___—_————*—'—]
--This package handles all data modification
package process is)
--This procedure breaks the incoming message
--gacke into its components .
--The components are used by other processes
-procedure spllt_nsg(znﬂnsg ¢ in msg_packet;
out_char | out character;
out_int ! out integer; !
out_string : cut string;
returns the base tg#t_flggt ; qutlflgat);
-- ascii equivalen
--of the character sent to it h
function ascii(any : in character)
press esgape key for more data

Figure 5.2.3 - GTGALS View Mode

5.2.3 - Graphic Editing

Deleting graphic objects or Arrows results in an

appropriately modified graph and data structure. For

NI) ~ “» - LI L O I T S A A I .
o .~_ C 4-'1‘ - FAY 'f. Ca e e 'f-.w'\"-."\’._' . "y

T R R T S i I Y
e ‘\‘,.‘\ Ko .))-)ﬁl'(' LS e RRENS

i “.
; 2%
¥
‘ l“;‘»
: ey
i 67 N
o
Yacv',’t
! example, deleting a package will also delete all arrows 3
), going to that package. Consequently, any component that has i{
: A
: the deleted package in its access parameters will have the fﬁ:
package's name removed. Deleting 3just an arrow ("da") 5
.
removes access in the "from" object for the "to" object, but Eti
o
both objects remain in the structure and on the graph. The i3
~
command "do" when the cursor is within a selected object %
- o)
4 will result in a verification request for deleting the }%
- ..:-,
X object. A reply of "y" will result in the object being Ef
) _
E] . . s .
erased from the screen and its entire data structure re- ==
initialized. This means that any graphs decomposed from ?ﬁ
: L
- that object will no longer be accessible. R
'\ PR
y
5.2.4 - Specification Editing i
- W
- i\ \
- \
. Editing of component data is done on a simple basis. Each 3;:
X N
. item of data for an object is shown one at a time. The user ia
? can either modify the item by typing "m" and then the new fi
: o
item, move to the next item by typing "n", or exit the o
editor by typing "e". As well as changing a comment, Ei
R
. additional comments may be entered at the end of the current e
. o
. RS
. comment block. By typing "a" after the ? prompt at the end &o
N 20
: of a comment, the editor will allow the user to enter more % '
. comments. (see figure 5.2.4) e
5 3
o ;\%
: 5.2.5 - Development Method N
. :!;
’ Based on a decompositional approach to design, GTGALS allows o
-.\::
; a.

ISR S S AT ARARR,
D :'-t'_'.n})ﬂ').-,..i'_‘f-:.-; PRy W W

R i e T S N AL N B A h et e SR e ko 0o A i St B e SO (x Qe Ta St i e i e i vy W P by ok B 2 i S0 e ke
he SR Gty Sosy b, % b o s o] Blte vl a4 A As

AL TR TSR AT RN Y Y R E
3

-*
A‘

R

¥

[

68

- LONFONENT ESLI0R -

n to wodify an item. n to go to next item. e.to exit. '
Enter n,n, or e after each ? gmoupt.

Enter a after --"comment..." ? to ADD a comment.
Procedure or Function NAME @ split_msg ? n
--Thisg trgeedure breaks the incoming message ? n
--packet into its components ? a

--The companents are used by other processes

i (p)rocedure, (flunction : p ? n
' INPUT NAME : in_msg ? n

{ INPUT TYPE : msg_packet ? n

; INPUT NAME : ? n

} INPUT TYPE : 2 n

: INPUT NAME : ?

Figure 5.2.4 - GTGALS Specification Edit mode
multiple graphs. A typical example would be to divide a
system into INPUT, PROCESS, and OUTPUT components, all under
control of a main program. The next step would be to
decompose the INPUT component. In GTGALS, this is done by
"zooming in” on the INPUT component by moving the cursor to
the component and pressing "zi". This moves to a new
diagram. If INPUT has already been decomposed, the diagram
will reflect the current design. If not, the designer
chooses where to place the box representing INPUT. (see

figure 5.2.5)

The designer can then draw, specify (see figure 5.2.6), and
connect components as required. "Zooming out" by pressing
"zo" from a component will bring on screen the diagram on

which the component and its parent (the component from which

o, R L LR N T X & . Bty ‘890" Ma*ia ¥ plamelie by B o ke o St A 8 pud g G g B e sl S g A b s o ol gt ot gt 2 el R o grat-gtapia g

69

1Nput

1l~b

2t 4

~'
o’

INPUT
FACKA
PACKAGE PRCKAGE
‘..J'

3

o
(ol

Figure 5.2.5 - Decomposition of INPUT from MAIN2

g

A
0

-
e

-

input 2

Specification entry for component port_io

Enter up to 38 characters of comment after -- (op return).
--Thxs sackage handles all i/o ¢t oM2
ures are yet to be defined

Figure 5.2.6 - Specification Entry for an object v

it was decomposed) are both drawn.

Though the zoom in and zoom out commands are conceptually S

tied to functional decomposition, a bottom-up composition

op T AR e . R ., U . L. e e T e et e e e T _..‘
f’fﬁ\!..*.-} » %.1 "... i‘\tr H‘.* J‘. AN «* -". -';"'- «* '."q'.‘g..\‘l' o o..\-'... . o T N "."- ' L O NI N NN

70

could be accomplished by conceptually switching their roles.
For example, draw several objects on the bottom of the
screen and then one or more objects above them to represent
the composition of the lower components. Next, "zoom in" on
an upper level component. Place that component on the
bottom of the new diagram. Draw several "sibling"

components, and repeat the process of compose and zoom in.

5.3 Output

The implementation creates the Ada 1language specification
part of a component (see figure 5.2.7 on page 71). The file
would reside on disk as a filename.ada file, where filename
is supplied by the user during the GTGALS session. For each
component in the graph an Ada language specification part
will be created based on the data entered during that design
session. This will include the with-clause and the procedure

specifications. Currently the tool allows package and

generic package specification including their procedure

interfaces, and subprogram and generic subprogram
specification. Nesting of packages 1is not handled, and
tasks are not handled. Individual tasks could be easily
added to the implementation, but packages of tasks would be

somewhat more difficult.

web 1,8 Wt et S RO P S 8 b ey gk B et 8.0 Wb Y. R E TR TE R T TLE N PO RELATCOE FUR VU "l PULIIL TGRS TU O TSR L.

71

-=-This is the controller
with process,
input,
output;
procedure main2(in_msg : in msg_packet;
out_msg : out msg_packet);

--This package handles all data modification
package process is
--This procedure breaks the incoming message
--packet into its components
--The components are used by other processes
procedure split_msg(in_msg : in msg_packet;
out_char : out character;
out_int : out integer;
out_string : out string;
out_float : out float);
-=-returns the base ten ascii equivalent
-=-0f the character sent to it
function ascii(any : in character)
return integer;

.

*
[2 RPN A%

. P -.‘—“-."Q.. s
‘! "';',{'.-',5' o

)

% % %
.l -

-
4,
o

end process;

/.

-=-This packages interfaces to the "outside worlad"
with text_io;
package input is

-
- e
e

\ |
package DUMMY is new port_io; ' {.
-=-for reading entire message packets o\ :
procedure read_msg(got_msg : out msg_packet); &LQ
end input;
.-'::\'
--This handles ouput interface to environment :}ﬁﬁ
package output is j§3‘
--Writes the message to the standard output file A
procedure write_msg(in_msg : in msg_packet); St
end output; kot

--This is a predefined library program
package text_io is
end text_io;

--This package handles all i/o thru COM2

-=-Procedures are yet to be defined o
generic :ﬁ‘.
package port io is Ty
end port_io;~ ONS

Figure 5.2.7 - Ada Language specification of MAIN2 .‘f;

. - . e s . R T AR DO S N R G
e (N7 . ‘;-.\'.(AR P -.'_'."\' ~.-.\ et .-."-..‘ i 3 G R YOI EALSLY

FOSROAR CROR (LU, Ch Y

{'f-'

CHAPTER 6. CONCLUSIONS

6.1 Usefulness

What has been learned from this research and design effort
falls into the categories of the implementation, Ada

language specifications, and tool output.

6.1.1 Implementation

Implementing a major project in Turbo Pascal, while it
offers many advantages, suffers from two serious
disadvantages. The advantages come from the language Pascal
and the availability of the Turbo Graphix Toolbox. The
structured nature of Pascal allowed procedural additions and
incremental development of the project. The Turbo Graphix
Toolbox eliminated the need to develop graphics and
windowing procedures. The unfortunate disadvantages were
the limitations on code space and data space. Though there
are tools to circumvent these limitations, they were not
accessible at the time of project development. The results
of these limitations contributed to various decisions that
detract from the usefulness of the final prototype. These

decisions were the elimination of package nesting, the

.
A
.

l"

» .

absence of handling packages of tasks, not handling generic

Wl

2
ﬁl

type specification, the rather crude specification editor,

.
. .
- .

and the number of objects which can be specified.

“ v

e ‘0
2

s °y

P
.

PR
"0
.
B
RN AK)

i "'

L T2 T T S T D A S AR O

. . I

R R G R

6.1.2 Ada language specifications

As research progressed, it became clear that Ada language
specifications were never intended to be requirements
specifications. Rather they are descriptions of the
interfaces to their respective package bodies. (Their

acceptability even for this is disputed by Wolf (1985)).

Therefore, to adequately specify a software system, either

additions to the language or use of some other specification
language 1is necessary. This does not detract from the
usefulness of this study. An access graph is still a good
model for graphically describing Ada language software
systems, and a graphic tool is by far the most enjoyable
method for developing such a specification. However, to
adequately and accurately specify the requirements for a
software system in such a way as to promote correct results
requires more than just the Ada language specification.

Section 6.3 continues this issue.
6.1.3 Automatic Code Generation

The question is likely to arise, "Why bother with just
specifying Ada language units instead of proceeding to
automatic code generation?”. With most code generation
techniques now available, decomposition is required to a
very detailed level and this 1level must be functionally

primitive. It is the purpose of this paper to accomplish

~

-

2

.

. ; vt'.:i!v':' IR '._-:,

¥ v s
.

PR

-
.\\’— AT

-

' b b AL gy AT 2, NE KA Sl Wil R AL Wit W L Nl B T W AN RENE. . ! & o PR T T LN LI R NPT L, . S s

R A

y .]
3 74 v
i the first level of this decomposition - specifying the éﬁ
v

i separately compilable Ada language units. The main issue of %ﬁ
. . S

) this study has been the user interface to tools. What the .
I tools can do once they have the information is "beyond the ﬂﬁ
., b gt
. scope" of this paper. However, code generation systems ﬁﬁ
Qi

.)) ol
: probably require much more substantial computing power than Vi
‘ is currently available on a 320K personal computer with one :ﬁ
: . W
. disk drive, which is the system used for development and k#i
. running of the prototype. ‘i
o

‘0':

6.2 Appropriateness of design A

2

Does the formal model, user interface, and output of the =

&

L design adequately display the capabilities of such a graphic gni
33

tool as described in Chapter Four?

'y
Ay 4
oo
At

6.2.1 Formal Model

NS
X -~
3 The access-graph model appears to accurately describe the E;
. o,
oY
: interface specification for an Ada language system. Since LS
™
the Ada language rules permit access to the whole component e
A
which 1is accessed and not just particular entry points of :}-
\:‘
. that package (DOD, 1983), the model clearly indicates this. Ny
An access graph can easily support all of the interface . :
R &
. . e . . ot
syntax inherent in Ada language specifications, even if the oy
L) ‘I.$
implementation does not. The weakness would come in s
: graphically describing component bodies, since unfortunately ;“5
‘ %
R\
P
y h .__,
S
. ‘-..\
s SN

L uy e . v . LN Y ot - e e e LI . e "ot et et et et e
o T R o O (S i S N R S T R S S

75

they can gain access to packages not already accessed in the

specification.

6.2.2 User Interface

Much more could have been done in the implementation in

regards to the interface design, given time and a tool to

= S

circumvent the limitations described in 6.1.1. However,
even at its current level the prototype demonstrates the

usefulness and desirability of such a tool. The fact that

new tools are using such graphics, and older tools are
adding them (e.g. HOS and USE.IT), gives support to the

popularity of graphic interfaces.

6.2.3 Output

As already discussed, Ada 1language specifications are
inadequate for accurately describing a software system.
However, the output of the prototype does provide a
collection of interface descriptions which would be helpful
in designing the implementation of that system. If an
implementor could access the interface specification through
a workstation while developing the implementation, he or she
could determine the necessary parameters for interfacing
with the selected component. Additionally, the output from
this tool could be run through an Ada language compiler to

determine at least some amount of interface consistency.

D
'-....n.'l A P
PRI L st

CORRREAD (RN RGIG CERC AN

A IRl LR a e ~4 Y P) i 9 iy, G O oy e SN S o m R p T 2 W dak gt wp® dp¥ 2, IR b 03
s Bt ERSN AN b A TS AL WA Wag WA . = -

76
6.3 Recommended extensions and modifications

At least two major areas require further development.
Little mention has been made of the analyzability of the
data produced by the design tool. This area needs to be
examined. Though mentioned earlier, the idea of using this
tool as a front end to other tools should be further

studied.
6.3.1 Specification Analysis

The amount of analysis that can be done on a specification
is a function of the amount and formality of the data
produced by the tool (see 2.3). Since this design creates
Ada language syntax specifications, the amount of
analyzability is determined by the number of analysis tools
present in the environment which use those specifications as
input. At the very least, this would be the compiler.
Unfortunately, the compiler will basically only tell you if
the packages you have attempted to access in a with clause
actually exist. Therefore, repeatedly recommended additions
to the specifications in either the form of comments or
additional language constructs and preprocessors are
necessary. (See Wolf (1985) for one such language

extension).

e e e e T e T T T T R S S

> At

s BN Yot ot

P

R R R T R R A R R AN N P OO P O N B I D P U P U U NS U I R L L

77

6.3.2 Front-end to Other Tools

Because of the inadequacy of the Ada language specification
as a requirements specification on its own, the use of this
design as a front end to other specification tools might be
possible. Since many methodologies are now moving toward
the addition of graphic interfaces to their tools, this 1is
an unlikely proposition. However, it would be nice to see
more of the tools being developed offer some version or
implementation with a bent toward the Ada language, since

like it or not Ada is going to be used in many areas.

6.4 The Needs

In attempting to develop this graphic interface, several
needs have become evident. A need for cheaper, more
accessible graphics workstations; more tools or additions to
high-level-languages to take advantage of such workstations;
and more emphasis in software design on graphic interfaces
to development tools. Whether or not this need is a result
of the environment under which this paper and project was

developed is unknown.

The ultimate purpose of this paper 1is to encourage an
increase in the number and varieties of graphic interfaces

to software engineering tools.

o A

REFERENCES

Alford, M. (1985). "SREM at the Age of Eight; The
Distributed Computing Design System," IEEE Computer, April,
pp. 36-46.

Balzer, R. and Goldman, N. (1979). "Principles of Good
Software Specification and Their Implications for
Specification Language," Proc. Specifications of Reliable
Software Conf., September, pp. 58-67,.

Booch, G. (1983). Software Engineering With Ada. Menlo Park,
CA: Benjamin/Cummings Publishing Co.

Braegger, R. P., Dudler, A.M., Rebsamen, J., and Zehnder,
C.A. (1985). "Gambit: An Interactive Database Design Tool
for Data Structures, Integrity Constraints, and
Transactions," IEEE Transactions on Software Engineering,
July, pp. 574-582.

Brown, G.P., Carling, R.T., Herot, C.F., Kramlich, D.A., and
Souza, P. (1985). "Program Visualization: Graphical Support
for Software Development," IEEE Computer, August, pp. 27-35.

Buhr, R.J.A., Karam, G.M., and Woodside, C.M. (1985). "An
Overview and Example of Application of CAEDE: A New,
Experimental Design Environment for Ada," ADA Letters,
September, pp. 173-184.

Buhr, R.J.A. (1984). System Design with Ada, Englewood
Cliffs, N.J.: Prentice-Hall, Inc.

Clark, L.A., Wileden, J.C., and Wolf, A.L. (1980). ™"Nesting
in Ada Programs is for the Birds," Proc. ACM-Sigplan Symp.
Ada Programming Language, in Sigplan Notices, November.

DeRemer, F. and Kron, H.K. (1976). "Programming-in-the-Large
Versus Programming-in-the-Small," IEEE Transactions on
Software Engineering, June, pp. 80-86.

DOD (1983). Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A, Washington, D.C.: US Dept. of
Defense, January.

Gilbert, P. (1983). Software Design and Development,
Chicago, IL: Science Research Associates.

Grafton, R.B. and Ichikawa, T. (1985). "Visual Programming,"
IEEE Computer, August, pp. 6-9.

Hamilton, M., and Zeldin, S. (1983). "The Functional VLife

. - - . . [CHIP - .. " .gm LI R Y L ‘ (.-‘_.v L. I‘d’_ “.-' PR .-’. - o, -
R R L Ry I L W T SIS TATIE ST S A AT S N RN AR

NG ot

......

Erv—re e =y . T E e e Sy v
O i A i B IS G Uy 2 8 o k' Vop' b a0 i AR . i A AN 'S R PR e i s T e R At geit ab o ad - SRC S Al SR el uits N R SRR e S k2 e s

s
P

.‘,
»

79

BRI LA,

Cycle Model and 1Its Automation: USE.IT," The Journal of
Systems and Software, March, pp. 25-62.

Hamilton, M., and 2eldin, S. (1976). "Higher Order Software
- A Methodology for Defining Software," IEEE Transactions on
Software Engineering, March, pp. 9-31.

. Hansen, P.B. (1977). The Architecture of Concurrent 5

¥ Programs, Englewood Cliffs, N.J.: Prentice-Hall. o

? Jacob, R.J.K. (1985). "A State Transition Diagram Language S

o for Visual Programming," IEEE Computer, August, pp. 51-59. ﬁ
o

Myers, W. (1978). "The Need for Software Engineering," IEEE A

’ Computer, February, pp. 12-25. e,

& 5

S Peterson, J.L. (1981). Petri Net Theory and the Modeling of {:

- Systems, Englewood Cliffs, N.J.: Prentice- Hall. -

Pressman, R.S. (1982). Software Engineering: A >

X Practitioner's Approach, New York, NY: McGraw-Hill, Inc. b

-

Roman, G. (1985). "A Taxonomy of Current Issues in x

Requirements Engineering," I1EEE Computer, April, pp. 14-21. w

~

Ross, D.T. (1985). "Applications and Extensions of SADT," !

.
N
4
L]

IEEE Computer, April, pp. 25-34.

Rudmik, A. and Moore, B.G. (1982). "An Efficient Separate
Compilation Strategy for Very Large Programs," Proc. Sigplan
82 Symp. Compiler Construction, in Sigplan Notices, June,
pp. 301-307.

Syt e
(R RN

‘ " -l

Schneiderman, B. (1983). "Direct Manipulation: A Step Beyond
Programming Languages," IEEE Computer, July, pp. 57-69.

AT aa ey,
.

Sievert, G.E., and Mizell, T.A. (1985). "Specification-
Based Software Engineering with TAGS," IEEE Computer, April,
pp. 56-65.

3 Teichroew, D., and Hershey III, E.A. (1977). "PSL/PSA: A
' Computer-Aided Technique for Structured Documentation and

v Analysis of Information Processing Systems," IEEE
‘ Transactions on Software Engineering, January, pp. 41-48.

Ullman, J.D. (1982). Principles of Database Systems,
Rockville, MD.: Computer Science Press.

; Wolf, A., Clarke, L., and Wileden, J. (1985). "“Ada-Based
Support for Programming-in-the-Large," IEEE Software, March,
ppo 58‘71.

WY R RRT RN Rl RRRRS oA ey L A

. . e

. 9 - . . . = e O I R RS I S S D T e WA S] ---.’.. A -

SRRy ‘. WACH LR Gy > TR LR G G R SR Sy TR RO AR G L S RNy SRS - A A SN
RS 5 A 5

N E RN

.....

D N T e A LA . . ST, N
et 2 s gt aa t ta gt e e e e e s PRI 2 v A e v =

80

APPENDIX A - GTGALS Procedure Descriptions

Procedure Descriptions for GTGALS -
A Grapich Tool for Generating Ada Language Specifications

These are all the procedures within the Graphic Tool for
Generating Ada Language Specifications (GTGALS) system. Due
to Turbo Pascal editor limitations, these are broken up into
three files which, along with the type definition file, are
needed to run GTGALS.

Brief comments follow each procedure to further describe its
purpose.

File GTGALS1.PAS

procedure Adjust_name(var short_name : short_obj name; name
: object_name);

This procedure adjusts an incoming object name (of up to 20
characters) to a short name (up to 8 characters) for display
withing the object symbol.

procedure Move_cursor_out;

This procedure moves the cursor-window outside of the main
screen and turns it off so that when a save screen is done
the cursor is not permanently displayed on one position on
the screen.

procedure Move_cursor_in;

This procedure moves the cursor-window back to its previous
position and turns it back on. It 1is wused after
Move_cursor_out and a save screen.

File GTGALS2.PAS

procedure Init_arrow(i : integer);

This procedure initializes one arrow, setting all the values
of the indexed arrow to a known state. It is used on
program start-up and whenever an arrow is erased from the
graph.

procedure Init_object(i:integer);

Rl A el | ¥ 48" Vo'l "ghatuy,

et
PN

S e T e e 2
h£¢l%i“n’“12
h AR, "

rll1f.-','(-

&/
& rr Il

1)

D o,

.2 "-.‘ ' .
P LA

v pgt * g '] 12! - n LGy Wp” el wa g i N S8 a*h Y 8 UNRENREEENRN), v (R TN LIRS Y A A >, * T by . S o R REET)

'n

t
..5'

Mlerr

N ' ‘(
i 8 1 .Q
! v
' . N
_ This procedure 1initializes an object as above. (see e
" Init_arrow) £
] -
c procedure Init_structure; E
! This procedure is used to initialize all data structures at Sf
. the start of the program.
X
) procedure Left_justify(var name : object_name); Eﬁ
. This procedure corrects for occasional right-justification :ﬂ
\ of data being read in from a display file. s
_— }r
3 procedure Move_cursor; e d
, . ‘ ’.‘-.’
This procedure reads the arrow keys corresponding to cursor {f’
movement on the main screen. fL_
=z
—— S
procedure New_screen(name : object name; screen_no : 4]
: integer); N
. This procedure sets up a new screen for further drawing, ﬁ;f
' labeling the screen with the diagram number and the name of B
the object from which the screen was drawn. (If startup AR
from a file, name is the file name, if zoom-in or zoom-out, ;&
> name is the object name on which the command was given) Qf;
‘>
/ \
procedure Draw_arrow(xl,yl,x2,y2:real); o
y These procedures handle drawing of the last section of an k;
. access arrow and the appropriate arrow-point. };
v e
" procedure DrawArrowd5(xl,yl,x2,y2:real); f;ﬁ
procedure DrawArrowHor (x1l,yl,x2,y2 : real):; ?%
TN
procedure DrawArrowVer(xl,yl,x2,y2 : real); ?ﬁg
o
procedure Draw_name(xl,yl:real; name : object_name); R
This procedure draws the object name in the object located 2{1
at x1, yl. -f?
_— Eag
procedure Draw_object (which : char; x, y : real); .
! 3N
: SQ;

. et et et e et L= s e e e wmLw o e o m e - . D L S I I e I - e oyt
1 '-'\"_.’».‘q"; \-‘{~|'.;-',.~'.;~\'.;-',_“~_'.."_~ '_..“" WK "‘ .' - l-_. s -'... SRR RO AA _-.J"_:‘.'.. BRI AR I I e .\.‘..- K S LY

R T U R 4 o b b e e e At Ae 4y ek o¥ U DD CUCT TR TR Y] PR OR T IO 20T TG A & WV,

“
: e
K]
82 «i:;:
LAY
. :li
] These procedures draw the object symbols based on an ;&
. approximate center of x,y. P
, procedure Draw_std_object(x,y : real); '
1S '.l i
] procedure Draw_generic(x, y : real); iy
: ekt
i. - v "\,
' procedure Draw_diagram(diag_index : integer; name : ¥
object name); $¢
- 3 %
“ L
. This procedure selects the objects and arrows to be drawn on 3
5 the diagram requested by diag_index, and uses the Draw -
", procedures to draw them. ~
4 procedure Help; &?
& ¢d
- Displays the system commands in a window. This window is R
: accessible only from the main screen, not from within other “3
windows. ok
I
—_——— ?‘::
. procedure Remove_access(from_ind, to_ind : integer); NE
s ‘p."
2] !
A This procedure is used to remove access of the "to object" ;;
¥ from the "from object"™ when either the access arrow or the -=
accessed object has been deleted. A
3
L‘Lb
- 3
procedure Select_arrow(findx,findy : real; var found : Fi
boolean; Sy
i var index : integer);
g This procedure determines which, if any, arrow begins at or -
g near the given findx, findy coordinates. T
procedure Select(findx, findy : real; var found : boolean; :g?
. var out_object : char; var index : G
. integer); e
. R
7 This procedure determines which, if any, object surrounds o~
. the given findx, findy coordinates. o
procedure Erase_arrow(object : char; index : integer); If;
oo
This procedure erases the arrow indicated by index. oA
\l
<)
s
y o

.-.-' LY L -« '.'
AT ‘.-.

\

N T N L

-

ettty
S R N A

»’ -"‘

@f - -. [P S A '- ' 'p."p '.-‘ 'c:."’ "y

83

procedure Add_access(from_obj, to_obj : char; from_ind,
to_ind : integer);

This procedure is used to add access when an access arrow
has been drawn.

procedure Read_arrow;

This procedure allows the drawing of arrows and puts the
data into the arrow array.

procedure Delete;

This procedure begins the deletion of either arrows or
objects.

procedure Read_object(obj_type : char);

These procedures read the initial information when an object
is drawn.

procedure get_comments(var in_ptr : comment_ptr);

procedure spec_entry;

procedure Zoom_in;

This procedure creates or accesses the screen on which the
selected object is decomposed.

procedure Zoom_out;

This procedure moves the user back to the diagram on which
the selected object is not decomposed.

File GTGALS.PAS

procedure Gen_Ada(index : integer; var head : spec_ptr};

These procedures build the Ada language specification from
the data in the object array for the selected object.

procedure build_comments(in_ptr : comment_ptr);

o ST - . . o«
oy .:r»-r .\ ‘,,q."‘:f._'(\{"f.; e o .\q <, .\ _..-J".':_‘\ _._ - .‘\ .‘-:J:.~ 'h\ _-. -,\ .\f\

sta's s s

-y wia Wa's B ka0 9N -G s P P Pt i ke o A0 A s AR B BB R R e S g o R b v g Aas et fob S b

84

procedure build_parms(index, i : integer);

procedure View_text;

This procedure brings up the viewing window and calls
Gen_Ada for the selected object.

procedure Edit:

These procedures allow for editing a selected components
internal details such as name, procedures, inputs and
outputs, and comments.

procedure clear_window;

procedure edit_comments(var in_ptr : comment_ptr);

procedure Read_display(filename : filenames);

This procedure reads a display file and puts the information
into the data structure for use by GTGALS.

procedure read_comments(var in_ptr : comment_ptr);

procedure Write_display:;

This procedure writes out the data from the data structures
to a uniquely formatted .gph display file.

procedure write_comments(in_ptr : comment_ptr);

procedure Gen_specs;

This procedure uses Gen_Ada for each object in the data
structure and writes it out to a .ada file.

. R I} L) U CONNCINPUS u_.'.-'-'_-‘ ‘.-‘g‘
S R N AT T TN T NN e

-
2°

vl
N
e .
v
par Y

égﬁjﬁJ;;

5

il

-

ERE
L

'ir

v
Ll

v e e
-

-

%

-~
Rty

-
s

B

L P
AR
LA)

ot

0
L

.f':'r'l »
RN g
e 05 ¢ 7,
L/ -Sg-%y

1 t»@‘z.’

s

kR

DA . |00

"

o g I g g e
¥
%

]
X

i @

A,
’ v

»

B F,
P "i
K, -

R
s
(4
(R
o

R
8 8, 4
o

i B

Y

77 L

Ao

Bl |

»
"- Y “- ‘*\ Y

e%a e e e 'a" s

RY ¥ T2l

s 2 .2 » 3

.

A

85

APPENDIX B - Turbo Graphix Toolbox Modifications

The following procedures were removed from the Turbo Graphix
Toolbox of Boreland International to make it possible to
increase the amount of code in the Graphic Tool for
Generating Ada Language Specifications (GTGALS).

The following were removed from Kernel.Sys

function GetErrorCode:byte;

procedure SetHeaderToBottom;

function GetWindow:integer;

function GetColor:integer;

procedure SetScreenAspect (aspect:real);
function GetScreenAspect:real;

function GetAspect:real;

procedure SetLinestyle(ls:integer);
function GetLinestyle:integer;
procedure SetVStep(vs:integer):;
function GetvVStep:integer;

function GetScreen:byte:;

procedure DrawPoint (xr,yr:real):;
function PointDrawn(xr,yr:real) :boolean;

The following were removed from Windows.Sys

procedure CopyWindow(from,tu:byte;
xl,yl:integer);

procedure SaveWindow(n:integer;
FileName:wrkstring):;

procedure LoadWindow(n,xpos,ypos:integer;
FileName:wrkstring):;

procedure SaveWindowStack (FileName:wrkstring);

procedure LoadWindowStack (FileName:wrkstring):;

procedure ResetWindowStack;

\

-~

,‘éz"
PPl)

»
St S AT Y

—

e
~W

~¥.

n e
L%

DEN_N_
e
L

e

"

APPENDIX C ~ Display file for MAIN2 (see fig. 5.2.7) ﬁ&ﬁ

This file would reside on disk as MAIN2.GPH. This is an 'fﬂ
annotated display file. The text in {} is not in the actual ey
display file, but is used here to describe it. There would 3@{
be no blank lines in the display file. Loge

ALY
{The first line of an object record is its type, 53
s=-subprogram, p-package, g-generic package, g

h-generic subprogram; its array index, and its
X,y coordinates on its original diagram and its
refinement (zeros if not refined)}

LY

s 1 500.0 320.0 0.0 0.0 .
! M

{The second line is the diagram numbers on which ;;
it is located, original then refinement] -gf'
200

1 0 el

{The next line is the object's name}

main2

{A line preceeded by ¢ is a comment]

c--This is the controller ‘%
» ,"
(A * indicates a procedure or function} 2%;:
(If followed by the word KEY, this data tiﬁ
is for the subprogram rather than an b

internally named procedure or function}
{Otherwise, it will be followed by the
procedure or function name]}

*pKEY NN
{? indicates input. It is immediately ;i¥
followed by the input name. The next T
line will be the input type.} 0%
. Vil
?in_msg £
msg_packet gi'
{! is output. Same as input} ’
{If there were in out variables, e
they would be indicated by a +} his
ey
lout_msg ?ﬁy
msg_packet Ms
i
£y
BN

A 87

{@ indicates that the number following
is an index to an accessed object}

y @ 2
e 3
@ 4

{Only different information will be
f noted}

. P 2 500.0 660.0 0.0 0.0
] 1 0
process
c--This package handles all data modification
*psplit_msg
c--This procedure breaks the incoming message
c--packet into its components
c--The components are used by other processes
. ?in_msg
. msg_packet
!out_char
character
: fout_int
integer
lout_string
string
fout_float
i float
! *fascii

, {if the * is a function, the next
" line is the data type of the function]

integer
c--returns the base ten ascii equivalent
c--of the character sent to it
?any
. character

{Notice that the following package
has been refined on diagram 23}

p 3 150.0 S00.0 500.0 130.0
1 2
input
c--This packages interfaces to the "outside worlg"
*pread_msg
c--for reading entire message packets
lgot_msg
msg_packet
@5

-

* e »Tele

b T T B ALAT S

¢ “e e v . . R - St ata® | -
\w,h R " ' i I .-\“ :) iyl .'."'..n’ " .}‘b‘ 'w\..-',.-",' ““.: k.'q\',) .J&‘) '.\. s .q\.’n‘ -J',‘ - 'u‘_--'. n',‘-\ N“-‘ ‘-‘_‘N’ ‘n. ey ‘# S f.'-_. S '*.'1" ‘u':t‘:n' NN

@ 6
p 4 787.5 500.0 0.0 0.0
1 0

output
c--This handles ouput interface to environment
*pwrite_msg
c-~-Writes the message to the standard output file
?in_msg
msg_packet
p 5 275.0 480.0 0.0 0.0
2 0
text_io
c--This is a predefined library program
g 6 562.5 480.0 0.0 0.0
2 0
port_io
c--This package handles all i/o thru COM2
c--Procedures are yet to be defined

{The first encounter of an ‘'a’

in column one indicates the start

of the access arrow data.)

{The first a is the originating point,
subsequent a's are intermediate points,
and the e is the end point. This is
followed by the indices of the originating
object and then the accessed object)

a 500.0 400.0 1

e 500.0 600.0 1
1 2

a 450.0 400.0 1

e 200.0 440.0 1
1 3

a 550.0 400.0 1

e 737.5 440.0 1
1 4

a 450.0 210.0 2

e 325.0 420.0 2
3 5

a 550.0 210.0 2

a 575.0 210.0 2

e 575.0 420.0 2

3 6

.-"
4
L%

5

s

noey

| X

22

e
[y

%
"\3

o
L]
-

. . . I LY S I WA PR SN U RN A S AR SL LTS ST LD 5 S ST N LS R TR o .
g G O O R O B B S S T TS RS (5 | A S A R

T T W L

5—«]
]

g
3
89 \
APPENDIX D - Source Code for A Graphic Tool for Generating oY
Ada Language Specifications [
2
{This program is a modification of a project done for CS736 QE
(Computer Graphics) in the summer semester of 1985, The S
origimel program was written by : ot
Ernest G. Smith o
Donald E. Bodle, Jr, (g8
2
{ It's purpose was to demonstrate the use of a graphic
o interface to an underlying data structure. The graphic b
£ model chosen was the access graph as taught in CST720)
'Y (Operating Systems II) by Dr, Richard McBride for 13
‘. documenting C-Pascal programs,]
The modifications that follow have been done by Donmald E,
Bodle, Jr. as part of his master's thesis implementation, AL
5 The main data structure has been modified, multiple levels ::
\ of graphs have been added, the file format of the display W
file has changed slightly, and the program template is now -
. for the Ada language rather than C-pascal. |} 1
¥ {These are the declarations nmecessary to the GTGALS ;:i
'.i program} N
. const _
max_accesses = 5; ~1y
max_arrows = 100; { max_objects ® max_accesses } s
max_arrow_points = 5; { includes origin and end pt } ;21
max_inputs = 5; .'_s.
max_inouts = 5; ;
! max_objects =z 20; -
y max_outputs = 5; ::\
. max_procedures =z 5; ;"
3 p
. type o
data_name = string[10]; i
. filenames = string[14]; _ =i
. object_name = string[20]; _l
R output_line = string[70];
) procedure_npame = string[20]; T
" short_obj_name = string[8]; o
N speq_ptr = “speq_line_record;
: comment_ptr = ° comment_record; —_—
o access _record = record '-Eij:
: index : integer; { array index of object accessed }
. end; e
. 5
. ."-
i -;".:
;
~'\
e o S T3 Oy e SO R A O O Y S

M o o gy NG 6 YoF B e 3 TR phrd A I IR I XXX TS X RN U LT Sald W@ i = o

comment_record = record
line : string[60];
next : comment_ptr;
end;

o~

input_record = record
name : data_name;
in type : datg_name;
end;

I

inout_record = record
name : data_name;
inout_type : data_name;
end;

s output_record = record
3 name : data_name;
, out_type : data_ name;
' end;

point_label = record
object_type : char; { for arrows, a = origin or }

X : real; { mid pt, e = end., for objects }
y : real; {p s g or hfor pkg, subpgm }
end; { generic pkg, generic subpgm }

spec_line_record = record { for linked list of lines }
line : output_line;
next : speq ptr;

end;

arrow_record = record
: diagram : integer;
point : array(1..max_arrow_points] of point_label;

from_index : integer; { originating object }
to_index : integer; { accessed object }
end;

procedure_reocord = record
comment : comment_ptr;
prog_type : char; { p = procedure, = function }
f_returns : data_name;
. name : procedure_name;
3 input : array[1..max_inpits] of input_record;
’ output : array(1..max _out.puts] of output_record;
inout : array[1,.max_inotts] of inout_record;
end;

object_record = record
access : array[1..max_accesses] of access_record;
child diag : integer; { if object decomposed }

O A T B B T A B N N R R RO R

SO

A

-

._'

-

-
'

»

\-
oo

91

child_pt : point_label;

comment : comment_ptr;

diagram : integer;

id : integer;

name : object_name;

point : point_label;

proc : array[1..max procedures] of procedure_record;
end;

{ diagram where 1st drawn }

var arrow : array[1..max_arrows] of arrow_record;
Ch: char; { for keyboard input }
filename : filenames;
temp file : filenames;
i1 : integer; { loops }
in file : text; { read in display file }
in file name : filenames;
long file name : object name;
next_arrow, { next empty slot ptrs for }
next_diagranm, { arrays and diagram # }
next_object : integer;
object : array{1..max objects] of object_record;
screen_num : integer; { screen is now this diagram }
short_name : short_obj_name;
tempx : integer;
X, ¥ : real; { track the cursor }
{ Adjust an incoming object mame from up to 20 letters
to a short mame of up to 8 letters for display within
the object symbol}

procedure Adjust_name(var short_name : short_obj_name;
name : object_name);

begin
short_name := name;
i := length(name);

case i of
7,6 : short_name := ' ! + short_name;
5,4 : short_name := ' ' + short_name;
3,2 : short_name := ! ! + short_name;
end;

for 1 := 1 to 8 do short_name[i] := upcase(short_name[i]);

end; { adjust name }

{ }

{ Moves the cursor outside of the main screen and turns
it off s0 that when a save screen is done the cursor

is not permanently display at one position on the screen }

procedure Move_cursor_out;

A

PR S A
LY \". »
ESA A

'{“. h‘:'

P4

= "¢ "0 ~o GETE Y Y e
ot N e
‘ISQNI"I‘I] !“ ’i.:r“' .,

I AL
I U

B,

.

L
byt

g

.
l. .
by toty

-
Al

VR e e T

_—

et e e o e me o gl ey

it

Ll b aa o e o

b

%

M e ARSI L RN S
L R S R R

i

begin

SelectWindow(2);
InvertWindow;
tempx := trunc(x/12.6);
MoveHor(~tempx, true);
SelectWorld(1);
SelectWindow(1);

end; { move cursor out }

{ }

{ Moves the cursor back to its previous position and turns

it vack on. Used after Move_cursor_out }

procedure Move_cursor_in;

begin
Copy Screen;
SelectWorld(2);
SelectWindow(2);
Movelor(tempx, true);
InvertWindow;
t{end; { move cursor in }
}

{ File gtgals2.pas }

i n
{ Sets ome arrow to a_know)state, Used at program

start-up and when an arrow is erased from the
graph }

procedure Init_arrow(i : integer);
var index : integer;

begin
with arrow(i] do
begin
diagram := 0;
for index := 1 to max_arrow_points do
begin
point[index].object_type := ' !;

point{index].x := 0; point{index].y := 0;

end;
from_index := 0; to_index := 0;
end; { with and for }
end; { Init_arrow }
{

{ Initializes an object, Used as Init_arrow is }

procedure Init_object(i:integer);

var index, k : integer;

X! |30

%

34

1 &R

-
X

B

A n‘“r
Y

'

Pk 48 2l oL

TR

[L.
)

“‘ .' " " -I
e "Lllt“‘j"—

S

p A B

y >
[

R
L]

Y

[}
v H
.

T V'"_'.-""-'
'.\".{::“ ' P‘."‘.‘ et

P A

A

AN

1
.

";'?F'lr-.r' Ry
xLA.A'. Tt]

o
]

ELE
L] -‘:."': 'J

)
™

begin
with object[i] do
begin
diagram := 0;
child_diag :=
name := '9;
id := 03
point,object_type := ' ';
point.x := 0; point.y := 0;
. child_pt.object_type := ' ';
N child_pt.x := 0; child pt.y := 0;
. comment := nil;
for index := 1 to max_procedures do
begin
proc[index].proc_type :
prooc[index].f returns :
proc[index]}.name := '';
. proe[index].comment := nil;
= for k := 1 to max_inputs do
. begin
proc[index].input(k].name := '*;
proc[index].input[k].in type := '!;
end;
% for k := 1 to max outputs do
- begin
proc[index].output[k].name := '';
proc[index].output[k].out_type := '';
end;
for k := 1 to max_inouts do
begin
proc[index].imout[k].name := '';
proc[index].inout[k].inout_type := '';
end;
end;
for index := 1 to max_accesses do
access(index].index := 0;
end; { with and for }
end; { InLQIED) . b et
{ Uses init_arrow and init _object at program
start-up }

0;

b e M o b

vy
1

L 2

}

procedure Init_structure;

var
i : integer;

. begin
N for 1 := 1 to max_objects do Init_object(i);
N for 1 := 1 to max_arrows do Init arrow(i);
' end; { Init_structure }

«

) - e
- »

93

.......

- n - - - - ‘T m ™ e’ Tt e, A S e " - - T T e v . LY » 3 R ST L P P AT e T . - ER® IR S R ST

‘‘‘‘‘‘‘‘‘
N -

A _GRAPHIC TOOL FOR GENERATING ADA LANGUAGE

SPECIFICﬂT!O“S(U) AIR FORCE INST OF TECH
HT-PRTTERSON AFB OH D E BODLE 1985

UNCLASSIFIED ﬁFIT CI-NR-86-33 F/G 9/2

AD-R167 08354 272

MICROCOM

FEEEFEEEE
EFEE

[4
[
113

~

[QY

N
»

N
o

ke

¥,
U 9“ "'.
U
. { } o
) { Corrects for occasiomal right-justification
of data that has been written to a text file .
X using the var_mame : ## format } h
procedure Left_justily(var name : object_name); o
:E var i,max : integer;
begin -
[if name[1] = ' ' then ,{
2 begin s
max := length(name); o
for 1 := 2 to max do :L
name[i=1] := name[i];
. name[max] := ' 1; ot
y end; { if not left justified } P
. end; { procedure left_justify } ::
: { } KN
. { Reads the arrow keys corresponding to cursor
g movement on the screen } JAXS
procedure Move_cursor; :\
: begin :;J‘
§ case ord(Ch) of t;*.
T2 : if y >= 140 then £
begin N
- MoveVer(-2,true); {up arrow?} o
. Yy :=s ¥y~ 103 R
S gotoxy(1,25); R
end; %
75 s if x >= 82.5 then .
3 begin o
MoveHor(=-1,true); {left arrow?} .
L X i=x = 12,53 RS
: gotoxy(1,25); rod
) end; R
77 ¢ if x <= 926.0 then s
.- begin o
" MoveHor(1,true); {right arrow?} :}
- X :=Xx + 12.5; E\‘:
n gotoxy(1,25); P
. end; 4
_ 80 : i1f y <= 820 then .
' begin K
by MoveVer(2,true); {down arrow?} 3
“ ¥y iz y+ 103 e
, gotoxy(1,25); R
end; NN
.: <3
: v
. Kt
o e
o

ot

AR R s O T e A e e . A B I A A S S C S

R TR VON 205 R TR Gn TGS TURL I T I 34 TG SAP SLAWLATILIRTLIY WA P 2 WL E AT AT AN | ; e o n Wk kg bw b

! end; { case }
end; { move cursor }

{ }

; { Sets up a new screen for further drawing,

: labeling(htéscreen with the diagram number and the mame of
' the object ITrom which the screen was drawn., (If startup
from a file, name is the file mame, if zoom=in or zoom=-out,
pame 1s the object mame on which the command was given) }

? procedure New_screen(name : object_name;
screen _no : integer);

var screen _char : char;

begin
screen_char :=z char(screen _no + 48);
" ClearScreen;
" SelectWorld(1);
¥ Selectiindow(1); {select screen window}
SetBackground(0); {give it a black background}

DrawSquare(20,55,1000,915,false); {draw the border}
DrawTextW(100,12,2,name);
DrawTextW(800,12,2, soreen_char);

- CopyScreen;
SelectWindow(2); {select cursocr}
SelectWorld(2); {select it!'s world)
_ SetBackground(0); {give it a black background}
¥ InvertWindow; {turn the cursor on}
! ?nd; { New_screen } :

{ Draws the access arrows }
procedure Draw_arrow(x1,y1,x2,y2:real);

var
slope : real;

. { These procedures handle drawing of the last section of an
. access arow and the appropriate arrow-point }

L procedure DrawArrowis(x1,y1,x2,y2:real);
A begin

if (x1 > x2) and (y! > y2) then

begin

N DrawLine(x1,y1,x2+45,y2+7.5);
DrawLime (x2,y2+15,x2,¥2);
DrawLipne(x2+10,y2,x2,¥2);
DrawLime(x2,y2+15,x2+10,y2);

cy ~ ey L N S A St w e " at e . «a®e e v, " ... LI T AT
DT T R S B e e e g B ey e N S s in

e
o
96 o
é'F"?
DravLine(x2+5,y2+7.5,x2,y2); ot
end else B
if (x1 < x2) and (y1 < y2) then ey
begin S
DrawLime(x1,y1,x2-5,y2-7.5); wlps
DrawLine(x2,y2-15,x2,¥2); A
DrawLine (x2-10,¥2,x2,¥2); '
DrawLine (x2,y2-15,%2-10,¥2);
DrawLine (x2-5,y2-7.5,x2,y2); ‘«":‘
end else 5::';!
if (x1 > x2) and (y1 < y2) then
begin ~;‘.‘;
DrawLine(x1,y1,x245,y2=7.5);
DrauLine(x2,y2-15,x2,¥2); i
DrawLine(x2,y2=15,%2+10,¥2); RN
Dl‘ﬂﬂl-im(12+5,ﬂ-7.5,!2o¥2)i i
end else e
)
if (x1 < x2) and (y1 > y2) then f“
begin 35%;
DrawLine(x1,y1,x2-5,y2+7.5); (34
DrawLine(x2,y2+15,x2,72); bk
DrawLins (!2-1 0, n "2 .,2) ? -"?f,; .
DrawLine(x2,y2+15,x2=10,¥2); bl
DrawLine (x2-5,y2+7.5,x2,y2); x
end; I
end; { DrawArrowis } :‘Q'
A

procedure DrawArrowHor(x1,y1,x2,y2 : real);

begin .
if x2 > x1 then :.
b‘#n 'L‘.‘\;

I’

- MR
Ao

DrawLine(x1,y1,x2=-10,¥2);
DrawLine(x2-10,y2-10,x2,¥2);
DrawLine (x2-10,y2-10,x2=10,y2+10);

DrawLime (x2-10,y2,x2,¥2); e
end &
else o
begin e

DrawLipe(x1,y1,x2+10,¥2); o

Drawlins (x2+10,y2-10,x2,¥y2); e

DrawLine(x2+10,y2+10,x2,¥2); KT

DrawLine (x2410,72=10, 22410, y2+10) ; I

DrawLine (x2+10,¥2,x2,¥2); e
end; e

end; { DrawArrowHor } o
e
e
2

- - o . N .- "
RN LIS ' T o e e Y e A I P R S R e _-}\
MAGIURG » 3, s s >, \)

o
.

+
S, OSSR S S A S S S R O & P R

procedure DrawArrowvVer(x1,y!1,x2,y2 : real);

begin
if y2 > y1 then
begin
DrawLins(x1,y1,x2,y2-15);
DrawLins (x2-7,y2-15,x2,y2);
DrawLime (x2+7,y2-15,x2,¥2);
DrawlLine (x2-7,y2=15,x2+T,y2-15);
DrawLine (x2,y2-15,x2,y2);
end
else
begin
DrawLine (x2+7,y2+15,x2,¥2);
DrawLine (x2-7,y2+15,x2+7,y2+15);
DrawLime(x2,y2+15,x2,y2);
end;
end; (DrawArrowVer }

begin { Draw_arrow }
Move_oursor_out ;
if x2 = x1 then slope := 10,0
else slope :z abs((y2 - y1)/(x2 - x1));
if slope <= 0.5 then DrawArrowHor(x1,y1,x2,¥2)
else if alope >= 2.0 then DrawArrowVer(x1i,y!,x2,y2)
else DrawArrowd5(x1,y1,x2,y2);
Move_ocursor_in;
end; {Draw_arrow }

{ }
{ Draws the object mame in the object located
at x1, y1 }

procedure Draw_name(x1,yl:real; name : object_name);

var
short_mae : short _obdj_nmame;

begin
x1 := x1 =« 35;
y1 := 1 10;
adjust_name(short_nsme, name);
Move_cursor_out;
DrawTextW(x1,y1,1,short_mame);
Move_cursor_in;
end; { Draw name } :
{
{ Draws the object symbols based on an approximate
center of x,y}

o

€70 "
ol I
Al wi

o
Ll

5

IRV VL rl"r«‘

v - .l."
.1,‘{"4'

il

XERNAIS

»

Wl T 8,0,%,7
LR I TG
"l-’f S

!
t

Py om0 T
. ' AN

]
¢
)

v
Y

o
{ .

3

 AARARA
Y

w7
»
»

s % "
Py i
1

’

re,r

eios
. o F

proosdure Draw_object(which : char; x, y : real); e

procedure Draw_std object(x,y : real);

begin
Move_cursor_out; o
DrauSquare(x-50,y~60,x+50,y+40,false);
DrawSquare(x-50, y+40,x+50, %80, false); o
Move_cursor_in; —
end; { Draw Std Object }
8
procedure Draw_generic(x, y : real); <05
oty
begin SR
Move_cursor_out; -
DrawLine(x-40,y-60,x+60,y-60); ,.,
DrawLine (x+60,y=60,x+40,+40); B
DrawLine (x+40,y+40,x-60,+30); PN
DrawLine (x-60,y+30,x=-40,y-60); ";;"
DrawLine (x-60,y+40,x-65,y+80); N
H DrawLine (x-65,+80,x+35,y+80); hele!
DrawLine (x+35,y+80,x+80, y+40); T
Move_oursor_in; :_ a
end; { draw genmeric } %
SRohe
begin { draw object } -C;f
case which of A
'g! : begin { generic package } <
Dran_generic(x, y); N
Move_cursor_out ; ross =
DrawTextW(x~38,y+53,1,' PACKAGE'); ;,::;;:
Move_oursor_in;)
end;)
'h* : begin { generic subprogram } ' -
Dran_generic(x, y); RS
Move_cursor_out ; Ao
DrawTextW(x-58,y+53,1, ! SUBPROGRAM') ; e
Move_ocursor_in; ol
end; e
* 'p' : begin { package } v
Draw_std_object(x, y); NS
Move_oursor_out; DR
DrauTextW(x~-28,y+53,1, ' PACKAGE'); Y
Move_cursor_in; PR
end; o
's! : begin { subprogram } .
Draw_std _object(x,y);
Move_oursor_out ; o
DrawTextW(x-45,y+53,1,' SUBPROGRAM') ; o
Move_cursor_in; ‘j-.::
e

end; RN

P R R O I e T L S R R T T P e L S RS
LSA";’_('A.‘?-.’A_";.{-.(\’1.';\.{-.‘_\":5.""."-4‘[:,."."5.""\-'_'."::.";:.'-1-A"_\‘C.s’fs‘:u"_-."-"' APV 'L':'."-1'-:""-.."_1"_'_':':"_*;"_"':-.'::‘i-.':w:'f-i'i-:';'tl'f-:‘\'n:’\;"}.'f'xf::'\':"_

99

end; { case }
end; { draw object }
{ }
{ Selects the objects and arrows to be drawn
on the diagram indicated by diag _index and
uses Draw_object and Draw_arrow to draw them}

proocedure Draw_diagram(diag index : integer;
name : object_name);

var
1,5 : integer;
x1, y1, x2, y2 : real;

begin

for 1 := 1 to next_object - 1 do

with object[i] do

if diag index = diagram then

begin
Draw_object (point, object_type, point.x, point.y);
Draw_mame(point.x, point.y, name);

end

else if diag index = child _diag then

begin
Draw_object (point,object_type, child pt.x, child pt.y);
draw_mame(child pt.x, child pt.y, mame);

end;

for 1 (= 1 to next_arrow - 1 do
with arrow(i] do
if diag _index = diagram then
begin
x1 := point[1].x;
y1 := point[1].y;
J = 2§
Move_cursor_out;
while point[j).object_type = 'a' do
begin
x2 :=z poimt([Jl.x;
y2 := point(J).y;
DrawLine(x1,y1,x2,¥y2);
J = d+ 13
x1 := x2;
¥yt = y2;
end; { while }
Move_cursor_in;
x2 = point[Jj).x;
y2 := point(Jl.y;
Draw_arrow(x1,y1,x2,y2);
end; { for with if }

R

v,

RN

:\'-:~\

B

Vet

s - X . et et O P Y RTINS - R N AR SN ISR S LAV
Ix ’ LR PR LY \"-' '-,',51 AR $"r ’ i , TN P "-\’-." Y ‘-("..ﬁ . _‘..\ '-f‘.".‘- '-'.‘-'._'- N _'-"- "‘;.\. \._\‘4‘: S LS .\.“.' Sy \'\‘ - ‘\

L 3R 4

et

100 ¥

o

Gtgf"(

end; { Draw_diagram } , ,f’
{ Wi
{ Displays system commands in a window } —
procedure Help; ”';1‘}
begin L

Move_cursor_out; o

Storei indow(1);
SelectWorld(h); O
SelectWindow(4); w441
SetBackground(0); :Cf; ;
DefineHeader(4,'HELP INFORMATION'); K3y
SetHeaderoOn; N 2
DrawBorder; -
gotoxy(10,7); writeln('DRAW COMMANDS'); ‘
gotoxy(10,8); \$
writeln(!' a -« defines origin and midpoints of?, Sy
' access arrows'); ;.; X
gotoxy(10,9); 25,
writeln(* e = defines end-point of access arrows'); _:;
gotoxy(10,10);

Writeln(* p - draws package; s - draws subprogram'); ¥
gotoxy(10,11); e
writeln(* gD - draws generic package;’, e

! gs - generic subprogram'); DAY
gotoxy(10,12); g
writeln(' zi- zooms in on object selected Dy’, =

' ocursor positiont); sgz
gotoxy(10,13); e
writeln(' zo- zooms out to parent diagram of', el

' object sslected'); ;
gotoxy(10,14); e

writeln('EDIT COMMANDS'); ,
gotoxy(10,15); g
writeln(® e - enters component specification', =
' editing mode'); ’:,\
gotoxy(10,16); Ny
writeln(® da - deletes acoess arrow origimating at', oWy
' the cursor'); s
gotoxy(10,17); "<
writeln(' do - deletes object selected by’', e

! cursor position'); g?_-:
gotoxy(10,18); T
writeln('DISPLAY COMMANDS ', s
' sessasansesest); _—
gotoxy(10,19); o
writeln(! h = "HELP" describes’, Lo

! commands 81); .j:-;.
gotoxy(10,20); RO
writeln(® v = displays sslected object', .*-.
S LR I P RN PN, N 4 2GR A L N LGNS B2 NN STt S AN SO LA ‘

..........

101

' specification % ends pga');

gotoxy(10,24);

writeln('Press any key to return to access graph'!);

repeat until keypressed;

gotoxy(1,24); writeln(® ':80);

ClearScreen;

Restorelindow(1,0,0);

Move_cursor_in;
?nd; { Help } y
{ Removes access from object[from_ind] to
object[to_ind] when either an object[to_ind] is
deleted or the access arrow is deleted, }

procedure Remove _access(from_ind, to_ind : integer);
var 1 : integer;

begin
i:=0;
repeat
1 =1+ 13
until object(from _ind].access[i].index = to_ind;
object[from_ind].access{i].index := 0;
end; { Remove_access }
{ }
{ Determines which, if any, arrow begins at or
mear coordinates findx, findy }

procedure Select_arrow(findx, findy : real;
var found : boolean;
var index : integer);

var 1 : integer;

begin
found := false;
i := 13
repeat
with arrow(i] do
begin
if (poimt[1]).x=-10 <= findx) and
(point{1].x+10 >= findx) and
(point(1].y=10 <= findy) and
(point{1].y+10 >=z findy) then
begin
found :z true;
index :=z 1;
end; { if }
end; { with }
1 := 41+ 13

o e e e A o A G o N

e

AN

e "

e
NS
-

~
.o

-~ .

SRS
"

% '

.
‘l

NN
Il

qiﬁﬁf{ ;5
5 4 ,:.i‘ 2

Lot
e
38

4

{’-
v 's

i ~ l.,'l5 0

AR
Q»f('f

P £
N

v &
)

‘
* %1’ N> -~

+ A
- .

» X ‘s l.

102

until found or (1 >z next_arrow);

end; { Select_arrow })
{

{ Determines which, if any, object begins at or
nsar coordimtes findx, findy }

procedure Select(findx, findy : real; var found : boolean;
var out_object : char;
var index : integer);

var 1,J : integer;

begin
found := false;
1 :=1
repeat
with object[1i] do
begin
it ((point.x=60 <= findx) and
(point.x+70 >= findx) and
(point,.y-60 <= findy) and
(point, y+90 >= findy) and
(diagram = screen _num)) or
((child_pt.x-60 <= findx) and
(ehild _pt.x+70 >= findx) and
(child pt.y-60 <z findy) and
(child_pt.y90 >= findy) and
(chilq_diag = screen_num)) then
begin
found :z true;
out_object := point.object_type;
index :=z i;
end; { if }
end; { with }
1 =1+ 1;
until found or (1 >= next_object);
end; { procedure select }
{ }
{ Erases the arrow indicated by index }

procedure Erase_arrow(object : char; index : integer);

var 1, : integer;
x1,y1,x2,y2 : real;

begin
for 1 := {1 to next_arrow do
begin
if ((arrow[i].from_index = index) and (object <> ta'!))
or ((arrow[i].to_index = index) and (object <> 'a'))

N e o R e S m e S T T L N N G A

.........

e w T X 3 A A S TR N N A R T RN e B L it Moy 28 T s AR DAY o s W o W Bl M = B o ? B ek T L LI 3 At v o h b et - o~

g
ﬂi

103 ::;1"

s

¥

or ((object = 'a') and (index = i)) then “_f

with arrow(i] do ke’

begin -y

SetColorBlack; K

x1 := point[1].x; X

y1 := point[1].y; :;:.;

J =25 o

Move_cursor_out; §1‘;

while point{j]l.object_type = 'a' do o

. begin oy
' x2 := point{J].x; : 5};
p y2 := point(Jjl.y; E
DrewLine(x1,y1,x2,¥2); O

Ji=3+ 13 R

x1 = x2; ’

y1 := ¥2; b

N end; { while } }:.::
M Move_oursor_in; &
N x2 := point[j).x; MR
, y2 := point[J).y; RN
Draw_arrow(x1,y1,x2,y2); =2

if (to_index = index) or (object = 'a') then -
Remove_access(from_index, to_index); I

Init_arrow(i);

end; { with and if } t‘_g

end;{ for } N

SetColorWhite; £
end; { erase_arrow } -

{ } ‘
{ Adds access of object[to_ind] to object[from ind] } Ei"

<

procedure Add_access(from_obj, to_obj : char; Aot

from_ind, to_ind : integer); Dy

- var 1 : integer; N
. name : object_name; :‘.}
- “v.
. begin N
X name := object[to_ind].name;)
i := 03 b

repeat

1 21+ 1; o

until object[from_ind].access[i].index = 0; ok
object[from_ind].access[i].index := to_ind;

end; { Add_access } | e
{ -
» { Draws new arrows and puts data into arrow array, o8,

calls Add_access }

procedure Read_arrow;

s e Bl F R R B S O R R Ty L P gl M St Ngh Lod nu K x84 R N vk ded cab gl

104

var
x1, ¥,
x2, y2 : real;
object : char; N
found : boolean; £
valid : boolean; &‘ﬁ-
index : integer; G

[}
P

o

i : integer;
from_object : char;
from _index : integer;

]

begin { Read_Arrow }

gotoxy(1,24); writeln(* ?:80); writeln(' ':80);
x1:= X3

yi:= y;

1 :=1;

valid :=z true;

select(x1,y1, found, object, index);

if found then

begin

from object := object;

from_index := index;
arrow[next_arrow].diagram := screen_num;
arrow[next_arrow].from_index := index;
arrow[next_arrow].point[i].object_type := 'a';
arrow[next_arrow].point{i].x := x1;
arrow(next_arrow].point{il.y := yt;

1 :=1+ 13

repeat
read(Kbd, Ch); {read the keystroke}
case ord(Ch) of
97 : begin {a}

gotoxy(1,24);

writeln(* ':80); writeln(' ':80);

if i = max_arrow_points then

begin
gotoxy(3,24);
write('This is the last point.?,

! Move cursor to end of arrow');

writeln(' and press e');

end else

begin
Move_cursor_out;
X2 = X3
y2 = y;
arrow[next_arrow].point[i].object_type := 'a';
arrow[next_arrow].point(il).x := x2;
arrow({next_arrow].point[i].y := y2;
DrawLine(x1,y1,x2,¥y2);

x2
Y2
sz 1+ 1
Move_cursor_in;
end;
end;

x1
y1

101 ¢ begin { e }
gotoxy(1,24); writeln(' ':80);
select(x, y, found, object, index);
if not found then
begin

))=

-

et

S,

-~
S 5

X | =2

’

8

T .
-

Y X

writeln('Arrow does not end at an object. ',
"Press a or move closer to object and press e');

Ch := ' ';

end;
end;
72,
75,
7,
80 : Move cursor;
end;
until Ch = 'e'; {e ends arrow}
X2 := X3
y2 := y;

Draw_arrow(x1,y1,x2,y2);
arrow[next_arrow].to_index := index;
arrow[next_arrow].point[i].object_type := 'e’;
arrow[next_arrow].point(i].x := x2;
arrow[next_arrow].point[il.y := ¥2;
Add_access(from_object, object, from_index, index);
next_arrow := next_arrow + 1;

end else

begin
gotoxy(3,24);
writeln('Arrow does not start at an object.',

! Move closer to the object and press a');

end; { if object is found }

end; { Read_arrow } }

{

{ Initiates deletion of an object or arrow }

procedure Delete;

var more : char;
choice : char;
x1,y1,x2,y2 ¢ real;
J,1i ¢ integer;
found : boolean;

AR

AN
.. 'l -
LAt 'S

., S,
v ')“.’ N r,

4
") ',-l Ty

AA

Ly

rr
P el

o

e o
340
LI

w

¢ L
' %

’

1’3’ .

Ay Ay Ay

e
&.

.......

T T R A I R L TR L R T O T TR R N S S PR T PR g fig & o 4 By adg Ao s ed e ved i a3 3 LTS I . - A

-
P
b 2

' o
e
106 n
f in_object : char; ;::‘_
index : integer; s
]
P begin { delete } =
g read(Kbd, more); r;:
L case more of s
Y '0' : begin { delete object } 'f
% select(x, y, found, in_object, index); .
if found then s
e begin { if found } SCa
| gotoxy(3,24); RS
. write('Do you want to delete object ', N
. object[index].name, oS
2 ' y/n 21); 2
read(Kbd, choice);
. gotoxy(1,24); writeln(' ':80); \:
. if choice = 'y' then “s
begin N
A SetColorBlack; N
B Draw_object (in_object, 2]
object[index].point. X,
object[index].point.y); -
h Draw_name(object[index].point, x, el
¥ object[index].point.y, t‘.’
A object{index].name); iy
N Erase_arrow(in object, index); R
SetColorWhite;
Init_object(index); b
end; 1
SetColorWhite; ;:
} end; { if found } t\
)‘ end; { end delete object } 85 ¢
N
fat ;: begin { delete arrow}
. Select_arrow(x, y, found, index); o2y
» if found then with arrow[index] do PR Y
< begin { if found } \:f‘-;
. gotoxy(3,24); A
- write('Do you want to delete this arrow!', N
't y/n?'); *
L for 1 := 1 to 2 do R
2 begin { for - blink arrow } o
: SetColorBlack; N
. x1 := point(1].x; >
) y1 := point[1].y; S
J = 2; -
Move_cursor_out; TN
while point[j].object_type = 'a' do SN
begin { while a } Oy
x2 := point[Jj].x; s
y2 :z point[Jjl.y;
: 2
- o
= 1

EN SIS PRI ST S AY SR N ST NP AR I
N A e e e e S

g O T 60 Wl A i K0 i Gy &Yy %X o ST T 90 7 0 - P, P I g $ -t W i, 4l ¥y & L o i B

107

DrawLine(x1,y1,x2,¥2);
Je=de+ 1
x1 := x2;
yi = ¥2;
end; { while a, draw line segments }
Move_cursor_in;
x2 := point{jl.x;
y2 := point(Jl.y;
Draw_arrow(x1,y1,x2,y2);
SetColorWhite;
x1 s= point{1].x;
y1 = point[1].y;
J = 23
Move_cursor_out;
while point[Jj].object_type = 'a' do
begin { while a }
x2 := point(J).x;
y2 := point[jl.¥;
DrawLine(x1,¥1,x2,¥2);
ST ERE
x1 1= x2;
y1 := y2;
end; { while a, draw line segments }
Move_cursor_in;
x2 :=z point[jl.x;
y2 := point[Jjl.y;
Dras_arrow(x1,y1,x2,y2);
end; { fo = blink arrow }
read(Kbd, choice);
if choice = 'y' then
Erase_arrow('a', index);
gotoxy(1,24);
writeln(' ':80); writeln(' *:80);
end; { if found }
end; { case }
end;
end; (Delete }
{ }
{ Reads in initial specification when a new object
is drawn. (Does the drawing too.) }

procedure Read object(obj_type : char);

var
name : object_name;
entry : procedure_name;
lins_no : integer;
next_entry : integer;
type_proc : char;

procedure get_comments(var in _ptr : comment_ptr);

...........

[/

Sl
!

5

’. f' ’ . []
XA

2§

Ay
,f‘_ff..-
v AP

) Yallal sa-mt el Ve « Ve F2 Ml niiibn Site St P e AL RL L PN oA D AL R 2 a BAS Sy Aty & U A fk

Wy
e
108 e
: Mo
1 var current_oom : comment_ptr; ;‘.,3
comment ¢ comment_ptr; A
command : char; 3
in comment : string[60]; .
»
,. begin 3;;3::
if lips _no > 17 then by
; begin G
for 1 := 11 to 20 do { blank out information } i
begin L
. gotoxy(10,1); writeln(' ':60); ,‘)tg.
. end; i
line _no := 11; et
end; l{f,'
gotoxy(10,1ine_no); writeln(' ':60);
gotoxy(10,1line_neo); f_ %
in comment := ''; R
writeln('Enter up to 58 characters of comment aftert, HQY!
t == (or return)?'); RN
line no := line _no + 1; ~'
gotoxy(10,1ine_no); write('=='); readln(in_comment); =
line no := line_no + 1; g,
if in_ocomment <> '' then g
begin ph
New(comment); RN
comment”.line := '-=' + in comment; o
comment”..next := nil; =
current_com := comment; g
in ptr := comment; N
repeat :w\,:.
if lins_no > 17 then %y
! b.sin :_._‘
' for 1 := 11 to 20 do { blank out information }
d begin .
y) gotoxy(10,1); writeln(' ':60); o
3 end; *
. line_no := 113 $:'.r
end; L
gotoxy(10,14ins_no); =
write('-=1'); -
" in _comment :z ''; :}.::
. readin(in_ocomment); KON
line_no := line_no + 1; ;—};:_:
g if in_comment <> '' then "
4 begin aVy
. New(comment); -
: eurrent_con”.next := uvoxuent; N
) comment”.line := '-=! + i comment; N
g comment” . next := nil; i
current_com := comment; RN
end;

0% O, €Y \ ‘- »\r - '$f‘-.$o .‘-,..'I':.,’d Wt et

109

until (in_comment = '!);
N end; { if first comment < '' }
end; { get_comments }

] procedure spec_entry;

var
temp_in : string{10];
i, J : integer;

begin

Move_cursor_out;

StoreWindow(1);

SelectWorld(l);

SelectWindow(4);

SetBackground(0);

DefinsHeader(4,'SPECIFICATION ENTRY');
. SetHeaderoOn;
. DrawBorder;
. gotoxy(10,7);

writeln('Specification entry for component ',pame);
1 line_nmo := 8;
e gotoxy(10,1ins_no); line_no := lins_no + 1;
5 get_comments(object [next_object],comment);
. repeat
; for 1 := 8 to 20 do
begin
N gotoxy(10,1); writeln(' ':60);
¥ end;
‘- line_no := 8;
gotoxy(10,1ime_no); line_no := line _no + 1;
gotoxy(10, line no);
write('procedure or function (p or f) ?°,
' (return to bypass) : ');

type_proc := ' ';
readln(type_proc);
lins_no := line_no + 1;
if (type_proc = 'p') or (type_proc = *'f£') then

L
.- 7 L“n‘» -

begin
- object[next_object].proc[next_entry].prog_type
¥ iz type_proc;
. if (object[next_object].point.object_type = *'p!) or
3 (object[next_object].point.object_type = 'g') then
2 begin
gotoxy(10,1ine_no); write('Enter name : ');
readln(entry);

end else entry := 'KEY’';
{ to indicate a subprogram so write }

. { and read display will access the)}
{ data for the subprogram }
i if type_proc = 'f' then
B
‘ »
‘ .
b N
\.\.
: :Z-::

a® o o RN et ok s At h s AN . o) . - - et R e L % s LS Nt e L% L NL%1a
SERLT AN R LATE S R TV CAT R L LU U PR AL B G R PR PR LR PR OO LG S A A X

»

AVa gin sle +00 AWy by Al a(Py T Se sk el phy Mg ¥ IR O »

110

begin

gotoxy(40,1ine_no); write('Returns ? : ');

readln(object [next_object].

proc[next_entry).f£ _returns);
end;
lipe_no := line_no + 1;
object[next_object].proc(next_entry].mame := entry;
J = 13
get_comments(object[next_object].
proc[next_entry].comment);

repeat
temp in := ! LH
gotoxy(13, line_no); write('Input : ');
read(temp _in);

it (temp in[1] ¢ ' ') or (temp in[2] <> * ') then
begin
object[next_object].proc[next_entry].
input[j).mame := temp_in;
gotoxy(33, line no);
write(' Type : '); temp in := ° LH
readln(temp_in);
object[next_object].proc[next_entry].
input[J].in _type := temp_in;
end;
line _no := lipe_no + 13 J = J+ 1;
if lins no > 17 then

begin
for 1 := 11 to 20 do { blank out information }
begin
gotoxy(10,4i); writeln(' ':60);
end;
lipe_no := 11;
end;

until ((temp_in(1] = ' ') and (temp_in[2] = ' ')) or
(3 > max_inputs);
J =13
if type_proc <> 'f' then
repeat
temp in := ! "
gotoxy(13, line no); write('Output : ');
read(temp_in);
if (teap_1in(1] <> *) or (temp in[2] <> *) then
begin
object{next_object].proc[next_entry].
output{ j).name := temp_in;
gotoxy(33, line_no);
write(' Type : '); temp_ in := ! L
readln(temp _in);
object{next_object].proc{next_entry].
output[j].out_type := temp_in;

end;
line_no :=z line _no + 15 J = J+ 13
if line_no > 17 then

¥

AR AR
" IR

-'5-" ’

Al

2y ¥
.‘»4. 'a

piAD
L g

2

v\v‘, "‘."“

P
(%

A

- T
e
PEAY
¥
111 Y,
Ny
begin Eix
for 1 := 11 to 20 do [blank out information } Ry
begin e
gotoxy(10,1); writeln(' ':60); iy
end; :4,"'
line_no := 113 Pt
end; ol
until ((temp in[1] = ' ') and (temp_in[2] = ' ")) or T
(3 > max_outputs);
J =13 N
if type_proc <> 'f* then o
repeat £y
temp in := ! ' AN
gotoxy(13, line_no); write('In out : '); '
read(temp_in);
if (temp 1in[1]) <> ' ') or (temp in[2] <> ' ') then ey
e nE
object[next_object].proc[next_entry]. 05
inout[j].mme := temp in; s
gotoxy(33, lire_mo); e
write(® Type : '); temp in := ! L] 225
readin(teap_in); oo
object[next_object].proc[(next_entry]. R
inout(j].inout_type := temp_in; AN
end; RN
line_no :3 1ine_no + 13 J = J+ 1; }.;:'.:
if line_no > 17 then =
begin T
for 1 :z 11 to 20 do (blank out information } sty
begin .
gotoxy(10,1); writeln(' ':60); AR
end; v
line_mo := 11; v

end;

o

until ((temp_in[1]) = * ') and (temp_in[2] = ' ')) or o
(J > max_inouts); AR

end; { if a valid procedure mame) ;‘
next_entry := next_entry + 1; s

until { procedures are bypassed } :
((type_proc <> 'p') and (type_proec <> 'f')) ¥
{ or maximum proocsdures have been specified }

Y
3
B)
v

or (next_entry > max_procedures) or ‘.3:(;

{ or object is subprogram - (procs not specified) } NN
(object[next_object].point.object_type = 's') or ~iny
(object[next_object].point.object_type = 'h!);
ClearScreen; -
Restoreindow(1,0,0); AT
Move_cursor_in; e
end; { procedure spec entry } R
P32y

begin o

$a'L- S YT s R e e S idee e A Ay e MG § 6 BT W s Pt W e 8

next_entry := 1;

Selectiorld(1);

SelectWindou(1);

gotoxy(1,24); writeln(! ':80); writeln(' ':80);

Draw_object (obj_type, x, ¥);

gotoxy(3,24);

write('Enter name : !');

readln(name);

adjust_name(short_name, name);

Draw_mame(x, y, short_name);

object[next_object].point,object_type := obj_type;

object[next_object].point.x :z x;

object[next_object].point.y := ¥;

object{next_object].name := name;

object[next_object].diagram := screen _num;

object[next_object].id := next_object;

gotoxy(1,24); writeln(® *:80); writeln(' ':80);

{procedures and functions are only specified
for packages, not subprogranms}

spec_entry;

next_object := succ(next_object);

end; { Read _object }
{ }
{ Creates or accesses the screen on which the
selected object is decomposed }

procedure Zoom_in;

var
found : boolean;
out_object : char;
index : integer;
new_diagram : boolean;

begin
Select(x, y, found, out_object, index);
if found then
with object[index] do
begin
new_diagram :=. false;
if child diag = 0 then
begin
new_diagram := true;
child diag := next_diagram;
next_diagram :z succ(next_diagram);
end;
screen_num := child diag;
New_screen(name, screen_num);
if new_diagram then
begin

(LR AN LR AR AR

112

. ‘h\‘a',;n' .(J {l(‘ X ;

?{JQL

o

[¥ 8
o
o
PR

%7
e

- p):'. -!‘ s‘. . .-y "‘\.r\ *\ \:.

| 113 e
‘ k}x'
‘.v
gotoxy(3,24); "‘;5‘:
writeln('Place cursor at location for ',name, S
' and press h'); —
repeat Sy
read(Kbd, Ch); &,_:%f
Move_cursor; M
until Ch = 'h'; S
Draw_object(point, object_type, x, ¥);
child pt.object_type := point.object_type; E3
child pt.x := x; ',’_,‘.";i
child pt.y := ¥y; .:’."
gotoxy(1,24); writeln(* ':80); R _
end; v
if diagram = 0 then . d
diagram := screen_num; ,
Draw_diagram(child_diag, name); 3
end o
else begin J::
gotoxy(3,24); writeln('Object not found'); 2o
repeat until keypressed; m,;
gotoxy(1,24); writeln(' ':80);
end; L,
:nd; { Zoom_in } , ::.j
o
{ Draws the diagram on which the selected £
object was 1st drawn } RO

procedure Zoom_out;

<

f‘; R

var ".: L

found : boolean; Ay

out_object : char; ;:’i“

index : integer; i
new_diagram : boolean;

begin v
Select(x, y, found, out_object, index); ::, '
if found then el

if object[index].diagram <> 0 then N2,
begin et
soreen_num := object[index].diagram; y
Nesw_screen(object{index].name, object[index].diagram); AL
Dray_diagram(object[index].diagram,object[index].mame); .{:.} N
end AN
else begin RN
gotoxy(3,24); Anad
writeln(object[index].name,' has nc parent'); s
repeat until keypressed; AN
gotoxy(1,24); writeln(' ':80); A
end e
else begin NN

gotoxy(3,24); writeln('Object not found');

.......
&

NN E LAV TR Y NPT M U A LA RERLE YRS Gig Pop #lg Kg B adm Cop O b'n §-) T . S ~ :.::;:‘::
b s
SO
114 ‘:".l
S -
N
repeat until keypressed; .H-
gotoxy(1,24); writeln(' ':80); N
end; 3
end; { Zoom out } B,
' A
1 program gtgalsgraph; 7 'i‘:‘
'd?—
{$I typedef, sys} {these files must be} L
{$1 graphix, sys} {included and in this order} 3
{$I kernel, sys} oy
{$I windows, sys} réer:
{41 gtgals.def} s
{$I gtgalsi.pas} F: .
{$I gtgals2.pas} 4
var
heaptop : “integer; z
MO
(} NG
{ Builds the Ada language specification from NN
the data in the object array for the selected object. } oA
procedure Gen_Ada(index : integer; var head : speq ptr); ‘
g
const f;ﬁ:
gen_sudb : string[26] = ' procedure DUMMY is new !'; N
gen_pkg : string[23) = ' package DUMMY is new '; >3
s
=
var \
oount, i, J, k : integer; ;‘;.»
current_line : specg_ptr; F\ :
speq_lins : speq_ptr; hefi
build line : output_line; TN
gen_line : array(1..max accesses] of output_line; ”
e
[
procedure build _comments(in_ptr : comment_ptr); ‘,-:_;:;..
v""..
var next : comment_ptr; -
begin N
next :z in _ptr; e
repeat e
speq_line”,1ine := next”.line; e
; New(speq_line); o
speq_line",.next := nil; TnlW
current_line”.mext := speq_line; -
current_lims := speq_line; e
next := next”,.mext; LN
until next = nil; e
end; { build comments } ey
o
RO
\‘.‘-
\'.:.
o
‘4. . *-\ S TS "&"h '.v\‘ LRy \._\;;.;.\-- ;._-_.,- - -,u, AR A R _.._« _ e '\-"Sq"\-:. ';.‘-'._-T..::.‘-’..-' " -: Ry ._. e .

}
!
;
; 115 ¥
4 1“'::/
; '.'c::
t procedure build_parms(index, i : integer); ;:::;,
i ,'"lf:
I var j : integer; :{
: count : integer; 3,
Y) '~ g
] begin &5{
. count := 03 N
\ with object[index] do o0
, begin

for J := 1 to max_inputs do o
: if proc[i).input{ jl.name <> '' then 5:3.
. begin ;,:.&_{
' count := count + 1; oy
. if count = 1 then build line := build_line + *(°' RN
' else begin 0
. build_line := build line +*; *;
. speq_line”.line := build_line; gy
: New(speq_lime); N
" speq_line”.next := nil; N
y current_line”.next := speq line; sy
i current_line := spec_line; e
N build _line := ! L _, *
" end; Fe
- build line := build_line + proc{i].input(Jj].mame; POS
. buildq line := build_line +' : in '; -3
. build line := build _line + proc(i].input[jl.in type;
. end; =

E -3

. for J := 1 to max outputs do
. if proc[i].output(j].name <> '* then =
- begin o
; count := count + 1; ¢
i if count = 1 then build _line := build line + *(°
; else begin ’
S build_line := build line +'; *; f::~_‘
r speq_line”,.1ine := build line; S
: New(spec_line); R
g spec_lime”.next := nil; -.::-.
{ current_line” .next := spec_ lins; by
l current_line := speq_line; i
: build_line := ° " NN
. end; ~
N build _line := build_line + proc[i].output(j].name; ::.;Z'
" build _line := build_line +' : out '; N
1 build 1ine := build line + proc[i].output(j].out_type; NSy
! end; .
.. .
‘ for § :=z 1 to max_inouts do =
’ 1f prooli]).inout[j].name <> '' then -
M begin
I count := count + 1;
;
; e,
I‘ 'u.{
N .

TR S I] e
LR PG 020 30 AT AT A AU AR A SRR

116

if count = 1 then build_line := build line « '(°
else begin

build_line := build _line +'; ';

speq_line”,.line := build line;

New(speq_line);

speq_line”.next := nil;

current_line”,.next :z speq_line;

current_line := spec_line;

build line := ! '
end;
build line := build _line + proc[i].inout[J].name;
build 1line := build _lime +' : in out ';
build line := build_line + proc[i].inout[j].inout_type;

end;

if (proe[i).proc_type <> 'f*)} then
if count > 0 then build line := build_line + !);!
else build _line := build line +*'; !
else begin
if count > 0 then build line := build _line + ')';
speq_line”,.line := build line;
New(speq_line);
speq_line”.next := nil;
current_line”.next := speq_line;
current_line := speq_line;

build_line :s ! '
build_line := build_line +' return *';
buildq _lime := build_line + prooc(i].f_returns;
build_line := build _line + ';';

end;

speq_line”.line := build line;

New(specq_lins);

speq_line”.next := nil;
current_line".next := speq_line;
current_line := spec_line;
end; { with object [index] }
end; { build _parms }

begin
New(spec _line);
speq_line".next := nil;
head := speq_line;
current_line := speq_line;
build_lins := 'with *;

with objeot[index] do

begin
count := 03
J =13

if oomment <> nil then build_ocomments(comment);
for 1 := 1 to max_accesses do

e e e e emen e e e e e

A S S O N G (S O RN R LY

17

j if access[i].index <> 0 then { valid access }
, begin
case object[access{i].index].point,object_type of
pt, 's' : begin { build with clause }
. count := count + 1;
if ocount > 1 then
begin
build_line := build line + ', ';
spec_line”.line := build line;
New(speq_line);
b spec_line”.next := nil;
. current_line”,.next := spec_line;
) current_line := spec_line;
X build_line := ' L
' end;
build_line := build_line +
object{access[i].index].name;
end;
. 'g' : begin { build package instantiations }
: gen_line(j] := gen_pkg;
gen_line[J] := gen line[j] +
object[access(i].index].name;
gen_line(J] := gen line[j] + ';';
Ji=Je+ 13
end;
begin {build subprogram instantiations }
gen_line[j] := gen_sub;
gen_line(J] := gen_line[Jj] +
object[access[1].index].name;
gen_line(J] := gen_ line(J] + ';';
Ji=J+ 13
end;
end; { case }
end; { for accesses }
. if length(build line) > 5§ then
- begin { link "with" clause }
'l
9
H

oo e

*ht

build_line := build_line + ';
spec_line”.line := build line
New(speg_line);

spec_line”.next := nil;
current_line” .next := spec_line;
current_line := spec_line;

end;
build _line := '*;
A case point,object_type of { build declaration line }
'p!' : begin
build_line := 'package ';
build _line := build_line + name;
X build_1line := build_line + ' is';
R spec_line”.line := build _line;

New(speq_line);

LGRS O R LR SO A SC SN

; Fo
6‘..‘ "
vied

118 204

bt

. A

speq _line” .ne := nil; 354
current_line”.next := speq_line; Wl
current_line := spec_line; ik]
end; Iy
's' : begin "b ¢
build_line := 'procedure '; ‘:%
build_line := build _line + name; B
build_parms(index, 1); O
New(spec_line); 7
spec_line”.mext := nil; RS

{ current_line”.next := spec_line; A

. current_line := spec_line; BANE.

' end; %

'g' : begin A

speq_line”.line := 'generic ‘'; !

New(speq_line);

q speq_line”,.next := nil; o
L current_line".next := spec_line; A
current_line := speq_line;

build_line := 'package '; "

build _line := build_line + name; :—,q

build _line := build line + ' is'; o

] speq_line”,.line := build line; A

; New(spec_line); o0y

q speq_line”.next := nil; t:-

\ current_line”.next := spec_line; o

current_line := spec_line; -

b end; ~* .'

['h' : begin SAS

| speq_line”,.line := 'generic '; et

1 New(speg_line); RS

; speq_line”.next := nil; N

current_line”.next := speq_line; Rl
current_lins :z spec_line; .

build _line := 'procedure '; Y

build _line := build_line + name; R

build _parms(index, 1); AN

New(speq_line); ;--‘.;'}~

spec_line” . next := nil; e

current_line”.next := speq_ line; ¥

current_line := spec_line; WA

end; NG

end; { case } { end build declaration }

build_line := ''; A
for 1 :=1 to jJ=-1do i

begin { link generic instantiations } —an
speq_line”,lipe := gen line(i]; N

New(speqg_lime); 2

speq_line”.next := nil; '
current_line”,.next := speq_line; X

current_line :z speq line; pty?

. R . . . -2 . . - . . N - . TR T R fp b gt W Sl
e MY S L WE WL WA TP " : - -8 e S S b AL s N pS X i3 Ay VI LILTURS L)

119

end; :‘-“‘

i

if (point.object type = 'p!) or
(point,object_type = 'g') then
for 1 := 1 to max procedures do
if procl[i]l.name <> '' then
begin { valid procedure }
if proc[i].comment <> nil then
build_comments(proc[i].comment);
if proc[i].proc_type = 'p' then
build_line := ¢ procedure *
else build lins := ! function ';
build_line := build _line + proc{i]).name;

w6 V. ¥,

e

et

build_parms(index, i); S
end; ([if valid procedure } -
. if (point.object_type = 'p') or -ﬁ
E (point,object_type = 'g') then NN
: begin =
- build _lipe := ‘'end *'; P
! build _line := build line + name; hﬂ
build _line := build _line + ';';
. spec_line”.line := build_line;
. end;

spec_line”.next := nil;

. end; { with object }
end; { procedure Gen_Ada }

{ } -

{ Brings up the viewing window and cals Gen_ada N

for the selected object } W

) N

: procedure View_text; N

. const col = 10; "

“ e

3 var o~

; current : spec_ptr; "l

X found : boolean; 5

in _object : char; bo el

5 index, locop : integer; E

» lins_no : integer; T

head : speq_ptr; -

y more : char; oy
> begin

line_no := 7;
select(x, y, found, in_object, index);
if found then
begin
Gen_ada(index, head);
Move_cursor_out;

. S I T T I
- .
.

PR I Y LA e
e S NS

PR b et ¥b R gah Bt et Bty * Bat dat 840 ¥ o Rt g et Wat #¥ 0.7 Ha% Bat Rt 9 R Rat Bef $a* BT g Spi B b ee bacbe _bx ba i in gbe iz of

v
s
)
120 :’:
e
StoreWindow(1); R
SelectWindow(}); R
DefinsHeader(4,object[index].name); .t
SetBackground(0); o
SetHeaderOn; £
DrauBorder ; ,\\3
gotoxy(col, 1ine_no); S
current := head; o
repeat K
if line _no > 19 then N
begin ?‘4‘9
writeln('press escape key for more data');
repeat N
read(Kbd, more); N
until ord(more) = 27; "
more := ' '; X
for loop := 7 to 20 do 5SS
begin b
; gotoxy(col, loop); o]
2 writeln(' ':60); Py
" end; =
line_no := T; oy
gotoxy(col, line_no); '.(
end; { if information fills window } oy
writeln(current”.line); t:.=
line_no := line mo + 1; o
gotoxy(col, line _no); -z
current := current”.next; \
until current = nil; o~
gotoxy(10,24); N
writeln('Press any key to return to access graph'); e
repeat until keypressed; ===
gotoxy(1,24); writeln(' ':80); o
more := ' f; i
ClearScreen; e
RestoreWindow(1,0,0); NN
Move_oursor_in; N
end {if object found }
else begin R
gotoxy(3,24); “t‘
! writeln('Object not found.!, o
: ' Press any key to continue'); N,
) repeat until keypressed;
: gotoxy(1,24); writeln(® ':80); Na
end; e
end; view text N
: i ’ } K3
N { Allows editing a selected components specification } ::-_{Q
e
procedure Edit;
const n
e
.
vy

\“.--‘-

el \‘{\‘ RN

; o
& 121 l'f":’
Fi f;“.c
* e

\ title col = 10; gi;
r,:.:

var .

command : char; N,
B comment : comment_ptr; ﬁ'f;(é
\ exit : boolean; s
found : boolean; .

N name_change : boolean; '
out_object : char; 3

i, J, index : integer; '5"

new_diagram : boolean; 4

line no : integer; t
& procedure clear_window; & y
i var 1 : integer; ‘
: begin A
: for 1 := 10 to 20 do [
[begn li’::
" gotoxy(title ocol, 1); '.':~
k- writeln(® ':60); |<
line_no := 103 =

" end; s
. end; { clear window } ‘t_;.
r.’
. procedure edit,_comments(var in _ptr : comment_ptr); ;{"
] var comment : comment_ptr; "
cur_comment : comment_ptr; =

in comment : string[60]; o8,
prev_comment : comment_ptr; '."

N . -

o begin 'u

! cur_comment := in ptr;
prev_comment := in ptr;

) repeat N
] gotoxy(title col, line _no); L§\
if in ptr = nil then . ,‘,'_
write('== 21) %
else
write(cur_comment”.line,' ?'); bl

repeat e
3 read(Kbd, command); N
1 until (command = 'm') or (command = 'n') or '_,
y (command = 'a') or (command = 'e'); e
- writeln(' ', command); oY
lins _no := line no + 1; N
if (command = 'm') and (ig_ptr <> nil) then NI

begin "

in comment := ''; :.-
, gotoxy(title_col, line_no); Ly
' write('==t); hos

n\ L]
d -.'.i'l
e e e e et e s s
AT IS T N O SO S A AT RS AR TAS RR LI S A LI .'.':l‘ C " NI ,o "..""f‘.:'l-" LSRN $:$¢ dz.'d'..‘- T e e ”, .‘1

readln(in_comment);
line_no := line_no + 1;
if in ocomment = '' then
prev_comment” .next :=z cur_comment”.next
else
cur_comment”.line := '«=! + in comment;
end; { if command = 'm' }
if command = 'e' then exit :z true;
if command = ‘'a' then
begin
if in ptr <> nil then
while cur_comment”.next <> nil do
cur_comment := cur_comment”,.next;
repeat
in comment := '%;
gotoxy(title ool, 1ime_no);
write(t==1);
readln(in_comment);
lips _no := line_no « 1;
if in comment <> '' then
begin
New(comment);
comment”..line :z '-=' 4+ in comment;
comment”.next := nil;
if in ptr =z nil then
begin
in ptr := comment;
cur_comment := oomment;
end
else begin
cur_comment”,,next := comment;
cur_comment := comment;
end;
end;
until in comment = '';
end; { if command = 'a' for add }
prev_ocomment := cur_comment;
cur_comment :=z cur_comment”,next;
until (exit) or (cur_comment = nil);
end; { edit _comment }

begin
nameg_change := false;
exit := false;
line_no :x 10;
Select(x, y, found, out_object, index);
if found then
with object[index] do
begin
Move_cursor_out;

i '-':V
"s

Y

..‘.,.
Sety % o

:.'_;:',l. 3

B

Y
o

’l

I

'J".

"
Ty
’

v,
l’f" . "A."? PR

’,

=

~ .
.

po Nt il Bl el W

DR

ote

e s e

-

PR M e e

N Y B B EL S B

123

Storeindow(1);
SelectWorld(s);
SelectWindow(4);
SetBackground(0);
DefineHeader(4,'COMPONENT EDITCR!);
SetHeaderOn;
DrauBorder;
gotoxy(10,7);
writeln('m to modify an item. n to go to next item.',
' ¢ to exit.');
gotoxy(10,8);
writeln('Enter m,n, or e after each ? prompt.');
gotoxy(10,9);
writeln('Enter a after =~"comment...® ?',
' to ADD a comment,');
gotoxy(title_col,line no);
write('OBJECT NAME : ');
write(name, ' ?');
repeat
read(Kbd, command);
until (command = 'm') or
(command = 'n') or (command = 'e');
writeln(' ',command);
lire no := 1line no + 1;
if oommand <> 'e' then
begin
if command = 'm' then
begin
name_change := true;
gotoxy(title_col, line_mo);
write('Enter new OBJECT NAME : ');
name :z '';
readln(name);
line _no := line_no + 1;
end;
edit_oomments(comment);
for 1 := 1 to max_procedures do
if not exit then
with proec[i] do
begin
clear_window;
if (point.object_type = 'p') or
(point.object_type = 'g') then
begin
gotoxy(title_col, line_no);
write('Procedure or Function NAME : ');
write(name, ' ?');
repeat
read(Kbd, ocommand);
until (command = 'm') or
(command = 'n') or (command = 'e');

LR AR SO CEAS L RO

et e
BB

-
DR
» »

-

-
T Sy
AN T

-

'
ey

L AE
ot oo Pl

>

7,
' 4

7
Ay

X7
5%

.,._.
X

92'_

bl
T

" T. A4

o

. 4
" "'
s

é

L

P ¢

124

s
e

writeln(' ',command); s
line_no := lime_no + 1; <
if line no > 20 then clear_window;
if command = 'e' then exit := true; e
if command = 'm' then !
begin [
gotoxy(title _col, line_no); A
write('Enter new NAME : !'); -'
name :z ''; ey
readln(name); %
lipe no :z line_no + 1; o
if lins_no > 20 then clear_window; by
end; I3
edit_ocomments(comment); Lol
end; { if package o generic package } ,
gotoxy(title_col,line_no); NN
if not exit then RNy
begin X
gotoxy(title _ocol, line_no); =
write('(p)rocedure, (f)unction : ');
write(proq_type, ' 7!);
repeat O
read(Kbd, command); .3
until (command = *m') or
(command = 'n') or (command = ‘'e'); he42
writeln(' ',command); b
lins_no := line_no + 1; -
if 1lins_no > 20 then clear_window; .
if oommand = 'e' then exit := true; Y A
if command = 'm' then
begin A {
gotoxy(title_col, lins_mno); ‘ﬁ‘
write('Enter new choice (p)rocedure or', o

' (f)unction : '); s
prog_type := ' ';
readln(proc_type); i
line_no := line_no + 1; o
if 1ines_no > 20 then clear_window; fret]
end;
if (proc_type = 'f') and (not exit) then e
begin O
gotoxy(title_col, line_mo); 3
write('Function returns TYPE : '); T
write(f_returns, ' ?2'); hées
repeat AR
read(Kbd, ocommand); -

until (command = 'm') or
(command = 'n') or (command = ‘e');
writeln(' ',command);
l1ine_no := line_no + 1;
if line_no > 20 then clear_window;

_"’" ','
[
XN,

7

s ~v " v N e v e
: -."... t’::-' ‘:ﬂ.‘;‘-‘

'. *
L]

.

<

if ocommand = 'e' then exit := true;
if command = 'm' then
begin
gotoxy(title ool, line_no);
write('Function will return what TYPE : !);
f_returns :x '';
readln(f_returns);
line_no := lime_no + 1;
if line_no > 20 then clear_window;
end;
end; { if function }
if not exit then
for J := 1 to max_inputs do
if not exit then
with input{J] do
begin
gotoxy(title ool, line_no);
write('INFUT NAME : ');
write(name, ' ?');
repeat
read(Kdd, command);
until (command = 'm') or
(command = 'n') or (command = 'e');
writeln(' ',command);
line_no := line_no + 1;
if lins_no > 20 then clear_window;
if command = 'e' then exit := true;
if ocommand = 'm' then
begin
gotoxy(title_col, limm_no);
write('Enter new INPUT NAME : ');
name := '';
readln(name);
1ine_no := lins_no + 1;
if lins_no > 20 then clear_window;
end;
if not exit then
begin
gotoxy(title _ool, lime_no);
write(*INFUT TYPE : *);
write(in type, ' 2°);
repeat
read(Kbd, command);
until (command = 'm') or
(commgnd = 'n') or (command = ‘e!);
writeln(' ?!,oommand);
lioe_no := line_no + 1;
if line_no > 20 then clear_window;
if command = 'e' then exit := true;
if command = 'm' then
begin

RS

Y

.
.‘;'v

-
4 e

- :;‘.f‘f Ao

F f._-'. Py

S BRI '

-

IR

>

.,‘"!'i'.?;f:'; D
ra i PR~ -

h |2

.,'.

__'
AT YE

N P O P S S I A M RN 08 B S TN I ST AT AT A ad 00 0. 94 ’x‘\‘x A N -.‘

»

126 lli-‘;
1t
o o
0
gotoxy(title ool, line_no); 5
write('Enter new INPUT TIPE : '); o
in type :s ''; -
readln(in_type); o
line_no :s line_no + 1; =
if line_no > 20 then clear_window; ‘*
end; bt
end; { 1f not exit)
end; { for inputs } -
ir (not exit) and (prog_type <> 'f£') then e
d for j := 1 to max outputs do o
if not exit then 33
with output{j] do ii
begin 330
gotoxy(title_col, line_mno); s |
write('0UTPUT NAME : '); ay
write(name, * ?'); iyt
repeat N X
read(Kbd, ocommand); w‘
until (command = 'm') or %
(command = 'n') or (command = 'e'); —_
writeln(' ',command); '
) line_no := line _no + 1; o
. if line_no > 20 then clear_window; .lﬁ
if command = ‘'e' then exit := true; 22
if command = 'm' then %S
begin
gotoxy(title _col, line_no); "
h write('Enter new OUTPUT NAME : '); R
name =z ''; 0y
readln(name); &""
\ 1ime_no := 1ine_mo + 1; 2
: if line _no > 20 then clear _window;
end;
. if not exit then .
) begin 3\\
: gotoxy(title_ool, line_no); ;{
. write('OUTPUT TYPE : '); Y,
write(out_type, ' ?7); g
repeat
i read(kbd, command); A,
until (command = 'm') or co
(command = 'n') or (command = ‘e'); Pt
writeln(' ', command); o
h line_no := line_no + 1;
if 1ine_no > 20 then clear_window; -
if command = 'e' then exit := trus; o
if command = 'm' then R
begin KA
) gotoxy(title col, line_no); R
write('Enter new OUTPUT TYPE : '); o
1 'ﬁ"
s
d oY,
L
\ ,:(
Ay
-:.‘\.
3y

A ',’,"’».q;',“:iw:lk TR \ A Wi - ’ Y > \ h o v N\ .~ . '.‘-;\s. :-)‘y'_:\.'.:-..x.'-}\)‘\‘-}‘.“..:-.‘b‘- \‘.\ .'é-.' "

127 ¥,
) 1y,
: %
out_type := ''; e
readln(out_type); ¢ -
line_no := lins_no + 1; "
1 if lins no > 20 then clear_window; ot
' end;
end; { if not exit } i
end; { for outputs } P

if (not exit) and (proq_type <> 'f') then
for J :z 1 to max inouts do —
; if not exit then o "
' with inout[3] do 3
begin 3
gotoxy(title_ocol, line_no); '
write('IN OUT NAME : '); ety
write(name, ' ?'); —
4 repeat =
. read(Kbd, command); :‘r:
until (command = 'm') or Wy
(command = 'n') or (command = 'e'); et
writeln(® ',command); 508
1ine_no := line no + 1; 2 m

if line no > 20 then clear_window;
if command = 'e' then exit :z true;
if command = 'm' then
1 begin
. gotoxy(title col, lims_no);
write('Enter new IN CUT NAME : ');

7= Y
% gwt:m(" ‘

TR
R
Ay

name :z '’;
readln(name);
line_no := line _no + 1} 2
if line_no > 20 then clear_window; '&
end; QLY
if pot exit then 4y,
begin
gotoxy(title col, 1line_no); e
o tmlte('Il QUT TYPE : '); ’.;';'.
write(inout_type, ' ?'); koo
repeat)
read(Xbd, ocommand); e,
until (command = 'm') or R
(command = 'n') or (command = 'e'); Ve
. writeln(' ?!,command); o
lins_no :z line_no + 1;
if line no > 20 then clear window; o
if command = 'e' then exit := true;
if oommand = 'm' then
begin)
gotoxy(title ool, 1line_mo); ;tiq
write('Enter new IN QUT TYPE : '); RS
inout_type := ''; ot
readln(inout_type); L3
Y
-
R
-"’Q
“ A
, hS
|.‘.-:‘

L SRS T Cqor o o, o ¢ e W a8 (¥ 4, P N P . o R T T R T T P JURLIUA SR AT . ~‘.-,-- e
YN e e A LY R I 0 R T A & S S R SR RS L LS S ORI N

f i i

3 wor N Yyt “aud Nt

128

line_no := line_no + 1}
if line no > 20 then clear_window;
end;
end; [if not exit }
end; { for inouts }
end; { if not exit after prooedure meme change }
if (point.object_type = 's') or
{point,object_type = 'h') then
exit := true;
end; { if not exit from procedures }
end; { if initial command not exit }
ClearScreen;
Restoreindow(1,0,0);
Move_cursor_in;
if mme_change then Zoom _out;
{ to redraw screen with new names if any }
end { if object found }
else begin
gotoxy(3,24);
writeln(*Object not found, Press any key to continue');
repeat until keypressed;
gotoxy(1,24); writeln(® ':80);
end;
end; { edit procedure }
{ }
{ Reads a display file and puts the information
into the data structure for use by GTGALS }

proosdure Read display(filename : filenames);

var
in file : text;
code : char;
obj_ind, prog_ind, access ind,
arrow_ind, pt_ind : integer;
i, J : integer;

procedure read _ocomments(var in _ptr : comment_ptr);

var current_comment : comment_ ptr;
comment : comment_ptr;

begin
new(in_ptr);
current_comment := in ptr;
readln(in_file, current_comment”,line);
current_ocomment”.next := nil;
read(in_file, code);
while code = 'c! do
begin
new(comment);

- is‘ = .: .’;.'

- - v
Pl
;:-:4:'.

Lo

r'f:fr?r

e

o
ot

s

S

]

ot
A

~r
)
>/

. N AL
A ;i' XAXANXN. .

129 b

ol
A

[2 &

e 17800

current_comment”,.next := comment;
current_ocomment := comment;
readln(in_file, ocurrent_comment”.lins);
current_comment” .next :z nil;
read(in_file, oode);

end;

i

Q‘I!?iw'

"}i?:

end; { if comment } Tl
begin 3
assign(in file, filename); o
resst(in file); s %
read(in _file, code); 4

i

R, &

A

while (code = 'p*) or e
(code = 's') or .
(code = 'g') or <
(code = 'h') do { read in objects } peos

begin DN

read(in file, objl _ind); :}_.::\.
with object[obj_1ind] do “tad
begin
point.object_type := code; -
id4 := obj_ind; RN
readin(in _file, point.x, point.y, -.f;\.:
.child _pt.x, child_pt.y); 5
readln(in_file, diagram,child diag); PR
readin(in file, name);
if (diagram = next_diagram) then =
next_diagram := diagram + 1; b\:
prog_ind :s 1; v
read(in_file, code); hagh
if oode = 'c¢! then read comments(comment); 5‘*
while code = '#' do { read in procedures } W
begin -
readln(in_file, proc[proc_ind].proc_type, oy
proc[proc_ind].mame); o
if proc[proc_ind]l.proq_type = 'f*' then T
readln(in file, proc[proq_ind}.f _returns); R
Left_justify(proc[prog_ind].name); o
read(in_rile, ocode); e
if oode = '¢' then N
read_comment s(proc[prog_ind),comment); ‘_}.‘_ iy
J = 13 RO
while code = '?' do { read inputs } «%: 0
begin :
readln(in file, proc(proc_ind].input(j].name); o
readln(in file, proc[proc_ind].input{jl.in_type); ey
read(in _file, ocode); ;.‘;
Ji=J+1; ENG
end; Ot

J = 1 ;‘:ﬁ

while code = '1' do { read outputs }

begin
readln(in _file, proc[proq_ind].output(j].name);
readln(in file, proc[proc_ind]l.output[j).out_type);
read(in_file, ocode);
J iz j+ 1;

end;

J =13

while code = '+' do { read inouts }

begin
readln(in_file, proc[prog_ind].inout[j].name);
readln(in _file, proc[proc_ind].inout[j].inout_type);
read(in file, code);
Jee=3+ 1

end;

proc_ind := succ(proc_ind);
end; { while procedures }

access ind := 1;
while code = '@' do { read in access parameters }
begin
readln(in file, access{access ind].index);
read(in_file, ocode);
access ind := succ(accesy ind);
end; { while access parameters }

end; { with object }
end; { while objects }

next_object := obj_ind + 1;

arrow_ind := 1;
while not EOF(in_file) do { read in arrows }
with arrow[arrow_ind] do
begin
pt_ind := 1;
while (code = 'a') or (code = 'e’) do
begin
if (code = 'e') then next_arrow := succ(next_arrow);
poim[pt_ind].object_type := code;
readln(in file, point[pt_ind].x, point(pt_ind]l.y,
diagram);
read(in _file, ocode);
pt_ind := succ(pt_ind);
end;
readln(in file, from_index, to_index);
arrow_ind := succ(arrow_ind);
if not EOF(in _file) then read(in file, ocode);
end; { while arrows }
next_arrow := arrow_ind;

P
< v"'~ N

"SIV
RAY

0
’ 4

'l
/, PRy

o7

N
.:,|{,7"

SRS

n“

- ol _..\q‘.'.‘‘-.

N ping B AL M Sabadd 2 A SR D g .- b Y c$ ia 3 Y L ALY, B hig loca Siom s @ ML P w s @ ¥ A sipd Epis Pae Py Fmt b kvabd e ii a0 g W o g >¢
f oS

23
A
3
131 3
i
gotoxy(1,24); writeln(' ':80); hiig
gotoxy(3,24); writeln(temp file,' retrieved'); o0
closs(in frile); 3
y :nd; { read _display }) Ko,
) ¢
- { Writes out the data from the data structures R
\ to a wniquely formatted .gph display file } %
"
procedure Write _display; : F
var N
filename : filenames; e
: i,J : integer; A
: index : integer; o]
) display_file : text; T
template_file : text;
open_paren : boolean; ;Z:
pad_name, pad_type : integer; =4
) ':u:“
J procedure write comments(in ptr : comment_ptr); 2‘
var next : comment_ptr; =
-\.‘,7\
begin -2
next :z in ptr; «';.?;-_‘,
repeat ooy '
writeln(display_file, 'c’,next”.line); o= Y
next := next”.next; =
until next = nil;
end; o
. begin NN
gotoxy(3,24); ~
write(! Enter file mme to save display file', .
. ' (or return) : '); A
; temp file := ''; ot
readln(temp file); ~
if temp file <> '' then N
begin { write display file to disk } vl
filename :z temp file + '.gph'; o
assign(display_file, filename); oo
rewrite(display_file); ‘.;:j.
for 4 1= 1 to next_object do ::IEI:
with object[i] do Ny
if 1d <> 0 then -
begin
writeln(display_file, point.object_type:1,' ', >
id:3,' ', point.x:6:1,' ',point.y:6:1,' ', N
child pt.x:6:1,' ', child _pt.y:6:1); heS
writeln(display_file,diagram:2,' ?*, A
¥ -\.
-
)
N
R
;'.::{'

o (O - alh Gy NS CH S CR ST A G R SRR SR e e T N A T T A T
R 250 % .0 2 AL LT [o¥] A o “a LN .Y, ata aals

VRSN JJ.;JM 0 AT IO S

child diag:2);
writeln(display_file, name);
if ocomment <> nil then write_comments(comment);
for index := 1 to max_procedures do
if proc[index).name <> '' then
begin
writeln(display_file, '®', proc[index].proc_type,
proc(index].name);
if proc[index].prog_type = 'f' then
writeln(display_file, proc[index],.f_returns);
if proc[index],.comment <> nil then
write_oomments{proc[index].comment);
for J := 1 to max _inputs do
if proc[index].input[j].nmame <> '' then
begin
writeln(display_file,'??,
proc[index].input(j].name);
writeln(display_file,
proc[index].input(j].in type);
end;
for J := 1 to max outputs do
if proa[index].output{j]l.name <> '' then
begin
writeln(display_file,*1°,
proc[index].output[j].name);
writeln(display_file,
proc[index].output[j]l.out_type);
end;
for J := 1 to max_imnouts do
if proc[index].inout{ j].name <> '' then
begin
writeln(display_file, '+!,
proc[index].inout[j].name);
writeln(display_file,
proc[index].inout(j].inout_type);
end;
end;
for index := 1 to max_accesses &
if access[index].index <> 0 then
writeln(display_file, '@ ',access[index].index);
end; { with and for }

for 1 := 1 to next_arrow do
with arrow[i] do
begin
for index := 1 to max_arrow_points do
if point[index].object_type <> ' ' then
writeln(display_file,
point[index].object_type:1,
! ', point{index].x:6:1,
' ¢, point[index].y:6:1,
' ',diagram);

PR
DA -

T e od

PR U Y T I Y O O O T T S U T O T R A O P 3 T T TG LN T ey X T

’ 133

if from index <> 0 then
writeln(display_file, from index:4, to_index:4);
end; { with and for }
gotoxy(1,24); writeln(' ':80);
gotoxy(3,24);
writeln('Display file ',temp file,' saved!);
close(display_file);
Delay(600);
end; { if file name }

end; { Write display }

{ }

{ Uses Gen_Ada for each object in the data
structure and writes it out to a ,ada file }

procedure Gen_specs;

var
current : spec_ptr;
head : spec_ptr;
i : integer;
outfile : text;
response : char;

begin
gotoxy(3,24);
write(' Enter y to create Ada language specification',
!t (or return) : *);
response := ' ';
readln(response);
if response = 'y' then
begin
if temp file = '' then
begin
gotoxy(1,24); writeln(' ':80);
gotoxy(3,24);
write('Enter name of specification file : ');
readln(temp file);
end;
teap file := temp file + '.,ada’;
assign(outfile, temp file);
rewrite(outfile);
for 1 := 1 to max_objects do
if object{il.id <> 0 then
begin
Gen_ada(i, head);
current := head;
repeat
writeln(outfile, current”,line);
current := current”,next;
until current = nil;

B G g K i N L e LS R, o Pa . e Tee T, 0 %=1 A L AT S n A iy 2 tmey MR is-

A
€S
el ¥
134 g
0 'f"‘é,
writeln(outfile); %31,
end; W
closs(outfile); ’_3
gotoxy(1,24); writeln(' ':80); ::ﬂzu
gotoxy(10,24); s
writeln('Ada language specification written to file ¢, At
temp file); oty
delay(900); o
gotoxy(1,24); writeln(' ':80); 5
ClearScreen; oy
end; { if specification file requested } Az
end; { generating specification file } ‘;{
N
{ } Red,
begin { main program } 3
Init_structure; R
InitGraphic; {initialize the graphics system} P
x := 500; POty
y := 500; KOS
next_arrow := 13 o
next_diagram := 2; >
next_object := 1;
screen_num := 1;
DefineWorld(1,0,1000,1000,0); R
{give it a world coordimate system} iy
DefineWindow(2, trunc(XMaxG1b/2), trunc(YMax01lb/2), e
trunc(XMaxG1b/1.995) , trunc(YMaxG1b/1.995)); e
DefineHeader(2,'THIS IS THE CURSOR'); {give it a header} B
DefineWorld(2,0,1000,1000,0); :‘{:{P
{give it a world coordinate system} AR
DefineWindow(3, trunc(XMaxG1b/10) , trunc(YMaxG1b/1.8), v
trunc(XmaxG1b#9,.3/10), trunc(YMaxG1b®#9/10)); .
DefineW indow(4, trunc(XMaxG1lb/10), trunc(YMaxGlb/6), uf-::",
trunc(XMaxG1b®9,3/10) , trunc(YMaxG1b#5/6)) ; N
Defim"orld(u,o '80’25'0); 'q::\:;
et
temp _file := '*; htnd
write('Enter name of old specification or!, v
! return for new specification :'); SN
readln(temp file); :‘{t_\:.
if temp file <> '! then fea
begin k. "';
in file name := temp file + '.gph'; NG
Read display(in _file name); -
long file mame := temp_file; _ DX
Nes_screen(temp _file, 1); N
Draw_diagram(1,long file name); el
.nd -“_.l‘\‘.g
else New_screen('GTGALS',1); AT

.‘ Tq'.."'-f.".'"' '(".‘(, ';\'P"-‘ LN, \' '-.."-'\" HH ') ‘-“ .\‘.\- “‘- 55 "‘ S Y

135
repsat
read(kKbd, Ch); {read the keystroke}
case ord(Ch) of
97 : Read arrow; { 'a' for arrow }
) 103 : begin { 'gp' for generic package }
{ 'gs' for generic subprogram }
; read(Kbd, Ch);
if Ch = 'p' then Read object('g');
if Ch = 's' then Read_object('h');
end;
112 : Read_object('p'); { 'p' for package }
115 : Read _object('s'); { for subprogram }
X 118 : View_text; { 'v' for view }
g 122 : begin
read(Kbd, Ch);
' case Ch of
. '1' : Zoom_in;
o' : Zoom_out;
end; { case }
end; { Zoom }
100 : Delete; { 'd* for delete }
101 : Bdit; { 'e!' for edit)
! 104 : Help; { 'h* for help }
\ T2,
75,
7,
v 80 : Move_cursor;
] end;
\ until Ch = ' { char exits program}
y Write_display;
Gen_specs;
LeaveGraphic; {leave the graphics system}

end,

NN "' NS AICRICRK BN “..:.-"_-.*..'-'.\‘,‘l..._.\’.'.;,\:, '-:_\"_ .

N A N R AR A R

A GRAPHIC TOOL FOR GENERATING
ADA LANGUAGE SPECIFICATIONS

by

DONALD E. BODLE, JR.

B.S., Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

e ol Rty La et

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

R “y - N R R AL LK N T D TR S S L. IS SR TR TA "L - i

A Graphic Tool for Generating Ada Language Specifications & h

by Don Bodle I

Abstract

Methods for specifying software systems have gained

v 3
v oz
PP e A

Y
ok &

increasing attention as the size and complexity of computer
applications has grown. The purpose of this paper is to

present the current state of software specification

P R 2

':7'}"},‘ T

4
]

techniques and to propose improvements in one component of

aﬂ," »

these techniques, the user interface.

TR
.D 'h “.~

AR
'l .

..
>
Ry -

The use of automated tools for specification is described,

&

with particular emphasis on their user interfaces. Many

o~
LS

-,

features of these tools are highlighted. From this study, a

PG

proposal for a graphic interface for software system

OGO

l

specification is developed, describing the desirable

.
U
‘
3y %

-",’7

features of such an interface. Finally, a prototype of the RS

proposal is examined.

of ': ‘l‘ .: ‘.- .l
Pl
A l'l,“l’

:
] - h‘.‘

et e a ettt M. . et et ety W
Y ‘\l'... $-.\. ~ \q.' ~.q\-.\ o »

;‘- .';: NS . SRy W&

- - v . . - " g Ll) » ‘_
NN s‘{'-. NSO O LR O

LY UL N \,g;a.{qu © Rt

\ -~
Y10 .1 p{h A SN : _:"'- o, .{\.' '.1 q?ﬁ

