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ABSTRACT

The inverse scattering theory concept of layer stripping is applied to a ,. .'
variety of inverse seismic problems. This results in fast algorithms that solve

these problems more simply and quickly than techniques used previously on

these problems, and also admit physical insight into their operation.
A layer stripping algorithm works by recursively identifying and stripping

away differential layers of the medium. As the wave front of the excitation
passes through a given depth z, the first non4zero value of the medium
response at depth z yields information about the medium at depth z. Then the

excitation and response can be propagated through the known differential layer

at depth z to depth z + L, where the process is repeated.
The inverse seismic problems for which layer stripping fast algorithm

solutions are obtained include: -(1) the reconstruction of layered acoustic and

elastic media from their reflection responses to impulsive plane waves at non-

normal incidence; (25 the reconstruction of a layered acoustic medium from

its reflection response to a point impulsive or harmonic source; and (3) the

reconstruction of a two'dimensionally inhomogeneous medium from its plane

wave reflection response. None of these algorithms has appeared previously
in the literature.

Computer runs of some of these algorithms are included. andltheir
performance is quite satisfactory. Several procedures for improving their
performance on noisy data are given. Some results on general inverse
scattering theory, and relations between these fast algorithms and fast

algorithms that exploit structure in matrices or the kernels of integral
equations, are al presented.
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CHAPTER I

Introduction

1. 1 Motivation

The inverse seismic problem can be defined roughly as follows.

The medium to be probed (i.e., the earth or the ocean floor) is

excited by some sort of source, generally explosive in nature. The

response of the medium to this source is measured, and from this response

.4".some properties of the medium are determined. The importance of this

problem in locating oil and mineral deposits should be evident.

The above definition is vague because the problem can be

specialized in many different ways. The experiment may take place

entirely on land, in which case the medium response is measured by

seismometers as the (particle) displacement, velocity, or acceleration at

a given point. Alternately, the experiment may take place at sea, in

which case the medium being probed is the sea bottom, and the medium -

response is measured by hydrophones as the pressure in the ocean water.

The medium itself may be assumed to consist of homogeneous layers of

varying thicknesses, horizontally stratified, or lateral variation in medium

properties may be permitted. The medium may support the propagation

of elastic (P and S) waves, or of acoustic (P) waves only.°
A particular case of the inverse seismic problem that has been the

focus of considerable attention in recent years is the case where the

medium is parametrized by profiles of local density 3(z) and local

acoustic wave speed c(z), and these two quantities vary continuously

° . o -.. -,. .. . .. .. . . * ° . •..-
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with depth. Since any medium discontinuity likely to occur in the real ,

world could be modelled by a fast-changing continuous function, this

is in a sense the most general case of a one-dimensional acoustic medium.

In addition, the difficulty of the general problem necessitates some

simplifying assumptions; this case (henceforth referred to as the

"1-D problem") is specialized enough to admit an exact (in principle)

analytic solution, while still being general enough to be of some practical

use.

Starting with the landmark paper of Ware and Aki (1969), solutions

to the 1-D problem have generally employed a mathematical physics

approach. This is because the basic acoustic and stress-strain 0
equations of the 1-D problem may be transformed into a Schrodinger

equation, to which exact inverse scattering solutions are already known

(See Section 3.2.2). However, these solutions require the solution of '

a Marchenko integral equation, which is computationally unattractive since

the amount of computation involved for a discretization of order N is

O(N3). In addition, the medium parameter profiles are required to be

twice differentiable.

In searching for computationally faster ways of solving the 1-D

problem, the general inverse scattering problem concept of layer-

stripping suggests itself. A layer-stripping algorithm applied to the

1-D problem works conceptually as follows. The basic equations for the

1-D problem are transformed into a coupled set of partial differential

equations which describe the propagation of up- and down-going waves as

they interact with the medium and with each other. If the downgoing

wave is assumed to contain a leading impulse (representing an explosive

source), then the first reflection of this impulse into the upgoing wave

* .. ,.
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at a given depth reveals information about the medium at that depth.

This information is then used to propagate the waves downward, where -

information about the medium at this (lower) depth is obtained.

Proceeding recursively in this manner, differential layers of the medium

are "peeled away" as the algorithm penetrates deeper and deeper.

Mathematical details of this procedure are given in Chapter II; the

physical interpretation of the workings of such an algorithm should be

quite apparent. The advantage of such an algorithm is that it requires

only 0(N 2 ) computation--a considerable savings.

How can the layer-stripping algorithm get by with O(N2 ) computation?

Details are given in Chapter II and are too complicated to recount here, but

the special structure (identity-plus-Hankel kernel) of the Marchenko

integral equation allows a fast algorithm solution to the discretized version

of this equation in the same manner that the special structure of a Toeplitz

matrix allows a fast algorithm solution to a Toeplitz system of equations by

the Levinson algorithm. In fact, the layer-stripping algorithm consists in .4.

part of a continuous-parameter version of the fast Cholesky algorithm

encountered in studying the factorization of Toeplitz matrices, and there

is a close relationship between this algorithm and the Levinson algorithm.

Thus, layer-stripping is more than just a technique for solving

inverse scattering problems. In addition to admitting an unusually vivid

physical interpretation of its operation, it ties in quite readily with

factorization of matrices and solutions of integral equations whose kernels """"-.'-

have specific forms. This in turn is related to the capacity of this

procedure to exploit these forms to generate faster and simpler algorithms

for solving these inverse scattering problems. This suggests that layer-

stripping might be a powerful technique to bring to bear on various

- * r ~ - - . , ~ ' -.. ... ..

. - - -. .-
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inverse seismic problems--more so than has generally been recognized.

The subject of this thesis is the theoretical development of the .

layer-stripping methodology, and the application of layer-stripping

methods to a wider variety of inverse seismic problems than has been

dealt with so far. Among the major problems considered are:

(1) The "offset" problem in which the medium is probed

with impulsive plane pressure waves at non-normal

incidence. This allows the recovery of density and

wave speed profiles separately as functions of depth,

which is not possible for the 1-D problem described

above;

(2) The "point-source" problem in which the medium is

probed with spherical waves emanating from an

impulsive point source, or from a point harmonic

source. This is a situation far more likely to be

encountered in practice than infinite plane waves,

which must be simulated by stacking data;

(3) The "elastic" problem in which the medium supports

the propagation of both P and S waves, with continual

interconversion between the two types of waves. The

goal is to recover profiles of the Lamd parameters

X(z) and p(z) as well as the density p(z);

(4) Higher-dimensional problems in which lateral variations

of density and wave speed are allowed, viz. p(x,z)

and c(x,z).

The goal of this thesis is not merely to obtain algorithms that

solve these problems, but to interpret these algorithms physically and

................... -.
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relate them to past work done in solving these problems, insofar as

possible. It is also noted how the various algorithms generalize from ". --

one problem to another, pointing out mathematical similarities in the

problems themselves that may not be immediately apparent.

Comparison with Other Inversion Methods

The inversion algorithms given in this thesis are all amplitude-based

procedures, since the amplitude of the measured medium response is

used to reconstruct the medium. ("Amplitude" here refers to the P
amplitude and phase of the reflection response.) Ths is in contrast to

travel time inversion methods, which use only the arrival times of various

modes or converted waves. It should be noted that travel time inversion

methods such as the Herglotz-Wiechert formula (Aki and Richards,

1980) generally have difficulty with low-velocity zones in the medium,
p,.-- .

require the assumption of geometrical seismics (i.e., high frequencies),

and are unable to reconstruct the density of the medium. None of

these difficulties applies to the layer stripping inversion procedures given

in this thesis.

However, the requirement of measuring the amplitude of the

reflection response introduces noise into the inversion problem. In

Chapter V, some study is made of the behavior of the offset problem .

layer stripping algorithms of Chapter IV in the presence of noise. The

results of this study show that the algorithms work well in the presence

of small amounts of additive noise, but break down at some depth for

higher noise levels. This is due in part to the poor conditioning of the

inverse problem at this depth, and does not reflect an inherent fault in

the algorithms themselves, as is commonly believed. This issue is

~~~~~~~~~~~~~~~~~~. .. -.... ...-.......:... ........ ,.... .. .................. .. :..... ,.,'' ... ,,,-..,.. . .,.. . .--



20 @5-

discussed in more detail in Chapter V.

The presence of a significant amount of noise in the data suggests

the use of deconvolution methods in which the medium is modelled as

an autoregressive (AR) filter. In using this approach, it is necessary

IN to assume that the medium reflection coefficients constitute a white

(i.e., completely uncorrelated) random process, which is tantamount

to neglecting all multiple reflections within the medium. Thus

deconvolution methods are inherently inexact. Further, Lash (1982)

reports that multiple reflections can constitute a significant part of the

reflection response, particularly for sedimentary, layered media.

This last point is particularly important, since sedimentary,

layered media constitute a likely milieu for deposits of petroleum.

Petroleum deposits tend to be found in "traps" about half a square mile

in extent and about four miles deep. Such traps tend to arise in

layered media generally formed by sedimentary processes. Since •

searching for these traps by inverse seismic methods is of great

interest to oil companies, the relevance of the approach used in this

thesis should be evident. .

1.2 Literature Survey

Details of past work done on each of the problems considered in

this thesis are given in the introductions to each chapter. In this

section, the most important references are collected and summarized.

Application of the Layer-Stripping Principle

The concept of layer stripping has been developed only recently,

and not many references are available on the application of this concept

to inverse scattering problems. Although the concept of dynamic

V
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deconvolution (e.g., Robinson, 1982) can be considered to be a

precursor to the results of application of the layer-stripping idea,

WEapplication of the layer-stripping concept itself has occurred only

recently.

Bruckstein et al. (1983) is a good survey paper on the concept and

its relations to other means of solving inverse scattering problems,

i.e., integral equations. Chapter II of this thesis contains most of

the important ideas of this paper, with more emphasis on applications.

Symes (1981), Santosa and Schwetlick (1982), Symes and Zimmerman

(1982), and Bube and Burridge (1983) have all applied layer stripping

ideas to the 1-D problem at normal incidence, and the latter two report

satisfying results for numerical tests on synthetic data. Corones et

al. (1983) used the time-domain version of a Riccati equation as an

invariant embedding equation, which can be considered to be a layer

stripping approach. This also solved the one-dimensional problem at

normal incidence.

Carrion (1983) has recently applied layer stripping ideas to the

one-dimensional problem at non-normal incidence (i.e. , the "offset"

problem). However, Carrion's procedure is much more complicated than

the alogrithm specified in Chapter IV, and lacks the physical

interpretability of that algorithm. Carrion's procedure is also not

easily related to layer stripping algorithms for the one-dimensional

problem at normal incidence, and does not generalize to algorithms for

the elastic problem and higher-dimensional problems, as does the

algorithm of Chapter IV.

Similar objections apply to the layer stripping algorithm given in

Clarke (1984) for the elastic problem. In particular, the medium

...................... ""..
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- parameter updates are far too complicated to consider this algorithm

[" a "fast" algorithm. Although Clarke's (1984) algorithm, unlike the

algorithm given in Chapter VI, does in principle furnish an exact

. solution for a discrete medium (i.e., a medium whose properties change

" sharply at each interface between layers), the numerical results

presented in Chapter VI indicate that the more complicated discrete

* medium updates may not be worth the added computation time they require.

Mendel and Habibi-Ashrafi (1980) and Habibi-Ashrafi and Mendel

(1982) have utilized the principle of layer stripping in a somewhat

different manner from the approach taken in this thesis. Their approach

is to perform a maximum-likelihood estimation of the time and strength

of each primary reflection, using a matched filter and a transversal

equalizing filter, and then use this data to propagate the waves downward.

This a posteriori approach is in contrast to the a priori approach used

in this thesis. Although it is more complex and time-consuming, it .

may well work better on noisy data. Shiva and Mendel (1983) apply

this approach to the elastic problem, but as in Clarke (1984) the use

of discrete medium updates results in a very complicated procedure.

The One-Dimensional Problem at Normal Incidence

The landmark paper of Ware and Aki (1969) stimulated interest

in the 1-D problem, in which an infinite impulsive plane pressure wave

is normally incident on a medium supporting the propagation of acoustic . -

.-.-
(sound) waves and having depth-dependent density p(z) and wave * H-
speed c(z). By suitable transformations (see Chapter Ill), the basic

acoustic and stress-strain equations of the 1-D problem are transformed

into a Schrodinger equation. The inverse scattering problem for a
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Schrodinger equation is well known both in mathematical physics and in '*",4,.

inverse scattering theory, and its solution requires the solution of

a Marchenko integral equation, as discussed in Chapter II. This

approach, which may be termed the "classical" approach to the 1-D

problem, has been employed by many authors.

The result of solving the 1-D problem is the impedance pc([)

as a function of travel time -c. Gerver (1970) showed that the

impedance is all that can be reconstructed for an excitation by plane

waves at normal incidence, and that the reconstruction is unique,

subject to mild assumptions.

Other methods for solving the I-D problem have been Hven by

Burridge (1980), who derives the Marchenko integral equation and

several related integral equations directly in the time domain, bypassing

the Schrodinger equation formulation. Gray (1983) derives a

Marchenko equation directly in terms of a reflectivity function r(-r),

bypassing the Schrodinger potential. This allows discontinuities in r(T)

and requires only that the impedance be continuous, unlike the

Schrodinger formulation for which the impedance must be twice

differentiable. The excellent review paper by Newton (1981)

summarizes several different ways of solving the 1-D problem.

The discrete version of the 1-D problem consists of a layered

medium being probed by a discrete impulsive plane wave. The layered

medium is assumed to be composed of horizontally stratified homogeneous

layers whose thicknesses are such that the travel time A- through each

layer is the same. Then all events (reflections at or transmissions

through any interface, or arrivals at the surface) occur at integer

multiples of L% making the problem a digital signal processing problem.

S bi,-
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This model of the medium was first proposed by Goupillaud (1961), and

is often referred to in the literature as a "Goupillaud medium." Analysis

of wave propagation through such a medium has been performed in

Kunetz (1962), Berryman and Greene (1980), Aki and Richards (1980),

and Robinson (1982), among others, and it is shown that the impedance

of the layers may be recovered by solving an identity-plus-Hankel

system of equations. It is shown further in the above references that

this system can be solved by a fast, Levinson-like algorithm that

exploits the structure of the system matrix. Berryman and Greene

(1980) showed that discretizations of the Marchenko integral equation

and the Schrodinger equation lead to the same identity-plus-Hankel

system, so that discretization of the medium is equivalent to

discretization of the equations.

The Offset and Point-Source Problems

The offset problem is a variation on the 1-D problem described above

in that the probing impulsive plane wave is not incident normally on

the medium, but arrives at the top of the medium at a slant or "

offset (see Figure 4.1). Although the density and wave speed are still

functions of depth only, the medium itself is now assumed to be two-

dimensional in extent--the waves no longer propagate only along a 0

single vertical ray path. Since the offset experiment may be performed

at two different angles of incidence, resulting in two different ray

paths through the medium, the density and wave speed profiles (z) 0

and c(z) can be recovered separately as functions of depth This is

unlike the 1-D experiment, for which only the impedance as a function

of travel time pc(-r) can be recovered. 0

.............
...---.... .......--
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The offset problem was first analyzed by Ware (1969), who showed .-

how it could be transformed into a 1-D problem parametrized by the

angle of incidence. Coen (1981) used a different transformation to -p

obtain a Schrodinger equation which, upon solution of a Marchenko

integral equation, yields the index of refraction. Coen's procedure

requires the solution of two Marchenko integral equations (one for

each experiment) and some algebra to recover p(z) and c(z).

Howard (1983) gives still another procedure that results in a

matrix Marchenko integral equation. The profiles p(z) and c(z) are

then recovered using a rather messy reconstruction procedure. Although

Howard uses the transformation into upgoing and downgoing waves used

in Chapter IV, his procedure is not at all well suited for computation.

In the point-source problem the medium is probed with spherical

impulsive waves emanating from a single point source. This is a more

realistic set-up than supposing an infinite plane wave which cannot

exist in the real world and must be simulated by stacking data.

Although transformations between plane waves (actually cylindrical

waves) and spherical waves are well known (e.g., the Sommerfeld

integral; see Aki and Richards, 1980), surprisingly little work has been

done on the inverse problem with a point-source excitation.

Coen (1982) uses the Hankel transform of order zero to transform

the point source problem to the offset problem. A Hankel transform must

be performed on the original data (vertical particle velocity at the

surface), and Coen notes that this can be interpreted as a Radon -.F'

transform. However, the resulting (synthetic) offset problem may

involve an impulsive plane wave incident at a post-critical angle, which

must be dealt with in a manner different from that of the case of

. . ..
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pre-critical incidence.

Coen (1982) and Stickler (1983) consider the inverse problem in

which the medium is excited by a point harmonic source. By performing

this experiment at two different source frequencies, the profiles P(z)

and c(z) are recovered separately. Coen posits an experiment run on Oj

land, obtains a Schrodinger-like equation, and requires the solution of

two Marchenko integral equations. Stickler posits an experiment run at

sea, and requires the solution of a Schrodinger equation inverse

potential problem by trace methods.

The Elastic Problem

The elastic problem is a variation on the offset problem in which the .

medium is now assumed to support the propagation of both P waves

and S waves. This is a more realistic assumption for the earth than

the assumption of acoustic (P) wave propagation only, which is 0

tantamount to treating the earth as a fluid. The problem is difficult

in that the two wave types are being continually interconverted as they

propagate through an inhomogeneous medium. The goal of the elastic

problem is recovery of profiles of the Lamd parameters X(z) and p (z),

and the density p(z).

Previous work on this problem has yielded methods of solution

that are computationally arduous to implement. Blagoveschenskii (1967)

exhibited several integral equations whose solutions yielded the

parameter profiles, and by combining the Gel'fand-Levitan inverse

scattering procedure with the solution of a Volterra-type equation,

Carroll and Santosa (1982) were able to recover the parameter profiles

more simply. Baker (1982) solved the related problem of

reconstructing radially-varying parameters by using spherical harmonics

l..,. °..- .-. -*" -"., ... ... .. "
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and Marchenko integral equations. ofb

Kennett and Illingworth (1981) gave a very complicated procedure ,-

involving approximations by Airy functions and propagator matrices,

which "propagate" displacements and stresses from one depth to another

as a state transition matrix propagates the state of a system from one

time to another. Frasier (1969) gave a treatment of the discrete

elastic problem analogous to Berryman and Greene's (1980) treatment of

the 1-D problem, although the different wave speeds of P and S waves

cause problems in defining a Goupillaud medium model.

In summary, none of the methods brought to bear on the elastic

problem so far can be considered to be attractive from a practical,

computational perspective.

Higher Dimensional Problems

Very little work has been done in obtaining exact solutions to

higher-dimensional inverse seismic problems, in which the density P(x, z)

and wave speed c(x,z) are allowed to vary laterally as well as with

depth. The most commonly used approach is migration, in which an

observed wave field is back-propagated into the medium to determine

its strength at the point of reflection, yielding the reflection coefficient

at that point. This is effective if the medium consists of a few large

homogeneous regions, with variation only at a few (non-horizontal)

interfaces. Tomographic approaches employing the Born (weak scattering)

approximation are useful only if the wave speed has little variation.

Neither of these approaches can reconstruct density or account for

multiple reflections.

Newton (1980) has extended the Gel'fand-Levitan potential

reconstruction procedure to general 3-D media. However, this result has

V , .* ....-... ..... .. .,..- - .. , °, .... , , - .- .... ... , .. .,, ,,...-,...-. -.... ,..,. ,. . . '-" ..,'-.
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proven to be of limited use in solving higher-dimensional seismic .'

problems.

1.3 Contributions of Thesis

The major contribution of this thesis is the demonstration that layer

stripping principles can be applied to a much wider variety of inverse 0 -

seismic problems than has generally been realized. Other contributions

include the numerical demonstration that the new algorithms do in fact

work on synthetically generated data, and that the offset problem

algorithm works on slightly noisy data as well.

The material of Chapter II is a synthesis of the major results of

Bruckstein et al. (1983) and Yagle and Levy (1984a). The results on

inverse scattering for asymmetric two-component wave systems, and on

recovery of the potential of a Schrodinger equation by conversion to a

symmetric two-component wave system (Section 2.3.5) have not previously

appeared in the literature (save for Yagle and Levy, 1984a), although

Jaulent (1982) used an approach similar to the former to solve the

inverse problem for a lossy non-uniform transmission line. 0

The material covered in Chapter III is a compendium of results from

a variety of sources, including Ware and Aki (1969), Berryman and

Greene (1980), Robinson (1982), Bube and Burridge (1983), and Yagle 0 W

and Levy (1984b). The results on the use of the continuous-parameter

fast Cholesky algorithm to reconstruct a continuous layered medium were

obtained concurrently with and independently of the work of Bruckstein 0

et al. (1983) and Bube and Burridge (1983). The Schur and dynamic

deconvolution algorithms for reconstructing a continuous medium seem to

be new to the literature, although they are only a trivial generalization .

oft .-.,.
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of the discrete medium results. However, Chapter III does do an

excellent job of linking together the various approaches to solving the

one-dimensional normal incidence inverse problem, and of showing the

dual nature of the layer stripping and integral equation/matrix equation

methods for both continuous and discrete layered media.

The layer stripping algorithms of Chapter IV are all new, with the

continuous medium algorithms for plane wave and point source excitations

having appeared in Yagle and Levy (1984b). The material of Sections

4.2.1., 4.3.1, and 4.4.1 on integral equations solutions, Hankel and

Radon transforms, and turning points, respectively, is necessary

foundation material taken from a variety of sources (see references for

Chapter IV).

Chapter V consists of a variety of modifications to the algorithms

of Chapter IV, and numerical tests of the various algorithms on

synthetically-generated data. The discussion of forward and backward

stability is due to Stewart (1973), and the condition number threshold

modification is adapted from Bruckstein et al. (1984). The modification

of using a least-squares fit to compute the updates at each depth,

the lossy medium algorithm, and all of the numerical results and

observations are new.

All of the results of Chapter VI (save for the contents of Section

6.3.3, which are taken from Frasier, 1969) are new. The contents of

Sections 6.2 and 6.4 appear in Yagle and Levy (1985). It should be

noted that the 4x4 system matrix for upgoing and downgoing waves in

inhomogeneous media has been derived in several papers by B.L.N.

Kennett, e.g., Kennett and Illingworth (1981). Y'"':

In Chapter VII two different inverse problems are treated, since

* . -t
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they are mathematically analogous. This analogy seems to have gone

unnoticed previously. The fast algorithms for solving the two

formulations of the inverse problem with a point harmonic source are

new, and they appear in Yagle and Levy (1984c). The results on the

inverse resistivity problem are taken from Levy (1984).

In Chapter VIII the layer stripping approach is applied to higher-

dimensional inverse seismic problems, in which the density and wave

speed vary laterally as well as with depth (viz. p(x,z) and c(x,z)).

All of the results in this chapter are new. The results of Sections 8.2

and 8.4 have appeared in Yagle (1983).

In this section the contributions of and new results in this thesis S

have been summarized. In the process, an overview of the thesis as a

whole has been given. Since the major contribution of this thesis is

the application of the layer stripping concept to a wide variety of -

inverse seismic problems, considerable attention is paid throughout the

thesis to analogies between various problems and solutions, and to ways

in which solutions to one problem generalize to those of another. In •

the next chapter a foundation for all of this is laid by discussing the

concept of layer stripping itself, the ways in which it may be used to

solve various types of inverse scattering problems, and the ways in

which these methods are mathematically dual to the usual, integral- "

equation-based methods of solving these problems.
~ S
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CHAPTER II

Layer Stripping and Inverse Scattering Theory

2.1 Introduction

In this chapter we collect a variety of results on inverse scattering

theory from several sources, and present a unified treatment of several

methods for solving inverse scattering problems. In particular, the

mathematical concept of layer stripping (Bruckstein et al, 1983) is

explained and used to develop algorithms for solving inverse scattering

problems.

In Section 2.2 the concept of an inverse scattering problem is quickly

reviewed, and the symmetric two-component wave system inverse

scattering problem is defined. Most of the inverse seismic problems

dealt with in this thesis can be cast into this form, or into an analogous

form. Thus approaches used to solve this problem can be (and will be)

used to solve other problems in this thesis. The properties of the

scattering matrix are then discussed, with attention paid to physical

interpretation of these properties in terms of conservation of energy.

In Section 2.3 differential methods for solving inverse scattering

problems are derived and discussed. These methods utilize the concept '-.-

of layer stripping, which means that the scattering medium is

reconstructed differentially, layer by layer, rather than all at once in

a "batch" procedure. The continuous-parameter fast Cholesky, Schur,

and dynamic deconvolution algorithms (which are all different versions

of the same algorithm) are derived and applied to the inverse scattering

problem for a lossless transmission line. Next, a fast algorithm for the

%'-7



asymmetric two-component wave system inverse scattering problem is

derived and applied to the inverse scattering problem for a lossy -f

transmission line. Finally, other differential methods are derived,

including the misnamed "method of characteristics" of Santosa and

Schwetick (1982), and two methods for recovering the potential of a

Schrodinger equation. These methods will be used in Chapters VIII

and VII, respectively.

In Section 2.4 integral equation methods for solving inverse

scattering problems are derived and discussed. The Marchenko,

Gel'fand-Levitan, and Krein integral equations are all derived using the

treatment of Bruckstein et al. (1983). The Krein-Levinson algorithm,

a continuous-parameter version of the famous Levinson algorithm

for solving Toeplitz systems of equations, is shown to solve these

integral equations. Finally, an approach due to Levy (1985) which

interprets the inverse scattering problem as an orthogonalization

problem is used to again obtain the Marchenko integral equation.

In Section 2. 5 relations between differential and integral methods

are explored. In particular, the relation between the fast Cholesky

algorithm (a differential method) and the Krein-Levinson algorithm

(which solves the integral equations) is discussed. The relations are

then illustrated by interpreting the problem of linear least-squares

estimation of a stationary stochastic process as an inverse scattering

problem, and solving it using both algorithms.

2.2 Inverse Scattering Problems

In an inverse scattering problem a medium is probed with some sort

of disturbance (e.g. , acoustic or electromagnetic) and the effect on the

i.j: :

- , - ' .. '-,' -, 'k-i---.- -..-i L-i" .. -. ', -. -.'-
"
." ' ' . . . -. '. .
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disturbance (either the scattered field or the transmitted field, or both)

is measured. From this measurement an attempt is made to reconstruct

the medium. Obviously a priori assumptions about the medium are

necessary. For example, in Chapter IV it will be assumed that the

acoustic medium being probed is lossless, layered (medium parameters * r
vary only with depth z), isotropic (no variation with direction), linear

(small strains), and completely specified by wave speed c(z) and

density p(z). The problem is then to recover two functions p(z) and

c(z) from measurement of the scattered field. This is now a mathematical

problem, but in general still a difficult one.

The Symmetric Two-Component Wave System

Consider a lossless, one-dimensional scattering medium described by

the coupled partial differential equations

Jplox + 5p/ot -r(x)q(x,t) (2-1a)

q - ciq/ t =-r(x)p(x,t) (2-1b)

These equations are a special case of equations discussed by Zakharov

and Shabat (1972) and Ablowitz and Segur (1981). The reflectivity

function r(x) completely characterizes the medium, and it is assumed that

r(x) = 0 for x < 0 and r(x)GLl[0,o-). This means that for x < 0 and

x-- p(x,t) and q(x,t) have the forms

p(x,t) = p(x-t), q(x,t) = q(x+t). (2-2)

Thus p and q can be interpreted as waves propagating rightward and

leftward at unit velocity. The interpretation of the medium being probed

by waves at x =0 and x is evident.

What measurements are necessary to recover the reflectivity function

-~1
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r(x)? To answer this question, we look at the scattering matrix for the

two-component system.

The Scattering Matrix -

By taking the Fourier transform of (2-1), we obtain

Vr -r(x) .
d (2-3)

-,--.__ 
_

Now if x is discretized with discretization length A (i.e., x =n) ,

a simple forward difference approximation to the derivative in (2-3) -- :

and noting that 1 - j wA-e W for small L gives the elementary

scattering section described in Figure 2. 1. This figure shows that

r(x) L is the fraction of the rightgoing wave which is reflected by a

section of thickness L at point x inside the medium. The discrete

ladder structure displayed by Figure 2.1 has been used to design signal

processing architectures for speech processing (Markel and Gray, 1983),

digital wave-filter synthesis (Deprettere and Dewilde, 1980), spectral

estimation (Makhoul, 1977), and linear estimation (Dewilde, 1982;

Dewilde and Dym, 1981; Dewilde et al., 1978).

The elementary scattering layers of Figure 2.1 can be composed by

using the rules of composition for scattering layers described in

Redheffer (1962). The resulting aggregate medium is described by the

scattering matrix

TL(w) RR(W)

I -,.- .-. "

(2-4)

RL TR)

L R..
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A

op.

P (x ,c) ~(x +AW)

r(x)L r(x)A

cx, )--I ~~ (x

2.1 Elementary scattering sections obtained by discretizing C
the two-component wave equations.

.
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which relates the incoming and outgoing waves appearing in F'igures

2.2a and 2.2b. In Figure 2.2a, the medium is probed from the left by

a rightward propagating wave e3  and RL(W)e 3  and TW

are respectively the reflected and transmitted waves. Figure 2. 2b

corresponds to the case when the medium is probed from the right.

More generally, for arbitrary waves p(x ,w) and q (x ,w)

P =,, OL (w)e-w ~(X,W) q= ~L W ej X (2-5a)

0for x < 0, andOa

j(x, W) P (w)e 3jj cj(x,W) 4 q(w)e j (2-5b)
RR

as x ~,and

[ R ( w)] = S(W) [PiiW] (2-6)

L (W) q(W)

expresses the outgoing waves (pR q as a function of the incoming

waves (p L' q R

* if

aCx, W) i 1,2 (2-7)

0are two arbitrary solutions of (2-3), and if diag(1,-1), the system

(2-3) has the properties that

d a (a 1H (x, w) E a (x, WJ)) =0 (2-8)

and

d~ W(a (x,w), a2(x,u.) 0, (2-9)aT 1 2 w
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JWKA -JWx

e (incident) Scattering TL we (transmitted)

A Medium
R LMwe (reflected) 0

2. 2a Scattering for an impulsive wave inciderrt from the left.

0

0 Scattering RR M e (rfctd

A j Medium ejWX
TRW e (transmitted) t-e (incident)

2. 2b Scattering for an impulsive wave incident from the right.
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where H denotes the Hermitian transpose, and where .

W(al,a 2 ) .. .. (2-10)
2 Pl2 - qP2 -.-

is the Wronskian of a and a Equations (2-8) and (2-9) may be .. .-

easily verified by direct computation, but they have important

implications. Equation (2-8) shows that 1p.(x,w) 2 - Jqi (xw.

independent of x, and employing this at x 0 and x yields

I.(o w)I2 + 14i( ,w)12  i , 12+ 1i(o I 2 (2-11) ,

The left side of (2-11) represents the incoming energy of the probing

waves, and the right side of (2-11) represents the outgoing energy.

Thus equation (2-11) is a statement of conservation of energy, i.e.,

the system is lossless.

In equation (2-9), let a1 be the solution of (2-3) when the

medium is probed from the left, and let a be the solution of (2-3)

when the medium is probed from the right (see Figure 2.2). Then

employing the implication of (2-9) that W(al,a 2) is the same at x - 0

and x - yields

e - RLe 0 = _te • - 0. (2-12)

or

TR(w) =TL(W) (2-13)

Physically, this means that the transmission loss through the system is

the same going in either direction. This is a statement of reciprocity. -

Note that if time were reversed the leftgoing and rightgoing waves would

switch their identities but still suffer the same transmission losses.

" ........... . ...... 1 .



42

If TL and TR were different, the system would depend on the direction
L R.

of time.

From equations (2-6) and (2-11) we have, for any solution,

"p P ,R H L 1S
[l q] = P *] = [PL S . (2-14)

Since this holds for any solution we must have

sHs =I (2-15)

i.e., the scattering matrix is unitary. Writing out (2-15) element by

element yields

2W R~ 2 (2-16a)

T(w)RL(w)* + T( )*RR(w) = 0. (2-16b)

Equation (2-16a) is an obvious statement of conservation of energy, while

equation (2-16b) is a phase relationship that can be derived by

considering the following two experiments.

Let the medium be probed from both ends at once, first with two -

waves each of amplitude unity (e-3 ux and eJWX), and then with the waves

e-j x and je Equating the incoming and outgoing energies for each

experiment, we have

1 2 + 12 lI+ LI2 + I^+iRI 2 1 j 1 2 + lIkL 12 + ljl 2

(2-17a)

+ IRI 2 + TRL + T*R R + (TRL+T*RR

A .I

°.4

" - . . .. . . -.'." ,- , -. " "-. .-- ". " ". % '-.". - " .'. ". """ " " ." .' ." "" "'-'\'. ."" .' '. ', i"."-, " " "' -.k i"_: 'I
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2 + 2 2 2 '2 2  2

+ Ii IiT4 Ll ITi+jkR1 l + IR LI + liT
]R I'-R 2 ^ ^ ^ ^  ^ * ^  ^ (2-1l7b) '+ "

12 + (TRL+T*RR) - j(TRL +T*RR)* •2-7b

Subtracting off (2-16a) from (2-17a) and (2-17b), dividing (2-17b) by

j, and adding (2-17a) and (2-17b) yields (2-16b). Hence (2-16b) can be

obtained entirely from the principle of conservation of energy. Note

that superposition of energy equations is only valid for lossless systems,

so (2-16b) depends on the losslessness of the medium.

Another way of deriving (2-16) is by considering time reversal.

Suppose that the medium is probed from the left, as in Figure 2.2a,

and time is reversed. This is now equivalent to probing the medium

with T(-w) = T*(M) and RL(-w) = RL G,), and getting out .at the

left end of the medium and 0 at the right end. Interpreting this in

terms of Figures 2.2a and 2.2b as an experiment forward in time,

and equating the results of the experiments running backward and

forward in time immediately yields (2-16). This interpretation, unlike

the previous one, utilizes the reciprocity of the lossless system.

The relations (2-16) furnish considerable information about the

scattering matrix S(w). Indeed, it can be shown (Faddeev, 1967;

Chadan and Sabatier, 1977) that if it is known a priori that T(M) has

no poles in the lower half of the complex plane, then T(w) also has

no zeros in the lower half-plane and is therefore minimum phase.
2

Then, since the magnitude of T(w) is known from 1- IRL()I or
R1- IR(: )2, the argument of T (w) can be recovered from its magnitude,.-'.'....

using the Hilbert transform and cepstrum. The other reflection

coefficient can then be obtained from (2-16b). Thus S() can be ** .

completely reconstructed from knowledge of either RL(w) or RR()

. . . . ..
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alone (explicit formulae are given by Chadan and Sabatier, 1977, and

by Faddeev, 1967). This means that the inverse scattering problem

*. defined by the two-component system (2-1) being probed by a wave

-jjx and knowledge of either RL (W) or RR(w) is well-posed.

The significance of poles of T(w) in the lower half-plane is

that such a pole allows a localized solution to exist. Such a solution

cannot be discerned from the results of this experiment. To see this,

suppose there is a pole of T(w) at -jW , where w is real and positive.
p p

Take Figure 2.2a and divide all three waves by T(w). Then there is

a solution which behaves like e-j(-j p)x = e-Px as x - 00, i.e., it

vanishes. The reflected wave at x = 0 behaves like 1/T(up), hence it

is also zero. Yet there is a non-zero solution inside the medium. Such

a solution is called a bound state (Chadan and Sabatier, 1977).

Technically, a bound state is a square-integrable solution with negative

energy. Physically, a bound state corresponds to an inverse

scattering problem in which no scattering occurs. In nuclear

physics, for example, this corresponds to an incident particle

being captured by the nucleus. In seismology, this corresponds

to a low-velocity zone in which energy is trapped in a waveguide-

like effect.

Bound states can often be ruled out by causality. Suppose a

medium initially at rest is probed with a causal disturbance

p(x,t) = (x,t)l1(t-x). (2-18)•

If p(x,t) is causal, its Fourier transform must be analytic in the

lower half plane for all x. Then T(w) = p(-,w)/t(O,w) must also have

this property, implying that there are no bound states (Newton, 1981). .

'a" ..- . . . . .
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Then the scattering matrix S(c,) can be completely reconstructed from

R L(,,) or RR(w). This is important, since in the inverse seismic

problem, we have access to only one side of the scattering medium.

Note that our sign convention for the Fourier transform is the

opposite of that of Faddeev (1967) and Chadan and Sabatier (1977),

which explains why we use the lower half-plane to study the

properties of S(w), instead of the upper half-plane used in the

mentioned references.

Having defined the inverse scattering problem for the two-

component wave system, we now define procedures for solving it.

* 2.3 Differential Methods for Inverse Scattering--Layer Stripping

A differential or layer-stripping method for solving an inverse

scattering problem works as follows. Suppose that the medium is

being probed from the left, as in Figure 2.2a, and that the leftgoing

and rightgoing waves p(x,t) and q(x,t) are known at x from previous

recursions. The first reflection of the rightgoing wave p(x,t) into

the leftgoing wave q(x,t) yields information about the medium at x.

This information is then used to propagate the waves from x to x + L.

The problem has now been altered to one starting at x + L instead of

at x. Since the waves continue to propagate through the medium, the

procedure can be performed recursively, reconstructing the medium

as the waves propagate through it.

This concept has been developed in some detail by Bruckstein et

al (1983), and applied by Symes (1981), Santosa and Schwetlick (1982),

and Bube and Burridge (1983) to the one-dimensional inverse seismic

problem, and by Sondhi and Resnick (1983) to the inverse problem of

*. .,] ' ' ., '. . ] .' - . _,',',,' '' ' '.L _. _ _ ' ' '. _ _ . . " ' -" ,"i " " i"" " - " ' ' ' " " " " ' " "" " " " " " " "" " " " " ' '



- - .7 . - - Y . - . - V4.

46

determining the shape of the human vocal tract. Note that it is a

stripping principle instead of a constructive one: instead of extending .

the reconstructed medium from [O,x] to [O,x+A], each recursion 'U

strips away the effect of the medium in [x,x+A), transforming the

problem support from [x,-) to [x+L,-). Hence the name "layer

stripping."

2.3.1 The Continuous-Time Schur and Fast Cholesky Algorithms

The archetypical layer stripping algorithm is the fast Cholesky

algorithm, so named because in its discrete form it performs a Cholesky

factorization (LDU, or lower-triangular times diagonal times upper-

triangular)of a Toeplitz matrix (Rissanen, 1973; Morf 1974; Musicus,

1981). The connection between this factorization and inverse

scattering will be explored in Chapter III. The frequency-domain

version of this algorithm is the Schur algorithm, and dynamic

deconvolution utilizes a Riccati equation derived from the Schur

algorithm. Although these three are different forms of the same

algorithm, the fast Cholesky algorithm forms the most efficient procedure

of the three for solving problems.

Fast Cholesky Algorithm

To obtain the fast Cholesky algorithm, we assume that the medium

is quiescent at t = 0, and that it is probed from the left by a known

rightward propagating wave

p(O,t) = 6(t) + P(O,t)l(t) (2-19)

. which is incident on the medium at t = 0. Here 6(. denotes the

Dirac delta function and

V.44), h h .. *. . '
L ,'-..'..'-.. ..','-. ...... ,,,-.- -:-,- ,,"" -..-. " ,.4,'-",-, '-'.",, ,",4 :,." 4 4 4 ,,," ."..", -", . .. .', -. .,
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1 for t >0
1 (t) = (2-20) .. ,

0 for t < 0 J-e

is the unit step function. Note that the main feature of p(0,t) is that it ,W

contains a leading impulse which can be thought of as a tag indicating .,'

.d' .JV..
the wavefront of the probing wave. The measured data is the reflected

wave

q(0,t) = q(0,t) 1(t) (2-21)

recorded at x 0. In the special case when P(0,t) - 0, 4(0,t) = RL(t)

is the impulse response of the scattering medium and its Fourier transform

RL(w) is the left reflection coefficient. Note that RL(w) can also be

measured by sending into the medium sinusoidal waveforms at various

frequencies and measuring the magnitude and phase shift of the

reflected sinusoidal wave. In the following, for convenience we will

omit the subscript L of RL(t) and RL(W).

Since the medium is causal and originally at rest, the waves p(x,t)

and q(x,t) inside the medium must have the form

p(x,t) = 6(t-x) + (x,t)1(t-x) (2-22a)

q(x,t) = 4(x,t)1(t-x) (2-22b)

where P(x,t) and 4(x,t) are smooth functions. By substituting (2-22)

inside (2-1), and identifying coefficients of the impulse 6(t-x) on both

sides of (2-16), we find that

r(x) = 24(x,x) (2-23)

and

lS/Dx + 1/3t = -r(x)j(x,t) (2-24a)

qlx- 2j/Dt -rCx) (x,t) (2-24b)
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The recursions (2-23) - (2-24) constitute the fast Cholesky recursions

(Bruckstein et al, 1983), and have also been called the downward

continuation recursions by Bube and Burridge (1983). Note that only

the smooth parts of p(x,t) and q(x,t) are propagated--it is not necessary

to represent the impulse numerically.

The initial data for these recursions are the measured waves

*i(O,t) and 4(0,t). The algorithm (2-23) - (2-24) can be viewed as

using a layer stripping principle to identify the parameters of the

scattering medium. Thus, assume that the waves 1(x,t) and (x,t) at V

x have been computed. The reflectivity function r(x) is obtained from

(2-23) and is used in (2-24) to compute the waves (x+A,t) and 4(x+A,t)

at x + A. The effect of the recursions (2-23) - (2-24) is therefore

to identify and then strip away the layer [x,x+A).

Discretization of the Fast Cholesky Algorithm

To see how the fast Cholesky algorithm is propagated, let distance

x and time t be discretized by x = nA and t = mA, where n and m

are positive integers. Then a forward-difference approximation to the

partial derivatives in (2-24) yields the fast Cholesky recursions

l(x+A,t+A) = j(x,t) - r(x)A4(x,t) (2-25a)

4((x+A,t-L) = 4(x,t) - r(x)A(x,t) (2-25b)

i (x+L) = 24(x+A,x+A) (2-25c)

The recursion patterns for the waves are illustrated in Figures 2.3a

and 2.3b. We start off knowing the waves at x for all t, and we wish to

to find the waves at x + 6 for all t. Although it may seem as though .4"

information for t < x is being lost, recall that by causality there can be

* -

. .--...
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\slope=1

o 0  x x+A~

2. 3a Recursion pattern for updating the downgoing waves in
the fast Cholesky algorithm.

40' slope =I
X slope -

0 X0  x0+ A

2. 3b Recursion pattern for updating the upgoing waves in
the fast Cholesky algorithm.
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no wave at x until the initial excitation has had time to reach that far.

Hence both waves are zero for t < x.

The Schur Algorithm

An alternative procedure for reconstructing the medium is to utilize

directly the coupled differential equations (2-3) for the two-component

wave system together with

r(x) = 24(x,x) = LIM 2jwe j x We(x, W) f e]wXq(xw)dw (2-26)

which follows immediately from the initial value theorem. It is still

being assumed that the probing wave contains an impulse, as in (2-22).

Equations (2-3) and (2-26) form the Schur algorithm.

Dynamic Deconvolution

Still another procedure is to consider the left reflection coefficient

.(x,w) = t(x,w)/f(x,w) (2-27) ..

which is associated with the section of the medium extending over

[x,-). l(x,w) is the transfer function for this section of the medium,

relating the rightgoing probing wave P(x,w) to the leftgoing scattered

wave 4(x,w). It is easy to show, using (2-3), that l(x,w) satisfies

the Riccati equation 0

dIx) ^I 2 )

dR/dx = 2jeeR - r(x)(1- (2-28)

and since R and dR /dx are strictly proper we also have 0

r(x) = LIM 2j(lR(x,,;). (2-29)

The dynamic deconvolution algorithm (2-28) - (2-29) is propagated in x, S

ei -
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yielding the left reflection coefficient R (x,w) and reflectivity function

r(x) for each x. This algorithm is a particularly dramatic illustration

of the layer-stripping concept, in that each step of this algorithm

transforms a complete inverse scattering problem on [x,-), including

the known medium response R (x, w), to an equivalent problem on

[x+2i,-), including the medium response R(x+A,w).

It should be noted that many authors (e.g., Tolstoy and Clay,

1966; Pusey, 1975) have noted the Riccati equation (2-28), and in

fact it is a direct consequence of the rules of composition of scattering

layers (Redheffer, 1962). Gjevick et al. (1976) used this equation to

develop an interative method for reconstructing r(x). However, none

of these results utilized (2-29) to propagate the Riccati equation in x.

Corones et al. (1983) used the time-domain version of the Riccati --.

equation as an invariant embedding equation, and Robinson (1982) and ,-

others derived the discrete form of this algorithm for the discrete one-

dimensional inverse seismic problem. This is discussed in Chapter III. .

It is worth noting that the R term in the Riccati equation accounts

precisely for all multiple reflections within the scattering medium. To

see this, neglect the R term in (2-23), leaving

dit/dx = 2j(R - r(x). (2-30)

This differential equation has the solution

WR(x,) Jxr(y)e- 2j(y-X)dy (2-31)

so that the reflection response of the medium is merely the superposition

of the primary reflections at each depth y. These primary reflections

have strength r(y) and are phase-delayed by the two-way travel time

Lk- .... . .



52

2(y-x). Candel et al. (1980) used this assumption to recover r(x) from

R(0,w). This point was also noted by Corones et al. (1983) for the

time-domain version of the Riccati equation.

Historical Background of the Algorithms

The fast Cholesky algorithm, as mentioned earlier, is so named

because its discrete form performs a Cholesky (LDU) factorization of a

Toeplitz matrix (see Musicus, 1a 8 1, for details). This algorithm, in

its discrete form, seems to have appeared first in Rissanen (1973) and

Morf (1974). The continuous algorithm similarly performs a causal- . -

anticausal factorization of Toeplitz operators, a fact first brought to wide

attention by Kailath et al. (1979).

The Schur algorithm (2-3) and (2-26) is the continuous version of

an algorithm obtained by Schur (1917; see also Akhiezer, 1965) for

testing the boundedness of a function R(z) which is analytic outside

the unit disk. Given R(z), Schur showed that IR(z)I - 1 outside

the unit disk if and only if the reflection coefficients r obtained from

the recursions

R (z-r

n n

RnlZ W R0(z) R R(z) (2-32a) ii

z (1-r n Rn(Z)) -.

r = lim R (Z) (2-32b)n n

are such that Jr J 1. Some recursions similar to (2-32) can in fact Sn
be obtained by performing a backwards-difference discretization of the

Riccati equation (2-28), as was done by Tolstoy and Clay (1966).

o1

, °

*. * . . S .- ' S"-
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2.3.2 Example: The Lossless Non-uniform Transmission Line

In this section we study the inverse problem for the lossless non-

uniform transmission line, and show that its solution is given by the

Schur or fast Cholesky algorithms (see Gopinath and Sondhi, 1971,

for an earlier solution of this problem). In the process, we give a

scattering interpretation of transmission line phenomena such as waves,

reflections, and impedances. This treatment can be found in many

references, e.g., Kraus and Carver (1973) and Pusey (1975).

Consider an infinitesimal section of length A of a lossless non- .

uniform transmission line. Such a section is illustrated in Figure 2.4.

Note that L(x) and C(x) represent inductance and capacitance per unit

length, i.e., they are distributed quantities. Writing equations for

Figure 2.4, we have

v(x,t)= LL3i/ t + v(x + A, t) (2-33a)

i(x,t) = CA v/t + i(x + L, t) (2-33b)

Dividing by A and letting A-L 0, we obtain the telegrapher's equations

a v/x + L(x)ilat = 0 (2-34a)

Di/ax + C(x) Dv/at = 0 (2-34b)

which also arise in acoustics (Santosa and Schwetlick, 1982) and in

studies of the human vocal tract (Sondhi and Resnick, 1983;

Gopinath and Sondhi, 1970) under the assumption of losslessness.

For a uniform line, it is well known (see Kraus and Carver,

1973) that (2-34) admits wave solutions, and that for such waves the

ratio of the amplitudes of the voltage and current is the characteristic

.. -.

. . . . . . . . . .
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-+ +Sv(x,t) - - (x)L v(x+L,t)
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2.4 Infinitesimal section of a lossless non-uniform transmission
line..

46

• Oo

o .-

SE"

...........-.... *-... IF*..



55

impedance

z (L/C)i. (2-35)

Since the quantities p and q appearing in the two-component waveg

equations must be dimensionally equivalent, this suggests defining for

the non-uniform line the dimensionally equivalent variables

V (X,t) -Z V(x,t) (2-36a) ~:jj

I(x,t) -Z i(x,t) (2-36b)0

where Z (x) =(L(x)/C(x))i. Substituting (2-36) in (2-34) yields

3V /ax + (LC) 91 Dt =- Zn Z0 V (x, t) (2-37a)

31/3x + (LC) 3V/a Z I(t (2-7b2 dx Z0  xt 23b

In order to make the dependent variables x and t dimensionally

equivalent, we replace x with the travel time z defined by

z(x) =f (L(u) C(u))i du (2-38)

Since (L(x) C(x))~ is the local wave speed at x, z(x) is the time

required for a wave, starting at x =0, to reach position x. Making the

additional change of variables

p (Z't) = ~(V(z,t) + I(Z't)) (2-39a)

q (z,t) -1(V (z,t) I I(z,t)) (2-39b)2

and defining the reflectivity function . '
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r 1z) L L Zn Z0 (z) (2-40)
r 2z) 0

we obtain the two-component wave system (2-1). The relations (2-39)

.J1provide an interpretation of the right and left propagating waves in

terms of the normalized voltage and current.

Interpretation of the Reflection Coefficient

Suppose a uniform transmission line is terminated with a load ZL.

Then a wave travelling down the line will be reflected back by the load.

Define R( ), the reflection coefficient for the load, to be the ratio of

the Fourier transforms of the primary and reflected voltage waves, at

the frequency w. It is easy to show (see Kraus and Carver, 1973) that

(RFLW) _ Z(Wi) -R(w) = __, ____ - (2-41)
"PRIM() ZL(W) + Z

where ZL(w) is the impedance (defined below in (2-42)).

For the non-uniform transmission line considered here, since there

is a one-to-one correspondence between position x and travel time z,

we will use x instead of z in the qualitative analysis to follow. Then,

at point x on the line, the load perceived due to all of the line to the

right of x is the impedance

ZL(xW) = '(x,w-O)/(xW) (2-42)

This is illustrated in Figure 2.5. By substituting this expression in

(2-41), we find that for the non-uniform transmission line, the

reflection coefficient at point x is

Z. 0 W

= / - Z0 (x) V/l~ - 1

+ Z0 (x) V/I + 1

. . -.. . .

. ." 
°J0

• ~~~~~~~~~~ ~ i J..: ._t•: -- : .. : ... .: .> : : . . : *. - .- ': . . . .
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Line over (x,co) LXw

2.5 The perceived load to the right of x .
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= (xLW)/Ip(xW) (2-43)

This is precisely the expression (2-27) for the left reflection coefficient 4,

of the section of the two-component system (2-1) extending over [x,-).

We see therefore the meaning of i(z,w). For a given point x on

the line, and any given frequency w, it is the ratio of the reflected ,

and primary voltage waves, with the reflection due to the inhomogeneity

* of the line at x. From Section 2.3.1, we know that R(z,w) satisfies

the Riccati equation (2-28), and that r(x) may be found from P
I(x,J) by using (2-29). Also note that if the line is locally uniform

, at point x 0 , we have dZ 0 idxIx = 0, hence r(x 0 ) = 0 and no

reflection occurs. Reflections occur only where the line is inhomogeneous.

Inverse Problem

Suppose now that the line characteristics L(x) and C(x) are

unknown and that we want to determine them from the measured

impedance Z(W) = ZL(OM). This problem arises not only when we want

to find the characteristics of an existing transmission line, but also if

we want to synthesize a transmission line with prescribed impedance

Z(w). It is assumed here that we have access to only one end of the

line. The line characteristics can be partially reconstructed as

follows. First, scale Z0 (0) to 1 and consider the reflection coefficient

( - Z(W) - 1 (2-44)
Z (W) + 1

0
Then, run the Schur algorithm (2-3) - (2-26), using I(w) as initial

condition, to obtain r(z). Alternately, we may compute the inverse

Fourier transform R(t) of R(w), and use the fast Cholesky recursions

(2-23) (2-24) to obtain r(z). Given r(z), the expression

. . . . . . . . . .. . .
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Z0 (z) exp 2 r(u) du (2-45) .

enables us to recover the characteristic impedance Z0 (z) = (L(z)/C(z))

as a function of the travel time z. However, we cannot reconstruct

L(x) and C(x) separately as functions of the position x. .

The same difficulty will appear in Chapter III for the one-

dimensional inverse seismic problem, except that in this case we will be

able to use an additional degree of freedom, the angle of incidence of

the probing waves, in order to reconstruct the medium completely.

2.3.3 Inverse Scattering for Asymmetric Two-Component Wave Systems

In this section, the inverse scattering problem for asymmetric two-

component wave equations is examined, and solved by using two coupled

fast Cholesky algorithms. The systems which are described by

asymmetric two-component wave equations are not necessarily lossless,

and we can therefore use these equations to describe a larger class of

physical phenomena than those that we have studied in the previous

sections. Our results will be illustrated by considering the inverse

problem for a nonuniform transmission line with losses. It is worth

noting that a solution of the inverse scattering problem for asymmetric

two-component wave equations was presented in Ablowitz and Segur

(1981) and was used by Jaulent (1982) to solve the inverse problem

for lossy transmission lines. However, this method relied on the

solution of two coupled Marchenko equations, whereas the solution that

we present here is differential, and uses the layer stripping principle.

The system that we consider is described by the asymmetric two-
,'

component wave equations

, .. .. . .. ... -. . ... .. . . . . .. ... .
:' '' '' ' I° ' I' 'I ' :- '- ' '. ". ' . I

'
-" " "' ." " " ' ' -t 

"
; i : '.. 'I fI 'lI.. . A*- . ' A
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.4, d [- w .j -s'x)1

TX[ (2-46)

which in the time domain correspond to

( /x + l31t)p = -s(x) q(x,t) (2-47a)

(a/Dx- D/at)q = -r(x) p(x,t) (2- 47b)

It is assumed that r(x) = s(x) = 0 for x < 0, and that r, s C L[0,o),

so that r(x) and s(x) are localized, i.e., they go to zero as x -. .*

Then, the scattering matrix S(w) can be defined as in Section

2.2 by relating the outgoing and incoming waves appearing in Figure

2.2. In addition, the property (2-9) for the Wronskian of two

T
independent solutions a (x,w) = (^ (x,w), 4i(x,w)), i = 1, 2 of (2-46)

remains valid, and by applying it to the waves aI(x,) and a 2 (xw)

appearing in Figures 2.2a and 2.2b, respectively, we obtain again

the reciprocity relation

TL(w) = TR(W) (2-48) 0

T
However, if a (x,w) ( (x,w), 4l(x,w)) is an arbitrary solution of

(2-46) we have

d ( 12 1^2)
- 2 = 2(r(x) - s(x)) Re(p(x,w)4*(x,w)) (2-49)

so that the scattering medium associated to (2-46) is not lossless unless

r(x) = s(x), which corresponds to the case when the two-component

wave equations are symmetric. This implies that S( ) is not a unitary
le

matrix, and consequently we cannot recover S(w) from the knowledge

of the left reflection coefficient RL(w) alone.

-...... . ... .......... ......._.*._..
1
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Inverse Scattering Procedure

The inverse scattering method that we develop here relies on the

observation that if time is reversed (i.e. , t is changed to -t in

(2-47), or w is changed to -9 in (2-46)), and if the waves p and q S. *

are interchanged, we obtain a (synthetic) asymmetric two-component

wave system

A A
(3/ax + 3/30~p -r(x) q (x,t) (2-50a)

A A(lx- lt)q =-s(x) p (x,t) (2-50b)

where r(x) replaces s(x) and vice-versa. The scattering matrix

associated to this system is: ;1 0 1
SA(w) = S (-W)

H 1 (2-51) -.
-(S (w))

where to obtain (2-51) we have used the reciprocity relation (2-48).

The system (2-50) is a fake system, which does not really exist,

but its scattering matrix is entirely specified by the knowledge of S(-).

Then, in order to reconstruct r(x) and s(x), we assume that the

true system (2-46) and the fake system (2-50) are probed

simultaneously by some waves which have the form

p(x,t) = 6(t-x) + (x,t) 1 (t-x) ". .

q(x,t) : ?(x,t) 1 (t-x) (2-52)

and

pA(x,t) 6(t-x) + pA(x,t)l(tx)

L -% - 2.
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qA(x,t) = q (x,t)1(t-x) (2-53)

By substituting these waves in (2-46) and (2-50), we obtain the system

of coupled fast Cholesky recursions

(/ax + 3/3t) = -s(x) 4(x,t)

(0/@x- a/Dt)4 =-r(x) (xjt) (2-54a) i.

and

(O/Dx + D/ t)p5 q -rx l(x,t).-,

(3/ x - a/tA  -s(x) pA(x't) (2-54b)"-

with

Ar(x) = 24(x,x), s(x) = (x,x) (2-54c)

which can be propagated recursively for increasing values of x,

starting from x = 0. The specification of the initial conditions for these

recursions is very important, since as noted above, the system (2-50)

does not really exist, and cannot be relied upon to provide some

A A
experimental waves (O,t) and C1 (0,t).

The initial conditions that we select are

P(0,t) : lA(0t) 0 (2-55a)

A Aq (0,t) =RL (t) , qC0t) R RLMt (2-55b)

A^

left reflection coefficients RL(f,.) and RL(L-). RL can be measured

directly, and from (2-51)

"A -H= (S ())21 (2-56)

L 21

... . .. .. .
S- - -a - . . . . . .~. . . . . . . .Q -7
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i.e., (w) is the (2, 1) entry of the inverse of S H (w). Thus,
"A

RL(4 can be expressed as a function of the whole scattering matrix
L

S(w), and it will be specified provided that we can measure all the

entries of S() This implies that we must have access to both ends

of the scattering medium. In some cases, such as for the inverse

seismic problem, this is impossible; but for some other problems,

such as the reconstruction of non-uniform lossy transmission lines,

the medium can be probed from both sides, and all the entries of S(w)

can be measured.

Instead of expressing our reconstruction procedure in terms of the

coupled fast Cholesky recursions described above, we can also use a

set of coupled Schur recursions. Let

R (x,x,W) and x) - qA(x') (2-57)(x, W0) .A (x ).
p (x, U)

be the left reflection coefficients for the true and fake systems over ., .,

the interval [x, where the waves p p Ain the definition

(2-57) are assumed to have the forms (2-52) - (2-53). Then,

"A
R(x, ) and R (x,w) satisfy the coupled Riccati equations

di/dx = 2jai + s(x) 2 - r(x) (2-58a)

"A A+ AdRA/dx = 2jR + r(x)(RA) 2  s(x) (2-58b)

with initial conditions

= " _-A "A

I(0, ) RL(.) ' RA(0"w) A )  (2-59)

By using the initial value theorem for the reflection coefficients (2-57),

.,-.

-------------------.*.'%*-**.*.~ . .. --. '. .
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and taking into account the form of the waves (2-52) - (2-53), we get

lim 2jwR(x,w) = r(x) (2-60a)

^Alim 2j R (x,w) = s(x) (2-60b)
W --+ Co

which can be combined with (2-58a) and (2-58b) to propagate R(x,,.)

^A
and R (x,w) recursively, and to reconstruct r(x) and s(x) for all x.

This algorithm constitutes the generalization of the Schur algorithm.

2.3.4 Example: The Non-uniform Transmission Line with Losses

In Section 2.3.2, the reconstruction problem for a non-uniform 0

lossless transmission line was solved using the fast Cholesky and

Schur algorithms. We now consider the more general case where some

losses, in the form of series and shunt resistances per unit length 0

have been added to the transmission line. This reconstruction

problem is then solved as an asymmetric two-component inverse ""..

scattering problem, using the method obtained at the beginning of 0

this section. The problem is set up as in Jaulent (1982).

An infinitesimal section of the line is shown in Figure 2.6. R(x)

is the nonuniform series resistance per unit length, representing the 0 -

finite resistance of the wires, and G(x) is the shunt conductance 5-.

per unit length, representing leakage current between the wires.

The circuit equations are

v(x,t) = (Lai/,t + Ri) A + v(x+A, t) (2-61a)

i(x,t) = (Cv/A + Gv)., + i(x+L, t) (2-61b)

.. . . . . . . .. . . . . . . .
7. -%!
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i(x,t) LWxA RWxA i(x+Alt)

+

v(x7t 0 p W G (x) A v(x+A,t)

0 2.6 Infinitesimal section of a lossy non-uniform transmission
line.

.
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Dividing by Aand letting A 0 yields the transmission line equations

3v/3x + L i/at + Ri =0 (2-62a)

Wiax +C v/3t +Gv =0 (2-62b)

As in Section 2.3.2, we replace the position x by the travel time

z(x) given by (2-38), and we introduce the dimensionally equivalent

variables

V(z't) Z ZV(Z't) (2-63a)

I(z't) =Z i(z,t) (2-63b)

where Z (z) =(L(z) /C W)) is the characteristic impedance. Then, the

equations (2-62) take the form

av/3z + al/at I - m(z)V (2-64a)

L

31/az +Dv/3t =m(z) I - V (2-64b)

c1

where

m (z) -f id ZZ z (2-65)

Making the change of variables

p(z't) = (V+I) (2-66a)

q(z,t) = (V-I) (2-66b)

gives

(3/ z + 3/3t)p = -a(z)p(z,t) -(m(z) + b(z))q(z,t) (2-67a)

C3/3Oz - A3)q = -(m(z) -b(z))p(z,t) + a(z)q(z,t) (2-67b)

*1
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which is almost in the desired form, and where

a(z) = I. (G +j (2-68a)

b 1z IGR\ (2-68b) 'f

Considering the scaled variables

p (z,t) = p~z,t) exp Jo a(u) du (2- 6 9a)

rzq (z,t) = q(z,t) exp - a(u) du (2-69b)

and taking the Fourier transforms yields the asymmetric two-component

wave equations

pZ -jut (z'W.) s(zAq (ZC) (-7a

d 4 -r(z)p (Z + j'4 ZW(27b

where

r(z) =(m-b)exp-2fza(u)du( ~ dx G Rfzl+Gdu
d z L))e2xP

(2-71a)

0

(2-71b)

Thus, if we are given the scattering matrix S (w) associated to the system t-

* (2-70), the coupled fast Cholesky (2-54) or Schur (2-58) -(2-60)

algorithms may be used to reconstruct the rather bizarre quantities r(z)
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and s(z). Further, these two quantities are the most information about

the line that can be obtained from this data. Although r(z) and s(z)

may seem to be peculiar quantities, this result is in agreement with

Jaulent (1982).

Note that in the event

R(z)/L(z) G(z)/C(z) (2-72)

we may recover Z(z) and R(z)/L(z) by multiplying and dividing r(z)

and s(z), and then solving two differential equations. Thus, in this

case it is possible to recover R(z), L(z), C(z), and G(z) in various

ratios quite easily. This case is referred to as the Heaviside

condition for a distortionless line (Kraus and Carver, 1973), since if

(2-72) holds then the true characteristic impedance ((R + jwL) /(G + j4.C))

which relates the current and voltage for a wave travelling down the

line, is real. Thus, the current and voltage for such a wave are in S

phase, just as in the lossless line, and it is not surprising that ratios

of various line parameters can be recovered, as in the lossless case.

2.3.5 Other Differential Methods

In this section we quickly cover three other differential or layer

stripping algorithms. These consist of the misnamed "method of

characteristics" of Santosa and Schwetlick (1982), and two procedures

for recovering the potential of a Schrodinger equation. These procedures

will all be applied to inverse seismic problems in Chapters VII and VIII.

The "Method of Characteristics"

This refers to the impedance reconstruction procedure used by

Santosa and Schwetlick (1982). Although it is technically incorrect

*-44.

-.-.

.. .' -
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terminology, it has been used both by Santosa and Schwetlick (1982) , .

and by Bruckstein et al. (1983), and no other term has come along to
LA,l

replace it. Hence, to be in accord with the literature, the term

"method of characteristics" will be used here and in Chapter VIII. The

true method of characteristics is discussed in Courant and Hilbert

(1962), and applied to the propagation of axial shear waves in

Achenbach (1975).

The method will be illustrated by applying it to the problem of

reconstructing the impedance of a lossless transmission line. Recall

from Section 2.3.2 that this problem was transformed into a two-

component wave system problem by defining the waves

p(z,t) = M (V(z,t) + I(z,t)) (2-73a)

q(z,t) = (V(z,t) - I(z,t)) (2-73b)

where

V(z,t) - O v(z,t) (2-74a).-.--.

I(z,t) = Z i(z,t) (2-74b)
0

Here v(z,t) and i(z,t) are the voltage and current, Z0 (z) is the

characteristic impedance (which is to be recovered), and z is travel

time. Suppose now that the probing wave p(z,t) does not contain a

leading impulse, contrary to equations (2-22). Then, by causality,

the waves p(z,t) and q(z,t) have the form

p(z,t) = (z,t)l(t-z) (2-75a)

q(z,t) = q(z,t)l(t-z) (2-75b)

44A.



pr

70

Substituting equations (2-75) into the two-component wave system

(2-1) yields A

4(z,z +) = 0 (2-76)

and, using (2-73b), this implies that , .r.

V(z,z+) = I(z,z+) (2-77)

From definitions (2-74) we have

Z0 (z) = v(z,z )Ii(z,z+ ) (2-78)

and changing variables from position x to travel time z in the

telegrapher's equations (2-34) yields

v(z,t)/z + Z0 i(z,t)lft = 0 (2-79a)

Z0 i(z,t)/3z + 3v(z,t) lt = 0 (2-79b)
.. 0,

Equations (2-78) - (2-79) form the method of characteristics for

the lossless transmission line. The voltage v(z,t) and current i(z,t)

can be propagated in z, yielding the impedance Z0 (z) by (2-73).

As in the fast Cholesky algorithm, Z0 (z) can be recovered

because in the instant after the wavefront passes v and i must be

related by (2-78). Unlike the fast Cholesky algorithm, no probing

impulse is necessary. However, all physical interpretations in terms of

waves and scattering have been lost--the procedure is a purely -

mathematical technique applied to partial differential equations.

Inverse Scattering and the Schrodinger Equation e

Inverse scattering problems are often formulated using the
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Schrodinger equation ,

2

2 + ( V(x))k(x,w) = 0 (2-80)
dx 2 Y

and a scattering matrix, which was described in Section 2.2. Here the

aim is to reconstruct the potential V(x). V(x) is usually assumed to

be localized, i.e. , V(x) =0 for x < 0 and

f 0 0(1+x) ]V(x)ldx < . (2-81)

The Schrodinger equation appears frequently in the literature on

inverse scattering problems in nuclear physics (e.g., Chadan and

Sabatier, 1977) and seismology (Ware and Aki, 1969, and many others).

In this section two layer-stripping methods for recovering V(x) are

presented. Both methods will be used in Chapter VII, where the

inverse problem for a layered acoustic medium probed by spherical

harmonic waves is formulated using the Schrodinger equation. The

standard integral equation methods for recovering V (x) are covered in

Section 2.4.

Reformulation of the Schrodinger Equation as a Two-Component System

Any two-component wave system inverse scattering problem can be

recast as a Schrodinger equation inverse scattering problem. Thus in

seeking a layer stripping solution to the Schrodinger inverse problem,

it seems natural to try to recast it as a two-component wave system

inverse problem. This has been done in Yagle and Levy (1984),

and their technique is repeated below. .. "..

Taking the derivative of the two-component system (2-3) with

-.
. .'-,':V
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respect to x, we obtain the matrix Schrodinger equation

( +- + 2 2) [ 2  r 3 [(x) 1 = 0(2-82)

rj (x , Wi)

where I denotes the 2 x 2 identity matrix and i(x) =dr/dx. By2

making the change of variable

V1(x,W) P(x'W) + (x,iu) (2-83a)

2( ) (x 1w) -e(x Iw)(28b

this equation can be decoupled into two scalar Schrodinger equations

22
TX2 y, + (W -V (x))91(x,w) 0 (2- 84a)

22
-_2 y 2 + ~- 2 (x)) 2 (xCi) 0 (8b
dx

where

V (x) r r(x) -i(x) (2-85a)

V 2(x) r2(x) + i(x) (2-85b)

This shows how any two-component wave system inverse problem can be

recast as a Schrodinger inverse problem. In addition, we observe

from (2-83) and from the definition of the scattering matrix SC-) of

the two-component system (2-3) that the scattering matrix associated

to V (x) is identical to that of (2-3), and that the scattering matrix
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V. --

S2 (, associated to V2 (x) is given by

_ TLw -RR o
L"= S()Z , (2-86)

S(W) (2
_R( L (U)  T R (U') C.

i.e., it is obtained by changing the sign of the reflection coefficients

RL and RR of (2-3).

Consequently, given a potential V(x), we can always view its

left reflection coefficient RL() as arising from a two-component system

such as (2-3). Then, given R L(,) or the impulse reponse RL(t) , we -

can use the Schur or fast Cholesky recursions to reconstruct the

reflectivity function r(x), which in turn can be used to recover

V(x) from the relation (2-85a). The relation (2-85a) is known in

soliton theory as the Miura transformation (Ablowitz and Segur, 1981;

Lamb, 1980), and it maps solutions of the modified Korteweg-de Vries

equation into solutions of the Korteweg-de Vries equation.

Direct Recovery of Potential

Bruckstein et al. (1983) have pointed out that the potential V(x)

may also be recovered directly, without first reconstructing the

reflectivity function r(x). Applying their procedure to the

Schrodinger equation (2-80), we take the inverse Fourier transform -"

of (2-80), which is

2 y/ax- 2 y/9t 2 = V(x)y(x,t). (2-87)

Note that this is the equation for an elastically braced string. Defining

*(x,t) (?/ x + Wlt)y(x,t) (2-88)--

" ." ..:' 2" "i' '" , -. ." -..-' .' ." .'" -..- ..- -.' ' ? '. " -. .? : ? " "., .2" ..i. .,.'. -..- .-. -- '.' ."o .'. ". .-.-.. ..-. ....-. -. . .. '.. "€ .. i21 .  ? ',1
b,' ._ .. .... .. ... .... _ _ .. . . .. . j, _ . .... ... - _, _ . : : L, _.. ;. ._, "- '-- - J ': ;- -.- '_'._' _ ' *.
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equation (2-87) can be rewritten as the coupled system

( /Dx+ a/t)y(x,t) = '(x,t) (2-89a) .

(/x - 3/at)(x,t) = V(x)y(x,t) (2-89b)
-.

Now, if y(x,t) can be shown to contain a leading impulse, as p(xt)

does in (2-22a), we have

V(x) = -2 (x,x + ) . (2-90) •

Equations (2-89) - (2-90) can be propagated in x as a recursive 5.

algorithm. Initialization of y and P at x = 0 depends on the problem;

see Chapter VII for an example.

Bruckstein et aL. (1983) have pointed out that this algorithm can

be interpreted as successively truncating the potential V(x). If the

algorithm is at point x in the medium, the current problem being

solved is one in which the medium to the left of x has been replaced
A-.

by free space (i.e. , V(z) = 0 for z < x). Thus again we see how a

layer stripping algorithm transforms at each step a problem on the

interval [x,00) to one on [x + A, o).

2.4 Integral Equation Methods for Solving Inverse Scattering Problems

In this section we switch gears and review integral equation methods

for solving inverse scattering problems. None of these methods will be

employed in this thesis; indeed, the purpose of this thesis is to •

obviate these methods. Nevertheless, it is important that integral

equation methods be understood so that the dual nature of differential

and integral methods be appreciated. m

...'.%
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Recall the layer-stripping action of differential methods, in which

a problem on the interval [x,o) is transformed into one on [x + L, ) 4

at each step of the algorithm. In contrast, integral equation methods .

are constructive, in that the entire medium is involved at each step,

and the reconstructed portion is extended from [O,x] to [0, x +l1

at each step. The concept of adding to the reconstructed portion of

medium, in contrast to stripping away from the unreconstructed portion

of the medium, will be illustrated throughout this section.

2.4.1 The Marchenko, Gel'fand-Levitan, and Krein Integral Equations

In this subsection we follow Bruckstein et al. (1983) in deriving

the above three integral equations for solving the two-component wave

system inverse scattering problem. Other approaches are possible;

Burridge (1980) derives these equations entirely in the time domain,

using Green's functions, convolutions, and Green's identities. In

contrast, Chadan and Sabatier (1977) and Lamb (1980) use a

spectral, frequency-domain approach, while Faddeev (1963) uses an

operator approach. However, the approach of Bruckstein et al. is

the simplest, and fits in most readily with the material of Section 2. 3.

Note that the two-component wave system in the frequency domain
p (x ,) 1

(2-3) can be viewed as a state equation in the state .x Then

we may define the state transition matrix M(x,w) for this system.

M(x,w) is specified by

d - ) N (x,) (2-91)x= -r(x)"-

and
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= 12 ,(2-92)

and has the property that

L 4(XMw) =~~ [^(O~w) 1 (2-93)

Taking the inverse Fourier transforms with respect to time yields

aM(x,t)/Dx M [ (x,t) (2-94)

r() 0 1 t

NI(Ot) =1 0 6(t)J(-5

Lp(x,t) _ 1(x,t) M1 (x,t)rPOt

q(x,t) IM 11(x,t) M 12 (x,t) ~ q(O,t) (-6

Equations (2-94) and (2-95), and the principle of causality, show that

N I (x,t) and M 21 (x,t) have the forms

M 1 (x,t) = (x-t) + M xtM -) 1(x+t))(29a

M 21 (x,t) M M21 (x,t)(1(x-t) - 1(x+t)) .(2-97b)

This simply means that M 1 (x,t) contains a leading impulse (from (2-95))

M 1 1 (x,t) and M 2 1 (x,t) have support on [-x,xl , and M 1and M 1are the

smooth parts of M and M21  We also note that if time is reversed,

the left and right propagating waves are interchanged, so that

M 1 1 (x,t) =N 22 (x,-t) (2-98a)

M 2 (x,t) = M 1 (X,-t) (2-98b)

21 1



Now, if the medium is being probed from the left, we have by

causality

p(x,t) q(x,t) = 0 for t <x (2-99)

i.' %

Note that we have not yet specified how the probing is to take place. e

Using (2-97), (2-98), and (2-99) in (2-96) yields the coupled integral

equations

f P(Ot-T)Ml(x 'T)dT + -q(0t+T)M2(x' )dT = 0 (2-100a)

f-~~ x 11 f..2

q(0,t+x) + fq(0,t4T)M (x,T)dT + xp(0't-)M 2 1 (xT)dT 0 (2-100b)

In these equations, a change in the sign of the dummy variable T

has been made in the terms involving q(x,t) in order to make use of

(2-98). This explains the t + - dependence of q.

The Marchenko, Gel'fand-Levitan, and Krein integral equations

are all derived from (2-100). The particular equation obtained depends

on how the medium is probed.

Marchenko equation (half-space boundary): Let the probing waves take

the form

p(0,t) = 6(t) (2-101a)

q(0,t) R(t) (2-101b)

where R(t) is causal. This corresponds to the case of a medium being

probed from an infinite homogeneous half-space. Define

K(x,t) = Mll(Xt) + M 2 1(x,t). (2-102)

1'-..

................. . .... ... .... ...
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Then, adding (2-100a) and (2-100b) and inserting (2-101) and (2-102)

yields the Marchenko integral equation (Agranovich and Marchenko, 0

1963; Chadan and Sabatier, 1977)

K(xt) + R(x+t) + tK(x,T)R(T+t)dT = 0, t < x (2-103)

Upon solving this integral equation for K(x,t) we may use

r(x) = - 2M 21 (x,x-) (2-104a)

r (x) 2 A~ M 1 (x,X-) (2-104b)j

which are obtained by substituting (2-97) into (2-94), and recall that

for the Schrodinger equation associated with the two-component system

(2-3) the potential V(x) is given by (2-85a) as

V (x) =r (x)-r(x) .(2-105) :6
Then we have

dx
V(x) = 2 dK(x,x-) (2-106)...

so that the solution of the Marchenko equation yields the Schrodinger

potential.

The procedure of solving the Marchenko equation (2-103) and

then using (2-106) to recover the Schrodinger potential is the standard

mathematical physics procedure for solving Schrodinger equation inverse

scattering problems. Ware and Aki (1969) used this procedure to

solve the one-dimensional inverse seismic problem.

.0 W
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Gel'fand-Levitan equation (free surface): Let the probing waves take

the form

p(O,t) = 6(t) + k(t) (2-107a)

q(0,t) = k(t) (2-107b)

k(w) = R(w)](1-R(w)) (2-107c)

where k(t) is causal. This corresponds to the case of a medium being

probed from a perfectly reflecting surface ((2-107c) follows from a simple

feedback argument). An example of this situation is probing the earth

from an earth-air or ocean-air interface, which is quite well modelled

by a pressure-release or "free" surface. Define

K (x,t) =- (K(x,t) + K(x,-t)). (2-108)

Then, adding (2-100a), (2-100b), and their time-reversals, and

inserting (2-107) and (2-108) yields the Gel'fand-Levitan integral

equation (Gel'fand and Levitan, 1955; Faddeev, 1963)

x
K (x,t) + (k(x-t) + k(x+t)) + )(k(it-- )+k(t+T))K (x,T)d" .

= 0, 0 < t < x. (2-109)

Again we may use (2-106) to recover the Schrodinger potential V(x).

Krein integral equation (free surface): Let the probing waves again

take the form (2-107) and define --

L(x,t) = l11(x,t) + M1 2 (x,t) (2-110) '--

Adding (2-100a) to the time-reversal of (2-100b) and using (2-107) and

.?. -.--
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pr.
(2-110) yields the Krein integral equation (Krein, 1954)

k(x-t) + L(x,t) + k(It--1)L(x, T )d T 0, 0 < t < x (2-111)fX

By setting t ; -x in (2-100a) we get

M 1 1(x,-x) = 0 (2-112)

arid using this with (2-104a) and (2-98b) and adding yields

r(x) -2L(x,-x) (2-113)

so that the solution to the Krein integral equation yields r(x).

2.4.2 The Krein-Levinson Algorithm

Any of the integral equations derived above can be solved

numerically by discretizing x and t. If x and t are discretized by

x = nA and t = m A, where n and m are integers in the intervals -

[0,N] and [-N,N], respectively, then 0(N 3 ) operations are necessary

to solve the integral equation and reconstruct r(x).

However, the fast Cholesky algorithm in Section 2.3 requires only

0(N 2 ) operations to reconstruct r(x) for the same discretization. If

there is some duality between differential and integral methods for

solving inverse scattering problems, then there should be some way

to reduce the amount of computation required to solve the integral 0

2
equations to O(N 2 )"

In this subsection we derive the Krein-Levinson algorithm, a

continuous-parameter, slightly modified version of the famous Levinson 0

. . . .
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algorithm for solving Toeplitz systems of equations (Musicus, 1981, .

is a thorough treatment). This algorithm solves the Marchenko

integral equation using O(N 2 ) operations by taking advantage of its

Hankel structure. Slight modifications of this algorithm can be used

to solve integral equations with Toeplitz or Toeplitz-plus-Hankel A

structure (Gohberg and Koltracht, 1983).

The continuous-parameter fast Cholesky and Krein-Levinson

algorithms thus provide two different ways of solving inverse

2scattering problems using O(N ) computation. In Section 2.5 we shall

discuss how these two algorithms are "flip sides" of each other, and

why the fast Cholesky algorithm requires less storage and computation.

Inserting (2-97), which specifies the forms of M1 and M2 1 into

(2-94), the time-domain system satisfied by M(x,t), and taking the

first column of the result yields1 r i]r"
M1 1(x,t) - a/at -r(x M1 1(x,t) (2-114)111 (2-114) "-,"

L2 1(xt) [-r(x) /DtLM 21(x,t) , -x< t< x

with the initial condition

[M20,0)] - [](2-115)

Equations (2-114) look like the fast Cholesky algorithm dynamics, "

but there is an important difference. In the fast Cholesky algorithm

the quantities propagated were the waves p(x,t) and q(x,t), which

were non-zero (by causality) for t > x. Here the quantities propagated

are elements of the transition matrix M(x,t), and are non-zero for

A . .° °o° .
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-x < t <x. The update patterns are shown in Figures 2.7. These

should be compared with Figures 2.3, the update patterns for the fast

Cholesky algorithm.

Examination of Figure 2.7 shows that in order to propagate (2-114)

it is necessary to supply values for M1 1 (x,-x) and M2 1(x,x-)

independently of (2-114). Setting t= -x in (2-100a) yields

M 1 1 (x,-x) - 0 (2-116)

However, M 2 1(x,x-) =-r(x)/2 from (2-104a), and we certainly need

r(x) to propagate (2-114). The only way we can get this is to set

t = x- in (2-100b), yielding the rather unwieldly expression

r(x) =-2M 2 1(x,x) 2(q(0,2x) + f q(0x+T)M1 l(x1t)d"

+ p(0,x-T)M 2 1 (x,T)d T). (2-117)x 21i

In the case of probing from a half-space, the last term in (2-117)

vanishes. In this case (2-117) should be compared to the "inner 0

product" expression in the discrete Levinson algorithm.

The Krein-Levinson algorithm thus consists of equations (2-114)

and (2-117), with the additional trivial condition (2-116). Its dynamics .

are the same as the fast Cholesky algorithm, but the quantitites in the

algorithm are different, and the inner product expression (2-117)

replaces the trivial first reflection relation (2-23). Thus the Krein- S _

Levinson algorithm requires more computation and storage than the

2 .
fast Cholesky algorithm, although both algorithms require 0(N 2 )

operations. 0

mo ,o ,
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tP x

X0 Ole, mix

2.7a Recursion pattern for updating m 1 1(x,t) in the Krein-
Levinson algorithm.

M21(x0) M21(1'0+6~)

,,,slope: -1

2.7b Recursion pattern for updating m 2 1(x,t) in the hrein-
Levinson algorithm. 2

s.4
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2.4.3 Inverse Scattering as Orthonormalization

Levy (1985) has recently pointed out that the solution of a two-

component wave system inverse scattering problem can be viewed as

an orthonormalization procedure. It is well known (e.g., Kailath,

1981) that the problem of linear least-squares estimation of an •

autoregressive (AR) stationary stochastic process can be regarded as

a polynomial orthonormalization, with the Levinson algorithm carrying out

the orthonormalization and the Szego polynomials (representing the

residuals) the result. For the inverse scattering problem, the

orthonormalization procedure is applied to continuous analogues of

matrix orthogonal polynomials. The Marchenko integral equation results

from application of orthogonality to residuals, such as the Wiener-Hopf

equations are derived in linear least-squares estimation theory (e.g.,

Kailath, 1981).

This result is presented here to give another perspective on

inverse scattering, and to show similarities between inverse scattering

and linear least-squares estimation theory. These two problems will

be linked more tightly in Section 2.5.

Define the matrix inner product of two 2 x 2 complex-valued

matrix functions A(w) and B(w) as 0 L7

A (Ho

< A,B > JA()W(w)B()d.,- (2-118)

where the Hermitian weighting matrix W(w) is

A 1  1 R*(w)"
; W( ) = - ,. (2- 119)

Here R(W) is the left reflection coefficient of the scattering medium.

. . . .. . . . . . . . . . . . .. ... . . . . . . .... . . . . . . . . ..7
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If the medium is lossless, IR( ,)I < 1 for real, and by Sylvester's

criterion W(w) is positive semidefinite. Hence <A,A>>0 unless the medium

is perfectly reflecting.

The weighting matrix W(w) in (2-119) was suggested by Newton

(1983, p. 20) as follows. Let the matrix Jost solution Y(x,w) for the

two-component wave system (2-3) be that solution which behaves like

-j x 0

(x,) -  4  (2-120a)LR aeJx  je] x  .-.--

e e .

R
(x, ) [ X eA jX as x oo (2-120b)

Note that the first column of '(x,,-) represents a scattering experiment

in which the medium is probed from the left, while the second column

represents a scattering experiment in which the medium is probed from the

right. Now, the two columns of the state transition matrix M(x,w) also

represent two independent experiments, so M(x,,o) can be obtained from the

matrix Jost solution Y(x,w) by multiplying it by the Jost function J(-.),

M(x,W) = J()(x,' ). (2-121)

Then the spectral function

W( ) = I1 - (2-122)./-..
S(JH (w ) J (w') -  (2-22

27,'

turns out to be the weighting matrix specified by (2-119).

* Note that the probing waves

*",.

~.....-.'%...-,
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e~yX 0

E(xw) (2-123)1 0 e x
1

have the property that

<E(x,w), E(y,w)> =S(x-y) 2 +[0 0]R(x+Y)" (2-124)

Thus E(xw) and E(y,w) are orthonormal in free space (x,y< 0) since

R(t) is causal.

The inverse scattering problem is solved recursively by orthonormalizing

E(x,w) and E(y,cw) for successively larger x and -. ,<y < x. This is done

by the usual Gram-Schmidt procedure: E(x,w) is projected onto the
A

subspace cfx = SPAN[E(y, ), - <y <x], and the residual is then

orthogonal to . The projection operator takes the form

[E(x,=) =f (x,y)E(y, )dy (2-125)

where m(x,y) is an unknown 2 x 2 matrix kernel. The residual M1(x,.)

is

M(x,,) = E~x,)-i[E(x,)""

E (xw) + J m(xy)E(y,.)dy. (2-126)

Now, M(x,w) is orthogonal to x by construction. This means m(x,y)

satisfies

[0 -x F0 11 .
1 0 R(x+z) + m(x,z) + Jz m(x,y) 1  0 R(y+z)dy 0, -x<z~x. (2-127)

4 'S ..-...
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2.5 Relations Between Differential and Integral Methods

* In this section the dual nature of differential and integral methods of -|

solving inverse scattering problems is discussed. These two methods are

not merely related, but are complements of each other. This is

illustrated in particular by the complementary nature of the fast Cholesky

algorithm (a differential method) and the Krein-Levinson algorithm

(which solves the integral equations). Finally, in order to furnish an

example outside the usual context of inverse scattering theory, the

familiar problem of linear least-squares estimation of a stationary stochastic

process is interpreted as an inverse scattering problem, and solved

using both algorithms. This illustrates the physical meanings of various

quantities in a novel setting, adding depth to an understanding of inverse

scattering concepts and quantities.

2.5.1 Differential vs. Integral Methods

In Section 2.3 it was seen that the differential or layer stripping

methods operate in a stripping fashion: At each step of a layer stripping

algorithm, a problem on the interval [x,-) is replaced by one on the

interval [x + A, ). This was particularly vivid for the dynamic

deconvolution procedure, in which the quantity being propagated was

the reflection response of the remaining unknown portion of the medium.

An advantage of layer stripping methods is that they are clearly

efficient: The effects of the reconstructed portion of the medium are

included in a cumulative fashion at each step, while all aspects of the
'I., .-

medium itself are discarded. And any unknown portion of the medium can

have no effect until the algorithm reaches it (this is why causality is so

important to these algorithms). Thus a layer stripping algorithm is only

.
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concerned with that differential slice of the medium where the algorithm is

currently operating.

In Section 2.4 it was seen that integral equation methods utilize all

of the data (measured medium response) at each step. Although the

medium is again reconstructed one layer at a time (the integral equation

must be solved for each x), the entire medium affects the reconstruction at

each step, since all of the data are being used. This is why bound states

affect integral methods at the start, while not bothering layer stripping

algorithms until that part of the medium is reached. No attempt is ever made

to isolate the effects of part of the data or medium on reconstruction of any

layer. This is why unwieldly integral equations are necessary, which 0-

3
might seem to require O(N 3 ) operations to solve completely.

On the other hand, it is not necessary to account for the cumulative

effect of the reconstructed medium at each step. The integral equation

methods are constructive in nature: At each step, the reconstructed

portion of the medium is extended from [O,xl to [0, x + A]. Note that

*" this complements perfectly the layer stripping approach: one decreases

• the size of the problem at each step, while the other increases the size of

* the solution at each step.

The structure of the integral equations (Hankel for the Marchenko,

Toeplitz-plus-Hankel for the Gel'fand-Levitan, Toeplitz for the Krein)

* allows fast algorithm solutions for them. This reduces the computation

2required to O(N the same as for the layer stripping methods.

-Nevertheless, it should be noted that the integral equation methods amount

to formulating a problem mathematically and solving it from a mathematical

perspective. The layer stripping methods amount to formulating a problem

physically, in terms of clearly physical variables such as waves and
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Since this equation is centrosymmetric, we have

mll(X,Y) = m 2 2(x,y) and m 2 (x,y) = m2 1(x,y) (2-128)

and this simplifies (2-127) to

m l(X,Z) + m 2 1(x,y)R(y+z)dy 0, -x < z < x (2-12 9a)

R(x+z) + m2 1 (x,z) + f l1(x,y)R(y+z)dy= 0, -x< z < x. (2-129b)

z

Adding these two equations and recalling (2-102) yields the Marchenko

integral equation (2-103).

Two comments are in order here. First, the original choice (2-123)

for the probing waves E(x,w) is tantamount to probing the medium from a

half-space, as in (2-101). This is why the Marchenko equation is obtained,

rather than the Geltfand-Levitan or Krein equations. These latter equations

were obtained by a choice of probing waves associated with a free surface,

as in (2-107). Second, the centrosymmetric equalities (2-128) do not

quite agree with the time reversal equalities (2-98). The reason for this

is that m 2 2 (x,t) in (2-98) contains a probing impulse 6(x-t), while the

probing impulse in the second component of the present experiment is

5(x+t). This cancels the time reversal in (2-98), leaving (2-128).

Operating on (2-129a) and (2-129b) respectively with the operators

(0/x + 3/;z) and (/3x - V/3z) yields the Krein-Levinson algorithm

dynamics (2-114). Proceeding as before, the Krein-Levinson algorithm

can be shown to solve (2-129). And the residual M(x,-) therefore

satisfies (2-91) and (2-92), and is therefore the state transition matrix.

i ..

Z. -...
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reflectivity functions. Thus a layer stripping approach is much "closer"

to the problem; indeed, layer stripping methods have been described as

"letting the medium perform the inversion itself" (Bruckstein and Kailath,

* 1983). It would seem, then, that a layer stripping approach is the

"right way" to look at the problem. This is emphasized by the comparison

* of the fast Cholesky and Krein-Levinson algorithms to follow.

*2.5.2 Fast Cholesky vs. Krein-Levinson Algorithms

For convenience these two algorithms are summarized below.0

Fast Cholesky Algorithm

basic ('tx + £ I't)5(x,t) = -r(x)4(x,t)
dynamics: ( I9x - /Mt)-(xjt) = -r(x)-;(x,t).

update patterns: See Figure 2.3.

reflectivity: r(x) =24(x,x+)

function update:

initial conditions: half-space: D(0,t0=0, (0 ,t)=R(t);
free surface: ji(O,t) = 1 (,t)=k Ct).

quantities being rightgoing and leftgoing waves,
propagated: p(x,t) and "q(xjt), respectively.

support: t > x

factorization free surface i.e.: 6(7) +k(-,)+k(-t)0=(causal) (anticausal); 0
performed: xialf-space i .c.: 6(-c))-R (T) *RC(T) =(causal) (anticausal).

* The latter follows from notinq in the operator domain that (using (2-520)

1~R* =1 -(k/1+k)(k/(1k*) =(1~+k+*)((1k)1+k*)) (2-130)

which is clearly factored if 1+ k + k* is.
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Krein-Levinson Algorithm

basic (3/3x + /3t)0M 11 (x,t) = -r(x)M2 1 (xt)

dynamics: (3/3x - /3t)N 2 1(x,t) = -r(x)M1 1(x,t).

update patterns: See Figure 2.7.

reflectivity 0 x (
function update: r(x) = 2(r(0,2x)+ fxA0,x+t)Mii(X,T)dT +

0xf(0,x-1) 2 (x, T)d ), where -(O,t) and 4(0,t)

are the probing waves, as in the fast Cholesky

algorithm.

initial conditions: M1 1 (0,O) = M21 (0, 0 ) = 0. Also need M 1 1(x,-x)=0.

quantities being elements of the state transition matrix, i.e., the
propagated: medium transmission matrix.

support: -x f t 5 x

factorization 6(t-s) + H(t,s;x) = (anticausal)(causal)
performed:

In the factorization performed by the Krein-Levinson algorithm, H(t,s;x)

represents the Fredholm resolvent operator to k(MIT ). This operator is

defined in the operator domain by the operator equation

(I + H)(I + 1 + k*) I (2-131)

which is equivalent to the integral equation

H(t,s;x) + k(It-sj) + ,xH(tv;x)k(iv-sl)dv 0, -x - s, t - x. (2-132)

*x

Note that although the dynamics of the two algorithms are the same,

the quantities being propagated differ. The fast Cholesky quantities carry

the clear interpretation of waves propagating leftward and rightward in the

medium at the point x. The Krein-Levinson quantities carry the murkier

interpretation of being one column of the transmission matrix of the medium

0 to point x. The supports of these quantities are exactly complementary,

" .... 
. . . . . . . . . ... .
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but the fast Cholesky algorithm supplies r(x) directly, while the Krein-

Levinson algorithm requires that r(x) be computed. In Chapter III the

simple equation r(x) = 2 (x,x) will be interpreted physically as the

first reflection from the medium at x having strength r(x)/2. No such I

interpretation of the inner product expression for r(x) is available.

It should also be noted that the Krein-Levinson algorithm requires

that the original scattering data q(O,t) = R(t) be stored in addition to the
propagating quantities Ml(X,t) and M2(x,t). Thus the Krein-Levinson

M1 1 (xt L 2 1 X,)Thste rinLvso

algorithm requires a storage capacity of 3N words, while the fast Cholesky

requires only 2N words. And the extra computation involved in the inner

product expression for r(x) runs the total operation (multiplication-and-

add) count for the Krein-Levinson algorithm to 3N vs. 2N for the

fast Cholesky algorithm.

The "factorization performed" by each algorithm requires some

explanation. The quantities in these algorithms can be interpreted as

operators in L2, the Hilbert space of square-integrable p-vector
2

functions (Kailath et al., 1979). The action of the fast Cholesky

algorithm is to perform a causal-times-anticausal factorization of the

Toeplitz operator 6(T) + k(T) + k(-T), where k(T) is the (causal)

free surface response. The Krein-Levinson algorithm, on the other hand,

performs an anticausal-times-causal factorization of the operator 5(t-s) +

H(t,s;x), where H(t,s;x) is the Fredholm resolvent of k(It-sI). This

again illustrates the complementary nature of these two algorithms. The

discretized versions of these algorithms perform LDU and UDL factorizations,

respectively, of the Toeplitz matrix I + k( i-j ) and its inverse (sec.

Musicus, 1981, for details).

...-----------------------------....--- --. .



77t-A167 823 LYER STRIPPING SOLUTIONS OF 
INVERSE SEISMIC PROBLEMS vs

(U) MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR
INFORMATION AND D.. A E YAGLE 21 MAR 95 LIDS-TH-1436

UONCLSSIFIED FOSR-TR-86-249 FOSR-82-0135F/GS9/1 L

Ehmmmhhh



12.2

..3 .p . .... '

.H .._ .22 .. . .. .



93

2.5.3 Example: Linear Least-Squares Estimation of a Stochastic Process

In this example it is shown how this familiar problem can be posed as

an inverse scattering problem and solved using integral equations, the

Krein-Levinson algorithm, or the fast Cholesky algorithm. This will

lend some perspective to the various inverse scattering concepts, which

were already introduced in the lossless transmission line example (Pusey,

1975, shows the connections between these two examples). More details

on the connection between linear estimation, inverse scattering, and fast -.

algorithms can be found in Dewilde et al. (1981), Dewilde and Dym (1981),

and Dewilde et al. (1978).

The basic problem to be considered is as follows. Let

y(t) z(t) + v(t) (2-133)

be some observations of a zero-mean stationary stochastic process z(.)

with covariance -.

Efz(t)z(s)] k(tt-sl), (2-134)

where v() is a white noise process with unit intensity, i.e.,

E[v(t)v(s)] = 6(t-s) (2-135)

We assume that z(.) and v(.) are uncorrelated and that k()CLl[0,o),

so that its Fourier transform

1(i) = fRk(t) exp-jt dt (2-136)
0

exists. In this case, the spectral density of y(.) is

- . ... .- .



- - 7 -77 1-. - - S .- '

94 O

= 1 + k(w) + (-c). (2-137)

Given the Hilbert space

Y(t; x) = H[y(t+s), -x s 5 x] (2-138)

spanned by the observations over the interval [t-x, t+x], our objective

"" is to compute the forwards and backwards linear least-square estimates of

z at the endpoints of this interval. These estimates can be denoted as

,.x

x

z(t-xlY(t; x)) = x B(x; u) y(t+u)du , (2-139b)

where A(x; ) and B(x; ) are the optimal forwards and backwards

prediction filters, respectively. Note that since the process z() is

stationary the filters A(x; ) and B(x; .) do not depend on t, the center

of the interval [t-x, t+x]. Then, if the forwards and backwards residuals

are defined as 4'
OR

e(t,x) =y(t+x) - (t+xlY(t; x)) (2-140a)

b(t,x) y(t-x) - z(t-xlY(t; x)), (2-140b)

by using the orthogonality property

e(t,x), b(t,x)jY(t; x) (2-141)

of linear least-squares estimates, we find that the filters A(x; ) and

*" B(x; ) satisfy the Wiener-Hopf equations

- , -* - •
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A(x; s) + f A(x; u) k(Iu-sI ) du = k(x-s) (2-142a)

fx
B(x; s) + B(x; u) k(Iu-sj) du k(x+s) (2-142b)

with -x < s < x, These integral equations should be compared to the Krein

equation (2-111).

Applying the operators + and to (2-142a) and
x s x as

(2-142b) respectively, and using the linearity of the resulting equations

yields the Krein-Levinson algorithm

a + a A(x; s) - r(x) B(x; s) (2-143a)

4
(a a)B(x; s) =-r(x) ANx; s) (2-143b) -

ax as

with - x < s < x, and where

r(x) = 2A(x; -x) = 2B(x; x) (2-144a)

= 2(k(2x) - f A(x,u)k(x+u)du) (2-144b)

is the reflectivity function. The fact that r(x) is well-defined can be

obtained by noting from a time-reversal argument that B(x; s) A(x; -s).

So far this has all been routine--it is certainly well-known that the

Krein-Levinson algorithm solves the Wiener-Hopf equations. We now show .

that an inverse scattering interpretation can be assigned to this problem,

and that the fast Cholesky algorithm may be used to solve it.

If we apply the operators + -- to the definition (2-140) of the

forwards and backwards residuals e(t,x) and b(t,x) and use the Krein-

L ..........
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Levinson equations (2-143), we obtain the two-component wave system.

(2 - .t) e(t, x) r W) b(t,x) (2-145a)

9 a

+ ( L b(t,x) = - r(x) e(t,x) (2-145b)

This shows that the residuals satisfy a two-component wave system, where

the waves e(t ,x) and b(t,x) propagate respectively leftward and rightward,

and where the waves at x = 0 are given by
-..:

e(t, 0) = b(t, 0) = y(t) . (2-146)

As a consequence of this observation, the process y(t) can be viewed as

the ouput of a modeling filter driven by e(t ,x) as shown in Figure 2.8a.

This modeling filter is obtained by aggregating infinitesimal ladder

sections of the type described in Figure 2.8b. Clearly the filter problem

is solved if r(x) can be recovered.

The scattering matrix associated to the two-component wave system

(2-145) can be identified by noting that as x-

e(t,x) = VF(t+x) ,b(t,x) = B(t-x) (2-147)

where vF(-) and vB(.) denote respectively the forwards and backwards

innovations processes associated to y(,) (Kailath et al., 1978). The

processes vF(.) and vB (.) are white noise processes and are related to the

observations y(.) through the identities

= F(u)) '.FC) (2-148a)

= F(-.) CB() (2-148b)

*.* . ~~ . *'- .-. ~ . . . . .. . . . . . . . . . . . . . . ..-
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yt) e ( t,))

S(W, x2o)

b(tvx)

2.8a Aggregate modelling filter for y(.).

b(~ ~ ttxo

2. 8b Infinitesimal ladder sections associated with the Krein-
Levinson algorithm.
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where y) VF- ' ) and VB(w) denote formally the Fourier transforms of
F B

y(), F(.) and VB(.), and where the shaping filter F(-) is the outer

or minimum phase spectral factor of W(W), the spectral density of y(.).

That is,

W(W) 1 + k(w) + k(-w) = I F( ,) 2 (2-149)

on the real axis, and F(w) and F-() are analytic in the lower half-plane.

The relations (2-146) and (2-147), or Figure 2.8a, imply that the

scattering matrix S(w) satisfies

= S() (2-150)

F 1

and by substituting (2-148) inside this relation and cancelling (;), we

obtain the identity

S= (2-151)

F0

for the entries of S(M). Using the fact (2-15) that the scattering matrix

is unitary, this gives after some algebra

Rk ) (2-152a)
L(I) 1 + k(A)

T(- = (2-152b)
1 + k(') (0

. " . - .- .
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_R_ )- __- _ F() (2-152c) "RRI + k}(, 2) F()-:i

so that the left reflection coefficient RL(w) depends only on the covariance

data given by k(w). .

Thus, the linear least-squares estimation problem has now been

recast as an inverse scattering problem. The two-component wave system .' %* '

(2-145) has been defined, with the residuals e(t,x) and b(t,x) acting as

waves, and the scattering matrix for this system has been specified by

(2-152). In particular, the left reflection coefficient RL( 4 ) has been

specified entirely in terms of the known covariance k(t). The aim is to

reconstruct r(x), and once this has been done the optimal modelling ''"

filter is specified by Figure 2.8.

Moreover, the form of (2-152a) allows the choice of probing waves

(made by Dewilde et al. , 1981; note that this choice corresponds to a

free surface)

b(t,O) = W(t) + k(t)(t) (2-153a)

e(t,O) = k(t)l(t) (2-153b)

which now replaces (2-146) but leaves RLC) (2-152a) unaltered. And

since RL(w) determines the rest of the scattering matrix, the choice

(2-153) of probing waves leaves the entire inverse scattering problem

unaltered. The choice of probing waves (2-153) means that the fast

Cholesky algorithm

(3 /3x - 3I3t)6(t ,x) = -r(x)b(t ,x) (2-154a)

(3/_x + ;/3t)b(t,x) -r(x)6(t,x) (2-154b)

A * . . . . .. . . . . . . . . . . .o-.. .....
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r(x) = 2e(x,x) (2-154c)

b(t,O) = i(t,O) = k(t)1(t) (2-154d) 0

(recall that only the smooth parts of the waves are propagated) can be

used to reconstruct r(x).

It should also be noted that this results in a causal-times-anticausal

factorization of 6(r) + k(T) + k(-T). Furthermore, from (2-152a) and

(2-152b) we have

FM 1~w +F'
= S(W) (2-155)

so that the choice of probing waves (2-146) implies

b(x,.w) FU0) e - ju'x as x c o. (2-156)

Thus the fast Cholesky recursions also generate F(c).

On the other hand, the Krein-Levinson algorithm (2-143) - (2-144)

operated not on the residuals e(tx) and b(t,x), but on the forwards and -

backwards filters A(x,.) and B(x,*). This again illustrates that the fast

Cholesky algorithm operates directly on the waves in the scattering

interpretation of the problem, while the Krein-Levinson algorithm operates •

on the transmission matrix, and is thus less physically interpretable in its

operation.

In this chapter, we have investigated in detail both differential and

integral equation methods for solving inverse scattering problems. In the

next chapter we shall see how these methods are applied to the one- SE..

p."
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dimensional inverse seismic problem, and derive their discrete counterparts

for the discrete version of this problem.

*"*
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CHAPTER III

The One-Dimensional Inverse Problem at Normal Incidence

3.1 Introduction

In this chapter the inverse seismic problem for a one-dimensional

acoustic layered medium probed by impulsive plane waves at normal incidence

is reviewed. The goal is to recover the acoustical impedance pc(T) as a

function of travel time T. The case of a medium with continuous variation

of material parameters, and the case of a medium with variations only at

discrete depths, are both covered.

A considerable body of literature exists on both of these problems; -.

* indeed, the majority of published work on theoretical methods for solving

inverse seismic problems has dealt with these two problems. Newton

(1981) is a good review paper for references and methods for solving C .

the continuous medium problem. In general, these methods have employed

a mathematical physics approach: the basic equations of the problem are

* transformed into a Schrodinger equation, and the potential of this.

equation is recovered by solving a Marchenko integral equation. This

procedure is described in detail in Section 3.2.2 below. Ware and Ai

(1969) popularized this approach, which has been employed many times

since (see the list of references in Newton (1981)).

Other methods for solving the continuous medium problem have been

proposed. Gray (1983) derived a Marchenko equation directly in terms of

a reflectivity function r(T), bypassing the necessity of solving for the

Schrodinger potential. This allows discontinuities in r(-) and requires

S. .. . . . . . . . . . . . . . . . - .*.* .--.*\
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only that the impedance be continuous, unlike the Schrodinger formulation

for which the impedance must be twice differentiable. Burridge (1980)

derived the Marchenko integral equation and several related integral

equations directly in the time domain, bypassing the Schrodinger

equation formulation.

As for the discrete layered medium problem, the assumption is

generally made that the medium is composed of horizontally stratified

homogeneous layers whose thicknesses are such that the travel time

through each layer is the same. In this case, all events (arrivals at,

reflections at, or transmissions through any interface, including the

surface) occur at integer multiples of Atr, making the problem a digital

signal processing problem. This model of the medium was first proposed by

Goupillaud (1961), and is generally referred to as a "Goupillaud medium."

The inverse seismic problem for such a medium being probed by plane

waves at normal incidence has been solved by Goupillaud (1961), Kunetz

(1962), Claerbout (1968), Ware and Aki (1969), and Berryman and Greene

(1980), among others. Berryman and Greene (1980) also discuss this

problem for the case of unequal travel times through the layers; in this

case the problem is no longer discrete in time, since arrivals can occur

at any time at any depth.

Layer stripping methods have been applied to the inverse problem

for a continuous medium by Symes (1981), Santosa and Schwetlick (1982),

and Bube and Burridge (1983), and to the inverse problem for a discrete

medium by Symes and Zimmerman (1982). The one-dimensional inverse

seismic problem at normal incidence is, to our knowledge, the one inverse

seismic problem to which the layer stripping concept has been applied

extensively prior to this thesis. (Some work has been done on the elastic

Y Y.,
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. problem covered in Chapter VI.)

In Section 3.2 the solution of the inverse problem for a continuous

medium is discussed. After some basic concepts of acoustics (plane

waves, impedance, reflection and transmission coefficients, energy

normalization, and free and half-space surface boundary conditions)

are reviewed, the standard Gel'fand-Levitan procedure (Ware and Aki,

1969) for solving this problem is presented. Then the concept of layer

stripping is applied, and the fast Cholesky, Schur, dynamic deconvolution,

and method of characteristics algorithms for solving this problem are

obtained.

In Section 3.3 the solution of the inverse problem for a discrete

Goupillaud layered medium is discussed. An approach similar to that of

Claerbout (1968) and Ware and Aki (1969) is used to derive the matrix

equations appearing in Ware and Aki (1969), Aki and Richards (1980),

and Berryman and Green (1980). These equations are discrete analogues

of the integral equations of Section 2.4. The discrete Levinson algorithm

for solving these matrix equations is also derived (Berryman and Green,

1980). Next, discrete layer stripping algorithms for solving this problem .

are derived. The discrete Schur and dynamic deconvolution algorithms

obtained here were noted by Robinson (1982). It is most instructive

to compare these discrete results with their continuous counterparts. ,---

In Section 3.4 relations between the solutions of Section 3.2 and

those of Section 3.3 are discussed. In particular, it is shown how the

discrete medium problem approaches the continuous medium problem in

the limit of the layer thicknesses going to zero. Gerver (1970) showed

that for sufficiently small layer thicknesses the discrete problem

solution approximates the continuous problem solution. Other aspects L

?..-
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of the discrete-to-continuous and continuous-to-discrete transitions are

also discussed, including transmission losses, variations in impulses,

a subtle distinction between discrete inverse scattering solutions and

discretization of the medium, as pointed out by Berryman and Greene

(1980).

3.2 Solution of the Inverse Problem for a Continuous Medium

The inverse seismic problem for a one-dimensional acoustic medium

probed by impulsive plane waves at normal incidence is formally defined

as follows. An impulsive acoustic plane wave, propagating vertically

downward, is incident on a layered medium from a homogeneous half-space

z < 0 in which the density Q and local speed of sound co are known. This
0

half-space could, for example, be the ocean above the ocean floor. The

layered medium is laterally homogeneous, so that material parameters vary

only in depth. The medium is also assumed to be acoustic (i.e., a fluid),.--

so that it is entirely characterized by the profiles of density O(z) and I.-.

wave speed c(z). If the medium is continuous, then Q(z) and c(z) are

continuous functions of depth z. The reflection response of the medium

(i.e., the reverberations making their way back to the surface) is

measured at the surface; the actual physical quantity being measured

depends on the surface boundary conditions, as described in Section

3.2.1 below. The goal is to recover the profile functions O(z) and c(z).

The problem is clearly one-dimensional in that all action can be

represented by action along the z axis. The situation is illustrated in

Figure 3. 1.

Several variations on this problem will be considered in this

chapter. In particular, the case of a continuous medium, in which P(z)

.. . . . . . .. ... . . . . . . . .. . -
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and c(z) are continuous functions of z, and the case of a discrete medium,

in which p(z) and c(z) are piecewise constant, will both be treated.

In the latter case it will be assumed, following Goupillaud (1961), that

the layers have equal travel times, i.e., that the thickness of a layer
' ,.,.,,- -

is proportional to the wave speed in that layer. This makes the discrete

problem a digital signal processing one. Two different sets of boundary

conditions at the surface will be employed: the half-space configuration

described above; and a free surface boundary condition, for which the

surface pressure is zero.

For all of the above experimental configurations, Gerver (1970)

has proved that it is impossible to recover (z) and c(z) separately; all

that can be obtained is their product pc(t) as a function of travel time

-. Further, this reconstruction is unique, subject to mild assumptions.

This is reasonable from a degrees-of-freedom point of view--the

measurement of a single time function should not be expected to

determine two different depth functions. In order to determine -(z)

and c(z) separately, the oblique incidence experiment of Chapter IV

must be employed. If the medium is not acoustic but elastic (i.e. , not

a liquid but a solid), then it can support shear stresses and shear wave

propagation. This elastic problem is covered in Chapter VI.

3.2.1 Basic Concepts of Acoustics

In this section we quickly review some basic acoustical concepts,

6 including plane waves, impedance, reflection and transmission coefficients,

energy normalization, and surface boundary conditions. This will clear

up some confusing points and lend physical insight into the meanings of

various quantities appearing in the algorithms.

8.A
. .,
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The two basic equations of acoustics are (Dowling and Williams, 1983)

p = -oc2 V • u (3-1a)

- ; 2 u/at2 = -(l/p)Vp (3-lb)

where u is the particle or medium displacement and p is the negative -

isotropic stress, i.e., pressure. Equation (3-la) can be interpreted as

- an equation of conservation of mass, while equation (3-1b) is a

convervation of momentum equation (compare (3-1b) to Newton's second

law of motion F = ma). For a one-dimensional layered medium (3-1)

becomes

2
p = -Oc 2u/Dz (3- 2a)

2 2U/t = -(1/0) ;p/;z (3-2b)

where u(z,t) is the vertical displacement (the z-component of the vector

u). Note that (3-2a) can be interpreted as Hooke's law for fluids: an

applied stress -p produces the strain u/9z, with the stress and strain

2 0
linearly related by the elastic constant pc

Plane waves

In a homogeneous medium, insertion of (3-2a) in (3-2b) yields the

wave equation

2/2 2 2 2
0 /M c / z )u(zt) 0 (3-3)

which has the fundamental solutions

u(z,t) = u(t + z/c) (3-4)

... ..............-..... .......... . ............... . . ... '....',....'. '.-.,-.- .:2: .- . .:,:,:;.:_ _0
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These solutions describe waves traveling upward and downward with r. 

speed c. These waves can take many forms (e.g., sinusoidal or

impulsive), with some recognizable feature (an impulsive wave front, or

a point of constant phase) moving through the medium at speed c.

Note that there is no variation with x or y, so the wave can be thought

of as a plane of constant phase or a planar impulse moving in the z or -z

direction. This absence of spatial variation over a plane normal to the

direction of propagation at a fixed time defines a plane wave (Aki and

Richards, 1980, p. 125).

In general, if a plane wave is propagating in a space x in direction

n with speed c, the quantity being propagated (displacement, pressure,

etc.) is a function of (t - n * x/c). Note that the component in the

direction y of a plane wave moving in direction n has dependence

t-(n.y)(x.y)/c, which corresponds to an apparentspeed of propagation

faster than c. Since this is a phase velocity, there is no violation of

causality.

Impedance

Consider the sinusoidal plane pressure wave

P~jw(t- z :.:.-
p(z,t) = Pe Ic) (3-5)

propagating through a homogeneous medium. From (3-2) the particle or

medium velocity v(z,t) = au/Dt associated with the wave is

v(z,t) = pO/oc ej (tz /c) (3-6)

so that

° •
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p(z,t)/v(z,t) = Z = pc (3-7)

i.e. the pressure and velocity associated with the wave are related

linearly by the impedance Z. Impedance is thus a measure of medium

resistance to motion, i.e., the amount of pressure p required to set

particles in motion with velocity v. Equation (3-7) should be compared to

the electrical definition (2-42) of impedance as the ratio of voltage to

current.

It should be noted (Aki and Richards, 1980, p. 137) that impedance

depends on the type of wave. For example, a pressure wave propagating

through a homogeneous medium at an angle e from the vertical has

impedance pc/cos 0, while a similar displacement wave has impedance

oc cos 6, even though the waves are physically identical. How can this

be true? For both waves, the ratio of stress to particle velocity in the

direction of propagation is PC. However, the impedance for the pressure

wave is defined by

A'.

v = p/Z =v cos6= (p/Pc) cos e (3-8)

so Z oc/cos 9. The impedance for the displacement wave is defined by

= Zv= p cose= (Pc v) cos 6 (3-9)

so Z = pc cos e. The reasons that impedance is defined in terms of the
0

z-components of the produced stress or particle velocity will become

apparent below. Also, the impedances for waves travelling in opposite

directions have different signs.

-" -



115

Energy and energy normalization

It may be shown (Aki and Richards, 1980, p. 127) that the energy flux

(energy per unit time per unit area normal to the direction of propagation)

for a displacement plane wave is pcv 2 , where v is the particle velocity

amplitude of the wave. The energy flow in the z-direction is then Zv2  %.

= oc cos - v 2 , where e is the angle between the direction of propagation

of the plane wave and the z-axis. This can be seen by projecting a unit

area of wavefront on a unit area normal to the z-axis.

Suppose now that the medium is inhomogeneous in the z-direction.

Then the amplitude of the wave will be continually varying as cc varies,

2
in order that the energy flux pc cos 6 v be kept constant (save for

losses due to reflections). This phenomenon has often been observed in

earthquakes, when a seismic wave that had small amplitude when it was

passing through hard rock (high impedance) suddenly becomes much

larger (and more damaging) when it passes through landfill or sediment

(low impedance).

This continual variation of the wave amplitude makes it difficult to

note the effects of reflections, since the wave amplitude is varying due

both to reflection losses and impedance variations. For this reason, the

(energy)-normalized pressure y and displacement 4p are defined by

- p/Z (3- 10a)

¢=uZi (3-l0b)

These quantities have the property that the energy flux in a wave is

simply the square of the amplitude of the wave--it is no longer necessary

to multiply or divide by Z. Thus variations in amplitude are due solely

.. _ . . . . ,._ _-.. . -., .- ,- . . . ..-..- .* .- .. ... -...... .. ...... ...... . .........-.-...
. . . . . . . . . . . . . . . . . . . . . . . . .* * **.**'.*.
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to transmission and reflection losses. Note that normalized pressure and

velocity have the same dimensions.

Reflection and transmission coefficients

Suppose a wave is propagating through a medium #1 with density ci and

speed of sound c and reaches an interface between medium #1 andp1
another medium #2 with density o2 and local speed of sound c 2 . ' Some

* of the wave will be reflected and some transmitted. The ratios of the

amplitudes of the reflected and transmitted waves to the amplitude of

the incident wave are the reflection and transmission coefficients for that

particular wave type.

Reflection and transmission coefficients are determined by boundary

conditions at the interface: displacement and normal stress are continuous

across the interface. Derivations are made in almost any seismic or

acoustics text; the coefficients for various wave types are simply

summarized below. These expressions are still valid for non-normal

incidence on the interface if the impedance expressions (3-8) and (3-9)

are used.

DEFINITIONS: r = reflection coefficient for a wave incident from medium #1
P = reflection coefficient for a wave incident from medium #2
t = transmission coefficient for a wave incident from

medium #1
t= transmission coefficient for a wave incident from

medium #2

DISPLACEMENT Z- Z 2Z1  (..b
WAVES: r =Z + , t =1+r (3

1 2 Z1 + Z2
Z - Z1  2Zr _ 2 1+r (3-11c,d)

Z2 + Z1 Z + Z r 1 2-

r = -r, tt - rl = 1 (3-11e,f)



117

PRESSURE Z2  1 Z1 2Z 2  31ab
WAVES:t 1r 31ab

z + Z Z + Z
2 1 1 2

z - 2Z
-- 1 2I 31cd

1 2Z+
rrt t1rr (3-12e,f)

DIPAEETZ + Z Z + Z
1 2 1 2

Z --, Z r1
(3-12ec)

2 1
r -t 2 +2=,t -r 1 (3-13df)

Z +-Z

Z2 Z1 2(Z 1 Z 2)14~b
NORMALIZED rt t =31ab

PRESSURE Z2 1Z 2
WAVES:

Z I-Z2
r (3-14c)

Z 1+ Z2

2 2-
r -r, t + r =1, tt-rr 1 (3-14d-f)

Several comments are in order. Note that the reflection coefficients

are the same for normalized and unnormalized waves. This is as expected;

since the wave is reflected back into the same medium, normalization

should have no effect. However, normalization does affect the transmission

coefficients. the normalized coefficients are the same going in either

direction (reciprocity), while the unnormalized coefficients must alter the



wave amplitude to preserve the energy flux through the medium.

Note that the reflection coefficients for pressure and displacement

waves have opposite signs. Physically this amounts to a phase inversion;

mathematically, it may be seen as follows. Recall that the amplitudes of

the pressure and velocity associated with a wave are related by the oilj
impedance. Hence the reflection coefficients for pressure and velocity

are related by the ratio of the impedances of upgoing and downgoing

waves, since the incident and reflected waves travel in opposite directions.

But these two impedances differ in sign, so their ratio is minus one.

For the normalized coefficients, we have the conservation of energy
reltin 2  2  ' '

relation t + 1 (incoming energy = outgoing energy). For all

coefficients, we have r = -r (simply exchange the media) and the

relation tt - rr = 1, which should not be confused with the energy

conservation relation t2 + r2  1.
O

Surface boundary conditions

In an inverse seismic problem, the medium is probed by a downgoing

wave D(O,t) at the surface, and the resulting upgoing wave U(O,t) is 0

measured at the surface. These waves must be specified in terms of

known or measured quantities.

Half-space

If the medium is probed from a homgeneous half-space, then we set

D(O,t) 6(t) (3-15a) O ;

U(0,t) = R(t) (3-15b)

Here (' is the impulse (Dirac delta) function and R(t) is the measured

response. This is the most common choice of boundary condition in the

.. . . . .. . . . .. . . . . . . ...... ...... . . . ,

.- ., -. . -. . .- .- ' . . . .. , - , .- _ . - . , .- - .- ' " ' " ' .- ' .-.- ' , " -. .- '. ' .
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literature, since the mathematical physics solution procedure described

next requires this as a boundary condition. However, it is physically

reasonable to make this choice when the actual physical experiment consists

of detonating an explosive charge just above the ground for a land '

experiment, or close to the sea bottom (far away from the ocean surface)

for an ocean experiment. In the latter case, the water column

reverberations (reflections from the ocean surface) must be removed from '

the data.

Free surface

A free surface is also known as a pressure release surface, since the

boundary condition is that the pressure at the surface is zero. The

surface of the ocean is modelled quite well by a free surface (Claerbout,

1976), and the surface of the earth in a flat region is also modelled well

by such a surface.

The effect of the free surface is to reflect the upcoming waves into

the downgoing waves at the surface. It is necessary to assume that the

density and wave speed are known immediately below the free surface,

in lieu of specifying them in a half-space. Of course, the pressure

release boundary condition is violated for an instant by the impulsive

source, but as long as the source stops before any reflections return to

the surface, there is no problem.

The boundary conditions for a free surface are

D(O,t) = 6(t) + k(t) (3-16a)

U(O,t) = k(t) (3-16b) .

where the upper sign is for displacement waves and the lower sign is for
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pressure waves (to see this, set Z= 0 in (3-11c) and (3-12c)). Note

that the reflection response for a free surface can be synthesized from

the response for a half-space boundary, and vice-versa, by

R( ) = k(w)/(l + k(w)) (3-17a)

k(w) = R(w)/(1 R()) (3-17b)

where the same sign convention as in (3-16) is followed. Indeed, the

entire scattering matrix for a free surface can be synthesized from the

," half-space scattering matrix and vice-versa; see Ware and Aki (1969).

'. Bottom boundary conditions

A radiation boundary condition is also assumed throughout: at

sufficiently great depths, there is no upcoming wave (U(o-,t) = 0).

The transmitted wave at great depths is unknown. The medium is also

assumed to be relaxed (quiescent) before the experiment beings. This is

clearly necessary in order to use causality.

3.2.2 Mathematical Physics Solution for a Continuous Medium

Here the standard mathematical physics procedure for solving the

one-dimensional inverse seismic problem for a continuous medium is

presented. First popularized by Ware and Aki (1969), it has been used •

so often since then that it might well be termed the "classical" approach to

solving this problem. The basic equations (3-2) are transformed into a

Schrodinger equation, an equation often encountered in quantum mechanical

scattering problems (Chadan and Sabatier, 1977). The Gel'fand-Levitan

procedure for recovering the potential of the Schrodinger equation is well

known (Faddeev, 1967; Chadan and Sabatier, 1977; etc.), and the S
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impedance is recovered by solving a differential equation involving the

potential, or is recovered directly from the Schrodinger solution. A major

problem with this method is that it requires the impedance profile Z(7) ,- .

to be twice differentiable, or impulses will appear in the Schrodinger

potential.

Note that the travel time T(z) from the top of the medium to depth

z is given by --

r(z) 0 ds/c(s), (3-18)

and recall the definitions of impedance Z = pc (3-7) and normalized

displacement = Z u (3-lOb). Substituting all of these in the basic

acoustic equations (3-2) and Fourier transforming with respect to time

yields the Schrodinger equation

2 2 V )(T ) 0(3-19)

where b(T ,W) is the Fourier transform of 4O(-,t) and the potential V()"

is defined as

V() Z - (Z ) (3-20)

'2 °

Note that equation (3-20) requires Z(T) to be twice differentiable to avoid

impulses in the potential V(-r).

The boundary conditions for the Gel'fand-Levitan solution procedure

are those for a half-space boundary (3-15). Taking Fourier transforms

of (3-15), employing the radiation condition, and recalling that ¢ = D + U

0 results in

0
....................-



122

e e + (ceT T T < 0 (above surface)^ {~ (3-21)

,) e , T (at great depth)

where e - jt is the source impulsive plane wave, R(w)eWT is the

(measured) reflected plane wave response, and T(w)e - T is the (unknown)

transmission response of the medium. The situation is illustrated in

-' Figure 3. 1.

The Gel'fand-Levitan procedure applied to the inverse scattering

problem specified by (3-19) - (3-21) results in the following procedure

for solving the one-dimensional inverse seismic problem:

(1) Measure R(W) or its inverse Fourier transform R(t);

(2) Solve the Marchenko integral equation

K(t,)+R(t+-) + tK(s,-r)R(s+t)ds 0, t -r (3-22)

(3) Compute the potential V(T) from

V(T) = 2-1 K(-r,-r) (3-23)
d-r

(4) Solve the differential equation (3-20) for Z(T).

Berryman and Greene (1980) have pointed out that steps (3) and (4)

may be replaced by *t2

Z(T)/Z(0) = 1 + K(s,-r)ds (3-24)

0 'l

since the differential equation (3-20) has the same form as the Schrodinger

equation (3-19) with w = 0. From (3-22) it is evident that reconstruction

of Z(r) on [0,T requires R(t) on [0,2T], where 2T is the two-way
00"

travel time.

.
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The Gel'fand-Levitan procedure is derived in Chadan and Sabatier

(1977); the appearance of a Marchenko integral equation in an inverse -

scattering problem with a half-space boundary condition should not be

surprising in light of Chapter II. It should be noted that this procedure '-

requires that there be no bound states (see Chapter 11) and that the

potential V(-t) be localized, i.e.

(1 + T)IV(T)IdT < . (3-25)

Neither of these conditions presents any problem for the one-dimensional

problem at normal incidence, but they do present problems when the

medium is probed at non-normal incidence. This is discussed in Chapter IV. .a

3.2.3 Layer Stripping Solutions for a Continuous Medium

To obtain layer stripping solutions, it is first necessary to obtain a

two-component wave system from the basic acoustic equations (3-2). This

is done as follows. Fourier transformation of (3-2) and changing

variables from depth z to travel time T using (3-18) results in the

symmetrized equations

p =-Z du/d (3-26a) '.'-"

2-
w u (1/Z)dp/dr (3-26b)

which can be written as the matrix system

d 0 2z
d---- / 0u (3-27) [ . -i

Claerbout (1976, p. 169) has pointed out that if the state vector is

L. u
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multiplied by the matrix of row eigenvectors of the system matrix, the

new state variables can be interpreted as upgoing and downgoing waves.

To see this, write the system (3-27) as

dx
= Ax (3-28)

wherex= and let R and C be the matrices of row and column

eigenvectors, respectively, of the system matrix A. Then, defining

w= Rx , (3-29)

substituting (3-29) into (3-28), premultiplying by R, and using RC = I

results in

dw dC(RAC -R -)w (3-30)
d, dz

But RAC is the diagonal matrix of eigenvalues of A, i.e.,

dCRAC = DIAG[-j, jw]. In a homogeneous medium, the second term R - z

is zero, and from (3-30) it is evident that w is indeed a vector whose

components are upgoing and downgoing waves. 0.

However, in an inhomogeneous medium, the second term of (3-30)

dC
R dzdiffers from zero. But the interpretation of w as consisting of upgoingi Rd C

and downgoing waves will be preserved if the diagonal elements of R dC

are zero. This can be achieved by scaling R appropriately (scaling the

, elements of R will not affect their status as eigenvectors). Since R

* is0

R = (3-31)

resulting in the waves
the wave

. . "l .

_:-.



* 125

resulting in the waves

= R = (3-32)
* j. .

the obvious scaling to try is the energy-normalized waves

^D (-r,w)

( 3 (Z R) [-]

"/Z - j.-.Z~ij - 1

Indeed this works and the waves D(T,w) and U(T,w) satisfy the two-

component wave system

rPdD] = ] [] -3) .,''

where the reflectivity function r(-) is defined as

r() 1 dZr dT (3-35)

Two comments are in order here. Recall the definition of impedance

and the fact that impedances of waves travelling in opposite directions are

opposite in sign. Then, in a homogeneous medium, the waves (3-33)

both become waves in the normalized pressure , i.e., the normalized

pressure Y is decomposed into upgoing and downgoing waves. Next,

recall the reflection coefficient (3-14a) for normalized pressure waves.

,*%
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A continuous medium may be modelled by a stack of thin homogeneous

layers, each with travel time A, and then letting A approach zero. This

gives

LIM r LIM Z(T+-,') - Z(T) 1 1 dZ r() (-6
A-0 = A10 Z(t+A) + Z(T) T- = 2 - r(r). (3-36)

This will be discussed in more detail in Section 3.4. In the present

context, the sign of (3-35) implies that the waves are really normalized

pressure waves, rather than displacement waves. This is in accordance

with the first comment.

Fast Cholesky algorithm S

If the downgoing wave D(T ,t) contains an impulse, as it does in

both the half-space and free surface boundary conditions, then we

immediately have the fast Cholesky algorithm

2 + -) D(T,t) = -r(T)U(T,t) (3-37a)

( - -t) U(-r ,t) =-r(T)D(-r ,t) (3-37b)

r(T) = 2U(T,T) (3-37c)

initialized by either set of boundary conditions (3-15) or (3-16). The -

impedance Z(T) is then recovered by integrating (3-35), yielding

Z = Z(O) exp 2 fr(s)ds. (3-38)

This algorithm is preferable to the Gel'fand-Levitan procedure (3-20),

(3-22), (3-23) on both computational and aesthetic grounds. The
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quantities in the algorithm have obvious physical interpretations, allowing

the user to physically envision the inversion process, and the algorithm

is guaranteed stable as long as f 0 1rr) Id < o, which merely requires . ,'

that the impedance be positive and bounded. Bube and Burridge

(1983) have experimented with various discretizations of this algorithm

(which they call the "downward continuation" algorithm), and have

gotten excellent results.

Schur algorithm

In the frequency domain we have

-- : [z> ;z1[~:u~] (3-39a)d

r(L) =Li)j T)f dL (3-39b)

which may be preferable if all of the waves are only known over a

limited frequency range (i.e., are bandlimited in measurement). In

this case, the lack of high frequency components will cause some error

in (3-39b). Z(-) is obtained from (3-38).

Dynamic deconvolution

Defining the reflection coefficient for the entire medium below depth z

(T, U(T,L1/D ( ,() (3-40)

we have the Riccati equation

d (,)= 2j.IR - r(t)(1-R 2) (3-41)

dr

2j--- ~~ -.")(-R 2 (341
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along with

j r(t) = LIM 2j = (1/7) R(-)d- (3-42)

This algorithm, in which R(r,.) is propagated in T by (3-41), is

initialized by "

R(O,w) = R(w) for a half-space boundary (3-43a)

R(O,w) 1(4/(1-k(.4) for a free surface boundary (3-43b)

Tolstoy and Clay (1966) noted the Riccati equation (3-41) for

propagating the forward problem, as did Newton (1981). Corones et al.

(1983) used the inverse Fourier transform of (3-41) as an invariant

embedding equation, along with

r(:) = 2R(m,O) . (3-44)

to solve the inverse problem.

Note that R(T,,-) is the Fourier transform of the seismogram at depth .'-

* that would be obtained if all of the medium above depth T were stripped

away, and the remaining portion of the medium probed with an impulsive

plane wave. Equation (3-44) then states that the first reflection from

the medium is caused solely by r(T). Equation (3-37c) in the fast _1

Cholesky algorithm has a similar interpretation: the first reflection from

the downgoing wave into the upgoing wave at depth T is caused solely

by r(-). 0

Method of characteristics

The choice of variables in using the method of characteristics is -

dictated by the relation Z = p/v. Letting

I.o.

*1I."

I''", .... ''T''7."" .-. - -* . - -" ." . -" . . .r .. . ., .- . ... ." . . . " . " "' .:.. " . " ' '. ' . " "-' ' . -
, - U-, " 

'  
, r " ' ' ' ' • - • , ' - ' ; ' ', - . "
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p(,t) = p(T ,t)1(t-T) (3-45a)

v(T,t) = v(T,t)1(t-T) (3-45b)

and changing variables from z to . in the basic acoustic equations (3-2)

results in the symmetrized system

oP(T,t)/3T =-Z3(T,t)/St (3-46a)

3o1(T ,t)IT 1 -IZ) l(T , t)It (3-46b)

Along the wave front, which is a plane wave in (-,t) space propagating

with unit velocity, we have by the definition of impedance

Z(T) = p(T, +)/v(, +) (3-47) - -

The set of equations (3-46) - (3-47) can be propagated in T, yielding

Z(:). However, there is no guarantee of stability, and all physical

interpretation in terms of waves and reflections is gone.

Each of the above algorithms has its counterpart in the inverse

seismic problem for a discrete layered medium. This is explored in the

next section.

3.3 Solution of the Inverse Problem for a Discrete Medium

The inverse seismic problem for a one-dimensional acoustic discrete

medium is defined as follows. The medium consists of a stack of

homogeneous layers whose thicknesses are proportional to the speeds

of sound within them. Such a medium is called a Goupillaud medium,

after Goupillaud (1961). The medium is probed by an impulsive

acoustic plane wave at normal incidence, as before, and the reflection N*

response of the medium is measured. The goal is to recover the

• 0'

S- a S .S . . . . . . . . .- . . . . . .
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impedance in each layer, which is equivalent to finding impedance as a

function of travel time. The medium is illustrated in Figure 3.2.

The special structure of a Goupillaud medium causes all events

(wave arrivals, reflections, and transmissions at all interfaces,

including the surface) to occur at half-integer multiples of the two-way

travel time .AT through each layer. This means that the actual

mathematical problem, involving impulses, can be replaced by a completely

equivalent digital signal processing problem. This makes things much

simpler mathematically, and allows much easier visualization of what is 0

happening inside the medium.

It should be noted that the Goupillaud assumption is not as

restrictive as it may first appear. Thick layers of various thicknesses •

may be built up by stacking various numbers of the fundamental layers,

each having the same density and wave speed. This can be used to

U approximate a general discrete medium. For _T small, tile Goupillaud 0

medium may be a good approximation to a continuous medium. Indeed,

it will be shown in Section 3.4 below that the Goupillaud medium results --

approach the continuous medium results as &-E 0 (this result is due to -

Gerver, 1970).

In the course of solving the discrete problem, discrete analogues

of integral equations and of all of the layer stripping algorithms will be • -

obtained. The approach will be similar to that of Aki and Richards

(1980), with results from Kunetz (1967), Ware and Aki (1969), Berryman

and Greene (1980), and Robinson (1982) also worked in. Bruckstein •

and Kailath (1984) ga-' a similar treatment for the discrete transmission

line.

00
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3. 2 The discrete, Goupillaud, equal-traveltinie layered medium
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3.3.1 Matrix Equation Solutions for a Discrete Medium

For convenience we consider the medium as consisting of N equal-

traveltime layers sandwiched between two infinite half-spaces. The

two-way travel time through each layer is At. Insertion of the lower
Ie

half-space is simply equivalent to cutting off the data record after NAT.

In due course, a free surface will be introduced in lieu of the upper

half-space (this can be done by setting o = c o = 0). The medium is

illustrated in Figure 3.2. .

The medium will be probed by an. impulsive displacement wave, and

the problem will be treated as a digital signal processing problem. The

downgoing and upgoing normalized displacement waves at the top of

layer i will be designated as d i and ui , respectively, while the waves at

the bottom of layer i will be designated as d' and u'. The wave

notation is illustrated in Figure 3.3. Note that

d.(t) = di(t - ) (3-48a)
1 1

u.(t) = ui(t + ) (3-48b)

It should also be noted that di(t) and ui(t) are zero except at
1 1

t = (i-l)/2 + k, k = 0,1,2,..., and d (t) and u.(t) are zero except at
1 1

t = i/2 + k, k = 0,1,2,... Hence successive non-zero values of any

wave are separated by one, i.e. , the layer two-way traveltime "'. If

the one-way layer traveltime were being used, the waves would have

every other value being zero, and the notation would be even worse.

At any given moment, the four waves at an interface i interact as

shown in Figure 3. 4. We have
• " L5-

4.

55'-
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10.J

d2(t) 1 u(t)0

di(t) \\uz(t)

( d'(0 ( U (t) C

tN (t) 5S uN(t) rN..-

+1 N+1Basement

3. 3 Notation for up going and downgoing waves at the top
and bottom of each layer.
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t 2 ~time

Interface i-1 ~

/Ua Layer

Interface i

Layer W+

Interface i+: '

3. 4 Interaction of the downgoing and upgoing waves in layers
i and i+1-.
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d t d.+ru (3-49a)
i 1 1 i i+1

u =r id.i + t ui (3- 49b)

where r., tir. and iare defined in (3-13) for normalized displacement

waves. Equations (3-49) can be rewritten, using (3-13d) and (3-13f) ,

as

~i1 -r r]F~ 
(3-50)

i+1 1 I

and defining the layer two-way travel time delay operator z we have, I.''

using (3-48)

[u+11  '[~
j z~1  L-i 1 d~i(3-51)

A straightforward induction argument similar to that of Aki and

Richards (1980, p. 666) shows that for n =1,2,... .N

Ldn = n2  (z) znM (1/z) ILd
n+I 21 11 1

*where M 11 (z) and N 21 (z) are polynomials in z having the forms

n

S(z)= m z 1 (t tm n = 1, mn = 0 (3-53a)
11 i=0 mi zt 1t2 - nt 10 1 n

N* N''(z) = i m ni /(t t2 .t n n~=r ~~ 0 (3-53b)
21 i=0 i 12 m2 rnm2
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Note that (3-52) defines the discrete state transition matrix, in direct

analogy to (2-93). Note that properties analogous to the time-reversal

properties (2-98) have been revealed by the induction, and have been * .

-' used to simplify M 2 (z) and M 2 (z). Note also that the finite order of the

" polynomials is analogous to the support (2-97) of M 1 1(x,t) and M2 1 (x,t).

The polynomials Mln(z) and M2n(z) are generated recursively by •

the recursions -K
M n+1 1 n zrnM2(z) ) (3-54a)11 -F (z) - 11 ( n 21

Mn+1 1t__ n ()n ...'
M (Z) = (z- rnM W )  (3-54b) 221 n 1 nil1

which also follow directly since [Mn (z)] is the transition matrix (compare

to (2-91)). Equations (3-53) and (3-54) are similar to equations (41)

and (42) in Ware and Aki (1969), and to equations (22), (13), and (12)

in Berryman and Greene (1980). However, these latter equations were

derived for the upgoing (i.e., in decreasing i) transition matrix.

Half-space boundary condition

For an infinite half-space boundary the boundary conditions are

[ulj [R(z)] (3-55a) 1

UN+1 0Tz (3-55b)dN+ I  T (z)]"':

where

*i

%°* °-°% °'' "° '". ° " . ' ""'" " "%"'"" "".' ° "'"'"" ' . , -° "" ,' '""°', "°'. "' % . . ".-°"°" ," "• ° '.*,° N " ','', .. , °"o .5°, ,,'-
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R(z) = Rz~(3-56a),.....:
n

T(z) = Tn zn  (3-56b)
n=N/2

are constructed from the reflection response sequence at the surface
{R ), and the transmission response sequence at the bottom {Tn).

n n

The layer matrix in (3-51) has a determinant of unity, hence the

propagator matrix in (3-52) also has a determinant of unity. Inserting

(3-55) into (3-52), setting n = N, and adding results in

N N N N N N/2z (Mi 11I/z) + M 2 1 (1/z)) + R(z)(M 1 0) + M 2 1(z)) =z T (z)

(3-57)

N

Multiplying (3-57) by i 1 ti and inserting (3-53) and (3-56) results in

N N N
N- N Nm. + zi ~ N NN1

z ( (m +m .)R. . N+i=i i= j= N-j 2,N-j i+j-N + o(zN)

N
N 2+i N+1

S jltj i=N /2 Ti +  0.:

N

=N 
11 t) + O(zN+1) (3-58)= j=l tiN/2'

where the order of the inner sum of the nested sum has been reversed.
N N 2

Clearly TN/2  -l t., so the right side of (3-58) is just zN j ) (1-r) +Cer N2 j=1 j, sjs = (-rI
N+1O(zN). Equating coefficients of powers of z on both sides of (3-58)

results in the matrix equation
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which is (70) in Berryman and Greene (1980), and which can be

rewritten as "  ,

N Nm +m R R m + 0N 02N 0 0NiN. 2N

I ~ + 0+3-9

N N N 2

R21 N ,-m.-.IN N N N l1 1

m 0 +m. 0 - RNN R m 10 + m 0

-" ~(3-60)"- "

Equation (3-60) is just a discrete version of the Marchenko integralto(-0)."

IN 2N(0o0p1Ne2N

~~N + mNN N

equation (2-103), in terms of the kernel m

102 (cmpr to (2-N0 203102))

From (3-53b), and in analogy to (2-104a), we have

r m N (3-61)N 20

Free surface boundary condition

Here we return to Aki and Richards (1980), pp. 667-669). Now -

the boundary conditions are

u11 k(z)-" (3-62a)

d1 L1+k (z)J

UN+1

d (3-62b)
N+1 TOM)

. '47-*
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k(z) = (3-62c)n=0 n36c ....

where R(z) and T(z) are defined by (3-55) and (3-56) and {k n } is

the free surface response sequence. Inserting (3-62) in (3-52) with

n N yields '

N N N N N i
( zN12 M (z) + z NI (l/z) z NM (l/z) k (z)
0N1/ 1 21 21 (3-63)

ITzJ z [21 (Z) + zNNV1 (1/z) zN M(l/z)- L i.I

Defining the polynomial

G(z) AMN (Z) + zNM N(1/z) (3-64a).

NN N i '. g=N N N

=(1/jit1 ) i=0 gi z  gi '=mi 2,N-i gN rN4  (3-64b) 

N
replacing z with 1/z in (3-63a), multiplying by z , and adding to

(3-63b) yields

z- N/2T(z) = G(-) (1 + k(z) + k(-)) (3-65)z z

Replacing z with in (3-65) shows that z-N 2 T(z)G(z) remains unchanged

if z is replaced with 1. Since this is a causal polynomial, this is only
z

possible if it is a constant polynomial, and (3-53) and (3-64b) show that

this constant is one. Hence we have

G(z) = 1/(z-N/ 2 T(z)) (3-66)

so that G(z) is the causal and stable deconvolution, inverse, or

' . .* . . . . . * C..*... *

%".% . .- %. j ." " ".. . ,- .. ,-.- -°'--. .- - .- .C. . . . .... . . . . . . .°*, ,• . . , . ... . ' .,"
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whitening filter that outputs the source impulse when the transmission

seismogram is fed into it (the zN/2 removes the delay before {T n

becomes non-zero).

Inserting (3-66) into (3-65) we get the important equation

1 + k(z) + k(l/z) = T(z)T(l/z) = 1(G(z)G(l1z)) (3-67)

which states that the medium response, for a free surface boundary

condition, forms one side of the autocorrelation of the transmission *
seismogram. This famous result is due to Kunetz (1962), and should be

compared with (2-149).
S..

Writing out the polynomials in (3-65) using (3-64b) and (3-62c),

multiplying by G(1/z), and equating coefficients of negative powers of

.- z to zero (since 1G(z) is causal by (3-66)) yields the matrix equation

/ Ng1 [I
2k I + g92 + 1 2  0, (3-68)

4.E t . "-..

k k . gN j=l j ,e

and using (3-64) and (3-53) this equation can be rewritten as

k m N + M N- 2k k ka . k  m N + m NN-O ...:.

1N N N N

k 1 mN + 2 2k0 k 1 I''"k 2N

~Equation (3-69) is a discrete version of the Krein integral equation

1 1 termsI N f N [ m][ m N  Nm

11 li + M2,-i (compared to (2-110)).++k

.J 
J m

Lk j in •No °.
iN 20- 1 0 iN 2

Sm

'.-' -''.-"" .-''-.-'-""'.".>.- "'.-.''--." "" ":-" " ' "-"' -2-"F .".">"' -. '."-". ..---. ""-'".--"-% " . '".." ' "(3-69)' .... '

* qain(-9 i iceevrso
°

fte
-

en nerleuto



141 __

In the continuous medium case, the transmission losses become negligible .r' '

N
(see Section 3.4), so t. becomes unity. From (3-64b) we have

j=1 j,; .N N
rN = - (mN + mN ), in analogy to (2-113).

iN 20

Levinson algorithm #, \

It should not be surprising that the discrete Levinson algorithm can

be used to solve the matrix equations (3-60) and (3-68). Indeed, the

recursions (3-54) are the Levinson recursions in the form of recursions

non the Szego polynomials M n(z) and M n(z). All that is needed is anon~1 teSeoplnmasM (ZanM12 Mal

"inner product" expression to generate the reflection coefficients, allowing

the algorithm to propagate. Equation (52) in Ware and Aki (1969) and

equation (21) in Berryman and Greene (1980) are both

n-1 n-i1 2

r= k Mni (1-r.) (3-70)
0nn-i "=j 0-

(proved by induction in Appendix A of Ware and Aki, 1969), and this

in conjunction with

n 1 (m n-1 n-1 (3-71a)ii 2ir) (i +n m2 J-.1

m n 1 1) n-1 + r mli )  1 i < n (3-71b)

2i (1- 2 2,-.)n 1
1i

forms the Levinson algorithm for obtaining the reflection coefficients

N N
{r ). Note that the sums m + m solve the Marchenko-like Hankel

n 1i 2i

matrix system (3-60), while the solution to the Krein-like Toeplitz matrix

system (3-68) can be generated from (3-71) and (3-64). "..

Having obtained discrete analogues to the Narchenko and Krein

.' -.- .--- .bu--. , , ,m_ . : " -: . .. , . . .. ." .- .. , : .: .,: . . ., , . : , .° ., , . i :
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integral equations and the Levinson algorithm, we now derive discrete

analogues to the layer stripping algorithms of Section 3.2. 3.

3.3.2 Layer Stripping Solutions for a Discrete Medium

The layer stripping algorithms for solving the discrete medium problem

can be obtained almost immediately from the above development. Recalling

(3-51)

[ui+il ~4 zr. 1Fu
Ld~+1i 1 -i (3-72)

where t1  (1 fro 313) ii' can be initialized using either

*(3-55) for a half-space boundary or (3-62) for a free surface.

At the leading edge or wave front, there is no upcoming wave from

farther below by causality and the initial quiescence of the medium.

Hence we may set u i+1 =0 in (3-49b), yielding

r. u u.d U u(1 + )/d.(i -~ (3-73)

The fast Cholesky algorithm is then, from (3-72) and (3-73),

d t M (d.(t -J) -riu.(t + j)(3- 74a)
(1~~) 2 11 .

(t M 1 (u.(t r~ d rd(t -))(3-74b)

1+ 1 1

r. u. (i + )/d. (i - ).(3-74c) J
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The Schur algorithm (here in its original form as developed by

Schur) is (Robinson, 1982)

z

d. (Z) (d. - z r.ui) (3-75a)r 2 .. "

z-
U W (u. zrid.) (3-75b)

1+ 1 1

u1 - u- .'.-.
r 1 = d (3-75c)

The dynamic deconvolution algorithm (Robinson, 1982) is obtained by

defining

R(z) (3-76)i zd.

and noting from (3-75) that R(z) satisfies

1 Ri(z)-r i

R 1-rRz) (3-77a)

r. = Ri(0), (3-77b)

Note that (3-77a) is a discrete Riccati equation (compare with (3-41)).
Ri(z) represents the seismogram that would be obtained if all of the
layers 1,2 .... i were stripped off and the remaining portion of the

medium were probed with an impulse. Equation (3-77b) simply states

that the first reflection from the remaining portion of the medium

(Robinson, 1982, refers to it as the "first bounce") is caused by the

*.% %

*. -.. . .
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reflection coefficient r. of the next interface. The dynamic deconvolution
i

algorithm is initialized by

R (z) = R(z) (half-space boundary) (3-78a)0

R 0(z) = k(z)/(l+k(z)) (free surface) (3-78b)

(Note the sign change between (3-43b) and (3-78b); this is caused by

the switch from pressure waves to displacement waves.)

The Schur-Cohn stability test is to run the algorithm (3-77), 0

starting with R 0 (z) = f(z). Then Jf(z)J < 1 and f(z) is analytic inside

the unit circle if and only if the reflection coefficients all have the

property that IriI < 1. This test is tantamount to the synthesis of a

lossless transmission line; the conditions lf(z)j < 1 and ril < 1 are

both statements of the passivity of the line. To see this, recall that

each section of the line is implemented by the layer matrix (3-51), which

has a determinant of unity. Then, if IriI < 1, each layer matrix

multiplication becomes a lossless rotation, so that the line is lossless.

The test is also analogous to the Darlington synthesis of a lossless

digital filter. References for all of this are given in Chapter II. .'-

Note that the fast Cholesky algorithm (3-74) does not match the

discretized version of the continuous fast Cholesky algorithm presented •

in (2-25). However, we can easily obtain this form of the fast Cholesky

algorithm for the discrete medium problem by making two changes: (1)

exchange the roles of the primed and unprimed waves in Figures 3.3

and 3.4, so that the waves in the (revised) fast Cholesky algorithm are

the waves at the bottom of each layer; and (2) change from two-way

travel time to one-way travel time. Then the wave interactions at an

* . .- 0' .. . .



145 LAW

interface i are described by

d!.'+i tid + riu.'l (3-79a)
l+ i ii1+1

u= r.d. + tu (3-79b)
1 i i i i+1

We also have

ui M = ui(t-1 )  (3- 80a) -. '"___
?.a

d'(t) = di(t+l) (3-80b)

t. = t. = 1 - r. 2  (3-80c)1 1 1 ".'- .•

where the one-way travel time through each layer is unity and (3-80c)

follows from the (continued) use of normalized displacement waves.

From (3-79) and (3-80) we get

(d (t21 (dit M riui M )  (3-81a)

U. (t- 1) 1 (u.(t) - rid(t)) (3-81b)
i+1(1-r i )2

r. = u.(i) / d i (i) (3-81c)

which has the same form as the discretized algorithm, except for the

transmission losses and a factor of two in (3-81c). These are discussed

in Section 3.4.

It should be noted that Symes and Zimmerman (1982) and

Bruckstein et al. (1984) have made detailed numerical studies of the

performance of the discrete fast Cholesky algorithm in the presence of

-,i -'.

.°','".".1
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noise and using bandlimited data. The algorithm seems to work quite

well for fifty or sixty layers, at which point the conditioning of the

problem itself becomes so poor that further inversion by any means would

give poor results. Bandlimitation of the data does not affect the algorithm

too severely, although the lack of low-frequency components causes

problems in reconstructing the trend of the profiles. These results O

emphasize the comments of Bruckstein and Kailath (1984) that layer

stripping methods are NOT inherently inferior to integral equation or

matrix methods, as commonly believed. Indeed, a major purpose of -

Chapters II and III of this thesis is to emphasize that the two approaches

are mathematically equivalent, and in fact are dual to each other.

3.4 Relations Between Discrete and Continuous Problems and Solutions

In this section the problems and results of Sections 3.2 and 3.3

are linked. One might intuitively expect the results for a continuous 0

medium to closely match those for a sufficiently finely discretized medium.

For the most part this is the case (Gerver, 1970); however, there are

some important distinctions. These distinctions are discussed and 0

clarified here, so that the relation between the continuous and discrete

problems may be more readily understood.

3.4.1 Discrete to Continuous Transformation .

It is a well known development that the two-component wave system

* inverse scattering problem for a continuous medium can be treated by

solving the same problem for a discrete, equal-traveltime medium, and

then letting the layer travel time approach zero. This is a common

procedure in mechanics; Pusey (1975) employed it in studying the lossless

non-uniform transmission line, and Gerver (1970) applied it to the present

. . .- - - - - - - - - -
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problem. Here we quickly sketch over the argument.

Consider a one-dimensional stratified acoustic medium comprised of

homogeneous layers, each of which has a thickness proportional to the -;

wave speed within it, so that the one-way traveltime through each layer

is L. Splitting the medium displacement or pressure in each layer into W

upgoing and downgoing waves, we have the relations (from (3-74))

di+1 (1- (di(t-A) ru(t + (3-82a)

U t) 2 (u(t +A) - r.d.(t- A)) (3-82b)
( 1 r

for waves defined at the top of each layer, and the relations (from (3-81))

d (t+1A) -(1 (d(t) - riui(t)) (3-83a)*i+1 T_2 1 11i

u (t- )= 1 (uiCt) - r.d. (t)) (3-83b)i+1 2j i 11i

for waves defined at the bottom of each layer. In both cases, the

reflection coefficient for normalized displacement waves is

z. - z
r - (3-84)ri = 7Z + Zi+

1 i+1

while the reflection coefficient for normalized pressure waves is

Z. -Z
i+1 iri= Z +l + Z (3-85) I .
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Since the continuous medium results of Section 3.2 were derived using

pressure waves, we shall use pressure waves and (3-85) in the sequel.

Now, letting the layer travel time A approach zero is tantamount to

taking a finer discretization of the medium, i.e., approximating a

continuous medium by a stack of thin homogeneous layers. No matter

how small A is, the relations (3-82), (3-83', and (3-85) all hold; but

as A 0 the equations for the discrete medium approach those for a

continuous medium. To see this, note that (3-85) can be written as

Sr = Z(-r+A/2) - Z(T-A/2) (3-86)
T (-Z(i+A/2) + Z(1-A/2)

where T is the travel time to the interface i and Z(t) is defined in the

middle of each layer. If the medium is continuous at T, we then have

-A LIM r LIM Z(r+AI2)-Z(T-AI2) 1
r (r) L 0 - - 0 Z(T +/2)+Z(r-A/2) (3-87)

I dZ

in agreement with (3-35). The reflectivity function r('r), defined in

this manner, is finite as long as the medium is continuous. A step change

in the medium properties results in an impulse in r(T).

Using (3-87), rewrite (3-82) as

d+A/2(t)- dTA 2 (tA)/(r ) _ ru (3-88a)
.. A A (l-r 2 u TA/2(t) (38a

2T

,- uT,+t/2(t) u+) r- rT+l',/ 2)/ UT-T/2(t-A

A A (1-r 2  UTA/2 ( (3-88b)

7-n

~...........
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and letting L 0 yields

(-_ + )D(Tt) =-r(T)U(T,t) (3- 8 9a)

- ) U ) (-ct) =-r(r)D (T,t) (3-89b)

in agreement with (3-37a,b). Here the waves D(T,t) and U(T,t) are

simply d (t) and u (t), and (3-87) has been used to show that rT _) 0.
.

A similar argument applied to (3-83) also results in (3-89). This is

as expected; it shouldn't matter whether the waves are defined at the top

of a layer or at its bottom, if the layer thickness is going to zero.

However, it does show that D(T,t) and U(T,t) are well defined, even

though there is no physical basis for defining upgoing and downgoing

waves in a continuous inhomogeneous medium.

3.4.2 Continuous to Discrete Transformation

* From the above results, it might seem that the discrete medium results

could be obtained from the continuous medium results by a simple dis- '

cretization. However,,this is not so: the effects of transmission losses

and discrete impulsive medium excitations must also be taken into account.

For a simple example of this, consider the discretization of the

Marchenko (2-103) and Krein (2-111) integral equations. These result in

the matrix equations (3-60) and (3-69), supporting the idea that

discretization of the medium is equivalent to discretization of the equations

for a continuous medium. However, note that the right side of (3-60)

includes a term (1 - r - 1. This term goes to zero as 0(A 2 ),

however it is non-zero for non-zero A.

A similar phenomenon is observed in the fast Cholesky algorithm, as

would be expected by the mathematical equivalence of the matrix equation

and layer stripping approaches. Comparing the algorithm for a discrete

* ,
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medium (3-81) with the discretized continuous algorithm (2-25), the extra

2.9
factor (l-ri2) is noted. Like the matrix equation term, this factor is 0(".)J
and hence is negligible for small A. However, it is non-zero for non-zero A.

Both of these terms represent transmission losses through the medium.

As a propagating wave travels through the medium, it is partially reflected,

and loses strength. This is not accounted for in the continuous case, :
since the reflections are 0(A)(from (3-87)), while the transmission losses

2are O(A ) (from (3-80c)) and hence are negligible as A- 0. In practical
terms, the transmission losses are negligible compared to the reflections for

tem, th-rnmsinlossaengiilecmae-ote.elcin o ~,

a continuous medium if A is sufficiently small. Nevertheless, they should

be included by employing (3-81) instead of (2-25) when running the fast

Cholesky algorithm on a computer. Note that (3-81) is an orthogonal trans- 0 j

formation (i.e., a rotation), and is therefore lossless, while (2-25) is not.

Another difference between (3-81) and (2-25) is the factor of two

present in (2-25c) that is not present in (3-81c). This factor results

from the effect of a change of time scale on the probing impulse for the

continuous medium. The applicable formula is

6(at) (I/a)5(t) (3-90)

for a continuous-time impulse (Dirac delta)6(t) and constant a. Figuratively, -

(3-90) states that if the time axis is stretched, a continuous-time impulse

becomes weaker, since its constant area is spread over a wider range.

When the time axis is stretched by converting the two-way travel time (used

in the original discrete medium formulation, hence in (3-81)), to one-way

travel time (implicitly used in (2-25)), the impulse becomes weaker. This

does not happen for the discrete-time impulse used to obtain (3-81c),

hence (3-81c) contains no factor of two. In (2-25c) the weaker reflection

from the weaker impulse must be bolstered by a factor of two.
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Similar effects will be noted in Chapters IV and VI, in which the

expressions for the first reflection (analogous to (2-25c)) will contain

factors correcting for variations in the size of the probing impulse --

caused by variations in the local travel time (i.e. , the differential delay

time at that depth). These factors disappear in the discrete formulation

of these problems, since the discrete-time impulse is unaffected by a

change of time scale. Hence the discretized algorithms (to be run on

a computer) do not contain these factors.

Berryman and Greene (1980) have pointed out another subtle

distinction between the discrete medium solution and the discretized

continuous medium solution. From (3-85), the impedances of the discrete

medium satisfy

Z. /Z (1+r i )/(1-r i) (3-91)
1+1 %*1

(for normalized pressure waves). However, a formal discrete inverse

scattering solution using a discretized Schrodinger equation (Berryman

and Greene, 1980) results in

Z+ 1 /Zi  (l+r 1)/(1-r i) . (3-92)

If the medium is continuous, then (3-91) and (3-92) give the same result

for the impedance Z(T) as A - 0. However, if there is a step change in

the medium at T, then the discrete medium formula (3-91) assigns

Z(T) __Z(T+ )  (3-93) -,,

i.e., the value just below the discontinuity, while the discretized

continuous formula (3-92) assigns

4 . °

................................................ -•.. o . .. "°- • . •.~
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Z(T) = Z(-)(l-ri ) = (Z(T) + Z(T+))/2 (3-94)

i.e., the arithmetic mean of the values on either side of the discontinuity.

In this chapter the one-dimensional inverse seismic problem at
.4/,

normal incidence has been solved, using both integral equation methods

and layer stripping methods. In the next chapter we proceed to the

more difficult, but more interesting, one-dimensional problem at non- -

normal incidence.

4-"0 a.

D• ' "0

- . . . . . . . . . . . ... ** .* *- .... .. %
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4V

CHAPTER IV

The One-Dimensional Inverse Problem at Non-Normal Incidence

4.1 Introduction

In this chapter the inverse seismic problem for a one-dimensional

acoustic layered medium probed by impulsive plane waves at oblique

incidence is solved by a layer stripping algorithm. Separate profiles of

the density O(z) and wave speed c(z) as functions of depth may be

obtained from the reflection responses of the medium to obliquely incident

plane waves at two different angles of incidence. These responses may

be synthesized from the response of the medium to an impulsive point

source by utilizing the Radon and Hankel transforms.

The basic results of this chapter are taken from Yagle and Levy

(1984). However, we also review the work of Coen (1981), Coen (1982)

and Howard (1983), showing how their results relate to the methods of

Chapters II and III. A layer stripping algorithm for this experiment

performed on a discrete medium is also specified. The Radon and Hankel

transforms, which are used to synthesize plane-wave reflection responses

from the impulsive point source reflection response, are discussed.

Finally, the behavior of medium pressure and displacement at a turning

point is analyzed, and a possible way of extending the layer stripping

algorithm through the turning point and back up to the surface is

discussed. Although most of the latter material is not new, it is

important for putting the layer stripping algorithms in the proper

." •° A .

flfli.
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perspective.

The basic problem considered in this chapter is as follows. An

acoustic layered medium, whose density p(z) and wave speed c(z) are

continuous functions of depth alone, is probed by an impulsive plane

pressure wave which is incident on the medium at an angle of incidence 6

(see Figure 4, 1). Although there is no lateral variation in the medium,

the medium must of course have a lateral dimension, which was not

required by the normal incidence problem of Chapter III. Such a medium

is sometimes referred to in the literature as a "1.5 dimensional medium,"

but this terminology is confusing and will not be adopted here. By

probing the medium twice, at two different angles of incidence, the

profiles (z) and c(z) are recovered. Two variations on this basic

problem are also considered: a discrete medium, in which o(z) and c(z) ..

need only be piecewise continuous, and an impulsive point source ,,

excitation (see Figure 4.2), which can be related to oblique plane wave

excitations by the Radon and Hankel transforms. Either a half-space or

free surface boundary condition may be used. "

Previous methods for solving this problem have generally employed the

integral equation methods of Sections 2.4 and 3.2, applied to a suitably

transformed problem. Ware (1969) and Coen (1981) transformed the non-

normal incidence problem into a normal incidence problem, and solved the

resulting Schrodinger equation with the Gel'fand-Levitan integral equation

procedure described in Section 3.2.2. Howard (1983) transformed the N

non-normal incidence problem into a two-component wave system, which

led to a matrix Marchenko integral equation. Coen (1982) showed how the

point-source problem can be reduced to the oblique plane wave problem;

in fact, this can be done immediately with the Radon transform.

. .. .
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4. 1 The non-normal incidence inverse problem.
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4. 2 The point source inverse problem.
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A major problem with this approach is that the integral-equation-based

techniques are unable to deal with some of the complications endemic to

the non-normal incidence problem. The most important of these are

turning points, which occur when the local wave speed c(z) has

increased to the reciprocal of the slowness p of the probing plane wave.

At this point, by Snell's law, the ray paths of the probing plane wave

become horizontal and then bend back up to the surface. Since the .

Schrodinger potential V blows up at a turning point, the Gel'fand-

Levitan procedure of Section 3.2.2 cannot be used if a turning point is

present. This means that the probing plane wave must be chosen to be

nearly vertically incident on the medium, which will lead to small

reflections and a poorer signal-to-noise ratio.

Another complication of the problem that can preclude the use of

the integral equation methods is a low (wave) speed layer, in which

energy can be trapped and propagate as in a waveguide. The energy is

transported to such a layer by evanescent (imaginary wavenumber) waves,

in a process akin mathematically to quantum mechanical tunneling.

Although these "proper" or "trapped" modes can be treated by the

integral equation methods, they must be known a priori, which is not

possible for an inverse problem.

Layer stripping methods, in contrast, have no problem with these

complications. This is in keeping with the layer stripping concept of

treating the medium one layer at a time, rather than all at once as in the

integral equation methods. A turning point, for example, does not

affect a layer stripping algorithm until its depth is reached, at which

point the algorithm can go no deeper (below a turning point the

propagating waves become evanescent, and probing the medium with

. A *A.
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exponentially-decaying waves is an inherently unstable problem). However,

an integral equation procedure cannot reconstruct any part of the medium

if any other part of it causes difficulties.

There have been very few attempts to apply layer stripping concepts

to the non-normal incidence problem for a layered acoustic medium.

Carrion et al. (1984) gave recursions for computing the wave speed

ci+1 and density Pi~ in a layer from their values P. and c. in the previous
-+" + ," ..1

layer and the layer reflection coefficients, but they used a single

scattering approximation that neglected all multiple reflections. Carrion

(1983) applied the method of characteristics to slant-stacked data and

obtain recursions from the midpoint rule for approximating integrals,

but these recursions were far more complex than the Levinson or fast

Cholesky recursions, and offered no physical insight. The wave speeds

were reconstructed by taking differences in arrival times, which is a

very unstable procedure.

Summary

In Section 4.2 the inverse problem in which plane waves at oblique •

incidence are used to probe the medium is discussed. After reviewing

and interpreting the results of Ware (1969), Coen (1981), and Howard

(1983), the layer stripping algorithm for solving this problem is derived. •

Then it is shown how a minor modification of the algorithm enables the

reconstruction of a discrete (P(z) and c(z) piecewise continuous) medium.

In Section 4.3 the inverse problem in which an impulsive point ow

source is used to probe the medium is discussed. The Radon and Hankel

transforms are introduced and discussed, and it is shown how these

transform point-source data to plane-wave data. Then a layer stripping oF

A: .-
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algorithm utilizing cylindrical waves, rather than plane waves, is

derived.*
Finally, in Section 4.4 the behavior of medium pressure and

displacement waves at a turning point is analyzed, and the results are

used to show how a layer stripping algorithm could be propagated back .

up to the surface along with the ray paths. This would allow the portion

of the data record beyond the two-way travel time to the turning point

to be used in the inversion process, and also provide a check on the

reconstructed medium.

Two other points should be made. First, there would seem to be a

duality between reconstructing the medium from its reflection coefficient

R(w,O) specified for all frequencies w and two angles eI and 62 (as is .. '..._

being done in this chapter), and reconstructing it from k(W,e) specified

for two frequencies w 1 and w2 and all angles e. Actually, the duality

is between frequency and wavenumber, since R (w 8) is needed for complex

angles of incidence (corresponding to probing with evanescent waves)

in the second experiment. The first experiment is covered in this

chapter; the second experiment is covered in Chapter VII.

The second point concerns sign conventions. In Chapters II and

III the standard Fourier sign convention

I ff(t)e - 'wt dt (4-1)

was used. In much of the geophysical literature, however, the geophysical

sign conventions (Aki and Richards, 1980, p. 129)

co

f() = If(t)e+jt dt (4-2a)

;;:--.--
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"kx
g(k) = g(x)e dx (4-2b)

are used. The main reason for this convention is that if f(x,t)

represents a wave, and f(k,w) has been obtained by other means, then

fxt 14r2 f C j(kx-wt) @
.f(x,t) (1/4 2 ) - j(kw)e (4-3)

and f(k,w) is the amplitude of a wave propagating in the +x direction.

However, keeping the usual convention (4-1) merely reverses the

direction of the wave, and makes things much easier for non-geophysicists

(including the author). Hence the geophysical sign conventions (4-2)

will not be used in this thesis.0

4.2 Plane Waves at Oblique Incidence

In this section the inverse problem for a layered medium probed by

an impulsive plane pressure wave at oblique incidence is solved. First,

the integral equation approaches of Ware (1969), Coen (1981), and

Howard (1983) are discussed, to put them in perspective relative to

the layer stripping algorithm derived next. Finally, a slight modification

in the layer stripping algorithm allows a discrete medium to be

reconstructed.

4.2.1 Integral Equation Solutions

The methods of Ware (1969), Coen (1981), and Howard (1983) all

involve transforming the non-normal incidence problem to the normal

incidence problem, and then solving this problem by solving a Marchenko

integral equation. As such, these approaches can be considered to be

dual to the layer stripping approach (see Chapter 1I). In addition,

01
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certain aspects of these papers are clarified and related to the

transformations used in Section 4.2.2 below. O

Ware (1969) starts off with the basic linear equation for medium

displacement u, obtained by inserting (3-1a) into (3-1b):

2 2 20 u/at = V(pc V.U) (4-4)

Taking the Fourier transform with respect to time and separating into

components yields

2 2 3 u x d)?-(::

-0L' u P - - / (4-5a)

,%- " o

uz2c
= a (+ (4-5b)

az ax T aT

where u x(x,z,w) and u z(xz ,j) are the lateral and vertical, respectively,

components of displacement. Since the medium properties vary only with

depth, the plane wave solutions of (4-5) take the form

jwpx
U (x,z,w) U(z,w)e (4-6a) - -

U =,zw) V(z,w)e~px (4- 6b)

where p sine /c is the ray parameter for a plane wave incident on the
0 0

medium at angle of incidence 0 from a homogeneous infinite half-space

in which the wave speed is co.

Inserting (4-6) into (4-5) and eliminating V yields

2
PC -z)+ U 0 (4-7)

1- \1-c p2

.. . L
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This is not a Schrodinger equation, but may be transformed into a

Schrodinger equation by defining e(z) by SneU's law •

4' sin O(z) = c(z)p (4-8)

and employing the Liouville transformations (Courant and Hilbert, 1962),

which amount to changing the independent variable z to the vertical

* travel time

T(Z) ~ Cos ecs)ds f(49" (Z) f- z cs(s) ds ds/c'(s) (4-9)

0 0

and the dependent variable U to the normalized displacement

c (z,W) (P(z)c(z)/cosO(z)) U(z,W)= Z(z) 1(z,W) (4-10)

In (4-9) and (4-10) we have implicitly defined the vertical wave speed

c' (z) and impedance Z(z), both of which depend on p. Inserting (4-8) -

(4-10) into (4-7) yields the Schrodinger equation

(2.+ - V(-r,W)) ' ,w) =0 (4-11)32 2^

where the potential V( -,w) is defined as

_I d2 YV(T,W) = , Y Z (4-12)
d-t

Ware (1969) then notes that the Gel'fand-Levitan procedure of

Section 3.2.2 can be used to recover Z(T). He does not, however, note

*M- .
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that performing this experiment twice, at two different angles of "-'- .-

incidence, allows the recovery of p(z) and c(z).

Two comments on Ware (1969)'s procedure should be made. First, .-. *

Ware makes no physical justification for employing the Liouville

transformation--why does this work? From a physical point of view, the

transformations to the energy-normalized displacement $(z ,w) and vertical

travel time T(z) are evident, in light of Section 3.2.1. From a

mathematical point of view, the utility of the Liouville transformation in

the present problem is far less obvious. Second, the physical essence of

the transformation to a normal-incidence problem is not explained. What

is actually happening here is that the progress of the obliquely-incident

probing wave along a ray path is being projected onto the vertical depth

axis, and the component of the probing wave that is normal to the

vertical axis is probing the medium at normal incidence. Thus the

problem can be transformed to a normal incidence problem by considering

vertical displacement, normalized for vertical energy flux, and treated as

a function of vertical travel time, which is precisely the transformation that

works.

Coen (1981) similarly obtains the Schrodinger equation (4-11) by

utilizing the Liouville transformation; the only difference is that the

normalized pressure is used instead of normalized displacement. However,

Coen (1981) gives no physical motivation whatever for his mathematics.

He does not mention energy-normalized pressure, vertical components of 16A

wave speed, or even travel time. We mention here that his inaptly-named

"index of refraction" n(s) is actually 0 0 o/Z(s), and the Liouville

transformation (11) transforms pressure (s,w) to normalized pressuie

(scaled by (oco))g(s,w), and depth z to vertical travel time (scaled by c 0 ).

........................... ........
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q

However, Coen (1981) does employ a useful trick to recover p(z)

and c(z). By defining an "apparent depth" s by

ds/dz = p(z)/p 0  (4-13)

and noting that

ds/dT Z(T)/p 0 (4-14)

he notes that s(T) may be obtained by integrating Z(-r). Then the inverse

function r(s) is obtained from s(T), and P(s) and c(s) obtained from

Z(s) = Z(t(s)) for two different angles of incidence. Then z(s) is O

obtained by integrating (4-13) as

Z(s) F (u) du (4-15) •
0 PU

yielding p(z) = p(s(z)) and c(z) = c(s(z)). This procedure is similar in

spirit to the reconstruction procedure used by Howard (1983), but is

much simpler, since Howard (1983)'s procedure, which does not use s,

requires the solution of a differential equation. The reason why Coen

(1981)'s procedure is simpler than Howard(1983)'s is that Coen (1981) 1

makes use of the fact that p(z) is the same for both experiments (although

the vertical wave speed c' (z) is not).

Howard (1983) employs an approach different from those of Ware

(1969) and Coen (1981). He derives the two-component wave system

obtained below (4-30), and proceeds to define Jost solutions for it. This

results in the matrix Marchenko equation

..- *

* * . . . . . .•. .
I

.
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M(z,T) = R(z+T) - dy R(z+y) M(y,T), -_-t (4-16). -

L"'. ''..1 0~

where R(t) is the inverse Fourier transform of the medium reflection

coefficient. The reflectivity function r([) is obtained from

r()= 2M 2 1 (T,Tr) (4-17)

and Z(T) obtained from

Z = Z(O) exp t 2 r(s)ds} . (4-18)

It should be noted here that Howard (1983) incorrectly refers to (Qc')

as the impedance; the true impedance is pc'. A rather messy

reconstruction procedure then yields p(z) and c(z) from the results of

two experiments at two different angles of incidence.

Howard (1983)'s work is significant because he was able to formulate

the non-normal incidence problem as a two-component wave system problem,

which is the key step toward deriving a layer stripping algorithm for the

problem. This also emphasizes the point of Chapter II that the above

* integral equation n -thods are mathematically dual to the layer stripping -

algorithm derived next.

4.2.2 Layer Stripping Solution for a Co,.dnuous Medium

The layer stripping algorithm for the non-normal incidence problem

is derived in a manner entirely analogous to that for the normal incidence g-

problem (Section 3.2.3). The major differences are that the resulting

algorithm consists of two sets of recursions running in parallel (one for

~. .. .. ..... ......... L'
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d.

each of the two experiments), and employs differential updates of W(z)

and c(z). These updates replace the messy reconstruction procedures

of Coen (1981) and Howard (1983).
*1.

An impulsive plane pressure wave incident at angle 0 from the

vertical has the form 6(t-z cos /c 0 - x sin e/co ) in the homogeneous S

0~ x0 k Z
half-space z < 0. In the frequency domain, this is e(kx x +kZ), where

k = wcos e/c and kx = w sin e/c. are the vertical and horizontal wave
z 0

numbers and c is the wave speed in the half-space. The pressure field •.

for z< 0 is thus

p(x,z,W,e) (e- kzz + R(w,Oe)ek z z)e-jk x x  (4-19)

(compare this to the Schrodinger equation boundary condition (3-21)). This

shows that the reflection frequency response R(w,O) in the time domain

has the form

R(t,x;0) = R(t-x sin 0/c ;e) (4-20)
0

so that theoretically it should only be necessary to measure this response

at a single surface point (e.g., x = 0). However, in any real-world

application it would be a matter of practical necessity to take data for a •

range of x and filter or stack it to the form (4-20). This is because any

real-world impulsive wave could only be locally planar, while the form of

(4-20) assumes a plane wave of infinite extent.

Taking Fourier transforms of the basic acoustic equations (3-1),

and writing the vector equation (3-1b) as two scalar equations results in

(z)W u (x,z,w) =p/;x (4-21a)
x

. • °. .. ]

. . . . . . . . . . .. . . . .
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~(xZ~w =-Q(z)C(z) Ou I x + ;u /;Z) (4-21c)x z

where u and u~ are the x and z components of the (vector) displacement

u(x,z ,t).

Since the medium properties vary only with depth z, the horizontal

wave number k is preserved, and we may write (following Coen, 1981)
Sx

p(x,z,w) ( $z,w)ejkxX(-2

* Substituting (4-22) in (4-21b) , and then substituting the result in

(4-21c) eliminates u and yields, after some algebra,x

P (x,z,W) (1-(c(z) /c,)sin e) =-o(z)c~z)
2 au / z (4-23)

Next, the following substitutions are made:

0 0

(OW) local angle ray path makes with vertical)

c1 (z W c(z)I/cose z)W local vertical wave speed (4-25)

T(Z) =flt ds/l(s) =vertical travel time to depth z (4-26)

Z(-r) = (TWc'() effective impedance (4-27)

* Note that (4-24) follows from Snell's law (sin e(z)/c(z) is constant along
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any ray path), and (4-25) defines a local vertical wavenumber k (z) =z
w/c'(z). Using (4-24) - (4-27) in (4-23) and (4-21a) yields

= ZW2 Uz(T,x,w) (4-28a)

3Uz/3r = - (1/Z)p(Tx,W) (4-28b)z

and once again defining the downgoing and upgoing energy-normalized

waves (as in (3-33))

vl(T,x,w) = p(,x,W)/Z + jWZ Uz(T,x,w) (4-29a)
z

jwZ z (Tx)

v2 ,x,W) = IQ(,x,w)/Z - ,,) (4-29b)

yields the two-component wave system

Vl/1T = -JWV - r(r) v 2  (4-30a)

/ T -r(T) v I + jWv 2  (4-30b)

with the reflectivity function r(T) defined as

1 dZ 1 d ZCI) (4-31)
r() 2Z dr 2 dT log Z(O)

Note that once again the quantities in the two-component wave system

(4-30) are the Fourier transforms of the downgoing and upgoing waves,

so that once again the vertical motion of the medium is decomposed into

upgoing and downgoing waves. Of course, horizontally-travelling waves

could not furnish any information on the vertical variation of material

.. parameters. Since these waves have the form defined by equations (2-22)

-.
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(i.e., v1 contains a probing impulse and v1 and v are causal), all of

the algorithms specified in Section 3.2.3 can now readily be identified V..

for the oblique incidence problem.

Now, suppose this oblique incidence experiment were run twice, for

two different angles of incidence e and e 2 Two different impedances e64

zI(r ) and Z2 ( -2 ), as functions of different vertical travel times T and

T2' would be obtained. The reconstruction procedures given in Coen

(1981) and Howard (1983) could then be used to recover the separate

profiles p(z) and c(z) from ZI(T I) and Z2 (T2). However, further

consideration of the layer-stripping idea yields the following procedure

for recovering D(z) and c(z) while the two algorithms are running,

obviating the necessity of waiting for the complete impedances Zi(T.).

This procedure is also much simpler than the computationally cumbersome

methods of Coen (1981) and Howard (1983).

Let ri(z) be the reflectivity function associated with the experiment

with angle of incidence 0. (i = 1,2), and let c(z) = c(z)/cos ei(z) be

the associated vertical wave speed. Then

r.(z) = (l/2)(d/dz)log((z) c!(z)) (4-32)

Substituting (4-25) in (4-26) and differentiating with respect to z yields

(d/dz)c!(z) (1/cos 3 Si(z)) (de(z)/dz) (4-33)

Using (4-33), equation (4-32) may be rewritten in matrix form as

Wr(z)1 [/(2p(z)) 1/(2c(z)cos 2 P2(z)) 1(d/dz)(z)

W_2z) L/MW)( 1/(2c(z)cos 2 0(W) Ldfdzcz) 4-4

,..- 2.... . ... ... . .. .
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inverting (4-34) yields

2 2
(d/dz)p(z) 1I(2c(z)cos 2W) -I/(2c(z)cos el(z)) rl(z)

L (d/dz)c(z) L-I/(2p(z)) 1/(2p(z)) kr2 (z) 

d(z)

(4-35)

where

-2 -2
d(z) =(cos ez) - cos 6(z))/(4o(z)c(z)). (4-36)

This yields the following recursive algorithm for computing p(z) and c(z).

Discretizing depth as z = nA (note that time is not discretized) and

assuming (for inductive purposes) knowledge of all quantities at depth . -

z, the update procedure is as follows:

cos ei(z) = (1-(c(z) 2/c )sin 2 ) (4-37)(4-CO

d(z) = (cos 2  - cos 2  (z)(40(z)c(z) (4-38)

ri(z) - 2v2(iz) (4-39)

2 2Q(z+A) o 0(z) + (rl(z)/cos2 2(z) - r2(z)/cos el(z))A/(2c(z)d(z)) (4-40)

c(z+A) = c(z) + (r2(z)-r1 (z))A/(2p(z)d(z)) (4-41)

vl(z+A , t-.A cose(z)/c(z)) V (z r.Av 2 (zt) (4-42)

V(z+A, tA cosei(z)/c(z)) = (Z,t) r AV(z,t) (4-43)
2 (2'A I 1

- .",-.::-.

.... .... .... .... ....- ~-y..-<-.--
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T (z+)= T(z) + Acose.(z)/c(z) (4-44)
111• ."°

At this point all quantities have been updated to depth z + A, so the

recursion is complete. Note that there are two sets of recursions

running in parallel, each one initialized by the data from one of the two

experiments (i 1,2).

The reason that the profiles p(z) and c(z) can be recovered

separately for the oblique incidence problem, but not for the normal

incidence problem, is that by running the oblique experiment twice O-"-

information has been gained along two different ray paths. This option

is not available for the normal incidence problem--there is only one choice

for the ray path, since this problem is completely one-dimensional.

Along any given ray path Snell's law shows that .

p = sin 6(z)/c(z) = sin e0 /c0  (4-45)

so that unless e is less than the critical angle sin (c /max c(z)) e(z)

will become imaginary at some depth. Physically, this situation results in

evanescent waves, in which the pressure field decays exponentially

instead of propagating as a wave. The same effect is observed in a

waverguide below cutoff. This causes no p, iblems in the layer stripping

algorithm until the ray path actually becomes horizontal, prior to turning

back up. At this point, called the turning point, the upgoing and

downgoing waves lose physical meaning, and the algorithm can go no

deeper. However, the method of Coen (1981) requires precritical

incidence, or it cannot be used at all. This is because the integral

equation method of Coen (1981) involves all of the medium at once, so that

." .. .

. - .. . .
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any complication, such as a turning point, ruins it at once. A layer

stripping algorithm has no trouble with a turning point until the

critical depth is reached, so that all of the medium above the turning

point can still be reconstructed.

In Section 4.4 the behavior of the waves at a turning point is

analyzed, and it is shown how the waves can be propagated through

the turning point and back up to the surface. This allows more of the

reflection response data to be used to reconstruct the medium. The

evanescent waves below the turning point could furnish information about

the medium below the turning point, but there is no practical way to

measure these waves from the surface.

4.2.3 Layer Stripping Solution for a Discrete Medium

A slight modification of the above algorithm allows the reconstruction

of a discrete medium, in which (z) and c(z) are only required to be

piecewise continuous. The modifications consist of incorporating the

transmission losses at the medium discontinuities, and aitering the

updates from a differential form to a discrete form.

The medium being considered has continuous variation of p(z) and

c(z), with occasional quantum jumps in either or both quantities at

discrete levels (hence the term "discrete medium," which is not to be •

confused with the Goupillaud medium of Chapter III). This is tantamount

to letting p(z) and c(z) be piecewise continuous. Note that the

reflectivity function r(z) will contain an impulse at each level where _(z)

and c(z) jumps. Hence the differential updates (4-35) will no longer be

defined (i.e., will also contain impulses), and the second-order-in-"

terms neglected in (4-40) and (4-41) will become significant.

a.4-" . . .. .. ,i ,- -- - - -- ., - .,.. . . . . . . . .
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The problem is treated by recognizing that the continuous algorithm

is in fact always run as a discretized algorithm (viz. (4-37) - (4-44)),

so that alterations can be made in this algorithm. Recalling that the
%..." %

reflectivity function r(z) was defined in (3-87) by

LIM rz LIM 1 Z(z+A -Z(z) 1 dZ
A O A = X 0 - Z(z+) + Z(z) 2Z (4-46)

it can be seen that an impulse in r(z) corresponds to a finite, non-zero

reflection coefficient rz and a step change in Z(z). It also can be seen

that for small A we have

Z (z+A) - Z(z)

z  Z(z+A) + Z(z) (4-47)

and inverting this yields

Z(z+A) Z(z) 1 + r(z)A (4-48)Z~z+) 1r(z),A

Thus we are synthesizing a discrete medium on which the discrete algorithm

operates. The levels where Q(z) and c(z) jump are now merely levels at

which they take bigge jumps than usual.

The new algorithm is now evident. The wave updates (4-42) and

(4-43) are modified to include transmission losses by multiplying them by

* (1-(ri(z)i) 2)" see (3-83). The o(z) and c(z) updates (4-40) and (4-41)

are replaced by the impedance updates

1 + ri(z)"
i_ Z.(z+-') Z.(z) 1  _ ri(z), = 1,2 (4-49)

1r 1z)

.2. .2
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from which p(z+A) and c(z+A) are obtained using

W(z+A) = (Z2 (z+A)/Zl(z+A)) 2 (4-50a)

~~~2 2 :-
c(z+A) = [(W(z+A)-I)/(W(z+A)p2-Pl)] (4-50b)

.(z+A) = Zi(z+A) cos 8i(z+A)Ic(z+L) (4-50c)

Equations (4-50) follow immediately from the definition (4-27) of

impedance. Note that (4-49) and (4-50) reduce to (4-40) and (4-41) if

r(z)A (not just A) is sufficiently small.

The extra computation involved in using (4-50) instead of (4-40) and

* (4-41) is so trivial that in practical applications the discrete algorithm

should always be used. The only exception might be in a systolic array

implementation, for which the square root extraction in (4-50b) might
0.

be too time-consuming (note that the discrete wave updates constitute a

rotation, which a CORDIC processor could easily implement in a systolic

array). However, for the elastic problem of Chapter VI, the updates

for a discrete medium are hopelessly messy, and the differential updates

are preferable.

4.3 Impulsive Point Source •

The problem considered in this section is that of a layered medium

excited by an impulsive point source. Although the medium is still *.-

laterally homogeneous, it now occupies three spatial dimensions, with

cylindrical symmetry about the z-axis. The point source is located at

the origin, and the reflection reponse measured as a function of radial

distance r from the source. The situation is illustrated in Figure 4.2. • 7

-@1

.............................................................. .i
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This problem is related to the non-normal incidence plane wave

problem by the Radon and Hankel transforms. After discussing these

transforms, the problem is solved by either of two equivalent methods:

transformation of the point-source reflection response to non-normal

incidence plane wave responses, or a layer stripping algorithm involving

cylindrical waves.

4.3.1 The Radon and Hankel Transforms

The Radon transform

The Radon transform is defined as (e.g., Robinson (1982))

U(T,p) = Rfu(x,t)] = f0u(x,t = r+px)dx (4-51)

where u(x,t) is the displacement or pressure measured on the surface as

a function of lateral position x and time t, p is horizontal slowness, and

T is travel time. The Radon transform is thus a line integral along the

line t = -i + px, and has the effect of stacking up values of u(x,t) along

the line with slope or slant p and intercept -r. For this reason the

Radon transform is often called a slant stack.

To see the significance of this, consider an oblique plane wave

reflection response moving upward and in the +x direction. Clearly

different parts of the plane wave will reach the surface at different times

in different places, and the point where the plane wave is touching the

surface will move in the +x direction at speed 1/p. Thus the arrival time W

t of the plane wave at the surface at position x depends not onry on the .. '-

travel time 7 of the plane wave, but also on x by

t = + px (4-52)

. . .. . .o
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which is precisely the line on which the Radon transform stacks values of

u(x,t).

The physical meaning of the Radon transform is now clear. The A%

Radon transform (4-51) is synthesizing a plane wave response by stacking

up those values of u(x,t) which would arise from a plane wave reflection

response with slowness p and travel time T. It thus amounts to

continuous beamforming; indeed, (4-51) is simply a continuous sum-of-

delays that picks out those ray paths emerging at the angle

determined from sine = pc0  Equation (4-51) functions like a phase-array

radar in listening mode, receiving only the response due to a specific ,' .

plane wave.

It may be shown (by the Sommerfeld integral; see Chapter VII)

that the point source experiment is mathematically equivalent to probing

the medium in all directions with an infinite number of plane waves of

various wavenumbers (some of which are imaginary, corresponding to

inhomogeneous plane waves, i.e., evanescent waves). Radon transforming

the point source data thus picks out the response due to a certain

obliquely incident plane wave, and this response, for two different

slownesses, could then be used to initiate the layer stripping algorithm

of Section 4.2. Thus, the point source problem is solved by the Radon

transform and the layer stripping algorithm for the obliquely-incident

plane wave problem.

Taking the Fourier transform with respect to T of (4-51), changing *'

the order of integration, and noting that a delay of px in the time ..* -

domain corresponds to multiplication by e -lApx = e-k xx in the

frequency domain yields
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F TR[u(x,t)] F FxFt [u(x't)l kx = (4-53)

Again, this shows that the Radon transform is picking out a plane wave

response with slowness p. The Fourier dual of (4-53) is

FR[u(k Ja] =27Tu(x=4, t=w) (4-54)
T x

which shows that knowledge of the Radon transform of £i(k Wfoa

single value of p is equivalent to knowledge of u(xjt) along the slice

x =pt. This result, called the projection- slice theorem, is a basic

* result of tomography.

From (4-53) the formula for the inverse Radon transform may be

obtained. We have

u(x,t) F F k F [U(-c,p)]
w kWp Tr

00 C " 01 (2o) 2 f j _U(Tr,p)e) U'Te &px e jWt d-[ Idp dw

- __ c 3 c fUr jeW(t-T+PX IIdwhd

- k I2 L U( p -c%-p~e wt-~p d d j

~- __~-!-[U(-r t4-px, p)] dp (4-55) 7:

where the WIis the Jacobian for changing variables from k to p in thex
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multiple integral, and H['] represents the Hilbert transform. Note that

multiplication by IHI = (jw)(- j sgn w) in the frequency domain becomes a 0

time derivative and Hilbert transform in the time domain. The inverse

Radon transform (4-55) is called a filtered back-projection in tomography,

since it amounts to filtering with Iw! and backprojecting by setting •

-= t-px and integrating over p.

The Hankel transform

The Hankel transform is defined as (Papoulis, 1968)
i:O

F( ) =H[f(r)] = f(r)Jo(r )rdr (4-56)
fo 0

'* where J ( .) is the Bessel function of the first kind of order zero. The
0

inverse Hankel transform is then

f(r) = [F(&)] =fF()Jo(rO)d . (4-57)
0°2- 0

To show the significance of the Hankel transform, let f(x,y) be a

circularly symmetric function, so that

2 2
f(x,y) = f((x + y 2 ))) = f(r) (4-58)

Then the two-dimensional Fourier transform of f(x,y) may be evaluated I-.-

using polar coordinates. We have

F(kx,ky) = F(Qc) F Fy [f(x,y)] fo f(r e-jrcos(Q- 0 d
F kx y = xy Yl=f ~ FF[xoffr)e rdrds

(4-59)

et
4. . . - . . . . . . . . . n - - e
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where the cosine addition formula has been used. It is clear from (4-59)

that F(Q, ) will not depend on , i.e., the Fourier transform of a

!rcularly symmetric function is itself circularly symmetric. Using the

identity

1 o eXCO de = J (x) (4-60)
2 b0

the radial slice F(p) of the circularly symmetric Fourier transform of

f(r) is given by

F() = 27Tr f(r)Jo(pr)rdr = 2TH[f(r)] (4-61)

Thus the Hankel transform of a function f(r) yields a radial slice of the

circularly symmetric Fourier transform of the circularly symmetric

function f(r). The above development is due to Mook (1983, p. 27).

Since the reflection response to a point source excitation has

circular symmetry, the Hankel transform should be appropriate for

synthesizing plane wave response data from point source response data.

Indeed, if it is desired to synthesize a plane wave response moving in

the +x direction with slowness p, we have

FxFyFt ( u(xxYt) pu(xyt)e X)dxdydt

ky 0 0

= -f jf ur ,te- e-prcs rde drdt I fu(r,t)e J(rwp)rdrdt

= 2 7rHFt [u(rt)] (4-62)
I, =1up 

: .

.-.2 °°.
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Thus another way of solving the point source problem is to Hankel

transform the reflection response and set C = wp. This synthesizes a * p.

plane wave response which can be used to initiate the algorithm of

Section 4.2.

Combining (4-53) and (4-62), we have

FRful =FxFyFt [u] H ku (4-63)
kX=0

y

showing the relations of the Radon, Hankel, and Fourier transforms to

each other. Coen (1982) showed the equality of the first and third

terms of (4-63).

The equation = wp suggests that is really a radial wavenumber

-jWtk, and J (wpr)e is a surface wave. Since
r 0

J(kr) 2 ) cos(krr (4-64)0 Trkrr r 4r

Jo(krr)e - jWt behaves like the sum of incoming and outgoing waves for

lar.e r. These surface waves are obtained by setting z = 0 in the

expression

jkz-jwt 2 2 2 2
S(kr)e z /c (4-65)

'r z 0 r.

which represents cylindrical waves. These are fundamental solutions of

the wave equation in cylindrical coordinates. In the next section the

point source problem is shown to amount to using cylindrical waves to

probe the medium, and a layer stripping algorithm embodying the principle

is derived.

L
~~~~~~~~~~~~~~~~~~. . . . . . . . . ..... .. .-.'=- - -'- - =. -.--. -. *-- -. ". " - , u2 .% .'.' .' ',.. ,
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4.3.2 Layer Stripping Solution

The point source problem depicted in Figure 4.2 was solved by Coen

(1982) by transforming it into a non-normal incidence plane wave problem,
S..-..,

which could then be solved as in Coen (1981). It has already been shown V.

here that the layer stripping algorithm for the oblique plane wave

problem can be used to solve the point source problem by transforming - -

the point source data using either the Radon transform or the Hankel

transform. But there should be some way to formulate a layer stripping

algorithm that solves the point source problem directly, by probing the

medium with cylindrical waves. In this section this algorithm is derived.

Note that probing the medium with cylindrical waves from an

impulsive point source makes much more sense physically than does

probing it with an infinite oblique plane wave, which cannot exist.

Although an impulsive point source is also unphysical, it is a much better

model of a real-world experiment.

In order to solve this problem, it will be necessary to define higher- -

order Hankel transforms. The n order Hankel transform is defined as

(Papoulis, 1968)

H {f(r)} f J f(r)Jn(rE)r dr F n() (4-66)
n o n n

th
where J (1is the n order Bessel function. Although Hankel transformsn

of orders zero and one will be used in the derivation, the final algorithm

will contain quantities that involve Hankel transforms of order zero only.

In the course of the derivation the properties

H {f(r)/r + ( /;r)f(r)} = -Hl{f(r)} (4-67a)

00 :

o!
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H (a (3 r) f (r) E H Uf(r)} (4-67b)1 0

will be employed.

Writing the basic acoustic equations (3-1) in cylindrical coordinates,

taking Fourier transforms, and noting the circular symmetry of the

present problem (no 0-dependence) yields

(rWzUw(r, z / r (4-68a)

2"
JOWz u z(r,z,w) = p/az (4-68b)

2
S(r,z,cw) =-o(z)c(z) z~ 13z + ru /3r + r /r) (4-68c)

where u r and u zare the r and z (depth) components of the (vector)

displacement u. Note that the u a component of u does not appear.-

Taking Hankel transforms of order zero of (4-68b) and (4-68c),

and the Hankel transform of order one of (4-68a) yields

Q( Z)w 26( ,z'w) =-P,,j)(4-69a)

2oP(z)w U( ,Z'W) =P/z(4-69b)

2
k=ZW -o(Z)c(Z) (3U6 /3z +E6U ( ',z,.)) (4-69c) 8 4 .

where

U (Ez'uW) H Hiu(r,z,w)} (4-70a)rr

U ~w)=H Lu(r,z,u)} (4-70b)z 0 Z

H f(z,.) .(4- 700
0
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Eliminating U rfrom (4-69) yields

Q(Z)W U (,z W) /~I3z ( 4 -71a)z

2 2 2 2"

and defining (compare to (4-24) -(4-27))

2 2 2 2 2
C' (z) =C(z) Il( )c(z) )(4-72)

r~) ds /c'(s) (4- 73)

results in the familiar equations (compare to (4-28))

= W z T) (4- 75a)

iU /T =-(l/Z)P(, T,W) .(4-75b)

Recalling that the Hankel transform of order zero is the two-

dimensional Fourier transform of a circularly symmetric function, we may

once again define the Hankel-Fourier transforms of the downgoing and

upgoing waves (as in (4-29))

V 1 ~,T,'.) =PC'", /Z + )UZU z T, W) (4- 76a)

= - P T,,w)/Z~ -0 ~ 2 ~ T2 (4-76b)
2~S' .
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The waves (4-76) satisfy the two-component wave system

OW

/-[ -iv( - r(-) V2( ,T,w) (4-77a)
1 2-

av 2 /;t -r(T)V1(E,T,W) + jwV 2 ( ,T,w) (4-77b)

with the reflectivity function r(T) given by

1 dZ d Z(T)
r(T) 2Z dT- T og Z(O) (4-78)

The forms of the waves used to probe the two-component wave system

(4-77) are, in the time-distance domain 5-.

vl(rz,t) 6(t-T)6(r)/r + vl(r,z,t)l(t-t) (4-79a)

v 2 (rz,t) v 2 (r z,t)l(t-T) (4-79b)

where the probing impulse is a roughly cylindrical wave and t=TWz

(recall that the medium is laterally homogeneous). The Hankel transforms S

of (4-79), which are the waves actually used in the fast Cholesky

algorithm based on (4-77), then have the form (2-22), as desired. Note

that letting = k x in (4-72) results in (4-25), as expected. This choice

was noted by Coen (1982).

4.4 Turning Points

4.4.1 Turning Points

A turning point in a layered medium is a depth zo where the local

wave speed c(zo ) has become so great that it equals the reciprocal of the 0

.....-. ~:'.'-.... .... ~ ..-. . .. ....
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slowness of the probing plane wave, i.e., c(z o ) = i/p. By Snell's law

p = sin 6(z)/c(z) (4-80)

the ray paths of the probing plane wave are horizontal at a turning point,

before turning back up to the surface. The reason for the ray paths

turning back to the surface is that the lower part of the probing wave,

in the region of higher wave speed, continues to move faster than the

upper part. This bends the rays up toward the surface.

The location of a turning point in a layered medium is thus

dictated by the ray parameter or slowness p of the probing wave: the

steeper the angle of incidence, the deeper the turning point. Indeed,

if c(z)< CMAX throughout the medium and the probing angle 0 in

Figure 4.1 is chosen so that 6 < sin - 1 c /CMAX , then there is no turning

point.

Since it depends on the concept of rays, and on Snell's law, turning

points as defined above are only defined for the case of geometrical

acoustics. This is tantamount to taking w - , i.e., the medium must

not vary significantly over a wavelength. Another definition of a

turning point, as the depth where the character of the solutions of the

Schrodinger equation (4-82) below change from oscillatory to exponentially

decaying, is useless in the present context since the Schrodinger

potential V is unbounded.

In this section we analyze the behavior of the pressure and

vertical displacement near a turning point, and then show how these can

be used to propagate the layer stripping algorithm of Section 4.2 through

a turning point and back up to the surface. This allows more of the

%I

• " t - 'o ' ". ' o " ° - • . . . ' . . . . .. .. ..
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reflection response data to be used in inverting the medium, and

provides a check on the p(z) and c(z) profiles computed on the way o

down to the turning point.

WKBJ solution

The expressions obtained for pressure p and vertical displacement

u near a turning point must be matched asymptotically to expressions

valid far away from the turning point. More advanced techniques,

such as the Langer uniform asymptotic expansion (Nayfeh (1973) is a

good treatment) obviate the need of having different expressions in

different regions, but we do not consider them here. To derive the

expressions valid far away from the turning point, we employ a

WKBJ analysis of two Schrodinger equations. The presentation here

is based on Ware (1969), although .here are many significant

departures.

Defining

@(ZW) =l(z, P/ (Z) (4- 81a) on

w(z,W) : (ZC( Z u u Z,' (4- 81b)-''

Z(z) = 1/0t(z) (4-81c)

Y(z) -- (Qe'(z) 2) (4- 31d)"

it is straightforward to show from the basic equations (4-21) and (4-23)

that r and w satisfy the Schrodinger equations

2 (2 1 2

d2  2 + - d22 0 (4-82a)
dz c. Z dz2 . .
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(-2 + - - - =) 0. (4-82b)

Since these two equations have the same form, we can treat both of

them at once. Choosing the ansatz or trial solution

= Ae~~(4-83)

substituting (4-83) into (4-82a) and writing the real and imaginary

parts separately gives, respectively,

w2A ZA (4-84a)

AB + 2AB 0 (4-84b)

which in turn yield

~= ±(!--~+ 4- 85a)

A -CIA (4- 85b)

AdA
Here A = - and C is a constant.

Neglecting the third term in (4-85a) and defining

~- as (4-86)

we have for our trial solution
fz...

=e 0~"~e~ (4-87)

or
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-Cle] o ds/c"(s) C 2e-fo ds/c"(s) 4-8p(z, )/( (c") e (4-88) .

2A

for constants C1 and C
1 2.

The analysis for w is exactly the same through (4-87), yielding

( jc") z,()) C Zds/c"(s) Jrzdcs
(PC) uI(ZW) C C3 e3  4 Ce fo ' (4-89)

for constants C3 and C4 .'

In the limit as w-o (geometrical acoustics), (4-88) and (4-89)

become simple decompositions of the energy-normalized pressure and

displacement into downgoing and upgoing waves--hardly a surprise.

This development shows how much this dependb on a slowly varying

medium relative to the wavelength of the probing medium. From (4-86),

we require .

g ~( 4- 9U ) '"

and it is clear there will be trouble at a turning point, where c' -* o .

Air solution near a turning point

In the limit of geometrical acoustics(.. + o), a turning point has

been defined as the depth zo where c(zo ) = 1/p. Then c'(z o ) -, .
0 0

2and 1/c'(z o ) = 0. Let 1/c'(z) be approximated in the vicinity of the

turning point z by0

llz 2 =ic z 2 _ 2 [2 3 dc ,-'..
1/c'(z) 2 c(z) -p 2  [2p3  - (zo)] (zo-z) E(zo-z) (4-91)

where E is the (urknown) constant specified in (4-91). Substituting

..,.:<,.
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(4-91) in the Schrodinger equation (4-82a) yields 71

!2+ _2E(z-z -Z) 0 (4-92)
dz2 0

and neglecting the third term in (4-92) for large yields the

Airy equation d2  .-. -.

2
d 2 + 2 E(z-Z)); =0 (4-93)
dz

The solution of this equation involves the Airy function Ai(), and is

,= C5Ai(- 2 /3 (zo-Z)) (4-94) -

where C5 is a constant. The other Airy function, Bi(.), is rejected555 °

since it leads to an exponentially growing solution.

Matching asymptotic forms 1%6

From Abramowitz and Stegun (1965), - -.

2- -- T
Ai(-y) Tr y cos ( y as y -o (4-95) --

and using this in (4-94) along with (4-81a) results in

C6 ( 2 E (zo-Z)'

p 6 (zo-z)- cos ( 0 ) (4-96)

for z << zo , i.e., above the turning point, here C6 is still another

constant, which is related to C5.

On the other hand, inserting (4-91) in the WKBJ equation (4-88) V %

and taking large results in

* .

.~:.....
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z

p - 1 E-(zo-Z)-l [CIe J IeJ4 E (zo-S)ds

+ CEe e J (Zo-s)ids] (4-97)

+ 2eJeCE e- • 'kj

i~~~~~~ j- I z 2 JT -'0z-
p E-(zo-z)-* [C eJt e- J-wE(Z 0 -Z) +(ZoZ) ]

-2

where T is the travel time to the turning point zo , defined as

zo

= ds/c'(s) (4-98)

Now, the asymptotic form (4-96) of the Airy solution away from the

turning point must match the asymptotic form (4-97) of the WKBJ

solution near the turning point. Comparing (4-96) and (4-97) we see

that

1 E = 6 ej 714 (1/2) (4-99a)

- " r C e - i  / 4.'
Ce lE = e (1/2) (4-99b)

2 6

For the experiment in which an oblique plane pressure wave is

used to probe the medium, the actual form of i is

£z
fds /c(s) + (j>f Zds/c'(x)l

p(z,): (c,) [s + R .o(4-100)

p

Comparing (4-88) and (4-100), and using (4-99), it may be seen that
A 0

the reflection response R ( ) is given by
p

P .i41.L



-. -.- - . -. . . .. - - - - - - - - - - - - -.. - ..- j
193

p(c.) =-2j,: ej r/2  (4-101)
R CC = e e411 .;:...

The first term of (4-101) is simply the delay due to the two-way travel

time to the turning point. The second term is a phase advance of 7/2,

since if w is negative there is a sign change in the independent variable

in (4-94) and (4-95). resulting in e -j 1 2 in (4-101). The phase advance

of 7T/2 is, in the time domain, a negative Hilbert transform of the

source time function.

Comments

There are several comments to be made here. First, the usual

definition of a turning point for a Schrodinger equation (for finite )

is the depth at which the nature of the solution changes from oscillatory

to exponentially decaying. For the Schrodinger equation (4-82a), this

is where

22

c12  

-.
L -. :.'-.

so employing a linear approximation like (4-91) to (4-102) is simply ,-'.'.

equivalent to replacing c' with c" throughout. In the limit of high L

c' and c" become equal. Note in fact that the Airy function Ai(y) is

oscillatory for y < 0 and exponentially decaying for y > 0.

Second, it should be emphasized that (4-101) is the result of a

WKBJ analysis, which neglects all internal reflections. It is not true

that the amplitude of the reflected signal carries no information about the

medium! The purpose of this analysis is simply to discern what happens

to a pressure wave passing through a turning point--it gets negative

%~~~*** V .. ~ ;,-~ . j-:....--.-.'--.-;-:-:--:.:.;"".-'." :
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Hilbert -transformed.

The reflection response of the medium can be separated into two

parts: the part before 2r 0 , where 2-o is the two-way travel time to

the turning point; and the part from 2T to 4T . The first part of the
0 0

reflection response is clearly unaffected by the presence of a turning

point, since the probing impulse has not penetrated that far into the

medium. By causality, it is impossible for the nature of the medium

below and ahead of the probing impulse at any time to affect the

reflection response of the medium at that time. From 2T 0 to 4,othe 0 ,

probing impulse is now essentially probing a mirror image of the medium,

and this part of the reflection response reflects this. (Of course, there

are also lingering multiple reflections from the downward path, but these

have been eliminated by the layer stripping algorithm.) The reflected

waves propagate back through the turning point to be measured as

the reflection response. 0

After 2:-v the transmitted response through the turning point

begins to appear at the surface. According to the WKBJ analysis, this

transmitted response is simply the negative Hilbert transform of the 0

delayed source excitation. However, this ignores the reflection losses

within the medium, which will clearly degrade the transmitted response.

Of course, the arrival time of the transmitted response may be used for •

travel time inversion; however, this is outside the scope of this thesis.

It should also be noted that the result of (4-101), which is the only

result we shall actually use in a layer stripping algorithm, is amazingly 0
.

accurate in practice. Tolstoy and Clay (1966), p. 51) report that for

typical frequencies and typical oceanic sound channels, (2-101) is

accurate to five significant figures. 0

"o •

°- o- . °-. - .°. .• . .- o° °• °. •.•°- .°,. -.. ° °° -°.. . ..... . . . ... .... . . . .... . . . .... . . . . . ... ,.. . . . . . . . . .
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Finally, it should be noted how this analysis differs from the usual

WKBJ-Airy turning point analysis. The general procedure is to

2approximate 2 V by a linear expression, as in (4-91). This will not

work on the Schrodinger equation (4-11) considered by Ware (1969) '

because the potential V(z) blows up at the turning point. Ware (1969)

modelled V(z) by a second-order pole and branch point, and obtained

a messy result that reduced to (4-101) in the limit wT ' . We have used

the Schrodinger equation (4-82a) because its potential does not blow

up at the turning point. Unfortunately, the potential of the

displacement Schrodinger equation does blow up at the turning point,

and a different equation will have to be used for the Airy analysis of

that problem.

Displacement

The WKBJ formula for displacement away from the turning point was

already derived in (4-89). However, the Airy solution near the turning

point will require more work, since Y = (,c'2 ) blows up there and thus

(4-82b) cannot be used.

The displacement equation we shall use near the turning point is

* 'd~2  2 d d \\d ,dc' I do z
(j~2+ & F~ -j)-~) (z'_) =0 . (4-103)+z 2 2 + dz o dz dz

In the vicinity of the turning point c'(z) is changing very rapialy, and

of course we continue to assume high . hence the fourth term in

2
(4-103) is negligible. miultiplying (4-103) by 1/c'(z) and using (4-91)

gives '" ."

. . . . . . .-. . ... . . . . .. ... . .
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(~ ~~2 d 22 2 d(404
(E(z0 -z) 2 'E (z -z E d u(z,w) =0

d zZ

near the turning point z0 .

It turns out that the solution to (4-104) involves the derivative of

the Airy function, Ai' (-). To see this, consider the Airy differential

equation

__-zf (z) 0 (4-105)
dz 2

divide by z, differentiate, and multiply by z. This gives

d f d f 2 df_
z T3 T2 ~z dz 0 (4-106) 1

which is an equation in df/dz having the form (4-104).

Therefore the solution to (4-104) is

uC,~ 7 CAi'(-.k' E' (z 0 -z)) (4-107)

where Cis a constant. From Abramnowitz and Stegun (1965)

Ail'(-y) Tr y~ Cos d 2 + as y oo (4-108)0

so the asymptotic form of (4-107) above the turning point is

Cizw C(z -Z) Cs2E( )2+ ~)(4-109)

where C 8 is a constant determined by C7 .

On the other hand, the asymptotic form for the WKBJ solution (4-89)
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near the turning point is found by inserting (4-91) in (4-89), yielding

[(- C 3Jt-j!- E (Zo-Z jw j-E (z oZ)

E, z Z) [CEe e 0  + C e-je ]0).-

(4-110)

using the same simplications used to produce (4-97).

The asymptotic forms (4-109) and (4-110) must agree, so we have -'V

C3el Ei P C 8e-JT/4 (4-111a)

-" Z = C 8
j 7T /4"-'-

8~ IE 
(-111b) '..'

and from (4-89) the reflection response Ru (w) for the experiment in which

an oblique acoustic plane displacement wave is used to probe the medium

is given by

u() = /C = e -2J ' e/2 = - ) (4-112)

Therefore the reflection coefficient for a displacement wave is

negative the reflection coefficient for a pressure wave, as expected.

This amounts to a phase delay of 7/2 as the displacement wave passes

through the turning point, which is a Hilbert transform in the time

domain.

Again some comments are in order. This is an unusual analysis in

that some juggling was required to produce the equations (4-103) and

(4-106); it is not just a standard Airy analysis, since it is necessary to

isolate the effects of c' blowing up at the turning point. This is much

harder to do for displacement than it is for pressure; compare the two

Schrodinger equations (4-82a) and (4-82b). Incidentally, it is worth '

noting that even though the ray paths become horizontal at the turning

2 -



198 
-L

point, the vertical displacement 6(z ,) does not go to zero.

Of course, it is hardly surprising that the vertical displacement

u(z0 ,,) behaves like the derivative of the Airy function, in light of

the basic equations (4-21). Indeed, inserting (4-94) and (4-107) into

the basic equations (4-21b) and (4-23) for the oblique plane wave

problem yields a consistent set of equations if P is assumed to have

negligible variation in the vicinity of the turning point. .-

4.4.2 Propagation of the Layer Stripping Algorithm Through a Turning

Point

Using the results (4-101) and (4-112), we now show how the layer

stripping algorithm can be propagated through a turning point and

back up to the surface along the ray path. This allows surface

reflection data collected past 2To , the two-way travel time to the

turning point, to be used in the inversion procedure. The reflection

coefficients andprofiles of o(z) and c(z) computed on the way down can

then be checked on the way back up.

The basic idea is to regard the turning point as a "black box" that

Hilbert transforms various combinations of the waves and changes the

downgoing waves into the upgoing waves, and vice-versa. The only

problem is to determine the appropriate time delay as the waves travel 0

through this "box."

The first problem, of course, is to detect a turning point when it

is encountered. This presents little difficulty, since cos 2(z) =

p2  2.
1 pc(z) is computed in the course of the algorithm (equation (4-37)).

As a turning point is approached, e(z) approaches -/2 as the ray

becomes horizontal, and cos 2 e(z) goes to zero. Of course, if 0

22
1 c(z) < 0 then clearly a turning point has been encountered (even

°.. .. . •-•..'•• .- .. ,. . . . . . . . . . . . . . . . . . .
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if noise has corrupted the computed c(z), a turning point must be close).
, .L' ", ",

However, a better procedure is to set a threshold c, and decree that if

cos 2  ( z
) =1-p p < 2  (4-113)

then a turning point is present at depth zI .

Of course, if the medium wave speed profile c(z) is such that it

increases with depth to approximately c(z) 1/p and then decreases,

(4-113) may identify a turning point that is non-existent. This simply

represents bad luck in the choice of ray parameter p. The error will

be revealed when the p(z) and c(z) profiles computed on the way up -

diverge wildly from those computed on the way down, and the

algorithm could simply be rerun with a different choice of p.

The second problem is to determine what happens to the waves

as they pass through the turning point. This is where (4-101) and

(4-112) are useful. Recall that the downoing wave v (z,ij and upgoing

wave v (z,-), which we rename D(z,.) and U(z,) for convenience,
2

are given in (4-29) as

6(z,w) p(zCJ/(Pc') + j(pc') u(z,2) (4-114a)

6(z,") p(Z,)/(mc') - j(pc')iu(z, ) (4-114b)

Now, as these waves pass through the turning point, the pressure

is negative Hilbert transformed (4-101) ard the displacement, hence the

velocity, is Hilbert transformed (4-112). Thus, after passing through

the turning point, D(z,t) becomes D'(z,t) and U(z,t) becomes U'(z,t) ,".

where

* .-. . ,
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D'(z,t) = -Hlp/Z ] + HIZv] = -H[U(z,t)] (4-115a)

U'(z,t) = -H[p/Z ] - H[Z v] = -H[D(z,t)) (4-115b)

In (4-115) v = ;u/at is medium velocity, Z = c' is impedance, and H[.]

is the Hilbert transform operator, which is -j SGN(w) in the frequency

domain and has the impulse response - 1/(7t).

However, after passing through the turning point the downgoing and

upgoing waves also become interchanged. The combination of this and d

(4-115) shows that the net effect of passage through a turning point on

the waves in the layer stripping algorithm is a negative Hilbert transform

of both waves. This is precisely what would be expected by recalling

that the waves (4-114) are really pressure waves, and the turning

point acts like a reflection coefficient (4-101).

The final problem is to determine the time delay encountered in

passage through the turning point. Recall that the algorithm stops at

the depth z1 where

2 ~i2 2 MI
1 - p )= 2 (4-116)

If the turning point is located at depth z° > zI , with = z- small,

then we have, using (4-91)

:2= 1-c(z (E p (4-117)

The travel time delay through the turning point is, using (4-91),

E T ds/c?(s) 2f E (zO-S)Ids = (4/3)E (4-118)

and eliminating the unknown A yields

.J,
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'- (4/3)p E/E (4-119)

3Note that L varies with the threshold F as e, and that it is

necessary to determine E = 2pucz )/dz or 1. E, however, can be

estimated from the way c(z) is varying at z1.

In summary, to extend the layer stripping algorithm through a

turning point, use the condition (4-113) to detect a turning point, take

the negative Hilbert transform of the waves, and delay them by L.

in (4-119). Then continue the algorithm back up to the surface, comparing

the computed p(z) and c(z) profiles with those computed on the way

down. This makes use of surface reflection data collected after 2T,

the two-way travel time to the turning point.

In the next chapter the effect of noise on the layer stripping

algorithm is discussed, and results of some computer runs of the

algorithm on synthetic data presented.

... . ... ~ .. .-........ .. .o
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CHAPTER V
I k

Performance of the Non-Normal Incidence Inversion Algorithms

5.1 Introduction

In this chapter the results of running the two non-normal incidence

inversion algorithms of Chapter IV on a computer are presented. This

chapter is not intended to be an exhaustive numerical study of these

algorithms. Rather, the purposes of this chapter are to demonstrate

that the algorithms do work, and to illustrate some of their strong

points and weak points.

The goals of this chapter are threefold: (1) to demonstrate that

the algorithms of Chapter IV do indeed reconstruct a layered medium from

its synthesized forward response, and still do so in the presence of

small amounts of additive noise; (2) to demonstrate some circumstances

under which the algorithms break down, and explain how to avoid them;

and (3) to develop some minor modifications of the algorithms that 000

improve their performance in the presence of noise. In addition, some

other considerations involved in running the algorithms on a computer,

such as discretization of time, are discussed. All of the computer

programs used in this thesis are given in the Appendix.

5.1.1 Forward vs. Backward Stability -.

A superficial consideration of the operation of a layer stripping

algorithm initiated with noisy data might make it seem as though errors

would accumulate rapidly as the medium were penetrated, to the point

where the algorithm would quickly break down. However, this is not

.......................-. . ..... m.......... ..... .. m
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the case, as this chapter will show. Note that each step of the discrete

algorithm amounts to a Givens rotation of normalized waves (equation -p

(3-86)), so that the waves cannot blow up. Indeed, Buitheel (1979)

has shown that the basic fast Cholesky algorithm is numerically stable.

And it is important to remember that the layer stripping algorithms are

mathematically dual to the integral equation procedures that constitute

an alternative to them. Therefore, mathematically, the performance of

the integral equation methods used on noisy data is no better than that

of the layer stripping methods. So how did dynamic deconvolution methods

get the reputation of performing poorly on noisy data? To answer this

question requires some discussion of forward vs. backward stability,

i.e., the stability of an algorithm vs. the conditioning of the problem to

which it is applied.

An inverse problem is defined to be forward stable if a slight

perturbation of the data leads to a slight perturbation of the parameters

of the reconstructed medium. This is tantamount to requiring N

continuity of the mapping from the set of admissible data to the set

of possible media. This mapping, which is the inverse of the forward

problem mapping, is uniquely specified if the inverse problem is well-

defined. An inverse problem that is not forward stable is said to be

ill- conditioned.

An algorith is defined to be backward stable if the numerical result

of running the algorithm on a given set of data is the same result that

would be obtained from an exact run (no roundoff errors, etc.) of the

algorithm on a slight perturbation of the given data. Thus, for a forward

4. stable problem, errors inherent in the algorithm are equivalent to a

slight perturbation of the data, which in turn results in a slight
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perturbation of the reconstructed medium.

These two definitions are taken from Stewart (1973), where the

"inverse problem" considered is that of solving the matrix equation Ax = b.

However, the definitions also apply to the general class of well-defined

inverse problems (i.e., those for which a unique solution can be

found from the data).

The significance of these two definitions is that they distinguish

between the conditioning of a problem and the stability of the algorithm

used to solve it. A stable algorithm applied to an ill-conditioned

problem (such as inversion of a nearly singular matrix) may give poor

results, even though the algorithm itself performs well in general. The

fault lies not with the algorithm, but with the decision to use it

inappropriately (and there may well be no algorithm that works well on

a severely ill-conditioned problem). ...

This is important in discussing the performance of layer stripping

algorithms applied to inverse seismic problems, because the conditioning

of an inverse seismic problem gets poorer with increasing depth.

Bruckstein et al. (1984) have shown that the condition number c(n)

for the one-dimensional discrete normal incidence inverse seismic problem

n layers deep is given by .."'.;.:

n 1 + Iri I
c(n) = II (5-1)

i=l 1- I ri

where r. are the reflection coefficients, assumed to have absolute values1

less than one, and c(n) is defined as

n n .mc(n) = IIMniI"!IMntI - amax / omin (5-2)....,'.,:

* ~ . *-~1*** '.~.'.*-.. ---
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Here M is a matrix that represents the transmission matrix for the
n

medium, defined by (3-52), and max a min are its maximum and

minimum singular values. The condition number c(n) is the amplication -•

factor by which a perturbation or error in the data is multiplied to give

the perturbation or error in computing rn+l if Jr I .... rnI are known

exactly.

It is clear from (5-1) that c(n) increases with depth n, so that the

inverse problem of reconstructing r for each n becomes steadily moren .

poorly conditioned. Physically, this can be understood by noting that

the medium excitation becomes weaker as it penetrates the medium and

• .suffers reflection losses. In the event of near-total reflection at a level

m (Irml z 1 ), (5-1) shows that c(n) becomes very large for all n >m.

Cybenko (1980) also derived (5-1) as the condition number of the

symmetric Toeplitz matrix of size n that has been inverted after n

recursions of the Levinson algorithm.

It is important to remember that the increasing condition number c(n) Iz

specified by (5-1) is a property of the inverse problem itself, even in

the absence of noise, and applies regardless of the method used to solve

it. This explains why layer stripping algorithms perform more poorly

as depth increases: the problem is not the accumulation of noise in

the algorithm, but the poor conditioning of the inverse problem itself.

The same problem is encountered in the use of integral equation or matrix

equation methods; however, these methods disguise the variation of the

conditioning with depth, since the entire problem for all depths is

solved in one huge operation. Layer stripping methods, being layer-

recursive, spotlight the problem correctly; the result is an unjust

reputation for poor performance.

4.o



207

5.1.2 Previous Work

Numerical work.

Previous work on the numerical performance of layer stripping

algorithms has all been applied to the one dimensional normal incidence

inverse problem, since only for this problem is the layer stripping

solution widely known. Bultheel (1979) showed that the fast Cholesky

algorithm, the basic layer stripping algorithm for the normal incidence

inverse problem (though few seem to know its name), is backward stable

by employing an error analysis. Exhaustive numerical studies of this

algorithm have been made by Symes and Zimmerman (1982), Bube and

Burridge (1983), and Bruckstein et al. (1984), and all are quite

favorable. We now summarize their results.

Bube and Burridge (1983) tested what they called the "downward

continuation" algorithm against the one-dimensional Born approximation

method, and found that the layer stripping algorithm completely out-

performed the Born approximation method, due to the inability of the

latter to deal with multiple reflections. Bruckstein et al. (1984) found

that the fast Cholesky algorithm began to diverge after about fifty layers,

since the conditioning of the problem at this depth was so poor that

roundoff errors and accumulation errors in the numerical operation of

the algorithm were magnified into significant errors in the output. The

work of Symes and Zimmerman (1982) tested the algorithm in the presence

of noise and bandlimitation of the source and data. Their results were

that noise in the seismic band (10-40 Hz) had little effect on the

reconstruction of the impedance of the medium for signal-to-noise ratios

greater than about five, but the absence of low-frequency data (0-10 Hz)

had a significant effect on the reconstruction. This is not surprising,

• ,° % "~~~~~~~~~~. °............% ° °%..°.•- .. . . *o.•.........,-% .• . ..............
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since the low-frequency response of the medium determines the trend of

the impedance profile.

Estimation

If noisy data are to be used, it might seem natural to try to

incorporate some sort of estimation procedure into the inversion 0

algorithm. However, attempting to do this for a layer stripping algorithm

generally leads to a mess, even for the normal incidence inverse problem.

The reason for this is that the resulting estimation problem is very

non-linear, as a few recursions of the fast Cholesky algorithm will show.

Theriault (1977) derived some Cramer-Rao bounds for the mean-square

error of any estimation procedure, and implemented numerically a

maximum-likelihood estimator that required the application of a

conjugate gradient method maximization at each depth.

The approach of Habibi-Ashrafi and Mendel (1982) is more promising. 0

They employ a layer stripping solution to the discrete normal incidence

inverse problem with a suboptimal maximum-likelihood estimation at each

depth. Instead of projecting ahead to a specific time to read the next 0

primary reflection, their method searches for the next primary reflection

using a matched filter and a transversal equalizing filter, which corrects

for wave overlapping effects. This a posteriori approach is in contrast •

to the a priori (project ahead to a specific, computed time) approach

used in this thesis. Some Kalman-filter-like combination of these

approaches would be ideal, but it is not clear how this could be done. 0

The estimator of Habibi-Ashrafi and Mendel (1982) reduces to an

a priori project-and-read if the medium excitation is a probing impulse.

It is also interesting to note that taking the maximum-likelihood approach

as a starting point leads to a layer stripping approach as the optimal

................................ .
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inversion procedure (Habibi-Ashrafi and Mendel, 1982).

If the data are bandlimited, then the inverse problem is ill-posed,

since the missing frequency components of the impedance profile cannot

be reconstructed. For example, if the data are only specified up to a

cutoff frequency, a sinusoidally-varying impedance profile (as a function

of travel time) with spatial frequency above the cutoff frequency would

be reconstructed as a constant profile. On the other hand, the absence

of low-frequency data would result in the loss of low-spatial-frequency

(i.e., trend) information about the impedance profile. There is no

way around these ambiguities--some additional information is necessary

in order to have a unique reconstructed medium.

One approach is the maximum-entropy estimation procedure used by

Santosa and Symes (1983). Their approach is to pick the impedance

profile with the flattest wave number spectrum that still matches the

bandlimited data. However, this amounts to a reformulation of the

problem. The layer stripping methods, since they operate in the time

domain, simply assume the missing frequency responses to be zero. Any

corrections to this must be made on the data itself.

5.1.3 Summary

In Section 5. 2 the performance of the algorithms of Chapter IV in

the absence of noise is investigated. The main goal of this section is

to establish that the various algorithms do in fact work on a computer,

even with imperfections in the data generated by the forward problem

algorithms. The two forward problem algorithms are discussed and

compared, and the performances of the fast Cholesky layer stripping

inversion algorithm with continuous medium updates and with discrete
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medium updates compared. Some circumstances under which the inversion

algorithm breaks down are discussed and investigated. Finally, the

Schur and dynamic deconvolution algorithms for the non-normal incidence

problem are demonstrated with computers runs. 'C

In Section 5.3 the performance of the fast Cholesky algorithm for

the non-normal incidence problem on noisy data is investigated. Random-

number-generated noise, uniformly distributed over a prespecified

amplitude range, is added to the reflection data before the inversion

algorithm is run. The effect this has on the operation of the inversion

algorithm is illustrated by a series of runs in which progressively worse

signal-to-noise ratios results in progressively poorer performance of the

algorithm, as expected.

In Section 5.4 several minor modifications of the fast Cholesky

algorithm for the non-normal incidence problem are developed in order

to improve its performance in the presence of noise. First, the

suggestion of Bruckstein et al. (1984) to set to zero all measured

reflection coefficients less than a threshold value determined by the

condition number and noise level is adopted. Next, reflection data S

measured for many different angles of incidence is combined to produce

a least-squares fit for the updates of density p(z) and wave speed c(z)

at each depth. This has two major advantages over least-squares fits

of the entire parameter profiles: (1) the problems at each depth are

decoupled; and (2) the resulting, more accurate updated parameters are

used immediately in the algorithm while it is still running. Both of

these modifications are illustrated with computer runs. Finally, a

modification that allows a slightly lossy medium to be reconstructed is

specified. The losses must be small enough that dispersion of the probing

L..
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impulse is negligible.

Section 5.5 then summarizes the results of this chapter. The

strong points and weak points of employing layer stripping algorithms

are discussed, and some ways in which these algorithms break down are

reviewed. A significant advantage of layer stripping inversion procedures

over other inversion procedures is the physical interpretations available

for almost every aspect of the operation of the algorithm. This makes

it much easier to determine when and why an algorithm might break down

than is generally the case in numerical analysis.

The computer programs impelemnting these algorithms are all

written in FORTRAN, and they are all given in an Appendix to this

thesis. These programs were run on a VAX 11/782 minicomputer, and

the plots made at the Joint Computer Facility at MIT in 1984.

5.2 Performance of the Algorithms in the Absence of Noise

In this section we present computer runs of the continuous and

discrete fast Cholesky layer stripping algorithms for the non-normal

incidence inverse problem. Two different forward problem algorithms

are used--one based on a time domain (Bremmer series) method, and one

based on a frequency domain (reflectivity) method. We show that the

inversion algorithms do in fact work, and work well, on high quality (but

not perfect) data. Some ways in which the algorithms break down are

illustrated and discussed. The idea here is to be illustrative rather than

perform exhaustive numerical studies. Computer runs of the Schur and

dynamic deconvolution algorithms for the non-normal incidence problem

are also given.

0,'%
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5.2.1 Forward Problem Algorithms

Two different forward problem algorithms are used. One, FORI,

is a frequency-domain algorithm that uses the reflectivity method (see

(Aid and Richards, 1980, p. 393) for a good discussion) and requires

an inverse Fourier transform to obtain time responses. The other, r

BREM, is a time-domain algorithm that computes directly all of the

primary and secondary (first-order multiple) reflections, i.e., the first

two terms of the Bremmer series for the medium response. Both -

algorithms have advantages and disadvantages.

FO RI

The reflectivity method used by FORI works as follows. It is known

that if a layered medium bounded above and below by two infinite,

homogeneous half-spaces is probed with an impulse, the downgoing and

upgoing waves in the lower half-space will be, respectively, t() and

zero . Here T () is the transmission response of the medium, and there

is no upgoing wave in the lower half-space by the radiation boundary

condition. Thus, if we initialize the waves D N+l(o) and UN+ (4) in the

lower half-space to one and zero, respectively, and multiply the wave

vector [PN+l({)}by the layer matrices for layers N, N-, .. .2, 1 in

succession, we get the wave vector

0 /(5-3)

Dividing U (,_j by D () then gives the medium reflection response
0 0

R(4

In FOR1 the subroutine RECOPP, which is taken from Kind (1976).

.-..
- ",.
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implements the above procedure. It is then necessary to take the inverse

Fourier transform of R( ) in order to get the time response R(t). This

is accomplished by using an FFT algorithm taken from Oppenheim and

Schafer (1975, p. 332) to implement a discrete inverse Fourier

transform of R(J), which is computed at 2m integer multiples of 2,.

by RECOPP. Since R(t) is real, doubling the real part of the discrete

inverse Fourier transform gives the desired time response at 2m integer

multiples of Lt = 2r,/(2mL,).-

Since the impulse response of a discrete layered medium contains

sharp peaks, computing it at discrete time instants runs the risk of

missing some of the peaks. To avoid this, and to make the computation

of the inverse Fourier transform more stable, the program FORI

actually computes the integrated impulse response R(-)j- , takes the

inverse Fourier transform of this, and then takes differences of the

result. This results in the computation of {R , where

(n+l ).A

Rn = (t R(t)dt (5-4)

The major disadvantage in using FORI is the inverse Fourier

transform required. Since the frequency response is only computed up to

= 2m1 = 27/.It, the resulting computed time response is bandlimited.

Indeed, FORI actually computes the sinc response of the medium, i.e.,

the response of the medium to the probing function (sin ft)/-ft. This

results in the peaks in the time response being broadened, or smeared.

Since accurate strengths of the primary reflections are essential to the

layer stripping algorithms, this is potentially a serious matter. However,

the performance of the algorithms did not seem to be excessively hampered

., -
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by this. Gibbs phenomenon (side lobes or peaks due to the oscillation

of the sinc function) was also observed, but proved to be relatively

insignificant.

BREM

In the program BREM the response of the medium is computed

directly in the time domain, so that an inverse Fourier transform is not

needed. This is indeed a significant improvement over FORI; since BREMN

requires much less computation time than FORI, most of the forward runs

in this chapter were performed with BREM. However, the absence of

higher-order multiple reflections in the output of BREM was found to

be troublesome for large reflection coefficients.

BREM constructs the time response of a layered medium directly in

the time domain by ray theory. Each primary reflection is accounted for

by computing the two-way travel time to each interface, and assigning

to that time in the medium time response a reflection strength proportional

to the reflection coefficient at that interface. Second-order multiple

reflections are handled similarly, using two nested DO loops to compute

3them all. The amount of computation required for this is O(N3), which

is manageable. However, computation of the third-order multiple

reflections would require O(N 5) operations, and the strength of each

such reflection would be proportional to the product of five reflection

coefficients. This is so weak that in general it is not worth computing.

Thus BREM computes only the first two terms of the Bremmer series of

the time response of the layered medium.

Comparison of the performances of FORI and BREM 2."

The performances of FORI and BREN are most easily compared by * Et

running the same inversion algorithm on the outputs of both of them. If

. . * * .
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all other factors are equal, the closer the reconstructed medium is to

the actual medium, the closer the computed forward response must be to

the actual forward response of the medium. Figures 5. la and 5.lb show

the results of computer runs of FORI and BREM, both of which were

then inverted using the inversion program INVDISC (which is described

below in Section 5.2.2). Note that both forward programs (and, of

course, the inversion program) performed quite well, since the

reconstructed medium almost matches the actual medium.

However, if the number of points at which the frequency and time

responses are computed is reduced, FORI begins to break down. Figures

5.2a and 5.2b compare FORi and BREM on the same medium as Figures

5.1--the only difference is that the medium responses are computed at

256 points instead of 512. Note that FORI is breaking down badly while

BREM is still working. Figures 5.3a and 5.3b show another cause of

breakdown for FOR1 that does not affect BREM--large primary reflections

have their peaks smeared by the inverse Fourier transform, so that the

reflection coefficients read by the algorithm are too small.

On the other hand, large reflection coefficients can also cause

problems for BREM, due to the absence of high-order multiple reflections

in BREM's output. Figure 5.4 shows an example of this. The missing

higher-order multiple reflections constitute a form of noise, and at the

ninth layer the inversion algorithm breaks down.

5.2.2 Inversion Algorithms

Two different layer stripping algorithm computer programs were

written. One, INVI, utilized the updates (4-40) - (4-41) for a

continuous layered medium. The other, INVDISC, utilized the slightly

.. .. . . . . . . . . . .
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deth cact ccomP rhoact rhocomp rcl rc2 N
0.05 5.0000 4.9992 5.0000 5.0078 0.0007 0.0006

. 0.10 5.1000 5,1102 4.9000 4,8959 0.0061 0.0145
0.15 5.1000 5.1086 4.9000 4,9049 0.0007 0,0005
0,20 5.2000 5.2122 4,8000 4.8048 0.0060 0.0147
0.25 5,2000 5,2113 4,8000 4,8126 0.0007 0.0006
0.30 5,3000 5.3171 4.7000 4.7096 0.0059 0.0159
0.35 5,3000 5.3173 4.7000 4o7152 0.0006 0.0007
0.40 5.3000 5.2998 4.6000 4.6520 -0.0095 -0.0113
0.45 5,3000 5,3013 4.6000 4,6560 0.0007 0.0008
0.50 5.3000 5.3060 4.5000 4,5430 -0.0115 -0.0111
0.55 5,3000 5.3061 4.5000 4.5498 0.0007 0.0008
0.60 5.4000 5.4058 4,5000 4,5517 0*0161 0.0265
0.65 5.4000 5.4055 4.5000 4.5579 0.0006 0.0006
0.70 5.5000 5.5155 4.5000 4.5648 0.0184 0,0314
0,75 5,5000 5.5119 4,5000 4.5761 0.0007 0.0002
0.80 5.4000 5,4291 4.4000 4.4361 -0.0288 -0.0387
0.85 5.4000 5.4300 4.4000 4.4424 0.0009 0.0009
0.90 5,3000 5,3133 4.3000 4.3626 -0.0277 -0.0400

* 0.95 5.3000 5.3196 4.3000 4.3606 0.0008 0.0014
1.00 5,2000 5.1918 4.2000 4.2916 -0.0282 -0.0401

: 1.05 5.2000 5.1939 4.2000 4.2955 0.0008 0.0010
1.10 5.1000 5.1292 4.1000 4.1391 -0.0287 -0.0342
1.15 5.1000 5.1263 4.1000 4.1493 0,0008 0.0005
1920 5.1000 4.9996 4.1000 4.0995 -0.0259 -0.0356

* 1.25 5,0000 5.0014 4.0000 4*1027 0,0007 0.0008
1.30 5.0000 5.0009 4.0000 4.1086 0.0006 0o0006
1.35 5.0000 5,0012 4.0000 4.1137 0.0007 0.0007
1,40 5.0000 5,0008 4.0000 4,1196 0.0007 0.0006
1.45 5.0000 5,0006 4,0000 4,1254 0.0007 0,0006
1.50 5,0000 5.000. A.0000 4,1313 0,0007 0.0007

5. la Result of running the frequency-domain method forward
program FOR1 with the inverse program INVDISC, using
512 points.

.2
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n=15 m= 9 dd=O.100 del=0.050 dt=0O00250 PI=0.12 P2=0.15

depth cact ccomP rhoact rhocomp rl rcl r2 rc2

0.00 5.0000 5.0000 5.0000 5.0000 0,0000 0.0000 0,0000 0.0000

0.05 5,0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000

0.10 5,1000 5.1000 4.9000 4.9000 0,0055 0,0055 0.0131 0.0131

0.15 5.1000 5.1000 4.9000 4.9000 0.0000 0,0000 0.0000 0.0000

0.20 5,2000 5.2000 4,8000 4.8000 0,0054 0.0054 0.0138 0.0138

0.25 5.2000 5.2000 4.8000 4,8000 0,0000 0,0000 0,0000 0.0000

0.30 5.3000 5.3000 4.7000 4,7000 0,0053 0.0053 0,0146 0.0146 WI
0.35 5.3000 5,3000 4.7000 4.7000 0,0000 0,0000 0.0000 0.0000

0.40 5.3000 5.3000 4,6000 4.6000 -0.0108 -0,0108 -0.0108 -0.0108

0.45 5.3000 5.3000 4,6000 4.6000 0,0000 0.0000 0.0000 0.0000

0.50 5.3000 5,3000 4.5000 4,5000 -0,0110 -0.0110 -0.0110 -0.0110

0,55 5.3000 5,3000 4,5000 4,5000 0.0000 0,0000 0.0000 0.0000

0.60 5.4000 5.4000 4.5000 4.5000 0.0159 0.0159 0.0263 0.0263

0,65 5.4000 5.4000 4,5000 4,5000 0.0000 0.0000 0.0000 0.0000

0.70 5.5000 5.5000 4.5000 4.5001 0,0160 0.0160 0.0277 0.0277

0.75 5.5000 5.5000 4.5000 4.5001 0.0000 0,0000 0,0000 0.0000

0.80 5,4000 5.4001 4,4000 4.3999 -0.0273 -0,0273 -0,0389 -0,0389

0.85 5.4000 5.4000 4.4000 4.4001 0,0000 0.0000 0.0000 0.0000

0.90 5,3000 5,2999 4,3000 4,3001 -0,0274 -0.0274 -0,0377 -0.0377

0.95 5.3000 5.3000 4.3000 4.3000 0,0000 0.0000 0.0000 0.0000

1.00 5.2000 5.2012 4.2000 4.1984 -0,0276 -0,0276 -0.0368 -0.0367

1.05 5,2000 5.2012 4,2000 4.1984 0,0000 0.0000 0.0000 0,0000

1.10 5.1000 5.1013 4,1000 4.0984 -0.0278 -0.0277 -0.0361 -0.0361

1,15 5.1000 5.1018 4.1000 4.0978 0.0000 0.0000 0,0000 0,0000

1.20 5.0000 5.0040 4.0000 3.9954 -0.0280 -0.0279 -0,0356 -0.0354

1.25 5.0000 5.0031 4.0000 3.9966 0,0000 0,0000 0.0000 -0#0001

1.30 5.0000 5,0037 4.0000 3.9956 0,0000 0.0000 0.0000 0.0000

1.35 5.0000 5.0036 4.0000 3.9955 0.0000 0.0000 0,0000 0.0000

1.40 5,0000 5,0043 4,0000 3.9946 0.0000 0,0000 0,0000 0.0001

1,45 5,0000 5,0043 4.0000 3.9942 0,0000 0.0000 0.0000 0,0000

1.50 5.0000 5,0046 4,0000 3.9939 0,0000 0.0000 0.0000 0.0000 MW

5. lb Result of running the time-domain method forward program
BREM with INVDISC. Both forward programs work well
if 512 points are used.

0
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deoth cact ccomp rhoact rhocomp rcl rc20.05 5.0000 5.0002 5.0000 5.0122 0.0012 0.00130.10 5.1000 5.0996 4.9000 4.9303 0.0073 0.01490.15 5.1000 5.0964 4.9000 4.9463 0.0011 0.00090.20 5.2000 5.2037 4.8000 4.8493 0.0070 0.01590.25 5.2000 5.2025 4.8000 4,8623 0.0011 0.00100.30 5,3000 5o2931 4,7000 4*7903 0,0069 0.01530.35 5.3000 5.4032 4*7000 4.6387 0.0014 0.01280.40 5.3000 5.4139 4.6000 4.5263 -0.0106 -0.00940.45 5.3000 5.4043 4.6000 4.5589 0.0020 0.00100.50 5.3000 5.4018 4.5000 44741 -0.0098 -0.01000.55 5.3000 5.2934 4.5000 4.6466 0.0017 -0.00950.60 5,4000 563301 4.5000 4.7442 0.0162 0.01980.65 5.4000 5*3977 4.5000 4.6589 0.0017 0.0088 '0.70 5.5000 5.5059 4.5000 4.6545 0,0169 0.02950.75 5.5000 5.6876 4,5000 4.4027 0.0018 0.02730.80 5.4000 5.5895 4,4000 4.3211 -0.0254 -0.03990.85 5.4000 5.4538 4.4000 4.3209 -0.0219 -0.03920.90 5.3000 5.3070 4.3000 4.3434 -0.0208 -0.03660.95 5.3000 4,8682 4,3000 4,9505 -0.0034 -0.0383 ""1,00 5.2000 4.7211 4.2000 4.9051 -0,0275 -0,0364 
-f

1.05 5.2000 4.7024 4.2000 4.9519 0.0018 0.00081010 5.1000 4.6029 4,1000 4.8362 -0.0273 -0.0326115 5.1000 4.4282 4.1000 5.1162 0.0007 -0.00761.20 5.1000 3.8826 4.1000 6.0289 -0.0054 -0.02561#25 5#0000 3,8730 4.0000 6.0640 0.0013 0.00101.30 5.0000 3,8780 4.0000 6,0700 0,0013 0,00151,35 5.0000 3.8820 4,0000 6,0772 0,0013 0.00141.40 5.0000 3.8850 4.0000 6.0875 0.0013 0.00141.45 5.0000 3.8866 4,0000 6.1008 0.0014 0.0014
1.50 5.0000 3.8904 4.0000 6.1092 0.0013 0.0014

5.2a Result of running FORI with INVDISC on the medium
used in Figure 5.1, using 256 points.
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n=15 m= 8 dd=0.100 del=0.050 dt=O.00500 P1=0.12 P2=0.15

depth cact ccomP rhoact rfocofIP rl rcl r2 rc2

0.00 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0,0000
0.05 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0,0000
0.10 5.1000 5.1000 4.9000 4.9000 0.0055 0.0055 0.0131 0.0131

0.15 5.1000 5.1000 4.9000 4.9000 0.0000 0.0000 0.0000 0.0000

0.20 5.2000 5,2000 4,8000 4.8000 0.0054 0.0054 0.0138 0.0138

0,25 5.2000 5,2000 4.8000 4,8000 0.0000 0.0000 0.0000 0.0000

0.30 5.3000 5.3000 4.7000 4.7000 0.0053 0,0053 0.0146 0.0146

0.35 5.3000 5.3000 4.7000 4.7000 0.0000 0.0000 0.0000 0.0000

0.40 5.3000 5.3000 4.6000 4.6000 -0.0108 -0.0108 -0.0108 -0.0108

0,45 5.3000 5,3000 4.6000 4.6000 0.0000 0,0000 0.0000 0.0000

0.50 5,3000 5.3000 4.5000 4.5000 -0.0110 -0.0110 -0.0110 -0.0110

0.55 5.3000 5,3000 4,5000 4,5000 0,0000 0.0000 0.0000 0.0000

0.60 5.4000 5.4000 4.5000 4.5000 0.0159 0.0159 0.0263 0.0263

0.65 5.4000 5.4000 4.5000 4.5000 0.0000 0.0000 0.0000 0.0000

0.70 5,5000 5.5000 4.5000 4,5000 0,0160 0.0160 0.0277 0.0277

0.75 5.5000 5.4999 4.5000 4.5002 0.0000 0.0000 0.0000 0.0000

0.80 5.4000 5.3999 4.4000 4.4001 -0.0273 -0.0273 -0.0389 -0.0389

0.85 5.4000 5.3992 4.4000 4.4011 0.0000 0.0000 0.0000 -0.0001

0.90 5.3000 5.2992 4.3000 4.3010 -0.0274 -0.0274 -0.0377 -0.0377

0.95 5.3000 5.2996 4.3000 4.3005 0.0000 0.0000 0.0000 0.0000

1.00 5.2000 5.1995 4.2000 4.2007 -0.0276 -0.0276 -0.0368 -0.0368

1.05 5.2000 5.1981 4.2000 4.2025 0.0000 0.0000 0.0000 -0.0001

1.10 5.1000 5.0978 4.1000 4.1028 -0.0278 -0.0278 -0.0361 -0.0361

1.15 5.1000 5.0982 4.1000 4.1023 0,0000 0.0000 0.0000 0.0000

1.20 5.0000 4.9977 4.0000 4.0028 -0.0280 -0.0280 -0.0356 -0.0356

1.25 5.0000 4.9981 4.0000 4,0023 0.0000 0.0000 0,0000 0.0000

1.30 5.0000 4.9961 4.0000 4.0049 0.0000 0.0000 0.0000 -0.0001

1.35 5.0000 4.9950 4.0000 4.0063 0.0000 0.0000 0.0000 -0.0001

1,40 5.0000 4.9964 4.0000 4,0042 0,0000 0.0000 0.0000 0.0000

1.45 5.0000 4.9951 4,0000 4,0062 0.0000 0.0000 0.0000 0.0000

1.50 5.0000 4.9966 4,0000 4,0039 0,0000 0,0000 0.0000 0.0001

5.2b Result of running BREM with INVDISC on the medium
used in Figure 5.1, using 256 points. FOR is
breaking down while BREM is still working.

.... ~~........ . . .............. .... . : ..-. .-. ,...... ..-.. :.-



220 *1 !

depth cact ccoMP rhoact rhocomp rcl rc2
0.10 5,2000 5,1905 4,8000 4,8215 0.0018 0.0071
0.20 5.4000 5,4064 4,6000 4,6174 0,0003 0.0067
0.30 5,5000 5,4746 4,8000 4,8736 0,0338 0.0359, 0.40 5.5000 5,4816 4,8000 4.8787 0.0012 0.0014
0.50 5,5000 5s4913 4.8000 4,8815 0,0012 0.0016 4
0.60 5,7000 5,5613 5,0000 5,2399 0,0422 0,0445
0.70 5,7000 5,6242 5.2000 5o3810 0.0194 0,0215
0.80 5.5000 5.4067 5.4000 5.6246 0.0008 -0.0062
0.90 5,3000 5.1843 5,6000 5.8765 -0.0007 -0.0073

* 1.00 5,0000 4.8898 5.3000 5,6246 -0,0531 -000610
1010 4,8000 4,8308 5,0000 5.1525 -0.0502 -0.0517
1,20 4,6000 4,6100 4.8000 4.9970 -0,0401 -0,0454
1.30 4.5000 4.6843 4.5000 4,5037 -0,0435 -0,0417
1.40 4.5000 4.6783 4.5000 4.5217 0.0013 0.0012
1,50 4.5000 4.6759 4.5000 4.5362 00013 0.0013

5.3a Result of running FOR1 with INVDISC on a more
sharply varying medium than the one used in
Figures 5.1 and 5.2.

depth cact ccoMP rhoaet rhocomp rcl rc2
0.10 5.2000 5.2000 4.8000 4,8000 0.0006 0.0061
0.20 5.4000 5.4000 4.6000 4.6000 -0.0010 0.0050
0,30 5.5000 55000 4.800 4,8000 0,0312 0.0343
0.40 5o5000 5.5000 4,8000 4,8000 0.0000 0.0000
0.50 5.5000 5.5000 4.8000 4,8000 0.0000 0.0000
0.60 5.7000 5.7000 5.0000 5.0000 0.0398 0.0464
0.70 5.7000 5.7000 5.2000 5.2000 0.0196 0.0196
0.80 5.5000 5.4998 5.4000 5.4002 -0.0005 -0.0072
0.90 5.3000 5,2997 5.6000 5,6003 -0.0018 -0.0080
1.00 5*0000 4.9996 5.3000 5.3004 -0.0587 -0#0671
1.10 4.8000 4.7998 5.0000 5,0002 -0.0508 -0,0559
1.20 4,6000 4,6011 4,8000 4o7981 -0.0430 -0.0477
1,30 4.5000 4.5026 4.5000 4.4966 -0.0438 -0,0461
1,40 4.5000 4,5024 4.5000 4.4968 0.0000 000000
1.50 4.5000 4.5015 4,5000 4o4977 0.0000 0.0000

5.3b Result of running BREM with INVDISC on the medium
used in Figure 5.3a. FOR1 has trouble synthesizing
the larger primary reflections, while BREM does not.

, C
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depth Cact CCOMP rhoact rhocomp rcl rc2
0.10 5.5000 5.5000 5.5000 5.5000 0.0985 0.1723
0.20 6.0000 6.0000 6.0000 6.0000 0#0907 0.2135
0.30 5.5000 5,5451 5.5000 5*4517 -0.0907 -0.2053
0.40 5.0000 5.0729 5.0000 4.9232 -0.0985 -0#1717
0.50 5.0000 5.0899 5.0000 4.9056 0.0000 0.0022
0.60 5.0000 5,0897 5.0000 4.9063 0.0000 000000
0.70 4.5000 4.6191 5.5000 5,3509 -0.0082 -0.0601
)00 4.0000 4.1681 6.0000 5,7465 -0.0183 -0#0552

0.v%) 4,ov J#5158 6.5000 7,4288 0.0400 U00008
1.00 4.5000 4.1695 7.0000 7.5816 0.0984 0.1371
1.10 4.0000 3.5380 7.0000 7,9433 -0.0619 -0.0998 ,4
1.20 3.5000 3.1776 6.5000 8.8867 0.0009 -0.0159
1.30 3.0000 3.2900 6.0000 8.5729 -0.0001 0.0048
1.40 3#0000 3.1303 6.0000 9.0136 -0.0005 -0,0073 -

1.50 3.0000 3.0826 6.0000 9.1655 0.0005 -0.0015
1.60 3.0000 3.3306 6.0000 8.4063 -0.0035 0.0071
1.70 3.0000 3,4560 6.0000 8.0691 -0.0014 0.0045
1.80 3.0000 3,6155 6.0000 7.7067 0.0003 0.0084
1.90 3.0000 3.7153 6.0000 7.4817 -0.0007 0.0047
2,00 3.0000 3.7111 6.0000 7.4881 -0.0002 -0.0004
2.10 3,0000 3.7230 6#0000 7.4622 -0.0001 0.0006
2.20 3.0000 3.7323 6,0000 7.4410 -010001 0.0004
2.30 3.0000 3,7415 6.0000 7.4208 -0.0001 0.0004
2.40 3.0000 3,7574 6.0000 7.3881 0.0000 0.0009
2.50 3.0000 3.7523 6.0000 7,3989 0.0000 -0.0003

5.4 Result of running BREM with INVDISC on a sharply
varying medium. The failure of BREM to generate tertiary
reflections (second-order multiple reflections) causes errors.
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more complicated updates (4-50) for a discrete layered medium. Other-

wise, both algorithms were the same. The discrete wave updates (3-83)

were used for both algorithms, so that each step of the algorithm would @

constitute a Givens rotation of the normalized waves. Actually, the

effect of transmission losses for the media used in these runs is less

than one part in a thousand. em

Modification of the algorithms

The results of running these two algorithms showed immediately

that one modification was necessary. Although Bultheel (1979) proved

that the fast Cholesky algorithm was backward stable, the algorithm used

for the non-normal incidence inverse problem is not, strictly speaking,

the fast Cholesky algorithm (although the two algorithms are quite C

similar). The main difference is that the computed wave speed in a

layer must be used to project ahead to the arrival time of the next

primary reflection. That this is a potential source of instability may be

seen as follows.

In running the algorithm on a computer, time, as well as depth,

must be discretized. Suppose that the actual arrival time of a primary .

reflection is t = (n + - E)At, where At is the discretization time. Then

the arrival time of the reflection will be rounded down to n At. Now

suppose that due to a slight error in the last reconstructed value of

wave speed, the projected time of arrival of this primary reflection (i.e.,

the time at which the algorithm will look for this reflection) is

t = (n + j +e)At. This time will be rounded up to (n + 1)At, and even S

though the error in time is only 2 -At, the algorithm will miss this

primary reflection.

This instability can be fixed by having the algorithm read the
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upgoing wave at not only the projected time nt, but at the previous

and following times (n-l)At and (n+lI),t, respectively. Summing these

three values of the upgoing wave makes it very unlikely that the

primary reflection will be missed, unless the computed wave speed is in

considerable error. Summing three values of the upgoing wave also '

helps compensate for the spreading of the reflected wave itself due to

bandlimitation of the computed medium response. Note that there is no

danger of adding in a multiple reflection from previous layers, since all

of the succeeding multiple reflections from the previous layers have been

eliminated by the algorithm.

Figures 5.5 show that this modification works well. BREM was used

to generate the forward response of the given medium, and INVI was

used to invert this response, first without the modification (Figure 5.5a),

then with it (Figure 5. 5b). Note that without the modification the

algorithm misses the primary reflection from the sixth interface (the

computed reflection coefficient rc2 is zero) and breaks down completely,

while with the modification it works fairly well through forty layers.

One problem encountered by employing this modification is worth

noting. Near a turning point, the vertical wave speed becomes very

large, and the time differences between primary reflections become very

small. If the time difference over which the algorithm projects to look

for the next primary reflection becomes less than 3Mt, it is possible for

6 the algorithm to read the same primary reflection twice! An example of

this double reading is shown in Figure 5.6, in the twelfth and in several

succeeding layers.

The conditions under which this double reading becomes possible

can be derived as follows. The layer thickness -z divided by the

*N-

---- *,,..4.*.. .. ......-- .



n=50 m= 9 dd=0.100 del=O.100 dt=O.00500 P1=0,12 2=0.15

depth cact ccomP rhoact rhocomp rI rcl r2 rc2
0.00 5.0000 5,0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000
0.10 4.9500 4.9500 5.0000 5,0000 -0.0078 -0,0078 -0.0113 -0.0113
0.20 4.9000 4,9000 5.1000 5.1000 0.0021 0.0021 -0.0013 -0,0013
0.30 4.8000 4.8000 5.2000 5.2000 -0.0059 -0.0059 -0.0122 -0,0122
0.40 4.7000 4,7000 5.3000 5,3000 -0.0061 -0,0061 -0.0119 -0.0119
0.50 4.6500 4,6500 5.4000 5.4000 0.0015 0.0015 -0,0012 -0.0012

0.60 4.6000 4.6000 5.5000 5,5000 0.0014 0.0014 -0.0012 -0.0012
0.70 4.5500 4.5500 5.6000 5.6000 0.0012 0.0012 -0.0013 -0.0013
0.80 4.5000 4.5000 5,7000 5,7000 0.0010 0.0010 -0.0014 -0.0014
0.90 4.4500 4.4500 5.8000 5.8000 0.0009 0.0008 -0.0015 -0,0015
1.00 4.4000 4.4000 5.9000 5.9000 0.0007 0.0007 -0.0016 -0.0016 S1
1.10 4.3500 4.3500 6.0000 6.0000 0.0005 0.0005 -0.0016 -0,0016
1.20 4.3000 4.3000 6.1000 6.1000 0.0003 0.0004 -0.0017 -0.0017
1.30 4.2500 4.2500 6.2000 6.2000 0.0002 0.0002 -0.0018 -0.0018
1.40 4.2000 4,2000 6.3000 6.3000 0,0000 0.0000 -0.0019 -0.0019
1.50 4.2000 4.2000 6.4000 6.4000 0.0079 0.0079 0.0079 0.0079
1.60 4.2000 4.2000 6.5000 6.5000 0.0077 0.0078 0.0077 0.0078
1.70 4.2500 4.2500 6.6000 6.6000 0.0156 0,0156 0.0175 0.0175
1.80 4.3000 4.3000 6.7000 6.6999 0.0154 0.0155 0.0174 0.0174
1.90 4.3500 4.3500 6.8000 6.7998 0,0153 0.0153 0.0174 0.0174
2.00 4,4000 4,3999 6.9000 6.9000 0.0152 0.0152 0.0173 0.0173
2.10 4.4500 4.4500 7.0000 6.9999 0.0151 0.0151 0.0173 0.0173
2,20 4.5000 4.5005 7,1000 7.0983 0,0149 0.0149 0,0173 0.0173
2.30 4.5500 4.5504 7.2000 7.1986 0.0148 0,0148 0.0172 0.0172

- 2,40 4.5500 4.5510 7.2000 7.1972 0.0000 0,0000 0.0000 0.0000
2,50 4.6000 4.6008 7,3000 7,2979 0.0147 0,0147 0,0172 0.0172

if 2.60 4.6500 4.6505 7.4000 7,3986 0.0146 0.0146 0,0172 0,0172
2.70 4.7000 4.7004 7.5000 7.4989 0.0145 0.0145 0.0172 0.0172
2.80 4.8000 4.8002 7,4000 7.3997 0.0089 0.0089 0.0147 0.0147
2.90 4.9000 4.9003 7.3000 7.2997 0.0088 0.0088 0.0151 0.0151
3.00 5.0000 5.0003 7,2000 7,2000 0.0087 0.0087 0.0156 0.0156
3.10 5,1000 5.0998 7.1000 7,1010 0.0087 0.0087 0.0162 0.0162
3.20 5.2000 5.1996 7.0000 7.0016 0.0086 0.0086 0.0170 0.0170
3.30 5.2500 5.2496 6,9000 6.9013 0.0007 0.0007 0.0052 0.0052
3.40 5.3000 5,2995 6.8000 6.8016 0.0006 0.0006 0.0054 0,0054
3,50 5.3500 5,3496 6,7000 6.7013 0,0005 0,0005 0.0056 0.0056
3.60 5.4000 5.3452 6.6000 6,7165 0.0004 0.0004 0.0058 -0.0000

- 3,70 5.4500 5.4014 6.5000 6.5975 0.0004 0.0000 0.0060 0.0060
3.80 5.5000 5.4543 6,4000 6.4902 0,0003 0.0003 0,0063 0.0063
3.90 5.5500 5.4526 6,3000 6,4964 0.0002 0.0002 0,0066 0.0000
4.00 5.6000 5.4514 6.2000 6.5006 0,0001 0.0001 0,0069 0.0000
4.10 5.5500 5.4511 6,1000 6.5010 -0,0162 0,0000 -0.0230 0.0000
4.20 5.5000 5.5806 6.0000 6,0347 -0.0163 -0.0163 -0.0227 0.0000
4.30 5.4500 5.5806 5.9000 6.0347 -0,0164 0.0000 -0.0224 0.0000
4.40 5.4000 5.6928 5.8000 5.6279 -0.0165 -0.0165 -0.0222 0.0000
4.50 5.3500 5.6590 5.7000 5.5047 -0.0167 -0,0166 -0.0220 -0.0219
4.60 5.3000 5.6589 5.6000 5.5052 -0.0168 0.0000 -0.0218 0.0000 5
4.70 5.3500 5.6582 5.5000 5.5071 -0.0011 0.0001 0.0040 0,0000
4.80 5.4000 5.6588 5.4000 5.5061 -0.0012 0.0000 0.0041 0.0001
4.90 5.4000 5.6592 5,4000 5.5057 0.0000 0,0000 0,0000 0.0001
5.00 5,4000 5.6592 5.4000 5.5061 0.0000 0.0000 0,0000 0.0000

5.5a Result of running BREM with INVDISC while reading
the reflection coefficient from a single value of the
upgoing wave. Errors in the computed wave speeds
soon cause the algorithm to miss primary reflections.



n=50 m= 9 dd=0.100 del=0.100 dt=0.00500 P1=0.12 P2=0.15'

depth cact ccoMP rhoact rhocomp rl rcl r2 rc2
0.00 5.0000 590000 5.0000 5,0000 0,0000 0.0000 0.0000 0.0000
0.10 4.9500 4.9500 5.0000 5.0000 -0.0078 -0.0078 -0.0113 -0.0113
0.20 4.9000 4.9000 5.1000 5.1000 0.0021 0.0021 -0.0013 -0.0013
0.30 4.8000 4.8000 5.2000 5.2000 -0.0059 -0.0059 -0.0122 -0.0122
0.40 4.7000 4.7000 5.3000 5.3000 -0.0061 -0.0061 -0.0119 -0.0119
0.50 4.6500 4.6500 5.4000 5.4000 0.0015 0.0015 -0.0012 -0.0012 -.
0.60 4.6000 4.6000 5.5000 5.5000 0.0014 0.0014 -0.0012 -0.0012
0.70 4.5500 4.5500 5.6000 5.6000 0.0012 0.0012 -0.0013 -0.0013
0.80 4.5000 4.5000 5.7000 5.7000 0.0010 0.0010 -0.0014 -0.0014
0.90 4.4500 4.4500 5.8000 5.8000 0.0009 0.0008 -0.0015 -0.0015
1.00 4.4000 4.4000 5.9000 5.9000 0.0007 0.0007 -0,0016 -0.0016
1.10 4.3500 4.3500 6.0000 6.0000 0.0005 0.0005 -0.0016 -0.0016
1.20 4.3000 4.3000 6.1000 6.1000 0.0003 0.0004 -0,0017 -0.0017
1.30 4.2500 4.2500 6.2000 6.2000 0,0002 0.0002 -0.0018 -0.0018
1.40 4,2000 4.2000 6.3000 6.3000 0.0000 0.0000 -0.0019 -0.0019
1.50 4.2000 4.2000 6.4000 6.4000 0.0079 0.0079 0.0079 0.0079

* 1.60 4.2000 4.2000 6.5000 6.5000 0.0077 0.0078 0.0077 0.0078
1.70 4.2500 4.2500 6.6000 6.6000 0.0156 0.0156 0.0175 0.0175
1.80 4.3000 4.3001 6.7000 6,6998 0.0154 0.0155 0.0174 0.0175
1,90 4.3500 4o3501 6.8000 6.7997 0.0153 0.0153 0,0174 0.0174
2.00 4.4000 4.4003 6.9000 6.8992 0.0152 0.0152 0.0173 0.0173
2.10 4.4500 4,4505 7.0000 6.9985 0.0151 0.0151 0.0173 0.0173

S. 20 4.5000 4.5006 7.1000 7.0983 0.0149 0,0149 0.0173 0.0173
2.30 4.5500 4.5506 7.2000 7.1980 0.0148 0.0148 0.0172 0.0172
2.40 4.5500 4.5510 7.2000 7.1970 0.0000 0.0000 0.0000 0.00002.50 4.6000 4.6012 7.3000 7.2965 0.0147 0.0147 0.0172 0.0172
2.60 4.6500 4.6512 7.4000 7.3966 0.0146 0.0146 0.0172 0.0172
2.70 4.7000 4.7010 7.5000 7.4969 0.0145 0.0145 0.0172 0.0172
2.80 4.8000 4.8011 7.4000 7.3968 0.0089 0.0089 0.0147 0.0147
2.90 4.9000 4.9013 7.3000 7.2965 0.0088 0.0088 0.0151 0.0151
3.00 5.0000 5.0012 7.2000 7.1971 0.0087 0.0087 0.0156 0.0156
3.10 5.1000 5.1008 7.1000 7.0981 0,0087 0.0087 0.0162 0.0162
3.20 5.2000 5.2005 7,0000 6.9987 0,0086 0,0086 0.0170 0.0170
3.30 5.2500 5.2505 6,9000 6.8988 0.0007 0.0007 0.0052 0.0052p 3.40 5.3000 5.3005 6.8000 6.7988 0.0006 0.0006 0.0054 0.0054
3.50 5.3500 5.3505 6.7000 6.6990 0.0005 0.0005 0.0056 0.0056
3.60 5.4000 5.4003 6.6000 6.5993 0.0004 0.0004 0.0058 0.0058
3.70 5.4500 5.4503 6,5000 6.4993 0.0004 0.0004 0,0060 0.0060
3.80 5.5000 5.5003 6.4000 6.3994 0.0003 0.0003 0.0063 0.0063
3.90 5.5500 5.5502 6.3000 6.2996 0.0002 0.0002 0.0066 0.0066
4.00 5.6000 5.6002 6.2000 6.1997 0.0001 0.0001 0.0069 0.0069 -
4.10 5.5500 5.5500 6.1000 6.1001 -0.0162 -0.0162 -0.0230 -0.0231
4.20 5.5000 5.5002 6.0000 5,9996 -0,0163 -0.0164 -0.0227 -0.0227
4.30 5.4500 5.4502 5.9000 5.8995 -0.0164 -0,0164 -0.0224 -0.0224
4.40 5.4000 5.4002 5.8000 5.7996 -0.0165 -0.0165 -0.022 -0.0222
4.50 5.3500 5.3496 5.7000 5.7006 -0.0167 -0,0167 -0.0220 -0.0221
4.60 5.3000 5.2994 5.6000 5.6008 -0.0168 -0.0168 -0.0218 -0.0218 __
4.70 5.3500 5.3495 5.5000 5.5005 -0.0011 -0.0011 0.0040 0.0040
4.80 5.4000 5.3990 5.4000 5.4015 -0.0012 -0.0012 0.0041 0.00414.90 5.4000 5.3992 5.4000 5.4012 0.0000 0.0000 0.0000 0.0000 /5.00 5.4000 5.3992 5.4000 5.4013 0.0000 0.0000 0,0000 0.0000

5.5b Result of running BREM with INVDISC while reading
the reflection coefficient from three neighboring values
of the upgoing wave. This corrects the instability
revealed in Figure 5.5a.
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5.6 Result of running BREM with INVDISC showing the : i
double reading of primary reflections that can occur •
from the alteration used in Figure 5.5b.
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depth cact ccomP rhoact rhocomP rcl rc2

0.10 5.0000 5.0000 5,1000 5.0990 0.0099 0.0099
0.20 5.1000 5.1038 5.1000 5.0939 0.0106 0.0232

0.30 5.2000 5.2075 5.2000 5.1881 0.0201 0.0338

0.40 5.3000 5.3112 5.1000 5.0826 0.0005 0.0154

0.50 5.4000 5.4147 5.0000 4.9777 0.0002 0.0164

0.60 5.5000 5.5182 5.0000 4,9737 0.0099 0,0277

0.70 5.5000 5.5182 5,0000 4.9737 0.0000 0.0000.Y,
0.80 5.5000 5.5182 5.0000 4.9736 0.0000 0.0000

0.90 5.4000 5.4247 4,9000 4.8659 -0.0200 -0.0378 --SAW-
1.00 5.3000 5.3313 4.8000 4.7580 -0.0204 -0.0366 --

1.10 5.2000 5.2378 4.7000 4.6503 -0.0208 -0.0357

1.20 5.1000 5.1448 4.6000 4,5422 -0,0211 -0,0348

1.30 5.0000 5.0526 4.5000 4.4336 -0,0216 -0.0341

1.40 5.0000 5.0538 4,5000 4,4324 0,0000 0,0002

1.50 5,0000 5.0542 4.5000 4.4321 0.0000 0.0001

5.7a Result of running BREM with the continuous medium
inversion program INVI for a fairly smooth medium.
This shows INVI works fairly well for such a medium.

derth cact ccofr, rhoact rhocomp rcl rc2

0.10 5.0000 5.0000 5.1000 5.1000 0.0099 0.0099

0.:0 5.1000 5,1000 5,1000 5.1000 0.0106 0.0232

0.30 5.2000 5.2000 5.2000 5.2000 0.0201 0.0338

0.40 5.3000 5.3000 5.1000 5.0999 0.0005 0.0154

0.50 5.4000 5.4000 5.0000 4.9999 0.0002 0.0164

0.60 5.5000 5,5000 5.0000 5,0000 0.0099 0.0277

0.70 5.5000 5.5000 5.0000 5.0000 0.0000 0,0000

0.80 5,5000 5.5001 5,0000 4.9999 0.0000 0.0000

0.90 5.4000 5.4001 4.9000 4.8999 -0,0200 -0.0378

1.00 5.3000 5.3000 4.8000 4.8000 -0.0204 -0.0366

1.10 5.2000 5.2002 4,7000 4.6998 -0.0207 -0.0356

1.20 5.1000 5.0997 4.6000 4.6004 -0.0211 -0.0349

1.30 5.0000 4.9986 4.5000 4.5015 -0.0216 -0.0343

1.40 5.0000 4,9978 4.5000 4,5025 0,0000 -0.0001

1.50 5.0000 4.9975 4,5000 4.5028 0.0000 0.0000

5.7b Result of running BREM with INVDISC on the
medium used in Figure 5.7a. Both inversion
programs work well on fairly smooth media.

'.,. .,-.'.
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I e th cact ccomP rhoact rhocomP rcl rc2

0.10 5.2000 5.2000 4.8000 4.8000 0.0006 0.0269

0.20 5.4000 5.4000 4.6000 4.6000 -0,0010 0.0301

0.30 5.5000 5.5000 4.8000 4.8000 0.0312 0.0489

0.40 5.5000 5.5000 4.8000 4.8000 0.0000 0.0000

. 0.50 5.5000 5.5000 4.8000 4.8000 0.0000 0.0000

0.60 5.7000 5.7000 5,0000 5.0000 0.0398 060810

0.70 5.7000 5.7000 5.2000 5.2000 000196 0.0196

0.80 5.5000 5.5000 5.4000 5.4000 -0.0005 -0.0419

0.90 5.3000 5.2997 5.6000 5.6009 -0.0017 -0.0357

1.00 5.0000 5,0000 5.3000 5.3005 -0.0587 -0,0995

1.10 4.8000 4.7966 5.0000 5.0043 -0.0508 -0.0738

1.20 4.6000 4.5962 4.8000 4.8046 -0.0429 -0,0627

1.30 4.5000 4.4909 4.5000 4.5100 -0.0438 -0.0532

1.40 4.5000 4,4897 4.5000 4.5113 0.0000 -0.0001 .

1.50 4.5000 4.4917 4.5000 4.5092 0.0000 0.0002

5.8a Result of running BREM with INVDISC on a
more sharply varying medium than the one used
in Figures 5.7. INVDISC still works well.

depth cact ccomP rhoact rhocomp rcl rc2 -

0.10 5.2000 5.2161 4.8000 4.7752 0.0006 0,0269

0.20 5.4000 5.4311 4.6000 4.5545 -0.0010 0.0301 -

0.30 5.5000 5,5328 4,8000 4,7464 0.0312 0.0489

0,40 5.5000 5.5328 4.8000 4.7464 0.0000 0.0000

0.50 5.5000 5.5328 4.8000 4.7464 0.0000 0.0000 0

0.60 5.7000 5.7472 5.0000 4.9248 0,0398 0.0810

0.70 5.7000 5.7472 5.2000 5.1180 0.0196 0.0196

0.80 5.5000 5.5775 5.4000 5.2775 -0.0005 -0,0419

0.90 5.3000 5.40R 5.600n F.4317 -O.,Ani, -O.035P

I.vv 5,0000 5..qvoi Zivvu 5.4323 0.0000 -0.0001

1.10 4,8000 5.4069 5.0000 5,4341 0.0000 -0.0002

1020 4e6000 5.4052 4.8000 5.4355 0.0000 -0.0003
1.30 4,5000 5.4042 4.5000 5,4367 0.0000 -0.0002

1,40 4,5000 5.4087 4.5000 5.4307 -0.0001 0.0007

1.50 4.5000 5.4122 4.5000 5.4247 -0.0002 0,0004

5.8b Result of running BREM with INV1 on the
medium used in Figures 5.8a. INVI now breaks
down, as expected.

l i..-. * -
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r,:15 m= 9 dd=O. I00 del=O. 100 dt=0.00250 P1=0.05 P2=0. 15

depth Cact ccoMP rhoact rhocomp rl rcl r2 rc2

0.00 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000

0.10 5.2000 5.2000 4.8000 4.8000 0.0006 0.0006 0.0269 0.0269

0.20 5.4000 5.4000 4.6000 4.6000 -0.0010 -0.0010 0.0301 0.0301

0.30 5.5000 5.5000 4.8000 4.8000 0.0312 0.0312 0.0489 0.0489

0.40 5,5000 5.5004 4.8000 4.7996 0.0000 0.0000 0.0000 0.0001

0.50 5.5000 5.5004 4.8000 4.7996 0.0000 0.0000 0.0000 0.0000

0.60 5.7000 5,7003 5.0000 4.9997 0.0398 0.0398 0.0810 0.0810

0.70 5.7000 5.6993 5.2000 5.2007 0.0196 0.0196 0.0196 0.0194

0.80 5.5000 5,4991 5.4000 5.4010 -0.0005 -0.0005 -0.0419 -0.0419

0.90 5.3000 5.2985 5.6000 5.6017 -0.0018 -0.0018 -0.0357 -0.0358

1.00 5.0000 4.9968 5.3000 5.3037 -0.0587 -0.0587 -0.0996 -0.0997

1.10 4.8000 4.7974 5.0000 5.0029 -0.0508 -0.0508 -0.0734 -0.0733

1.20 4,6000 4.6030 4.8000 4.7967 -0.0429 -0.0429 -0,0627 -0*0621

1.30 4,5000 4.5013 4*5000 4.4964 -0.0438 -0.0441 -0.0528 -0.0532

1.40 4.5000 4.5085 4.5000 4.4864 0.0000 -0.0003 0.0000 0.0004

1.50 4.5000 4.5092 4.5000 4.4856 0.0000 0.0000 0.0000 000001

5.9a Result of running BREM with INVDISC on the
medium used in Figures 5.8, showing the actual

c (rl, r2) and computed (rcl, rc2) reflection
coefficients.

jerth cact ccoMP rhoact rhocomP rl rcl r2 rc2

0.00 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0 • ,
0.10' 5.2000 5.2161 4.8000 4.7751 0.0006 0. C006 0 .C!26 'J 2

0.20 5.4000 5.4311 4.6000 4.55 .44 -0.0010 -0.001) 0 .030 00301
30 46 .. .. -.'31 0 03-,

..30 5.3000 5#5328 4.8000 4.7463 0.0312 0,0312 0. ,j:,-

0.4t 5.5000 5.5328 4.8000 4.7463 0.0000 0.0000 0.0000 0.0000

0.50 5 5000 5.5328 4.8000 4.7463 0.0"0r 0.0000 0.0 C, ?'0)0

6.'0 5.7000 5,Y472 5.0000 4 .924; 0.0398 .0.03.10 0. i'.

0.70 5,7000 5.7472 5.2000 5.1178 0.0196 0.0106 0.Oi' ,'.01,i6

6.o0 15.5 0 00 5.5775 5.4000 .2 -0. .00 -0.00C.'C~~ 0c49

,3o.;o 5.3000 "-.4088 5.6"00 5 .414 -0.0U1: -.. 013 -')., -: 5

L.0) 5.0000 5.4081 5.3000 5.4320 -0.0"87 0000 -0.0, -.. 1
1.10 4,8000 5.4069 5.0000 5.4333 -0.508 0,0000 -0.07:4 -0,%Q '

1.20 4,6000 5.4052 4.3000 5.435,1 -0 0429 0.0000 -0.,:." -Ov0 -3

1.30 4.5000 5.4042 4.5000 tA.4363 -0.0438 O.O000 -0.0528 -0.0(02

1.40 4.5000 5.4087 4.5000 5.4302 0.0000 -000001 0.0001 0. 06..

1.50 4,5000 5.4122 4,5000 5.4242 0,0000 -0.060? 0o.000 0.0004

5.9b Result of running BREM with INVI on the
medium used in Figures 5.8. Note that even
though the reflection coefficients are read

*. perfectly through ten layers, the computed wave
speeds and densities are in error, showing that
the problem lies in the medium parameter updates.-C :

• ~~~~~............. . .-........... . .;, • •-..L ....
- ~~~. . ... . ... ',.. . ..... .......-.- , ,. .. ..- •."*. . . L "•• ..* ' "
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compensates for the square root extraction required by INVDISC. In

the sequel, INVDISC will be used as the inversion algorithm.

Some other comments on the use of these algorithms are appropriate.

If FORI is being used to generate the medium response, it is important

that tf = 2mAt be chosen large enough to avoid aliasing when the

discrete inverse Fourier transform is taken (recall w = 27T/tf). Ganley

" (1981) recommends choosing tf to be four to eight times the two-way

travel time to the deepest interface. This seems excessive; choosing tf

to be half that size gave satisfactory results. If the source spectrum

S(w) is known, then the impulse response of the medium is the inverse

Fourier transform of R (w)/S(), where R (u.) is the medium response to

S(w). This can be used to compensate for the smoothing (low pass

filtering) action of the Radon transform. The finite size of the array

used to measure the medium response will result in aliasing between

wavenumbers, even though the medium response decays to zero with

distance; the situation is analogous to the time aliasing problem discussed

above, except that the array cannot in general be made big enough to

avoid aliasing. However, this will not be a problem in the current

experiment as long as the two angles of incidence are widely separated.

'P.-

5.2.3 Frequency-Domain Layer Stripping Algorithms P

The Schur algorithm and dynamic deconvolution versions of the

discrete medium layer stripping algorithm can also be used to

reconstruct a layered medium. The main feature of these algorithms is .

that they use frequency-domain data: R(w), rather than R(t). Thus

they avoid the necessity of performing an inverse Fourier transform and

its attendant complications.

.1,

S..* . . .. . .* .-. . .-.... . .
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vertical wave speed c(z)/cos e(z) gives the one-way travel time through "'"'

the layer. If double this time (the two-way travel time) is less than 3Lt,

then a double reading may occur. This condition may be written as

Lz cos e(z)/(t c(z)) < 3/2 , (5-5) _....

so that if Az is too small, At too large, or cos e(z) too small (e.g., near

a turning point), a double reading may result. The left side of (5-5)

was 0.8 when the first double reading of Figure 5.6 occurred.

Double readings can be avoided if care is taken to ensure that -

(5-5) is never satisfied. An alternative is to monitor the left side of

(5-5), and replace the modified read at three neighboring times with a

read at a single time whenever (5-5) is satisfied.

Comparison of the performances of INVI and INVDISC

A comparison of the performances of INVI and INVDISC reveals

exactly what would be expected: both algorithms work well on media with

fairly smooth changes, but INVI breaks down on media with sharp changes.

Figures 5.7 show both INVI and INVDISC satisfactorily inverting a

smoothly varying medium. Here INVI might be preferred since its

parameter updates are simpler and do not require a time-consuming

square root extraction. Figures 5.8 and 5.9 show INVDISC still working

almost perfectly, while INVI breaks down. Figure 5.9, in particular,

shows that INVI is reading the reflection coefficients correctly, proving

that the error lies in the update equations for the medium parameters.

The conclusion is thus that INVDISC works very well on all types

of layered media, whether slowly varying or sharply varying, while INVI

breaks down for sharply varying media. This advantage more than

5 ~ ..S* * .. * . .. . . .. . . . . .. .S ,* ** *
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n, 12m- 9dd=0.10del=0.10df=l.OOOPl=O.O8P2=0.15
depth cact ccomP rhoact rhocom' rcl rc2 S
0.10 5.1000 5.1014 5.1000 5.0993 0.0218 0.0334 v.
0.20 5.2000 5.2067 5.2000 5.1895 0.0211 0.0342

0.30 5.3000 5.3013 5.3000 5.2928 0.0208 0.0336
0.40 5.4000 5.4016 5.4000 5.3960 0.0211 0.0360
0.50 5.5000 5.5003 5.5000 5.4979 0.0205 0.0367
0.60 5.4000 5.3982 5.6000 5.5942 -0.0029 -0.0196
0.70 5.3000 5.2950 5.7000 5.6975 -0.0027 -0.0179
0.80 5.2000 5.1950 5.8000 5.7974 -0.0029 -0.0163
0.90 5.1000 5.0955 5.9000 5.8972 -0.0031 -0.0154
1.00 5.0000 4.9966 6.0000 5.9951 -0.0035 -0.0147 S
1.10 5.0000 4.9966 6.0000 5.9950 0.0000 0.0000
1.20 5.0000 4.9951 6.0000 5.9979 0.0001 -0.0001 -

1.30 5.0000 4.9944 6.0000 5.9997 0.0001 0.0000
1.40 5.0000 4.9951 6.0000 5.9988 0.0000 0.0001
1.50 5.0000 4.9946 6.0000 5.9987 -0.0001 -0.0001

n=15m= 8dd=0.1Odel=O.O5df=l.000p1=O.15p2=0.12
depth cact ccomP rhoact rhocomp rcl rc2
0.05 5.0000 5.0016 5.0000 5.0019 0.0006 0.0004
0.10 5.1000 5.1081 4.9000 4,8888 0.0133 0.0052 0
0*15 5.1000 5.1225 4.9000 4.8687 0.0014 0.0002
0.20 5.2000 5.2287 4.8000 4.7558 0.0141 0.0050
0.25 5.2000 5.2373 4.8000 4.7424 0.0007 -0.0001
0.30 5.3000 5.3248 4.7000 4.6526 0.0127 0.0043
0.35 5.3000 5.3104 4.7000 4.6756 -0.0013 0.0002
0.40 5.3000 5.2965 4.6000 4,6284 -0.0086 -0.0073 OL
0.45 5.3000 5.2890 4.6000 4.6466 0.0000 0.0008
0.50 5,3000 5.2930 4.5000 4.5594 -0.0084 -0.0088
0.55 5.3000 5.3073 4.5000 4.5387 0.0014 0.0000
0.60 5.4000 5.3896 4.5000 4.5326 0.0209 0.0124
0.65 5.4000 5.3792 4.5000 4.5456 -0.0013 -0.0002
0.70 5.5000 5.4824 4.5000 4.5120 0,0245 0.0128
0.75 5.5000 5.4855 4.5000 4.5165 0.0014 0.0010
0.80 5,4000 5.3789 4.4000 4.4626 -0.0352 -0.0231
0.85 5.4000 5.4103 4.4000 4.4304 0.0048 0.0014
0.90 5,3000 5.2921 4.3000 4.3838 -0.0363 -0.0241
0.95 5.3000 5.2791 4,3000 4.4224 0.0011 0.0023
1.00 5.2000 5.1351 4.2000 4.4144 -0.0364 -0.0236
1.05 5.2000 5.0926 4.2000 4.4905 -0.0016 0.0019
1.10 5.1000 5.0044 4.1000 4.4453 -0.0255 -0.0188
1.15 5,1000 5.0484 4.1000 4.3873 0.0036 0.0003
1.20 5.1000 5.1175 4.1000 4.2248 -0.0026 -0.0080
1.25 5.0000 5.1376 4.0000 4.1906 0.0007 -0.0009
1.30 5.0000 5.1498 4.0000 4.1701 0.0005 -0.0005
t.35 5.0000 5.1574 4.0000 4.1579 0.0004 -0.0003
1.40 5.0000 5.1614 4.0000 4.1526 0.0003 0.0000

5.10 Result of running FOR1, without its inverse
Fourier transform, with the Schur algorithm
inversion program SCHUR.

.. . . . . . . . . . . . . . . . . . . . .. . . . .
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From Chapter III, the Schur algorithm for the discrete medium non-

normal incidence inverse problem consists of the set of equations

= (zW)e - 11 L/c ' ( z ) - r(z)AU(z) (5-6a)

U(z+,,w)= O(zw)e - r(z) LD(zw) (5-6b)

r(z) e U(z,w)dw (5-6c)

(z) dz /c'(z) (5-6d)

c'(z) = c(z)/(l-c(z) 2p 2) (5-6e)

taken twice (one for each experiment) and the discrete medium parameter

updates (4-50). The initial conditions are

(0, (5-7a)

U(0, ) R( ) (5-7b)

where R (w) is the frequency response of the layered medium. Note that

the complex exponentials in (5-6a) and (5-6b) represent the time delays

through the layer in the interval [z, z+A).

The frequency response of the medium was generated by FORI, and

the program SCHUR, implementing (5-6), (4-50), and (5-7), was used

to reconstruct the medium. The results of two runs are given in Figures

5. 10, and it can be seen that the algorithm functions quite well. The

difference in the performances of the two runs seems to be due to the

inverse Fourier transforms required to obtain r(z); these transforms ""."A

are less accurate for 256 points than they are for 512.

.- .°o ,. .. . ... ... .... .. ... .. . •... . . .
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v Again by analogy to Chapter III, the dynamic deconvolution

algorithm for the discrete medium non-normal incidence inverse problem

consists of the set of equations

R(z+A,w) = e (R(z,w) - r(z))I(l- r(z)R(z,w)) (5-8a)
00r

Tr(z) f (z)d (5-8b)

taken twice, along with (5-6d), (5-6e) and the discrete medium parameter ,-

updates (4-50). The initial condition is

,W) = (w) .(5-9)

Note that since the dynamic deconvolution algorithm computes the

response R (z,w) of that portion of the medium below depth z, there is

no phase shift in (5-8b).

The frequency response of the medium was again generated by

FORI, and the program DYNDEC, implementing the dynamic deconvolution

algorithm, was used to reconstruct the medium. The results of two

runs are given in Figures 5. 11, and these are comparable to the

Schur algorithm results. Since the two methods are mathematically

equivalent, this is hardly a surprise. However, the fact that a phase

shift (relying on a computed c'(z)) is not present in (5-8b) would

seem to make the dynamic deconvolution algorithm preferable to the

Schur algorithm.

5.3 Performance of the Algorithm in the Presence of Noise
Irs

i ~ ~~In this section a series of computer runs shows the effects of..,"-
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n-12 m= 9 dd=0.10 del=0.10 df=1.000 p1=0.08 P2=0.15
depth cact ccoMP rhoact rhocomp rcl rc2
0.10 5.1000 5.1014 5.1000 5.0993 0.0218 0.0334
0.20 5.2000 5.2081 5.2000 5.1898 0.0213 0.0345
0.30 5.3000 5.3010 5.3000 5.2941 0.0207 0.0333
0.40 5.4000 5.4005 5,4000 5.3941 0.0207 0.0355
0.50 5.5000 5.4971 5.5000 5.4953 0.0202 0.0360
0.60 5.4000 5.3993 5.6000 5.5929 -0.0023 -0.0182
0.70 5.3000 5.3031 5.7000 5.6881 -0.0026 -0.0168
0.80 5.2000 5.2061 5.8000 5.7843 -0.0028 -0.0160
0.90 5.1000 5.1147 5.9000 5.8730 -0.0031 -0.0145
1.00 5.0000 5.0438 6.0000 5.9360 -0.0030 -0.0113
1.10 5.0000 5.0443 6.0000 5.9350 0.0000 0.0000
1.20 5.0000 5.0425 6.0000 5.9376 0.0000 -0.0002
1.30 5.0000 5.0432 6.0000 5.9367 0.0000 0.0001
1.40 5.0000 5.0441 6.0000 5.9353 0.0000 0.0001
1.50 5.0000 5.0432 6.0000 5.9367 0.0000 -0.0001

n=15 iu= 8 dd=0.10 del=0.05 df=1.000 P1=0.15 P2=0.12
depth cact ccomP rhoact rhocomp rcl rc2
0.05 5.0000 5.0016 5.0000 5,0019 0.0006 0.0004
0.10 5.1000 5.1080 4.9000 4.8888 0.0133 0.0052
0.15 5.1000 5.1143 4.9000 4.8818 0.0008 0.0003
0.20 5.2000 5.2201 4.8000 4.7699 0.0141 0.0050
0.25 5.2000 5.2242 4.8000 4.7660 0.0006 0.0002
0.30 5.3000 5.3203 4.7000 4.6665 0.0138 0,0047
0.35 5.3000 5.3126 4.7000 4,6804 -0.0005 0.0003
0.40 5.3000 5.2998 4.6000 4.6246 -0.0093 -0.0080
0.45 5,3000 5.2944 4.6000 4.6388 0.0002 0.0007
0.50 5.3000 5.2931 4.5000 4.5569 -0.0092 -0.0091
0.55 5.3000 5.3075 4.5000 4.5327 0.0010 -0.0004
0.60 5.4000 5.3997 4.5000 4,5179 0.0226 0.0130
0.65 5.4000 5.3935 4.5000 4.5288 -0.0005 0.0002
0.70 5.5000 5.5007 4.5000 4.4865 0.0249 0.0125
0.75 5.5000 5.5100 4.5000 4,4861 0.0026 0.0015
0.80 5.4000 5.4263 4.4000 4.4119 -0.0317 -0,0218
0.85 5.4000 5.4249 4.4000 4.4174 0.0002 0.0004
0.90 5.3000 5.3472 4,3000 4.3601 -0.0273 -0.0189
0.95 5.3000 5.3361 4.3000 4.3761 -0.0011 0.0001 --
1.00 5.2000 5.3441 4.2000 4,2451 -0.0131 -0.0139
1.05 5.2000 5.3649 4.2000 4.2018 0.0004 -0.0018 h
1.10 5.1000 5.3579 4.1000 4.2545 0.0044 0.0051
1,15 5.1000 5,3388 4.1000 4.2869 -0.0012 0.0007
1.20 5.1000 5.3873 4.1000 4.1991 0.0025 -0.0026
1.25 5.0000 5,3743 4.0000 4.2044 -0.0029 -0,0015
1.30 5.0000 5.3737 4.0000 4.2065 0.0001 0.0002
1.35 5.0000 5.3700 4.0000 4.2170 0.0003 0.0007
1.40 5.0000 5.3734 4.0000 4.2094 0.0000 -0.0003
1.45 5.0000 5.3717 4.0000 4.2144 0.0001 0.0003
1.50 ,nnnn 5.3717 4.0000 4.2172 0.0003 0.0003

5.11 Result of running FORI, without its inverse Fourier
transform, with the dynamic deconvolution
inversion program DYNDEC.

- . . . . . . .. . ..- . -
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noise on the discrete layer stripping algorithm for the non-normal

incidence inverse problem. As the noise level increases, the performance

of the algorithm is degraded, as expected. The algorithm begins to

break down badly at a signal-to-noise ratio of about eight, although

this threshold varies with the medium being reconstructed.

The program NOISE takes the medium impulse response computed

by BREM, adds noise to it, and then runs INVDISC to try to reconstruct

the medium from the noisy data. The noise is generated by a center-

squaring random number generator, and is evenly distributed over the .

interval [-xl, xl], where xl is the (inputted) noise maximum amplitude.

The signal-to-noise ratio SIN is defined as
0

T T
SIN = 10 logif. R(t)2d n(t) 2 dt] (5-10)

where R(t) is the impulse response of the medium and n(t) is the noise

level at time t.

The impulse responses of a thirteen-layer medium at two different

angles of incidence were computed using BREM, and NOISE was run

for three values of signal-to-noise ratios 48.6, 28.6, and 8.6. Results

are plotted in Figures 5.12, 5.13, and 5.14. For each figure, Figure a

tabulates the results of the run (for the two angles of incidence), Figures

b and c plot these results, and Figures d and e plot both the ideal,

noise-free impulse response and (over it) the noisy impulse response

from which the inversion is made. This provides a dramatic visual

* check on the corruption level of the data.

It is evident from Figures 5.12 - 5.14 that the performance of the

layer stripping algorithm degrades with noise, as might be expected,

and that even at a signal-to-noise ratio of 8. 6 the algorithm still does

I40
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r=15 m= 8 dd=0.100 del=0.050 dt=0.00500 P1=0.09 P2=0.12 -,1=0.3E-04
ras si.ral= 0.004862 0.005442 rms noise= 0.000018 srr= 48,6 49.5
depth eact ccoMP rhoact rhocomp rl rcl r2 rc2

* 0.00 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000
0.05 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000 W
0.10 5.2000 5.2012 4.8000 4.7982 0.0044 0.0044 0.0110 0,0110
0.15 5.2000 5.2012 4.8000 4.7982 0.0000 0.0000 0.0000 0.0000
0.20 5.4000 5.4008 4..6000 4.5985 0.0032 0.0031 0.0104 0.0104
0.25 5.4000 5.4008 4.6000 4.5985 0.0000 0.0000 0.0000 0.0000 .
0.30 5.3000 5.3005 4.7000 4.6985 -0.0014 -0.0014 -0.0052 -0.0052
0,35 5.3000 5.3005 4.7000 4.6985 0.0000 0.0000 0.0000 0.0000
0.40 5.3000 5.3020 4.5000 4.4968 -0.0217 -0.0218 -0.0217 -0.0217
0.45 5.3000 5.3020 4.5000 4.4968 0.0000 0.0000 0.0000 0.0000
0.50 5.3000 5.3025 4.3000 4.2962 -0.0227 -0.0227 -0.0227 -0.0227
0.55 5.3000 5.3025 4*3000 4.2962 0.0000 0.0000 0.0000 0.0000
0.60 5.4000 5.4013 4.2000 4.1976 0.0004 0.0004 0.0041 0.0041
0.65 5.4000 5.4013 4.2000 4.1976 0.0000 0.0000 0.0000 0.0000
0.70 5.5000 5.5003 4.5000 4.4988 0.0465 0.0466 0.0505 0.0505
0.75 5.5000 5.5003 4.5000 4,4988 0,0000 0.0000 0.0000 0.0000
0.80 5.4000 5,4018 4.4000 4,3970 -0.0233 -0.0233 -0.0273 -0.0272
0,85 5.4000 5.4018 4,4000 4.3970 0.0000 0.0000 0.0000 0.0000
0,90 5.3000 5.3020 4.3000 4.2970 -0.0237 -0.0236 -0.0274 -0.0274
0.95 5.3000 5.3042 4.3000 4.2940 0.0000 -0.0001 0.0000 0.0000
1.00 5.2000 5.2049 4.2000 4.1929 -0.0240 -0.0241 -0.0276 -0.0276
1.05 5.2000 5.2049 4.2000 4.1929 0.0000 0.0000 0.0000 0.0000
1.10 5.1000 5.1030 4.1000 4.0948 -0.0244 -0.0244 -0.0278 -0.0278
1.15 5.1000 5,1030 4,1000 4,0948 0,0000 0,0000 0.0000 0,0000
1.20 5.0000 5.0031 4.0000 3.9952 -0.0248 -0.0248 -0.0280 -0.0280
1.25 5.0000 5.0031 4.0000 3.9952 0.0000 0.0000 0.0000 0.0000
1.30 5.0000 5.0031 4.0000 3,9952 0.0000 0.0000 0.0000 0.0000
1.35 5,0000 5.0031 4.0000 3.9952 0.0000 0.0000 0.0000 0.0000
1.40 5.0000 5.0031 4.0000 3.9952 0.0000 0.0000 0.0000 0,0000
1.45 5.0000 5.0031 4,0000 3.9952 0.0000 0.0000 0.0000 0.0000
1.50 5.0000 5.0031 4.0000 3.9952 0.0000 0.0000 0.0000 0.0000

5.12a Result of running BREM with NOISE, which adds
noise to the results of BREM and then uses INVDISC
on the noisy data. Here a high SNR is used.
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5.12b Plots of the actual (2) and reconstructed (3) wave ..
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5.12c plots of the actual (4) and reconstructed (5)
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5.12d Plot of the noisy w'aveform used as data for
INVDISC, for p =pl.
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5.12e Plot of the noisy waveform used as data for
INVDISC, for p = p2. * .
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n=15 m= 8 dd=0.100 del=O.050 dt=0.00500 PI=0.09 P2=0.12 xl=0.3E-03
rns signal= 0.004862 0.005442 rms noise= 0.000182 snr= 28.6 29.5
depth cact ccomP rhoact rhocomp rl rel r2 rc2
0.00 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000
0.05 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000
0.10 5.2000 5.2124 4.8000 4.7824 0.0044 0.0041 0.0110 0.01110.15 5.2000 5.2124 4.8000 4.7824 0.0000 0.0000 0.0000 0.0000
0.20 5.4000 5.4084 4.6000 4.5852 0.0032 0.0029 0.0104 0.0100
0.25 5.4000 5.4084 4.6000 4.5852 0.0000 0.0000 0.0000 0.00000.30 5.3000 5.3053 4.7000 4.6852 -0.0014 -0.0017 -0.0052 -0.0056
0.35 5.3000 5.3053 4.7000 4.6852 0.0000 0.0000 0.0000 0.0000 g0!0.40 5.3000 5.3194 4.5000 4.4683 -0.0217 -0.0220 -0.0217 -0.02150.45 5.3000 5.3194 4.5000 4.4683 0.0000 0.0000 0.0000 0.0000
0.50 5.3000 5.3249 4.3000 4.2621 -0.0227 -0.0229 -0.0227 -0.0227
0.55 5.3000 5.3249 4.3000 4,2621 0.0000 0,0000 0.0000 0.0000
0.60 5.4000 5.4241 4:2000 4.1606 0.0004 0.0000 0.0041 0.0038 0
0.65 5.4000 5.4241 4.2000 4.1606 0.0000 0.0000 0.0000 0.00000.70 5.5000 5.5131 4.5000 4.4724 0.0465 0.0468 0.0505 0.0504
0.75 5.5000 5.5131 4.5000 4.4724 0.0000 0.0000 0.0000 0.0000
0.80 5.4000 5.4297 4.4000 4.3529 -0.0233 -0.0236 -0.0273 -0.0269
0.85 5.4000 5.4297 4.4000 4.3529 0.0000 0.0000 0.0000 0.0000
0.90 5.3000 5.3432 4.3000 4.2383 -0.0237 -0.0238 -0.0274 -0.02710.95 5.3000 5.3650 4.3000 4,2092 0.0000 -0.0008 0.0000 0.0000 S
1.00 5.2000 5.2724 4.2000 4.0984 -0.0240 -0.0246 -0.0276 -0.0280
[.05 5.2000 e.2724 4.2000 4.0984 0.0000 0.0000 0.0000 0.0000
t.10 5.1000 5.1555 4.1000 4.0160 -0.0244 -0.0245 -0.0278 -0.0286
1.15 5.1000 5.1555 4,1000 4.0160 0.0000 0.0000 0.0000 0.0000
1.20 5.0000 5.0624 4.0000 3.9131 -0.0248 -0.0245 -0.0280 -0.0276
J.25 5.0000 5.0624 4.0000 3.9131 0.0000 0.0000 0.0000 0.0000
1.30 5.0000 5.0624 4.0000 3.9131 0.0000 0.0000 0.0000 0.0000
,.35 5.0000 5.0624 4.0000 3.9131 0.0000 0.0000 0.0000 0.0000
1.40 5.0000 5.0624 4.0000 3.9131 0.0000 0.0000 0.0000 0.0000
1.45 5.0000 5.0624 4.0000 3.9131 0.0000 0.0000 0.0000 0.00001.50 5.0000 5.0624 4.0000 3.9131 0.0000 0.0000 0.0000 0.0000

5.13a Result of running BREM with NOISE for a moderate
SNR.
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5. 13b Plots of the actual (2) and reconstructed (3) wave __

speeds.
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5. 13c Plots of the actual (4) and reconstructed (5) densities.
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5. 13d Plots of the noiseless (3) and noisy (4) wave

forms used as data for INVDISC, for p = pl.
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5.13e Plots of the noiseless (1) and noisy (2) wave forms
used as data for INVDISC, for p =p 2 .
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n=15 m= 8 dd=O.100 del=0.050 dt=000500 P1=0,09 P2=0.12 xl=0.3E-0.
rms sigral= 0.004862 0.005442 rms noise= 0.001817 snr= 8,6 9.5 "".
dvpth cact CCOMP rhoact rhocomp rI rcl r2 rc2
0.00 5.0000 5,0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000
0.05 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000
0.10 5.2000 5.3533 4.8000 4.5824 0.0044 0.0000 0.0110 0.0120
0.15 5.2000 5.3533 4.8000 4.5824 0.0000 0.0000 0.0000 0.0000
0.20 5.4000 5,5226 4.6000 4.3986 0.0032 0.0000 0.0104 0.0066
0.25 5.4000 5.5226 4.6000 4.3986 0.0000 0.0000 0.0000 0.0000
0.30 5.3000 5.2671 4,7000 4.6798 -0.0014 0.0000 -0.0052 -0.0098
0.35 5.3000 5.2671 4.7000 4,6798 0.0000 0.0000 0.0000 0.0000
0,40 5.3000 5.3956 4,5000 4.3216 -0.0217 -0.0242 -0.0217 -0.0194
0.45 5.3000 5.3956 4.5000 4.3216 0.0000 0.0000 0.0000 0.0000
0.50 5.3000 5.3886 4.3000 4.1400 -0.0227 -0.0223 -0.0227 -0.0226
0.55 5.3000 5.3886 4.3000 4.1400 0.0000 0.0000 0.0000 0.0000
0.60 5.4000 5.3886 4.2000 4,1400 0.0004 0.0000 0.0041 0.0000
0.65 5.4000 5.3886 4.2000 4.1400 0.0000 0.0000 0.0000 0.0000
0.70 5.5000 5.4269 4.5000 4.5336 0.0465 0,0500 0.0505 0.0515
0.75 5.5000 5.4269 4.5000 4.5336 0.0000 0.0000 0.0000 0.0000
0.80 5.4000 5.4865 4.4000 4.2411 -0.0233 -0.0261 -0.0273 -0.0238
0.85 5.4000 5.4865 4.4000 4.2411 040000 0.0000 0.0000 0.0000
0.90 5.3000 5.4333 4.3000 4.0840 -0.0237 -0.0253 -0.0274 -0.0274
0.95 5.3000 5.4333 4,3000 4.0840 0.0000 0.0000 0.0000 0.0000
1.00 5.2000 5#4704 4.2000 3.7990 -0,0240 -0,0317 -0.0276 -0.0302
1.05 5.2000 5.4704 4.2000 3.7990 0.0000 0.0000 0.0000 0.0000
1.10 5.1000 5.1239 4.1000 3.9459 -0.0244 -0.0234 -0.0278 -0.0359
1.15 5.1000 5.1239 4.1000 3.9459 0.0000 0.0000 0.0000 0.0000
1.20 5.0000 4.9904 4.0000 3.9043 -0.0248 -0.0219 -0.0280 -0.0262
1.25 5*0000 4.9904 4.0000 3.9043 0.0000 0.0000 0.0000 0.0000
1.30 5.0000 4.9904 4.0000 3,9043 0.0000 0#0000 0.0000 0.0000
1.35 5.0000 4.9904 4.0000 3.9043 0.0000 0.0000 0.0000 0.0000
1.40 5.0000 4.9904 4.0000 3.9043 0.0000 0.0000 0.0000 0.0000
1.45 5,0000 4.9904 4.0000 3.9043 0.0000 0.0000 0.0000 0.0000
1.50 5,0000 4,9904 4.0000 3.9043 0.0000 0.0000 0.0000 0.0000

5.14a Result of running BREM with NOISE for a low SNR.
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5. 14b Plots of the actual (2) and reconstructed (3) wave
speeds.
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5.14c Plots of the actual (4) and reconstructed (5) densities.
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5. 14d Plots of the noiseless (3) and noisy (4) wave
forms used as data for INVDISC, for p = pl.
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* 5.14e Plots of the noiseless (1) anid noisy (2) wave forms
used as data for INVDISC, for p = p2 .
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a reasonable job of reconstructing the medium. More dramatic results

are available; Figure 5.15 shows the results of a computer run on the

same medium with SIN = 7.6 and 5.1. The algorithm does not work well, s'.

but in view of the low S/N its performance is surprisingly good. .4

Generally speaking, the layer stripping algorithm works very well

at SIN ratios above 20, works moderately well for S/N ratios between

8 and 20, and starts to break down at a S/N ratio of 8. High angles

of incidence, corresponding to wide-angle reflections, help since this

makes the reflection coefficients larger, increasing the strength of the

reflection response. However, this can result in having problems with

double readings and post-critical incidence.

The particular medium and values of noise greatly influence matters

in the SIN range of 8-20, since one noisy primary reflection can lead

to computation of an incorrect wave speed, projection to the wrong time

for the next reflection, and misreadings of consequence reflections.

Below a S/N value of 8 or so, the algorithm breaks down after about

10-15 layers, where the conditioning of the problem becomes poor.

It should be kept in mind that the layer stripping algorithm

considered here is not the true fast Cholesky algorithm investigated

by Symes and Zimmerman (1982) and Bruckstein et al. (1984). Those

works considered the inverse problem at normal incidence, for which the

goal is merely reconstruction of the impedance profile as a function of

travel time. Since there was never any need to project ahead to a

computed time to read the next primary reflection, the consequences

of a misreading were not as dire as in the present algorithm. This is

why those works reported results that were more impressive (though

not excessively so) than those reported here.

- -.
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5.15 Result of running BREM with NOISE for a low SNR,
showing how the algorithm breaks down after 20
layers. '

. .. A -



-W~r-.- PI --...W I a V 77. T. NT K

254
°'.4

However, it is not necessary to deal with the algorithm only in its

present form. In the next section we consider some modifications of the

algorithm designed to improve its performance in noise.

5.4 Modifications of the Algorithm for Dealing with Noisy Data

5.4.1 Zeroing Out Reflection Coefficients Using the Condition Number

One problem with the layer stripping algorithm as it stands is that

the reading of the reflection coefficients from the data is a completely em;
a posteriori process. Although the algorithm cannot provide an a priori

estimate of the next reflection coefficient, it can provide a measure of

accuracy of its measurement: the condition number c(n) of the inverse .

problem at the depth z nL in question. As noted by Bruckstein et

al. (1984), the condition number for the normal incidence inverse

problem is given by (5-1). Furthermore, an error analysis given in •

Bruckstein et al. (1984) for the normal incidence inverse problem with a

free surface boundary condition reveals that the error in reading the nth

reflection coefficient can be bounded by c(n-1), as C

n-l i+ Iril '

2 = _ 2 (-1Irn-ri 2F c(n-l) + O( )  2i + O( 2 )  (5-1)"

where c is the maximum noise strength and the r. have absolute values

less than one.

Bruckstein et al. (1984) point out that by symmetry the roles of .

the read and actual reflection coefficients can be interchanged, i.e. ,

r can be considered the data and rn the actual value. This means that %
nn

the possible error in reading r n can be bounded by the following bound -

Oo4
Ii *" .%n
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computed from the previous read reflection coefficients

^ n-i i+ 1 ii

r-rn < 2 F i + 0(2 (5-12) .. 'i=1 1-i~ I u

which can be computed as the layer stripping algorithm runs. Since the

two-component wave system (4-30) for the non-normal incidence inverse

problem has the same form as the wave system (3-34) for the normal

incidence inverse problem, these results all carry over into the non-normal

incidence inverse problem. Of course, the reflection coefficients them-

selves have different values, but that is irrelevant.

Even equation (5-12) would seem to be of little help, since we have

no a priori notion of what rn is. However, for a true discrete layered

medium, with a small L chosen, it would be expected that most of the

reflection coefficients would be zero, and that the non-zero reflection

coefficients, particularly at high angles of incidence, would be quite

large (on the order of 0.1 or so). In this situation, it makes sense to

incorporate these a priori notions into the algorithm by setting values

of n less in absolute value than the bound in (5-12) to zero. This-n

serves to eliminate much of the observation noise, and should improve

the performance of the algorithm. Of course, this also may eliminate

some weak primary reflections and their succeeding multiples, but these

are generally buried in the noise anyway.

Bruckstein et al. (1984) report that incorporating this modification

into the fast Cholesky algorithm for the normal incidence inverse problem

considerably improves its performance. Certainly for a medium consisting

of relatively thick (compared to -) layers of sharply varying properties

this modification should help. However, for relatively smoothly varying

media with layer thicknesses less than about 4i, results are mixed.

'leA.-
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Figures 5.16 show the results of running the layer stripping algorithm

with and without this modification on the response of a medium whose

layer thicknesses are 4, at SIN = 8.7 and 9.7. Note that without this

modification the noise has more opportunities to degrade the algorithm

and it breaks down at the twelfth layer. With the modification it works

well through eighteen layers. Figures 5.17, showing the effect of the

modification on a medium with a mixture of strong and weak reflections

at S/N = 13.8 and 16.9, shows how the modification smooths out the

reconstructed profiles. On the other hand, Figures 5.18 show the

modification leading to a worse reconstruction, due to the suppression of

several weak primary reflections.

In summary, it seems that setting measured reflection coefficients

less than the threshold (5-12) to zero improves the performance of the

algorithm if A is much less than a typical layer thickness, since this

eliminates much of the noise. On the other hand, if A is greater than

about one-third of a typical layer thickness, the noise suppression due

to this modification becomes minimal, and suppression of weak primary

reflections tends to worsen the performance of the algorithm. The

decision of whether or not to use this modification must be made on the

basis of a priori knowledge about the general nature of the medium. In

any case, monitoring the threshold (5-12) gives some notion of the

reliability of the reconstruction at each depth.

5.4.2 Use of Reflection Responses at More Than Two Angles of Incidence

In the layer stripping algorithm, the response of the medium is

stacked at two values of slowness p (i.e., computed at two angles of

incidence), since this suffices to compute the updates of the two 0 -

parameters p(z) and c(z). However, it is possible to compute the medium

am . "A .".m&
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5. 16a Result of running BREM with NOISE using the condition
number modification.
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6400 5 .'O ?.732 4.0000 4.0 92 0.0000 0 . 00? 0.0000 uu
. ,000 5.9794 4.0000 3.900 0,.0000 -0,0049 0.0000 0 ..7

o ) . 000 7.0442 4.0000 35,45 . -?5 0 I ,O00 , .02 . D.0 . ,0385 4.5000 3549 -43 1. ;'44 0 0-" . ' 8 C ..

S -000 6.9864 45 4 0000 3 .447 00 - ?.'c 4:"
600 . 93-1' 4 5000 3 "147 0,0000 ,'7 0W
6 2 '000 5,734 4 5000 3. 945 0.0000 -0 '064 000 C, "

t" + 00'00 5 3,20000 4 .2304 0.0526 0 '4 7, 9
7. 5 .0000 3 .6 692 0 0 0. j0

".00 5 5 4.0000 3.5 44 0 0 0C_ - 7 0. 8 IC
o00 6. 64 4.000 37 4 , .... .001"0 , . 5 ,. ,

- 00 6.032 .0000 3 . 4 7 - 0.0474 -0 .C '0 r
0 5.00 0 7 8 Q 0 ' 0 *05 0 - ". . ,-

5 9000 8.0,368 5 0000 2-U 7, 00000 00" ." 05 0

if,.3 5.D000 2 7 7 0.00 . v 0 .'
000OO -3719 5 0 0 051 0I 0 4

* , .v'076584 5.0000 2 .00 -2 6 4 -42
.00: 7.+ 6200 5.0000 295 0"0000 00t1,, " 0 -. "7,1"

o , .. o . .. 5473 .o0000 3. 5 0.00 " . ". o- ,.r,0r-, oi
"-.0' Q, 00 7. 9035 60000 2. 6 - 0.0263 -%0., "'. ,- . ;1-

.. v'0 7 4 0 s 5, 6.0000 2 7 2. 00 -90..,.-- .,
-J000 7.7405 6,0000 2.79 0.0000-0041 . -

5.16b Result of running BREM with NOISE without the
condition number modification. In this case the
modification improves the performance of INVDISC. @
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F. -'p .r
, 1. 6 in. -, d,. -:0 , 0 ,it=0 00500 : ) :::. 0 ± . 1 :i .1$o E-' . : i

.. i Zral= 1?. 0 995 0. 004159 rn , o1 e: 0.0,0853 stM rSz 16.9 3. C-

- C L C 'omP rhoa-c t rhoco rl r l r
0. 5.000 5 0000 5.0000 5 . 0000 0.0000 C0.0 ,0 6,' ,),

55 0 30 5 000 5.0000 0,00C0 0,0(00

,: 51000 5. 1274 4 .9000 4 .8337 0. 00131 1 . 00 128 "0 ,'

1i' C Co "J. 12 74 4.9000 4 .83377 0 .0000i~ ( ,00 u''Cb'y'i.'
)0 5.2000 5.2061 4 8000 4.7795 0.0138 0.013,4 00 .204t :

5 5 .2000 5.2061 4,8000 4.7795 0.000 ,:}.0000 0.000! 0 -. ... )

- .0 5 .3000 5.3111 4.7000 4.6751 0. 0146 0.0154 0 ,26 C 0.00:,
C 50,00 5 3111 4.7000 4.6751 0.0000 0,0000 O.O0, i,.) 0,::

40 5.3000 5.3111 4.7000 4.6751 0.0000 0.0000 0.0000 0"-', j
0.45 5, 3000 5.3111 4.7000 4.6751 0.000 0.0000 0.0000 0,
"' -0 5 2000 5 .2 015 4.6000 4.5917 -0.0358 -0.0365 -0 . 023 -0.02"'"

' 5 .2000 5 ,2015 4.6000 4.5917 0.0000 0.0000 0.0000 ' .:"--'

.4..1, 5.1000 5 0965 4.5000 4.4960 -0.0351 -0.0358 -0.0242 -0 0244
5 5.1000 5.0965 4.5000 4.4960 0.0000 0.0000 0 C000P 6 m'uv-:4,s

".5.0000 5017 44000 .4.3589 -0.0345 -0.03 -0.0245

5 5.0000 5. 0179 4.4000 4.3589 0.0000 0.000) ,.0 0 '"0
0 - 4.9000 4. 9238 4 .3000 4.2411 -0+0340 -C,0035:,0 -0 .0249? 0.+0"

'85 4.9000 4.9238 4.3000 4.2411 0.0000 000000.0000''',"-
4 8000 4 (3233 4.2000 4.1377 -0. 3 .. --O.0345 -0.0252 --0,. .
: 4 ., 0 4. 8233 4. 000 4.1379 0 00000 000 , , 0 V,''. "
4. 000 4.68.69 4.3000 4.2941 --0 0096 --0.0107 -0.0)0 ', .. .
. ,:0 4,669 4-. 3000 4 .2941 0. C000 0.0 000 0,00 ,,,

1'' 4.7000 4.6869 4 3000 4 .2941 0.0000 0.0000 0.0000 C, o0,)
I . 4,7000 4.,6869 4.3000 4.•2941 0 .0000 0.00000.'..0'"'"

4.8000 4.7574 4.4000 4.4341 , .0329 0.0310 0.0251 0 /
1 '- 4.,$000 4.7574 4 4000 4 4341 0 .0000 0.o000 0. 000 i-.;,

.50 4. 9000 4 .'654 4.5000 4 '- ,30 0 0331 0 344 0,0 ,:247 .0 '.

, . 9000 4.8654 4.500,0 4.5"30 0 0000 0.01 0 0 . i), r -

. 5.0000 4. 9669 4.5 000 4.5368 0.0225 0.0231 ,. 0134 ,:14
- 5. ; 00 , 4 9669 4.5000 45746 .0000 0.0,0O1, -. 0090 .00r," -

' .0 000 4 .91,%A9 4 . 5C) f)) 4. - ; A q f 00 0. I0,0 .t,''"'

5.17a Result of running BREM with NOISE using the condition
number modification.
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n:. ,,a= 0 j-d t? I d'n t t--0,O 500 p1zO. 15 p"=, 1 i0, i E-.
-, si. rial-- 0.005995 0.004159 rrn s no o .i e 0.000'53 £r,rr 1,.'9 13.

-i cct c- CQ Ai rhoact rhocom rci T"2 •.C. :1 * C

O 5. 0000 5.0000 5.0000 5.0000 0.0000 ^^000 o.0000 0 ."r,;
' j .0C.0 00 . ).0000 5.0000 4.9862 0.0000 -0.0014 .. O --,.' i..
.0 -1000 5.1152 4.9000 4.8483 0.0131 0.0128 0.0032 0.001 

"i0-DOC) 5 .1 i -4 4.?000 4.8468 0.0000 -0.0006 0.0000 - , :
*2 20 5.2000 5.1922 4.8000 4.7931 0.0138 0,0134 0 .00 29 0. 004
,," 5.2000 5.1940 4.8000 4.7959 0.0000 0.0007 0.0000 0,. 00O"'O

30 5.3000 5.3001 4.7000 4,6897 0.0146 0,0154 0.0026 0,0028 ..
"- 55.3000 5.3140 4.7000 4.6613 0.0000 0.0005 0.0000 -0.0:12

..".40 5.3000 5.3156 4#7000 4.6586 0.0000 0.0001 0.0000 -0.0001
S4, 5.3000 5.3008 4.7000 4.6857 0.0000 -0.0009 0.0000 0.:00
0-.5 5.2000 5.1900 4.6000 4.6035 -0.0358 -0.0365 -0.0239 -0,0234

5.2000 5.1906 4.6000 4.6014 0.0000 -0.0001 0.0000 -u.).'(
. 5.1000 5.0846 4.5000 4.5069 -0.0351 -0,035" -0.0242 -0..244

*':i 5.1000 5.0935 4.t5000 4.4984 0.0000 0.0012 0 .u D ''0 -A
.0 5.0000 5.0148 4.4000 4.3615 -0.0345 -0.0338 -0,02245 -0.'25- .'-

', 0000 5.0143 4.4000 4.3500 0.0000 -0.0014 0 0000 -'m, -1 -

0 4 .9000 4.9200 4.3000 4.2327 -0.0340 -0.0350 -0 .0'4 -w0 C) -'A .
." '1.9000 4.9117 4.3000 4.251w 0.0000 0 .0004 0 .o000 ,"'hi
4.,000 4.8102 4.2000 4.1494 -0.0337 -0.0345 -0.0252 0 02-
.4.8000 4.8159 4.2000 4.1332 0.0000 --0.000? 0.0000 -'"". 12 ""

I ' 4,7000 4.7007 4.3000 4.2507 -0.0096 -0.0107 -0.0013 - 0016
*57000 4.6675 4.3000 4.3115 0.0000 0.0001 0.0000 0. 0026

:.;!O 4.7000 4.6604 4,3000 4.3342 0.0000 0.0011 0.0000 0,001.
I i± .7i?000 4.6235 4.3000 4.3963 0,0000 -0.0006 0.0000 :).020
i 4 8000 4.6974 4.4000 4.5350 0.0329 0.0310 0.0251 0,025;:'

0 -' 4 .00 4.7026 4.4000 4.5260 0.0000 0.0001 0.0000 -0,0003 .
4.9000 4.8149 4.5000 4 .620,8 0.0331 0 0344 1'.,0247 0 7 021
4.9000 4.8179 4.5000 4.6281 0.0000 0.0014 0,0000 0.0012

10 5. 0000 4 9230 4 5000 4.6379 02. 0 .0- 2 0.0134 0 . :152
A '.0000 4.9379 4.5000 4.6'245 0.0000 0 001V u'rnuu0.000.

- 5.0000 4.9874 4,5000 4.5397 0.0000 0.0019 0.0000 -0.002111

5. 17b Result of running BREM with NOISE without the
condition number modification. Again the modification
improves the performance of INVDISC.
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<> m - :: .. . if=:,3 ) ' C, s 12e -= ' 50 J t=(,).00500 :P i" .,1 5 >- j: -,:. .: ±.=,. - -

.- . - 1 - u1 0o0',599 5 0 00..159 pros rsa e ,' : 0 000606 sr'.''.; 1-.,: 1

5.0000 5,0000 5 . 000 0 0,
", 4.P lfl0.jt 0000 0 001, 00 0 . 000 0  0.0000 0.0000 .'.-. -
'-,I , 000 5 . I116 4 . 000 4 .8 7,4.6 0 #013 1 0 .0 133 0,10 03 0 0 0 )2 1.;.

*.5 5 1000 5.1116 4.9000 4.8746 0.0000 0.0000 :.0000 0.'00

-*).20 5.2000 5a2367 4.8000 4.7162 0.0138 0.0139 0,0029 0.0000

" " .000 5.2367 4.8000 4.7162 0.0000 0.0000 0.0000 0.GOC,

0 5.3000 5.3527 ,7000 4.5748 0,0146 0.0145 0.0026 0.0000

v).-3 551.3000 5.3527 4,7000 4.5748 0.0000 0.0000 0.0000 0.0v000

40 5.'3000 5.3527 4,7000 4.5748 0.0000 0.0000 0.0000 0000 U""

a45 5,Q000 5,3527 4.7000 4,5748 0.0000 0,0000 0,0000 00000

* u.50 5.2000 5.2643 4.6000 4.4647 -0,0358 -0.0349 -0.0239 -0.02fl

, 000 5'.2643 4.6000 4,4647 0.0000 0.0000 0.0000 J 00'." '

5.1000 5,1632 4.5000 4,3760 -0.0351 -0.0350 -0.04 -0.02-
. i000 5.1632 4,5000 4.3760 0.0000 0.0000 . 00''

5 ,.0000 5,0501 4.4000 .13032 -0.0345 -0.0352 -0,0245 -0.0234

J , 'Q0000 5.0501 4 4000 4.,3032 0.0000 ,1 000 00a0000 0.

... ' 8 4.1000 4.9736 4.3000 4 1709 -- 0.0340 -0 03-2 -0 0.4? 0 2 "0 "

$,Z5 4,:000 4.9736 4,3000 4,1709 0.0000 0,0000 0.0000 010000

t,-," 4 t900 4,8-55 4, 2000 4. 0,3 -0,0337 -0 .033 2 -0 0.02 -02 024.

.7. ,A,000 4.9066 4.2000 4 0216 0.0000 0.0000 0.0000 -0 . 0027

. 4-1000 4.8492 4,3000 4.0566 -0,0096 -0.008.3 -0,0018 -0.0034

00 4.7417 4,3000 4 .1764 0,5000 -0 .0087 0 .0000 I. 0000.C

Li" 4.: 00 4.7417 4,3000 4 .1764 0.0000 0.)000 0.0000 0.0000,

.1 4,000 4.7417 4.3000 4.1764 0.0000 0.000 ) 0 . 00 00 0'i

)0 4.13000 4,3490 4,4000 4.Q0 ' 7 0. 0329 0.0000 0 ,025'1 ,2

" . '00 4,3490 4,4000 4.9097 0..000 00 0 000(0;0'

I. 4.9000 4.4982 4.5000 4.9312 0.0331 0.0323 0 024 1 023 '

-;00 4,4982 4.5000 4.9312 0,0000 0 0000 0 .00-C-0

40 5 .0'00 4.6493 4.5000 1 .8380 0.0225 0,.0217 00134 0.0114
1.4 0000o 4.6493 4,5000 4,8380 0.0000 0.0000 00 '  '' '

i . _ 5 .... . ..... .

9 00'0 4.6493 4,5000 4.8380 0.000.0 0.0000 0,0000 0.600C'

0' 5.18a Result of running BREM with NOISE using the condition
number modification.
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* v r, a1 0.005995 0.00415? rmn ,oise= 0 0606 :E.,-' 1.7 i-._

rho~c0 rc3ofli P t r I T C'
0 >00 5.0000 5 0000 5.0000 0,0000 0- 0000 :.. 0 0,''' .

1 5.0000 5 0000 5.0000 5 0046 0. 0000 0.0005 0 0. , ,',-

1 0, 5.1000 5.1116 4.9000 4.8791 0.0131 0.0133 0 0032 - '.-
,5 5.1000 5.1079 4.9000 4.8853 0. 0000 -0.,0002 Q00000 .'

-5 5.2000 5.2164 4.8000 4.7662. 0.0138 0.0139 0 0029 C0 01

'25 5.2000 5.2215 4.8000 4.7469 0*0000 -0.0008 0.0000 -,.:0'014

'.,30 5.3000 5.3275 4.7000 4.6305 0.0146 0.0145 0.0026 0,031'
-.--5 5.3000 5.3107 4.7000 4.6581 0.0000 -0.0014 0.0000 0 .)CO
0.40 5.3000 5.3083 4.7000 4.6536 0.0000 -0.0011 0.0000 -0.0008

7 5.3000 5.3007 4.7000 4.6623 0.0000 -0.0010 .0000 :.00.0
60 5.2000 5.2076 4.6000 4.5561 -0.0358 -0.0349 -0;023' -,.'23:

5 '5552000 5.2091 4.6000 4. 5454 0.0000 -0.0008 0.' 0000 ) , 1v
,' 5.1000 5.1071 4.5000 4.4519 -0.0351 -0.0350 -, 024"2 -0.023'
7• 1$ 5 1000 5.i11 4.5000 4.4335 0.0000 0 C.," ",,',. -

.0000 5.0001 4.4000 4,3658 -0.0345 -. ... " 0 255 -2.0, 23. "-"
+ ;'5 5.0000 4.9847 4.4000 4.3951 0.0000 -0.0002 0 0C.013
.0 4.9000 4 9 036 4.30,0 4. 655 -0 0340 -0 033 -0 .,249 -0. 3:

v :'000 4.9034 4 3000 4.25S4 ^P000 - 0 .0 --....-0."S -0-22 0 0 24'
-'0 4+8000 4.81"76 4.2000 4.1541 -0.0337 -0,0321 -0,025 .

: .8000 4.8615 4.2000 4 .0708 0.0000 0.0013 0 000 -0,,027
4 .7000 4 .773 4.3000 4. 1574 -0.0096 -0.0096 -0-0018 -0.0023
4.7000 4.7506 4.3000 4 .1904 0.0000 -0.0010 0.0000 0. .00.-

P" 4.7000 4.-7533 4.3000 4.1828 0+0000 -0.0003 0.0000 -0.000'
15 4.7000 4.7345 4.3000 4 .2119 0.0000 -0.0005 Q ,0000 0.,00ij'w
2 4.8000 4. 8023 4.4000 4.3594 0.032? 0,0318 (0 +0 251 0 .024

4._000 4.7763 4.4000 4 .364 0.0000 -".025 21 Q00 -0.0004
4. 9300 4.8889 4.5000 4 4565 0+0331 3, 325 0 .0247 0.0231

3 4.9000 4.8984 4.5000 4.4461 0.0000 .0009 0.0:00 .:. .:
1.40 '10000 5.0144 4.5000 4.4047 0.0225 0.0215 0.0134 0.0108

5.0000 5.0264 4.5000 4.3354 0.0000 0,0006 ,.0,,--') .' ,.*,

* 30 5.0000 5.0318 4.5000 4.7817 0.0000 0,0008 0.0000 O. ."..

-

5.18b Result of running BREM with NOISE without the
condition number modification. In this case the
modification hampers the performance of the algorithm. 0
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response at more than two angles of incidence, resulting in an over-

determined system for the two updates at each depth, and then use a

least-squares fit. This can be done as follows. -.F%

If the medium response is computed for m different values

P, pm of slowness p, i.e., m different angles of incidence

(ei = sin- 1 pco, i = 1 ... m), then running m copies of the wave

updates (4-42) - (4-43) will result in the computation of m different

reflectivity functions (r.(z), i = 1 ... m), which are related to the

medium parameter updates by -,

2
Fr (Z) 1 /P(z) 1/(c(z) Cos S(z))1 [(d/dz) P(z) 1 (-3

2 (5-13) : .

mZ [1/p(z) l/( (z) cos2%m(z))j [(d/dz) c(z)J '

Note that (5-13) reduces to (4-34) for m = 2, as it should.

The overdetermined system (5-13) can be written as

f(d/dz) p(z)
r(z) M (z) (5-14)

r(d/dz) c(z)

and it is well-known that the minimum square error solution to (5-14)

is given by

F(d/dz) p(z) 1 M T -_1 MT )(15= (MTM) - M r(z) (5-15)

L(d/dz) c(z)J

After discretization, (5-15) becomes

. . . . ; . . . . - . . . . .. . . .
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m m m m

p(z+A) O (z) + 21Lp(z) (ICos- e.(z)I r.(z) - ~r(z)cos2G.j(z)Zcos- e.(zA1--E-T(-z) i=l j=1 "= i- I

(5-16a)

m m m

c(z+A) =C(z) + 2Lc(z)(Zcos2ei(z) rjW + m Iri(z)cos 2  /
1 = 1=DE ) i=l j1l.,.

(5-16b)

where

m m
A -4 2 \2

DET~z) = m Cos (z)- cos (z) (5-17)

The results of this modification were tested by computing the

reflection responses of a layered medium at five different angles of

incidence using the program MULTFOR, adding noise, and then running

five copies of the wave updates (4-42) - (4-43) together with the medium

parameter updates (5-16) and the condition number modification. The

program MULTI does all this. Results are tabulated in Figure 5.19a, and

are rather dramatic: the algorithm works quite well, even though the

data has SIN = 1, 1.5, 2.6, 4.8, and 8.3! Note that the condition

number modification is a big help. For comparison, NOISE was run on

the data with the two highest SIN. The results, shown in Figure

5.19b, are much poorer.

For a discrete medium with sharp variation at interfaces, the

continuous updates can no longer be used, and the least-squares fit of
the updated parameters becomes a very complicated non-linear problem. 4

An easier procedure is simply to compute updated parameters for each

pair of reflection coefficients, and then average them. If m different

.-.. .... . . *. .. . ...... . . . . . . . . ..... 5 q -5. ,,¢ ,'

,.-.-. ...._-. ...'.. .. .. ..-..................



265

9k. -.

ri=18 m= 9 rim= 5 dd=0.100 del=O.050 dt=0.00250 xl=0.2E-02

values of P are 0.05 0.08 0.11 0.14 0.16

sir= 1.0 1.5 2.6 4.8 8.3
depth cact ccomr. rhoact rhocon, rl rcl r2 rc2

0.00 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000

0.05 5.0000 5.0171 5.0000 4.9532 0.0000 0.0000 0.0000 -0.0044

0.10 5.0500 5.0894 5.0500 4.9684 0.0103 0.0101 0.0109 0.0055

0.15 5.0500 5.0952 5.0500 4.9489 0.0000 0.0000 0.0000 0.0000

0.20 5.1000 5.1432 5.1000 5.0232 0,0102 0.0118 00108 0.0140 eI

0,25 5,1000 5.1432 5,1000 5.0232 0.0000 0.0000 0,0000 0.0000

0.30 5.1500 5.1578 5.1500 5.1305 0.0101 0.0124 0.0107 0.0097 .

0.35 5.1500 5.1531 5.1500 5.1298 0.0000 0.0000 0.0000 0.0000

0.40 5.2000 5.2021 5.1000 5.0711 0.0003 0.0000 0.0010 0.0000

0.45 5.2000 5.2021 5.1000 5.0711 0.0000 0.0000 0.0000 0.0000

0.50 5.2500 5.2386 5.0500 5.0323 0.0002 0.0000 0.0009 0.0000

0.55 5.2500 5.2386 5.0500 5.0323 0.0000 0.0000 0.0000 0.0000 '-

0.60 5,3000 5.3030 5.0000 4,9591 0.0001 0.0000 0,0008 0.0000

0.65 5.3000 5,2977 5,0000 4.9788 0.0000 0.0000 0,0000 0,0000

0.70 5.3500 5.3544 4.9500 4.9172 0,0000 0,0000 0.0007 0,0000

0.75 5.3500 5.3544 4.9500 4.9172 0,0000 0.0000 0.0000 0.0000

0.80 5.4000 5.4141 4.9000 4.8256 -0.0001 0.0000 0.0006 -0,0047

0.85 5.4000 5.3944 4.9000 4.8512 0,0000 0.0000 0.0000 0.0000

0.90 5.4500 5,4231 4.8500 4.8421 -0,0002 0.0000 0,0005 0.0000

0.95 5.4500 5.4282 4.8500 4.8219 0.0000 0,0000 0.0000 0.0000

1.00 5,5000 5.4691 4.8000 4.7980 -0.0003 0.0000 0,0005 0.0000

1.05 5.5000 5.4691 4.8000 4.7980 0.0000 0.0000 0.0000 0.0000

1.10 5.4500 5.4042 4.7500 4.7583 -0.0102 -0.0142 -0.0109 -0.0102

1.15 5.4500 5.4042 4,7500 4.7583 0.0000 0,0000 0.0000 0.0000

1.20 5.4000 5.3487 4.7000 4.7198 -0,0103 -0.0075 -0.0110 -0.0128

1.25 5.4000 5.3487 4.7000 4.7198 0.0000 0.0000 0.0000 0.0000

1.30 5.3500 5.3235 4.6500 4,6331 -0.0104 -0.0126 -0,0110 -0,0142

1.35 5.3500 5.3235 4.6500 4.6331 0.0000 0.0000 0.0000 0.0000

1.40 5.3000 5*2867 4.6000 4.5764 -0.0105 -0.0073 -0.0111 -0.0098

1.45 5.3000 5,2867 4.6000 4,5764 0.0000 0.0000 0,0000 0.0000

1.50 5.2500 5.2183 4.5500 4.5272 -0,0106 -0,0116 -0.0112 -0,0134

1,55 5.2500 5,2183 4.5500 4,5272 0,0000 0,0000 0.0000 0.0000

1,60 5.2000 5,1663 4.5000 4,4664 -0,0107 -0.0124 -0.0113 -0.0105

1.65 5.2000 5.1663 4.5000 4.4664 0.0000 0.0000 0.0000 0.0000

1.70 5.2000 5.1663 4.5000 4.4664 0.0000 0.0000 0.0000 0.0000

1.75 5.2000 5.1897 4.5000 4.4120 0.0000 -0.0050 0.0000 -0.0050

5.19a Result of running MULTFOR, which runs BREM using
several different angles of incidence, with MULT1,
which adds noise and uses a least-squares fit to compute

the updated wave speed and density at each depth.
Note the low SNR's.
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r3 rc3 r4 rc4 r rc5
0,0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 -0.0046 0.0000 0.0000 0.0000 0.0000
0.0121 0.0171 0.0148 0.0144 0,0190 0.02180.0000 -0.0048 0.0000 0.0000 0.0000 0,0000

0.0121 0.0136 0.0149 0.0184 0.0194 0.0210 5
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0,0120 0.0144 0.0149 0.0156 0.0198 0.0139
0.0000 0.0000 0.0000 -0.0044 0.0000 0.0000
0.0023 0.0000 0.0053 0.0051 0,0105 0.0090
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0022 0.0000 0.0054 0.0064 0.0110 0.0065 S
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0022 0.0000 0.0055 0.0080 0.0115 0.0128
0.0000 060052 0,0000 0,0000 0,0000 0.0000
0.0021 0.0055 0.0055 0.0000 0.0121 060149
0,0000 0.0000 0.0000 0.0000 0.0000 0.0000 S.

0.0021 0.0000 0.0057 0.0000 0.0128 0.0132 -
0.0000 0.0000 0.0000 0.0000 0.0000 -0.0054
0.0020 0.0060 0.0058 0.0084 0.0136 0.0078
0.0000 -0.0056 0.0000 0.0000 0.0000 0.0000
0.0020 0.0067 0.0059 0,0080 0,0144 0.0118
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0124 -0.0090 -0.0163 -0.0208 -0.0249 -0.0292 S
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0125 -0.0087 -0.0162 -0.0204 -0.0240 -0.0229
0.0000 0.0000 0.0000 0.0000 0.0000 0,0000
-0.0125 -0.0101 -0.0161 -0.0134 -0.0232 -0.0188
0.0000 0.0000 0.0000 0,0000 0.0000 0.0000
-0.0126 -0.0153 -0.0160 -0.0136 -0.0225 -0.0182 5
0.0000 0,0000 0.0000 0.0000 0.0000 0.0000
-0.0126 -0.0154 -0.0159 -0.0203 -0.0219 -0.0278
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0127 -0.0164 -0,0158 -0.0174 -0.0214 -0.0230
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 S
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

S.
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n=18 rn= 9 dd=0.100 del=O.050 dt0.00250 P1=0. 14 P2=0 .16 Al=0.2E-02 '
ris sigral= 0.002173 0.003228 r,,s roise= 0.001218 snr= 5.0 8.5
depth cact cconIP rhoact rhocooip rl rcl r2 rc2

0.00 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000 VOW
0.05 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000
0.10 5.0500 5.0659 5.0500 5.0072 0.0148 0.0137 0.0190 0.0193
0.15 5.0500 5.0659 5.0500 5,0072 0.0000 0.0000 0.0000 0.0000
0.20 5.1000 5,0799 5.1000 5.1457 0.0149 0.0164 0.0194 0.0177
0.25 5.1000 5.0799 5.1000 5.1457 0.0000 0.0000 0.0000 0,0000
0.30 5.1500 5.1304 5.1500 5.1806 0,0149 0.0135 0.0198 0.0182
0.35 5.1500 5.1304 5.1500 5.1806 0.0000 0.0000 0.0000 0.0000
0.40 5.2000 5.1708 5,1000 5.1588 0,0053 0,0061 0.0105 0,0101
0.45 5.2000 5.1708 5.1000 5.1588 0.0000 0.0000 0.0000 0.0000
0.50 5.2500 5.2514 5.0500 5,0356 0.0054 0.0044 0.0110 0.0133
0.55 5.2500 5.2514 5,0500 5.0356 0.0000 0.0000 0,0000 0.0000
0.60 5.3000 5.3367 5.0000 4.8586 0.0055 0.0000 0.0115 0.0107 AK
0.65 5.3000 5.3367 5.0000 4.8586 0.0000 0.0000 0.0000 0.0000
0.70 5.3500 5.4064 4.9500 4.7157 0.0055 0.0000 0.0121 0.0099
0.75 5.3500 5.3723 4,9500 4.7856 0.0000 0.0000 0.0000 -0.0050
0.80 5.4000 5.4632 4.9000 4.6002 0.0057 0.0000 0.0128 0.0140
0.85 5.4000 5.4632 4.9000 4,6002 0.0000 0,0000 0,0000 0.0000
0.90 5.4500 5.5425 4.8500 4,4398 0.0058 0.0000 0.0136 0,0144
0.95 5,4500 5.5425 4,8500 4.4398 0,0000 0,0000 0.0000 0,0000
1.00 5.5000 5,5814 4,8000 4,4194 0.0059 0.0066 0,0144 0.0145
1.05 5,5000 5.5814 4.8000 4.4194 0.0000 0.0000 0.0000 0.0000
1.10 5.4500 5.6469 4.7500 4.1601 -0,0163 -0.0150 -0.0249 0,0000
1.15 5.4500 5.5401 4.7500 4.3706 0.0000 0.0000 0.0000 -0.0234
1.20 5.4000 5.6301 4.7000 4.0343 -0.0162 -0.0193 -0.0240 0.0000
1.25 5.4000 5.4986 4.7000 4.2844 0.0000 0.0000 0.0000 -0.0271
1.30 5.3500 5.4986 4,6500 4.2844 -0.0161 0.0000 -0.0232 0.0000
1.35 5.3500 5,3374 4.6500 4,5954 0.0000 0.0000 0.0000 -0.0249
1.40 5.3000 5.3374 4.6000 4.5954 -0.0160 0.0000 -0.0225 0.0000
1.45 5.3000 5,1680 4.6000 4,9300 0.0000 0.0000 0.0000 -0.0199
1.50 5.2500 5.1680 4.5500 4.9300 -0.0159 0.0000 -0.0219 0.0000
1.55 5.2500 4.8735 4.5500 5.5368 0.0000 0.0000 0.0000 -0.0250
1.60 5.2000 5.1158 4.5000 4.8397 -0.0158 -0.0198 -0.0214 0.0000
1.65 5.2000 5.1158 4.5000 4,8397 0.0000 0*0000 0,0000 0.0000
1.70 5.2000 5.1158 4.5000 4.8397 0.0000 0.0000 0.0000 0.0000
1.75 5.2000 5,1158 4.5000 4,R.397 0.0000 0.0000 0.0000 0.0000

5.19b Result of running BREM with NOISE, for comparison
with 5.19a.
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angles of incidence are used, this gives m(m-l)/2 updated parameters

to average. The program MULTINV implements this procedure.

This modification was tested on a discrete medium for five different

angles of incidence. Results are tabulated in Figure 5.20. This

procedure does not work as well as the least-squares fit, but certainly

it helps.

5.4.3 Reconstruction of Slightly Lossy Media

Still another modification of the layer stripping algorithm allows the

reconstruction of a slightly lossy medium. However, the absorption of

the medium must be small enough that the effects of dispersion in

spreading out the probing impulse can be neglected. This assumption -

must break down at great depths, although a shallow portion of the '

medium can be reconstructed despite this breakdown.

Absorption losses in the medium are generally modelled by allowing

the wave speed c(z) to be complex (e.g., Ai and Richards, 1980;

Ganley, 1981). The reason for this can be seen as follows. Let ..

c(z) = cr(Z) + Jci(z) , c(z) << cr (Z) , (5-18)
r% r

and note that the phase shift e- jw A/c(z), representing the travel time

delay through a layer of thickness 6, becomes

-jWA/c e_jwL(cr_-jci) /Ic 2  e jcWc i/lc 2 (5-19)e = .e5-9

Equation (5-19) shows that the complex wave speed (5-18) can be

interpreted as resulting in the usual time delay specified by cr(z)

and an attenuation specified by ci(z) and cr (z). The quality Q, whose -

'S

:-. .. .. .-.,-. ,. : ..-' ... .-. .-. -. . . - -. ..- . .-,. - ..- .--- ... .. ,. -- . . .. -. -..- .- .--. --. -.- ..- .-.. , - .- .- .- --..... .- i--

.='==% - - e' . ,-- - ," -' c" . " '= '-1"- " 1 ,,_ _ ." : r " " - " i " " • " r - - r - '-



- .,7, . ... . . . . .. . .. -,-WY ' r -'',' x r .-"z . w-,- ---"--,',. ', -- -- . • - •- . . .. . . . . . . . - . - .

269

r=18 m= 9 nm= 5 dd=O.100 del=0O050 dt=O.00250 xl=O.2E-02
values of , are 0.05 0.08 0.11 0.14 0.16
sr, r 1.0 1.5 2.6 4.8 8.3
,erth Cact ccorP r hoact rhocop r1 rcl r2 rc2
0.00 5.0000 5.0000 5.0000 5.0000 0.0000 0.0000 0.0000 0.0000

0.05 5.0000 4.9689 5.0000 5.0346 0.0000 0.0000 0.0000 -0.0044
0.10 5.0500 5.0689 5.0500 4,9968 0.0103 0.0070 0.0109 0.0055
0.15 5.0500 5.0511 5.0500 5.0175 0.0000 0.0000 0.0000 0.0000
0.20 5.1000 5.1193 5.1000 5.0631 0,0102 0.0118 0.0108 0,0140

0.25 5,1000 5.1193 5,1000 5.0631 0.0000 0.0000 0.0000 0.0000

0.30 5.1500 5.1314 5.1500 5.1799 0.0101 0.0124 0.0107 0.0097

0.35 5.1500 5.1314 5.1500 5.1799 0.0000 0.0000 0.0000 0.0000

0.40 5.2000 5.1652 5.1000 5#1460 0.0003 0.0000 0.0010 0.0000

0.45 5.2000 5.1652 5.1000 5.1460 0.0000 0.0000 0.0000 0.0000
0.50 5.2500 5.1937 5.0500 5.1185 0.0002 0.0000 0.0009 0.0000

0.55 5.2500 5.1615 5.0500 5.1657 0.0000 0.0000 0.0000 -0.0054
0.60 5.3000 5.2070 5.0000 5.1238 0.0001 0,0000 0.0008 0.0000
0.65 5.3000 5,2250 5.0000 5,1016 0.0000 0.0000 0.0000 0.0000

0.70 5.3500 5.2780 4,9500 5.0489 0.0000 0.0000 0.0007 0.0000
0.75 5.3500 5.2780 4.9500 5.0489 0,0000 0.0000 0.0000 0#0000

0.90 5.4000 5.2390 4.9000 5.1118 -0.0001 0.0000 0.0006 -0,0044
0.85 5.4000 5.3115 4.9000 4.9570 0.0000 -0.0053 0.0000 0.0000

0.90 5.4500 5.3115 4,8500 4.9570 -0.0002 0.0000 0.0005 0.0000

0.95 5.4500 5#3214 4.8500 4.9532 0.0000 0.0000 0.0000 0,0000
1.00 5.5000 5.3214 4.8000 4.9532 -0.0003 0.0000 0.0005 0.0000

1.05 t.5000 5.2562 4.8000 5.0121 0.0000 0.0000 0.0000 0.0000

1.10 5.4500 5.2562 4.7500 5.0121 -0#0102 0.0000 -0#0109 0.0000
1.15 5.4500 5.1489 4.7500 5.1161 0.0000 0.0000 0.0000 0.0000
1.210 5.4000 5.1489 4.7000 5.1161 -0.0103 0.0000 -0.0110 0.0000
1.25 5.4000 5.0641 4.7000 5.2292 0.0000 0.0000 0.0000 -0.0053 -"-

1.30 5.3500 5,0023 4.6500 5.2941 -0.0104 0.0000 -0.0110 0.0000
1.35 5.3500 4.9148 4.6500 5.3839 0.0000 0.0000 0.0000 0.0000

1.40 5.3000 4.8246 4.6000 5.4853 -0.0105 0.0000 -0.0111 0.0000

1.45 5.3000 4.9299 4.6000 5.2143 0.0000 -0.0137 0.0000 -0.0111
1.50 5.2500 4.8715 4.5500 5.2759 -0.0106 0.0000 -0.0112 0.0000

1.55 5.2500 4.9984 4.5500 5.0109 0.0000 -0.0124 0.0000 -0.0105
1.60 5.2000 5.0073 4.5000 5.0063 -0.0107 0.0000 -0.0113 0.0000
1.65 5.2000 5.0073 4.5000 5.0063 0.0000 0.0000 0.0000 0.0000

1.70 5.2000 5.0794 4.5000 4.8754 0.0000 -0.0050 0.0000 0.0000
1.75 5.2000 5.0794 4.5000 4.8754 0.0000 0.0000 0.0000 0.0000

5.20 Result of running MULTFOR with MULTINV. which
adds noise and averages the updated wave speeds
and densities computed by using the discrete medium
updates on every pair of experiments.
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r3 rc3 r4 rc4 r5 rc5 .
0.0000 0.0000 0.0000 0.0000 0,0000 0.0000
0.0000 -0.0046 0.0000 0.0000 0.0000 0.0000
0.0121 0.0171 0.0148 0.0144 0,0190 0.0218
0.0000 -0.0048 0.0000 0.0000 0.0000 0.0000
0.0121 0.0158 0.0149 0.0185 0,0194 0.0210
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0120 0.0144 0.0149 0.0170 0.0198 0.0139
0.0000 0.0000 0.0000 0.0000 0.0000 0,0000
0.0023 0.0000 0.0053 0.0050 0,0105 0.0078
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0022 0.0000 0.0054 0.0051 0.0110 0.0063 01
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0022 0.0000 0.0055 0,0075 0.0115 0,0118
0.0000 0.0051 0.0000 0,0000 0,0000 0.0000
0.0021 0.0058 0.0055 0,0000 0,0121 0.0155
0.0000 0,0000 0.0000 0.0000 0,0000 0.0000
0.0021 0.0000 0.0057 0.0000 0.0128 0,0000 0
0.0000 0.0000 0.0000 0.0000 0.0000 -0.0059
0.0020 0.0000 0.0058 0.0000 0.0136 0.0000
0.0000 -0.0060 0.0000 0.0000 0,0000 0.0129
0.0020 0.0000 0.0059 0.0000 0.0144 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 -0.0292
-0.0124 0.0000 -0.0163 0.0000 -0,0249 0.0000
0.0000 0.0000 0.0000 -0.0202 0.0000 -0.0227
-0.0125 0.0000 -0.0162 0.0000 -0,0240 0.0000
0.0000 0.0000 0*0000 -0.0134 0.0000 0.0000
-0,0125 0.0000 -0.0161 0.0000 -0.0232 -0.0215
0.0000 -0.0154 0.0000 -0,0158 0.0000 0.0000
-0.0126 0.0000 -0.0160 0.0000 -0,0225 -0.0276
0,0000 -0,0147 0.0000 0.0000 0,0000 0.0000
-0,0126 0.0000 -0.0159 -0.0191 -0.0219 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0127 0.0051 -0,0158 0,0000 -0.0214 0,0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

- - ~ - --.-
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reciprocal is defined as the fraction of energy lost per unit cycle due to

absorption, divided by 21T, is then specified by

1/Q(z) = (LE/E)/2Tr = 2ci(z)/c(z)l (5-20)

The assumption that Q is independent of frequency is generally tenable

for seismic frequencies (0.001 - 100 Hz) (Aki and Richards, 1980, p.

170).

However, in the attenuation factor in (5-19), it is clearly necessary

to replace u with w I if negative frequencies are to be considered (note

that this makes (5-19) conjugate symmetric, so that its inverse Fourier

transform is real). This means that the inverse Fourier transform of

(5-19) is not causal. In general, this problem must be removed by

letting c vary with frequency (Aid and Richards, 1980, p. 171).

Therefore, an absorbing medium is necessarily dispersive, and if

an impulse is used to probe the medium, it will become dispersed. Thus "•

the layer stripping algorithm would seem to be inapplicable to lossy

media.

However, if Q is large and the medium is only slightly lossy, then

it is also only slightly dispersive. The dispersive relations covering

the behavior of c(w) often depend logarithmically on w; the relation

c(wl/C( )  1 + log(W11W2)/7TQ (5-21)

works well and is often used (Aid and Richards, 1980, p. 177).

Further, the effects of dispersion of the probing impulsL will not

be apparent at shallow depths, since the impulse has not had time to N.

disperse significantly. Most importantly, the use of a layer stripping

' .,bi-
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algorithm ensures that the disperson of the impulse at great depths will

not affect the reconstruction of the medium at shallow depths. The

conclusion is that a modified layer stripping algorithm should be able

to reconstruct the shallow layers of a high-Q, slightly lossy medium.

Since the only change in the inverse problem is that the wave speed

c(z) is now complex, the alterations to the layer stripping algorithm are

minor. The equations for the reflection coefficients and impedances are

unaltered (Ganley, 1981), although these quantities are now complex.

The major change is that since the reflection coefficients are complex

and depend on the sign of ,., the Schur algorithm must be used in place

*of the fast Cholesky algorithm.

The complete algorithm consists of two sets of wave updates

Dk(z+A,w) = w)k(z,e (e ci/(ck(Z)) - r()A Uk(Z,,) (5-22a)

Uk(Z+A ,W) = Uk(z,w)e jA/Ck ( z e (ck'" - rk(z) Dk(ZW) (5-22b)

rk(z)A = 2jceJWk Uk(z,w) k 1, 2, > 0 (5-22c) -

initiated using the two reflection responses Rk(w) by
Ak

Dk(0, W) 1 (5-23a)

k(0, ) = R~k() , k 1, 2 , (5-23b) 0

and the set of parameter updates •

0

** . . . -
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1 r+ (z) A
Zk(z+6) = Zk(Z , k 1, 2 (5-24)1 - rk(z)WA

U(z) = cos 2 e2 (z)/cos2e 1 (z) = (Z(Z) Z(z)) (5-25)

Cr(Z) [(U(z)- 1)/(U(z)p2-p2)] (5-26)

' ~~2 2 ''''''
ck(Z) = C(Z)/(1 - cr (Z) p 2 ) (5-27)

P(z) = Re[Zk(Z)]/c' (z) (5-28)

c(z) = Im[Zk(Z) Icr (z)/(P(z)c( (z)) (5-29)

Tk(Z+A) W-z+ / , k = 1, 2 (5-30)

Note that although Z1 and Z 2 are both complex, their ratio is real.

It should also be noted that we are able to recover three medium

parameter profiles p(z), cr (z), and ci(z) from only two reflection

responses and A 2(w). This is possible because the profile ci(z)
manifests itself as the imaginary parts of r (z) and Zk(z), which were

kk

previously constrained to be real.

It may seem as though the introduction of a complex wave speed

should make the reflection time responses Rk(t) complex. However, this

is not the case, since the imaginary part of the wave speed ci(z) is

implicitly multiplied by SGN w. This correction made (5-19) conjugate

symmetric in w, so that its inverse Fourier transform is real but non-

causal. A similar effect holds for the reflection time responses Rk(t).

Note that since the probing excitation is no longer causal, it is hardly

surprising that the Rk(t) are also no longer causal.
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It should be noted that since ci(z) is implicitly multiplied by SGN

wi, the simple multiplications of r(z) times the waves in the frequency

domain become convolutions involving the Hilbert transform in the time

domain. This is why the Schur algorithm, which only uses non-negative "

frequencies, must be used instead of the fast Cholesky algorithm, which

has a very complicated form for this problem. Recall that (5-22c)

requires only that the reflection responses at each depth be strictly

proper (see Chapter III), which is still true..

5.5 Summary

The primary goal of this chapter was to demonstrate that the layer

stripping algorithms work in the presence of small amounts of noise.

Since this has been demonstrated, the application of noise reduction

techniques such as beamforming should allow the algorithm to work on

noisy data. The modifications of Section 5.4, especially the use of

reflection data at many angles of incidence, should also help considerably.

If the signal-to-noise ratio is low (less than eight), then it may be

expected that the layer stripping algorithm will break down at the depth

a' which the conditioning of the inverse problem becomes so poor that

the noise overwhelms it. In this event, there is probably little choice

but to use deconvolution-type methods that treat the reconstruction of

the medium as a problem in modelling a random process by an AR

(autoregressive) filter. This amounts to a reformulation of the

inverse problem, and thus lies outside the scope of this thesis. The W

algorithms given in this thesis produce exact reconstructions in the limit

as L - O, so they would be preferable in situations where noise levels are

low.

The weak point of the layer stripping algorithms is of course their

* .* *.. -. - . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . ._-.
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susceptibility to imperfect data. However, part of the reason for this
F . .

is their layer-recursive nature, which makes the inverse problem solved

at each recursion steadily more poorly conditioned. This loss of

conditioning with depth must be experienced by any inversion process,

but is often disguised by the machinery of the process, rather than

illuminated by it as it is for the layer stripping algorithms. Band- F_7"

limitation of the source and data also causes problems, but again there

is no way around this without reformulation of the problem. The only

major fault inherent in the algorithms themselves is the catastrophic

nature of their breakdown when it does occur.

The strong points of the layer stripping algorithms are as follows.

First, of course, is that they provide an exact solution as L - 0. Second

is their great simplicity, which lends itself to fast processing on a

computer. Third is their physical interpretability, providing a physical

insight into the inversion process that other inversion methods in general

cannot match. Reasons for the algorithm breaking down often carry with

them a physical interpretation that makes them much easier to visualize

and perhaps solve.

The results of this chapter can be summarized as follows. The

time-domain foward problem program BREM was found to be preferable

to the frequency-domain forward problem program FOR1, since the

former did not require an inverse Fourier transform and its attendant

complications. The continuous-medium inversion program INV1 broke

down when applied to discrete media, as expected, while the discrete

medium inversion program INVDISC continued to work satisfactorily.

This more than compensated for the more complicated updates (including

a square root extraction) required by INVDISC.

7 " -
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The inversion algorithm tended to work quite well for several layers,

until the steadily increasing error in the computed wave speed caused

the algorithm to project ahead to the wrong time and miss the next

primary reflection, at which point the algorithm broke down. The

a posteriori methods of Habibi-Ashrafi and Mendel (1982) are better

at preventing this, although much more computation is required, and A

there is still a chance of missing a weak primary reflection. The algorithm

still worked when noise was added to the data, although the greater

the noise level, the shallower the depth at which the algorithm broke

down, as expected.

Some modifications for improving the performance of the algorithm

on noisy data were developed. The first modification consisted of

setting to zero all measured reflection coefficients below a varying

threshold determined by the condition number of the problem at each

depth. This proved quite effective for discrete media composed of layers

several times thicker than the discretization depth A. However, it could

also lead to worse results for more continuously varying media, whose

weak reflection coefficients could be mistakenly suppressed as noise.

The other modification consisted of using reflection data at several

different angles of incidence to perform a least-squares fit for the

updated medium parameters at each depth.

The problem of determining the profiles of p(z) and c(z) for a layered

acoustic medium by probing it with impulsive plane waves and measuring -

the reflection response has now been quite thoroughly covered, as far

as layer stripping inversion methods are concerned. We now proceed

to a more complicated generalization of this problem--that of determining

the parameter profiles for an elastic medium from its reflection responses.

0'a
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CHAPTER VI

The Inverse Problem for a One-Dimensional Elastic Medium

6.1 Introduction

In this chapter the inverse seismic problem for a one-dimensional

elastic layered medium probed by impulsive plane waves at oblique

incidence is solved by a layer stripping algorithm. Separate profiles of

the Lamd parameters X(z) and p(z) and the density p(z) as functions of

depth may be obtained from the P - to - P, P - to-SV, and SV - to -

SV reflection responses of the medium. Alternative choices for the data

to initiate the algorithm are discussed in Section 6.3.2.

The basic results of this chapter are taken from Yagle and Levy

-*, (1985). However, those results are supplemented by a dynamic

I..

deconvolution inversion procedure for an elastic medium. Some

alternative formulations of the layer stripping algorithm that allow the

reconstruction of an elastic medium when it is probed from a fluid

half-space are also given. This is clearly applicable to probing the

sea bottom from the ocean above it. Finally, some comments on discrete

elastic media, collected from a variety of sources, are made.

Problem formulation

The basic problem considered in this chapter is as follows. An

elastic layered medium, which supports the propagation of both

compressional (P) waves and shear (S) waves, is parametrized completely

by the continuous profiles of the Lamd parameters X(z) and p(z) and 0

the density p(z). The medium is isotropic and laterally homogeneous,

!%. 

--7/,.
~ *~* .. *~ . . . .. . . .
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waves at oblique incidence. This procedure allowed recovery of the

parameter profiles by solving Marchenko integral equations, but it

sidestepped the issue of P-SV mode conversions. Blagoveshchenskii (1967)

exhibited several integral equations whose solutions yielded the parameter ' ' .'. PT

profiles as functions of travel times; by combining the Gel'fand-Levitan

inverse scattering method with the solution of a Volterra equation,

Carroll and Santosa (1982) were able to recover the parameter profiles

as functions of depth. Baker (1982) solved the related problem of

reconstructing radially varying parameters by using spherical harmonics

and Marchenko integral equations. --.-

Kennett and Illingworth (1981) used propagator matrices to

propagate upgoing and downgoing P and SV waves between various

depths. The waves were expressed by a generalization of the Langer

uniform approximation (involving Airy functions), which is tantamount to

neglecting all multiple reflections and wave interconversions (i.e. , a

single scattering approximation). Although their inversion procedure

is very complicated, it does incorporate multiple turning points nicely.

Frasier (1969) attempted to use matrix methods to solve the discrete

elastic problem, but the different wave speeds for P and S waves cause

problems in defining a Goupillaud medium model, and his solution is

necessarily only an approximation.

Clarke (1984) and Shiva and Mendel (1983) have recently given

algorithms that utilize the layer-stripping principle. However, their

algorithms are far more complicated than the algorithm of this chapter.

Clarke (1984) requires the iterative solution (using Newton's method

for solving equations) of several equations at each step of the algorithm

in order to update the medium parameters. His numerical example

d ? -* .. .'1%
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and has a lateral dimension, so that it may be probed at oblique

incidence. The medium is probed with an impulsive plane P wave at

oblique incidence, and its P - to - P and P - to - SV reflection L-.
responses measured. The medium is then probed again with an impulsive

plane SV wave at oblique incidence, and its SV - to - SV reflection

response measured. Either a half-space or a free surface boundary

condition may be used at the surface.

This problem is far more complex than the acoustic problem 0

• considered in Chapter IV because there is interconversion between P

and SV waves as the inhomogeneous medium is penetrated. Thus instead

of having two waves with continuous coupling between them, there are

four waves with continuous coupling between each pair of waves. Due

to various symmetries, the couplings can be parametrized by three

reflectivity functions and an interconversion transmissivity function. In|0
the operation of the layer stripping algorithm, the three reflectivity

functions are recovered from the three surface reflection responses or

traces (i.e., seismograms), X(z), 1.(z), and p(z) are computed, and
0

the layer stripping algorithm is then propagated to the next depth.

Complications are introduced by the different wave speeds for P and S

waves, so the algorithm is much more than a simple generalization of '

the algorithms of Chapter IV.

Previous work

Previous work on this elastic problem has yielded methods of 0

solution that are computationally arduous to implement. For example,

Coen (1981) solved this problem by employing solutions to the acoustic

problem for the separate cases of P and SV impulsive plane waves at

normal incidence, which are decoupled for a layered medium, and of SH

S........... . . . . .
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consists of only six layers, perhaps as a result of the complexity of

his algorithm. He also assumes that the P - to -SV and SV - to -SV

reflectivity functions are independent of the P-wave speed, and that

the P - to - P reflectivity function depends only on the P-wave speed.

The algorithm of Shiva and Mendel (1983) requires the solution of a

cubic equation at each step, and some more algebra to update the

medium parameters. In addition, they employ maximum-likelihood

estimation to look for the next set of first reflections, which yield the

reflectivity functions. This a posteriori approach is in contrast to the

much simpler a priori approach of the algorithm of this chapter, in

which the times of the first reflections are projected. .

The reason that the layer stripping algorithms of Clarke (1984)

and Shiva and Mendel (1983) are so complicated is that these papers

assume the medium is discrete. Here, it is assumed that the medium is

continuous, which allows the use of differential updates of the medium

parameters. The computational results of Section 6.4 indicate that this

assumption is generally workable, and that the vastly more complicated

discrete updates may not be worth the amount of work they require.

It should be noted that there is no single procedure for solving

the elastic problem that is analogous to the Gel'fand-Levitan procedure

of Section 3.2.2. This is because the different wave speeds of P and S

waves makes it impossible to formulate the elastic problem as a matrix

Schrodinger equation, to which the Gel'fand-Levitan procedure could be

applied.

Summary

In Section 6.2 the layer stripping algorithm for a continuous elastic N%-

medium is derived, specified, and physically interpreted. The algorithm ' "

i-.t i-
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is more than a simple generalization of the algorithms of Chapter IV,

since the different wave speeds of P and S waves complicates matters

immensely. Indeed, there are no simple integral equation methods for

solving the elastic problem that take into account wave conversions,

for this reason.

In Section 6.3 some alternative formulations of the algorithm are

presented. First, a dynamic deconvolution algorithm involving a matrix

Riccati equation is derived. Next, the problem of probing an elastic * ,

medium from an acoustic (i.e., liquid) half-space is solved using a

different version of the layer stripping algorithm. Note that for this

problem the elastic medium cannot be probed with S waves, and the

reflected response of S waves cannot be measured, since the liquid 0

half-space does not support shear stresses. This problem has an

obvious application in probing the sea bottom from the ocean above it.

Finally, some comments are made on discrete elastic media, in order to

show the relations between acoustic medium results and their elastic

medium generalizations.

In Section 6.4 the results of a computer run on a twenty-layer .

medium are presented. The forward problem reflection responses were

generated using the reflectivity method, and an inverse Fourier transform

taken. This introduces errors into the synthesized responses in the form

of bandlimiting, aliasing, and Gibb's phenomenon, but the layer stripping

algorithm nevertheless works satisfactorily.

Some basic concepts of elastic wave propagation

The two basic equations for a linear elastic medium in the absence

of sources are the momentum relation (compare to Newton's second law

of motion, F = ma)
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2 u. 2 = Dj / x j  (6-1)
1 j 1

and Hooke's law

r.. = c . e ( 6 - 2 ) _ _ _

1 Cijpq epq ,

where tr. represents an element of the symmetric stress tensor, e
13 pq

represents an element of the symmetric strain tensor, and ui is the

component of displacement in the direction xi (Aki and Richards, 1980).

Suppose all deformations of the medium are adiabatic, so that a strain

energy function can be defined, and the medium is isotropic. Then, due

to various symmetries, the tensor cijpq, which contains 81 elements, is

actually a function of just two quantities, since it has the form " '-.

c.. = , + (5ip5. + 5.q .p), (6-3a)ijj p pq jq .iqjp

-{1 if i j (6-3b)- 0 if i

The quantities X and p are called the Lame parameters. Along with the

density p, these quantites completely specify the medium: other quantities

such as bulk modulus, can be specified in terms of X, and (Ald and

Richards, 1980).

Unlike an acoustic or liquid medium, an elastic medium can support

shear stresses, since # 0. This means that an elastic mediuw] can

support two types of propagating waves: P waves, which are physically

the same as acoustic waves, and travel at a wave speed W.

N'.'
- v9-.$...................
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= ((X + 2')/p) ; (6-4)

4.

and S waves, in which the wave displacement is perpendicular to the

direction of propagation (which clearly requires shear stress), and

which travel at a wave speed

= (P/p) 1  (6-5)

Note that P waves always travel faster than S waves. In fact,

the notations "P" and "S" come from the fact that the first or Primary

body wave from an earthquake is always a P wave, while a Secondary

arrival is an S wave. Also note that S waves can be polarized in any

direction perpendicular to the ray path. S waves are generally

decomposed into components in the vertical plane (SV waves) and the

horizontal plane (SH wave"). For a layered medium, in which X, .,

and p are functions of depth only, the SH waves are decoupled from

the P and SV waves (Aid and Richards, 1980). At normal incidence,

the P and SV waves are also decoupled. Coen (1981) used these facts

in order to solve the inverse problem for an elastic medium using the

Gelfand-Levitan procedure. Since the SH waves are completely

independent of the P and SV waves, we shall disregard them for the

remainder of this chapter.

6.2 Layer Stripping Solution for a Continuous Elastic Medium

In this section we derive and specify the layer stripping algorithm

that solves the inverse problem for a continuous layered elastic medium.

The resulting algorithm is very simple comlputationally, and lends much
4%

physical insight into the inversion process.

Oi
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The problem considered is as follows. A continuous, lossless,

layered elastic medium is probed, in separate experiments, with impulsive

plane P and SV waves, and the P - to - P, P - to - SV, and SV - to - SV

reflection responses of the medium are measured (note that the P - to -

SV and SV - to - P responses are identical). The angles of incidence

e and e are chosen (i.e. , the data are slant-stacked) so that the ...
p s

slowness p for both incident plane waves is the same, i.e.,

p =sin p/a(O) =sin es/l(O) (6-6)

The goal is to recover the profiles X.(z), jj(z) , and p(z) , which

characterize the medium completely.

Although the reflection response is defined for a half-space boundary

condition, a free surface boundary condition may also be used. In this

case, the reflection response may be synthesized from the surface traces

(seismograms) by inverting the formulae (Frasier, 1969)

,. .:.

sine cos S
VH p (DP + UP) + (US + DS) (6-7a)

p S

-Cos 19 sin e
- p (UP -DP) + (US- DS) (6-7b)

Zp Zs

G where VH(t) and Vv(t) are the horizontal and vertical velocity traces;

DP, UP, DS, and US are the amplitudes of the downgoing and upgoing

P and SV waves; and

Zp a cos e (6-8a)
p p

*.•°

°.-- N.°
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Z S p~cose s  (6-8b)

are the P- and SV-wave impedances at the surface. Inverting (6-7) for

the two experiments gives, for the P-wave experiment,

R p(W) Z /(b pcos ( p- s)) (sin ^5 v1H(w)-cos ^v&)+b Cos08 +8 )/Zp)pp( p p psH -Cs0~v +p O(p+s)/p) .

(6- 9a)

Rs(w) = Z /I(b COS(O -e ))(cos 6pVH( )+sin 8ev (w)-b sin 2 lZp)

ps S p p s pp v p p p

(6- 9b)

and inverting (6-7) for the SV-wave experiment gives

Rsp ( = Zp/(b scos(p-e s)) (sin esvHt(')-cos es-V(w)-bssin 2es/Z s)

(6-10a)

R GO)= Zs (bscos(e -e ))(cos 8PQ (M)+sin e rv( )-bsCOS( +6)/Zs

(6-10b)

where bp and b are the strengths of the incident P and SV excitations.

It should also be noted that the algorithm may be run concurrently

with many different values of slowness p from a single point source

experiment. In this case, the updated medium parameters at each

depth from each run may be averaged, and the averaged values then

used in the algorithms. This reduces the effect of noise in the data,

as discussed in Chap4er V. Furthermore, the desired responses for P

and SV excitations could be obtained by an appropriate superposition of

*-
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the responses to a P-wave source and to a mixed, P- and SV-wave "

source. Other possibilities of using data for several different values of

slowness p are noted in Section 6.3.2. '

We now define the following quantities: %

a(z) = ((X(z) + 2p(z))Ip(z)) I = local P-wave velocity (6-11a)

(z) = (P(z)/p(z)) = local S-wave velocity (6-11b)

sin e (z) = o(z)p = sine of local angle between P-wave (6-1ic)
ray and vertical

sin e (z) = I(z)p = sine of local angle between S-wave (6-11d)
s ray and vertical

a'(z)= (z)/cos e p(z) = local vertical P-wave velocity (6-11e)

,:'(z) =(z)/cos e (z) = local vertical S-wave velocity. (6-11f)

We also define the vector

u (t,x,z)x

u (t,x,z)
zg(t,x,z) = (6-12)

(t,x,z)zx.4

T (t,X,Z)ZZ

where u and u are the horizontal and vertical components of the

displacement, and where zx and T are the horizontal and vertical

tractions on an element perpendicular to the z axis.

An impulsive plane wave b 0 (t-px-qz) is used to probe the elastic

medium. Here (.) denotes the Dirac delta function, and q is the
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vertical ray parameter just below the surface (for a free surface), or in%

the homogeneous half-space above the medium. The Fourier transform

of this plane wave is (bo exp-jwqz)exp-jLwpx. Since the horizontal ray

parameter p is independent of depth, we may write the Fourier transform

* of the vector (6-12) for z > 0 (inside the medium) as

=~~xz i(w,z)exp-jw.px .(6-13)

From Aki and Richards (1980, p. 269) and Kennett (1983, p. 26),

* the propagation of seismic waves in an inhomogeneous, layered, continuous

* elastic medium is described by

df/dz = Az)i('w,z) (6-14)

where 0

0 -j('p 1/pj 0

0jpX(+ )0 I(A+20i
A(z)= (6-15)

4c,,p 2 W(~)(X2) 0 0 -jbpX/(+2p.)

0 _p2  _j 0

Next, we diagonalize equation (6-14), defining upgoing and down-

going P and SV waves. Appropriate weightings of the eigenvectors of

* A(z) will be necessary to put equation (6-14) into a form suitable for



.1.

289

a fast algorithm.

* Transformation to upgoing and downgoing waves

It is well-known (e.g., Kennett et al., 1978) that changing variables

in equation (6-14) from f(w,z) to R(z)f(w,z), where R(z) is the matrix

of row eigenvectors of A(z), diagonalizes equation (6-14) into upgoing

and downgoing waves. In the present context it will be necessary to

weight the row eigenvectors of A(z) in order to obtain a recursive

algorithm. Thus we define

w(w,z) X(z)R(z)f(W,z) (6-16)

where X is a diagonal matrix whose elements weight the row eigenvectors

of A(z). We may then write

fRz) -_X-l(4,z) = CX- 1w(a,z) (6-17)

where C(z) = R(z) is the matrix of column eigenvectors of A(z).

Taking the partial derivative of equation (6-17) with respect to

z and premultiplying by XR yields

-1 -dw/dz = [A- (X(RdC/dz)X + X(d/dz(X-)))lw (6-18)

where

A = RAC = diag[-jjc', -j4 ', jwlc' , jw/']. (6-19)

We now choose the elements of the diagonal matrix X so that the
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(diagonal) term X(d/dz)X = - (d/dz)log X zeroes the diagonal elements S.

of X(RdC/dz)X - . This is straightforward, and the result is

X = diag[(ac cos eo)s. OP Cos es (p)1 (cos (6-20)
, , , 0

We recognize the components of X as the square roots of the P-wave and

SV-wave impedances. Hence weighting the components of Rf by these

quantities normalizes the energy fluxes moving upwards and downards. *
Although this transformation was noted by Chapman (1974), it is

interesting that searching for a form suitable for a fast algorithm leads

automatically to the energy normalization (6-20).

Inserting equation (6-20) in equation (6-18) results in

-- j-
'j /' -t e  -rp -r c

c p c

St -j-W g' -r -r"-
c - c -r s

dw/dz w (6-21)

-r -r jwla/ -t
p c c

-r -r t WM'

where

2 2 2 2r (z) = (1/2-2V p )(d/dz)log P(z) - 42 p (d/dz) log 3(z)
p

2 2+ l/(2-2a p )(d/dz) log (z) (6- 2 2a)

m".

.I
............................. .
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rc(z) =- (p/ 2 ) ('3') ((1-23 2 p2 + 2/21 C) (d/dz)log P(z)

-(46 2p2
- 4 2 1ax' ')(d/dz)log (z)) (6-22b)

r s(z) -(1/2 - 2a 2 p 2 )(d/dz)log P(z)

-(I/(2-2e 2 p2) - 45 2 p2 ) (d/dz)log (z) (6-22c)

tc(z) =(p/2)(C'') ((1-2P 2  - 22 (d/dz)log Pz)

-(4S2p 2 + 4S2/c'')(d/dz)log 8(z)) (6-22d)

and the quantities in equations (6-22) have the following interpretations:

r (z) reflectivity function for a reflected P wave generated
by a P wave;

rc (z) reflectivity function for a reflected wave generated by
a wave of the opposite type;

r (z) = reflectivity function for a reflected SV wave generated
by an SV wave;

tc (z) =transmissivity function for a transmitted wave generated
by a wave of the opposite type.

We use notations similar to those of Chapman (1974) and Kennett and

Illingworth (1981). The physical meaning of the reflectivity functions

is illustrated in Figure 6. 1, which describes an infinitesimal section of

a lattice filter structure which implements the elastic wave equation

(6-21). Note that the elementary delay elements Dp exp - j/a'(z)
A "-

and Ds  exp -j/,'(z) appearing in Figure 6.1 vary with depth. The

lattice structure of Figure 6.1 can be viewed as a generalization of the _i

lattice structure of Figure 2.1.

-° , -, , , • % .% , • • - ... . .... . .. .° , . -. *.. • . ° . . . . - . ° ,° -
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Next, we use the transformed equation (6-21) to obtain a fast . -
inves-o ag1i

inversion algorithm.

Inversion algorithm -"'

Recall that the first experiment consisted of probing the medium

with a planar impulsive P wave. Since the first component of w(.,z)

corresponds to a downgoing P wave, we may write its inverse Fourier

transform w(t,z) as

b 6(t-T (z) Wl(t,z)

0 w 2(t,z) '"-

w(t,z) + i~t- Tp(Z)) (6-23)
0 w 3 (t,z)

- 0 _ .w 4 (t ' z)_-

where

-z
T (z) = dZ/OL'(Z) (6-24)

P Ip. -*."

denotes the vertical travel time for P waves, and

for t > 0
1(t M (6-25)

0 fort< 0

is the unit step function. The second term in (6-23) reflects the

causality of the excitation: there can be no wave at depth z until the

excitation has had time to reach depth z.

Taing the inverse Fourier transform of equation (6-21), inserting

the expression (6-23), and equating coefficients of .(t-T ) yields
.. i-p

I

r..,.__ . . . . . . . . .. . ... .,.-. . . . . . . . . . . . . . . . .
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r cz) = w 4(T (z),z)(112).(z) + 1/P'(z))/b . (6-26b)

Now, for the second experiment, the excitation is a downgoing,

impulsive SV wave. Since the second component of w(t ,z) corresponds

* to such a wave, we have for this experiment

bs,(t- s~z)) w 2(t ,z)

w(t,z) =+ (6-27)

where the waves w (t,z) have the form

w.(t,z) n n(t,z)1(t-- Wz) + qi(t,z)1(t--rs(z)) (6-28)
1 1 p1

and where the vertical travel time for SV waves has been defined as

W z d Zl() . (6-29)

Note that the form of equation (6-28) differs from that of

equation (6-23). This is because in the SV experiment the impulsive

excitation (an SV wave) does not coincide with the wavefront (a P wave).

In the P experiment both of these were P waves and hence coincided.

* Proceeding as above, we obtain (qi(z) is defined in equation (6-28))

r() q (T W(z) z(I !.'(z) + I /:'(z)) /b (6-30a

r Wz 2q4('rs(z),z)/(2'(z)bs) .(6-30b)

5 s
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The importance of equations (6-26) and (6-30) is that they permit

computation of the reflectivity functions at any depth provided the

* waves w(t,z) are known at that depth.

Next, equations (6-22a-c) are written as a matrix equation:

[r (Z)1 [(d/dz) log P(z)1
[r(z) I M(z) (d /d z) log $(z) I(6-31)
r' (Z) [(d /dz) log ci(z)J

* where

r2 1/ 2  4~ 22  12 2 2 )

1/2 2P j~p)- (1(-2 2p 2)1/22-2,0 ,

(6-32)

and

Z(Z) (6-33)

Inverting (6-32) gives

(dldz) log p(z) r (Z)1 c
[(d/dz) log -1(z) J =N(z)I/m(z)[rS(Z)] (6-34)

(dldz) log ca(z)r Z

where

21 2 -22 2 2 20)(/22 p ) X (42 p 4~ /0?'2

~22 2 2 21/2 - 2,-:p -Z( 1- 2S p + 2'- I(- E)) 0
N(z)=

- 2 222 2 2 2 2
(1- p )(4 p 1) 21: p -(2 2 2,3) 2m,2 2

(6- 35)
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and

2 2m(z) = (det M(z))(2-22p 2 )

22 2 4 4 4 22= [1/2 - 3.2p2 - /(.a' ') + 2 p 4 + 2: 42''/(1-2 p2) (6-36)

Equations (6-34) function as update equations for (z), 2(z), and :(z).

Note that p(z) and (z) are updated solely from r (Z) and rs(Z) , and

then r (z) is used to update a(z). From these three parameters, any
p

other parameter of interest (e.g. , '(z) and v(z)) may be quickly

found. Chapman (1974, p. 67) gives equations similar to equations

(6-31); however, Chapman's equations involve too many quantities

(,O, 2 ,', and B') and require the unobservable transmission coefficient

tc . Thus, they are unsuitable as update equations.c
We have now specified all of the equations of the algorithm, in

differential form. The algorithm consists of equation (6-21), twice

(one for the experiment involving excitation by P waves; one for

excitation by SV waves) for updating the up- and down-going waves;

equations (6-26) and (6-30) for computing the reflectivity functions;

equations (6-34) - (6-36) for updating the material parameters :(z),

2(z), and I(z); and equation (6-22d) for computing the transmissivity

function t (z) required to complete the matrix in equation (6-21). Wec
then immediately have, for each z,

i(z)= 2(z)z(z) (6-37a)2• 2
=.(z) 0 (z) - 2 2(z)).,(z). (6-37b)

Next, the algorithm is discretized in order to clarify the recursions

and specify in what order quantities should be computed.

7-,
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Discretization

The depth coordinate z is discretized by z = n , where n is a

positive integer and . is the discretization length. The time coordinate

t may also be discretized, but its discretization is independent of that

of z.

Initialization

It is assumed that all material parameters (A, , p, and hence

a, , (', and ') are known at the earth's surface. If we are assuming

a free surface, the waves at the surface are determined by measuring

the velocity components over time, for both the P and SV experiments,

and using (6-9) and (6-10). If the medium is probed from a half-

space, the upgoing waves are initialized by the inverse Fourier

transforms of the appropriate reflection responses. Since only the

smooth parts of the waves need be propagated in the algorithm, the

downgoing waves are initialized to zero.

Recursion

We start off with knowledge of a(z), (z), p(z), a'(z), '(z) as

well as that of all up- and down-going waves at depth z, from the

previous iteration. Let wP(t,z) represent the waves in the P-wave

source experiment, and wS(t,z) represent the waves in the S-wave

source experiment. For convenience, we identify the dimensionless

quantities

B(z)= 2 (z)p = sin2 s (z) (6-38a)

2G(z) = 32(z)/(a'(z)'(z))= (1/2)sin 2 s cot e (6-38b)
Is p

Then, taking the inverse Fourier transform of equation (6-21) and

.: '".
* o1 ,%'
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employing a simple forward difference approximation to the various

derivatives in the differential form of the algorithm yields the following

recursive algorithm:

1) Computation of the reflectivity functions. From equations (6-26)

and (6-30),

r Wz 2 w(-r (z), Z)/( A) (6- 39a)p 3p p

r (Z) 2wQ (z), z)I(b (6-39b)
c 4 p ppr (Z) 2 (w (-rpC'Z) W)/ t, pL ) _') (6-39c) ,'

s 4 s ). (6 c ."
rs(Z) =2(w (zs(Z)+,z) - w4(Ts(Z) ,z))/(bs  .-"(6-9c

where b = b a'(z)/A and b = b '(z)/A are the strengths of the
p P

discretized continuous impulses.

Upon going from continuous time to discrete time, the continuous-

time impulse b 6(t) becomes a discrete-time impulse of height bi/Di ,
1

where D. is the differential delay time at depth z for wave type i (see
1

Figure 6.1). Since the impulse has been spread out over the time

interval Di. its height must be bi/Di in order to maintain its area b.

For a P-P reflection D = WlM'(z). For a P -S reflection the two-way
p

delay is D + D s , hence the one-way delay is half of this, or

(LI/2)(l/c(z) + II/(z)). Equations (6-26) and (6-30) are thus

modified to (6-39).

2) Computation of auxiliary quantities. From equations (6-36) and •

(6-38),

2 2
B(z) = 2(z)p (6-40)

G(z) = 12(z)/(a'(z)3'(z)) (6-41)

. . . . , - -. . , . . . . . . .--.-.... .-... . . ... .. .,, . ..... .. ....-. .
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M(z) =(1/2 -3B G + 2B2 + 2BG) /(l-B) (6-42)

t (z) =-M(/2 - 3B + G + 2B82 -2BG)r~ (z)/((l-B)m(z)) ~e

+ 2Br5 (Z) /M(Z) (6-43)

where Z(z) is defined as above. I
3) Update of material parameters. From equations (6-34) -(6-35),

pCz+tA) =p(z) -P~z)((lI(2-2B) I B)r (z) + 4Z(B-G)r (z))A/m(z) ~u

(6-44)

(z+A ) = (z) - (z)((2B-1/2)r c(z) + Z(1-2B+2G)r S(z))ZI/m(z) (6-45)

ct(z+A) cLdz) + -Adz) (1-3L (z)p 2 O2r (z) - ((2B-1/2)/I-B)m(z))r~ (Z)
p

-Z(4(B+G)/m(z))r (z))A (6-46)
S

c(+ = ca(z+A)/(1-aL2 (z+iA)p 2 ) (6-47)

a(+ = (Z+A)/Il- 2 (Z+A)p )~ (6-48)

4) Wave update. From the inverse Fourier transforms of equation (6-21),

w (+Aal~),z+A) W I (t, Z) - (t c(Z) w 2 (t, z) + r p(Z) w3 tZ)

+ r (z)w (t,z))A (6-49a)

w (tA/$, Zl +LA) w w(t,z) -(-t (z)w (t,z) + r (z)w (t,z)

+ r5 (W4 4(t,z))A (6- 49b)

3 (t-I/a' z +L ) 3 w(t, z) - (r p(Z) w tz +r W 2(tz

+ t~ (z)w (t,z))S (6- 49c)
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-, w4(t-J '(z), z+&) = w4 (tz) - (rc(Z)W (t z) + rs(Z)w 2 (t,z)

- tc (Z)w3(t,z)) (6-49d)

.e

and these same recursions are used for both wP(t,z) and w (t,z).

At this point, we have obtained p(z+A), a(z+A), (z+L), cd(z+L)

i(z+A), and all eight waves at depth z+. Hence the recursion is -

complete. Each step in the recursion can be implemented as one stage

or section of a ladder-type filter, which can be regarded as a more

complex version of the lattice filter commonly encountered in spectral

estimation theory. A typical section of this ladder filter is illustrated

in Figure 6.1. The downgoing P and SV waves at depth z enter the

filter section at the upper left, interact with each other, are reflected

(due to the inhomogeneity of the medium), and exit at the upper right,

now at depth z+A. Upgoing P and SV waves undergo a similar experience

in the lower half of the filter. Note how this filter illustrates the

physical meaning of the reflectivity functions r (z), r (Z) and r (Z),

p c :

and of the transmissivity function tc (Z).
c0

The recursions of the waves in z and t, given by equations (6-49),

are slightly complicated, so the recursion patterns are illustrated in

Figures 6-2a and 6-2b. We start off knowing the waves at depth z for

all time, and wish to find the waves at depth z+A. Although the •

simultaneous time and depth updates may make it seem as though

information at early times is being lost, reeall that by causality there

can be no wave at depth z until the initial excitation has had time to .

reach depth z. Thus there is no information to lose at the early times.

The algorithm that we have described above for reconstructing p(z),

.\(z) and p(z) works even if some turning points exist for the P and SV

. - . I i~. . . . .- l -
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(0"'sope I1 /a'(zo)

o z0 Z0+Az
*0

6.2a Recursion pattern for updating the downgoing

waves.

t ~W3(ZO)W 3(ZO+i6)

41.1-slope I /Q(zo)

V%(InsloPe -1/a'(zo)

IoZ+

6. 2b Recursion pattern for updating the upgoing
* waves.



302

waves propagating through the elastic medium. However, in this case

p, X and 1. can only be reconstructed up to the depth zwhere the

ray path for the P wave becomes horizontal. Note that along rays 0.-

associated with the P and SV waves

sin e (Z)/a(z) = sin e (z)/S(z) = p = constant (6-50)

p 5

so that unless X(z) < 1/p for all z (in which case we have also

(z) < l/p), the angle 0 (Z) will become imaginary at some depth z
p p*

Physically, this situation results in evanescent waves where the waves

decay exponentially with depth. This causes no problem in the

reconstruction algorithm until z z at which point 0'(z) -- oo. Then,

the waves wP(z,t) and wS(z,t) cannot be propagated further, and the •

material parameters are reconstructed only up to depth zp,

Comments

The algorithm, of course, works on a layer stripping principle. At

each depth, the first reflections in three of the four upgoing waves (P

and SV for each of the two experiments) yield the reflectivity functions

r (z), rc(z) and r (z). The transmissivity function tc(Z), which is
p 5

not a transmission loss but a coupling between two waves moving in

the same direction, is then computed using (6-22d). All eight waves are

then propagated down to the next depth. Complications are introduced -"

since the SV first reflection arrives after the P first reflection, and must

be separated out from the downgoing P wave. However, the elastic layer -"

stripping algorithm is basically a generalization of the algorithm of

Chapter IV, with some complications added.
However, if the waves w are written out using definition (6-16),

the result is

.. .-
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z sin 6 ~ + 4..- T

p Ln 9s1n~ p z i s 2o 2w z (co sZ 6+ sin 6)

(6-51a)

z sn2. x + uz + ___ __x___

2 s COS9s-sinO 6 cs 2 p si iir- o ' - 'S7

4
(6-51b)

where the upper signs are used for the downgoing waves and the lower

signs for the upgoing waves. These certainly don't look like physically

interpretable waves. However, they may be simplified to

w Z CT cos 6 ±T sin e tS w
1 p (Tzz p zx p Cos 6 zp p w p p (65a
3

w Z ( cos 6 -r sinS u (, 65b2= s zx +T zz 5 sine s -s us (65b)
4 -

where Q and u are stress and displacement in the direction of
p p

propagation and -r and u are stress and displacement perpendicular

to the direction of propagation. Here we have used the relations

u t IilCos e si (6-53a)p z p x p

Tp Tzx .0p zz Csep(65b

us + !z/i s u ,Co (6-53c)

Ts =Tz coss+ -Tz sin 9 (6-53d)

in both (6-51) and (6-52).

The waves in (6-52) look much more like the choices made in
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Chapters III and IV. If the medium is locally homogeneous, they simplify

even further to energy-normalized displacements. This matches the

choices made by Frasier (1969) and Shiva and Mendel (1983) for a 9

discrete medium composed of homogeneous layers.

It should also be noted that if the medium is discretized, i.e., %

modelled as a welded stack of thin, homogeneous layers with material .

parameters varying only between different layers, then RdC /dz may be

interpreted as a scattering matrix for the layer at depth z. To see

this, replace (d/dz) log (z) = (d/dz)p(z)/p(z) by the discrete oi.

approximation LAp(z)/P(z), and do the same for (z) and c(z). Then

equations (6-22) become the reflection and transmission coefficients at an

interface (Aki and Richards, 1980, p. 153). Thus discretization of the .

algorithm is equivalent to a physical discretization of the medium.

6.3 Alternative Formulations of the Algorithm

In this section some other layer stripping algorithms for inverse

problems for elastic media are given. First, a dynamic deconvolution

algorithm, involving a matrix Riccati equation, is specified for the

problem considered above. Next, a layer stripping algorithm is derived

for the problem in which an elastic medium is probed from an overlying

liquid (p = 0) half-space. Since shear waves cannot propagate through .1

a liquid, only the P - to - P reflection response is available for this

problem. Finally, some comments on discrete elastic media are made to

tie this chapter closer to Chapter III.

6.3.1 Dynamic Deconvolution

The dynamic deconvolution algorithm for the elastic problem is

quite easy to derive. Let the matrix reflection coefficient S(z,...) relating
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the downgoing P and SV waves to the upgoing P and SV waves be

defined by

,-up

Fus DS1 (6-54)

where DP, DS, UP, and US are the amplitudes of the downgoing and

upgoing P and SV waves, respectively. For convenience, rewrite

(6-21) as

D P D 1 DP1 - *[~i] -R -
DS [1 J(6-55)

UP -RJ 2'UP

where

R r r :1 -1 j ,-tc 1  J2 1- (6-56)

Then, taking the derivative of (6-54) with respect to z yields

d [UP 1 R _ DP] [dp ( -S) [DP] + dF LDP]dz LUSJ - DSi + 2 [PUSJ z LDSJ S' DSJ

= .~s[]+ sji [( R~ 6-57)

and inserting (6-54) and collecting terms gives

( ~ ~ + Rs1 -~ + SRS)[] [1 (6- 58)

and noting that (6-58) must hold for any set of waves FD]finallyLDS

results in the matrix Riccati equation
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dz = J 2 s - SJ 1  R + SRS (6-59)

Note that in the high frequency case, where the transmissivity function

t c becomes negligible, (6-59) becomes
_ s .ol 01~ 01
d- 0  S + - R + SRS . (6-60)

0 "10

A Riccati equation similar to (6-59) was derived by Wilcox (1964) z

for the electric wave propagation problem on two non-uniform, coupled

transmission lines. Thus it is not surprising that a similar equation

applies to the somewhat similar problem of seismic wave propagation in an

elastic medium.

Since S(z,w) is strictly proper, we have (compare to (3-42))

LIM - / + (6-61)L 1 0 + 0  S)

and the dynamic deconvolution algorithm consists of (6-59), (6-61),

the initial condition

[R (G') R ("?1

SOI W , (6-62)

and (6-22d) for computing tc from R. The Riccati equation (6-59) is

propagated in z, recovering R at each depth from (6-61). The medium .

parameter updates (6-34) - (6-36) are used to obtain :(z), z) and (z).

6.3.2 Elastic Medium with an Overlying Liquid Half-Space

In this problem an elastic medium is probed from an overlying liquid

. . ... ... ................................................................ L.
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half-space. This is clearly applicable to the problem of probing the ocean

floor from the ocean above it. The difficulty, of course, is that since

the liquid does not support shear stresses and shear waves, it is

impossible to measure R and R . Nevertheless, it is still possibleps ss

to reconstruct the profiles (z), Li(z), and p(z) from R alone, if
pp

Rp is obtained for three different values of slowness p.

We assume first that the transition from liquid to solid medium is a

gradual, continuous transition. This is in fact the situation at the

bottom of the ocean--the interface between the water and ooze is_

gradual. If this is the case, then the continuous medium parameter ..

updates may still be used. Writing (6-22a) for p = 1  2  3 and

arranging the results into a matrix, we have

(z) ( 2 22 2 2 1I 2-2p 2) ddzlgp)r (z)/2-2 pi -4 p 12- 1 (d/dz)log E(z)-

22 2 24 2 p 2
"Lz (1I2-2 22 -4 2

3  1/(2-2a p J dzlg ,:(z)

[m1 in m 1](d/dz)Iog p(z) 1
= in2  in (d/dz)log $(z) (6-63)

[in::1 32 m 33 J(d/dz)log a(z)_j

Inverting (6-63) yields the update equations

O =+ p(z) +[(m 22m 3 m2 m32 )r (z)-(m1 2m 3 m 1 m 2 r (z)

+(m 12 m23-m 22 m13)r P3(z)] . L/d (z)

(6-64a)
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0

*(z+A) = g(z)+I-(m 2 1m 3 3-m 2 3 31)r z) +P ( 11 33- 31 13 P 2

(mlm23-m m2)r (z)]•Aid(z) (6-64b) a F
11z- 1l3 21m3m2r2

L(Z+A) = a(z)+[(m 21 m32 -m 31 m22 )r Wz- (mm-mm)r

+ (m1 m2 2-m 1 2 m 2 1 )r (z)I Ad(z) (6-64c)

d(z) =DET M(z) = m 1 (m 2 2m 3 3-m 2 3m 3 2)-m12(m 2 1m 3 3-m 2 3m 3 1)

+ m 1 3(m 2 1m 3 2-m 2 2m 3 1). (6-64d) SI

The layer stripping algorithm works as follows. The upgoing and

downgoing P waves are initialized using the P - to - P reflection 0

response R GO for each of the three slowness values pI' P2 and P3 .
pp P 3

The upgoing and downgoing SV waves are initialized to zero. Three

copies of the wave update equations (6-49) (one for each of pl, P2 '

and paI, the parameter update equations (6-64), the reflectivity function

," equation (6-39a), and the equation (6-22d) for t constitute the
c

algorithm. At each depth z, the reflection data for pl, P2 1 and P 3  •

yield r (z), rp2 (z), and rp 3 (Z), which are used to update P(z), (,
Pi P2P

and C(z) to z+A by (6-64). After tc has been obtained by (6-22d),

the twelve waves (in three groups of four) can be updated to z+A S *-

by (6-49). At this point all quantities have been updated to z+A

and the recursion is complete.

Note that in the liquid half-space 3 and dS/dz are both zero, and -

the updates (6-64) reduce to the updates (4-35) for the acoustic problem.

Then, at the interface, dZ/dz becomes non-zero since (z+L) is

non-zero. How does the algorithm "know" when (z) becomes non-zero? 0

If :(z) is zero, the system of equations (6-63) is an overdetermined but
'S o

,a .._

.. . . . . . . .. . . . . . . . . . . . . ..
.. . . . . .. . . . . . . . . . . .
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consistent version of the system (4-35), since there are now three

reflectivity functions instead of two. When the values of the reflectivity

functions take on values such that the system (6-63) is no longer

consistent, it can only be because (z) is now non-zero. Downgoing and
* %- . ,

upgoing SV waves are introduced by the coupling terms r and t e

Of course, this algorithm could also be used in place of the

algorithm in Section 6.2. The main disadvantage of this algorithm is

that the reflection response must be synthesized for three different

values of p instead of only one. And after all, the SV wave responses

can be measured just as easily as the P wave responses (see (6-10)).

However, this algorithm does have the advantage of not requiring two

separate experiments utilizing P and SV wave sources. If this is a

problem, there is still another option: measure the P to P and

P - to - SV reflection responses for two values of slowness p. Then use

22 2 2 22 2- 1
rp (z) ( -22 Pl2) - 4 P 1/(2-2:, pl) (d/dz)log

-2 2 2 2)
rP2 (z) ( -2 2 p2

2 ) -4 P2  1/(2-2L p2 ) (d/dz)log " "

rCj(z) ~ (222 2 :2 2 2 2 L
(1-22 p +2-2 (:P'i)) C1I(-2'')) 0 (d/dz)log a

rc 2 (Z) - 2(1-2 2 p 22+2,_2/2) p-422/(2)) 0 "
C2 ~ ~~~ 2"22'2 P - °

L -1 L.•

(6-65)

where i(z) is defined by (6-33) and ai(z) and P'i(z) clearly depend on

Pi" Omitting any row of (6-65) and inverting the resulting 3 x 3 matrix

as before using (6-64) yields a recursive algorithm. This algorithm

consists of (6-64), in which the m. are now defined by (6-65) (with
1)

one row missing), for medium parameter updates, and two copies of the

wave update equations (6-49) (one for each of p1 and p 2 ). The missing

row from (6-65) is also available as a consistency check.

01'

~~. ... ........... . .. :::!
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However, if the solid-liquid interface is not gradual and continuous,

but sudden and sharp (like the bottom of a swimming pool), then the

discrete expressions for the reflection coefficients must be used. These 0 |

expressions, given in Aki and Richards (1980, p. 150), are exact in

that they are accurate across large jumps in P(z), (z) and a(z), but

are far too complex to be practical in a fast algorithm. So let us S -

consider the case where the discrete expressions are only used once,

at the solid-liquid interface, and the continuous expressions (6-22)

are used thereafter. If P o and E = 0 are the known values of -
0 0 0

p(z), (z), and a(z) just above the interface, and 1 and a are

the unknown values just below the interface, then we have the following

result. Define qp. by 0

2 .2

q2 - 2 ) (p - rpi)/(1 + rp i = 1, 2, 3 (6-66)

and note that qPi is known from the data. Then solve the two (highly)

non-linear simultaneous equations

102 [ + 4 p(1 / P]qPi o/1 = constant,

i = 1, 2, 3 (6-67)

in c1 and 1 for a, and Then P, follows immediately. Once al ,  1' and

C have been obtained, use the previous continuous algorithm to reconstruct

the rest of the medium. n

Since the equations (6-67) need only be solved once, this algorithm

could prove workable in a situation with a known sharp solid-liquid

interface. However, the required solution of (6-67) is not an appealing

prospect, numerically.

d4
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6.3.3 Some Comments on Discrete Elastic Media

It has already been remarked that the layer stripping algorithms

specified by Clarke (1984) and Shiva and Mendel (1983) are far more

complex than the comparatively simple algorithm of Section 6.2, since *-.

these algorithms assume a discrete medium for which X(z), '(z), and

p(z) are piecewise constant. Further, the different wave speeds of P

and SV waves seems to rule out a matrix Schordinger equation -

Gerfand-Levitan-integral equation solution procedure. On this basis,

it might seem that there are relatively few connections between discrete

elastic media and the discrete acoustic media considered in Chapter III.

However, this is not the case. Indeed, a surprising number of

basic results of Chapter III generalize to the case of a discrete elastic

medium, and some of these results have implications for the continuous

elastic medium algorithm. To aid in understanding how the elastic medium

is a generalization of the acoustic medium, we now quickly sketch over

some results of Chapter III that generalize to the case of a discrete

elastic medium. Most of these results are due to Frasier (1969).

Let DPn , DSn , UPn, and US be the downgoing and upgoing

energy-normalized displacement waves, respectively, at the top of layer

n, and let DP n , DS n , UPn , and US' be corresponding waves at the

bottom of layer n (see Figure 6.3). Then we have the scattering relation

DP t t r' r' DP'n+1  pp sp pp sp n

DS t t r' r' DS'n+ ss ps ss n.
(6-68)

UP, r r t-''-UP
n pp sp Pp sp n+l

us, r r t' t' US 1n ps ss ps ss n+1
L• j -° .-..
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us,~ DS~
LAYER N

(N)

UP
LAYER Ni-I

6.3 Wave notations for downgoing and upgoing P
and SV waves in a discrete elastic medium.
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where r.. and ti' are the reflection and transmission coefficients for

waves incident from above, and r.'. and t'. are the coefficients for waves
1] ij

incident from below. Rearranging (6-68) gives

I-;v

I -R] [dn+1 T 0n TIn ' (6-69)
TnJ Ln+lI uJ:-:

where

r rp [P t DPn U -F 1 p p s p nF
R T = d = u =

Rn r 'n ' n nDS n
pS SS ' ssnnL Ps ss L ps Ls ,i-::

(6-70)

and the primed matrices are defined similarly. We then have

d 1 rT - R T'R R' T' - I 1 rd
n+1 n T-n n n n n (6-71)

(6-71) -. -

U -TI-1R T' -1 J unUn+1 -n n n J-'L :'

and using the facts that R and R' are symmetric and (Frasier, 1969)
n n

T =TT (6-72a)
n n

TnR + R'nT 0 (6-72b)
n n n n

TT T +RT R = I (6-72c)
n n n n

we get the surprisingly simple result

dn+ 1= TI -R] dn  (6-73)
n I '""

IUn+1 n n n,'

* .. * Ns%. •%



314 OL

Equation (6-73) looks just like the 2 x 2 layer matrix equation

(3-50). However, the quantities in (6-73) are matrices. Thus if the

elastic problem layer stripping algorithm is to be used on a discrete

elastic medium, with the medium parameter updates given in Clarke

(1984), the continuous medium wave updates (6-49) should be replaced

by (6-73) (with appropriate time delays), a fact missed by Clarke (1984).

It should also be noted that the relations (6-72), which Frasier

(1969) derived from the continuity of unnormalized normal stress and

displacement at the interface, are simply a statement of the unitarity

of the scattering matrix (6-68). The relations (6-72) should be compared

to the corresponding relations in Chapter 11. The unitary scattering

matrix considered by Kennett et al. (1978) is the matrix in (6-68) 0

premultiplied by [ 1]

To show that (6-73) reduces to (6-49) for a continuous medium as

the layer thickness A approaches zero, recall that the reflectivity and

transmissivity functions are defined by

• 2 LIM
r(z) = L0 rp/A (6-74)

and similarly for the other functions. From (6-72c) it is clear that t
pp

and tss are both 1+ O(A2). The layer matrix (6-73) then becomes, for 0 K"

small A,

T [I -Rn 1 tA -1 [I -R 0(A 2 )R. L-n I t c

[1 A-t & [I -RA] 2 1 -tcA pA rcA 2
+O(A)+= p

tc 1 RA I tcA 1 -rcAS -r s A

rpj-r -rc I -tc5 (6-75)

Lr. -rs tc 1

0"u
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where R and we have used (Aki and Richards, 1980, p. 150)

r =r (67 a
PS sp

rt., = r.
ps sp (6-76a) , %

t t' teAtps sp CA(6-76b)

P t S -tC (6-76c)

The matrix (6-75) matches the wave updates (6-49).

Frasier (1969) then proceeds to define a delay matrix

zn 0 :-"

m (6-77)Zn 0 zm n] '' 1

where the travel time through the layer is Z A for for P waves and
n

m5 for S waves. Of course, this is incorrect, although the error

goes to zero along with A. Using (6-77) and (6-73) gives

[d+ rZ -R Z 1 d
n = TIn n n [ (6-78)

~1J n -Z 1

nIn+1 Un .

in analogy to (3-51). Frasier (1969) then derives many other results

analogous to those of Chapter III, including a matrix equation, Levinson

recursions, and a generalization of the Kunetz result (3-67). However,

all of these results rely on the inaccurate time discretization specified

by (6- 77).

6.4 Computational Results

The algorithm was tested by running it on the synthesized impulse
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response of a twenty-layer medium. The variation of medium parameters

from one layer to another was made small (around 2%) in order to

simulate a continuous layered medium. This is important, since the

differential updates assume a continuously varying medium; the algorithm

cannot handle sharp changes in medium properties unless the step

size A is made smaller in such regions. The medium velocities and step

size A are in units of km/sec and km., respectively, and the density is

relative to that of water.

The response of the medium to impulsive plane P and SV waves

was generated in the frequency domain using the reflectivity method

(Aki and Richards, 1980, p. 393). A FORTRAN program given by

Kind (1976) was used to compute the plane wave transfer functions

R Rps, and Rss at 512 frequency points (integer multiples of 0.78

Hz). Each of these was divided by j27f, and a discrete inverse

Fourier transform was taken. This synthesized sample step responses;

taking differences and dividing by the discretization time \t =

0.005s yielded the discretized impulse responses. Careful attention

must be paid to signs in going from potential reflection responses to 1

velocity reflection responses (see Aki and Richards, 1980, p. 191).

The impulse responses, scaled by 1/Lt for convenience, are plotted

in Figures 6.4. Although the responses were computed for t = 0 up

to t - 2.565 seconds to avoid aliasing problems, the responses beyond

t = 1.3 seconds were essentially zero and are not shown. Note that

the peaks corresponding to strong primary reflections are smeared out.

This is due in part to the use of a DFT, which is this case is tantamount

to bandpass filtering the data with a filter with pass band 0. 78 Hz

400 Hz. Since the strengths of the primary reflections are especially 0

Q0*o.I
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6.4a P-~P impulse response, scaled by l/tAt for r'

convenience. -
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V6.4b P- 'S impulse response, scaled by 1/At for>
convenience.
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6.4c S-~S impulse response, scaled by 1/tAt for __D

convenience.

ID

r0



320

important to the algorithm, this smearing might be expected to hamper

its performance. However, this evidently did not happen.

The impulsive plane wave responses were then used to initialize

the upgoing P and SV waves, and the algorithm was run on a VAX-

11/782 computer. Results are plotted in Figure 6.5, and the computer

output is given in Figure 6. 6. It can be seen that the agreement between

the actual and algorithm-generated medium parameter profiles is quite

good, with less than 5% error everywhere.

It should be noted that the algorithm was not tested under perfect

conditions. Bandlimiting of the frequency response resulted in the

time response being smeared over two or three samples, and the medium

itself was discrete, so that some error may be expected in the update

equations. Nevertheless, the algorithm performed quite well.

The algorithm was also tested on the six-layer medium on which

Clarke (1984) demonstrated his algorithm. The computer output is

given in Figure 6.7. It should be emphasized that this medium varies

sharply at each interface, which would be expected to cause difficulties

for the algorithm, since it was designed for a smoothy varying medium.

However, the algorithm does not perform too badly, and certainly the

computation required is much less than that required by Clarke's (1984)

algorithm.

In this chapter the simple layer stripping concept presented in

Chapters II and III has been generalized to a 4 x 4 system, with many

more couplings between waves and three parameters to reconstruct instead

of one. In the next chapter the concept of layer stripping is generalized

still further, with a completely different physical interpretation.

b.i
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6.5a Comparison between actual and computed P wave -z

speed profiles (2 =actual, 3 =computed).__
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6. 5b Comparison between actual and computed SV wave
speed profiles (4 actual, 5 =computed). C
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6.5c Comparison between actual and computed density J- 5

profiles (6 = actual, 7 = computed).
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6.6 Computer output of a run of the layer stripping
algorithm on a smoothly varying medium (p = 0. 1).
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6.7 Computer output of a run of the layer stripping
algorithm on the layered medium used in Clarke

(1984) (p = 0.4).0
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CHAPTER VII .

The Inverse Problem for a Layered Acoustic Medium Probed

by Spherical Harmonic Waves eI

7.1 Introduction

In this chapter we consider the same layered acoustic medium dealt

with in Chapter IV, but we make a change in the excitation with which

the medium is probed. Instead of using an obliquely-incident impulsive

plane wave, or impulsive cylindrical waves from a point source to probe

the medium, we use harmonic, single-frequency waves from a point

source. By performing this experiment twice, at two different source

frequencies, it is possible to recover the profiles of density p(z) and wave

speed c(z) as functions of depth.

The basic results of this chapter are taken from Yagle and Levy

(1984). However, dynamic deconvolution versions of the two layer

stripping algorithms presented in that paper are also given here. In

addition, the inverse resistivity problem, in which the resistivity profile

of the earth as a function of depth is recovered from current and

potential measurements made at the earth's surface, is solved using a

layer stripping algorithm. This problem turns out to be mathematically

analogous to the acoustic problem with a rigid surface and constant wave

speed; hence its inclusion in this chapter. The layer stripping algorithm

for the inverse resistivity problem is taken from Levy (1984).

In Chapter IV the profiles o(z) and c(z) were recovered by

measuring the reflection response R ( , 9) for all frequencies (this is

....................... o
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tantamount to obtaining the impulse response of the medium) and two U

different angles of incidence e. In this chapter we consider the dual

problem of recovering P(z and c(z) from measurement of RC-,k )for
r

two frequencies w and all lateral wave numbers kr = w sin 6/c(o).

Note that it is necessary to obtain Ri(w, e) for complex angles of

incidence 6. These angles, corresponding to values of k greater thanr

* wlc(o), are associated with probing the medium with evanescent,

exponentially-decaying waves. In theory, knowledge of this post-

critical response is necessary in order to solve the inverse problem

* exactly. In practice, there are some situations in which this response

* has little influence on the reconstructed profiles. This point will be

* discussed further as we proceed.

;aisic Problem

The basic problem considered in this chapter is as follows. A0

continuous layered, laterally homogeneous medium is probed by a point

* harmonic source emitting sinusoidal spherical waves. The reflection

response of the medium is measured as a function of radial distance0

* from the source. By performing this experiment twice, at two different

*source frequencies, it is possible to recover the separate profiles of the

density p(z) and local speed of sound c(z) as functions of depth z. The

* inverse problem is to recover these profiles from measurement of the

* reflection response of the medium.

Two different configurations of this problem are considered. For 0 WA

* the first configuration, the inhomogeneous medium to be probed is bounded

* above and below by infinite, homogeneous half-spaces. The point

pressure harmonic source is located in the upper half-space, whose medium

-parameters -o and c 0 are assumed known, and the pressure reflection
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response of the inhomogeneous medium is measured in this half-space. "

In the second configuration, the inhomogeneous medium is bounded above

by a free surface. The point pressure harmonic source is located just

below the surface, and the medium acceleration at the free surface

is measured. Fast algorithm solutions to each of these inverse problems

are obtained. One algorithm is illustrated by means of a simple

analytical example, and the other is illustrated by a computer run on -.-

synthetic data.

The technique of using a harmonic (CW) source to probe a layered

medium has been used in ocean acoustics by Frisk et al. (1981). Here

the medium being probed is the sediment at the ocean bottom. A

typical experimental set-up is illustrated in Figure 7.1. A pulsed, CW_

source is towed behind a ship, and hydrophones are used to measure

the reflection response of the sea floor. The hydrophones are

connected to DIBOS (digital buoy system) receivers consisting of a

quadrature demodulator, digitizer, and cassette recorder. In the

experiment performed by Frisk et al. (1981) over the Hatteras abyssal

plain, the battery-powered source emitted a four-second burst at 220 Hz.

every fourteen seconds, while being towed at 0.5 knots. The four-

second burst was long enough to achieve a sinusoidal steady state. In

general, the experiment takes place over a range of up to 10 kin, and

interest in the inhomogeneous sea bottom (well-modelled by a layered

medium since it is formed by sedimentary processes) centers on the

first 400 m.

Previous work

Coen (1982) solved the free surface configuration of this inverse

oo °. -
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7.1 Experimental set-up for the inverse problem.0
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problem by employing the Gel'fand-Levitan method of Weidelt (1972) to

solve the inverse scattering problem for the resulting Schrodinger-like ,

equation (equation (7-5) in this chapter). His procedure requires two A

inverse Laplace transforms (part of the Weidelt (1972) procedure), and

the solution of two Marchenko integral equations, with c(z) and a

differential equation for p(z) being obtained from the resulting potentials.

The assumption of post-critical incidence (c(z) - c(O) for all z) is

also required. Stickler (1983) solved the half-space configuration by

using trace methods (Deift and Trubowitz, 1979) to solve the inverse

scattering problem for the resulting Schrodinger equation (equation

(7-8) in this chapter). This requires the solution of a nonlinear .:

differential equation and also requires that there be no trapped modes.

Trapped modes are square-integrable solutions corresponding to a

wave-guide-like effect, which can arise in low-velocity zones.

In both of these approaches methods of mathematical physics are

used to solve the inverse scattering problem. This leads to additional

assumptions (post-critical incidence, no trapped modes) being required,

and prevents insight into the workings of the inversion procedure.

Summary

In Section 7.2 the half-space configuration of the two-frequencies bk.

inverse seismic problem is formulated as a Schrodinger equation inverse

scattering problem, as in Stickler (1983), and solved using the fast

algorithm developed for Schrodinger equation inverse scattering problems

presented in Section 2.3.5. This algorithm is simpler than the trace

formula method used by Stickler (1983), since there is no need to

generate Jost solutions of the Schrodinger equation numerically. A

dynamic deconvolution version of this algorithm is also presented.

•; -. ,-
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In Section 7.3 the free surface configuration of this problem is

formulated as a Schrodin ger- like equation, as in Coen (1982), and

solved using a variation of the fast algorithm for direct recovery of

Schrodinger equation potentials presented in Section 2.3.5. This

algorithm replaces the Marchenko integral equation whose solution is

required in Coen (1982). However, an inverse Laplace transform is still

necessary. The necessity of an inverse Laplace transform of the

reflection data for the free surface problem is tied to the use of post-

critical data; since exponentially-decaying evanescent waves are being

used to probe the medium, there seems to be no way to avoid the

inherent instability of the inverse Laplace transformation. The dynamic

deconvolution version of this algorithm does not require an inverse

Laplace transform, but does require another unstable operation.

In Section 7.4 the two fast algorithms are illustrated in action.

The half-space algorithm is run on a computer to solve the inverse

problem from synthetically generated data. The free surface algorithm

is illustrated by a simple analytical example in which numbers that would

be generated by a computer are replaced by actual analytical expressions

for the waves, reflection response, potential, etc. The example is in

fact the same example Coen (1982) used to illustrate his solution

procedure for this problem.

Finally, in Section 7.5 the inverse resistivity problem is briefly

described and then solved using a layer stripping algorithm due to Levy

(1984). The relevance of this problem to this chapter stems from the

fact that the inverse resistivity problem is mathematically analogous to

the two-frequencies acoustic medium inverse problem with a rigid surface

and constant wave speed c(z). This rather surprising analogy allowed
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the method of images interpretation of the inverse resistivity problem

inversion procedure to be applied to the two-frequencies acoustic medium

inverse problem as well.

This last point is particularly important, since the physical

interpretation of the algorithms of this chapter is considerably different

from that of previous chapters. In this chapter, the layer stripping

concept is used in a novel way. Instead of generating upgoing and .,.

downgoing waves as functions of time at each depth, the layer stripping

algorithm generates a continuous distribution of image sources as functions

of a fictitious depth coordinate, at each depth. These image sources

synthesize the medium's sinusoidal steady-state response at each depth.

The strength of the first non-zero image source (analogous to the first

reflection discussed in earlier chapters) yields information about the

medium at the current depth and allows the algorithm to be propagated

to the next depth. Note that in addition to its computational simplicity,

all quantities in the algorithm have physical interpretations, which allows

considerable insight into the workings of the inversion process. This

could be useful for interpreting the causes of numerical difficulties caused

by the physics of the experiment. Note also that it is not necessary to

assume the absence of trapped modes, or that the experiment be

restricted to pre- or post-critical incidence.

7.2 The Half-Space Problem

7.2.1 Formulation of the Problem

The problem considered in this section is as follows. A continuous

layered medium, laterally homogeneous, is bounded above and below by

two infinite homogeneous half-spaces. A point pressure harmonic source

*-'-'
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is located in the upper half-space, and is used to probe the layered

medium with sinusoidal spherical pressure waves. The pressure reflection

response of the layered medium in the sinusoidal steady state is measured

in the upper half-space as a function of radial distance r from the

source. The situation is illustrated in Figure 7.2. The goal is to

recover the profiles p(z) and c(z) of the layered medium by performing

this experiment twice, at two different source frequencies.

The medium behavior is assumed to be described by the basic

linear equations for fluids (3-i), which are

..20

= 2  VP (7-1a)

2PC V-u .7-lb)

Here u is medium displacement and p is pressure (negative isotropic

stress). Noting the cylindrical symmetry of the problem and the

assumption that the medium is in the sinusoidal steady state, a Fourier

transform with respect to time t is followed by Hankel transforms of

order zero of (7-1b) and the z-component of (7-1a), and by a Hankel

transform of order one of the r-component of (7-1a). This combination S L

Fourier-Hankel transform is sometimes called the Fourier-Bessel transform.

The result is

PC (d fz + r (7-2a)

p2 (7-2b)
r

o (7-2c)
z dz

. -. . .. 0
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7.2 The half-space inverse problem.
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where

, = HoF[p(r,z,t)] (7-3a)

u ( z,W) = HOF[uz(rz,t)] (7-3b)

Ur(, z,w) = HiF[ur(r,z,t)]. (7-3c)

Since the sinusoidal steady state is assumed, the time dependence for the

quantities (7-3) is e - j wt. Since cylindrical symmetry is assumed, r is •

the lateral wavenumber k
r

Eliminating ir and Uz from (7-3) and defining the normalized pressure
r z

TtC~, )= fI/ Vp (7-4)

yields the Schrodinger-like equation

d 2  2 - )i = 0 (7-5)

dz2

where the potential V4 is given by

=) Z"/Z W 2 /c(z) 2  (7-6) S

Here Z 1/ Vp and the double prime denotes the second derivative with

respect to z. Note that (7-5) is not a true Schrodinger equation, since S

2
the energy term -C is always negative. The equation (7-5) was derived

by Coen (1982) for the free surface inverse problem.

A true Schrodinger equation can be written using the vertical "

. ..
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wavenumber k, defined by

k z  2 (2/c- 2) 2 (7-7)

0

where c is the (known) speed of sound in the upper half space. From

(7-5) we have

(- + k2 - Vk)ir= 0 (7-8)
dz 2  z

where

2 2 2 2 zt/Vk(zu) = 2/e _ 0 /e(z) 2 + Z"/Z (7-9)

The equation (7-8) was derived by Stickler (1983) for the half-space

problem.

For the half-space problem the Schrodinger equation (7-8) is used

with the boundary conditions.

(e-Jkz(z-zo) + R(k ,jekz(z+z)) /jkz.

z < z < 0

-,Z 9w)= T(/cO k k~IZW)

(T (k zP)e-JF-o))/jk z ,9 z > z F •

(7-10)

Here the sources and receivers are located at z =z < 0, R(k ,) is

the (measured) plane wave reflection coefficient, T(k z , 3)is the

(unknown) plane wave transmission coefficient, and k= (,2 /C(zF)2

E) is the vertical wavenumber in the lower half space. These boundary

S -3.
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conditions amount to a radiation condition--it is assumed that there are no

upward travelling pressure waves in the lower half space. Note that the

reflected wave seems to arise from an image source located at z = -z o. 1 D .1

This accounts for the change in sign of z. '

The form of (7-10), in particular the factor 1/jk, can be obtained byz

considering the Sommerfeld integral

(e> R/e)/R = (1/jkz)e- IzIJo(krr)krdkr (7-11a)

A 2 2j
R (r +z (7-11b)

This integral decomposes a monochromatic spherical wave into a superposition

of cylindrical waves of varying wavenumbers. The advantage of this is
-S.

that the response of the layered medium to a spherical wave can now be

written as the superposition of the responses to cylindrical waves (Aki

and Richards (1980), p. 200). Thus we may write

Plr,z,,)/'-= (1/jk)e kz (z-zo) Jo(krr)krdkr

(7-12)

+ fo(I/jkz)R(k z , )e
k z  Jo(krr)krdkr, z0 < z < 0

where the pressure field has been written as the sum of an incident field

due to the source and a scattered field due to the layered medium. Since

cylindrical waves are being used, the plane wave reflection coefficient

R(kzcw) expresses the response of the layered medium. Recognizing the

two integrals in (7-12) as inverse Hankel transforms, it is seen that taking .

the Hankel transform of (7-12) immediately yields (7-10).

It should be noted that Stickler (1983) uses Jost solutions to the

Schrodinger equation (7-8) and obtains the factor l/jk from a Wronskian.

Here the origin of this factor is explained in a different, more familiar

7P:.%
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setting. It should also be noted that the inverse problem represented

by equations (7-8) and (7-10) can be solved given knowledge of

R(k J for either all -and two k /- or all k and two .. Mathematical
z z z

physics solutions to these dual problems may be found in Coen (1982)

and Stickler (1983), respectively, while layer stripping fast

algorithm solutions may be found in Chapter IV and the following

section of this chapter.

A comment on the measurement of R(k ,) is also in order. Note

that R(k , ) is obtained from the Hankel transform of the pressure

reflection response, which is a function of the lateral wavenumber E.

This means that R(k, ) is known only on the positive imaginary kz -

axis (corresponding to post-critical incidence), and on the positive

real k axis as far as w/c 0 (see Figure 7.3). Stickler (1983) has

pointed out that R(kz ,U.) may be obtained for k z > w/c 0 from its values

on the imaginary axis by using a complex procedure due to Van Winter

(1971). He also remarks that his numerical results indicate that the

contribution of R(k ,w) for k > w/c0 seems to be negligible for real-

world problems. Our own results (Section 7.4) seem to confirm this.

It should also be noted that the physical measurement of the pressure

reflection response is a far from trivial problem. Mook (1983) is a

good source on the subject; see also Frisk et al. (1980).

7.2.2 Layer Stripping Solution of the Half-Space Problem

In this section a procedure taken from Section 2.3.5 is used to

obtain a layer stripping, fast algorithm solution to the inverse problem

represented by equations (7-8) and (7-10). An interesting physical ...-

interpretation of the operation of the algorithm is also provided.

... .............................
. . . . . . . . .. . . . . . . . . . . . . -.. '
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7.3 Rein where R'k ' may be computed from data.
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Define the reflectivity function r(z,w) as the solution of the

following differential equation (the Miura transform)

where r(O,w) will be specified later and wis a parameter. Define the

potential Vby

2 drr + Lr V (ZW) (7-14)

and let Q(E ,z,w) solve the auxiliary Schrodinger equation

2d 2+- k -V,)y =0 (7-15)d 2  z ~

with boundary conditions

(e~k( 0  R(k j~eJZZZ )Ijk ,Z<0z z
0 "2 2 2

0 Z

(T (k ,wJe -kF(z-zo))Ijk Zz >z F

* (7-16)

Now define

D D(k zZ u') (7, + ~)/2 (7-17a) ml"

z

* Then, Dand Usatisfy the coupled system of differential equations

bomA
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'A

=rl zr- (7-18)

To see this, note that taking the derivative of (7-18) with respect to

z decouples (7-18) into the two Schrodinger equations (7-8) and (7-15).

Multiplying (7-18) by jk and taking the inverse Fourier transform

., with respect to k yields the coupled wave system -zz

(- + (Z, ) = -r(z)U(z, ) (7-19a)

S z, ) -r(z)D(z,0) (7-19b)

where

V A -1
D(z,i) Fk [jk 2D(k ,z)] (7-20a)

V A -1

z

0

i.e., the inverse Fourier transform has taken k into the fictitious depthz

coordinate , and the parametric dependence on . has been dropped.

The system (7-19) is referred to as a coupled wave system since D and

V
U can be interpreted as waves in z and C propagating through the ..

inhomogeneous layered medium. The inhomogeneity of the layered medium

is expressed by the reflectivity function r(z), which causes portions of * :

each wave to be reflected into the other wave. In the upper half-space - -

V
equation (7-13) shows that r(z) = 0, which makes the wave nature of D

V
and U apparent. Although it is not yet clear what these waves are, i.e.,

how they could be interpreted physically, this will soon be made clear.

.
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The initial conditions for the system (7-19) are obtained from the

boundary conditions (7-10) and (7-16) for , and , and also equations

(7-17) and (7-20). They are:

V
D(O, 4 ) = 6(c) (7-21a)

U(0 -R() (7-21b)

where -() is the unit impulse function and R( ) is the inverse Fourier

transform of Ri(k ). The forms of the system (7-19) and initial conditions
z

V V
(7-21) make it clear that D(z, ) and U(z,C) have the general forms

V V
D(z,) = 5(4-z) + D (z,)1( -z) (7-22a)

0

V V
U(z,C) = U (Z,)1( -z) (7-22b)

0

where 1(-) is the unit step function. This expresses a causality

principle--at a given depth z both waves are zero until > z, i.e. , until

the "wavefront" passes.

The Layer Stripping Algorithm

Substituting the forms (7-22) into the system (7-19) yields

r(z) = 2U(z,z+). (7-23)

V V
The smooth parts D (z,) and U o(Z,;) of the waves (7-22) can now be

propagated using (7-19), yielding r(z) by (7-23). This is of course the

fast Cholesky algorithm, and while the derivation of it has been familiar,

the setting is not. The algorithm is initialized using the initial conditions

(7-21), which requires only the inverse Fourier transform of R(kz).

z .

*- - - - - - - - - - - - - - - ---. .,..:,_ :,: .:c: .. . • :.". "' " .. >- : " - ":. """: ""r - -.'. --':- '-.--.-':-'-_
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V

Note that r(O) is now specified by equations (7-21b) and (7-23) as 2R(O).

The layer stripping algorithm yields r(z), from which Vk(z) can

immediately be obtained by using (7-13). By running the experiment

twice, at two different source frequencies w, and w2, the two potentials

Vk(ztW1 ) and Vk(z w2 ) are obtained. We then have, using (7-9), .I

1cz2 - i2 2_21 /C - (Vk(Z,w 1 ) - Vk(z, 2))/(lW2 ) (7-24a)

Z" /Z CW2 - 2 2 2 (724b)2 (2k(Zu-l) - lVk(Zw2))/(0w2-wlI ) (72b ,

S.-.

and the differential equation (7-24b) can then be solved for Z = 1/ "-,

Note in particular that if the profile p(z) is smooth, the initial conditions

for (7-24b) are Z(0) = 1/p-- and Z'(0) = 0. Otherwise, knowledge of
0

p'(O) is required.

If z and are discretized by z = na and ¢ = mA, where m and n

and positive integers and A is the discretization length, then a forward

difference approximation to the partial derivatives in the coupled system

yields the following explicit form of the layer stripping algorithm: 0

V VV
D(z+A, ;+A) = D(z,4) - r(z)AU(z,4) (7-25a)

V V V
U(z+A, 4-,) = U(z, 4 ) - r(z)AD(z,C) (7-25b)

V
r(z+A) = 2U(z+A, z+A). (7-25c)

The recursion patterns for and U are illustrated in Figures 7.4a and 1

7.4b. We start off knowing the waves at z for all , and wish to update

them to z+A for all . Although the forms of the recursions may make it

seem as though some information is being lost, recall that by causality

* *.-** . * . .--- *-- . . . . . . . . . . . . . . . . . . .-.
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D(z) D(z +A)

.0'sope =I

IP Z

o z z +A
7.4a Recursion pattern for updating the owgoing waves.

bt
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V V
and D(z,4) and U(z, ) are causal, in that both are zero if < < z.

In equation (7-26) the normalized pressure Tr(r,z) has been written

as a superposition of contributions due to a continuous distribution

of point sources along the (fictitious) C axis. The strength of the
".'

V bpoint source at 4 is IT(z, )d. Each source emits a spherical wave

which travels in a (fictitious) medium with constant sound speed c 0 .

This is illustrated for a single element of the continuous distribution

'(z, 4) of sources in Figure 7.5. Similar interpretations hold for D, D9

V *
and U. Note that the origin of the C axis corresponds to the depth z

on the z axis.

Thus the layer stripping algorithm is decomposing the medium

response at each depth into a superposition of responses due to image

sources, located in a (fictitious) medium of constant speed of sound c

and distributed along a (fictitious) depth coordinate 4. The causality
V V V V

of D, U, Tr, and * is due to the fact that an image source is never

located within the medium wherein it is to simulate a response; it is

always "in the looking glass ," so to speak. Thus any image source

that is supposed to simulate a medium response at depth z must be

V
located deeper than z in the fictitious -axis medium, i.e., V(z,4) = 0

unless 4 > z. This corresponds to a depth deeper than 2z on the z-axis,

which is as expected since the image source is an image of the actual

source, which is located at the surface. This image source causality

replaces the time causality (i.e., the medium response at a given

depth is zero until the probing impulsive plane wave has had time to

reach that depth) generally used in layer stripping algorithms, but

unavailable in the present problem since the sinusoidal steady state is

assumed.

a- .7P-
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it is known that both waves are zero for C < z. It should also be noted

that equations (7-13) and (7-24b) can be approximated by differences,v
so that if the two layer stripping algorithms initiated by R( ,w1 ) and

V
R( , 2 ) are run concurrently, p(z) and c(z) may be outputted

immediately, reducing considerably the amount of storage required.

Physical Interpretation of the Layer Stripping Algorithm

Although the layer stripping algorithm consisting of equations (7-19)

and (7-23) could certainly be run without any physical understanding of

the quantities involved, a major advantage of layer stripping algorithms

is that the inversion procedure can generally be interpreted in

physical terms. This is helpful in interpreting any unusual behavior

or results of the algorithm. Thus we now give a physical interpretation

of the algorithm and its operation. To make things clearer, let the

source and measuring devices both be located at z = 0.

VV V
Defining 7T(z,z) in the same manner as D and U (equation (7-20))

and using the Sommerfeld integral (7-11), we have for the normalized

pressure frequency response iT(z,r,w) at the source frequency w: J-

7,(z,r) H [YV(z,) ,) H-[(11jkz) f'_(z,;e - kz¢ dl"

GO (7-26)

[d;= f zQ(1/R)e 0 d-

where

R v/r2 + 2 (7-27)

and the lower limit of the integral has been replaced by z because

* V V :
Tz = D(z,C) + U (z,) (7-28)

*':,.:

. . . . . . . . i2
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7.5 Y~,)interpreted as a sequence of image sources
emitting spherical waves.
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The advantage of this decomposition into image sources is that the

V
first image source (i.e. , the first non-zero value of U(z,4), which is

V
U(zz+)) clearly has the responsibility of simulating the primary

reflection from depth z. This image source should thus have strength

r(z)/2, since the actual measured response must travel down from the

source to depth z and then back up, while the image source response W

need only travel up from depth 2z to depth z, where the response is to

be simulated. This immediately gives equation (7-23), which is comparable

to the usual layer stripping property that the first arrival from depth z Imam

is the primary reflection from that depth, and its strength thus gives

the value of the reflectivity function r(z) at that depth. Since multiple

reflections must be accounted for, the image source distributions are

non-zero in general for all ; > z; however, they quickly decay toward

zero since the higher the order of a multiple reflection, the weaker the

reflection.

In the particular case of a constant sound speed medium, i.e.,

c(z) = c0 , equation (7-13) can be solved to give an explicit formula for

r(z)

r(z) - (l/Z)(dZ/dz) (7-29)

which can be immediately integrated to give

z°

(z)= p0 exp (2 r(u)du) (7-30)

This avoids the necessity of computing r'(z) to obtain the potential Vk(z)

in (7-13), and also avoids the differential equation (7-24b) for Z. It

would be a great convenience if a closed-form expression for r(z)

- . . . . . . . . . . . . . . . . . . . .. : -1
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could be obtained for the general case of varying c(z), but there seems

to be no closed-form solution to the Riccati equation (7-13).

Dynamic deconvolution algorithm

The dynamic deconvolution algorithm associated with this fast

Cholesky algorithm may be derived quickly. Defining the reflection *

oefficient Rk(z,Zw) for the portion of the medium beneath depth z as

Rk(kzz -= U(k Z',w)/D(k~ ,Z9L") (7-31)
,%k k~z ^( z  (z t

we have from (7-18) the Riccati equation

dR (k Zyw) "2 (7-32)
-z kk ' 2 jkRk - r(1 - Rk)

and from (7-23) and the final value theorem

LIM 2jk~k (7-33)
k z k
z

The algorithm is initialized using

R (k 0,w) R(k W) (7-34)
k z' z

This algorithm has the usual interpretation of defining a new,

smaller, inverse scattering problem at each depth z. The reflection data

at each depth are contained in Rk(kz ,z,) , and the problem support is .

reduced at each step from [z,-) to [z+A, oo).

The equation (7-33) for obtaining r(z) from Rk(kzz,J) for large

k can be interpreted physically as follows. A large value of k
z z

corresponds to probing the medium at normal incidence with a very
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short wavelength. For such a short wavelength, only the very top of

the medium, whose inhomogeneity is contained in r(z) (recall the problem

support is I z,c)), will affect the reflection response--the rest of the --

medium is effectively too far away. Hence the high-wavenumber behavior

of R k (k zZ) should contain information about the reflectivity function

for waves in z and , viz, r(z), as (7-33) shows.

A similar interpretation can be applied to (3-42) of the normal-

incidence inverse problem dynamic deconvolution algorithm. Here the

short wavelength corresponds to a high value of w, since the waves are

in z and t rather than in z and C.

7.3 The Free Surface Problem

In this section the second configuration of the inverse problem is

formulated, and a fast algorithm solution derived. Instead of being

bounded by two infinite half-spaces, the inhomogeneous layered medium

is bounded above by a free surface (pressure release surface) at z = 0,

ana is assumed to extend to infinite depth. The point pressure

harmonic source is located at the origin, just below the free surface,

and the acceleration of the medium at the free surface is measured. The

situation is illustrated in Figure 7.6. The goal is once again to

reconstruct the profiles p(z) and c(z) by performing the experiment

twice, at two different source frequencies. The depth to which the

medium profiles are reconstructed is limited in a practical sense by the

strength of the source relative to the ambient noise at that frequency.

Coen (1982) solved this problem by using a Gel'fand-Levitan-type

procedure due to Weidelt (1972) to solve the Schrodinger-like equation

(7-5). Coen's method requires two inverse Laplace transforms, the
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solution of two Marchenko integral equations, and the assumption of

post-critical incidence (i.e., c(z) 2- c(O))--a most restrictive assumption.

The present method does not require post-critical incidence and uses

a fast algorithm directly on the basic equations of the problem,

bypassing the necessity of setting up and solving an integral equation.

Unfortunately, an inverse Laplace transform, or solution of an

equivalent integral equation, is still necessary in preprocessing the

data. On physical grounds this seems to be unavoidable, since Coen -

(1982) has pointed out that the use of any post-critical data requires

probing the medium with evanescent waves, which will lead to an

unstable inversion for large depths since the probing wave decays

exponentially with depth.

Since k is imaginary for post-critical incidence, and since some

post-critical data must be used, we now work with the lateral wavenumber

. Recall the Schrodinger-like equation (7-5), which is

62 r2
(d - - V )r = 0. (7-35)

Define a new quantity ,z,w) by

p(;,z,w) A= (_-+ )r = . 2 / -tz-fr)- (1/2p)(dp/dz) -

(7-36)

= v i ( -az) - (1/2Q)(dp/dz)--rz

where the a. are appropriate Hankel transforms (see equations (7-3b)

and (7-3c)) of the medium acceleration components and equations (7-2b)

and (7-2c) have been used to interpret p. Equation (7-5) can then be ,

written as the coupled system

r.*io

.- -1°
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d (7-37)dz b.
@1I

The initial conditicns at the free surface z 0 are

( ,0,w) H[b6(r)/rl b (7-38a)

, -/(0) fz( oW) (7-38b)

where the source term [b (r)/r] has been included in the TT initial

condition and b / (O) is the strength of the harmonic source in units of

pressure. Note that the radial acceleration A vanishes on the freer

surface.

Since the measured quantities (accelerations) now have dimensions,

the strenoth of the source must now be specified, unlike the previous

problem in which the dimensionless reflection response was measured. 0

Comparing the coupled system (7-37) with the coupled system (7-18)

of the previous problem, it seems we are stymied. Since the diagonal

elements are real instead of imaginary, an inverse Fourier transform with •

respect to is not appropriate. However, a similar system has been

encountered in considering the inverse resistivity problem (see Section

7.5) and following an approach similar to that treatment we define 0

V(z,C) L [7( ,z)] (7-39a)" "

V A -1[(& (7-39b)¢ (z , ) =L-

i.e., the inverse Laplace transform has taken F' into , and the parametric

dependence on has been dropped.

........................

-, . -



Taking the inverse Laplace transform of equation (7-37) yields

3VV
(I+ (Z')T Tr,(z (7- 40b)

with the initial conditions (from equations (7-38))

V OtTr (0, W(7-41a)

- ~'67ji~L t~ (~O)](7-41b)

As before, the forms of the system (7-40) and initial conditions (7-41) make

V V
it clear that IT(Z,r) and (z, ) have the forms

V Vb6 (C-z) + 7r (ZC (-Z) (7-42a)
0

Y =' Y0 (z,01(c-z) (7-42b)

(not tht eqatin (-40a shws hat illnot ontin n imuls) s

VV

that 7r and t; both obey a causality principle, as before.

The Layer Stripping Algorithm

Substituting the forms (7-42) into the system (7-40) yields

V,(z) = - 2(z,z+)/b (7-43)

and the system (7-40) and condition (7-43) together form a layer stripping

algorithm that recursively eenerates the potential V,(z). The update J

V V
patterns for 7T and (t are again given by Figures 7 .4a and 7.4b, respectively.
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By running the experiment twice, at two different source frequencies

1 and w2' the two potentials V (z,W 1 ) and V (z, 2 ) are obtained. We @5:

then have, from equation (7-6),

2. 2

c(z) = 2 _I)I(V (z, 1 - V(zW))] (7-44a)

222 2 ''"

Z"/Z U V (z, W W (z,, 2))/(2 - 2 (7-44b)

and the differential equation (7-44b) can then be solved for Z =11/ .

Two comments are in order here. First, the initial conditions (7-41)

for the layer stripping algorithm require that the medium acceleration data

be Hankel transformed and then inverse Laplace transformed. These two

operations may be replaced by the solution of an integral equation derived

below. Second, the coupled system (7-40) describes anisotropic scattering,

since the "reflectivity functions" 1 and V are different for waves

travelling in different directions. However, by utilizing the layer

stripping algorithm in this form, the necessity of differentiating r(z) in

equation (7-13) is avoided. 
-

Physical Interpretation of the Layer Stripping Algorithm

The layer stripping algorithm for the solution of the free surface • .

inverse problem also has the physical interpretation of constructing

distributions of image sources that simulate the response of the medium at

each depth. There are, however, some differences from the previous

interpretation. In addition, an integral equation is derived that offers an

alternative to the necessity of Hankel and inverse Laplace transformation

of the data prior to use of the layer stripping algorithm.

Since , determined from the data, is used to initialize the algorithm

"-.- .7 'i ---.'-."-' '-" -"'"" '. € .", " -. '.--:. - -" •" -" "" ,". " "' "'" "- "- "- ", "-- -',-i --.. "" "' "', -'- ". ", "-2'-- -4
"- 1
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we write (dropping the parametric dependence on )

t(r,z) H-l[ ( ,z)] H-lf (z,4 )e-d4] --

f-e--]d4 = z,(z,C)(H/(e +r2) )d4
0 0

f(z,)cos e(;,r)/(42 +r 2 )d4 (7-45)
0

where e is shown in Figure 7.5.

Thus (r,z) can be written as a superposition of fields due to a

continuous distribution Y,(z, -) of image sources distributed along the

fictitious depth coordinate ;. Note that the image sources no longer

generate spherical waves; each source generates a field that drops off

inversely with the square of the distance from the source. The vertical

components of the fields at radius r are then integrated to get . This

is consistent with the interpretation of t as a measurement of vertical

acceleration. The comments made in Section 7.2 on causality and

interpretation of the first non-zero source as yielding information about

the medium still hold, with two changes. First, the information about the

medium is now the downgoing reflectivity function, which happens to be

the potential V,(z) (see equation (7-43)). Second, the necessity of

maintaining zero pressure on the free surface away from the source implies

that a mirror image of the distribution of pressure image sources must

V
exist above the free surface, i.e., (z,;) is an odd function of i

(since the image sources above the surface must have opposite sign to

maintain zero pressure at z = 0). Since the free surface acts as a mirror

itself, these additional sources do not affect the interpretation in any way.

n A
iO .:1

...................................................... .'
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The interpretation given by equation (7-45) allows an alternate means

of initializing the layer stripping algorithm from the data. Setting z = 0

in equation (7-45) and taking the inverse Hankel transform of equation

(7-38b) yields

V 2 1
$(r,O,w) = - / az(r,O,w) =r (,)(1(2+ )2 )d4 (7-46)

0

This integral equation may be solved for (0, ), which is then used to

initialize the algorithm. Solving this integral equation may be preferable

to Hankel transforming and then inverse Laplace transforming the data,

depending on how the data were obtained.

Dynamic deconvolution algorithm

A dynamic deconvolution algorithm may be associated with the free

surface layer stripping algorithm as follows. Defining the reflection

coefficient

RE( ,z,) = (F,z,W)/ ( ,z,) , (7-47)

we have from (7-37) the Riccati equation

id 2
dR 2R + V -R (7-48)

and from (7-43) and the final value theorem for Laplace transforms,

V.(z,-) =LIM - 2 R'( ,z,.) (7-49)

The algorithm is initiated using

I . J
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a (,0 ,,)/(bo(0) ) (7-50)'z
The equation (7-49) for obtaining V (z, ) from R ( ,z,:) for large P .

can be interpreted physically as follows. Probing the medium for large 0.

values of the lateral wavenumber amounts to probing the medium with

evanescent waves, since is greater than any possible value of w/c(z)

and thus the local vertical wavenumber

kz(Z) G 2 /c(z)2 _ 2 (7-51)

is imaginary. Since is large, jkz (z) is large and negative, and the

evanescent waves decay very quickly with z. In the limit as -

the waves sense nothing but the reflectivity function at the surface z.

Since the reflectivity function for the downgoing iT wave is V, the high- ,

behavior of R determines V This argument is taken from Frisk (1979).

7.4 Simple Illustrations of the Algorithms

We give two quantitative examples of the algorithms in action. The

first example is a very simple analytical example due to Coen (1982) for

the free surface problem. An analytical example is used to avoid problems

in numerically computing the inverse Laplace transform. In this example,

V V
actual analytic expressions for T(z,0 )and (z, C) are obtained and shown

to satisfy the coupled system (7-40) as well as the condition (7-43).

Hence a computer run of the algorithm wouid have generated the same

values. In the second example an actual computer run of the algorithm

for the half-space problem is made on synthetic data generated using

the reflectivity method by a program due to Kind (1976). Results are

5%,. ..
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* excellent, confirming that the bandlimitation of the vertical wavenumber

*k zby L'/c 0is not a serious problem for realistic numbers.if.

*7.4.1 Free Surface Problem -- Analytic Example

This example is due to Coen (1982). Let the profiles be given by

2c~z) =co; P(z) Po/( + hz) .(7-52)

Since Z =1/ /VP, we then have

(z,-0 2c 0 2 (7-53)

0A

and T(,z,w) satisfies

2 2d - ~~2 2 2'~(-4+ W /c )T 0 7-4
dz2 0

The solution that satisfies the boundary condition (7-38a) and the

radiation condition is

2 2 2j75Tr(,z~)) b exp w-( c c0) zi (755

Using

L[ [1(a(t 2_z 2)1)1(t-z)J (exp(-z(s 2_a)))/(s -_a 2

=(-1/zs)(d/ds) exp(-z(s2 -a 2  (7-56)

where I is the modified Bessel function of the first kind of order

0*
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zero we have that

V L 1 2_ 27T(z, C) L [ir( ,z)] bz(1/M)d/d0)0 ((W/C 0 ) (C z ) l(-z)

2_~ 2 2_ 22
b -z) = (dc 0 1 ( /C 0 ) MC( z )I-Z) (-7

bz/V~ z 2V2 2_ 2 2_ 2
-z T z CCl 0 / -0 1 0 2I(w 0 (-z)

2_ 2~
-z )I11-z). (7-58)

Now, the surface data will consist of

d

as well as

cCO) c; P(0) Q() do(0)/dz -2c 0 h .(7-60) V

Thus the inversion problem is to reconstruct the profiles p (z) and

c(z) from the surface data (7-59) and (7-60). Taking the inverse

Laplace transform (analytically!) of (7-59) yields

(O,O) (bc 0 )1 1 (C/C 0 ) /;(,) .(7-61)

* 0
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and of course it is known that

it(0,C) = b() (7-62)

The initial conditions (7-61) and (7-62) are used to initiate the layer

stripping algorithm consisting of equations (7-40) and (7-43). Propagation

V Vof the algorithm will yield, in numerical form, Tr(z, r) and q(z, ), which

are specified analytically by equations (7-57) and (7-58).

At each depth the potential V is being reconstructed using

- V V 2 2
V = 2(z,z+)b =- (2/b) lim (z,) = - /c o  (7-63)

where we have used

li ii(x)/x = 1/2 (7-64)
x *O I-

Then, using equations (7-44) yields

c(z) co  (7-65a)

Z"/Z= 0 (7-65b)

and (7-65b) is integrated to get

Z(z) = I/ (z) = C1 + C2 z (7-66) O

which implies

P(z) = 1/(C + C z) 2  (7-67)1 2

where the constants of integration C1 and C2 are obtained from (7-60).

Thus the profiles (7-52) have been recovered.

...- -.. i
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The dynamic deconvolution algorithm applied to this problem works --

as follows. We have from (7-55) that

d = 2- 22j
(U- +c 0 ) ) (7-68)

which agrees with (7-59) at the surface z = 0. The reflection coefficient

R (C,z,w) is then -.

R = = -2 /C (7-69)

and a simple substitution shows that R as defined in (7-69) does indeed

satisfy the Riccati equation (7-48). Hence the dynamic deconvolution

algorithm recursively generates the R_ in (7-69), with V. obtained from

(7-49) as

LIM LIM ..

LIMLIM2 2 2~ 2 2
VC = -Rc= 0 -2,(E,- (2 _ /c 0 )) =- /c o  (7-70)

Then (z) and c(z) are recovered as was done using (7-65) - (7-67).

7.4.2 Half-Space Problem -- Computer Run

A reflectivity method computer program due to Kind (1976) was

employed to generate reflection coefficients for various wavenumbers for

a fifteen-layer medium at two different source frequencies 20 Hz and 30

Hz. The density profile, in units of specific gravity, was a variation

from 1.4 to 2.0 and back down to 1.4 in steps of 0.1, in order to

simulate a continuous medium. The sound speed was held constant at

2 km/sec., and the step size A was 50 m. The thickness of the

inhomogeneous medium was 1.3 km (13 layers, each 100 m thick).

*.:...
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The inverse Fourier transforms required by equation (7-21b) were

implemented using a 512-point FFT, and the algorithm was run on a

VAX-11/782 computer. The differential equation (7-24b) was solved

recursively as the algorithm proceeded, using a simple difference scheme

to implement the second derivative. Despite the simplistic numerical

implementation, the resulting reconstruction was extremely accurate.

Figure 7.7 shows the close agreement between the actual and reconstructed

density profiles; the largest error is 1.5%. The reconstructed sound

speed profile was correct to five decimal places. Apparently band-

limitation of R(k by /c 0 is not a serious problem for realistic data.

It is worth noting that the experiment could be run for several

source frequencies and the various computed p and c updates could be

averaged and then reinserted into all of the concurrently running algorithms .-

at each depth. This averaging could reduce the effect of noise in the A-

data. 0

7.5 The Inverse Resistivity Problem

7.5.1 Formulation of the Problem

In this section we formulate the inverse resistivity problem for

direct current measurements, and solve it using a layer stripping algorithm.

The relevance of this problem to this chapter stems from the fact that •

this problem is mathematically analogous to the inverse problem for an

acoustic medium probed at two frequencies, if the wave speed c(z) is

constant and a rigid surface boundary condition is assumed. Since c(z) 0

is constant, probing at one frequency suffices, and this frequency is in

fact = 0 (DC). This rather surprising fact allowed the method of images

interpretation of the inverse resistivity problem algorithm to be applied 0

to the inverse problem for an acoustic medium as well. The results of
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7.7 Comparison between actual and computed density
profiles (2 =actual, 3 =computed).
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this section are taken from Levy (1984).

The inverse resistivity problem with direct current measurements is

formulated as follows. The earth is assumed to be a layered medium
4_

characterized by its conductivity a(z), which varies only with depth

(conductivity is the reciprocal of resistivity). Some direct current I VK

is introduced into the medium at the origin, and the electrical potential

v(z = 0, r) is measured at the earth's surface. The object is to

reconstruct a(z) from v(0,r). A somewhat more realistic version of this

problem, in which the Schlumberger electrode configuration is used to

2measure the apparent resistivity -(Ov/3r)/(I/2rr), is also considered in

Levy (1984).

Details of past work on this problem are given in Levy (1984);

however, three references are worth noting. Coen and Yu (1981) used

the transformation procedure of Weidelt (1972) in order to solve this

problem by the Gel'fand-Levitan procedure; this method requires an

inverse Laplace transform and solution of a Marchenko integral equation,

and bears a marked similarity to the method of Coen (1982) for solving

the inverse problem for an acoustic medium probed at two frequencies. 0

Kunetz and Rocroi (1970) derived a fast algorithm for solution of the

discrete inverse resistivity problem; although they did not recognize it

as such, their algorithm was in fact the Levinson algorithm for solving

the discretized Narchenko equation. Pekeris (1940) derived the discrete

version of the dynamic deconvolution Riccati equation (7-97) below; the

recursion of Pekeris (1940) is in fact identical to the recursion (3-77) OF

used for the Schur-Cohn stability test. It should be evident how these .

methods are linked together by the results of Chapters II and III of LI
this thesis. ,.]

4.,

i o1
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Mathematical formulation of the problem

From Ohm's law and the law of conservation of charge, the basic

equations of the inverse resistivity problem are t..

i(z,r) a(z) V v(z,r) (7-71a)

0 (7-71b)
= € .'r) = 0

where v(z,r) is electrical potential and i(z,r) is current density. Since

current I is being introduced at the origin, the vertical component of

current density at the surface is given by

i (0,r) =- (I/2i,)6(r)/r (7-72)
z

Equation (7-72), along with the measured potential v(O,r) at the surface,

constitute the boundary condtions for (7-71).

Comparing (7-71) and (3-1), it is seen immediately that the basic

equations of the inverse resistivity problem are mathematically analogous

to those for the inverse problem for a layered acoustic medium. The

analogous quantities are pressure and potential, medium acceleration

and negative current density, and density and resistivity, with wave

speed fi'.ed at unity. (Note that since direct current measurements are

2 2
being used, the proting frequency, = 0 and I v/st = 0.) The boundary

condition (7-72) is analogous to requiring a fixed or rigid surface,

except at the impulsive source, and measuring the pressure response AIM--

at the surface of the medium.

With this analogy in mind, we simply repeat the transformations used

earlier in this chapter. We define (in analogy to (7-3))

I- -A -".. . . . . . . . . . . . . . -........



368

= H [v(z,r)] (7- 7 3a)
0

Sz( H 0[i z (Z,r)] (7-73b) 4

I (Z,) z,r)] (7-73c)

(Fourier transforms are of course unnecessary, since there is no time Ok

dependence). The normalized potential (compare to (7-4))

-z)=(z) (z,E (7-74) * .

satisfies the Schrodinger-like equation (compare to (7-5))

v - =0 (7-75) -

where V is defined as (compare to (7-6) and recall w = 0)

V (z) = Y"I/Y, Y =(z) (7-76)

Now, the reflectivity function k(z) can be defined again by the S

Miura transform (7-13) as

k2  dkA -
dk V ( W (7-77)

but from (7-76) we can now immediately write k(z) as (compare to (7-29))

1 dY 1 d7k(z)= - Y dz - -2 d (7-78) il -

Y dz - 2o dz .(

This makes things much easier, since we now know that the auxiliary

Schrodinger-like equation analogous to (7-15)
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-- V )<(Z,~ 0 (7-79)

where V-4 is defined as in (7-14) by

2 dki (780
k +j V (z) ( 0

is in fact satisfied by

X(Z, ) (Z 0 (z)(~Z)) (7-81)

Thus the downgoing and upgoing waves defined in analogy to (7-17)

D(z,E) = ~+ /)2 =(o(z) i(z,11) -1£ (z,')/(C(zj ))/2 (7-82a)z

U~z~) (~ y/2 =(c7(z)1(z,,') + _ (z, /(c(z~)2 (7-82b)

satisfy the coupled system of differential equations

d FD [Iz -k(z)] [D~] (7-83)

In comparing (7-82) with the waves (3-33), it should be recalled that

*medium acceleration is analogous to negative vertical current density.

This accounts for the change of sign.

Levy (1984) shows how a scattering matrix can be defined for the

system (7-83) by taking the analytic continuation of the scattering matrix

defined for =jk. This requires that k(z) have compact support, i.e. ,

the medium is bounded below by a homogeneous half-space.

*However, this assumption is not required by the algorithms to follow.

7.5.2 Solution by Fast Algorithms

Fast Cholesky algorithms
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The coupled system (7-83) has real elements along the diagonal, -

so an inverse Fourier transform is not appropriate. However, this

situation was encountered in the system (7-37) for the free surface

problem, so we know what to do. Defining (in analogy to (7-39))

mlv -1--

V

U(z, ) = L [ U(z, )] (7-84b)

V V
we see that D and U satisfy the two-component wave system

V V
( /z + 3/a)D(z,C) = -k(z)U(z,C) (7-85a)

V V
(D/;z- DlD)U(z,4) = -k(z)D(z,C) (7-85b)

However, in order to define the fast Cholesky algorithm for (7-85), it

V
is still necessary to show that D(z,c) contains a leading impulse, as in

(7-22). This can be done as follows. The potential v(z,r) can be

expressed as

v(zr) ( 2h(z,r)) (7-86) O2T.a(O 2 2 +(z2 + r2)

where the first term of (7-86) is the potential of a homogeneous medium

with conductivity c(0) (to see this, note that the radial component of

2 2current density is 1/(21T(r + z2)) and use (7-71a)), and the second term

of (7-86) is the perturbation due to the inhomogeneity of the actual

medium. Taking the Hankel transform of order zero of (7-86) gives ,-

v(0,,)- 2+() "i- 21(O,) (7-87)

and taking the Hankel transform of order zero of (7-72) yields, with ..

. . . . . . .. . . -'%. . ... * -"6.°'

6 - -.. .. 6- -- .................................-.................... -,
'

'-%, " - " " . -• .' "°.-.'.''%-.",.'
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(7-82),

6 (0,F~ + h,))(7-88a)

(0 (7-88b)
2a(0)

Multiplying by and taking the inverse Laplace transform, we finally get

D (0,)=(5)+h() (7-89a)
2J,,1(0) +

V I V .-U (0,)=-i-- hQ ) (7-89b)

where h(Xm [(,)

V

Thus we have shown that the downgoing wave D(0, ) at the surface

* does indeed contain a leading impulse, and the fast Cholesky algorithm,

consisting of (7-85) and

k(z) =2U(z,z+) ,(7-90)

can be used to reconstruct k(z) and hence -_(z). The initial conditions

for the fast Cholesky algorithm are

V VV
D(0,Q) U(O,Q) h(Q) L [CH [h(0,r)]] (7-91)

where h(0,r) is obtained from the measured v(0,r) using (7-86).

The initial conditions (7-91) are recognized as those for a -free

surface (compare to (3-16)). This is not surprising; the air above the

earth's surface is effectively an insulator (2 (z) = 0 for z <0) , so that

the upward traveling current i (0,r) is reflected back down into the

.z
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earth. Indeed, the earth's surface might well be considered a "current

release surface," in analogy to a pressure release surface. The actual

analogy here, of course, is to an "acceleration-release" or rigid surface,

since current density is analogous to medium acceleration.

The physical interpretation of the fast Cholesky algorithm (7-85),

(7-90), and (7-91) follows from noting that

v(z,r) H 1 (z,)] :H - vV(z,)e -  dC]
0 0 ~J

(7-92)

0' o 220 cz, ) Ho  e- d 2o ( r 2 )

(+r)

which also may be obtained from the definition (4-57) of the inverse

Hankel transform and the identity

fo e-'J 0 (4r)d = 1/(t 2 + r2 ) (7-93) 0

Equation (7-92) shows that the potential v(z,r) at the current depth

at which the algorithm is operating is being written as the superposition

Vof current sources of strengths 27r(O)v(z,)dV/I distributed along a

fictitious depth axis . According to Maxwell's method of images, the

potential v(z,r) in a layered inhomogeneous medium can be written as

a superposition of potentials due to fictitious current sources that are

images of the actual point current source at the surface. These -

sources are always "in the looking glass," i.e., they are not in that

portion of the medium whose potential they are trying to simulate. Thus

they must always be located deeper than depth z. (A mirror image V.

distribution of current sources must also exist in the other "looking-glass," l

i.e. , above the free surface, in order to maintain i (0,r) = 0. This . -z

. .'
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V
means that h(z, ) is actually an even function in ;, but we ignore the

"anticausal" part above the free surface.)
The fact that the image sources must always be located deeper

* z, i.e., z < C, amounts to a causality condition that replaces the

temporal causality used for the fast Cholesky algorithms in Chapters III

and IV. Also note that the first or uppermost source, at C = z+, clearly

has the responsibility of accounting for the medium inhomogeneity at z+,

which is characterized by k(z). This accounts for the first reflection

0 condition (7-90). The ways in which these concepts may be applied to

the analogous but more difficult (since c(z) also varies) inverse problem

for a layered acoustic medium should be evident.

Dynamic deconvolution algorithm

Defining the reflection coefficient for the medium below depth z

•R (z, ) = U(z,.j)/D(z,¢) (7-94)

we note from the system (7-83) that R(z,) satisfies the Riccati equation

d 2
R(z, = 21R - k(z)(l-R 2) (7-95)

and k(z) can be obtained from R(z, ) using

k )-- LIM"--
k~)2 R (z,) (7-96)

since R(z, ), being the analytic continuation of a strictly proper

function R(z,jk), is itself strictly proper (Levy, 1984, p. 13). R(z,)

is initialized from

0 R(0,C) = (0,)I-(0,) =h(0,C)/(+h(0, )), (7-97)

0i-i
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where fi(0, ) is defined by the Hankel transform of (7-86).
The discrete version of (7-95) - (7-97), to be applied to a discrete

layered medium, was proposed by Pekeris (1940). Pekeris's formula in 0

lieu of (7-95) was

R i+l() = e 2 A (Ri(E) -ki)/(1 - kR i()) (7-98) 0,

where A is the layer thickness. This formula should be compared with

equations (2-32) and (3-77a).

The major disadvantage of the dynamic deconvolution algorithm is

the unstable computation (7-96). A major advantage of it is that the

data need not be inverse Laplace transformed, which is also an unstable

operation. Using (7-92), the combination Hankel transform-inverse

Laplace transform required by (7-91) to initialize the fast Cholesky

algorithm may be combined into the solution of the integral equation

h(O,r) = f (O0 , d (7-99)0( 2+r2) ..

which is analogous to (7-46). S

7.5.3 The Inverse Problem of Determining Reservoir Transmissivities

As a final note to show again that the problems and solutions covered

in this chapter have widespread applicability, we quickly show that the

inverse problem of determining aquifer transmissivities is mathematically

equivalent to the inverse resistivity problem.

The inverse transmissivity problem is to determine the transmissivity

T of an aquifer or reservoir from measurement of the change h in

hydraulic head resulting from a source or sink q (of known strength) in

the flow rate of the liquid in the reservoir. This liquid could, for example,

o,
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be water in an aquifer or petroleum in an underground reservoir.

Typically, fluid is pumped from the reservoir at a well, the flow rate q

(the sink term) at the well is monitored, and the hydraulic head h is

measured on top of the reservoir. The reconstructed transmissivity T

is a function of the depth, viscosity and density of the fluid at each

point, and thus yields information about the condition and accessibility -

of the liquid in the reservor.

The basic equation for this problem are the conservation of fluid .-:

relation and the definition of mass flow rate J

q = V.J (7-100a)

J = T Vh (7-100b)

where equation (7-100b) simply states that fluid flow is caused by a

gradient in head acting through a resistance l/T (compare this to Ohm's

law). Comparing (7-100) and (7-71), the mathematical analogy to this

problem to the inverse resistivity problem is clear. Mass flow rate J

is analogous to current density i, head h is analogous to potential v,

and transmissivity T is analogous to conductivity a. Reflection shows

that these analogies make sense physically as well.

This means that in the one-dimensional problem, in which the

reservoir is treatea as a huge pipe whose cross-sectional area varies with

distance (not unlike the inverse problem for determining the shape of

the human vocal tract; see Chapter II), the problem can be formulated

as an inverse scattering problem and solved as was just done for the

inverse resistivity problem. Wilson (1983) formulated the problem in

this way, but did not propose a solution. *, *u

* . C C CC - S :\.
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In this chapter the layer stripping concept has been used in a

novel way to solve an inverse problem to which, at first glance, the 0

layer stripping concept seems inapplicable. In the next chapter, layer

stripping is applied to the most difficult problem of all--that of higher-

dimensional media.

4.

. . . . .. . . . . . . . . . . . .o. .
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CHAPTER VIII

Higher Dimensional Inverse Seismic Problems

8.1 Introduction

In this chapter the inverse seismic problem in dimensions higher

than one is considered. The medium being probed is no longer required

to be layered or laterally homogeneous--the density and wave speed are

now functions of two or three spatial variables, e.g., p(x,z) and

c(x,z), or p(x,y,z) and c(x,y,z). The goal is to reconstruct p and/or

c by measuring the response of the medium to an impulsive plane

pressure wave.

To clarify matters, some terminology is introduced. The dimension

of an inverse problem is defined as the number of spatial variables on

which the quantities of interest (o and c) depend. Thus, the two-

dimensional (2-D) problem is the inverse problem of determining p(x,z)

and c(x,z) from surface measurements of the displacement u(x, z=O, t),

and the three-dimensional (3-D) problem is the inverse problem of

determining p(x,y,z) and c(x,y,z) from surface measurements of the

displacement u(x, y, z=O, t).

Note that the dimension of a problem need not be the same as the

dimension of the medium in which it is defined--a problem of given

dimension can be embedded in a medium of higher dimension. For

example, the non-normal incidence problem described in Chapter IV is

a 1-D problem embedded in a 2-D medium, while the point-source

problem of that same chapter is a 1-D problem embedded in a 3-D medium.

This terminology will make nomenclature in this chapter much easier.

. .
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Higher-dimensional inverse seismic problems are much more difficult

than the one-dimensional problems that have been considered so far in

this thesis. Indeed, the general 3-D problem of reconstructing p(x,y,z)

and c(x,y,z) exactly from surface measurements is at present an open ..

problem. While this most difficult problem is not solved here, for

reasons to be given later, layer stripping algorithms that are in some

ways improvements over existing solution methods are given for several

higher-dimensional inverse problems. These include the reconstruction

of c,(x,y,z) with constant wave speed, reconstruction of c(x,z) with 0'

constant density, and reconstruction of p(x,z) and c(x,z), all from the

medium response to a plane wave at normal incidence in the first two

cases and at oblique incidence in the third case.

Previous work

Generalizing I-D results and techiniques to the 2-D and 3-D 0

problems has proven to be very difficult. Most of the solution procedures

have in some way employed the Born approximation, which is essentially

a weak scattering assumption requiring that the medium parameters vary 0

slowly. Mathematically, the Born approximation can be specified as

follows. Suppose we wish to recover the potential V(x) of the

Schrodinger equation

2 2(V + k - V(x)) (x,k) = 0 (8-1)

from measurements of the scattered field ,s (x,k). As an example of

this problem, note that if is constant and c = c(x) in the Fourier

transforms of the basic acoustic equations (3-1)

e

...... -. :-.--.'-.--.._. _ . . .... . .._. ..: :..: . ... 2.._..
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2 -.p = -Pc V-u (8-2a)

P_2i = i (8-2b)

then p solves the Schrodinger-like equation

(V + k 2 k (1 - c/c(x)2))p -- 0 (8-3)

Here k = w/c and c is the wave speed in the far field, where it is

constant. The k2 multiplying the potential can easily be accommodated in

the following procedure.

Writing the Schrodinger equation (8-1) as

(V2 + k = Vy (8-4)

and treating Vy as a source term, it may be seen that , solves the

Lippmann-Schwinger integral equation

(x) = jk 'x + fdy G(x,y)V(x)y(y) (8-5)

where G(x,y) is the Green's function for the wave equation (8-4) and

ei c is the incident probing plane wave in the direction k (k=IkI).

Equation (8-5) may be solved by repeatedly inserting it into itself,

producing an infinite series. Now, suppose we truncate this series

after two terms, which amounts to a linearization. Then we have

'(x) = ej 'x + fdy G(x,y)V(x)ej -Y (8-6)

This truncation can also be viewed as approximating the field I(y),

.N-...-.- . , . .5.-. i

.. ... . .. . . . . . . . . . . . . . . . . . . . . .
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inside the integral by the incident field eJ-', which is to say that

the incident field has been unaffected by the weak scattering losses it

suffers while passing through the inhomogeneous medium. By any of

the above nemes, the approximation of (8-5) by (8-6) is the Born

approximation.

In the 1-D case, equation (8-6) becomes a simple Fourier transform,

and V(x) may be obtained by taking the inverse Fourier transform with

respect to k of the backscattered field ,(x,k) - e1k ' x . In higher

dimensions, things become more complicated, although Cohen and

Bleistein (1979) have solved the 2-D problem. The tomographic

approach of Devaney (1984) is also a Born approximation method.

The major problems with using the Born approximation are as

follows. First, it is an approximation, requiring slow variation of p and

c, and thus is fundamentally inexact. Second, Born approximation

inversion methods require that measurements be taken in the far field,

which is generally not possible for inverse seismic experiments on land.

Third, Born approximation inversion methods are generally only

applicable if density is constant (or if wave speed is constant and

density is varying). This limits the scope of problems to which it can
, .,

be applied. Finally, the Born approximation is by definition a single

scattering approximation, so that multiple reflections are interpreted as

primary reflections. This leads to errors beyond those made due to

the basic assumption of a slowly varying medium.

The other approach to solving higher-dimensional inverse problems

is migration, which can be very effective if the medium consists of

several homogeneous regions separated by non-horizontal interfaces.

The basic approach of migration is to image a particular point in the

-. 4'
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%

medium by beamforming. A properly weighted sum of delays applied to

data from various sensing positions will have the effect of a collective

focus on the point being imaged (see Section 4.3). The strength of

the reflection, of course, indicates the amount of scattering due to

medium inhomogeneity taking place at that point. The major problem with -

migration is the wavefield extrapolation or back propagation, to determine %

which point in the medium is being imaged. This requires knowledge -,
.- .-...

of c(x) along the ray paths, and often the wave speed is simply taken

to be constant. This of course leads to errors. Berkhout (1982) is

a good treatment on migration and wavefield extrapolation.

Raz (1982) has proposed a migration-like technique that involves

a distorted-wave Born model. Various assumptions are made, including

a straight-ray approximation between scattering and observation points. "

Results of a numerical 2-D inversion are presented, and a 3-D procedure

proposed. Clayton and Stolt (1981) used the WKBJ approximation (see

Section 4. 4), which is tantamount to assuming that energy is propagating

along rays, as in geometrical optics.

Newton (1980) has described a general 3-D inverse scattering problem

solution that reconstructs a Schrodinger potential from a scattering

amplitude given as a function of energy and directions of incident and

scattered particles. Solution of a generalized Marchenko integral equation

is required, as is the behavior of the scattering amplitude for particles

of very high incident energy. And it is not clear how this method might .-.

be adapted to yield both -(x,y,z) and c(x,y,z) from the scattering

amplitude.

Morawetz and Kriegsmann (1983) have proposed an iterative scheme ..

in which an initial guess at a 2-D potential V(x,y) is iteratively refined.

. . ..... .-S
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In the numerical examples presented for a 1-D inverse potential problem,

up to thirteen iterations were required, and also some smoothing to 0%

prevent numerical instability. The computations and memory required

for 2-D inversion are admitted to be enormous.

Finally, Symes (1983) showed how layer stripping ideas could be

applied to higher-dimensional inverse problems. The problem solved

by Symes (1983) was that of reconstructing the density p(x,z) of a

medium with constant wave speed, which is the 2-D version of the

problem considered in Section 8.2. Symes's approach was to reconstruct

the medium layer by layer by solving a Schrodinger equation in the

lateral variable x to obtain the lateral dependence of density p at each

depth. This approach is not nearly as simple and physically

interpretable as the algorithm of Section 8.2.

Well-posedness of higher dimensional inverse problems

Most methods for solving higher-dimensional inverse problems,

including tomographic methods (e.g., Devaney, 1984) and the generalized

Gel'fand-Levitan method of Newton (1980), require as data the -

scattering amplitude or generalized reflection coefficient for probing

particles for all energies incident from all directions. For the 3-D

problem, this means that the measured data is a function of five

parameters, one describing the energy of the probing particle, two

describing the direction from which the particle is incident, and two

describing in which direction the strength of the scattering field is -

being measured. Using spherical coordinates, this may be written as

A =A(k, einc inc' ebs' .obs
)  (8-7) 0

obs' -bs1

• ,I)

7



On the other hand, the potential whose reconstruction from the 35A
scattering amplitude A is desired is a function of three parameters ,

V =V (r, e, ~).(8-8)

If the probing takes place using an incident plane wave, the energy k2

is replaced by frequency, but otherwise the situation is the same.

Equations (8-7) and (8-8) show that the 3-D inverse scattering P. J

problem formulated as above is overdetermined; a function of five

variables is being used to determine a function of three variables. T his

means that the 3-D inverse scattering problem as formulated above is

ill-posed. This is true because a slight perturbation in the data

A (k, eic nc eb os may result in data that is inadmissible,

i.e. , corresponds to no potential V(r, e, o. Indeed, since any potential

V can give rise to only one scattering amplitude A (the ambiguity due to

bound states does not arise in higher dimensions according to Newton

(1980, p. 1698)), the set of admissible scattering amplitudes, i.e. ,

those amplitudes A which actually arise from some potential V, are of

measure zero in the space of possible scattering amplitudes. Thus

this inverse problem is ill- conditioned: any small perturbation in the

data (due, for example, to noisy observations) may lead to the failure

of any potential reconstruction method, since there is no longer any

potential to reconstruct. Of course, the problem may be regularized

by adding noise a priori to the observations, and regarding any

perturbation from the set of admissible data as being due to that

noise, regardless of its actual cause (e.g. , model failure). However,.. .

we do not consider that approach in this thesis.
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It should be noted here, however, that the inverse problems

proposed and solved in this chapter are all well-posed. Indeed, the

algorithms themselves show that the problems are well-posed: a slight

perturbation of the data simply leads to a slight perturbation of the

reconstructed medium, since the reconstructed medium parameters

depend in a continuous (but complicated) way on the observed data,

as may be seen from the equations. The fact that the layer stripping ,

algorithms do not require knowledge of the scattering amplitude for

all incident and observation angles accounts for the well-posedness of

these problems.

V .°

Summary

In Section 8.2 the 3-D inverse problem of determining the density

o(x,y,z) for a medium with constant wave speed c from measurement of

the medium response to a plane wave at normal incidence is formulated

and solved using a layer stripping algorithm. This turns out to be

a fairly straightforward application of the layer stripping principle. The

2-D versions of this problem and solution first appeared in Yagle (1983).

In Section 8.3 the 2-D inverse problem of determining the wave

speed c(x,z) for a medium with constant density p using the same

measurements as in Section 8.2 is formulated and solved. This problem

turns out to be much more difficult than the problem of Section 8.2,

since the varying wave speed results in the wave front no longer

being planar. The wave speed is still determined along the wave front,

but in this problem it is necessary to track the wave front and translate .

the reconstructed wave speeds along it into a function c(xz). The

algorithm can handle caustics and turning points within the medium,

77°
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although of course the wave speed cannot be reconstructed beyond a

turning point.

In Section 8.4 the non-normal incidence problem and algorithm of

Section 4.2 are generalized to a 2-D problem and algorithm. The goal

is to reconstruct p(x,z) and c(x,z) from measurements of the medium's

responses to two plane waves moving in the y-direction and incident

at two different angles. It is also noted that the result of Chapter

Ill, viz. the impedance pc(r) as a function of travel time T can be

reconstructed from the normal incidence plane wave response, can be

generalized to higher dimensions. The impedance Pc(r) is reconstructed

as a function of travel time along a ray path.

8.2 Reconstruction of o(x,y,z) for Constant Wave Speed

The problem considered in this section is as follows. An acoustic

isotropic medium for which the wave speed c(x,yz) = c0 is constant

but the density p(x,y ,z) varies continuously with all spatial variables

is probed at normal incidence with a plane wave from the homogeneous

half-space z < 0. The medium's vertical acceleration az (x,y,o,t) and

pressure p(x,y,o,t) are known at the surface; two combinations of

them are fixed by the nature of the probing plane wave and the

boundary condition at the surface. For example, if a sinusoidal plane

pressure wave is used to probe the medium and a rigid surface is

assumed, we have

p(xy,o,t) - b cos(wt +-)l(t) + R(x, y,t)1(t) (8-9a)

az(X,y,o,t) = 0 (8-9b). -.'

where b is the strength of the wave, the frequency, and . a phase

0 ;::
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shift. In this case the data is R(x,yt).

Since a function of three variables R(x,yt) is being used toh determine a function of three variables p(xy,z), the problem is not

" overdetermined. Since the wave speed c(x,y,z) = c is constant, there
.0

are of course no turning points, and there are no caustics since the

probing wave is a plane wave. Indeed, the wave front at any time t

is a horizontal plane wave at depth z cot. This makes the layer

stripping algorithm for this problem much simpler than the one to follow

in Section 8.3.

To solve this problem, we use the method of characteristics of

Section 2.3.5. The basic acoustic equations (3-1) for this problem take

the form

2 2 - l axl/x + 3a y/y + 3a zlz) (8-10a)

Dp/dx = - ax  (8-lOb)

ap/y = -pay (8-10c)

ap/z = -paz , (8-10d) 0

where a, ay, and a are the respective components of the medium acceler-x y z
ation. Inserting (8-10b) and (8-10c) in (8-10a) eliminates a and ay, leaving

x

= 2 2 + 2  2 - 2 2 2aa. 1z = [a2p/ax + 3p/y (1/c )(W p/at )i - (8-a)(8-11a)

((alax)(aplax) + (a/y)(ap/y)]/P 2

p/3z =-,az  (8-11b).

• :-.z
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Now, for any type of probing acoustic wave, we have

z z

where v is the vertical component of medium velocity, 'I is the vertical

travel time z/c, and p and v' are smooth functions. Equations (8-12) -

z

are a statement of causality--the medium at any point is at rest until

the wavefront has passed that point. Note that for an acoustic wave p

and v zmust have the same type of discontinuity at the wave front; 2-

indeed, in a homogeneous medium p = Zv , where Z is the impedance.z~

Taking the partial derivative of (8-12b) with respect to time gives

a (x,y,z,t) = (x,y,z,t)6(t--T) + a (x,y,z,t)l(t-T[) , (8-13)
z z z

where a =~ 3
z z

10 Inserting (8-12a) and (8-13) into (8-l1b) and equating the coefficients

of 6(-) on both sides gives

;D(X,Y,Z)c =p(x,y ,z,T)/V (xyz,.r) (8-14)

Inserting (8-12a) and (8-13) into (8-11a) and equating the coefficients

of 5(-) also gives (8-14). However, equating the coefficients of 6()

S gives the additional condition

2
v (X,y,Z,T)/3Z a (x,y,z,tr)/c 0  (2IQc )(M/t)P(x,y,z~t) (8-15)

z z00

The layer stripping algorithm thus consists of (8-11) for updating
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z(x,y,z,-r) in depth (note that the entire time function v (x,y,z,t) is
z z

not updated; only its t = T value), and (8-14) for computing p(x,y,z)

at the updated depth. At each depth, these updates are performed for

all x, y, and t, point-by-point.

Note that the extra condition (8-15) is necessary in order to use

(8-14) to recover p(x,y,z). It is unfortunate that az' rather than vz z

must be used in the updates (8-11), since the additional condition (8-15)

is now required. However, an attempt to formulate the algorithm using

p and v z exclusively leads to terms of the form 2V 5z3t, which are

clearly inadmissible.

Note that the condition (8-14) is essentially an impedance

reconstruction taking place in a higher dimensional problem (compare (8-14)

to (2-78)). Also note that the partial derivatives with respect to x and

y can all be eliminated by taking Fourier transforms with respect to

these variables. This results in the recovery of p(k x , ky, z), which
X

is then inverse Fourier transformed to get p(x,y,z). However, this

would introduce a plethora of convolution integrals. A Fourier transform

with respect to t would eliminate the partial derivatives with respect to

t, but would require that (8-14) be replaced by

O(x,y,z)c ° = LIM l(x,y z,j/'~ (x,y,z,) (8-16)
t0 _1-. Z

which is also not a desirable numerical operation.

Finally, this algorithm is simple because the wave front, along which

the reconstruction takes place, is a simple plane whose location z c 0 t

is known at all times. This is a direct consequence of the assumption of

a constant wave speed throughout the medium. When this assumption is

................... ~J.* 4... .... ... .... ... .... ... ... .i
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relaxed, as it is in the next two sections, considerable effort must go

into tracking the wave front, and the algorithms become more complex.

8.3 Reconstruction of c(x,z) for Constant Density

The problem considered in this section is formulated in the exact

same way that the problem of Section 8.2 is formulated, except that

now the density p(x, z) = p is constant and the wave speed c(x,z)

varies, and the problem is now a 2-D problem. However, this means

that the wave front is no longer planar, and the inverse problem algorithm

must not only reconstruct c(x,z), but must track the wave front, and

convert the values of c reconstructed along the wave front into functions

of x and z. These additional tasks are accomplished by a variation of

2-D ray tracing that could be referred to as wave front tracing.

Change of coordinates

Once again, the basic approach is to use the method of

characteristics of Section 2.3.5. However, we now make a change of

coordinates from (x,z) to (s,e), which are time-varying curvilinear

coordinates defined so that s is normal to the wave front and e is -

tangent to it (see Figure 8.1). The initial wave front is assumed to be

planar and coinciding with the surface; other excitations will lead to

different coordinates (s, e). These new coordinates are further

defined as coinciding with the x and z coordinates, respectively, at

t = 0, and as undergoing no scale or length changes as time varies.

Thus the coordinates (s, e) amount to a simple rotation of the

coordinates (x,z), and this rotation varies continuously with t. The

coordinates (s,e) are discussed in Aki and Richards (1980, p. 94).

It is important to recognize that there are no scale changes in
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8.1 Definition of coordinates s arnd e.
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changing from the coordinates (x,z) to (s,e), since it is these scale

changes that account for the complexity of the general formulae for

divergence, curl, and gradient expressed in curvilinear coordinates.

For example, the change from the rectangular coordinates (x,y) to the

polar coordinates (r,s), where s = r 0, amounts to a rotation through an
angle a, and then scaling the s coordinate by r. No such scale change i

takes place in the present problem, so the basic acoustic equations

(8-10) become simply

2 p/t 2 =-o c 2 (Oa /3s + 3ae /e) (8-17a)

Sp /e = -Da (8-17b)-ae

p/Os = -%as (8-17c)

* where as and ae are the respective s and e components of the medium

acceleration and p(x,z) = Q is constant.0

Now, the coordinate s represents the arc length along a ray path,

* and e picks out both a point on the wave front and the ray path

leading from the corresponding surface point to that point. Here we

use the term "ray paths" to mean the characteristic curves associated

with the characteristic surface, which is the wave front. This means

that the ray paths are defined as the orthogonal complements to the

family of surfaces consisting of the wave front locations for various values

of t. Note that although these ray paths are defined in the same way

that rays are defined in WKBJ theory, there is an important distinction.

Here we are not assuming that energy is propagated from point to point

in the medium along rays; we are simply using them to reference

*"%•
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locations within the medium. This explains the use of the term "ray

path" rather than ray to emphasize this difference.

Thus the ray paths are defined by the propagation of the wave

front, and constitute a simple grid (although a rather twisted one) for

specifying locations within the medium. The location of the wave front

at any time t is specified by the equation

fs
"(s,e) = do/c(a,e) = t (8-18)

where (s,e) is the travel time. Note that (s,e) depends only on s on

the wave front, since the wave front has the property (8-18) at all

points. Of course s varies along the wave front, since some ray paths

pass through faster portions of the medium than others, and thus travel

- farther in time t. Defining - undoes this variation of s.

The point of all this is to show that on the wave front (which is

the only place the equations are actually used), a change of variables

from s to T amounts to a simple scaling of 3p/Os and Das /s by t/3s =

I/c. If we make this change and also define

Tr(Te,t) p(Tr,e,t)/p °  (8-19)

equations (8-17) become, on the wave front,

32 7/ t2 -c2 (3ae/ 3 e) - c( aT) (8-20a)

3/se =-a (8-20b)
e

;. /3t = -ca., (8-20c)

°' • •

• . - o -gu



395

Layer stripping algorithm

Inserting (8-20b) into (8-20a) and eliminating ae yields

Da /3T (;T2/3e (a ( 1t 2 )/c 2 ) (8-21a)

37,! =- ca (8-21b)

Now we use the method of characteristics. For any type of .-

probing acoustic wave, we have

7(T ,et) = T(T,e,t) l(t-r) (8-22a)

v_(T,e,t) = v (t,e,t)l(t-i) (8-22b)

where v is the T-component of the medium velocity. Equations (8-22)
T

have the same forms as (8-12), and do so for the same reasons.

Proceeding as with (8-13) - (8-15), we find that equating

coefficients of 6(-) and 6(-) when (8-22) are substituted into (8-21)

results in

c(T,e) = 7(,ej)/'N (T,e,T) (8-23a)

(/31)vT (,e,r) T (r,e,r) - (2/c)(D/3t)T(r,e,T) (8-23b)

Note once again that the additional condition (8-23b) is required in

order to make use of the impedance reconstruction (8-23a). -.

The layer stripping algorithm thus consists of (8-21) for updating

r and v in T, and (8-23) for obtaining c(r,e). The algorithm is quite

similar to that of Section 8.2, with the updates taking place point by

point for all e and t along the wave front, the wave speed c(-,e)

!.*1.4.o
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being reconstructed along the wave front, and the wave front then

propagated forward in t. The only problem is that c(t,e) must somehow O

be translated into c(x,z). This can be done concurrently with the layer

stripping algorithm, as we now show.

Wave front tracing S

Let 4(tr,e) be the angle between a tangent to the wavefront at the

point ('i,e) and the (horizontal) x-axis (see Figure 8.1). Clearly the

wavefront will advance locally in the direction - 900.

Now, is of course a function of e, unless the medium is homogeneous.

* But € changes with - due to variation of the wave speed c along the -

wavefront--without such variation, the wavefront would retain its shape. I

This allows the derivation of an update equation for . From Figure

8.2, we have

tan(p(-r+6Tr,e) - ¢(T,e)) ; (c(-,e+6e) - c(T,e))6T/6e (8-24)

and letting 6 T and 6e go to zero yields

(T,e)/ aT =c(T,e)/9e (8-25)

This equation is an update equation for 0, since c(T,e) is assumed to be

known at T for all e, hence ac/ae may be computed (although this

computation is not very stable).

Now, suppose the coordinates (x,z) associated with the point (-,e) 0

are known for all e. When -c is incremented by A, these coordinates will

change slightly, by amounts 6x and 5z. But clearly

6x(U,e) = c(r,e) A sin 4(-r,e) (8-26a)

,*.. ..

%" %-i
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Sz(T,e) = (-,,e) a cos (T,e), (8-26b)

This allows c(x,z) to be computed recursively, as follows: @5:

• .-

66 Given: c(T,e), X(T,e), z(T,e), cos ((T,e), sin +(T,e)

Update all quantities in -. Each step is done for all e.

(1) Update cos ¢ from a(cos )/3= - (sin c) c/le (8-27)

(2) Update sin 0 from 3(sin ¢)/a T= (cos ) c/De (8-28)

(3) Update x and z from (8-26)

(4) Update c(T,e) by the algorithm (8-21) - (8-23)

(5) Update c(t + A,e), x(T + ,e), z(T + A,e) as c(x,z). "I

This is quite suitable for plotting.

Note that (8-25) has been used in (8-27) and (8-28), and that q(O,e) is

initialized to zero.

It might seem that generalizing this algorithm to an inverse 3-D

problem algorithm that would reconstruct c(x,y,z) would require the trivial

addition of another coordinate e 2 , so that (x,y,z) becomes (s,el,e 2 ),

where eI and e 2 specify a ray and a location on the wave front. However,

Aki and Richards (1980, p. 95) have pointed out that it is not possible

to select such coordinates so that e1 and e2 are always orthogonal in

general inhomogeneous media. The reason for this is that in such media

a given ray is no longer confined to a single plane, but may twist

around like a corkscrew (Aki and Richards, 1980, p. 100). Thus rays

can twist around each other, and if (el,e 2 ) is assigned to a single ray

and also to the point on the wave front through which the ray passes,

the angle between e1 and e2 will in general change with time and the

wave front. Since eI and e 2 are no longer orthogonal, the equations

corresponding to (8-17) will become vastly more complicated. Thus, it

. .. --...... ..................
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seems unlikely that layer stripping methods can be used to solve 3-D

inverse problems.

However, there are still several salient points to the above 2-D r..

algorithm. First, of course, is that it is an exact method, unlike the

Born approximation methods. Second, it is not ill-posed, unlike methods

that require the scattering amplitude of the medium for all angles. Third,

it does not require the assumption of high frequencies, geometrical

seismics, and energy propagation along rays, as do WKBJ and ray

tracing methods. For this reason, the algorithm can handle caustics,

which are points where rays are focused and intersect. WKBJ methods

have difficulty with caustics, since the geometrical spreading function is

zero at a caustic, which makes the amplitude blow up. The layer

stripping algorithm encounters caustics as cusps in the wave front, but

the arc length e around the cusp is still defined. The angle c('[,e) is

discontinuous in e at a cusp, but this presents no problem.

The only assumptions being made in the use of the layer stripping

algorithm are the validity of the basic equations (8-10) and the concept

of causality, which manifests itself in the assumption that there is in

fact a wave front. The wave front traces out orthogonal complements

(the ray paths) as time advances. Also, it is necessary to assume that

p and c are smooth functions, so that the various partial derivatives in

the algorithm are all well defined.

8.4 Generalizations of One-Dimensional Results to Higher Dimensions

In this section it is shown how the basic results for the 1-D problems

examined in Chapters III and IV generalize to higher dimensions. First,

the non-normal incidence problem and algorithm of Chapter IV are each

• ,', ,.'. .', '. "" . .. ... ~. .... ,... .,......... •........... -... .... .........
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generalized a full dimension. The present algorithm recovers Q(x,z)

and c(x,z) separately from the reflection responses of the medium to two

impulsive plane waves travelling in the y-direction and incident at two li.4

different angles. Next, the well-known result noted in Chapter III that

only the impedance pc() as a function of travel time T can be recovered

from the response of a layered medium to a plane wave at normal

incidence is generalized. For the 2-D problem, it is shown how the

impedance Pc(T) as a function of travel time along rays can be recovered

from the medium's response to a plane wave at normal incidence.

8.4.1 The Two-Dimensional Non-Normal Incidence Problem

Here the non-normal incidence problem and algorithm of Chapter -

IV which resulted in recovery of the separate profiles a(z) and c(z) is '-

generalized a full dimension. Recall that in the problem given in

Chapter IV impulsive plane pressure waves were incident upon a 2-D

medium with 1-D material parameter variation, viz. p(z) and c(z).

Running this experiment twice, at two different angles of incidence,

allowed the recovery of p(z) and c(z) separately. A generalization of

this experiment will now allow p(x,z) and c(x,z) to be recovered

separately.

The problem set-up is as described in Chapter IV, only now p(x,z)

and c(x,z) are functions of one lateral coordinate as well as depth, and

the impulsive plane wave now has a normal lying in the y-z plane, where

y is the other lateral coordinate. This may be visualized as a .

horizontal stack of identical inhomogeneous plates, with the normal to

the impulsive plane wave having components in the direction of the

stacking and in the direction of increasing depth. This problem is often
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referred to as the 2J dimensional problem.

Recall the basic acoustic equations (8-10)
2p r.

p/at 2  pc 2 (3a ox + 3a /dy + 3a /az) (8-29a)
x/ y z

-pa x = p/ax (8-29b)

- pay = ap/ay (8-29c)

- pa z = ap/3z (8-29d)

Proceeding as in Chapter IV, the fact that p(x,z) and c(x,z) do not

vary with y means that if the medium is subject to an impulsive plane

wave whose Fourier transform for z < 0 (above the surface) is
ej (kx + ky+ kZz), '€-' .

eky z + then the wave number k will not vary with x
y

and z either above the surface or below it. Hence the Fourier transform "-

of the pressure takes the form

"J -kyy " (8-30 -9 "-"

P(x,y,z,w) = I(x,z,w) e =(x,z,w) ej ! sin 9i/c 0  (8-30)

where e is the angle of incidence for the plane wave and c o is the

(homogeneous) wave speed for z < 0 (above the surface).

Taking Fourier transforms of (8-29) with respect to t, substituting

(8-30), defining

2 2 2 2
cos Oi(x,z) = 1 - c(x,z) sin , (8-31)

and converting back to the time domain yields, in analogy to (4-23),

/at 2) Cos 2 e i(x,z) Pc 2 (a l x + az /'z) (8-32)
x,. .'

-;S.-:
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Note that ei(x,z) can be interpreted as the angle between the tangent

to the actual ray path at a point (x,y,z) and its projection on the x-z

*, plane. Compare this to e(z) in (4-24), which was the angle between the

tangent to the ray path at depth z and the z-axis. Equation (8-32) shows

that the problem has been reduced from a 2-D problem embedded in a

3-D medium to a 2-D problem embedded in a 2-D medium.

Since the partial derivatives in (8-29) and (8-32) constitute a

gradient and divergence, respectively, they must (taken collectively) be @,

independent of the choice of coordinates. Thus we may change from x

and z to the time-varying curvilinear coordinates s and e, where s is

normal to the (2-D) wave front and e is tangent to it, as before. Note

that these coordinates will be the same for both experiments.

Writing (8-29) and (8-32) in terms of s and e yields

(a 2p/at 2 ) Cos 2 e(s,e) = - 0c (as /3s + aa /De) (8-33a)

pa = ap/as (8-33b)

Pae = ap/ae (8-33c) i

where a and a are the components of acceleration in the appropriate
S e

directions. Eliminating ae gives

(a2 p/at2 ) cos 2 ei(s,e) =- c2 (a as) + c2 a2p/ae 2
- (c 2 /)(a /ae)(ap/ae)

(8-34)

and defining the travel times

dT/ds = 1/c(s,e) (8-35)

dTi/dT cos 6i(s,e) i = 1, 2 (8-36)

• d - " J 11" ": 1 1 . . d f " " '- '
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for two experiments with initial angles of incidence 6 1 and V2allows the

* pressure and medium velocity to be written in the forms (compare to

(8-22))

v (t,ejt) =v(t,ejt) l(t-r~ (8- 37a)

p (-L,e,t) =p(T,e,t) 1(t--1.) (8- 37b)

where p is the pressure field resulting from the experiment at angle of

incidence and similarly for v

Proceeding once again as with (8-13) -(8-15) , we substitute (8-35)

-(8-37) into (8-34) and (8-33b) and equate coefficients of 6(-) ancdc.) ~

This results in

PC(T,e) /cos e.(T,e) A, z~,.)i (-,e,T. (8-38a)

(f-)v(- e,TI) =~(~,. 2cs&(e (c)(It~C,,.

(8- 38b)

which should be compared to (8-23).

Equations (8-33b), (8-34) - (8-36), and (8-38) taken together thus

constitute a differential algorithm for computing o('r,e) and C(T,e) , with

the update taking place as ail increment in the ray path travel time T.

The algorithm may be summarized as follows:

Given: p (T[,e,t) , a' (-r,e,t) , ;(-,e), c(-t,e) , cos a re re
S

T .('e), i =1,2.

Update all quantities in7

Each step is done pointwise for all e and t.A A



- ~ % ><.. . .. -r. -- v~v r -....- rr.-

404

(1) Update p i p /DT pc a is (8-39)

i 2 2i 2 2 2 2 i 2(2) Update a : / = - [( /p3 3t2 c OS c (,e) - c p /3e ow-

+ (c2 /00)(9/ e)(5pl/?e)]/(Pc) (8-40)

(3) Update v is v r = a'(:,e'r.)-(2 cos e (%e)/(-c))3/30pi(T,e,i (8-41)

(4) Update /.3T = cos e(T,e) (8-42)

(5) Compute U U(Te) = (T+,e,t=T)/-1 (+,e,t= T) (8-43)
vs vs

(6) Compute c c(Te) Co [(U-1)/(U sin 2 
2 sin 2  1 (8-44)+ 2 2 21 " - ..

(7) Compute cos cos e (Te) = [1-c(0+e2/2 sin2  1  (8-45)1 1 [ ,e) /C 1( -5
+++ +.-" -.

(8) Compute p: p(-+e)= pl(re,t =T 1l)COS 5l(T+,e)/c(T+,e). (8-46)

This algorithm bears a marked resemblance to the corresponding

algorithm (4-37) - (4-44), and it is not difficult to see why. In the ow.
1-D offset problem algorithm updates similar to those above were carried

out as the planar projected wave front advanced from depth z to depth

z + A. In the 2-D offset problem the projected wave front is no longer "

a flat plane, but is described at time t by the equation T(x,z) = t.

Hence the increment occurs in ray path travel time T, which by definition

is the same for all rays, i.e., all along the wave front. When T is

incremented, the wave front advances slightly, and (8-39) - (8-46)

generate P( T + A,e) and C( T + A,e). The wave front tracing procedure

(8-26) - (8-28) can then be used to generate p(x,z) and c(x,z) for

each T, i.e., throughout the medium.

8.4.2 The Two-Dimensional Normal Incidence Problem

It is known (see Chapter III) that for the 1-D inverse seismic problem 0

.. ', Q-,.*.-. ,' . .-... -...-*.......- ..-. .* &-...... -*. ...--.-- * .. .. .... _.. . . . . . . . . * . -.- . i i !



- -v.-.x--.-- . -- . - - -° ---- -

405

in which an impulsive plane wave is normally incident on a 1-D medium,

0 and the upgoing wave at the surface measured, then the only information

about the medium that can be reconstructed exactly is the impedance as

a function of travel time, viz. -c(T). How might this result generalize

to higher dimensions?

Rewriting equations (8-17) in terms of displacement u rather than

acceleration a, we have

2
p - gc Ou / s + 3u /e) (8-47a)

2 2
p/s= -p 

2u /t2  (8-47b)

* p p/e = - u e)t (8-47c)

where us and ue are components of displacement in the appropriate

directions. Now, in the 1-D case changing variables from depth to

travel time resulted in a set of equations entirely in terms of the

impedance c(- ), which allowed recovery of this quantity by layer-

stripping. Unfortunately, this is not possible for (8-47), since e would

also have to be differentially scaled by c, and this brings in other terms.

And as long as o and c are present separately in these equations, there

is no way they can be propagated from knowledge (from the first

reflection) of their product pc alone.

The solution here is to recognize an implicit feature of the 1-D

inverse seismic problem: Since the problem takes place along a single

vertical ray path, only acoustic (i.e. , P-wave) wave propagation along

this path need be considered. In the 2-D case, this is tantamount to

considering only acoustic wave propagation along a ray path. From the

nature of acoustic wave propagation, this means that u is neglifible
e

.... ... .... ... .... ... .~m-~*::-]
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(Aki and Richards, 1980, p. 95). (Note that this assumption would

simplify the algorithms of the preceding sections.) With this assumption, .

equations (8-47) become

SP Ou5 /as (8-48a)

=p3 -P 3 u /at2  (8-48b)

which have the same form as the basic 1-D equations. Defining outgoing

and incoming waves as

O(s,e,t) =/'~ + ; u s at (8- 49a)

l(s,e,t) =p/v' c - '/- au /at (8-49b)

and assuming an impulse present in the outgoing wave yields the fast

Cholesky equations of the 1-D problem

(DO~T + &/Dt) O(T,e,t) =-r(-r,e) I(T,e,t) (8-50a)

09- D/30) 1(T,e,t) =-r(T,e) O(7,e,t) (8-50b)

r(T,e) =21(Tr,e,-r) (8-50c)

now applied along each ray (i.e., for each e). Thus instead of

reconstructing pc(i), we now reconstruct PCT,e).

A variation on the 1-D problem provides for pure shear wave

propagation, with ;)c(-,) again being reconstructed. For the 2-D problem, S

we simply neglect u5 instead of ue Since (8-47) are symmetric in u
s e 5

and ue the result is once again a fast Cholesky algorithm which

reconstructs pc(-[,e) . eM,
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As in the 1-D problem, some sort of non-normal incidence experiment,

involving the medium responses to impulsive plane waves at two different

angles of incidence, is necessary in order to reconstruct P and c

separately, and as functions of x and z. The 2-D non-normal incidence

problem where the normal to the plane wave lies in the (y,z) plane

was solved in the previous section. More desirable would be a solution

to the 2-D problem where the normal to the plane wave lies in the

(x,z) plane (so that all of the action takes place in this plane), but

there seems to be no way to relate the different wave front histories

resulting from the two experiments to each other.

tIn this chapter some progress has been made in applying layer

stripping ideas to higher dimensional problems. The results included

workable algorithms for reconstructing p(x,y,z) with wave speed constant

and c(x,z) with density constant from normal incidence data, :nd

o(x,z) and c(x,z) from non-normal incidence data. In addition, a

familiar 1-D result has been generalized to a 2-D result. However, the

complex geometry of a wave front in a medium in which the wave speed

varies with x, y, and z makes it seem unlikely that layer stripping

algorithms can be derived for general 3-D problems.

IC

- . .. .
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CHAPTER IX

Conclusion

9.1 Summary

In this thesis the concept of layer stripping has been applied to a

wide variety of inverse seismic problems. The goal of this thesis, which

was to show that layer stripping could lead to fast algorithms for the

solutions of many more inverse problems than has been generally

realized, has thus been accomplished.

Prior to this thesis, virtually all applications of the layer stripping

concept were made solely to the one-dimensional inverse problem at

normal incidence. The resulting dynamic deconvolution algorithms

were generally considered to be entirely unrelated to the usual integral

equation (for continuous media) or matrix equation (for discrete med~a)

methods for solving this problem, and it was also generally believed

that such algorithms would quickly blow up due to the accumulation of

noise within them.

The work of Bruckstein et al. (1983) showed that layer stripping

algorithms are in fact closely related to the integral/matrix equation

methods, and that their simplicity and physical interpretability are in

fact closely related. Furthermore, the breakdown of such algorithms

after a large number of layers is due more to the poor conditioning of

the inverse problem at those depths than to any fault in the algorithms

themselves, as noted in Bruckstein et al. (1984). Computer runs of the

algorithms on synthetic data in Symes and Zimmerman (1982) and Bube

and Burridge (1983) showed that the algorithms were numerically better

I..°° 6V-
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behaved than had previously been suspected. But throughout all of
I'4

this, attention was still focused on the one-dimensional inverse problem

at normal incidence.

In this thesis the scope of applicability of layer stripping has proven

to be much wider than just this one problem. To mark this in detail,

the results of this thesis are now reviewed.

In Chapter II the general symmetric two-component wave system

inverse scattering problem was defined and shown to be solved by a

coterie of layer stripping algorithms. The fast Cholesky algorithm

involved leftgoing and rightgoing waves in the time domain, the Schur

algorithm involved these same waves in the frequency domain, and the

dynamic deconvolution algorithm involved the reflection coefficient for
*5'o-5

the unknown part of the medium. These three mathematically equivalent .- ,

algorithms all reconstructed the scattering medium using the principle

of causality: the first reflection from the medium at any depth gave the

value of the reflectivity function at that depth. All three algorithms only

require 0(N 2 ) computations to reconstruct the medium, hence they may

be considered fast algorithms.
5.Q

Also in Chapter II, two coupled fast Cholesky algorithms (or two

coupled Schur or dynamic deconvolution algorithms) were shown to

solve the inverse scattering problem for an asymmetric two-component '

wave system, and other fast algorithms for reconstructing the potential

of a Schrodinger equation were derived.

Various integral equation methods of solving these problems were

also derived, and a fast algorithm (the Krein-Levinson algorithm) was

shown to solve these integral equations by exploiting the Toeplitz or

Hankel structure of their kernels. The relations between the layer ,.
5-

'

5 -
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stripping fast algorithms, which reconstruct the medium and the wavest

in it directly, and the Krein-Levinson fast algorithm, which solves the -

integral equations for reconstructing the medium, were discussed in

detail. The results of Chapter II were illustrated with three examples:

the non-uniform transmission line without losses; the non-uniform line

with losses; and the linear least-squares estimation of a stationary -'V

stochastic process.

The results of Chapter 11 were further illustrated by the results

of Chapter 111, which collected together a wide variety of methods for

solving the one-dimensional inverse seismic problem at normal incidence.

Layer stripping solutions for both discrete and continuous media were___

derived, and integral and matrix solutions for, respectively, continuous

and discrete media were also derived. This illustrated dramatically the

duality between the two approaches, as discussed in Chapter 11.

In Chapter IV the one-dimensional inverse seismic problem involving

impulsive plane waves obliquely incident on a layered medium was

considered. Fast, layer stripping algorithms were derived for both [.

discrete and continuously varying media. The difference between the

two algorithms lay in the update equations for the medium parameters,

which were more complicated for a discrete medium. Although the

additional complexity is trivial for this problem, the additional complexity

of the discrete medium parameter updates for an elastic medium increases

the complexity of that algorithm to the point where it is no longer a

fast algorithm. A layer stripping solution for an impulsive point source

excitation, involving probing with cylindrical waves, and a procedure

for propagating the layer stripping algorithms through a turning point,

in order to use more of the reflection response data, were also given.
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In Chapter V the performance of the layer stripping algorithms of

Chapter IV on synthetically generated data was investigated. In the ,h

absence of noise, the continuous and discrete medium algorithms, and

their Schur and dynamic deconvolution counterparts, performed quite

well. The continuous medium parameter updates did not work well when

applied to a discrete medium, as expected.

Several modifications of the layer stripping algorithms for use with

noisy data were discussed. These included the use of a threshold .-

based on the condition number for zeroing false reflection coefficients,

and the use of reflection data at several angles of incidence to compute

a least-squares fit for the updated medium parameters at each depth.

The former modification proved to be useful for thickly layered media in

which many of the reflection coefficients are zero, while the latter

modification proved to be very useful in general. The effect of noise

on the performance of the algorithm was illustrated with a series of plots

for three different signal-to-noise ratios; the algorithm does in fact work

in the presence of small amounts of additive noise.

In Chapter VI the two sets of 2 x 2 systems of coupled equations

used for the preceding problem are generalized to two 4 x 4 systems

of coupled equations for the elastic problem. This is necessary because

there are now four different types of waves propagating through the

medium: up- and down-going P and S waves. And all of these waves

couple to one another.

Fortunately, symmetries in the couplings between different wave

types imply that these couplings can be described by three reflectivity

functions and one transmissivity function. And the transmissivity function

. can be determined from the three reflectivity functions. Thus there are

- .. 7 .* . . . . . . .
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three reflectivity functions and three quantities of interest: the Lami

parameters X(z) and ji(z); and the density P(z). These quantities are

differentially related, so that update equations for ),(z), i.(z), and ..(z)

in terms of the reflectivity functions can be obtained. 00,

However, obtaining the reflectivity functions themselves requires

that two experiments be run: One with an impulsive P wave source and

one with an impulsive S wave source. This is because the determination

of the P-P reflectivity function requires an impulsive downgoing P

excitation, while determination of the S-S reflectivity function requires

an impulsive downgoing S excitation. Hence two interconnected 4 x 4

systems (one for each experiment) are needed.

Other complications are introduced by the different wave speeds of

P and S waves, which necessitates different time discretization for P and

S waves at each depth. Still, a good understanding of the algorithm may

be had by carefully studying Figure 6.1, which shows the interactions

between the various waves and how the algorithm updates all four

waves from one depth to the next.

It is interesting to note that the transformation to up- and down-

going P and S waves was made purely with the derivation of a fast

algorithm in mind. Nevertheless, the unique transformation that

'diagonalizes" the basic system matrix AMz) in (6-15) to the desired form

also normalizes the up- and down-going waves with respect to energy.

That this energy normalization can be obtained without any a priori

attention to conservation ideas is interesting.

In addition, a dynamic deconvolution form of this 4 x 4 system of

coupled equations was derived, and the subsidiary problem of probing

an elastic medium from a liquid half-space (so that no S-wave excitations

• •- . -
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or measurements of the elastic medium are possible) was solved by

probing for three different values of slowness p instead of only one.

The basic elastic layer stripping algorithm was tested on synthetic data,

and proved to work quite well.

In Chapter VII the layer stripping methodology was applied in a

novel way. The inverse problem considered in this chapter was that of

reconstructing a layered medium from measurement of its response to a
•.,

harmonic excitation at two frequencies and all wavenumbers. Note that

this problem, which is discussed in Frisk et al. (1981), is dual to that

of Chapter IV, in which the layered medium was reconstructed from

measurement of its response for all frequencies and two slownesses. 0

Since no impulsive excitation is involved, and all measurements are taken

in the sinusoidal steady state, there would seem to be no causality

condition for a layer stripping algorithm to exploit.

Nevertheless, a layer stripping algorithm for solving this problem

was obtained. In this algorithm, the "waves" are continuous sequences
'-,o

of image sources that simulate the response of the unknown portion of

the medium. The causality principle exploited by the algorithm is the

necessity of all image sources lying in the unknown part of the medium,

outside the region in which they are to simulate a response. •

Fast algorithms for two different formulations of this problem

(free surface and half-space boundary conditions) were derived using - -

the layer stripping methodology. In addition, the layer stripping •

solution of Levy (1984) for the mathematically analogous inverse

resistivity problem was also presented.

Finally, layer stripping fast algorithm solutions of several higher-

dimensional inverse seismic problems were derived in Chapter VIII. For

.. . . . . . .
. .. .. . . ..... -
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these problems, the density p(x,z) and wave speed c(x,z) are allowed

to vary laterally with x as well as with depth z. The first problem

considered was to reconstruct a 3-D density p(x,y,z) for a medium in

which the wave speed c was assumed to be constant throughout. The

assumption of a constant wave speed means that the impulsive wave

front, along which the reconstruction of p takes place, has the simplest

possible form: a flat impulsive plane wave moving straight downward

at known velocity. This algorithm is intended more to be illustrative

of the application of the layer-stripping idea to higher-dimensional

problems than to be a practical algorithm.

The second problem considered was that of reconstructing c(x,z)

in a medium with constant density. This problem is much more difficult

than the first problem, since the variation of c(x,z) means that the

shape of the wave front becomes complicated. This makes the problem

much harder, and necessitates a form of differential ray tracing in order
\.

to interpret the updated quantity as c(x,z).

Next, the offset problem of Chapter IV is generalized a full

dimension. Now p(x,z) and c(x,z) are to be reconstructed by

measuring the response to an impulsive plane pressure wave obliquely .

incident in the y-direction, for two angles of incidence. Reconstruction

of p and c again takes place along the wavefront, and again

differential ray tracing is necessary to recover p(x,z) and c(x,z).

Finally, the 1-D result on reconstruction of the impedance pc(-)

is generalized to higher dimensions. The generalized result is that the

impedance can be reconstructed along the wave fronts (or alternately,

along the rays), but converting this information into something useful

seems to be difficult, considering the paucity of the available information.

LL~~C Z ,~ i <..* (-.. -.
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9.2 Suggestions for Further Research

There are several avenues along which further research on the C

application of layer stripping concepts to inverse seismic problems could

proceed. In this section we note some of these avenues, and identify

several specific topics on which further research is needed.

The most pressing need for further research lies in the area of

adapting the various algorithms to function better in the presence of

noise. The modifications discussed in Chapter V constitute a start in

this direction, but more improvements are needed if the algorithms are

to be successful in reconstructing a medium from real-world data. This

is particularly important for overcoming the popular conception that

layer stripping algorithms do not work on noisy data.

A particularly promising possibility is that of combining the

a priori approach used in this thesis, in which the updated, computed o

wave speed is used to project ahead to the computed time at which the

next primary reflection should occur, with the a posteriori approach used

by Habibi-Ashrafi and Mendel (1982), in which a maximum likelihood

search for the next primary reflection is carried out using a matched

filter. There are advantages and disadvantages to both approaches;

a Kalman-filter-like combination of both a priori and a posteriori

information may well prove to be worth the extra computation such a

combination would require.

Other possibilities for dealing with noise in the data include

incorporating a priori knowledge about the medium into the inversion

process (this was done in a crude way with the condition number "'.."

modification of Chapter V, which works best if it is known a priori

that most of the medium reflection coefficients are zero) and modelling
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the medium itself as a random process. However, the inverse problem

of estimating a random medium is so difficult that any resulting algorithm

might well experience too many numerical difficulties for it to be

practical. Incorporating a priori knowledge about the medium is

particularly important when the data are bandlimited, as they must always

be in real life.

Another avenue of research consists of determining how breakdowns

in the assumed model of the medium affects the performance of the

algorithms. There is of course no such thing as a truly layered medium;

interfaces between layers need not be entirely horizontal. The effect

of the presence of small scatterers (e.g. , small rocks) within the medium

can be modelled crudely as noise, but large inhomogeneities have a

separate effect that cannot be passed off. Slowly varying lateral

inhomogeneities also affect the medium response by making it a more

complicated function of lateral position. Note that all of these departures %

from the assumed model can be detected by noting how the measured

medium response departs from its expected form (e.g., for a plane

wave response, R(x,t) R(t-x sine/co)), but how should this be

compensated?

A final avenue of research consists of further theoretical extensions

of the application of layer stripping ideas to inverse seismic problems.

The results of Chapter VII show that layer stripping ideas may be

applicable to an inverse problem in wholly unexpected ways. The

solution of other higher dimensional inverse seismic problems, in

particular the general 3-D problem, may well be possible by layer

stripping methods utilized in such an unusual way. The generalized

Gel'fand-Levitan approach of Newton (1980) would seem to be a logical

S. . .
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starting point for investigating this topic. Another problem worth

investigating is that of reconstructing a medium directly from its

transmission response, which might lead to an algorithm for

reconstructing a lossy medium better than the one of Chapter V.
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APPENDIX

Computer Programs

In this Appendix all of the computer programs used to obtain the

numerical results of Chapters V - VII are given. The programs are

listed in alphabetical order by their names. A brief description of each

program is supplied below.

The programs are all written using standard FORTRAN. Input L

parameters common to all of the programs are as follows:

n = number of layers (including upper and lower half-spaces)

m lo 2 (number of points at which the time and/or frequency
response of the medium is computed). m = 9 corresponds to
512 points.

dd = thickness of each layer

del discretization length A

dt discretization time At

pl, p 2 = slownesses = sin e /c
0 0

a(i)= wave speed in layer i

rho(i) = density in layer i

b(i) = S wave speed in layer i, for ELAS and INVELAS

freql, freq2 probing source frequencies, for FORFREQ and INVFREQ

Program Descriptions

BREM: Forward problem program that computes the impulse
response of a layered medium directly in the time domain
by computing the first two terms of the Bremmer series.

DYNDEC: Reconstructs a layered medium from its frequency
responses by using the dynamic deconvolution algorithm.

,- .-
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ELAS: Forward problem program that computes the P- P, P- SV,
and SV-SV impulse responses of a layered elastic medium
using the reflectivity method (subroutine RECOPS) and
inverse Fourier transforms (subroutine FFT).

FORi: Forward problem program that computes the impulse
response of a layered acoustic medium using the
reflectivity method (subroutine RECOPP) and an
inverse Fourier transform (subroutine FFT).

FORFREQ: Forward problem program that computes the response of
a layered medium for two frequencies and all wavenumbers
using the reflectivity method (subroutine RECOPP).

INVDISC: Reconstructs a layered medium from its impulse responses
by using the fast Cholesky algorithm and discrete medium
parameter updates.

INVELAS: Reconstructs a layered elastic medium from its P- P,
P -. SV, and SV - SV impulse responses by using the
al,rorithm of Section 6.2. Mi F:

INVFREQ: Reconstructs a layered medium from its response at two
frequencies and all wavenumbers using the algorithm
of Section 7.2.

INVI: Reconstructs a layered medium from its impulse responses
by using the fast Cholesky algorithm and continuous
medium parameter updates.

MULTFOR: Forward problem program that computes the impulse
response of a layered medium as does BREM, but does so -.-

for nm (input parameter) angles of incidence instead of
just two.

MULTI: Reconstructs a layered medium from its impulse responses
at nm angles of incidence, using a least-squares fit to
compute the updated medium parameters (using the
continuous medium parameter updates) at each depth.

MULTINV: Reconstructs a layered medium from its impulse responses
at nm angles of incidence, by computing updated medium
parameters (using the discrete medium parameter
updates) for each pair of reflection coefficients, and then
averaging the results, at each depth.

NOISE: Takes the impulse response of a layered medium, adds
uniformly distributed noise to it (xl = maximum noise
amplitude), and then reconstructs the medium using
INVDISC. The condition number modification of Section
5.4 is activated by inputting ic = 1.

SCHUR: Reconstructs a layered medium from its frequency
responses by using the Schur algorithm.

Program Lists

. ., ..-., ,... .. .. .-... ,.:,,- -,,. .- ..... , .... ,. . . . -,,. .,,, .. .. • . . -, .. , , . .. , ., . .° .. . . -. ° . "ig .... .



Program BREM
dimension a(50),rho(50) ,dtl(50) ,dt2(50) ,rl(50) ,r2(50) ,trl(50),tr
dimension uwl(1024)tuw2(1024)
read(5vlO) npmvddrdelvdtvpPP2

10 foreat(2i,5f) 422
read(5, 11) (a(i), rhoC i ) i1 ,n)

*11 format(2f)
m=2**m
do 77 i1,vm
uwl(i)=0.
uw2(i)0.*

*77 continue

t r 2 1 )1.

t12=1.
tl=0,
t2=0.

z2=a(l)*rho(l)/sart(1.-a(l)*a(l)*p2*p2)
do 1 i-2vn

c dtl(i) is 2-wav traveltime thru lawer i for exp't 1
dtl(i-l)=2.*dd*sart(l.-a(i)*a(i)*Pl*pl)/a(i)
dt2(i-l)=2.$dd*sort(1.-a(i)*a(i)*p2*p2)/a(i)
rho(i-1 )=rho( i)

1 continue
C compute reflection coefficients

do 2 iu1,n-2
rl(i)=(rho(i+l)/dtl(i+l)-rho(i)/dtl(i))/(rho(i+1)/dtl(i+1)+rhoui

r2(ij)=( rho( i+1 )/dt2( i+1 )-rho( i)/dt2( i) )/( rho( i+1 )/dt2( i+1 )+rho( i
+(i)) /+

c compute 2-wawe transmission coefficients
tri Ci+1 )1 .-rlCi )*rl Ci)
tr2( i+1 )=1#,-r2( i)*r2( i)

2 continue
c do Primaries

do 3 i1,pn-2
tl=tl+dtlCi )/dt
t2=t2+dt2(i )/dt

t12=tl2*tr2( i)
uwi (int(tl+0#5) )zrlCi )/dt*tll
uw2(int(t2+0*5))ar2(i)/dt*t12

3 continue
c do secondaries

do 4 nlin2tn-2
do 5 n21,nl-I
do 6 n3=n2+1,n-2
ntminmin0(nl ,n3)
nmaxmax0(nl ,n3)
tU=0.
t 2;;-0
tl11=1I.
t12=1.
do 7 izlpnmax
tl=tl+dtlCi )/dt
t2=t2+dt2Ci )/dt

t12=t12*tr2( i)
if((i~le.n2)#or#(iMt~nmin)) 9- to?7
tl=tl+dtlCi )/dt
t2=t2+dt2C i)/dt
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t12=tl2*tr2( i)
7 continue

if(int(t1).9e~m)9o to 6
uwl(int(tl+O.5))=uwl(int(tl+O.5))-rl(nl)*rl(n2)*rl(n3)/dt*tlI
if(int(t2),gesm)go to 6
uw2(int(t2+O.5) )=ujw2(int(t2+O.5) )-r2(nl)*r2(n2)*r2(n3)/dt*t12

6 continue
5 continue
4 continue

do 79 i1,tn-2

z2=z2*(1.+r2(i))/(1,-r2(i))
write(8,79)a(i+l),rho(i),rA(i),r2(i)rzlz2

79 format(lxp6f10.5)
78 continue

do 8 i=1,m
timtime+dt

a .write(7P12) timeruwl(i)puw2(i)
12 format( lxf7,4vfI5,6v4xvf15#6)

end i

ft72

.5-
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Program DYNDEC

dimension &(50)vrho(50)pd(50)
complex rcl (1025), rc2( 1025) ,dtaul ,dtau2

c set ic=0 to skip forward Part; read from device #7.
c set ic=l to gen~erate forward response arnd then solve from it.I read(5910)nvmdddelpdfpplpp2,ic
10 forrat(2ip5fpi)

;ead(5y20) (a( i )qrho( i )Pi1 rn)
20 format(2f)

write(6y21 )nimrddrdel ,dfrPl ,P2
P21 format(lx, 'n=' i2,2x, 'm=' ,i2,2x' 'dd=' ,f4.2,2x, 'del='pf.p&

L ~+'dt=' vf5.3'2x, 'pis' f4.2'2x, 'p2=' ,f4.2)
do 1 i=lynw

1 d(i)=dd
Pie=3.1415926536
rn2=2**mi0
if(icorie.0)go to 53
read(7,52) (rcl ( i ) rc2( i)'i1 ,m2)
goc to 54

53 do 2 i=Iym2
f reofrea+df

* ~call recopp(rivrhotdp1,t'reGprcl(i) )0
call recop ( n, aprho, d ,p2,free, rc2( i))
write (7y52) rcl (i)r~rc2 (i)

52 format(1>:,4f10.4)
2 continue

* 54 acla( 1)/sort(l1.-a(l1)*a(l1)*P1*pl)
N aic2=a(l)/sort(1 .-a(1 )*a(1 )*p2*p2)

zl=rho( 1)*acl
z2=rho(l1)*ac2
write(6951)

9 1 fT'orrat(3,'deth'6x,..'cact',5,'ccmrn'p4,'rhoact',3,P'rhocomp' 4x,
+' rcl ' 9x, 'rc2' )

do 3 izlyinit(dd/del*n)+5

Suml=O*
s umn2=0.
Ijme=i0.
dJo 4 j1,in2
crnegionmes+2.**Pie*df
dtaul=cmplx(0. ,2.*omesi*del/acl)
dtau2=crnplx(0. ,2#*ornes*del/ac2)
rcl (j) =ce;xP( dtaul)*rcl (j) -cnPlx rlOY)0* (1 -rcl(j) *CmPlx rl,0 LW.

rc2(j)=cexp(dtau2)*(rc2(j)-crnplx(r2,0,))/(l.-rc2(j)*cmplx(r2,0,))
csurnl=suml+real (rcl (j) )
su2=sum2freal (rc2(J))

4 continue
Y-lsunl/m2
r2=s 'iai2/rn2

zl=z1*(l1 +rl )/( 1 *-ri )
z'2z2*(1.+r2)/(1.-r2) D.

uizl*zl/z2/z2 .

acla&c/Sort(1.-ac~ac*Pl*Pl)
ac2=ac/sart(1 .-ac*ac*P2*p2)
rhoc=(zl/acl+z2/ac2)/2,
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wri te(6,5)jeH'a( 1) acv rho( 1),rhac, rl ,r2
50 1fornat(1x-.f7#2v6fl0,4)
3 ert i nrku f

c'a11 ex it

in'.jroutirfe recopp(rtarhordiourfrearrPP),'
dimfYens iorn a (nr) rho (r ) ,d ( r

complex rppynririproi ,roipyfn:2l ,22,e2,el 'e

Fi=3,1415926536
COmeg a =2.** F'i *f1 rea
o) no 2 =o ine 9 a * o n Ae g a

tk o riega * u

do 170 i1,tri

a Y-gzoa12l(a ( i)*a i) -xk2

roi=crl;.(rho(i)90.)
f(i.ea.r:)9o to 171

t' I= r:i '*p 0 o

e 2 =ri i * roi F,

el-c ... 1n ecfs 10. ( 2. 211722 .

e2=e2*(ni2l-gi22)

Al22 e *(e 1- e2)
rni:ax-cabs (rn 22)

i f ( roo . 9t . rrnax) rniax PHI
ceI=cnplx.( 1 /rrna,p0.)
ITI22 =n1722 *e

171 roi P=rli

170 con~tinul.e
r 'p =-11:21/rn22
retu. rn
endr
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subroutine fft(.O

compelex x(1024)pupwpt
nv = 2* *
pia=3. 1415926536
dio 20 1=1,ni

e=2**(ni+1-1)
lolle/2

w-crnel1-..cs (i /fot I el), sir i /f Ioat 1 el)
do 20 j~lple1
c) 10 i~jvrople
ip-i+lel

x( iF' x (a -x (ic ) ) *u
10 xi)t
20 uu*w

riv 2I= ro/2

do 30 i=19riffil
if(i.Ue.j)go to 25

1,x ( j )(i
xi j)t

25 k. =riv2
26 if(k.ge.j)go to 30

P. = P. / 2

go to 26
30 J~

retu rnr
enid
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Program ELAS
dimension a(50) Pb(50)vrho(50) .d(50)
dimension upp(1024),p;(1O24),usp(lO24),uss(1024) 427
complex rpp(1024),rps(1024),rsp(1024),rss(1024),om ,
read(5,10)rm'ddvdel~dtyP

10 format(2i,4f)

20 format(3f)
do 1 i=1 ,n

pie=3. i415926536
m2=2**m
m 22=2*mIi2
tf1 i m 2*d t
dr=1 .itfin
aci'=1.-a( 1)*a(I1)*p*p
bL'p1 ,-b( 1)*b( 1)*p*p

do 2 i=1,rn22-1

call recops(rIyapbtrhopdppfreaprpp'(i+1),rF-s(i+l),rss(i+l),rsp(j+1) )
omcnlx(0,,frea)*2.*pie

rss( i+1 )=rss( i+1 )/orn
if(i.lt.m2).9o to 2

rpp(i+l-n,2)=rps(i+l-m2)+rpp(i+l) .*

rsp(i+1-m2)=rss(i+l-m2)+rss(i+l)

2 conti nue
call fft(rpprm)
call fft(rps~rn)
call fft(rspvrn)
call1 f ft (rss Pm)

U.Sp( 1) =-2, *real ( rs (1)) *df*e
uf~s(I1)=2.*real CrsF(I) )*df/e
kuss (1)=-2.* *real (rss (1)) *df
do 3 i1,ym2
t.inme =time +d t
upp(i+1)=2.*real(rpp(i+l))*df
ip(i+l)=-2.*real(rps(i+1))*df*e
ut-s(i+l)=2.*real(rsF.(i+l))*df/e
,uss(i+1)=-2.*real(rss(i+1))*df

usp(i)=(usp(i+l)-usp(j))/dt-dcsp

uiss( i )=(ujss( i+1)-uiss( i) )/dt-dcss

dcsp~usp( 1)
dcps=ku's (1)
'cssus; (1)
write(7930)tifnierupp(i),ujsp(i),F-s(i),ujss(i)

30 formuat( lxr7.4vf15,6,3f19.6)
3 c un t in ue

call1 exit -

'.'bro'jtirte recops(r,,apbprhordruifreoFrrprpsgyrsspr'sP)

dimension a(rn) b(n)Prho(n) ,d(ri)
comp~lex tl ,t2, t3, t4, t5, rpprPs~rss, rsp ,det ,c , crisvt53, t63

pi=3, 1415926536



omeg=2.**Pi *t'ree42

rk =o0meg~* u
nrI =n- 1
Lc m c * ame g
lu2=u*u

rck.2= rk* r

o m2 = meS *omej IAS

r- ro= rho (nri

arlp1 .-c2/p2
arAsz:1.-c2/s2
i f( a rp. ge ,0.)cn=cmp 1 x(0. 9- rk so rt a r~p
if(argp.lt.0. )cn=cmplx(rk*sort(-argp)P0.)
if(args.1t.0. )cris=cmplx(rP.*sart(-args)90.)
if(argsge.0.)crs=cmpl.(.-rk.*scort(args))
Y,1=2.** rP.2-0m2/s2
rppcn*eris
L Icmp 1:.,-s 2*s2* rro/(om2+ om2 v 0.)*(cmp 1 x(4,rk.2 90.)*rpp+

+cmpl14(rl*rlp0.))
t2=cmplx(O.P0.5)*c,
t3=cmp-.:(0. -s2*u/( 2.*oieg) )*(cffp I,.( rl0. )+rprp+rpp)
L4=cmpl:(O.P-0.5)*cns
t.'e=mplx<(-l ./(2.*rro*om2) 0. )*( rpp+cmplx( rk.290.))
trl~real (tl)
tilaimag(tl)
tr2=real (t2)

* t i 2=a imag~( t2)
t r3=2,*real (t3)
ti3=2.**aimag (t3)
tr4=real (t4)
t i4 a ima~( t 4)
tr5=real (t5)
ti5=aimagBU( t5)
if(r.1 t.3)go to 2000
do 1000 i=2vnl

i r- j+ 1

LhP'rk*d( i)

if(ar~p.9e.0.)Io to 190
ra=sort(-argp)
P-t h k* r a
p= sin (p)

cp=cos (i)
;<1ra*sp

iR~ av~s=l.-c2/s2
if(args.ge.0.)go to 200

% rb=sort(-args)
a= V h k* r b
sa s i ni (a4)

Au to 210
* rd=-sci t (argp)

eP=05*exp( thk*ra) f



em=0 . 25/er-
sp~ep-em429

C.P~ep+em

-jo to 180
200 rb=-sart(args)

e p 0.5 *e x p( th k * rb)
emO * 25/ep
saoep-enir
coep+em
z=-o* rb

2 10 wsp/ra

gl=-2*s2*u2
92=al+1*
e I=cp*ca
e2=1 .-el
e3=w*v

e5=w*co .

rl~corn*rho( i)

r3=;rl*.g2

Pt --e2+e3 ~ ~

,.*A6=-r2*(f2+(e2+e4 )*r2)
'iAt3=-r3*916+f2
f3=91*fl+e3
f4=r3*al 3+1'3
s13lr3*'4+f3*r4
!411=e 1- f4
433=f'4+0.5

- i=-r3 * 31- 4 * ( e3 *r4 + f3 *r 3)
gl5=-r2*(e5+z*cp)
Aq23=-r3*a15+e5
12l=-r3*923-r4*e5
4 12 = 2 * ( e 6+ x,* cac)
g32=-r3*912-e6
9Sl=-r3*932+r4*e6
!122=el
925=.z*w
'- 52 ~

till=til*gll+ti2*g21+tr3*a31+ti4*a51+ti5*g6I
t r 22= t r1* U12+ tr~2* U22-ti 3 *U32+ tr4 *a52+tVr 5*ga51
ti22=ti 1*sl2+ti2*g22+tr3*g32+ti4*g52+ti5*g51
tr33=-til*U13-ti2*g23+tr3*g33-ti4*g32-ti5*g3l
ti33=trl*a13+tr2*a23+ti3*a33+tr4*g32+tr5*g31
t v 44= t r * a15 +t r2 *925- t i3 *a23 +tr~4 *9a22 +tVr 5*a21
ti44=til*15+ti2*a25+tr3*g23+ti4*g22+ti5*g21
ti,5t rl*916+t r2*U15-ti3*U1 3+tr4*U12+tr5*911
ti5=til*a16fti2.*a15+tr3*a13+ti4*a12+ti5*agll

trl=trll
I. = t I I

t r2 t '2

3-7.*tr33

r 4-tt44

L 1 4=ti44

a............-7.



if( rmax-. it.abs(ti3) ) rmaxti 3

if(rmax.1t.abs(ti4) ) rmax=ti440

f( rrax, it.abs(ti3) ) rmax=tir3
.i f Crrax.it ,abs Ctri2) ) rma,=ti r2
if( rmax.lt.abs(trl) ) rma>x=tirl
r* r a ir m ab .r)) mxtr

t r' 1 =t r 1I r ifi ax
Sr 2= tr2* rmax
t r 3= t r 3* rmiiax
t r4=t r4*rma
t r5 =tr 5 *rma~x
til=til*rma.x
t i2=t i2 * r nax
t i 3 = t i 3 * r max
tij4=t i4* rmax,
tiS5~t i5* rmax

1000 corit iri'j
2000 conti nue

rro rho (1)
-c2/s2

if(ar~p.lt.O.) cncmplx,(rk*sort(-argp)90.)
if(args.1t.O.) crns=cmpix,(rk*sctrt(-args),0,)
if(args.ge,0.) cns=cmplx(O. ,-rk*sort(args))
rm r ro*s2
w'I= rk 2 +r k2-am 2 /s2
tppe= cri * cri s
r m2 =rm * rr
r 12 = r 1 * r I
tllcmplx,.(-rk2t0.)
tl3=tl1+rpp
tlltll-rpp
t2l cnpx (0 r ro*om2)

121 =- t21* cri s
t31=cmplx(0. F-rrn*rk*rl)
i-ss=crplx(0.92.*rm*rk)*rpp
t33=t31+rss
t31-t31-rss
t61=cmplx(-rm2*rl2pO.)
rsscoorlx(4. *rk.2*rm2pO- )*rpp
t63=t6l+rss
t 61=t 61- rss
t23=cmplx:(O.Prm*(2.*rk2-rl))
t 53=t 23*cnr
t23=t23*cns
tl-'Icmpl('k+rkpO.)
t15=t't1*cns
V 12= t 2*cnr
1,32=cmpi1x(0. * ,4 . rm* r.2)
t 45=t 32* er.s
132=tV32* cr. s.-

t42=cmplx(O, ,2.*rm*rl) uI
t35 =t4 2 *cns



t t - 4 *c ri

*t62=cmp 1x ( 4,*t'2* rI*rk,0.) 431
t65=t6.2*cns
t 62= t 62* cri
ticmplx.(tr1,til)
t 2=cffrr1 x (t r2 Pti2)
-t3cnp 1> x tr3 P t i3)

* t4=cmpl1:,(tr4vti4)
L5=cmpl1>.(tr5rti5)

d e t =t1* t11+ t2*V21 +t 3*t 31+ t4* t 51+ t5* t61
'etcrplx(l*PO.)/det
rsstl*tl3+t2*t23+t3*t33+t4*t53+t5*t63
rss=- rss*det

* rpp=-tl*tl3-t2*t21-t3*t33+t4*t~l-t5*t63
rpp rpp*det
t3=t3*cmplx(0.5pO,)
rps=tl*t12+t3*t32+t3*t42+t5*t62
rps=-rps*det
rsgt1*tl5+t3*t35+t3*t45+t5*t65

* rsprsp*det
v e tu rrn
e n id
subroutine f f t x v m)

r-2* *mi
* -pi=3.14I1;926536

do 20 1=1,rn
Ie=2**(n,+1-1)
1 pj 1e/2

* do 20 j1,ylel
do 10 i=jvriple
:i r~i +1e 1

10 x(i)=t
* uzu*w

rnv 2n,/2

jI IT,1=r

doi 30 i=1,rivil
if(i.9e.i) ao to 25
t-xJ
,.Cj)=x( i
x~i=

26 if(k.ge.j) go to 30

P = k. 2

gfo to 26
30 i=J+k.

re tu' rnr
P rf d

1w
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Program FOR 1.

dimnrsioni a(50)vrho(50) ,d(50)
dimension uwl(1025)puw2(1025)
c'ompFlex rp1 (1025), rp2( 1025)

* read(5vI0)nvmvddvdelpdtp1,P2
10 format(2iiSf)

read(5p20)(a(i)qrho(i)9i1rin)
20 forrnat(2f)

do 1 i=lpn
1 ~d( i )dd

Pie=3,1415926536
m2=2**m
t 1in=m 2 *d t
df =1 ./tf in
do 2 i1,vm2-1
f reo=f rea+df
call recopp(ripaprhovdvp1,freoprpl(i+1))
call recopp Cn, arrho, d p2v free rp2 (i +1))

rp2(i+1)=rplCi+l)/(cmplx(0.vfrea)*2.*Pie)

2 continue
call fft(rp'1,m)
call fft(r,'2pm)
uwI (1 )2. *real Crv-1(1) )*df
ouw2(1I)=2#*real (rp2(1 ))*df
do 3 ij1,m2
timetime+dt
uwl(i+l)=2**real(rpl(i+1))*df
uw2(i+l)=2.*real(rp2(i+l))*df
uwl(i)=(uwl(i+l)-uwl(i))/dt
uw2(i)=(uw2(i+l)-uw2(i))/dt
write(7w30)tiuievuw ( i ) uw2(i )

30 forniat(l:t f7.4,fl5.6,4x,fl5.8)
3 continue

call exit
end
subroutine recopp(nva, rhovdvurfreqrpp)
dimension a(n)prho(n) ,d(n)
complex rpppni ,niproi' roipm21 vm22,e2,el pe
d(l1)=0.
pi=3.1415926536
omega=2#**Pi*frea

a.k~m aue ga * oe

xk2=xk*xk
m22=cmplx(1 * O.)0

do 170 j.flpn
j nl-j+1 -

av~g=om2/(a( i)*a( i) )-xk2
if(.rg~gt.0,)nimcmplx(sert(arg),0,)
if(arg.le.Q,)rijcmplx(0.'-sert(-arg))
roicmplx( rhoC i ) ,.)
if(i.eu.n)go to 171

e 1nni *roip
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e1= e1* (n2 1+ '2 2)vi
e 2= e2* (m 21- 22)
012 1 =e 1 + e 2
ui22= e *(e 1-e2)
rm ax cabs m 22)
rn=cabs(m2l)
if(rmgt.rnax)rmhaxr
e1=cuIplx(1,/rnaxv0. )
mn22=rn22 *e 1
ffs21=m 21* e1

171 niri
ro i -ro i

170 conrtin~ue
r pp=- fl21/rn22

r etVurnr
end
subroutine fft(x~rn)
complex x(1024) ,upwrt
n=2 * * i
pi=3. 1415926536
do 20 lzlrm
Ie=2**(m+l-1)
lel=le/2
U=Cmelx( 1, ,.)

do 20 j=Irlel
do 10 i~jpnvle
ipi+lel

10 x(i)=t
20 u=u*w

iv 2=n /2

j=1
do 30 i1,vnool -

if(i~geoj)so to 25
tx(j)

. ( i) =x t

25 knv2
26 if(k,4ge.j)go to 30

go to 26
30 j=j+.

return
end



Program FORFREQ
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dinierisior, a(50),rho(SC'),d(50)
dimiension, uwl(1025),uw2(1025)
complex rpl(1025),rp2(1025)
read(5v10)riympddyfrealvfrea2

10 formfat(2iv3f)
r'ead (5v20) (a(i), rho ( i )pi 1, r)I20 format(2f)
do 1 i1,ri

1 d(i)=dd
V Pie=3. 1415926536

fmirimirif real if rea2)
dkfair/a(1 )/m2

zk zk+dV

p p2sort(l.-zk*z'.*a(l)*a(l)/frea2/fre.2)/a(1)
call recopp(ripavrhotdvp1,frecdtrp1(i+l) ) -

call recopp(nva, rhotdp2,frea2, ri2(i+l))
2 continue

call fft(r~1,rn)
call fft(rp2pm)
uwl(1)=2.*real(rpl(l))*dk
uw2(1)=2.*rea1(rp2(I))*dP.
do 3 i=1,ni2
time =t jiie +d t
uwl(i+l)=2.*real(rpl(i+l))*dk
uw2"( ifi )=2.*real ( rp2( i+1.) )*dk0
write(7p30)timevuwl(i)vuw2(i)

30 format(lxpf7.4,fl5.6,4.,,fl5.6)

3 c o ntin u e
call exit
end
sub routi ne recopp(ripa, rho, dourf TrearrPP)
dimension a(n)prho(n) ,d(n)
comr-lex rpptnipriiproirroippwi,22,e2,e1,e
d( 1)=0,
p-i=3,1415926536
omeea=2.* Pi *frea
o m2 a uie a*o iie ~a
x k 0 meg~a* u

m22=cmpl1x (1*,v0. )

do 170 j1,pn
i =nr-if 1
arg=om2/(a(i)*a(i) )-xk2
if(arf.ut.0,)ni=cmplx:(sort(arg),0.)

if(i.ean)9o to 171

e2=ni*roip
ecexp(ni*cmplx(0. ,2#*d(i )))
el=el*(m21+m22)
e2=e2* (m21 -mf22)
m211 =el+e2
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#r22=e *(e1- 2)
rmnax =cabs ( r22)

* rr=cabs(as21)
if( rrn.9t. raji;)rmx=r,

* r22=m22*el
171 m21rn21*el

roi p roi
170 continaue

r pp= - r21/rn22
* ~retuiirni

enrd
subroutine fft(xpm)
compFlex x(1024),upwvt
S= 2 **mr
pi=3. 1415926536
do 20 1=1paj
le=2**(rn+1-1)
lelle/2
ucmp1x (107. 0*)
w=cnlx,(cos(pi/float(lel)),sin(pi/float(lel)))
do 20 j=lylel
do 10 i=jirip1e
ipji+lel
tx(i )+x-.(ip)
x~ip)=(x(i)-x(ip) )*u

10 xi t
20 uu*w

n v2=ri/2
nrni n-1

do 30 i=1,inml
if(i.ge.j)go to 25

(. x(J)x( i

25 k=nv2
26 if(P..ge.J)go to 30

Pj=J-k

go to 26
30 J=J+.

ret u rn
end
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4Program INVDISC 436

dimension a(50), rho(50)
dimension dwl(1024) pdw2(1024),uwl(1024) ,uw2(1024)
reed(5,10)nrmvddpdelpdtppl,'2

10 format(2iy5f)
20 read(5v20) (a(i), rho( i ) ,i1 n)
20 format(2f)

m=2* * r .- .

do 4 i=1,m
read(7v30)timeyuwl(i)?uw2(i)

30 format( lxzf7.4,fl5.6,4x,pf15.6)

dw(i)0,t

4 continue
aca( 1 )
rhocrho(l)

ktsl=O
Pts2=0

t12=1.
dep= *

zla(l)*rho(l)/srt(l.-(l)*()*Pl*p1)
z2=a(l)*rho(l)/sort(l,-a(l)*a(l)*p2*p2)
write(6p40)

40 format (1 x, depth' , x, 'cact' ,5x, 'ccomp' ,4x, 'rhoact' ,3x# 'rhocomp'
+' rcl1', x, 'rc2') Ij

do 5 ilpm
dep'=dep+del
acp11 ,-ac*ac*pl*pl
acp2=1.-ac*ac*p2*p2
if( (acp1 *le.0. ) or. (acp2.eO.) )calI exit
sl=sl+2.*del/dt*sort(acpl )/ac
s2=s2+2, *de1/dt*sort(acp'2)/ac
kslint(sl-ktsl+O.5)
Ic s2=intV( s2-k ts2+O.5)
ktsl=ktsl+ksl
I.t s2= k ts2+ k s2
tlltll*sort(l*-rcl*rcl)
tl2=tl2*sctrt(1 .-rc2*rc2)
kmaxmaY0(ktsl ukts2)
if(cmax.geom~call exit
do 6 k1,pm-kmax+l

temp2=(dw2(k)-rc2*uw2(k))/sort(l.-rc2*rc2)

uwl(k)=(uwl(k)-rcl*dwlCk))/scart(l.-rcl*rcl)

dw2 (k )=temp'2
6 continue
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i'cl= (uwi (kus-i )+uwl (kul )+uwl (ksl+l) )*dt/tlI
rc2=(uw2(ks2-1)+uw2(ks2)+uw2(ks2+1))*dt/t12 0
do 7 k=Ivlwr-kmax+I
uwi (k)=uwl (k+ksl)
u w2(k) =u w2 (k +k 52)

7 continue
zlzl*(l.+rcl)/(l,-rcl)

uszl *z /z2/z2

rhoclizl*sort(1 .-ac-*ac*pl*p1 )/ac
rhoc~lz2*strt( 1.-ac*ac*p2*p2)/ac
rhoc=(rhocI+rhoc2>/2.

1=miriO( int(dep/dd)+2pn)
write(6,50)depra( 1) ac, rho( 1),rhoc, rcl ,rc2

50 foruiat( lxpf7#2y6f10.4)
5 continue

call exit

e rid
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Program INVELAS

dimrenision, a(50) ,b(50)vrho(50)
dimnrsion~ dpp(1024),upp(1024),dsp(1024),usp(1024)
dimnrsiorn dps(1024) ,ups(1024),cjss(1024),uss(1024)

read(5pl0)nymddydeldtip

read(5920)(a(i),b(i) ,rho(i),i1,rg)
20 forniat(3f)

a 2=2* *ivi
it'22 =2 * m2
do 4 i1,rn,2
read(7,30)timreupp(i),usp(i),ups(i),uss(i)

30 fornat(lx~f7.4yfl5.6,3f19.6)
-4 con t inue

rhoc~rho(l)

tlsil.
write( 6,40)

40 fornat(lxt'depth',2xP'aact',2x, P'acomp' ,2x,'bact',2,Y'boip'2!*'
+' rhoact' ,2x, 'rhoc'omiP P 4, 'rp' ,5x, 'rc' , x,'rs' ,5x, / tc' )

do 5 i1,rnp2
depdep+de 1
aa8ac*ac*p*p
bbbc*bc*p*p
iacp1 .-ai

Ll:P l,-bb
if( (aePle.0.) .or. (bce-. e.O. ))call exit
9be *sort (ac p* bc p) /a c

det=(0.5-3.*bb-9+2.*bb*bb+2.*bb*g)*x../bcp
tp=tp+2.**del/dt*sort (acp)/ac
tsts+2.**del/dt*sort(bcp)/bc
tn=tmi+del/dt*(sort(acP)/ac+sort(bcp)/bc)
k d p= i r;t (te- k t p+ 0.*5)
k ds;=ii t ( ts-k t s0.*5)
kdmint(tm-k tu+0.5)

kt s k.ts + kd

tls=tls*sort(l.-rs*rs-rc*rc-tc*tc)
if(kts-ge.m2)call exit
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do 6 k.=1,n2-kts+1
leniF 1dp'p-( k.) -tc*ds (k. )- rp*upp( k.) -rc*uspPI.)

tenp2=dsp(k)+tc*dpp()-rc*up()-rs*s'(.)

tenip4=usp(k. )- rc*dpp (k. )-rs*dsp(C .)+tc*upp ( k)
d ip Ck.) =teoI p

upp Mk) =tenP3

u s p(k)ztemN P4
tenipsF.ds(k)-tc*dss()-rp*ups(k,)-rc*uss(k)
'tenip'-)dss(k.)+tc*dF-s(k.)-rc*uF's~k)-rs*uss(k) ..-

t-en i'3=u s(.- r p*dc Fs (V) -r c* d ss(k) -t c* us s k)
temp4=uss(k)-rc*dps(P.)-rs*dss(P.)+tc*ups(k.)

d r- s ( k.) t e m p I

uips (k) =teriP3
'iSS (P.) =t eniF-4

6 c orit irn i f

,-cj(usp(kd,-l)+up(kd)+usp(kdmi+l))/tlp

()iups(PU;.dn,-1 )+ups(kVdrn)+ups(kdni+l) )/tls
rc=( rcl+r'c2)*dt/2.
r-s=(uss(Vds-1)+uss(P.ds)+uss(kds+l))*dt/tls
tc=-(0.5-3.*bb49-2,*bb*g+2.*bb*bb)/(det*bcp)*x,.*rc+2.*bb/det*rI
do 7 k=1,i2-Pktp+1
tiFF'(V) 'JpF'(k+kdp) ..-

lips (k ) =ups ( k+kdoi)
'isp Ck ) fJsF'( k+kdrnj)
U!7s (P. ) =us (P +P.ds)

7 c'ontin~ue
ic=ac-((2,*bb-O,5)*rc/bcp+4,*x*(bb+g)*rs-2,*det*rp)*ac*acp/iet
bc=bc-((2.*bb-O,5)*rc+x*(l,-2.*bb+2.*g)*rs)*bc/det
rhoczrhoc,-((O,5/bcp-4.*bb)*rc+4.*(bb-g)*x*rs)*toc/det
l=inii(irt(dep/dd)+2,rn)

50 writ.e(6,5O)depa( 1) acib(1) pbc, rho(l) ,rhoc, rp'rc, rsptc
50forrnat( lxtf5.2,1'6,3,fl.4 f63,f7,4,f8.3,5f7.4)

call exit
end c

BONN
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Program INVFREO

dimension a(50)prho(50)
dimension dwl(1024),dw2(1024) ,uwl(1024),uw2(1024)

10 read(5vl0)n,vaiddffrealvfrea2

read(5v20) (a(i)vrho(i) ,i1,ni)
20 format(2f)

Pie=3. 1415926536
fmini=min(frealvfrea2)
dtza(l)/fmii/2.
flsaofred*'retl
f2sa=freo2*fre.2
do 4 i1,am
read(7v30)tinmevuwl(i)puw2(i)

30 farmat( 1xvf7.4pflS.6p4x~flS.6)
dwl (i) =0.
dw2(i =0.

4 continue
t I I=1I.
t12=1 .
gk.t.=0
dep-=0.
zzl1./sctrt( rho( 1))
ztempz
rltemrpO.
r2temp=.
write(6940)

40 format(lx,'depth',8x,'cact',Sx,'ccomp',4x'rhoact'3,.'rhocogF'
+' rcl 't9x, 'rc2') W

do 5 i1,vmJ
ktkt+l
depdep+dt
tll1t11*sart(l.-rcl*rcl)
t12=tl2*sort(1 .-rc2*rc2)
do 6 k1,vm-Pkt+l
temP1l(dwl(k.)-rcl*uwl(.))/sort(l,-rcl*rcl)
temp2=(dw2(k)-rc2l*uw2(k))/sort(1.-rc2*rc2)
uwl(k)=(uwl(k)-rcl*dwl(k))/sort(1.-rcl*rcl)
uw2 (k)=(uw2(k)-rc2*dw2(k.))/sort(1.-rc2*rc2)
dwl(k)=templ
dw2(k)=temp2

*6 continue
rcluwl (1)*dt/tll1-
rc2=uw2( 1)*dt/tl2
do 7 k=1,m-kt+l
uwi (k)=uwl (k+l)
uw2(k)=uw2(k~l)

7 continue
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vl=rcI*rc1-(rc'I-r1tern)
v2= rc,2*rc2- (rc2-r2tenip)
ri temp-=rcl
j 2 tern ~r c2

zplus((f2so*vl-fls*v2)/(r2s-flso)2)*z-ztemF>
rhoc1 ./(z*z)
ztempz

l=mirO( int(dep/dl)+2,r,)
write(6,5O)depa( 1) acp rho( 1),rhoc' rcl ,rc2

50 format (1x, f?. 26f10.4)
if(l~eoon)call exit

5contirnue
call exit

end
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Program INVI

dimension, 8(50)prho(50)
dimenssioni dwl(1024),dw2(1024),uwl(1024),uw2(1024) .

read(5pl0)npmpddrdelrdtpplpp2
10 fornmat(2iv5f)

read(5p20) (a(i), rho(i ) ilpvrj)
*20 format(2f)

do 4 i-lvm2
read(7y30)timnevuwl(i)puw2(i)

* 30 format( lxpt7.4pf15o6i'4xvfI5,6)
*4 continue

aca(1)
rhoc rho (1)
tll=1.
tl2=1.
write(6P40)

40 farmat(lx, 'dep'th' ,Sx,'cact' v~x, 'ccomP' ,4x, 'rhoact' ,3x, /rhocoffip'
+'rcl',9xp'rc2')

do 5 il1pm2
dep=dep+de 1
acpl=l .-ac*ac*pl*pl
acp2=1*-ac*ac*p2*p2
if( (acpl ,le.O. ) or. (acp2.le.O ) )call exit
slsl+2#*del/dt*sort(acp1 )/ac

* s2=s2+2. *del/dt*scart(acp'2)/ac
kslint (sl-ktsl+0, 5)
ks2=int (s2-kts2+0.*5)

k ts2= kt 52 +k 52
tl1=tl1*sert(1 .-rc1*rcl)
t12=tl2*sort( 1.-rc2*rc2)
kmax:max0(ktsl ,kts2)
if(kmax ,9e~m2)cal 1 exit
do 6 k=1,m2-kmax+l

temp2=(dw2(k)-rc,2*uw2(k))/sort(l.-rc2*rc2)
uwl(k)=(uwl(k)-rcl*dwl(k))/sort(l.-rcl*rcl)
uw2(k)=(uw2(k)-rc2*dw2(k))/sort(1.-rc2*rc2)
dwl (k)ztompl
dw2(k )temp2

6 continue
rcl=(uwl (ksl-l )+uwl (kil )+uwl (ksl+l) )*dt/tll
rc2=(uw2(ks2-1)+uw2(ks2)+uw2(ks2+1))*dt/tl2
do 7 k=1,m2-kmaxI1
uwi (k )uwl (k~ksl)
uw2(k)-uw2(k+ks2)

*7 continue
ac=ac+2.*ac*(rc2-rcl)*acpl*acp2/(acpl-acp2)
rhocmrhoc+2.rhoc*(rcl*acpl-rc2*acp2)/(acpl-acp2)
laminO( int(dep/dd)+2pn)
write( 6, 5)dep, a( ) ,ac, rho( 1),rhoc, rcl ,rc2

50 form~t(1xpf7*2p6fI0.4)
*5 continue

call exit

end
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Program MULTFOR 443L

diti, *i*~ cli a 50-), rho(50) Pdtl (50,5) 9 r(5095) Ptr(50t5)

re a'-J( b, 1) tinmprimidddel , dt, xl t ic

10 format(3iwfSi )
read ( 5 p 13) ( r- (' i ) , =h 1 ( (nn i p i iI p 5a

13 fornet(5fp)

mf 2 * * 0 1
do 77 J 1 nrin,
t r (I p j)=1
t tlj= 1
t ( J ) 0
do 77 j1,niv
uw (i p j ) =0.

77 contirnue
do 1 i=2!ri

* rho(i-l)=rho(i)
do 1 j= I1V in,

c dtl ( i 9-J) i s 2- wa v traveltirne thru laver i for ex,.'t J
dtl (i-lj)=2.*dd*soirt(l.-a(i )*a(i )*P(j)*r'(j) )/a(i)

I continue
c comp~ute ref'lectioni coefficients

* do 99 j=1rn
do 2 i=1,ri-2
r (ig,j)=(ho(i+1)/dtl(i+1,j)-rho(i)/dtl(iJ))/(rho(i+l)/dtl(i+1,j'-

++rho( i)/dtl Ci ,))
c comptFute 2-wav transmission coefficients

* 2 continue
c d o Primaries

do 3 i=1yni-2 ~..
t(j)=t(j)+dtl(ij)/dt
tl1(j) = t1 j ) *t r (ivj,
uw(int(t(j)+0.5),j)=r~iyj)/dt*tl(j)

*3 conti nue
C do secondaries

do 4 n=2,n-2
do 5 n2=1,ri-1
do 6 r13=n2+lvn,-2
n m ins ni in 0 (n 1 ,n 3

* rsitax=iia,:O~nlpr3)
t(J)=0.
ti (j)=1 .
do 7 i1,vnmfax
t(j)=tCj)+dtl(ipj)/dt
ti Cj)=tl (j)*tr( ipj

*1 if((i.le.n2).or.(i.gt,nmin)) go to?7
t(j)=t(j)+dtl Civj)/dt
tl(j)=tl(j)*tr(ipj)

7 continue
if~irnt(t(j)).ge.m)go to 6

*6 continuetI,)
5 continue
4 continue
99 continue

write(8979) ((r(i~i),j=1,5),i=pn-2) call exit
79 format(Ixp5f10.5)

* write(7912) ((uw(ipj)pjzlv5)ti=ipm)en
12 forrnat(Ix'5f19.6)
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Program NOISE 450
dimnrsioni a(50)vrho(50)9,rI (50), r2(5O)
dimension dwl(1024),dw2(1024),uwl(1024) ,uw2(1024)

10 formfat(2ir6fr2i)
* e ic=1 if' want rci zeroed usirig condition rno.; ic=0 su~rreE-ses thi:

write(6, 11)n ,mdd, del, dt, P1,F'2,xl
11 f'ormat (1 x ' n= /,i 2, 2x 'ffi=' , i22,,p /dd= ' , f5#*3r'2>: 'del =' vf5.*3 ! 0

+ 'dt=' / ,f / 5, 2 , /1=' / f4 .2p, .:, 'p2=' f'4.*2i 2:: '>.I= ' ,e7 1)
* c a(l)=e(2) arid rho(1)=rho(2)vso rno irnstantaneous reflections.

read(5p20) (a(i)vrho(i)yi=,rn)
20 fornmat(2f)

read(8v51)(rI(i)vr2(i) ,i=Inr-2)
51 format(l,2f10.5)

ffi2**ff
x s i 9 1 =0 .
x sig~2 =0,
xnoz=0.
x err 1=0.
xerr2=0
xkl =2.*:

1=2
do 4 i1,gm
read(7v30)timevuw1(i)puw2(i)

30 forniat(l,f7.4,fl5,6,4xvfl5.6)
dwl (i )=0.
dw2(i)=0,
x.sigl=1xsigl+uw1 U )*uwl (i )*dt*dt
x:sig2=xtig2+uw2( i)*uw2( i)*dt*dt
s t =1,.e -4 * int( f 1o at ( nr a nd rra nd)10 0.
stst-f'loat(int(st))
nrandinit(st*1 .e4)
s n =(st -0.*5) *2.* *xl
tepl~uwl(i)
temrp2uw2( i)
uw ( i )jwl ( i)+sn/dt
iuw2(j )'.w2(i )+sni/dt
write(9,54)tenpl ,uwl (i) ,temp2,uw2( i)

* 54 formvat(1xp4f18.6)
-.noz=xniooz+sni*sr,

*4 continue

rhoc~rho( 1)
610O.
s2=0.
P t 61=0
kts2=0

t12=1
dep=0.
zl=a(l)*rho(1)/sort(1.-a(l)*a()*t1*pl)
z2=a(l1)*rho(l1)/sart( 1.-a(l1)*a(l1)*p2*p2)
rms 1=60 rt ( x6i 91/f)
rins2=sart(xsi92/n)

snrl10.*alogl0(xsgl~/xnoz)
srr2=10.* *alo 10( xs6i 2/ xnro 2)
write (6939)rntis 1 rmh621 nIsn,6n r 1 nir2

39 format(l):,'rms si~na1='v2f10.6t2x,'rns nojse=',f'10,6p2xp'srir='9
write(6p40) 2-66.A1

40 forgat(lx,'ldepth',2x,'cact',4x,'CCOinP''4xt'rhoact',3x,''rhocomp' *I
+' ri' p4xo 'rcl' ,4x, /r2' ,4x, / rc2' ) ,

do 5 i9l,it



write(6,50)deplpa(l),acprho(1) ,rhocyr'il'rclyrd2,rc2 451
50 format (I.,, f5.2?SfS. 4)

repdep+del
acpll.-ac*ac*pl*p1
acp2i , -ac*ac*p2*p2
if((acpl.le.O. ).or. (acp2.le.O.))call exit

* sI=sI+2.*del/dt*scart(acpI)/zc
s2=s2+2.*del/dt*sart(ac'2)/ac
P1. i= i V(s I -kVs 1 +0.*5)
k s2 = i rt (s2-k ts 2 +0 .5)
ktsl ktsl +ksl
k ts2=k t s2+ ks2

* t11=tll*scnrt( 1 -rcl*rcl)
tl2=tl2*sirt(l1.-rc2*rc2)
kffax=a.%:(ktslpkts2) .-

if(krnax.9e~rn)9o to 99
if(dep.9t.((ri+5)*dd)) go to 99
do 6 P.=1,gw-Prnax+1

* templ=(dwl (k)-rcl*uwl (k))/sort(l1.-rcl*rcl)
ternjp2=(dw2(k)-rc2*uw2(k))/scart(1.-rc2*rc2)
ujwl(k)=(uwl(k.)-rcl*dwl(k))/sart(1.-rcl*rcl)
uw2(k)=(uw2(k)-rc2*dw2(k))/sart(l.-rc2*rc2)
dw (k)=ternpl
d w2(k ) =ternp2

*6 continue
rcl=(uwl (ksl-1 )+uwl (ksl )+uwl (ksl+ ) )*dt/tl1
rc2= (uw2 (ks2-1 )+uw2(ks2)+uw2(ks2+1) )*dt/t12
if(ic.ece.o) go to a
if'( abs (rTc1)l) t.xkI) rcI=O,
if(abs(rc2) .lt.xkP.2)rc2=0,

* .kl=x.kl*(1 .+abs(rcl))/(l.-abs(rcI))
>-F"=x.k2* (1 *+abs(rc2))/(1.-abs(rc2))

8 do 7 k.~1,m-kmax.+l
uwi (k)=uwl (k+ksl)
uiw 2 (P.) = uw2 ( k+k s2)

7 co rt in ue
* zlzl*(l1.+rcl )/( 1.-rcl)

z2=z2*(l1.+rc2)/(1 .-rc2)
u =z 1*z l/z 2/ z2
ac=(sart( (u-I *)/(u-p2*p2/l/p ) ) )/P'1
rhoclzl*sart(1 .-ac*ac*pl*pl )/ac
rhoc2=z2*sort(I ,-ac'*ac*p2*p2)/ac

* rhoc=(rhocl+rhoc2)/2.
llrmnrO(irt(dep/dd+0.OO01)+2tn)
rdl~rl (1-1)
rd2=r2( 1-1)
if(Il.re.l)9o to 53
T'cl=O.

* rd2=0.
53 1=11

xerr1= xerrl+( rdl-rcl )*( rdl-rcl)
xerr2=xerr2+( rd2-rc2)*( rd2-rc2) '

5 continue
99 mrse1=sart(2.*xerrl/i)

* rnase2=sart(2.*x-err2/i)
enrI=20.*alog1(rfftse1/rnr)
enr2=20.*alogI0(rmse2/nsn)
write(6,52)rrse1rrmse2,trmsflpenrlenr2

52 forrnat(lxv'ruis error='v2f1.62xy'ris roise=',flQ.6p2xp'enr'-
call exit t2r8,3)

* end
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*Program SCHUR%

dimenisioni a(50)Prho(50) ,d(50)0
* complex 'J(1O25),u2(1025),dl(1025),d2(1025),temp1,temp2

c set ic=0 to skip forward Parti read from device *7.
C. set ic=1 to genierate forward response and then, solve from it.

re~ad(5, 10)rivmpddvdel ,dfppl PP2,ic
10 forniat(2iy5fri)

20 read(5v20) (a( i)Prho( i)Pi=rn)
20 format(2f)

write(6921 )n~m~ddqdel ,df~pl PP2
21 format(lx, 'n=',i2, 'm=',i2, 'dd=',f4.2,'del=',f4.2,'df=',f5.3,

+'p1=' f4.2y 'p2=' ,f4*2)
do 1 i1,r;

1 d(i)=dd
Pie=3. 1415926536
ni2=2** m
if(ic.rne.0)go to 53
read(7r52)(u1(i)Pu2(i)ri=1,m2)
go to 54

*53 do 2 i=I~m2
f rea~= fre+ d f
call recopp(rgya~rho~d~p1?frea~u1(i))
call recopp(ri~arho~dyp2Pfreaiu2( i))
dl (i )=cmp;lx( 1.* ,)
d2( i )=cilx( 1 *P0.)

tau2=0.
write(7P52)ul(i)Pu2(i)

* 52 fornaat(1xv4fl0.4) -
2 continue d

54 ac1=a(l)/sort(1.-a(l)*a(l)*Pl*pl)
ac2=a(l)/sart(l.-a(l)*a(l)*p2*p2)
zlrho(l1)*acl
z2=rho(1 )*ac2 :
write(6p51)

51 formiat(3x,'depth',6x,'cact',5x,'ccomp',4x,'rhoact',3x,'rhocomir
+'rcl'p9x, 'rc2') '- ~ -

do 3 i=lyint(dd/del*n)+5
dep=dep+del
t a u 1= t a i+del /a ci
tau2=tau2+del/ac2
sum 1=0
sum2=0.

* 0 me9 =0.
do 4 j=lpm2
o meg omeg~+2* *Pie *d f
temipl=dl(j)*cexpC-cmplx(0.,omeg*del/ac))-cmplx:(rlpO.)*ul(j)
temp2=d2(j)*cexp(-cmplx(0. ,omeg*del/ac2) )-cmplx:(r2pO. )*u2(j)
ul(j)=ul(j)*cexp(cmplx(0, ,omeg*del/acl))-cnp,(rl,0. )*dl(j)
u2(j)=u2(j)*cex(cplxe(0, omeg*del/ac2) -cmplx( r2,0. )*d2(j)
dl (j)templ
d2(j)=temp2
suml=suml+real(cexp(cmplx(0eOmeg*taul))*ul(j))
sum2=sum2+real(cexp(cmplx(0.,omeg*tau2))*u2(j))

4 continue
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r 1=sum 1/rn2
r2=sum2/m2 *

z22*( 1.+r1 )/( 1.-ri) l

acLa/sert u-.(I -**/'1* l) /1

ao,2=ac/scart( 1.-ac*zc*'2*p~2)
rho c= ( zi/ ao +z2 / ac2) /2.

J=r,(irt(dep/dd)+2,ri)
write(6p50)dera(l) ,acprho(l),rhocprlpr2

50 format( 1xyf7.2p6fI0.4) M
3 con t inue

(2811 exit
e n d
subroutin~e recopp(nva, rhovdpupfreapr p
dimension a(n) ,rho(ri) d(rs)
complexc rpppnivrgip'roirroippm21,rn22ve2,elve
V(1 ) =0.
pi=3, 1415926536
omega=2,*Pi*free
o n2 =o meg~a *oameg~a
x k =oame g8* u
>.k 2=>x * k
I22=cmplx(1 * ,O.)

do 170 j1pn

ar9=om2/(a(i )*a(i) )-xk.2
if(arg.gt,0.)riicrnplx(sart(arg)v 0.)

if(i.ece.n)sfo to 171
e 1 nip~* roai

fbcexp(rii*cmplx(0. i2.*d( i)))
el=e1*(m2l+,22)

o 2 = 2 *( rn21-322)

ff122=e* (e1-e2)
r max =cabs (m 22)
rpo=cabs(m2l)
i f( rm , gt. rmax ) rmax= rm
eI=crnplx(1,/rmaxv0.)
3122=mii22* e 1-

171 niip=ni
roip: ro i

170 continue
r pp= -321/322
retu'rnr
enrd

7.. . . . . . . . . . m - * * * . ~ ~
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subroutine fft(xvm)
complex x(1024) ,upwvt
ri =2* *r
pi=3. 1415926536
do 20 llIvn
Ie=2**(ui+1-1)
lel~le/2

do 20 j1,plel
do 10 i~jtrle
ipi+lel

.(jp)=(x(i)-x(ip))*u

10 x( i) =t
20 u=u*w

1=10
do 30 i=1vrnmI

if(i.ge.j)go to 25

tx ()t

25 kriv2
26 if(k.ge.j)go to 30

Pk=P/2
go to 26

30 ..=j+P.
ret urnr
end
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