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b ABSTRACT

" The inverse scattering theory concept of layer stripping is applied to a
variety of inverse seismic problems. This results in fast algorithms that solve
these problems more simply and quickly than techniques used previously on
these problems, and also admit physical insight into their operation.

* A layer stripping algorithm works by recursively identifying and stripping

away differential layers of the medium. As the wave front of the excitation
passes through a given depth z, the first non+‘zero value of the medium
response at depth z yields information about the medium at depth z. Then the
excitation and response can be propagated through the known differential layer
at depth z to depth z + A, where the process is repeated. 4o

The inverse seismic problems for which layer stripping fast algorithm .
solutions are obtained include: (1) the reconstruction of layered acoustic and NONES
elastic media from their reflection responses to impulsive plane waves at non-
normal incidence; (2) the reconstruction of a layered acoustic medium from
its reflection response to a point impulsive or harmonic source; and (3) the
reconstruction of a twoidimensionally inhomogeneous medium from its plane e
wave reflection response. None of these algorithms has appeared previously "
in the literature.

Computer runs of some of these algorithms are included, and their
performance is quite satisfactory. Several procedures for improving their
performance on noisy data are given. Some results on general inverse
scattering theory, and relations between these fast algorithms and fast

algorithms that exploit structure in matrices or the kernels of integral B ‘
equations, are alsy presented.
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ud CHAPTER I
Introduction
L 1.1 Motivation

The inverse seismic problem can be defined roughly as follows.

The medium to be probed (i.e., the earth or the ocean floor) is

excited by some sort of source, generally explosive in nature. The
response of the medium to this source is measured, and from this response
some properties of the medium are determined. The importance of this

l®

problem in locating oil and mineral deposits should be evident.
The above definition is vague because the problem can be

specialized in many different ways. The experiment may take place

entirely on land, in which case the medium response is measured by
seismometers as the (particle) displacement, velocity, or acceleration at
a given point. Alternately, the experiment may take place at sea, in
which case the medium being probed is the sea bottom, and the medium
response is measured by hydrophones as the pressure in the ocean water.
The medium itself may be assumed to consist of homogeneous layers of
varying thicknesses, horizontally stratified, or lateral variation in medium
properties may be permitted. The medium may support the propagation
of elastic (P and S) waves, or of acoustic (P) waves only.

A particular case of the inverse seismic problem that has been the
focus of considerable attention in recent years is the case where the
medium is parametrized by profiles of local density c(z) and local

acoustic wave speed c(z), and these two quantities vary continuously




with depth. Since any medium discontinuity likely to occur in the real

world could be modelled by a fast-changing continuous function, this

is in a sense the most general case of a one-dimensional acoustic medium.
In addition, the difficulty of the general problem necessitates some
simplifying assumptions; this case (henceforth referred to as the

"1-D problem") is specialized enough to admit an exact (in principle)
analytic solution, while still being general enough to be of some practical
use.

Starting with the landmark paper of Ware and Aki (1969), solutions
to the 1-D problem have generally employed a mathematical physics
approach. This is because the basic acoustic and stress-strain
equations of the 1-D problem may be transformed into a Schrodinger
equation, to which exact inverse scattering solutions are already known
(See Section 3.2.2). However, these solutions require the solution of
a Marchenko integral equation, which is computationally unattractive since
the amount of computation involved for a discretization of order N is
O(N 3). In addition, the medium parameter profiles are required to be
twice differentiable.

In searching for computationally faster ways of solving the 1-D
problem, the general inverse scattering problem concept of layer-
stripping suggests itself. A layer-stripping algorithm applied to the
1-D problem works conceptually as follows. The basic equations for the
1-D problem are transformed into a coupled set of partial differential
equations which describe the propagation of up- and down-going waves as
they interact with the medium and with each other. If the downgoing
wave is assumed to contain a leading impulse (representing an explosive

source), then the first reflection of this impulse into the upgoing wave
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at a given depth reveals information about the medium at that depth.
This information is then used to propagate the waves downward, where
information about the medium at this (lower) depth is obtained.
Proceeding recursively in this manner, differential layers of the medium
are "peeled away" as the algorithm penetrates deeper and deeper.
Mathematical details of this procedure are given in Chapter II; the
physical interpretation of the workings of such an algorithm should be
quite apparent. The advantage of such an algorithm is that it requires
only 0(N2) computation--a considerable savings.

How can the layer-stripping algorithm get by with O(Nz) computation?
Details are given in Chapter Il and are too complicated to recount here, but
the special structure (identity-plus-Hankel kernel) of the Marchenko
integral equation allows a fast algorithm solution to the discretized version
of this equation in the same manner that the special structure of a Toeplitz
matrix allows a fast algorithm solution to‘a Toeplitz system of equations by
the Levinson algorithm. In fact, the layer—stripping algorithm consists in
part of a continuous-parameter version of the fast Cholesky algorithm
encountered in studying the factorization of Toeplitz matrices, and there
is a close relationship between this algorithm and the Levinson algorithm.

Thus, layer-stripping is more than just a technique for solving
inverse scattering problems. In addition to admitting an unusually vivid
physical interpretation of its operation, it ties in quite readily with
factorization of matrices and solutions of integral equations whose Kernels
have specific forms. This in turn is related to the capacity of this
procedure to exploit these forms to generate faster and simpler algorithms
for solving these inverse scattering problems. This suggests that layer-

stripping might be a powerful technique to bring to bear on various
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inverse seismic problems--more so than has generally been recognized. "“
The subject of this thesis is the theoretical development of the .:
layer-stripping methodology, and the application of layer-stripping T:
methods to a wider variety of inverse seismic problems than has been ::
dealt with so far. Among the major problems considered are: ® é
(1) The "offset” problem in which the medium is probed \

with impulsive plane pressure waves at non-normal .
incidence. This allows the recovery of density and ® 'r

-

wave speed profiles separately as functions of depth,

PR
)
A o S

which is not possible for the 1-D problem described
:; bove;

. above o £
: (2) The "point-source" problem in which the medium is

probed with spherical waves emanating from an

2 impulsive point source, or from a point harmonic ° 2
i_ source. This is a situation far more likely to be
i encountered in practice than infinite plane waves, \
L\ which must be simulated by stacking data; ® '
: (3) The "“elastic" problem in which the medium supports 3._.
the propagation of both P and S waves, with continual t
interconversion between the two types of waves. The ° ;é:
goal is to recover profiles of the Lamé parameters
A(z) and u(z) as well as the density o(z);
- (4) Higher-dimensional problems in which lateral variations ° '
of density and wave speed are allowed, viz. p(x,z) ‘:-‘}:‘:
and c(x,z). ,'
R
r The goal of this thesis is not merely to obtain algorithms that .'1

solve these problems, but to interpret these algorithms physically and
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relate them to past work done in solving these problems, insofar as

A
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possible. It is also noted how the various algorithms generalize from

one problem to another, pointing ocut mathematical similarities in the e
problems themselves that may not be immediately apparent. :::i::j:
NG
A >

[ Comparison with Other Inversion Methods

The inversion algorithms given in this thesis are all amplitude-based
procedures, since the amplitude of the measured medium response is
used to reconstruct the medium. ("Amplitude" here refers to the
amplitude and phase of the reflection response.) Ths is in contrast to
travel time inversion methods, which use only the arrival times of various
modes or converted waves. It should be noted that travel time inversion
methods such as the Herglotz-Wiechert formula (Aki and Richards,
1980) generally have difficulty with low-velocity zones in the medium,
require the assumption of geometrical seismics (i.e., high frequencies),
and are unable to reconstruct the density of the medium. None of

these difficulties applies to the layer stripping inversion procedures given

in this thesis. '
However, the requirement of measuring the amplitude of the g
reflection response introduces noise into the inversion problem. In
Chapter V, some study is made of the behavior of the offset problem 5;
layer stripping algorithms of Chapter 1V in the presence of noise. The
results of this study show that the algorithms work well in the presence ,,:‘:.}
d of small amounts of additive noise, but break down at some depth for
higher noise levels. This is due in part to the poor conditioning of the
inverse problem at this depth, and does not reflect an inherent fault in '_:.-j\j_

“~
",
the algorithms themselves, as is commonly believed. This issue is ..
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discussed in more detail in Chapter V.

The presence of a significant amount of noise in the data suggests
the use of deconvolution methods in which the medium is modelled as
an autoregressive (AR) filter. In using this approach, it is necessary
to assume that the medium reflection coefficients constitute a white
(i.e., completely uncorrelated) random process, which is tantamount
to neglecting all multiple reflections within the medium. Thus
deconvolution methods are inherently inexact. Further, Lash (1982)
reports that multiple reflections can constitute a significant part of the
reflection response, particularly for sedimentary, layered media.

This last point is particularly important, since sedimentary,
layered media constitute a likely milieu for deposits of petroleum.
Petroleum deposits tend to be found in "traps" about half a square mile
in extent and about four miles deep. Such traps tend to arise in
layered media generally formed by sedimentary processes. Since
searching for these traps by inverse seismic methods is of great
interest to oil companies, the relevance of the approach used in this

thesis should be evident.

1.2 Literature Survey

Details of past work done on each of the problems considered in
this thesis are given in the introductions to each chapter. In this

section, the most important references are collected and summarized.

Application of the Layer-Stripping Principle

The concept of layer stripping has been developed only recently,
and not many references are available on the application of this concept

to inverse scattering problems. Although the concept of dynamic
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deconvolution (e.g., Robinson, 1982) can be considered to be a

precursor to the results of application of the layer-stripping idea,
application of the layer-stripping concept itself has occurred only
recently.

Bruckstein et al. (1983) is a good survey paper on the concept and

b
its relations to other means of solving inverse scattering problems,
i.e., integral equations. Chapter II of this thesis contains most of
‘ the important ideas of this paper, with more emphasis on applications.
)

Symes (1981), Santosa and Schwetlick (1982), Symes and Zimmerman
(1982), and Bube and Burridge (1983) have all applied layer stripping
ideas to the 1-D problem at normal incidence, and the latter two report
satisfying results for numerical tests on synthetic data. Corones et
al. (1983) used the time-domain version of a Riccati equation as an
invariant embedding equation, which can be considered to be a layer
stripping approach. This also solved the one-dimensional problem at
normal incidence.

Carrion (1983) has recently applied layer stripping ideas to the
one-dimensional problem at non-normal incidence (i.e., the "offset"
problem). However, Carrion's procedure is much more complicated than
the alogrithm specified in Chapter IV, and lacks the physical
interpretability of that algorithm. Carrion's procedure is also not
easily related to layer stripping algorithms for the one-dimensional
problem at normal incidence, and does not generalize to algorithms for
the elastic problem and higher-dimensional probjems, as does the
algorithm of Chapter IV.

Similar objections apply to the layer stripping algorithm given in

Clarke (1984) for the elastic problem. In particular, the medium
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parameter updates are far too complicated to consider this algorithm

a "fast" algorithm. Although Clarke's (1984) algorithm, unlike the

algorithm given in Chapter VI, does in principle furnish an exact

solution for a discrete medium (i.e., a medium whose properties change

sharply at each interface between layers), the numerical results

presented in Chapter VI indicate that the more complicated discrete

medium updates may not be worth the added computation time they require.
Mendel and Habibi-Ashrafi (1980) and Habibi-Ashrafi and Mendel

(1982) have utilized the principle of layer stripping in a somewhat

different manner from the approach taken in this thesis. Their approach

is to perform a maximum-likelihood estimation of the time and strength

of each primary reflection, using a matched filter and a transversal

equalizing filter, and then use this data to propagate the waves downward.

This a posteriori approach is in contrast to the a priori approach used

in this thesis. Although it is more complex and time-consuming, it

may well work better on noisy data. Shiva and Mendel (1983) apply

this approach to the elastic problem, but as in Clarke (1984) the use

of discrete medium updates results in a very complicated procedure.

The One-Dimensional Problem at Normal Incidence

The landmark paper of Ware and Aki (1969) stimulated interest
in the 1-D problem, in which an infinite impulsive plane pressure wave
is normally incident on a medium supporting the propagation of acoustic
(sound) waves and having depth-dependent density o(z) and wave
speed c(z). By suitable transformations (see Chapter 1II), the basic
acoustic and stress-strain equations of the 1-D problem are transformed

into a Schrodinger equation. The inverse scattering problem for a

..........
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Schrodinger equation is well known both in mathematical physics and in
b inverse scattering theory, and its solution requires the solution of
a Marchenko integral equation, as discussed in Chapter II. This

approach, which may be termed the "classical" approach to the 1-D

L problem, has been employed by many authors.

The result of solving the 1-D problem is the impedance pe(T)
as a function of travel time 1. Gerver (1970) showed that the
? impedance is all that can be reconstructed for an excitation by plane
waves at normal incidence, and that the reconstruction is unique,

subject to mild assumptions.

Other methods for solving the 1-D problem have been fiven by
Burridge (1980), who derives the Marchenko integral equation and
several related integral equations directly in the time domain, bypassing
the Schrodinger equation formulation. Gray (1983) derives a
Marchenko equation directly in terms of a reflectivity function r(7),
bypassing the Schrodinger potential. This allows discontinuities in r(t)
and requires only that the impedance be continuous, unlike the
Schrodinger formulation for which the impedance must be twice
differentiable. The excellent review paper by Newton (1981)

summarizes several different ways of solving the 1-D problem.

l®
The discrete version of the 1-D problem consists of a layered
medium being probed by a discrete impulsive plane wave. The layered
° medium is assumed to be composed of horizontally stratified homogeneous
layers whose thicknesses are such that the travel time At through each
! layer is the same. Then all events (reflections at or transmissions
‘. through any interface, or arrivals at the surface) occur at integer
multiples of AT, making the problem a digital signal processing problem.
®
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3
This model of the medium was first proposed by Goupillaud (1961), and :'—::I
is often referred to in the literature as a "Goupillaud medium." Analysis .2’:
of wave propagation through such a medium has been performed in ;:-
Kunetz (1962), Berryman and Greene (1980), Aki and Richards (1980), ilr_:
and Robinson (1982), among others, and it is shown that the impedance .i' ,
of the layers may be recovered by solving an identity-plus-Hankel (E
system of equations. It is shown further in the above references that {:'

<.

this system can be solved by a fast, Levinson-like algorithm that

L
P

e .
PRI R R IV
W,

exploits the structure of the system matrix. Berryman and Greene

(1980) showed that discretizations of the Marchenko integral equation
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and the Schrodinger equation lead to the same identity-plus-Hankel

o

system, so that discretization of the medium is equivalent to
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discretization of the equations.
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The Offset and Point-Source Problems

BV

The offset problem is a variation on the 1-D problem described above
in that the probing impulsive plane wave is not incident normally on
the medium, but arrives at the top of the medium at a slant or @

offset (see Figure 4.1). Although the density and wave speed are still

functions of depth only, the medium itself is now assumed to be two-

e
PRI

dimensional in extent--the waves no longer propagate only along a
single vertical ray path. Since the offset experiment may be performed

at two different angles of incidence, resulting in two different ray

paths through the medium, the density and wave speed profiles o(z) ®

l’!.
R AP

and c(z) can be recovered separately as functions of depth. This is

y ¢

unlike the 1-D experiment, for which only the impedance as a function

4 S TN
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of travel time pc(1) can be recovered. ®

B
LR PR R ar A
LA

&

o
PR PIPL I ]




PO S A

M Anciivite Sl B ANk 3 da -0 e "2 e aiie )

25

The offset problem was first analyzed by Ware (1969), who showed
how it could be transformed into a 1-D problem parametrized by the
angle of incidence. Coen (1981) used a different transformation to
obtain a Schrodinger equation which, upon solution of a Marchenko
integral equation, yields the index of refraction. Coen's procedure
requires the solution of two Marchenko integral equations (one for
each experiment) and some algebra to recover p(z) and c(z).

Howard (1983) gives still another procedure that results in a
Mmatrix Marchenko integral equation. The profiles p(z) and c(z) are
then recovered using a rather messy reconstruction procedure. Although
Howard uses the transformation into upgoing and downgoing waves used
in Chapter IV, his procedure is not at all well suited for computation.

In the point-source problem the medium is probed with spherical
impulsive waves emanating from a single point source. This is a more
realistic set-up than supposing an infinite plane wave which cannot
exist in the real world and must be simulated by stacking data.
Although transformations between plane waves (actually cylindrical
waves) and spherical waves are well known (e.g., the Sommerfeld
integral; see Aki and Richards, 1980), surprisingly little work has been
done on the inverse problem with a point-source excitation.

Coen (1982) uses the Hankel transform of order zero to transform
the point source problem to the offset problem. A Hankel transform must
be performed on the original data (vertical particle velocity at the
surface), and Coen notes that this can be interpreted as a Radon
transform. However, the resulting (synthetic) offset problem may
involve an impulsive plane wave incident at a post-critical angle, which

must be dealt with in a manner different from that of the case of
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pre-critical incidence.

Coen (1982) and Stickler (1983) consider the inverse problem in
which the medium is excited by a point harmonic source. By performing
this experiment at two different source frequencies, the profiles P(z)
and c(z) are recovered separately. Coen posits an experiment run on
land, obtains a Schrodinger-like equation, and requires the solution of
two Marchenko integral equations. Stickler posits an experiment run at
sea, and requires the solution of a Schrodinger equation inverse

potential problem by trace methods.

The Elastic Problem

The elastic problem is a variation on the offset problem in which the
medium is now assumed to support the propagation of both P waves
and S waves. This is a more realistic assumption for the earth than
the assumption of acoustic (P) wave propagation only, which is
tantamount to treating the earth as a fluid. The problem is difficult
in that the two wave types are being continually interconverted as they
propagate through an inhomogeneous medium. The goal of the elastic
problem is recovery of profiles of the Lamé parameters A(z) and u(z),
and the density p(2).

Previous work on this problem has yielded methods of solution
that are computationally arduous to implement. Blagoveschenskii (1967)
exhibited several integral equations whose solutions yielded the
parameter profiles, and by combining the Gel'fand-Levitan inverse
scattering procedure with the solution of a Volterra-type equation,
Carroll and Santosa (1982) were able to recover the parameter profiles

more simply. Baker (1982) solved the related problem of

reconstructing radially-varying parameters by using spherical harmonics




and Marchenko integral equations.

Kennett and Illingworth (1981) gave a very complicated procedure
involving approximations by Airy functions and propagator matrices,
which "propagate" displacements and stresses from one depth to another
as a state transition matrix propagates the state of a system from one
time to another. Frasier (1969) gave a treatment of the discrete
elastic problem analogous to Berryman and Greene's (1980) treatment of
the 1-D problem, although the different wave speeds of P and S waves
cause problems in defining a Goupillaud medium model.

In summary, none of the methods brought to bear on the elastic

problem so far can be considered to be attractive from a practical,

computational perspective.

Higher Dimensional Problems

Very little work has been done in obtaining exact solutions to
higher-dimensional inverse seismic problems, in which the density p(x,z)
and wave speed c¢(x,z) are allowed to vary laterally as well as with
depth. The most commonly used approach is migration, in which an
observed wave field is back-propagated into the medium to determine

its strength at the point of reflection, yielding the reflection coefficient

at that point. This is effective if the medium consists of a few large
homogeneous regions, with variation only at a few (non-horizontal)
interfaces. Tomographic approaches employing the Born (weak scattering)
approximation are useful only if the wave speed has little variation.
Neither of these approaches can reconstruct density or account for
multiple reflections.

Newton (1980) has extended the Gel'fand-Levitan potential

reconstruction procedure to general 3-D media. However, this result has
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s proven to be of limited use in solving higher-dimensional seismic

) problems.

1.3 Contributions of Thesis

" The major contribution of this thesis is the demonstration that layer
kA

stripping principles can be applied to a much wider variety of inverse
seismic problems than has generally been realized. Other contributions

include the numerical demonstration that the new algorithms do in fact

i 4. 4 NPy %]

work on synthetically generated data, and that the offset problem

[ algorithm works on slightly noisy data as well.

The material of Chapter II is a synthesis of the major results of
Bruckstein et al. (1983) and Yagle and Levy (1984a). The results on
inverse scattering for asymmetric two-component wave systems, and on
recovery of the potential of a Schrodinger equation by conversion to a
symmetric two-component wave system (Section 2.3.5) have not previously
appeared in the literature (save for Yagle and Levy, 1984a), although
Jaulent (1982) used an approach similar to the former to solve the
inverse problem for a lossy non-uniform transmission line.

The material covered in Chapter III is a compendium of results from
a variety of sources, including Ware and Aki (1969), Berryman and
Greene (1980), Robinson (1982), Bube and Burridge (1983), and Yagle
and Levy (1984b). The results on the use of the continuous-parameter
fast Cholesky algorithm to reconstruct a continuous layered medium were
obtained concurrently with and independently of the work of Bruckstein
: et al. (1983) and Bube and Burridge (1983). The Schur and dynamic

deconvolution algorithms for reconstructing a continuous medium seem to

be new to the literature, although they are only a trivial generalization
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of the discrete medium results. However, Chapter IIl does do an r_.'.-jf:-‘

L excellent job of linking together the various approaches to solving the ".:‘:::‘:.’

one-dimensional normal incidence inverse problem, and of showing the

dual nature of the layer stripping and integral equation/matrix equation

methods for both continuous and discrete layered media.

The layer stripping algorithms of Chapter IV are all new, with the
continuous medium algorithms for plane wave and point source excitations
having appeared in Yagle and Levy (1984b). The material of Sections
4.2.1., 4.3.1, and 4.4.1 on integral equations solutions, Hankel and
Radon transforms, and turning points, respectively, is necessary

foundation material taken from a variety of sources (see references for

Chapter IV).
Chapter V consists of a variety of modifications to the algorithms 7 .,

of Chapter 1V, and numerical tests of the various algorithms on _..
synthetically-generated data. The discussion of forward and backward ._:_:‘
stability is due to Stewart (1973), and the condition number threshold j,'\
e

modification is adapted from Bruckstein et al. (1984). The modification

¥
B

of using a least-squares fit to compute the updates at each depth,

the lossy medium algorithm, and all of the numerical results and »;?-.:j-:j
observations are new. DR
All of the results of Chapter VI (save for the contents of Section !
6.3.3, which are taken from Frasier, 1969) are new. The contents of > _:Z:‘
Sections 6.2 and 6.4 appear in Yagle and Levy (1985). It should be
noted that the 4x4 system matrix for upgoing and downgoing waves in
inhomogeneous media has been derived in several papers by B.L.N.

Kennett, e.g., Kennett and Illingworth (1981).

In Chapter VII two different inverse problems are treated, since
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they are mathematically analogous. This analogy seems to have gone
unnoticed previously. The fast algorithms for solving the two
formulations of the inverse problem with a point harmonic source are
new, and they appear in Yagle and Levy (1984c). The results on the
inverse resistivity problem are taken from Levy (1984).

In Chapter VIII the layer stripping approach is applied to higher-
dimensional inverse seismic problems, in which the density and wave
speed vary laterally as well as with depth (viz. p(x,z) and c(x,z)).
All of the results in this chapter are new. The resuits of Sections 8.2

and 8.4 have appeared in Yagle (1983).

In this section the contributions of and new results in this thesis
have been summarized. In the process, an overview of the thesis as a
whole has been given. Since the major contribution of this thesis is

the application of the layer stripping concept to a wide variety of

inverse seismic problems, considerable attention is paid throughout the

thesis to analogies between various problems and solutions, and to ways
in which solutions to one problem generalize to those of another. In
the next chapter a foundation for all of this is laid by discussing the
concept of layer stripping itself, the ways in which it may be used to
solve various types of inverse scattering problems, and the ways in
which these methods are mathematically dual to the usual, integral-

equation-based methods of soiving these problems.
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CHAPTER 11

Layer Stripping and Inverse Scattering Theory

2.1 Introduction

In this chapter we collect a variety of results on inverse scattering
theory from several sources, and present a unified treatment of several
methods for solving inverse scattering problems. In particular, the

mathematical concept of layer stripping (Bruckstein et al, 1983) is

explained and used to develop algorithms for solving inverse scattering
problems.

In Section 2.2 the concept of an inverse scattering problem is quickly
reviewed, and the symmetric two-component wave system inverse
scattering problem is defined. Most of the inverse seismic problems
dealt with in this thesis can be cast into this form, or into an analogous
form. Thus approaches used to solve this problem can be (and will be)
used to solve other problems in this thesis. The properties of the
scattering matrix are then discussed, with attention paid to physical
interpretation of these properties in terms of conservation of energy.

In Section 2.3 differential methods for solving inverse scattering
problems are derived and discussed. These methods utilize the concept

of layer stripping, which means that the scattering medium is

reconstructed differentially, layer by layer, rather than all at once in
a "batch" procedure. The continuous-parameter fast Cholesky, Schur,
and dynamic deconvolution algorithms (which are all different versions
of the same algorithm) are derived and applied to the inverse scattering

problem for a lossless transmission line. Next, a fast algorithm for the
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asymmetric two-component wave system inverse scattering problem is
b derived and applied to the inverse scattering problem for a lossy
transmission line. Finally, other differential methods are derived,
including the misnamed "method of characteristics" of Santosa and
Schwetlick (1982), and two methods for recovering the potential of a
Schrodinger equation. These methods will be used in Chapters VIII

and VII, respectively.

‘ In Section 2.4 integral equation methods for solving inverse
scattering problems are derived and discussed. The Marchenko,
Gel'fand-Levitan, and Krein integral equations are all derived using the
‘ treatment of Bruckstein et al. (1983). The Krein-Levinson algorithm,
a continuous-parameter version of the famous Levinson algorithm

for solving Toeplitz systems of equations, is shown to solve these

L integral equations. Finally, an approach due to Levy (1985) which
interprets the inverse scattering problem as an orthogonalization
problem is used to again obtain the Marchenko integral equation.

In Section 2.5 relations between differential and integral methods
are explored. In particular, the relation between the fast Cholesky
algorithm (a differential method) and the Krein-Levinson algorithm
(which solves the integral equations) is discussed. The relations are
P then illustrated by interpreting the problem of linear least-squares
estimation of a stationary stochastic process as an inverse scattering

L problem, and solving it using both algorithms.

2.2 Inverse Scatteriri Problems

In an inverse scattering problem a medium is probed with some sort

of disturbance (e.g., acoustic or electromagnetic) and the effect on the
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disturbance (either the scattered field or the transmitted field, or both)
is measured. From this measurement an attempt is made to reconstruct
the medium. Obviously a priori assumptions about the medium are
necessary. For example, in Chapter IV it will be assumed that the
acoustic medium being probed is lossless, layered (medium parameters
vary only with depth z), isotropic (no variation with direction), linear
(small strains), and completely specified by wave speed c¢(z) and

density o(z). The problem is then to recover two functions p(z) and
c(z) from measurement of the scattered field. This is now a mathematical

problem, but in general still a difficult one.

The Symmetric Two-Component Wave System

Consider a lossless, one-dimensional scattering medium described by

the coupled partial differential equations

sp/ox + op/lot = -r(x)q(x,t) (2-1a)

°sq/ox - aqfot = ~r(x)p(x,t) (2-1b)

These equations are a special case of equations discussed by Zakharov
and Shabat (1972) and Ablowitz and Segur (1981). The reflectivity
function r(x) completely characterizes the medium, and it is assumed that
r(x) = 0 for x < 0 and r(x)GLl[O,oo). This means that for x < 0 and

x-+= p(x,t) and q(x,t) have the forms
p(x,t) = p(x-t), q(x,t) = q(x+). (2-2)

Thus p and q can be interpreted as waves propagating rightward and
leftward at unit velocity. The interpretation of the medium being probed
by waves at x = 0 and x—+ « is evident.

What measurements are necessary to recover the reflectivity function
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r(x)? To answer this question, we look at the scattering matrix for the -':":::,’

P two-component system,

The Scattering Matrix

By taking the Fourier transform of (2-1), we obtain

-jw -r(x) p

™

(2-3)

a
dx
-r(x) jw q

A ZEm
flely

Now if x is discretized with discretization length & (i.e., x = nd),

a simple forward difference approximation to the derivative in (2-3)

and noting that 1 - ij::e_]“‘A for small & gives the elementary

scattering section described in Figure 2.1. This figure shows that

r(x)A is the fraction of the rightgoing wave P which is reflected by a

section of thickness A at point x inside the medium. The discrete

ladder structure displayed by Figure 2.1 has been used to design signal

processing architectures for speech processing (Markel and Gray, 1983),

digital wave-filter synthesis (Deprettere and Dewilde, 1980), spectral

estimation (Makhoul, 1977), and linear estimation (Dewilde, 1982;

Dewilde and Dym, 1981; Dewilde et al., 1978).

The elementary scattering layers of Figure 2.1 can be composed by

using the rules of composition for scattering layers described in

Redheffer (1962). The resulting aggregate medium is described by the

scattering matrix

’i’L(w) ﬁR(w)

Sw) = (2-9)

A

RL(w) TR(w)
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p(x,w) =] e & > 6(x+A,w)

r(x)A r(x)A

Q(x,w) e 7108 |o

o

qx+A, w)

2.1 Elementary scattering sections obtained by discretizing
the two-component wave equations.




which relates the incoming and outgoing waves appearing in Figures

2.2a and 2.2b. In Figure 2.2a, the medium is probed from the left by
a rightward propagating wave eI and ﬁL(w)ejmx and ’I’I_‘(w)e.jwX
are respectively the reflected and transmitted waves. Figure 2.2b
corresponds to the case when the medium is probed from the right.

More generally, for arbitrary waves f)(x,w) and a(x,w)

B, = B (e ™ g, =4y (el (2-5a)
for x <0, and

p(x,w = ;‘)R(w)e'ij 4(x,w) = <“1R(w)eij (2-5b)
as x * % and

RO L s |1 (2-6)

GG 4R (W)

expresses the outgoing waves (ﬁR, aL) as a function of the incoming

waves (ﬁL , c'iR) .

If
B, (x,w)
ai(X,UJ) = R i=1,2 (2-7)
qi(x,w)
. . ) e p A L _ Y
are two arbitrary solutions of (2-3), and if & = diag(1l,-1), the system S
(2-3) has the properties that -,
R

o @ @ Tayx = 0 (2-8)

and

a(_i}_{_ w(al(x,w), az(x)(*-)) = 0) (2"9)
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-jwx

e (incident) =+

A “jwx .
Scattering —T (w)e (transmitted)

A jwk Medium %
R (w)e (reflected)e— 0

2.2a Scattering for an impulsive wave inciderrt from the left.

——J A -ij VN
0 Scattering — R (wle (refiected)

Medium

A jwx ' jux
TR(w)e (transmitted) e e— € (incident)

2.2b Scattering for an impulsive wave incident from the right,

PR




where H denotes the Hermitian transpose, and where

A A

A 5§ - 2-

1 and a,- Equations (2-8) and (2-9) may be

easily verified by direct computation, but they have important

is the Wronskian of a

implications. Equation (2-8) shows that lf)i (x,w |2 - Ial (x,m)l2 is

independent of x, and employing this at x = 0 and x > « yields
8.0,91% + 14 (=% = B0 P jq00,0] 2 (2-11)

The left side of (2-11) represents the incoming energy of the probing
waves, and the right side of (2-11) represents the outgoing energy.

Thus equation (2-11) is a statement of conservation of energy, i.e.,

the system is lossless.

In equation (2-9), let a, be the solution of (2-3) when the

1
medium is probed from the left, and let a, be the solution of (2-3)
when the medium is probed from the right (see Figure 2.2). Then
employing the implication of (2-9) that W(al,az) is the same at x = 0

and x +» « yields

Sjux oA Jux g Jdux o a4 tiux o Jwx gm0 tiux
e TRe RLe 0="T e 0 RRe (2-12)

or

i‘R(w) = 'f‘L(m) X (2-13)

Physically, this means that the transmission loss through the system is
the same going in either direction. This is a statement of reciprocity.
Note that if time were reversed the leftgoing and rightgoing waves would

switch their identities but still suffer the same transmission losses.
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N If TL and TR were different, the system would depend on the direction
\
. of time.
. From equations (2-6) and (2-11) we have, for any solution,
:‘ R ﬁ n ~ ﬁR ~ ~ ﬁ
- [P ap | Ll =g ary | N = tbpag shs| Ml (o
R qy, R
Since this holds for any solution we must have
sfs =1 (2-15)

i.e., the scattering matrix is unitary. Writing out (2-15) element by

element yields

T Ps B = [Tw?+ [Rpw?=1 (2-16a)
TRy (W* + T (W) *Rp (w) = 0. (2-16b)

Equation (2-16a) is an obvious statement of conservation of energy, while
equation (2-16b) is a phase relationship that can be derived by
considering the following two experiments.

Let the medium be probed from both ends at once, first with two

~jux

waves each of amplitude unity (e and e]“x), and then with the waves

e 1“X and je](ux Equating the incoming and outgoing energies for each

experiment, we have

12 412 - IT+R 2+ [T+RR]2 =T+ IRL[2 + |T |2
(2-17a)
+ lfl 12 + TR + T*wR_ + (’f‘ﬁ“&*ﬁ )*
R L R L*T*Ry

.

A EN
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12 4 (1% = |jieR |2+ TR 2 = 1T 2+ R 24 T2
Ll 1Rg ‘ L
} . e e o~ n (2-17b)
1 * -1 *
+ ]RR] + ](TRL+T RR) ](TRL +T*RR) .

Subtracting off (2-16a) from (2-17a) and (2-17b), dividing (2-17b) by
‘ i, and adding (2-17a) and (2-17b) yields (2-16b). Hence (2-16b) can be

obtained entirely from the principle of conservation of energy. Note

that superposition of energy equations is only valid for lossless systems,

so (2-16b) depends on the losslessness of the medium.

Another way of deriving (2-16) is by considering time reversal.

Suppose that the medium is probed from the left, as in Figure 2.2a,

and time is reversed. This is now equivalent to probing the medium

with f‘(-w) = ’f‘*(w) and ﬁL(—w) = ﬁi (w), and getting out X at the

left end of the medium and 0 at the right end. Interpreting this in

terms of Figures 2.2a and 2.2b as an experiment forward in time,

and equating the results of the experiments running backward and

forward in time immediately yields (2-16). This interpretation, unlike

the previous one, utilizes the reciprocity of the lossless system.

The relations (2-16) furnish considerable information about the

scattering matrix S(w). Indeed, it can be shown (Faddeev, 1967;

Chadan and Sabatier, 1977) that if it is known a priori that ’i‘(u) has

no poles in the lower half of the complex plane, then 'i‘(w) also has

no zeros in the lower half-plane and is therefore minimum phase.

Then, since the magnitude of ’f(u) is known from 1- lﬁL(‘“)l 2 or

1- [liR(:;){z, the argument of T (w) can be recovered from its magnitude

using the Hilbert transform and cepstrum. The other reflection

coefficient can then be obtained from (2-16b). Thus §(w) can be

completely reconstructed from knowledge of either ﬁL(u) or l’iR(m)

.................................................
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alone (explicit formulae are given by Chadan and Sabatier, 1977, and
by Faddeev, 1967). This means that the inverse scattering problem
defined by the two-component system (2-1) being probed by a wave
e 19% ang knowledge of either ﬁL(w) or ﬁR(w) is well-posed.

The significance of poles of T(w in the lower half-plane is

that such a pole allows a localized solution to exist. Such a solution

cannot be discerned from the results of this experiment. To see this,

suppose there is a pole of 'i‘(w) at -jwp, where wp is real and positive.

Take Figure 2.2a and divide all three waves by 'f(w). Then there is

a solution which behaves like e J(7I“P)X = ¢™UpX oo 4 » w i.e., it

b vanishes. The reflected wave at x = 0 behaves like ll’f‘(wp), hence it
is also zero. Yet there is a non-zero solution inside the medium. Such

'_:'. a solution is called a bound state (Chadan and Sabatier, 1977).

Technically, a bound state is a square-integrable solution with negative
energy. Physically, a bound state corresponds to an inverse
scattering problem in which no scattering occurs. In nuclear
physics, for example, this corresponds to an incident particle
being captured by the nucleus. In seismology, this corresponds
to a low-velocity zone in which energy is trapped in a waveguide-
like effect.
Bound states can often be ruled out by causality. Suppose a

medium initially at rest is probed with a causal disturbance

p(x,t) =p(x,t)1(t-x). (2-18) .“

If p(x,t) is causal, its Fourier transform must be analytic in the
lower half plane for all x. Then T(w = f>(°°,w) /Pp(0,») must also have

this property, implying that there are no bound states (Newton, 1981).
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Then the scattering matrix S(w) can be completely reconstructed from
I'{\L(w‘) or ﬁR(w). This is important, since in the inverse seismic
problem, we have access to only one side of the scattering medium.

Note that our sign convention for the Fourier transform is the
opposite of that of Faddeev (1967) and Chadan and Sabatier (1977),
which explains why we use the lower half-plane to study the
properties of S(w), instead of the upper half-plane used in the
mentioned references.

Having defined the inverse scattering problem for the two-

component wave system, we now define procedures for solving it.

2.3 Differential Methods for Inverse Scattering--Layer Stripping

A differential or layer-stripping method for solving an inverse

scattering problem works as follows. Suppose that the medium is
being probed from the left, as in Figure 2.2a, and that the leftgoing
and rightgoing waves p(x,t) and q(x,t) are known at x from previous
recursions. The first reflection of the rightgoing wave p(x,t) into
the leftgoing wave gq(x,t) yields information about the medium at x.
This information is then used to propagate the waves from x to x + 4.
The problem has now been altered to one starting at x + 4 instead of
at x. Since the waves continue to propagate through the medium, the
procedure can be performed recursively, reconstructing the medium
as the waves propagate through it.

This concept has been developed in some detail by Bruckstein et
al (1983), and applied by Symes (1981), Santosa and Schwetlick (1982),

and Bube and Burridge (1983) to the one-dimensional inverse seismic

problem, and by Sondhi and Resnick (1983) to the inverse problem of

raa
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ﬂ;j_: determining the shape of the human vocal tract. Note that it is a Ij;-
N 5o
i stripping principle instead of a constructive one: instead of extending P ;
N the reconstructed medium from [0,x] to [0,x+A], each recursion ,-:
o s
q;‘ strips away the effect of the medium in [x,x+4), transforming the e
o .
Py problem support from [x,=) to [x+A,»). Hence the name "layer ® ’;
! 3 3 " Y.
stripping.
g s
2.3.1 The Continuous-Time Schur and Fast Cholesky Algorithms r
The archetypical layer stripping algorithm is the fast Cholesky ® E
- algorithm, so named because in its discrete form it performs a Cholesky .
. %
. .
- factorization (LDU, or lower-triangular times diagonal times upper- .
triangular) of a Toeplitz matrix (Rissanen, 1973; Morf 1974; Musicus, ® 7
8 s
- 1981). The connection between this factorization and inverse N
. ‘:
- scattering will be explored in Chapter I1II. The frequency-domain ::§
version of this algorithm is the Schur algorithm, and dynamic ®
deconvolution utilizes a Riccati equation derived from the Schur )
Tj algorithm. Although these three are different forms of the same -
algorithm, the fast Cholesky algorithm forms the most efficient procedure ® _‘
of the three for solving problems. o
Fast Cholesky Algorithm -
- ®
To obtain the fast Cholesky algorithm, we assume that the medium
. is quiescent at t = 0, and that it is probed from the left by a known
rightward propagating wave . ".'L i
f D
- P(0,t) = &(t) + P(O,t)1(t) (2-19) e
S ,":\
N which is incident on the medium at t = 0. Here §(:) denotes the :;:y

Dirac delta function and o .




lfort>20

0 fort <0

is the unit step function.

(2-20)

Note that the main feature of p(0,t) is that it

contains a leading impulse which can be thought of as a tag indicating

the wavefront of the probing wave.

q(0,t) = q(0,t)1(t)

recorded at x

The measured data is the reflected

(2-21)

In the special case when p(0,t) = 0, q(0,t) = RL(t)

is the impulse response of the scattering medium and its Fourier transform

ﬁL(w) is the left reflection coefficient. Note that ﬁL(w) can also be

measured by sending into the medium sinusoidal waveforms at various

frequencies and measuring the magnitude and phase shift of the

In the following, for convenience we will

reflected sinusoidal wave.

omit the subscript L of RL(t) and lA%L(w).

and q(x,t) inside the medium must have the form

S(t-x) + p(x,t)1(t-x)

q(x,t)1(t-x)

where p(x,t) and q(x,t) are smooth functions.

Since the medium is causal and originally at rest, the waves p(x,t)

(2-22a)

(2-22b)

By substituting (2-22)

inside (2-1), and identifying coefficients of the impulse §(t-x) on both

sides of (2-16), we find that

r(x) = 24(x,x)

3p/ax + 3p/3t = -r(x)q(x,t)

3q/3x - ¢4 /3t = -r(x)p(x,t) .

(2-23)

(2-24a)

(2-24b)
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The recursions (2-23) - (2-24) constitute the fast Cholesky recursions

(Bruckstein et al, 1983), and have also been called the downward
continuation recursions by Bube and Burridge (1983). Note that only
the smooth parts of p(x,t) and q(x,t) are propagated--it is not necessary
to represent the impulse numerically.

The initial data for these recursions are the measured waves
p(0,t) and q(0,t). The algorithm (2-23) - (2-24) can be viewed as
using a layer stripping principle to identify the parameters of the
scattering medium. Thus, assume that the waves p(x,t} and q(x,t) at
x have been computed. The reflectivity function r(x) is obtained from
(2-23) and is used in (2-24) to compute the waves p(x+A,t) and gq(x+,t)
at x + A, The effect of the recursions (2-23) - (2-24) is therefore

to identify and then strip away the layer [x,x+4).

Discretization of the Fast Cholesky Algorithm

To see how the fast Cholesky algorithm is propagated, let distance
x and time t be discretized by x = nlA and t = mA, where n and m
are positive integers. Then a forward-difference approximation to the

partial derivatives in (2-24) yields the fast Cholesky recursions

p(x+4,t+4) = p(x,t) - r(x)Aq(x,t) (2-25a)
qQ(x+4,t-8) = q(x,t) - r(x)Ap(x,t) (2-25b)
F(x+4) = 24 (x+4,x+8) . (2-25¢)

The recursion patterns for the waves are illustrated in Figures 2.3a
and 2.3b. We start off knowing the waves at x for all t, and we wish to
to find the waves at x + 4 for all t. Although it may seem as though

information for t <x is being lost, recall that by causality there can be
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2.3a Recursion pattern for updating the downgoing waves in
the fast Cholesky algorithm.
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2.3b Recursion pattern for updating the upgoing waves in
the fast Cholesky algorithm,

......................................

...............................

..................
.........




N S |

NIttt e

Pl an K AN
[N

50

no wave at x until the initial excitation has had time to reach that far.

Hence both waves are zero for t <x.

The Schur Algorithm

An alternative procedure for reconstructing the medium is to utilize
directly the coupled differential equations (2-3) for the two-component

wave system together with

. © |,
r(x) = 24(x,x) = LIM 2jwel™™ qx,w) = -l-f %q (x,w)dw  (2-26)
i /0

which follows immediately from the initial value theorem. It is still
being assumed that the probing wave contains an impulse, as in (2-22).

Equations (2-3) and (2-26) form the Schur algorithm.

Dynamic Deconvolution

Still another procedure is to consider the left reflection coefficient

Rex,w) £ §(x,0) /P (x,w) (2-27)

which is associated with the section of the medium extending over
[x,2). R(x,v) is the transfer function for this section of the medium,
relating the rightgoing probing wave f(x,w) to the leftgoing scattered
wave q(x,w). It is easy to show, using (2-3), that R(x,u) satisfies

the Riccati equation

dR/dx = 2juR - r(x)(1-R% (2-28)
and since R and dR/dx are strictly proper we also have

r(x) = hl;\lmzjwﬁ(x,u). (2-29)

The dynamic deconvolution algorithm (2-28) - (2-29) is propagated in x,
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yielding the left reflection coefficient R(x,w) and reflectivity function
r(x) for each x. This algorithm is a particularly dramatic illustration
of the layer-stripping concept, in that each step of this algorithm
transforms a complete inverse scattering problem on [x,»), including
the known medium response R (x,w), to an equivalent problem on
[x+4,), including the medium response R(x+A,u).

It should be noted that many authors (e.g., Tolstoy and Clay,
1966; Pusey, 1975) have noted the Riccati equation (2-28), and in
fact it is a direct consequence of the rules of composition of scattering
layers (Redheffer, 1962). Gjevick et al. (1976) used this equation to
develop an interative method for reconstructing r(x). However, none
of these results utilized (2-29) to propagate the Riccati equation in x.
Corones et al. (1983) used the time-domain version of the Riccati

equation as an invariant embedding equation, and Robinson (1982) and

others derived the discrete form of this algorithm for the discrete one-
dimensional inverse seismic problem. This is discussed in Chapter III.
It is worth noting that the ﬁz term in the Riccati equation accounts

precisely for all multiple reflections within the scattering medium. To

see this, neglect the ftz term in (2-23), leaving
dR/dx = 2juR - r(x). (2-30)
This differential equation has the solution
R(x,u) = Er(y)e‘zj“’(y"‘)dy (2-31)

so that the reflection response of the medium is merely the superposition
of the primary reflections at each depth y. These primary reflections

have strength r(y) and are phase-delayed by the two-way travel time
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2(y-x). Candel et al. (1980) used this assumption to recover r(x) from

" v

A
. A ’
V- R(0,¥). This point was also noted by Corones et al. (1983) for the s
2 ‘ '
time-domain version of the Riccati equation. :-m\
- g
" Historical Background of the Algorithms KX
Y L]
3 14
- The fast Cholesky algorithm, as mentioned earlier, is so named OK;
0 because its discrete form performs a Cholesky (LDU) factorization of a

Toeplitz matrix (see Musicus, 181, for details). This algorithm, in

its discrete form, seems to have appeared first in Rissanen (1973) and .!
J, Morf (1974). The continuous algorithm similarly performs a causal- :i::E
. anticausal factorization of Toeplitz operators, a fact first brought to wide .'_::_'.
--' .‘..-
attention by Kailath et al. (1979). ®
N The Schur algorithm (2-3) and (2-26) is the continuous version of ‘L,

an algorithm obtained by Schur (1917; see also Akhiezer, 1965) for ‘

testing the boundedness of a function R(z) which is analytic outside oF
- the unit disk. Given R(z), Schur showed that [R(z)| < 1 outside :E:;
- the unit disk if and only if the reflection coefficients r, obtained from E::j
. the recursions ®
R_(2)-r i
N R _,(2) = , Rg(2) = R(2) (2-32a) o
n+l z2(1-r_R_(z)) 0
N n n
- . . U
X rn = IZJ_rx:mRn(z) (2-32b) ~
’: r:"::
\f "..:

are such that lrn | £ 1. Some recursions similar to (2-32) can in fact @

be obtained by performing a backwards-difference discretization of the

Riccati equation (2-28), as was done by Tolstoy and Clay (1966).




2.3.2 Example: The Lossless Non-uniform Transmission Line

In this section we study the inverse problem for the lossless non-
uniform transmission line, and show that its solution is given by the
Schur or fast Cholesky algorithms (see Gopinath and Sondhi, 1971,
for an earlier solution of this problem). In the process, we give a
scattering interpretation of transmission line phenomena such as waves,
reflections, and impedances. This treatment can be found in many
references, e.g., Kraus and Carver (1973) and Pusey (1975).

Consider an infinitesimal section of length & of a lossless non-
uniform transmission line. Such a section is illustrated in Figure 2.4.
Note that L(x) and C(x) represent inductance and capacitance per unit
length, i.e., they are distributed quantities. Writing equations for

Figure 2.4, we have

v(x,t)= LAJi/ot + v(x + 4, t) (2-332)

i(x,t) = Chdv/ot +i(x + 4, t) (2-33b)

Dividing by 4 and letting 4 +0, we obtain the telegrapher's equations

dv/3ax + L(x)oi/ot (2-34a)

I}
o

di/ox + C(x)ov/at

1]
(=}

(2-34b)

which also arise in acoustics (Santosa and Schwetlick, 1982) and in

studies of the human vocal tract (Sondhi and Resnick, 1983;

Gopinath and Sondhi, 1970) under the assumption of losslessness.
For a uniform line, it is well known (see Kraus and Carver,

1973) that (2-34) admits wave solutions, and that for such waves the

ratio of the amplitudes of the voltage and current is the characteristic
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impedance

z, & (Lot (2-35)

Since the quantities p and q appearing in the two-component wave
equations must be dimensionally equivalent, this suggests defining for

the non-uniform line the dimensionally equivalent variables

Vix,t) = zo'* v(x,t) (2-36a)

1,1 = 2 ¥ icx,t) (2- 36b)
where Zo(x) = (L(x) /C(x))%. Substituting (2-36) in (2-34) yields

v/ + (LC)Y a1/a

1 d
§ a-?{ 'an ZO V(X,t) (2‘378)

d
ax n ZO I(x,t) . (2-37b)

31/9x + (LC)Y av/at

DO

In order to make the dependent variables x and t dimensionally

equivalent, we replace x with the travel time z defined by
X 3
z(x) = '/0 (L(u) C(u))* du (2-38)

Since (L(x) C(x)) ? is the local wave speed at x, z(x) is the time
required for a wave, starting at x = 0, to reach position x. Making the

additional change of variables

P(z,t) = 3 (V(z,1) + I(z,1)) (2-39)

7 V(z,t) - I(z,1) (2-39b)

q(z,t)

and defining the reflectivity function
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d
dz in Zo(z) (2-40)

Nl'—‘

r{z) =

we obtain the two-component wave system (2-1). The relations (2-39)

provide an interpretation of the right and left propagating waves in

terms of the normalized voltage and current.

Interpretation of the Reflection Coefficient

Suppose a uniform transmission line is terminated with a load ZL'

Then a wave travelling down the line will be reflected back by the load.

Define R(w), the reflection coefficient for the load, to be the ratio of

the Fourier transforms of the primary and reflected voltage waves, at
the frequency w. It is easy to show (see Kraus and Carver, 1973) that
~ VREFL(®W  ZpW) - Z

R(w) = = = (2-41)
Vprim (W 2, () + 2,

where ZL(w) is the impedance (defined below in (2-42)).

For the non-uniform transmission line considered here, since there
is a one-to-one correspondence between position x and travel time z,
we will use x instead of z in the qualitative analysis to follow. Then,
at point x on the line, the load perceived due to all of the line to the

right of x is the impedance
Z;(x,u) = ¥(x,0) fi(x,w) . (2-42)

This is illustrated in Figure 2.5. By substituting this expression in
(2-41), we find that for the non-uniform transmission line, the
reflection coefficient at point x is

V/l - Zo(x) ‘;/f -1

ﬁ(x,w) Z — = —_—
vii+ Zo(x) V/II+1
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= q(x,w)/p(x,w) (2-43)

This is precisely the expression (2-27) for the left reflection coefficient
of the section of the two-component system (2-1) extending over [x,*).
We see therefore the meaning of ﬁ(z,w). For a given point x on
the line, and any given frequency w, it is the ratio of the reflected
and primary voltage waves, with the reflection due to the inhomogeneity
of the line at x. From Section 2.3.1, we know that R(z,w) satisfies
the Riccati equation (2-28), and that r(x) may be found from
ﬁ(x,w) by using (2-29). Also note that if the line is locally uniform

at point x,, we have dZ /dxl = 0, hence r(x,) = 0 and no
0 0 X0 0

reflection occurs. Reflections occur only where the line is inhomogeneous.

Inverse Problem

Suppose now that the line characteristics L(x) and C(x) are
unknown and that we want to determine them from the measured
impedance Z(w) = ZL(O,w). This problem arises not only when we want
to find the characteristics of an existing transmission line, but also if
we want to synthesize a transmission line with prescribed impedance
Z(w). It is assumed here that we have access to only one end of the
line. The line characteristics can be partially reconstructed as

follows. First, scale ZO(O) to 1 and consider the reflection coefficient

Z(w) -1 . (2-44)

R(U)) = Z(w) + 1

Then, run the Schur algorithm (2-3) -~ (2-26), using R(w) as initial
condition, to obtain r(z). Alternately, we may compute the inverse

Fourier transform R(t) of ﬁ(u‘), and use the fast Cholesky recursions

(2-23) - (2-24) to obtain r(z). Given r(z), the expression

S
3

N
. )

r‘
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z
Z,(z) = exp 2 4/;) r(u) du (2-45)

enables us to recover the characteristic impedance Zo(z) = (L(z)/C(z))’l‘
as a function of the travel time z. However, we cannot reconstruct
L(x) and C(x) separately as functions of the position x.

The same difficulty will appear in Chapter III for the one-
dimensional inverse seismic problem, except that in this case we will be
able to use an additional degree of freedom, the angle of incidence of

the probing waves, in order to reconstruct the medium completely.

2.3.3 Inverse Scattering for Asymmetric Two-Component Wave Systems

In this section, the inverse scattering problem for asymmetric two-
component wave equations is examined, and solved by using two coupled
fast Cholesky algorithms. The systems which are described by

asymmetric two-component wave equations are not necessarily lossless,

and we can therefore use these equations to describe a larger class of
physical phenomena than those that we have studied in the previous
sections. Our results will be illustrated by considering the inverse
problem for a nonuniform transmission line with losses. It is worth
noting that a solution of the inverse scattering problem for asymmetric
two-component wave equations was presented in Ablowitz and Segur
(1981) and was used by Jaulent (1982) to solve the inverse problem
for lossy transmission lines. However, this method relied on the
solution of two coupled Marchenko equations, whereas the solution that
we present here is differential, and uses the layer stripping principle.
The system that we consider is described by the asymmetric two-

component wave equations
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d [f’ “jw -s(x) ﬁ
dx | .|~ . "
q -r(x) juw q

which in the time domain correspond to

(9/9x + 3/3t)p = -s(x) q(x,t) (2-47a)

(3/9x - 3/3t)q = -r(x) p(x,t) (2-47b)

It is assumed that r(x) = s(x) =0 for x < 0, and that r, s € L1[0,°°),

so that r(x) and s(x) are localized, i.e., they go to zero as x + =,
Then, the scattering matrix S(w) can be defined as in Section

2.2 by relating the outgoing and incoming waves appearing in Figure

2.2. In addition, the property (2-9) for the Wronskian of two

independent solutions a'ir(x,w) = (f)i(x,w), Qi(x,w)),i =1, 2 of (2-46)

remains valid, and by applying it to the waves al(x,w) and az(x,w)
appearing in Figures 2.2a and 2.2b, respectively, we obtain again

the reciprocity relation
T, (W) = 'fR(w) . (2-48)
However, if aT(x,w) = (p(x,w), q(x,w)) is an arbitrary solution of

(2-46) we have

L (p12 - 181D = 2@ - 800) ReB(x,0)a*(x,0)) (2-49)
so that the scattering medium associated to (2-46) is not lossless unless
r(x) = s(x), which corresponds to the case when the two-component

wave equations are symmetric. This implies that S(x) is not a unitary

matrix, and consequently we cannot recover S(u) from the knowledge

of the left reflection coefficient ﬁL( w) alone.
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Inverse Scattering Procedure

The inverse scattering method that we develop here relies on the
observation that if time is reversed (i.e., t is changed to -t in
(2-47), or wis changed to -» in (2-46)), and if the waves p and g
are interchanged, we obtain a (synthetic) asymmetric two-component

wave system

(3/3x + 3/3)p™ = -r(x) g (x,1) (2-50a)

(3/3% - 3/3t)g® = -s(x) pP(x,t) (2-50b)

where r(x) replaces s(x) and vice-versa. The scattering matrix

associated to this system is

o 1] 0 1
1 o5 Wi

sHwn™t. (2-51)

(]

58 (w)

where to obtain (2-51) we have used the reciprocity relation (2-48).

The system (2-50) is a fake system, which does not really exist,

but its scattering matrix is entirely specified by the knowledge of S(.).
Then, in order to reconstruct r(x) and s(x), we assume that the

true system (2-46) and the fake system (2-50) are probed

simultaneously by some waves which have the form

8(t-x) + p(x,t) 1(t-x)

p(x,t)

"

q(x,t) = q(x,t) 1 (t-x) (2-52)

and

pAx,t) = 3(t-x0 + pA(x,0)1(t-x)
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qA(x,t) = ElA(x,t)l(bx) . (2-53)

By substituting these waves in (2-46) and (2-50), we obtain the system

of coupled fast Cholesky recursions

(3/3x + 3/A)p = -s(x) §(x,t)

1]

(9/3x - 3/3t)q = -r(x) p(x,t) (2-54a)
and
(3/3x + a/at)pA = -r(x) aA(x,t)
(3/3x - B/Bt)dA = -s(x) bA(x,t) (2-54b)
with
r(x) = 24(x,x), s(x) = ZQA(x,x) (2-54c¢)

which can be propagated recursively for increasing values of x,
starting from x = 0. The specification of the initial conditions for these
recursions is very important, since as noted above, the system (2-50)
does not really exist, and cannot be relied upon to provide some
experimental waves f)A(O,t) and qA(O,t).

The initial conditions that we select are

ﬁA(O.t) =0 (2-55a)

p(o,t)

4, =R (M) , 40,0 = R (2-55b)

where RL(t) and Rﬁ(t) denote the inverse Fourier transforms of the
left reflection coefficients ﬁL(m) and ﬁ‘é(u). ﬁL( .) can be measured

directly, and from (2-51)

A _ o-H
Ry (W) = (87 (w)y, (2-56)

.........
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i.e., ﬁ?‘ (w) is the (2, 1) entry of the inverse of SH(w). Thus,
ﬁﬁ(u) can be expressed as a function of the whole scattering matrix
S(w), and it will be specified provided that we can measure all the
entries of S(w). This implies that we must have access to both ends
of the scattering medium. In some cases, such as for the inverse
seismic problem, this is impossible; but for some other problems,
such as the reconstruction of non-uniform lossy transmission lines,
the medium can be probed from both sides, and all the entries of S(w)
can be measured.

Instead of expressing our reconstruction procedure in terms of the
coupled fast Cholesky recursions described above, we can also use a

set of coupled Schur recursions. Let

- a0
pA(x,w

(x,w

(.4 and ﬁA(x,w)

ﬁ(x,w) =

ool
[\

(2-57)

be the left reflection coefficients for the true and fake systems over

~

the interval [x,=), where the waves p, q, p ', ciA in the definition
(2-57) are assumed to have the forms (2-52) - (2-53). Then,

ﬁ(x,m and ﬁA(x,w) satisfy the coupled Riccati equations
dR/dx = 2juR + s(x) R - r(x) (2-58a)
dRA/dx = 2 ®@D + r0) @M ? - s(x) (2-58b)
with initial conditions
R0, = R (), R*0,0 = RP ) (2-59)

By using the initial value theorem for the reflection coefficients (2-57),

e
. '

B
)
v ¢

¥ g
A - (SRR
Nl YA

ca
L Yy

S
‘.'-'l.'ﬂ.‘

,
Py

ol T
'l

.A.A,’ g

L 3

v l’"’ i

‘_’.{
.
<A

r
r) l‘l
« e

2 A

v
v

.'. {.
ritrle

.
v«

3
Wl

'
L4
4 3

-‘-..’-.
e
] =
‘,.-'"._ o~
P
R Y
[
-

Fa v M

B

........



[}
»
’
B
'
i
'
r
LS
s
C
.
.
.
H
s
0
g
.
1]
St

e
} l‘;‘ .,

! 64 * g,
Yy -
g o~
and taking into account the form of the waves (2-52) - (2-53), we get :.Zj'_

R L}

Iim 2juR(x,w) = r(x) (2-60a) o

W rae,

. . 2A G

im 2juR" (x,w) = s(x) (2-60b) >

) > oo

which can be combined with (2-58a) and (2-58b) to propagate ﬁ(x,w)
and ﬁA(x,w) recursively, and to reconstruct r(x) and s(x) for all x.

This algorithm constitutes the generalization of the Schur algorithm. ® !

2.3.4 Example: The Non-uniform Transmission Line with Losses

In Section 2.3.2, the reconstruction problem for a non-uniform ®
lossless transmission line was solved using the fast Cholesky and _
Schur algorithms. We now consider the more general case where some
losses, in the form of series and shunt resistances per unit length o 3
have been added to the transmission line. This reconstruction
problem is then solved as an asymmetric two-component inverse r‘
scattering problem, using the method obtained at the beginning of ® l_r ‘
this section. The problem is set up as in Jaulent (1982).

An infinitesimal section of the line is shown in Figure 2.6. R(x)
is the nonuniform series resistance per unit length, representing the ® &—‘{.-'
finite resistance of the wires, and G(x) is the shunt conductance .\
per unit length, representing leakage current between the wires. }
The circuit equations are ®

v(x,t) = (L3i/st + Ri)a + v(x+s, t) (2-61a)

R

i(x,t) = (Cav/3t + GV)A + i(x+s, 1) . (2-61b) .ﬁz‘

W e e S . . o T e e T \:
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i(x,t) L(x)A R(x)A i(x+A,t)
4 Ot Y Y Y N\ [\ [\ e s — > O +
vix.t) = C(x)A ge(x)A vix+A )
-Om L & O -

2.6 Infinitesimal section of a lossy non-uniform transmission
line,
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Dividing by 4, and letting & * 0 yields the transmission line equations e
of

sv/3x + L i/3t + Ri = 0 (2-62a)

difox + C v/3t + Gv = 0 (2-62b) o

As in Section 2.3.2, we replace the position x by the travel time ® !

z(x) given by (2-38), and we introduce the dimensionally equivalent l‘_ff
variables
-3 ok

V(z,t) =7 *v(z,t) (2-63a)
I(z,t) = z}i(z,1) (2-63b) B

where Z(z) = (L(z)/C(z))* is the characteristic impedance. Then, the

equations (2-62) take the form

3V /3z + 3l /3t = - % I - m(z)V (2-64a) i

31/3z +3V/3t =m(z) 1 - & V (2-64b)

=

where ®
_ 1 4d _

m(z) = -2- az en Z2(z) . (2 65) ,

Making the change of variables

. .

p(z,t) = 7 (V+D) (2-66a) o

e

az,t) = £ (V-1 (2-66b) i

° K

gives T
(3/3z + 3/5t)p = -a(z)p(z,t) - (m(z) + b(z))q(z,t) (2-67a)

.:\

(3/3z - 3/3t)g = - (m(2) - b(z))p(z,t) + a(z)q(z,t)  (2-67b) R
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which is almost in the desired form, and where
L . 1 /G | R
a@ = 3 (g +71) (2-68a)
-1 (G_R _
b = 3 (2-8) (2-68b)
Considering the scaled variables
L p'(z,1) = p(z,t) exp [,% a(u) du (2-69a)
1 _ z
a'(z,t) = q(z,t) exp - [} a(w) au (2-69b)
p and taking the Fourier transforms yields the asymmetric two-component
wave equations
d A A ~
£ Bl = -iublzw - sl (2-70a)
d .1 _ A1, S P
Gz 4 = Tr@)p7(z,9) +juqi(z,w) (2-70b)
where

r(z)

w2 Fecwans(} & (- 3G Boro - [(5+8) e

(m+b)exp2/02a(u)du = (i— a%—(m%—)-r %(%—l%))exp j(;z(% +%) du

s(z)

(2-71b)

Thus, if we are given the scattering matrix S(w) associated to the system
(2-70), the coupled fast Cholesky (2-54) or Schur (2-58) - (2-60)

algorithms may be used to reconstruct the rather bizarre quantities r(z)

.......................
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_ and s(z). Further, these two quantities are the most information about E
;.' the line that can be obtained from this data. Although r(z) and s(z) B :::
may seem to be peculiar quantities, this result is in agreement with v i
' Jaulent (1982). '::E
Note that in the event "
® E
. R(z)/L(z) = G(z2)/C(z) (2-72) E::i
. we may recover Z(z) and R(z)/L(z) by multiplying and dividing r(z) -
i and s(z), and then solving two differential equations. Thus, in this o !
case it is possible to recover R(z), L(z), C(z), and G(z) in various
ratios quite easily. This case is referred to as the Heaviside
’ condition for a distortionless line (Kraus and Carver, 1973), since if ® ‘
‘ (2-72) holds then the true characteristic impedance ((R + juL) /(G + j.LC))% ::»_'_
which relates the current and voltage for a wave travelling down the é
. line, is real. Thus, the current and voltage for such a wave are in .A-
phase, just as in the lossless line, and it is not surprising that ratios ]
:: of various line parameters can be recovered, as in the lossless case,
\ '
2.3.5 Other Differential Methods o

In this section we quickly cover three other differential or layer

stripping algorithms. These consist of the misnamed "method of S o

) characteristics”" of Santosa and Schwetlick (1982), and two procedures
: for recovering the potential of a Schrodinger equation. These procedures

L will all be applied to inverse seismic problems in Chapters VII and VIII. .'
:‘, The "Method of Characteristics”
~ )
E This refers to the impedance reconstruction procedure used by :
Santosa and Schwetlick (1982). Although it is technically incorrect * :

N
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terminology, it has been used both by Santosa and Schwetlick (1982)
and by Bruckstein et al. (1983), and no other term has come along to
replace it. Hence, to be in accord with the literature, the term
"method of characteristics”" will be used here and in Chapter VIII. The
* true method of characteristics is discussed in Courant and Hilbert
(1962), and applied to the propagation of axial shear waves in
Achenbach (1975).

ﬂ The method will be illustrated by applying it to the problem of
reconstructing the impedance of a lossless transmission line. Recall

from Section 2.3.2 that this problem was transformed into a two-

component wave system problem by defining the waves

P(z,t) = 3 (V(z,0) + I(z,1)) (2-73a)

a(z,0) = 5 (V(z,1) - I(z,1)) (2-73b)
where

Viz,t) =25t va,0 (2-T4a)

I(z,t) = 2y} iCz,0) (2-74b)
Here v(z,t) and i(z,t) are the voltage and current, Zo(z) is the "i
characteristic impedance (which iS to be recovered), and z is travel &:‘:

time. Suppose now that the probing wave p(z,t) does not contain a

leading impulse, contrary to equations (2-22). Then, by causality, jz'ﬁjj-V:_b-Z::

the waves p(z,t) and g(z,t) have the form

p(z,t) = p(z,t)1(t-2) (2-175a)

il

a(z,t) = q(z,t)1(t-2) (2-75b)

..............................
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Substituting equations (2-75) into the two-component wave system

(2-1) yields

~ +

qQ(z,z ) =0 (2-76)
and, using (2-73b), this implies that

+ +

V(z,z') =1(z,2) . 2-77)
From definitions (2-74) we have

Zo(2) = v(z,2") fi(z,2") (2-78)

and changing variables from position x to travel time z in the

telegrapher's equations (2-34) yields

1]
o

av(z,t)/oz + Zoai(z,t)lat (2-79a)

1]
o

Zoai(z,t)/32+av(z,t)/8t (2-79b)

Equations (2-78) - (2-79) form the method of characteristics for
the lossless transmission line. The voltage v(z,t) and current i(z,t)
can be propagated in z, yielding the impedance Zo(z) by (2-73).

As in the fast Cholesky algorithm, Zo(z) can be recovered
because in the instant after the wavefront passes v and i must be
related by (2-78). Unlike the fast Cholesky algorithm, no probing
impulse is necessary. However, all physical interpretations in terms of
waves and scattering have been lost--the procedure is a purely

mathematical technique applied to partial differential equations.

Inverse Scattering and the Schrodinger Equation

Inverse scattering problems are often formulated using the




............

Schrodinger equation

Lo+ - vese,w =0 (2-80)

and a scattering matrix, which was described in Section 2.2. Here the
aim is to reconstruct the potential V(x). V(x) is usually assumed to

be localized, i.e., V(x) =0 for x < 0 and
[+ <]
[0 (1+x) | V(x)|dx < o, (2-81)

The Schrodinger equation appears frequently in the literature on
inverse scattering problems in nuclear physics (e.g., Chadan and
Sabatier, 1977) and seismology (Ware and Aki, 1969, and many others).
In this section two layer-stripping methods for recovering V(x) are
presented. Both methods will be used in Chapter VII, where the
inverse problem for a layered acoustic medium probed by spherical
harmonic waves is formulated using the Schrodinger equation. The
standard integral equation methods for recovering V(x) are covered in

Section 2.4.

Reformulation of the Schrodinger Equation as a Two-Component System

Any two-component wave system inverse scattering problem can be
recast as a Schrodinger equation inverse scattering problem. Thus in
seeking a layer stripping solution to the Schrodinger inverse problem,
it seems natural to try to recast it as a two-component wave system
inverse problem. This has been done in Yagle and Levy (1984),
and their technique is repeated below.

Taking the derivative of the two-component system (2-3) with
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respect to x, we obtain the matrix Schrodinger equation ::‘_"
i

‘ .

q2 9 r? -r p(x,uw %

(L + o 1) - { :‘ = 0 (2-82)

dx * 2 A !'}

-r r q(x,w L

’.-

_ oF

where 12 denotes the 2 x 2 identity matrix and r(x) = dr/dx. By ‘-
making the change of variable e
e

Vix,.w) = p(x,w) + 4(x,w) (2-83a) .!‘

Fox,w) = Plx,0) - §(x,0) (2-83b) 3

this equation can be decoupled into two scalar Schrodinger equations o »
. 3

d A 2 A~ ~':-'~"

—-2 Y‘l + (b\) "VI(X))YI(X;U)) = 0 (2"843) ,'.‘

dx o

a? . 2 .

—3 ¥y * (w -Vz(x))yz(x,w) = 0 (2-84b) e

dx Eﬁ"_.

o I

where o
V(0 = ri - Fx) (2-85a)

) . ok

V,y(x) = ri(x) + F(x) (2-85b) e

This shows how any two-component wave system inverse problem can be ;;L;:
L X &

recast as a Schrodinger inverse problem. In addition, we observe e
from (2-83) and from the definition of the scattering matrix S(.) of .'_:‘__.'::
o

the two-component system (2-3) that the scattering matrix associated L\:A

®

to V,(x) is identical to that of (2-3), and that the scattering matrix ~e
pON
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L
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Sz(w) associated to V2(x) is given by
T, ()  -R,(w

S,) =| R = IS , (2-86)
-RL(w) TR(w)

i.e., it is obtained by changing the sign of the reflection coefficients
RL and RR of (2-3).

Consequently, given a potential V(x), we can always view its
left reflection coefficient ﬁL(-w) as arising from a two-component system

such as (2-3). Then, given ﬁL(*) or the impulse reponse RL(t), we

can use the Schur or fast Cholesky recursions to reconstruct the
reflectivity function r(x), which in turn can be used to recover
V(x) from the relation (2-85a). The relation (2-85a) is known in

soliton theory as the Miura transformation (Ablowitz and Segur, 1981;

Lamb, 1980), and it maps solutions of the modified Korteweg-de Vries

equation into solutions of the Korteweg-de Vries equation.

Direct Recovery of Potential

Bruckstein et al. (1983) have pointed out that the potential V(x)
may also be recovered directly, without first reconstructing the
reflectivity function r(x). Applying their procedure to the
Schrodinger equation (2-80), we take the inverse Fourier transform

of (2-80), which is

2

52y ax® - Ryist? = Vx)yix,.t). (2-87)

Note that this is the equation for an elastically braced string. Defining

ne>

wi(x,t) (3/5x + 5/3t)y(x,t) (2-88)
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equation (2-87) can be rewritten as the coupled system
(3/9xX + 3ot)y(x,t) = W(x,t) (2-89a)
(9/3x - 3/3t)W(x,t) = V(x)y(x,t) (2-89b)
Now, if y(x,t) can be shown to contain a leading impulse, as p(x,t)
does in (2-22a), we have
Vix) = -2 y(x,xH) . (2-90)

Equations (2-89) - (2-90) can be propagated in x as a recursive
algorithm. Initialization of y and ¥ at x = 0 depends on the problem;
see Chapter VII for an example.

Bruckstein et al. (1983) have pointed out that this algorithm can
be interpreted as successively truncating the potential V(x). If the
algorithm is at point x in the medium, the current problem being
solved is one in which the medium to the left of x has been replaced
by free space (i.e., V(z) = 0 for z < x). Thus again we see how a
layer stripping algorithm transforms at each step a problem on the

interval [x,®) to one on [x + 4, ®),

2.4 Integral Equation Methods for Solving Inverse Scattering Problems

In this section we switch gears and review integral equation methods
for solving inverse scattering problems. None of these methods will be
employed in this thesis; indeed, the purpose of this thesis is to
obviate these methods. Nevertheless, it is important that integral

equation methods be understood so that the dual nature of differential

and integral methods be appreciated.

& ‘.V
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Recall the layer-stripping action of differential methods, in which

a problem on the interval [x,~) is transformed into one on [x + A, «)
at each step of the algorithm. In contrast, integral equation methods

are constructive, in that the entire medium is involved at each step,

and the reconstructed portion is extended from [0,x] to [0, x +A]
at each step. The concept of adding to the reconstructed portion of
medium, in contrast to stripping away from the unreconstructed portion

of the medium, will be illustrated throughout this section.

2.4.1 The Marchenko, Gel'fand-Levitan, and Krein Integral Equations

In this subsection we follow Bruckstein et al. (1983) in deriving
the above three integral equations for solving the two-component wave
system inverse scattering problem. OQOther approaches are possible;
Burridge (1980) derives these equations entirely in the time domain,
using Green's functions, convolutions, and Green's identities. In
contrast, Chadan and Sabatier (1977) and Lamb (1980) use a
spectral, frequency-domain approach, while Faddeev (1963) uses an
operator approach. However, the approach of Bruckstein et al. is
the simplest, and fits in most readily with the material of Section 2.3.

Note that the two-component wave system in the frequency domain
ﬁ(x,w)
q(x,w
we may define the state transition matrix M(x,w) for this system.

(2-3) can be viewed as a state equation in the state [ } . Then

M(x,u) is specified by

d .~ “jw -r(x) ~
ax M(x,w) M(x,w) (2-91)
-r(x) j=-

and

PR NN S I I e S P I SN P I B T N T T N T O e S S AP ISP .
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2 MO.w) =1, , (2-92) o
. Y
o

. and has the property that Ry
:)‘ 3t
w' w2
N p(x,w) n (0w e
LY = M(x,w) . (2-93) g
G(x,w) §(0,w) og

L X
. Taking the inverse Fourier transforms with respect to time yields <
_ 3/t -r(x) il 3
2 BM(x,t)/3x = M(x,t) (2-94) -
- -r(x) a/at
sty 0 2-95) o]

M(0,t) = B L

0 o(t) )

p(x,t) M, (x,t) M, (x,t) p(0,t)

=1 12 * (2-96) .

a(x,t) Mgy (X,8)  Myy(x,1) a0, ] . ok

'_‘: Equations (2-94) and (2-95), and the principle of causality, show that :j:::
My, (x,t) and MZl(x,t) have the forms ® '

My Gt = 6(xt) + My, (6, (1(x-1) - 1(x+1)) (2-97a)

3 - 3
- My (x,t) = My, (x,t) (1(x-t) - Lx+t)) . (2-97b) oi
. This simply means that Mu(x,t) contains a leading impulse (from (2-95)) :'.:f:
) Mu(x,t) and M21(x,t) have support on [-x,x], and M11 and M21 are the . .;.'_
- smooth parts of M,, and M,,. We also note that if time is reversed, -
. R
- the left and right propagating waves are interchanged, so that -::-'
3 b
. o
-, - "N
" M (x,t) = My, (x,-1) (2-98a) o I

:-‘

ok
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Now, if the medium is being probed from the left, we have by

causality
p(x,t) = q(x,t) = 0 fort < x . (2-99)

Note that we have not yet specified how the probing is to take place.
Using (2-97), (2-98), and (2-99) in (2-96) yields the coupled integral
equations

t - X ~
f_xp(O,t—T)Mll(x,T)dT + /:t q(O,t+T)M21(X,T)dT =0 (2-100a)

x - t .
q(0,t+x) + f_tq(o,t-f'l')Mll(x,T)dT + f_xp(o,t-T)MZI(X,T)dT = 0 (2-100b)

In these equations, a change in the sign of the dummy variable T
has been made in the terms involving q(x,t) in order to make use of
(2-98). This explains the t + T dependence of q.

The Marchenko, Gel'fand-Levitan, and Krein integral equations
are all derived from (2-100). The particular equation obtained depends

on how the medium is probed.

Marchenko equation (half-space boundary): Let the probing waves take

the form

p(0,t) 1¢9) (2-101a)

q(0,t) R(t) (2-101b)

where R(t) is causal. This corresponds to the case of a medium being

probed from an infinite homogeneous half-space. Define

K(x,t) = My (x,8) + My, (x,1). (2-102)

..........
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Then, adding (2-100a) and (2-100b) and inserting (2-101) and (2-102)

yields the Marchenko integral equation (Agranovich and Marchenko,

1963; Chadan and Sabatier, 1977)

X
K(x,t) + R(xtt) + f_tK(x,T)R(Tﬂ)dT =0,1t <x (2-103)

Upon solving this integral equation for K(x,t) we may use

r(x) = -2M21(x,x') (2-104a)
r2x) = 23 M. (x.x7) (2-104b)
dx 11"
which are obtained by substituting (2-97) into (2-94), and recall that

for the Schrodinger equation associated with the two-component system

(2-3) the potential V(x) is given by (2-85a) as

V(x) = rz(x) - r(x) . (2-105)

Then we have

_ d - _ _,
Vx) =2 g-K(x,x) (2-106)
so that the solution of the Marchenko equation yields the Schrodinger ® E

potential.

The procedure of solving the Marchenko equation (2-103) and

‘o

then using (2-106) to recover the Schrodinger potential is the standard

“ae CoTete e e
s P RN
. .
A B4 o,
e ST L L

!

mathematical physics procedure for solving Schrodinger equation inverse

P A

scattering problems. Ware and Aki (1969) used this procedure to

..
i‘l‘

e
Ry

solve the one-dimensional inverse seismic problem.




Gel'fand-Levitan equation (free surface): Let the probing waves take S .'-"'~

) the form

P(0,t) = &(t) + k(1) (2-107a) N

q(0,t) = k(t) (2-107b) WD

K(w) = R(w)/(1-R(w) (2-107¢)

where k(t) is causal. This corresponds to the case of a medium being
probed from a perfectly reflecting surface ((2-107c) follows from a simple
feedback argument). An example of this situation is probing the earth

k from an earth-air or ocean-air interface, which is quite well modelled

by a pressure-release or "free" surface. Define

K_(x,t) =-§ (K(x,t) + K(x,-t)). (2-108)

Then, adding (2-100a), (2-100b), and their time-reversals, and

inserting (2-107) and (2-108) yields the Gel'fand-Levitan integral

equation (Gel'fand and Levitan, 1955; Faddeev, 1963)

X
K (o,t) + 3 (k(xe-t) + kOet)) + [ e t-1) + k(t+ ) K  (x, D
=0, 0 <t <x. (2-109)

Again we may use (2-106) to recover the Schrodinger potential V(x).

Krein integral equation (free surface): Let the probing waves again

take the form (2-107) and define

L(x,t) = Mll(x’t) + M12(x,t) . (2-110)

Adding (2-100a) to the time-reversal of (2-100b) and using (2-107) and

......................................................
..................................................
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(2-110) yields the Krein integral equation (Krein, 1954)
bl
K(x-t) + L(x,t) + f_x k(It-THL(x, T)dt= 0, 0 <t <x (2-111)

By setting t = -x in (2-100a) we get

Mll(x,-x) =0 (2-112)
and using this with (2-104a) and (2-98b) and adding yields

r(x) = -2L(x,-x) (2-113)

so that the solution to the Krein integral equation yields r(x).

2.4.2 The Krein-Levinson Algorithm

Any of the integral equations derived above can be solved
numerically by discretizing x and t. If x and t are discretized by
x =nl and t = m&, where n and m are integers in the intervals
[0,N] and [-N,N], respectively, then 0(N3) operations are necessary
to solve the integral equation and reconstruct r(x).

However, the fast Cholesky algorithm in Section 2.3 requires only
O(Nz) operations to reconstruct r(x) for the same discretization. If
there is some duality between differential and integral methods for
solving inverse scattering problems, then there should be some way
to reduce the amount of computation required to solve the integral
equations to O(Nz).

In this subsection we derive the Krein-Levinson algorithm, a

continuous-parameter, slightly modified version of the famous Levinson
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algorithm for solving Toeplitz systems of equations (Musicus, 1981,
is a thorough treatment). This algorithm solves the Marchenko
integral equation using O(?Iz) operations by taking advantage of its
Hankel structure. Slight modifications of this algorithm can be used
to solve integral equations with Toeplitz or Toeplitz-plus-Hankel
structure (Gohberg and Koltracht, 1983).

The continuous-parameter fast Cholesky and Krein-Levinson
* algorithms thus provide two different ways of solving inverse
scattering problems using O(NZ) computation. In Section 2.5 we shall
discuss how these two algorithms are "flip sides" of each other, and
h why the fast Cholesky algorithm requires less storage and computation.
and M

Inserting (2-97), which specifies the forms of M1 , into

1 21
(2-94), the time-domain system satisfied by M(x,t), and taking the

first column of the result yields

5 [My(x,0) -3/3t -r(x)] My, (x,1)
K - = - (2-114)
My, (x,t) “r(x) /3| My, (x,t)] , xS t< x
with the initial condition

M, (0,0) 0
[fl } = [ ] (2-115)
My, (0,0) ol .

Equations (2-114) look like the fast Cholesky algorithm dynamics,

but there is an important difference. In the fast Cholesky algorithm
the quantities propagated were the waves p(x,t) and q(x,t), which
were non-zero (by causality) for t > x. Here the quantities propagated

are elements of the transition matrix M(x,t), and are non-zero for

T B P A APV S ._"._:\ :._‘_\._',_.'.“ .-_'.'. S = ',"'.-.‘.‘_'."'.'.'.' ..<'-‘ - ~‘-" ST
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| h)
y - ¥
K> -x<t <x. The update patterns are shown in Figures 2.7. These N
’Q =
A should be compared with Figures 2.3, the update patterns for the fast ® ;
= Cholesky algorithm. :::.
& Examination of Figure 2.7 shows that in order to propagate (2-114) N
% it is necessary to supply values for Mll(x,-x) and le(x,x') °® \‘
independently of (2-114). Setting t= -x in (2-100a) yields =

=

-~ <.

M,.(x,~x) =0 . (2-116)

11 X

oi

However, M,, (x,x”) = -r(x)/2 from (2-104a), and we certainly need L
j.‘ r(x) to propagate (2-114). The only way we can get this is to set ‘,
“-

t = x~ in (2-100b), yielding the rather unwieldly expression Y ‘
&
.‘: ~ _ X - -:
A r(x) = -2M,(x,x ) = 2(q(0,2x) + f_x q(0,x+1)M,, (x,T)d1 =
.::‘ /X -~ ® .‘.
+ x p(O,X—T)MZl(X,T)d T). (2-117)

y =
:j In the case of probing from a half-space, the last term in (2-117) :Z:_:
vanishes. In this case (2-117) should be compared to the "inner o i

-_'; product" expression in the discrete Levinson algorithm. .
, The Krein-Levinson algorithm thus consists of equations (2-114)
< and (2-117), with the additional trivial condition (2-116). Its dynamics ®
are the same as the fast Cholesky algorithm, but the quantitites in the -
algorithm are different, and the inner product expression (2-117)
replaces the trivial first reflection relation (2-23). Thus the Krein- @ ;:

=

”,:1 Levinson algorithm requires more computation and storage than the :{}
" fast Cholesky algorithm, although both algorithms require O(N2) E‘;
: .
) operations. >
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tﬁ m,,(x5) m (xq+4)
11\Xo) Myy\Xg
/ s <\sIOpe =1
Zia
N v‘,slope = -1
\
\
2.7a Recursion pattern for updating mu(x,t) in the Krein-
Levinson algorithm.
t L Iy
| “slope =1
> X z
N /slope = -1
N
2.7b Recursion pattern for updating my, (x,t) in the Krein-
Levinson algorithm.
e e e i i s e e e
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K 2.4.3 Inverse Scattering as Orthonormalization ol
. o
- 4
Levy (1985) has recently pointed out that the solution of a two- .!:rs
™ component wave system inverse scattering problem can be viewed as :‘;_T
an orthonormalization procedure. It is well known (e.g., Kailath, '{::'-
) 2
) 1981) that the problem of linear least-squares estimation of an ®
.
“~ AT
‘;ﬂ autoregressive (AR) stationary stochastic process can be regarded as -'.';-
o
o a polynomial orthonormalization, with the Levinson algorithm carrying out
L - ."‘
the orthonormalization and the Szego polynomials (representing the o !5-‘
residuals) the result. For the inverse scattering problem, the j:-::
orthonormalization procedure is applied to continuous analogues of
matrix orthogonal polynomials. The Marchenko integral equation results [ ‘
;f from application of orthogonality to residuals, such as the Wiener-Hopf
3 equations are derived in linear least-squares estimation theory (e.g., _Zj:i
= Kailath, 1981). o
- This result is presented here to give another perspective on :::_«_-
R inverse scattering, and to show similarities between inverse scattering ;::23
and linear least-squares estimation theory. These two problems will ® =
. be linked more tightly in Section 2.5. b
N Define the matrix inner product of two 2 x 2 complex-valued
matrix functions A(w) and B(w) as ok
N H L
< A,B > = AWW((WB (wdw (2-118)
i where the Hermitian weighting matrix W(w) is ®
& R o
: 8o [ 1 Bxw o
2 W = 3= |, (2-119) e
. R(w) 1 . ol
] ® .
N Here R(w) is the left reflection coefficient of the scattering medium. L
) ;
&
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If the medium is lossless, |R(w)| <1 for , real, and by Sylvester's
L. criterion W(w) is positive samidefinite. Hence <A,A>>0 unless the medium
is perfectly reflecting.

The weighting matrix W(w) in (2-119) was suggested by Newton

H. (1983, p. 20) as follows. Let the matrix Jost solution ¥(x,») for the

two-component wave system (2-3) be that solution which behaves like

" —jux
e 0
¢ Y(x,w) = (2-120a)
Xw)= [~ . s as x *> - -120a
N R e TelX
- L
[Teux R_e %X
R
® W(x,w > . as x - «, (2-120b)
L 0 JUX
Note that the first column of ¥(x,») represents a scattering experiment
o
in which the medium is probed from the left, while the second column
represents a scattering experiment in which the medium is probed from the
right. Now, the two columns of the state transition matrix M(x,w) also
[ J
represent two independent experiments, so M(x,w) can be obtained from the
matrix Jost solution Y(x,w) by multiplying it by the Jost function J(.),
¢ M(x,u) = JCI¥(x,). (2-121)
Then the spectral function
L

We = = @Pesen™ (2-122)

turns out to be the weighting matrix specified by (2-119).

L Note that the probing waves
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¢ -jux 0 -

! [e } N

3 E(x,0) = : (2-123) R

) 0 oJwx N

oK

) have the property that it
L

\ '»{'
: 0 1 :

<E(x,w), E(y,w> = 5(x-y)l2 + [ ]R(x+y). (2-124) .E;

. 1 0 -

: \::'..

N \:"-
' Thus E(x,w) and E(y,w) are orthonormal in free space (x,y< 0) since ‘

| R(t) is causal. .!?

.j The inverse scattering problem is solved recursively by orthonormalizing j'.:j:'

‘\:f E(x,«) and E(y,w) for successively larger x and -2 <y < x. This is done Zf:::‘

by the usual Gram-Schmidt procedure: E(x,:) is projected onto the ® =

A o

) subspace é‘x = SPAN[E(y,u), ~»<y <X}, and the residual is then S
:_ orthogonal to & The projection operator takes the form .:.“—
b o

®

R PIE(x,w)] = -]Xm(x.y)E(y yw)dy (2-125) ~"

5 - i

1"-'

~ -'-l

where m(x,y) is an unknown 2 x 2 matrix kernel. The residual M(x,x) ® Can

is B

. 3

M(x,4) = E(x,0) - PlE(x,.)] o=

X @ P?' ‘

= EGow) + [ m(x,pE(y,dy. (2-126) o

Now, nﬁ(x,m) is orthogonal to on by construction. This means m(x,y) j'.:

| satisfies ®

0 1 X 0 1 S0

[1 o R(x+2) + m(x,2) + [_z m(x,y)[1 0} R(y+z)dy = 0, -x<z<x. (2-127) o
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2.5 Relations Between Differential and Integral Methods

In this section the dual nature of differential and integral methods of
solving inverse scattering problems is discussed. These two methods are
not merely related, but are complements of each other. This is
illustrated in particular by the complementary nature of the fast Cholesky
algorithm (a differential method) and the Krein-Levinson algorithm
(which solves the integral equations). Finally, in order to furnish an
example outside the usual context of inverse scattering theory, the
familiar problem of linear least-squares estimation of a stationary stochastic
process is interpreted as an inverse scattering problem, and solved
using both algorithms. This illustrates the physical meanings of various
quantities in a novel setting, adding depth to an understanding of inverse

scattering concepts and quantities.

2.5.1 Differential vs. Integral Methods

In Section 2.3 it was seen that the differential or layer stripping
methods operate in a stripping fashion: At each step of a layer stripping
algorithm, a problem on the interval [x,0) is replaced by one on the
interval [x + A, ). This was particularly vivid for the dynamic
deconvolution procedure, in which the guantity being propagated was
the reflection response of the remaining unknown portion of the medium.
An advantage of layer stripping methods is that they are clearly
efficient: The effects of the reconstructed portion of the medium are
included in a cumulative fashion at each step, while all aspects of the
medium itself are discarded. And any unknown portion of the medium can
have no effect until the algorithm reaches it (this is why causality is so

important to these algorithms). Thus a layer stripping algorithm is only

F‘
[y

°, -,
B '&"‘u‘*’:-
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concerned with that differential slice of the medium where the algorithm is ; :
currently operating. ® :'

3 In Section 2.4 it was seen that integral equation methods utilize all_ i{

E of the data (measured medium response) at each step. Although the ; /

3 medium is again reconstructed one layer at a time (the integral equation ® .
must be solved for each x), the entire medium affects the reconstruction at *:

each step, since all of the data are being used. This is why bound states

affect integral methods at the start, while not bothering layer stripping ° !

. algorithms until that part of the medium is reached. No attempt is ever made "\-

:. to isolate the effects of part of the data or medium on reconstruction of any E.:‘

layer. This is why unwieldly integral equations are necessary, which ® t

might seem to require O(N3) operations to solve completely. f;:‘;
N -
N On the other hand, it is not necessary to account for the cumulative
;' effect of the reconstructed medium at each step. The integral equation ® ;

methods are constructive in nature: At each step, the reconstructed :7}"_

-. portion of the medium is extended from [0,x] to [0, x + A]. Note that E

- this complements perfectly the layer stripping approach: one decreases ° ‘-:
the size of the problem at each step, while the other increases the size of "

: the solution at each step. .~
i The structure of the integral equations (Hankel for the Marchenko, ° :::
y Toeplitz-plus-Hankel for the Gel'fand-Levitan, Toeplitz for the Krein) >
: allows fast algorithm solutions for them. This reduces the computation -

required to O(N2), the same as for the layer stripping methods. ° l-
- Nevertheless, it should be noted that the integral equation methods amount g

t: to formulating a problem mathematically and solving it from a mathematical

: perspective. The layer stripping methods amount to formulating a problem ° :

physically, in terms of clearly physical variables such as waves and




> o
|
Since this equation is centrosymmetric, we have
m,, (x,y) = m,e(x,y) and m o (x,y) = my, (X,¥) (2-128)
h. and this simplifies (2-127) to
X
m,(x,2) + f_z m, (X, YIR(y+2)dy = 0, -x<z <x (2-129a)
o »
R(x+z) + m21(x,z) + f mu(x,y)R(y+z)dy =0, -x<z<X. (2-129)
-2
7. Adding these two equations and recalling (2-102) yields the Marchenko

integral equation (2-103).

.......
.....
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Two comments are in order here. First, the original choice (2-123)

® for the probing waves E(x,w) is tantamount to probing the medium from a
half-space, as in (2-101). This is why the Marchenko equation is obtained,
rather than the Gel'fand-Levitan or Krein equations. These latter equations
® were obtained by a choice of probing waves associated with a free surface,
as in (2-107)., Second, the centrosymmetric equalities (2-128) do not

quite agree with the time reversal equalities (2-98). The reason for this

® is that m22(x,t) in (2-98) contains a probing impulse §(x-t), while the
probing impulse in the second component of the present experiment is
3(x+t). This cancels the time reversal in (2-98), leaving (2-128).

® Operating on (2-129a) and (2-129b) respectively with the operators
(3/3x + 3/3z) and (3/3x - 3/3z) yields the Krein-Levinson algorithm
dynamies (2-114). Proceeding as before, the Krein-Levinson algorithm

P can be shown to solve (2-129). And the residual Icl(x,w) therefore

satisfies (2-91) and (2-92), and is therefore the state transition matrix.

AR

g L

" .

." Y




reflectivity functions. Thus a layer stripping approach is much "closer"
to the problem; indeed, layer stripping methods have been described as
"letting the medium perform the inversion itself" (Bruckstein and Kailath,
1983). It would seem, then, that a layer stripping approach is the

"right way" to look at the problem. This is emphasized by the comparison

of the fast Cholesky and Krein-Levinson algorithms to follow.

2.5.2 Fast Cholesky vs. Krein-Levinson Algorithms

For convenience these two algorithms are summarized below.

Fast Cholesky Algorithm

basic (3hx + 3/5)P(x,t)

dynamics:  (3/3x -~ 3/3t)q(x,t)

-r(x)P(x,t).

update patterns: See Figure 2.3.

reflectivity: r(x) = Za(x,x+)
function update:

initial conditions: half-space: P(0,t)=0, q(0,t)=R(t);
free surface: pP(0,t) = q(0,t)=k(t).

quantities being  rightgoing and leftgoing waves,
propagated: P(x,t) and §(x,t), respectively.

support: t >x

factorization free surface i.c.: & (7)+k(1)+k(-1)=(causal)(anticausal);
performed: nalf-space i.c.: 8(1)-R(1)*R(-1)=(causal)(anticausal).

The latter follows from noting in the operator domain that (using (2-52¢))
1-RR* = 1 - (k/(1+K)) (R*/(1+k*) = (kek*) (1K) (1+k*)  (2-130)

which is clearly factored if 1 + k + k* is.

!.‘)A\A‘!;‘).‘s".:l\-{‘) A ‘-.\-n &--.:A;L\.‘._.;u N :."..- . . e e
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Krein-Levinson Algorithm

o basic (3/3% + BAON, (x,1) = ~TEOMy, (x,1)
dynamics: (3/3x - B/St)le(x,t) = -r(X)Mll(X,t)-
update patterns: See Figure 2.7.
reflectivity

x ~
function update: r(x) = 2(q(0,2x)+ [_xﬁ(o,xH)Mn(x,T)dT +
B0, x-1)fy (x, 0T ), where B(0,1) and F(O,0

are the probing waves, as in the fast Cholesky
algorithm.

initial conditions: Mu(0,0) = 1\121(0,0) = 0. Also need Mll(x,—x)=0.

quantities being elements of the state transition matrix, i.e., the

propagated: medium transmission matrix.

support: -x St $x

factorization 8(t-s) + H(t,s;x) = (anticausal) (causal) .
performed:

In the factorization performed by the Krein-Levinson algorithm, H(t,s;x)

represents the Fredholm resolvent operator to k(lT] ). This operator is

defined in the operator domain by the operator equation

A+ +k+k% =1 (2-131)

which is equivalent to the integral equation

H(t,s;x) + k({t-s|) + _';xH(t,v;x)k( v-s)dv=0, -x s, t $x. (3-132)
x |

Note that although the dynamics of the two algorithms are the same,
the quantities being propagated differ. The fast Cholesky quantities carry
the clear interpretation of waves propagating leftward and rightward in the
medium at the point x. The Krein-Levinson quantities carry the murkier
interpretation of being one column of the transmission matrix of the medium

to point x. The supports of these quantities are exactly complementary,

........
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but the fast Cholesky algorithm supplies r(x) directly, while the Krein-

v,
.

F

Levinson algorithm requires that r(x) be computed. In Chapter III the

r

®
SRE

simple equation r(x) = 2q(x,x) will be interpreted physically as the

7

.
5

SR

r
al

first reflection from the medium at x having strength r(x)/2. No such

!

interpretation of the inner product expression for r(x) is available.

- ]

It should also be noted that the Krein-Levinson algorithm requires ff_::f,
that the original scattering data q(0,t) = R(t) be stored in addition to the
propagating quantities 1\7111(x,t) and 1\7121(x,t). Thus the Krein-Levinson > i-
algorithm requires a storage capacity of 3N words, while the fast Cholesky
requires only 2N words. And the extra computation involved in the inner
product expression for r(x) runs the total operation (multiplication-and- o ﬁ

add) count for the Krein-Levinson algorithm to 3N2 vs. 2N2 for the

fast Cholesky algorithm. j:.-_-_

The "factorization performed” by each algorithm requires some ° 4-
explanation. The quantities in these algorithms can be interpreted as E
operators in L;, the Hilbert space of square-integrable p-vector ::2

'
5

i
-"I
[ B 4

1 4

functions (Kailath et al., 1979). The action of the fast Cholesky

T

algorithm is to perform a causal-times-anticausal factorization of the
Toeplitz operator §(1) + k(1) + k(-1), where k(1) is the (causal) -
free surface response. The Krein-Levinson algorithm, on the other hand, "=
performs an anticausal-times-causal factorization of the operator §(t-s) +
H(t,s;x), where H(t,s;x) is the Fredholm resolvent of k(|t-s|). This g
again illustrates the complementary nature of these two algorithms. The T
discretized versions of these algorithms perform LDU and UDL factorizations,
respectively, of the Toeplitz matrix I + k(|i-j|) and its inverse (sec

Musicus, 1981, for details).
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2.5.3 Example: Linear Least-Squares Estimation of a Stochastic Process

In this example it is shown how this familiar problem can be posed as
an inverse scattering problem and solved using integral equations, the
Krein-Levinson algorithm, or the fast Cholesky algorithm. This will
lend some perspective to the various inverse scattering concepts, which
were already introduced in the lossless transmission line example (Pusey,
1975, shows the connections between these two examples). More details
on the connection between linear estimation, inverse scattering, and fast
algorithms can be found in Dewilde et al. (1981), Dewilde and Dym (1981),
and Dewilde et al. (1978).

The basic problem to be considered is as follows. Let
y(t) = z(t) + v(t) (2-133)

be some observations of a zero-mean stationary stochastic process z(-)

with covariance

Elz(t)z(s)] = k(|t-s]), (2-134)

where v(-) is a white noise process with unit intensity, i.e.,

E{v(t)v(s)] = &(t-s) . (2-135)

We assume that z(-) and v(-) are uncorrelated and that k(*)€ Ll[O,m),

so that its Fourier transform
k() = [k(t) exp-jut at (2-136)
0

exists. In this case, the spectral density of y(.) is

:'é: RIS
(‘. ‘ 'l"

A
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W) =1+ k@) +k(-w).
Given the Hilbert space

Y(t; x) = Hly(t+s), -x € s £ Xx]
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(2-137)

(2-138)

spanned by the observations over the interval [t-x, t+x], our objective

is to compute the forwards and backwards linear least-square estimates of

z at the endpoints of this interval. These estimates can be denoted as

R X
Z(t+x|Y (t; x)) f-x A(x; u) y(t+u)du

2(t-x|Y(t; X))

X
[_x B(x; u) y(t+u)du ,

(2-1393)

(2-139)

where A(x; -) and B(x; ‘) are the optimal forwards and backwards

prediction filters, respectively. Note that since the process z(:) is

stationary the filters A(x; *) and B(x; ‘) do not depend on t, the center

of the interval [t-x, t+x]. Then, if the forwards and backwards residuals

are defined as

y(t+x) - z(t+x|Y(t; x))

1]

e(t,x)

b(t,x) = y(t-x) - z(t-x|Y(t; %)),

by using the orthogonality property

e(t,x), b(t,x) ] Y(t; x)

of linear least-squares estimates, we find that the filters A(x;

B(x; -) satisfy the Wiener-Hopf equations

(2-140a)

(2-140b)

(2-141)

*) and




X
A(x; s) + j:x A(x; w) k(lu-s|) du

X
B(x; s) + [x B(x; u) k(]u-s|) du (2-142b)

with -x £ s £ x. These integral equations should be compared to the Krein

equation (2-111).

3 ) 9 _ 09 _
—a—}z + §—s~ and 5—; —a—g to (2 1428) and

(2-142b) respectively, and using the linearity of the resulting equations

Applying the operators

yields the Krein-Levinson algorithm

3 3 . _ .
(ﬁ*‘ g) A(x; s) r(x) B(x; s)

3 . 9 ) - . -
(3% 7 35 B(xi 9 r(x) A(x; s) (2-143b)
with - x < s £ x, and where

r(x) = 2A(x; -x) = 2B(x; x) (2-144a)

X
= 2(k(2x) - f_x Alx,wk (x+u)du) (2-144b)

is the reflectivity function. The fact that r(x) is well-defined can be

obtained by noting from a time-reversal argument that B(x; s) = A(x; -s).
So far this has all been routine--it is certainly well-known that the

Krein-Levinson algorithm solves the Wiener-Hopf equations. We now show

that an inverse scattering interpretation can be assigned to this problem,

and that the fast Cholesky algorithm may be used to solve it.

3% to the definition (2-140) of the

forwards and backwards residuals e(t,x) and b(t,x) and use the Krein-

3 -
If we apply the operators 5‘1-4.




Levinson equations (2-143), we obtain the two-component wave system

(L - ) elt,x) = - r(x) b(t,x) (2-1458)

)

(o * %—) b(t,x) = - r(x) e(t,x) . (2-145b)

This shows that the residuals satisfy a two-component wave system, where
the waves e(t,x) and b(t,x) propagate respectively leftward and rightward,

and where the waves at x = 0 are given by

e(t, 0) =b(t, 0) = y®t) . (2-146)

As a consequence of this observation, the process y(t) can be viewed as

the ouput of a modeling filter driven by e(t,x) as shown in Figure 2.8a.

This modeling filter is obtained by aggregating infinitesimal ladder
sections of the type described in Figure 2.8b. Clearly the filter problem
is solved if r(x) can be recovered.

The scattering matrix associated to the two-component wave system

(2-145) can be identified by noting that as x+ «
e(t,x) = \)F(t+x),b(t,x) = \)B(t-x) (2-147)

where VF(-) and \)B(-) denote respectively the forwards and backwards
innovations processes associated to y(*) (Kailath et al., 1978). The
processes vF(-) and vB(~) are white noise processes and are related to the

observations y(:) through the identities

A

F(w) ‘JF(@) (2-148a)

F(-2) GB(x) (2-148b)
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y(t) *—e(t,x)
p S{w; x,0)

Y

2.8a Aggregate modelling filter for y(-).

e(t,x) @i o"jv8  |e—(F e(t,x+A)
r{x)A r(x)A

b(t,X) = o-jwd ) »D(t,x+A)

2.8b Infinitesimal ladder sections associated with the Krein-
Levinson algorithm,




........................

where y(~), \A’F(’ﬂ) and \A)B(U»‘) denote formally the Fourier transforms of
y(), \"F(-) and \)B(-), and where the shaping filter F(~) is the outer
or minimum phase spectral factor of W(‘»‘) , the spectral density of y(-).

That is,
W) = 1 + kK + k(w) = |Fe) 2 (2-149)

on the real axis, and F(w) and F_l(w) are analytic in the lower half-plane.
The relations (2-146) and (2-147), or Figure 2.8a, imply that the

scattering matrix S(v) satisfies

Y () Fw)
= S(w , (2-150)
y ) VF(w)

and by substituting (2-148) inside this relation and cancelling y(«), we

obtain the identity

Fl(-w) T R 1
(2-151)

for the entries of S(w). Using the fact (2-15) that the scattering matrix

is unitary, this gives after some algebra

i{L(J) = _—ng\)— (2'1528)

1+ ﬁ(w)

T _F@)
1+ k()

(2-132b)
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- _ k(=) F(x) (2-152¢)

so that the left reflection coefficient ﬁL(w) depends only on the covariance
data given by k(w).
Thus, the linear least-squares estimation problem has now been

recast as an inverse scattering problem. The two-component wave system

(2-145) has been defined, with the residuals e(t,x) and b(t,x) acting as
waves, and the scattering matrix for this system has been specified by
(2-152). In particular, the left reflection coefficient ﬁL(uJ) has been
specified entirely in terms of the known covariance k(t). The aim is to
reconstruct r(x), and once this has been done the optimal modelling
filter is specified by Figure 2.8.

Moreover, the form of (2-152a) allows the choice of probing waves
(made by Dewilde et al., 1981; note that this choice corresponds to a

free surface)

b(t,0) = &(1) + k(1)1(t) (2-153a)

e(t,0) = k(1) 1(t) (2-153b)

which now replaces (2~146) but leaves f{L(;) (2-152a) unaltered. And
since ﬁL(w) determines the rest of the scattering matrix, the choice
(2-153) of probing waves leaves the entire inverse scattering problem
unaltered. The choice of probing waves (2-153) means that the fast

Cholesky algorithm

(3 /3% - 3/31)&(t,x) = -r(x)b(t,x) (2-154a)
(3/3% + 3/3t)b(t,x) = -r(x)é(t,x) (2-154b)
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' r(x) = 28(x,x) (2-154c) ~
. - A
! b(t,0) = &(t,0) = k(t)1(t) (2-154d) L]
}
, oA
? :i
y (recall that only the smooth parts of the waves are propagated) can be ‘
4
used to reconstruct r(x). o .‘
It should also be noted that this results in a causal-times-anticausal
factorization of &(1) + k(t) + k(-1). Furthermore, from (2-152a) and :'_Zf-‘
' (2-152b) we have .'
I b
F(w) 1+ k(w) o
) = S(w (2-155) o
k(w) 0 "
®ij
so that the choice of probing waves (2-146) implies :_I:'.
b(x,w) = F(u) e X as x » «. (2-156) ok
Thus the fast Cholesky recursions also generate F(w).
On the other hand, the Krein-Levinson algorithm (2-143) - (2-144)
operated not on the residuals e(t,x) and b(t,x), but on the forwards and o -_
backwards filters A(x,-) and B(x,:). This again illustrates that the fast :j::
Cholesky algorithm operates directly on the waves in the scattering -:‘:::’
interpretation of the problem, while the Krein-Levinson algorithm operates ® _
on the transmission matrix, and is thus less physically interpretable in its ‘_‘f_‘}
operation. :.;:L
o K
':: In this chapter, we have investigated in detail both differential and '_'--:'.
Cd ..'..-
‘ integral equation methods for solving inverse scattering problems. In the -
4 l.‘:l.
next chapter we shall see how these methods are applied to the one- ol
: £
-. f‘,:-:
3 %
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dimensional inverse seismic problem, and derive their discrete counterparts

for the discrete version of this problem.
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“ CHAPTER III o

®
The One-Dimensional Inverse Problem at Normal Incidence s
v
3.1 Introduction LV
oK
) In this chapter the inverse seismic problem for a one-dimensional
acoustic layered medium probed by impulsive plane waves at normal incidence
: is reviewed. The goal is to recover the acoustical impedance pc(t) as a ® ‘
function of travel time 1. The case of a medium with continuous variation T
of material parameters, and the case of a medium with variations only at
> discrete depths, are both covered. ® }
y A considerable body of literature exists on both of these problems; _
indeed, the majority of published work on theoretical methods for solving
’ inverse seismic problems has dealt with these two problems. Newton P :‘“
X (1981) is a good review paper for references and methods for solving ~:Z::
: A
the continuous medium problem. In general, these methods have employed _'2
' a mathematical physics approach: the basic equations of the problem are ° :'
- transformed into a Schrodinger equation, and the potential of this
' equation is recovered by solving a Marchenko integral equation. This
: procedure is described in detail in Section 3.2.2 below. Ware and Aki ° é‘.‘.”.
¥ (1969) popularized this approach, which has been employed many times
since (see the list of references in Newton (1981)). .'
- Other methods for solving the continuous medium problem have been ° :
proposed. Gray (1983) derived a Marchenko equation directly in terms of :
a reflectivity function r(t), bypassing the necessity of solving for the :'.‘.:_-:f]

< . ?

Schrodinger potential. This allows discontinuities in r(t) and requires '\‘i
L

]

]

1

4

.'.-' RS
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only that the impedance be continuous, unlike the Schrodinger formulation
for which the impedance must be twice differentiable. Burridge (1980)
derived the Marchenko integral equation and several related integral
equations directly in the time domain, bypassing the Schrodinger

equation formulation.

As for the discrete layered medium problem, the assumption is
generally made that the medium is composed of horizontally stratified
homogeneous layers whose thicknesses are such that the travel time
through each layer is the same. In this case, all events (arrivals at,
reflections at, or transmissions through any interface, including the
surface) occur at integer multiples of A1, making the problem a digital
signal processing problem. This model of the medium was first proposed by
Goupillaud (1961), and is generally referred to as a "Goupillaud medium."
The inverse seismic problem for such a medium being probed by plane

waves at normal incidence has been solved by Goupillaud (1961), Kunetz

(1962), Claerbout (1968), Ware and Aki (1969), and Berryman and Greene
(1980), among others. Berryman and Greene (1980) also discuss this
problem for the case of unequal travel times through the layers; in this
case the problem is no longer discrete in time, since arrivals can occur
at any time at any depth.

Layer stripping methods have been applied to the inverse problem
for a continuous medium by Symes (1981), Santosa and Schwetlick (1982),
and Bube and Burridge (1983), and to the inverse problem for a discrete
medium by Symes and Zimmerman (1982). The one-dimensional inverse
seismic problem at normal incidence is, to our knowledge, the one inverse

seismic problem to which the layer stripping concept has been applied

extensively prior to this thesis. (Some work has been done on the elastic
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problem covered in Chapter VI.)

In Section 3.2 the solution of the inverse problem for a continuous
medium is discussed. After some basic concepts of acoustics (plane
waves, impedance, reflection and transmission coefficients, energy
normalization, and free and half-space surface boundary conditions)
are reviewed, the standard Gel'fand-Levitan procedure (Ware and Aki,
1969) for solving this problem is presented. Then the concept of layer
stripping is applied, and the fast Cholesky, Schur, dynamic deconvolution,
and method of characteristics algorithms for solving this problem are
obtained.

In Section 3.3 the solution of the inverse problem for a discrete
Goupillaud layered medium is discussed. An approach similar to that of
Claerbout (1968) and Ware and Aki (1969) is used to derive the matrix
equations appearing in Ware and Aki (1969), Aki and Richards (1980),
and Berryman and Green (1980). These equations are discrete analogues o L
of the integral equations of Section 2.4. The discrete Levinson algorithm I

for solving these matrix equations is also derived (Berryman and Green,

1980). Next, discrete layer stripping algorithms for solving this problem
are derived. The discrete Schur and dynamic deconvolution algorithms

obtained here were noted by Robinson (1982). It is most instructive

to compare these discrete results with their continuous counterparts.

In Section 3.4 relations between the solutions of Section 3.2 and

those of Section 3.3 are discussed. In particular, it is shown how the
discrete medium problem approaches the continuous medium problem in 'E
the limit of the layer thicknesses going to zero. Gerver (1970) showed
that for sufficiently small layer thicknesses the discrete problem :.
solution approximates the continuous problem solution. Other aspects o E‘
ni

...............
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of the discrete-to-continuous and continuous-to-discrete transitions are
also discussed, including transmission losses, variations in impulses,
a subtle distinction between discrete inverse scattering solutions and
discretization of the medium, as pointed out by Berryman and Greene

(1980).

3.2 Solution of the Inverse Problem for a Continuous Medium

The inverse seismic problem for a one-dimensional acoustic medium
probed by impulsive plane waves at normal incidence is formally defined
as follows. An impulsive acoustic plane wave, propagating vertically
downward, is incident on a layered medium from a homogeneous half-space
z <0 in which the density Oo and local speed of sound c, are known. This
half-space could, for example, be the ocean above the ocean floor. The

layered medium is laterally homogeneous, so that material parameters vary

only in depth. The medium is also assumed to be acoustic (i.e., a fluid),
so that it is entirely characterized by the profiles of density o(z) and
wave speed c(z). If the medium is continuous, then 2(z) and c(z) are
continuous functions of depth z. The reflection response of the medium -‘“-.-'-
(i.e., the reverberations making their way back to the surface) is -;
measured at the surface; the actual physical quantity being measured
depends on the surface boundary conditions, as described in Section
3.2.1 below. The goal is to recover the profile functions ¢(z) and c(z).

The problem is clearly one-dimensional in that all action can be

represented by action along the z axis. The situation is illustrated in

s

Figure 3.1. ‘.:
"~
Several variations on this problem will be considered in this -

i il

chapter. In particular, the case of a continuous medium, in which ¢(z)

~ -
.
-
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and c(z) are continuous functions of z, and the case of a discrete medium,
in which o(z) and c(z) are piecewise constant, will both be treated.
¢ In the latter case it will be assumed, following Goupillaud (1961), that
the layers have equal travel times, i.e., that the thickness of a layer
is proportional to the wave speed in that layer. This makes the discrete
¢ problem a digital signal processing one. Two different sets of boundary
conditions at the surface will be employed: the half-space configuration
described above; and a free surface boundary condition, for which the
d surface pressure is zero.
For all of the above experimental configurations, Gerver (1970)
has proved that it is impossible to recover c(z) and c(z) separately; all
o

that can be obtained is their product ge(r) as a function of travel time
1. Further, this reconstruction is unique, subject to mild assumptions.
This is reasonable from a degrees-of-freedom point of view--the
measurement of a single time function should not be expected to
determine two different depth functions. In order to determine (z)

and c(z) separately, the oblique incidence experiment of Chapter IV
must be employed. If the medium is not acoustic but elastic (i.e., not
a liquid but a solid), then it can support shear stresses and shear wave

propagation. This elastic problem is covered in Chapter VI.

3.2.1 Basic Concepts of Acoustics

In this section we quickly review some basic acoustical concepts,
including plane waves, impedance, reflection and transmission coefficients,
energy normalization, and surface boundary conditions. This will clear
up some confusing points and lend physical insight into the meanings of

various quantities appearing in the algorithms.

1.--. - - .'-‘Iu
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The two basic equations of acoustics are (Dowling and Williams, 1983) N
[ !
p = -oczv- u (3-1a) ® :I:
2 ]
34u/at2 = -(1/p)Vp (3-1b) s
e

where u is the particle or medium displacement and p is the negative
isotropic stress, i.e., pressure. Equation (3-1a) can be interpreted as :
an equation of conservation of mass, while equation (3-1b) is a : -

convervation of momentum equation (compare (3-1b) to Newton's second ® !

: law of motion F = ma). For a one-dimensional layered medium (3-1) :-::
t_:; becomes ","

," .

2 ]

: p = -pc3ufdz (3-2a) N
: s g i
3"ult® = -(1/p)op/loz (3-2b) __._

. 7]

where u(z,t) is the vertical displacement (the z~component of the vector -

u). Note that (3-2a) can be interpreted as Hooke's law for fluids: an :f:’

applied stress -p produces the strain 3u/3z, with the stress and strain Za

®

linearly related by the elastic constant ocz.
Plane waves -

In a homogeneous medium, insertion of (3-2a) in (3-2b) yields the o .

wave equation

G2t - ¢B2n2%ue,t = o (3-3)

which has the fundamental solutions

u(z,t) = u(t + z/e)

.......................
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These solutions describe waves traveling upward and downward with .{“:‘_‘:j
speed ¢. These waves can take many forms (e.g., sinusoidal or .'f"
impulsive), with some recognizable feature (an impulsive wave front, or {'_'-:"
a point of constant phase) moving through the medium at speed c. :'J'_'S‘ -
Note that there is no variation with x or y, so the wave can be thought 2% »
of as a plane of constant phase or a planar impulse moving in the z or -z %\
direction. This absence of spatial variation over a plane normal to the ?'::x

direction of propagation at a fixed time defines a plane wave (AKi and

Richards, 1980, p. 125).

In general, if a plane wave is propagating in a space x in direction

n with speed ¢, the quantity being propagated (displacement, pressure,
etc.) is a function of (t - n - x/e). Note that the component in the j;

direction y of a plane wave moving in direction N has dependence

t-(n-y)(x.y)/c, which corresponds to an apparentspeed of propagation ;‘.:-Z';; ~

faster than c. Since this is a phase velocity, there is no violation of

causality.

Impedance

Consider the sinusoidal plane pressure wave

p(z,t) = poej“’(t‘z"’) (3-5)

propagating through a homogeneous medium. From (3-2) the particle or

medium velocity v(z,t) = 3u/ot associated with the wave is

v(z,t) = pyloc gult-z/c) (3-6)
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p(z,t)/v(z,t) 3 Z =pc (3-7)

i.e., the pressure and velocity associated with the wave are related
linearly by the impedance Z. Impedance is thus a measure of medium
resistance to motion, i.e., the amount of pressure p required to set
particles in motion with velocity v. Equation (3-7) should be compared to
the electrical definition (2-42) of impedance as the ratio of voltage to
current.

It should be noted (Aki and Richards, 1980, p. 137) that impedance
depends on the type of wave. For example, a pressure wave propagating
through a homogeneous medium at an angle 3 from the vertical has
impedance pc/cos 9, while a similar displacement wave has impedance
oc cos 6, even though the waves are physically identical. How can this
be true? For both waves, the ratio of stress to particle velocity in the

direction of propagation is pc. However, the impedance for the pressure

wave is defined by

4

v, p/Z = v cos 8= (p/pe) cos 8 (3-8)
so Z = oc/cos 9. The impedance for the displacement wave is defined by .‘
A o i
rzz=Zv= p cos8= (pc v) cos § (3-9) —f"
e
so Z = pc cos &. The reasons that impedance is defined in terms of the ‘_‘j
z-components of the produced stress or particle velocity will become ¢ E.
apparent below. Also, the impedances for waves travelling in opposite ‘EE
directions have different signs. :::E.:
oM
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Energy and energy normalization

It may be shown (Aki and Richards, 1980, p. 127) that the energy flux
(energy per unit time per unit area normal to the direction of propagation)
for a displacement plane wave is pcvz, where v is the particle velocity
amplitude of the wave. The energy flow in the z-direction is then Zv?
= o¢ COoS ?v2, where © is the angle between the direction of propagation
of the plane wave and the z-axis. This can be seen by projecting a unit
area of wavefront on a unit area normal to the z-axis.

Suppose now that the medium is inhomogeneous in the z-direction.

Then the amplitude of the wave will be continually varying as cc varies,
in order that the energy flux pc cos 6v2 be kept constant (save for
losses due to reflections). This phenomenon has often been observed in
earthquakes, when a seismic wave that had small amplitude when it was
passing through hard rock (high impedance) suddenly becomes much
larger (and more damaging) when it passes through landfill or sediment
(low impedance).

This continual variation of the wave amplitude makes it difficult to
note the effects of reflections, since the wave amplitude is varying due
both to reflection losses and impedance variations. For this reason, the

(energy)-normalized pressure V¥ and displacement ¢ are defined by

i

v & pyzt (3-10a)
o &zt | (3-10b)

These quantities have the property that the energy flux in a wave is
simply the square of the amplitude of the wave--it is no longer necessary

D to multiply or divide by Z. Thus variations in amplitude are due solely
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to transmission and reflection losses. Note that normalized pressure and

R

velocity have the same dimensions.

Reflection and transmission coefficients

- .
T

Suppose a wave is propagating through a medium #1 with density 01 and

speed of sound ¢ and reaches an interface between medium #1 and

another medium #2 with density 09 and local speed of sound Cy- Some

A CAR

R g

of the wave will be reflected and some transmitted. The ratios of the

LR RS

amplitudes of the reflected and transmitted waves to the amplitude of

the incident wave are the reflection and transmission coefficients for that

Vo
PR I l"

particular wave type.

Reflection and transmission coefficients are determined by boundary
conditions at the interface: displacement and normal stress are continuous
across the interface. Derivations are made in almost any seismic or

acoustics text; the coefficients for various wave types are simply

summarized below. These expressions are still valid for non-normal

incidence on the interface if the impedance expressions (3-8) and (3-9)

L A PR
S

- are used.
;‘, DEFINITIONS: r = reflection coefficient for a wave incident from medium #1
- T = reflection coefficient for a wave incident from medium #2
.':: t = transmission coefficient for a wave incident from
& _ medium #1
! t = transmission coefficient for a wave incident from
medium #2
DISPLACEMENT 2 - 2, 22,
% WAVES: r = T t=1l+4r = —4m8M (3-11a,b)
1+ 4y 21 + 2y
- Z,-2, 27
: F=ogo—r il —2 (3-1lc,d)
;;.::‘ 2 + 21 Z, + 2,
r=-r, tt-rr=1 (3-11e,f)

> . -
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PRESSURE Z, -2, 2z,
WAVES: r= —~ __~ , t=l4r= —mm———— (3-12a,b)
Z, + 2, Z, + 2,
)
Z, -2 - 27
p=e 12 g — 1 (3-12¢,d)
Z, + 2, z,+12,
) r=-r, tt ~rr=1 (3-12e,f)
z, -2, ) 2(2, zz)*
) NORMALIZED r= —— 2 t=t-= —_ (3-13a,b)
DISPLACEMENT z, +2, z, +2,
WAVES:
Z., - 2
p=_—2 1 (3-13¢)
[ 22 + Z1
- 2 2 - -
r=-r,t +r =1,1tt -rr =1 (3-13d-f)
Z. -2 2Z. Z )%
2 1 : 1“2
NORMALIZED r= —< - t=t = _ (3-14a.b)
PRESSURE Z,+2, Z, +2,
WAVES: -
Z, -2
r= 1 2 (3-14c)
Z1 + Z2
2 2 - -
r=-r, t +r =1, tt-rr=1 (3-14d-f)

Several comments are in order. Note that the reflection coefficients
are the same for normalized and unnormalized waves. This is as expected;
since the wave is reflected back into the same medium, normalization
should have no effect. However, normalization does affect the transmission
coefficients: the normalized coefficients are the same going in either

direction (reciprocity), while the unnormalized coefficients must alter the
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wave amplitude to preserve the energy flux through the medium.

Note that the reflection coefficients for pressure and displacement
waves have opposite signs. Physically this amounts to a phase inversion;
mathematically, it may be seen as follows. Recall that the amplitudes of
the pressure and velocity associated with a wave are related by the
impedance. Hence the reflection coefficients for pressure and velocity

are related by the ratio of the impedances of upgoing and downgoing

waves, since the incident and reflected waves travel in opposite directions.

But these two impedances differ in sign, so their ratio is minus one.
For the normalized coefficients, we have the conservation of energy
relation t2 + r2 = 1 (incoming energy = outgoing energy). For all
coefficients, we have r = -r (simply exchange the media) and the
relation tt - rr = 1, which should not be confused with the energy

conservation relation t2 + r2 =1.

Surface boundary conditions

In an inverse seismic problem, the medium is probed by a downgoing
wave D(0,t) at the surface, and the resulting upgoing wave U(0,t) is
measured at the surface. These waves must be specified in terms of

known or measured quantities.

Half-space

If the medium is probed from a homgeneous half-space, then we set

D(0,t)

S(t) (3-152)

U(o,t) = R() (3-15b)

Here f () is the impulse (Dirac delta) function and R(t) is the measured

response. This is the most common choice of boundary condition in the
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literature, since the mathematical physics solution procedure described
next requires this as a boundary condition. However, it is physically
reasonable to make this choice when the actual physical experiment consists
of detonating an explosive charge just above the ground for a land
experiment, or close to the sea bottom (far away from the ocean surface)
for an ocean experiment. In the latter case, the water column
reverberations (reflections from the ocean surface) must be removed from

the data.

Free surface

A free surface is also known as a pressure release surface, since the

boundary condition is that the pressure at the surface is zero. The
surface of the ocean is modelled quite well by a free surface (Claerbout,
1976), and the surface of the earth in a flat region is also modelled well
by such a surface.

The effect of the free surface is to reflect the upcoming waves into
the downgoing waves at the surface. It is necessary to assume that the
density and wave speed are known immediately pbelow the free surface,
in lieu of specifying them in a half~space. Of course, the pressure
release boundary condition is violated for an instant by the impulsive
source, but as long as the source stops before any reflections return to
the surface, there is no problem.

The boundary conditions for a free surface are

D(0,t) = &(t)+ k(t) (3-16a)

u(o,t) = k(t) (3-16b)

where the upper sign is for displacement waves and the lower sign is for
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pressure waves (to see this, set Z, = 0 in (3-11lc) and (3-12¢)). Note

1
that the reflection response for a free surface can be synthesized from

S

the response for a half-space boundary, and vice-versa, by

Al
‘I
~ ~ ~ “
R(w) = k(w)/(1 + k(w)) (3-17a)
R(w) = R@/(1 3 Rw)) (3-17b)

where the same sign convention as in (3-16) is followed. Indeed, the
entire scattering matrix for a free surface can be synthesized from the

half-space scattering matrix and vice-versa; see Ware and Aki (1969).

Bottom boundary conditions

A radiation boundary condition is also assumed throughout: at
sufficiently great depths, there is no upcoming wave (U(=,t) = 0).
The transmitted wave at great depths is unknown. The medium is also
assumed to be relaxed (quiescent) before the experiment beings. This is

clearly necessary in order to use causality.

3.2.2 Mathematical Physics Solution for a Continuous Medium

Here the standard mathematical physics procedure for solving the
one-dimensional inverse seismic problem for a continuous medium is
presented. First popularized by Ware and Aki (1969), it has been used
so often since then that it might well be termed the "classical” approach to
solving this problem. The basic equations (3-2) are transformed into a
Schrodinger equation, an equation often encountered in quantum mechanical
scattering problems (Chadan and Sabatier, 1977). The Gel'fand-Levitan
procedure for recovering the potential of the Schrodinger equation is well

known (Faddeev, 1967; Chadan and Sabatier, 1977; etc.), and the
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impedance is recovered by solving a differential equation involving the

potential, or is recovered directly from the Schrodinger solution. A major

problem with this method is that it requires the impedance profile Z(7)
to be twice differentiable, or impulses will appear in the Schrodinger
potential.

Note that the travel time t(z) from the top of the medium to depth

z is given by

z
(z) = /(; ds/c(s), (3-18)

and recall the definitions of impedance Z = pc (3-7) and normalized
displacement ¢ = ZJ"u (3-10b). Substituting all of these in the basic
acoustic equations (3-2) and Fourier transforming with respect to time

yields the Schrodinger equation

2 .
(12— P V)6 (r) =0 (3-19)
3t

where ¢(1,w) is the Fourier transform of ¢(t,t) and the potential V(r)

is defined as

2
vty = 27} —9—2 zh. (3-20)
T

d

Note that equation (3-20) requires Z(v) to be twice differentiable to avoid
impulses in the potential V(7).

The boundary conditions for the Gel'fand-Levitan solution procedure
are those for a half-space boundary (3-15). Taking Fourier transforms
of (3-15), employing the radiation condition, and recalling that ¢ =D + U

results in
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r 3 ~ .
5 e 9T+ R(we™" , 1< 0 (above surface)
N o(T,w) = {A siwt (3-21)
¥ T(we , T+ = (at great depth)
t where e T is the source impulsive plane wave, R(w)e’™ ' is the
\ (measured) reflected plane wave response, and T(we ’*"is the (unknown)
‘ transmission response of the medium. The situation is illustrated in
Figure 3.1.
The Gel'fand-Levitan procedure applied to the inverse scattering
problem specified by (3-19) - (3~21) results in the following procedure
for solving the one-dimensional inverse seismic problem:
(1) Measure R(w) or its inverse Fourier transform R(t);
| (2) Solve the Marchenko integral equation DA
8 T :1'-':
"y K(t,7) + R(t+1) + f-t K(s,T)R(s+t)ds = 0, t < 1 (3-22) .:j-_.‘
W\ ,j
ok
(3) Compute the potential V(1) from 1
V() = 2.2 K(t,1) (3-23) 0
dr "’ o
(4) Solve the differential equation (3-20) for Z(7). .q
Berryman and Greene (1980) have pointed out that steps (3) and (4) ,:‘\:::
o
may be replaced by of
Z(t)/Z(0) =1 + /:T K(s,t)ds (3-24)
: v
oK
since the differential equation (3-20) has the same form as the Schrodinger T
}: equation (3-19) with w = 0. From (3-22) it is evident that reconstruction ZE::
“ o
i of Z(t) on [0,T] requires R(t) on [0,2T], where 2T is the two-way :j-.
of
travel time.
5 &
; o




-
i
1]

&
........

ot N 'I:l:l' .
"é t{."“
A
o - AR

“'\
*

123

N

S
) >

B Y

The Gel'fand-Levitan procedure is derived in Chadan and Sabatier

o
‘e

-‘)
*

# (1977); the appearance of a Marchenko integral equation in an inverse
scattering problem with a half-space boundary condition should not be

surprising in light of Chapter II. It should be noted that this procedure

requires that there be no bound states (see Chapter II) and that the

potential V(1) be localized, i.e.
(-]
fo(l + )| V(D)]|dT < = (3-25)

Neither of these conditions presents any problem for the one-dimensional
problem at normal incidence, but they do present problems when the

medium is probed at non-normal incidence. This is discussed in Chapter IV,

3.2.3 Layer Stripping Solutions for a Continuous Medium

To obtain layer stripping solutions, it is first necessary to obtain a
two-component wave system from the basic acoustic equations (3-2). This
is done as follows. Fourier transformation of (3-2) and changing

variables from depth z to travel time 1 using (3-18) results in the

symmetrized equations

p = -2 du/dr (3-26a)

w3 = (1/2)dp/dr (3-26b) oy

which can be written as the matrix system

) .
P 0 w
= P (3-27)
4 12 0 al .

Claerbout (1976, p. 169) has pointed out that if the state vector [u} is

Q|
~AlQ-
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X
? multiplied by the matrix of row eigenvectors of the system matrix, the ';j
s N
")
< new state variables can be interpreted as upgoing and downgoing waves. :‘
To see this, write the system (3-27) as '5
LY J
o« - = ~ .
R at Ax (3-28) .f_‘
. (1%
A v
- where x = [G] , and let R and C be the matrices of row and column _~;.
- \“
eigenvectors, respectively, of the system matrix A. Then, defining :-:-
‘.! = R)_( , (3"29) ® !_'.
Ry
substituting (3-29) into (3-28), premultiplying by R, and using RC =1 ,’{:
results in
| B35
. ) :
> w "
. - - - -QC_ _ :“-.
3 e (RAC - R az ) w . (3-30)
o s
J
But RAC is the diagonal matrix of eigenvalues of A, i.e., oF
':;' RAC = DIAG[-jw, jw}]. In a homogeneous medium, the second term R(%: j'.l::
:? is zero, and from (3-30) it is evident that wis indeed a vector whose '.:j':
X components are upgoing and downgoing waves, o ‘
-. However, in an inhomogeneous medium, the second term of (3-30)
< Rg—g differs from zero. But the interpretation of w as consisting of upgoing
and downgoing waves will be preserved if the diagonal elements of R;—lg oL
are zero. This can be achieved by scaling R appropriately (scaling the
elements of R will not affect their status as eigenvectors). Since R
o
: is @ 4
- 1 juz R
. R = (3-31) w3
'.: 1 -j.2 ":;
. :
pa o K
resulting in the waves o
e
okl
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resulting in the waves "

: S 4 juza
°® P p
w = R{A} = [,\ } (3-32) ?;
u j gt

p - jwZu

the obvious scaling to try is the energy-normalized waves e

{ﬁ(r.w)]
Udt,w0)

>
N
N
=
H
~~
NI
[~ 2
o)
A
| S|
Lo JpY
| R
»

(3-33)

izt + juzti o+ jue L
VAR ij’}G - jwd }_.
—
Indeed this works and the waves f)(r,«») and fJ(T,w) satisfy the two-

component wave system ':f':-;li
4 [P ~ju -r D o

1. = ] (3-30) o

U -r j(A-‘ U ".:1'..:

f_.{.'?-

where the reflectivity function r(7) is defined as ::: ::'-‘."
. 1 az i

LSO VA T (3-35) L

Two comments are in order here. Recall the definition of impedance :'“-'.:'_:I_'

and the fact that impedances of waves travelling in opposite directions are -‘l;'ij
opposite in sign. Then, in a homogeneous medium, the waves (3-33) el
both become waves in the normalized pressure ., i.e., the normalized :j:::‘_:EE
~ \': :‘:
pressure v is decomposed into upgoing and downgoing waves. Next, v
recall the reflection coefficient (3-14a) for normalized pressure waves. R,
o
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: %
:: A continuous medium may be modelled by a stack of thin homogeneous :';
~ Y
N layers, each with travel time 4, and then letting A approach zero. This >4
43
- gives iy
» o
>, .
> .
<, .
= LM r _ LM Z(+) - 2(0 1 _ 1 dZ .,y (3.3 )
A+0 A A>0 Z(t+p) + Z(1) A 2Z dt ‘ 6
& This will be discussed in more detail in Section 3.4. In the present
14 ,'-:_
A context, the sign of (3-35) implies that the waves are really normalized .;
pressure waves, rather than displacement waves. This is in accordance r_f"
with the first comment.
Fast Cholesky algorithm o
If the downgoing wave D(t,t) contains an impulse, as it does in -EI:
both the half-space and free surface boundary conditions, then we ::;'.f
»‘b
immediately have the fast Cholesky algorithm ®
T
= (2 + 2 D(1,1) = ~-r(DU(1,1) (3-37a) =
"W 3t 3t ’ ’ -
3 _ 8 _ i oK
r(1) = 20(t,1) (3-37¢) o
initialized by either set of boundary conditions (3-15) or (3-16). The ..,
impedance Z(t) is then recovered by integrating (3-35), yielding
T .:\.
Z(1) = Z(0) exp 2](; r(s)ds. (3-38) 9 FY

This algorithm is preferable to the Gel'fand-Levitan procedure (3-20),

(3-22), (3-23) on both computational and aesthetic grounds. The i
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quantities in the algorithm have obvious physical interpretations, allowing

the user to physically envision the inversion process, and the algorithm

P

A

o
is guaranteed stable as long as folr(r)ldt < «, which merely requires

C A A

T s

that the impedance be positive and bounded. Bube and Burridge

P

(1983) have experimented with various discretizations of this algorithm
(which they call the "downward continuation" algorithm), and have

gotten excellent results.

“ Schur algorithm

In the frequency domain we have

k 13( Tyu) -ju  -r D(1,w)
- . = . (3‘398)
U(7,.) -r jw | LU ,w)

& r(0 = LIM_ 2. &% O(1,0 = (l/n)/o G(rael T a (3-39b)

QIQ

which may be preferable if all of the waves are only known over a
. limited frequency range (i.e., are bandlimited in measurement). In
this case, the lack of high frequency components will cause some error

in (3-39%). Z(7) is obtained from (3-38).

‘ Dynamic deconvolution

Defining the reflection coefficient for the entire medium below depth z

) R(z,.) £ 0(1,.)/D(1,u) (3-40)
we have the Riccati equation

LR = 2R - r()(-RY (3-41)

o P T S S U OO
T e A T T e e e e T T e N T T e e T A e T T e e
RPN TP I P P SN S ARSI I A AT n"p[.'q‘kfl\'-uf AV ARV I O R Pt ';.\‘;_":\".__."-:"- e




W et}

S TR e

Rl N

P """ 0" 4" e"a " HEENRS P F 8 I BB ST

128
along with
QO

r(t) = LIM 2%j.R = (1/7)foﬁ(~,r)m . (3-42)
This algorithm, in which f{(T ,w) is propagated in T by (3-41), is
initialized by

ﬁ(O,w) = ﬁ(w) for a half-space boundary (3-43a)

ﬁ(o,u) = }Ac(w)/(l—i((;)) for a free surface boundary .- (3-43b)

Tolstoy and Clay (1966) noted the Riccati equation (3-41) for
propagating the forward problem, as did Newton (1981). Corones et al.
(1983) used the inverse Fourier transform of (3-41) as an invariant

embedding equation, along with

r(t) = 2R(7,0) . (3-44)

to solve the inverse problem.

Note that R(1,.) is the Fourier transform of the seismogram at depth
1 that would be obtained if all of the medium above depth T were stripped
away, and the remaining portion of the medium probed with an impulsive
plane wave. Equation (3-44) then states that the first reflection from
the medium is caused solely by r(7). Equation (3-37c) in the fast
Cholesky algorithm has a similar interpretation: the first reflection from
the downgoing wave into the upgoing wave at depth T is caused solely

by r(7).

Method of characteristics

The choice of variables in using the method of characteristics is

dictated by the relation Z = p/v. Letting
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p(7,t) = p(T,t)1(t-1) (3-45a)
v(T,t) = v(7,t)1(t-7) (3-45b)
D

and changing variables from z to T in the basic acoustic equations (3-2)

results in the symmetrized system

[ ]
op(t,t) /3T = -Z3v(T,t) /5t (3-46a)
ov(T,t) /31 = -(1/Z)3p(T,t) /3t . (3-46b)
® Along the wave front, which is a plane wave in (1,t) space propagating
with unit velocity, we have by the definition of impedance
® Z(ty = pt,-HNGEaT) (3-47)
The set of equations (3-46) - (3-47) can be propagated in 1, yielding '_'.‘_i:'”:
roee
® Z(7). However, there is no guarantee of stability, and all physical e
interpretation in terms of waves and reflections is gone.
Each of the above algorithms has its counterpart in the inverse
® seismic problem for a discrete layered medium. This is explored in the
next section.
3.3 Solution of the Inverse Problem for a Discrete Medium
‘ - .
The inverse seismic problem for a one-dimensional acoustic discrete
medium is defined as follows. The medium consists of a stack of
homogeneous layers whose thicknesses are proportional to the speeds
¢
of sound within them. Such a medium is called a Goupillaud medium,
after Goupillaud (1961). The medium is probed by an impulsive
acoustic plane wave at normal incidence, as before, and the reflection
.
response of the medium is measured. The goal is to recover the
®
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3‘ impedance in each layer, which is equivalent to finding impedance as a
: function of travel time. The medium is illustrated in Figure 3.2,
] The special structure of a Goupillaud medium causes all events ®
(wave arrivals, reflections, and transmissions at all interfaces,
; including the surface) to occur at half-integer multiples of the two-way J
. travel time 4T through each layer. This means that the actual ® E
: mathematical problem, involving impulses, can be replaced by a completely
equivalent digital signal processing problem. This makes things much
l simpler mathematically, and allows much easier visualization of what is g !
: happening inside the medium. ,
It should be noted that the Goupillaud assumption is not as
. restrictive as it may first appear. Thick layers of various thicknesses ®
may be built up by stacking various numbers of the fundamental layers,

each having the same density and wave speed. This can be used to

l approximate a general discrete medium. For At small, the Goupillaud ._
medium may be a good approximation to a continuous medium. Indeed,
it will be shown in Section 3.4 below that the Goupillaud medium results
i_ approach the continuous medium results as 41+ 0 (this result is due to b .‘
E Gerver, 1970).
In the course of solving the discrete problem, discrete analogues
i of integral equations and of all of the layer stripping algorithms will be ° _E_
h obtained. The approach will be similar to that of Aki and Richards
: (1980), with results from Kunetz (1967), Ware and Aki (1969), Berryman
_l and Greene (1980), and Robinson (1982) also worked in. Bruckstein .E”
and Kailath (1984) ga '~ a similar treatment for the discrete transmission "Z:'_A;

line.
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3.3.1 Matrix Equation Solutions for a Discrete Medium

CRC

For convenience we consider the medium as consisting of N equal-

traveltime layers sandwiched between two infinite half-spaces. The o
two-way travel time through each layer is AT. Insertion of the lower vi
half-space is simply equivalent to cutting off the data record after NAT. :$‘
In due course, a free surface will be introduced in lieu of the upper ¢ !~'
half-space (this can be done by setting o = ¢ = 0). The medium is
illustrated in Figure 3.2. _:
®j
The medium will be probed by an. impulsive displacement wave, and
the problem will be treated as a digital signal processing problem. The
downgoing and upgoing normalized displacement waves at the top of ‘
layer i will be designated as di and u;, respectively, while the waves at °
the bottom of layer i will be designated as d'i and u'i. The wave \-
notation is illustrated in Figure 3.3. Note that o ;'-i'
d'i(t) =d(t - ) (3-48a)
u'i(t) =ut+ 1) . (3-48b) .;~
It should also be noted that di(t) and ui(t) are zero except at li'-
t = (i-1)/2 + Kk, k =0,1,2,..., and d; (t) and u;(t) are zero except at
t=i/2+k, k=20,1,2,... Hence successive non-zero values of any 0'
wave are separated by one, i.e., the layer two-way traveltime 2T. If
the one-way layer traveltime were being used, the waves would have
every other value being zero, and the notation would be even worse. ® v
At any given moment, the four waves at an interface i interact as ::‘
shown in Figure 3.4. We have l::‘_:
® '
° F '

-------------------------
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3
3-_:-
{ 1 ' '
-3 i *3 time

! |

l I |

I [ !

: ! ! Interface i-1

1 ' | fy_ "
di(t-3)= di“\ ) /i(H-E)-Ui(i)

: : E Layer i

:. d'i(f) : ui(t)=r; d.i“)‘”.i Uj44(1)

: Interface i

: TP L) \1;4.,(1)=ltid;(t)+r;ui+1(f)

' [ Layer i+1

i .
Vigglt=3) Ui+«y \'iﬂ"*'lzhdm(') |
' Interface i+

3.4 Interaction of the downgoing and upgoing waves in layers
i and i+l.
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d. ., =td, +r (3-49a)
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u. =r.d, +t.u (3-49b)

...
o
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-
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+
[
X_f v
‘a‘."'f“'.:g.
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-‘;’... T2

where r;, t,, r., and -{1 are defined in (3-13) for normalized displacement

i
waves. Equations (3-49) can be rewritten, using (3-13d) and (3-13f),

e
. r!
v,
‘.
)
\‘.4
PP R L

as

u, _ u,
Al &y 1] L

and defining the layer two-way travel time delay operator z we have,

using (3-48)

u. 1 -zr, u.
= - (3-51)
[dHJ z‘l‘ti -r. Z d,

1

A straightforward induction argument similar to that of Aki and

®
Richards (1980, p. 666) shows that forn = 1,2,...N
n n
u M., (z) z'M,,(1/2) u
° [ n+1J o [ 11 21 } [ 1] (3-52)
- n/2 n n
dn+1 2z MZI(Z) z Mll(l/z) d1
@ where Mll(z) and MZI(Z) are polynomials in z having the forms g
n N
M7 (2) = ) m? 21/ttt ) =1, m? =0 (3-53 o
11 iZo ™y 1t2oeety) > Mg =1, mp, =0 (3-53a) S
n . \.l
l\ln = n 1 n - n _ ~ »al LY
e 21(2) 2 My 2 /(tyty it ), myy = -r, my = 0 (3-53b)

[
1t
(=]
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Note that (3-52) defines the discrete state transition matrix, in direct

analogy to (2-93). Note that properties analogous to the time-reversal

properties (2-98) have been revealed by the induction, and have been

used to simplify M?z(z) and Mgz(z). Note also that the finite order of the

polynomials is analogous to the support (2-97) of Mu(x,t) and M21(x,t).
The polynomials M?l(z) and Mlzll(z) are generated recursively by

the recursions

M?;l(z) = Tln—(M’l‘l(z) - zr M3, (2)) (3-54a)
n+l | n n _
M21 (z) = q(ZMZI(z) - rnMu(z)) . (3-54b)

which also follow directly since [Mg (z)] is the transition matrix (compare
to (2-91)). Equations (3-53) and (3-54) are similar to equations (41)
and (42) in Ware and Aki (1969), and to equations (22), (13), and (12)
in Berryman and Greene (1980). However, these latter equations were

derived for the upgoing (i.e., in decreasing i) transition matrix.

Half-space boundary condition

For an infinite half-space boundary the boundary conditions are

l:ul} [R(z)] (3-55a)
d1 1

u 0

[ N+1} [ ] (3-55b)
d ) T(z)

N+1

where
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R(z) = Z R_z" (3-56a)
n=0
’ T(z) = T 2" (3-56b)
=N/2
L are constructed from the reflection response sequence at the surface

{Rn}, and the transmission response sequence at the bottom {Tn}.

The layer matrix in (3-51) has a determinant of unity, hence the

propagator matrix in (3-52) also has a determinant of unity. Inserting

(3-55) into (3-52), setting n = N, and adding results in

Ny, S
NN (1/2) + MY(1/2)) + R M) (2) + MY (2) = 2 20 . S
11 11 21 R
(3-57) L
N . " P
Multiplying (3-57) by t and inserting (3-53) and (3-56) results in

N-i z 2 N+1
Z (my; +my) + 2% (m1N3 2N-])R1+] N YO )

[l
~

N z X
Tt N2 T, + o'

+ 02Ny, (3-58)

I
N
—~

where the order of the inner sum of the nested sum has been reversed.
N N

Clearly T Eltj’ so the right side of (3-58) is just zNjgl(l-rjz) +

N/2 T
O(zN+1). Equating coefficients of powers of z on both sides of (3-58)

results in the matrix equation
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..........
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) :.'
r, N N A
@) Ry MmNt MoN 0 A
] R . : Ly
' . N , N T .2 oE
R0 R1 RN m10 + m20 jzl(l—rj) %
: R
]
3
Q, which is (70) in Berryman and Greene (1980), and which can be ®| -
rewritten as :’?\-
\_:-.
-
N N 7 rp - - 1 r.N N 9 r . S
[moy + Moy Ry '®) o | [™iN7% Man 0 -
: R R : : 4 3
. + 1 + 1 . = : o
N N . . N N 0
Mt Moy : /: i1 ¥ oy N e
N . : N N i 2 N
myo + Moo~ 1 RN RO Rl...RNJ M0 + Mog 1 j=1(1 rj)-l
e - - - - e J o - 0 :
(3-60) i
B
) Equation (3-60) is just a discrete version of the Marchenko integral “'
‘ ¢
equation (2-103), in terms of the kernel mlfi + mI;i (compare to (2-102)). "
From (3-53b), and in analogy to (2-104a), we have -
= 3-6 o i
: N =7 M2 - (3-61) =
Free surface boundary condition
® .
Here we return to Aki and Richards (1980), pp. 667-669). Now j-;-?_
the boundary conditions are L
o~
®
Ful k(z) :-.'.-1
= (3-62a) S
: 4 ke -
N Uy
- Y &
.
U4t 0
= - »
LdN+1 T (2) (3-62b) o)




k(z) = n{:o k2" (3-62¢)

where R(z) and T(z) are defined by (3-55) and (3-56) and {kn} is

the free surface response sequence. Inserting (3-62) in (3-52) with

H. n = N yields

MY (z) + 2NMY (172 MY ] [ k@)
0 | 11 21 21
T(2) N 12 N N,.N N..N (3-63)
° le(z) + z Mu(llz) z Mn(llz) 1
Defining the polynomial
o AN N,,N
G(z) = Mll(z) + z le(l/z) , (3-64a)
N
N 2 .
_ - 1 _ N N _ _ _
° = (L) (o 627 » €=My ¥ My nojr B = 1h By = Ty (3-64b)
replacing z with 1/z in (3-63a), multiplying by zN, and adding to
(3-63b) yields
® i
2N 212y =6 A+ k@ +xdy . (3-65)
¢ N/2
Replacing z with 3 in (3-65) shows that z / T (z)G(z) remains unchanged
if z is replaced with % Since this is a causal polynomial, this is only
. possible if it is a constant polynomial, and (3-53) and (3-64b) show that
this constant is one, Hence we have
G(z) = 1/(z Y ?1(2)) (3-66)
o
so that G(z) is the causal and stable deconvolution, inverse, or
®

WA A O SR R e

LOLPCPTPY,
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whitening filter that outputs the source impulse when the transmission

b VR aad X A

seismogram is fed into it (the z-N/2 removes the delay before {Tn}
L
becomes non-zero). P,
S
Inserting (3-66) into (3-65) we get the important equation :_:::
\.
.(:(
1 +k(z) +k(1/2) = T()T(1/z) = 1/(G(2)G(1/2)) (3-67) oL,
which states that the medium response, for a free surface boundary :}_j
condition, forms one side of the autocorrelation of the transmission ® ;
seismogram. This famous result is due to Kunetz (1962), and should be ",‘,'-
—_— 4
compared with (2-149). 'j:::
Writing out the polynomials in (3-65) using (3-64b) and (3-62¢c), ® ﬁ
multiplying by G(1/z), and equating coefficients of negative powers of
z to zero (since 1/G(z) is causal by (3-66)) yields the matrix equation o
of
(3-68) o
® :
..::
)
<
N 27
M2,N-1 ok
mY i
2,N-2 =0 s
V.
N 3
M20 R
@ I
(3-69) e
e
A
e
Equation (3-69) is a discrete version of the Krein integral equation I

N N ’

(2-111), in terms of the Kkernel mys + My - (compared to (2-110)).
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In the continuous medium case, the transmission losses become negligible

N
(see Section 3.4), so .
lo N 1
rN = -gN = - (m + mZO)’ in analogy to (2-113).

t. becomes unity. From (3-64b) we have

Levinson algorithm

It should not be surprising that the discrete Levinson algorithm can
be used to solve the matrix equations (3-60) and (3-68). Indeed, the
recursions (3-54) are the Levinson recursions in the form of recursions
on the Szego polynomials Mrlll(z) and M?z(z). All that is needed is an
"inner product” expression to generate the reflection coefficients, allowing
the algorithm to propagate. Equation (52) in Ware and Aki (1969) and

equation (21) in Berryman and Greene (1980) are both
T an Tl
r = 5 kn-imli/j=0 (l—r].) (3-170)

(proved by induction in Appendix A of Ware and Aki, 1969), and this

in conjunction with

n _ 1 n-1 n-1 _
my= oy My T M) (3-71a)

n _ 1 n-1 n-1 . _
m21 ar_)¥ (m2 1 1 + rn mh y , 1 <1<n (3-71b)

forms the Levinson algorithm for obtaining the reflection coefficients

{rn}. Note that the sums mg + mgli solve the Marchenko-like Hankel
matrix system (3-60), while the solution to the Krein-like Toeplitz matrix
system (3-68) can be generated from (3-71) and (3-64).

Having obtained discrete analogues to the Marchenko and Krein

----------
........
--------

.....

...............
-




integral equations and the Levinson algorithm, we now derive discrete

analogues to the layer stripping algorithms of Section 3.2.3.

3.3.2 Layer Stripping Solutions for a Discrete Medium

The layer stripping algorithms for solving the discrete medium problem

can be obtained almost immediately from the above development. Recalling

TV VEEEE VR W OV DN S B S e swem—— w v = -

(3-51)
[uiﬂj’ 1 [1 —zri} l:ui}
= _ (3-72)
Gl L U 2] LY
2.3 U1
where t = (l—ri) from (3-13e). [dl can be initialized using either

(3-55) for a half-space boundary or (3-62) for a free surface.

At the leading edge or wave front, there is no upcoming wave from

farther below by causality and the initial quiescence of the medium.

Hence we may set Yy < 0 in (3-49b), yielding

_ t ' _ - _ i _
r; = ui/di = ui(l + %)/di(l }) = 7 . (3-73)

The fast Cholesky algorithm is then, from (3-72) and (3-73),

() = —-1-2-T (Gt - B - Tt + ) (3-T4a)

(1-r;)

i+l

1 —
ui+1(t) = 31 (ui(t +3) - ridi(t - 1) (3-74b)

(l-ri)

ry = ui(i + “/di(i -3 . (3-74c)

........................................................
...................................
......................................................
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The Schur algorithm (here in its original form as developed by

Schur) is (Robinson, 1982)

>
d.  (2) = 2 @, - z 'ru) (3-75a)
i+l (1-r 2)} i i’
[
.
ui+1(2) = '—2_* (ul - zridl) (3_75b)
(l_ri )
» Y
r, = 7d. ) (3-75¢)
il z=290
The dynamic deconvolution algorithm (Robinson, 1982) is obtained by
® defining
Y
R.(2) = Zdi (3-76)
and noting from (3-75) that Ri(z) satisfies
R.(z)-r.
I W b _
Ri+1(Z) = 1-riRi(z) (3-77a)
r; = Ri(O). (3-77b)

Note that (3-77a) is a discrete Riccati equation (compare with (3-41)).
Ri(z) represents the seismogram that would be obtained if all of the
layers 1,2, .... 1 were stripped off and the remaining portion of the
medium were probed with an impulse. Equation (3-77b) simply states
that the first reflection from the remaining portion of the medium

(Robinson, 1982, refers to it as the "first bounce") is caused by the

ey S ."v. s
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reflection coefficient r; of the next interface. The dynamic deconvolution g

e e WM w o -
.

algorithm is initialized by

. -o-

- —
. o v -
v
M .‘ "
o’
N »

R(z) (half-space boundary) (3-78a) 2.

"

Ro(z)

k(z)/(1+k(z)) (free surface) (3-78b) Ay

"

Ro(z)

AV By A
e

(Note the sign change between (3-43b) and (3-78b); this is caused by N
~

3

the switch from pressure waves to displacement waves.)

The Schur-Cohn stability test is to run the algorithm (3-77), o l;,

T.VEEST Y
.
.

starting with R (z) = f(z). Then |f(z)| < 1 and f(z) is analytic inside
the unit circle if and only if the reflection coefficients all have the

property that lril < 1. This test is tantamount to the synthesis of a -] '
lossless transmission line; the conditions |[f(z)]| < 1 and ]ri[ <1 are '.:.:;Z:
both statements of the passivity of the line. To see this, recall that
each section of the line is implemented by the layer matrix (3-51), which oK

has a determinant of unity. Then, if lri] < 1, each layer matrix

multiplication becomes a lossless rotation, so that the line is lossless. o
The test is also analogous to the Darlington synthesis of a lossless .5
digital filter. References for all of this are given in Ch;apter 11.
Note that the fast Cholesky algorithm (3-74) does not match the ‘
discretized version of the continuous fast Cholesky algorithm presented o '-’:;

in (2-25). However, we can easily obtain this form of the fast Cholesky

algorithm for the discrete medium problem by making two changes: (1)
exchange the roles of the primed and unprimed waves in Figures 3.3 ® '.L.,
and 3.4, so that the waves in the (revised) fast Cholesky algorithm are \
the waves at the bottom of each layer; and (2) change from two-way _.
N

travel time to one-way travel time. Then the wave interactions at an o
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' _ - 1
,P %1 = 49 * Tt (3-19)
| _ .
u = rd, ot (3-79b)
)
We also have
1]
‘ w (t) =y (t-1) (3-803)
d'i(t) = d, (t+1) (3-80b)
- D]
t. =t,.=1-r"° (3-80c)

h i i i

where the one-way travel time through each layer is unity and (3-80¢)

follows from the (continued) use of normalized displacement waves.

’ From (3-79) and (3-80) we get
1
d. (t+1) = ——— (d.(t) - ru.(t)) (3-8la)
‘ i+l (l—riz)% i i’
1
., (t-1) = —5— (u.(t) - r.d. (1)) (3-81b)
i+1 (1-ri2)% i i
) r; = u(i)/d; () (3-81c)

which has the same form as the discretized algorithm, except for the

P transmission losses and a factor of two in (3-8lc). These are discussed w
-

in Section 3.4. '.":>_';_‘: .

. ‘\'.

It should be noted that Symes and Zimmerman (1982) and -.:_::__

ART

. . "o W

+ Bruckstein et al. (1984) have made detailed numerical studies of the R
performance of the discrete fast Cholesky algorithm in the presence of Ej'-‘_:_;-izf-".]
EERNLR
ST
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- L




PR——

B W N N N R T, VT WU oW yoor R Ty R T ey ="

146
noise and using bandlimited data. The algorithm seems to work quite
well for fifty or sixty layers, at which point the conditioning of the
problem itself becomes so poor that further inversion by any means would
give poor results. Bandlimitation of the data does not affect the algorithm
too severely, although the lack of low-frequency components causes
problems in reconstructing the trend of the profiles. These results
emphasize the comments of Bruckstein and Kailath (1984) that layer
stripping methods are NOT inherently inferior to integral equation or
matrix methods, as commonly believed. Indeed, a major purpose of
Chapters II and III of this thesis is to emphasize that the two approaches

are mathematically equivalent, and in fact are dual to each other.

3.4 Relations Between Discrete and Continuous Problems and Solutions

In this section the problems and results of Sections 3.2 and 3.3
are linked. One might intuitively expect the results for a continuous
medium to closely match those for a sufficiently finely discretized medium.
For the most part this is the case (Gerver, 1970); however, there are
some important distinctions. These distinctions are discussed and
clarified here, so that the relation between the continuous and discrete

problems may be more readily understood.

3.4.1 Discrete to Continuous Transformation

It is a well known development that the two-component wave system
inverse scattering problem for a continuous medium can be treated by
solving the same problem for a discrete, equal-traveltime medium, and
then letting the layer travel time approach zero. This is a common
procedure in mechanics; Pusey (1975) employed it in studying the lossless

non-uniform transmission line, and Gerver (1970) applied it to the present
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problem. Here we quickly sketch over the argument.

Consider a one-dimensional stratified acoustic medium comprised of
homogeneous layers, each of which has a thickness proportional to the
wave speed within it, so that the one-way traveltime through each layer
is aA. Splitting the medium displacement or pressure in each layer into

upgoing and downgoing waves, we have the relations (from (3-74))

1

di () 5 — = (4(t-8) - Ut +2)) (3-82a)
(1-r;)
= 1 )
Y (O = (—1;—2):; (0t +28) - rd(t- 4)) (3-82b)
i

for waves defined at the top of each layer, and the relations (from (3-81))

_ 1
dj A+ = ——— (4(t) - ru(t)) (3-83a)
(1-r;")
1
u, L (t-24) = ——— (u,(t) - r.d.(t)) (3-83b)
i+1 (l—riz)% i ii

for waves defined at the bottom of each layer. In both cases, the

reflection coefficient for normalized displacement waves is

Z. - 7.
= 'Zl‘:‘zlil (3-84)
it 44

while the reflection coefficient for normalized pressure waves is

Z. - Z.
i+1 1
r, = —_— . (3-85)
Zig * %

:l‘ -4
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Ay Ty L]

.
3
Sl

e
a'sy K

N

o _




148
e Since the continuous medium results of Section 3.2 were derived using
pressure waves, we shall use pressure waves and (3-85) in the sequel.
B Now, letting the layer travel time 4 approach zero is tantamount to
~ taking a finer discretization of the medium, i.e., approximating a

continuous medium by a stack of thin homogeneous layers. No matter

how small A is, the relations (3-82), (3-83", and (3-85) all hold; but

)
Y] as A + 0 the equations for the discrete medium approach those for a
4
continuous medium. To see this, note that (3-85) can be written as
_ L(t+A]2) - L(1-4A/2) _
re = Z(T+4A/2) + ZG -4/2) (3-80)
where T is the travel time to the interface i and Z(7) is defined in the
middle of each layer. If the medium is continuous at 1, we then have
N A LIM T LIM  Z@+a/2)-Z(z-4/2) 1 ;
T = S0 T T a0 x rerun e an 88D
.' - 1 d2
- T 22 dt
190
-. in agreement with (3-35). The reflectivity function r(1), defined in
¥ this manner, is finite as long as the medium is continuous. A step change
¥ _ in the medium properties results in an impulse in r(1).
Using (3-87), rewrite (3-82) as
Aoty -d_, -8y Bt ¢
T+4/2 T-4/2 T _ _ 1 1 u (t+4) (3-888)
= - —g 71 u._ -88a
A A (l—rTz)J“ T~40/2
f U s o (8) = U, o (t+d) /(1-r 2%
3 T+4/2 T-4/2 T — 1 5 (o
’ L A (1-r.5t -4/t (3-88b)
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and letting 2+ 0 yields

3

®

(2 + %)D(r,t) = -r(1)U(T,t) (3-89a)
3 _ 93 = - -
(& - 200D = -rOD(r,) (3-89b)
L in agreement with (3-37a,b). Here the waves D(t,t) and U(t,t) are

simply dT(t) and uT(t), and (3-87) has been used to show that r.~ 0.
A similar argument applied to (3-83) also results in (3-89). This is

as expected; it shouldn't matter whether the waves are defined at the top

of a layer or at its bottom, if the layer thickness is going to zero.

However, it does show that D(t1,t) and U(t,t) are well defined, even

though there is no physical basis for defining upgoing and downgoing
{ ]

waves in a continuous inhomogeneous medium.

3.4.2 Continuous to Discrete Transformation

From the above results, it might seem that the discrete medium results

could be obtained from the continuous medium results by a simple dis-
cretization. However, this is not so: the effects of transmission losses
and discrete impulsive medium excitations must also be taken into account.

For a simple example of this, consider the discretization of the
Marchenko (2-103) and Krein (2-111) integral equations. These result in
the matrix equations (3-60) and (3-69), supporting the idea that
discretization of the medium is equivalent to discretization of the equations
for a continuous medium. However, note that the right side of (3-60)

includes a term (1 - riz) - 1. This term goes to zero as O(Az),

however it is non-zero for non-zero 4.
A similar phenomenon is observed in the fast Cholesky algorithm, as
would be expected by the mathematical equivalence of the matrix equation

and layer stripping approaches. Comparing the algorithm for a discrete
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medium (3-81) with the discretized continuous algorithm (2-25), the extra
factor (l—riz)’L is noted. Like the matrix equation term, this factor is O(A?‘)
and hence is negligible for small A. However, it is non-zero for non-zero 4.

Both of these terms represent transmission losses through the medium.

As a propagating wave travels through the medium, it is partially reflected,
and loses strength. This is not accounted for in the continuous case,
since the reflections are 0(A) (from (3-87)), while the transmission losses
are O(Az) (from (3-80c)) and hence are negligible as A+ 0. In practical
terms, the transmission losses are negligible compared to the reflections for
a continuous medium if A is sufficiently smail. Nevertheless, they should
be included by employing (3-81) instead of (2-25) when running the fast
Cholesky algorithm on a computer. Note that (3-81) is an orthogonal trans-
formation (i.e., a rotation), and is therefore lossless, while (2-25) is not.
Another difference between (3-81) and (2-25) is the factor of two
present in (2-25¢) that is not present in (3-8lc). This factor results
from the effect of a change of time scale on the probing impulse for the

continuous medium. The applicable formula is .
s(at) = (1/a)s(t) (3-90)

for a continuous-time impulse (Dirac delta)d(t) and constant a. Figuratively,

(3-90) states that if the time axis is stretched, a continuous-time impulse
becomes weaker, since its constant area is spread over a wider range.

When the time axis is stretched by converting the two-way travel time (used
in the original discrete medium formulation, hence in (3-81)), to one-way
travel time (implicitly used in (2-25)), the impulse becomes weaker. This
does not happen for the discrete-time impulse used to obtain (3-8le),

hence (3-81c) contains no factor of two. In (2-25¢) the weaker reflection

from the weaker impulse must be bolstered by a factor of two.
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Similar effects will be noted in Chapters IV and VI, in which the
expressions for the first reflection (analogous to (2-25c¢)) will contain
factors correcting for variations in the size of the probing impulse
caused by variations in the local travel time (i.e., the differential delay
time at that depth). These factors disappear in the discrete formulation
of these problems, since the discrete-time impulse is unaffected by a
change of time scale. Hence the discretized algorithms (to be run on
a computer) do not contain these factors.

Berryman and Greene (1980) have pointed out another subtle
distinction between the discrete medium solution and the discretized
continuous medium solution. From (3-85), the impedances of the discrete

medium satisfy

Zi41/2; = () /(2T (3-91)

(for normalized pressure waves). However, a formal discrete inverse
scattering solution using a discretized Schrodinger equation (Berryman

and Greene, 1980) results in
Zi+1/Zi = (1+ri~1)/(1-ri) . (3-92)

If the medium is continuous, then (3-91) and (3-92) give the same result
for the impedance Z(1) as A+ 0. However, if there is a step change in

the medium at 1, then the discrete medium formula (3-91) assigns
I
Z(7) = Z2(M) (3-93)

i.e., the value just below the discontinuity, while the discretized

continuous formula (3-92) assighs
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.C.;

A ~

Z(1) = 2G7) /(1w = (Z(r7) + 2(xh)) /2 (3-94) :2:;
5

i.e., the arithmetic mean of the values on either side of the discontinuity. ® g

In this chapter the one-dimensional inverse seismic problem at .
normal incidence has been solved, using both integral equation methods <
and layer stripping methods. In the next chapter we proceed to the -
more difficult, but more interesting, one-dimensional problem at non-

normal incidence.
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CHAPTER IV T
.‘.‘.‘(
oAl
The One-Dimensional Inverse Problem at Non-Normal Incidence j}-f.
i
® =
4.1 Introduction .‘,;q‘
In this chapter the inverse seismic problem for a one-dimensional ﬁj:-;;:_-'.'
* acoustic layered medium probed by impulsive plane waves at oblique ;:!._
incidence is solved by a layer stripping algorithm. Separate profiles of
the density o(z) and wave speed c(z) as functions of depth may be ,::'.:_:;Z:_
A
A obtained from the reflection responses of the medium to obliquely incident _
plane waves at two different angles of incidence. These responses may _
be synthesized from the response of the medium to an impulsive point
o source by utilizing the Radon and Hankel transforms. :
The basic results of this chapter are taken from Yagle and Levy
(1984). However, we also review the work of Coen (1981), Coen (1982) . =
® and Howard (1983), showing how their results relate to the methods of -
.f_'.'_‘u
Chapters II and III. A layer stripping algorithm for this experiment :‘-'_;:-Z_'I
performed on a discrete medium is also specified. The Radon and Hankel '.:.'j:{::
¢ transforms, which are used to synthesize plane-wave reflection responses “
from the impulsive point source reflection response, are discussed. |
Finally, the behavior of medium pressure and displacement at a turning
6 point is analyzed, and a possible way of extending the layer stripping _
s
algorithm through the turning point and back up to the surface is RN
‘\‘_:.
discussed. Although most of the latter material is not new, it is f-::}:
o important for putting the laver stripping algorithms in the proper =

----------
------
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perspective.

The basic problem considered in this chapter is as follows. An
acoustic layered medium, whose density p(z) and wave speed c(z) are
continuous functions of depth alone, is probed by an impulsive plane
pressure wave which is incident on the medium at an angle of incidence ©
(see Figure 4.1). Although there is no lateral variation in the medium,
the medium must of course have a lateral dimension, which was not
required by the normal incidence problem of Chapter III. Such a medium
is sometimes referred to in the literature as a "1.5 dimensional medium,"
but this terminology is confusing and will not be adopted here. By
probing the medium twice, at two different angles of incidence, the
profiles p(z) and c(z) are recovered. Two variations on this basic
problem are also considered: a discrete medium, in which o(z) and c(z)
need only be piecewise continuous, and an impulsive point source
excitation (see Figure 4.2), which can be related to oblique plane wave
excitations by the Radon and Hankel transforms. Either a half-space or
free surface boundary condition may be used.

Previous methods for solving this problem have generally employed the
integral equation methods of Sections 2.4 and 3.2, applied to a suitably
transformed problem. Ware (1969) and Coen (1981) transformed the non-
normal incidence problem into a normal incidence problem, and solved the
resulting Schrodinger equation with the Gel'fand~Levitan integral equation
procedure described in Section 3.2.2. Howard (1983) transformed the
non-normal incidence problem into a two-component wave system, which
led to a matrix Marchenko integral equation. Coen (1982) showed how the
point-source problem can be reduced to the oblique plane wave problem;

in fact, this can be done immediately with the Radon transform.
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4.1 The non-normal incidence inverse problem
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A major problem with this approach is that the integral-equation-based
techniques are unable to deal with some of the complications endemic to
the non-normal incidence problem. The most important of these are

turning points, which occur when the local wave speed c(z) has

increased to the reciprocal of the slowness p of the probing plane wave.
At this point, by Snell's law, the ray paths of the probing plane wave
become horizontal and then bend back up to the surface. Since the
Séhrodinger potential V blows up at a turning point, the Gel'fand-
Levitan procedure of Section 3.2.2 cannot be used if a turning point is
present. This means that the probing plane wave must be chosen to be
nearly vertically incident on the medium, which will lead to small
reflections and a poorer signal-to-noise ratio.

Another complication of the problem that can preclude the use of

the integral equation methods is a low (wave) speed layer, in which

energy can be trapped and propagate as in a waveguide. The energy is
transported to such a layer by evanescent (imaginary wavenumber) waves,
in a process akin mathematically to quantum mechanical tunneling.
Although these "proper" or "trapped" modes can be treated by the
integral equation methods, they must te known a priori, which is not
possible for an inverse problem.

Layer stripping methods, in contrast, have no problem with these
complications. This is in keeping with the layer stripping concept of
treating the medium one layer at a time, rather than all at once as in the
integral equation methods. A turning point, for example, does not
affect a layer stripping algorithm until its depth is reached, at which
point the algorithm can go no deeper (below a turning point the

propagating waves become evanescent, and probing the medium with

........
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exponentially-decaying waves is an inherently unstable problem). However, f
&

5
an integral equation procedure cannot reconstruct any part of the medium iy
oK
if any other part of it causes difficulties. ot
There have been very few attempts to apply layer stripping concepts ::'.

.!

Y
to the non-normal incidence problem for a layered acoustic medium. !
oK

Carrion et al. (1984) gave recursions for computing the wave speed P
41 and density P +1 in a layer from their values Oi and ¢; in the previous :.'_:i

layer and the layer reflection coefficients, but they used a single o
scattering approximation that neglected all multiple reflections. Carrion
(1983) applied the method of characteristics to slant-stacked data and

obtain recursions from the midpoint rule for approximating integrals,

but these recursions were far more complex than the Levinson or fast
Cholesky recursions, and offered no physical insight. The wave speeds j.':-'
were reconstructed by taking differences in arrival times, which is a

very unstable procedure,

Summary o

In Section 4.2 the inverse problem in which plane waves at oblique o .
incidence are used to probe the medium is discussed. After reviewing
and interpreting the results of Ware (1969), Coen (1981), and Howard
(1983), the layer stripping algorithm for solving this problem is derived. © §..
Then it is shown how a minor modification of the algorithm enables the
reconstruction of a discrete (P(z) and c(z) piecewise continuous) medium.

In Section 4.3 the inverse problem in which an impulsive point ® ¥
source is used to probe the medium is discussed. The Radon and Hankel
transforms are introduced and discussed. and it is shown how these

transform point-source data to plane-wave data. Then a layer stripping ..f

ST e e LT e e e T
I VRN PR Y PR T T PR T I P TR TN




algorithm utilizing cylindrical waves, rather than plane waves, is

derived.

Finally, in Section 4.4 the behavior of medium pressure and
displacement waves at a turning point is analyzed, and the results are
used to show how a layer stripping algorithm could be propagated back
up to the surface along with the ray paths. This would allow the portion
of the data record beyond the two-way travel time to the turning point
to be used in the inversion process, and also provide a check on the
reconstructed medium.

Two other points should be made. First, there would seem to be a
duality between reconstructing the medium from its reflection coefficient
R(w,8) specified for all frequencies w and two angles 61 and 8y (as is
being done in this chapter), and reconstructing it from fl(w,e) specified
for two frequencies Wy and Wo and all angles €. Actually, the duality
is between frequency and wavenumber, since ﬁ(w,e) is needed for complex
angles of incidence (corresponding to probing with evanescent waves)
in the second experiment. The first experiment is covered in this
chapter; the second experiment is covered in Chapter VII.

The second point concerns sign conventions. In Chapters II and

IIT the standard Fourier sign convention

fw) = f_ e 9t qt (4-1)

was used. In much of the geophysical literature, however, the geophysical

sign conventions (Aki and Richards, 1980, p. 129)

f(u) = [mf(t)e‘”j’*‘t dt (4-28)




........

g(k) = [mg(x)e-jkx dx (4-2b)

are used. The main reason for this convention is that if f(x,t)
represents a wave, and f(k,w) has been obtained by other means, then

j(kx-wt)

toot) = ety [ [ pacwe (4-3)

and f(k ,w) is the amplitude of a wave propagating in the +x direction.
However, keeping the usual convention (4-1) merely reverses the
direction of the wave, and makes things much easier for non-geophysicists
(including the author). Hence the geophysical sign conventions (4-2)

will not be used in this thesis.

4.2 Plane Waves at Oblique Incidence

In this section the inverse problem for a layered medium probed by
an impulsive plane pressure wave at oblique incidence is solved. First,
the integral equation approaches of Ware (1969), Coen (1981), and
Howard (1983) are discussed, to put them in perspective relative to
the layer stripping algorithm derived next. Finally, a slight modification
in the layer stripping algorithm allows a discrete medium to be

reconstructed.

4.2.1 Integral Equation Solutions

The methods of Ware (1969), Coen (1981), and Howard (1983) all
involve transforming the non-normal incidence problem to the normal
incidence problem, and then solving this problem by solving a Marchenko
integral equation. As such, these approaches can be considered to be

dual to the layer stripping approach (see Chapter II). In addition,
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certain aspects of these papers are clarified and related to the
F transformations used in Section 4.2.2 below.
Ware (1969) starts off with the basic linear equation for medium
displacement u, obtained by inserting (3-1a) into (3-1b):
P 03 2uinat? = velveuy . (4-4)
Taking the Fourier transform with respect to time and separating into
L components yields
3, Al
_ A 23 X z _
ou ux— oca—; (H*'—*z—') (4-5a)
? 3. du
A 3 2 X 4 _
Tew U T 5y <°° (3% *’?ﬁ?)> (4-50)

where ﬁx(x,z,w) and ﬁz(x,z,w) are the lateral and vertical, respectively,
components of displacement. Since the medium properties vary only with

depth, the plane wave solutions of (4-5) take the form

G (x,z,0) = Uz, e PX (4-6a) o

U (x,2,0) = V(z,we PX (4-6b)
where p = sin 60/c0 is the ray parameter for a plane wave incident on the

medium at angle of incidence 80 from a homogeneous infinite half-space

in which the wave speed is Cqy- o

~ .,_--':-.

Inserting (4-6) into (4-5) and eliminating V yields OO

RN

R

. . e

3 oc 3U 20 _ NS

ﬁ<—_2_2_ Ti>+ paU =10, (4-7 ‘
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This is not a Schrodinger equation, but may be transformed into a
Schrodinger equation by defining 6(z) by Snell's law
sin 6(z) = c(z)p (4-8)

and employing the Liouville transformations (Courant and Hilbert, 1962),
which amount to changing the independent variable z to the vertical

travel time

z z
A cos 9(s) _ ' -
1(z) 2 fo ) ds = fo ds/c'(s) (4-9)

and the dependent variable U to the normalized displacement

5(z.0) 2 (ome(z) leosszNt Dz w) = 2 0(zw0)  (4-10)

In (4-9) and (4-10) we have implicitly defined the vertical wave speed
¢' (z) and impedance Z(z), both of which depend on p. Inserting (4-8) -
(4-10) into (4-7) yields the Schrodinger equation

2

(37 + ol - V(tw) 6 (T,0) = 0 (4-11)
T

(e %4

where the potential V(1,w) is defined as

V(t,w) = 5 Y = Z% . (4-12)

-

Ware (1969) then notes that the Gel'fand-Levitan procedure of

Section 3.2.2 can be used to recover Z(t). He does not, however, note

..............................
......................
...............




RESL I arcie Ssbe i Sl Bt el e b il T

165

that performing this experiment twice, at two different angles of
incidence, allows the recovery of p(z) and c(2).

T Two comments on Ware (1969)'s procedure should be made. First,
Ware makes no physical justification for employing the Liouville
transformation--why does this work? From a physical point of view, the
# transformations to the energy-normalized displacement $(z,0) and vertical
travel time t(z) are evident, in light of Section 3.2.1. From a
mathematical point of view, the utility of the Liouville transformation in
r the present problem is far less obvious. Second, the physical essence of

the transformation to a normal-incidence problem is not explained. What

is actually happening here is that the progress of the obliquely-incident
probing wave along a ray path is being projected onto the vertical depth
axis, and the component of the probing wave that is normal to the

vertical axis is probing the medium at normal incidence. Thus the

problem can be transformed to a normal incidence problem by considering
vertical displacement, normalized for vertical energy flux, and treated as

a function of vertical travel time, which is precisely the transformation that
works.

Coen (1981) similarly obtains the Schrodinger equation (4-11) by
utilizing the Liouville transformation; the only difference is that the
normalized pressure is used instead of normalized displacement. However,
Coen (1981) gives no physical motivation whatever for his mathematics.

He does not mention energy-normalized pressure, vertical components of
wave speed, or even travel time. We mention here that his inaptly-named
"index of refraction” n(s) is actually pOCO/Z(s), and the Liouville
transformation (11) transforms pressure ¢(s,w) to normalized pressuire

(scaled by (ooco)%)g(s,w), and depth z to vertical travel time (scaled by ¢g)s.
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However, Coen (1981) does employ a useful trick to recover p(z)

and c(z). By defining an "apparent depth" s by
ds/dz = p(z)/p0
and noting that

ds/dt = Z(T)/Oo

he notes that s(t) may be obtained by integrating Z(1). Then the inverse
function t(s) is obtained from s(t), and p(s) and c(s) obtained from
Z(s) = Z(t(s)) for two different angles of incidence. Then z(s) is

obtained by integrating (4-13) as

0
_ 0
z(s) = /s_p(u) du

(o]

yielding p(z) = o(s(z)) and c(z) = c¢(s(2)). This procedure is similar in
spirit to the reconstruction procedure used by Howard (1983), but is
much simpler, since Howard (1983)'s procedure, which does not use s,
requires the solution of a differential equation. The reason why Coen
(1981)'s procedure is simpler than Howard(1983)'s is that Coen (1981)
makes use of the fact that p(z) is the same for both experiments (although
the vertical wave speed ¢'(2) is not).

Howard (1983) employs an approach different from those of Ware
(1969) and Coen (1981). He derives the two-component wave system
obtained below (4-30), and proceeds to define Jost solutions for it. This

results in the matrix Marchenko equation
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M(z,1) = R(z+71) - [ dy R(z+y) M(y,1), -T<x<t (4-16) et
1 1 0 N

-2 A

lo — 3
i,
F‘ "o 3

where R(t) is the inverse Fourier transform of the medium reflection A

coefficient. The reflectivity function r(r) is obtained from

r(1) = ZMZI(T,T) (4-17)
and Z(1t) obtained from

T
Z(1) = Z(0) exp {2 -[o r(s)ds} . (4-18)

It should be noted here that Howard (1983) incorrectly refers to (oc')%

as the impedance; the true impedance is pe'. A rather messy

reconstruction procedure then yields p(z) and c(z) from the results of
two experiments at two different angles of incidence.

Howard (1983)'s work is significant because he was able to formulate

the non-normal incidence problem as a two-component wave system problem, i
which is the key step toward deriving a layer stripping algorithm for the

problem. This also emphasizes the point of Chapter II that the above

integral equation n ‘thods are mathematically dual to the layer stripping

algorithm derived next.

4.2.2 Layer Stripping Solution for a Coiwiinuous Medium RO
The layer stripping algorithm for the non-normal incidence problem l::"{::.j

NN

is derived in a manner entirely analogous to that for the normal incidence '{-:-:-:
LSRN

vg

problem (Section 3.2.3). The major differences are that the resulting

algorithm consists of two sets of recursions running in parallel (one for
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each of the two experiments), and employs differential updates of p(z)
and c(z). These updates replace the messy reconstruction procedures
of Coen (1981) and Howard (1983).

An impulsive plane pressure wave incident at angle & from the
vertical has the form &(t-z cos E)/c0 - x sin e/co) in the homogeneous
-j(kxx + k)

half-space z <0. In the frequency domain, this is e , Where

kz = weos elco and kx = w sin elco are the vertical and horizontal wave
numbers and <, is the wave speed in the half-space. The pressure field

for z< 0 is thus

jk X

Tk, 2y Iky (4-19)

P(x,2,0,0) = (e %2% + R(w,0)e
(compare this to the Schrodinger equation boundary condition (3-21)). This
shows that the reflection frequency response ﬁ(w,e) in the time domain

has the form
R(t,x;8) = R(t-x sin e/co;e) (4-20)

so that theoretically it should only be necessary to measure this response
at a single surface point (e.g., x = 0). However, in any real-world
application it would be a matter of practical necessity to take data for a
range of x and filter or stack it to the form (4-20). This is because any
real-world impulsive wave could only be locally planar, while the form of
(4-20) assumes a plane wave of infinite extent.

Taking Fourier transforms of the basic acoustic equations (3-1),

and writing the vector equation (3-1b) as two scalar equations results in

o(z)w2ﬁx(x,z,w) = 3p/Ix (4-21a)
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p(z)w u (x,2,0) = 3p/dz (4-21b)
B(x,z,0) = -p(2)e(z)? Gh, /ox + 3 [32) (4-21c)

where ux and u, are the x and z components of the (vector) displacement
u(x,z,t).
Since the medium properties vary only with depth z, the horizontal

wave number kx is preserved, and we may write (following Coen, 1981)
A _ ~ _jk b'e
p(x’z’w) - w(zlw)e X . (4—22)

Substituting (4-22) in (4-21b), and then substituting the result in

(4-21c) eliminates ﬁx and yields, after some algebra,
~ 2,2 .2, _ 2.~
p(x,z,0) (1-(c(2) /co)sm 6) = -p(2)e(z) Buz/az (4-23)

Next, the following substitutions are made:

cos26(z) = 1 - (c(z)2/c§) sinZ6 (4-24)

(8(z) = local angle ray path makes with vertical)

c'(z) = c(z)/cos 6 (z) = local vertical wave speed (4-25)
T(2) = /g ds/c'(s) = vertical travel time to depth 2z (4-26)
Z(7) = plt)c'(r) = effective impedance (4-27)

Note that (4-24) follows from Snell's law (sin 8(z)/c(z) is constant along

............

aa
..........
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> ":
: any ray path), and (4-25) defines a local vertical wavenumber k (z) = ::::
- »]
> u
-; wl/e'(z). Using (4-24) - (4-27) in (4-23) and (4-21a) yields "':
) @5
S 3B/3t = 2l (1,x,w) (4-28a) o
\‘: A ~ ::
' ou_ /3t = - (1/Z)p(1,x,w) (4-28b)
" z SN
oF
3 and once again defining the downgoing and upgoing energy-normalized ;".'
2 waves (as in (3-33)) o
| ok
.. vl(r,x,w) = p(1,x,w) /Z?f + ij%uz(T,x,w) (4-29a) f-j:
o xw) = plr,x,w/zt - jwz*ﬁz(r,x,m) (4-29b) ,\
b @k}
'-; yields the two-component wave system ‘.ifj_'.-
55 n oA R . ’E
3V1/3T = -jwvy - r(1) Vo (4-30a)
Ivy/dt = -r(1) vyt juv, (4-30b)
- B %
- with the reflectivity function r(t) defined as :':::
: - laz _ 1.4, 2() (4-31) L
@) =573 T 2 ar o8 z(o) - °i
:,:‘,.-
N
Note that once again the quantities in the two-component wave system o
. (4-30) are the Fourier transforms of the downgoing and upgoing waves, ?—.‘;
®
~ so that once again the vertical motion of the medium is decomposed into o
& e Ay
. AL
N upgoing and downgoing waves. Of course, horizontally-travelling waves e
L,

could not furnish any information on the vertical variation of material

»

parameters. Since these waves have the form defined by equations (2-22)
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(i.e., vy contains a probing impulse and vy and v, are causal), all of
the algorithms specified in Section 3.2.3 can now readily be identified
P for the oblique incidence problem.

Now, suppose this oblique incidence experiment were run twice, for

1 and 62. Two different impedances

Zl(rl) and Zz( 12), as functions of different vertical travel times 7 and

k two different angles of incidence 8§

Tgs would be obtained. The reconstruction procedures given in Coen

(1981) and Howard (1983) could then be used to recover the separate

profiles p(z) and c(z) from Zl(rl) and Z2(12). However, further
consideration of the layer-stripping idea yields the following procedure
for recovering o(z) and c(z) while the two algorithms are running,
obviating the necessity of waiting for the complete impedances Z]. (Ti).
This procedure is also much simpler than the computationally cumbersome
methods of Coen (1981) and Howard (1983).

Let ri(z) be the reflectivity function associated with the experiment
with angle of incidence 6 (i=1,2), and let ci(z) = c(z)/cos 8,(z) be

the associated vertical wave speed. Then
ri(z) = (1/2)(d/dz)log(p(2) ci(z)) . (4-32)
Substituting (4-25) in (4-26) and differentiating with respect to z yields

(d/dz)c}(z) = (1/cos® 8,(2)) (de(z)/dz) (4-33)

Using (4-33), equation (4-32) may be rewritten in matrix form as

r (2) 1/(20(2)) 1/(20(z)coszel(2)) (d/dz)e(2)
= (4-34)

r,(2) 1/(20(2)) 1/(2c(z)coszez(z)) (d/dz)e(z)
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2
.
,\ Inverting (4-34) yields
-; [(d/dz)p(z)} [1/(2c(z)coszez(z)) -1/(20(2)005291(2))J [rl(z)}
- (d/dz)e(z) -1/(20(2)) 1/(20(2)) r,(2)
_ d(z)
L d
- (4-35)
where
d(z) =(cos—262(z) - cos§261(z))/(4o(z)c(z)). (4-36)
. This yields the following recursive algorithm for computing p(z) and c(z).
- Discretizing depth as z = nA (note that time is not discretized) and
assuming (for inductive purposes) knowledge of all quantities at depth
z, the update procedure is as follows:
cos ei(z) = (1—(c(z)2/c§)sin28i)% (4-37)
d(z) = (cos 28,(z) - cos 28,(2)) /(4p(2)e(2)) (4-38)
r(2) = 2vy(1,,2) (4-39)
o(z+8) = o(2) + (r,(2) /eos8,(2) - r,(2) leos’8 (2))8/(2e(2)d(2)) (4-40)
c(z+d) = c(z) + (PZ(Z)-rl(z))A/(ZO(Z)d(Z)) (4-41)
" vli(z+A » t+4 cosb(z)/c(2)) = vi(z,t) - rlAvi2 (z,t) (4-42)
: v; (z+4, t-A cosei(z)/c(z)) = v;(z.t) - riAvf(z,t) (4-43)
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Ti(z+A) = Ti(z)+ Acosei(z)/c(z) . (4-44)

At this point all quantities have been updated to depth z + A, so the
recursion is complete. Note that there are two sets of recursions
running in parallel, each one initialized by the data from one of the two
experiments (i = 1,2).

The reason that the profiles p(z) and c¢(z) can be recovered
separately for the oblique incidence problem, but not for the normal
incidence problem, is that by running the oblique experiment twice
information has been gained along two different ray paths. This option
is not available for the normal incidence problem--there is only one choice
for the ray path, since this problem is completely one-dimensional.

Along any given ray path Snell's law shows that

p = sin 6(z)/c(z) = sin eo/co (4-45)

so that unless 2 is less than the critical angle sin-l(co/max e(z)) 8(z)

will become imaginary at some depth. Physically, this situation results in

evanescent waves, in which the pressure field decays exponentially

instead of propagating as a wave. The same effect is observed in a
waveguide below cutoff. This causes no p:-oblems in the layer stripping
algorithm until the ray path actually becomes horizontal, prior to turning

back up. At this point, called the turning point, the upgoing and

downgoing waves lose physical meaning, and the algorithm can go no
deeper. However, the method of Coen (1981) requires precritical
incidence, or it cannot be used at all. This is because the integral

equation method of Coen (1981) involves all of the medium at once, so that

.................
................

.....
----------
..........
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any complication, such as a turning point, ruins it at once. A layer
stripping algorithm has no trouble with a turning point until the
critical depth is reached, so that all of the medium above the turning
point can still be reconstructed.

In Section 4.4 the behavior of the waves at a turning point is
analyzed, and it is shown how the waves can be propagated through
the turning point and back up to the surface. This allows more of the
reflection response data to be used to reconstruct the medium. The
evanescent waves below the turning point could furnish information about
the medium below the turning point, but there is no practical way to

measure these waves from the surface.

4.2.3 Layer Stripping Solution for a Discrete Medium

A slight modification of the above algorithm allows the reconstruction
of a discrete medium, in which p(2z) and c(z) are only required to be
piecewise continuous. The modifications consist of incorporating the
transmission losses at the medium discontinuities, and aitering the
updates from a differential form to a discrete form.

The medium being considered has continuous variation of p(z) and
c(z), with occasional quantum jumps in either or both quantities at
discrete levels (hence the term "discrete medium," which is not to be
confused with the Goupillaud medium of Chapter III). This is tantamount
to letting p(z) and c(z) be piecewise continuous. Note that the
reflectivity function r(z) will contain an impulse at each level where .(z)
and c(z) jumps. Hence the differential updates (4-35) will no longer be
defined (i.e., will also contain impulses), and the second-order-in-2

terms neglected in (4~40) and (4-41) will become significant.
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The problem is treated by recognizing that the continuous algorithm

is in fact always run as a discretized algorithm (viz. (4-37) - (4-44)),
so that alterations can be made in this algorithm. Recalling that the

reflectivity function r(z) was defined in (3-87) by

LM Tz _ LM 1Z(z+N-2(z) _ 1 &

M@ = 4L BT 4> 0 BZ(zDFZ(z) | 2Z az (4-46)
it can be seen that an impulse in r(z) corresponds to a finite, non-zero
reflection coefficient r, and a step change in Z(z). It also can be seen

that for small A we have

5 . Z(z+A) - Z(2) _
r,” TN * TN T I (4-47)

and inverting this yields

Z(z+8) = Z(2) %{'rl(‘zi)% . (4-48)

Thus we are synthesizing a discrete medium on which the discrete algorithm
operates. The levels where ¢(z) end c¢(z) jump are now merely levels at
which they take bigger jumps than usual.

The new algorithm is now evident. The wave updates (4-42) and
(4-43) are modified to include transmission losses by multiplying them by
(1-(r;(220H}; see (3-83). The o(z) and c(z) updates (4-40) and (4-41)

are replaced by the impedance updates

1 +r.(2)4

Zi(zhz) = Z;,(2) 7

—I‘T(_Z_ﬁ_ N 1 = 1,2 (4"49)
1
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from which p(z+A) and c¢(z+A) are obtained using

o ;
wW(z+d) = (Zz(z-‘~A)/Zl(z+A))2 (4-50a)
) 2 23 2
c(z+h) = [(W(Z+A)-1)/(W(Z+A)p2-p1)] (4-50b) -
Y%
olz+4) = Zi(z+A) cos ei(z+A)/c(z+A) . (4-50¢)

Equations (4-50) follow immediately from the definition (4-27) of
impedance. Note that (4-49) and (4-50) reduce to (4-40) and (4-41) if

v(z)4 (not just A) is sufficiently small.

The extra computation involved in using (4-50) instead of (4-40) and
(4-41) is so trivial that in practical applications the discrete algorithm
should always be used. The only exception might be in a systolic array
implementation, for which the square root extraction in (4-50b) might
be too time-consuming (note that the discrete wave updates constitute a
rotation, which a CORDIC processor could easily implement in a systolic
array). However, for the elastic problem of Chapter VI, the updates
for a discrete medium are hopelessly messy, and the differential updates

are preferable.

4.3 Impulsive Point Source

The problem considered in this section is that of a layered medium
excited by an impulsive point source. Although the medium is still
laterally homogeneous, it now occupies three spatial dimensions, with
cylindrical symmetry about the z-axis. The point source is located at
the origin, and the reflection reponse measured as a function of radial

distance r from the source. The situation is illustrated in Figure 4.2.

''''''''''''''''
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This problem is related to the non-normal incidence plane wave
problem by the Radon and Hankel transforms. After discussing these
transforms, the problem is solved by either of two equivalent methods:
transformation of the point-source reflection response to non-normal
incidence plane wave responses, or a layer stripping algorithm involving

cylindrical waves.

4.3.1 The Radon and Hankel Transforms

The Radon transform

The Radon transform is defined as (e.g., Robinson (1982))

[e o]

U(t,p) = R{ux,t)] = f_wu(x,t = tpx)dx (4-51)

where u(x,t) is the displacement or pressure measured on the surface as
a function of lateral position x and time t, p is horizontal slowness, and
T is travel time. The Radon transform is thus a line integral along the
line t = 7+ px, and has the effect of stacking up values of u(x,t) along
the line with slope or slant p and intercept 1. For this reason the
Radon transform is often called a slant stack.

To see the significance of this, consider an oblique plane wave
reflection response moving upward and in the +x direction. Clearly
different parts of the plane wave will reach the surface at different times
in different places, and the point where the plane wave is touching the
surface will move in the +x direction at speed 1/p. Thus the arrival time
t of the plane wave at the surface at position x depends not on'y on the

travel time 7T of the plane wave, but also on x by

t = T+ px (4-52)
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which is precisely the line on which the Radon transform stacks values of
u(x,t).

The physical meaning of the Radon transform is now clear. The
Radon transform (4-51) is synthesizing a plane wave response by stacking
up those values of u(x,t) which would arise from a plane wave reflection
response with slowness p and travel time t. It thus amounts to
continuous beamforming; indeed, (4-51) is simply a continuous sum-of-
delays that picks out those ray paths emerging at the angle
determined from sin 6= pe,- Equation (4-51) functions like a phase-array
radar in listening mode, receiving only the response due to a specific
plane wave.

It may be shown (by the Sommerfeld integral; see Chapter VII)
that the point source experiment is mathematically equivalent to probing
the medium in all directions with an infinite number of plane waves of
various wavenumbers (some of which are imaginary, corresponding to
inhomogeneous plane waves, i.e., evanescent waves). Radon transforming
the point source data thus picks out the response due to a certain
obliquely incident plane wave, and this response, for two different
slownesses, could then be used to initiate the layer stripping algorithm
of Section 4.2. Thus, the point source problem is solved by the Radon
transform and the layer stripping algorithm for the obliquely-incident
plane wave problem.

Taking the Fourier transform with respect to T of (4-51), changing
the order of integration, and noting that a delay of px in the time

-jupx

- e-—]kxx

domain corresponds to multiplication by e in the

frequency domain yields
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FRIuGD) = Fy RGOy o gp (4-53)

Again, this shows that the Radon transform is picking out a plane wave

response with slowness p. The Fourier dual of (4-53) is

-1

F. R[ﬁ(kx,m = 2ru(x=uwp, t=w) (4-54)

which shows that knowledge of the Radon transform of ﬁ(kx,w) for a
single value of p is equivalent to knowledge of ax,t) along the slice

x = pt. This result, called the projection-slice theorem, is a basic

result of tomography.

From (4-53) the formula for the inverse Radon transform may be

obtained. We have

-1 -1
u(x,t) =Fw Fkx=wp FT[U(T,p)]
= 1 5 [m fw _fmU(r,p)e']“"e]““'px J arlyldp dw
(2m
T L, [m [w u(r.p)el PR ) dudr dp i
2m i
= L [ U p)—g~H[é (t-1+px)] dt dp S
27y T T Hodt el
= A [maf H[U(t = t+px, p)] dp (4-55) S
i
.A' 'l'.-A
where the x| is the Jacobian for changing variables from kx to p in the
R

x

we.
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- multiple integral, and H[‘'] represents the Hilbert transform. Note that j-u
L4 *‘
. multiplication by |w|= (jw) (- j sgn w) in the frequency domain becomes a .5
time derivative and Hilbert transform in the time domain. The inverse '::
»3 Radon transform (4-55) is called a filtered back-projection in tomography, ‘;::
f [V
since it amounts to filtering with |w| and backprojecting by setting oL
1 = t-px and integrating over p. J
The Hankel transform :
o
The Hankel transform is defined as (Papoulis, 1968) N
w -
F(E) = HIEM] = [ £(0)3 (rDrdr (4-56) =
® k]
‘_:. where Jo(-) is the Bessel function of the first kind of order zero. The
_ inverse Hankel transform is then D
o
: _ gl _ [ ) .
2 fe) =# (RN = [TFE)I (rDEAE . (4-57)
. ° it
- To show the significance of the Hankel transform, let f(x,y) be a oo
& circularly symmetric function, so that ji:_;
; ]
oL
2 2.3, _
f(x,y) = f((x" + y"')°) = f(r) (4-58) )
N Then the two-dimensional Fourier transform of f(x,y) may be evaluated i

4
|

using polar coordinates. We have

G
NN

; F(k_,k_) = F( = F F_[f ‘fm Zﬂf “jereos(e-) 5
2 (kyko) = F(p,0) = FLFy [fGx,y)] = | [ f(re rdrd

s

.t » % %1
) ' ]
‘s grv' " /‘:‘l ‘v':r ]

(4-59)
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where the cosine addition formula has been used. It is clear from (4-59)
that F(p,¢) will not depend on ¢, i.e., the Fourier transform of a s

‘rcularly symmetric function is itself circularly symmetric. Using the ,Cf:.-

identity r*-;.‘

o 1 2n . ‘
1 1xcos 8 - _ 3
= é e 6 = J_(x) (4-60) =

the radial slice F(p) of the circularly symmetric Fourier transform of

. o
f(r) is given by S‘*\
F(p) = 2Tr!; f(r)d (or)rdr = JHIf(r)] . (4-61)

Thus the Hankel transform of a function f(r) yields a radial slice of the
circularly symmetric Fourier transform of the circularly symmetric R
function f(r). The above development is due to Mook (1983, p. 27).

Since the reflection response to a point source excitation has
circular symmetry, the Hankel transform should be appropriate for L

synthesizing plane wave response data from point source response data.

Indeed, if it is desired to synthesize a plane wave response moving in -’-:EZ'-:'..
the +x direction with slowness p, we have l:tjlt:'_l:
‘ ..)-
[« ¢] o« =]
i} f -jult+px)
FxFyFt [u(x,y,t)] ‘kx%'p oo f_m f.wu(x,y,t)e dxdydt RN
Y
. © o o @@
= ;[m fo ‘L u(r,t)e_]wtenjwprcoserdedrdt = 2r L ([u(r,t)e-]mJo(mp)rdrdt :Z:::E:“:
.
o = ZnHFt[u(r,t)] (4-62)

£ =wp

...........................................
..................................................
...............




Thus another way of solving the point source problem is to Hankel
transform the reflection response and set £= wp. This synthesizes a
plane wave response which can be used to initiate the algorithm of
Section 4.2.

Combining (4-53) and (4-62), we have

FTR[u] = FxFyFt [u] = HFt[u] (4-63)

k_=up £=wp

ky= 0
showing the relations of the Radon, Hankel, and Fourier transforms to
each other. Coen (1982) showed the equality of the first and third
terms of (4-63).
The equation £ = wp suggests that £ is really a radial wavenumber

kr’ and .Io(m1'>r)e~1wt is a surface wave. Since

N 2 3 I -
Jo(krr) = ( TTkrI‘ ) cos(krr 4) (4-64)
J o(krr)e']wt behaves like the sum of incoming and outgoing waves for

large r. These surface waves are obtained by setting z = 0 in the

s expression

jk,z_-jwt _ _ -
Jo(krr)e Z% , kz = W /co kr (4-65)

which represents cylindrical waves. These are fundamental solutions of

the wave equation in cylindrical coordinates. In the next section the
point source problem is shown to amount to using cylindrical waves to

probe the medium, and a layer stripping algorithm embodying the principle

is derived.
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4.3.2 Layer Stripping Solution

FAIIS L
’l

The point source problem depicted in Figure 4.2 was solved by Coen

i

LI '-l ke
Yx
Ak

LIS

(1982) by transforming it into a non-normal incidence plane wave problem,

v Xy

which could then be solved as in Coen (1981). It has already been shown

Ll LR
X
'q:’.'r’

A

here that the layer stripping algorithm for the oblique plane wave

P

Ak ol 4

problem can be used to solve the point source problem by transforming

e

-
v
.L

the point source data using either the Radon transform or the Hankel
transform. But there should be some way to formulate a layer stripping
algorithm that solves the point source problem directly, by probing the

medium with cylindrical waves. In this section this algorithm is derived.

Note that probing the medium with cylindrical waves from an
impulsive point source makes much more sense physically than does
probing it with an infinite oblique plane wave, which cannot exist.
Although an impulsive point source is also unphysical, it is a much better
model of a real-world experiment.

In order to solve this problem, it will be necessary to define higher-

h

order Hankel transforms. The nt order Hankel transform is defined as

(Papoulis, 1968)

Hn{f(r)} fo f(r)Jn(rE)r dr = Fn(E) (4~66)

where Jn(-) is the nth order Bessel function. Although Hankel transforms

of orders zero and one will be used in the derivation, the final algorithm

will contain quantities that involve Hankel transforms of order zero only. N
In the course of the derivation the properties
RS

IR
Hf(r) /r + (3/30)f(r)} = EH {f(r)) (4-67a) ¥

-------
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Hl{ G HAr)f(r)} = -&Ho {f(r)}

will be employed.

Writing the basic acoustic equations (3-1) in cylindrical coordinates,
taking Fourier transforms, and noting the circular symmetry of the
present problem (no &-dependence) yields

oG (r,2,0) = B /or (4-68a)

o<z)w2£z (r,z,w) =aplaz (4-68b)

B(r,z,u) = -o(z)e(z)2 (i, /3z + 3u,/3r + u_/r) (4-68c)

where u, and u, are the r and z (depth) components of the (vector)
displacement u. Note that the ug; component of u does not appear.
Taking Hankel transforms of order zero of (4-68b) and (4-68c),

and the Hankel transform of order one of (4-68a) yields

o( Z)wzﬁr(i,z,w) -£P(£,z,0) (4-69a)

O(z)wzﬁz(E,Z,w) = 3P/3z (4-69b)

f’(i,z,w) = -o(z)c(z)2 (Bﬁzlaz + Eﬁr(ﬁ,z,w)) (4-69¢)

Ur(g’z’w) = Hl{ur(r,z,w)} (4-70a)
Uz(gvzy"ﬂ) =HO{UZ(P,Z,u)} (4_70b)

P(£,z,u) = H{p(r.z,)} . (4-170¢)
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Eliminating 6r from (4-69) yields

p(z)mzﬁz(i,z,w) = 613/82 (4-71a)

B(e,2.)(1-€ 2 D)) = -o(2)e(2)? 30, /32 (4-71b)

and defining (compare to (4-24) - (4-27))

()2 = e(21(1-(£2 1Dye()D) (4-72)

z e
7(z) = [ods/c'(s) (4-73) RS
Z(7) = p(1)c' (1) (4-74)

results in the familiar equations (compare to (4-28))

9P/oT = szﬁz(a,r,w) (4-75a)
50, /ot = ~QUYPE,T,w) . (4-75b) o

Recalling that the Hankel transform of order zero is the two-
dimensional Fourier transform of a circularly symmetric function, we may
once again define the Hankel-Fourier transforms of the downgoing and

upgoing waves (as in (4-29))

Vi = P, 1,0 /2 4 ]’uZ}UZ(E,T,w) (4-76a) N
r:'-':“-‘:'
SRty
AN
- ~ % . ~ ’..-‘. -
V(8,11 = PCE, 1,0 /27 - 5.250_(£,1.) (4-76b) R
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The waves (4-76) satisfy the two-component wave system
o

~ A ~ . F
3V1/3T = -jle(a,T,m) - r(1) Vz(f;,r.w) (4-77a) it

N

A A A b.)~
3V2/3T = -r(T)Vl(g.T,w) + jwVZ(E,'r,w) (4-7Tb) NSOt

N

oK

ne

with the reflectivity function r(1) given by S
_ 1 dz_4d Z(1) i}

r(t) = 7 d:- ar log Z(0) (4-78) 9’,;_

The forms of the waves used to probe the two-component wave system .

o

(4-77) are, in the time-distance domain ® &5
v (r,z,t) = 8(t-D8(x)/r + v,(r,z,t)1(t-1) (4-79a) <
Vy(r,z,t) = V,(r,z,0)1(t-1) (4-79b) ‘B
where the probing impulse is a roughly cylindrical wave and 1 = 1(2) '.::f:-.‘_
(recall that the medium is laterally homogeneous). The Hankel transforms ® f“
of (4-79), which are the waves actually used in the fast Cholesky :1'.:_‘_‘1
v

algorithm based on (4-77), then have the form (2-22), as desired. Note j{:,‘{
that letting £ = kx in (4-72) results in (4-25), as expected. This choice .E
was noted by Coen (1982).
4.4 Turning Points oo
°
4.4.1 Turning Points ".‘:::'.;:
o
A turning point in a layered medium is a depth Z, wWhere the local ey
wave speed c(zp) has become so great that it equals the reciprocal of the e o
\

~ P
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slowness of the probing plane wave, i.e., ¢(z;) = 1/p. By Snell's law
p = sin 6(z)/e(z) (4-80)

the ray paths of the probing plane wave are horizontal at a turning point,
before turning back up to the surface. The reason for the ray paths
turning back to the surface is that the lower part of the probing wave,
in the region of higher wave speed, continues to move faster than the
upper part. This bends the rays up toward the surface.

The location of a turning point in a layered medium is thus
dictated by the ray parameter or slowness p of the probing wave: the
steeper the angle of incidence, the deeper the turning point. Indeed,
if c(2z) <CyAX throughout the medium and the probing angle 6 in
Figure 4.1 is chosen so that 9 < sin_1 co/cMAX’ then there is no turning
point.

Since it depends on the concept of rays, and on Snell's law, turning
points as defined above are only defined for the case of geometrical
acousties. This is tantamount to taking w + =, i.e., the medium must
not vary significantly over a wavelength. Another definition of a
turning point, as the depth where the character of the solutions of the
Schrodinger equation (4-82) below change from oscillatory to exponentially
decaying, is useless in the present context since the Schrodinger
potential V is unbounded.

In this section we analyze the behavior of the pressure and
vertical displacement near a turning point, and then show how these can
be used to propagate the layer stripping algorithm of Section 4.2 through

a turning point and back up to the surface. This allows more of the
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reflection response data to be used in inverting the medium, and

\B
|.'
-

provides a check on the p(z) and c¢(z) profiles computed on the way

©
A J%

down to the turning point. \.-3:
=

WKBJ solution E;f.
. . n . . om

The expressions obtained for pressure p and vertical displacement R

d near a turning point must be matched asymptotically to expressions j:f:;:
valid far away from the turning point. More advanced techniques, ‘_1_
ey - %

such as the Langer uniform asymptotic expansion (Nayfeh (1973) is a “

good treatment) obviate the need of having different expressions in
different regions, but we do not consider them here. To derive the
expressions valid far away from the turning point, we employ a

WKBJ analysis of two Schrodinger equations. The presentation here

is based on Ware (1969), although .here are many significant ;»,
departures. OE
Defining e
Mz.w) =D 3 e
n(z,w) = p(z,w)/p*(2) (4-8la) o KE

w(z,w) = (o(z)C'(Z)z)’l’ u(z,w) (4-8lb)

Z(z) = 1/p%(z) (4-8le)

Y(z) = (pe'()D)? (4- 3d)

it is straightforward to show from the basic equations (4-21) and (4-23)

that 7 and w satisfy the Schrodinger equations ° &
2 2 2, . . L

(9_ O ‘i_g) I = 0 (4-82a) o

d22 C’Z Z dz q"'

o
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2 L2 2,
(9—2 s = - 1d% Jw = 0. (4-82b)
dz c'2 Y 422

Since these two equations have the same form, we can treat both of

them at once. Choosing the ansatz or trial solution

L R Aej B (4-83)

-n-=

substituting (4-83) into (4-82a) and writing the real and imaginary

b parts separately gives, respectively,

. 2 . 2 ,.}2 by

A - Au'B + —— A-Za-o (4-84a)
L. 0'2 Z

AB + 2AB = 0 (4-84b)

which in turn yield

e e (4-852)

A = c/B? (4-85b)
. A X
Here A = g—? and C is a constant. Sy
Neglecting the third term in (4-85a) and defining “
. i .__\‘\'
1 1 Z P | ‘o:‘;“:
= =l - S a8 w *r® (4-86) RN
c (c'z sz> ¢ R
RO
we have for our trial solution ey
/-z -:-__‘_._-
. Huf ds/e''(s) RN
T(z,u) = C(c")ieﬂ -0 (4-87) :..':"_~
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[z \ sz y
D(z,u) (et = Cle]“fo ds/e''(s) Cze] o ds/e'(s) (4-88)

for constants C1 and C2.

The analysis for w is exactly the same through (4-87), yielding
. [z , [z "
(oc")iﬁ(z,w) = C3e]”/o ds/c'(s) Cge ]“[o ds/c''(s) (4-89)
for constants C4 and C,. Q ?

In the limit as w** (geometrical acoustics), (4-88) and (4-89)

become simple decompositions of the energy-normalized pressure and

displacement into downgoing and upgoing waves--hardly a surprise. o
This development shows how much this depends on a slowly varying

medium relative to the wavelength of the probing inedium. From (4-86),

we require @
(B
w >>C ('Z‘) (4-90)
and it is clear there will be trouble at a turning point, where ¢' + =, ®

Air solution near a turning point

In the limit of geometrical acoustics(« > *©), a turning point has ° b&
been defined as the depth z, where c(zo) = 1/p. Then c'(zo) >
and 1/c'(zo) = 0. Let l/c’(z)2 be approximated in the vicinity of the
turning point z, by o

, TR
1e'@? = ve)? -p? > 120 (201 (22 2 E(z-2) (4-91)

A
W ¢
AN A

where E is the (urknown) constant specified in (4-91). Substituting ®

.

P P i ey At e e .
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(4-91) in the Schrodinger equation (4-82a) yields

2 .
(9— + LE(z-2) - %)r =0 (4-92)
d22 o

and neglecting the third term in (4-92) for « large yields the

Airy equation

2
("—2 + W2E(z —z))n =0 . (4-93)
dz o

The solution of this equation involves the Airy function Ai('), and is

. 2, Y
T = CLAi(- « S E 3 (z,-2)) (4-94)

where C5 is a constant. The other Airy function, Bi(:), is rejected

since it leads to an exponentially growing solution.

Matching asymptotic forms

From Abramowitz and Stegun (1965),

Ai(-y) = g y-* cos (-g- y%— 2) as y > ® (4-95)

and using this in (4-94) along with (4-8la) results in

- P | 24,y T -
p = CGD (zo z) * cos (§‘E (z, z) ?) (4-96)
for z << Z, i.e., above the turning point. Here C6 is still another

constant, which is related to CS'

On the other hand, inserting (4-91) in the WKBJ equation (4-88)

and taking . large results in
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" 3 -3 ] s wfz E*(z —s)ids
p =0 E 3z -2) [CIeJ e]
z
: et -je). Ef(zoms)ids] (4-97)
. + Cqe JuT Tl = 120
} -} b et -jteEdz -p? Cjur jauE (2 -z)T
k. = p*E (zo—z) [Cle “ e (o) + Cze e’ 0 ]
5
where 71 is the travel time to the turning point 2, defined as

\ %0
. T = fo ds/c'(s) . (4-98)

Now, the asymptotic form (4-96) of the Airy solution away from the
[ turning point must match the asymptotic form (4-97) of the WKBJ

solution near the turning point. Comparing (4-96) and (4-97) we see
. _ —

celTE = ¢, o "4 112y (4-99a)
_ _3 T - i 4
: Cpe ™ E™ = Cpe iy (4-99b)
: For the experiment in which an oblique plane pressure wave is
: used to probe the medium, the actual form of p is

z
B(z.) = (cen? (e fo ds/e'(s) | Rpue’*ﬂ) ds/e"(x);  (4-100)

Comparing (4-88) and (4-100), and using (4-99), it may be seen that

the reflection response Rp(u.) is given by

a2 -
.’L’J t

...............
.........
o . o .
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= o 2T T2 (4-101)

The first term of (4-101) is simply the delay due to the two-way travel

time to the turning point. The second term is a phase advance of 7/2,

since if w is negative there is a sign change in the independent variable
in (4-94) and (4-95), resulting in e 72 in (4-101). The phase advance

of 7/2 is, in the time domain, a negative Hilbert transform of the

source time function.

Comments

L There are several comments to be made here. First, the usual

definition of a turning point for a Schrodinger equation (for finite )
is the depth at which the nature of the solution changes from oscillatory

to exponentially decaying. For the Schrodinger equation (4-82a), this

»

is where
LoE L2

P c'? Z o’
so employing a linear approximation like (4-91) to (4-102) is simply

P equivalent to replacing c¢' with ¢'" throughout. In the limit of high u
¢' and c¢'"' become equal. Note in fact that the Airy function Ai(y) is
oscillatory for y < 0 and exponentially decaying for y > 0.

P Second, it should be emphasized that (4-101) is the result of a
WKBJ analysis, which neglects all internal reflections. It is not true
that the amplitude of the reflected signal carries no information about the

“ medium! The purpose of this analysis is simply to discern what happens

to a pressure wave passing through a turning point--it gets negative
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- e 7. I I S AP
- LYY

DA - ., .

......

DR NI I
PO i VW S Y S laliaSaZalatas




2 s Rt ittt
R "
194 oL

!

f Hilbert-transformed. \ |

3 The reflection response of the medium can be separated into two {
parts: the part before 210, where 210 is the two-way travel time to '

,' the turning point; and the part from 21'0 to 4ro. The first part of the ::
‘ reflection response is clearly unaffected by the presence of a turning "
. point, since the probing impulse has not penetrated that far into the ® A»
. medium. By causality, it is impossible for the nature of the medium

below and ahead of the probing impulse at any time to affect the

reflection response of the medium at that time. From 2*.0 to 410, the .¥

probing impulse is now essentially probing a mirror image of the mediun, ::'-j

- and this part of the reflection response reflects this. (Of course, there
are also lingering multiple reflections from the downward path, but these o ‘

have been eliminated by the layer stripping algorithm.) The reflected

o

waves propagate back through the turning point to be measured as ’

— the reflection response. o "'
After 2?0, the transmitted response through the turning point «'

begins to appear at the surface. According to the WKBJ analysis, this ~

transmitted response is simply the negative Hilbert transform of the o :ﬁ

’ delayed source excitation. However, this ignores the reflection losses
within the medium, which will clearly degrade the transmitted response.
' Of course, the arrival time of the transmitted response may be used for ® ; .
: travel time inversion; however, this is outside the scope of this thesis.
: It should also be noted that the result of (4-101), which is the only .'
result we shall actually use in a layer stripping algorithm, is amazingly L

:: accurate in practice. Tolstoy and Clay (1966), p. 51) report that for .::
': typical frequencies and typical oceanic sound channels, (2-101) is -.'\
accurate to five significant figures. Q; "_f'
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Finally, it should be noted how this analysis differs from the usual
WKBJ-Airy turning point analysis. The general procedure is to
approximate w2 - V by a linear expression, as in (4-91). This will not
work on the Schrodinger equation (4-11) considered by Ware (1969)
because the potential V(z) blows up at the turning point. Ware (1969)
modelled V(z) by a second-order pole and branch point, and obtained
a messy result that reduced to (4-101) in the limit wT >~ . We have used
the Schrodinger equation (4-82a) because its potential does not blow
up at the turning point. Unfortunately, the potential of the
displacement Schrodinger equation does blow up at the turning point,

and a different equation will have to be used for the Airy analysis of

that problem.

Displacement

The WKBJ formula for displacement away from the turning point was
already derived in (4-89). However, the Airy solution near the turning

3

point will require more work, since Y = (QC'Z) blows up there and thus
(4-82b) cannot be used.

The displacement equation we shall use near the turning point is

2 2
d W 2 d¢' 1 doy d - _
(—— + — +(6, -— + 5 —a—z-) a;) u(z,.) = 0 . (4-103)
In the vicinity of the turning point ¢'(z) is changing very rapidly, and
of course we continue to assume high .. Hence the fourth term in
(4-103) is negligible. wultiplying (4-103) by l/c'(z)2 and using (4-91)

gives
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R ~
~ 2 . -
3 (B &, + FE 0% +Eg-) Gzw =0 (4-104)
X (o] d 2 (o] dz Y
-, Z ’:.
| of
» . . N
R near the turning point zZ,- :I
" It turns out that the solution to (4-104) involves the derivative of :j
» ~
N the Airy function, Ai'(-). To see this, consider the Airy differential P ‘
i: equation :
2.
4
"
’ d2f o
o] =21 - Zf(Z) =0 (4‘105) ® -
_ dz2 L
5 divide by z, differentiate, and multiply by 2%, This gives i'-j:_
5 0 °
S zZ—3 - d—-g - 22 %f; = 0 (4-106) AS
- dz dz ~3
2 e
™ -
v~ e
which is an equation in df/dz having the form (4-104). .
- Therefore the solution to (4-104) is ;:ZE.
X :7;-
-~ _-.:
- u(z,w) = CLAI'(w" E” (z,-2)) (4-107) :‘-57
(o] e
oK
:;: where C7 is a constant. From Abramowitz and Stegun (1965)
. Ay =-rtyteos Gy o+ D) asy s (4-108) o
so the asymptotic form of (4-107) above the turning point is
N . )
- 5 - U | 2 3 SR B _ .
- u(z,w) = C8(zo z)® cos (§ wE (zo z) + 4) (4-109) -
- 2
o~ :‘::
- where C_ is a constant determined by C,. T
- 8 7 2™y
Al On the other hand, the asymptotic form for the WKBJ solution (4-89) ® ..
3 R
ok
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near the turning point is found by inserting (4-91) in (4-89), yielding
' Gz = ot BV ot IR D | o T iEt e
N o o 3& e (o} + C4e e o ]
(4-110)
using the same simplications used to produce (4-97).
’ The asymptotic forms (4-109) and (4-110) must agree, so we have
cgd Bl gt = cel™e (4-111a)
P
ce et t = ¢l L (4-111b)
» and from (4-89) the reflection response ﬁu(u) for the experiment in which
an oblique acoustic plane displacement wave is used to probe the medium
is given by
P R () = C4/Cy = e N I o Ry(-) (4-112)
Therefore the reflection coefficient for a displacement wave is
® negative the reflection coefficient for a pressure wave, as expected.
This amounts to a phase delay of 7/2 as the displacement wave passes
through the turning point, which is a Hilbert transform in the time
» domain.
Again some comments are in order. This is an unusual analysis in
that some juggling was required to produce the equations (4-103) and
) (4-106); it is not just a standard Airy analysis, since it is necessary to
isolate the effects of c¢' blowing up at the turning point. This is much
harder to do for displacement than it is for pressure; compare the two
D Schrodinger equations (4-82a) and (4-82b). Incidentally, it is worth

noting that even though the ray paths become horizontal at the turning

fe N R [ P PR SRS S - L T e e e
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point, the vertical displacement ﬁ(zo,w) does not go to zero.

Of course, it is hardly surprising that the vertical displacement
ﬁ(zo,u) behaves like the derivative of the Airy function, in light of
the basic equations (4-21). Indeed, inserting (4-94) and (4-107) into
the basic equations (4-21b) and (4-23) for the oblique plane wave
problem yields a consistent set of equations if 0 is assumed to have
negligible variation in the vicinity of the turning point.

4.4.2 Propagation of the Layer Stripping Algorithm Through a Turning
Point

Using the results (4-101) and (4-112), we now show how the layer
stripping algorithm can be propagated through a turning point and
back up to the surface along the ray path. This allows surface
reflection data collected past ZTO, the two-way travel time to the
turning point, to be used in the inversion procedure. The reflection
coefficients and profiles of o(z) and c(z) computed on the way down can
then be checked on the way back up.

The basic idea is to regard the turning point as a "black box" that
Hilbert transforms various combinations of the waves and changes the
downgoing waves into the upgoing waves, and vice-versa. The only
problem is to determine the appropriate time delay as the waves travel
through this "box."

The first problem, of course, is to detect a turning point when it
is encountered. This presents little difficulty, since cos2 3(z) =
1 - pzc(z)2 is computed in the course of the algorithm (equation (4-37)).
As a turning point is approached, §(z) approaches r/2 as the ray
becomes horizontal, and c052 3(z) goes to zero. Of course, if

1 - pzc(z)2 < 0 then clearly a turning point has been encountered (even

....... LT T TR T N SN ML
..............
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if noise has corrupted the computed c(z), a turning point must be close).

However, a better procedure is to set a threshold ¢, and decree that if

2

cos” 5(z) = 1 - pzc(zl)z < g2

(4-113)
then a turning point is present at depth Z.
Of course, if the medium wave speed profile c¢(z) is such that it
increases with depth to approximately c(z) = 1/p and then decreases,
(4-113) may identify a turning point that is non-existent. This simply

represents bad luck in the choice of ray parameter p. The error will

be revealed when the p(z) and c¢(z) profiles computed on the way up
diverge wildly from those computed on the way down, and the
algorithm could simply be rerun with a different choice of p.

The second problem is to determine what happens to the waves
as they pass through the turning point. This is where (4-101) and
(4-112) are useful. Recall that the downoing wave \Arl(z,;) and upgoing
wave Gz(z,w) , which we rename D(z,.) and U(z,.) for convenience,

are given in (4-29) as

3

D(z,w) = p(z,0)/(oe)?} + jutoch) Pu(z,.) (4-114da)

p(z,/(e)? - jue)¥i(z,) . (4-114b)

"

U(z,w)

Now, as these waves pass through the turning point, the pressure
is negative Hilbert transformed (4-101) ard the displacement, hence the
velocity, is Hilbert transformed (4-112). Thus, after passing through

the turning point, D(z,t) becomes D'(z,t) and U(z,t) becomes U'(z,t).

where
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D'(z,t) = -HIp/zY] + Hziv] = -H[U(z,0)] (4-115a)

u'(z,t) = ‘H[p/Z%] - H[Z%V] = -H[D(z,t)] . (4-115b)

R SARAALEL ISR

In (4-115) v é su/3t is medium velocity, Z = oc' is impedance, and H[:]
is the Hilbert transform operator, which is -j SGN(w) in the frequency
domain and has the impulse response - 1/(nt).

However, after passing through the turning point the downgoing and
upgoing waves also become interchanged. The combination of this and
(4-115) shows that the net effect of passage through a turning point on

the waves in the layer stripping algorithm is a negative Hilbert transform

of both waves. This is precisely what would be expected by recalling

that the waves (4-114) are really pressure waves, and the turning
point acts like a reflection coefficient (4-101).

The final problem is to determine the time delay encountered in
passage through the turning point. Recall that the algorithm stops at

the depth z, where

1

1 - pzc(zl)2 = 62 . (4-116)

If the turning point is located at depth 2, > 2 with 2 = z, - 7 small,

then we have, using (4-91)
2 =1-plezp? = EnHL . (4-117)

The travel time delay through the turning point is, using (4-9),

Zo % 3
i1 = 2]zl as/c'(s) = 2[,) Btz -srtas = a/mEts (4-118)

and eliminating the unknown A yields
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- 33 oy
At = (4/3)p e /E . (4-119)
AN
® 3 :.-'\‘:..
Note that At varies with the threshold ¢ as ¢, and that it is P
3
necessary to determine E = 2p3dc(zo) /dz or A. E, however, can be :;‘_{
[ '-!.
estimated from the way c(z) is varying at Z;. 2
i
o In summary, to extend the layer stripping algorithm through a &
R
turning point, use the condition (4-113) to detect a turning point, take 2 :::.::
the negative Hilbert transform of the waves, and delay them by AT i
A in (4-119). Then continue the algorithm back up to the surface, comparing "
the computed p(z) and c(z) profiles with those computed on the way :'}-_'.::
S
down. This makes use of surface reflection data collected after 2T, :
' the two-way travel time to the turning point. '
In the next chapter the effect of noise on the layer stripping f:.‘:::::
PY algorithm is discussed, and results of some computer runs of the ',:::};:‘
algorithm on synthetic data presented. _‘.‘
u\'\-:‘:
O
N
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CHAPTER V

Performance of the Non-Normal Incidence Inversion Algorithms

5.1 Introduction

In this chapter the results of running the two non-normal incidence
inversion algorithms of Chapter IV on a computer are presented. This
chapter is not intended to be an exhaustive numerical study of these
algorithms. Rather, the purposes of this chapter are to demonstrate
that the algorithms do work, and to illustrate some of their strong
points and weak points.

The goals of this chapter are threefold: (1) to demonstrate that
the algorithms of Chapter IV do indeed reconstruct a layered medium from
its synthesized forward response, and still do so in the presence of
small amounts of additive noise; (2) to demonstrate some circumstances
under which the algorithms break down, and explain how to avoid them;
and (3) to develop some minor modifications of the algorithms that
improve their performance in the presence of noise. In addition, some
other considerations involved in running the algorithms on a computer,
such as discretization of time, are discussed. All of the computer

programs used in this thesis are given in the Appendix.

5.1.1 Forward vs. Backward Stability

A superficial consideration of the operation of a layer stripping
algorithm initiated with noisy data might make it seem as though errors
would accumulate rapidly as the medium were penetrated, to the point

where the algorithm would quickly break down. However, this is not
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the case, as this chapter will show. Note that each step of the discrete

EA AN
l'l" ; :

o0
3

algorithm amounts to a Givens rotation of normalized waves (equation

(3-86)), so that the waves cannot blow up. Indeed, Bultheel (1979)

""
v f"r

Xy T

has shown that the basic fast Cholesky algorithm is numerically stable.

»
X

r
A

And it is important to remember that the layer stripping algorithms are

e

A

mathematically dual to the integral equation procedures that constitute

an alternative to them., Therefore, mathematically, the performance of

the integral equation methods used on noisy data is no better than that

of the layer stripping methods. So how did dynamic deconvolution methods
get the reputation of performing poorly on noisy data? To answer this
question requires some discussion of forward vs. backward stability,

;. i.e., the stability of an algorithm vs. the conditioning of the problem to
which it is applied.

An inverse problem is defined to be forward stable if a slight

perturbation of the data leads to a slight perturbation of the parameters
of the reconstructed medium. This is tantamount to requiring
continuity of the mapping from the set of admissible data to the set

of possible media. This mapping, which is the inverse of the forward
problem mapping, is uniquely specified if the inverse problem is well-
defined. An inverse problem that is not forward stable is said to be

A ill-conditioned.

An algorithm is defined to be backward stable if the numerical result

". of running the algorithm on a given set of data is the same result that
B would be obtained from an exact run (no roundoff errors, etc.) of the
> algorithm on a slight perturbation of the given data. Thus, for a forward

stable problem, errors inherent in the algorithm are equivalent to a

AR

slight perturbation of the data, which in turn results in a slight
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perturbation of the reconstructed medium.
u‘ These two definitions are taken from Stewart (1973), where the
"inverse problem” considered is that of solving the matrix equation Ax = b.
However, the definitions also apply to the general class of well-defined
H‘ inverse problems (i.e., those for which a unique solution can be

found from the data).

The significance of these two definitions is that they distinguish

® between the conditioning of a problem and the stability of the algorithm

used to solve it. A stable algorithm applied to an ill-conditioned

problem (such as inversion of a nearly singular matrix) may give poor

results, even though the algorithm itself performs well in general. The

fault lies not with the algorithm, but with the decision to use it
inappropriately (and there may well be no algorithm that works well on
a severely ill-conditioned problem).

This is important in discussing the performance of layer stripping

algorithms applied to inverse seismic problems, because the conditioning

of an inverse seismic problem gets poorer with increasing depth.
Bruckstein et al. (1984) have shown that the condition number c(n) '.—‘;",-_;:
for the one-dimensional discrete normal incidence inverse seismic problem
n layers deep is given by

n 1+ |r|

cn) = I ——r0 (5-1)
i=1 1 - Iril ’

where ri are the reflection coefficients, assumed to have absolute values

less than one, and c(n) is defined as

fo . . (5-2)

er;l l I max min

c(n) = ||M_|
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Here M is a matrix that represents the transmission matrix for the -
. . n n . . o
medium, defined by (3-52), and g and ¢ _. are its maximum and 4
max min ab
minimum singular values. The condition number c(n) is the amplication .
o

factor by which a perturbation or error in the data is multiplied to give

the perturbation or error in computing ro if {rl. .. .rn} are known

+1
exactly.

It is clear from (5-1) that c¢(n) increases with depth n, so that the
inverse problem of reconstructing r, for each n becomes steadily more
poorly conditioned. Physically, this can be understood by noting that
the medium excitation becomes weaker as it penetrates the medium and
suffers reflection losses. In the event of near-total reflection at a level
m (]rm[ = 1), (5-1) shows that c(n) becomes very large for all n >m.
Cybenko (1980) also derived (5-1) as the condition number of the
symmetric Toeplitz matrix of size n that has been inverted after n
recursions of the Levinson algorithm.

It is important to remember that the increasing condition number c(n)
specified by (5-1) is a property of the inverse problem itself, even in
the absence of noise, and applies regardless of the method used to solve
it. This explains why layer stripping algorithms perform more poorly
as depth increases: the problem is not the accumulation of noise in
the algorithm, but the poor conditioning of the inverse problem itself.
The same problem is encountered in the use of integral equation or matrix
equation methods; however, these methods disguise the variation of the
conditioning with depth, since the entire problem for all depths is
solved in one huge operation. Layér stripping methods, being layer-

recursive, spotlight the problem correctly; the result is an unjust

reputation for poor performance.
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3.1.2 Previous Work O
RS
RS
Numerical work -
: S
Previous work on the numerical performance of layer stripping -\:.::.:(:
: s - R
algorithms has all been applied to the one dimensional normal incidence :.-,:'.;“
i ; : N <h
L inverse problem, since only for this problem is the layer stripping I "- A
solution widely known. Buitheel (1979) showed that the fast Cholesky SOy
algorithm, the basic layer stripping algorithm for the normal incidence

inverse problem (though few seem to know its name), is backward stable ﬁ
by employing an error analysis. Exhaustive numerical studies of this -
algorithm have been made by Symes and Zimmerman (1982), Bube and
Burridge (1983), and Bruckstein et al. (1984), and all are quite s
favorable. We now summarize their results.

Bube and Burridge (1983) tested what they called the "downward
continuation" algorithm against the one-dimensional Born approximation
method, and found that the layer stripping algorithm completely out-
performed the Born approximation method, due to the inability of the :
latter to deal with multiple reflections. Bruckstein et al. (1984) found "l;‘.:‘*
that the fast Cholesky algorithm began to diverge after about fifty layers,

since the conditioning of the problem at this depth was so poor that

roundoff errors and accumulation errors in the numerical operation of

the algorithm were magnified into significant errors in the output. The
work of Symes and Zimmerman (1982) tested the algorithm in the presence
of noise and bandlimitation of the source and data. Their results were
that noise in the seismic band (10-40 Hz) had little effect on the

reconstruction of the impedance of the medium for signal-to-noise ratios

greater than about five, but the absence of low-frequency data (0-10 Hz)

had a significant effect on the reconstruction. This is not surprising,

------------

..........
-----
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since the low-frequency response of the medium determines the trend of
the impedance profile. P ';
et
Estimation -": :
"
If noisy data are to be used, it might seem natural to try to EE
incorporate some sort of estimation procedure into the inversion ® F
algorithm. However, attempting to do this for a layer stripping algorithm
generally leads to a mess, even for the normal incidence inverse problem. *
The reason for this is that the resulting estimation problem is very L !g
non-linear, as a few recursions of the fast Cholesky algorithm will show. ‘
Theriault (1977) derived some Cramer-Rao bounds for the mean-square i
error of any estimation procedure, and implemented numerically a o
maximum-likelihood estimator that required the application of a
conjugate gradient method maximization at each depth. "
The approach of Habibi-Ashrafi and Mendel (1982) is more promising. ® :
They employ a layer stripping solution to the discrete normal incidence :
inverse problem with a suboptimal maximum-likelihood estimation at each N
depth. Instead of projecting ahead to a specific time to read the next ®
primary reflection, their method searches for the next primary reflection . -
using a matched filter and a transversal equalizing filter, which corrects
for wave overlapping effects. This a posteriori approach is in contrast ® ‘ »
to the a priori (project ahead to a specific, computed time) approach
used in this thesis. Some Kalman-filter-like combination of these
approaches would be ideal, but it is not clear how this could be done. ® .
The estimator of Habibi-Ashrafi and Mendel (1982) reduces to an "5
a _priori project-and-read if the medium excitation is a probing impulse. \'_’E
It is also interesting to note that taking the maximum-likelihood approach o '
as a starting point leads to a layer stripping approach as the optimal 1-
o
o]
e T T T T L N T T T T e T s T A 2




Platiran “Wh R AT i M e B B e

209

inversion procedure (Habibi-Ashrafi and Mendel, 1982).

b If the data are bandlimited, then the inverse problem is ill-posed,
since the missing frequency components of the impedance profile cannot
be reconstructed. For example, if the data are only specified up to a
L cutoff frequency, a sinusoidally-varying impedance profile (as a function
of travel time) with spatial frequency above the cutoff frequency would
be reconstructed as a constant profile. On the other hand, the absence
h of low-frequency data would result in the loss of low-spatial-frequency
(i.e., trend) information about the impedance profile. There is no

way around these ambiguities~-some additional information is necessary

in order to have a unique reconstructed medium.

One approach is the maximum-entropy estimation procedure used by

Santosa and Symes (1983). Their approach is to pick the impedance
profile with the flattest wave number spectrum that still matches the
bandlimited data. However, this amounts to a reformulation of the
problem. The layer stripping methods, since they operate in the time
domain, simply assume the missing frequency responses to be zero. Any

corrections to this must be made on the data itself.

5.1.3 Summary

In Section 5.2 the performance of the algorithms of Chapter IV in
the absence of noise is investigated. The main goal of this section is
to establish that the various algorithms do in fact work on a computer,
even with imperfections in the data generated by the forward problem
algorithms. The two forward problem algorithms are discussed and

compared, and the performances of the fast Cholesky layer stripping

1. inversion algorithm with continuous medium updates and with discrete
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medium updates compared. Some circumstances under which the inversion
algorithm breaks down are discussed and investigated. Finally, the
Schur and dynamic deconvolution algorithms for the non-normal incidence
problem are demonstrated with computers runs.

In Section 5.3 the performance of the fast Cholesky algorithm for
the non-normal incidence problem on noisy data is investigated. Random-
number-generated noise, uniformly distributed over a prespecified
amplitude range, is added to the reflection data before the inversion
algorithm is run. The effect this has on the operation of the inversion
algorithm is illustrated by a series of runs in which progressively worse
signal-to-noise ratios results in progressively poorer performance of the
algorithm, as expected.

In Section 5.4 several minor modifications of the fast Cholesky
algorithm for the non-normal incidence problem are developed in order
to improve its performance in the presence of noise. First, the
suggestion of Bruckstein et al. (1984) to set to zero all measured
reflection coefficients less than a threshold value determined by the
condition number and noise level is adopted. Next, reflection data
measured for many different angles of incidence is combined to produce
a least-squares fit for the updates of density p¢(z) and wave speed c(z)
at each depth. This has two major advantages over least-squares fits
of the entire parameter profiles: (1) the problems at each depth are
decoupled; and (2) the resulting, more accurate updated parameters are
used immediately in the algorithm while it is still running. Both of
these modifications are illustrated with computer runs. Finally, a
modification that allows a slightly lossy medium to be reconstructed is

specified. The losses must be small enough that dispersion of the probing
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impulse is negligible.
Section 5.5 then summarizes the results of this chapter. The -
strong points and weak points of employing layer stripping algorithms

are discussed, and some ways in which these algorithms break down are

reviewed. A significant advantage of layer stripping inversion procedures KeN

over other inversion procedures is the physical interpretations available

for almost every aspect of the operation of the algorithm. This makes

it much easier to determine when and why an algorithm might break down

than is generally the case in numerical analysis. Tl
The computer programs impelemnting these algorithms are all

written in FORTRAN, and they are all given in an Appendix to this '-:'.1_1:'.;1

thesis. These programs were run on a VAX 11/782 minicomputer, and

the plots made at the Joint Computer Facility at MIT in 1984, e

5.2 Performance of the Algorithms in the Absence of Noise m ,

In this section we present computer runs of the continuous and

discrete fast Cholesky layer stripping algorithms for the non-normal
incidence inverse problem. Two different forward problem algorithms
are used--one based on a time domain (Bremmer series) method, and one
based on a frequency domain (reflectivity) method. We show that the
inversion algorithms do in fact work, and work well, on high quality (but B
not perfect) data. Some ways in which the algorithms break down are
illustrated and discussed. The idea here is to be illustrative rather than
perform exhaustive numerical studies. Computer runs of the Schur and

dynamic deconvolution algorithms for the non-normal incidence problem

are also given.

............
.......................




________________

212

5.2.1 Forward Problem Algorithms

Two different forward problem algorithms are used. One, FORI,
is a frequency-domain algorithm that uses the reflectivity method (see

(Aki and Richards, 1980, p. 393) for a good discussion) and requires

.
Y
I‘,
=
4
<
-
-
e
.
i
L
N
¢ J
o

an inverse Fourier transform to obtain time responses. The other,

BREM, is a time-domain algorithm that computes directly all of the

primary and secondary (first-order multiple) reflections, i.e., the first

two terms of the Bremmer series for the medium response. Both

algorithms have advantages and disadvantages.

FOR1

The reflectivity method used by FOR1 works as follows. It is known

that if a layered medium bounded above and below by two infinite,

homogeneous half-spaces is probed with an impulse, the downgoing and

upgoing waves in the lower half-space will be, respectively, T(.) and

zero . Here 'f(w) is the transmission response of the medium, and there

is no upgoing wave in the lower half-space by the radiation boundary

condition. Thus, if we initialize the waves D %) and ﬂ x) in the

N+1( N+1(

lower half-space to one and zero, respectively, and multiply the wave
D, .. (w)

ect [AN'*I
vector ONa1(w)

succession, we get the wave vector

[ﬁo(u)} [1/1%)
A =l . . (5-3)
Uo(w) R(.) /T ()

Dividing lAJo(w) by ﬁo(“) then gives the medium reflection response

}by the layer matrices for layers N, N-1, ...2, lin

R(.).

In FOR1 the subroutine RECOPP, which is taken from Kind (1976).
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implements the above procedure. It is then necessary to take the inverse
Fourier transform of ﬁ(w) in order to get the time response R(t). This
is accomplished by using an FFT algorithm taken from Oppenheim and
Schafer (1975, p. 332) to implement a discrete inverse Fourier

transform of R(.), which is computed at 2™ integer multiples of Juw

by RECOPP. Since R(t) is real, doubling the real part of the discrete
inverse Fourier transform gives the desired time response at 2™ integer
multiples of ~t = 277/(2mA*\).

Since the impulse response of a discrete layered medium contains
sharp peaks, computing it at discrete time instants runs the risk of
missing some of the peaks. To avoid this, and to make the computation
of the inverse Fourier transform more stable, the program FOR1
actually computes the integrated impulse response ﬁ(w)/jw , takes the
inverse Fourier transform of this, and then takes differences of the

result. This results in the computation of {Rn} , where

(n+)st
R_ = f,t R(t)dt . (5-4)

n T

The major disadvantage in using FOR! is the inverse Fourier
transform required. Since the frequency response is only computed up to

m

= 2" A, = 27/4, the resulting computed time response is bandlimited.

“f
Indeed, FOR1 actually computes the sinc response of the medium, i.e.,
the response of the medium to the probing function (sin uft)/w\ft. This
results in the peaks in the time response being broadened, or smeared.

Since accurate strengths of the primary reflections are essential to the

layer stripping algorithms, this is potentially a serious matter. However,

the performance of the algorithms did not seem to be excessively hampered
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by this. Gibbs phenomenon (side lobes or peaks due to the oscillation
of the sinc function) was also observed, but proved to be relatively

insignificant.

BREM

In the program BREM the response of the medium is computed
directly in the time domain, so that an inverse Fourier transform is not
needed. This is indeed a significant improvement over FOR1; since BREM
requires much less computation time than FOR1, most of the forward runs
in this chapter were performed with BREM. However, the absence of
higher-order multiple reflections in the output of BREM was found to
be troublesome for large reflection coefficients.

BREM constructs the time response of a layered medium directly in
the time domain by ray theory. Each primary reflection is accounted for
by computing the two-way travel time to each interface, and assigning
to that time in the medium time response a reflection strength proportional
to the reflection coefficient at that interface. Second-order multiple
reflections are handled similarly, using two nested DO loops tc compute
them all. The amount of computation required for this is O(NB), which

is manageable. However, computation of the third-order multiple

reflections would require O(Ns) operations, and the strength of each

such reflection would be proportional to the product of five reflection
coefficients. This is so weak that in general it is not worth computing.
Thus BREM computes only the first two terms of the Bremmer series of

the time response of the layered medium.

Comparison of the performances of FOR1 and BREM

The performances of FOR1 and BREM are most easily compared by

running the same inversion algorithm on the outputs of both of them. If
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all other factors are equal, the closer the reconstructed medium is to ety
the actual medium, the closer the computed forward response must be to Y

the actual forward response of the medium. Figures 5.1a and 5.lb show -

2

40a
7
DA

\Y

the results of computer runs of FOR1 and BREM, both of which were

;-
XA

o
%

then inverted using the inversion program INVDISC (which is described

g

o ity
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R
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below in Section 5.2.2). Note that both forward programs (and, of

"?.‘i'
A

course, the inversion program) performed quite well, since the

reconstructed medium almost matches the actual medium.

However, if the number of points at which the frequency and time

responses are computed is reduced, FOR! begins to break down. Figures E"“
5.2a and 5.2b compare FOR{ and BREM on the same medium as Figures :...\_i\
5.1--the only difference is that the medium responses are computed at :.:
256 points instead of 512. Note that FOR1 is breaking down badly while
BREM is still working. Figures 5.3a and 5.3b show another cause of ___
breakdown for FOR1 that does not affect BREM--large primary reflections oy ~‘
have their peaks smeared by the inverse Fourier transform, so that the
reflection coefficients read by the algorithm are too small. .;
On the other hand, large reflection coefficients can also cause
problems for BREM, due to the absence of high-order multiple reflections ;""“
in BREM's output. Figure 5.4 shows an example of this. The missing \_,:.:’.

higher-order multiple reflections constitute a form of noise, and at the

ninth layer the inversion algorithm breaks down.

5.2.2 Inversion Algorithms

Two different layer stripping algorithm computer programs were
written. One, INV1, utilized the updates (4-40) - (4-41) for a

continuous layered medium. The other, INVDISC, utilized the slightly
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Jerth
0,05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0,95
1.00
1.05
1.10
1.15
1,20
1.25
1.30
1.35
1,40
1.45
1.50

cact
5.0000
5+1000
5.1000
S5.2000
S5.2000
5.3000
5.3000
5.3000
5.3000
5.3000
5.3000
5.4000
9.4000
5.5000
9.5000
5.4000
9.4000
5.3000
5.3000
5.2000
5.2000
3.1000
5.1000
5.1000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000

.......

ccomp
4,9992
9.1102
5.1086
5.2122
5.2113
5.3171
S5.3173
S.2998
5.3013
5.3060
9.3061
5.4058
9.4055
5.5155
95.5119
5.4291
5.4300
5.3133
5.3196
5.1918
5.1939
5.1292
9.1263
4.9996
5.0014
5.0009
5.,0012
5.,0008
5.,0006
$.000%

rhoact
5.0000
4,9000
4,9000
4,8000
4,8000
4,7000
4,7000
4,6000
44,6000
4,5000
4,5000
4,5000
4,.5000
4,5000
4,35000
4,4000
4,4000
4,3000
4,3000
4.2000
4,2000
4,1000
4,1000
4,1000
4,0000
4,0000
4.0000
4,0000
4,0000
4.0000

rhocomp
$.0078
4,8959
4.9049
4,8048
4,8126
4,7096
4,7152
4.6520
4,6560
4,5430
4.5498
4.5517
4,5579
4,5648
4,5761
4.4361
4.4424
4,3626
4,3606
4,2916
4,2955
4,1391
4,1493
4,0995
4,1027
4,1086
4,1137
4,1196
4,1254
4,1313

rcl
0.0007
0.0061
0.0007
0.0060
0.0007
0.0059
0.0006
-0.0095
0.0007
-0.,0115
0.0007
0.0161
0.0006
0.0184
0.0007
-0.0288
0.0009
-0.0277
0.0008
-0.,0282
0.0008
-0.0287
0.0008
-0.025¢9
0.0007
0.0006
0.0007
0.0007
0.0007
0.0007

re2
0.0006
0.0145
0.,0005
0.0147
0.,0006
0.015¢9
0.0007
-0.0113
0.0008
-0.0111
0.0008
0.0265
0.0006
0.0314
0.0002
-0.0387
0.,0009
-0,0400
0.0014
-0.,0401
0.0010
-0.,0342
0.0005
-0.0356
0.0008
0.0006
0.0007
0.0006
0.0006
0.0007

5.1a Result of running the frequency-domain method forward
program FOR1 with the inverse program INVDISC, using
512 points.

.........




n=15 m= 9 dd=0,100 del=0.050 dt=0.00250

r1=0.,12 p2=0.195
derth cact CCOmpP rhoact rhocomr rl rcl r2 rcd

» 0.00 5.0000 S.0000 S5.0000 5.0000 0.0000 0.0000 0,0000 0.0000
0.05 S.0000 5.0000 S,0000 S.0000 0.0000 0.0000 0.,0000 0.0000
0.10 5.1000 5.1000 4.9000 4.9000 0,0055 0.0035 10,0131 0.0131
0.15 S.1000 5.1000 4.9000 4.9000 0.,0000 0.0000 0.0000 0.0000
0.20 S5.2000 5.2000 4,8000 4.8000 0,0054 0.0054 0.0138 0.0138
0.25 S5.2000 5.2000 4,8000 4.8000 0.0000 0,0000 0.,0000 0.0000
0.30 5.3000 5.3000 4,7000 4.7000 0,0053 0.0053 0.,0146 0.0146
0.35 5.3000 5.3000 4,7000 4.7000 0.0000 0.,0000 0.0000 0.0000
0.40 5.3000 S5.3000 4,6000 4.6000 -0.,0108 -0,0108 -0.,0108 -0.,0108
0,45 S.3000 5.3000 4,6000 4.6000 10,0000 0,0000 0,0000 0.0000
0.50 5.3000 S5.,3000 4.5000 4,5000 -0.0110 -0,0110 -0.0110 -0,0110
0.55 5.3000 5.3000 4,5000 4,5000 0.,0000 0.0000 0,0000 0.0000
0.60 5.4000 5.4000 4.5000 4.5000 0,0159 0.0159 0.0263 0.0263
0.65 5.4000 5.4000 4,5000 4,5000 0.,0000 0.0000 0,0000 0.0000
0,70 5.5000 5.5000 4.5000 4.5001 0.0160 0.0160 0.0277 0.0277
0.75 S5.5000 S5.5000 44,5000 4.5001 0.0000 0.0000 00,0000 0.,0000
0.80 5.4000 5.4001 4.4000 4.3999 -0.0273 -0.0273 -0,0389 -0.,0389
0.85 5.4000 S5.4000 4.4000 4.,4001 0,0000 0.0000 0.0000 00,0000
0.90 5.3000 S5.2999 4.3000 4.3001 -0.0274 -0.0274 -0,0377 -0.0377
0.95 5.3000 S.3000 4.3000 4.3000 0.0000 0.0000 0.0000 0.0000
1,00 5.2000 5.2012 4.2000 4.1984 -0.0276 -0.,0276 -0,0368 -0.0367
1.05 S$.2000 S.2012 4,2000 4,1984 0,.0000 0.0000 0.0000 0.0000
1,10 5.1000 5.1013 4,1000 4.0984 -0.0278 ~0.0277 -0,0361 -0,0361
1,15 5.1000 S.1018 4,1000 4,0978 0,0000 0,0000 0.0000 0.0000
1,20 5.0000 S5.0040 4.0000 3,9954 -0.0280 -0.,0279 -0.,035%6 -0.0354
1.25 5.0000 S5.0031 4,0000 3.9966 0.0000 0.0000 0.0000 -0.,0001
1.30 5.0000 5.0037 4,0000 3.9956 0,0000 0.0000 0.0000 0.0000
1.35 5.0000 5.0036 4.0000 3.9955 0.0000 0.0000 0.0000 0,0000
1.40 5.0000 5.0043 4.0000 3.9946 0.0000 0,0000 00,0000 0,0001 -
1.45 5.0000 5.0043 4.0000 3.9942 0.0000 0.0000 0.0000 0.0000 Teel
1.50 5.0000 5.0046 4,0000 3.9939 0.0000 0.0000 0.0000 0.0000 [

5.1b Result of running the time-domain method forward program B
BREM with INVDISC. Both forward programs work well
if 512 points are used.
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derpth
0,05
0.10
0.15
0,20
0.25
0,30
0.35
0.40
0,45
0,50
0.55
0.60
0,65
0.70
0.75
0.80
0,85
0.90
0.95
1,00
1,08
1,10
1,15
1,20
1.25
1,30
1,35
1.40
1.45
1,50

cact
5.0000
5.1000
5.1000
5.2000
5.2000
S5.3000
5.3000
5:3000
5.3000
5.3000
3.3000
$.4000
S5.4000
955000
5.3000
95.4000
54000
2.3000
5.3000
9.2000
5.2000
$5.1000
S.1000
5.1000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000

ccoar
5.0002
5.0998
J.0964
5.2037
95,2025
5.2931
5.4032
S5.4139
5.4043
5.4018
5.2934
5.3301
539727
5.505¢9
J+ 6876
J+9895
544538
543070
4.8682
4.7211
4.7024
4.602¢9
4.,4282
3.8826
3.8730
3.8780
3.8820
3.8850
3.8866
3.8904

rhoasct
5.0000
4.,9000
4,9000
4,8000
4,8000
4,7000
4,7000
4,4000
4,6000
4,5000
4,5000
4,5000
4,5000
4.5000
4,5000
4,4000
4.4000
4.,3000
4,3000
4,2000
4,2000
4,1000
4,1000
4,1000
4,0000
4,0000
4,0000
4.,0000
4,0000
4,0000

rhocome
9.,0122
4,9303
4,9443
4.8493
4,8623
4,7903
4,6387
4.52643
4.5589
4,4741
4,64486
4,7442
4,6589
4,6545
4.4027
4,3211%
44,3209
4,3434
4,9505
4,9051
4,9519
4,8362
S5.1162
6,028%9
46,0640
6,0700
6,0772
46,0878
46,1008
46,1092

AL S S S

rcl
0.0012
0.0073
0.0011
0.0070
0.0011
0.0069
0.0014
-0.0106
0.0020
“000098
0.0017
0.0142
0.0017
0,0149
0.0018
-0,0254
~-0.0219
‘0 00208
-0.,0034
~0,0275
0.0018
-0,0273
0.0007
-0.,0054
0.0013
0,0013
0,0013
0.0013
0.0014
0.0013
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rc2

0,0013
0.0149
0.0009
0.0159
0.0010
0.0153
0.0128
-0.0094
0.0010
-0.,0100
~0.,0095
0.0198
0.,0088
0.029%
0,0273
-0,0399
-0,0392
~0.0366
~-0.0383
~0,0364
0.0008
~0.0326
‘000076
“000256
0.,0010
0.001S
0.0014
0.0014
0.0014
0.0014

5.2a Result of running FOR1 with INVDISC on the medium

used in Figure 5.1, using 256 points.
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n=15 m= 8 dd=0.100 del=0.050 dt=0,00500 ~r1=0.12 £r2=0.15

derth cact ccome rhoact rhocomF rl rci r2 rc2
0.00 5.0000 5.0000 S5.0000 5.0000 0.0000 0.0000 0.0000 0.,0000
b 0.05 5.0000 5.0000 5.0000 S5.0000 0.0000 0.0000 0.0000 0.0000

0.10 5.,1000 5.1000 4.9000 4.,9000 0.0055 0.0055 0,0131 0.,0131
0.15 5.1000 5.1000 4.9000 4.9000 0.0000 0.0000 0.0000 0.0000
0.20 5.2000 S5.2000 4.8000 4.8000 0.0054 0.0054 0.0138 0.0138
0.25 S5.2000 5.,2000 4.8000 4.,8000 0.0000 0.0000 0.0000 0.0000

0.30 5.3000 S5.3000 4.7000 4.7000 0.0053 0.0053 0.0146 0.0146

0.35 S5.3000 5,3000 4.7000 4.7000 0.0000 0,0000 0.0000 0.0000

0.40 5.3000 S5.,3000 4.6000 4,6000 -0.0108 -0.0108 -0,0108 -0.0108
0,45 5.3000 55,3000 4.,6000 4,6000 0.0000 0.0000 0.0000 0.0000
0.50 S5.3000 5.3000 4.5000 4.5000 -0.0110 -0.,0110 -0.0110 -0.0110
0.55 S.3000 55,3000 4.5000 4.5000 0.0000 0.0000 0.0000 0.0000

0.60 5,4000 5.4000 4.,5000 4.5000 0.0159 0.0159 0.0263 0.,0263
‘ 0.65 5.4000 5.4000 4.5000 4.5000 0.0000 0.,0000 0.0000 0.0000
0.70 5.5000 5.5000 4,5000 4.5000 0.0160 0.0160 0.,0277 0,0277
0.75 5.5000 5.4999 4.5000 4.,5002 0.0000 0.0000 0.0000 0.0000
0.80 5.4000 5.3999 44,4000 4.,4001 -0.,0273 -0.0273 -0,0389 -0.,0389
0.85 5.4000 5.3992 4.,4000 4.4011 0.,0000 0.0000 0.0000 -0.0001
0.90 55,3000 5.2992 4.3000 4.3010 -0.0274 -0.,0274 -0.0377 -0,0377
0,95 5.3000 5.2996 4.3000 4.3005 0.0000 0.0000 00,0000 0.0000
1.00 5.2000 5.1995 4,2000 4.,2007 -0.0276 -0.0276 -0.0368 -0,0368
1,05 5.2000 S.1981 4.2000 4.2025 0,0000 0.0000 0.0000 -0.,0001
1.10 5.1000 5.0978 4.1000 4,1028 ~0.0278 -0.0278 -0.0361 -0.0361
1,15 55,1000 S.,0982 4.1000 4.1023 0,0000 0.0000 0.0000 0.0000
1.20 5.0000 4.9977 4.0000 4.0028 -0.0280 -0.0280 -0,0356 -0.,0336
1.25 S5.0000 4.9981 4.0000 4,0023 0.0000 0.0000 0,0000 0.0000
1.30 5.,0000 4.9961 4.0000 44,0049 0.0000 0.0000 0.0000 -0.0001
1.35 5.0000 4.9950 4.0000 4.,0063 0.0000 0.,0000 0.0000 -0.0001
1.40 5,0000 4.9964 4.0000 4.0042 00,0000 0.,0000 0.0000 0.0000
1.45 5.0000 4,995% 4.0000 4,002 0.0000 0.0000 0.0000 0.0000
1.50 5.0000 4.9966 4.0000 4,0039 0.0000 0.0000 0.0000 0.0001

5.2b Result of running BREM with INVDISC on the medium
used in Figure 5.1, using 256 points. FORI1 is
breaking down while BREM is still working.
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cact ccomp rhoact rhocoar rcl rc2
5.2000 $5.1905 4.,8000 4.8215 0.0018 0.0071
5.4000 5.4064 4.6000 4,6174 0.0003 0.0067
5.5000 S.47446 4,8000 4.8736 0,0338 0.0359
5.5000 S5.4814 4,8000 4,8787 0.0012 0.0014
5.5000 5.4913 4.8000 4,8815 0.0012 0.0016
5.7000 5.9613 3.0000 5.2399 0.0422 0.,0445
9.7000 S5.6242 5.2000 5.3810 0.01%94 0.0215
5.5000 5.4067 S5.4000 S5.6246 0.0008 -0.0062
5.3000 5.1843 5.4000 5.87645 -0.,0007 -0.0073
5.0000 4,.8898 5.3000 S5.6246 -0.,0531 -0,0610
4,8000 4.8308 5.0000 5.152S -0,0502 -0.0517
4,46000 4,6100 4.,8000 4,9970 -0.,0401 -0.0454
4,.5000 4.6843 4.5000 4,5037 -0.0435 -0,0417
4,5000 4,6783 4,5000 4,5217 0.0013 0.0012
4,5000 4,6759 4,5000 4.5362 0.0013 0.0013

5.3a Result of running FOR1 with INVDISC on a more
sharply varying medium than the one used in
Figures 5.1 and 5.2.

cact ceonr rhoact rthocomr rcl re2
5.2000 S5.2000 4.8000 4.8000 0.,0006 0.0061
5.4000 5.4000 4,6000 4,6000 -0.0010 0.0050
5.5000 5.5000 4,8000 4,8000 0.0312 0.,0343
3.5000 5.5000 4.,8000 4,8000 0.0000 0.0000
5.5000 5.5000 4,8000 4,8000 0.0000 0.0000
5.7000 $.7000 35,0000 5.0000 0.,0398 0.0464
5.7000 5.7000 5.2000 3.2000 0.0196 0.0196
5.5000 5.4998 5.4000 S5:.4002 -0.0005 -0.,0072
5.3000 5.2997 5.6000 5.6003 -0.0018 -0.0080
5.0000 4,9996 9.3000 5.3004 -0.0587 -0.0671
4,8000 4.7998 5.0000 5.0002 -0.0508 -0,0559
4,6000 4,6011 4,8000 4,7981 -0.0430 -0.0477
4,5000 44,5026 4,5000 44,4966 -0.0438 -0.04461
4,5000 4,5024 4,5000 4,4968 0.0000 0.0000
4,5000 4,5015 4,5000 4,4%977 0.0000 0.0000

5.3b Result of running BREM with INVDISC on the medium
used in Figure 5.3a. FOR1 has trouble synthesizing
the larger primary reflections, while BREM does not.
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derth cact ccomp rhoact rhocomp rci rc2
0.10 5.5000 55,5000 5.5000 5.5000 0,0985 0.1723
0.20 6.0000 66,0000 66,0000 6.0000 0.,0907 0.,2135
0.30 5.5000 5.5451 5.5000 5.4517 -0.0907 -0.2053
0,40 5.0000 5.0729 5.0000 4,9232 -0.,0985 -0,1717

b 0.50 5.0000 5.0899 5.0000 44,9056 0.0000 0.0022
0.60 5.0000 5.0897 5.0000 4,9063 0.0000 0.0000

0.70 4.5000 4,6191 5.,5000 5.3509 -0.0082 -0.0601
n,80 4,0000 4,1681 6.0000 S5.7465 -0.0183 -0,0552

0,70 4.00v0 $.5158 6.5000 7.4288 0.0400 0.0008
1.00 4,5000 4,1695 7.0000 7.5816 0.0984 0.1371
1.10 4,0000 3.,5380 7.0000 7.9433 ~0.0619 -0,0998
P 1.20 3.5000 3.1776 6.5000 8.8867 0.000¢9 -0.015¢9

1,30 3.0000 3.2900 6.,0000 8.5729 -0.0001 0.0048
1.40 3.,0000 3.1303 6.0000 ?.0136 -0.,0005 -0.,0073
1.50 3.0000 3.0826 6.0000 ?.1655 0.0005 -0.0015
1.60 3.0000 3.3306 6.0000 8.4063 -0.0035 0.0071
b 1.70 3.0000 3.4560 6.,0000 8.06491 -0.0014 0.0045

1.80 3.0000 346155 6.0000 7.2067 0.0003 0.0084
1.90 3.0000 3.7153 6.0000 7.4817 -0.0007 0.0047
2.00 3.,0000 3.7111 6.0000 7.4881 -0.0002 -0.0004
2.10 3.0000 3.7230 6+0000 7.4622 -0.,0001 0.,0006
2.20 3.0000 3,7323 6.,0000 7.4410 -0.0001 0.,0004 ST
2.30 3.0000 3.7415 6.0000 7.4208 -0.0001 0.0004 v
2.40 3.0000 3.7574 6.0000 7.36881 0.0000 0.000¢9 380808
2.50 3.,0000 3.7523 6.,0000 7.3989 0.0000 -0.0003 el

5.4 Result of running BREM with INVDISC on a sharply )
varying medium. The failure of BREM to generate tertiary
reflections (second-order multiple reflections) causes errors.
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more complicated updates (4-50) for a discrete layered medium. Other- 3

."{",
M)

wise, both algorithms were the same. The discrete wave updates (3-83)

> ™
"L

were used for both algorithms, so that each step of the algorithm would o

L
l' ",1 "

constitute a Givens rotation of the normalized waves. Actually, the

» .'.‘

'l.'lr

effect of transmission losses for the media used in these runs is less

&

than one part in a thousand. ®K;

Modification of the algorithms

The results of running these two algorithms showed immediately :
that one modification was necessary. Although Bultheel (1979) proved ® .l
that the fast Cholesky algorithm was backward stable, the algorithm used
for the non-normal incidence inverse problem is not, strictly speaking, e,
the fast Cholesky algorithm (although the two algorithms are quite ® ‘
similar). The main difference is that the computed wave speed in a
layer must be used to project ahead to the arrival time of the next
primary reflection. That this is a potential source of instability may be ®

seen as follows. o

In running the algorithm on a computer, time, as well as depth,
must be discretized. Suppose that the actual arrival time of a primary ®
reflection is t = (n + } - €)At, where At is the discretization time. Then
the arrival time of the reflection will be rounded down to nAt. Now
suppose that due to a slight error in the last reconstructed value of ° e
wave speed, the projected time of arrival of this primary reflection (i.e.,
the time at which the algorithm will look for this reflection) is
t =(n + 3 +c)At. This time will be rounded up to (n + 1)At, and even ® :
though the error in time is only 2cAt, the algorithm will miss this
primary reflection. »

This instability can be fixed by having the algorithm read the ®

...............................
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upgoing wave at not only the projected time nit, but at the previous \‘
® and following times (n-1)At and (n+l).t, respectively. Summing these R
three values of the upgoing wave makes it very unlikely that the E;
primary reflection will be missed, unless the computed wave speed is in ,;;:‘.E
® considerable error. Summing three values of the upgoing wave also ]
helps compensate for the spreading of the reflected wave itself due to \:i—,
bandlimitation of the computed medium response. Note that there is no ::
® danger of adding in a multiple reflection from previous layers, since all r':
of the succeeding multiple reflections from the previous layers have been "
eliminated by the algorithm.
® Figures 5.5 show that this modification works well. BREM was used g
to generate the forward response of the given medium, and INV1 was :-?_f-"__
used to invert this response, first without the modification (Figure 5.5a), “‘
PY then with it (Figure 5.5b). Note that without the modification the N t;;
algorithm misses the primary reflection from the sixth interface (the ~
computed reflection coefficient rc2 is zero) and breaks down completely, ~\\~.
PY while with the modification it works fairly well through forty layers. :':::i
One problem encountered by employing this modification is worth
noting. Near a turning point, the vertical wave speed becomes very
P large, and the time differences between primary reflections become very _
small. If the time difference over which the algorithm projects to look . :',.f_
for the next primary reflection becomes less than 34t, it is possible for :
s the algorithm to read the same primary reflection twice! An example of '.:.':"
this double reading is shown in Figure 5.6, in the twelfth and in several
succeeding layers.
PY The conditions under which this double reading becomes possible -...
can be derived as follows. The layer thickness 4z divided by the L
L




n=30 m= 9 dd=0.100 del=0.100 dt=0.00500 #1=0.,12 £2=0.15

R

derth cact ccomp rhoact rhocomr rl rcl r2
0.00 5.0000 55,0000 5.0000 5.0000 0.0000 0.0000 0.0000
0,10 4.9500 4.9500 35,0000 55,0000 -0.0078 -0.0078 -0.0113
0.2 4,9000 4,9000 S5.1000 S5.1000 0.002: 0.0021 -0.0013
0,30 4.,8000 4.8000 5.2000 5.2000 -0.0059 -0.00S9 -0.0122
0,40 4,7000 44,7000 5.3000 S5.3000 -0.0061 -0,0061 -0,0119
0.50 4,6500 4,6500 S,4000 5.4000 0.00135 0.0015 -0.0012
0.60 4.,46000 4,6000 5.5000 5.5000 0.0014 0.0014 -0.0012
0,70 4.5500 4,5500 S.6000 5.6000 0,0012 0.0012 -0.0013
0,80 4.5000 4,5000 5.7000 55,7000 0.0010 0.0010 -0.0014
0.90 4,4500 4,4500 5.8000 5.8000 0.0009 0.0008 -0.001%5
1.00 4,4000 4.,4000 5.9000 5.9000 0.0007 0.,0007 -0,00146
1.10 4,3500 4.3500 &.0000 &6.0000 00,0005 0.0005 -0,0014
1,20 4.3000 4,3000 46,1000 6.1000 10,0003 00,0004 -0.0017
1.30 4,2500 4.,2500 6.2000 46.2000 10,0002 0.0002 -0,0018
1.40 4.,2000 4,2000 6.3000 6.3000 00,0000 0.0000 -0,0019
1,50 4,2000 44,2000 6.4000 6.4000 10,0079 0.0079 0.0079
1.60 4,2000 4,2000 6.5000 &4.5000 0.,0077 10,0078 10,0077
1.70 4,2500 4.,2500 6.6000 6.6000 0.0156 0.015%6 00,0179
1.80 4.,3000 4,3000 6.7000 6.6999 0.0154 00,0155 0.0174
1.90 4,3500 4,35%500 6.8000 6.7998 0.,0153 0.0153 0.0174
2.00 4,4000 4,3999 6.9000 4.9000 00,0152 0.0152 0.0173
210 4.4500 44,4500 7.,0000 6.9999 0.0151 0.,0151 0.0173
2.2 4.5000 4.5005 27,1000 7.0983 0.014%9 0.0149 0.,0173
2,30 4.,5500 4.,5504 7.2000 7.1986 0.0148 0.0148 0.0172
2.40 4,5500 4,5510 7.2000 7.1972 0.0000 00,0000 0.0000
2:30 4,6000 4,6008 7.3000 7.2979 0.0147 0,0147 0.0172
2,40 4,6500 4.,6505 7.4000 7.3986 0.0146 0.0146 0.0172
2,70 4,7000 44,7004 7.3000 7.4989 0.0145 0.0145 0.0172
2.80 4.8000 4.8002 7.4000 7.3997 0.0089 0.0089 0.0147
2,90 4.9000 4,9003 7.3000 7.2997 0.0088 0.0088 0.0151
3.00 S5.0000 S5,0003 7.2000 7.2000 10,0087 0.0087 0.0156
3.10 55,1000 S.0998 7.1000 7.1010 0.0087 0.0087 0.0162
3,20 5,2000 35.1996 7.0000 7.0016 0.0086 0.0086 0.0170
3,30 5,2500 5.2496 6.9000 6.9013 00,0007 0.0007 0.0052
3.40 55,3000 95.2995 &6.8000 6.8016 0.00068 0.0006 0.0054
3.50 55,3500 S.3496 6.7000 646.7013 0.0005 0.,0005 0.0056
3.0 5.4000 5.3452 6.6000 6.7165 0.0004 0.0004 0.0058
3.70 5.,4%00 5.4014 6.5000 6.5975 0.0004 0.0000 0.0060
3.80 5.5000 5,4543 6.4000 6.4902 0,0003 00,0003 0.0063
3.20 S5.5500 S5.4526 6.3000 6.4964 0.0002 0.0002 0.0066
4,00 5.6000 5.4514 6.2000 6.5006 00,0001 0.0001 0.0089
4,10 5.3500 5.4511 6.,1000 6.5010 -0.0162 Q0.0000 -0.0230
4.2 5.5000 5.5806 6.0000 66,0347 -0.0163 -0,0163 -0.0227
4,30 5.4500 5.5806 S.9000 6.0347 -0.,0164 0.0000 -0.0224
4,40 S5.,4000 65,6928 5.8000 5.6279 -0.0165 -0.01865 -0.0222
4,50 55,3500 5.6590 95,7000 $.,5047 -0.,0167 -0.0166 -0.0220
4,50 5,3000 S5.6589 5.6000 5.5052 -0,01468 0.0000 -0.0218
4,70 55,3500 5.6S82 5.5000 5.5071 -0.,001%1 0.0001 0.0040
4.80 55,4000 S.46588 S5.4000 S.5061 ~-0.0012 0.0000 0.0041
4.90 95,4000 5,6592 S5.4000 S5.5057 0.0000 0.0000 0.0000
5.00 5,4000 35.6592 5.4000 5S5.5061 0.0000 0.0000 0.0000
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5.5a Result of running BREM with INVDISC while reading
the reflection coefficient from a single value of the
upgoing wave. Errors in the computed wave speeds
soon cause the algorithm to miss primary reflections.
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-0.0012
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0.0175
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n=30 m= 9 dd=0.100 del=0,100 dt=0,00500 r1=0.12 PQ=0.15225

Jepth cact ccamp rhoact rhocome rl rcil r2 rc2
0.00 5.0000 5.0000 5.0000 S5.0000 0.0000 0,0000 0.0000 0.0000
0.10 4.,9500 4.9500 5.0000 95,0000 -0.0078 -0.,0078 -0.,0113 -0,0113
0.20 4.9000 4.9000 55,1000 5.1000 0.0021 0.0021 -0.0013 -0.0013
0,30 4,8000 4.8000 5.2000 5,2000 -0.005%9 -0.0059 -0.0122 -0.0122
) 0.40 4.,7000 44,7000 5,3000 S5.3000 -0.0061 -0,0061 -0.0119 -0.0119
0,350 4.6500 4.6500 55,4000 5,4000 0.0015 0,0015 -0.0012 -0.0012
0.0 4.6000 4.6000 5,5000 5,5000 0,0014 0,0014 -0,0012 -0.,00172
0,70 4.5500 4.3500 55,6000 5.46000 0.0012 0.0012 -0.0013 -0,0013
0.80 4.35000 4.5000 5.7000 S5.7000 0.0010 00,0010 -0,0014 -0.0014
0.90 4.4500 4.4500 S.8000 15,8000 0.0009 0.0008 -0.0015 -0.0015
) 1.00 4.4000 4.4000 5.9000 5.9000 0.0007 0,0007 ~0.0016 -0.0016
1.10 4.3500 4.3500 6.0000 6.0000 0.0005 0.0005 -0.0015 -0.,0016
1,20 4.3000 4.3000 6.1000 6.1000 0.0003 0,0004 -0,0017 -0.0017 R
1.30 4.2500 14,2500 6.2000 6.2000 0.0002 0,0002 -0.0018 -0.0018 LT
1.40 4.2000 4.2000 6.3000 64,3000 0.0000 0.0000 -0,0019 -0.0019 R
1.50 4.2000 4,2000 6.4000 66,4000 00,0079 0.0079 0.0079 0.0079
) 1.60 4,2000 4,2000 6.5000 6.5000 0.0077 0,0078 0.0077 0.0078
1,70 44,2500 4,2500 4.6000 6.6000 0.0156 0.0156 0.0175 0.0175
1.80 4.3000 4.,3001 6.7000 6.,6998 0.0154 00,0155 0.0174 0.0175
1,90 4,3500 4.3501 6.8000 6.7997 0.0153 0.0153 0.0174 0.0174
2,00 4.4000 4.4003 6.9000 6.8992 0.0152 0.0152 0.0173 00,0173
2,10 4.,4500 44,4505 7.0000 64,9985 0.,01%1 0.01S51 0.0173 0,0173 aTaie
] 220 4.5000 4,35006 7.1000 7.0983 0.0149 0,0149 00,0173 0.0173 Bk
2,30 4.5500 4.5506 7.2000 7.,1980 0.0148 0.0148 0.0172 0.0172 -
2.40 4,5500 4.,5510 7.2000 7.1970 0.0000 0.0000 0.0000 0.0000
2,30 4.6000 4.64012 7.3000 7.2965 0.0147 0.0147 0.0172 0.0172
2.60 4.6500 4.6512 7.4000 7.3946 0.0146 0.0146 0.0172 0.0172
2,70 4,7000 4.7010 7.5000 7.496%9 0.0145 0.0145 0.,0172 0.0172
[ ] 2.80 4.8000 4.8011 7.4000 7.3948 0.0089 0.0089 0.0147 0.0147
2,90 4.9000 4.9013 7.3000 7.2965 0.0088 0.,0088 0.0151 0.0151
3,00 55,0000 5.0012 7,2000 7.,1971 0.0087 0.0087 0.0156 0.015¢6
3.10 95,1000 55,1008 7.1000 7.,0981 0.0087 0.0087 0.0142 0.0162
3.20 5.2000 5.2005 7.,0000 4.9987 0.0086 0.0086 0.0170 0.0170
3,30 5.2500 95,2505 6.9000 6.8988 0.0007 0.0007 0.0052 0.0052
[ ] 3.40 5.3000 5.3005 6.8000 4.7988 0,0006 0.00056 0.00S54 0.0054
3.30 5.3500 5.3505 6.7000 6.4990 0.0005 0.0005 0.0056 0.0056
3.60 3.4000 5.4003 4.6000 6.5993 0.0004 0.0004 0.0058 0.0058
3.70 5.4500 5.4503 6.5000 6.4993 00,0004 0.0004 0.0060 0.0060
3,80 35.5000 5.5003 6.4000 6.3994 0.0003 0,0003 0.0063 0.0063
3.90 5.3500 S,5502 4.3000 6.29946 0.0002 0.,0002 0.0066 0.0066
4.00 5.6000 S5.4002 6.2000 6.1997 0.0001 0,0001 0.0069 0.0069
4,10 5.5500 5.5500 6.1000 6.1001 -0.0162 -0,0162 -0.0230 -0.0231
4.20 5.5000 5.5002 6.0000 5.9996 -0.,0163 -0.0164 -0,0227 -0.,0227
4,30 5.4500 55,4502 5.9000 5.8995 -0.0164 -0,0164 -0.0224 -0.0224
4.40 5.4000 5.4002 5.8000 S.7996 -0.0165 -0,0165 -0.0222 -0.0222
4.50 95,3500 5.3496 5.7000 55,7006 -0.0167 -0,0167 -0.0220 ~0.0221
b 4.60 5.3000 5.2994 5.6000 5,6008 -0,0168 -0,0168 -0.0218 -0.0218
4.70 5.3500 5.3495 5.5000 S5.500% -0.0011 -0.,0011 0.0040 0.0040
4.80 5.4000 5.3990 S5.4000 95,4015 -0.0012 -0.0012 0.0041 0.,0041
4.90 5.4000 5.3992 5.4000 5.4012 0.0000 0.0000 0.0000 0.0000
5.00 S5.4000 5.3992 5.4000 5.4013 0.0000 0.0000 0.0000 0.0000

‘ 5.5b Result of running BREM with INVDISC while reading

the reflection coefficient from three neighboring values
of the upgoing wave. This corrects the instability
revealed in Figure 5.5a.
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5
5
3
i .
. T SLS000 55,7481 4,5%000 3487 0.0000 0.0000 D.0000 D00
T B SLR0a0 5.7481 4,5000 3487 0.0000  CGL0000  DL0000 DLt
. G %.8000 0 5.6774 0 4.4000 12410 -0.0211 -0.,0212 -0,0243 ~0,0C4:
E dass L0000 S5,5834 0 4.4000 1394 0.0000 -0.0212 RSV
- T 9.4000 0 5.5833 0 4.4000 13920 0.0000 -3.0001 ~GL 000 oK
i GLET 0 G,a000  5.5833 4.3000  4.1390  0.0000 0.0000 0.0000 4, 5000 o
o .20 52,3000 $5.4900 4,3000 037¢ -0.,0216 -0,0216 -0.0245 ~0,02434
. FLFL M E0D0 B,3917 0 4.3000 +P423 0 QL0000 002146 2.,3000 ~o. 008
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. LT S AD00 0 S.,3898  4.3000 «FA33 0.0000 H.0000  0L.ID00 DGO
. 1.0 S.2000 S.2936 4,2000 +3471 -0.0220 -0.,0220 -0,024% -0,02%
! 1,02 5.2000 941919 4.,2000 v 7582 00,0000 -0,0221 GeQ000 —, G0N
. 1203 5.2000 55,1894 44,2000 v 79792 0.0000 00,0000 0.0000 =-0,0001
- NI 2. 2000 5.18%4 4.,2000 75399 0.0000 G0LGOOD  0L00D0 OLOOo
? iole %,1000 S.1870 4.1000 7418 -0.0224 00,0000 -C.,0293 ~0,000!
b Lel2 2401000 §,0836 4.1000 6726 040000 -0,0226  OL,0000 ~p, 0l
V. .19 59,1000 5.085S3 4.1000 v &721 0.0000 -0.,0001 00,0000 ~0,0001
oL 1060 5,0853 4.1000  3,6721 0 0.0000  0.0000  0.0C00  GLiseo.
e 30000 S,815 4.0000 L0328 ~0,022% -0.023Q -0.0288 0O 0w
5.6 Result of running BREM with INVDISC showing the R
double reading of primary reflections that can occur eE
from the alteration used in Figure 5.5b. DA
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derth cact ccomp rhoact rhocoms rcl re?2
0.10 5.0000 5.0000 5.1000 5.0990 0.0099 0.0099
0.20 5.1000 5.1038 5.1000 5.0939 0.0106 0.0232
) 0,30 5.2000 5.2075 $.2000 5.1881 0.0201 0.0338 o
0.40 5.3000 5.3112 5.1000 5.0826 0.,0005 0.015%4 -
0.50 5.4000 S5.4147 5.0000 4.9777 0.0002 0,01464 S
0.60 5.5000 5.5182 5.0000 4,9737 0.0099 0.0277 }
0.70 5.5000 5.5182 55,0000 4.9737 0.0000 0.0000 5‘
0.80 5.5000 5.5182 S5.0000 4,9736 0.0000 0.,0000 .
) 0.90 5.4000 S.4247 4,9000 4,8459 -0.0200 -0.0378 a3
1.00 $.3000 5.3313 4,8000 4,7580 ~-0.0204 -0.0366 -
1.10 5.2000 $.2378 4,7000 4,46503 -0.0208 -0.0357
1,20 5.1000 5.1448 4,46000 4,5422 -0.0211 -0.,0348
1.30 55,0000 5.0526 4,5000 4.4336 -0.0216 -0.0341
1.40 5.0000 5.0538 4,5000 4,4324 0,0000 0.0002
P 1.50 5.0000 5.0542 4,5000 4.4321 0.0000 0.0001

5.7a Result of running BREM with the continuous medium
inversion program INV]1 for a fairly smooth medium.
This shows INV1 works fairly well for such a medium.

# derth cact ccomp rhoact rhocomsr rel rc2
0.10 5,0000 5.0000 5.1000 5,1000 0.0099 0.0099
.20 5.1000 5.1000 5.1000 5.1000 0.,0106 0.0232
0,30 5.2000 5.2000 5.2000 5.2000 0.0201 0.0338
0.40 5.3000 5.,3000 5.1000 5.0999 0.000%5 0.0154
0.50 5.4000 5.4000 5.0000 4,9999 0.0002 0.0164
P 0.60 5.5000 5.5000 5.0000 5.0000 0.0099 0.0277
0.70 5.5000 5.5000 5.0000 5.0000 0.0000 0.0000
0.80 5.5000 5.5001 5.,0000 4,9999 0.0000 0.0000
0.90 5.4000 5.4001 4.9000 4.8999 -0,0200 -0.0378
1,00 5.3000 5.3000 4.8000 4,8000 -0,0204 -0.0366
1.10 5.2000 $.,2002 4,7000 44,6998 -0.0207 -0.0356
L 1.20 $5.1000 5.0997 4.6000 4,6004 -0.0211 -0.0349
1.30 5.0000 4.,9986 4.5000 4,5015 -0.,0216 ~-0.0343
1.40 5.0000 4,9978 4,5000 4,5025 0.0000 ~-0.0001
1.50 5.0000 4.9975 4,5000 4.5028 00,0000 0.0000
5.7b Result of running BREM with INVDISC on the
P medium used in Figure 5.7a. Both inversion

programs work well on fairly smooth media.
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: desth cact ccomp rhoact rhocomp rci rc2
> 0.10 5.2000 5.2000 4,8000 4.8000 0.0006 0.,0269
i 0,20 5.4000 5.4000 4,6000 4,6000 -0,0010 0,0301%
0.30 5.95000 5.5000 4,8000 4,8000 0.0312 0.0489
0.40 5.5000 5.5000 4,8000 4,8000 0.0000 0.0000
0.50 5.5000 5.5000 4,8000 4,8000 00,0000 0.0000
0.60 §5.7000 5.7000 55,0000 55,0000 0.0398 0.0810
0.70 5.7000 5.7000 5.2000 5.,2000 0.,0196 0.0196
0.80 $5.5000 5.5000 5.4000 5.4000 -0.000S -0,041¢9
0.90 5.3000 $.2997 5.6000 5.6009 -0,0017 ~-0.,0357
1.00 5.0000 5.0000 5.3000 S5.3005 -0.0587 -0.0995
1.10 4,8000 4.7966 5.0000 5.0043 -0.0508 -0.0738
1.20 4,6000 4,5962 4,8000 4,8046 -0.,0429 -0,0627
1.30 4,5000 4,4909 4,.5000 4,5100 -0.0438 -0.0532
1.40 4,5000 4,4897 4,5000 4,5113 0.0000 -0.0001
1,50 4,5000 4,4917 4.5000 4,5092 0.0000 0.0002
5.8a Result of running BREM with INVDISC on a
more sharply varying medium than the one used
in Figures 5.7. INVDISC still works well.
derth cact ccoms rhoact rhocoms rcl rc2
0.10 5.2000 5.2161 4.8000 4,7752 0.0006 0.0269
0.20 5.4000 9.4311 4,6000 4,35545 -0.,0010 0.0301
0.30 5.5000 5.5328 4,8000 4,7464 0.0312 0.0489
0.40 5.5000 $.,5328 4.8000 4,7464 0.0000 0.0000
0,50 5.5000 5.5328 4.8000 4.74464 0,0000 0.0000
0.60 5.7000 S.7472 5.0000 4,9248 0.0398 0.0810
0.70 5.7000 S.7472 5.2000 5.1180 0.0196 0.0196
0.80 95.5000 5.9775 5.4000 5.277%5 ~0,0005 -0.,0419
0.90 $5.3000 5.40RR 5.46000 S5.4317 -G.001p ~-0.03SA
Levw $,0000 S5.avol 9.3VVV 55,4323 00,0000 -0.,0001
1.10 4,8000 5.4069 5.0000 S5.,4341 0.0000 -0.,0002
1,20 4,6000 S5.4052 4,8000 5.435%5 0.0000 -0,0003
1.30 4,5000 5.4042 4.5000 S.4367 0,0000 -0.0002
1.40 4,5000 $5.4087 4,5000 5.4307 -0.0001 0.0007
1.50 4,5000 5.4122 4,5000 5,4247 -0,.0002 0.0004

5.8b Result of running BREM with INV1 on the
medium used in Figures 5.8a. INV1 now breaks
down, as expected.
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dJerth
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

Jesthn
V.00
001:)
0.2C
.30
’\)040
¢.50
'.".60
0070
0.ED
DI
t.00
1,10
1,20
1,39
1,40
1.350

m= 9 dd=0,100 del=0,100 dt=0.00250 £1=0.05 ~2=0.15

cact

5.0000
5.2000
5.4000
5.5000
5.5000
$5.5000
5.7000
S5.,7000
S5.5000
55,3000
5.0000
4,8000
4,6000
4,5000
4,5000
4,5000

cact

5.0000
52000
$5.4000
5.3000
5.5000
5.5000
S5.700¢
5.7000
E.8000
5,30650
5.0000
4.,8000
4,46000
4,5000
4,5000
4,5000

ccome rhoact rhocaome 1 recl r

5,0000 5.0000 S.0000 0.0000 0.0000 0.0000
5.2000 4.8000 4.8000 0,0006 0.0006 0.0269
55,4000 4.4000 4.6000 -0.0010 -0.0010 0.0301
55,5000 4.8000 4.8000 O0.0312 0.,0312 0.0489
55,5004 4.8000 4.7996 0.0000 0,0000 0.0000
55,5004 4.8000 4.7996 00,0000 0.0000 0.0000
5,7003 5.0000 4.9997 0.0398 0,0398 0.0810
55,6993 5.2000 5.2007 0.0196 00,0196 0.0196
5,2985 55,6000 S.6017 -0.0018 -0.0018 -0.0357
4,.99468 S5.3000 S5.3037 -0.0587 -0.0587 -0.0996
4.7974 S.0000 5.0029 -0.0508 -0.0508 -0.0734
4.6030 4,8000 4,79467 -0.,0429 -0.0429 -0,0627
4,5013 4.5000 4.4964 -0.0438 -0.0441 -0,0528
4.5085 4.5000 4.4844 0.0000 -0.0003 0.0000
4.,5092 4.5000 4.4856 0.0000 0,0000 0.0000

5.9a Result of running BREM with INVDISC on the
medium used in Figures 5.8, showing the actual
(rl, r2) and computed (rcil, rc2) reflection

coefficients.

CCOmP rnosct rhocoms i rcl r2

5,00600 S5.0000 5.0000 €.0200 0.0000 §.Q0000
S,2161 4.8000 4.7751 $.000&8 C£.0006 0.01e%
5.4311 4,60C0 4.55439 -0.0G10 ~C.o010 QG358
5,5328 4,8000 4.7453 0.%5312 0.0312 Q.52e-
5.5128 4.,8000 94,7463 0.0000 0.C000 0.0000
5.5328 4.8000 4.7463 D GI00 (G eXaels] G+OGGD
S,7472 S5,0000 4.9247 0.03%78 0.CI%g ). 0210
5.7472 5.,2000 95,1178 0.0196 (0.C194 G.0ivA
S.977%5 S.4000 SL2AP7 =0.3008 —0.000E =0, (031

5,4088 S.6900 $.4314 -0.,001% -¢.0018 =D, 007
5.4081 S.3600 5.4320 -0,04387 S.0000 =007
55,4069 5.0000 5.,43138 -0.05068 0G,00C0 ~GW0734
55,4052 4,5000 5.,43%1 -C.042Y 0.0000 ~Qs Gl
5.4042 4,5000 5.4353 -0.0438 0.0000 -0.0%28
5,4087 4.5000 5.4302 0.0000 -0.0001 0.0000
5.4122 4.5000 S.4242 0.0000 -0.06602 0.0000

5.9b Result of running BREM with INV1 on the
medium used in Figures 5.8. Note that even
though the reflection coefficients are read
perfectly through ten layers, the computed wave
speeds and densities are in error, showing that
the problem lies in the medium parameter updates.
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compensates for the square root extraction required by INVDISC. In
the sequel, INVDISC will be used as the inversion algorithm.

Some other comments on the use of these algorithms are appropriate.
If FOR1 is being used to generate the medium response, it is important
that te = 2™At be chosen large enough to avoid aliasing when the
discrete inverse Fourier transform is taken (recall Aw= 21r/tf). Ganley
(1981) recommends choosing tf to be four to eight times the two-way
travel time to the deepest interface. This seems excessive; choosing tf
to be half that size gave satisfactory results. If the source spectrum
S (w) is known, then the impulse response of the medium is the inverse
Fourier transform of ﬁ(w) /§(w), where ﬁ(w) is the medium response to
S(w). This can be used to compensate for the smoothing (low pass
filtering) action of the Radon transform. The finite size of the array
used to measure the medium response will result in aliasing between
wavenumbers, even though the medium response decays to zero with
distance; the situation is analogous to the time aliasing problem discussed
above, except that the array cannot in general be made big enough to
avoid aliasing. However, this will not be a problem in the current

experiment as long as the two angles of incidence are widely separated.

5.2.3 Frequency-Domain Layer Stripping Algorithms

The Schur algorithm and dynamic deconvolution versions of the
discrete medium layer stripping algorithm can also be used to
reconstruct a layered medium. The main feature of these algorithms is
that they use frequency-domain data: ﬁ(w) , rather than R(t). Thus
they avoid the necessity of performing an inverse Fourier transform and

its attendant complications.
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vertical wave speed c(z)/cos £(z) gives the one-way travel time through

A
> 28

OO 2
LT - |2
.I. 7, L'f."_’lt.’l:‘k.'.‘ .

B the layer. If double this time (the two-way travel time) is less than 3At,

then a double reading may occur. This condition may be written as ,

Az cos 6(z)/(at c(z)) < 3/2 , (5-5) RN

X
i

so that if Az is too small, At too large, or cos 6(z) too small (e.g., near
a turning point), a double reading may result. The left side of (5-5)
was 0.8 when the first double reading of Figure 5.6 occurred.

Double readings can be avoided if care is taken to ensure that
(5-5) is never satisfied. An slternative is to monitor the left side of
(5-5), and replace the modified read at three neighboring times with a

read at a single time whenever (5-5) is satisfied.

Comparison of the performances of INV1 and INVDISC

A comparison of the performances of INV1 and INVDISC reveals
exactly what would be expected: both algorithms work well on media with

fairly smooth changes, but INV1 breaks down on media with sharp changes.

Figures 5.7 show both INV1 and INVDISC satisfactorily inverting a

smoothly varying medium. Here INVI might be preferred since its

parameter updates are simpler and do not require a time-consuming
square root extraction. Figures 5.8 and 5.9 show INVDISC still working Eﬁ""
almost perfectly, while INV1 breaks down. Figure 5.9, in particular, i
shows that INV1 is reading the reflection coefficients correctly, proving
that the error lies in the update equations for the medium parameters.

The conclusion is thus that INVDISC works very well on all types

of layered media, whether slowly varying or sharply varying, while INV1 RS

breaks down for sharply varying media. This advantage more than
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n=12m< 94d=0.10del=0,10df=1.000,1=0,08,2=0.15

derth
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1,10
1.20
1,30
1.40
1.50

n=15m=
derth
0,095
0.10
0.195
0.20
0,25
0.30
0,35
0,40
0,495
0.50
0.39
0.60
0,65
0.70
0.795
0.80
0.85
0.90
0095
1,00
1005
1,10
1015
1,20
1.25
1.30
1.35
1040

cact
35,1000
5.2000
5.3000
5.4000
5.5000
5.4000
5.3000
5.2000
9.1000
$.,0000
35,0000
5.0000
$5.0000
5.0000
5.,0000

ccompP
5.1014
5.2067
3.3013
5.4016
5.5003
5.3982
5.2950
9.1950
95,0955
4.9966
4,9966
4,.9951
4.9944
4.9951
4,9946

8dd=0.,10del=0,05df=1

cact
5.0000
S5.1000
9.1000
S.2000
5.2000
9+.3000
5.3000
53000
5.3000
3.3000
$5.3000
5.4000
5.4000
5.95000
5.5000
3.4000
5.4000
S5.3000
3.3000
3.2000
95,2000
9.1000
3+1000
9.1000
5.0000
5.0000
5.0000
5.0000

ccomp
3.0016
3.1081

5.1225
5.2287
5.2373
9.3248
5.3104
52965
5.2890
5.2930
9.3073
5.3896
5.3792
5.4824
5.4855
53789
S5.4103
5.2921
5.2791
5.1351
5.0926
35,0044
5.0484
S5.1175
5.1376
5.1498
5.1574
S.1614

rhoact
5.1000
5.2000
95,3000
5.4000
5.5000
5.6000
5.7000
5.8000
5.9000
6.0000
6.,0000
6.,0000
6.0000
6.0000
6.0000

rhocomr
5.0993
5.1895
S5.2928
5.3960
$.4979
5.5942
J+¢6975
5.7974
5.8972
9.9951
5.9950
S.9979
5.9997
5.9988
5.9987

+000p1=0,15,2=0,12

rhoact
S5.0000
4,9000
4,%9000
4,8000
4.,8000
4,7000
4,7000
4,46000
4,6000
4.5000
4,5000
4,5000
4,5000
4.3000
4,5000
4,4000
4.4000
4,3000
4,3000
4,2000
4,2000
4,1000
4,1000
4,1000
4,0000
4,0000
4,0000
4,0000

rhocoms
$5.0019
4,8888
4,8687
4,7558
4,7424
4,6526
4.46756
4.6284
44,6466
4.5594
4,5387
4.5326
4.5456
4,5120
4,35165
44,4426
4,4304
4,3838
4,4224
4,4144
4,4905
4,4453
4,3873
4,2248
4,1906
4,1701
4,157¢9
4.1526

rcl
0.0218
0.0211
0.0Q208
0.0211
0.0205
-0.,0029
-0.,0027
-0.,0029
-0.0031
-0.0035
0.0000
0.0001
0.0001
0.0000
-0.,0001

recl
0.0006
0.,0133
0.0014
0.,0141
0.0007
0.0127
-0.,0013
-0.0086
0.0000
-0.0084
0.0014
0.0209
-0.,0013
0.0245
0.,0014
-0.0352
0.0048
~-0,0363
0.0011
-0.,0364
-0,0014
-0.,025%5
0.0038
~-0.,00264
0.0007
0.0005
0.0004
0.0003

5.10 Result of running FOR1, without its inverse
Fourier transform, with the Schur algorithm
inversion program SCHUR.

rc2
0.0334
0.0342
0.0336
0.0360
0.0367
-0.,0196
-0.0179
-0.0163
-0.0154
‘000147
0,0000
"000001
0.0000
0.0001
-0.,0001

rce
0.0004
0.0052
0.0002
0.0050
-0.0001
0.0043
0.0002
-0.0073
0.0008
-0.0088
0.0000
0.0124
-0.0002
0.0128
0.0010
-0,0231
0.0014
-0.0241
0.0023
-0,0236
0.001¢9
-0.0188
0.0003
-0.,0080
-0.,000¢9
-0.000S5
-0.,0003
0.0000




233

From Chapter III, the Schur algorithm for the discrete medium non-

normal incidence inverse problem consists of the set of equations

D(z+3,u) = ﬁ(z,w)e—j/*A/c'(z) - r(z)Aﬁ(z,w) (5-6a)
Ulz+h,0) = O(z,w)d Y (2 _ p(z) 4D(z,w) (5-6b)
r(z) = T%/;wejwﬁ(z,w)dw (5-6¢)
T(z) = fozdz/c'(z) (5-6d)
e'(2) = e(2)/(1-c(2) p?)? (5-6e)

taken twice (one for each experiment) and the discrete medium parameter

updates (4-50). The initial conditions are

D(0,.) = 1 (5-Ta)

000, = R(w) (5-7b)

]

where ﬁ(w) is the frequency response of the layered medium. Note that
the complex exponentials in (5-6a) and (5-6b) represent the time delays
through the layer in the interval [z, z+l).

The frequency response of the medium was generated by FOR1, and
the program SCHUR, implementing (5~6), (4-50), and (5-7), was used
to reconstruct the medium. The results of two runs are given in Figures
5.10, and it can be seen that the algorithm functions quite well. The
difference in the performances of the two runs seems to be due to the
inverse Fourier transforms required to obtain r(z); these transforms

are less accurate for 256 points than they are for 512,
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Again by analogy to Chapter III, the dynamic deconvolution

algorithm for the discrete medium non-normal incidence inverse problem
consists of the set of equations
2jwd/c!

R(z+b,w) = e (R(z,w) - r(z))/(1 - r(z)R(z,w)) (5-8a)

r(z) = ;lT- fo R(z,w)dw (5-8b)

taken twice, along with (5-6d), (5-6e) and the discrete medium parameter

updates (4-50). The initial condition is
R(0,w) = R(w . (5-9)

Note that since the dynamic deconvolution algorithm computes the
response ﬁ(z,w) of that portion of the medium below depth z, there is
no phase shift in (5-8b).

The frequency response of the medium was again generated by
FOR1, and the program DYNDEC, implementing the dynamic deconvolution
algorithm, was used to reconstruct the medium. The results of two
runs are given in Figures 5.11, and these are comparable to the
Schur algorithm results. Since the two methods are mathematically
equivalent, this is hardly a surprise. However, the fact that a phase
shift (relying on a computed c'(z)) is not present in (5-8b) would
seem to make the dynamic deconvolution algorithm preferable to the

Schur algorithm.

5.3 Performance of the Algorithm in the Presence of Noise

In this section a series of computer runs shows the effects of

N L. e R N RS - - ~ L et T T Y T w T e e T At el e Tt et
S e S T R A P R VA P A A R P S A AT T e e T

L A aannins acmndnincies S e aadint dacidel Seaditides ducid VRV I A P P WAE T P T S g T A




v o . T LT Vel . A Sl LW - ¥ ‘gt AN SR M A i it g ta ARt et MRS et iy

* 235
» : i
n=12 m= 9 dd=0,10 del=0,10 df=1,000 £1=0.08 F2=0.15 N
der th cact ccome rhoact rhocome rci re2 m]
0.10 5.1000 5.1014 5.1000 55,0993 0,0218 0.,0334 L
0.20 5.2000 5.,2081 5.2000 5.1898 0.0213 0.0345 ]
0.30 5.3000 5.3010 5.3000 5.2941 0.0207 0.0333 ol
» 0,40 5.4000 5.4005 5.4000 5.3941 0.0207 0.,0355 o
0.50 5.5000 S.4971 $,5000 5,4953 0.,0202 0,0340 2
0.60 5.4000 5.3993 5.6000 $.5929 -0.0023 -0,0182 :
0.70 5.3000 5.3031 5.,7000 S.6881 -0,0026 -0.0168
0.80 5.2000 5.2061 5.8000 5.7843  -0.0028 -0,0140
0.90 5.1000 5.1147 5.9000 5.8730 -0.0031  -0,0145
® 1.00 5.0000 5.0438 6,0000 5.9360 -0,0030 -0,0113
1.10 5.0000 5.0443 6,0000 5.9350 0.0000 0.,0000 et
« 20 5.0000 5.0425 6.0000 5.9376 0,0000 -0,0002 ke
1.30 5.0000 5.0432 6.0000 5.9367 0.0000 0.,0001 o
1.40 5.0000 5.0441 6.0000 55,9353 0.0000 0.0001
1.50 5.0000 5.0432 6.0000 5.9367 0.0000 ~0.0001
n=15 m= 8 dd=0.10 del=0.05 df=1,000 r1=0.15 £2=0,12 Y
derth cact ccomp rhoact rhocoms rci rc2 T
0.05 5.0000 5.0016 5.0000 5.0019 0.0006 0.0004 NIy
L' 0.10 5.1000 5.1080 4.9000 4,8888 0.0133 0.0052 et
0.15 5.1000 S.1143 4,9000 4,8818 0.0008 0.0003 ey
0.20 5.2000 5.2201 4,8000 4,7699 0.0141 0.0050 o
0,25 5.2000 $.2242 4,8000 4,7660 0.0006 0.0002
0.30 5.3000 5.3203 4,7000 4,6665 0.0138 0.0047
0.35 5.3000 5.3126 4,7000 4,6804 -0.0005 0.0003 e
0.40 5.3000 5.2998 4,6000 4,6246 -0.0093 -0.,0080 S
lo 0.45 5,3000 5.2944 4,6000 4,6388 0.0002 0.,0007 >
0.50 5.3000 5.2931 4,5000 4,5569 -0.,0092 -0.0091 A
0.55 5.3000 5.3075 4.,5000 4,5327 0.0010 -0.0004 e
0.60 $5.4000 5.3997 4,5000 4,5179 0.0226 0.0130 e
0.65 55,4000 5.3935 4,5000 4,5288 -0,0005 0.0002 gy
0.70 5.5000 5.5007 4.,5000 4,4865 0.0249 0.0125 e
0.75 5.5000 5.5100 4,5000 4,4861 0.0026 0.0015 s
0,80 55,4000 5.4263 4.,4000 4,4119 -0.,0317 -0.0218 DA
0.85 5,4000 5.4249 4,4000 4,4174 0.0002 0.0004 N
0.790 S.3000 5,3472 4,3000 4,3401 -0,0273  -0.0189 e
0.95 5.3000 5.3361 4,3000 4,3761  -0.0011 0.0001 SO
1.00 5.2000 5.3441 4,2000 4,2451 -0.0131  -0.0139 L
1,05 5.2000 5.3649 4,2000 4,2018 0,0004 -0,0018 Yo
1,10 5.1000 5.3579 4,1000 4,2545 0.0044 0.0051 e
1,15 5.1000 5.3388 4,1000 4,2869 -0.0012 0.0007 e
1.20 5.1000 5.3873 4,1000 4,1991 0.0025 -0.,0026 %
1.25 5.0000 55,3743 4,0000 4,2044 -0,0029 -0.0015 e
1.30 5.0000 5.3737 4,0000 4,2065 0.0001 0.0002 RN
1.35 5.0000 5.3700 4,0000 4,2170 0.0003 0.0007 R
1.40 5.0000 5.3734 4.,0000 4,2094 0.0000 -0.,0003 O
1.45 5.0000 5.3717 4,0000 4,2144 0.0001 0.0003 S
1.50 5.0000 5.3717 4.0000 4,2172 0.0003 0.0003 R
5.11 Result of running FOR1, without its inverse Fourier

transform, with the dynamic deconvolution
inversion program DYNDEC.
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noise on the discrete layer stripping algorithm for the non-normal
incidence inverse problem. As the noise level increases, the performance
of the algorithm is degraded, as expected. The algorithm begins to
break down badly at a signal-to-noise ratio of about eight, although
this threshold varies with the medium being reconstructed.

The program NOISE takes the medium impulse response computed
by BREM, adds noise to it, and then runs INVDISC to try to reconstruct
the medium from the noisy data. The noise is generated by a center-
squaring random number generator, and is evenly distributed over the
interval [-x]1, x1], where xl] is the (inputted) noise maximum amplitude.

The signal-to-noise ratio S/N is defined as

T T
S/N = 10 1og10[f0 R(t)zdt/[) nt)at) (5-10)

where R(t) is the impulse response of the medium and n(t) is the noise
level at time t.

The impulse responses of a thirteen-layer medium at two different
angles of incidence were computed using BREM, and NOISE was run
for three values of signal-to-noise ratios 48.6, 28.6, and 8.6. Results
are plotted in Figures 5.12, 5.13, and 5.14. For each figure, Figure a
tabulates the results of the run (for the two angles of incidence), Figures
b and ¢ plot these results, and Figures d and e plot both the ideal,
noise-free impulse response and (over it) the noisy impulse response
from which the inversion is made. This provides a dramatic visual
check on the corruption level of the data.

It is evident from Figures 5.12 - 5.14 that the performance of the
layer stripping algorithm degrades with noise, as might be expected,

and that even at a signal-to-noise ratio of 8.6 the algorithm still does
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R
n=15 m= 8 dd=0.100 del=0.050 dt=0,00500 £1=0.09 £2=0.12 x1=0.3E-04 .- %]
rms signal= 0.004862 0.,005442 rms noise= 0.000018 snr= 48.6 49.5 R,
derth cact ccoms rhoact rhocompr ri recl r2 rc2 e
® 0.00 5.0000 5.0000 S.0000 5.0000 00,0000 G.0000 0.0000 0.0000 e
0.0% 5.0000 5.0000 S,0000 5.0000 0,0000 0.0000 00,0000 0.0000 !-?
0.10 5.2000 5,2012 4,8000 4,7982 0.0044 0.0044 0.0110 0.0110 s
0.15 5.,2000 95.2012 4.8000 4.7982 0.0000 0.0000 0.0000 0.0000 gﬁ?
0,20 5.4000 5.4008 4.5000 4.5985 0,0032 0.0031 0.0104 0.0104 ﬁgﬁ
0.2% 35,4000 5.4008 4.6000 4.5985 0.0000 0.0000 0.0000 0.0000 g**
® 0.30 35,3000 5.3005 4.7000 4.6985 -0,0014 -0.0014 -0,0052 -0,0052 aln

0,35 35.3000 S5.3005 4.7000 44,6985 00,0000 0.0000 0.0000 0.0000
0.40 5.3000 15,3020 4.5000 4.,4968 -0,0217 -0.0218 -0,0217 -0.0217
0.45 35.3000 S5.3020 4.5000 4.4968 0,0000 0.0000 0.0000 0.0000
0,50 35,3000 5.3025 4.3000 4.2962 -0,0227 -0.0227 -0.0227 -0.0227
0.55 35,3000 5.3025 4.3000 4,2942 0.,0000 0.0000 0.0000 0.0000
® 0,60 5.4000 35.4013 4.2000 4.1976 0,0004 0.0004 0,.0041 0.0041
0,65 5.4000 55,4013 4.2000 4.,1976 00,0000 0.,0000 0.0000 00,0000
0.70 5.5000 &.3003 4.5000 4,4988 0.0465 0.0466 0.0505 0.0505
0.75 35,5000 5.5003 4.5000 44,4988 0,0000 0,0000 0.,0000 0.0000
0.80 5.4000 55,4018 4.4000 4,3970 -0,0233 -0,0233 -0.0273 -0.0272
0.85 5.4000 5.4018 4.,4000 4.3970 0,0000 0.0000 0,0000 0.,0000

® 0,90 5.3000 5.3020 4.3000 4,2970 -0.0237 -0.0236 ~0.0274 -0,0274
0,95 5.3000 5.3042 4.3000 4,2940 0,0000 -0.0001 0.0000 0.0000
1,00 5,2000 S5.2049 4,2000 4,1929 -0,0240 -0.0241 ~0,0276 -0.0276 R

1,09 35,2000 5.2049 44,2000 4.1929 0,0000 0.,0000 0.0000 0.0000
1,10 35.1000 5.1030 4.1000 4.0948 -0,0244 -0,0244 -0,0278 -0.0278
1.,1% 55,1000 95,1030 44,1000 44,0948 0,0000 0.0000 0.0000 0.0000 DR
® 1,20 3.0000 5.0031 4.0000 3,9952 -0.0248 -0.0248 ~0.0280 -0.0280 I
1,25 5.,0000 5.0031 4.0000 3.9952 0,0000 0.0000 0.0000 0.,0000 -
1.30 35,0000 5.,0031 4.0000 3,9952 0,0000 0.0000 0.0000 0.0000 e
1.35% 5.,0000 S,0031 4,0000 3.9952 0,0000 0.0000 0.0000 0.0000
1.40 5.0000 5.0031 4.0000 3.9952 0,0000 0.0000 0,0000 0.0000
1.4% 53,0000 5.0031 4,0000 3.9952 0,0000 0.0000 0.0000 0.0000
PY 1,50 5.0000 5.0031 4.0000 3.9952 0,0000 0.0000 0.0000 0,0000

5.12a Result of running BREM with NOISE, which adds
noise to the results of BREM and then uses INVDISC

on the noisy data. Here a high SNR is used. N
. o
g
& —
-
‘.‘_'..‘.\
..:.-..-“
."._."_.
@ o |
AN
K
CIPE T SN SRR WD il Wil A W M R T P AT {d&'AhllL&“L!A_“-‘,A_.&'A_‘L&L‘I._‘._‘i“l!'.‘.AfL‘lAL‘L“l‘:‘\ml.‘&_‘L‘.A.:-L'~A‘-‘L:;L..L




e 4NN, PRRI G« (SRR B P 9. @i i ;. MO b o O 2l O ’ 3 " 7
w... PR l, AL ‘f R B e R | R ... i n,.....-...u.\-uc..\n-, . ....... R _. ...«. . .-...-a --.\.r..(\.\ B4 .-...-a. -. ~.. ... ...--! ] ."..\..\. \.1\_ .‘-.. < ﬁ Y e ... ..< ... ... U HS bt ... oo RN .. .. _..
R N Y P D R R R ot c

. . P ] \“ . ) !
s e val et N e . e T el R

wave speed 6 r r T ] T T .
(km /sec)

238

CANMERAR Mt B g o T
o]
N
o
o

r\~ L]
2 A .
3 - '

—.. A? — .
k. =
, ;

A AN

.

"h

¥,

4 .

b !

P ...

3 > L .

y — i

-

"‘ B —-

.., ’ .\
; 1 §
o .
v N
g .
(o8 v 4
) el

0 | ] ] | ! I I L ] mﬁ
Do 0.2 0.4 0.6 .8 1.9 1.2 1.4 1.6 1.8 2.0 5

depth
(km)

35.12b Plots of the actual (2) and reconstructed (3) wave
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5.12¢c Plots of the actual (4) and reconstructed (3)
densities.
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5.12d Plot of the noisy waveform used as data for
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5.12e Plot of the noisy waveform used as data for
INVDISC, for p = p2.
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4 0

. n=15 m= 8 dd=0.100 del=0.050 dt=0.00500 £1=0.09 £2=0,12 #1=0,3E-03 ‘.
& rms sisnal= 0,004862 0,005442 rms noise= 0.000182 snr= 28,4 29,5 W
" derth cact ccoms rhoact rhocomsr i rcl r2 rc2 s
o 0.00 5,0000 G5.0000 5,0000 S.0000 0.0000 0.0000 0.0000 0.0000 -
- 0.03 3.,0000 5.0000 5.,0000 5.0000 0.,0000 0.0000 00,0000 0,0000 ok
' 0.10 5.2000 5.2124 4,8000 4.7824 0.0044 0,0041 0.0110 0,0111 '

e 0.15 5.2000 5.2124 4,8000 4.,7824 0.0000 0,0000 0.0000 0.0000
" +20  5.4000 S.4084 4,6000 4.5852 0.0032 0.0029 0.0104 0.0100
. 0.25 5.4000 5.4084 4.6000 4.5852 0.0000 0,0000 0.0000 0.0000
0,30 5,3000 5.3053 4,7000 4.4852 -0.0014 -0,0017 -0.0052 -0.0056 ;
0.35 55,3000 5.3053 4,7000 4.6852 0.0000 0.0000 0.0000 0.0000 Ok
0.40 5.,3000 5.31%4 4,5000 4.4683 ~0.0217 -0,0220 -0.0217 -0.0215
0.45 55,3000 5.3194 4.5000 4.4683 0.0000 0.0000 0.0000 0.0000
0.50 5.3000 5.3249 4,3000 4.2621 -0.0227 -0,0229 -0.0227 =-0.0227
0.55 3.3000 S.3249 4.3000 4.2621 0.0000 0,0000 0.0000 0.0000
0.60 5.4000 5.4241 4,2000 4.1606 0.,0004 0,0000 0.0041 0,0038 ,
0.65 5.4000 5.4241 4,2000 4.1606 0.0000 0,0000 0.0000 0.0000 a3
0,70 5.5000 55,5131 4,5000 4.4724 0,0465 0.0468 0,0505 0.0504 :
0,75 5.5000 $.5131 4,5000 4.4724 0,0000 0,0000 0.0000 0.0000
0.80 35,4000 5.,4297 4.4000 4.3529 -0,0233 -0,0236 -0.0273 -0.0249
0.85 5.4000 5.4297 4,4000 4.,3529 0,0000 0.,0000 0.0000 0.0000
0.90 S.3000 5.3432 4,3000 4,2383 -0.0237 -0.0238 -0.0274 -0.0271 ;
0,95 55,3000 5.3650 4,3000 4,2092 0.0000 -0.0008 0.0000 0.0000 Ok
1,00 5.2000 5.2724 4.2000 4,0984 -0.0240 -0,0246 -0.0276 -0.0280
L.0S  5,2000 S.2724 4.2000 4,0984 0.0000 0,0000 0.0000 0.0000
1,10 5.1000 5.1555 4.1000 4.,0160 -0.0244 -0.0245 -0.0278 ~0.0284
1,15 5.1000 5.1555 4.,1000 4.,0160 0.0000 0,0000 0.0000 0.0000
1,20 5.0000 5.0624 4,0000 3,9131 -0,0248 -0,0245 -0.0280 -0.0274 :
1,25 5,0000 S.,0624 44,0000 3.9131 0.0000 0.0000 0,0000 0.0000 ®F
1,30 5,0000 5.0624 4,0000 3.9131 6,0000 0.0000 0.0000 0.0000 :
1+35 S5.0000 5.0624 4,0000 3,9131 0.0000 0.0000 0.,0000 0.0000
1.40 5.0000 5.0624 4.0000 3,9131 0.,0000 0,0000 0.0000 0,0000
1.45 5.,0000 5.0624 4.0000 3.,9131 0,0000 0.0000 0.0000 0.0000
1.50 5.0000 5.,0624 4.0000 3,9131 0.0000 0,0000 0.0000 0.0000

5.13a Result of running BREM with NOISE for a moderate
SNR.
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p 5.13b Plots of the actual (2) and reconstructed (3) wave
speeds.
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= pl.

5.13d Plots of the noiseless (3) and noisy (4) wave
forms used as data for INVDISC, for p

medium response/At
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5.13e Plots of the noiseless (1) and noisy (2) wave forms
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n=1% m= 8 dd=0,100
rms signal= 0.,004862

derth cact ccoms
0.00 5.0000 55,0000
» 0,05 55,0000 5.0000
0,10 55,2000 &.,3533
0,15 5.2000 5.,3533
0.206 S.,4000 S.,5226
0.25% 5,4000 S5.5226
0.30 5.3000 ©5.2671
' 0,393 G.,3000 5.2671
0.40 S5.3000 55,3986
0,45 5.3000 95,3956
0.50 5.3000 §5.3886
0,55 5.3000 5.3886
0.60 55,4000 §5.,3886
0.69 5.,4000 5.3886
0.70 S5.5000 5.42649
0.75 5.,35000 35,4269
0.80 S5.,4000 5.4845
0,85 5.4000 5,4865
0.90 5.3000 3.4333
0,92 5.3000 5.4333
1,00 5.2000 S.4704
1.05 55,2000 5.4704
1,10 55,1000 5.1239
1,15 35.1000 5.123%9
1,20 S5.0000 4,9904
1,25 55,0000 4,9904
1.20 5.,0000 4.9904
1.35 S$,0000 4.,9904
1,40 35,0000 4.9904
1.45 55,0000 4.,9904
1.50 35,0000 4.9904

......

del=0.050
0.005442
rhoact

5.0000
5.0000
4.8000
4.8000
4,6000
4.6000
4,7000
4.,7000
4.5000
4.5000
4.,3000
4.,3000
4,2000
4.2000
4,5000
4,5000
4.4000
4,4000
4.3000
4,3000
4,2000
4,2000
4.1000
4.1000
4,0000
4.0000
4.0000
4.0000
4,0000
4.0000
4,0000

dt=0,00500

rms noise=

rhocomr rl
5.0000 0.0000
5.0000 0.,0000
4,5824 0.0044
4,5824 0.0000
4,3986 0.0032
4.3986 0.0000
4,6798 -0.0014
4,4798 0.0000
4,3216 -0.0217
4,3216 0.0000
4,1400 -0.,0227
4,1400 0.0000
44,1400 0.0004
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5.14a Result of running BREM with NOISE for a low SNR.
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AP AR A

wave speed
(km/sec)

5.14b Plots of the actual (2) and reconstructed (3) wave
speeds.
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5.14c Plots of the actual (4) and reconstructed (5) densities,

density
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5.14e Plots of the noiseless (1) and noisy (2) wave forms

used as data for INVDISC, for p = p2.
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a reasonable job of reconstructing the medium. More dramatic results

are available; Figure 5.15 shows the results of a computer run on the Z

¢
JWE

same medium with S/N = 7.6 and 5.1. The algorithm does not work well, NG
but in view of the low S/N its performance is surprisingly good.

Generally speaking, the layer stripping algorithm works very well ®
at S/N ratios above 20, works moderately well for S/N ratios between
8 and 20, and starts to break down at a S/N ratio of 8. High angles

of incidence, corresponding to wide-angle reflections, help since this

makes the reflection coefficients larger, increasing the strength of the ;'_-:l
N reflection response. However, this can result in having problems with g
ﬁ double readings and post-~critical incidence. ®
_-f The particular medium and values of noise greatly influence matters E'..:::
’; in the S/N range of 8-20, since one noisy primary reflection can lead :'
2 to computation of an incorrect wave speed, projection to the wrong time ® "
for the next reflection, and misreadings of consequence reflections. :5:
\ Below a S/N value of 8 or so, the algorithm breaks down after about -E:“
5 10-15 layers, where the conditioning of the problem becomes poor. ° :\
\ It should be kept in mind that the layer stripping algorithm .'-:'f
\ considered here is not the true fast Cholesky algorithm investigated

by Symes and Zimmerman (1982) and Bruckstein et al. (1984). Those ®
works considered the inverse problem at normal incidence, for which the
- goal is merely reconstruction of the impedance profile as a function of

travel time. Since there was never any need to project ahead to a -

computed time to read the next primary reflection, the consequences ::;:_‘
. of a misreading were not as dire as in the present algorithm. This is \'

why those works reported results that were more impressive (though ° ;::;}
* not excessively so) than those reported here.

-
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5.15 Result of running BREM with NOISE for a low SNR,
showing how the algorithm breaks down after 20
layers.
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However, it is not necessary to deal with the algorithm only in its
present form. In the next section we consider some modifications of the

algorithm designed to improve its performance in noise.

5.4 Modifications of the Algorithm for Dealing with Noisy Data

5.4.1 Zeroing Out Reflection Coefficients Using the Condition Number

One problem with the layer stripping algorithm as it stands is that
the reading of the reflection coefficients from the data is a completely
a_posteriori process. Although the algorithm cannot provide an a priori
estimate of the next reflection coefficient, it can provide a measure of
accuracy of its measurement: the condition number c(n) of the inverse
problem at the depth z = n4 in question. As noted by Bruckstein et
al. (1984), the condition number for the normal incidence inverse

problem is given by (5-1). Furthermore, an error analysis given in

Bruckstein et al. (1984) for the normal incidence inverse problem with a

free surface boundary condition reveals that the error in reading the nth

P reflection coefficient can be bounded by c(n-1), as
. A 2 n_I-l 1+ {I’l; 9
- < - p—t . -
| r rnl S 2ece(n-D +0(e) = 2¢e 1 1—-—-_‘ri‘ + 0 , (5-11)

where € is the maximum noise strength and the r; have absolute values

less than one.

Bruckstein et al. (1984) point out that by symmetry the roles of
the read and actual reflection coefficients can be interchanged, i.e.,

rn can be considered the data and ;n the actual value. This means that

the possible error in reading fn can be bounded by the following bound

..............................

- CYF I
. e . .




computed from the previous read reflection coefficients

n-1 1+|r

. N
v -r | < 2e 1 N YCS (5-12)
nn s -~
i=1 1-|ri|

which can be computed as the layer stripping algorithm runs. Since the
two-component wave system (4-30) for the non-normal incidence inverse
problem has the same form as the wave system (3-34) for the normal
incidence inverse problem, these results all carry over into the non-normal
incidence inverse problem. Of course, the reflection coefficients them- :Z:i:;:lii
selves have different values, but that is irrelevant. :
Even equation (5-12) would seem to be of little help, since we have
no a priori notion of what r, is. However, for a true discrete layered
medium, with a small A chosen, it would be expected that most of the
reflection coefficients would be zero, and that the non-zero reflection
coefficients, particularly at high angles of incidence, would be quite
large (on the order of 0.1 or so). In this situation, it makes sense to

incorporate these a priori notions into the algorithm by setting values

of f'n less in absolute value than the bound in (5-12) to zero. This

serves to eliminate much of the observation noise, and should improve
the performance of the algorithm. Of course, this also may eliminate

some weak primary reflections and their succeeding multiples, but these

are generally buried in the noise anyway.

Bruckstein et al. (1984) report that incorporating this modification
into the fast Cholesky algorithm for the normal incidence inverse problem
considerably improves its performance. Certainly for a medium consisting
of relatively thick (compared to 2) layers of sharply varying properties
this modification should help. However, for relatively smoothly varying

media with layer thicknesses less than about 44, results are mixed.

...............................................................................
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- Figures 5.16 show the results of running the layer stripping algorithm )
h.’-

with and without this modification on the response of a medium whose .ﬁ

. -

layer thicknesses are 4.2, at S/N = 8.7 and 9.7. Note that without this ";\

A.(,._‘

modification the noise has more opportunities to degrade the algorithm ‘f-

R

g

and it breaks down at the twelfth layer. With the modification it works

®

well through eighteen layers. Figures 5.17, showing the effect of the .,::
modification on a medium with a mixture of strong and weak reflections ‘
at S/N = 13.8 and 16.9, shows how the modification smooths out the :"‘:
reconstructed profiles. On the other hand, Figures 5.18 show the ° *'
modification leading to a worse reconstruction, due to the suppression of .
several weak primary reflections. _
@ ki

In summary, it seems that setting measured reflection coefficients "‘
less than the threshold (5-12) to zero improves the performance of the ;
algorithm if 4 is much less than a typical layer thickness, since this ’.‘"_:.
eliminates much of the noise. On the other hand, if A is greater than °
about one-third of a typical layer thickness, the noise suppression due
to this modification becomes minimal, and suppression of weak primary :",.;

reflections tends to worsen the performance of the algorithm. The * .
decision of whether or not to use this modification must be made on the
basis of a priori knowledge about the general nature of the medium. In \
any case, monitoring the threshold (5-12) gives some notion of the ¢
reliability of the reconstruction at each depth.
e
5.4.2 Use of Reflection Responses at More Than Two Angles of Incidence ®
In the layer stripping algorithm, the response of the medium is '\
stacked at two values of slowness p (i.e., computed at two angles of E-‘
'y ®

incidence), since this suffices to compute the updates of the two

parameters p(z) and c(z). However, it is possible to compute the medium
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Result of running BREM with NOISE without the

condition number modification.

improves the performance of INVDISC.
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o me 8 Gue0,109  del=0,0850  dt=0,00500 =1=0.19% HESP R
@ i zimmzls 0,00599%  0,0041%59  rms nolses  0.000804
T} CROmE rivasct rhocams ol rel e

€,0000  S5.0000 S,0000 S.0000 19,0000 ¢.0000 N DG
SLaaan G.0000  S.0000  5.,0000 00,0000 0.0000 0,000 G.0000
S,1000 S.,11146 4.5000 4.8746 0,0131 0.013%3% 0.0032 00,0021
%,1000 S.1116 4.90600 4.874&6 ©.0000 0.00006 2.06000 30000
E._OOO ©.2247 4,8000 4.7142 0.0138 0,0139 0.0029 O+ 0D00

L2000 S.2367 4,8000 4,7162 0.0000 0.0000 0.0000 O.0000
E 2000 5.3527 44,7000 4.5748 0.01446 0.0145 0.0024 0.0000
5,32000 55,3527 4,7000 V5748 00,0000 0.0000 0.0000 ©.0000
5.3000 S.3527 4,7000 4,5748 0.0000 0.0000 0.0000 0.0000
5,3000 5.32527 4,7000 4,5748 0.0000 00,0000 0.0000 0.,0000
2000 S5.2643 4,6000 4.4847 -0,0358 -0.034% -0.0237 -0.02358
L2000 S%.2643  4,4000 44,4647 0,0000  0.0000  9.0000 RIS TATETY
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4,5000  4,9734 44,3000 4.1709 ©.0000 G.0000  0.0000  3,0000

.8000 44,8755 4,2000 44,0773 -0,0337 -0.0332 -0,0252 ~0.,024%
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5.18a Result of running BREM with NOISE using the condition i
number modification. o
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X P H gn=a, 100 del= 000 GLe 0 30San w1015 #0100 1=0.4
- - - RS ~ L 23 ) . .
z1zmal=  0.0085995 0.00415% rms nolise= $.0300608 =znr= 19,5 1400
Gostin ogact veome ritozct rnocoms rl rcl e e

Gl S,00000 55,0000 §.0000  5.0000  0,0000 0.0000  G.0000 0 G{nn

JL0% 0 T,0000 S,0000 0 55,0000 3.0046  0.0000  0.0005  G.o0G0 0 G000
9000 5.1000 5.1116  4,9000 4,8791 0.0131 0,0133 0.00212 0.00.01
.15 5,10600 55,1079 4.9000 4.88353 $.0000 -0.0062 5.,0000 G.O00d
TL200 5,2000 S5,2144  4,8000 4.7442 0.0138 00,0139 0.002%  G.00C206
0,095 %,2000 5.221% 4.,8000 4,7469 0.0000 -0.,0008 0.0090 ~0.0014
9,30 55,3000 S5.3275 4,7000 4.8305 0.0146 0.0145 0,0024 00,0010
2,385 5,30600 S5.,3107 4.7000 4.,6581 0.0000 -0.0014  0.06000  §.0400
J.40  5,3000 5,3083 4.7000 4,46534 0.0000 -0.0011 0.,0000 -0.0008
0,49 5,3000  5.3007 4.7000 4.6623 06,0000 -0G.0010 9.0000 9.0000
GLE0 5,2000 55,2074 4,46000 4,35581 -0.0358 -0,034%9 -0,023%9 -0,0034
CGS 05,2000 55,2091 4,6000 4.5454  0.0000 -0.,00608 ©.0000 -0.0010
LAY 5,1000 5,1071 4,5000 4,4519 -06.0351 -0.0350 -C,0242 ”
posh 55,1000 9,1181 0 4,5000  4.,4335 0,00600  0.0605 0,000

TG Z.0000 5.0001  4.,4000 4,3458 -0.,0345 -(.0332 —3.0245
PG 5.0000  4.9847 4,4000  4.2991 0.0000 -0.6002

20 4,9000 4.5033 34,3000 4.2455 -0.0340 -0.0232
GL AT 3L, Y000 4,.9034 0 40300600 $.2584 0 00,0000 -0.000% 0.0000
o200 4,3000 4.8138 ,2000 34,1941 -0.0337 -06,0321 -0.,0232

=5 4.8000  4,84619  4,2000  3.0788  0.0000  0.0013  0.0000 -G

SO 34,7000 4,.773s 4.3000 4,1574 -0,0094 -0.00%946 -0.00183 -0. OO”S
PLGT 04,7000 4,7%06  4.32000 4,1%04 0.0000 -0.0010  0.03000 D.006UB

it 4.,7000  4.7532 4.32000 4.1828 00,0000 ~0,0003 90,0000 -0.0000
1% 4.7000  4,7345 4,34500  4,2119 09,0000 -0,0005 00,0000 0.000N
{.u000 34,8000 4,8022 4,3000 4.3394 0.0322 0.0318 G.02301 £

PL0% 0 4.8000 L7763 4,4000  A,.3864  0,0000 -V.0025  0.0000
CEO 34,9000 ,8859 4.5000 34,4545 00,0331 00,0325 0.,0247
P35 4,9000 4.8964 4.5000 4.4441 06,0000 .000%  G.0000 G601
1.40  5,0000 S.0144 4.5000 4.4047 0.0225 06,0215 0.,0134 0.0104

H o

1% T,0000  L.,0244  4.5000 44,3854 0.00006  0,00046  D.0000 -0 00k
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5.18b Result of running BREM with NOISE without the
condition number modification. In this case the
modification hampers the performance of the algorithm.
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response at more than two angles of incidence, resulting in an over-
determined system for the two updates at each depth, and then use a
least-squares fit. This can be done as follows.

If the medium response is computed for m different values

L‘ Py .-+ Py of slowness p, i.e., m different angles of incidence
(3 = sin’! Pie,» i =1 ... m), then running m copies of the wave
updates (4-42) - (4-43) will result in the computation of m different
reflectivity functions (ri(z) ,i=1... m), which are related to the
{ ]
medium parameter updates by
o x.'l(z) 1/p(z)  1/(c(2) 005251(2)) (d/dz) c(z)
. a 1 . -
: =3 ; : (5-13)
P (2) Up(z)  1/(e(@ cos’s (23] La/dz) e@
®
Note that (5-13) reduces to (4-34) for m = 2, as it should.
The overdetermined system (5-13) can be written as
d (d/dz) 2(2)
r(z) = M(z) (5-14)
(d/dz) c(2)
[ J and it is well-known that the minimum square error solution to (5-14)
is given by
(d/dz) p(z) _
* ] = Ty mT r(2) (5-15)
(d/dz) c(z)
After discretization, (5-15) becomes
o
@

‘—_AA.
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m
o(z+) = 6(z) + 260(2) (Z cos'4ei(z) r.(z) - Zr.(z)cos'ze.(z) Z cos—zei(z))
DET (z) i7l =1 ) =R e °
E‘
(5-16a) -
m m m
c(z+l) = c(z2) + 2Ac(z)(-z cos-zei(z) Zr.(z) + m Zri(z)cos—zei(z)) .j_
DET(2)' i=l =) =) s
(5-16b)
where ‘&
A m m
DET(2) & m . cos %a.(2) - (D, cos™ 9.())% . (5-17) ;
i=] 1 J=1 ] ° v

The results of this modification were tested by computing the
reflection responses of a layered medium at five different angles of
incidence using the program MULTFOR, adding noise, and then running
five copies of the wave updates (4-42) - (4-43) together with the medium
parameter updates (5-16) and the condition number modification. The
program MULT1 does all this. Results are tabulated in Figure 5.19a, and
are rather dramatic: the algorithm works quite well, even though the
data has S/N =1, 1.5, 2.6, 4.8, and 8.3! Note that the condition
number modification is a big help. For comparison, NOISE was run on
the data with the two highest S/N. The results, shown in Figure
5.19b, are much poorer.

For a discrete medium with sharp variation at interfaces, the
continuous updates can no longer be used, and the least-squares fit of
the updated parameters becomes a very complicated non-linear problem.
An easier procedure is simply to compute updated parameters for each

pair of reflection coefficients, and then average them. If m different
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0.00
0,05
0.10
0.1%5
0.20
0.25
0.30
0.35
0.40
0.45
0.3590
0'55
0.460
0.65
0.70
0,795
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1,45
1.50
1,55
1,60
1,65
1.70
1.75

P i Hie M

n=18" m= 9 nm=
values

derth

of ¢ are
1.0 1.
cact
5.0000
5.0000
5.0500
5.0500
5.1000
5.1000
5.1500
S.1500
5.2000
5.2000
5.2500
5.2500
5.3000
$5.3000
5.,3500
5.2500
5.4000
5.4000
5.4500
5.4500
5.5000
5:5000
5.4500
$5.4500
5.4000
5.4000
5.3500
%5.3500
5.3000
55,3000
5.2500
5,2500
5.,2000
$5.2000
5.2000
5.2000

5.19a Result of running MULTFOR, which runs BREM using
several different angles of incidence, with MULTI1,
which adds noise and uses a least-squares fit to compute
the updated wave speed and density at each depth.

% dd=0.,100
0.05 0.08

S 2.4 4.8
ccoms rhoact
5.0000 5.0000
5.,0171 5.0000
5.0894 5.0500
5.0992 S5.0500
5.1432 55,1000
5.1432 5.,1000
5.1578 55,1500
5.1531 5,1500
55,2021 5.1000
$.2021 5.,1000
5.2386 5.03500
5.2386 S.0300
55,3030 5.0000
5.2977 S5.0000
5.3544 4,9500
5.3544 4.9500
5.4141 4.,9000
5.3944 4.9000
5,4231 4.,8500
$.4282 4.8500
5.446%91 4.8000
55,4691 4.8000
5.4042 4.,7500
5.4042 4,73500
5.3487 4.7000
5.3487 4,7000
5.3235 4.6500
5.3235 4.,6500
5.2867 4.6000
.2847 4.,6000
5.2183 4,5500
5.,2183 4.,5500
5.1663 4.5000
5.,1663 4,5000
5.,16463 4.5000
5.1897 4.5000

Note the low SNR's.
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del=0.050

0,11 0.1
8.3
rhocoms
5.0000
4,9532
4,9684
4,9489
5.,0232
5.0232
S5.1305
5.1298
5.0711
5.0711
5.0323
5.0323
4,925%1
4,9788
4.,9172
4,9172
4.8256
4,38512
4,8421
4.,821%9
44,7980
4.7980
4,7583
4,7583
4,7198
4.7198
4,6331
4.,6331
4,5764
4,5764
4,5272
4,5272
4,4664
4,46464
4,44664
4,4120
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dt=0.00250 x1=0,2E-02
4 0.146
rl rcl r2 re2

0.0000 0.,0000 0.,0000 0.0000
0.0000 0.0000 0.0000 -0.0044
0.0103 0,0101 0.0109 0.0035
0.0000 0,0000 0.0000 0.0000
0,0102 0.,0118 0,0108 0.0140
0.0000 0.0000 0.0000 0.0000
0.0101 0.0124 0.0107 0.0097
0.0000 0,0000 0.,0000 0.0000
0.0003 00,0000 0.0010 0,0000
0,0000 00,0000 0.,0000 0.0000
0,0002 00,0000 0.0009 0.0000
00,0000 00,0000 0.0000 0.0000
0,0001 0.,0000 0.,0008 0.0000
0.,0000 00,0000 0,0000 0.0000
0.0000 0,0000 0.0007 0.0000
0.0000 00,0000 0.0000 0.0000
-0,0001 0.,0000 0.0006 -0.,0047
00,0000 0,0000 0.0000 0.0000
-0,0002 00,0000 0.00035 0.0000
0.0000 0.0000 0.0000 0,0000
-0,0003 0,0000 00,0005 0.0000
0.0000 0.,0000 0.,0000 0.0000
-0.,0102 -0,0142 -0.0109 -0,0102
0.0000 0.,0000 0.0000 0.0000
-0,0103 -0,0075 -0.0110 -0.0128
0.0000 0.0000 0.,0000 0.0000
-0,0104 -0,0126 ~0.,0110 -0.0142
0.0000 0,0000 00,0000 0.0000
-0,0105 -0,0073 ~-0.0111 -0.,0098
0,0000 0.0000 0.0000 0.0000
-0.0106 -0,0116 -0.0112 -0.0134
0.0000 0.0000 0.0000 0.,0000
-0,0107 -0,0124 -0.0113 -0.0105
0.0000 0.0000 0.,0000 0.0000
0.0000 0.0000 0.0000 0.0000
00,0000 -0.005%0 0.0000 -0.0050

.....

..............




rd rcd r4 rcé4 rs rco

0,0000 0.0000 0.0000 0.0000 0,0000 0.0000
0.0000 -0.00446 0.0000 0.0000 0.0000 0.,0000
0.0121 0.0171 10,0148 0.0144 0.0190 0.0218
0.0000 -0.0048 0.0000 00,0000 0.0000 0.0000
0.012t 0.,0136 0.0149 0.0184 0.0194 0.0210
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0120 0.0144 0.0149 00,0156 0.0198 0.0139
0.0000 0.0000 0.0000 -0,0044 0.0000 0.0000
0.0023 0.0000 0.0053 0.,0051 10,0105 0.0090
0.0000 0.0000 0.0000 0.0000 00,0000 0.,0000
0.0022 0,0000 0.0034 00,0064 0.0110 0.0065
0.0000 0.,0000 0.0000 0.0000 0.,0000 0.0000
00,0022 0,0000 0.0055 00,0080 0.0115 0.0128
0.0000 0.0052 0.,0000 0.0000 00,0000 0.0000
0,002 0.0055 0.0055 00,0000 0.0121 0.014%9
0,0000 0.0000 0.0000 0.0000 0.0000 0.0000
0,0021 0,0000 0.0057 0.0000 0.0128 0.0132
0.0000 0.0000 00,0000 0.0000 0.,0000 -0.0054
0.0020 0.0060 0.0058 0.0084 0.0136 0.0078
0.0000 -0,0056 0.0000 00,0000 0.0000 0.0000
0.,0020 00,0067 0.0059 0.,0080 00,0144 0.0118
0.0000 0.0000 0.0000 0.0000 0.0000 0.,0000
-0.0124 -0,0090 -0,0163 -0,0208 -0,0249 -0.0292
0.0000 0.0000 0.0000 O0.0000 0.0000 0.0000
-0.0125 -0.0087 -0.0162 -0.0204 -0,0240 -0.0229
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0,0125 -0.0101 -0.,0161 -0,.0134 -0,0232 -0.0188
0.0000 00,0000 00,0000 0.0000 00,0000 0.0000
-0,0126 -0.0153 -0.0160 -0.,0136 -0.0225 -0.0182
0.,0000 0.0000 0.0000 0,0000 0.0000 0.0000
-0.0126 -0.0154 -0,0159 -0.0203 -0.0219 -0.,0278
0.0000 0.0000 0.0000 0.0000 00,0000 0.0000
-0.0127 -0.,0164 -0,0158 -0.0174 -0.0214 -0,0230
0.0000 0.,0000 0.0000 0.0000 0.0000 0.0000
00,0000 0.0000 0.0000 0.0000 0,0000 0.0000
0.0000 0.0000 0.0000 0.0000 00,0000 0.0000
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n=18 m= 9 dd=0.,100
rms sidnal= 0.002173

derth cact ccomp
0.00 35,0000 5.0000
0.0%5 5.0000 15,0000
0.10 35,0500 5.0659%
0.15 5,0500 5.,0659
0.20 5.,1000 S5.,0799
0.,2% 5.1000 5.0799
0,30 55,1500 55,1304
0.3% 95,1500 S5,1304
0.40 5.2000 5.1708
0,45 95,2000 5.1708
0.50 5.2500 95.2514
0.355 S5.2500 65,2514
0.60 35,3000 5.,3367
0.65 $.3000 5.33267
0.70 5.3500 S5.4064
0.7% 5.3500 5.3723
0,80 55,4000 5.44632
0.85 5.4000 55,4632
0.90 5.4500 5.5425
0.925 5.4500 95,5425
1.00 S5.5000 S.5814
1.05 5.5000 §5.,5814
1.10 5.4500 5.6449
1.15 S.,4500 5.5401
1,20 55,4000 5.6301
1.25%5 99,4000 5.4986
1.30 5.3500 5.4986
1.3% S,3500 55,3374
1.40 5.3000 §.3374
1.45 5.3000 5.,1680
1,950 5.,2500 55,1680
1,59 S.,2500 4.873%
1,60 35,2000 95.1158
1.6 55,2000 S.1158
1,720 55,2000 5.1158
79 55,2000 5.1158

5.19b Result of running BREM

with

del=0,050
0.003228
rhoact
5.0000
$5.0000
5.0500
5.0500
5.1000
$.1000
5.1500
5.1500
5.1000
5.1000
5.0500
5.0500
5.0000
5.0000
4,500
4,9500
4,9000
4.9000
4.8500
4,8500
4,8000
4,8000
4,7500
4.7500
4,7000
4,7000
4,6500
4,6500
4.6000
4.6000
4,5500
4,5500
4.5000
4,5000
4,5000
4,5000

5.19a.

dt=0.00250

RS nolse=

rhocoms rl
5.0000 0.0000
5.0000 0.0000
5.0072 0.0148
$.0072 0.0000
$.,1457 0.0149
%.1457 0.0000
5.1806 0.0149
5.1806 0,0000
$.1588 0.,0053
5.1588 0.0000
5.0356 0,0054
5.0356 0.0000
4,8586 0.00535
4,8586 0.0000
4,7157 0.005%5
4,7856 0.0000
4,6002 0.0057
4,6002 0.0000
4,4398 0.0058
4.,43298 0.0000
4,4194 0,0059
4,4194 0.,0000
4,1601 -0,0163
4,3706 0,0000
4,0343 -0,01462
4,2844 0,0000
4,2844 -0.,0161
4,595%4 0.0000
4.,5954 -0.,0160
4,9300 0.0000
4.9300 -0,0159
5.5368 0.0000
408397 -000158
4.,8397 0.0000
4,8397 0.0000
4,R397 0.0000

#1=0,14
0.001218
rel

0.0000
0.0000
0.0137
0.0000
0.0164
0.0000
0.0135
00,0000
0.0061
00,0000
0.0044
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0066
0.0000
-0.01350
0.0000
-000193
0.0000
0.0000
00,0000
0.0000
0.0000
0.0000
0.0000
-0.0198
0.0000
0.0000
0.0000

#2=0.16
sSnr=
r2
0.0000
0.0000
0.0190
0.0000
0.0194
0.0000
0.0198
0.0000
0.0105
0.,0000
0.0110
0.0000
0.01185
0.0000
0.0121
0.0000
0.0128
0.0000
0.0136
0.0000
0.0144
0.0000

~-0.0249
0.0000

-0.0240
0.0000

-0.,0232
0.0000

~-0.022%
0.0000

-0,0219
0.0000

-0.0214
0.0000
0.0000
0.0000
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%1=0,2E-02
5.0 8.5
rc2
0.0000
0.0000
0.0193
0.0000
0.0177
0.0000
0.0182
0.0000
0.0101
0.0000
0.,0133
0.0000
0.0107
0.0000
0.0099
-0.0050
0.0140
0.0000
0.0144
0.0000
0.0145
0.0000
0.0000
-0.,0234
0.0000
-0.0271
0.0000
-0.0249
0.0000
~0.0199
0.0000
-0.0250
0.0000
0.0000
0.0000
0.0000

with NOISE, for comparison
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> X
e angles of incidence are used, this gives m(m-1)/2 updated parameters :',::

A -

+ to average. The program MULTINV implements this procedure. Y
ok

' This modification was tested on a discrete medium for five different "
7 angles of incidence. Results are tabulated in Figure 5.20. This .52:'
b~ procedure does not work as well as the least-squares fit, but certainly
| oK

" it helps. :
: 0
v 5.4.3 Reconstruction of Slightly Lossy Media

- Still another modification of the layer stripping algorithm allows the ® "

S

- reconstruction of a slightly lossy medium. However, the absorption of -
) the medium must be small enough that the effects of dispersion in .

spreading out the probing impulse can be neglected. This assumption L d .
must break down at great depths, although a shallow portion of the I;:f
medium can be reconstructed despite this breakdown. ':ﬁ..

Absorption losses in the medium are generally modelled by allowing .. -

. the wave speed c(z) to be complex (e.g., Aki and Richards, 1980; :::::

- —_— L

- Ganley, 1981). The reason for this can be seen as follows. Let ;':jf

e
® W

c(z) =c,(2) +je(2) , c;(2) << ¢ (2) , (5-18) i‘::

: and note that the phase shift e Jwble(z) , representing the travel time ® i
delay through a layer of thickness 4, becomes o

i i e 2 s . 2 :.':;;

o-lwtie _ -jwilep-je) /el o -jwblep guwbei/le|” (5-19) o

L ] &

J Equation (5-19) shows that the complex wave speed (5-18) can be ;:l'_\_

¢ RN

. interpreted as resulting in the usual time delay specified by cp(2), N

. N

. . . 'y &

and an attenuation specified by ci(z) and cr(z). The quality Q, whose ::_:‘
AN

R

N

e

s :
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I
ot
n=18 m= 9 nm= S dd=0.100 del=0,050 dt=0.,00250 :x1=0,2E-02 'E}{
values of p are 0,05 0.08 0.11 0.14 0.16 g
snr= 1.0 1.5 2.6 4,8 8.3 :-"f.;’
Jerth cact ccoms rhoact rhocoms ri rcl r2 re2 AR
0,00 5.0000 5.0000 5.0000 5.,0000 0.0000 00,0000 0.0000 0.0000 P
0,05 35,0000 4.,968B9 S5.0000 5.0346 00,0000 0,0000 0.0000 -0.0044 iﬁ?ﬁ
0.10 5.0500 55,0689 5.0500 4.,9948 0.0103 0.0070 0.0109 0.005S aded

|53

0.15 9,0500 5.0511 55,0500 5.0175 0.,0000 0.0000 0.0000 0.0000
+20 5.1000 S.1193 5.1000 S5.0631 0.0102 0,0118 0.0108 0.0140 O
0.25 5.,1000 5.1193 S5,1000 5.0631 0.0000 0.0000 0.0000 0,0000 RS
0.30 5.1500 5.1314 5.1500 S5.1799 0.0101 0.0124 0.0107 0.,0097 el
0,35 5.,1500 S5.1314 5,1500 5.1799 0.0000 0.,0000 0.0000 0.0000
0.40 5.2000 5.1652 5.,1000 5.1460 0.0003 0,0000 0.0010 0.0000
0,45 5.,2000 5.1652 5.,1000 5.1460 0.0000 0.0000 0.0000 0.0000
0.50 S5.2500 5.,1937 5,0500 5.1185 0,0002 0.0000 0.0009 0.0000
0.5 95.2500 %.,1615 55,0500 S.16%7 0.0000 0.0000 00,0000 -0.0054
0.60 5.3000 55,2070 5,0000 S.1238 0.0001 0,0000 0.0008 0.0000
0.65 5.3000 5,2250 5.0000 5.1016 0.,0000 0.0000 0.0000 0.0000 S
0.70 5.3500 5.2780 4,9500 55,0489 0.0000 0.0000 0.0007 0.0000 R
0.75 S$.2500 S.2780 4.9500 5.048% 0.0000 0.0000 0.0000 0.0000 e
0.80 95.4000 S.2390 4.9000 S5.1118 -0.0001 0.0000 0.0006 -0,0044
0.85 55,4000 5,311 4.9000 4.9570 0.0000 -0.,0033 0.0000 0.0000
0.90 5.4500 S5.3115 4,8500 4.9570 -0.0002 0.0000 0.0005 0.0000
0,99 5.4500 S5.,3214 4,8500 4.9532 0.,0000 0.0000 0.0000 0,0000
1,00 55,5000 5.3214 4.8000 4.9532 -0,0003 0.0000 0.0005 0.0000
1,05 5.5000 S.2562 4.,8000 S5.0121 0.0000 0.0000 0.0000 0.0000
1.10 5.4500 5.2562 4.,7500 5,0121 -0,0102 0.,0000 ~0.010%9 0.0000
1,15 95,4500 5.1489 4,7500 S.11461 0,0000 0.0000 0.0000 0.0000
1.20 S5,4000 5.1489 44,7000 S5.1161 -0,0103 0.0000 -0.0110 0.0000
1.25 $.4000 5,0641 4,7000 S5.2292 0.0000 0.,0000 0.0000 -0.0053
1.30 S$.3500 5.0023 4.6500 55,2941 -0.0104 0,0000 -0,0110 0.0000
1.35 5.3500 4.,9148 4,6500 5.3839 0.0000 0.,0000 0.0000 0.0000
1.40 S.3000 4.8246 44,6000 15,4853 -0.0105 0.0000 -0.0111 0.0000
1.45 S5.3000 4.9299 4.,6000 5.2143 0.0000 -0.0137 0.0000 ~0.0111
1.50 5.2500 4.871% 4,5500 5.2759 -0.0106 0.0000 -0.0112 0.0000
1.55 9$.2500 4.9984 4,5500 55,0109 0.0000 -0.0124 0.0000 -0,0103
1.60 5.2000 5.0073 4.5000 5,0063 -0.0107 0.,0000 -0.0113 0.,0000
1.65 5.2000 S5.0073 4,5000 55,0063 0.0000 0.,0000 0.0000 0.0000
1.70 5.2000 5.0794 4.5000 4.8754 0.0000 -0.0050 0.0000 0.0000
1.75 5.2000 S5.0794 4,5000 4.,8754 0.0000 0.0000 0.0000 0.0000

)
x
+

vt

5.20 Result of running MULTFOR with MULTINV, which e
adds noise and averages the updated wave speeds
and densities computed by using the discrete medium
updates on every pair of experiments.
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A )
*: '_:)‘
~
o

o r3 red r4 rc4 rS red KX
2 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 2
i 0.0000 -0.0046 0.0000 0.0000 0.0000 0.0000 K
- 0.0121 0.,0171 10,0148 0.0144 0.0190 0.0218 .
? 0.0000 -0.0048 0.0000 0.0000 0.0000 0.0000 Y 2
) 0.0121 0.,0158 0,0149 0.0185 0.0194 00,0210 .E

- 0.0000 0.0000 0.0000 0,0000 0.0000 0.0000
o 0.0120 0.0144 0.,0149 0.0170 0.0198 0.0139 s
0.0000 0.,0000 00,0000 0,0000 0.,0000 0,0000 %
0.0023 0.0000 0.0053 0.0050 0.0105 0.0078 R
0.,0000 0.0000 00,0000 0.0000 0.,0000 0.0000 .
0.0022 0.0000 0.0054 0.0051 0.0110 0.0063 ol
2 0.0000 0,0000 0.,0000 0.0000 0.0000 0.0000
3 0.0022 0.,0000 0.,0055 0.0075 0.0115 0.0118 o
0.,0000 0.0051 0.0000 0.,0000 0.0000 0.,0000 o
0.0021 0.0058 0.0055 0,0000 0.0121 0.0155 o
0.0000 0.,0000 0.0000 0,0000 0,0000 0,0000 oy

> 0.,0021 0.0000 0.0057 0.0000 0.0128 0.0000 ok j
- 0.0000 0.,0000 0.0000 0.0000 0.0000 =-0.0059 -
X 00,0020 0.0000 0.0058 0.0000 0.0136 0.0000 5?
- 0.0000 -0,0060 0.0000 0.0000 00,0000 0.0129 o

0.,0020 0,0000 0.,0059 0.0000 0.0144 0.0000 :

0.0000 0.0000 0.0000 0.0000 0.0000 -0,0292 o

-0.0124 0,0000 -0.0163 0.0000 -0.,0249 0.0000 o

C 0.0000 0.0000 0.0000 -0.0202 0.0000 -0.0227 B
: -0.,0125 0,0000 -0.0162 0.0000 -0.0240 0.,0000 g
0.0000 0.0000 0.,0000 -0.0134 0.0000 0.0000 e
v -0.0125 0.0000 -0.0161 ¢©0.0000 -0.0232 -0.0215 .
- 0,0000 -0.0154 0.0000 -0.0138 0.0000 0.0000
N -0.,0126 0.0000 -0.0160 0.0000 -0.,0225 -0.0276
0.0000 -0.,0147 0.0000 0.0000 0.0000 0.,0000

.. ~-0.0126 0.0000 ~-0.0159 -0.01%91 -0.,0219 0.0000
. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
. -0.0127 0.0051 -0.,0158 0.0000 -0.0214 0.0000
- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0,0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

L
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reciprocal is defined as the fraction of energy lost per unit cycle due to

absorption, divided by 2w, is then specified by

1/Q(z) = (AE/E)/2m = 2ci(z)/;c(z)1 . (5-20)

The assumption that Q is independent of frequency is generally tenable
for seismic frequencies (0.001 - 100 Hz) (Aki and Richards, 1980, p.
170).

However, in the attenuation factor in (5-19), it is clearly necessary
to replace w with |w| if negative frequencies are to be considered (note
that this makes (5-19) conjugate symmetric, so that its inverse Fourier
transform is real). This means that the inverse Fourier transform of
(5-19) is not causal. In general, this problem must be removed by
letting ¢ vary with frequency (Aki and Richards, 1980, p. 171).

Therefore, an absorbing medium is necessarily dispersive, and if

an impulse is used to probe the medium, it will become dispersed. Thus
the layer stripping algorithm would seem to be inapplicable to lossy
media.

However, if Q is large and the medium is only slightly lossy, then
it is also only slightly dispersive. The dispersive relations covering

the behavior of c¢(w) often depend logarithmically on w; the relation
C(u)l) /c(wz) =1+ log(u)l/wz) /7Q (5-21)

works well and is often used (Aki and Richards, 1980, p. 177).
Further, the effects of dispersion of the probing impulsce will not

be apparent at shallow depths, since the impulse has not had time to

disperse significantly. DMost importantly, the use of a layer stripping
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algorithm ensures that the disperson of the impulse at great depths will o
not affect the reconstruction of the medium at shallow depths. The ® X
[ 3

conclusion is that a modified layer stripping algorithm should be able :-f.'
\._c

to reconstruct the shallow layers of a high-Q, slightly lossy medium. ,','
l:{

Since the only change in the inverse problem is that the wave speed ~7

c(z) is now complex, the alterations to the layer stripping algorithm are
minor. The equations for the reflection coefficients and impedances are

unaltered (Ganley, 1981), although these quantities are now complex.

The major change is that since the reflection coefficients are complex "
[ and depend on the sign of w, the Schur algorithm must be used in place
L
. of the fast Cholesky algorithm.
] ® Kk
& The complete algorithm consists of two sets of wave updates e
- y
A ~ A -1 4 - . ' 2 ~ ""
By (z+8,0) = By (z,0e k@ 8/ (RN 1 (534 G, (z,0) (5-220) g
OF
~ A sl /a! Ao ! 2 ~ :j:::
Uy(z+b,0) = Uk(z,w)e]‘” /ck(z)ew cj/(ck(z))“ _ I,k(z)ADk(z,w) (5-22b) o
b8 = UM 0 ek G 2wy , k=1,2, 620 5-22 oK
rk 2 B jue K z, ’ =1, 4, W < ( c) -
initiated using the two reflection responses ﬁk(w) by o _
B, (0w = 1 (5-23a) o
Uk(O,m) = Rk(w) R k=1, 2, (5-23b) .
o
l"’-
“le
and the set of parameter updates IJ;
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1 + rk(z)A
Zk(z+A) = —_ Zk(z) , k=1, 2 (5-24)
1- rk(z)A
2 2 2
U(z) = cos ez(z) /cos el(z) = (Zl(z)/Zz(z)) (5-25)
_ 2 2 3%
e (2) = [(U(2) - 1D/(U(2)p] - Py)] (5-26)
o (2) = e (/1 - e (%)} (5-27)
p(z) = Re[Zk(z)]/ci( (2) (5-28)
¢;(2) = Im[Z, (2)]c (2) /(P(z)ey (2)) (5-29)
T (2 = T (2) + e (), k=1,2 . (5-30)

Note that although Zl and Z, are both complex, their ratio is real.

2
It should also be noted that we are able to recover three medium
parameter profiles 0o(z), cr(z) , and ci(z) from only two reflection
responses ﬁl(w) and ﬁz(“)' This is possible because the profile ci(z)
manifests itself as the imaginary parts of rk(z) and Zk(z) , which were
previously ccnstrained to be real.

It may seem as though the introduction of a complex wave speed
should make the reflection time responses Rk(t) complex. However, this
is not the case, since the imaginary part of the wave speed ci(z) is
implicitly multiplied by SGN w. This correction made (5-19) conjugate
symmetric in 4, so that its inverse Fourier transform is real but non-
causal. A similar effect holds for the reflection time responses Rk(t).

Note that since the probing excitation is no longer causal, it is hardly

surprising that the Rk(t) are also no longer causal.

Doy 3o,
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\ 3
3 It should be noted that since ci(z) is implicitly multiplied by SGN "_
.‘ w, the simple multiplications of r(z) times the waves in the frequency ‘
< domain become convolutions involving the Hilbert transform in the time :_
" domain. This is why the Schur algorithm, which only uses non-negative ;‘.‘i
by frequencies, must be used instead of the fast Cholesky algorithm, which ® '
: has a very complicated form for this problem. Recall that (5-22¢) j
:‘: requires only that the reflection responses at each depth be strictly
- proper (see Chapter III), which is still true. ° &
O
- 5.5 Summary '\
The primary goal of this chapter was to demonstrate that the layer _-:._
A stripping algorithms work in the presence of small amounts of noise. o r
‘ Since this has been demonstrated, the application of noise reduction ﬂ‘i
: techniques such as beamforming should allow the algorithm to work on :;';
. noisy data. The modifications of Section 5.4, especially the use of .
: reflection data at many angles of incidence, should also help considerably.
‘ If the signal-to-noise ratio is low (less than eight), then it may be __
- expected that the layer stripping algorithm will break down at the depth i
‘ a* which the conditioning of the inverse problem becomes so poor that
the noise overwhelms it. In this event, there is probably little choice
but to use deconvolution-type methods that treat the reconstruction of ° E“
the medium as a problem in modelling a random process by an AR
- (autoregressive) filter. This amounts to a reformulation of the
~ inverse problem, and thus lies outside the scope of this thesis. The ® .
'" algorithms given in this thesis produce exact reconstructions in the limit \
J as 4~ 0, so they would be preferable in situations where noise levels are ,,.

low.

The weak point of the layer stripping algorithms is of course their




.........................

275

susceptibility to imperfect data. However, part of the reason for this
is their layer-recursive nature, which makes the inverse problem solved
at each recursion steadily more poorly conditioned. This loss of
conditioning with depth must be experienced by any inversion process,
but is often disguised by the machinery of the process, rather than
illuminated by it as it is for the layer stripping algorithms. Band-
limitation of the source and data also causes problems, but again there
is no way around this without reformulation of the problem. The only
major fault inherent in the algorithms themselves is the catastrophic
nature of their breakdown when it does occur.

The strong points of the layer stripping algorithms are as follows.
First, of course, is that they provide an exact solution as A~+0. Second
is their great simplicity, which lends itself to fast processing on a
computer. Third is their physical interpretability, providing a physical
insight into the inversion process that other inversion methods in general
cannot match. Reasons for the algorithm breaking down often carry with
them a physical interpretation that makes them much easier to visualize
and perhaps solve.

The results of this chapter can be summarized as follows. The
time~domain foward problem program BREM was found to be preferable
to the frequency-domain forward problem program FOR1, since the
former did not require an inverse Fourier transform and its attendant
complications. The continuous-medium inversion program INV1 broke
down when applied to discrete media, as expected, while the discrete
medium inversion program INVDISC continued to work satisfactorily.

This more than compensated for the more complicated updates (including

a square root extraction) required by INVDISC.
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The inversion algorithm tended to work quite well for several layers,
until the steadily increasing error in the computed wave speed caused ®
the algorithm to project ahead to the wrong time and miss the next
primary reflection, at which point the algorithm broke down. The
a_posteriori methods of Habibi-Ashrafi and Mendel (1982) are better
at preventing this, although much more computation is required, and
there is still a chance of missing a weak primary reflection. The algorithm
still worked when noise was added to the data, although the greater
the noise level, the shallower the depth at which the algorithm broke
down, as expected.

Some modifications for improving the performance of the algorithm
on noisy data were developed. The first modification consisted of
setting to zero all measured reflection coefficients below a varying
threshold determined by the condition number of the problem at each
depth. This proved quite effective for discrete media composed of layers
several times thicker than the discretization depth A. However, it could
also lead to worse results for more continuously varying media, whose
weak reflection coefficients could be mistakenly suppressed as noise.

The other modification consisted of using reflection data at several
different angles of incidence to perform a least-squares fit for the

updated medium parameters at each depth.

The problem of determining the profiles of p(z) and c(z) for a layered

acoustic medium by probing it with impulsive plane waves and measuring o R

the reflection response has now been quite thoroughly covered, as far
as layer stripping inversion methods are concerned. We now proceed
to a more complicated generalization of this problem--that of determining ®

the parameter profiles for an elastic medium from its reflection responses.

.
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CHAPTER VI

The Inverse Problem for a One-Dimensional Elastic Medium

6.1 Introduction

In this chapter the inverse seismic problem for a one-dimensional
elastic layered medium probed by impulsive plane waves at oblique
incidence is solved by a layer stripping algorithm. Separate profiles of
the Lamé parameters A(z) and u(z) and the density p(z) as functions of
depth may be obtained from the P - to - P, P - to-SV, and SV - to -
SV reflection responses of the medium. Alternative choices for the data
to initiate the algorithm are discussed in Section 6.3.2.

The basic results of this chapter are taken from Yagle and Levy
(1985). However, those results are supplemented by a dynamic

deconvolution inversion procedure for an elastic medium. Some

alternative formulations of the layer stripping algorithm that allow the
reconstruction of an elastic medium when it is probed from a fluid_
half-space are also given. This is clearly applicable to probing the

sea bottom from the ocean above it. Finally, some comments on discrete

elastic media, collected from a variety of sources, are made.

Problem formulation

The basic problem considered in this chapter is as follows. An
elastic layered medium, which supports the propagation of both
compressional (P) waves and shear (S) waves, is parametrized completely
by the continuous profiles of the Lam€ parameters A(z) and u(z) and

the density p(z). The medium is isotropic and laterally homogeneous,
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waves at oblique incidence. This procedure allowed recovery of the
» parameter profiles by solving Marchenko integral equations, but it
sidestepped the issue of P-SV mode conversions. Blagoveshchenskii (1967)

exhibited several integral equations whose solutions yielded the parameter

profiles as functions of travel times; by combining the Gel'fand-Levitan
inverse scattering method with the solution of a Volterra equation,
Carroll and Santosa (1982) were able to recover the parameter profiles
as functions of depth. Baker (1982) solved the related problem of

reconstructing radially varying parameters by using spherical harmonics

and Marchenko integral equations.

Kennett and Illingworth (1981) used propagator matrices to
propagate upgoing and downgoing P and SV waves between various
depths. The waves were expressed by a generalization of the Langer
uniform approximation (involving Airy functions), which is tantamount to
neglecting all multiple reflections and wave interconversions (i.e., a
single scattering approximation). Although their inversion procedure
is very complicated, it does incorporate multiple turning points nicely.
Frasier (1969) attempted to use matrix methods to solve the discrete
elastic problem, but the different wave speeds for P and S waves cause
problems in defining a Goupillaud medium model, and his solution is
necessarily only an approximation.

Clarke (1984) and Shiva and Mendel (1983) have recently given
algorithms that utilize the layer-stripping principle. However, their
algorithms are far more complicated than the algorithm of this chapter.
Clarke (1984) requires the iterative solution (using Newton's method
for solving equations) of several equations at each step of the algorithm

in order to update the medium parameters. His numerical example
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and has a lateral dimension, so that it may be probed at oblique
incidence. The medium is probed with an impulsive plane P wave at
oblique incidence, and its P - to - P and P - to - SV reflection
responses measured. The medium is then probed again with an impulsive
plane SV wave at oblique incidence, and its SV - to - SV reflection
response measured. Either a half-space or a free surface boundary
condition may be used at the surface.

This problem is far more complex than the acoustic problem

considered in Chapter IV because there is interconversion between P

and SV waves as the inhomogeneous medium is penetrated. Thus instead
of having two waves with continuous coupling between them, there are
four waves with continuous coupling between each pair of waves. Due
to various symmetries, the couplings can be parametrized by three
reflectivity functions and an interconversion transmissivity function. In
the operation of the layer stripping algorithm, the three reflectivity
functions are recovered from the three surface reflection responses or
traces (i.e., seismograms), A(z), u(z), and p(z) are computed, and

the layer stripping algorithm is then propagated to the next depth.
Complications are introduced by the different wave speeds for P and S
waves, so the algorithm is much more than a simple generalization of

the algorithms of Chapter IV.

Previous work

Previous work on this elastic problem has yielded methods of
solution that are computationally arduous to implement. For example,
Coen (1981) solved this problem by employing solutions to the acoustic

problem for the separate cases of P and SV impulsive plane waves at

normal incidence, which are decoupled for a layered medium, and of SH
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consists of only six layers, perhaps as a result of the complexity of
his algorithm. He also assumes that the P - to -SV and SV - to -SV
reflectivity functions are independent of the P-wave speed, and that
the P - to - P reflectivity function depends only on the P-wave speed.
The algorithm of Shiva and Mendel (1983) requires the solution of a
cubic equation at each step, and some more algebra to update the
medium parameters. In addition, they employ maximum-likelihood
estimation to look for the next set of first reflections, which yield the
reflectivity functions. This a posteriori approach is in contrast to the
much simpler a priori approach of the algorithm of this chapter, in
which the times of the first reflections are projected.

The reason that the layer stripping algorithms of Clarke (1984)
and Shiva and Mendel (1983) are so complicated is that these papers
assume the medium is discrete. Here, it is assumed that the medium is
continuous, which allows the use of differential updates of the medium
parameters. The computational results of Section 6.4 indicate that this
assumption is generally workable, and that the vastly more complicated
discrete updates may not be worth the amount of work they require.

It should be noted that there is no single procedure for solving
the elastic problem that is analogous to the Gel'fand-Levitan procedure
of Section 3.2.2. This is because the different wave speeds of P and S
waves makes it impossible to formulate the elastic problem as a matrix
Schrodinger equation, to which the Gel'fand-Levitan procedure could be

applied.

Summary

In Section 6.2 the layer stripping algorithm for a continuous elastic

medium is derived, specified, and physically interpreted. The algorithm
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W
is more than a simple generalization of the algorithms of Chapter IV, 1:::::
. . ) iy
since the different wave speeds of P and S waves complicates matters Y
. -
immensely. Indeed, there are no simple integral equation methods for \
YR
solving the elastic problem that take into account wave conversions, N
", N
for this reason. SN
. . . : O K ;
In Section 6.3 some alternative formulations of the algorithm are ot
A
presented. First, a dynamic deconvolution algorithm involving a matrix .':j":»,"
Riccati equation is derived. Next, the problem of probing an elastic lf‘:‘.’—‘

medium from an acoustic (i.e., liquid) half-space is solved using a

different version of the layer stripping algorithm. Note that for this

problem the elastic medium cannot be probed with S waves, and the I::;.::
reflected response of S waves cannot be measured, since the liquid °
half-space does not support shear stresses. This problem has an ,E%
obvious application in probing the sea bottom from the ocean above it. lj:::

Finally, some comments are made on discrete elastic media, in order to
show the relations between acoustic medium results and their elastic
medium generalizations. oy
In Section 6.4 the results of a computer run on a twenty-layer 3
medium are presented. The forward problem reflection responses were

generated using the reflectivity method, and an inverse Fourier transform

®

taken. This introduces errors into the synthesized responses in the form )
of bandlimiting, aliasing, and Gibb's phenomenon, but the layer stripping L‘_; o
algorithm nevertheless works satisfactorily.
o
Some basic concepts of elastic wave propagation :‘
The two basic equations for a linear elastic medium in the absence ",:C::;.
%
of sources are the momentum relation (compare to Newton's second law ° .'
of motion, F = ma) ':"’.:
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pazuilat

= ]Zarij/oxj (6-1)
and Hooke's law

T.. = C.. 6-2
ij - %jpq®pq (6-2)

where Tij represents an element of the symmetric stress tensor, epq

represents an element of the symmetric strain tensor, and vy is the

component of displacement in the direction X, (Aki and Richards, 1980).
Suppose all deformations of the medium are adiabatic, so that a strain
energy function can be defined, and the medium is isotropic. Then, due
to various symmetries, the tensor Ciing * which contains 81 elements, is

JPq
actually a function of just two quantities, since it has the form

6 ) ’ (6_33)

c.. = . d + S, 8. + 8. 6.
ijpq - *Sij°pq WCiptiq * Siglip

S :{ lifi=j3 (6-3b)
0ifi#j

The quantities } and y are called the Lame parameters. Along with the

density p, these quantites completely specify the medium: other quantities
such as bulk modulus, can be specified in terms of ) and , (Aki and
Richards, 1980).

Unlike an acoustic or liquid medium, an elastic medium can support
shear stresses, since | # 0. This means that an elastic mediuw can
support two types of propagating waves: P waves, which are physically

the same as acoustic waves, and travel at a wave speed
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- 3 3
: a= (A + 2w)/p)? (6-4) "
- sﬁw
ok
and S waves, in which the wave displacement is perpendicular to the N
. (:-
Ny direction of propagation (which clearly requires shear stress), and “a
S
which travel at a wave speed !..?"
A ® !‘
‘ 8 = (Wt . (6-5) o
: Note that P waves always travel faster than S waves. In fact, ® E’
’."_‘
: the notations "P" and "S" come from the fact that the first or Primary "}
: body wave from an earthquake is always a P wave, while a Secondary :jlf
19 T
' arrival is an S wave. Also note that S waves can be polarized in any P Ef
direction perpendicular to the ray path. S waves are generally “:';
decomposed into components in the vertical plane (SV waves) and the
horizontal plane (SH wave.). For a layered medium, in which ), y, ‘E—
and o are functions of depth only, the SH waves are decoupled from
- L
- the P and SV waves (Aki and Richards, 1980). At normal incidence, '-j'_
. ._\-.
the P and SV waves are also decoupled. Coen (1981) used these facts ..
A in order to solve the inverse prcblem for an elastic medium using the
Gel'fand-Levitan procedure. Since the SH waves are completely f_::j
independent of the P and SV waves, we shall disregard them for the ® i;:.
remainder of this chapter. :
6.2 Layer Stripping Solution for a Continuous Elastic Medium jﬁ_\'
o
In this section we derive and specify the layer stripping algorithm o
that solves the inverse problem for a continuous layered elastic medium. :_f-_
The resulting algorithm is very simple coriputationally, and lends much !

e

physical insight into the inversion process.
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The problem considered is as follows. A continuous, lossless,

»

-

'r._-l;-'vr 0
R

layered elastic medium is probed, in separate experiments, with impulsive

plane P and SV waves, and the P - to - P, P - to - SV, and SV - to - SV
reflection responses of the medium are measured (note that the P - to -

SV and SV - to - P responses are identical). The angles of incidence

o
ep and GS are chosen (i.e., the data are slant-stacked) so that the
slowness p for both incident plane waves is the same, i.e.,
® . .
p = sin ep/a(O) = sin 88/6(0) . (6-6)
The goal is to recover the profiles i(z), n(z), and p(z), which
L
characterize the medium completely.
Although the reflection response is defined for a half-space boundary
condition, a free surface boundary condition may also be used. In this
[
case, the reflection response may be synthesized from the surface traces
(seismograms) by inverting the formulae (Frasier, 1969)
® sin? cos SS
Vg= —2L— (DP + UP) + [~ (US + DS) (6-7a)
z % z
p S
r'a -cos § sin £,
V,= ——=2 (UP - DP) + (US - DS) (6-7b)
\ 3 3
Z Y/
p S
¢ where VH(t) and Vv(t) are the horizontal and vertical velocity traces;
DP, UP, DS, and US are the amplitudes of the downgoing and upgoing
P and SV waves; and
@
Z = 2 6-8
p ca cos ep ( a)




Zs = pRcos es (6-8b)

are the P- and SV-wave impedances at the surface. Inverting (6-7) for

the two experiments gives, for the P-wave experiment,

R = i - i < - - w
Rpp(w) Zp /(bpcos(ep es))(sm esvH(w) cos esvv( )+bpcos(ep+es)/zp)
(6-9a)
3 3 ~ \ ~ .
R = - 8 % 6 - 6
pS(m) ZS /(bpcos(ep es))(cos va( )+sin pvv(u) bpst p/Zp)

(6-9b)

and inverting (6-7) for the SV-wave experiment gives

~ _ } _ . N o A _ .
Rsp(u) = Zp /(bscos(ep GS))(sm esVH(““) cos esvv(w) bssm zes/zs)

(6-10a)

x>

o) = zs*/(bscos(ep—es))(cos 8,V (W sin 8 ¥y (u)-b cos (8 +9)/Z)

(6-10b)

where bp and bS are the strengths of the incident P and SV excitations.
It should also be noted that the algorithm may be run concurrently
with many different values of slowness p from a single point source
experiment. In this case, the updated medium parameters at each
depth from each run may be averaged, and the averaged values then
used in the algorithms. This reduces the effect of noise in the data,
as discussed in Chap*er V. Furthermore, the desired responses for P

and SV excitations could be obtained by an appropriate superposition of
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the responses to a P-wave source and to a mixed, P- and SV-wave

‘e %
L]

Ay N
L

atg wy

o PN
o

source. Other possibilities of using data for several different values of
slowness p are noted in Section 6.3.2.

We now define the following quantities:

az) = ((A(z) + 2u(z))/p(z))i = local P-wave velocity (6-11a)

8(z) = (u(z)/o(z))} = local S-wave velocity (6-11b)

sin 6_(z) = a(z)p = sine of local angle between P-wave (6-11c)
p ray and vertical

sin Ss(z) = 2(2z)p = sine of local angle between S-wave (6-114)
ray and vertical

a'(z) = o(z)/cos Gp(z) = local vertical P-wave velocity (6-11e)

3'(z) = 3(z)/cos es(z) = local vertical S-wave velocity. (6-11f)

We also define the vector

—ux(t,x,z) n

uz(t ,X,2)
g(t,x,z) = (6-12)
sz(t ' X,Z)

LTzz(t ,x,z)_

where uy and u, are the horizontal and vertical components of the
displacement, and where Tux and T,, &re the horizontal and vertical
tractions on an element perpendicular to the z axis.

An impulsive plane wave tgoé(t-px—qz) is used to probe the elastic

medium. Here 3(-) denotes the Dirac delta function, and q is the

o s
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vertical ray parameter just below the surface (for a free surface), or in
the homogeneous half-space above the medium. The Fourier transform
of this plane wave is (?0 exp-jugz)exp-jupx. Since the horizontal ray
parameter p is independent of depth, we may write the Fourier transform

of the vector (6~12) for z> 0 (inside the medium) as
gw,x,2) = f(w.z)exp-jupx . (6-13)

From Aki and Richards (1980, p. 269) and Kennett (1983, p. 26),
the propagation of seismic waves in an inhomogeneous, layered, continuous

elastic medium is described by

df/dz = A(2)f(x,2) (6-14)
where

~ 0 -jp 1/ 0 .

=jp M (A +2p) 0 0 1/(\+2u)
A(2) = (6-15)

2.2 2 :
4."p T u(A+L) /(A +2u) - pu ] 0 -jup A/ (A+2p)
i 0 0wt -jup 0 B

Next, we diagonalize equation (6-14), defining upgoing and down-

going P and SV waves. Appropriate weightings of the eigenvectors of

A(z) will be necessary to put equation (6-14) into a form suitable for
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a fast algorithm.

Transformation to upgoing and downgoing waves

It is well-known (e.g., Kennett et al., 1978) that changing variables
in equation (6-14) from g'(w,z) to R(z)tz(w,z), where R(z) is the matrix
of row eigenvectors of A(z), diagonalizes equation (6-14) into upgoing
and downgoing waves. In the present context it will be necessary to
weight the row eigenvectors of A(z) in order to obtain a recursive

algorithm. Thus we define

W(0,2) = X(DR(2E(w,2) (6-16)

where X is a diagonal matrix whose elements weight the row eigenvectors
of A(z). We may then write

f(..2) = R N,z = cx7?

W (w,2) (6-17)
where C(z) = R(z)—1 is the matrix of column eigenvectors of A(z).

Taking the partial derivative of equation (6-17) with respect to
z and premultiplying by XR yields

1

dw/dz = [A - (XRAC/Az)X * + X(d/dz(X )1 (6-18)

)
’v““‘.‘_q".
welee’

where

‘a
oo
-
v
l-
v\.
[
PRAS
S
-
AR

A = RAC = diag(-jwla', -ju/', jula' , ju/B']. (6-19)

We now choose the elements of the diagonal matrix X so that the

.......
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8 - RS
: (diagonal) term X(d/dz)X 1. (d/dz)log X zeroes the diagonal elements ¥
N\ - '
: of X(RdAC/dz)X 1. This is straightforward, and the result is ."
: &
: = di g 4} 1 1 i &
X = diag[(o0 cos ), (Bocos 0 )*, (oo cos 6 )%, (Bpcos 6 )*], (6-20) 13
: p s P s A
ok
N We recognize the components of X as the square roots of the P-wave and o0
SV-wave impedances. Hence weighting the components of Rf by these
quantities normalizes the energy fluxes moving upwards and downards. ok
) Although this transformation was noted by Chapman (1974), it is \
interesting that searching for a form suitable for a fast algorithm leads :::'.:
automatically to the energy normalization (6-20). ® .
- Inserting equation (6-20) in equation (6-18) results in e
-3 \ - - - — '!- .
[ -jw/o t, r, r, o
: i _ _ =
M ~ tC JulB! L Ts R -
3 dw/dz = w (6-21) g
v - - sofa! - e
) rp T, jwla tc o .
= _ - i .
- LT, r, tc ]w/B_‘ -
where e
. _ 2 2 2 2 T
- r,(2) = (1/2-287p")(d/dz)log p(z) - 48°p” (d/dz) log B(2) e
® K
+ 1/(2-20%p%) (d/d2) log x(2) (6-22a) o
o
.:'\'
. .
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201
r(z)—_(’) VQ'% 22 2!' ~
() == (@/2) ('¥)* ((1-28°p° + 26%/28) (d/dz)log 5(2)
2 2 2,
-(48%p% - 48%/x3')(d/dz) log B(2)) (6-22b)
_ 2 2
rs(z) = -(1/2 - 2R"p™)(d/dz)log P (z)
-1/(2-26%p%) - 482p%) (d/az)log 8(2) (6-22¢)
t,(2) = (/@8 ((1-28%? - 262 /w8 (a/dn)log o(2)
22 .2, .
~(48°p® + 48%/urB)(d/dz)log B(2)) (6-22d)

and the quantities in equations (6-22) have the following interpretations:

r_(z) = reflectivity function for a reflected P wave generated
p by a P wave;

reflectivity function for a reflected wave generated by

r,(2)
a wave of the opposite type;

rs(z) = reflectivity function for a reflected SV wave generated
by an SV wave;

tc(z) = transmissivity function for a transmitted wave generated
by a wave of the opposite type.

We use notations similar to those of Chapman (1974) and Kennett and
Illingworth (1981). The physical meaning of the reflectivity functions
is illustrated in Figure 6.1, which describes an infinitesimal section of
a lattice filter structure which implements the elastic wave equation
(6-21). Note that the elementary delay elements Dp 4 exp - jwd/a'(z)
and Ds 2exp -j»4&/ 2'(z) appearing in Figure 6.1 vary with depth. The
lattice structure of Figure 6.1 can be viewed as a generalization of the

lattice structure of Figure 2.1.
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6.1 An infinitesimal section of the ladder filter which

implements the elastic wave equation.
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Next, we use the transformed equation (6-21) to obtain a fast

) inversion algorithm,

Inversion algorithm

Recall that the first experiment consisted of probing the medium
) with a planar impulsive P wave. Since the first component of vAv(w,z)
corresponds to a downgoing P wave, we may write its inverse Fourier

transform w(t,z) as

)
(b ct-1_ (2] [wt,27]
p-tTpt? 12
0 wz(t,z)
w(t,z) = + 1t - 1_(2)) (6-23)
> ; 0 Wa(t,2) P
- 0 __| _w4(t ,z)__|
where
>
APt
- 17 _
Tp(z) = Jo d /o' (%) (6-24)
b denotes the vertical travel time for P waves, and
lfort2Z0
1(t) = (6-25)
[ 0 fort<2o0
is the unit step function. The second term in (6-23) reflects the
» causality of the excitation: there can be no wave at depth z until the
excitation has had time to reach depth z.
Taking the inverse Fourier transform of equation (6-21), inserting
> the expression (6-23), and equating coefficients of f(t—rp) yields
[
.[;;(:-': -(. '.\.L. e s ';“'-‘;l";:“-h‘;.ﬁ'-‘.':~;';.:"A._L1'-'g'."n- <o ’a"ﬁ s o oy P WY '.li
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rp(z) = 2W3(rp(z),z)/(a'(z)bp) (6-26a)
r(z) = w4(fp(z),z>(1/::<z) + 1/3'(z))/bp ) (6-26b)

Now, for the second experiment, the excitation is a downgoing,
impulsive SV wave. Since the second component of w(t,z) corresponds

to such a wave, we have for this experiment

B 0 wl(t,Z)

b _i(t-7_(z)) w,(t,z)
witiz) = | 5 S .02 (6-27)
- 0 w3(t,z)

L 0 W, (t,2)

where the waves wi(t,z) have the form
wi(t,z) = ni(t,Z)l(t-Tp(z)) + qi(t.Z)l(t-TS(Z)) (6-28)
and where the vertical travel time for SV waves has been defined as

A
TS(Z)= fO damra)y . (6-29)

Note that the form of equation (6-28) differs from that of
equation (6-23). This is because in the SV experiment the impulsive
excitation (an SV wave) does not coincide with the wavefront (a P wave).
In the P experiment both of these were P waves and hence coincided.

Proceeding as above, we obtain (qi(z) is defined in equation (6-28))

r.(z) = q3(rs(2) ,2)(1/7:4°(z) + l/i'(z))/bs (6-30a)
rs(z) = 2q4(‘rs(z),z)/(3'(z)bs) . (6-30b)
T e N e T e T T e T B A AR AT =

Yo Y
P

_«
"'

v"u :Y"ﬁ_’

~s
r

¢
ol

o
s

.\

gl

P IS e
MMATLEEAIN . SRS
e Syt

..
e
* ’



The importance of equations (6-26) and (6-30) is that they permit

computation of the reflectivity functions at any depth provided the

waves wW(t,z) are known at that depth.

Next, equations (6-22a-c¢) are written as a matrix equation:

rp(z) (d/dz) log o(2)
rc(z) =M(z){(d/dz) log 3(z)
rs(z) (d/dz) log a(2)
where
1/2 - Zgzp2
M(z) = -2(1—252 24 262/(;'20)
-(1/2 - zszpz)
and

Az) = (p/2)(a'6)?

Inverting (6-32) gives
(d/dz) log o(z)
(d/dz) log 2(z) = N(z)/m(z
(d/dz) log a(z)
where
[ (1/(2-28%p%) - 45%p?%) —i(ap?p?

1/2 - 2:%p2
N(z) =

C -2 adplyy

2(1-2%p?)

4.1 YH e

........

_q52p2

(422 - 432/

, 2.2
—(1/(2-25292)-4c o)

rc(z)
) rs(z)

rp(Z)

S EVIEEDN

—a1-28%p% 4 252/ (L))

2

LTS
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(6-31)

1/(2-2:2p2)

(6-32)

(6-33)

(6-34)
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and

m(z) & (det M(z))(2-2-2p%)

= 101/2 - 3:%% - 8%a + 2%t v 2l - 2pY. (6-36)

Equations (6-34) function as update equations for :(z), 2(z), and «(z).

Note that ¢(z) and 2&(z) are updated solely from rc(z) and rs(z) , and
then rp(z) is used to update a(z). From these three parameters, any
other parameter of interest (e.g., A(z) and 1(z)) may be quickly
found. Chapman (1974, p. 67) gives equations similar to equations
(6-31); however, Chapman's equations involve too many quantities
(4,0,8,0', and 8') and require the unobservable transmission coefficient
tc' Thus, they are unsuitable as update equations.

We have now specified all of the equations of the algorithm, in
differential form. The algorithm consists of equation (6-21), twice
(one for the experiment involving excitation by P waves; one for
excitation by SV waves) for updating the up- and down-going waves;
equations (6-26) and (6-30) for computing the reflectivity functions;
equations (6-34) - (6-36) for updating the material parameters c(z),
2(z), and u(z); and equation (6-22d) for computing the transmissivity
function tc(z) required to complete the matrix in equation (6-21). We

then immediately have, for each z,

Bz(z)c(z) (6-37a)

u(z)

?(2) - 258%(2))2(2). (6-37b)

2(z)

Next, the algorithm is discretized in order to clarify the recursions

and specify in what order quantities should be computed.
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Discretization

The depth coordinate z is discretized by z = n2, where n is a

positive integer and . is the discretization length. The time coordinate

t may also be discretized, but its discretization is independent of that .;-:ﬁ‘-‘f‘::.

L
of z. I ‘
Initialization ‘

It is assumed that all material parameters (},y, p, and hence
a,8, o, and 8') are known at the earth's surface. If we are assuming
a free surface, the waves at the surface are determined by measuring
the velocity components over time, for both the P and SV experiments,
and using (6-9) and (6-10). If the medium is probed from a half-
space, the upgoing waves are initialized by the inverse Fourier
transforms of the appropriate reflection responses. Since only the
smooth parts of the waves need be propagated in the algorithm, the

downgoing waves are initialized to zero.

Recursion
We start off with knowledge of o(z), B(z), p(z), o&'(2), g'(2) as R
well as that of all up- and down-going waves at depth z, from the

previous iteration. Let wp(t,z) represent the waves in the P-wave

source experiment, and ws(t,z) represent the waves in the S-wave S

source experiment. For convenience, we identify the dimensionless o
quantities '.-_::':*l'- )

B(z) = &(z)p? = sinzes(z) (6-38a)
G(2) = &2 (DI (2" (29) = (1/sin 25 oot &, . (6-38b) L
|_'.‘.=:.

Then, taking the inverse Fourier transform of equation (6-21) and
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employing a simple forward difference approximation to the various f_
derivatives in the differential form of the algorithm yields the following ::Z-,’
recursive algorithm: ® A
1) Computation of the reflectivity functions. From equations (6-26) :.
and (6-30), .E-
3 s
r,(2) = 2wh(x (2), 2)/(bA) (6-39a) o
r(z) = 2w} (1,(2), z)/(iipﬁ.) (6-39b) '!‘-
r(z) = 2w5 (1 (2)*,2) - Wit (2)7,2)) /(b d). (6-39¢) f';'i'-_:
:
where t:p = bpa’(z)/A and Bs = b B'(z)/4 are the strengths of the ® ,
discretized continuous impulses. .;
Upon going from continuous time to discrete time, the continuous- _
time impulse bicS(t) becomes a discrete-time impulse of height bi/Di’ ® :‘.
where Di is the differential delay time at depth z for wave type i (see
Figure 6.1). Since the impulse has been spread out over the time
interval Di’ its height must be bilDi in order to maintain its area bi’ o :~_
For a P~ P reflection Dp= &Nu'(z). For a P~+S reflection the two-way
delay is Dp + DS, hence the one-way delay is half of this, or M
(&12) (/o' (z) + 1/8'(2)). Equations (6-26) and (6-30) are thus .E‘
modified to (6-39).
2) Computation of auxiliary quantities. From equations (6-36) and ® "
(6-38), S
B(z) = 82(2)p* (6-40) ‘:-;E‘:
‘¥
G(z) = Bz(z)/(a'(z)ﬁ'(z)) (6-41) .,,.
2
AN
ok |




m(z) = (1/2 - 3B - G + 2B% + 2BG)2/(1-B) (6-42)

t(z) = -2(1/2 - 3B + G + 92 - 2BG)r,(2) /((1-B)m(2))

+ ZBrS(z) /m(z) (6-43)

where 2(z) is defined as above.

3) Update of material parameters. From equations (6-34) - (6-35),

p(z+a) = p(z) - o(2)((1/(2-2B) - 4B)rc(z) + 42(B-G)rs(z))A/m(z)
(6-44)
g(z+p) = 3(z2) - B(Z)((ZB-I/ZJI‘C(Z) + £(1-2B+ZG)rs(z))A/m(z) (6-45)
a(z+p) = olz) + a(z) (l-az(z)pz) (er(z) - ((2B—1/2)/(l—B)m(z))rc(z)
- 2(4(B+G)/m(z))rs(z))A (6-46)
' — 2 2.3
a'(z+48) = of2z+d) /(1-a"(z+d)p7) (6-47)
' - 2 2.3
B'(z+d) = B(z+d)/(1-8"(z+8)p™)* . (6-48)

4) Wave update. From the inverse Fourier transforms of equation (6-21),

wl(t+A/u'(z), z+p) = wl(t,z) - (tc(z)wz(t,Z) + rp(Z)w3(t,z)

+ rc(z)w4(t,z))A (6-492a)

wz(t+A/s'(z), z+) wz(t.z) - (—tc(z)wl(t,Z) + rc(z)wa(t,z)

+ rs(z)w4(t.z))A (6-49b)

w3(t—A/3'(z), Z+4) = w3(t,z) - (rp(z)wl(t,z) + rc(z)wz(t,Z)

+ tc(z)w4(t,z))A (6-49c¢c)

€ o . ""."".
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L] x::
\ -t ? = - '-.
:; Wa(-0 /8 (2), z48) = W, (t,z) (rc(ZJWI(t,z) +r (2)w,y(t,2)
e -.
1Y - A _ ’-.
i) tc(z)w3(t,z))1_ (6-49d) ®
::E and these same recursions are used for both »jp(t,z) and »gs(t,z). ::l
v
L At this point, we have obtained p(z+d), oz+d), B(z+l), o (z+L) y
ok
X B (z+d), and all eight waves at depth z+A. Hence the recursion is !:
complete. Each step in the recursion can be implemented as one stage f‘

or section of a ladder-type filter, which can be regarded as a more

complex version of the lattice filter commonly encountered in spectral .-“--

estimation theory. A typical section of this ladder filter is illustrated

in Figure 6.1. The downgoing P and SV waves at depth z enter the ;L':

G filter section at the upper left, interact with each other, are reflected ®
:f (due to the inhomogeneity of the medium), and exit at the upper right, ,:
; now at depth z+). Upgoing P and SV waves undergo a similar experience ,:-;
., in the lower half of the filter. Note how this filter illustrates the o ._
physical meaning of the reflectivity functions rp(z) , rc(z) and rs(z) , u-
and of the transmissivity function t_(z). \
The recursions of the waves in z and t, given by equations (6-49), o . _

are slightly complicated, so the recursion patterns are illustrated in

. Figures 6-2a and 6-2b. We start off knowing the waves at depth z for
all time, and wish to find the waves at depth z+A. Although the ¢

simultaneous time and depth updates may make it seem as though
information at early times is being lost, reeall that by causality there
can be no wave at depth z until the initial excitation has had time to
reach depth z. Thus there is no information to lose at the early times.
The algorithm that we have described above for reconstructing c(z),

AM(z) and u(z) works even if some turning points exist for the P and SV




® t f w|(zo) W1(ZO+A)

. o
““Sslope = 1/a'(zg)

[
- . .
ey o0 o a» o> =

1
0 Zg Zo+D Z

6.2a Recursion pattern for updating the downgoing
waves.

ta w3(Z°)W3(zo+A)

’
,*%slope = 1/a'(zq)

“\eslope = ~1/a'(zg)

)
|
1

0 2o Zo+d Z

6.2b Recursion pattern for updating the upgoing
waves.
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waves propagating through the elastic medium. However, in this case
o, » and u can only be reconstructed up to the depth zp where the
ray path for the P wave becomes horizontal. Note that along rays

associated with the P and SV waves
sin ep(z)/a(z) = sin Gs(z)/B(z) = p = constant

so that unless o(z) < 1/p for all z (in which case we have also
g(z) < 1/p), the angle ep(z) will become imaginary at some depth zp.

Physically, this situation results in evanescent waves where the waves

decay exponentially with depth. This causes no problem in the

reconstruction algorithm until z = z_, at which point 4'(z) + «. Then,

P
the waves vgp(z,t) and vgs(z,t) cannot be propagated further, and the

material parameters are reconstructed only up to depth zp.

Comments

The algorithm, of course, works on a layer stripping principle. At
each depth, the first reflections in three of the four upgoing waves (P
and SV for each of the two experiments) yield the reflectivity functions
rp(z) , rc(z) and rs(z). The transmissivity function tc(z), which is
not a transmission loss but a coupling between two waves moving in
the same direction, is then computed using (6-22d). All eight waves are
then propagated down to the next depth. Complications are introduced
since the SV first reflection arrives after the P first reflection, and must
be separated out from the downgoing P wave. However, the elastic layer
stripping algorithm is basically a generalization of the algorithm of
Chapter IV, with some complications added.

However, if the waves @ are written out using definition (6-16),

the result is

.8
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~ u u u T T
Wl = Z* [sinz es (sinxs + sin 26 ) * 2cosze ) Zlm:, (cosz}é * sinzg )
3 p s P s
(6-51a)
ioe 2 fein?e (oZe t )t e i (o ¥ i)
2 s s \cos Ss sin es 2co0s es 2.9 sin es cos cs
4

(6-51b)

where the upper signs are used for the downgoing waves and the lower
signs for the upgoing waves. These certainly don't look like physically

interpretable waves. However, they may be simplified to

~

u

w o=z S - T I _

w Zp (rzzcos ep: TSI ep) * jul o5 ep = Zp ‘L’pt ]pr up (6-52a)
3

NIt S i PV S SUNRNES R S i}

W2 = Zs (szcoses+1zzsm es) + jul _s'i'n_é'; = Zs s t]qu ug (6-52b)
4

where %p and u p are stress and displacement in the direction of

propagation and T s and ﬁs are stress and displacement perpendicular

to the direction of propagation. Here we have used the relations

up = * uz/cos ep = ux/sm ep (6-53a)
Tp = Tpx SIN8; 1 1,, COS & (6-53b)
u, =+ uz/sm 8y = ux/cos 8 (6-53¢)
Tg = T,y cos es + T,, Sin as (6-53d)

in both (6-51) and (6-52).

The waves in (6~52) look much more like the choices made in

PR T R T P S S SR
S et e e T e e e
e s Al a At Al

.......
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Chapters III and IV. If the medium is locally homogeneous, they simplify

even further to energy-normalized displacements. This matches the

choices made by Frasier (1969) and Shiva and Mendel (1983) for a
discrete medium composed of homogeneous layers.

It should also be noted that if the medium is discretized, i.e.,
modelled as a welded stack of thin, homogeneous layers with material
parameters varying only between different layers, then RAC /dz may be
interpreted as a scattering matrix for the layer at depth z. To see
this, replace (d/dz) log o(z) = (d/dz)e(z)/p(z) by the discrete
approximation 4p(z)/0(z), and do the same for 8(z) and 2(z). Then
equations (6-22) become the reflection and transmission coefficients at an
interface (Aki and Richards, 1980, p. 153). Thus discretization of the

algorithm is equivalent to a physical discretization of the medium.

6.3 Alternative Formulations of the Algorithm

In this section some other layer stripping algorithms for inverse

problems for elastic media are given. First, a dynamic deconvolution

algorithm, involving a matrix Riccati equation, is specified for the
problem considered above. Next, a layer stripping algorithm is derived
for the problem in which an elastic medium is probed from an overlying
liguid (u = 0) half-space. Since shear waves cannot propagate through
a liquid, only the P - to - P reflection response is available for this
problem. Finally, some comments on discrete elastic media are made to

tie this chapter closer to Chapter III.

6.3.1 Dynamic Deconvolution

The dynamic deconvolution algorithm for the elastic problem is

quite easy to derive. Let the matrix reflection coefficient S(z,.) relating

CURE SR
‘‘‘‘‘
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the downgoing P and SV waves to the upgoing P and SV waves be

] ]
3,

A
ael)

5

o'y

% defined by

rup] _ _[DP
LUSJ = S[DS} (6-54)

265

3

N

d

SErr
T
2,
.‘t'

10

.

AT

D

. &
3

where DP, DS, UP, and US are the amplitudes of the downgoing and

upgoing P and SV waves, respectively. For convenience, rewrite

(6-21) as
DP DP
a {os|_[% l R |ps
ar = —_ (6-53)
UP R ' s UP
Us 2 Us
where
r r -ju/y -t jula! -t _
T i A T s
Then, taking the derivative of (6-54) with respect to z yields ﬁ:
a [up) _ __[DP UP] _ (. d .\ [DP d [DP
a7 [US} = R[DS} *dy liUS] = (_dz"s) [DS] *5qz [DSJ R
_ (4 c\[DP DP] _ UP ]
= (H?S)[Ds] * 89 [DS] SR[US] , (6-57)
and inserting (6-54) and collecting terms gives Zfl:'."_:i‘_.f
R
o gl
d _ _ DP| _ |0 _ o
(375 +59,- 9,5 *R - SES) [DS] = [0] , (6-58) RN
.‘,:.'__.4-
RN,
wloTe
. DP PR
and noting that (6-58) must hold for any set of waves [DS} finally hER Y
s -
results in the matrix Riccati equation ;f”"
-
L
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4. 9=J.5- 53 -R+ SRS 6-59
dz 2 1 . ( )

Note that in the high frequency case, where the transmissivity function

tc becomes negligible, (6-59) becomes

ds_ .‘1/1' 0 S .SI/Ct'O
az° = I 13, + jw 0 1/8' - R + SRS . (6-60)

A Riccati equation similar to (6-59) was derived by Wilcox (1964)
for the electric wave propagation problem on two non-uniform, coupled
transmission lines. Thus it is not surprising that a similar equation
applies to the somewhat similar problem of seismic wave propagation in an

elastic medium.

Since S(z,.) is strictly proper, we have (compare to (3-42))

L ' 5!
ne [ ] 0 T
- 0 1/0° N VER

and the dynamic deconvolution algorithm consists of (6-59), (6-61),

the initial condition

A

R () R (w
S(0,w) = [ﬁpp ps ].

~ (6-62)
@ Ry (W

and (6-22d) for computing t, from R. The Riccati equation (6-59) is
propagated in z, recovering R at each depth from (6-61). The medium

parameter updates (6-34) - (6-36) are used to obtain x(z), i(z) and ¢(z),.

6.3.2 Elastic Medium with an Overlying Liquid Half-Space

In this problem an elastic medium is probed from an overlying liguid

S nat s 3

L 4




half-space. This is clearly applicable to the problem of probing the ocean
floor from the ocean above it. The difficulty, of course, is that since
the liquid does not support shear stresses and shear waves, it is
impossible to measure ﬁps and ﬁss’ Nevertheless, it is still possible
to reconstruct the profiles Az), u(z), and p(z) from ﬁpp alone, if
ﬁpp is obtained for three different values of slowness p.

We assume first that the transition from liquid to solid medium is a
gradual, continuous transition. This is in fact the situation at the
bottom of the ocean--the interface between the water and ooze is
gradual. If this is the case, then the continuous medium parameter

updates may still be used. Writing (6~22a) for p = Py, Py, Pg and

arranging the results into a matrix, we have

Ty, @ arz-2e’ph -4t 1/2-2%p B [@razyog o(2)
2 ) .
ro, (@ | = | arz-2pd -4e%p,2 /-2l | | @ianiog i)
2
Thy (D (1/2-28%p,2) -4g2p,2  1/2-2%p ) | Lardamog az)

(d/dz)log o(z)
(d/dz)log B(z) (6-63)

33 (d/dz)log x(z)

Inverting (6-63) yields the update equations

o(z+2) = o(2) + [(mzzmss'"‘zsmaz’rpl(z)‘("’12"’33”“’13’“32)%2‘2’

+(m12m23-m22m13)rp3( z)]. &/A(z)

(6~64a)

............

......
............
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e(z+L)

8(2)+[=(my myy-myamy Irp, (2) + (my1M337M33™13)Tp, (2)

- (mum23—m13m21)rp3(z)] « p/d(2) (6-64b)

(z)+[ (m

“(z+p) 21M32 M31Mg2)Tp (2) = (Mg Mgymyymyp)Tp, (2)

+ (M) Myg~Mmy oM,

d(z) = DET M(z) = mn(m )

22M 33 MggMgq) M) o (Mg Mag-MyqMg,

*Myq(My May-MyoMg,).

The layer stripping algorithm works as follows. The upgoing and
downgoing P waves are initialized using the P - to - P reflection

response R p(u) for each of the three slowness values Py» Py and Ps.

p
The upgoing and downgoing SV waves are initialized to zero. Three
copies of the wave update equations (6-49) (one for each of Pys Pgs

and p3), the parameter update equations (6-64), the reflectivity function
equation (6-39a), and the equation (6-22d) for tc constitute the
algorithm. At each depth z, the reflection data for Pys Pgs and P3

yield r 1(z), rpz(z), and rp3(z), which are used to update p(z), £(z),

p
and 1(z) to z+A by (6-64). After t, has been obtained by (6-22d),
the twelve waves (in three groups of four) can be updated to z+A
by (6-49). At this point all quantities have been updated to z+A

and the recursion is complete.

Note that in the liquid half-space 3 and dB/dz are both zero, and

the updates (6-64) reduce to the updates (4-35) for the acoustic problem.

Then, at the interface, d:/dz becomes non-zero since {(z+4) is
non-zero. How does the algorithm "know"” when £(z) becomes non-zero?

If z(z) is zero, the system of equations (6-63) is an overdetermined but

1)rp3(7‘)] s Md(z) (6-64c)

(6-64d)
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consistent version of the system (4-35), since there are now three

reflectivity functions instead of two. When the values of the reflectivity

functions take on values such that the system (6-63) is no longer fg.
consistent, it can only be because 8(z) is now non-zero. Downgoing and '\
upgoing SV waves are introduced by the coupling terms r, and tc. ';\:':

Of course, this algorithm could also be used in place of the
algorithm in Section 6.2. The main disadvantage of this algorithm is
that the reflection response must be synthesized for three different -
values of p instead of only one. And after all, the SV wave responses Tﬁ
can be measured just as easily as the P wave responses (see (6-10)). - -‘. ‘
However, this algorithm does have the advantage of not requiring two

separate experiments utilizing P and SV wave sources. If this is a
problem, there is still another option: measure the P - to - P and

P - to - SV reflection responses for two values of slowness p. Then use

Frpl(z)— F(%-Zﬁzplz) ~42%p 2 1/(2—2;12p§)—‘ (d/dz)log -
rpy(@) | | (-2pyd) -4:%p )2 1/¢2-2.5pD | | d/azynog :
re,@ | |-50-25% Braz?r gz 21(452;)?-452/(;'1-3'1)) 0 (d/dz)log =
reg(2) | = |- i,(1-262p 2+2 21 G E ) L@FpE-a2iyay 0

L - L .

(6-65)
where i.(2) is defined by (6-33) and a;(z) and S'i(z) clearly depend on
P;- Omitting any row of (6-65) and inverting the resulting 3 x 3 matrix
as before using (6-64) yields a recursive algorithm. This algorithm
consists of (6-64), in which the mij are now defined by (6-65) (with

one row missing), for medium parameter updates, and two copies of the

wave update equations (6-49) (one for each of P, and pz). The missing

row from (6-65) is also available as a consistency check.

.............
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However, if the solid-liquid interface is not gradual and continuous,
but sudden and sharp (like the bottom of a swimming pool), then the
discrete expressions for the reflection coefficients must be used. These
expressions, given in Aki and Richards (1980, p. 150), are exact in
that they are accurate across large jumps in p(z), B(z) and a(z), but
are far too complex to be practical in a fast algorithm. So let us
consider the case where the discrete expressions are only used once,
at the solid-liquid interface, and the continuous expressions (6-22)
are used thereafter. If % X and BO = 0 are the known values of

o

0(z), 3(z), and (z) just above the interface, and Gy 0 Bl, and o, are

1
the unknown values just below the interface, then we have the following
result. Define qpi by

ap, = (/e - pEryta - rpo/a ey, =1, 2,3 (6-66)
pi o i Pi pi’ »

and note that 9p; is known from the data. Then solve the two (highly)

non-linear simultaneous equations

3

[(1—2812p12)/(1/'112—pi2)% + 4514pi2(1/512—pi2) ]qpi = 5. /2, = constant,

o' "1
i=1, 2,3 (6-67)

in o and 51 for 3 and £ Then ° follows immediately. Once Qs '31, and

1

1

the rest of the medium.
Since the equations (6-67) need only be solved once, this algorithm

could prove workable in a situation with a known sharp solid-liquid

interface. However, the required solution of (6-67) is not an appealing

prospect, numerically.

0, have been obtained, use the previous continuous algorithm to reconstruct

) Lttt
LA
X '.' 'l‘l L4 '.

o
: .l’ .v "- ‘,‘
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6.3.3 Some Comments on Discrete Elastic Media
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It has already been remarked that the layer stripping algorithms

specified by Clarke (1984) and Shiva and Mendel (1983) are far more

complex than the comparatively simple algorithm of Section 6.2, since

these algorithms assume a discrete medium for which A(z), H(z), and

po(z) are piecewise constant,

and SV waves seems to rule out a matrix Schordinger equation -

Gel'fand-Levitan-integral equation solution procedure.

Further, the different wave speeds of P

On this basis,

it might seem that there are relatively few connections between discrete

elastic media and the discrete acoustic media considered in Chapter III.

However, this is not the case.

Indeed, a surprising number of

basic results of Chapter III generalize to the case of a discrete elastic

medium, and some of these results have implications for the continuous

elastic medium algorithm,

To aid in understanding how the elastic medium

is a generalization of the acoustic medium, we now quickly sketch over

some results of Chapter III that generalize to the case of a discrete

elastic medium.

Let DPn’ DSn, UPn, and USn be the downgoing and upgoing

Most of these results are due to Frasier (1969).

energy-normalized displacement waves, respectively, at the top of layer

n, and let DP'n, DS;\, UP}I, and US;1 be corresponding waves at the

bottom of layer n (see Figure 6.3).

DPn+1

DSn+1

up!
n

uUs!
n

pp

Ps

pp

pPs

t
sp

S8

r
sp

r
SS

Then we have the scattering relation

DP!
n

DS!
n

UPn+l

USn+1

e —

(6-68)
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6.3 Wave notations for downgoing and upgoing P
and SV waves in a discrete elastic medium.
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where Ty and tij are the reflection and transmission coefficients for '.'ﬁ:-..-"
L waves incident from above, and ri']. and ti']. are the coefficients for waves ﬁ_:
incident from below. Rearranging (6~68) gives N
-:':-;*:i
e
LN
I -RI; dn_’_1 Tn 0 dI; e
= (6-69) %
' - ' ALY
0 Tn Ui Rn I up
where
r r t t DP UP
PP sp pp sp n n
Rn = , Tn = , dn = , un =
rps Tes tps tss DSn UPn
(6-70)
and the primed matrices are defined similarly. We then have
d T -R'T IR rRe 171 [a
n+l n nn N non n
= (6~-71)
-T'~1 v ~1 !
Un+ Tn Rn Tn Un

and using the facts that Rn and Rr'l are symmetric and (Frasier, 1969)

T = T: (6-72a) B

| - -
Tan + RnTn 0 (6-72b)
T T - - o
T T, +R R =1 (6-72c)
we get the surprisingly simple result A
d 1 -R dy s
n+l | _ T,n_l n (6-73) -:
u -R I u' )

n+1 n n ) o
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Equation (6-73) looks just like the 2 x 2 layer matrix equation
(3-50). However, the quantities in (6-73) are matrices. Thus if the
elastic problem layer stripping algorithm is to be used on a discrete
elastic medium, with the medium parameter updates given in Clarke
(1984), the continuous medium wave updates (6-49) should be replaced
by (6-73) (with appropriate time delays), a fact missed by Clarke (1984).

It should also be noted that the relations (6-72), which Frasier
(1969) derived from the continuity of unnormalized normal stress and
displacement at the interface, are simply a statement of the unitarity
of the scattering matrix (6-68). The relations (6-72) should be compared
to the corresponding relations in Chapter II. The unitary scattering
matrix considered by Kennett et al. (1978) is the matrix in (6-68)
rremultiplied by [? é] .

To show that (6~-73) reduces to (6-49) for a continuous medium as
the layer thickness A approaches zero, recall that the reflectivity and
transmissivity functions are defined by

_ LIM
rp(z) = Aa0 rpp/A (6-74)

and similarly for the other functions. From (6-72¢) it is clear that tpp
and tss are both 1+ O(Az). The layer matrix (6-73) then becomes, for

small 4,

- ~1 B
- L Ral] - 1 td I -R&]. 0af
-R_ I -t 41 -R4 1
n c

1 -t A]f1 -Ra (1 <ta -ra -ro]
=[ c ] :I+ 06 = A S PO TS
t,b 1 Jl-Ra I ted 1 -red  -rgd
-rpd -r i 1 ~tod (6-75)
“Te 4 -rgl  tod 1 ]
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Aflr, T
where R = [rp rc] and we have used (Aki and Richards, 1980, p. 150)
c s

Tos = Tsp (6-76a)
=t' =

tps tsp tcA (6-76b)
=t > - _

tsp = tps S tcA . (6-76c)

The matrix (6-75) matches the wave updates (6-49).

Frasier (1969) then proceeds to define a delay matrix

Z = (6-77)

where the travel time through the layer is /QnA for for P waves and
mnﬁs for S waves. Of course, this is incorrect, although the error

goes to zero along with 2. Using (6-77) and (6-73) gives

-1
(6-78)

n+l nn n n

in analogy to (3-51). Frasier (1969) then derives many other results
analogous to those of Chapter III, including a matrix equation, Levinson
recursions, and a generalization of the Kunetz result (3-67). However,
all of these results rely on the inaccurate time discretization specified

by (6-77).

6.4 Computational Results

The algorithm was tested by running it on the synthesized impulse
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response of a twenty-layer medium. The variation of medium parameters
from one layer to another was made small (around 2%) in order to
simulate a continuous layered medium. This is important, since the
differential updates assume a continuously varying medium; the algorithm
cannot handle sharp changes in medium properties unless the step
size A is made smaller in such regions. The medium velocities and step
size A are in units of km/sec and km., respectively, and the density is
relative to that of water.

The response of the medium to impulsive plane P and SV waves
was generated in the frequency domain using the reflectivity method
(Aki and Richards, 1980, p. 393). A FORTRAN program given by
Kind (1976) was used to compute the plane wave transfer functions
Rpp’ Rps’ and Rss at 512 frequency points (integer multiples of 0.78
Hz). Each of these was divided by j27f, and a discrete inverse
Fourier transform was taken. This synthesized sample step responses;
taking differences and dividing by the discretization time At =
0.005s yielded the discretized impulse responses. Careful attention
must be paid to signs in going from potential reflection responses to
velocity reflection responses (see Aki and Richards, 1980, p. 191).

The impulse responses, scaled by 1/At for convenience, are plotted
in Figures 6.4. Although the responses were computed for t = 0 up
tot = 2.565 seconds to avoid aliasing problems, the responses beyond
t = 1.3 seconds were essentially zero and are not shown. Note that
the peaks corresponding to strong primary reflections are smeared out.
This is due in part to the use of a DFT, which is this case is tantamount

to bandpass filtering the data with a filter with pass band 0.78 Hz -

400 Hz. Since the strengths of the primary reflections are especially
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6.4b P- S impulse response, scaled by 1/At for
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6.4c S~+S impulse response, scaled by 1/t for
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important to the algorithm, this smearing might be expected to hamper
its performance. However, this evidently did not happen.

The impulsive plane wave responses were then used to initialize
the upgoing P and SV waves, and the algorithm was run on a VAX-
11/782 computer. Results are plotted in Figure 6.5, and the computer
output is given in Figure 6.6. It can be seen that the agreement between
the actual and algorithm-generated medium parameter profiles is quite
good, with less than 5% error everywhere.

It should be noted that the algorithm was not tested under perfect
conditions. Bandlimiting of the frequency response resulted in the
time response being smeared over two or three samples, and the medium
itself was discrete, so that some error may be expected in the update
equations. Nevertheless, the algorithm performed quite well.

The algorithm was also tested on the six-layer medium on which
Clarke (1984) demonstrated his algorithm. The computer output is
given in Figure 6.7. It should be emphasized that this medium varies
sharply at each interface, which would be expected to cause difficulties
for the algorithm, since it was designed for a smoothy varying medium.
However, the algorithm does not perform too badly, and certainly the
computation required is much less than that required by Clarke's (1984)

algorithm.

In this chapter the simple layer stripping concept presented in
Chapters II and III has been generalized to a 4 x 4 system, with many
more couplings between waves and three parameters to reconstruct instead
of one. In the next chapter the concept of layer stripping is generalized

still further, with a completely different physical interpretation.
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CHAPTER VII

The Inverse Problem for a Layered Acoustic Medium Probed

by Spherical Harmonic Waves

7.1 Introduction

In this chapter we consider the same layered acoustic medium dealt
with in Chapter IV, but we make a change in the excitation with which
the medium is probed. Instead of using an obliquely-incident impulsive
plane wave, or impulsive cylindrical waves from a point source to probe

the medium, we use harmonic, single-frequency waves from a point

source. By performing this experiment twice, at two different source
frequencies, it is possible to recover the profiles of density p(z) and wave
speed c(z) as functions of depth.

The basic results of this chapter are taken from Yagle and Levy

(1984). However, dynamic deconvolution versions of the two layer

stripping algorithms presented in that paper are also given here. In

addition, the inverse resistivity problem, in which the resistivity profile

of the earth as a function of depth is recovered from current and
potential measurements made at the earth’'s surface, is solved using a
layer stripping algorithm. This problem turns out to be mathematically
analogous to the acoustic problem with a rigid surface and constant wave
speed; hence its inclusion in this chapter. The layer stripping algorithm
for the inverse resistivity problem is taken from Levy (1984).

In Chapter IV the profiles p(z) and c(z) were recovered by

measuring the reflection response R(.,9) for all frequencies « (this is
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exponentially-decaying waves. In theory, knowledge of this post-

:‘: tantamount to obtaining the impulse response of the medium) and two

’:~ different angles of incidence 6. In this chapter we consider the dual
F, problem of recovering p(z) and c(z) from measurement of ﬁ(“’kr) for
3 two frequencies w and all lateral wave numbers kr = wsin 9/c(o).

" Note that it is necessary to obtain R(w,8) for complex angles of

N incidence 6. These angles, corresponding to values of kr greater than
w/c(o), are associated with probing the medium with evanescent,

-

critical response is necessary in order to solve the inverse problem
exactly. In practice, there are some situations in which this response
has little influence on the reconstructed profiles. This point will be

discussed further as we proceed.
iasic Problem

The basic problem considered in this chapter is as follows. A
continuous layered, laterally homogeneous medium is probed by a point
harmonic source emitting sinusoidal spherical waves. The reflection
response of the medium is measured as a function of radial distance
from the source. By performing this experiment twice, at two different
source frequencies, it is possible to recover the separate profiles of the
density op(z) and local speed of sound c¢(z) as functions of depth z. The
inverse problem is to recover these profiles from measurement of the
reflection response of the medium,

Two different configurations of this problem are considered. For

the first configuration, the inhomogeneous medium to be probed is bounded

Yy
PANORNEN b

. above and below by infinite, homogeneous half-spaces. The point I-‘\-..j
pressure harmonic source is located in the upper half-space, whose medium ® Jl“‘
parameters 5, and c, are assumed known, and the pressure reflection :'.::'.'
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response of the inhomogeneous medium is measured in this half-space.

In the second configuration, the inhomogeneous medium is bounded above
by a free surface. The point pressure harmonic source is located just
below the surface, and the medium acceleration at the free surface

is measured. Fast algorithm solutions to each of these inverse problems
are obtained. One algorithm is illustrated by means of a simple
analytical example, and the other is illustrated by a computer run on
synthetic data.

The technique of using a harmonic (CW) source to probe a layered
medium has been used in ocean acoustics by Frisk et al. (1981). Here
the medium being probed is the sediment at the ocean bottom. A
typical experimental set-up is illustrated in Figure 7.1. A pulsed, CW
source is towed behind a ship, and hydrophones are used to measure
the reflection response of the sea floor. The hydrophones are
connected to DIBOS (digital buoy system) receivers consisting of a

quadrature demodulator, digitizer, and cassette recorder. In the

experiment performed by Frisk et al. (1981) over the Hatteras abyssal
plain, the battery-powered source emitted a four-second burst at 220 Hz.
every fourteen seconds, while being towed at 0.5 knots. The four-

second burst was long enough to achieve a sinusoidal steady state. In

general, the experiment takes place over a range of up to 10 km, and
interest in the inhomogeneous sea bottom (well-modelled by a layered
medium since it is formed by sedimentary processes) centers on the

first 400 m.

Previous work

Coen (1982) solved the free surface configuration of this inverse

ot . s
datatalas s aa -t
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7.1 Experimental set-up for the inverse problem.
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problem by employing the Gel'fand-Levitan method of Weidelt (1972) to
solve the inverse scattering problem for the resulting Schrodinger-like
equation (equation (7-5) in this chapter). His procedure requires two
inverse Laplace transforms (part of the Weidelt (1972) procedure), and
the solution of two Marchenko integral equations, with c(z) and a
differential equation for p(z) being obtained from the resulting potentials.
The assumption of post-critical incidence (c(z) < ¢(0) for all z) is

also required. Stickler (1983) solved the half-space configuration by

using trace methods (Deift and Trubowitz, 1979) to solve the inverse

scattering problem for the resulting Schrodinger equation (equation
(7-8) in this chapter). This requires the solution of a nonlinear
differential equation and also requires that there be no trapped modes.
Trapped modes are square-integrable solutions corresponding to a
wave-guide-like effect, which can arise in low-velocity zones.

In both of these approaches methods of mathematical physics are
used to solve the inverse scattering problem. This leads to additional
assumptions (post-critical incidence, no trapped modes) being required,

and prevents insight into the workings of the inversion procedure.

Summary

In Section 7.2 the half-space configuration of the two-frequencies
inverse seismic problem is formulated as a Schrodinger equation inverse
scattering problem, as in Stickler (1983), and solved using the fast
algorithm developed for Schrodinger equation inverse scattering problems
presented in Section 2.3.5. This algorithm is simpler than the trace
formula method used by Stickler (1983), since there is no need to

generate Jost solutions of the Schrodinger equation numerically. A

dynamic deconvolution version of this algorithm is also presented.
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In Section 7.3 the free surface configuration of this problem is
formulated as a Schrodinger-like equation, as in Coen (1982), and
solved using a variation of the fast algorithm for direct recovery of
Schrodinger equation potentials presented in Section 2.3.5. This
algorithm replaces the Marchenko integral equation whose solution is
required in Coen (1982). However, an inverse Laplace transform is still
necessary. The necessity of an inverse Laplace transform of the
reflection data for the free surface problem is tied to the use of post-
critical data; since exponentially-decaying evanescent waves are being
used to probe the medium, there seems to be no way to avoid the
inherent instability of the inverse Laplace transformation. The dynamic
deconvolution version of this algorithm does not require an inverse
Laplace transform, but does require another unstable operation.

In Section 7.4 the two fast algorithms are illustrated in action.

The half-space algorithm is run on a computer to solve the inverse
problem from synthetically generated data. The free surface algorithm
is illustrated by a simple analytical example in which numbers that would
be generated by a computer are replaced by actual analytical expressions
for the waves, reflection response, potential, etc. The example is in
fact the same example Coen (1982) used to illustrate his solution
procedure for this problem.

Finally, in Section 7.5 the inverse resistivity problem is briefly

described and then solved using a layer stripping algorithm due to Levy
(1984). The relevance of this problem to this chapter stems from the
fact that the inverse resistivity problem is mathematically analogous to
the two-frequencies acoustic medium inverse problem with a rigid surface

and constant wave speed c(z). This rather surprising analogy allowed
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.............................
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the method of images interpretation of the inverse resistivity problem

inversion procedure to be applied to the two-frequencies acoustic medium
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inverse problem as well.
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This last point is particularly important, since the physical

e

interpretation of the algorithms of this chapter is considerably different

s

from that of previous chapters. In this chapter, the layer stripping
concept is used in a novel way. Instead of generating upgoing and
downgoing waves as functions of time at each depth, the layer stripping

algorithm generates a continuous distribution of image sources as functions

of a fictitious depth coordinate, at each depth. These image sources
synthesize the medium's sinusoidal steady-state response at each depth.
The strength of the first non-zero image source (analogous to the first
reflection discussed in earlier chapters) yields information about the
medium at the current depth and allows the algorithm to be propagated
to the next depth. Note that in addition to its computational simplicity,
all quantities in the algorithm have physical interpretations, which allows
considerable insight into the workings of the inversion process. This
could be useful for interpreting the causes of numerical difficulties caused
by the physics of the experiment. Note also that it is not necessarv to
assume the absence of trapped modes, or that the experiment be

restricted to pre- or post-critical incidence.

7.2 The Half-Space Problem

7.2.1 Formulation of the Problem

The problem considered in this section is as follows. A continuous SN

layered medium, laterally homogeneous, is bounded above and below by

two infinite homogeneous half-spaces. A point pressure harmonic source



is located in the upper half-space, and is used to probe the layered

medium with sinusoidal spherical pressure waves. The pressure reflection
response of the layered medium in the sinusoidal steady state is measured
in the upper half-space as a function of radial distance r from the
source. The situation is illustrated in Figure 7.2. The goal is to
recover the profiles p(z) and c¢(z) of the layered medium by performing
this experiment twice, at two different source frequencies.

The medium behavior is assumed to be described by the basic

linear equations for fluids (3-1), which are

= - Wp (7-1a)

p=- pc2 V-y . (7-1b)

Here u is medium displacement and p is pressure (negative isotropic
stress). Noting the cylindrical symmetry of the problem and the
assumption that the medium is in the sinusoidal steady state, a Fourier
transform with respect to time t is followed by Hankel transforms of
order zero of (7-1b) and the z-component of (7-1a), and by a Hankel
transform of order one of the r-component of (7-1a). This combination
Fourier-Hankel transform is sometimes called the Fourier-Bessel transform.

The result is

b = - pc? (a‘lz G, + &) (7-2a)
2.

putl, = - £D (7-2b)

c.2a = 9P (7-2¢)

z dz
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where
p(§,2,4) = HyFlp(r,z,t)] (7-3a)
ﬁz(i,z,w) = HOF[uz(r,z.t)] (7-3b)
I u (&,z,0) = BFu (r,z,0D]. _ (7-3¢)

Since the sinusoidal steady state is assumed, the time dependence for the

' quantities (7-3) is e !, Since cylindrical symmetry is assumed,  is
the lateral wavenumber kr'

Eliminating ﬁr and ﬁz from (7-3) and defining the normalized pressure
: m(€,2.0) = B/ Vo (7-4)

yields the Schrodinger-like equation

(= - £°-V)i =0 (7-5)

where the potential V_ is given by

2

Vi(z,0) = 272 - Lle(n? . (7-6)

Here Z = 1// p and the double prime denotes the second derivative with
respect to z. Note that (7-5) is not a true Schrodinger equation, since
the energy term -gz is always negative. The equation (7-5) was derived
by Coen (1982) for the free surface inverse problem.

A true Schrodinger equation can be written using the vertical
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wavenumber kz, defined by

_ . 2,2 2.3 _
o k, = Coeg - 5 (7-7)

where Cy is the (known) speed of sound in the upper half space. From

b (7-5) we have

L (d_dzfz + K2 -V i = 0 (1-8)
where

|® Vilz,w) = wzlc%) - u,\zlc(z)2 + 27 . (-9

The equation (7-8) was derived by Stickler (1983) for the half-space
problem,
For the half-space problem the Schrodinger equation (7-8) is used

with the boundary conditions.

‘ 1 _ .
'7 (2% %) 4 Rk w25 %)) ik,
2,< 2 < 0
ez = (e - kD20 =
4
¢ ikp( )
-ikp(z-2 .
(T(kz,w)e o )/]kz, z > 2p
(7-10)
®
Here the sources and receivers are located at z = z, < 0, R(kz,u) is
the (measured) plane wave reflection coefficient, T(kz, <) is the
L. (unknown) plane wave transmission coefficient, and kp = (‘z/c(zF)2 -
52)‘]f is the vertical wavenumber in the lower half space. These boundary
]
A o P . » aad o8 9 . y3 2 = mal oa ol e v - -
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3

conditions amount to a radiation condition--it is assumed that there are no ',:'.::-_

upward travelling pressure waves in the lower half space. Note that the rw

reflected wave seems to arise from an image source located at z = 2. .E,

This accounts for the change in sign of Z, - é::.

The form of (7-10), in particular the factor 1/jkz, can be obtained by ,\.:

considering the Sommerfeld integral 2 E;-

@ ROr = [ m(l/jkz)e_jkzlszo(krr)krdkr (7-11a)
RE @2+t | (7-11b)

This integral decomposes a monochromatic spherical wave into a superposition

of cylindrical waves of varying wavenumbers. The advantage of this is

v

‘:'c‘ e

that the response of the layered medium to a spherical wave can now be

written as the superposition of the responses to cylindrical waves (Aki

-
.

»
“~
.

and Richards (1980), p. 200). Thus we may write

p(r.z, )/ g =f (1/jkz)e'jkz(z'zo) I (k )k dk_
o]
(7-12)

oo . i +
+ fo(ll]kz)R(kz,w)e]kz(z %) 3,0k 0k dk .,z <z<0

where the pressure field has been written as the sum of an incident field
due to the source and a scattered field due to the layered medium. Since 05;.
cylindrical waves are being used, the plane wave reflection coefficient s

R(k,,u) expresses the response of the layered medium. Recognizing the e

two integrals in (7-12) as inverse Hankel transforms, it is seen that taking PS
the Hankel transform of (7-12) immediately yields (7-10). ,:Z:'.:"j
It should be noted that Stickler (1983) uses Jost solutions to the ;}H
. : o
Schrodinger equation (7-8) and obtains the factor 1/jk_ from a Wronskian. o]
z - -
Here the origin of this factor is explained in a different, more familiar S
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setting. It should also be noted that the inverse problem represented

by equations (7-8) and (7-10) can be solved given knowledge of

R(kz,.,;) for either all . and two kz”" or all kz and two .. Mathematical
physies solutions to these dual problems may be found in Coen (1982)
and Stickler (1983), respectively, while layer stripping fast

algorithm solutions may be found in Chapter IV and the following
section of this chapter.

A comment on the measurement of R(kz,u) is also in order. Note
that R(kz,u) is obtained from the Hankel transform of the pressure
reflection response, which is a function of the lateral wavenumber :.
This means that R(kzw) is known only on the positive imaginary kz
axis (corresponding to post-critical incidence), and on the positive
real kz axis as far as w/c0 (see Figure 7.3). Stickler (1983) has
pointed out that R(kz,w) may be obtained for kz > w/c0 from its values
on the imaginary axis by using a complex procedure due to Van Winter
(1971). He also remarks that his numerical results indicate that the
contribution of R(kz,w) for kz> m/c0 seems to be negligible for real-
world problems. Our own results (Section 7.4) seem to confirm this.
It should also be noted that the physical measurement of the pressure
reflection response is a far from trivial problem. Mook (1983) is a

good source on the subject; see also Frisk et al. (1980).

7.2.2 Layer Stripping Solution of the Half-Space Problem

In this section a procedure taken from Section 2.3.5 is used to
obtain a layer stripping, fast algorithm solution to the inverse problem
represented by equations (7-8) and (7-10). An interesting physical

interpretation of the operation of the algorithm is also provided.
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Define the reflectivity function r(z,«) as the solution of the

following differential equation (the Miura transform)

2 dr 2
r - d_Z = k(Z,uu) (7'13)
where r(0,») will be specified later and (, is a parameter. Define the

potential V " by

2 dr b , _
r oty Vw(z,w) (7-14)

and let U(£,z,w) solve the auxiliary Schrodinger equation

2
@

9 ~
+ kT -VIy = 0 (7-15)
dz2 4 1%

with boundary conditions

(e 22 20)_g (i, yel¥e® Nk, e

ezw = diel -kt 2,0 =

(T (kz,w)e'JkF(z'zo))/jkz z >z -

(7-16)
Now define
ﬁ(kz,z,m) = (F+0)/2 (7-17a)
lAJ(kZ,z,:Nv) Saz-wr2 . (7-17b)

Then, D and U satisfy the coupled system of differential equations
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(7-18)

To see this, note that taking the derivative of (7-18) with respect to
z decouples (7-18) into the two Schrodinger equations (7-8) and (7-15).
Multiplying (7-18) by jkz and taking the inverse Fourier transform

with respect to kz yields the coupled wave system

s 42 $eao = @l
(a_z E) (z,z) = -r(2)U(z,7) (7-19a)
3 -3y - B
(55 £ (z,z) = -r(2)D(z,0) (7-19b)
where
4 A -1 A
D(z,p) = F []kzD(kz,z)] (7-20a)
Z
4 -l 1
U(z,z) = F Usz(kz,z)} (7-20b)
Z

i.e., the inverse Fourier transform has taken kz into the fictitious depth

coordinate 7, and the parametric dependence on ., has been dropped.

The system (7-19) is referred to as a coupled wave system since 5 and
1\5 can be interpreted as waves in z and ¢ propagating through the
inhomogeneous layered medium. The inhomogeneity of the layered medium
is expressed by the reflectivity function r(z), which causes portions of
each wave to be reflected into the other wave. In the upper half-space
equation (7-13) shows that r(z) = 0, which makes the wave nature of \IS

v .
and U apparent. Although it is not yet clear what these waves are, i.e.,

how they could be interpreted physically, this will soon be made clear. :'.j:::
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The initial conditions for the system (7-19) are obtained from the
boundary conditions (7-10) and (7-16) for 7 and , and also equations

(7-17) and (7-20). They are:

v
D(0,7) = &) (7-21a)

\4 v
U®,z) = R(p) (7-21b)

v
where é(*) is the unit impulse function and R(z) is the inverse Fourier
transform of ﬁ(kz). The forms of the system (7-19) and initial conditions

v A4
(7-21) make it clear that D(z,7) and U(z,z) have the general forms

n

v V
D(z,7) S(r-z) + Do(z,;)l(g—z) (7-22a)

v v
U(z,z) Uo(z,r,)l(g—z) (7-22b)

where 1(-) is the unit step function. This expresses a causality
principle--at a given depth z both waves are zero until ¢ 2 z, i.e., until

the "wavefront" passes.

The Layer Stripping Algorithm

Substituting the forms (7-22) into the system (7-19) yields

r(z) = 25(2,24»). (7-23)

v v
The smooth parts Do(z,;) and Uo(z,;) of the waves (7-22) can now be
propagated using (7-19), yielding r(z) by (7-23). This is of course the

fast Cholesky algorithm, and while the derivation of it has been familiar,

the setting is not. The algorithm is initialized using the initial conditions

(7-21), which requires only the inverse Fourier transform of R(kz).
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Note that r(0) is now specified by equations (7-21b) and (7-23) as 2}\{(0).
The layer stripping algorithm yields r(z), from which Vk(z) can

immediately be obtained by using (7-13). By running the experiment

twice, at two different source frequencies wy and Wy » the two potentials

Vk(z,wl) and Vk(z’“’z) are obtained. We then have, using (7-9),

2
l/e(z)” = 1/63 - (Vk(z,wl) - Vk(z,wz))/(wi-wg) (7-24a)
2112 = WV, (2,w) - WV, (2,0)) /@2 -E) (7-24b)

and the differential equation (7-24b) can then be solved for Z = 1//5
Note in particular that if the profile p(z) is smooth, the initial conditions
for (7-24b) are Z(0) = 1//50— and 2'(0) = 0. Otherwise, knowledge of
0'(0) is required.

If z and ¢ are discretized by z = n4 and ¢ = mA, where m and n
and positive integers and A is the discretization length, then a forward
difference approximation to the partial derivatives in the coupled system

yields the following explicit form of the layer stripping algorithm:

v v \4
D(z+4, z+b) = D(z,7) - r(z) AU(z,0) (7-25a)
\ \A \4
U(z+s, ¢-&) = U(z,z) - r(z2) AD(z,z) (7-25b)
r(z+a) = 2U(z+4, z+h). (1-25¢)

v
The recursion patterns for E and U are illustrated in Figures 7.4a and
7.4b. We start off knowing the waves at z for all g, and wish to update
them to z+4 for all ¢. Although the forms of the recursions may make it

seem as though some information is being lost, recall that by causality
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and I\S(z,c) and I\S(z,r,) are causal, in that both are zero if ¢ < z.

In equation (7-26) the normalized pressure m(r,z) has been written
as a superposition of contributions due to a continuous distribution
of point sources along the (fictitious) ¢ axis. The strength of the
point source at ¢ is %(z,;)d(; . Each source emits a spherical wave
which travels in a (fictitious) medium with constant sound speed cy-
This is illustrated for a single element of the continuous distribution
¥(Z,C) of sources in Figure 7.5. Similar interpretations hold for X, \IS,
and ﬁ Note that the origin of the 7 axis corresponds to the depth z
on the z axis.

Thus the layer stripping algorithm is decomposing the medium
response at each depth into a superposition of responses due to image
sources, located in a (fictitious) medium of constant speed of sound gy
and distributed along a (fictitious) depth coordinate . The causality
of \I,), ﬁ, ¥, and x is due to the fact that an image source is never
located within the medium wherein it is to simulate a response; it is
always "in the looking glass," so to speak. Thus any image source
that is supposed to simulate a medium response at depth z must be
located deeper than z in the fictitious ¢-axis medium, i.e., ¥(z,g) =0
unless ¢ >z. This corresponds to a depth deeper than 2z on the z-axis,
which is as expected since the image source is an image of the actual
source, which is located at the surface. This image source causality
replaces the time causality (i.e., the medium response at a given
depth is zero until the probing impuisive plane wave has had time to
reach that depth) generally used in layer stripping algorithms, but

unavailable in the present problem since the sinusoidal steady state is

assumed.
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it is known that both waves are zero for ¢ <z. It should also be noted
that equations (7-13) and (7-24b) can be approximated by differences,
so that if the two layer stripping algorithms initiated by K(c,wl) and
f/{(g,'ﬂ) are run concurrently, p(z) and c(z) may be outputted

immediately, reducing considerably the amount of storage required.

Physical Interpretation of the Layer Stripping Algorithm

Although the layer stripping algorithm consisting of equations (7-19)
and (7-23) could certainly be run without any physical understanding of
the quantities involved, a major advantage of layer stripping algorithms
is that the inversion procedure can generally be interpreted in
physical terms. This is helpful in interpreting any unusual behavior
or results of the algorithm. Thus we now give a physical interpretation
of the algorithm and its operation. To make things clearer, let the
source and measuring devices both be located at z = 0.

Defining TY(z,c) in the same manner as 5 and I\./J (equation (7-20))
and using the Sommerfeld integral (7-11), we have for the normalized
pressure frequency response 7(z,r,w) at the source frequency w:

®

nzm = K01 = Hlanky) [#ene et an
- (7-26)

= f}(z,c)H'll(l/jkz)e’ikzcldc = fzme(z,C)u/R)ej‘”R"’o az
where
R=vr2+ 22 (7-27)
and the lower limit of the integral has been replaced by z because

\A
Y(z,0) = D(z,0) + U(z,0) (7-28)
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The advantage of this decomposition into image sources is that the
first image source (i.e., the first non-zero value of ﬁ(z,c), which is
I\j(z,z+)) clearly has the responsibility of simulating the primary
reflection from depth z. This image source should thus have strength
r(z)/2, since the actual measured response must travel down from the
source to depth z and then back up, while the image source response
need only travel up from depth 2z to depth z, where the response is to
be simulated. This immediately gives equation (7-23), which is comparable
to the usual layer stripping property that the first arrival from depth z
is the primary reflection from that depth, and its strength thus gives
the value of the reflectivity function r(z) at that depth. Since multiple
reflections must be accounted for, the image source distributions are
non-zero in general for all 7 > z; however, they quickly decay toward
zero since the higher the order of a multiple reflection, the weaker the
reflection.

In the particular case of a constant sound speed medium, i.e.,

c(z) = Cy equation (7-13) can be solved to give an explicit formula for

r(z)
r(z) = - (1/Z2)(dZ/dz) (7-29)
which can be immediately integrated to give
z
e(z) = Py €XP (2 L r(u)du) . (7-30)

This avoids the necessity of computing r'(z) to obtain the potential Vk(z)
in (7-13), and also avoids the differential equation (7-24b) for Z. It

would be a great convenience if a closed-form expression for r(z)
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could be obtained for the general case of varying c(z), but there seems

to be no closed-form solution to the Riccati equation (7-13).

Dynamic deconvolution algorithm

The dynamic deconvolution algorithm associated with this fast
Cholesky algorithm may be derived quickly. Defining the reflection

coefficient ﬁk(kz,z,w) for the portion of the medium beneath depth z as

o A A ~
Rk(kz,z,u) = U(kz,z,w)/D(kz,z,w) (7-31)

we have from (7-18) the Riccati equation

d 2 o B _n2 .
35 Rie(k,.2,0) = 2k Ry - (1 - Ry) (7-32)

and from (7-23) and the final value theorem

_ LM . =& _
r(z) = kz“’°°2]szk . (7-33)

The algorithm is initialized using

Rk(kz,O,w) = R(kz,w) . (7-34)

This algorithm has the usual interpretation of defining a new,
smaller, inverse scattering problem at each depth z. The reflection data
at each depth are contained in ﬁk(kz,z,w) , and the problem support is
reduced at each step from [z, to [z+4, ).

The equation (7-33) for obtaining r(z) from ﬁk(kz,z,w) for large
kz can be interpreted physically as follows. A large value of kz

corresponds to probing the medium at normal incidence with a very
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short wavelength. For such a short wavelength, only the very top of
the medium, whose inhomogeneity is contained in r(z) (recall the problem
support is [z,x)), will affect the reflection response--the rest of the
medium is effectively too far away. Hence the high-wavenumber behavior
of ﬁk(kz,z,w) should contain information about the reflectivity function
for waves in z and ¢, viz, r(z), as (7-33) shows.

A similar interpretation can be applied to (3-42) of the normal-
incidence inverse problem dynamic deconvolution algorithm. Here the
short wavelength corresponds to a high value of wu, since the waves are

in z and t rather than in z and ¢.

7.3 The Free Surface Problem

In this section the second configuration of the inverse problem is
formulated, and a fast algorithm solution derived. Instead of being
bounded by two infinite half-spaces, the inhomogeneous layered medium
is bounded above by a free surface (pressure release surface) at z = 0,
ana is assumed to extend to infinite depth. The point pressure
harmonic source is located at the origin, just below the free surface,
and the acceleration of the medium at the free surface is measured. The
situation is illustrated in Figure 7.6, The goal is once again to
reconstruct the profiles p(z) and c(z) by performing the experiment
twice, at two different source frequencies. The depth to which the
medium profiles are reconstructed is limited in a practical sense by the
strength of the source relative to the ambient noise at that frequency.

Coen (1982) solved this problem by using a Gel'fand-Levitan-type

procedure due to Weidelt (1872) to solve the Schrodinger-like equation

(7-5). Coen's method requires two inverse Laplace transforms, the
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solution of two Marchenko integral equations, and the assumption of
post-critical incidence (i.e., ¢(z) 2 ¢(0))--a most restrictive assumption.
The present method does not require post-critical incidence and uses

a fast algorithm directly on the basic equations of the problem,
bypassing the necessity of setting up and solving an integral equation.
Unfortunately, an inverse Laplace transform, or solution of an
equivalent integral equation, is still necessary in preprocessing the
data. On physical grounds this seems to be unavoidable, since Coen
(1982) has pointed out that the use of any post-critical data requires

probing the medium with evanescent waves, which will lead to an

unstable inversion for large depths since the probing wave decays RN
exponentially with depth. g

Since kz is imaginary for post-critical incidence, and since some

post-critical data must be used, we now work with the lateral wavenumber

£. Recall the Schrodinger-like equation (7-5), which is o
‘t::\‘.::-
a2 o A RO
(— - 5"-V.)m = 0. (7-35) TN
dzz € by
¥

Define a new quantity $(g,z,w) by

~ A
¢)(€,Z,w) =

|
~
g
+
iag
N’
5
1]

B/p (80 ) - (1/20) (dp/dz)7 i,

(7-36)

/o (a8, - (1/2p)(dp/dz)T

where the ﬁi are appropriate Hankel transforms (see equations (7-3b)

and (7-3¢)) of the medium acceleration components and equations (7-2b)

and (7-2c¢) have been used to interpret cﬂ Equation (7-5) can then be

written as the coupled system
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. . R
- -£ 1 T o
Sl = [ A (7-37) i
O Vg g @ . h;
oF
The initial conditicns at the free surface z = 0 are ~._
RS
s
n(g,0,w) = H(bS(x)/r] = b (7-38a) oK
$(€,0,0) = ~Vo(0) &, (£,0,u) (7-38b) b
where the source term {b&(r)/r] has been included in the 7 initial o ';'
condition and bvo(0) is the strength of the harmonic source in units of
pressure. Note that the radial acceleration ér vanishes on the free :Z::E
n
surface. ® k.
Since the measured quantities (accelerations) now have dimensions,
the strength of the source must now be specified, unlike the previous .
problem in which the dimensionless reflection response was measured. oK
Comparing the coupled system (7-37) with the coupled system (7-18) '.Ef-'lj
of the previous problem, it seems we are stymied. Since the diagonal ljii"
elements are real instead of imaginary, an inverse Fourier transform with o N
respect to £ is not appropriate. However, a similar system has been Eﬁ:j-
encountered in considering the inverse resistivity problem (see Section *;
7.5) and following an approach similar to that treatment we define o w";
Y
S
Yz, & L‘é[%(i 2)] (7-39a) T
v L olfj
Yo 2LeeE, ) (7-39b)
i.e., the inverse Laplace transform has taken ¢ into 7, and the parametric
dependence on . has been dropped. ® !-—t
:t;::':::
S
o
- i
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Taking the inverse Laplace transform of equation (7-37) yields
(5 *+ 2T @0 = $z0 (7-40a)

3 _ 3,V v V _
G3 a_i)d)(z’C) -Vcﬂ(z,c) (7-40b)
with the initial conditions (from equations (7-38))

v
m(0,2) = b(T) (7-41a)
Y. =- /oL a0 (7-41b)

As before, the forms of the system (7-40) and initial conditions (7-41) make

v
it clear that ¥(z,:) and ¢(z,z) have the forms

¥(z,0) = bSC-2) + 7(2,0)1¢~2) (7-428)
\"}
Yz.0) = Jz.016-2) (7-42b)

v
(note that equation (7-40a) shows that ¢ will not contain an impulse) so

\Y;
that YT and ¢ both obey a causality principle, as before.

The Layer Stripping Algorithm

Substituting the forms (7-42) into the system (7-40) yields

A\
V.(z) = - 24(z,z+)/b (7-43)

and the system (7-40) and condition (7-43) together form a layer stripping
algorithm that recursively generates the potential V, (z). The update

\"/
patterns for ¥ and ¢ are again given by Figures 7.4a and 7.4b, respectively.
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By running the experiment twice, at two different source frequencies

LM

9 and W » the two potentials Vg(z"“ﬁ) and Vg(z,‘*z) are obtained. We

then have, from equation (7-6),

AL AL A

e() = 162 - wD) (Va0 - V201 (7-44a)

Z'/7 = (wgvg(z,cul) - wfvg(z,wz))/(wg - wi) (7-44b)

and the differential equation (7-44b) can then be solved for Z = 1//p .
Two comments are in order here. First, the initial conditions (7-41)
for the layer stripping algorithm require that the medium acceleration data
be Hankel transformed and then inverse Laplace transformed. These two
operations may be replaced by the solution of an integral equation derived
below. Second, the coupled system (7-40) describes anisotropic scattering,
since the "reflectivity functions” 1 and V€ are different for waves
travelling in different directions. However, by utilizing the layer
stripping algorithm in this form, the necessity of differentiating r(z) in

equation (7-13) is avoided.

Physical Interpretation of the Layer Stripping Algorithm

The layer stripping algorithm for the solution of the free surface
inverse problem also has the physical interpretation of constructing
distributions of image sources that simulate the response of the medium at
each depth. There are, however, some differences from the previous
interpretation. In addition, an integral equation is derived that offers an
X alternative to the necessity of Hankel and inverse Laplace transformation

of the data prior to use of the layer stripping algorithm.

Since ¢, determined from the data, is used to initialize the algorithm

.......
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we write (dropping the parametric dependence on w)
[+ <]
-1 ~ - Y} -
¢(r,z) =H 1[&({,2)] =H 1[_[03(2.£)e QCdC]
oo o0
- . AV 3

=f¥(Z,C)H Yo g = fa(z,c)(c/(c2+r2)’)dc

() o)
4 . 2. .2
= | $(z,2) cos 2(L,r)/(C" +r7)dL , (7-45)

o

where € is shown in Figure 7.5.

Thus &r,z) can be written as a superposition of fields due to a
continuous distribution g(z,;) of image sources distributed along the
fictitious depth coordinate z. Note that the image sources no longer
generate spherical waves; each source generates a field that drops off
inversely with the square of the distance from the source. The vertical
components of the fields at radius r are then integrated to get 9. This
is consistent with the interpretation of ¢ as a measurement of vertical
acceleration. The comments made in Section 7.2 on causality and
interpretation of the first non-zero source as yielding information about
the medium still hold, with two changes. First, the information about the
medium is now the downgoing reflectivity function, which happens to be
the potential Vi(z) (see equation (7-43)). Second, the necessity of
maintaining zero pressure on the free surface away from the source implies
that a mirror image of the distribution of pressure image sources must
exist above the free surface, i.e., ¥(z,z;) is an odd function of ¢
(since the image sources above the surface must have opposite sign to
maintain zero pressure at z = 0). Since the free surface acts as a mirror

itself, these additional sources do not affect the interpretation in any way.
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The interpretation given by equation (7-43) allows an alternate means
of initializing the layer stripping algorithm from the data. Setting z = 0
in equation (7-45) and taking the inverse Hankel transform of equation
(7-38b) yields
e ST (Y 2, 23
d(r,0,w) = - Yo(0) az(r,O,w) =/ ¢0,0)@/@C"+rT))ds . (7-46)
o
This integral equation may be solved for X(O,c) , which is then used to
initialize the algorithm. Solving this integral equation may be preferable
to Hankel transforming and then inverse Laplace transforming the data,

depending on how the data were obtained.

Dynamic deconvolution algorithm

A dynamic deconvolution algorithm may be associated with the free
surface layer stripping algorithm as follows. Defining the reflection

coefficient

A ~ ~
R (5,z,0) = o(E,z,w)/m (E,20) (7-47)

we have from (7-37) the Riccati equation

d N - _ pl _
az Rg(g,z,w) = 25,Rg + VE R«E (7-48)

and from (7-43) and the final value theorem for Laplace transforms,

LIM

C4 oo
5

V.(z,.) = -2fR, (£,2,.) . (7-49)

The algorithm is initiated using
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— 3

7

)

L4

%594

Y

R:(5,0,0) = - 4_(£,0,5)/(b2(0)Y) . (7-50)

L% v
AR
1

Yy

LA/

T
1

The equation (7-49) for obtaining VE (z,») from Rg(c’;,z,;) for large ¢

hT
X

can be interpreted physically as follows. Probing the medium for large

values of the lateral wavenumber ¢ amounts to probing the medium with

>

evanescent waves, since { is greater than any possible value of uw/e(z)

and thus the local vertical wavenumber

k() = GPlre? - i (7-51)
is imaginary. Since £ is large, jkz(z) is large and negative, and the
evanescent waves decay very quickly with z. In the limit as § »=,
the waves sense nothing but the reflectivity function at the surface z.

Since the reflectivity function for the downgoing T wave is V&’ the high-¢

behavior of ﬁg determines Vg' This argument is taken from Frisk (1979).

7.4 Simple Illustrations of the Algorithms

We give two quantitative examples of the algorithms in action. The
first example is a very simple analytical example due to Coen (1982} for
the free surface problem. An analytical example is used to avoid problems
in numerically computing the inverse Laplace transform. In this example,

4 \'%
actual analytic expressions for m(z,z) and 4(z,r) are obtained and shown

to satisfy the coupled system (7-40) as well as the condition (7-43).

L

| Hence a computer run of the algorithm wouid have generated the same
values. In the second example an actual computer run of the algorithm
for the half-space problem is made on synthetic data generated using

®

the reflectivity method by a program due to Kind (1976). Results are
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excellent, confirming that the bandlimitation of the vertical wavenumber

kz by w/c0 is not a serious problem for realistic numbers.

7.4.1 Free Surface Problem -- Analytic Example

This example is due to Coen (1982). Let the profiles be given by
c(z) = ¢4 o(z) = op/(1 + hz)2 . (7-52)
Since Z = 1/ /o , we then have

Ve (z,9) = - P ley? (1-53)

and TAr(E,z,w) satisfies

2
(9_2 - e? e = 0. (7-54)

dz

The solution that satisfies the boundary condition (7-38a) and the

radiation condition is

2,3
POMIED (7-55)

?r(g,z,m) = b exp [-(52 - uZ/c
Using

L[Io(a(tz-zz)%)l(t—z)] = (exp(—z(sz-az)%))/(sz-az)%

= (-1/zs)(d/ds) exp(-z(sZ-az)’}) (7-56)

where 10(') is the modified Bessel function of the first kind of order




L

zero we have that

L ¥z,7)

L R (2,21 = bz(1/2) @/ (e @ 22D 1 -2)

b8 -2) + (bzulel (e @ -2hh e D c-0 (751

and
0%
le a0 = L+ ¥ = ulept (wiepe®-2hh e t-h -2

+ bzuley@-2) [ (wiep @2-28yH wlep 1c-2D) - 21 (wiep P-2hh)

1c2-2H e, (7-58)
Now, the surface data will consist of
20, = (S + e,z g = b(E - (az-gz/cf))*) (7-59)
as well as
c(0) = ¢ 0(0) = pg; do(0)/dz = - 204h . (7-60)

Thus the inversion problem is to reconstruct the profiles p(z) and
c(z) from the surface data (7-59) and (7-60). Taking the inverse

Laplace transform (analytically!) of (7-59) yields

$00,0) = (bulel (L leg) 01 . ' (7-61)
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and of course it is known that
¥0,0 =bé(r) . (7-62)

The initial conditions (7-61) and (7-62) are used to initiate the layer
stripping algorithm consisting of equations (7-40) and (7-43). Propagation

. . . . . v .
of the algorithm will yield, in numerical form, TY(Z,C) and ¢(z,z), which

are specified analytically by equations (7-57) and (7-58).

At each depth the potential Vg is being reconstructed using

v .V 2,2

V (z,0) =~ 28(z,2+)/b = - (2/b) lim $(z,0) = - /c0 (7-63)

£ Lz
where we have used

Wm oy x)ix = 1/2 . (7-64)

x+0'1
Then, using equations (7-44) yields

c(z) = Cy (7-65a)

Z"/Z =0 (7-65b)
and (7-65b) is integrated to get

Z(z) =1/ /Jo(z) = C1 + Cyz (7-66)
which implies

2
p(z) = 1/(C1 + sz) (7-67)

where the constants of integration C1 and C2 are obtained from (7-60).

Thus the profiles (7-52) have been recovered.
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The dynamic deconvolution algorithm applied to this problem works

as follows, We have from (7-55) that
ez = ()7 = (e~ €% - Frehhi (7-68)

which agrees with (7-59) at the surface z = 0. The reflection coefficient

Rg(C,Z,w) is then

R = 3/7 = &= (£% - Fred)? (7-69)
£ 0

and a simple substitution shows that Rg as defined in (7-69) does indeed

satisfy the Riccati equation (7-48). Hence the dynamic deconvolution

algorithm recursively generates the RC: in (7-69), with V. obtained from

g
(7-49) as

LIM LIM
V= g 2R = gee 255 (6 - Sredh = =B -0

Then o¢(z) and c(z) are recovered as was done using (7-65) - (7-67).

7.4.2 Half-Space Problem -- Computer Run

A reflectivity method computer program due to Kind (1976) was
employed to generate reflection coefficients for various wavenumbers for
a fifteen-layer medium at two different source frequencies 20 Hz and 30
Hz. The density profile, in units of specific gravity, was a variation
from 1.4 to 2.0 and back down to 1.4 in steps of 0.1, in order to
simulate a continuous medium., The sound speed was held constant at
2 km/sec., and the step size A was 50 m. The thickness of the

inhomogeneous medium was 1.3 km (13 layers, each 100 m thick).
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The inverse Fourier transforms required by equation (7-21b) were

o ¢
w e ey

o implemented using a 512-point FFT, and the algorithm was run on a

L
"

YorLe utan

PRI et
s
AR

*

VAX-11/782 computer. The differential equation (7-24b) was solved

recursively as the algorithm proceeded, using a simple difference scheme

B AhSISAN

Il

to implement the second derivative. Despite the simplistic numerical

implementation, the resulting reconstruction was extremely accurate.

e
.

AN N

Figure 7.7 shows the close agreement between the actual and reconstructed

‘4"’l‘l
AN

- density profiles; the largest error is 1.5%. The reconstructed sound

speed profile was correct to five decimal places. Apparently band-

limitation of R(kz) by uu/c0 is not a serious problem for realistic data. Z-.;:.
It is worth noting that the experiment could be run for several
» source frequencies and the various computed p and ¢ updates could be
2 averaged and then reinserted into all of the concurrently running algorithms ;'-'..-
| at each depth. This averaging could reduce the effect of noise in the

data.

‘r
L)

3
)

7.5 The Inverse Resistivity Problem

et tete s Ty
A ’ -

o

7.5.1 Formulation of the Problem

-' v
Y

In this section we formulate the inverse resistivity problem for
direct current measurements, and solve it using a layer stripping algorithm. e
The relevance of this problem to this chapter stems from the fact that o E
this problem is mathematically analogous to the inverse problem for an
acoustic medium probed at two frequencies, if the wave speed c(z) is
constant and a rigid surface boundary condition is assumed. Since c(z) @ .
is constant, probing at one frequency suffices, and this frequency is in :.;:'-Z
. fact .= 0 (DC). This rather surprising fact allowed the method of images o

interpretation of the inverse resistivity problem algorithm to be applied ®

to the inverse problem for an acoustic medium as well. The results of
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Comparison between actual and computed density
profiles (2 = actual, 3 = computed).
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this section are taken from Levy (1984).

A )

{o

The inverse resistivity problem with direct current measurements is
formulated as follows. The earth is assumed to be a layered medium
characterized by its conductivity o(z), which varies only with depth
5 (conductivity is the reciprocal of resistivity). Some direct current I

Y is introduced into the medium at the origin, and the electrical potential

v(z = 0, r) is measured at the earth's surface. The object is to
reconstruct o(z) from v(0,r). A somewhat more realistic version of this
problem, in which the Schlumberger electrode configuration is used to
measure the apparent resistivity -(av/ar)/(IIanz), is also considered in
Levy (1984).
. Details of past work on this problem are given in Levy (1984);
however, three references are worth noting. Coen and Yu (1981) used
the transformation procedure of Weidelt (1972) in order to solve this
problem by the Gel'fand-Levitan procedure; this method requires an
inverse Laplace transform and solution of a Marchenko integral equation,
and bears a marked similarity to the method of Coen (1982) for solving
the inverse problem for an acoustic medium probed at two frequencies.
o Kunetz and Rocroi (1970) derived a fast algorithm for solution of the

discrete inverse resistivity problem; although they did not recognize it

A N

as such, their algorithm was in fact the Levinson algorithm for solving
the discretized Marchenko equation. Pekeris (1940) derived the discrete
version of the dynamic deconvolution Riccati equation (7-97) below; the
- recursion of Pekeris (1940) is in fact identical to the recursion (3-77)

used for the Schur-Cohn stability test. It should be evident how these

o AL

methods are linked together by the results of Chapters II and III of

this thesis.
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Mathematical formulation of the problem

From Ohm's law and the law of conservation of charge, the basic

[
equations of the inverse resistivity problem are
i(z,r) = o(2)Vv(z,r) (7-T1a)
[ ]
. 7..
v-i(z,r) = 0 (7-71b)
where v(z,r) is electrical potential and i(z,r) is current density. Since
® current I is being introduced at the origin, the vertical component of
current density at the surface is given by
° i,(0,r) = - (I/2m)s(r)/r . (7-72)
Equation (7-72), along with the measured potential v(0,r) at the surface,
L3 constitute the boundary condtions for (7-71).
Comparing (7-71) and (3-1,, it is seen immediately that the basic
equations of the inverse resistivity problem are mathematically analogous
® to those for the inverse problem for a layered acoustic medium. The
analogous quantities are pressure and potential, medium acceleration
and negative current density, and density and resistivity, with wave
& speed fived at unity. (Note that since direct current measurements are
being used, the proting frequency w= 0 and 32v/8t2 = 0.) The boundary
condition (7-72) is analogous to requiring a fixed or rigid surface,
L ) except at the impulsive source, and measuring the pressure response
at the surface of the medium.
With this analogy in mind, we simply repeat the transformations used
® earlier in this chapter. We define (in analogy to (7-3))




o il oo " oy v b W " dhain Radk Aot b dhois Al fach Ak Bedh Bl St 0 LR AU &
e el A Nl ladial 0 Aatadatuligh Andiathufiahodhaié haibie el Rl L -
- P R

§ 368
4
N ¥(z,8) = Hlv(z,r)] (7-73a) -
. 3
-, S » . L X
) i,(2,8) = H i (z,r)] (7-73b) ;
. . X
‘; ir(z,i) = Hl[ir(z,r)] (7-73c) r
. e
* r 03
4

(Fourier transforms are of course unnecessary, since there is no time

- dependence). The normalized potential (compare to (7-4))
8z,8) = ()W (z,8) (1-74)

satisfies the Schrodinger-like equation (compare to (7-5))

g q? 2 -
(— - ¢ -V¢)¢(z,€) =0 (7-75)
dz?

where Vfb is defined as (compare to (7-6) and recall w = 0)

s V(@) = Y'Y, ¥ = az? . (7-176)
Now, the reflectivity function k(z) can be defined again by the
Miura transform (7-13) as
2 dk A -
k az - V¢(z) , (7-77)

but from (7-76) we can now immediately write k(z) as (compare to (7-29))

k(z) = - = e (7-178)

This makes things much easier, since we now know that the auxiliary

Schrodinger-like equation analogous to (7-15)
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a2 2 ~
(S - 25 - vYz,D =0 (7-79)
dz2 X
where Vy is defined as in (7-14) by
2 dk &
k™ + az - VX(Z) (7-80)
is in fact satisfied by
32,0 = -1 (z,0/E@h) . (7-81)
Thus the downgoing and upgoing waves defined in analogy to (7-17)
D(z,8) = (3 +/2 = 0@ (z,0) -1 (2,0 /@) 2 (7-82a)
~ ~ A A ~ 1
Uz,8) = (6- /2 = (@ +i (2,0 /@) 2 (7-82b)

satisfy the coupled system of differential equations

a D} _ [ —k(z)} [D} (1-83)
dz | @ ~k(z) e Lo .

In comparing (7-82) with the waves (3-33), it should be recalled that
medium acceleration is analogous to negative vertical current density.
This accounts for the change of sign.

Levy (1984) shows how a scattering matrix can be defined for the
system (7-83) by taking the analytic continuation of the scattering matrix
defined for £ = jk. This requires that k(z) have compact support, i.e.,
the medium is bounded below by a homogeneous half-space.

However, this assumption is not required by the algorithms to follow.

7.5.2 Solution by Fast Algorithms

Fast Cholesky algorithms
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The coupled system (7-83) has real elements along the diagonal,
so an inverse Fourier transform is not appropriate. However, this
situation was encountered in the system (7-37) for the free surface
problem, so we know what to do. Defining (in analogy to (7-39))
1% -1 -
D(z,z) = L "[gD(z,8)] (7-84a)
v -1. A~
U(z,z) = L "[gU(z,8)] (7-84b)
v V. .
we see that D and U satisfy the two-component wave system
v v
(3/3z + 3/37)D(z,7) = -k(z)U(z,z) (7-85a)
v \'%
(3/3z - 3/39)U(z,7) = -k(z2)D(z,z) . (7-85b)

However, in order to define the fast Cholesky algorithm for (7-85), it
is still necessary to show that ﬁ(z,z;) contains a leading impulse, as in
(7-22). This can be done as follows. The potential v(z,r) can be
expressed as

1 1

270(0) ((22 + rz)g

v(z,r) =

+ 2h(z,r)) (7-86)

where the first term of (7-86) is the potential of a homogeneous medium
with conductivity o(0) (to see this, note that the radial component of
current density is I/(2Tr(r2 + zz)) and use (7-71la)), and the second term
of (7-86) is the peﬁurbation due to the inhomogeneity of the actual

medium. Taking the Hankel transform of order zero of (7-86) gives

V(0,8) = ot

oy (2 +2R0.0) ) (7-87)

Naal Lol

and taking the Hankel transform of order zero of (7-72) yields, with
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3 _ I 1 s .
D08 = —— (& +h(0,2) (7-88a)
27s4(0) ~
U(0,8) = —g—ﬁw,g) . (7-88b)
270%(0)

Multiplying by £ and taking the inverse Laplace transform, we finally get

\4 1 Vv
D(0,0) = —I = @) + h(z)) (7-89a)
2n0?(0)
do,z) = ——;——I n(z) (7-89b)
’ 215%(0)

A _ ~
where )\{(C) =L 1[~5h(0,5)]

v
Thus we have shown that the downgoing wave D(0,3) at the surface

does inczed contain a leading impulse, and the fast Cholesky algorithm,

consisting of (7-85) and

k(z) = 2\[/](z,z+) . (7-90)

can be used to reconstruct k(z) and hence <(z). The initial conditions

for the fast Cholesky algorithm are

v v v -1
D(0,z2) = U(0,2) = h(g) =L (EH, [h(0,r)]) (7-91)

where h(0,r) is obtained from the measured v(0,r) using (7-86).

The initial conditions (7-91) are recognized as those for a free
surface (compare to (3-16)). This is not surprising; the air above the
earth's surface is effectively an insulator (3(z) = 0 for z< 0), so that

the upward traveling current iz(O,r) is reflected back down into the

--------------
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earth. Indeed, the earth's surface might well be considered a "current
release surface," in analogy to a pressure release surface. The actual
analogy here, of course, is to an "acceleration-release" or rigid surface,
since current density is analogous to medium acceleration.

The physical interpretation of the fast Cholesky algorithm (7-85),

(7-90), and (7-91) follows from noting that

v(z,r)

o) = e [ Yene ta
(7-92)

f<)¥(z,c) Ho-l[% e %) ar = f V(z,0) — (Cz 2

t

which also may be obtained from the definition (4-57) of the inverse
Hankel transform and the identity

[s ]

/oe-gtJo(é;r)dg = 1? )t (7-93)

Equation (7-92) shows that the potential v(z,r) at the current depth

at which the algorithm is operating is being written as the superposition
of current sources of strengths 2WO(O)¥(Z,C)dC/I distributed along a
fictitious depth axis . According to Maxwell's method of images, the
potential v(z,r) in a layered inhomogeneous medium can be written as

a superposition of potentials due to fictiticus current sources that are
images of the actual point current source at the surface. These

sources are always "in the looking glass," i.e., they are not in that
portion of the medium whose potential they are trying to simulate. Thus
they must always be located deeper than depth z. (A mirror image
distribution of current sources must also exist in the other "looking-glass,"

i.e., above the free surface, in order to maintain iz(O,r) = 0. This
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means that t\{(z,z;) is actually an even function in 7, but we ignore the
"anticausal" part above the free surface.)

The fact that the image sources must always be located deeper
t.. .z, 1i.e., z<, amounts to a causality condition that replaces the
temporal causality used for the fast Cholesky algorithms in Chapters Ill
and IV. Also note that the first or uppermost source, at = z+, clearly
has the responsibility of accounting for the medium inhomogeneity at z+,
which is characterized by k(z). This accounts for the first reflection
condition (7-90). The ways in which these concepts may be applied to
the analogous but more difficult (since c(z) also varies) inverse problem

for a layered acoustic medium should be evident.

Dynamic deconvolution algorithm

Defining the reflection coefficient for the medium below depth z
R(z,6) = 0(z,5)/D(z,8) (7-94)

we note from the system (7-83) that R(z,f) satisfies the Riccati equation

£R(z,0 = 28R - K(2)(1-RD) (7-95)

and k(z) can be obtained from R(z,f) using

LIM

k(Z) = g-roo

26R(2,£) (7-96)

since R(z,£), being the analytic continuation of a strictly proper
function R(z,jk), is itself strictly proper (Levy, 1984, p. 13). R(z,¢)

is initialized from

R(0,£) = G(0,£)/D(0,2) = £h(0,£)/(1+h(0,8)), (7-97)




NI A St gt It P b i Sl i it A g

374

where h(0,£) is defined by the Hankel transform of (7-86). ,:.:
The discrete version of (7-95) - (7-97), to be applied to a discrete E
layered medium, was proposed by Pekeris (1940). Pekeris's formula in .
lieu of (7-95) was t'
R, (0 = *68 (R,(D) -k /(1 - KR, (€)) (7-98) of

S

where A is the layer thickness. This formula should be compared with 'i
equations (2-32) and (3-77a). .!
The major disadvantage of the dynamic deconvolution algorithm is "

the unstable computation (7-96). A major advantage of it is that the :
data need not be inverse Laplace transformed, which is also an unstablie '
operation. Using (7-92), the combination Hankel transform-inverse '
Laplace transform required by (7-91) to initialize the fast Cholesky '-.
algorithm may be combined into the solution of the integral equation ® '
h(0,r) = f:r\{(o,;) —2"—‘32—; (7-99) <
(z7+r") o

et

which is analogous to (7-46). ® 54
7.5.3 The Inverse Problem of Determining Reservoir Transmissivities .':‘5::
As a final note to show again that the problems and solutions covered o

in this chapter have widespread applicability, we quickly show that the j;';
inverse problem of determining aquifer transmissivities is mathematically \
equivalent to the inverse resistivity problem. ® ::
The inverse transmissivity problem is to determine the transmissivity \

T of an aquifer or reservoir from measurement of the change h in __
hydraulic head resulting from a source or sink q (of known strength) in ® ..'

the flow rate of the liquid in the reservoir. This liquid could, for example,

........
..................................................................................................
...................................................................
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be water in an aquifer or petroleum in an underground reservoir.
Typically, fluid is pumped from the reservoir at a well, the flow rate q
(the sink term) at the well is monitored, and the hydraulic head h is
measured on top of the reservoir. The reconstructed transmissivity T
is a function of the depth, viscosity and density of the fluid at each
point, and thus yields information about the condition and accessibility
of the liquid in the reservor.

The basic equation for this problem are the conservation of fluid

relation and the definition of mass flow rate g

q = V.J (7-100a)

~

J =TVh (7-100b)

where equation (7-100b) simply states that fluid flow is caused by a
gradient in head acting through a resistance 1/T (compare this to Ohm's
law). Comparing (7-100) and (7-71), the mathematical analogy to this
problem to the inverse resistivity problem is clear. Mass flow rate J

is analogous to current density i, head h is analogous to potential v,
and transmissivity T is analogous to conductivity ¢. Reflection shows
that these analogies make sense physically as well.

This means that in the one-dimensional problem, in which the
reservoir is treatea as a huge pipe whose cross-sectional area varies with
distance (not unlike the inverse problem for determining the shape of
the human vocal tract; see Chapter 1I), the problem can be formulated
as an inverse scattering problem and solved as was just done for the
inverse resistivity problem. Wilson (1983) formulated the problem in

this way, but did not propose a solution.
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In this chapter the layer stripping concept has been used in a
novel way to solve an inverse problem to which, at first glance, the

layer stripping concept seems inapplicable. In the next chapter, layer
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stripping is applied to the most difficult problem of all--that of higher-
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dimensional media.
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CHAPTER VIII

Higher Dimensional Inverse Seismic Problems

8.1 Introduction

In this chapter the inverse seismic problem in dimensions higher
than one is considered. The medium being probed is no longer required
to be layered or laterally homogeneous--the density and wave speed are
now functions of two or three spatial variables, e.g., (x,z) and
e(x,z), or p(x,y,z) and c(x,y,z). The goal is to reconstruct ; and/or
¢ by measuring the response of the medium to an impulsive plane
pressure wave.

To clarify matters, some terminology is introduced. The dimension
of an inverse problem is defined as the number of spatial variables on
which the quantities of interest (¢ and c¢) depend. Thus, the two-
dimensional (2-D) problem is the inverse problem of determining ;(x,z)
and c(x,z) from surface measurements of the displacement u(x, z=0, t),
and the three-dimensional (3-D) problem is the inverse problem of
determining o(x,y,2z) and c(x,y,z) from surface measurements of the
displacement u(x, y, 2z=0, t).

Note that the dimension of a problem need not be the same as the
dimension of the medium in which it is defined--a problem of given
dimension can be embedded in a medium of higher dimension. For
example, the non-normal incidence problem described in Chapter IV is
a 1-D problem embedded in a 2-D medium, while the point-source

problem of that same chapter is a 1-D problem embedd.ed in a 3-D medium.

This terminology will make nomenclature in this chapter much easier.
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Higher-dimensional inverse seismic problems are much more difficult
than the one-dimensional problems that have been considered so far in
this thesis. Indeed, the general 3-D problem of reconstructing Hx,y,2)
and c(x,y,z) exactly from surface measurements is at present an open
problem. While this niost difficult problem is not solved here, for
reasons to be given later, layer stripping algorithms that are in some
ways improvements over existing solution methods are given for several
higher-dimensional inverse problems. These include the reconstruction
of o(x,y,z) with constant wave speed, reconstruction of c(x,z) with
constant density, and reconstruction of p(x,z) and c(x,z), all from the
medium response to a plane wave at normal incidence in the first two

cases and at oblique incidence in the third case.

Previous work

Generalizing 1-D results and tec.iniques to the 2-D and 3-D
problems has proven to be very difficult. Most of the solution procedures

have in some way employed the Born approximation, which is essentially

a weak scattering assumption requiring that the medium parameters vary
slowly. Mathematically, the Born approximation can be specified as
follows. Suppose we wish to recover the potential V(x) of the

Schrodinger equation

@2+ k% - vE)uxk) = 0 (8-1)

from measurements of the scattered field y (x,k). As an example of
this problem, note that if . is constant and ¢ = c(x) in the Fourier

transforms of the basic acoustic equations (3-1)
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A - 2 ~
P = -cc V.g (8'28)
2 ~ o ~
puu = Up (8-2b)
then p solves the Schrodinger-like equation
@ + k% - k21 - e 2o ®p = 0 (8-3)

A
Here k = m/co and <, is the wave speed in the far field, where it is
constant. The k2 multiplying the potential can easily be accommodated in
the following procedure.

Writing the Schrodinger equation (8-1) as
(% + KDy = vy (8-4)

and treating Vy as a source term, it may be seen that | solves the

Lippmann-Schwinger integral equation

wm = %+ fay Gy ) (8-5)

where G(g,y) is the Green's function for the wave equation (8-4) and
eilf"s is the incident probing plane wave in the direction k (k = ll‘l)-
Equation (8-5) may be solved by repeatedly inserting it into itself,
producing an infinite series. Now, suppose we truncate this series

after two terms, which amounts to a linearization. Then we have
wx) = S8 X [dy G(x,y)V(x)el¥ (8-6)

This truncation can also be viewed as approximating the field . (y)

- .
.




N inside the integral by the incident field ¢/X'Y, which is to say that

the incident field has been unaffected by the weak scattering losses it

t: suffers while passing through the inhomogeneous medium. By any of
the above nemes, the approximation of (8-5) by (8-6) is the Born

approximation.

In the 1-D case, equation (8-6) becomes a simple Fourier transform,
and V(x) may be obtained by taking the inverse Fourier transform with
respect to k of the backscattered field y(x,k) - ejls'}f. In higher
dimensions, things become more complicated, although Cohen and
Bleistein (1979) have solved the 2-D problem. The tomographic
approach of Devaney (1984) is also a Born approximation method.

The major problems with using the Born approximation are as
follows. First, it is an approximation, requiring slow variation of p and
¢, and thus is fundamentally inexact. Second, Born approximation
inversion methods require that measurements be taken in the far field,
which is generally not possible for inverse seismic experiments on land.
Third, Born approximation inversion methods are generally only
applicable if density is constant (or if wave speed is constant and
density is varying). This limits the scope of problems to which it can
be applied. Finally, the Born approximation is by definition a single
scattering approximation, so that multiple reflections are interpreted as
primary reflections. This leads to errors beyond those made due to
the basic assumption of a slowly varying medium.

The other approach to solving higher-dimensional inverse problems
is migration, which can be very effective if the medium consists of
several homogeneous regions separated by non-horizontal interfaces.

The basic approach of migration is to image a particular point in the
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medium by beamforming. A properly weighted sum of delays applied to
data from various sensing positions will have the effect of a collective
focus on the point being imaged (see Section 4.3). The strength of

the reflection, of course, indicates the amount of scattering due to
medium inhomogeneity taking place at that point. The major problem with

migration is the wavefield extrapolation or back propagation, to determine

which point in the medium is being imaged. This requires knowledge
of c(x) along the ray paths, and often the wave speed is simply taken
to be constant. This of course leads to errors. Berkhout (1982) is

a good treatment on migration and wavefield extrapolation.

Raz (1982) has proposed a migration-like technique that involves
a distorted-wave Born model. Various assumptions are made, including
a straight-ray approximation between scattering and observation points.
Results of a numerical 2-D inversion are presented, and a 3-D procedure
proposed. Clayton and Stolt (1981) used the WKBJ approximation (see
Section 4.4), which is tantamount to assuming that energy is propagating
along rays, as in geometrical optics.

Newton (1980) has described a general 3-D inverse scattering problem
solution that reconstructs a Schrodinger potential from a scattering
amplitude given as a function of energy and directions of incident and
scattered particles. Solution of a generalized Marchenko integral equation
is required, as is the behavior of the scattering amplitude for particles
of very high incident energy. And it is not clear how this method might
be adapted to yield both ~(x,y,z) and c(x,y,z) from the scattering
amplitude.

Morawetz and Kriegsmann (1983) have proposed an iterative scheme

in which an initial guess at a 2-D potential V(x,y) is iteratively refined.
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In the numerical examples presented for a 1-D inverse potential problem,
up to thirteen iterations were required, and also some smoothing to
prevent numerical instability. The computations and memory required
for 2-D inversion are admitted to be enormous.

Finally, Symes (1983) showed how layer stripping ideas could be

applied to higher-dimensional inverse problems. The problem solved

RN | ARG \at) NLREAR

o

by Symes (1983) was that of reconstructing the density p(x,z) of a

medium with constant wave speed, which is the 2-D version of the

-
TRy
\
.
4 0

problem considered in Section 8.2. Symes's approach was to reconstruct

W AN A A
AR Y RN - AN

r.
the medium layer by layer by solving a Schrodinger equation in the ;
lateral variable x to obtain the lateral dependence of density p at each :":
depth. This approach is not nearly as simple and physically ° :
interpretable as the algorithm of Section 8.2. .
Well-posedness of higher dimensional inverse problems L )

Most methods for solving higher-dimensional inverse problems, 'Z:IE
including tomographic methods (e.g., Devaney, 1984) and the generalized ‘;:.:.::
Gel'fand-Levitan method of Newton (1980), require as data the ¢ :.
scattering amplitude or generalized reflection coefficient for probing \
particles for all energies incident from all directions. For the 3-D E
problem, this means that the measured data is a function of five ® k.
parameters, one describing the energy of the probing particle, two
describing the direction from which the particle is incident, and two
describing in which direction the strength of the scattering field is i _,
being measured. Using spherical coordinates, this may be written as :

33

A=A %0 fine’ %bs’ Pobs) (8-7) oK
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On the other hand, the potential whose reconstruction from the

scattering amplitude A is desired is a function of three parameters

vV =V(, 8§ ¢). (8-8)

If the probing takes place using an incident plane wave, the energy k2
is replaced by frequency, but otherwise the situation is the same.
Equations (8-7) and (8-8) show that the 3-D inverse scattering

problem formulated as above is overdetermined; a function of five

variables is being used to determine a function of three variables. This
means that the 3-D inverse scattering problem as formulated above is
ill-posed. This is true because a slight perturbation in the data

Ak, ein , &, 6 , ¢ bs) may result in data that is inadmissible,

c inc obs (o]

i.e., corresponds to no potential V(r, €, ¢). Indeed, since any potential
V can give rise to only one scattering amplitude A (the ambiguity due to
bound states does not arise in higher dimensions according to Newton
(1980, p. 1698)), the set of admissible scattering amplitudes, i.e.,

those amplitudes A which actually arise from some potential V, are of
measure zero in the space of possible scattering amplitudes. Thus

this inverse problem is ill-conditioned: any small perturbation in the
data (due, for example, to noisy observations) may lead to the failure
of any potential reconstruction method, since there is no longer any
potential to reconstruct. Of course, the problem may be regularized

by adding noise a priori to the observations, and regarding any
perturbstion from the set of admissible data as being due to that

noise, regardless of its actual cause (e.g., model failure). However,

we do not consider that approach in this thesis.
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It should be noted here, however, that the inverse problems
proposed and solved in this chapter are all well-posed. Indeed, the
algorithms themselves show that the problems are well-posed: a slight
perturbation of the data simply leads to a slight perturbation of the
reconstructed medium, since the reconstructed medium parameters
depend in a continuous (but complicated) way on the observed data,
as may be seen from the equations. The fact that the layer stripping
algorithms do not require knowledge of the scattering amplitude for
all incident and observation angles accounts for the well-posedness of

these problems.

Summ ary

In Section 8.2 the 3-D inverse problem of determining the density
o(x,y,z) for a medium with constant wave speed ¢ from measurement of
the medium response to a plane wave at normal incidence is formulated
and solved using a layer stripping algorithm. This turns out to be
a fairly straightforward application of the layer stripping principle. The
2-D versions of this problem and solution first appeared in Yagle (1983).

In Section 8.3 the 2-D inverse problem of determining the wave
speed c(x,z) for a medium with constant density p using the same
measurements as in Section 8.2 is formulated and solved. This problem
turns out to be much more difficult than the problem of Section 8.2,
since the varying wave speed results in the wave front no longer
being planar. The wave speed is still determined along the wave front,
but in this problem it is necessary to track the wave front and translate
the reconstructed wave speeds along it into a function e¢(x,z). The

algorithm can handle caustics and turning points within the medium,

------- [ '_ ‘_ L PR BT R R R,
...........




although of course the wave speed cannot be reconstructed beyond a
turning point.

In Section 8.4 the non-normal incidence problem and algorithm of
Section 4.2 are generalized to a 2-D problem and algorithm. The goal
is to reconstruct p(x,z) and c(x,z) from measurements of the medium's
r responses to two plane waves moving in the y-direction and incident
at two different angles. It is also noted that the result of Chapter

II1, viz. the impedance pc(T) as a function of travel time 1 can be
F reconstructed from the normal incidence plane wave response, can be
generalized to higher dimensions. The impedance pcc(71) is reconstructed

as a function of travel time along a ray path.

8.2 Reconstruction of o(x,y,z) for Constant Wave Speed

The problem considered in this section is as follows. An acoustic

® isotropic medium for which the wave speed c(x,y,z) = c, is constant

but the density p(x,y,z) varies continuously with all spatial variables

is probed at normal incidence with a plane wave from the homogeneous

half-space z < 0. The medium's vertical acceleration az(x,y,o,t) and

pressure p(x,y,o,t) are known at the surface; two combinations of

them are fixed by the nature of the probing plane wave and the

® boundary condition at the surface. For example, if a sinusoidal plane

pressure wave is used to probe the medium and a rigid surface is

assumed, we have

p(x,y,0,t) = b cos(ut +:)1(t) + R(x,y,t)1(t) (8-9a)

az(x,y,o,t) =0 (8-9b)

where b is the strength of the wave, . the frequency, and ¢ a phase

...........................................................
...................

.......................
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shift. In this case the data is R(x,y,t).

Since a function of three variables R(x,y,t) is being used to

Bk AR . ) g e

determine a function of three variables ,(x,y,z), the problem is not

o N

overdetermined. Since the wave speed c(x,y,z) = s is constant, there
are of course no turning points, and there are no caustics since the
probing wave is a plane wave. Indeed, the wave front at any time t
is a horizontal plane wave at depth z= cot. This makes the layer
stripping algorithm for this problem much simpler than the one to follow
in Section 8.3.

To solve this problem, we use the method of characteristics of

Section 2.3.5. The basic acoustic equations (3-1) for this problem take

the form
aZp/at2 = - c2(3a [3x + 3a_ /3y + 3a_/32) (8-10a)
PCo 8% y'° z
op/ax = “pay (8-10b)
ap/3y = -oay (8-10c)
oploz = -pa, (8-10d)

where - ay, and a, are the respective components of the medium acceler-

ation. Inserting (8-10b) and (8-10c¢) in (8-10a) eliminates a  and 8y leaving

2, /52 = (3°prax” + a%pray? - aedaprathi: -

(8-11a)
[(o/3%)(3p/3%) + Gp/3y)GR/3y)1/p 2

- o8 . (8-11b)

p/az
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Now, for any type of probing acoustic wave, we have

p(x,y,z,t) = p(x,y,z,t) 1(t-7) (8-12a)
v, (X,y,2,t) =V, (x,y,2,) 1(t-1) (8-12b)
®
where v, is the vertical component of medium velocity, T is the vertical
travel time z/c, and p and v, are smooth functions. Equations (8-12)
° are a statement of causality--the medium at any point is at rest until

the wavefront has passed that point. Note that for an acoustic wave p
and v, must have the same type of discontinuity at the wave front;

indeed, in a homogeneous medium p = sz, where Z is the impedance.

®

Taking the partial derivative of (8-12b) with respect to time gives

L. az(x,y,z.t) = Gz(x,y,z,t)d(t-r) + Ez(x,y,z,t)l(t-r) ) (8-13)

A
[aY

where a, avz/at

Inserting (8-12a) and (8-13) into (8-11b) and equating the coefficients

; of &) on both sides gives
® p(x,y,2)c, = ﬁ(x,y,z,r)Nz(x,y,z,r) (8-14)
Inserting (8-12a) and (8-13) into (8-1la) and equating the coefficients
of '5(-) also gives (8-14). However, equating the coefficients of &(-)
®
gives the additional condition
~ ~ 2 ~
v, (x,y,2,1) /32 = a (x,y,z, /e, - (2/pe ) (3/3t)p(x,y,2,1) (8-15)
[
The layer stripping algorithm thus consists of (8-11) for updating
[
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v,(x,y,2,7) in depth (note that the entire time function Gz(x,y,z,t) is

not updated; only its t = 7 value), and (8-14) for computing »(x,y,z)
at the updated depth. At each depth, these updates are performed for
all x, y, and t, point-by-point.

Note that the extra condition (8-15) is necessary in order to use

s Y e3P WV

(8-14) to recover p(x,y,z). It is unfortunate that Bz, rather than \72,
must be used in the updates (8-11), since the additional condition (8-15)
is now required. However, an attempt to formulate the algorithm using
p and v, exclusively leads to terms of the form azvzlazat, which are
clearly inadmissible.

Note that the condition (8-14) is essentially an impedance

- reconstruction taking place in a higher dimensional problem (compare (8-14)
S to (2-78)). Also note that the partial derivatives with respect to x and
y can all be eliminated by taking Fourier transforms with respect to
these variables. This results in the recovery of p(kx, ky, z), which

is then inverse Fourier transformed to get p(x,y,z). However, this
would introduce a plethora of convolution integrals. A Fourier transform
with respect to t would eliminate the partial derivatives with respect to
t, but would require that (8-14) be replaced by

o(x.y,z)co= LIM ﬁ(x.y,zM)/\?z(x,y,z,w) (8-16)

w) >
which is also not a desirable numerical operation.
Finally, this algorithm is simple because the wave front, along which
the reconstruction takes place, is a simple plane whose location z = cot
is known at all times. This is a direct consequence of the assumption of

a constant wave speed throughout the medium. When this assumption is
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relaxed, as it is in the next two sections, considerable effort must go

into tracking the wave front, and the algorithms become more complex.

8.3 Reconstruction of c¢(x,z) for Constant Density

The problem considered in this section is formulated in the exact
same way that the problem of Section 8.2 is formulated, except that
now the density p(x, z) = o is constant and the wave speed c(x,z)
varies, and the problem is now a 2-D problem. However, this means
that the wave front is no longer planar, and the inverse problem algorithm
must not only reconstruct c(x,z), but must track the wave front, and
convert the values of ¢ reconstructed along the wave front into functions

of x and z. These additional tasks are accomplished by a variation of

2-D ray tracing that could be referred to as wave front tracing.

Change of coordinates

Once again, the basic approach is to use the method of
characteristics of Section 2.3.5. However, we now make a change of
coordinates from (x,z) to (s,e), which are time-varying curvilinear
coordinates defined so that s is normal to the wave front and e is
tangent to it (see Figure 8.1). The initial wave front is assumed to be
planar and coinciding with the surface; other excitations will lead to
different coordinates (s, e). These new coordinates are further
defined as coinciding with the x and z coordinates, respectively, at
t = 0, and as undergoing no scale or length changes as time varies.
Thus the coordinates (s, e) amount to a simple rotation of the
coordinates (x,z), and this rotation varies continuously with t. The
coordinates (s,e) are discussed in Aki and Richards (1980, p. 94).

It is important to recognize that there are no scale changes in
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8.1 Definition of coordinates s and e.
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changing from the coordinates (x,z) to (s,e), since it is these scale

changes that account for the complexity of the general formulae for

e
divergence, curl, and gradient expressed in curvilinear coordinates.
For example, the change from the rectangular coordinates (x,y) to the
° polar coordinates (r,s), where s = rf, amounts to a rotation through an
angle g, and then scaling the s coordinate by r. No such scale change
takes place in the present problem, so the basic acoustic equations
° (8-10) become simply ﬁ‘”‘i
O
32p/5t% = -0 c®(3a_/3s + 2a_/de) (8-17a) R
o s e e
° plre = -5 a (8-17b)
op/3s = - R a (8-17c)
o where ag and a, are the respective s and e components of the medium
acceleration and p(x,z) = % is constant.
Now, the coordinate s represents the arc length along a ray path,
® and e picks out both a point on the wave front and the ray path
leading from the corresponding surface point to that point. Here we
use the term "ray paths" to mean the characteristic curves associated
¢ with the characteristic surface, which is the wave front. This means
that the ray paths are defined as the orthogonal complements to the
family of surfaces consisting of the wave front locations for various values
¢ of t. Note that although these ray paths are defined in the same way
that rays are defined in WKBJ theory, there is an important distinction.
Here we are not assuming that energy is propagated from point to point
¢ in the medium along rays; we are simply using them to reference
®
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locations within the medium. This explains the use of the term "ray ':'
\ 0:(
: path" rather than ray to emphasize this difference. i

Thus the ray paths are defined by the propagation of the wave

\ ;
“ A
: front, and constitute a simple grid (although a rather twisted one) for e"
¥ )

)
specifying locations within the medium. The location of the wave front W
oL
" at any time t is specified by the equation F'
A s,e) = L do/c(o,e) =t (8-18) e
a o
E?_ where 1t(s,e) is the travel time. Note that t(s,e) depends only on s on
. ‘ ..‘-
> the wave front, since the wave front has the property (8-18) at all o
~ e
_ points. Of course s varies along the wave front, since some ray paths .,
L7 pass through faster portions of the medium than others, and thus travel l;_;;
- farther in time t. Defining t undoes this variation of s. ‘l
o
The point of all this is to show that on the wave front (which is g
the only place the equations are actually used), a change of variables \'
from s to 1 amounts to a simple scaling of 3p/ss and Baslas by 51/3s = :':,':
l/e. If we make this change and also define ° -
‘,' TT(T, est) = p(T9e)t)/po (8‘19) :-'.
- Y
) | J®
equations (8-17) become, on the wave front,
32+/at2 = -c?(3a,l3€) - c(da_/31) (8-20a) o
(AN
S . ﬁ
dnfoe = -a, (8-20b) N
- /3t = -ca_ . (8-20c) :T'-:E
'Y 3

.
.
.
L .
'
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Layer stripping algorithm A
, o’
. . P . . ‘.'.l.,g
p Inserting (8-20b) into (8-20a) and eliminating a, yields —
.? ] v
R
sa 3t = e(d¥nael - (Pmatdyed) (8-21a) E
. o
R
r on/3T = - ca_ . (8-21b) N
‘ TR
Now we use the method of characteristics. For any type of *{
) probing acoustic wave, we have —
T(1,e,t) = 7(T,e,t)1(t-1) (8-22a)
b v_(t,e,t) = \;T(T,e,t)l(t-T) (8-22b) - Yy

where v, is the t-component of the medium velocity. Equations (8-22)

have the same forms as (8-12), and do so for the same reasons.
Proceeding as with (8-13) - (8-15), we find that equating

coefficients of &(*) and §(-) when (8-22) are substituted into (8-21)

results in et

c(t,e) = 1(1,e,1) ¥ (7,e,1) (8-23a)
@QRDY_(Te,1) = &.(T,e,T) - (2/e)(3/31)T(T,e,T) . (8-23b) "\"-'*..?

Note once again that the additional condition (8-23b) is required in N
order to make use of the impedance reconstruction (8-23a). sl
The layer stripping algorithm thus consists of (8-21) for updating ~rC:

IDASA S|

T and V. in 7, and (8-23) for obtaining c(T,e). The algorithm is quite :-:::-:%
\:‘. Catl)

similar to that of Section 8.2, with the updates taking place point by :‘j‘&

point for all e and t along the wave front, the wave speed c(71,e)
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being reconstructed along the wave front, and the wave front then
propagated forward in 1. The only problem is that c¢(T,e) must somehow
be translated into ¢(x,z). This can be done concurrently with the layer

stripping algorithm, as we now show.

Wave front tracing

Let ¢(1,e) be the angle between a tangent to the wavefront at the
point (T,e) and the (horizontal) x-axis (see Figure 8.1). Clearly the
wavefront will advance locally in the direction ¢ - 90°.

Now, % is of course a function of e, unless the medium is homogeneous.
But ¢ changes with 1 due to variation of the wave speed c¢ along the

wavefront--without such variation, the wavefront would retain its shape.

This allows the derivation of an update equation for ¢. From Figure t't'.:f
)

8.2, we have J
it G

oW

tan(¢(t+d1,e) - ¢(t1,8)) = (c(7,e+e) - c(1,e))dt/de (8-24) <]

e

and letting 6T and e go to zero yields ° L
i

35¢(T,e)/0T = de(t,e)/de . (8-25)

This equation is an update equation for ¢, since c(1,e) is assumed to be
known at t for all e, hence 3c/3e may be computed (although this

computation is not very stable).

Now, suppose the coordinates (x,z) associated with the point (7,e)
are known for all e. When 1 is incremented by A, these coordinates will

change slightly, by amounts §x and §z. But clearly

§x(t1,e) = c(t1,e) A sin p(T1,e) (8-26a)
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e

o

sz(1,e) = c(1,e) & cos ¢(t,e). (8-26b) N
This allows c¢(x,z) to be computed recursively, as follows: .,_"
2

o~

Given: c(rt,e), x(7,e), z(1.,e), cos ¢(T,e), sin ¢(7,e) . I:;-_'
Update all quantities in 1. Each step is done for all e. ® ’ ‘
(1) Update cos ¢ from 3(cos ¢)/3T = - (sin 9)3¢c/% (8-27) gi

(2) Update sin ¢ from 3(sin ¢)/3 T= (cos ¢) d¢/de (8-28)

(3) Update x and z from (8-26)

(4) Update c(1,e) by the algorithm (8-21) - (8-23)

(5) Update c(t + A,e), x(T+ &,e), z2(T + L,e) as e(x,2).
This is quite suitable for plotting.

Note that (8-25) has been used in (8-27) and (8-28), and that ¢(0,e) is

initialized to zero.

It might seem that generalizing this algorithm to an inverse 3-D
problem algorithm that would reconstruct c(x,y,z) would require the trivial

addition of arother coordinate ey, SO that (x,y,z) becomes (s,el,ez),

where e, and e, specify a ray and a location on the wave front. However,

Aki and Richards (1980, p. 95) have pointed out that it is not possible
:Z: to select such coordinates so that S and e, are always orthogonal in
general inhomogeneous media. The reason for this is that in such media
]

= a given ray is no longer confined to a single plane, but may twist
around like a corkscrew (Aki and Richards, 1980, p. 100). Thus rays
can twist around each other, and if (e;.e,) is assigned to a single ray
and also to the point on the wave front through which the ray passes,
the angle between ey and e, will in general change with time and the

wave front. Since e, and e, are no longer orthogonal, the equations

Ceommms At L YERt L )T

corresponding to (8-17) will become vastly more complicated. Thus, it

~~~~~~~~~
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NS
. .
f‘a

seems unlikely that layer stripping methods can be used to solve 3-D

2
.
-

inverse problems.

However, there are still several salient points to the above 2-D
algorithm. First, of course, is that it is an exact method, unlike the
Born approximation methods. Second, it is not ill-posed, unlike methods
that require the scattering amplitude of the medium for all angles. Third,
it does not require the assumption of high frequencies, geometrical
seismics, and energy propagation along rays, as do WKBJ and ray
tracing methods. For this reason, the algorithm can handle caustics,
which are points where rays are focused and intersect. WKBJ methods
have difficulty with caustics, since the geometrical spreading function is
zero at a caustic, which makes the amplitude blow up. The layer
stripping algorithm encounters caustics as cusps in the wave front, but

the arc length e around the cusp is still defined. The angle ¢(1,e) is

discontinuous in e at a cusp, but this presents no problem.

The only assumptions being made in the use of the layer stripping

algorithm are the validity of the basic equations (8-10) and the concept S

.,
..,

of causality, which manifests itself in the assumption that there is in

.

fact a wave front. The wave front traces out orthogonal complements

.."
¢ .
'

(the ray paths) as time advances. Also, it is necessary to assume that

.I'l
.

o and c are smooth functions, so that the various partial derivatives in DR

the algorithm are all well defined.

8.4 Generalizations of One-Dimensional Results to Higher Dimensions

In this section it is shown how the basic results for the 1-D problems
examined in Chapters III and IV generalize to higher dimensions. First,

the non-normal incidence problem and algorithm of Chapter IV are each
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generalized a full dimension. The present algorithm recovers p(x,z)

and c(x,z) separately from the reflection responses of the medium to two
impulsive plane waves travelling in the y-direction and incident at two
different angles. Next, the well-known result noted in Chapter lII that
only the impedance pc(t) as a function of travel time 1 can be recovered
from the response of a layered medium to a plane wave at normal
incidence is generalized. For the 2-D problem, it is shown how the
impedance pc(1) as a function of travel time along rays can be recovered

from the medium's response to a plane wave at normal incidence.

8.4.1 The Two-Dimensional Non-Normal Incidence Problem

Here the non-normal incidence problem and algorithm of Chapter
IV which resulted in recovery of the separate profiles 5(z) and c(z) is
generalized a full dimension. Recall that in the problem given in
Chapter 1V impulsive plane pressure waves were incident upon a 2-D
medium with 1-D material parameter variation, viz. p(z) and c(z).
Running this experiment twice, at two different angles of incidence,
allowed the recovery of p(z) and c(z) separately. A generalization of
this experiment will now allow p(x,z) and c(x,z) to be recovered
separately.

The problem set-up is as described in Chapter IV, only now p(x,2)
and c(x,z) are functions of one lateral coordinate as well as depth, and
the impulsive plane wave now has a normal lying in the y-z plane, where
y is the other lateral coordinate. This may be visualized as a
horizontal stack of identical inhomogeneous plates, with the normal to
the impulsive plane wave having components in the direction of the

stacking and in the direction of increasing depth. This problem is often
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referred to as the 2} dimensional problem.
Recall the basic acoustic equations (8-10)
<’92p/8t2 = - pcz(aa ox + da_/dy + da_/3z) (8-29a)
¥ y z
- pa, = 3p/3x (8-29b)
- pay = 3p/dy (8-29¢)
- ca_ =23pliz . (8-294)

Proceeding as in Chapter IV, the fact that o(x,z) and c(x,z) do not
vary with y means that if the medium is subject to an impulsive plane
wave whose Fourier transform for z < 0 (above the surface) is

e T (Ryx * kyy * kzz), then the wave number ky will not vary with x

and z either above the surface or below it. Hence the Fourier transform

of the pressure takes the form
BOy.z, 0 = Px,z,0 e KyY = f(x,z,w) e IV SiR95/¢ (8-30)

where 8 is the angle of incidence for the plane wave and o is the
(homogeneous) wave speed for z < 0 (above the surface).
Taking Fourier transforms of (8-29) with respect to t, substituting

(8-30), defining
cos2 ei(x,z) =1 - c(x,z)2 sin2 é)i/co2 , (8-31)

and converting back to the time domain yields, in analogy to (4-23),

(3%p/at?) cos? &(x,2) = - pc? (dalox +3a,/32) . (8-32)
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Note that ei(x,z) can be interpreted as the angle between the tangent
to the actual ray path at a point (x,y,z) and its projection on the x-z
plane. Compare this to €(z) in (4-24), which was the angle between the
tangent to the ray path at depth z and the z-axis. Equation (8-32) shows
that the problem has been reduced from a 2-D problem embedded in a
3-D medium to a 2-D problem embedded in a 2-D medium.

Since the partial derivatives in (8-29) and (8-32) constitute a
gradient and divergence, respectively, they must (taken collectively) be
independent of the choice of coordinates. Thus we may change from x
and z to the time-varying curvilinear coordinates s and e, where s is
normal to the (2-D) wave front and e is tangent to it, as before. Note
that these coordinates will be the same for both experiments.

Writing (8-29) and (8-32) in terms of s and e yields

2p/ot?) cos? e (s,e) = - oe? Ga,/as + da_/e) (8-33a)
- pa = ap/os (8-33b)
- pa = 3p/de (8-33c)

where ag and a, are the components of acceleration in the appropriate

directions. Eliminating a, gives

2

(azp/atz) cos” 6.(s,e) = - pc2 (da /3s) + czazp/ae2 - (c2/p)(a ploe) (3p/ae)

(8-34)

and defining the travel times

dt/ds = 1/c(s,e) (8-35)

d‘ri/dr = oS 6i(s,e) R i=1, 2 (8-36)
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for two experiments with initial angles of incidence 61 and o, allows the

pressure and medium velocity to be written in the forms (compare to

[
(8-22))
vi(te,t) = ¥ (t,e,t) 1(t-1) (8-37a)
) 1) S 1
P'(T.e,t) = B (Te,t) 1(t-T) (8-37b)
® where p1 is the pressure field resulting from the experiment at angle of
incidence i‘i, and similarly for Vls'
Proceeding once again as with (8-13) - (8-15), we substitute (8-35)
® - (8-37) into (8-34) and (8-33b) and equate coefficients of ¢(.) and &(-).
This resuits in
oe(T,e)/cos ei(r,e) = f)l(T,e,Ti) /irls (T,e,ri) (8-38a)
®
~ ~1 - - = - _ e o - gyl - -
(-'[S)VS(.veyTi) - aS(T’e’Li) (ZCUS ui(»,e)/(p—c))(f.‘/:)t)p(’-,e,Li)
(8-38b)
®
which should be compared to (8-23).
Equations (8-33b), (8-34) - (8-36), and (8-38) taken together thus
o constitute a differential algorithm for computing o(7,e) and c(t,e), with
the update taking place as an increment in the ray path travel time 1.
The algorithm may be summarized as follows:
9 Given: pl(r,e,t) , als(T,e,t), 2(1,e), c(t,e), cos ai(r,e) ,vls(r,e,'ri)
T(Te). i=1,2,
Update all quantities in 1.
® Each step is done pointwise for all e and t.
®

............
...........
...........

...........
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1 .1 _ i
(1) Update p : 3p /31 = - pe ag (8-39)
(2) Update als : Bals/ar =- {@ 2pl/atz)cos2 61 T.e) - czazpi/ae2
+ (c2/0) (30/3e) (3p'/3€)1/ (pe) (8-40)

i i i non i
(3) Update v_: v /37 =a(7.e,7)-(2 cos ¢, (,e)/(ced /at)p (T.e,7,) (8-41)

(4) Update T aTi/ST = cos Ei(T.e) (8-42)
2 1
(5) Compute U : U(tte) = [P—Z— (T+,e,t=T2+)/p—1(T+,e,t=TI)]2 (8-43)
. + _ _ .2 . .2 & 3
(6) Compute ¢ : c(T,e) = ¢y [(U-1)/(U sin % - sin” 5] (8-44)
(7) Compute cos “C‘i : cOs ei(T+,e) = [l—c(Tﬂ",e)Z/co2 sin’ tfi]% (8-45)
(8) Compute o: o(r+,e) = pl(t+,e,t =Tl+) cos 91(r+,e)/c(T+,e). (8-46)

This algorithm bears a marked resemblance to the corresponding
algorithm (4-37) - (4-44), and it is not difficult to see why. In the
1-D offset problem algorithm updates similar to those above were carried
out as the planar projected wave front advanced from depth z to depth
z + A, In the 2-D offset problem the projected wave front is no longer

a flat plane, but is described at time t by the equation T(x,z) = t.

Hence the increment occurs in ray path travel time 1, which by definition 1

is the same for all rays, i.e., all along the wave front. When 71 is

incremented, the wave front advances slightly, and (8-39) - (8-46)
generate o( T+ 4,e) and c(T + d,e). The wave front tracing procedure
(8-26) - (8-28) can then be used to generate p(x,z) and c(x,z) for s o

each 71, i.e., throughout the medium.

8.4.2 The Two-Dimensional Normal Incidence Problem

It is known (see Chapter III) that for the 1-D inverse seismic problem

. -
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in which an impulsive plane wave is normally incident on a 1-D medium,
® and the upgoing wave at the surface measured, then the only information
about the medium that can be reconstructed exactly is the impedance as

a function of travel time, viz. pe(7). How might this result generalize

Y to higher dimensions?
Rewriting equations (8-17) in terms of displacement u rather than

acceleration a, we have

® 2
p =- oc” (dug/os + 3ue/5e) (8-47a)
op/3s = - p 3fu_/3t? (8-47b)

® 3p/3e = -0 3tu_/3t? (8-47¢)
where ug and u, are components of displacement in the appropriate

e directions. Now, in the 1-D case changing variables from depth to
travel time resulted in a set of equations entirely in terms of the
impedance :c(1), which allowed recovery of this quantity by layer-

® stripping. Unfortunately, this is not possible for (8-47), since e would
also have to be differentially scaled by c, and this brings in other terms.
And as long as o and c are present separately in these equations, there

® is no way they can be propagated from knowledge (from the first
reflection) of their product oc alone.

The solution here is to recognize an implicit feature of the 1-D

® inverse seismic problem: Since the problem takes place along a single
vertical ray path, only acoustic (i.e., P-wave) wave propagation along
this path need be considered. In the 2-D case, this is tantamount to

® considering only acoustic wave propagation along a ray path. From the
nature of acoustic wave propagation, this means that u, is negligible

o
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(Aki and Richards, 1980, p. 95). (Note that this assumption would e
Ps"

-

simplify the algorithms of the preceding sections.) With this assumption, )G
oK.

%

equations (8-47) become

'¢“c
o e

5

I I .

p =- pc ous/as (8-48a) o

oK

sp/as = -p dPu_/ot? (8-48b) RS

which have the same form as the basic 1-D equations. Defining outgoing ;:::_i
ok

and incoming waves as

O(s,e,t) = p/voc + Vo 3usl3t (8-49a)
- - -
I(s,e,t) = p/voec - vbe du /3t (8-49b)

and assuming an impulse present in the outgoing wave yields the fast

Cholesky equations of the 1-D problem oK.

(9/3T + 3/9t) O(t,e,t) = - r(t,e) I(1,e,t) (8-50a)
(3/371- 3/3t) I(t,e,t) = -r(7,e) O(z,e,t) (8-50b) '
r(t,e) = 2I(1,e,1) (8-50c)

now applied along each ray (i.e., for each e). Thus instead of ®

reconstructing pc(1), we now reconstruct pc(t,e).
A variation on the 1-D problem provides for pure shear wave
propagation, with pc(t) again being reconstructed. For the 2-D problem, @

we simply neglect ug instead of Uy Since (8-47) are symmetric in ug

AR
2'a'a s

and Ug s the result is once again a fast Cholesky algorithm which

reconstructs pc(7,e). OB

v
» -

'. " _" “_"
IS

x
)

.

g A




L G B Ba u sut g

.....

407

As in the 1-D problem, some sort of non-normal incidence experiment,
involving the medium responses to impulsive plane waves at two different
angles of incidence, is necessary in order to reconstruct o and ¢
separately, and as functions of x and z. The 2-D non-normal incidence
problem where the normal to the plane wave lies in the (y,z} plane
was solved in the previous section. More desirable would be a solution
to the 2-D problem where the normal to the plane wave lies in the
(x,z) plane (so that all of the action takes place in this plane), but
there seems to be no way to relate the different wave front histories

resulting from the two experiments to each other.

In this chapter some progress has been made in applying layer
stripping ideas to higher dimensional problems. The results included
workable algorithms for reconstructing p(x,y,z) with wave speed constant
and c(x,z) with density constant from normal incidence data, =nd
o(x,2) and c(x,z) from non-normal incidence data. In addition, a
familiar 1-D result has been generalized to a 2-D result. However, the
complex geometry of a wave front in a medium in which the wave speed
varies with x, y, and z makes it seem unlikely that layer stripping

algorithms can be derived for general 3-D problems.
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CHAPTER IX

Conclusion

9.1 Summary

In this thesis the concept of layer stripping has been applied to a
wide variety of inverse seismic problems. The goal of this thesis, which
was to show that layer stripping could lead to fast algorithms for the
solutions of many more inverse problems than has been generally

realized, has thus been accomplished.

Prior to this thesis, virtually all applications of the layer stripping
concept were made solely to the one-dimensional inverse problem at
normal incidence. The resulting dynamic deconvolution algorithms
were generally considered to be entirely unrelated to the usual integral
equation (for continuous media) or matrix equation (for discrete media)
methods for solving this problem, and it was also generally believed
that such algorithms would quickly blow up due to the accumulation of
noise within them.

The work of Bruckstein et al. (1983) showed that layer stripping
algorithms are in fact closely related to the integral/matrix equation
methods, and that their simplicity and physical interpretability are in
fact closely related. Furthermore, the breakdown of such algorithms
after a large number of layers is due more to the poor conditioning of
the inverse problem at those depths than to any fault in the algorithms
themselves, as noted in Bruckstein et al. (1984). Computer runs of the e
algorithms on synthetic data in Symes and Zimmerman (1982) and Bube

and Burridge (1983) showed that the algorithms were numerically better
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behaved than had previously been suspected. But throughout all of

this, attention was still focused on the one-dimensional inverse problem
at normal incidence.

In this thesis the scope of applicability of layer stripping has proven
to be much wider than just this one problem. To mark this in detail,
the results of this thesis are now reviewed.

In Chapter II the general symmetric two-component wave system
inverse scattering problem was defined and shown to be solved by a
coterie of layer stripping algorithms. The fast Cholesky algorithm
involved leftgoing and rightgoing waves in the time domain, the Schur
algorithm involved these same waves in the frequency domain, and the
dynamic deconvolution algorithm involved the reflection coefficient for
the unknown part of the medium. These three mathematically equivalent
algorithms all reconstructed the scattering medium using the principle
of causality: the first reflection from the medium at any depth gave the
value of the reflectivity function at that depth. Al three algorithms only
require 0(N2) computations to reconstruct the medium, hence they may
be considered fast algorithms.

Also in Chapter II, two coupled fast Cholesky algorithms (or two
coupled Schur or dynamic deconvolution algorithms) were shown to
solve the inverse scattering problem for an asymmetric two-component
wave system, and other fast algorithms for reconstructing the potential
of a Schrodinger equation were derived.

Various integral equation methods of solving these problems were
also derived, and a fast algorithm (the Krein-Levinson algorithm) was
shown to solve these integral equations by exploiting the Toeplitz or

Hankel structure of their kernels. The relations between the layer
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stripping fast algorithms, which reconstruct the medium and the waves
in it directly, and the Krein-Levinson fast algorithm, which solves the
integral equations for reconstructing the medium, were discussed in
detail. The results of Chapter II were illustrated with three examples:
the non-uniform transmission line without losses; the non-uniform line
with losses; and the linear least-squares estimation of a stationary
stochastic process.

The results of Chapter II were further illustrated by the resuits
of Chapter 1Il, which collected together a wide variety of methods for
solving the one-dimensional inverse seismic problem at normal incidence.
Layer stripping solutions for both discrete and continuous media were
derived, and integral and matrix solutions for, respectively, continuous
and discrete media were also derived. This illustrated dramatically the
duality between the two approaches, as discussed in Chapter 11.

In Chapter IV the one-dimensional inverse seismic problem involving
impulsive plane waves obliquely incident on a layered medium was
considered. Fast, layer stripping algorithms were derived for both
discrete and continuously varying media. The difference between the
two algorithms lay in the update equations for the medium parameters,
which were more complicated for a discrete medium. Although the
additional complexity is trivial for this problem, the additional complexity
of the discrete medium parameter updates for an elastic medium increases
the complexity of that algorithm to the point where it is no longer a
fast algorithm. A layer stripping solution for an impulsive point source
excitation, involving probing with cylindrical waves, and a procedure
for propagating the layer stripping algorithms through a turning point,

in order to use more of the reflection response data, were also given.
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In Chapter V the performance of the layer stripping algorithms of
Chapter IV on synthetically generated data was investigated. In the
absence of noise, the continuous and discrete medium algorithms, and
their Schur and dynamic deconvolution counterparts, performed quite
well. The continuous medium parameter updates did not work well when
applied to a discrete medium, as expected.

Several modifications of the layer stripping algorithms for use with
noisy data were discussed. These included the use of a threshold
based on the condition number for zeroing false reflection coefficients,
and the use of reflection data at several angles of incidence to compute
a least-squares fit for the updated medium parameters at each depth.
The former modification proved to be useful for thickly layered media in
which many of the reflection coefficients are zero, while the latter
modification proved to be very useful in general. The effect of noise
on the performance of the algorithm was illustrated with a series of plots
for three different signal-to-noise ratios; the algorithm does in fact work
in the presence of small amounts of additive noise.

In Chapter VI the two sets of 2 x 2 systems of coupled equations
used for the preceding problem are generalized to two 4 x 4 systems
of coupled equations for the elastic problem. This is necessary because
there are now four different types of waves propagating through the
medium: up- and down-going P and S waves. And all of these waves
couple to one another.

Fortunately, symmetries in the couplings between different wave
types imply that these couplings can be described by three reflectivity

functions and one transmissivity function. And the transmissivity function

can be determined from the three reflectivity functions. Thus there are
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three reflectivity functions and three quantities of interest: the Lamé

r parameters A(z) and u(z); and the density c(z). These quantities are
differentially related, so that update equations for A(z), u(z), and :(z)

in terms of the reflectivity functions can be obtained.

_ However, obtaining the reflectivity functions themselves requires

that two experiments be run: One with an impulsive P wave source and

one with an impulsive S wave source. This is because the determination

L of the P-P reflectivity function requires an impulsive downgoing P
excitation, while determination of the S-S reflectivity function requires
an impulsive downgoing S excitation. Hence two interconnected 4 x 4
L systems (one for each experiment) are needed.

Other complications are introduced by the different wave speeds of
P and S waves, which necessitates different time discretization for P and
L S waves at each depth. Still, a good understanding of the algorithm may
be had by carefully studying Figure 6.1, which shows the interactions
between the various waves and how the algorithm updates all four
# waves from one depth to the next.
It is interesting to note that the transformation to up- and down-

going P and S waves was made purely with the derivation of a fast

algorithm in mind. Nevertheless, the unique transformation that

"diagonalizes" the basic system matrix A(z) in (6-15) to the desired form

also normalizes the up- and down-going waves with respect to energy.
» That this energy normalization can be obtained without any a priori
attention to conservation ideas is interesting.
In addition, a dynamic deconvolution form of this 4 x 4 system of
» coupled equations was derived, and the subsidiary problem of probing

an elastic medium from a liquid half-space (so that no S-wave excitations

............
R T e N e e A T e s e

I I e I IR A R S ce .« L. . - . N N
PRI - ey BRI TR P oW et e . SIS PR . L
PPN PR AT AU VRSPV SRS VR PUUIE P v WA o SR e e W T T e S e s T O s




1% Blaate pe She i I ale ‘ol B i e ot Wi Sk (ui WA MA SRS At b L A s LALLM LATERN RV R SR F S S04 Sl S I N A

414

or measurements of the elastic medium are possible) was solved by

|

|

|

.

:

:

i probing for three different values of slowness p instead of only one.
: The basic elastic layer stripping algorithm was tested on synthetic data,
E and proved to work quite well.

i In Chapter VII the layer stripping methodology was applied in a

: novel way. The inverse problem considered in this chapter was that of
reconstructing a layered medium from measurement of its response to a
harmonic excitation at two frequencies and all wavenumbers. Note that
this problem, which is discussed in Frisk et al. (1981), is dual to that
of Chapter IV, in which the layered medium was reconstructed from
measurement of its response for all frequencies and two slownesses.
Since no impulsive excitation is involved, and all imeasurements are taken
in the sinusoidal steady state, there would seem to be no causality

condition for a layer stripping algorithm to exploit.

Nevertheless, a layer stripping algorithm for solving this problem

was obtained. In this algorithm, the "waves" are continuous sequences
of image sources that simulate the response of the unknown portion of

the medium. The causality principle exploited by the algorithm is the

LA 4

necessity of all image sources lying in the unknown part of the medium,

outside the region in which they are to simulate a response.

Fast algorithms for two different formulations of this problem
(free surface and half-space boundary conditions) were derived using
4 the layer stripping methodology. In addition, the layer stripping
1 solution of Levy (1984) for the mathematically analogous inverse

resistivity problem was also presented.

Finally, layer stripping fast algorithm solutions of several higher-

dimensional inverse seismic problems were derived in Chapter VIII. For
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these problems, the density p(x,z) and wave speed c(x,z) are allowed
to vary laterally with x as well as with depth z. The first problem
considered was to reconstruct a 3-D density p(x,y,z) for a medium in
which the wave speed ¢ was assumed to be constant throughout. The
} assumption of a constant wave speed means that the impulsive wave
front, along which the reconstruction of p takes place, has the simplest
possible form: a flat impulsive plane wave moving straight downward
at known velocity. This algorithm is intended more to be illustrative
of the application of the layer-stripping idea to higher-dimensional
problems than to be a practical algorithm.
B The second problem considered was that of reconstructing c(x,z)
in a medium with constant density. This problem is much more difficult

than the first problem, since the variation of c¢(x,z) means that the

shape of the wave front becomes complicated. This makes the problem
much harder, and necessitates a form of differential ray tracing in order
to interpret the updated quantity as c(x,z).

Next, the offset problem of Chapter IV is generalized a full
dimension. Now p(x,z) and c¢(x,z) are to be reconstructed by
measuring the response to an impulsive plane pressure wave obliquely
incident in the y-direction, for two angles of incidence. Reconstruction
of p and c again takes place along the wavefront, and again
differential ray tracing is necessary to recover p(x,z) and c(x,z).

Finally, the 1-D result on reconstruction of the impedance pc(<)
is generalized to higher dimensions. The generalized result is that the

impedance can be reconstructed along the wave fronts (or alternately,

along the rays), but converting this information into something useful

seems to be difficult, considering the paucity of the available information.

-----------------
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9.2 Suggestions for Further Research ;::;Z:
S
There are several avenues along which further research on the ol :
application of layer stripping concepts to inverse seismic problems could gi:«c
proceed. In this section we note some of these avenues, and identify $\::\
several specific topics on which further research is needed. ‘
The most pressing need for further research lies in the area of
adapting the various algorithms to function better in the presence of -
noise. The modifications discussed in Chapter V constitute a start in a “
this direction, but more improvements are needed if the algorithms are
to be successful in reconstructing a medium from real-world data. This
is particularly important for overcoming the popular conception that < -.
layer stripping algorithms do not work on noisy data. ;\
A particularly promising possibility is that of combining the -’\
a priori approach used in this thesis, in which the updated, computed o : “
wave speed is used to project ahead to the computed time at which the :
next primary reflection should occur, with the a posteriori approach used
by Habibi-Ashrafi and Mendel (1982), in which a maximum likelihood PY e '

search for the next primary reflection is carried out using a matched

filter. There are advantages and disadvantages to both approaches;

a Kalman-filter-like combination of both a priori and a posteriori © oo
information may well prove to be worth the extra computation such a -
combination would require.

Other possibilities for dealing with noise in the data include
incorporating a priori knowledge about the medium into the inversion
process (this was done in a crude way with the condition number
modification of Chapter V, which works best if it is known a priori

that most of the medium reflection coefficients are zero) and modelling
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the medium itself as a random process. However, the inverse problem

9 of estimating a random medium is so difficult that any resulting algorithm
might well experience too many numerical difficulties for it to be
practical. Incorporating a priori knowledge about the medium is

> particularly important when the data are bandlimited, as they must always

be in real life.

Another avenue of research consists of determining how breakdowns
in the assumed model of the medium affects the performance of the
algorithms. There is of course no such thing as a truly layered medium;
interfaces between layers need not be entirely horizontal. The effect
of the presence of small scatterers (e.g., small rocks) within the medium
can be modelled crudely as noise, but large inhomogeneities have a
separate effect that cannot be passed off. Slowly varying lateral
inhomogeneities also affect the medium response by making it a more
complicated function of lateral position. Note that all of these departures
from the assumed model can be detected by noting how the measured
medium response departs from its expected form (e.g., for a plane
wave response, R(x,t) = R(t-x sin e/co)), but how should this be
compensated?

A final avenue of research consists of further theoretical extensions
of the application of layer stripping ideas to inverse seismic problems.
The results of Chapter VII show that layer stripping ideas may be
applicable to an inverse problem in wholly unexpected wayﬁ. The
solution of other higher dimensional inverse seismic problems, in
particular the general 3-D problem, may well be possible by layer
stripping methods utilized in such an unusual way. The generalized

Gel'fand-Levitan approach of Newton (1980) would seem to be a logical

N e T e e e e s
........




| ; T rrT——y T T W ey A AN NI i Al et Meh bt A Al WS S e & e aen gea ot tee g s San o ey ——

i . 418

[

Py »..
l\. s
&j starting point for investigating this topic. Another problem worth 0
2 -
Q) investigating is that of reconstructing a medium directly from its "

transmission response, which might lead to an algorithm for
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reconstructing a lossy medium better than the one of Chapter V.
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APPENDIX

Computer Programs | -

In this Appendix all of the computer programs used to obtain the
numerical results of Chapters V - VII are given. The programs are
listed in alphabetical order by their names. A brief description of each
program is supplied below.

The programs are all written using standard FORTRAN. Input

parameters common to all of the programs are as follows:

=]
1]

number of layers (including upper and lower half-spaces)

3
i

log, (number of points at which the time and/or frequency
response of the medium is computed). m = 9 corresponds to
512 points.
dd = thickness of each layer
del = discretization length A
dt = discretization time At
_ - : a
pl, p2 = slownesses = sin ‘o/co
a(i) = wave speed in layer i
rho(i) = density in layer i

b(i) = S wave speed in layer i, for ELAS and INVELAS

freql, freq2 = probing source frequencies, for FORFREQ and INVFREQ

Program Descriptions

BREM: Forward problem program that computes the impulse
response of a layered medium directly in the time domain
by computing the first two terms of the Bremmer series.

DYNDEC: Reconstructs a layered medium from its frequency ®
responses by using the dynamic deconvolution algorithm.
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ELAS:

FOR1:

FORFREQ:

™ INVDISC:

INVELAS:

INVFREQ:

INV1:

MULTFOR:

MULT1:

MULTINV:

NOISE:

SCHUR:

Program Lists

421

Forward problem program that computes the P-P, P+ SV,
and SV—+SV impulse responses of a layered elastic medium
using the reflectivity method (subroutine RECOPS) and
inverse Fourier transforms (subroutine FFT).

Forward problem program that computes the impulse
response of a layered acoustic medium using the
reflectivity method (subroutine RECOPP) and an
inverse Fourier transform (subroutine FFT).

Forward problem program that computes the response of
a layered medium for two frequencies and all wavenumbers
using the reflectivity method (subroutine RECOPP).

Reconstructs a layered medium from its impulse responses
by using the fast Cholesky algorithm and discrete medium
parameter updates.

Reconstructs a layered elastic medium from its P-»P,
P-+>SV, and SV~ SV impulse responses by using the
algorithm of Section 6.2.

Reconstructs a layered medium from its response at two
frequencies and all wavenumbers using the algorithm
of Section 7.2.

Reconstructs a layered medium from its impulse responses
by using the fast Cholesky algorithm and continuous
medium parameter updates.

Forward problem program that computes the impulse
response of a layered medium as does BREM, but does so
for nm (input parameter) angles of incidence instead of
just two.

Reconstructs a layered medium from its impulse responses
at nm angles of incidence, using a least-squares fit to
compute the updated medium parameters (using the
continuous medium parameter updates) at each depth.

Reconstructs a layered medium from its impulse responses
at nm angles of incidence, by computing updated medium
parameters (using the discrete medium parameter
updates) for each pair of reflection coefficients, and then
averaging the results, at each depth.

Takes the impulse response of a layered medium, adds
uniformly distributed noise to it (x] = maximum noise
amplitude), and then reconstructs the medium using
INVDISC. The condition number modification of Section
5.4 is activated by inputting ic = 1.

Reconstructs a layered medium from its frequency
responses by using the Schur algorithm.
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'
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[
'
»
w,
“i
;

v,
o Program BREM v
dimension a(50)»rho(50)rdt1(50)ydt2(S0)»ri(50)»r2(50)str1(S0)str: .!_
y dimension uwl1(1024),uw2(1024) i o
N read(5+10) nrmrddrdelrsdtsrlsp2 e
K 10 format(2i,5f) 422 e
- read(S»11) (a(idsrholidsi=1sn) o
11 format(2f) o
g m=2XXm ®
. do 77 i=1sm
= uw1(i)=0, !
- uw2(i)=0, b
W\ 77 continue :r
N tri(1)y=1, g
) tr2(1)=1,
. tli=1, .E
- t12=1, o
. ti1=0. =
t2=0. :_:.
A z1=a(1)xrho(1)/sart(1.-a3(1)%ka(1)%kplixpl) .
22=3(1)%xrho(1)/sart(1.-3(1)%a(1)xp2%Xp2) .E_
do 1 i=2sn bk
c dt1(i) is 2-way traveltime thru laver i for exp’t 1 e
dt1(i-1)=2.xddxsart(1.~-a(i)Xa(i)kpixXpl)/a(i) e
A dt2(i-1)=2,.%dd¥sart(l.-a3(i)Xka(i)Xp2Xp2)/a(1i) :?
o rho(i-1)=rho(i) =4
v 1 continue ® '
comrute reflection coefficients ke
do 2 i=lin-2 oy
rl(i)=(rho(i+1)/dt1(it1)-rho(i)/dt1(i))/(rho(i+l)/dt1(i+1)+rho(i N
+¢i)) sdtl .
r2¢(i)=(rho(it+l1)/dt2(it+1)=-rho(i)/dt2(i))/(rho(i+1)/dt2(i+1)+rho(i N
+(i)) 7diz -
c compute 2-wayw transmission coefficients =
s tr1(i+ld)=1,-r2Cidxr1(i) }:
o tr2¢i+1)=1,-r2¢i)%kr2(i) jm
- 2 continue e
- c do Primaries S
. do 3 i=1yn-2 ® >
’ ti=t14dt1(¢i)/dt -
- t2=t24dt2(i)/dt S
- t11=t11ktr1(i) o~
t12=¢12%x¢tr2(1) N
uwi(int(t1+40,5))=r1(i)/dtxtll Yy
uUw20int(t240.5))=r2(i)/dtxt12
! 3 continue ®
N c do secondaries -
N do 4 n1=2yn-2 Ny
\: do 5 n2=1sni-1 oy
- do 6 n3=n2+1s,n-2 o
nein=min0(nisn3) —
nmax=max0(nlin3) ..
t1=0, .
t2=0, .
tit=1, ':-_’
. t12=1. y"_';
- dao 7 i=1lsnmax =
. t1=t1+dt1(¢i)/dt R
- t2=t2+dt2(¢i)/dt .
‘. tli=tl1xtr1(i) o
X t12=¢t12%xtr2(i) ﬁ:
. if((i.leen2)eor (i dgt.nmin)) d- to 7 XS,
- t1=t14dt1(i)/dt .y
22024dt2(i)/dt ol

. tll=tlimtrici) Y
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423

t12=t12%tr2¢1i)

continue

iflint(tl).de.m)d0 to 6
uwl(int(t140.5))=uwl(int(t140,5))-ri(n1)Xr1(n2)%ri(n3)/dtktll
if(int(t2).9e.m)do to &
UN2(int(t240.5))=uw2(int (t240.5))=r2(n1)Xr2(n2)%Xr2¢(n3)/dtxt12
continue

continue

continue

do 78 i=1yn-2

Z1=z1%(1,.+r1(i)) /(L. -r1(i))
22=z2%(1.+72(i))/(1,.-r2(1))
write(8r)79)acit+l)srhoCi)srl(i)sr2(idrzlsrz2
format(1x+6f10.5)

continue

do B8 i=1lrm

time=timet+dt

urite(7+,12) timeruwl(idruw2(i)
format{lxyP7.4sF15.86149715,6)

call exit

end




Program DYNDEC

eS it et £ e R St Sl
-

424

i r L
r3

>

A

set ic=0 to skir forward rarté read from device #7. ®
set ic=1 to denerate forward resronse and then solve from itl.

+df="yf5.392%y ‘Pl 9y P4, 2921y 'p2="974.,2)

+/rcl1/99y ' rc2’)

.~

\

dimension a(50)ryrho(50)»d(50)
complex rcl1(1023)src2(1025)sdtaulrdtau2

read(Ss10)nymrddrdelr»dfrrlrr2ric

format(2isSfri)

read(S5»20)(a(idryrho(i)ri=1rn)

format(2f) 1y

write(é6+21)nymyddrdel rdfrrlyr2 ok

format(lxs ' n="yi2s2x%s’'m="9i29s2%9'dd="9F4.292xy ' del="114,292%y -
*

do 1 i=1yn
d(i)=dd
Ppie=3.,1415926536
mA=2%X%km o
if(ic.ne.,0)do to 53

read(7:52)(rcl(i)src2¢idri=1rm2)

g0 to 54

do 2 i=1sm2

frea=frea+df

call recorpi(nsasrhosderlryfreasrcl(i))

call recosr{nyarrhordrs2yfrearrc22(il)

write(7+»52)rcl1(id)yrc2(i)

format(1ixs4110.4)

continue

aci=a(1)/sart(l,-a3(1)%x3(1)XkrlXxel)

3c2=3(1)/sart(1.-8(1)%a3(1)%kr2Xr2)

z1=rho(l)xacl

z22=rho(1)%Xac2

write(6+51)

format (3 ‘derth’séyy’cact’ »5xy ' ceomp’ 14Xy ‘Thoact 13y ' Thocomr ' 14

do 3 i=lrint(dd/delX¥n)+5
dJer=dert+del
sumi=0,
"'Jm:_, 0 .
umed= 0 .
Jo 4 d=1ym2
omedgzomes+2 . kKriekdf
dtaul=cmrlx(0.,922.%omedXdel/acl)
dtau2=cmrlx(0.s2 . XomegXdel/ac)
rel(d)=cexr(dtauld)x(rcl(d)-cmrlud(rls0,))/(1,-rcl1(J)Xcmrlx(rls0.,))
rce2(d)=cexr(dtau2)X(rc2¢(J)-cmrlx(r29,0.))/(1.~rc2(Jd)Xcemelx(r2+,0.,))
suml=suml+real(rcl(J))
sum2=sum2+real(rc2(4))
continue

rlizsuml/m2

r2=sum/m2

zl=z1%(l.+r1)/(1,~-r1)

2A=22%(1., +r2)/(1. r2)
u=z1%Xz1/2
ac=sart((u-1.)/(u—P2#P2/91/P1))/P1
acl=ac/sart(l.-acxackeriXxrl)
sc2=zac/sart(l.-acXackr2Xpr2)
rhoc=(z1/acl14=22/ac2)/2,
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171

170

l=min0(int(der/dd)+2sn)
write(é6,50)derra(l)sacsrho(l)rrhocrrisr2
format(1:xyf7,29:6110.4)

continue

call exit

e

subreuline recorr(nyasrhordrusfrecr rer)
dimension a(n)srhol{r)sd(n)

comrlex TREyMmisniFyroisToirim2lym22se2relre
d(1)=0,.

Fix3,1415926536
omeda=2.XriXfrea
om2z=omegaXomessa

h.zomedaXu

P IRETS ST

m22=cmrelu(l,.90.)
m2l=zcme1:2(0,90,)

do 170 d=1sn

i=n=-dg+1
argzom2/(a{iixa(il))-uk2
if(ard.gt.0.)ni=cmrlx(sart(ard)s0.)
if{ard.le.0)ni=cmrlu(0.r~-sarti{-ard))
roizemrlu{rho(i)»0.)
if(i.ee.n)go to 171
el=pirXrol

e2=niXroir
e=cexr(niXemrlx(O0.92,%d(1)))
el=elX(m21+m22)
elze2X(n21-m22)

m2l=elte?

m22=ek(el-e2)

rmayx=cabs(m22)

rm=cabs(m21)
if(rm,gt.rmax)rmax=rm
el=cmrlx(li./rmaxe0.)
m22=m22%el

m2i=m21%el

nir=ni

reir=roi

continue

rep=-m21/m22

return

end
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subroutine fft(xom)
comrlex x(1024)yurwst
n=2Xkm
#1=3,1415926536

do 20 1=1sm
lJe=2%%X(m+1-1)
lel=le/2
u=cmelx(i.90,)
w=cemrlx(cos(ri/float(lel))ssin(ri/float(lel)))
do 20 J=1slel

do 10 i=drnyle
ir=itlel
t=x(i1)+x(ir)

1) =(u (i) -x(ir) ) Xy
(1) =t

u=uXw

nva2=n/2

fiml=p—-1]

NES |

do 30 1=1syrml
if(i.ge.J)do to 25
L=x ()

»{Jd)=x (1)

wlid)=1L

b=nvad

if(h.de,d)do to 30
Jd=d=k

k=bk/2

go to 26
NENE 13
return
end
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! Program ELAS

dimension a3(50)yb(50)»rho(50)+yd(50)
. dimension urr(1024)/yurs(1024)yuspr(1024)suss(1024) 427
i comrlex TrPr(1024)rrrs(1024)yrsr(1024)rrss(1024)y0m
read(S5s10)nsmrddrsdel sdtypr
10 format(2is4f)
\ read(S5r»20)(a(i)yb(idryrholidsi=1rn)
20 format(3f)
. do 1 i1=1»n
i 1 d(i)=dd
#ie=3,1415926536
ma=2XXm
i m22=2%Xm2
tfin=m2%xdt
* df=1./tfin
acr=1.,-3(1)%Xa(1)xpkp
peer=1.-b(1)Xb(1)XeXe
e=zsart(a(1)/b(1))ksart(sart(bcer/acP))
! do 2 i=1ym22-1
frea=frea+df
P call recors(nsarbrrhordrrrfrearree(itl)rrrs(itl)srss(i+ldsrsr(i+l1))
' om=cmelx{(0.rfreal)X2.Xrie
rerlitl)=rrr(it+l)/om
res(it+l)=res(i+l)/om
i rer(itl)=rse(it+l)/om
res(i+l)=rss(it+l)/om
? if(i.l1t.m2)d0 to 2
; rer(itl-m2)=rer(it+l-m2)+rrr(itl)
res{it+l-m2)=rra(i+l-m2)+rrs(it+l)
rer(i+l-m2)=rse(it+l-m2)+rse(it+l)
! res{i+l1-m2)=rss(it+l-m2)+rss(i+l)

2 continue
call fftirppem)
call fftlrrsym)
call fftirsrym)
call fftirssrm)
e (1)=2.kreal (rer(1))Xdf
usr(l)=-2,%Xreal(rrs(1))XkdfXe
urs(1)=2.Xreal(rsr(l))Xdf/e

! uss(l1)=-2,.%Xreal(rss(1))xdf

do 3 i=1lym2
time=time+dt
urr(it+1)=2.Xreal(rrr(it+l)) Xdf
usr(it+l)=-2.Xreal(rrs(it+l)) Xdfxe
urs(i+l)=2.Xreal(rse(it+l))xdf/e
uss(i+l)=-2,%kreal(rss(i+l))Xxdf
urp(id)=(uppr(it+l)-uprp(i))/dt~decrr
usr(i)=(use(it+l)-usp(il))/dt-desse
urs(i)=(uprs(i+l)~-urs(i))/dt-dcrs
uss(i)=(uyss(i+l)-uss(i))/dt-dcss
dgoprzyupr (1)
deser=usp(l)
doeps=eps(l)
Jess=uss (1)
write(7,30)timesurr(idruspr(i)rurs(i)russ(i)

30 format(1xsf7.49715.6,37F19.6)

3 continue
call exit
end

wubroutine recors(nrasbrrhordrusfrecrrerrrrers» Irsssrse)

dimension a(r)sb(n)srholn)rd(n)

comrlex tlst29t39t4rtSrrerrrrrsrrssrrsrrdetronrcnsrtS539443
+rt11o821,t31,251,8615t12,815,8329845,842,135,16291659t139223,133

£i=3,1415926534 T
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hy omeg=2,¥rikfrea %
c=1,./0 428 on
2 rk=omedXu N
- ni=n-1 i‘
» com=cxamed R
. A=yXy ,.
: C2=C\*C : ]
rk2=rkXrk ° -
em2=omegXomes
\" s=blr) )
) rro=rho(n) t‘a
Y $2=g%s u:'«
Eeg 33§ ik
’ ardr=1,-c2/p2 6!.
: ards=1l.,-c2/s82 el
: if(ardr,.des0.)cn=cmplx(0.r~rkXsart(argr)) A
- if(ardr.1t.0.)cn=cmrlx(rkksart(-argr)s0,) o8
'.j if(ards,1t.0.)cns=cmrlx{rkksart(-ards)»0.) }j}“-
- if(args.de.0.)cns=cmerlu(O.ss-rkiXsart(ards)) ® -
r1=2,Xrk2-0m2/s2 3
N rerr=cnXcns A
. Lizemrlu(~s2%Xs2Xprro/(om2+om2)»0 ) X(cmrlx(4,Xrk29y0.)%Xrrpt
5 +oemeplu(rlxrls0.)) ‘_};-
s t2=cmrl(0.90.5)Xcn e
N t3=cmrlx(0sr-s2%u/ (2. %X0med) ) X(cmrl(rlsy0.)+rrertrer) . >
| td=cme1:2(0.9=0,5) Kens
N tozcmrlu(=1,/7(2.Xrrokxom2) 0. )% (rrrtemrlx(rk2s»0.)) e
> tri=real(tl) o
. til=saimad(tl) N
~ tr2=real(t2) <
N ti2=aimadg(t2) 2
tr3=2.%Xreal (t3) Sk
ti3=2.%zimag(t3) "8
tra=real (td) KO
tid=aimag(ta) N
trS=real(ts) wd
tiS=aimag(tS) -~
if(rn.1t.3)g0 to 2000 .
do 1000 J=2snl I
: i=n-g+1 £
.. s=2b0i) b
. s2=5 Xy e
" m=3 (i) ot
FR=pKP ® A 4
- Lhk=rkxd(i) S
" erdp=l,-c2/p2 A
~‘ if{ardr.d€.0.,)d0 to 190 -
- ra=ssaert(-ardpe)
> F=thkXra S
. sE=sin(p) ®
- cer=cos(F) T
; “=raXsp
X 189 ardse=1,-c2/s2 -~
\ if(args.de.0,)d0 to 200 o
rbzsqrt(~ards) ot
azthkxrbd oN:
. se=sinlaq)
< ca=cos(a)
9 c=saXrb
- du to 210 "
: 170 re=-sart(ardp)

er=0.5%exs (thkkra) ok




,
PR
v

R et s e et e .
el e s tatat et e el tatat. Vo

200

em=0.25/er

spTer=-2m

cr=ertem

wEs—-gpXra

do to 180

rb=-sart(ards)

er=0,9%exr(thkirb)

em=0,25/er

saz=er—-en

ca=ertem

r=-gairb

w=sp/ra

w=gqa/rh

d41=-2.%s2%u?2

d42=d1+1,

el=ceXca

e2=1,-el

e3=wky

ed=xukz

ed=wikce

eb=yXCcp

rl=comXrho(i)

r2=1./r1

r3=rixgl

rd=rlkd?

fl=e2+ed

FRafike2

H$16==-12X(f2+(e2+ed4)%kr2)

$13==-r3INdlé+f2

fi=d1Xxfl+e3

f4=r3I%kd13+F3

431=r3%kf4+f3%kr4

411=el-f4

¢33=7440.,5

d61=-r3%kd31-r4k{(e3Xxrd4+f3%r3)
415=-pr2%X(eS5+zXcr)

423=-1r3%kd15+ed

421=-pr3%d23~-rd%e5

412=1r2%(eb+:ikca)

432=-r3%xd12-eéb

491=-r3%d32+r4%keéb

422=e1

425=2%w

432=1Xy
tril=trikgli+tr2%g21-ti3%Xd31+tra4%aS1+trS%kaél
till=tilxgl1+4ti2%kg214tr3%g31+tidxgS14+tiSxgél
tr22=trixg124¢tr2%g22-i3Xg3I2+Lr4Xd52+t rS5%kdS1
ti22=tilXgl12+ti2Xkg22+tr3Xg32+t1i4%d52+4ti5%g51
tr33=-ti1%d13-ti2%d23+tr3%keg33~-tid%d32-t1iS5%xa31
ti33=trixgl3+tr2%kd23+ti3Xg33+traxg324tr5%g31
trd44=trixdlS+tr2%kg25-413%X823+tr4%d224tr5%g21
L144=til1Xxg1S54+ti2%Xg25+trIxg23+tidXg224+¢1i5%g21
LrS=triXglé+tr2xd1S5~-tiIkdgl13+tr4xdl2+trSxgll
t1S5=tilXdl16+ti2xg15+tr3Xkd13+tidxg12+tiS5%xg1]
trlztril

ti1l=t111

Lr2=t122

b2t 02

1+ 32,4t r33

11 3=2.%¢133

b rd-t1 49

t14=t144
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tF(rmax,1t.3bs(tiS)) rmax=tis
if(rmax.lt.abs(tid)) rmax=tid 430
1firmax,s1t.abs(ti3d)) rmax=ti3
1firmax.,1t.abs(ti)) rmax=ti2
if(rmax.lt.abs(til)) rmax=til
tfrmax.lt.3bs(trd4)) rmax=tr4a
ifirmax.lt.abs(tr3)) rmax=tr3
if{rmax.1lt.3bs(tr2)) rmax=tr2
if{rmax.1t.sabs{(trl)) rman=tril
rmax=1,/rmax
tri=trikrmax
tr2=tr2%Xrmax
tr3=tr3xrmax
tr4=tr4xrmax
trS=¢trS%krmax
til=tilXxrma:x
ti2=ti2%Xrmax
ti3=ti3Xxrmax
tid4=tidXrmax
LiS=tiSkrmax

1000 continue

2000 continue
#=84(1)
pRzpkp
‘):b(l)
wlzeXg
rrozrho(l)
grgs=1,-c2/s2
srdr=1,-c2/72
if(ardr.de.0.) cn=cmpPlx(Osr-rkisart(ardgr))
if(ardr,.1t.0.) cn=cmeplx{rkksart(-ardr)ss0.)
if(ards.1t.0.) cns=cmepli(rkXksart{-ards)r(0.)
if(ards.de.+0,) cns=cmrlx(0.r-rkiksart(ardgs))
rm=rroXs2
rl=rk2+rk2-om2/s2
rer=cnXcens
rm2=rmXrm
rl2=rlxrl
tll=cmplu(-rk2»0,)
ti3=tll1+rep
tilt=til1~rpe
t21=cmrlx(0srrroXkom?)
tS1=t21%xcn
L21=-t21%cns
t3l=cmrlx(O0ss—rmirkXrl)
res=cmrplx{(0.s2.Xrmkrk)Xrprr
t33=t31+rss
t31=t31-rss
tél=cmrlx(-rm2%rl2,0.)
rss=cmplx (4, Xrk2%Xrm2+s0.)Xrpr
t43=té1+rss
té6i1=té1-rss
t23=cmrln (0. rmX (2. %Xrk2-r1))
153=t23xcen
t23=t23%xens
ti12=cmrlu(rkt+rksy0.)
t15=t12%xcns
t12=t12%cn
L3I2=cmelu(0.rqd.krmXrk2)
t45=t32x%cns
t32=t32%cn
t42=cmplx{(0,92.XrmXrl)
135=t42x%cns

e R
PP SRR L.

= \A.&_‘f‘i_‘.-l o ; o

P T . PR S T T - PR N T R R

3 A LR - Gt et Tl PRI PSS U -
PGPV, S P I WL AL W W W G Ui . W ) e e g ORI PR g { P PO PRI T S N e T 2 3

9




e
142=t42x%cn S
o t62=omr15(4. Kem2KrLlkrk 0., ) 431 B
t6S5=té2%cns YORS
te2=t62xcn RN
tl=cmplx(trlstil) -i{x'
2=cmrlx(tr2yti2) e
‘ t3=empln(tr3stid) .
® t4=cmel:(trdstia)

LtoS=cmelx(trSstid)
3 det=t1xt11i+t2%421+t3%t31+t4%xtS51+t5%t61
! det=cmerlx(l1.90.)/det
rss=t1kt13+4t2Kt23+tIkt3T+t4%t53+15%t63
res=-rsskdet
o rrr==tiXt13-t2Xt21-t3Xt334+taA%Xt51-t5%kt63
rer=repXdet
t3=t3Ikemrl(0:.590,)
rrs=tlkt124t3XtI24+LIXL42+45%L 62
rps==rpskdet
reP=t1Xt1S+t3IRLISHLIRLAS+HLEKLED
[ ) rep=rspXxdet
return
end
subroutine fft(xem)
camrlex x(1024)suuruwrt
ri== 2K Ko
@ #1=3,1415926536
do 20 l=1lm
le=2%x(m+1-1)
lel=le/2
uzemeln(1l.904)
w=cmel(cos{ri/float(lel))ssin{(ri/float(lel)))

® do 20 J=1slel
o 10 i=dsnsle P -
ir=itlel Tal
t= (i) dx(is) Y
s Cip) = (i) = Cip) ) Ku h{:‘
10 “(i)=t NS
) 20 uzuyky =
nva=n/2
rml=n-1
J =1

do 30 i=1rnmil
if(i.de.,J) g0 to 25
ra L=3x0d)
ld)=x{i)
x(id=t
25 k=nv?
264 if(k.de,J) d0 to 30
SENE] 3
s bzk/2
g0 to 26
30 J=dth
return
end
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Program FORI1

dimension a(SO)vrho(SO)yd(SO)
dimension uwl1(1025),uw2(1025)
comelex rerl1(1025 )rrF (1025)
read(S5»10)nrmrddrydelsdtsrlyr2
10 format(2i+5fF)
read(S5,20)(a(i)rrho(i)si=1lyn)
20 format(2f)
do 1 i=1lr»n
1 d(i)=dd
#ie=3,1415926536
m2=2%X%km
tfin=m2%xdt
df=1./tfin
do 2 i=lym2-1
frea=freat+df
ca3ll recopp(nsarrhosdrrisfrecrrrl(i+l))
call recorr(nsarrhorsdrr2sfrearrr2(it+l))
rri(i+l)=rpl(itl1)/ (cmPrlx(0.rfrecl)X2,.kpie)
re2¢itl)=re2(itl)/(carlx(0.sfreal)%2.Xpie)
2 continue
call fft(reliym)
call fft(rr2sm)
uwl(1)=2.,%real(rri(1))%xdf
uw2(1)=2.%¥real (rp2(1))%xdf
do 3 i=1lym2
time=timetdt
uwl(i+i)=2.%real(rpl1(it+1))xkdf
uw2(i+1)=2.%kreal(re2(i+l1))xdf
uwl(id)=(uwl(i+l)~-uwi(i))/dt
uw2(i1)=(uw2(i+1)-uw2(id)/dt
write(7+30)timesuwl (i) ruw2(i)

30 format(1xsP7.4,Ff15.6+4:2715.6)
3 continue

call exit

end

subroutine recorr(nsarrhorsdrusfrecrrer)
dimension a(n)srho(n)rd(n)

comrlex rrrynirnirsroirroirsm2iem22re2selre
d(1)=0.

PIi=3.1415926536

omedga=2.¥piXfrea

oml=zomedaXomesa

sxkh=omedaXu

#k2=xkXxk

m22=cmrlx(1.20,)

n2l=curlx(0.90,)

do 170 Jd=1sn

izn=-Jg+1

ard=om2/(a(i)Xa(i))-xk2
if(ard.dt.0.)ni=caprlx(sarti(arg)»0,)
if(ard.le.0.,)ni=cmplx(0.rv-sart(-arg))
roiz=empPlx(rho(i)»0.)

if({i.eca.n)go to 171

el=nirXroi

e2=niXkroir
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e=zcexr(niXemplx(0,92,xd(i)))
el=zelx(m214m22)
e2=e2%X(m21-m22)

»

.
IR

m2i1=elte? }é:”
m22=e¥X(el-e2) q‘?
rmax=cabs(m22) bﬁi

rm=cabs(m21)
if(rm.gt.rmax)rmax=ra

el=cmrlx(l./rmaxs»0,)
m22=m22%el
m21=m2i%el

niF=ni

roir=roi

continue
reps-m21/m22

return

end

subroutine ffti(xrm)
comrlex x(1024)surwr t
n=2%XXm
£i=3.,1415926536

do 20 l=1sm
le=2%%X(m+1-1)
lel=le/2
uzcmrlx(1.,90,)
w=cmpPlx(cos(ri/float(lel))rsin(ri/float(lel)))
do 20 J=1rlel

do 10 i=dsnsle
irzitlel
t=x(i)+x(iFr)
w(ip)=(x(i)=-x(ir) )Xy
»(i)=t

uzuXw

nv2=n/2

nmi=n-1

J=1

do 30 i=1lynmi
if(i.de.Jd)go to 25
t=x(d)

#{Jd)=x(i)

»(i)=¢t

k=znva

if(h.de.Jdd)dg0 to 30
Jd=d-k

h=k/2

g0 to 26

Jz itk

return

end
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. 434
dimension a8(50)yrho(S50)sd(50)

dimension uwl1{(1025),»uw2(10235)

complex rei(1025),rr2(1023)
read(S5»10)rnymrddsyfreclsfrea?
format(2i+3€)
read(5y20)(a(idsyrho(id)yi=lsnm)
formet(2f)

do 1 i=1n

d(i)=dd

P1e=3.1415926536

ma=2XXm

fmirn=min(freclsfrea)

dh=fmin/a(1)/m2

dt=a(l1)/fmin/2.

Zk-‘-o.

do 2 i=lrm2-1

zhz=zk +dk
rl=sart{(l.-zkXzkxa(1)%a3(1)/freal/freal)/a(l)
r2=sert(l.~-zkXzhk%Xa3(1)%x3(1)/frea2/frea2)/a(l)
call recorrl{nsasrhosdrrlyfreclyrri(itl))
call recopp(nsarrhorderrfreclrrr2{(it+l))
continue

call fftirplm)

call fft(re2rm)
uwl(1)=2.Xreal(rr1(1))%xdk
uw2(l1)=2.Xreal(rr2(1))%Xd}

do 3 i=1ym2

time=time+dt
uwl(i+1)=2,%real(rrl(i+l1))kdk
uw2(i+1)=2.%real(rp2(i+1))%dl
write(7,30)timeruwl(i)rsuw2(i)
format(1:xsf7.497T15.614x»1715,6)

continue

call exit

end

subroutline recorr{nrasrhorsdrurfrecyres)
dimension a(n)srhol(n)sd(n)

comrlex rrrenisniryroirroirym21ym22re2velye
d(1)=0,

p1i=3,1415926536

omeda=2.XriXfreq

om2=omegaXomesdsa

»k=omegaXu

sk 2=xk Xk

m22=cmelx(1,90.)

m21=zcmrl»x(0.920,.)

do 170 J=1rn

i=n-J+1

ardg=om2/(a(id)%a(i))-»k2
if(ard.gqt.0.)ni=cmrlx(sart(arg) »0.)
if(ard.le.0,)ni=cmrlx(0sr~sart(-arg))
roi=cmelx(rho(i)s0.)

if(i,eca.n)go to 171

el=npirXroi

e2=niXroir

e=cexr(niXemrplx(0,92.%d(i)))
el=elX(m214m22)

e2=e2X(m21-m22)

m2iz=elte?
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170

10
20

25
26

30

m22=zeX(el-e2)
rmax=cabs{m22)
rm=cabs(m21)
if{rmigtermaz)rmex=rm

el=cmrly(l./rmaxs0.)
m22=m22%e1
m21=m21%el

nir=ni

roir=roi

continue
rerp=-m21/m22

return

end

subroutine fft(xrm)
comrlex x(1024)rsuyuwrt
n=2%X%¥m
r1=3,1415926536

do 20 l=1»»m
le=2%%x(m+1-1)
lel=le/2
u=cmrlx(1.,90,)
w=cmelx(cos(pi/float(lel))rsin(pi/float(lel)))
do 20 J=1slel

do 10 i=dsnrle
irzitlel
t=x(id+u(is)
¥lip)=(n{id)-x(ir) ) ku
w{i)=t

usuXw

nv2=n/2

nmi=n-1

J=1

do 30 i=lsnmi
if(i.ge.J)g0 to 25
t=x(J)

X(d)=x(i)

w(i)=¢t

k=nv2

if(kh.ge,.J)g0 to 30
J=d=-k

b=k/2

d0 to 26

J=dth

return

end




S

Program INVDISC 136

10

40

dimension a3(50)»rho(50)

dimension dwl1(1024),dw2(1024)>uwi1(1024)ruw2(1024)
read(S»10)nrsmrddrdel sdtrrplsr2
format(2i»5Sf)
read(5+20)(a(i)rrho(idri=1rn)
format(2f)

m=2XXkm

do 4 i=1»n

read(7,30)timeruwl (i)ruw2(i)
format(1xef7.49F15.6+14:91T15.6)
duwl1(i)=0,

dw2(id=0.,

continue

ac=a(l1)

rhoc=rho(1)

si=0.

s§2=0.,

ktsl1=0

kts2=0

tli=t,

tiz=1.,

der=0.
zl=a(1)%xrho(1)/sart(l1.-3(1)%3(1)%Xprl1xpl)
z2=3(1)xrho(l1)/sart(l1.-3(1)%3(1)%Xpr2%p2)

write(é6+40)
format(lxs'derth’sBxy’cact’ sSxy’ccomp’r4xy’'rhoact’»3xy’'rhoconr’
+'rcl1/99%r'rc2’) lwx'

do S5 i=1lym

der=dertdel

acrl=1,~ackackrixpl

ace2=1.,-acXacXpr2Xxp2
if((acri.le.0.)s0re(acr2,1e.0.))call exit
sl1=s142.%Xdel/dtxsart(acrl)/ac

s2=s2+42.%del /dtxsart(scr2)/ac
kel=zint(sl-ktsl140.5)

ks2=int(s2-kts24+0.5)

ktsi=ktsl+ksl

kts2=kts2+ks2

tli=tlixsart(l.-rclixrel)
ti12=tl12%sart(l.~rc2¥rc2)
kmax=ma»x0(ktslskts?2)

if(kmax.de.m)call exit

do 6 k=1lsm-kmax+1
temrli=(dwl(k)-rcikuwi(k))/sart(l.,-rclxrecl)
tempr2=(dw2(k)-rc2¥%uw2(k))/sart(l.-rc2xrc2)
uwli(k)=(uwi(k)-rcliixdwl(k))/sart(i.-rcixrel)
uw2(k)=(uw2(k)-rc2Xduw2(k))/sart(l.-rc2%xrc2)
dul(k)=temprl

dw2(k)=tems?2

continue
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555
A e

rei=(uwl(ksli-1)+uwli{ksl)+tuwl(ksl+1))kdt/t11 Lo
re2=(uw2(ks2-1)+uw2(ks2)+uw2(ks2+1))%dt/t12 iﬂ§¢;
do 7 k=1lim-kmax+t1 it
uwl(k)=uwl(ktksl)
uw2(k)=uw2l{kt+ks2)

7 continue
z1=21%(1,+rcl1)/(1l.~-rcl)
22=z2%(1.+rc2)/(1.~-rc2)
u=zlxzi/z2/722
ac={sart((u=-1.)/(u-r2%p2/pr1/¢1))) /Pl
rhocl=zl¥sart(l.-ackacxrlXel)/ac
rhoc2=z2%sart(1.~-ackacks2%kp2)/acC
rhoc={rhocl+rhoc2)/2.

|
» o

§ N
& .l'tgl'.

1=min0(int{(der/dd)+2sn)

write(é150)dersra(l)racrrho(l)rrhocrsrclsrre2
format(1xsf7.2+6f10.,4)

muw
[e)

continue
call exit
end
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Program INVELAS

10

20

40

-----
......

...........................................

dimension a(503yb(S0)syrho(50)

dimension der(1024)yurr(1024)ydsr(1024)susr(1024)
dimension drs(1024)yurs(1024)ydss(1024)r»uss(1024)
read(Ss10)nymsddrsdelrdt

format(2iy4°f)

read(5+»20)(aCid)rsb(idryrho(id)yi=1rn)

format (3f)

m2=2%%Xm

m22=2%Xm2

do 4 i=1sm2
read(7»30)timesurr(idrsusr{i)rurs(i)russ(i)
format(1xsf7.49Ff15.6937T19.6)

continue

ac=z(1)

te=b (1)

rhoc=rho(l1)

tlie=1.,

tls=1,

write(6s40)

format(lxe ‘"derth’ 2%y ‘3act’ 12y acomr’92%y ‘bact’  +2xy "boomr 'y
+/ rhoact’»2xy rhocomr’ 94Xy ‘PR 933’ PC/ 93%r P’ s3xs ' tc’)

do 5 i=lym2

der=dert+del

aa=acXackrXr

bb=bcXxbckrir

acr=1.-3a

bher=1.-bb
if((acr.le.04)sor.(beriles04))call exit
d=bcXsart{acrXbcr)/ac

x=sart(bb/g)/2.

detz=(0.5-3 . xbb-g4+2 . XbbXbb+2, XbbXg) X /berF
tr=tr+2.%del/dtxsart(acr)/ac
ts=ts+2.%del/dtXsart(bcr)/be

tm=tmt+del /dtX(sart{acr)/actsart{ber)/bc)
kdezint (te-kter+0.5)

hds=int(te-kts+0.5)

vdm=int{(tm-ktm+0.5)

kte=btethde

ktes=ktst+hds

kitm=ktm+hkdm
tle=tlrksart(l.-reXre-rcXre-teckte)
tls=tlsxsart(l,~-rsXrs-rcXxrc-tcxte)
if(kts.de.m2)call exit
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do é6 k=1lym2-kts+1
temel=der(k)-tckdse (k) -rekupr(k)-rcXusr (k)
temr2=dsr (k)+tckdrr (k) ~reXupe (k) -reXusr (k)
temerZ=urr(k)-rrXder(k)-rcXdsp (k) -tocXusr (k)
temrd=usr(k)-rckdrr(k)-reXdsr(k)+toXurr (k)
derl{k)=temr1

e (k)=temw?2

urp(k)=tenr3

usp(k)=temr4d
temrlzdes(k)~tekdss(k)-rrkurs(k)-rcXuss (k)
temr2=dess(k)t+teXdrs(bk)-rckurs(k)-rsXuss (k)
teme3=urs (k) -rrXdes(k)-rckdss(k)-tekuss (k)
temrd4=uss(k)-rckdrs(k)-rsXdss(k)+tckurs (k)
drs(bk)z=temsl

des(k)=temr2

urs(bk)=temr3

uyes{k)=tems4

continue
res(ups(kde-1)+urr{kdr)t+urpr(lkdr+l))Xdt/t1lF
rel=(usr{kdm=-1)+usre(kdm)tusr(kdm+1))/t1F

re2z={urs{bkdm-1)+urs(kdm)tursi{kdmt+i)))/tls

re=(rcltrcl)xdt/2.

re=(uss(bhds-1)+uss(kds)tuss(kdst+l))kdt/tls
tc=-(0.5-3.kbb4+d-2,%kbbxs+2.XbbXbb) /(detxber) Xikrct2.Xbb/detXxr
do 7 k=lym2-ktr+l

urer(k)=uppr (bk+hdr)

ups(k)=urs(ktbdm)

usrl{k)=uyse (k+kdm)

uscs (k) =ugs(k+bhds)

continue

ac=ac—((2.xbb-0.5)%krc/bertd XX (bhtd) Xrs-2 ., XdetXrr)Xackxacr/det Qg-j]
boe=be-( (2. Xbb~0.5)Xrc+xXx{(1.-2.%Xbb+2.Xd)Xrs)kbc/det T
rhoc=rhoc-{(0.5/bcr-4.Xbb)Xrct4.X(bhb-g)kxkrs)Xkrhoc/det - -
l=z=min0(int(der/dd)+2n)
write(sr»50)dervya(l)racrb(l)rberrho(l)srhocsrrrrcrrsyte
format(1xsfS.29F6.31F7.497T6:.39T7:.491T8.3s5F7.4)
continue

call exit

end




¢ ]
®
5 440 w73
- Program INVFREQ e
~
3 dimension 3(50)»rho(S0) ol
dimension dwl(1024)sdw2(1024)yuwl1(1024)>uw2(1024) o
read(5s10)rirmsddrfrealr»frea? oK
" 10 format (2is3f) b3S
\ read(5+20)(a(i)srho(idsi=1ynm) 'y
“ 20 format(2f) s
:: m=2%%m 44
s Pie=3.,1415926534 hb
fmin=min(freclsfreal) Q!_‘»‘;
g dt=3(1)/fmin/2. el
- flse=freclikfreal e
: f2sa=frea2xfrea2 N
g do 4 i=lsm N
! read(7r30)timeruwl (i)ruw2(i) ok
30 format(1xsf7,4yF15.6+4%sF15,6) o
! dwl(i)=0, )
. dw2(i)=0, o
g 4 continue s
: tii=1. LY
8 t12=1. s
kt=0 rY =
. deF':O. et
: z=1./sart{rho(1)) "
) zteme=z e
- riteme=0. o
« r2teme=0. L
. write(6+40) oK
. 40 format(1lxy ‘derth’ »8xy'cact’ s3xr ' ccomr’ 4%y’ rhoact’ »3xy 'rhocoms’
- +rcl’ 999’ rec2’) Ux
. do 5 i=1lsm ’ A
- kt=kt+l g
-. der=dertdt T
- tli=tlikxsart(1,-rcikrcl) o e
, t12=t12xsart(1,.,-rc2%rc2) o
' do 6 k=1sym-kt+1 e
.". temrl=(dwl(k)~rcikuwl(k))/sart(l.-rclkrel) e
. teme2=(dw2(k)-rc2%kuw2(k))/sart(l,.-rec2xrc2) e
' uwl(k)=(uwl(k)-rcl¥dwl(k))/sart(l,-rcixrcl) S
’ UW2 (k)= (uw2(k)-rc2%duw2(k))/sart(l.-rc2%xrc2) Qi
dwi(k)=temr1
dw2(k)=tems2 e
: é continue ny
5 rel=uwl(1)%dt/tl1 W
: rc2=uw2(1)kdt/t12 el
do 7 k=1ym-ktt+1 o B
uwl(k)suwl(k+l)
uw2(k)=uw2(k+1) RSN
j 7 continue R
¢
oN
1”28
N e
: R
: o
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vi=relXxrel=(rci-ritemr)

v2=rc2¥&rec2-(rc2-rltemr)

ritemr=rcl

r2temep=rc2
ac=1./sart(1./7¢a(1)%a(1))-(v1-v2)/((flsa~-T2sa)Xdt¥dt))
zrlus=((f2saXvl-flsaXxv?)/(f2sa~-flsa)+2.)kz-ztenmr
rhoc=1./(z%z)

z2temp=2z

z=zrlus

1=min0(int(der/dgi+2sn)
write(és50)derra(ld)rsacrrhol(l)srhocrrcisre2

50 format(1xsyf7.2+6710.4)
if(l.ea.nl)call exit
S continue

call exit

end

. 3
'z,
A
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Program INV1

dimension a(30)yrho(50)

dimension dwl1(1024)ydw2(1024)yuwl1(1024),uw2(1024)

read(Sr10)nymyddsdel rdtsrlsre2

format(2i»5f)

read(5+20)(a{i)rrho(i)ri=1lrn)

format(2f)

m2=2%%m

do 4 i=1lsm2

read(7,30)timesuwi(i)ruw2(i)

format(1xsf7.47¢15,694%9715.6)

continue

ac=a(l)

rhoc=rho(1)

tit=1.

tl2=1,

write(46,40)

format(1xy/'derth’¢Bxry'cact’ sOxry’ccomr’'y4%y ‘rhoact’»3xy ' rhocoms’
+'rc1/»9%9’rc2’) S HX

do S5 i=1,m2 /

der=der+del

acpl=1,-ackackprlxpl

acpr2=1,~acXackp2Xs?

if((acriile.O0s)eor.(acr2.1€:0.))call exit

sl=s1+2,.%del/dtxsart(acrl)/ac

s2=s2+2.%Xkdel/dtxsart(acr2)/ac

ksli=int(sl-ktsl140.,5)

ks2=int(s2-kts2+0.5)

ktsl=ktslt+ksl

ktes2=kts2+ks2

tili=tlixsart(l.~rclkrel)

t12=t12%sert(l.~rc2%rc2)

kmax=max0(ktslirkts2)

if(kmax.ge.m2)call exit

do 6 k=1ym2-kmax+l

templ=(dwl(k)-rcliXuwl(k))/sart(l.~-rclXkrcl)

tenr2=(dw2(k)~rec2xuw2(k))/sart(l.-rc2%rec2)

uwl(bk)=(uwli(k)-rcikdwl(k))/sart(l.-rclikrecl)

uw2{k)=(uw2(k)-rc2xdw2(k))/sart(l,~-rc2xrc2)

dwl(k)=temrl

dw22(k)=temr2

continue

rei=(uwi(ksl-1)+uwi(ksl)tunwi(ksi+l))kdt/t11

re2=(uw2(ks2-1)+uw2(ks2)+uw2(ks2+1))%xdt/t12

do 7 k=l ym2-kmax+l

uwl(k)=uwi(ktksl)

uw2(k)zuw2(k+ks2)

continue

acsact2,.,%ack(rc2-rci)Xkacriacr2/(acri-acer2)

rhoc=rhoc+2.krhock(rclXacepl-rc2%acr2)/(acrl-acpr2)

lepin0(int(der/dd)+2yn)

write(69y50)derra(l)racrrho(l)rrhocrrclsrce?

format(ixsf7.2161710.4)

continue

call exit




° Program MULTFOR 443

dimere 10 @000 s rho(S0)»ydt1(S0:5)sr (50959t r(S50,5)
dimencion Uw(l02455)ye(S)sL1(S5)yt(S)snrand(s)
read(95+10) nemyrmsddrsdelsdtenlsic

10 format(3isdfyi)
reea(95,»13) (rFi1dei=199)s(nrand(i)si=1»5)
L) 13 format(Sf,ySi)
read(Ss11) (2(idsrholidsi=zlen)
11 format(2f)
m=2%%m
do 77 Jd=1lsnm
tr(lydd=1,
o t1¢4)=1.
t(J)=0.

do 77 i=1ynm
uw(ir»gd=0.
77 - continue
do 1 i=2en
) rho(i~1)=rho(i)
do 1 d=lsnrm
c dtl1(isi) ie Z2-way traveltime thru laver i for exr’'t J
dtl1(i-1s)=2.Xdgd¥sart(l.-a(i)ka(i)Xp(J)Xer(d))/a(1)
1 continue
comrute reflection coefficients
do 99 J=1rnm
do 2 i=lyn-2
r{isd)=(rho(it+l1)/dt1(itiri)=rho(i)/adt1(isd))/(rho(i+1)/dti(it+ls
++rho(i)/dti(ird))

c comrute 2-way transmission coefficients
tr(itlsd)=1,=rCird)Xr(iyd)

2 continue

c do rrimaries

do 3 i=1rn-2
Lt(a)=t{Jd)+dti(isd)/dt
t1(D)=t1¢drxtr(iyd)
uw(int(t(J)+0.5) sy d)=r(isd)/dtxtl(J)
3 continue
c do secondaries
do 4 ni=2yn-2
do S n2=1ynl-1
do é6 n3=n2+lyn-2
rmin=minC(niyn3d)
nmax=max0(nlyn3)
t(J)=0.
t1(d)=1.,
do 7 i=lrynmax
t(dl=t(d)+dt1(isj)/dt
t1(d)=t1Cd)ktr(ird)
if((isleen2)ior.(isgt.nmin)) g0 to 7
t(id)=t(ur+dtidirj)/dt
tl1¢ad)=t1Ch)xtr(isd)
7 continue
iflint(t(J)).de.m)d0 to &
Wwlint (Lt (i) +:.D)rd)zuw(int (t{d)+.:9)vd)=r(nlyd)Xr(n29d)%Xr(n3yJ)/atnr

é contirnue ‘-
S continue 11%9)
4 continue
°9 continue

write(B8r»79) ((r(isddrydz=19S5)ri=1wn-2)

call exit

79 format(1:x+5f10.5) end
write(7+12) ((uwl(ird)ed=19S)si=1rm)
12 format(1:+5719,6)
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Program NOISE 450 . ..f
dimension a(50)yrho(50)sr1(50)yr2(50) ok
dimencsion dwl1(1024)yduw2(1024)yuwl1(1024)uw2(1024) o
read(Ssy10)rnymrddrdel sdtrrliyr2ylsicynrand b::

10 format(2is6fs2i) by

c ic=1 if want rci zeroed using condition no.j ic=0 surrFrecsec thrai: .
write(és11)nsmrddrdelsdtrsrlrr2yxl

11 format(1xy 'n="9i292%9 'm="9i292xy/'dd="9F3:392%y 'del="yf5,.3+2:, o K.

+/dt=" 9 f7. 592y "ml="9f8. 292y 2= 9f4.21219 " 51l="y€7.1) "

c a(1)=a(2) and rho(l)=rho(2)rs0 no instantaneous reflections, {;
read(Ss,20)(a(i)srrho(idsi=lsn) N

20 format(2f) i)
read(8s31)(ri1(idsr2(idri=1yn-2)

51 format(1:»2f10,5) oK,
m=2%%m 'E
xsigl=0, o]
xsid2=0. ._:.‘
xnoz=0. Y
xerri=0. 5
xerr2=0, o5
uk1=24 %1 E‘
2k 222, %] o
1=2 ._-r.
do 4 i=lsm g
read(7,30)timeyuwl (i) ruw2(i) N

30 format(1xsyf7,45F15.694%9F135.6) ® ki
dwl(i)>=0, o
dw2(i)=0. ¥
weigl=xsigl4uwl (i)Kuwl (i)Rdtxdt s
$eidg2=xsid24+uw2(i) kw2 (i) xdtxdt O
st=1,e-4%int(float(nrandXnrand)/100.) P A
st=st-float(int(st)) oK
nrand=int(stxl.e4)
sn=(st-0,5)%2.%x1 e
temrl=uwl (i) o
temr2=uw2(1) AN
uwl(id)=uwl(i)+sn/dt o
uw2(i)=uw2 (i) +sn/dt 'Y -
write(9y34)temrliruwl(id)rtempr2ruw2(i) e

o4 format(1x,4f18.6) oo
xnoz=xnoz+snksn o

4 continue L
ac=al(1) o
rhoc=rho(1) ® k.
s1=0, v
€2=0, .‘
kts1=0 -
kts2=0 T
tli=1. ;a
tia=1, 9
der=0. .,.
z1=a3(1)%xrho(1)/sart(1.~23(1)%Xa3(1)Xri%Xpl) "7:-'_
z2=a3(1)%rho(1)/sart(1.,-a3(1)%a(1)Xr2%r2) P
rmsl=sart(xsigl/m) oo
rms2=sart(xsig2/m) Py
rmsn=sart (xnoz/m) o B
snrl1=10.%3log10(xsidl/xnoz) T
snr2=10.%alog10(xsid2/xnoz) AN
write(é6,39)rmslsrms2rrmsnssnrlssnr

39 format(1lsxy 'rms signal="»2f10.6+2%y'rms noise="r»f10.6123 ‘snir=", e
write(6+40) 276.1) o

40 format(1:xs'derth’s2xr’cact’ v4sy 'ccome’y4y ‘rhoact » 32 ‘rhocoms’ g J

+P194xs’rcl vdxs P2 9430’ PC2’) ) 2K, o
do S i=1lwm :-":u
B LT A Gt ‘}1 o ‘_I\_,:‘_&._\.\\ S T g BT N T L




r"';w P D RS N el o 0% hon 34a A

write(é6+50)dersall)sacrrho(l)srhocrrdlsrclyrd2yrec2 451
S0 formaet (1 fS.2,8178.4)
der=dertdel
acrl=1,-ackackrlXrl
acr2=1,-8cXackr2%Xs2
if((acrpliles0id)iori(3cr2.1e4.04))call exit
|® cl1=s142.kdel/dt¥sart(acr1)/ac
s2=ze2+2.Xdel/dt¥sart(acr)/ac
khel=int(sl~kts140.5)
ks2=int(sl2~-kts2+0,5)
ktsl=ktsl+hksl
kts2=kts2+ke2
@ tl1=tlixsart(1l,-rcixrel)
tl2=tl2%sart(l,-rc2%Xrc2)
kmax=max0(kteslrkts)
if(kmax.de.m)do to 99
if(der.gt . ((n+S5)%dd)) g0 to 99
do 6 k=lym~tmaxtl
® temrl=(dwl(k)-rciXuwl(k))/sart(1l.-rclikrel)
teme2=(duw2(k)~rc2%uuw2(k))/sart{l.-rc2¥rc2)
uwl(k)=(uwl(k)=-rei¥dui(k))/sart{l.~recikrcl)
Uw2(k)=(uw2(k)-re2%xdw2(k))/sart{l.-rc2%rc2)
dwli(k)=temrl
duw2(k)=temr?2
® 6 continue
rel=(uwiiksl-1)+uwl(ksl)tuwi(ksl+l)Ikdt/t11
re2=(uw2(ks2-1)+uw2({hkes2)+uw2(ks2+1) ) %dt/t12
if(ic.ea.0) d0 to B
if(abs(rcl).lt.ukidrecl1=0.
ifl(abs(rc2)s1texk2)rec2=0,
® xk1=xk1%(1,+abs(rc1))/(1,-abs(rcl))
2wk 2=uk2%(1.,+3bs{rc2))/(1l,.-3hs(rc2))
8 do 7 k=lym-kmax+1l
uwl(k)=uwl(k+ksl)
UWw2(k)=uw2(kths2)
7 continue
® z1=z1%(l.+rc1)/(l.-rcl)
22=z22%(1,4rc2)/(1+s-rc2) o~
u=z1%z1/z2/=22 e
ae=({sart((u-1.)/(u-r2Xr2/rl/rl1)))/¥1 S
rhocl=z1%sart(l.~ackacksikel)/ac o
rhoc2=z2%sart(1.~ackackr2%r2)/ac l
] rhoc=(rhocl+rhoc2)/2. .
11=min0(int(der/dd+0.0001)+2sn) el
rdl=ri1(l-1) RS
rd2=r2(1-1) L
if(ll.ne.l)go to 53 S
rdi=0, R
‘ rg2=0,
53 1=11
werrli=xerrit+(rdi-rci)x(rdi-rci)
werr2=xerr2+(rd2~-rc2)%X(rd2-rc2)
5] continue
99 rmsel=sart(2.%xxerrl/i)
o rmse?=sart(2.%uerr2/i)
enr1=20.%a3lod10(rmsel/rmsn)
enr2=20,%3lo0g10(rmse2/rmsn)
write(é6+52)rmselrsrmse2rrmsrrenrisenr?

52 format(lxs’rmes error="12f10,672%y’rme roise='1f10:.6+23s ’enr="’
call exit v2€8.3)
o end
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Program SCHUR

dimension 2(50)yrho(50)yd(50) o
comslex: w1 (1025)su2(1025)+d1(1025)9d2(1023)stemclryteme?
c set ic=0 to skir forward rarti read from device #7.
c set ic=1 to denerate forward resronse and then solve from it.
read(S»10)rnymrddrydelrdfrrlreric
10 format(2is5fr1) ‘
read(5,20)(a(idsrho(idsi=lrn) .E;
20 format(2f) '
write(és21)nymrddrdelsdfrplrse2
21 format(lxy’'n=’»i2s'm="9i29’dd="9P4.2y’del="»P4.2y'df="'31f5.3,
+/'Pl="9f4.2y'p2="914.,2)
do 1 i=1»n
1 d(i)=dd ®
#1e=3.,1415926536
m2=2XXm
if(ic.ne.0)do to 53
read(7,52)(ul(i)ru2(id)ri=1lrm2)
g0 to 94
53 do 2 i=1ym2 ®
frea=freatdf
call recorr(nivarsrhorsdeplrfrecrul(i))
call recorr(nrsarrhosdsp2yfrecsu(i))
dl(id=cemrlx(l.90,)
d2(i)=cmrlx(1.90.) o
taul=0.
tau2=0. g
write(7y52)u1(i)ru2(i)
format(1»xs4f10.,4)
continue
acl=a(1)/sart(l.,-a(1)%Xa(1)XrlXkrl)
ac2=3(1)/sart{l.-a3(1)%Xka3(1)Xp2Xr2) PS
zl=rho(1)%acl
22=rho(1)xac?2
write(é6,51)
51 format(3Ixr'derth’ s16r’'cact’ »Sxry’ccomr’ 43y ' rhoact’ »3xr ‘rhocoms
+'rel’ 9%y ‘re’) ¥
do 3 i=1sint(dd/delxn)+5 /7 Py
der=dertdel
taul=taul+del/acl
tau2=taul2+del/ac2
sumi=0.
sum2=0.,
omegs=0,
do 4 J=1sm2 . o
omed=omeg+2.Xriekdf
temrlz=dl(J)kcexr(~cmrlx(0.s0mesXdel/aci))-cmrlx(rls0.)%Xuul (i)
temp2=d2(J)Xcexr(-cmrlu(0.r0medXdel/ac2))-cmrlx(r2y0.)%u2(J)
ul(J)=ul(J)Xkcexr(cmrlx(O,.yomegkdel/acli))-cmplx(risy0.)%d1(J)
w2¢J)=u2(i)xcexr(cmrlx(0.somedXkdel/ac2))-cmpln(r2+0.)%Xd2(J) P
di(J)=temrl
d2(J)=tems2
suml=sumit+real (cexr(cmrlx(0cromedXtaul ))xul(J))
sum2=sum2+real (cexp(cmplx(O.romedXktau2))xu2(J)) A
4 continue -n:}
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v v

171

170

ri=suml/m2

r2=sum2/m2
21=z21%(1.4r1)/¢1.-r1)
22=22% (1. 4r2)/C1 =1 2)
u=zi%kz1/z2/22

acssart((u=1.)/(u=-p2%r2/r1/r1))/Fr1
acl=ac/sart(l.-ackacxrlXsl)
ac2=agce/sart(l.-ackackr2%e2)
rhoc=(zl/acl1+=2/ac2)/2.

l1zmin0(int(der/dd)+2n)
write(é6r50)dersa(l)sacrrho(l)srhocrrlyr2
format(ixef7.2961710.4)

continue

call exit

en

subroutine recorpi{nsarrhordrsusrfreqr rre)
dimension a(n)rrho(n)rdin)

comrlex reppenlisnirrroirroirrm2lym22ve2selive
d¢(1)=0.

Fi1i=3,1415926536

omeda=2.%Xrikfrea

om2=omedaXomeda

wk=omedaku

sh2=xh¥xh

m22=cmelx(l.90.)

ml=cmrlu(0.,90,)

do 170 Jd=1lsn

i=n=-.+1

ardg=om2/(a(id)ka(i))~-nuh2
if(ard.gt.0.,)ni=cmrlxi(sart{ardg)»0,)
if(ard.le.0,)ni=coarlx(0.r-sart(-arg))
roi=semrlx(rho(i)s0,.)

ifti.ea.n)go to 171

el=nirXroi

e2=niXrois
ezpcexr(niXemrlx(0.22.%Xd(i)))
el=elx(m214+m22)

e2=e2%X(m21-m22)

m21=elte2

m22=ek(el-e2)

rmax=cabs(m22)

rm=cabs(m21)

if(rme.dgt.rmax)rmax=rm
el=cmprlx(l./rm3x+0,)

m22=m22%el

m21=m2ix%xel

nir=ni

roie=roi

continue

rer=-m21/m22

return

end
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subroutine fft(xsm) o
complex x(1024)rurwrt X
] n=2%XXKm ,.,,:
N pi=3,1415926536 -
b do 20 1=1»m —
q le=2%x%x(m+1-1) At
lel=le/2 ) ]
] uz=cmrlx(l.90.) e
\ w=emelx(cos(ri/float(lel))rsin(pi/float(lel))) b
Y do 20 .d=1slel NN
: do 10 i=dsnrle ey
ir=itlel S
t=x(id+x(ir) O
MCip)=(x(i)=-x(ir)) X
’ 10 x(id=t e
3 20 u=uXu AN
; nva=n/2 R
) nmi=n-1 Vpte
=1 o B
! do 30 i=1rynml DA
y if(i.ge.J)go to 25 S
t=x ) -2 3
#{d)=x(1i) e
x(i)=t A
25 k=nv2
] 26 if(k.de.d)do to 30
NENET?
bh=k/2
g0 to 26
30 J=dth
return
end
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